

Angular	2	Cookbook

Table	of	Contents

Angular	2	Cookbook
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Customer	Feedback
Dedication
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Strategies	for	Upgrading	to	Angular	2
Introduction
Componentizing	directives	using	controllerAs	encapsulation

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Migrating	an	application	to	component	directives
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Implementing	a	basic	component	in	AngularJS	1.5
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Normalizing	service	types
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Connecting	Angular	1	and	Angular	2	with	UpgradeModule
Getting	ready
How	to	do	it...

Connecting	Angular	1	to	Angular	2
How	it	works...
There's	more...
See	also

Downgrading	Angular	2	components	to	Angular	1	directives	with	downgradeComponent
Getting	ready
How	to	do	it...
How	it	works...
See	also

Downgrade	Angular	2	providers	to	Angular	1	services	with	downgradeInjectable
Getting	ready
How	to	do	it...
See	also

2.	Conquering	Components	and	Directives
Introduction
Using	decorators	to	build	and	style	a	simple	component

Getting	ready
How	to	do	it...

Writing	the	class	definition
Writing	the	component	class	decorator

How	it	works...
There's	more...
See	also

Passing	members	from	a	parent	component	into	a	child	component
Getting	ready
How	to	do	it...

Connecting	the	components
Declaring	inputs

How	it	works...
There's	more...

Angular	expressions
Unidirectional	data	binding
Member	methods

See	also
Binding	to	native	element	attributes

How	to	do	it...
How	it	works...
See	also

Registering	handlers	on	native	browser	events
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Generating	and	capturing	custom	events	using	EventEmitter
Getting	ready
How	to	do	it...

Capturing	the	event	data
Emitting	a	custom	event
Listening	for	custom	events

How	it	works...
There's	more...
See	also

Attaching	behavior	to	DOM	elements	with	directives
Getting	ready
How	to	do	it...

Attaching	to	events	with	HostListeners
How	it	works...
There's	more...
See	also

Projecting	nested	content	using	ngContent
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Using	ngFor	and	ngIf	structural	directives	for	model-based	DOM	control
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Referencing	elements	using	template	variables
Getting	ready
How	to	do	it...

There's	more...
See	also

Attribute	property	binding
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Utilizing	component	lifecycle	hooks
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Referencing	a	parent	component	from	a	child	component
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Configuring	mutual	parent-child	awareness	with	ViewChild	and	forwardRef
Getting	ready
How	to	do	it...

Configuring	a	ViewChild	reference
Correcting	the	dependency	cycle	with	forwardRef
Adding	the	disable	behavior

How	it	works...
There's	more...

ViewChildren
See	also

Configuring	mutual	parent-child	awareness	with	ContentChild	and	forwardRef
Getting	ready
How	to	do	it...

Converting	to	ContentChild
Correcting	data	binding

How	it	works...
There's	more...

ContentChildren
See	also

3.	Building	Template-Driven	and	Reactive	Forms
Introduction
Implementing	simple	two-way	data	binding	with	ngModel

How	to	do	it...
How	it	works...
There's	more...
See	also

Implementing	basic	field	validation	with	a	FormControl
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Validators	and	attribute	duality
Tagless	controls

See	also
Bundling	controls	with	a	FormGroup

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

FormGroup	validators
Error	propagation

See	also
Bundling	FormControls	with	a	FormArray

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Implementing	basic	forms	with	NgForm
Getting	ready
How	to	do	it...

Declaring	form	fields	with	ngModel
How	it	works...
There's	more...
See	also

Implementing	basic	forms	with	FormBuilder	and	formControlName
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Creating	and	using	a	custom	validator
Getting	ready
How	to	do	it...

How	it	works...
There's	more...

Refactoring	into	validator	attributes
See	also

Creating	and	using	a	custom	asynchronous	validator	with	Promises
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Validator	execution
See	also

4.	Mastering	Promises
Introduction
Understanding	and	implementing	basic	Promises

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Decoupled	and	duplicated	Promise	control
Resolving	a	Promise	to	a	value
Delayed	handler	definition
Multiple	handler	definition
Private	Promise	members

See	also
Chaining	Promises	and	Promise	handlers

How	to	do	it...
Chained	handlers'	data	handoff
Rejecting	a	chained	handler

How	it	works...
There's	more...

Promise	handler	trees
catch()

See	also
Creating	Promise	wrappers	with	Promise.resolve()	and	Promise.reject()

How	to	do	it...
Promise	normalization

How	it	works...
There's	more...
See	also

Implementing	Promise	barriers	with	Promise.all()
How	to	do	it...
How	it	works...

There's	more...
See	also

Canceling	asynchronous	actions	with	Promise.race()
Getting	ready
How	to	do	it...
How	it	works...
See	also

Converting	a	Promise	into	an	Observable
How	to	do	it...
How	it	works...
There's	more...
See	also

Converting	an	HTTP	service	Observable	into	a	ZoneAwarePromise
Getting	ready
How	to	do	it...
How	it	works...
See	also

5.	ReactiveX	Observables
Introduction

The	Observer	Pattern
ReactiveX	and	RxJS
Observables	in	Angular	2
Observables	and	Promises

Basic	utilization	of	Observables	with	HTTP
Getting	ready
How	to	do	it...
How	it	works...

Observable<Response>
The	RxJS	map()	operator
Subscribe

There's	more...
Hot	and	cold	Observables

See	also
Implementing	a	Publish-Subscribe	model	using	Subjects

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Native	RxJS	implementation
See	also

Creating	an	Observable	authentication	service	using	BehaviorSubjects
Getting	ready

How	to	do	it...
Injecting	the	authentication	service
Adding	BehaviorSubject	to	the	authentication	service
Adding	API	methods	to	the	authentication	service
Wiring	the	service	methods	into	the	component

How	it	works...
There's	more...
See	also

Building	a	generalized	Publish-Subscribe	service	to	replace	$broadcast,	$emit,	and	$on
Getting	ready
How	to	do	it...

Introducing	channel	abstraction
Hooking	components	into	the	service
Unsubscribing	from	channels

How	it	works...
There's	more...

Considerations	of	an	Observable's	composition	and	manipulation
See	also

Using	QueryLists	and	Observables	to	follow	changes	in	ViewChildren
Getting	ready
How	to	do	it...

Dealing	with	QueryLists
Correcting	the	expression	changed	error

How	it	works...
Hate	the	player,	not	the	game

See	also
Building	a	fully	featured	AutoComplete	with	Observables

Getting	ready
How	to	do	it...

Using	the	FormControl	valueChanges	Observable
Debouncing	the	input
Ignoring	serial	duplicates
Flattening	Observables
Handling	unordered	responses

How	it	works...
See	also

6.	The	Component	Router
Introduction
Setting	up	an	application	to	support	simple	routes

Getting	ready
How	to	do	it...

Setting	the	base	URL

Defining	routes
Providing	routes	to	the	application
Rendering	route	components	with	RouterOutlet

How	it	works...
There's	more...

Initial	page	load
See	also

Navigating	with	routerLinks
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Route	order	considerations
See	also

Navigating	with	the	Router	service
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Selecting	a	LocationStrategy	for	path	construction
How	to	do	it...
There's	more...

Configuring	your	application	server	for	PathLocationStrategy
Building	stateful	route	behavior	with	RouterLinkActive

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Implementing	nested	views	with	route	parameters	and	child	routes
Getting	ready
How	to	do	it...

Adding	a	routing	target	to	the	parent	component
Defining	nested	child	views
Defining	the	child	routes
Defining	child	view	links
Extracting	route	parameters

How	it	works...
There's	more...

Refactoring	with	async	pipes
See	also

Working	with	matrix	URL	parameters	and	routing	arrays
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Adding	route	authentication	controls	with	route	guards
Getting	ready
How	to	do	it...

Implementing	the	Auth	service
Wiring	up	the	profile	view
Restricting	route	access	with	route	guards
Adding	login	behavior
Adding	the	logout	behavior

How	it	works...
There's	more...

The	actual	authentication
Secure	data	and	views

See	also
7.	Services,	Dependency	Injection,	and	NgModule

Introduction
Injecting	a	simple	service	into	a	component

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Controlling	service	instance	creation	and	injection	with	NgModule
Getting	ready
How	to	do	it...

Splitting	up	the	root	module
How	it	works...
There's	more...

Injecting	different	service	instances	into	different	components
Service	instantiation

See	also
Service	injection	aliasing	with	useClass	and	useExisting

Getting	ready
Dual	services
A	unified	component

How	to	do	it...
How	it	works...

There's	more...
Refactoring	with	directive	providers

See	also
Injecting	a	value	as	a	service	with	useValue	and	OpaqueTokens

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Building	a	provider-configured	service	with	useFactory
Getting	ready
How	to	do	it...

Defining	the	factory
Injecting	OpaqueToken
Creating	provider	directives	with	useFactory

How	it	works...
There's	more...
See	also

8.	Application	Organization	and	Management
Introduction
Composing	package.json	for	a	minimum	viable	Angular	2	application

Getting	ready
How	to	do	it...

package.json	dependencies
package.json	devDependencies
package.json	scripts

See	also
Configuring	TypeScript	for	a	minimum	viable	Angular	2	application

Getting	ready
How	to	do	it...

Declaration	files
tsconfig.json

How	it	works...
Compilation

There's	more...
Source	map	generation
Single	file	compilation

See	also
Performing	in-browser	transpilation	with	SystemJS

Getting	ready
How	to	do	it...
How	it	works...

There's	more...
See	also

Composing	application	files	for	a	minimum	viable	Angular	2	application
Getting	ready
How	to	do	it...

app.component.ts
app.module.ts
main.ts
index.html
Configuring	SystemJS

See	also
Migrating	the	minimum	viable	application	to	Webpack	bundling

Getting	ready
How	to	do	it...

webpack.config.js
See	also

Incorporating	shims	and	polyfills	into	Webpack
Getting	ready
How	to	do	it...
How	it	works...
See	also

HTML	generation	with	html-webpack-plugin
Getting	ready
How	to	do	it...
How	it	works...
See	also

Setting	up	an	application	with	Angular	CLI
Getting	ready
How	to	do	it...

Running	the	application	locally
Testing	the	application

How	it	works...
Project	configuration	files
TypeScript	configuration	files
Test	configuration	files
Core	application	files
Environment	files
AppComponent	files
AppComponent	test	files

There's	more...
See	also

9.	Angular	2	Testing

Introduction
Creating	a	minimum	viable	unit	test	suite	with	Karma,	Jasmine,	and	TypeScript

Getting	ready
How	to	do	it...

Writing	a	unit	test
Configuring	Karma	and	Jasmine
Configuring	PhantomJS
Compiling	files	and	tests	with	TypeScript
Incorporating	Webpack	into	Karma
Writing	the	test	script

How	it	works...
There's	more...
See	also

Writing	a	minimum	viable	unit	test	suite	for	a	simple	component
Getting	ready
How	to	do	it...

Using	TestBed	and	async
Creating	a	ComponentFixture

How	it	works...
See	also

Writing	a	minimum	viable	end-to-end	test	suite	for	a	simple	application
Getting	ready
How	to	do	it...

Getting	Protractor	up	and	running
Making	Protractor	compatible	with	Jasmine	and	TypeScript
Building	a	page	object
Writing	the	e2e	test
Scripting	the	e2e	tests

How	it	works...
There's	more...
See	also

Unit	testing	a	synchronous	service
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Testing	without	injection
See	also

Unit	testing	a	component	with	a	service	dependency	using	stubs
Getting	ready
How	to	do	it...

Stubbing	a	service	dependency

Triggering	events	inside	the	component	fixture
How	it	works...
See	also

Unit	testing	a	component	with	a	service	dependency	using	spies
Getting	ready
How	to	do	it...

Setting	a	spy	on	the	injected	service
How	it	works...
There's	more...
See	also

10.	Performance	and	Advanced	Concepts
Introduction
Understanding	and	properly	utilizing	enableProdMode	with	pure	and	impure	pipes

Getting	ready
How	to	do	it...

Generating	a	consistency	error
Introducing	change	detection	compliance
Switching	on	enableProdMode

How	it	works...
There's	more...
See	also

Working	with	zones	outside	Angular
Getting	ready
How	to	do	it...

Forking	a	zone
Overriding	zone	events	with	ZoneSpec

How	it	works...
There's	more...

Understanding	zone.run()
Microtasks	and	macrotasks

See	also
Listening	for	NgZone	events

zone.js
NgZone
Getting	ready
How	to	do	it...

Demonstrating	the	zone	life	cycle
How	it	works...

The	utility	of	zone.js
See	also

Execution	outside	the	Angular	zone
How	to	do	it...

How	it	works...
There's	more...
See	also

Configuring	components	to	use	explicit	change	detection	with	OnPush
Getting	ready
How	to	do	it...

Configuring	the	ChangeDetectionStrategy
Requesting	explicit	change	detection

How	it	works...
There's	more...
See	also

Configuring	ViewEncapsulation	for	maximum	efficiency
Getting	ready
How	to	do	it...

Emulated	styling	encapsulation
No	styling	encapsulation
Native	styling	encapsulation

How	it	works...
There's	more...
See	also

Configuring	the	Angular	2	Renderer	to	use	web	workers
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Optimizing	for	performance	gains
Compatibility	considerations

See	also
Configuring	applications	to	use	ahead-of-time	compilation

Getting	ready
How	to	do	it...

Installing	AOT	dependencies
Configuring	ngc
Aligning	component	definitions	with	AOT	requirements
Compiling	with	ngc
Bootstrapping	with	AOT

How	it	works...
There's	more...

Going	further	with	Tree	Shaking
See	also

Configuring	an	application	to	use	lazy	loading
Getting	ready

How	to	do	it...
How	it	works...
There's	more...

Accounting	for	shared	modules
See	also

Angular	2	Cookbook

Angular	2	Cookbook
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,
except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,
either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and
distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing
cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2017

Production	reference:	1160117

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78588-192-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Matt	Frisbie

Project	Coordinator

Ritika	Manoj

Reviewer

Patrick	Gillespie

Proofreader

Safis	Editing

Acquisition	Editor

Vinay	Argekar

Indexer

Francy	Puthiry

Content	Development	Editor

Arun	Nadar

Graphics

Kirk	D'Penha

Technical	Editor

Vivek	Arora

Production	Coordinator

Deepika	Naik

Copy	Editor

Gladson	Monteiro

Cover	Work

Deepika	Naik

About	the	Author
Matt	Frisbie	is	currently	a	software	engineer	at	Google.	He	was	the	author	of	the	Packt
Publishing	bestseller	AngularJS	Web	Application	Development	Cookbook	and	also	has	published
several	video	series	through	O'Reilly.	He	is	active	in	the	Angular	community,	giving	presentations
at	meetups	and	doing	webcasts.

Writing	a	book	on	Angular	2	while	the	framework	itself	was	unfinished	was	an	immensely
challenging	endeavor.	Fragmented	examples,	incomplete	documentation,	and	a	nascent
developer	community	were	just	a	handful	of	the	many	roadblocks	I	encountered	on	the
journey	to	finishing	this	title,	and	it	was	only	because	of	a	legion	of	supporters	that	this
book	was	finished	and	was	able	to	do	justice	to	the	framework.

This	book	would	not	have	been	possible	without	the	tireless	work	of	all	the	Packt	staff
involved.	I'd	specifically	like	to	thank	Arun	Nadar,	Vivek	Arora,	Merwyn	D'Souza,	and
Vinay	Argekar	for	their	editorial	oversight	and	expertise,	as	well	as	Patrick	Gillespie	for
his	work	as	content	reviewer.	I'd	also	like	to	thank	Jordan,	Zoey,	Scott,	and	my	family	and
friends	for	cheering	me	on.

About	the	Reviewer
Patrick	Gillespie	has	been	into	software	development	since	1996.	He	has	both	a	bachelor's	and	a
master's	degree	in	computer	science.	In	his	spare	time,	he	enjoys	photography,	spending	time	with
his	family,	and	working	on	various	side	projects	for	his	website	(http://patorjk.com/).

http://patorjk.com/

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book
customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us
at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books
and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development
and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thank	you	for	purchasing	this	Packt	book.	We	take	our	commitment	to	improving	our	content	and
products	to	meet	your	needs	seriously—that's	why	your	feedback	is	so	valuable.	Whatever	your
feelings	about	your	purchase,	please	consider	leaving	a	review	on	this	book's	Amazon	page.	Not
only	will	this	help	us,	more	importantly	it	will	also	help	others	in	the	community	to	make	an
informed	decision	about	the	resources	that	they	invest	in	to	learn.

You	can	also	review	for	us	on	a	regular	basis	by	joining	our	reviewers'	club.	If	you're
interested	in	joining,	or	would	like	to	learn	more	about	the	benefits	we	offer,	please	contact
us:	customerreviews@packtpub.com.

Dedication
To	my	grandparents,	Richard	and	Margery.	Here's	to	upholding	the	family	honor.

Preface
"Everybody	has	a	plan	until	they	get	punched	in	the	mouth."																																																
																																																					-Mike	Tyson,	undisputed	heavyweight	champion	boxer

Soon	after	its	creation	in	2009,	AngularJS	grew	into	a	widely	popular	foundational	tool	for
building	frontend	applications.	As	years	and	releases	went	by,	and	the	JavaScript	community
matured,	the	world	of	client-side	programming	broadened	beyond	what	Angular	was	originally
designed	for.	Its	caretakers	took	stock	and	decided	that	a	sweeping	overhaul	of	the	framework
was	in	order.

AngularJS,	now	Angular	1,	still	exists	and	will	be	supported	for	the	years	to	come,	but	in	its
wake	lies	Angular	2—a	wholly	different	animal	built	for	the	future	of	client-side	computing.
Angular	2	abandons	antipatterns	by	the	fistful	and,	instead,	is	reshaped	into	a	precise	and	elegant
software	instrument.	It	embraces	the	impending	renaissance	of	web	technologies,	building	atop
ES6,	web	components,	web	workers,	TypeScript,	and	reactive	programming,	to	name	a	few.	It
brings	framework	modularity	to	new	heights,	building	itself	around	the	concept	that	any	modular
piece	of	Angular	2	should	be	easily	discarded	or	replaced.	Best	of	all,	Angular	2	offers	a
bountiful	collection	of	configuration	and	tooling	that	will	make	your	applications	run	at	breakneck
speed.

To	many	developers,	Angular	2	is	frightening	because	so	much	of	it	is	new	and	unfamiliar.	This
book	exists	to	offer	you	an	approachable	path	to	a	full	understanding	of	Angular	2,	what	it	offers,
and	how	best	to	use	it.	You	will	find	both	simple	examples	to	set	a	foundational	understanding,
and	complex	demonstrations	to	hint	at	the	framework's	power.	The	book	is	organized	into	recipes
that	are	independent	of	each	other,	so	you	are	able	to	jump	in	at	any	point	and	immediately	begin
learning.

What	this	book	covers
This	book	is	up	to	date	for	the	2.4	release	and	is	compatible	through	the	4.0	release	as	well,	and
it	does	not	have	any	code	based	on	the	beta	or	release	candidates.

Chapter	1,	Strategies	for	Upgrading	to	Angular	2,	is	an	overview	of	a	number	of	ways	to
migrate	an	Angular	1	application	to	Angular	2.	Although	there	is	no	one-size-fits-all	upgrade
strategy,	you	will	find	that	these	recipes	demonstrate	some	ways	that	will	allow	you	to	preserve	a
large	amount	of	your	existing	Angular	1	code	base.

Chapter	2,	Conquering	Components	and	Directives,	gives	a	broad	and	deep	set	of	examples
involving	what	Angular	2	components	are	and	how	to	use	them.	Angular	2	applications	are	built
entirely	of	components,	and	this	chapter	offers	you	a	total	rundown	of	their	role.

Chapter	3,	Building	Template-Driven	and	Reactive	Forms,	covers	the	reworked	Angular	2	form
modules.	Angular	2	offers	you	two	primary	styles	of	erecting	form	features,	and	this	chapter
covers	both	of	them	in	depth.

Chapter	4,	Mastering	Promises,	shows	how	the	Promise	object	has	a	role	in	Angular	2.	Although
RxJS	has	subsumed	some	of	the	usefulness	of	Promises,	they	are	still	first-class	citizens	in	ES6
and	still	play	a	crucial	role.

Chapter	5,	ReactiveX	Observables,	gives	you	a	crash	course	in	how	Angular	2	has	embraced
reactive	programming.	It	includes	recipes	that	demonstrate	the	basics	of	Observables	and
Subjects,	as	well	as	advanced	implementations	that	take	RxJS	to	its	limits.

Chapter	6,	The	Component	Router,	takes	you	through	the	totally	reworked	routing	module	in
Angular	2.	It	covers	both	routing	basics	as	well	as	an	array	of	advanced	routing	concepts	unique
to	Angular	2.

Chapter	7,	Services,	Dependency	Injection,	and	NgModule,	describes	the	new	and	improved
dependency	injection	and	module	strategies	of	Angular	2.	It	gives	you	all	the	pieces	you	need	to
break	your	application	into	independent	services	and	modules,	as	well	as	ideal	strategies	for
connecting	those	pieces	together.

Chapter	8,	Application	Organization	and	Management,	is	a	broad	overview	of	how	you	can
manage	your	Angular	2	application	inside	and	outside	the	client.	Angular	2	introduces	a	number
of	layers	of	complexity	that	require	advanced	tooling,	and	this	chapter	will	guide	you	through	how
to	approach	them.

Chapter	9,	Angular	2	Testing,	will	guide	you	through	both	how	to	set	up	test	suites	for	Angular	2
as	well	as	how	to	write	various	types	of	tests	for	these	suites.	Many	developers	avoid	testing
when	learning	a	framework	anew,	and	this	chapter	gently	guides	you	through	Angular	2's	excellent

test	infrastructure.

Chapter	10,	Performance	and	Advanced	Concepts,	is	a	crash	course	on	the	dizzying	array	of
complex	concepts	that	Angular	2	comes	with	out	of	the	box.	This	chapter	covers	program
organization	and	architecture,	framework	features	and	tooling,	as	well	as	compile-time
optimizations.

What	you	need	for	this	book
Every	recipe	in	this	book	is	accompanied	by	a	link	to	the	book's	companion
site,	http://ngcookbook.herokuapp.com/.	Recipes	that	involve	code	examples	will	include	a	link
to	a	live	example	on	Plunker.	This	will	allow	you	to	inspect	and	test	code	in	real	time	without
having	to	worry	about	compilation,	local	servers,	or	anything	of	that	ilk.	It	must	be	noted,
however,	that	this	setup	is	only	appropriate	for	experimentation	and	should	not	be	used	for	user-
facing	or	production	applications.

Angular	2	comes	in	both	JavaScript	and	TypeScript	flavors,	but	this	book	aims	directly	at	the
TypeScript	edition,	since	it	is	syntactically	superior	(as	you	will	soon	realize).	For	proper
production	applications,	TypeScript	will	be	compiled	into	JavaScript	before	it	is	served	to	the
browser.	The	way	this	book	accomplishes	this	(and	many	other	code	preparation	tasks)	is	inside	a
Node.js	install	on	your	local	machine.	Node.js	includes	the	Node	Package	Manager	(npm),	which
lets	you	install	and	run	open	source	JavaScript	software	from	the	command	line.

Some	chapters	in	this	book	will	require	that	you	have	Node.js	installed	before	running	commands
and	launching	a	local	server	or	test	suite.	Furthermore,	it	is	recommended	(but	not	required)	that
you	install	the	Node	Version	Manager	on	top	of	Node.js,	which	will	make	managing	your
installed	packages	much	easier.

http://ngcookbook.herokuapp.com/

Who	this	book	is	for
The	universe	of	Angular	2	learning	materials	is	currently	fragmented	and	gross.	This	book	is	for
both	beginner	developers	looking	to	sink	their	teeth	into	a	new	framework,	as	well	as	advanced
developers	interested	in	rounding	out	their	knowledge	of	a	framework	that	embraces	the	coming
world	of	web	tech.

For	newer	developers,	ingesting	all	these	new	technologies	at	once	may	seem	overwhelming.	The
organization	and	pace	of	this	book	is	designed	so	that	topics	are	gradually	introduced,	and	design
decisions	and	rationales	are	explained.	Don't	worry,	this	book	is	still	for	you.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"Karma	reads	its
configuration	out	of	a	karma.conf.js	file."

A	block	of	code	is	set	as	follows:

<p>{{date}}</p>	

<h1>{{title}}</h1>	

<h3>Written	by:	{{author}}</h3>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

@Component({	

		selector:	'article',	

		template:	`	

				<p>{{currentDate|date}}</p>	

				<h1>{{title}}</h1>	

				<h3>Written	by:	{{author}}</h3>	

		`	

})

Any	command-line	input	or	output	is	written	as	follows:

npm	install	karma	jasmine-core	karma-jasmine	--save-dev

npm	install	karma-cli	-g

New	terms	and	important	words	are	shown	in	bold.

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what
you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you
will	really	get	the	most	out	of.	To	send	us	general	feedback,	simply	e-
mail	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject	of	your	message.	If	there
is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get
the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Angular-2-Cookbook.	We	also	have	other	code	bundles	from
our	rich	catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them
out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Angular-2-Cookbook
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If
you	find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and
help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your
submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list
of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support
and	enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the
Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,
we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal
copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or
website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Chapter	1.	Strategies	for	Upgrading	to
Angular	2
This	chapter	will	cover	the	following	recipes:

Componentizing	directives	using	the	controllerAs	encapsulation
Migrating	an	application	to	component	directives
Implementing	a	basic	component	in	AngularJS	1.5
Normalizing	service	types
Connecting	Angular	1	and	Angular	2	with	UpgradeModule
Downgrading	Angular	2	components	to	Angular	1	directives	with	downgradeComponent
Downgrading	Angular	2	providers	to	Angular	1	services	with	downgradeInjectable

Introduction
The	introduction	of	Angular	2	into	the	Angular	ecosystem	will	surely	be	interpreted	and	handled
differently	for	all	developers.	Some	will	stick	to	their	existing	Angular	1	codebases,	some	will
start	brand	new	Angular	2	codebases,	and	some	will	do	a	gradual	or	partial	transition.

It	is	recommended	that	you	become	familiar	with	the	behavior	of	Angular	2	components	before
you	dive	into	these	recipes.	This	will	help	you	frame	mental	models	as	you	adapt	your	existing
applications	to	be	more	compliant	with	the	Angular	2	style.

Componentizing	directives	using	controllerAs
encapsulation
One	of	the	unusual	conventions	introduced	in	Angular	1	was	the	relationship	between	directives
and	the	data	they	consumed.	By	default,	directives	used	an	inherited	scope,	which	suited	the	needs
of	most	developers	just	fine.	While	this	was	easy	to	use,	it	had	the	effect	of	introducing	extra
dependencies	in	the	directives,	and	also	the	convention	that	directives	often	did	not	own	the	data
they	were	consuming.	Additionally,	the	data	interpolated	in	the	template	was	unclear	in	relation	to
where	it	was	being	assigned	or	owned.

Angular	2	utilizes	components	as	the	building	blocks	of	the	entire	application.	These	components
are	class-based	and	are	therefore	in	some	ways	at	odds	with	the	scope	mechanisms	of	Angular	1.
Transitioning	to	a	controller-centric	directive	model	is	a	large	step	towards	compliance	with	the
Angular	2	standards.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/8194.

http://ngcookbook.herokuapp.com/8194

Getting	ready
Suppose	your	application	contains	the	following	setup	that	involves	the	nested	directives	that
share	data	using	an	isolate	scope:

[index.html]	

	

<div	ng-app="articleApp">	

		<article></article>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.directive('article',	function()	{	

		return	{	

				controller:	function($scope)	{	

						$scope.articleData	=	{	

								person:	{firstName:	'Jake'},	

								title:	'Lesotho	Yacht	Club	Membership	Booms'	

					};	

			},	

				template:	`	

						<h1>{{articleData.title}}</h1>	

						<attribution	author="articleData.person.firstName">	

						</attribution>	

				`	

	};	

})	

.directive('attribution',	function()	{	

		return	{	

				scope:	{author:	'='},	

				template:	`<p>Written	by:	{{author}}</p>`	

	};	

});	

How	to	do	it...
The	goal	is	to	refactor	this	setup	so	that	templates	can	be	explicit	about	where	the	data	is	coming
from	and	so	that	the	directives	have	ownership	of	this	data:

[app.js]	

	

angular.module('articleApp',	[])	

.directive('article',	function()	{	

			return	{	

			controller:	function()	{	

						this.person	=	{firstName:	'Jake'};	

						this.title	=	'Lesotho	Yacht	Club	Membership	Booms';	

			},	

				controllerAs:	'articleCtrl',	

				template:	`	

						<h1>{{articleCtrl.title}}</h1>	

						<attribution></attribution>	

				`	

	};	

})	

.directive('attribution',	function()	{	

			return	{	

				template:	`<p>Written	by:	{{articleCtrl.author}}</p>`	

	};	

});	

In	this	second	implementation,	anywhere	you	use	the	article	data,	you	are	certain	of	its	origin.
This	is	better,	but	the	child	directive	is	still	referencing	the	parent	controller,	which	isn't	ideal
since	it	is	introducing	an	unneeded	dependency.	The	attribution	directive	instance	should	be
provided	with	the	data,	and	it	should	instead	interpolate	from	its	own	controller	instance:

[app.js]		

	

angular.module('articleApp',	[])	

.directive('article',	function()	{	

		return	{	

				controller:	function()	{	

						this.person	=	{firstName:	'Jake'};	

						this.title	=	'Lesotho	Yacht	Club	Membership	Booms';	

			},	

				controllerAs:	'articleCtrl',	

				template:	`	

						<h1>{{articleCtrl.title}}</h1>	

						<attribution	author="articleCtrl.person.firstName">	

						</attribution>	

				`	

	};	

})	

.directive('attribution',	function()	{	

		return	{	

				controller:	function()	{},	

				controllerAs:	'attributionCtrl',	

				bindToController:	{author:	'='},	

				template:	`<p>Written	by:	{{attributionCtrl.author}}</p>`	

	};	

});	

Much	better!	You	provide	the	child	directive	with	a	stand-in	controller	and	give	it	an	alias	in	the
attributionCtrl	template.	It	is	implicitly	bound	to	the	controller	instance	via
bindToController	in	the	same	way	you	would	accomplish	a	regular	isolate	scope;	however,	the
binding	is	directly	attributed	to	the	controller	object	instead	of	the	scope.

Now	that	you	have	introduced	the	notion	of	data	ownership,	suppose	you	want	to	modify	your
application	data.	What's	more,	you	want	different	parts	of	your	application	to	be	able	to	modify	it.
A	naïve	implementation	of	this	would	be	something	as	follows:

[app.js]	

	

angular.module('articleApp',	[])	

.directive('attribution',	function()	{	

		return	{	

				controller:	function()	{	

						this.capitalize	=	function()	{	

								this.author	=	this.author.toUpperCase();	

					}	

			},	

				controllerAs:	'attributionCtrl',	

				bindToController:	{author:	'='},	

				template:	`	

						<p	ng-click="attributionCtrl.capitalize()">	

								Written	by:	{{attributionCtrl.author}}	

						</p>`	

	};	

});	

The	desired	behavior	is	for	you	to	click	on	the	author,	and	it	will	become	capitalized.	However,
in	this	implementation,	the	article	controller's	data	is	modified	in	the	attribution	controller,	which
does	not	own	it.	It	is	preferable	for	the	controller	that	owns	the	data	to	perform	the	actual
modification	and	instead	supply	an	interface	that	an	outside	entity—here,	the	attribution	directive
—could	use:

[app.js]	

	

angular.module('articleApp',	[])	

.directive('article',	function()	{	

		return	{	

				controller:	function()	{	

						this.person	=	{firstName:	'Jake'};	

						this.title	=	'Lesotho	Yacht	Club	Membership	Booms';	

						this.capitalize	=	function()	{	

								this.person.firstName	=			

										this.person.firstName.toUpperCase();	

					};	

			},	

				controllerAs:	'articleCtrl',	

				template:	`	

						<h1>{{articleCtrl.title}}</h1>	

						<attribution	author="articleCtrl.person.firstName"	

																			upper-case-author="articleCtrl.capitalize()">	

						</attribution>	

				`	

	};	

})	

.directive('attribution',	function()	{	

		return	{	

				controller:	function()	{},	

				controllerAs:	'attributionCtrl',	

				bindToController:	{	

						author:	'=',	

						upperCaseAuthor:	'&'	

			},	

				template:	`	

						<p	ng-click="attributionCtrl.upperCaseAuthor()">	

								Written	by:	{{attributionCtrl.author}}	

						</p>`	

	};	

});

Vastly	superior!	You	are	still	able	to	namespace	within	the	click	binding,	but	the	owning	directive
controller	is	providing	a	method	to	outside	entities	instead	of	just	giving	them	direct	data	access.

How	it	works...
When	a	controller	is	specified	in	the	directive	definition	object,	one	will	be	explicitly
instantiated	for	each	directive	instance	that	is	created.	Thus,	it	is	natural	for	this	controller	object
to	encapsulate	the	data	that	it	owns	and	for	it	to	be	delegated	the	responsibility	of	passing	its	data
to	the	members	that	require	it.

The	final	implementation	accomplishes	several	things:

Improved	template	namespacing:	When	you	use	the	$scope	properties	that	span	multiple
directives	or	nestings,	you	are	creating	a	scenario	where	multiple	entities	can	manipulate
and	read	data	without	being	able	to	concretely	reason	about	where	it	is	coming	from	or	what
is	controlling	it.
Improved	testability:	If	you	look	at	each	of	the	directives	in	the	final	implementation,	you'll
find	they	are	not	too	difficult	to	test.	The	attribution	directive	has	no	dependencies	other	than
what	are	explicitly	passed	to	it.
Encapsulation:	Introducing	the	notion	of	data	ownership	in	your	application	affords	you	a
much	more	robust	structure,	better	reusability,	and	additional	insight	and	control	involving
pieces	of	your	application	interacting.
Angular	2	style:	Angular	2	uses	the	@Input	and	@Output	annotations	on	component
definitions.	Mirroring	this	style	will	make	the	process	of	transitioning	to	an	application
easier.

There's	more...
You	will	notice	that	$scope	has	been	made	totally	irrelevant	in	these	examples.	This	is	good	as
there	is	no	notion	of	$scope	in	Angular	2,	which	means	you	are	heading	towards	having	an
upgradeable	application.	This	is	not	to	say	that	$scope	does	not	still	have	utility	in	an	Angular	1
application,	and	surely,	there	are	scenarios	where	this	is	unavoidable,	like	with
$scope.$apply().

However,	thinking	about	the	application	pieces	in	this	component	style	will	allow	you	to	be	more
adequately	prepared	to	adopt	Angular	2	conventions.

See	also
Migrating	an	application	to	component	directives	demonstrates	how	to	refactor	Angular	1
to	a	component	style
Implementing	a	basic	component	in	AngularJS	1.5	details	how	to	write	an	Angular	1
component
Normalizing	service	types	gives	instruction	on	how	to	align	your	Angular	1	service	types
for	Angular	2	compatibility

Migrating	an	application	to	component
directives
In	Angular	1,	there	are	several	built-in	directives,	including	ngController	and	ngInclude,	that
developers	tend	to	lean	on	when	building	applications.	While	not	anti-patterns,	using	these
features	moves	away	from	having	a	component-centric	application.

All	these	directives	are	actually	subsets	of	component	functionality,	and	they	can	be	entirely
refactored	out.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/1008/.

http://ngcookbook.herokuapp.com/1008/

Getting	ready
Suppose	your	initial	application	is	as	follows:

[index.html]	

	

<div	ng-app="articleApp">	

		<ng-include	src="'/press_header.html'"></ng-include>	

		<div	ng-controller="articleCtrl	as	article">	

				<h1>{{article.title}}</h1>	

				<p>Written	by:	{{article.author}}</p>	

		</div>	

		<script	type="text/ng-template"		

										id="/press_header.html">	

		<div	ng-controller="headerCtrl	as	header">	

					

						Angular	Chronicle	-	{{header.currentDate	|	date}}	

					

			<hr	/>	

		</div>	

		</script>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.controller('articleCtrl',	function()	{	

		this.title	=	'Food	Fight	Erupts	During	Diplomatic	Luncheon';	

		this.author	=	'Jake';	

})	

.controller('headerCtrl',	function()	{	

			this.currentDate	=	new	Date();	

});	

Note

Note	that	this	example	application	contains	a	large	number	of	very	common	Angular	1	patterns;
you	can	see	the	ngController	directives	sprinkled	throughout.	Also,	it	uses	an	ngInclude
directive	to	incorporate	a	header.	Keep	in	mind	that	these	directives	are	not	inappropriate	for	a
well-formed	Angular	1	application.	However,	you	can	do	better,	and	this	involves	refactoring	to	a
component-driven	design.

How	to	do	it...
Component-driven	patterns	don't	need	to	be	frightening	in	appearance.	In	this	example	(and	for
essentially	all	Angular	1	applications),	you	can	do	a	component	refactor	while	leaving	the
existing	template	largely	intact.

Begin	with	the	ngInclude	directive.	Moving	this	to	a	component	directive	is	simple—it	becomes
a	directive	with	templateUrl	set	to	the	template	path:

[index.html]	

	

<div	ng-app="articleApp">	

		<header></header>	

		<div	ng-controller="articleCtrl	as	article">	

				<h1>{{article.title}}</h1>	

				<p>Written	by:	{{article.author}}</p>	

		</div>	

		<script	type="text/ng-template"		

										id="/press_header.html">	

		<div	ng-controller="headerCtrl	as	header">	

				

						Angular	Chronicle	-	{{header.currentDate	|	date}}	

					

			<hr	/>	

		</div>	

		</script>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.controller('articleCtrl',	function()	{	

		this.title	=	'Food	Fight	Erupts	During	Diplomatic	Luncheon';	

		this.author	=	'Jake';	

})	

.controller('headerCtrl',	function()	{	

			this.currentDate	=	new	Date();	

})	

.directive('header',	function()	{	

			return	{	

			templateUrl:	'/press_header.html'	

	};	

});	

Next,	you	can	also	refactor	ngController	everywhere	it	appears.	In	this	example,	you	find	two
extremely	common	appearances	of	ngController.	The	first	is	at	the	head	of	the
press_header.html	template,	acting	as	the	top-level	controller	for	that	template.	Often,	this
results	in	needing	a	superfluous	wrapper	element	just	to	house	the	ng-controller	attribute.	The
second	is	ngController	nested	inside	your	primary	application	template,	controlling	some
arbitrary	portion	of	the	DOM.	Both	of	these	can	be	refactored	to	component	directives	by

reassigning	ngController	to	a	directive	controller:

[index.html]	

	

<div	ng-app="articleApp">	

		<header></header>	

		<article></article>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.directive('header',	function()	{	

		return	{	

				controller:	function()	{	

						this.currentDate	=	new	Date();	

				},	

				controllerAs:	'header',	

				template:	`	

							

								Angular	Chronicle	-	{{header.currentDate	|	date}}	

							

						<hr	/>	

				`	

	};	

})	

.directive('article',	function()	{	

			return	{	

			controller:	function()	{	

						this.title	=	'Food	Fight	Erupts	During	Diplomatic	Luncheon';	

						this.author	=	'Jake';	

			},	

				controllerAs:	'article',	

				template:	`					

						<h1>{{article.title}}</h1>	

						<p>Written	by:	{{article.author}}</p>	

				`	

	};	

});	

Tip

Note	that	templates	here	are	included	in	the	directive	for	visual	congruity.	For	large	applications,
it	is	preferred	that	you	use	templateUrl	and	locate	the	template	markup	in	its	own	file.

How	it	works...
Generally	speaking,	an	application	can	be	represented	by	a	hierarchy	of	nested	MVC	components.
ngInclude	and	ngController	act	as	subsets	of	a	component	functionality,	and	so	it	makes	sense
that	you	are	able	to	expand	them	into	full	component	directives.

In	the	preceding	example,	the	ultimate	application	structure	is	comprised	of	only	components.
Each	component	is	delegated	its	own	template,	controller,	and	model	(by	virtue	of	the	controller
object	itself).	Sticklers	will	dispute	whether	or	not	Angular	belongs	to	true	MVC	style,	but	in	the
context	of	component	refactoring,	this	is	irrelevant.	Here,	you	have	defined	a	structure	that	is
completely	modular,	reusable,	testable,	abstractable,	and	easily	maintainable.	This	is	the	style	of
Angular	2,	and	the	value	of	this	should	be	immediately	apparent.

There's	more...
An	alert	developer	will	notice	that	no	attention	is	paid	to	scope	inheritance.	This	is	a	difficult
problem	to	approach,	mostly	because	many	of	the	patterns	in	Angular	1	are	designed	for	a
mishmash	between	a	scope	and	controllerAs.	Angular	2	is	built	around	strict	input	and	output
between	nested	components;	however,	in	Angular	1,	scope	is	inherited	by	default,	and	nested
directives,	by	default,	have	access	to	their	encompassing	controller	objects.

Thus,	to	truly	emulate	an	Angular	2	style,	one	must	configure	their	application	to	explicitly	pass
data	and	methods	to	children,	similar	to	the	controllerAs	encapsulation	recipe.	However,	this
does	not	preclude	direct	data	access	to	ancestral	component	directive	controllers;	it	merely	wags
a	finger	at	it	since	it	adds	additional	dependencies.

See	also
Componentizing	directives	using	controllerAs	encapsulation	shows	you	a	superior	method
of	organizing	Angular	1	directives
Implementing	a	basic	component	in	AngularJS	1.5	details	how	to	write	an	Angular	1
component
Normalizing	service	types	gives	instruction	on	how	to	align	your	Angular	1	service	types
for	Angular	2	compatibility

Implementing	a	basic	component	in
AngularJS	1.5
The	1.5	release	of	AngularJS	introduced	a	new	tool:	the	component.	While	it	isn't	exactly	similar
to	the	concept	of	the	Angular	2	component,	it	does	allow	you	to	build	directive-style	pieces	in	an
explicitly	componentized	fashion.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/7756/.

http://ngcookbook.herokuapp.com/7756/

Getting	ready
Suppose	your	application	had	a	directive	defined	as	follows:

[index.html]	

	

<div	ng-app="articleApp">	

		<article></article>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.directive('article',	function()	{	

		return	{	

				controller:	function()	{	

						this.person	=	{firstName:	'Jake'};	

						this.title	=	'Police	Bust	Illegal	Snail	Racing	Ring';	

						this.capitalize	=	function()	{	

								this.person.firstName	=			

										this.person.firstName.toUpperCase();	

					};	

			},	

				controllerAs:	'articleCtrl',	

				template:	`	

						<h1>{{articleCtrl.title}}</h1>	

						<attribution	author="articleCtrl.person.firstName"	

																			upper-case-author="articleCtrl.capitalize()">	

						</attribution>	

				`	

	};	

})	

.directive('attribution',	function()	{	

		return	{	

				controller:	function()	{},	

				controllerAs:	'attributionCtrl',	

				bindToController:	{	

						author:	'=',	

						upperCaseAuthor:	'&'	

			},	

				template:	`	

						<p	ng-click="attributionCtrl.upperCaseAuthor()">	

								Written	by:	{{attributionCtrl.author}}	

						</p>`	

	};	

});	

How	to	do	it...
Since	this	application	is	already	organized	around	the	controllerAs	encapsulation,	you	can
migrate	it	to	use	the	component()	definition	introduced	in	the	Angular	1.5	release.

Components	accept	an	object	definition	similar	to	a	directive,	but	the	object	does	not	demand	to
be	returned	by	a	function—an	object	literal	is	all	that	is	needed.	Components	utilize	the	bindings
property	in	this	object	definition	object	in	the	same	way	that	bindToController	works	for
directives.	With	this,	you	can	easily	introduce	components	in	this	application	instead	of
directives:

[index.html]	

	

<div	ng-app="articleApp">	

		<article></article>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.component('article',	{	

		controller:	function()	{	

				this.person	=	{firstName:	'Jake'};	

				this.title	=	'	Police	Bust	Illegal	Snail	Racing	Ring	';	

				this.capitalize	=	function()	{	

						this.person.firstName	=			

								this.person.firstName.toUpperCase();	

			};	

	},	

		controllerAs:	'articleCtrl',	

		template:	`	

				<h1>{{articleCtrl.title}}</h1>	

				<attribution	author="articleCtrl.person.firstName"	

																	upper-case-author="articleCtrl.capitalize()">	

			</attribution>`	

})	

.component('attribution',	{	

		controller:	function()	{},	

		controllerAs:	'attributionCtrl',	

		bindings:	{	

				author:	'=',	

				upperCaseAuthor:	'&'	

	},	

		template:	`	

				<p	ng-click="attributionCtrl.upperCaseAuthor()">	

						Written	by:	{{attributionCtrl.author}}	

				</p>	

		`	

});	

How	it	works...
Notice	that	since	your	controller-centric	data	organization	matches	what	a	component	definition
expects,	no	template	modifications	are	necessary.	Components,	by	default,	will	utilize	an	isolate
scope.	What's	more,	they	will	not	have	access	to	the	alias	of	the	surrounding	controller	objects,
something	that	cannot	be	said	for	component-style	directives.	This	encapsulation	is	an	important
offering	of	the	new	component	feature,	as	it	has	direct	parity	to	how	components	operate	in
Angular	2.

There's	more...
Since	you	have	now	entirely	isolated	each	individual	component,	there	is	only	a	single	controller
object	to	deal	with	in	each	template.	Thus,	Angular	1.5	automatically	provides	a	convenient	alias
for	the	component's	controller	object,	namely—$ctrl.	This	is	provided	whether	or	not	a
controllerAs	alias	is	specified.	Therefore,	a	further	refactoring	yields	the	following:

[index.html]	

	

<div	ng-app="articleApp">	

		<article></article>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.component('article',	{	

		controller:	function()	{	

				this.person	=	{firstName:	'Jake'};	

				this.title	=	'Police	Bust	Illegal	Snail	Racing	Ring';	

				this.capitalize	=	function()	{	

						this.person.firstName	=			

								this.person.firstName.toUpperCase();	

			};	

	},	

		template:	`	

				<h1>{{$ctrl.title}}</h1>	

				<attribution	author="$ctrl.person.firstName"	

																	upper-case-author="$ctrl.capitalize()">	

			</attribution>	

		`	

})	

.component('attribution',	{	

		controller:	function()	{},	

		bindings:	{	

				author:	'=',	

				upperCaseAuthor:	'&'	

	},	

		template:	`	

				<p	ng-click="$ctrl.upperCaseAuthor()">	

						Written	by:	{{$ctrl.author}}	

				</p>	

		`	

});	

See	also
Componentizing	directives	using	controllerAs	encapsulation	shows	you	a	superior	method
of	organizing	Angular	1	directives
Migrating	an	application	to	component	directives	demonstrates	how	to	refactor	Angular	1
to	a	component	style
Normalizing	service	types	gives	instruction	on	how	to	align	your	Angular	1	service	types
for	Angular	2	compatibility

Normalizing	service	types
Angular	1	developers	will	be	quite	familiar	with	the	factory/service/provider	trifecta.	In	many
ways,	this	has	gone	largely	unaltered	in	Angular	2	conceptually.	However,	in	the	interest	of
upgrading	an	existing	application,	there	is	one	thing	that	should	be	done	to	make	the	migration	as
easy	as	possible:	eliminate	factories	and	replace	them	with	services.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/5637/.

http://ngcookbook.herokuapp.com/5637/

Getting	ready
Suppose	you	had	a	simple	application	as	follows:

[index.html]	

	

<div	ng-app="articleApp">	

		<article></article>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.factory('ArticleData',	function()	{	

		var	title	=	'Incumbent	Senator	Ousted	by	Stalk	of	Broccoli';	

		return	{	

				getTitle:	function()	{	

						return	title;	

			},	

				author:	'Jake'	

	};	

})	

.component('article',	{	

		controller:	function(ArticleData)	{	

				this.title	=	ArticleData.getTitle();	

				this.author	=	ArticleData.author;	

	},	

		template:	`	

				<h1>{{$ctrl.title}}</h1>	

				<p>Written	by:	{{$ctrl.author}}</p>	

		`	

});	

How	to	do	it...
Angular	2	is	class-based,	and	it	includes	its	service	types	as	well.	The	example	here	does	not
have	a	service	type	that	is	compatible	with	a	class	structure.	So	it	must	be	converted.	Thankfully,
this	is	quite	easy	to	do:

[index.html]	

	

<div	ng-app="articleApp">	

		<article></article>	

</div>	

[app.js]	

	

angular.module('articleApp',	[])	

.service('ArticleData',	function()	{	

			var	title	=	'Incumbent	Senator	Ousted	by	Stalk	of	Broccoli';	

			this.getTitle	=	function()	{	

			return	title;	

	};	

		this.author	=	'Jake';	

})	

.component('article',	{	

		controller:	function(ArticleData)	{	

				this.title	=	ArticleData.getTitle();	

				this.author	=	ArticleData.author;	

	},	

		template:	`	

				<h1>{{$ctrl.title}}</h1>	

				<p>Written	by:	{{$ctrl.author}}</p>	

		`	

});	

How	it	works...
You	still	want	to	keep	the	notion	of	title	private,	but	you	also	want	to	maintain	the	API	that	the
injected	service	type	is	providing.	Services	are	defined	by	a	function	that	acts	as	a	constructor,
and	an	instance	created	from	this	constructor	is	what	is	ultimately	injected.	Here,	you	are	simply
moving	getTitle()	and	author	to	be	defined	on	the	this	keyword,	which	thereby	makes	it	a
property	on	all	instances.	Note	that	the	use	in	the	component	and	template	does	not	change	in	any
way,	and	it	shouldn't.

There's	more...
The	simplest	to	implement	service	types,	Angular	1	factories	were	often	used	first	by	many
developers,	including	myself.	Some	developers	might	take	offense	at	the	following	claim,	but	I
don't	think	there	was	ever	a	good	reason	for	both	factories	and	services	to	exist.	Both	have	a	high
degree	of	redundancy,	and	if	you	dig	down	into	the	Angular	source	code,	you	will	see	that	they
essentially	converge	to	the	same	methods.

Why	services	over	factories	then?	The	new	world	of	JavaScript,	ES6,	and	TypeScript	is	being
built	around	classes.	They	are	a	far	more	elegant	way	of	expressing	and	organizing	logic.	Angular
1	services	are	an	implementation	of	prototype-based	classes,	which	when	used	correctly	function
in	essentially	the	same	way	as	formal	ES6/TypeScript	classes.	If	you	stop	here,	you	will	have
modified	your	services	to	be	more	extensible	and	comprehensible.	If	you	intend	to	upgrade,	you
will	find	that	Angular	1	services	will	cleanly	upgrade	to	Angular	2	services.

See	also
Componentizing	directives	using	controllerAs	encapsulation	shows	you	a	superior	method
for	organizing	Angular	1	directives
Migrating	an	application	to	component	directives	demonstrates	how	to	refactor	Angular	1
to	a	component	style
Implementing	a	basic	component	in	AngularJS	1.5	details	how	to	write	an	Angular	1
component

Connecting	Angular	1	and	Angular	2	with
UpgradeModule
Angular	2	comes	with	the	ability	to	connect	it	to	an	existing	Angular	1	application.	This	is
obviously	advantageous	since	this	will	allow	you	to	utilize	existing	components	and	services	in
Angular	1	in	tandem	with	Angular	2's	components	and	services.	UpgradeModule	is	the	tool	that	is
supported	by	Angular	teams	to	accomplish	such	a	feat.

Note

The	code,	links,	and	a	live	example	in	relation	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/4137/.

http://ngcookbook.herokuapp.com/4137/

Getting	ready
Suppose	you	had	a	very	simple	Angular	1	application	as	follows:

[index.html]	

	

<!DOCTYPE	html>	

<html>	

		<head>	

				<!--	Angular	1	scripts	-->	

				<script	src="angular.js"></script>	

		</head>	

		<body>	

				<div	ng-app="hybridApp"	

									ng-init="val='Angular	1	bootstrapped	successfully!'">	

						{{val}}			

				</div>	

		</body>	

</html>	

This	application	interpolates	a	value	set	in	an	Angular	expression	so	you	can	visually	confirm	that
the	application	has	bootstrapped	and	is	working.

How	to	do	it...
Begin	by	declaring	the	top-level	angular	module	inside	its	own	file.	Instead	of	using	a	script	tag
to	fetch	the	angular	module,	require	Angular	1,	import	it,	and	create	the	root	Angular	1	module:

[ng1.module.ts]	

	

import	'angular'	

	

export	const	Ng1AppModule	=	angular.module('Ng1AppModule',	[]);	

Angular	2	ships	with	an	upgrade	module	out	of	the	box,	which	is	provided	inside	upgrade.js.
The	two	frameworks	can	be	connected	with	UpgradeModule.

Note

This	recipe	utilizes	SystemJS	and	TypeScript,	the	specifications	for	which	lie	inside	a	very
complicated	config	file.	This	is	discussed	in	a	later	chapter,	so	don't	worry	about	the	specifics.
For	now,	you	are	free	to	assume	the	following:

SystemJS	is	configured	to	compile	TypeScript	(.ts)	files	on	the	fly
SystemJS	is	able	to	resolve	the	import	and	export	statements	in	TypeScript	files
SystemJS	is	able	to	resolve	Angular	1	and	2	library	imports

Angular	2	requires	a	top-level	module	definition	as	part	of	its	base	configuration:

[app/ng2.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{UpgradeModule}	from	'@angular/upgrade/static';		

import	{RootComponent}	from	'./root.component';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				UpgradeModule,	

],	

		bootstrap:	[

				RootComponent	

],	

		declarations:	[

				RootComponent	

]	

})	

export	class	Ng2AppModule	{	

		constructor(public	upgrade:	UpgradeModule){}	

}	

export	class	AppModule	{}	

Tip

The	reason	why	this	module	definition	exists	this	way	isn't	critical	for	understanding	this	recipe.
Angular	2	modules	are	covered	in	Chapter	7,	Services,	Dependency	Injection,	and	NgModule.

Create	the	root	component	of	the	Angular	2	application:

[app/root.component.ts]	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<p>Angular	2	bootstrapped	successfully!</p>	

		`	

})	

export	class	RootComponent	{}	

Since	Angular	2	will	often	bootstrap	from	a	top-level	file,	create	this	file	as	main.ts	and
bootstrap	the	Angular	2	module:

[main.ts]	

import	{platformBrowserDynamic}		

		from	'@angular/platform-browser-dynamic';	

	

import	{Ng1AppModule}	from	'./app/ng1.module';	

import	{Ng2AppModule}	from	'./app/ng2.module';	

	

platformBrowserDynamic()	

		.bootstrapModule(Ng2AppModule);	

Connecting	Angular	1	to	Angular	2

Don't	use	an	ng-app	to	bootstrap	the	Angular	1	application;	instead,	do	this	after	you	bootstrap
Angular	2:

[main.ts]	

	

import	{platformBrowserDynamic}		

		from	'@angular/platform-browser-dynamic';	

	

import	{Ng1AppModule}	from	'./app/ng1.module';	

import	{Ng2AppModule}	from	'./app/ng2.module';	

	

platformBrowserDynamic()	

		.bootstrapModule(Ng2AppModule)	

		.then(ref	=>	{	

				ref.instance.upgrade	

						.bootstrap(document.body,	[Ng1AppModule.name]);	

		});	

With	this,	you'll	be	able	to	remove	Angular	1's	JS	script,	the	ng-app	directive,	and	add	in	the	root
element	of	the	Angular	2	app:

[index.html]	

	

<!DOCTYPE	html>	

<html>	

		<head>	

				<!--	Angular	2	scripts	-->	

				<script	src="zone.js	"></script>	

				<script	src="reflect-metadata.js"></script>	

				<script	src="system.js"></script>	

				<script	src="system-config.js"></script>	

		</head>	

		<body>	

				<div	ng-init="val='Angular	1	bootstrapped	successfully!'">	

						{{val}}			

				</div>	

				<root></root>	

		</body>	

</html>	

Note

The	new	scripts	listed	here	are	dependencies	of	an	Angular	2	application,	but	understanding	what
they're	doing	isn't	critical	for	understanding	this	recipe.	This	is	explained	later	in	the	book.

With	all	this,	you	should	see	your	Angular	1	application	template	compile	and	the	Angular	2
component	render	properly	again.	This	means	that	you	are	successfully	running	Angular	1	and
Angular	2	frameworks	side	by	side.

How	it	works...
Make	no	mistake,	when	you	use	UpgradeModule,	you	create	an	Angular	1	and	Angular	2	app	on
the	same	page	and	connect	them	together.	This	adapter	instance	will	allow	you	to	connect	pieces
from	each	framework	and	use	them	in	harmony.

More	specifically,	this	creates	an	Angular	1	application	at	the	top	level	and	allows	you	to	uses
pieces	of	an	Angular	2	application	inside	it.

There's	more...
While	useful	for	experimentation	and	upgrading	purposes,	this	should	not	be	a	solution	that	any
application	should	rely	on	in	a	production	context.	You	have	effectively	doubled	the	framework
payload	size	and	introduced	additional	complexity	in	an	existing	application.	Although	Angular	2
is	a	far	more	performant	framework,	do	not	expect	to	have	the	same	pristine	results	with	the
UpgradeModule	cross-pollination.

That	said,	as	you	will	see	in	subsequent	recipes,	you	can	now	use	Angular	2	components	in	an
Angular	1	application	using	the	adapter	translation	methods.

See	also
Downgrading	Angular	2	components	to	Angular	1	directives	with	downgradeComponent
demonstrates	how	to	use	an	Angular	2	component	inside	an	Angular	1	application
Downgrade	Angular	2	providers	to	Angular	1	services	with	downgradeInjectable,	which
demonstrates	how	to	use	an	Angular	2	service	inside	an	Angular	1	application

Downgrading	Angular	2	components	to
Angular	1	directives	with
downgradeComponent
If	you	have	followed	the	steps	in	Connecting	Angular	1	and	Angular	2	with	UpgradeModule,
you	should	now	have	a	hybrid	application	that	is	capable	of	sharing	different	elements	with	the
opposing	framework.

Tip

If	you	are	unfamiliar	with	Angular	2	components,	it	is	recommended	that	you	go	through	the
components	chapter	before	you	proceed.

This	recipe	will	allow	you	to	fully	utilize	Angular	2	components	inside	an	Angular	1	template.

Note

The	code,	links,	and	a	live	example	in	relation	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/1499/.

http://ngcookbook.herokuapp.com/1499/

Getting	ready
Suppose	you	had	the	following	Angular	2	component	that	you	wanted	to	use	in	an	Angular	1
application:

[app/article.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

	

@Component({	

		selector:	'ng2-article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Written	by:	{{author}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		@Input()	author:string	

		title:string	=	'Unicycle	Jousting	Recognized	as	Olympic	Sport';	

}	

Begin	by	completing	the	Connecting	Angular	1	and	Angular	2	with	UpgradeModule	recipe.

How	to	do	it...
Angular	1	has	no	comprehension	of	how	to	utilize	Angular	2	components.	The	existing	Angular	2
framework	will	dutifully	render	it	if	given	the	opportunity,	but	the	definition	itself	must	be
connected	to	the	Angular	1	framework	so	that	it	may	be	requested	when	needed.

Begin	by	adding	the	component	declarations	to	the	module	definition;	this	is	used	to	link	the	two
frameworks:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{UpgradeModule}	from	'@angular/upgrade/static';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				UpgradeModule,	

],	

		declarations:	[

				RootComponent,	

				ArticleComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	Ng2AppModule	{	

		constructor(public	upgrade:	UpgradeModule){}	

}	

This	connects	the	component	declaration	to	the	Angular	2	context,	but	Angular	1	still	has	no
concept	of	how	to	interface	with	it.	For	this,	you'll	need	to	use	downgradeComponent()	to	define
the	Angular	2	component	as	an	Angular	1	directive.	Give	the	Angular	1	directive	a	different
HTML	tag	to	render	inside	so	you	can	be	certain	that	it's	Angular	1	doing	the	rendering	and	not
Angular	2:

[main.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

import	{downgradeComponent}	from	'@angular/upgrade/static';	

import	{Ng1AppModule}	from	'./ng1.module';	

	

@Component({	

		selector:	'ng2-article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Written	by:	{{author}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		@Input()	author:string	

		title:string	=	'Unicycle	Jousting	Recognized	as	Olympic	Sport';	

}	

	

Ng1AppModule.directive(

		'ng1Article',	

		downgradeComponent({component:	ArticleComponent}));	

Finally,	since	this	component	has	an	input,	you'll	need	to	pass	this	value	via	a	binding	attribute.
Even	though	the	component	is	still	being	declared	as	an	Angular	1	directive,	you'll	use	the
Angular	2	binding	syntax:

[index.html]	

	

<!DOCTYPE	html>	

<html>	

		<head>	

				<!--	Angular	2	scripts	-->	

				<script	src="zone.js	"></script>	

				<script	src="reflect-metadata.js"></script>	

				<script	src="system.js"></script>	

				<script	src="system-config.js"></script>	

		</head>	

		<body>	

				<div	ng-init="authorName='Jake	Hsu'">	

						<ng1-article	[author]="authorName"></ng1-article>	

				</div>	

				<root></root>	

		</body>	

</html>	

The	input	and	output	must	be	explicitly	declared	at	the	time	of	conversion:

[app/article.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

import	{downgradeComponent}	from	'@angular/upgrade/static';	

import	{Ng1AppModule}	from	'./ng1.module';	

	

@Component({	

		selector:	'ng2-article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Written	by:	{{author}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		@Input()	author:string	

		title:string	=	'Unicycle	Jousting	Recognized	as	Olympic	Sport';	

}	

	

Ng1AppModule.directive(

		'ng1Article',	

		downgradeComponent({	

				component:	ArticleComponent,		

				inputs:	['author']	

		}));	

These	are	all	the	steps	required.	If	done	properly,	you	should	see	the	component	render	along
with	the	author's	name	being	interpolated	inside	the	Angular	2	component	through	Angular	1's	ng-
init	definition.

How	it	works...
You	are	giving	Angular	1	the	ability	to	direct	Angular	2	to	a	certain	element	in	the	DOM	and	say,
"I	need	you	to	render	here."	Angular	2	still	controls	the	component	view	and	operation,	and	in
every	sense,	the	main	thing	we	really	care	about	is	a	full	Angular	2	component	adapted	for	use	in
an	Angular	1	template.

Tip

downgradeComponent()	takes	an	object	specifying	the	component	as	an	argument	and	returns	the
function	that	Angular	1	is	expecting	for	the	directive	definition.

See	also
Connecting	Angular	1	and	Angular	2	with	UpgradeModule	shows	you	how	to	run	Angular
1	and	2	frameworks	together
Downgrade	Angular	2	providers	to	Angular	1	services	with	downgradeInjectable
demonstrates	how	to	use	an	Angular	2	service	inside	an	Angular	1	application

Downgrade	Angular	2	providers	to	Angular	1
services	with	downgradeInjectable
If	you	have	followed	the	steps	in	Connecting	Angular	1	and	Angular	2	with	UpgradeModule,
you	should	now	have	a	hybrid	application	that	is	capable	of	sharing	different	elements	with	the
opposing	framework.	If	you	are	unfamiliar	with	Angular	2	providers,	it	is	recommended	that	you
go	through	the	dependency	injection	chapter	before	you	proceed.

Like	with	templated	components,	interchangeability	is	also	offered	to	service	types.	It	is	possible
to	define	a	service	type	in	Angular	2	and	then	inject	it	into	an	Angular	1	context.

Note

The	code,	links,	and	a	live	example	in	relation	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/2824/.

http://ngcookbook.herokuapp.com/2824/

Getting	ready
Begin	with	the	code	written	in	Connecting	Angular	1	and	Angular	2	with	UpgradeModule.

How	to	do	it...
First,	define	the	service	you	would	like	to	inject	into	an	Angular	1	component:

[app/article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	ArticleService	{	

		article:Object	=	{	

				title:	'Research	Shows	Moon	Not	Actually	Made	of	Cheese',	

				author:	'Jake	Hsu'	

		};	

}	

Next,	define	the	Angular	1	component	that	should	inject	it:

[app/article.component.ts]	

	

export	const	ng1Article	=	{	

		template:	`	

				<h1>{{article.title}}</h1>	

				<p>{{article.author}}</p>	

		`,	

		controller:	(ArticleService,	$scope)	=>	{	

				$scope.article	=	ArticleService.article;	

		}	

};	

ArticleService	won't	be	injected	yet	though,	since	Angular	1	has	no	idea	that	this	service
exists.	Doing	this	is	very	simple,	however.	First,	you'll	list	the	service	provider	in	the	Angular	2
module	definition	as	you	normally	would:

[app/ng2.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{UpgradeModule}	from	'@angular/upgrade/static';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleService}	from	'./article.service';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				UpgradeModule,	

],	

		declarations:	[

				RootComponent	

],	

		providers:	[

				ArticleService	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	Ng2AppModule	{	

		constructor(public	upgrade:	UpgradeModule){}	

}	

Still,	Angular	1	does	not	understand	how	to	use	the	service.

In	the	same	way	you	convert	an	Angular	2	component	definition	into	an	Angular	1	directive,
convert	an	Angular	2	service	into	an	Angular	1	factory.	Use	downgradeInjectable	and	add	the
Angular	1	component	and	the	converted	service	to	the	Angular	1	module	definition:

[app/ng1.module.ts]	

	

import	'angular';	

import	{ng1Article}	from	'./article.component';	

import	{ArticleService}	from	'./article.service';	

import	{downgradeInjectable}	from	'@angular/upgrade/static';	

	

export	const	Ng1AppModule	=	angular.module('Ng1AppModule',	[])	

		.component('ng1Article',	ng1Article)	

		.factory('ArticleService',	downgradeInjectable(ArticleService));	

That's	all!	You	should	be	able	to	see	the	Angular	1	component	render	with	the	data	passed	from
the	Angular	2	service.

See	also
Connecting	Angular	1	and	Angular	2	with	UpgradeModule	shows	you	how	to	run	Angular
1	and	2	frameworks	together
Downgrading	Angular	2	components	to	Angular	1	directives	with	downgradeComponent
demonstrates	how	to	use	an	Angular	2	component	inside	an	Angular	1	application

Chapter	2.	Conquering	Components	and
Directives
Your	objective	is	to	iterate	through	this	and	display	the	article	title	only	if	it	is	set	as	active.	This
chapter	will	cover	the	following	recipes:

Using	decorators	to	build	and	style	a	simple	component
Passing	members	from	a	parent	component	to	a	child	component
Binding	to	native	element	attributes
Registering	handlers	on	native	browser	events
Generating	and	capturing	custom	events	using	EventEmitter
Attaching	behavior	to	DOM	elements	with	Directives
Projecting	nested	content	using	ngContent
Using	ngFor	and	ngIf	structural	directives	for	model-based	DOM	control
Referencing	elements	using	template	variables
Attribute	property	binding
Utilizing	component	life	cycle	hooks
Referencing	a	parent	component	from	a	child	component
Configuring	mutual	parent-child	awareness	with	ViewChild	and	forwardRef
Configuring	mutual	parent-child	awareness	with	ContentChild	and	forwardRef

Introduction
Directives	as	you	came	to	know	them	in	Angular	1	have	been	done	away	with.	In	their	place,	we
have	two	new	entities:	components	and	the	new	version	of	directives.	Angular	2	applications	are
now	component-driven;	with	further	exposure,	you	will	discover	why	this	style	is	superior.

Much	of	the	syntax	is	entirely	new	and	may	seem	strange	at	first.	Fear	not!	The	underpinnings	of
the	Angular	2	style	are	elegant	and	marvelous	once	completely	understood.

Using	decorators	to	build	and	style	a	simple
component
When	writing	an	application	component	in	TypeScript,	there	are	several	new	paradigms	that	you
must	become	familiar	and	comfortable	with.	Though	possibly	intimidating	initially,	you	will	find
that	you'll	be	able	to	carry	over	much	of	your	comprehension	of	Angular	1	directives.

Note

The	code	and	a	live	example	of	this	are	available	at	http://ngcookbook.herokuapp.com/6577/.

http://ngcookbook.herokuapp.com/6577/

Getting	ready
One	of	the	simplest	imaginable	components	we	can	build	is	a	template	element	that	interpolates
some	values	into	its	template.	In	Angular	1,	one	way	this	could	be	achieved	was	by	creating	an
element	directive,	attaching	some	data	to	the	scope	inside	the	link	function,	and	a	template	that
would	reference	the	data.	I	selected	this	description	specifically	because	nearly	all	those
concepts	have	been	binned.

Suppose	you	want	to	create	a	simple	article	component	with	a	pseudo	template	as	follows:

<p>{{date}}</p>	

<h1>{{title}}</h1>	

<h3>Written	by:	{{author}}</h3>	

You	want	to	create	a	component	that	will	live	inside	its	own	HTML	tag,	render	the	template,	and
interpolate	the	values.

How	to	do	it...
The	elemental	building	block	of	Angular	2	applications	is	the	component.	This	component	could
generally	be	defined	with	two	pieces:	the	core	class	definition	and	the	class	decoration.

Writing	the	class	definition

All	Angular	2	components	begin	as	a	class.	This	class	is	used	to	instantiate	the	component,	and
any	data	required	inside	the	component	template	will	be	accessible	from	the	class's	properties.
Thus,	the	foundational	class	for	the	component	would	appear	as	follows:

[app/article.component.ts]	

	

export	class	ArticleComponent	{	

		currentDate:date;	

		title:string;	

		author:string;	

		constructor()	{	

				this.currentDate	=	new	Date();	

				this.title	=	`	

						Flight	Security	Restrictions	to	Include		

						Insults,	Mean	Faces	

				`;	

				this.author	=	'Jake';	

		}	

};	

Here	are	a	few	things	to	note	for	those	who	are	new	to	TypeScript	or	ES6	in	general:

You	will	note	the	class	definition	is	prefixed	with	an	export	keyword.	This	is	adherence	to
the	new	ES6	module	convention,	which	naturally	is	also	part	of	TypeScript.	Assuming	the
Article	class	is	defined	in	the	foo.ts	file,	it	can	be	imported	to	a	different	module	using
the	import	keyword,	and	the	path	to	that	module	would	be	import	{Article}	from
'./foo';	(this	assumes	that	the	importing	file	is	in	the	same	directory	as	foo.ts).
The	title	definition	uses	the	new	ES6	template	string	syntax,	a	pair	of	backticks	(``)	instead
of	the	traditional	set	of	quotes	('').	You	will	find	you	become	quite	fond	of	this,	as	it	means
the	''	+	''	+	''	messiness	formerly	used	to	define	multiline	templates	would	no	longer
be	necessary.
All	the	properties	of	this	class	are	typed.	TypeScript's	typing	syntax	takes	the	form	of
propertyName:propertyType	=	optionalInitValue.	JavaScript	is,	of	course,	a	loosely
typed	language,	and	JavaScript	is	what	the	browser	is	interpreting	in	this	case.	However,
writing	your	application	in	TypeScript	allows	you	to	utilize	type	safety	at	compile	time,
which	will	allow	you	to	avoid	undesirable	and	unanticipated	behavior.
All	ES6	classes	come	with	a	predefined	constructor()	method,	which	is	invoked	upon
instantiation.	Here,	you	are	using	the	constructor	to	instantiate	the	properties	of	the	class,
which	is	a	perfectly	fine	strategy	for	member	initialization.	Having	the	member	property

definition	outside	the	constructor	is	allowed,	since	it	is	useful	for	adding	types	to	properties;
thus,	here	you	are	simply	obviating	the	use	of	the	constructor	since	you	are	able	to	add	a	type
and	assign	the	value	in	the	same	line.	A	more	succinct	style	could	be	as	follows:

								[app/article.component.ts]	

	

								export	class	ArticleComponent	{	

										currentDate:date	=	new	Date();	

										title:string	=	`	

												Flight	Security	Restrictions	to	Include		

												Insults,	Mean	Faces	

										`;	

										author:string	=	'Jake';	

								}	

The	TypeScript	compiler	will	automatically	move	the	member	initialization	process	inside
the	class	constructor,	so	this	version	and	the	previous	one	are	behaviorally	identical.

Writing	the	component	class	decorator

Although	you	have	created	a	class	that	has	information	associated	with	it,	it	does	not	yet	have	any
way	to	interface	with	the	DOM.	Furthermore,	this	class	is	yet	to	be	assigned	with	any	meaning	in
the	context	of	Angular	2.	You	can	accomplish	this	with	decorators.

Note

Decorators	are	a	feature	of	TypeScript	but	not	by	any	means	unique	to	the	language.	Python
developers,	among	many	others,	should	be	quite	familiar	with	the	concept	of	class	modulation	via
explicit	decoration.	Generally	speaking,	it	allows	you	to	have	a	regularized	modification	of	the
defined	classes	using	separately	defined	decorators.	However,	in	Angular	2,	you	will	largely	be
utilizing	the	decorators	provided	to	you	by	the	framework	to	declare	the	various	framework
elements.	Decorators	such	as	@Component	are	defined	in	the	Angular	source	code	as	a
Component	function,	and	the	function	is	applied	as	a	decorator	using	the	@	symbol.

An	@	prefix	signals	that	the	imported	function	should	be	applied	as	a	decorator.	These	decorators
are	visually	obvious	but	will	usually	not	exist	by	themselves	or	with	an	empty	object	literal.	This
is	because	Angular	2	decorators	are	generally	made	useful	by	their	decorator	metadata.	This
concept	can	be	made	more	concrete	here	by	using	the	predefined	Component	decorator.

Nothing	is	available	for	free	in	Angular	2.	In	order	to	use	the	component	decorator,	it	must	be
imported	from	the	Angular	2	core	module	into	the	module	that	wishes	to	use	it.	You	can	then
prepend	this	Component	to	the	class	definition:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({})	

export	class	ArticleComponent	{	

		currentDate:date	=	new	Date();	

		title:string	=	`	

				Flight	Security	Restrictions	to	Include		

				Insults,	Mean	Faces	

		`;	

		author:string	=	'Jake';	

}	

As	mentioned	before,	the	@Component	decorator	accepts	a	ComponentMetadata	object,	which	in
the	preceding	code	is	just	an	empty	object	literal	(note	that	the	preceding	code	will	not	compile).
Conceptually,	this	metadata	object	is	very	similar	to	the	directive	definition	object	in	Angular	1.
Here,	you	want	to	provide	the	decorator	metadata	object	with	two	properties,	namely	selector
and	template:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<p>{{currentDate|date}}</p>	

				<h1>{{title}}</h1>	

				<h3>Written	by:	{{author}}</h3>	

		`	

})	

export	class	ArticleComponent	{	

		currentDate:date	=	new	Date();	

		title:string	=	`	

				Flight	Security	Restrictions	to	Include		

				Insults,	Mean	Faces	

		`;	

		author:string	=	'Jake';	

}	

Note	that	selector	is	the	string	that	will	be	used	to	find	where	the	component	should	be	inserted
in	the	DOM,	and	template	is	obviously	the	stringified	HTML	template.

With	all	this,	you	will	be	able	to	see	your	article	component	in	action	with	the	<article>
</article>	tag.

How	it	works...
The	class	definition	has	supplanted	the	Angular	1	concept	of	having	a	controller.	The	component
instances	of	this	class	have	member	properties	that	can	be	interpolated	and	bound	into	the
template,	similar	to	$scope	in	Angular	1.

In	the	template,	the	interpolation	and	data	binding	processes	seem	to	occur	much	in	the	same	way,
they	did	in	Angular	1.	This	is	not	actually	the	case,	which	is	visited	in	greater	detail	later	in	this
chapter.	The	built-in	date	modifier,	which	resembles	an	Angular	1	filter,	is	now	dubbed	with	a
pipe	although	it	works	in	a	very	similar	fashion.

The	selector	metadata	property	is	a	string	representing	a	CSS	selector.	In	this	definition,	you
target	all	the	occurrences	of	an	article	tag,	but	the	selector	specificity	and	detail	is	of	course
able	to	handle	a	great	deal	of	additional	complexity.	Use	this	to	your	advantage.

There's	more...
The	concept	that	must	be	internalized	for	Angular	2	neophytes	is	the	total	encapsulation	of	a
component.	This	book	will	go	into	further	detail	about	the	different	abilities	of	the
ComponentMetadata	object,	but	the	paradigm	they	and	all	class	decorators	introduce	is	the
concept	that	Angular	2	components	are	self-describing.	By	examining	the	class	definition,	you
can	wholly	reason	the	data,	service,	class,	and	injectable	dependencies.	In	Angular	1,	this	was
not	possible	because	of	the	"scope	soup"	pattern.

One	could	argue	that	in	Angular	1,	CSS	styling	was	a	second-class	citizen.	This	is	no	longer	the
case	with	components,	as	the	metadata	object	offers	robust	support	for	complex	styling.	For
example,	to	italicize	the	author	in	your	Article	component,	use	this	code:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<p>{{currentDate|date}}</p>	

				<h1>{{title}}</h1>	

				<h3>Written	by:	{{author}}</h3>	

		`,	

		styles:	[`	

				h3	{	

						font-style:	italic;	

				}	

		`]	

})	

export	class	ArticleComponent	{	

		currentDate:date	=	new	Date();	

		title:string	=	`	

				Flight	Security	Restrictions	to	Include		

				Insults,	Mean	Faces	

		`;	

		author:string	=	'Jake';	

}	

Angular	2	will	use	this	styles	property	and	compile	it	into	a	generated	style	sheet,	which	it	will
then	apply	to	only	this	component.	You	do	not	have	to	worry	about	the	rest	of	the	HTML	h3	tags
being	inadvertently	styled.	This	is	because	Angular	2's	generated	style	sheet	will	ensure	that	only
this	component—and	its	children—are	subject	to	the	CSS	rules	listed	in	the	metadata	object.

Note

This	is	intended	to	emulate	the	total	modularity	of	web	components.	However,	since	web
components	do	not	yet	have	universal	support,	Angular	2's	design	essentially	performs	a	polyfill

for	this	behavior.

See	also
Passing	members	from	a	parent	component	into	a	child	component	goes	through	the	basics
of	downward	data	flow	between	components
Using	ngFor	and	ngIf	structural	directives	for	model-based	DOM	control	instructs	you	on
how	to	utilize	some	of	Angular	2's	core	built-in	directives
Utilizing	component	lifecycle	hooks	gives	an	example	of	how	you	can	integrate	with
Angular	2's	component	rendering	flow

Passing	members	from	a	parent	component
into	a	child	component
With	the	departure	of	the	Angular	1.x	concept	of	$scope	inheritance,	mentally	(partially	or
entirely)	remodeling	how	information	would	be	passed	around	your	application	is	a	must.	In	its
place,	you	have	an	entirely	new	system	of	propagating	information	throughout	the	application's
hierarchy.

Gone	also	is	the	concept	of	defaulting	to	bidirectional	data	binding.	Although	it	made	for	an
application	that	was	simpler	to	reason	about,	bidirectional	data	binding	incurs	an	unforgivably
expensive	drag	on	performance.	This	new	system	operates	in	an	asymmetric	fashion:	members	are
propagated	downwards	through	the	component	tree,	but	not	upwards	unless	explicitly	performed.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/6543/.

http://ngcookbook.herokuapp.com/6543/

Getting	ready
Suppose	you	had	a	simple	application	that	intended	to	(but	currently	cannot)	pass	data	from	a
parent	ArticleComponent	to	a	child	AttributionComponent:

	[app/components.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'attribution',	

		template:	`	

				<h3>Written	by:	{{author}}</h3>	

		`	

})	

export	class	AttributionComponent	{		

		author:string;	

}	

	@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<attribution></attribution>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=	'Belching	Choir	Begins	World	Tour';	

		name:string	=	'Jake';	

}	

How	to	do	it...
In	this	initial	implementation,	the	components	defined	here	are	not	yet	aware	of	each	other,	and
the	<attribution></attribution>	tag	will	remain	inert	in	the	DOM.	This	is	a	good	thing!	It
means	these	two	components	are	completely	decoupled,	and	you	are	able	to	only	introduce
connection	logic	as	necessary.

Connecting	the	components

First,	since	the	<attribution></attribution>	tag	appears	inside	the	Article	component,	you
must	make	the	component	aware	of	the	existence	of	AttributionComponent.	This	is
accomplished	by	introducing	the	component	in	the	module	in	which	ArticleComponent	is	also
declared:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{ArticleComponent,	AttributionComponent}		

		from	'./components';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				ArticleComponent,		

				AttributionComponent	

],	

		bootstrap:	[

				ArticleComponent	

]	

})	

export	class	AppModule	{}	

Note

For	the	purpose	of	this	recipe,	don't	concern	yourself	just	yet	with	the	details	of	what	NgModule	is
doing.	In	the	example	in	this	recipe,	the	entire	application	is	just	an	instance	of
ArticleComponent	with	AttributionComponent	inside	it.	So,	all	the	component	declarations
can	be	done	inside	the	same	module.

With	this,	you	will	see	that	ArticleComponent	is	able	to	match	the	<attribution>
</attribution>	tag	with	the	AttributionComponent	definition.

Note

Inside	a	single	module,	the	order	of	the	definition	could	matter	a	lot.	ES6	and	TypeScript	class

declarations	are	not	hoisted,	so	you	cannot	reference	them	at	all	before	the	declaration	without
generating	errors.	In	this	recipe,	since	ArticleComponent	is	defined	before
AttributionComponent,	the	former	cannot	directly	reference	the	latter	inside	its	definition.

If	you	were	to	instead	define	AttributionComponent	inside	a	separate	module	and	import	it
with	the	module	loader,	the	order	issue	becomes	irrelevant.	As	you	will	notice,	this	is	one	of	the
excellent	benefits	of	having	a	highly	modular	application	structure.

One	caveat	to	this	is	that	Angular	does	make	it	possible	to	do	out-of-order	class	references	using
a	forwardRef.	However,	if	solving	the	order	problem	is	possible	by	splitting	it	into	separate
modules,	that	is	preferred	over	forwardRef.

This	being	the	case,	go	ahead	and	split	your	component	file	into	two	separate	modules	and	import
them	accordingly:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{ArticleComponent}	from	'./article.component';	

import	{AttributionComponent}	from	'./attribution.component';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				ArticleComponent,		

				AttributionComponent	

],	

		bootstrap:	[

				ArticleComponent	

]	

})	

export	class	AppModule	{}	

	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<attribution></attribution>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=	'Belching	Choir	Begins	World	Tour';	

		name:string	=	'Jake';	

}	

[app/attribution.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'attribution',	

		template:	`	

				<h3>Written	by:	{{author}}</h3>	

		`	

})	

export	class	AttributionComponent	{		

		author:string;	

}	

Declaring	inputs

Similar	to	the	Angular	1	directive's	scope	property	object,	in	Angular	2,	you	must	declare	the
members	of	the	parent	component	to	bring	them	down	to	the	child	component.	In	Angular	1,	this
could	be	done	implicitly	with	an	inherited	$scope,	but	this	is	no	longer	the	case.	Angular	2
component	inputs	must	be	explicitly	defined.

Tip

Another	important	difference	between	Angular	1	and	Angular	2	is	that	@Input	in	Angular	2	is	a
unidirectional	data	binding	feature.	Data	updates	will	flow	downwards,	and	the	parent	will	not	be
updated	unless	explicitly	notified.

The	process	of	declaring	inputs	in	a	child	component	is	done	through	the	Input	decorator,	but	the
decorator	is	invoked	inside	the	class	definition	instead	of	doing	so	in	front	of	it.	Input	is
imported	from	the	core	module	and	invoked	inside	the	class	definition	that	is	paired	with	a
member.

Note

Don't	let	this	confuse	you.	The	implementation	of	the	actual	decorating	function	is	hidden	from
you	since	it	is	imported	as	a	single	target,	so	don't	think	much	about	what	the	@Input()	syntax	is
doing.	There	is	a	defined	Input	function	in	the	Angular	source,	and	you	are	certainly	invoking
this	method	here.	However,	for	your	purposes,	it	is	merely	declaring	the	member	that	follows	it	as
the	one	that	will	be	passed	in	explicitly	from	the	parent	component.	You	use	it	in	the	same	way	as
the	Component	decorator,	just	in	a	different	place.

[app/attribution.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

	

@Component({	

		selector:	'attribution',	

		template:	`	

				<h3>Written	by:	{{author}}	</h3>	

		`	

})	

export	class	AttributionComponent	{		

		@Input()	author:string;	

}

Next,	you	must	pass	the	value	bound	to	the	child	component	tag	to	the	parent	component.	In	the
context	of	this	recipe,	you	want	to	pass	the	name	property	of	the	Article	component	object	to	the
author	property	of	the	Attribution	component	object.	One	way	of	accomplishing	this	is	by
using	the	square	bracket	notation	on	the	tag	attribute,	which	specifies	the	attribute	string	as	bound
data:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';		

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<attribution	[author]="name"></attribution>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=	'Belching	Choir	Begins	World	Tour';	

		name:string	=	'Jake';	

}	

With	this,	you	have	successfully	passed	a	member	property	down,	from	a	parent	to	a	child
component!

How	it	works...
Recall	that	the	starting	point	of	this	example	was	that	we	had	two	components	that	didn't	know	the
other	exists,	even	though	they	are	defined	and	exported	inside	the	same	module.	The	process
demonstrated	in	this	recipe	is	to	provide	the	child	component	to	the	parent	component,	configure
the	child	component	to	expect	that	a	member	will	be	bound	to	an	input	attribute,	and	finally
provide	that	member	in	the	template	of	the	parent	component.

There's	more...
Some	people	have	an	issue	with	the	square	bracket	notation.	It	is	valid	HTML,	but	some
developers	feel	it	is	unintuitive	and	looks	odd.

Tip

Additionally,	the	bracket	notation	is	not	valid	XML.	Developers	using	HTML	generated	through
XSLT	will	not	be	able	to	utilize	the	new	syntax.	Fortunately,	everywhere	the	new	Angular	2
syntax	utilizes	new	new	[]	or	()	syntax,	there	is	an	equivalent	syntax	that	the	framework	supports
which	will	behave	identically.

Instead	of	using	pairs	of	square	brackets,	you	can	prefix	the	attribute	name	with	bind-	and	it	will
behave	identically:

[app/article.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{	title	}}</h1>	

				<attribution	bind-author="name"></attribution>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=	'Belching	Choir	Begins	World	Tour';	

		name:string	=	'Jake';	

}	

Angular	expressions

Note	that	the	value	of	the	attribute	name	is	not	a	string	but	an	expression.	Angular	knows	how	to
evaluate	this	expression	in	the	context	of	the	parent	component.	As	is	the	case	with	Angular
expressions	though,	you	are	more	than	welcome	to	provide	a	static	value	and	Angular	will
happily	evaluate	it	and	provide	it	to	the	child	component.

For	example,	the	following	change	would	hardcode	the	child	component	to	assign	the	string
"Mike	Snifferpippets"	as	the	author	property:

[app/article.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';		

import	{AttributionComponent}	from	'./attribution.component';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<attribution	[author]="'Mike	Snifferpippets'"></attribution>	

		`,	

		directives:	[AttributionComponent]	

})	

export	class	ArticleComponent	{	

		title:string	=	'Belching	Choir	Begins	World	Tour';	

		name:string	=	'Jake';	

}	

Unidirectional	data	binding

The	data	binding	you	have	set	up	in	this	recipe	is	actually	unidirectional.	More	specifically,
changes	in	the	parent	component	member	will	propagate	downwards	to	the	child	component,	but
changes	to	the	child	component	member	will	not	propagate	upwards.	This	will	be	explored
further	in	another	recipe,	but	it	is	important	to	keep	in	mind	that	the	Angular	2	data	flow	is,	by
default,	downwards	through	the	component	tree.

Member	methods

Angular	doesn't	care	about	the	nature	of	the	bound	value.	TypeScript	will	enforce	type
correctness	should	you	deviate	from	the	declared	type,	but	you	are	welcome	to	pass	parent
methods	to	the	child	with	this	strategy	as	well.

Tip

Keep	in	mind	that	passing	a	method	bound	in	this	way	does	not	enforce	the	context	in	which	it	is
evaluated.	If	the	parent	component	passes	a	member	method	that	utilizes	the	this	keyword	and
the	child	component	evaluates	it,	this	will	refer	to	the	child	component	instance	and	not	the
parent	component.	Therefore,	if	the	method	tries	to	access	the	member	data	on	the	parent
component,	it	will	not	be	available.

There	are	a	number	of	ways	to	mitigate	this	problem.	Generally	though,	if	you	find	you	are
passing	a	parent	member	method	down	to	the	child	component	and	invoking	it,	there	is	probably	a
better	way	to	design	your	application.

See	also
Using	decorators	to	build	and	style	a	simple	component	describes	the	building	blocks	of
implementing	an	Angular	2	component
Binding	to	native	element	attributes	shows	how	Angular	2	interfaces	with	HTML	element
attributes
Registering	handlers	on	native	browser	events	demonstrates	how	you	can	easily	attach
behavior	to	browser	events.
Generating	and	capturing	custom	events	using	EventEmitter	details	how	to	propagate
information	upwards	between	components.
Using	ngFor	and	ngIf	structural	directives	for	model-based	DOM	control	instructs	you	on
how	to	utilize	some	of	Angular	2's	core	built-in	directives.

Binding	to	native	element	attributes
In	Angular	1,	it	was	expected	that	the	developer	would	utilize	the	built-in	replacement	directives
for	element	attributes	that	had	meaningful	DOM	behavior	attached	to	them.	This	was	due	to	the
fact	that	many	of	these	attributes	had	behavior	that	was	incompatible	with	how	Angular	1	data
binding	operated.	In	Angular	2,	these	special	attribute	directives	are	done	away	with,	and	the
binding	behavior	and	syntax	is	subsumed	into	the	normal	binding	behavior.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/8313/.

http://ngcookbook.herokuapp.com/8313/

How	to	do	it...
Binding	to	the	native	attribute	is	as	simple	as	placing	square	brackets	around	the	attribute	and
treating	it	as	normal	bound	data:

[app/logo.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'logo',	

		template:	''	

})	

export	class	LogoComponent	{	

		logoUrl:string	=	

				'//angular.io/resources/images/logos/standard/logo-nav.png';	

}	

With	this	setup,	the		element	will	dutifully	fetch	and	show	the	image	when	it	is	provided	by
Angular.

How	it	works...
This	is	a	different	solution	to	the	same	problem	that	ng-src	solved	in	Angular	1.	The	browser	is
looking	for	an	src	attribute	on	the	tag.	Since	the	square	brackets	are	included	as	part	of	the
attribute	string,	the	browser	will	not	find	one	and	therefore	not	make	a	request.	[src]	will	only
make	an	image	request	once	the	value	is	filled	and	provided	to	the	element.

See	also
Passing	members	from	a	parent	component	into	a	child	component	goes	through	the	basics
of	downward	data	flow	between	components.
Registering	handlers	on	native	browser	events	demonstrates	how	you	can	easily	attach
behavior	to	browser	events.
Attaching	behavior	to	DOM	elements	with	directives	demonstrates	how	to	attach	behavior
to	elements	with	attribute	directives.
Referencing	elements	using	template	variables	demonstrates	Angular	2's	new	template
variable	construct.
Attribute	property	binding	shows	Angular	2's	clever	way	of	deep	referencing	element
properties.

Registering	handlers	on	native	browser
events
In	Angular	2,	the	other	hemisphere	of	binding	that	is	needed	for	a	fully	functioning	application	is
event	binding.	The	Angular	2	event	binding	syntax	is	similar	to	that	of	data	binding.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4437/.

http://ngcookbook.herokuapp.com/4437/

Getting	ready
Suppose	you	wanted	to	create	an	article	application	that	counted	shares,	and	you	began	with	the
following	skeleton:

[app/article.component.ts]

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Shares:	{{shareCt}}</p>	

				<button>Share</button>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=	'Police	Apprehend	Tiramisu	Thieves';	

		shareCt:number	=	0;	

}	

How	to	do	it...
The	Angular	2	event	binding	syntax	is	accomplished	with	a	pair	of	parentheses	surrounding	the
event	type.	In	this	case,	events	that	you	wish	to	listen	for	will	have	a	type	property	of	click,	and
this	is	what	they	will	be	bound	against.	The	value	of	the	bound	event	attribute	is	an	expression,	so
you	can	invoke	the	method	as	a	handler	within	it:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Shares:	{{shareCt}}</p>	

				<button	(click)="share()">Share</button>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=	'Police	Apprehend	Tiramisu	Thieves';	

		shareCt:number	=	0;	

		share():void	{	

				++this.shareCt;	

		}	

}	

How	it	works...
Angular	watches	for	the	event	binding	syntax	(click)	and	adds	a	click	listener	to
ArticleComponent,	bound	to	the	share()	handler.	When	this	event	is	observed,	it	evaluates	the
expression	attached	to	the	event,	which	in	this	case	will	invoke	a	method	defined	on	the
component.

There's	more...
Since	capturing	the	event	must	occur	in	an	expression,	you	are	provided	with	an	$event
parameter	in	the	expression,	which	will	usually	be	passed	as	an	argument	to	the	handler	method.
This	is	similar	to	the	process	in	Angular	1.	Inspecting	this	$event	object	reveals	it	as	the	vanilla
click	event	generated	by	the	browser:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Shares:	{{shareCt}}</p>	

				<button	(click)="share($event)">Share</button>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=	'Police	Apprehend	Tiramisu	Thieves';	

		shareCt:number	=	0;	

		share(e:Event):void	{	

				console.log(e);		//	MouseEvent	

				++this.shareCt;	

		}	

}	

Note

You	will	also	note	that	the	share()	method	here	is	demonstrating	how	typing	can	be	applied	to
the	parameters	and	the	return	value	of	the	method:

myMethod(arg1:arg1type,	arg2:arg2type,	...):returnType

As	with	member	binding,	you	are	also	able	to	use	an	alternate	event	binding	syntax	if	you	do	not
care	to	use	a	set	of	parentheses.	Prefixing	on-	to	the	event	attribute	will	provide	you	with
identical	behavior:

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Shares:	{{shareCt}}</p>	

				<button	on-click="share($event)">Share</button>	

		`	

})	

export	class	Article	{	

		title:string	=	'Police	Apprehend	Tiramisu	Thieves';	

		shareCt:number	=	0;	

		share(e:Event):void	{	

				++this.shareCt;	

		}	

}	

See	also
Binding	to	native	element	attributes	shows	how	Angular	2	interfaces	with	HTML	element
attributes.
Generating	and	capturing	custom	events	using	EventEmitter	details	how	to	propagate
information	upwards	between	components.
Attaching	behavior	to	DOM	elements	with	directives	demonstrates	how	to	attach	behavior
to	elements	with	attribute	directives.
Attribute	property	binding	shows	Angular	2's	clever	way	of	deep	referencing	element
properties.

Generating	and	capturing	custom	events
using	EventEmitter
In	the	wake	of	the	disappearance	of	$scope,	Angular	was	left	with	a	void	for	propagating
information	up	the	component	tree.	This	void	is	filled	in	part	by	custom	events,	and	they	represent
the	Yin	to	the	downward	data	binding	Yang.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/8611/.

http://ngcookbook.herokuapp.com/8611/

Getting	ready
Suppose	you	had	an	Article	application	as	follows:

[app/text-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'text-editor',	

		template:	`	

				<textarea></textarea>	

		`	

})	

export	class	TextEditorComponent	{}	

	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Word	count:	{{wordCount}}</p>	

				<text-editor></text-editor>	

		`	

})	

export	class	ArticleComponent	{		

		title:string	=	`	

				Maternity	Ward	Resorts	to	Rock	Paper	Scissors	Following		

				Baby	Mixup`;	

		wordCount:number	=	0;	

	

		updateWordCount(e:number):void	{	

				this.wordCount	=	e;	

		}	

}	

This	application	will	ideally	be	able	to	read	the	content	of	textarea	when	there	is	a	change,	and
also	count	the	number	of	words	and	report	it	to	the	parent	component	to	be	interpolated.	As	is	the
case,	none	of	this	is	implemented.

How	to	do	it...
A	developer	thinking	in	terms	of	Angular	1	would	attach	ng-model	to	textarea,	use
$scope.$watch	on	the	model	data,	and	pass	the	data	to	the	parent	via	$scope	or	some	other
means.	Unfortunately	for	such	a	developer,	these	constructs	are	radically	different	or	non-existent
in	Angular	2.	Fear	not!	The	new	implementation	is	more	expressive,	more	modular,	and	much
cleaner.

Capturing	the	event	data

ngModel	still	exists	in	Angular	2,	and	it	would	certainly	be	suitable	here.	However,	you	don't
actually	need	to	use	ngModel	at	all,	and	in	this	case,	it	allows	you	to	be	more	explicit	about	when
your	application	takes	action.	First,	you	must	retrieve	the	text	from	the	textarea	element	and
make	it	usable	in	TextEditorComponent:

[app/text-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'text-editor',	

		template:	`	

				<textarea	(keyup)="emitWordCount($event)"></textarea>	

		`	

})	

export	class	TextEditorComponent	{			

		emitWordCount(e:Event):void	{	

				console.log(

						(e.target.value.match(/\S+/g)	||	[]).length);	

		}	

}		

Excellent!	As	claimed,	you	don't	need	to	use	ngModel	to	acquire	the	element's	contents.	What's
more,	you	are	now	able	to	utilize	native	browser	events	to	explicitly	define	when	you	want
TextEditorComponent	to	take	action.

With	this,	you	are	setting	a	listener	on	the	native	browser's	keyup	event,	fired	from	the	textarea
element.	This	event	has	a	target	property	that	exposes	the	value	of	the	text	in	the	element,	which
is	exactly	what	you	want	to	use.	The	component	then	uses	a	simple	regular	expression	to	count	the
number	of	non-whitespace	sequences.	This	is	your	word	count.

Emitting	a	custom	event

console.log	does	not	help	to	inform	the	parent	component	of	the	word	count	you	are	calculating.
To	do	this,	you	need	to	create	a	custom	event	and	emit	it	upwards:

[app/text-editor.component.ts]	

	

import	{Component,	EventEmitter,	Output}	from	'@angular/core';	

	

@Component({	

		selector:	'text-editor',	

		template:	`	

				<textarea	(keyup)="emitWordCount($event)"></textarea>	

		`	

})	

export	class	TextEditorComponent	{			

		@Output()	countUpdate	=	new	EventEmitter<number>();	

	

		emitWordCount(e:Event):void	{	

				this.countUpdate.emit(

						(e.target.value.match(/\S+/g)	||	[]).length);	

		}	

}	

Using	the	@Output	decorator	allows	you	to	instantiate	an	EventEmitter	member	on	the	child
component	that	the	parent	component	will	be	able	to	listen	to.	This	EventEmitter	member,	like
any	other	class	member,	is	available	as	this.countUpdate.	The	child	component	is	able	to	send
events	upward	by	invoking	the	emit()	method	on	this	member,	and	the	argument	to	this	method	is
the	value	which	you	wish	to	send	to	the	event.	Here,	since	you	want	to	send	an	integer	count	of
words,	you	instantiate	the	EventEmitter	member	by	typing	it	as	a	<number>	emitter.

Listening	for	custom	events

So	far,	you	are	through	with	only	half	the	implementation,	as	these	custom	events	are	being	fired
off	into	the	ether	of	the	browser	with	no	listeners.	Since	the	method	you	need	to	use	is	already
defined	on	the	parent	component,	all	you	need	to	do	is	hook	into	the	event	listener	to	that	method.

The	()	template	syntax	is	used	to	add	listeners	to	events,	and	Angular	does	not	discriminate
between	native	browser	events	and	events	that	originate	from	EventEmitters.	Thus,	since	you
declared	the	child	component's	EventEmitter	as	@Output,	you	will	be	able	to	add	a	listener	for
events	that	come	from	it	on	the	parent	component,	as	follows:

[app/article.component.ts]	

	

import	{Component	}	from	'angular2/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Word	count:	{{wordCount}}</p>	

				<text-editor	(countUpdate)="updateWordCount($event)">	

				</text-editor>	

		`	

})	

export	class	ArticleComponent	{		

		title:string	=	`	

				Maternity	Ward	Resorts	to	Rock	Paper	Scissors	Following		

				Baby	Mixup`;	

		wordCount:number	=	0;	

	

		updateWordCount(e:number):void	{	

				this.wordCount	=	e;	

		}	

}	

With	this,	your	application	should	correctly	count	the	words	in	the	TextEditor	component	and
update	the	value	in	the	Article	component.

How	it	works...
Using	@Output	in	conjunction	with	EventEmitter	allows	you	to	create	child	components	that
expose	an	API	for	the	parent	component	to	hook	into.	The	EventEmitter	sends	the	events
upward	with	its	emit	method,	and	the	parent	component	can	subscribe	to	them	by	binding	to	the
emitter	output.

The	flow	of	this	example	is	as	follows:

1.	 The	keystroke	inside	textarea	causes	the	native	browser's	keyup	event.
2.	 The	TextEditor	component	has	a	listener	set	on	this	event,	so	the	attached	expression	is

evaluated,	which	will	invoke	emitWordCount.
3.	 The	emitWordCount	inspects	the	Event	object	and	extracts	the	text	from	the	associated

DOM	element.	It	parses	the	text	for	the	number	of	contained	words	and	invokes	the
EventEmitter.emit	method.

4.	 The	EventEmitter	method	emits	an	event	associated	with	the	declared	countUpdate
@Output	member.

5.	 The	ArticleComponent	sees	this	event	and	invokes	the	attached	expression.	The	expression
invokes	updateWordCount,	passing	in	the	event	value.

6.	 The	ArticleComponent	property	is	updated,	and	since	this	value	is	interpolated	in	the
view,	Angular	honors	the	data	binding	process	by	updating	the	view.

There's	more...
The	name	EventEmitter	is	a	bit	deceiving.	If	you're	paying	attention,	you	will	notice	that	the
parent	component	member	method	invoked	in	the	handler	does	not	have	a	typed	parameter.	You
will	also	notice	that	you	are	directly	assigning	that	parameter	to	the	member	typed	as	number.
This	should	seem	odd	as	the	template	expression	invoking	the	method	is	passing	$event,	which
you	used	earlier	as	a	browser	Event	object.	This	seems	like	a	mismatch	because	it	is	a	mismatch.
If	you	bind	to	native	browser	events,	the	event	you	will	observe	can	only	be	the	native	browser
event	object.	If	you	bind	to	custom	events,	the	event	you	will	observe	is	whatever	was	passed
when	emit	was	invoked.	Here,	the	parameter	to	updateWordCount()	is	simply	the	integer	you
provided	with	this.countUpdate.emit().

Also	note	that	you	are	not	required	to	provide	a	value	for	the	emitted	event.	You	can	still	use
EventEmitter	to	signal	to	a	parent	component	that	an	event	has	occurred	and	that	it	should
evaluate	the	bound	expression.	To	do	this,	you	simply	create	an	untyped	emitter	with	new
EventEmitter()	and	invoke	emit()	with	no	arguments.	$event	should	be	undefined.

It	is	not	possible	to	pass	multiple	values	as	custom	events.	To	send	multiple	pieces	of	data,	you
need	to	combine	them	into	an	object	or	array.

See	also
Binding	to	native	element	attributes	shows	how	Angular	2	interfaces	with	HTML	element
attributes.
Registering	handlers	on	native	browser	events	demonstrates	how	you	can	easily	attach
behavior	to	browser	events.

Attaching	behavior	to	DOM	elements	with
directives
In	the	course	of	creating	applications,	you	will	often	find	it	useful	to	be	able	to	attach	component-
style	behavior	to	DOM	elements,	but	without	the	need	to	have	templating.	If	you	were	to	attempt
to	construct	an	Angular	2	component	without	providing	a	template	in	some	way,	you	will	meet
with	a	stern	error	telling	you	that	some	form	of	template	is	required.

Here	lies	the	difference	between	Angular	2	components	and	directives:	components	have	views
(which	can	take	the	form	of	a	template,	templateUrl,	or	@View	decorator),	whereas	directives
do	not.	They	otherwise	behave	identically	and	provide	you	with	the	same	behavior.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/3292/.

http://ngcookbook.herokuapp.com/3292/

Getting	ready
Suppose	you	have	the	following	application:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`<h1>{{title}}</h1>`,	

		styles:	[`	

				h1	{	

						text-overflow:	ellipsis;	

						white-space:	nowrap;	

						overflow:	hidden;	

						max-width:	300px;	

				}	

		`]	

})	

export	class	ArticleComponent	{		

		title:string	=	`Presidential	Candidates	Respond	to		

				Allegations	Involving	Ability	to	Dunk`;	

}	

Currently,	this	application	is	using	CSS	to	truncate	the	article	title	with	an	ellipsis.	You	would
like	to	expand	this	application	so	that	the	Article	component	reveals	the	entire	title	when	clicked
by	simply	adding	an	HTML	attribute.

How	to	do	it...
Begin	by	defining	the	basic	class	that	will	power	the	attribute	directive	and	add	it	to	the
application	module:

[app/click-to-reveal.directive.ts]	

	

export	class	ClickToRevealDirective	{	

		reveal(target)	{	

				target.style['white-space']	=	'normal';		

		}	

}	

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{ArticleComponent}	from	'./article.component';	

import	{ClickToRevealDirective}		

		from	'./click-to-reveal.directive';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				ArticleComponent,	

				ClickToRevealDirective	

],	

		bootstrap:	[

				ArticleComponent	

]	

})	

export	class	AppModule	{}	

First,	you	must	decorate	the	ClickToRevealDirective	class	as	@Directive	and	use	it	inside
the	Article	component:

[app/click-to-reveal.directive.ts]	

	

import	{	Directive}	from	'@angular/core';	

	

@Directive({	

		selector:	'[click-to-reveal]'	

})	

export	class	ClickToRevealDirective	{	

		reveal(target)	{	

				target.style['white-space']	=	'normal';		

		}	

}	

Next,	add	the	attribute	to	the	element	that	you	wish	to	apply	the	directive	to:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`<h1	click-to-reveal>{{	title	}}</h1>`,	

		styles:	[`	

				h1	{	

						text-overflow:	ellipsis;	

						white-space:	nowrap;	

						overflow:	hidden;	

						max-width:	300px;	

				}	

		`]	

})	

export	class	ArticleComponent	{		

		title:	string;	

		constructor()	{		

				this.title	=	`Presidential	Candidates	Respond	to		

						Allegations	Involving	Ability	to	Dunk`;	

		}	

}	

Note

Note	that	the	Directive	is	using	an	attribute	CSS	selector	to	associate	itself	with	any	elements	that
have	click-to-reveal.	This	of	course	approximates	an	Angular	1	attribute's	directive	behavior,
but	this	form	is	far	more	flexible	since	it	can	wield	the	innate	matchability	of	selectors.

Now	that	the	Article	component	is	aware	of	ClickToRevealDirective,	you	must	provide	it	the
ability	to	attach	itself	to	click	events.

Attaching	to	events	with	HostListeners

An	attentive	developer	will	have	noticed	that	up	until	this	point	in	the	chapter,	you	have	created
components	that	listen	to	the	events	generated	by	the	children.	This	is	no	problem	since	you	can
expressively	set	listeners	in	a	parent	component	template	on	the	child	tag.

However,	in	this	situation,	you	are	looking	to	add	a	listener	to	the	same	element	that	the	directive
is	being	attached	to.	What's	more,	you	do	not	have	a	good	way	of	adding	an	event	binding
expression	to	the	template	from	inside	a	directive.	Ideally,	you	would	like	to	not	have	to	expose
this	method	from	inside	the	directive.	How	should	you	proceed	then?

The	solution	is	to	utilize	a	new	Angular	construct	called	HostListener.	Simply	put,	it	allows
you	to	capture	self-originating	events	and	handle	them	internally:

[app/click-to-reveal.directive.ts]	

	

import	{	Directive,	HostListener}	from	'@angular/core';	

	

@Directive({	

		selector:	'[click-to-reveal]'	

})	

export	class	ClickToRevealDirective	{	

		@HostListener('click',	['$event.target'])	

		reveal(target)	{	

				target.style['white-space']	=	'normal';		

		}	

}	

	

With	this,	click	events	on	the	<h1>	element	should	successfully	invoke	the	reveal()	method.

How	it	works...
The	directive	needs	a	way	to	attach	to	native	click	events.	Furthermore,	it	needs	a	way	to	capture
objects	such	as	$event	that	Angular	provides	to	you;	these	objects	would	normally	be	captured	in
the	binding	expression.

@HostListener	decorates	a	directive	method	to	act	as	the	designated	event	handler.	The	first
argument	in	its	invocation	is	the	event	identification	string	(here,	click,	but	it	could	just	as	easily
be	a	custom	event	from	EventEmitter),	and	the	second	argument	is	an	array	of	string	arguments
that	are	evaluated	as	expressions.

There's	more...
You	are	not	restricted	to	one	HostListener	inside	a	directive.	Using	it	merely	associates	an
event	with	a	directive	method.	So	you	are	able	to	stack	multiple	HostListener	declarations	on	a
single	handler,	for	example,	to	listen	for	both	a	click	and	mouseover	event.

See	also
Using	decorators	to	build	and	style	a	simple	component	describes	the	building	blocks	of
implementing	an	Angular	2	component
Passing	members	from	a	parent	component	into	a	child	component	goes	through	the	basics
of	downward	data	flow	between	components
Using	ngFor	and	ngIf	structural	directives	for	model-based	DOM	control	instructs	you	in
how	to	utilize	some	of	Angular	2's	core	built-in	directives
Attribute	property	binding	shows	Angular	2's	clever	way	of	deep	referencing	element
properties

Projecting	nested	content	using	ngContent
Utilizing	components	as	standalone	tags	that	are	self-contained	and	wholly	manage	their	contents
is	a	clean	pattern,	but	you	will	frequently	find	that	your	component	tags	demand	that	they	enclose
content.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/6172/.

http://ngcookbook.herokuapp.com/6172/

Getting	ready
Suppose	you	had	the	following	application:

[app/ad-section.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'ad-section',	

		template:	`	

				{{adText}}	

		`	

})	

export	class	AdSectionComponent	{	

		adText:string	=	'Selfie	sticks	40%	off!';	

}	

	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>U.S.	senators	are	up	in	arms	following	the	recent	ruling	

							stripping	them	of	their	beloved	selfie	sticks.</p>	

				<p>A	bipartisan	committee	drafted	a	resolution	to	smuggle	

							selfie	sticks	onto	the	floor	by	any	means	necessary.</p>	

		`	

})	

export	class	ArticleComponent	{		

		title:string	=	'Selfie	Sticks	Banned	from	Senate	Floor';	

}	

Your	objective	here	is	to	modify	this	so	that	the	AdSection	component	can	be	incorporated	into
the	Article	component	without	interfering	with	its	content.

How	to	do	it...
The	AdSection	component	wants	to	incorporate	an	extra	element	around	the	existing	Article
content.	This	is	easy	to	accomplish:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<ad-section>	

						<p>U.S.	senators	are	up	in	arms	following	the	recent	ruling	

									stripping	them	of	their	beloved	selfie	sticks.</p>	

						<p>A	bipartisan	committee	drafted	a	resolution	to	smuggle	

									selfie	sticks	onto	the	floor	by	any	means	necessary.</p>	

				</ad-section>	

		`	

})	

export	class	ArticleComponent	{		

		title:string	=	'Selfie	Sticks	Banned	from	Senate	Floor';	

}	

You	will	notice	though	that	this	is	a	destructive	operation.	When	rendering
AdSectionComponent,	Angular	is	not	concerned	about	any	content	that	is	inside	it.	It	sees	that
AdSectionComponent	has	a	template	associated	with	it,	and	it	dutifully	supplants	the	element's
contents	with	it;	this	template	is	defined	in	the	@Component	decorator.	In	this	case,	that	wipes	out
the	<p>	tags	that	you	want	to	retain.

To	preserve	them,	you	must	instruct	Angular	how	it	should	manage	wrapped	content.	This	can	be
accomplished	with	an	<ng-content>	tag:

[app/ad-section.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'ad-section',	

		template:	`	

				{{adText}}	

				<ng-content	select="p"></ng-content>	

		`	

})	

export	class	AdSectionComponent	{	

		adText:string	=	'Selfie	sticks	40%	off!';	

}	

With	this,	the	ad	anchor	element	is	inserted	before	the	wrapped	content.

How	it	works...
Similar	to	how	ng-transclude	worked	in	Angular	1,	ng-content	serves	to	interpolate	the
component	tag's	wrapped	content	into	its	template.	The	difference	here	is	that	ng-content	uses	a
select	attribute	to	target	the	wrapped	elements.	This	is	simply	a	CSS	selector,	operating	in	the
same	way	in	which	@Component	decorators	handle	the	selector	property	in
ComponentMetadata.

There's	more...
The	select	attribute	in	this	example	was	superfluous,	as	it	ended	up	selecting	the	entirety	of	the
wrapped	content.	Of	course,	if	the	select	value	only	matched	some	of	the	wrapped	content,	it
would	tease	out	only	those	elements	and	interpolate	them.	<ng-content>	will	by	default	insert
the	entirety	of	the	wrapped	content	if	you	decline	to	provide	it	with	a	select	value.

Also	note	that	the	select	attribute	is	a	limited	CSS	selector.	It	is	not	capable	of	performing
complex	selections	such	as	:nth-child,	and	it	is	only	able	to	target	top-level	elements	inside	the
wrapping	tags.	For	example,	in	this	application,	the	paragraph	tag	inside	<div><p>Blah</p>
</div>	would	not	be	included	with	a	select="p"	attribute	value.

See	also
Referencing	a	parent	component	from	a	child	component	describes	how	a	component	can
gain	a	direct	reference	to	its	parent	via	injection
Configuring	mutual	parent-child	awareness	with	ViewChild	and	forwardRef	instructs	you
on	how	to	properly	use	ViewChild	to	reference	child	component	object	instances
Configuring	Mutual	Parent-Child	Awareness	with	ContentChild	and	forwardRef	instructs
you	on	how	to	properly	use	ContentChild	to	reference	child	component	object	instances

Using	ngFor	and	ngIf	structural	directives
for	model-based	DOM	control
Any	developer	that	has	used	a	client	framework	is	intimately	familiar	with	two	basic	operations
in	an	application:	iterative	rendering	from	a	collection	and	conditional	rendering.	The	new
Angular	2	implementations	look	a	bit	different	but	operate	in	much	the	same	way.

Note

The	code,	links,	and	a	live	example	are	available	at	http://ngcookbook.herokuapp.com/3211/.

http://ngcookbook.herokuapp.com/3211/

Getting	ready
Suppose	you	had	the	following	application:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-list',	

		template:	''	

})	

export	class	ArticleListComponent	{	

		articles:Array<Object>	=	[

				{title:	'Foo',	active:	true},		

				{title:	'Bar',	active:	false},	

				{title:	'Baz',	active:	true}	

];	

}	

Your	objective	is	to	iterate	through	this	and	display	the	article	title	only	if	it	is	set	as	active.

How	to	do	it...
Similar	to	Angular	1,	Angular	2	provides	you	with	directives	to	accomplish	this	task.	ngFor	is
used	to	iterate	through	the	articles	collection:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-list',	

		template:	`	

				<div	*ngFor="let	article	of	articles;	let	i	=	index">	

						<h1>	

								{{i}}:	{{article.title}}	

						</h1>	

				</div>	

		`	

})	

export	class	ArticleListComponent	{	

		articles:Array<Object>	=	[

				{	title:	'Foo',	active:	true	},		

				{	title:	'Bar',	active:	false	},	

				{	title:	'Baz',	active:	true	}	

];	

}	

Similar	to	ngFor,	ngIf	can	be	incorporated	as	follows:

[app/article-list.component.ts]	

	

import	{Component}	from	'angular2/core';	

	

@Component({	

		selector:	'article-list',	

		template:	`	

				<div	*ngFor="let	article	of	articles;	let	i	=	index">	

						<h1	*ngIf="article.active">	

								{{i}}:	{{	article.title	}}	

						</h1>	

				</div>	

		`	

})	

export	class	ArticleListComponent	{	

		articles:Array<Object>	=	[

				{title:	'Foo',	active:	true},		

				{title:	'Bar',	active:	false},	

				{title:	'Baz',	active:	true}	

];	

}	

With	this,	you	will	see	that	only	the	objects	in	the	articles	array	with	active:true	are
rendered.

How	it	works...
At	first,	the	asterisk	and	pound	sign	notation	could	be	confusing	for	many	developers.	For	most
applications,	you	will	not	need	to	know	how	this	syntactic	sugar	actually	works	behind	the
scenes.

In	reality,	Angular	decomposes	all	the	structural	directives	prefixed	with	*	to	utilize	a	template.
First,	Angular	breaks	down	ngFor	and	ngIf	to	use	the	template	directives	on	the	same	element.
The	syntax	does	not	change	much	yet:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-list',	

		template:	`	

				<div	template="ngFor	let	article	of	articles;	let	i	=	index">	

						<h1	template="ngIf	article.active">	

								{{i}}:	{{	article.title	}}	

						</h1>	

				</div>	

		`	

})	

export	class	ArticleList	{	

		articles:	Array<Object>,	

		constructor()	{	

				this.articles	=	[

						{	title:	'Foo',	active:	true	},		

						{	title:	'Bar',	active:	false	},	

						{	title:	'Baz',	active:	true	}	

];	

		}	

}	

Following	this,	Angular	decomposes	this	template	directive	into	a	wrapping	<template>
element:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-list',	

		template:	`	

				<template	ngFor	let-article	[ngForOf]="articles"	let-i="index">	

						<div>	

								<template	[ngIf]="article.active">	

										<h1>	

												{{i}}:	{{article.title}}	

										</h1>	

								</template>	

						</div>	

				</template>	

		`	

})	

export	class	ArticleList	{	

		articles:	Array<Object>,	

		constructor()	{	

				this.articles	=	[

						{	title:	'Foo',	active:	true	},		

						{	title:	'Bar',	active:	false	},	

						{	title:	'Baz',	active:	true	}	

];	

		}	

}	

Note

Note	that	both	the	versions	displayed	here—either	using	the	template	directive	or	the
<template>	element—will	behave	identically	to	using	the	original	structural	directives.	That
being	said,	there	generally	will	not	be	a	reason	to	ever	do	it	this	way;	this	is	merely	a
demonstration	to	show	you	how	Angular	understands	these	directives	behind	the	scenes.

Tip

When	inspecting	the	actual	DOM	of	these	examples	using	ngFor	and	ngIf,	you	will	be	able	to
see	Angular's	automatically	added	HTML	comments	that	describe	how	it	interprets	your	markup
and	translates	it	into	template	bindings.

There's	more...
The	template	element	is	born	out	of	the	Web	Components'	specification.	Templates	are	a
definition	of	how	a	DOM	subtree	can	eventually	be	defined	as	a	unit,	but	the	elements	that	appear
within	it	are	not	created	or	active	until	the	template	is	actually	used	to	create	an	instance	from	that
template.	Not	all	web	browsers	support	web	components,	so	Angular	2	does	a	polyfill	to	emulate
proper	template	behavior.

In	this	way,	the	ngFor	directive	is	actually	creating	a	web	component	template	that	utilizes	the
subordinate	ngForOf	binding,	which	is	a	property	of	NgFor.	Each	instance	in	articles	will	use
the	template	to	create	a	DOM	section,	and	within	this	section,	the	article	and	index	template
variables	will	be	available	for	interpolation.

See	also
Using	decorators	to	build	and	style	a	simple	component	describes	the	building	blocks	of
implementing	an	Angular	2	component
Passing	members	from	a	parent	component	into	a	child	component	goes	through	the	basics
of	downward	data	flow	between	components
Binding	to	native	element	attributes	shows	how	Angular	2	interfaces	with	HTML	element
attributes
Attaching	behavior	to	DOM	elements	with	directives	demonstrates	how	to	attach	behavior
to	elements	with	attribute	directives
Attribute	property	binding	shows	Angular	2's	clever	way	of	deep	referencing	element
properties
Utilizing	component	lifecycle	hooks	gives	an	example	of	how	you	can	integrate	with
Angular	2's	component	rendering	flow.

Referencing	elements	using	template
variables
Many	developers	will	begin	with	Angular	2	and	reach	for	something	that	resembles	the
trustworthy	ng-model	in	Angular	1.	NgModel	exists	in	Angular	2,	but	there	is	a	new	way	of
referencing	elements	in	the	template:	local	template	variables.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/5094/.

http://ngcookbook.herokuapp.com/5094/

Getting	ready
Suppose	you	had	the	following	application	and	wanted	to	directly	access	the	input	element:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input>	

				<h1>{{title}}</h1>	

		`	

})	

export	class	ArticleComponent	{}	

How	to	do	it...
Angular	2	allows	you	to	have	a	#	assignment	within	the	template	itself,	which	can	consequently
be	referenced	from	inside	the	template.	For	example,	refer	to	the	following	code:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	#title>	

				<h1>{{title}}</h1>	

		`	

})	

export	class	ArticleComponent	{}	

With	this,	you	will	see	[object	HTMLInputElement]	(or	something	similar,	depending	on	your
browser)	interpolated	into	the	<h1>	tag.	This	means	that	the	#title	inside	the	<input>	tag	is
now	directly	referencing	the	element	object,	which	of	course	means	that	the	value	of	the	element
should	be	available	for	you.

Don't	get	too	excited	just	yet!	If	you	attempt	to	interpolate	title.value	and	then	manipulate	the
input	field,	you	will	not	see	the	browser	update.	This	is	because	Angular	2	no	longer	supports
bidirectional	data	binding	in	this	way.	Fear	not,	for	the	solution	to	this	problem	lies	within	the
new	Angular	2	data	binding	pattern.

Angular	will	decline	to	update	the	DOM	until	it	thinks	it	needs	to.	This	need	is	determined	by
what	behavior	in	the	application	might	cause	the	interpolated	data	to	change.	A	bound	event,
which	will	propagate	upwards	through	the	component	tree,	may	cause	a	data	change.	Thus,	you
can	create	an	event	binding	on	an	element,	and	the	mere	presence	of	this	event	binding	will	trigger
Angular	to	update	the	template:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	#title	(keyup)="0">	

				<h1>{{title.value}}</h1>	

		`	

})	

export	class	ArticleComponent	{}	

Here,	the	keyup	event	from	the	text	input	is	bound	to	an	expression	that	is	effectively	a	no-op.

Since	the	event	will	trigger	an	update	of	the	DOM,	you	can	successfully	pull	out	the	latest	value
property	from	the	title	input	element	object.	With	this,	you	have	successfully	bound	the	input
value	to	the	interpolated	string.

There's	more...
If	you	aren't	crazy	about	the	#	notation,	you	can	always	replace	it	with	val-	and	still	achieve
identical	behavior:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	val-title	(keyup)="0">	

				<h1>{{title.value}}</h1>	

		`	

})	

export	class	ArticleComponent	{}	

Also,	it's	important	to	recall	that	these	template	variables	are	only	accessible	within	the	template.
If	you	want	to	pass	them	back	to	the	controller,	you'll	have	to	use	it	as	a	handler	argument:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	#title	(keyup)="setTitle(title.value)">	

				<h1>{{myTitle}}</h1>	

		`	

})	

export	class	ArticleComponent	{	

		myTitle:string;	

	

		setTitle(val:string):void	{	

				this.myTitle	=	val;	

		}	

}	

See	also
Referencing	a	parent	component	from	a	child	component	describes	how	a	component	can
gain	a	direct	reference	to	its	parent	via	injection
Configuring	mutual	parent-child	awareness	with	ViewChild	and	forwardRef	instructs	you
on	how	to	properly	use	ViewChild	to	reference	child	component	object	instances
Configuring	mutual	parent-child	awareness	with	ContentChild	and	forwardRef	instructs
you	on	how	to	properly	use	ContentChild	to	reference	child	component	object	instances

Attribute	property	binding
One	of	the	great	new	benefits	of	the	new	Angular	binding	style	is	that	you	are	able	to	more
accurately	target	what	you	are	binding	to.	Formerly,	the	HTML	attribute	that	was	used	as	a
directive	or	data	token	was	simply	used	as	a	matching	identifier.	Now,	you	are	able	to	use
property	bindings	within	the	binding	markup	for	both	the	input	and	output.

Note

The	code,	links,	and	a	live	example	of	this	is	available	at
http://ngcookbook.herokuapp.com/8565/.

http://ngcookbook.herokuapp.com/8565/

Getting	ready
Suppose	you	had	the	following	application:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	#title	(keydown)="setTitle(title.value)">	

				<h1>{{myTitle}}</h1>	

		`	

})	

export	class	ArticleComponent	{	

		myTitle:string;	

	

		setTitle(val:string):void	{	

				this.myTitle	=	val;	

		}	

}	

Your	objective	is	to	modify	this	so	that	it	exhibits	the	following	behavior:

The	<h1>	tag	is	not	updated	with	the	value	of	the	input	field	until	the	user	strikes	the	Enter
key.
If	the	<h1>	value	does	not	match	the	value	in	the	title	input	(call	this	state	"stale"),	the	text
color	should	be	red.	If	it	does	match,	it	should	be	green.

How	to	do	it...
Both	of	these	behaviors	can	be	achieved	with	Angular	2's	attribute	property	binding.	First,	you
can	change	the	event	binding	so	that	only	an	Enter	key	will	invoke	the	callback:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	#title	(keydown.enter)="setTitle(title.value)">	

				<h1>{{myTitle}}</h1>	

		`	

})	

export	class	ArticleComponent	{	

		myTitle:string;	

	

		setTitle(val:string):void	{	

				this.myTitle	=	val;	

		}	

}	

Next,	you	can	use	Angular's	style	binding	to	directly	assign	a	value	to	a	style	property.	This
requires	adding	a	Boolean	to	the	controller	object	to	maintain	the	state:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	#title	(keydown.enter)="setTitle(title.value)">	

				<h1	[style.color]="isStale	?	'red'	:	'green'">{{myTitle}}</h1>	

		`	

})	

export	class	ArticleComponent	{	

		myTitle:string	=	'';	

		isStale:boolean	=	false;	

		setTitle(val:string):void	{	

				this.myTitle	=	val;	

		}	

}	

Closer,	but	this	still	provides	no	way	of	reaching	a	stale	state.	To	achieve	this,	add	another
keydown	event	binding:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	#title		

											(keyup.enter)="setTitle(title.value)"	

											(keyup)="checkStale(title.value)">	

				<h1	[style.color]="isStale	?	'red'	:	'green'">	

						{{myTitle}}	

				</h1>	

		`	

})	

export	class	ArticleComponent	{	

		myTitle:string	=	'';	

		private	isStale:boolean	=	false;	

	

		setTitle(val:string):void	{	

				this.myTitle	=	val;	

		}	

		checkStale(val:string):void	{	

				this.isStale	=	val	!==	this.myTitle;	

		}	

}	

With	this,	the	color	of	the	<h1>	tag	should	correctly	keep	track	of	whether	the	data	is	stale	or	not!

How	it	works...
The	simple	explanation	is	that	Angular	provides	you	with	a	lot	of	syntactical	sugar,	but	at	a	very
basic	level	without	involving	a	lot	of	complexity.	If	you	were	to	inspect	the	keyup	event,	you
would	of	course	notice	that	there	is	no	enter	property	available.	Angular	offers	you	a	number	of
these	pseudo	properties	so	that	checking	the	keyCode	of	the	pressed	key	is	not	necessary.

In	a	similar	way,	Angular	also	allows	you	to	bind	to	and	access	style	properties	directly.	It	is
inferred	that	the	style	being	accessed	refers	to	the	host	element.

There's	more...
Note	here	that	you	have	assigned	two	handlers	to	what	is	essentially	the	same	event.	Not	only	this,
but	rearranging	the	order	of	the	binding	markup	will	break	this	application's	desired	behavior.

Note

When	two	handlers	are	assigned	to	the	same	event,	Angular	will	execute	the	handlers	in	the	order
that	they	are	defined	in	the	markup.

See	also
Binding	to	native	element	attributes	shows	how	Angular	2	interfaces	with	HTML	element
attributes
Registering	handlers	on	native	browser	events	demonstrates	how	you	can	easily	attach
behavior	to	browser	events
Generating	and	capturing	custom	events	using	EventEmitter	details	how	to	propagate
information	upwards	between	components
Attaching	behavior	to	DOM	elements	with	directives	demonstrates	how	to	attach	behavior
to	elements	with	attribute	directives

Utilizing	component	lifecycle	hooks
Angular's	component	rendering	process	has	a	large	number	of	facets,	and	different	types	of	data
and	references	will	become	available	at	different	times.	To	account	for	this,	Angular	2	allows
components	to	set	callbacks,	which	will	be	executed	at	different	points	in	the	component's	life
cycle.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/2048/.

http://ngcookbook.herokuapp.com/2048/

Getting	ready
Suppose	you	began	with	the	following	application,	which	simply	allows	the	addition	and	removal
of	articles	from	a	single	input:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-list',	

		template:	`	

				<input	(keyup.enter)="add($event)">	

				<article	*ngFor="let	title	of	titles;	let	i	=	index"	

													[articleTitle]="title">	

						<button	(click)="remove(i)">X</button>	

				</article>	

					

		`	

})	

export	class	ArticleListComponent	{	

		titles:Array<string>	=	[];	

			

		add(e:Event):void	{	

				this.titles.push(e.target.value);	

				e.target.value	=	'';	

		}	

			

		remove(index:number)	{	

				this.titles.splice(index,	1);	

		}	

}	

[app/article.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>	

						<ng-content></ng-content>{{articleTitle}}	

				</h1>	

		`	

})	

export	class	ArticleComponent	{	

		@Input()	articleTitle:string;	

}	

Your	objective	is	to	use	life	cycle	hooks	to	keep	track	of	the	process	of	adding	and	removing
operations.

How	to	do	it...
Angular	allows	you	to	import	hook	interfaces	from	the	core	module.	These	interfaces	are
manifested	as	class	methods,	which	are	invoked	at	the	appropriate	time:

[app/article.component.ts]	

	

import	{Component,	Input,	ngOnInit,	ngOnDestroy}		

		from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>	

						<ng-content></ng-content>{{articleTitle}}	

				</h1>	

		`	

})	

export	class	ArticleComponent	implements	OnInit,	OnDestroy	{	

		@Input()	articleTitle:string;	

			

		ngOnInit()	{	

				console.log('created',	this.articleTitle);	

		}	

			

		ngOnDestroy()	{	

				console.log('destroyed',	this.articleTitle);	

		}	

}	

With	this,	you	should	see	logs	each	time	a	new	ArticleComponent	is	added	or	removed.

How	it	works...
Different	hooks	have	different	semantic	meanings,	but	they	will	occur	in	a	well-defined	order.
Each	hook's	execution	guarantees	that	a	certain	behavior	of	a	component	is	just	completed.

The	hooks	that	are	currently	available	to	you	in	the	order	of	execution	are	as	follows:

ngOnChanges

ngOnInit

ngDoCheck

ngAfterContentInit

ngAfterContentChecked

ngAfterViewInit

ngAfterContentChecked

ngOnDestroy

It	is	also	possible	for	third-party	libraries	to	extend	these	and	add	their	own	hooks.

There's	more...
Using	hooks	is	optional,	and	Angular	will	only	invoke	them	if	you	have	defined	them.	The	use	of
the	implements	interface	declaration	is	optional,	but	it	will	signal	to	the	TypeScript	compiler
that	a	corresponding	method	should	be	expected,	which	is	obviously	a	good	practice.

See	also
Referencing	a	parent	component	from	a	child	component	describes	how	a	component	can
gain	a	direct	reference	to	its	parent	via	injection
Configuring	mutual	parent-child	awareness	with	ViewChild	and	forwardRef	instructs	you
on	how	to	properly	use	ViewChild	to	reference	child	component	object	instances
Configuring	mutual	parent-child	awareness	with	ContentChild	and	forwardRef	instructs
you	on	how	to	properly	use	ContentChild	to	reference	child	component	object	instances

Referencing	a	parent	component	from	a	child
component
In	the	course	of	building	an	application,	you	may	encounter	a	scenario	where	it	would	be	useful	to
reference	a	parent	component	from	a	child	component,	such	as	to	inspect	member	data	or	invoke
public	methods.	In	Angular	2,	this	is	actually	quite	easy	to	accomplish.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4907/.

http://ngcookbook.herokuapp.com/4907/

Getting	ready
Suppose	you	begin	with	the	following	ArticleComponent:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<feedback	[val]="likes"></feedback>	

		`	

})	

export	class	ArticleComponent	{	

		likes:number	=	0;	

			

		incrementLikes():void	{	

				this.likes++;	

		}	

}	

Your	objective	is	to	implement	the	feedback	component	so	that	it	displays	the	number	of	likes
passed	to	it,	but	the	parent	component	controls	the	actual	like	count	and	passes	that	value	in.

How	to	do	it...
Begin	by	implementing	the	basic	structure	of	the	child	component:

[app/feedback.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

	

@Component({	

		selector:	'feedback',	

		template:	`	

				<h1>Number	of	likes:	{{	val	}}</h1>	

				<button	(click)="likeArticle()">Like	this	article!</button>	

		`	

})	

export	class	FeedbackComponent	{	

		@Input()	val:number;	

			

		likeArticle():void	{}	

}	

So	far,	none	of	this	should	sound	surprising.	Clicking	on	the	button	invokes	an	empty	method,	and
you	want	this	method	to	invoke	a	method	from	the	parent	component.	However,	you	currently	lack
a	reference	to	do	this.	Listing	the	component	in	the	child	component	constructor	will	make	it
available	to	you:

[app/feedback.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

	

@Component({	

		selector:	'feedback',	

		template:	`	

				<h1>Number	of	likes:	{{	val	}}</h1>	

				<button	(click)="like()">Like	this	article!</button>	

		`	

})	

export	class	FeedbackComponent	{	

		@Input()	val:number;	

		private	articleComponent:ArticleComponent;	

			

		constructor(articleComponent:ArticleComponent)	{	

				this.articleComponent	=	articleComponent;	

		}	

			

		like():void	{	

				this.articleComponent.incrementLikes();	

		}	

}	

With	a	reference	to	the	parent	component	now	available,	you	are	easily	able	to	invoke	its	public
method,	namely	incrementLikes().	At	this	point,	the	two	components	should	communicate
correctly.

How	it	works...
Very	simply,	Angular	2	recognizes	that	you	are	injecting	a	component	that	is	typed	in	the	same
way	as	the	parent,	and	it	will	provide	that	parent	for	you.	This	is	the	full	parent	instance,	and	you
are	free	to	interact	with	it	as	you	would	normally	interact	with	any	component	instance.

Tip

Notice	that	it	is	required	that	you	store	a	reference	to	the	component	inside	the	constructor.	Unlike
when	you	inject	a	service,	the	child	component	will	not	automatically	make	the
ArticleComponent	instance	available	to	you	as	this.articleComponent;	you	need	to	do	this
manually.

There's	more...
An	astute	developer	will	notice	that	this	creates	a	very	rigid	dependency	from	the	child
component	to	the	parent	component.	This	is	indeed	the	case,	but	not	necessarily	a	bad	thing.
Often,	it	is	useful	to	allow	components	to	more	easily	interact	with	each	other	at	the	expense	of
their	modularity.	And	generally,	this	will	be	a	judgment	call	on	your	part.

See	also
Passing	members	from	a	parent	component	into	a	child	component	goes	through	the	basics
of	downward	data	flow	between	components
Registering	handlers	on	native	browser	events	demonstrates	how	you	can	easily	attach
behavior	to	browser	events
Generating	and	capturing	custom	events	using	EventEmitter	details	how	to	propagate
information	upwards	between	components
Configuring	mutual	parent-child	awareness	with	ViewChild	and	forwardRef	instructs	you
on	how	to	properly	use	ViewChild	to	reference	child	component	object	instances
Configuring	mutual	parent-child	awareness	with	ContentChild	and	forwardRef	instructs
you	on	how	to	properly	use	ContentChild	to	reference	child	component	object	instances

Configuring	mutual	parent-child	awareness
with	ViewChild	and	forwardRef
Depending	on	your	application's	separation	of	concerns,	it	might	make	sense	for	a	child
component	in	your	application	to	reference	a	parent,	and	at	the	same	time,	for	the	parent	to
reference	the	child.	There	are	two	similar	implementations	that	allow	you	to	accomplish	this:
using	ViewChild	and	ContentChild.	This	recipe	will	discuss	them	both.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/1315/.

http://ngcookbook.herokuapp.com/1315/

Getting	ready
Begin	with	the	recipe	setup	shown	in	Referencing	a	parent	component	from	a	child	component.
Your	objective	is	to	add	the	ability	to	enable	and	disable	the	like	button	from	the	parent
component.

How	to	do	it...
The	initial	setup	only	gives	the	child	access	to	the	parent,	which	is	only	half	of	what	you	need.
The	other	half	is	to	give	the	parent	access	to	the	child.

Getting	a	reference	to	FeedbackComponent	that	you	see	in	the	ArticleComponent	template	view
can	be	done	in	two	ways,	and	the	first	way	demonstrated	here	will	use	ViewChild.

Configuring	a	ViewChild	reference

Using	ViewChild	will	allow	you	to	extract	a	component	reference	from	inside	the	view.	More
plainly,	in	this	example,	using	ViewChild	will	give	you	the	ability	to	reference	the
FeedbackComponent	instance	from	inside	the	ArticleComponent	code.

First,	configure	ArticleComponent	so	that	it	will	retrieve	the	component	reference:

[app/article.component.ts]	

	

import	{Component,	ViewChild}	from	'@angular/core';	

import	{FeedbackComponent}	from	'./feedback.component';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	type="checkbox"		

											(click)="changeLikesEnabled($event)">	

				<feedback	[val]="likes"></feedback>	

		`	

})	

export	class	ArticleComponent	{	

		@ViewChild(FeedbackComponent)		

				feedbackComponent:FeedbackComponent;	

		likes:number	=	0;	

			

		incrementLikes():void	{	

				this.likes++;	

		}	

			

		changeLikesEnabled(e:Event):void	{	

				this.feedbackComponent.setLikeEnabled(e.target.checked);	

		}	

}	

The	main	theme	in	this	new	code	is	that	the	ViewChild	decorator	implicitly	understands	that	it
should	target	the	view	of	this	component,	find	the	instance	of	FeedbackComponent	that	is	being
rendered	there,	and	assign	it	to	the	feedbackCompnent	member	of	the	ArticleComponent
instance.

Correcting	the	dependency	cycle	with	forwardRef

At	this	point,	you	should	be	seeing	your	application	throwing	new	errors,	most	likely	about	being
unable	to	resolve	the	parameters	for	FeedbackComponent.	This	occurs	because	you	have	set	up	a
cyclic	dependency:	FeedbackComponent	depends	on	ArticleComponent	and
ArticleComponent	depends	on	FeedbackComponent.	Thankfully,	this	problem	exists	in	the
domain	of	Angular	dependency	injection,	so	you	don't	really	need	the	module,	just	a	token	that
represents	it.	For	this	purpose,	Angular	2	provides	you	with	forwardRef,	which	allows	you	to
use	a	module	dependency	inside	your	class	definition	before	it	is	defined.	Use	it	as	follows:

[app/feedback.component.ts]	

	

import	{Component,	Input,	Inject,	forwardRef}		

		from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

	

@Component({	

		selector:	'feedback',	

		template:	`	

				<h1>Number	of	likes:	{{	val	}}</h1>	

				<button	(click)="likeArticle()">	

						Like	this	article!	

				</button>	

		`	

})	

export	class	FeedbackComponent	{	

		@Input()	val:number;	

		private	articleComponent:ArticleComponent;	

			

		constructor(@Inject(forwardRef(()	=>	ArticleComponent))		

						articleComponent:ArticleComponent)	{	

	

				this.articleComponent	=	articleComponent;	

		}	

			

		likeArticle():void	{	

				this.articleComponent.incrementLikes();	

		}	

}	

Adding	the	disable	behavior

With	the	cycle	problem	resolved,	add	the	setLikeEnabled()	method	that	the	parent	component
is	invoking:

[app/feedback.component.ts]	

	

import	{Component,	Input,	Inject,	forwardRef}		

		from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

	

@Component({	

		selector:	'feedback',	

		template:	`	

				<h1>Number	of	likes:	{{	val	}}</h1>	

				<button	(click)="likeArticle()"	

												[disabled]="!likeEnabled">	

						Like	this	article!	

				</button>	

		`	

})	

export	class	FeedbackComponent	{	

		@Input()	val:number;	

		private	likeEnabled:boolean	=	false;	

		private	articleComponent:ArticleComponent;	

			

		constructor(@Inject(forwardRef(()	=>	ArticleComponent))		

						articleComponent:ArticleComponent)	{	

	

				this.articleComponent	=	articleComponent;	

		}	

			

		likeArticle():void	{	

				this.articleComponent.incrementLikes();	

		}	

			

		setLikeEnabled(newEnabledStatus:boolean):void	{	

				this.likeEnabled	=	newEnabledStatus;	

		}	

}	

With	this,	toggling	the	checkbox	should	enable	and	disable	the	like	button.

How	it	works...
ViewChild	directs	Angular	to	find	the	first	instance	of	FeedbackComponent	present	inside	the
ArticleComponent	view	and	assign	it	to	the	decorated	class	member.	The	reference	will	be
updated	along	with	any	view	updates.	This	decorated	member	will	refer	to	the	child	component
instance	and	can	be	interacted	with	like	any	normal	object	instance.

Note

It's	important	to	remember	the	duality	of	the	component	instance	and	its	representation	in	the
template.	For	example,	FeedbackComponent	is	represented	by	a	feedback	tag	(pre-render)	and	a
header	tag	and	a	button	(post-render),	but	neither	of	these	form	the	actual	component.	The
FeedbackComponent	instance	is	a	JavaScript	object	that	lives	in	the	memory,	and	this	is	the
object	you	want	access	to.	If	you	just	wanted	a	reference	to	the	template	elements,	this	could	be
accomplished	by	a	template	variable,	for	example.

There's	more...
Since	Angular	performs	hierarchical	rendering,	ViewChild	will	not	be	ready	until	the	view	is
initialized,	but	rather,	after	the	AfterViewInit	life	cycle	hook.	This	can	be	demonstrated	as
follows:

[app/article.component.ts]	

	

import	{Component,	ViewChild,	ngAfterViewInit}		

		from	'@angular/core';	

import	{FeedbackComponent}	from	'./feedback.component';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	type="checkbox"		

											(click)="changeLikesEnabled($event)">	

				<feedback	[val]="likes"></feedback>	

		`	

})	

export	class	ArticleComponent	implements	AfterViewInit	{	

		@ViewChild(FeedbackComponent)		

				feedbackComponent:FeedbackComponent;	

		likes:number	=	0;	

			

		constructor()	{	

				console.log(this.feedbackComponent);	

		}	

			

		ngAfterViewInit()	{	

				console.log(this.feedbackComponent);	

		}	

			

		incrementLikes():void	{	

				this.likes++;	

		}	

			

		changeLikesEnabled(e:Event):void	{	

				this.feedbackComponent.setLikeEnabled(e.target.checked);	

		}	

}	

This	will	first	log	undefined	inside	the	constructor	as	the	view,	and	therefore,
FeedbackComponent	does	not	yet	exist.	Once	the	AfterViewInit	life	cycle	hook	occurs,	you
will	be	able	to	see	FeedbackComponent	logged	to	the	console.

ViewChildren

If	you	would	like	to	get	a	reference	to	multiple	components,	you	can	perform	an	identical
reference	acquisition	using	ViewChildren,	which	will	provide	you	with	a	QueryList	of	all	the

matching	components	in	the	view.

Tip

A	QueryList	can	be	used	like	an	array	with	its	toArray()	method.	It	also	exposes	a	changes
property,	which	emits	an	event	every	time	a	member	of	QueryList	changes.

See	also
Utilizing	component	lifecycle	hooks	gives	an	example	of	how	you	can	integrate	with
Angular	2's	component	rendering	flow
Referencing	a	parent	component	from	a	child	component	describes	how	a	component	can
gain	a	direct	reference	to	its	parent	via	injection
Configuring	mutual	parent-child	awareness	with	ContentChild	and	forwardRef	instructs
you	on	how	to	properly	use	ContentChild	to	reference	child	component	object	instances

Configuring	mutual	parent-child	awareness
with	ContentChild	and	forwardRef
The	companion	to	Angular's	ViewChild	is	ContentChild.	It	performs	a	similar	duty;	it	retrieves
a	reference	to	the	target	child	component	and	makes	it	available	as	a	member	of	the	parent
component	instance.	The	difference	is	that	ContentChild	retrieves	the	markup	that	exists	inside
the	parent	component's	selector	tags,	whereas	ViewChild	retrieves	the	markup	that	exists	inside
the	parent	component's	view.

The	difference	is	best	demonstrated	by	a	comparison	of	behavior,	so	this	recipe	will	convert	the
example	from	Configuring	Mutual	Parent-Child	Awareness	with	ViewChild	and	forwardRef	to
use	ContentChild	instead.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/7386/.

http://ngcookbook.herokuapp.com/7386/

Getting	ready
Begin	with	the	code	from	the	Configuring	mutual	parent-child	awareness	with	ViewChild	and
forwardRef	recipe.

How	to	do	it...
Before	you	begin	the	conversion,	you'll	need	to	nest	the	ArticleComponent	tags	inside	another
root	component,	as	ContentChild	will	not	work	for	the	root-level	bootstrapped	application
component.	Create	a	wrapped	RootComponent:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<article></article>	

		`	

})	

export	class	RootComponent	{}	

Converting	to	ContentChild

ContentChild	is	introduced	to	components	in	essentially	the	same	way	as	ViewChild.	Inside
ArticleComponent,	perform	this	conversion	and	replace	the	<feedback>	tag	with	<ng-
content>:

[app/article.component.ts]	

	

import	{Component,	ContentChild}	from	'@angular/core';	

import	{FeedbackComponent}	from	'./feedback.component';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	type="checkbox"		

											(click)="changeLikesEnabled($event)">	

				<ng-content></ng-content>	

		`	

})	

export	class	ArticleComponent	{	

		@ContentChild(FeedbackComponent)		

				feedbackComponent:FeedbackComponent;	

		likes:number	=	0;	

			

		incrementLikes():void	{	

				this.likes++;	

		}	

			

		changeLikesEnabled(e:Event):void	{	

				this.feedbackComponent.setLikeEnabled(e.target.checked);	

		}	

}	

Of	course,	this	will	only	be	able	to	find	the	child	component	if	the	<article></article>	tag
has	content	inside	of	it:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<article>	

						<feedback></feedback>	

				</article>	

		`	

})	

export	class	RootComponent	{}	

Note

You'll	notice	that	the	like	count	value	being	passed	to	the	child	component	as	an	input	has	been
removed.	Very	simply,	that	convention	will	not	work	anymore,	as	binding	it	here	would	draw	the
like	count	from	RootComponent,	which	does	not	have	this	information.

Correcting	data	binding

The	FeedbackComponent	will	need	to	retrieve	the	like	count	directly:

[app/feedback.component.ts]	

	

import	{Component,	Inject,	forwardRef}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

	

@Component({	

		selector:	'feedback',	

		template:	`	

				<h1>Number	of	likes:	{{	val	}}</h1>	

				<button	(click)="likeArticle()"	

												[disabled]="!likeEnabled">	

						Like	this	article!	

				</button>	

		`	

})	

export	class	FeedbackComponent	{	

		private	val:number;	

		private	likeEnabled:boolean	=	false;	

		private	articleComponent:ArticleComponent;	

			

		constructor(@Inject(forwardRef(()	=>	ArticleComponent))		

						articleComponent:ArticleComponent)	{	

	

				this.articleComponent	=	articleComponent;	

				this.updateLikes();	

		}	

			

		updateLikes()	{	

				this.val	=	this.articleComponent.likes;	

		}	

			

		likeArticle():void	{	

				this.articleComponent.incrementLikes();	

				this.updateLikes();	

		}	

			

		setLikeEnabled(newEnabledStatus:boolean):void	{	

				this.likeEnabled	=	newEnabledStatus;	

		}	

}	

That's	it!	The	application	should	behave	identically	to	the	setup	from	the	Getting	ready	section	of
the	recipe.

How	it	works...
ContentChild	does	nearly	the	same	thing	as	ViewChild;	it	just	looks	in	a	different	place.
ContentChild	directs	Angular	to	find	the	first	instance	of	FeedbackComponent	present	inside
the	ArticleComponent	tags.	Here,	this	step	refers	to	anything	that	is	interpolated	by	<ng-
content>.	It	then	assigns	the	found	component	instance	to	the	decorated	class	member.	The
reference	is	updated	along	with	any	view	updates.	This	decorated	member	will	refer	to	the	child
component	instance	and	can	be	interacted	with	like	any	normal	object	instance.

There's	more...
Since	Angular	performs	hierarchical	rendering,	ContentChild	will	not	be	ready	until	the	view	is
initialized,	but	rather,	after	the	AfterContentInit	life	cycle	hook.	This	can	be	demonstrated	as
follows:

[app/article.component.ts]	

	

import	{Component,	ContentChild,	ngAfterContentInit}		

		from	'@angular/core';	

import	{FeedbackComponent}	from	'./feedback.component';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<input	type="checkbox"		

											(click)="changeLikesEnabled($event)">	

				<ng-content></ng-content>	

		`	

})	

export	class	ArticleComponent	implements	AfterContentInit	{	

		@ContentChild(FeedbackComponent)		

				feedbackComponent:FeedbackComponent;	

		likes:number	=	0;	

			

		constructor()	{	

				console.log(this.feedbackComponent);	

		}	

			

		ngAfterContentInit()	{	

				console.log(this.feedbackComponent);	

		}	

			

		incrementLikes():void	{	

				this.likes++;	

		}	

			

		changeLikesEnabled(e:Event):void	{	

				this.feedbackComponent.setLikeEnabled(e.target.checked);	

		}	

}	

This	will	first	log	undefined	inside	the	constructor	as	the	content,	and
therefore	FeedbackComponent	does	not	yet	exist.	Once	the	AfterContentInit	life	cycle	hook
occurs,	you	will	be	able	to	see	FeedbackComponent	logged	to	the	console.

ContentChildren

If	you	would	like	to	get	a	reference	to	multiple	components,	you	can	perform	an	identical
reference	acquisition	process	using	ContentChildren,	which	will	provide	you	with	QueryList

of	all	the	matching	components	inside	the	component's	tags.

Tip

A	QueryList	can	be	used	like	an	array	with	its	toArray()	method.	It	also	exposes	a	changes
property,	which	emits	an	event	every	time	a	member	of	QueryList	changes.

See	also
Utilizing	component	lifecycle	hooks	gives	an	example	of	how	you	can	integrate	with
Angular	2's	component	rendering	flow.
Referencing	a	parent	component	from	a	child	component	describes	how	a	component	can
gain	a	direct	reference	to	its	parent	via	injection.
Configuring	mutual	parent-child	awareness	with	ViewChild	and	forwardRef	instructs	you
on	how	to	properly	use	ViewChild	to	reference	child	component	object	instances.

Chapter	3.	Building	Template-Driven	and
Reactive	Forms
This	chapter	will	cover	the	following	recipes:

Implementing	simple	two-way	data	binding	with	ngModel
Implementing	basic	field	validation	with	a	FormControl
Bundling	FormControls	with	a	FormGroup
Bundling	FormControls	with	a	FormArray
Implementing	basic	forms	with	ngForm
Implementing	basic	forms	with	FormBuilder	and	formControlName
Creating	and	using	a	custom	validator
Creating	and	using	a	custom	asynchronous	validator	with	Promises

Introduction
Forms	are	important	elemental	constructs	for	nearly	every	web	application,	and	they	have	been
reimagined	for	the	better	in	Angular	2.	Angular	1	forms	were	very	useful,	but	they	were	totally
dependent	on	the	conventions	of	ngModel.	Angular	2's	newfound	conventions	remove	it	from
ngModel	dependence	and	offer	a	fresh	approach	to	form	and	information	management	that
ultimately	feels	cleaner	and	more	approachable.

Fundamentally,	it	is	important	to	understand	where	and	why	forms	are	useful.	There	are	many
places	in	an	application	where	multitudinous	input	demands	association,	and	forms	are	certainly
useful	in	this	context.	Angular	2	forms	are	best	used	when	validating	the	said	input,	especially	so
when	multiple-field	and	cross-field	validation	is	required.	Additionally,	Angular	forms	maintain
the	state	of	various	form	elements,	allowing	the	user	to	reason	the	"history"	of	an	input	field.

It	is	also	critical	to	remember	that	the	Angular	2	form	behavior,	much	in	the	same	way	as	its	event
and	data	binding,	is	getting	integrated	with	the	already	robust	browser	form	behavior.	Browsers
are	already	very	capable	of	submitting	data,	recalling	data	upon	a	page	reload,	simple	validation,
and	other	behaviors	that	pretty	much	all	forms	rely	upon.	Angular	2	doesn't	redefine	these;	rather,
it	integrates	with	these	behaviors	in	order	to	link	in	other	behaviors	and	data	that	are	part	of	either
a	framework	or	your	application.

Tip

In	this	chapter,	be	aware	of	the	duality	of	the	use	of	FormsModule	and	ReactiveFormsModule.
They	behave	very	differently	and	are	almost	always	used	separately	when	it	comes	to	form
construction.

Implementing	simple	two-way	data	binding
with	ngModel
Angular	2	still	has	two-way	data	binding,	but	the	way	it	behaves	is	a	bit	different	than	what	you're
used	to.	This	recipe	will	begin	with	a	very	simple	example	and	then	break	it	down	into	pieces	to
describe	what	it's	actually	doing.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/0771/.

http://ngcookbook.herokuapp.com/0771/

How	to	do	it...
Two-way	data	binding	uses	the	ngModel	directive,	which	is	included	in	FormsModule.	Add	this
directive	to	your	application	module:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{FormsModule}	from	'@angular/forms';	

import	{ArticleEditorComponent}	from	'./article-editor.component';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				FormsModule	

],	

		declarations:	[

				ArticleEditorComponent	

],	

		bootstrap:	[

				ArticleEditorComponent		

]	

})	

export	class	AppModule	{}	

Next,	flesh	out	your	component,	which	will	have	two	instances	of	input	bound	to	the	same
component	member	using	ngModel:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<input	[(ngModel)]="title">	

				<input	[(ngModel)]="title">	

				<h2>{{title}}</h2>	

		`	

})	

export	class	ArticleEditorComponent	{	

		title:string;	

}	

That's	all	that's	required!	You	should	see	input	modifications	instantly	reflected	in	the	other	input
as	well	as	in	<h2>	itself.

How	it	works...
What	you're	really	doing	is	binding	to	the	event	and	property	that	ngModel	associates	with	this
input.	When	the	component's	title	member	changes,	the	input	is	bound	to	that	value	and	will
update	its	own	value.	When	the	input's	value	changes,	it	emits	an	event,	which	ngModel	will	bind
to	and	extract	the	value	from	before	propagating	it	to	the	component's	title	member.

Note

The	banana-in-a-box	syntax	[()]	is	simply	indicative	of	the	binding	done	to	both	the	input
property	with	[]	and	the	input	events	with	().

In	reality,	this	is	shorthand	for	the	following:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<input	[ngModel]="title"	(ngModelChange)="title=$event">	

				<input	[ngModel]="title"	(ngModelChange)="title=$event">	

				<h2>{{title}}</h2>	

		`	

})	

export	class	ArticleEditorComponent	{	

		title:string;	

}	

You	will	find	that	this	behaves	identically	to	what	we	discussed	before.

There's	more...
You	might	still	find	that	there's	a	bit	too	much	syntactical	sugar	happening	here	for	your	taste.
You're	binding	to	ngModel,	but	somehow,	it	is	equivalent	to	the	input	value.	Similarly,	you're
binding	to	ngModelChange	events,	which	are	all	emitting	a	$event	that	appears	to	be	only	a
string.

This	is	indeed	correct.	The	ngModel	directive	understands	what	it	is	a	part	of	and	is	able	to
integrate	[ngModel]	and	(ngModelChange)	correctly	to	associate	the	desired	bindings.

The	core	of	these	bindings	is	essentially	doing	the	following:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<input	[value]="title"	(input)="title=$event.target.value">	

				<input	[value]="title"	(input)="title=$event.target.value">	

				<h2>{{title}}</h2>	

		`	

})	

export	class	ArticleEditorComponent	{	

		//	Initialize	title,	otherwise	you'll	get	"undefined"	

		title:string	=	'';	

}	

See	also
Implementing	simple	two-way	data	binding	with	ngModel	demonstrates	the	new	way	in
Angular	2	to	control	bidirectional	data	flow
Implementing	basic	field	validation	with	a	FormControl	details	the	basic	building	block	of
an	Angular	form
Bundling	FormControls	with	a	FormGroup	shows	how	to	combine	FormControls
Bundling	FormControls	with	a	FormArray	shows	how	to	handle	iterable	form	elements
Implementing	basic	forms	with	ngForm	demonstrates	Angular's	declarative	form
construction
Implementing	basic	forms	with	FormBuilder	and	formControlName	shows	how	to	use	the
FormBuilder	service	to	quickly	put	together	nested	forms
Creating	and	using	a	custom	validator	demonstrates	how	to	create	a	custom	directive	that
behaves	as	input	validation
Creating	and	using	a	custom	asynchronous	validator	with	Promises	shows	how	Angular
allows	you	to	have	a	delayed	evaluation	of	a	form	state

Implementing	basic	field	validation	with	a
FormControl
The	simplest	form	behavior	imaginable	would	be	the	validation	of	a	single	input	field.	Most	of
the	time,	utilizing	<form>	tags	and	going	through	the	rest	of	the	boilerplate	is	good	practice,	but
for	the	purpose	of	checking	a	single	input,	it's	preferable	to	distill	this	down	to	the	bare	minimum
required	in	order	to	use	input	checking.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/4076/.

http://ngcookbook.herokuapp.com/4076/

Getting	ready
Suppose	the	following	is	your	initial	setup:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Article	title	(required):</p>	

				<input	required>	

				<button>Save</button>	

				<h1>{{title}}</h1>	

		`	

})	

export	class	ArticleEditorComponent	{	

		title:string;	

}	

Your	goal	is	to	change	this	in	a	way	that	clicking	the	save	button	will	validate	the	input	and	update
the	title	member	only	if	it	is	valid.

How	to	do	it...
The	most	elemental	component	of	Angular	forms	is	the	FormControl	object.	In	order	to	be	able
to	assess	the	state	of	the	field,	you	first	need	to	instantiate	this	object	inside	the	component	and
associate	it	with	the	field	using	the	formControl	directive.	FormControl	lives	inside
ReactiveFormsModule.	Add	it	as	a	module	import:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{ReactiveFormsModule}	from	'@angular/forms';	

import	{ArticleEditorComponent}	from	'./article-editor.component';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				ReactiveFormsModule	

],	

		declarations:	[

				ArticleEditorComponent		

],	

		bootstrap:	[

				ArticleEditorComponent		

]	

})	

export	class	AppModule	{}	

With	this,	you	can	use	FormControl	inside	ArticleEditorComponent.	Instantiate	FormControl
inside	the	component	and	bind	the	input	element	to	it	using	the	formControl	directive:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Article	title	(required):</p>	

				<input	[formControl]="titleControl"	required>	

				<button>Save</button>	

				<h1>{{title}}</h1>	

	

		`	

})	

export	class	ArticleEditorComponent		{	

		title:string;	

		titleControl:FormControl	=	new	FormControl();	

}	

Now	that	you	have	created	a	FormControl	object	and	associated	it	with	an	input	field,	you	will
be	able	to	use	its	validation	API	to	check	the	state	of	the	field.	All	that	is	left	is	to	use	it	inside	the
submit	click	handler:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Article	title	(required):</p>	

				<input	[formControl]="titleControl"	required>	

				<button	(click)="submitTitle()">Save</button>	

				<h1>{{title}}</h1>	

	

		`	

})	

export	class	ArticleEditorComponent		{	

		title:string;	

		titleControl:FormControl	=	new	FormControl();	

			

		submitTitle():void	{	

				if(this.titleControl.valid)	{	

						this.title	=	this.titleControl.value;	

				}	else	{	

						alert("Title	required");	

				}	

		}	

}	

With	this,	the	submit	click	handler	will	be	able	to	check	the	input's	validation	state	and	value	with
the	same	object.

How	it	works...
The	formControl	directive	serves	only	to	bind	an	existing	FormControl	object	to	a	DOM
element.	The	FormControl	object	that	you	instantiate	inside	the	component	constructor	can	either
utilize	validation	attributes	inside	an	HTML	tag	(as	is	done	in	this	example),	or	accept	Angular
validators	when	initialized;	or,	it	can	do	both.

Note

It's	extremely	important	to	note	that	just	because	the	FormControl	object	is	instantiated,	it	does
not	mean	that	it	is	able	to	validate	the	input	immediately.

Without	an	initialized	value,	an	empty	input	field	will	begin	its	life	with	a	value	of	null,	which	in
the	presence	of	a	required	attribute	is	of	course	invalid.	However,	in	this	example,	if	you	were
to	check	whether	the	FormControl	object	becomes	valid	immediately	after	you	instantiate	it	in
the	constructor,	the	FormControl	object	would	dutifully	inform	you	that	the	state	is	valid	since	it
has	not	been	bound	to	the	DOM	element	yet,	and	therefore,	no	validations	are	being	violated.
Since	the	input	element's	formControl	binding	will	not	occur	until	the	component	template
becomes	part	of	the	actual	DOM,	you	will	not	be	able	to	check	the	input	state	until	the	binding	is
complete	or	inside	the	ngAfterContentChecked	life	cycle	hook.	Note	that	this	pertains	to	the
example	under	consideration.

Once	the	formControl	directive	completes	the	binding,	the	FormControl	object	will	exist	as	an
input	wrapper,	allowing	you	to	use	its	valid	and	value	members.

There's	more...
This	recipe	uses	ReactiveFormsModule,	which	is	simpler	to	understand	since	all	of	the	setup	is
explicit.	When	you	use	FormsModule	instead,	you	discover	that	a	lot	of	what	is	accomplished	in
this	recipe	could	be	done	automatically	for	you,	such	as	the	instantiation	and	binding	of
FormControl	objects.	It	also	revolves	around	the	presence	of	a	<form>	tag,	which	is	the	de	facto
top-level	FormControl	container.	This	recipe	serves	to	demonstrate	one	of	the	simplest	forms	of
Angular	form	behavior.

Validators	and	attribute	duality

As	mentioned	in	this	recipe,	validation	definitions	can	come	from	two	places.	Here,	you	used	a
standardized	HTML	tag	attribute	that	Angular	recognizes	and	automatically	incorporates	into	the
FormControl	validation	specification.	You	could	have	just	as	easily	elected	to	utilize	an	Angular
Validator	to	accomplish	the	same	task	instead.	This	can	be	accomplished	by	importing
Angular's	default	Validators	and	initializing	the	FormControl	object	with	the	required
validator:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	Validators}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Article	title	(required):</p>	

				<input	[formControl]="titleControl">	

				<button	(click)="submitTitle()">Save</button>	

				<h1>{{title}}</h1>	

	

		`	

})	

export	class	ArticleEditorComponent		{	

		title:string;	

		//	First	argument	is	the	default	input	value	

		titleControl:FormControl	=		

				new	FormControl(null,	Validators.required);	

	

		submitTitle():void	{	

				if(this.titleControl.valid)	{	

						this.title	=	this.titleControl.value;	

				}	else	{	

						alert("Title	required");	

				}	

		}	

}	

Tagless	controls

As	you	might	suspect,	there	is	no	reason	a	FormControl	must	be	bound	to	a	DOM	element.
FormControl	is	an	elemental	piece	of	form	logic	that	acts	as	an	atomic	piece	of	stateful
information,	whether	or	not	this	information	is	derived	from	<input>.	Say	you	wanted	to	add	a
FormControl	that	would	prevent	quick	form	submission	by	only	becoming	valid	after	10
seconds.	You	could	explicitly	create	a	FormControl	object	that	would	tie	into	the	combined	form
validation	but	would	not	be	associated	with	a	DOM	element.

See	also
Implementing	simple	two-way	data	binding	with	ngModel	demonstrates	the	new	way	in
Angular	2	to	control	bidirectional	data	flow
Bundling	FormControls	with	a	FormGroup	shows	how	to	combine	FormControl	objects
Bundling	FormControls	with	a	FormArray	shows	how	to	handle	iterable	form	elements

Bundling	controls	with	a	FormGroup
Naturally,	forms	in	applications	frequently	exist	to	aggregate	multiple	instances	of	input	into	a
unified	behavior.	One	common	behavior	is	to	assess	whether	a	form	is	valid,	which	of	course
requires	that	all	of	its	subfields	are	valid.	This	will	most	commonly	be	achieved	by	bundling
multiple	FormControl	objects	into	a	FormGroup.	This	can	be	done	in	different	ways,	with
varying	degrees	of	explicitness.	This	recipe	covers	an	entirely	explicit	implementation,	that	is,
everything	here	will	be	created	and	"joined"	manually.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/3052.

http://ngcookbook.herokuapp.com/3052

Getting	ready
Suppose	you	began	with	the	following	skeleton	application:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';		

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Title:	<input></p>	

				<p>Text:	<input></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

				<hr	/>	

				<p>Preview:</p>	

				<div	style="border:1px	solid	#999;margin:50px;">	

						<h1>{{article.title}}</h1>	

						<p>{{article.text}}</p>	

				</div>	

		`	

})	

export	class	ArticleEditorComponent	{	

		article:{title:string,	text:string}	=	{};	

	

		saveArticle():void	{}	

}	

Your	goal	is	to	update	the	article	object	(and	consequently	the	template)	only	if	all	the	input
fields	are	valid.

How	to	do	it...
First,	add	the	necessary	code	to	attach	new	FormControl	objects	to	each	input	field	and	validate
them	with	the	built-in	required	validator:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Title:	<input	[formControl]="titleControl"></p>	

				<p>Text:	<input	[formControl]="textControl"></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

				<hr	/>	

				<p>Preview:</p>	

				<div	style="border:1px	solid	#999;margin:50px;">	

						<h1>{{article.title}}</h1>	

						<p>{{article.text}}</p>	

				</div>	

		`	

})	

export	class	ArticleEditorComponent	{	

		article:{title:string,	text:string}	=	{};	

		titleControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

		textControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

	

		saveArticle():void	{}	

}	

At	this	point,	you	could	individually	inspect	each	input's	FormControl	object	and	check	whether
it	is	valid.	However,	if	this	form	grows	to	100	fields,	it	would	become	unbearably	tedious	to
maintain	them.	Therefore,	you	can	bundle	these	FormControl	objects	into	a	single	FormGroup
instead:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	FormGroup,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Title:	<input	[formControl]="titleControl"></p>	

				<p>Text:	<input	[formControl]="textControl"></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

				<hr	/>	

				<p>Preview:</p>	

				<div	style="border:1px	solid	#999;margin:50px;">	

						<h1>{{article.title}}</h1>	

						<p>{{article.text}}</p>	

				</div>	

		`	

})	

export	class	ArticleEditorComponent	{	

		article:{title:string,	text:string}	=	{};	

		titleControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

		textControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

		articleFormGroup:FormGroup	=	new	FormGroup({	

				title:	this.titleControl,	

				text:	this.textControl	

		});	

	

		saveArticle():void	{}	

}	

FormGroup	objects	also	expose	valid	and	value	members,	so	you	can	use	these	to	verify	and
assign	directly	from	the	object:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	FormGroup,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Title:	<input	[formControl]="titleControl"></p>	

				<p>Text:	<input	[formControl]="textControl"></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

				<hr	/>	

				<p>Preview:</p>	

				<div	style="border:1px	solid	#999;margin:50px;">	

						<h1>{{article.title}}</h1>	

						<p>{{article.text}}</p>	

				</div>	

		`	

})	

export	class	ArticleEditorComponent	{	

		article:{title:string,	text:string}	=	{};	

		titleControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

		textControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

		articleFormGroup:FormGroup	=	new	FormGroup({	

				title:	this.titleControl,	

				text:	this.textControl	

		});	

	

		saveArticle():void	{	

				if	(this.articleFormGroup.valid)	{	

						this.article	=	this.articleFormGroup.value;	

				}	else	{	

						alert("Missing	field(s)!");	

		}	

}	

With	this	addition,	your	form	should	now	be	working	fine.

How	it	works...
Both	FormControl	and	FormGroup	inherit	from	the	abstract	base	class	called
AbstractControl.	What	this	means	for	you	is	that	both	of	them	expose	the	same	base	class
methods,	but	FormGroup	will	aggregate	its	composition	of	AbstractControl	objects	to	be	read
from	its	own	members.	As	you	can	see	in	the	preceding	code,	valid	acts	as	a	logical	AND
operator	for	all	the	children	(meaning	every	single	child	must	return	true	for	it	to	return	true);
value	returns	an	object	of	the	same	topology	as	the	one	provided	at	the	instantiation	of
FormGroup,	but	with	each	FormControl	value	instead	of	the	FormControl	object.

Note

As	you	might	expect,	since	FormGroup	expects	an	object	with	AbstractControl	properties,	you
are	free	to	nest	a	FormGroup	inside	another	FormGroup.

There's	more...
You	are	able	to	access	a	FormGroup's	contained	FormControl	members	via	the	controls
property.	The	string	that	you	used	to	key	the	FormControl	members—either	upon	FormGroup
instantiation,	or	with	the	addControl	method—is	used	to	retrieve	it.	In	this	example,	the	text
FormControl	object	could	be	retrieved	inside	a	component	method	via
this.articleCtrlGroup.controls.text.

Tip

The	Angular	documentation	warns	you	to	specifically	not	to	modify	the	underlying	FormControl
collection	directly.	This	may	lead	to	an	undefined	data	binding	behavior.	So,	always	be	sure	to
use	the	FormGroup	member	methods	addControl	and	removeControl	instead	of	directly
manipulating	the	collection	of	FormControl	objects	that	you	pass	upon	instantiation.

FormGroup	validators

Like	Control,	a	FormGroup	can	have	its	own	validators.	These	can	be	provided	when	the
FormGroup	is	instantiated,	and	they	behave	in	the	same	way	that	a	FormControl	validator	would
behave.	By	adding	validators	at	the	FormGroup	level,	FormGroup	can	override	the	default
behavior	of	only	being	valid	when	all	its	components	are	valid	or	adding	extra	validation	clauses.

Error	propagation

Angular	validators	not	only	have	the	ability	to	determine	whether	they	are	valid	or	not,	but	they
are	also	capable	of	returning	error	messages	describing	what	is	wrong.	For	example,	when	the
input	fields	are	empty,	if	you	were	to	examine	the	errors	property	of	the	text	FormControl
object	via	this.articleCtrlGroup.controls.text.errors,	it	would	return	{required:
true}.	This	is	the	default	error	message	of	the	built-in	required	validator.	However,	if	you	were
to	inspect	the	errors	property	on	the	parent	FormGroup	via	this.articleCtrlGroup.errors,
you	will	find	it	to	be	null.

This	may	be	counter-intuitive,	but	it	is	not	a	mistake.	Error	messages	will	only	appear	on	the
FormControl	instance	that	is	causing	them.	If	you	wish	to	aggregate	error	messages,	you	will
have	to	traverse	the	nested	collections	of	FormControl	objects	manually.

See	also
Implementing	simple	two-way	data	binding	with	ngModel	demonstrates	the	new	way	in
Angular	2	to	control	bidirectional	data	flow
Implementing	basic	field	validation	with	a	FormControl	details	the	basic	building	block	of
an	Angular	form
Bundling	FormControls	with	a	FormArray	shows	how	to	handle	iterable	form	elements

Bundling	FormControls	with	a	FormArray
You	will	most	likely	find	that	FormGroups	are	more	than	capable	of	serving	your	needs	for	the
purpose	of	combining	many	FormControl	objects	into	one	container.	However,	there	is	one	very
common	pattern	that	makes	its	sister	type,	the	FormArray,	extremely	useful:	variable	length
cloned	inputs.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/2816/.

http://ngcookbook.herokuapp.com/2816/

Getting	ready
Suppose	you	had	the	following	skeleton	application:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Tags:</p>	

					

						<li	*ngFor="let	t	of	tagControls;	let	i	=	index">	

								<input	[formControl]="t">	

							

					

				<p><button	(click)="addTag()">+</button></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		tagControls:Array<FormControl>	=	[];	

			

		addTag():void	{}	

		saveArticle():void	{}	

}	

Your	objective	is	to	modify	this	component	so	that	an	arbitrary	number	of	tags	can	be	added	and
so	all	the	tags	can	be	validated	together.

How	to	do	it...
In	many	ways,	a	FormArray	behaves	more	or	less	identically	to	a	FormGroup.	It	is	imported	in
the	same	way	and	inherited	from	AbstractControl.	Also,	it	is	instantiated	in	a	similar	way	and
can	add	and	remove	FormControl	instances.	First,	add	the	boilerplate	to	your	application;	this
will	allow	you	to	instantiate	an	instance	of	a	FormArray	and	pass	it	the	array	of	FormControl
objects	already	inside	the	component.	Since	you	already	have	a	button	that	is	meant	to	invoke	the
addTag	method,	you	should	also	configure	this	method	to	push	a	new	FormControl	on	to
tagControl:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	FormArray,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Tags:</p>	

					

						<li	*ngFor="let	t	of	tagControls;	let	i	=	index">	

								<input	[formControl]="t">	

							

					

				<p><button	(click)="addTag()">+</button></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		tagControls:Array<FormControl>	=	[];	

		tagFormArray:FormArray	=	new	FormArray(this.tagControls);	

			

		addTag():void	{	

				this.tagFormArray	

						.push(new	FormControl(null,	Validators.required));	

		}	

		saveArticle():void	{}	

}	

Note

At	this	point,	it's	important	that	you	don't	confuse	yourself	with	what	you	are	working	with.	Inside
this	ArticleEditor	component,	you	have	an	array	of	FormControl	objects	(tagControls)	and
you	also	have	a	single	instance	of	FormArray	(tagFormArray).	The	FormArray	instance	is
initialized	by	being	passed	the	array	of	FormControl	objects,	which	it	will	then	be	able	to
manage.

Now	that	your	FormArray	is	managing	the	tag's	FormControl	objects,	you	can	safely	use	its
validator:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	FormArray,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Tags:</p>	

					

						<li	*ngFor="let	t	of	tagControls;	let	i	=	index">	

								<input	[formControl]="t">	

							

					

				<p><button	(click)="addTag()">+</button></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		tagControls:Array<FormControl>	=	[];	

		tagFormArray:FormArray	=	new	FormArray(this.tagControls);	

			

		addTag():void	{	

				this.tagFormArray	

						.push(new	FormControl(null,	Validators.required));	

		}	

		saveArticle():void	{	

				if	(this.tagFormArray.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Missing	field(s)!');	

				}	

		}	

}	

How	it	works...
Because	the	template	is	reacting	to	the	click	event,	you	are	able	to	use	Angular	data	binding	to
automatically	update	the	template.	However,	it	is	extremely	important	that	you	note	the	asymmetry
in	this	example.	The	template	is	iterating	through	the	tagControls	array.	However,	when	you
want	to	add	a	new	FormControl	object,	you	push	it	to	tagFormArray,	which	will	in	turn	push	it
to	the	tagControls	array.	The	FormArray	object	acts	as	the	manager	of	the	collection	of
FormControl	objects,	and	all	modifications	of	this	collection	should	go	through	the	manager,	not
the	collection	itself.

Tip

The	Angular	documentation	warns	you	to	specifically	not	modify	the	underlying	FormControl
collection	directly.	This	may	lead	to	undefined	data	binding	behavior,	so	always	be	sure	to	use
the	FormArray	members	push,	insert,	and	removeAt	instead	of	directly	manipulating	the	array
of	FormControl	objects	that	you	pass	upon	instantiation.

There's	more...
You	can	take	this	example	one	step	further	by	adding	the	ability	to	remove	from	this	list	as	well.
Since	you	already	have	the	index	inside	the	template	repeater	and	FormArray	offers	index-based
removal,	this	is	simple	to	implement:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	FormArray,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p>Tags:</p>	

					

						<li	*ngFor="let	t	of	tagControls;	let	i	=	index">	

								<input	[formControl]="t">	

								<button	(click)="removeTag(i)">X</button>	

							

					

				<p><button	(click)="addTag()">+</button></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		tagControls:Array<FormControl>	=	[];	

		tagFormArray:FormArray	=	new	FormArray(this.tagControls);	

			

		addTag():void	{	

				this.tagFormArray	

						.push(new	FormControl(null,	Validators.required));	

		}	

		removeTag(idx:number):void	{	

				this.tagFormArray.removeAt(idx);	

		}	

		saveArticle():void	{	

				if	(this.tagFormArray.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Missing	field(s)!');	

				}	

		}	

}

This	allows	you	to	cleanly	insert	and	remove	FormControl	instances	while	letting	Angular	data
binding	do	all	of	the	work	for	you.

See	also
Implementing	simple	two-way	data	binding	with	ngModel	demonstrates	the	new	way	in
Angular	2	to	control	bidirectional	data	flow
Implementing	basic	forms	with	ngForm	demonstrates	Angular's	declarative	form
construction
Implementing	basic	forms	with	FormBuilder	and	formControlName	shows	how	to	use	the
FormBuilder	service	to	quickly	put	together	nested	forms

Implementing	basic	forms	with	NgForm
The	basic	denominations	of	Angular	forms	are	FormControl,	FormGroup,	and	FormArray
objects.	However,	it	is	often	not	directly	necessary	to	use	these	objects	at	all;	Angular	provides
mechanisms	with	which	you	can	implicitly	create	and	assign	these	objects	and	attach	them	to	the
form's	DOM	elements.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/5116/.

http://ngcookbook.herokuapp.com/5116/

Getting	ready
Suppose	you	began	with	the	following	skeleton	application:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p><input	placeholder="Article	title"></p>	

				<p><textarea	placeholder="Article	text"></textarea></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		saveArticle():void	{}	

}	

Your	objective	is	to	collect	all	of	the	form	data	and	submit	it	using	Angular's	form	constructs.

How	to	do	it...
You	should	begin	by	reorganizing	this	into	an	actual	browser	form.	Angular	gives	you	a	lot	of
directives	and	components	for	this,	and	importing	the	FormsModule	will	give	you	access	to	all
the	ones	you	need	most	of	the	time:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{FormsModule}	from	'@angular/forms';	

import	{ArticleEditorComponent}	from	'./article-editor.component';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				FormsModule	

],	

		declarations:	[

				ArticleEditorComponent		

],	

		bootstrap:	[

				ArticleEditorComponent		

]	

})	

export	class	AppModule	{}	

In	addition,	you	should	reconfigure	the	button	so	it	becomes	an	actual	submit	button.	The	handler
should	be	triggered	when	the	form	is	submitted,	so	you	can	reattach	the	listener	to	the	form's
native	submit	event	instead	of	the	button's	click	event.	Angular	provides	an	ngSubmit
EventEmitter	on	top	of	this	event,	so	go	ahead	and	attach	the	listener	to	this:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	(ngSubmit)="saveArticle()">	

						<p><input	placeholder="Article	title"></p>	

						<p><textarea	placeholder="Article	text"></textarea></p>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		saveArticle():void	{}	

}	

Next,	you	should	configure	the	form	to	pass	the	form	data	to	the	handler	through	a	template
variable.

Note

The	form	element	will	have	an	NgForm	object	(and	inside	this,	a	FormGroup)	automatically
associated	with	it	when	you	import	FormsModule	into	the	encompassing	module.	Angular	creates
and	associates	the	NgForm	instance	behind	the	scenes.

One	way	you	can	access	this	instance	is	by	assigning	the	ngForm	directive	as	a	template	variable.
It's	a	bit	of	syntactical	magic,	but	using	#f="ngForm"	signals	to	Angular	that	you	want	to	be	able
to	reference	the	form's	NgForm	from	the	template	using	the	f	variable.

Once	you	declare	the	template	variable,	you	are	able	to	pass	the	ngForm	instance	to	the	submit
handler	as	an	argument,	specifically	as	saveArticle(f).

This	leaves	you	with	the	following:

[app/article-editor.component.ts]			

import	{Component}	from	'@angular/core';		

import	{NgForm}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	#f="ngForm"	

										(ngSubmit)="saveArticle(f)">	

						<p><input	placeholder="Article	title"></p>	

						<p><textarea	placeholder="Article	text"></textarea></p>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		saveArticle(f:NgForm):void	{	

				console.log(f);	

		}	

}	

When	you	test	this	manually,	you	should	see	your	browser	logging	an	NgForm	object	every	time
you	click	on	the	Save	button.	Inside	this	object,	you	should	see	a	shiny	new	FormGroup	and	also
the	ngSubmit	EventEmitter	that	you	are	listening	to.	So	far,	so	good!

Declaring	form	fields	with	ngModel

You	may	have	noticed	that	none	of	the	form	fields	have	been	collected.	This,	of	course,	is	because
Angular	has	not	been	instructed	to	pay	attention	to	them.	For	this,	FormsModule	provides	you
with	ngModel,	which	will	do	certain	things	for	you:

Instantiate	a	FormControl	object.
Attach	it	to	the	DOM	element	that	incorporates	the	ngModel	attribute.
Locate	the	FormGroup	that	the	element	lives	inside	and	add	to	it	the	FormControl	it	just
created.	The	string	value	of	the	name	attribute	will	be	its	key	inside	the	FormGroup.

Note

This	last	bullet	is	important,	as	attempting	to	use	ngModel	without	an	encompassing	form	control
construct	to	attach	itself	to	will	result	in	errors.	This	form	control	construct	can	be	the	form's
FormGroup	itself,	or	it	can	even	be	a	child	FormGroup	instance.

With	this,	go	ahead	and	add	ngModel	to	each	of	the	text	input	fields:

import	{Component}	from	'@angular/core';	

import	{NgForm}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	#f="ngForm"	

										(ngSubmit)="saveArticle(f)">	

						<p><input	ngModel

name="title"	

																placeholder="Article	title"></p>	

						<p><textarea	ngModel

name="text"	

																			placeholder="Article	text"></textarea></p>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		saveArticle(f:NgForm):void	{	

				console.log(f);	

		}	

}	

Your	form	should	now	be	fully	functional.	In	the	submit	handler,	you	can	verify	that	FormGroup
has	two	FormControl	objects	attached	to	it	by	inspecting	f.form.controls,	which	should	give
you	the	following:

{	

		text:	FormControl	{	...	},	

		title:	FormControl	{	...	}	

}	

How	it	works...
In	essence,	you	are	using	the	hierarchical	nature	of	the	DOM	to	direct	how	your	FormControl
architecture	is	structured.	The	topmost	NgForm	instance	is	coupled	with	a	FormGroup;	inside	this,
the	rest	of	the	form's	FormControl	objects	will	reside.

Each	ngModel	directs	its	referenced	FormControl	to	the	FormGroup	owned	by	the	NgForm
instance.	With	this	nested	structure	now	assembled,	it	is	possible	to	read	and	reason	the	state	of
the	entire	form	from	the	NgForm	object.	This	being	the	case,	passing	this	object	to	the	submit
handler	will	allow	you	to	manage	every	aspect	of	form	inspection	and	validation.

There's	more...
If,	instead,	you	wanted	to	group	some	of	these	fields	together,	this	can	be	accomplished	by	simply
wrapping	them	with	an	ngModelGroup	directive.	Similar	to	ngModel,	this	automatically
instantiates	a	FormGroup	and	attaches	it	to	the	parent	FormGroup;	also,	it	will	add	any	enclosed
FormControl	or	FormGroup	objects	to	itself.	For	example,	refer	to	the	following:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{NgForm}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	#f="ngForm"	

										(ngSubmit)="saveArticle(f)">	

						<div	ngModelGroup="article">	

								<p><input	ngModel	

																		name="title"	

																		placeholder="Article	title"></p>	

								<p><textarea	ngModel		

																					name="text"	

																					placeholder="Article	text"></textarea></p>	

						</div>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		saveArticle(f:NgForm):void	{	

				console.log(f);	

		}	

}	

	

Now,	inspecting	f.form.controls	will	reveal	that	it	has	a	single	FormGroup	keyed	by	article:

{	

		article:	FormGroup:	{	

				controls:	{	

						text:	FormControl	{	...	},	

						title:	FormControl	{	...	}	

				},	

				...	

		}	

}	

Since	this	matches	the	structure	you	set	up	in	the	template,	it	checks	out.

See	also
Implementing	simple	two-way	data	binding	with	ngModel	demonstrates	the	new	way	in
Angular	2	to	control	bidirectional	data	flow
Implementing	basic	forms	with	FormBuilder	and	formControlName	shows	how	to	use	the
FormBuilder	service	to	quickly	put	together	nested	forms

Implementing	basic	forms	with	FormBuilder
and	formControlName
Out	of	the	box,	Angular	provides	a	way	for	you	to	put	together	forms	that	don't	rely	on	the
template	hierarchy	for	definition.	Instead,	you	can	use	FormBuilder	to	explicitly	define	how	you
want	to	structure	the	form	objects	and	then	manually	attach	them	to	each	input.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/9302/.

http://ngcookbook.herokuapp.com/9302/

Getting	ready
Suppose	you	began	with	the	following	skeleton	application:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<p><input	placeholder="Article	title"></p>	

				<p><textarea	placeholder="Article	text"></textarea></p>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		constructor()	{}	

		saveArticle():void	{}	

}	

Your	objective	is	to	collect	all	of	the	form	data	and	submit	it	using	Angular's	form	constructs.

How	to	do	it...
FormBuilder	is	included	in	ReactiveFormsModule,	so	you	will	need	to	import	these	targets	into
the	application	module:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{ReactiveFormsModule}	from	'@angular/forms';	

import	{ArticleEditorComponent}	from	'./article-editor.component';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				ReactiveFormsModule	

],	

		declarations:	[

				ArticleEditorComponent		

],	

		bootstrap:	[

				ArticleEditorComponent		

]	

})	

export	class	AppModule	{}	

Additionally,	you	will	need	to	inject	it	into	your	component	to	make	use	of	it.	In	Angular	2,	this
can	simply	be	accomplished	by	listing	it	as	a	typed	constructor	parameter.	The	FormBuilder	uses
the	group()	method	to	return	the	top-level	FormGroup,	which	you	should	assign	to	your
component	instance.	For	now,	you	will	pass	an	empty	object	as	its	only	argument.

With	all	this,	you	can	integrate	the	articleGroup	FormGroup	into	the	template	by	attaching	it
inside	a	form	tag	using	the	formGroup	directive:

[app/article-editor.component.ts]	

	

import	{Component,	Inject}	from	'@angular/core';	

import	{FormBuilder,	FormGroup}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	[formGroup]="articleGroup"	

										(ngSubmit)="saveArticle()">	

						<p><input	placeholder="Article	title"></p>	

						<p><textarea	placeholder="Article	text"></textarea></p>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleGroup:FormGroup;	

	

		constructor(@Inject(FormBuilder)	formBuilder:FormBuilder)	{	

				this.articleGroup	=	formBuilder.group({});	

		}	

		saveArticle():void	{}	

}	

With	all	this,	you	have	successfully	created	the	structure	for	your	form,	but	FormGroup	is	still	not
connected	to	the	multiple	input.	For	this,	you	will	first	set	up	the	structure	of	the	controls	inside
the	builder	and	consequently	attach	them	to	each	input	tag	with	formControlName,	as	follows:

[app/article-editor.component.ts]	

	

import	{Component,	Inject}	from	'@angular/core';	

import	{FormBuilder,	FormGroup,	Validators}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	[formGroup]="articleGroup"	

										(ngSubmit)="saveArticle()">	

						<p><input	formControlName="title"		

																placeholder="Article	title"></p>	

						<p><textarea	formControlName="text"	

																			placeholder="Article	text"></textarea></p>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleGroup:FormGroup;	

	

		constructor(@Inject(FormBuilder)	formBuilder:FormBuilder)	{	

				this.articleGroup	=	formBuilder.group({	

						title:	[null,	Validators.required],	

						text:	[null,	Validators.required]	

				});	

		}	

		saveArticle():void	{	

				console.log(this.articleGroup);	

		}	

}	

With	this,	your	form	will	have	two	FormControl	objects	instantiated	inside	it,	and	they	will	be
associated	with	proper	input	elements.	When	you	click	on	Submit,	you	will	be	able	to	see	the
input	FormControls	inside	FormGroup.	However,	you	may	prefer	to	namespace	these
FormControl	objects	inside	an	article	designation,	and	you	can	easily	do	this	by	introducing	an
ngFormGroup	and	a	corresponding	level	of	indirection	inside	the	formBuilder	definition:

[app/article-editor.component.ts]	

	

import	{Component,	Inject}	from	'@angular/core';	

import	{FormBuilder,	FormGroup,	Validators}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	[formGroup]="articleGroup"	

										(ngSubmit)="saveArticle()">	

						<div	formGroupName="article">	

								<p><input	formControlName="title"		

																		placeholder="Article	title"></p>	

								<p><textarea	formControlName="text"	

																					placeholder="Article	text"></textarea></p>	

						</div>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleGroup:FormGroup;	

			

		constructor(@Inject(FormBuilder)	formBuilder:FormBuilder)	{	

				this.articleGroup	=	formBuilder.group({	

						article:	formBuilder.group({	

								title:	[null,	Validators.required],	

								text:	[null,	Validators.required]	

						})	

				});	

		}	

		saveArticle():void	{	

				console.log(this.articleGroup);	

		}	

}	

Now,	the	title	and	text	FormControl	objects	will	exist	nested	inside	an	article	FormGroup
and	they	can	be	successfully	validated	and	inspected	in	the	submit	handler.

How	it	works...
As	you	might	suspect,	the	arrays	living	inside	the	formBuilder.group	definitions	will	be
applied	as	arguments	to	a	FormControl	constructor.	This	is	nice	since	you	can	avoid	the	new
FormControl()	boilerplate	when	creating	each	control.	The	string	that	keys	the	FormControl	is
linked	to	it	with	formControlName.	Because	you	are	using	formControlName	and
formGroupName,	you	will	need	to	have	the	formBuilder	nested	structure	match	exactly	to	what
is	there	in	the	template.

There's	more...
It	is	totally	understandable	that	having	to	duplicate	the	structure	in	the	template	and	the
FormBuilder	definition	is	a	little	annoying.	This	is	especially	true	in	this	case,	as	the	presence	of
formGroup	doesn't	really	add	any	valuable	behavior	since	it	is	attached	to	an	inert	div	element.
Instead,	you	might	want	to	be	able	to	do	this	article	namespace	grouping	without	modifying	the
template.	This	behavior	can	be	accomplished	with	formControl,	whose	behavior	is	similar	to
formModel	(it	binds	to	an	existing	instance	on	the	component).

Note

Note	the	paradigm	that	is	being	demonstrated	with	these	different	kinds	of	form	directives.	With
things	such	as	ngForm,	formGroup,	formArray,	and	formControl,	Angular	is	implicitly	creating
and	linking	these	instances.	If	you	choose	to	not	use	FormBuilder	to	define	how	FormControls
behave,	this	can	be	accomplished	by	adding	validation	directives	to	the	template.	On	the	other
hand,	you	also	have	formModel	and	formControl,	which	bind	to	the	instances	of	these	control
objects	that	you	must	manually	create	on	the	component.

[app/article-editor.component.ts]	

	

import	{Component,	Inject}	from	'@angular/core';	

import	{FormBuilder,	FormControl,	FormGroup,	Validators}		

		from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<form	[formGroup]="articleGroup"	

										(ngSubmit)="saveArticle()">	

						<p><input	[formControl]="titleControl"		

																placeholder="Article	title"></p>	

						<p><textarea	[formControl]="textControl"	

																			placeholder="Article	text"></textarea></p>	

						<p><button	type="submit">Save</button></p>	

				</form>	

		`	

})	

export	class	ArticleEditorComponent	{	

		titleControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

		textControl:FormControl		

				=	new	FormControl(null,	Validators.required);	

		articleGroup:FormGroup;	

			

		constructor(@Inject(FormBuilder)	formBuilder:FormBuilder)	{	

				this.articleGroup	=	formBuilder.group({	

						article:	formBuilder.group({	

								title:	this.titleControl,	

								text:	this.textControl	

						})	

				});	

		}	

		saveArticle():void	{	

				console.log(this.articleGroup);	

		}	

}		

	

Importantly,	note	that	you	have	created	an	identical	output	of	the	one	you	created	earlier.	title
and	text	are	bundled	inside	an	article	FormGroup.	However,	the	template	doesn't	need	to
have	any	reference	to	this	intermediate	FormGroup.

See	also
Implementing	simple	two-way	data	binding	with	ngModel	demonstrates	the	new	way	in
Angular	2	to	control	bidirectional	data	flow
Implementing	basic	field	validation	with	a	FormControl	details	the	basic	building	block	of
an	Angular	form
Implementing	basic	forms	with	ngForm	demonstrates	Angular's	declarative	form
construction

Creating	and	using	a	custom	validator
The	basic	built-in	validators	that	Angular	provides	will	get	you	off	the	ground,	but	if	your
application	relies	on	forms,	you	will	undoubtedly	come	to	a	point	where	you	will	want	to	define
your	own	validator	logic.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/8574/.

http://ngcookbook.herokuapp.com/8574/

Getting	ready
Suppose	you	had	started	with	the	following	skeleton	application:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	Validators}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<h2>Psych	Study	on	Humility	Wins	Major	Award</h2>	

				<textarea	[formControl]="bodyControl"	

														placeholder="Article	text"></textarea>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleBody:string	=	'';	

		bodyControl:Control	

				=	new	FormControl(null,	Validators.required);	

	

		saveArticle():void	{	

				if	(this.bodyControl.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Invalid!');	

				}	

		}	

}	

Your	objective	is	to	add	an	additional	validation	to	the	textarea	that	will	limit	it	to	10	words.
(The	editorial	staff	is	big	on	brevity.)

How	to	do	it...
If	you	look	at	the	function	signature	of	an	AbstractControl,	you	will	notice	that	the	validator
argument	is	just	a	ValidatorFn.	This	validator	function	can	be	any	function	that	accepts	an
AbstractControl	object	as	its	sole	argument	and	returns	an	object	keyed	with	strings	for	the
error	object.	This	error	object	acts	as	a	dictionary	of	errors,	and	a	validator	can	return	as	many
errors	as	applicable.	The	value	of	the	dictionary	entry	can	(and	should)	contain	metadata	about
what	is	causing	the	error.	If	there	are	no	errors	found	by	the	custom	validator,	it	should	just	return
null.

The	simplest	way	to	implement	this	is	by	adding	a	member	method	to	the	component:

[app/article-editor.component.ts]	

export	class	ArticleEditor	{	

		articleBody:string	

		bodyCtrl:Control	

		constructor()	{	

				this.articleBody	=	'';	

				this.bodyCtrl	=	new	Control('',	Validators.required);	

		}	

		wordCtValidator(c:Control):	{[key:	string]:	any}	{	

				let	wordCt:number	=	(c.value.match(/\S+/g)	||	[]).length;	

				return	wordCt	<=	10	?		

						null	:	

						{	'maxwords':	{	'limit':10,	'actual':wordCt	}	};	

		}	

		saveArticle()	{	

				if	(this.bodyCtrl.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Invalid!');	

				}	

		}	

}	

Note

Here,	you're	using	a	regular	expression	to	match	any	non-whitespace	strings,	which	can	be	treated
as	a	"word."	You	also	need	to	initialize	the	FormControl	object	to	an	empty	string	since	you	are
using	the	string	prototype's	match	method.	Since	this	regular	expression	will	return	null	when
there	are	no	matches,	a	fallback	||	[]	clause	is	added	to	always	yield	something	that	has	a
length	method.

Now	that	the	validator	method	is	defined,	you	need	to	actually	use	it	on	FormControl.	Angular
allows	you	to	bundle	an	array	of	validators	into	a	single	validator,	evaluating	them	in	order:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	Validators}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<h2>Psych	Study	on	Humility	Wins	Major	Award</h2>	

				<textarea	[formControl]="bodyControl"	

														placeholder="Article	text"></textarea>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleBody:string	=	'';	

		bodyControl:FormControl	=	new	FormControl(null,		

				[Validators.required,	this.wordCtValidator]);	

	

		wordCtValidator(c:FormControl):{[key:	string]:	any}	{	

				let	wordCt:number	

						=	((c.value	||	'').match(/\S+/g)	||	[]).length;	

				return	wordCt	<=	10	?		

						null	:	

						{maxwords:	{limit:10,	actual:wordCt}};	

		}	

	

		saveArticle():void	{	

				if	(this.bodyControl.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Invalid!');	

				}	

		}	

}		

With	this,	your	FormControl	should	now	only	be	valid	when	there	are	10	words	or	fewer	and	the
input	is	not	empty.

How	it	works...
A	FormControl	expects	a	ValidatorFn	with	a	specified	return	type,	but	it	does	not	care	where	it
comes	from.	Therefore,	you	were	able	to	define	a	method	inside	the	component	class	and	just
pass	it	along	when	FormControl	was	instantiated.

The	FormControl	object	associated	with	a	given	input	must	be	able	to	have	validators	associated
with	it.	In	this	recipe,	you	first	implemented	custom	validation	using	explicit	association	via	the
instantiation	arguments	and	defining	the	validator	as	a	simple	standalone	ValidationFn.

There's	more...
Your	inner	software	engineer	should	be	totally	dissatisfied	with	this	solution.	The	validator	you
just	defined	cannot	be	used	outside	this	component	without	injecting	the	entire	component,	and
explicitly	listing	every	validator	when	instantiating	the	FormControl	is	a	major	pain.

Refactoring	into	validator	attributes

A	superior	solution	is	to	implement	a	formal	Validator	class.	This	has	several	benefits:	you	will
be	able	to	import/export	the	class	and	use	the	validator	as	an	attribute	in	the	template,	which
obviates	the	need	for	bundling	validators	with	Validators.compose.

Your	strategy	should	be	to	create	a	directive	that	can	function	not	only	as	an	attribute,	but	also	as
something	that	Angular	can	recognize	as	a	formal	Validator	and	automatically	incorporate	it	as
such.	This	can	be	accomplished	by	creating	a	directive	that	implements	the	Validator	interface
and	also	bundles	the	new	Validator	directive	into	the	existing	NG_VALIDATORS	token.

Note

For	now,	don't	worry	about	the	specifics	of	what	is	happening	with	the	providers	array	inside
the	directive	metadata	object.	This	will	be	covered	in	depth	in	the	chapter	on	dependency
injection.	All	that	you	need	to	know	here	is	that	this	code	is	allowing	the	FormControl	object
bound	to	textarea	to	associate	the	custom	validator	you	are	building	with	it.

First,	move	the	validation	method	to	its	own	directive	by	performing	the	steps	mentioned	in	the
preceding	paragraph:

[app/max-word-count.validator.ts]	

	

import	{Directive}	from	'@angular/core';	

import	{Validator,	FormControl,	NG_VALIDATORS}		

		from	'@angular/forms';	

	

@Directive({	

		selector:	'[max-word-count]',	

		providers:	[{	

				provide:NG_VALIDATORS,		

				useExisting:	MaxWordCountValidator,		

				multi:	true	

		}]	

})	

export	class	MaxWordCountValidator	implements	Validator	{	

		validate(c:FormControl):{[key:string]:any}	{	

				let	wordCt:number	=	((c.value	||	'')	

										.match(/\S+/g)	||	[]).length;	

				return	wordCt	<=	10	?		

						null	:	

						{maxwords:	{limit:10,	actual:wordCt}};	

		}	

}	

Next,	add	this	directive	to	the	application	module:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{ReactiveFormsModule}	from	'@angular/forms';	

import	{ArticleEditorComponent}	from	'./article-editor.component';	

import	{MaxWordCountValidator}	from	'./max-word-count.validator';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				ReactiveFormsModule	

],	

		declarations:	[

				ArticleEditorComponent,	

				MaxWordCountValidator	

],	

		bootstrap:	[

				ArticleEditorComponent		

]	

})	

export	class	AppModule	{}	

This	makes	it	available	to	all	the	components	in	this	module.	What's	more,	the	provider
configuration	you	specified	before	allows	you	to	simply	add	the	directive	attribute	to	any	input,
and	Angular	will	be	able	to	incorporate	its	validation	function	into	that	FormControl.	The
integration	is	as	follows:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<h2>Psych	Study	on	Humility	Wins	Major	Award</h2>	

				<textarea	[formControl]="bodyControl"	

														required

max-word-count	

														placeholder="Article	text"></textarea>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleBody:string	=	'';	

		bodyControl:FormControl	=	new	FormControl();	

	

		saveArticle():void	{	

				if	(this.bodyControl.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Invalid!');	

				}	

		}	

}	

This	is	already	far	superior.	The	MaxWordCount	directive	can	now	be	imported	and	used
anywhere	in	our	application	by	simply	listing	it	as	a	directive	dependency	in	a	component.
There's	no	need	for	the	Validator.compose	nastiness	when	instantiating	a	FormControl	object.

Tip

This	is	especially	useful	when	you	are	implicitly	creating	these	FormControl	objects	with
formControl	and	other	built-in	form	directives,	which	for	many	applications	will	be	the	primary
form	utilization	method.	Building	your	custom	validator	as	an	attribute	directive	will	integrate
seamlessly	in	these	situations.

You	should	still	be	dissatisfied	though,	as	the	validator	is	hardcoded	to	check	for	10	words.	You
would	instead	like	to	leave	this	up	to	the	input	that	is	using	it.	Therefore,	you	should	change	the
directive	to	accept	a	single	parameter,	which	will	take	the	form	of	the	attribute's	value:

[app/max-word-count.validator.ts]	

	

import	{Directive}	from	'@angular/core';	

import	{Validator,	FormControl,	NG_VALIDATORS}		

		from	'@angular/forms';	

	

@Directive({	

		selector:	'[max-word-count]',	

		inputs:	['rawCount:	max-word-count'],	

		providers:	[{	

				provide:NG_VALIDATORS,		

				useExisting:	MaxWordCountValidator,		

				multi:	true	

		}]	

})	

export	class	MaxWordCountValidator	implements	Validator	{	

		rawCount:string;	

			

		validate(c:FormControl):{[key:string]:any}	{	

				let	wordCt:number	=		

						((c.value	||	'').match(/\S+/g)	||	[]).length;	

				return	wordCt	<=	this.maxCount	?		

						null	:	

						{maxwords:	{limit:this.maxCount,	actual:wordCt}};	

		}	

		get	maxCount():number	{	

				return	parseInt(this.rawCount);

}	

}	

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<h2>Psych	Study	on	Humility	Wins	Major	Award</h2>	

				<textarea	[formControl]="bodyControl"	

														required	

														max-word-count="10"	

														placeholder="Article	text"></textarea>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleBody:string	=	'';	

		bodyControl:FormControl	=	new	FormControl();	

	

		saveArticle():void	{	

				if	(this.bodyControl.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Invalid!');	

				}	

		}	

}	

Now	you	have	defined	the	value	of	the	attribute	as	an	input	to	the	validator,	which	you	can	then
use	to	configure	how	the	validator	will	operate.

See	also
Creating	and	using	a	custom	asynchronous	validator	with	Promises	shows	how	Angular
allows	you	to	have	a	delayed	evaluation	of	the	form	state

Creating	and	using	a	custom	asynchronous
validator	with	Promises
A	standard	validator	operates	under	the	assumption	that	the	validity	of	a	certain	input	can	be
calculated	in	a	short	amount	of	time	that	the	application	can	wait	to	get	over	with	before	it
continues	further.	What's	more,	Angular	will	run	this	validation	every	time	the	validator	is
invoked,	which	might	be	quite	often	if	form	validation	is	bound	to	rapid-fire	events	such	as
keypresses.

Therefore,	it	makes	good	sense	that	a	construct	exists	that	will	allow	you	to	smoothly	handle	the
validation	procedures	that	take	an	arbitrary	amount	of	time	to	execute	or	procedures	that	might	not
return	at	all.	For	this,	Angular	offers	async	Validator,	which	is	fully	compatible	with
Promises.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/7811/.

http://ngcookbook.herokuapp.com/7811/

Getting	ready
Suppose	you	had	started	with	the	following	skeleton	application:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<h2>New	York-Style	Pizza	Actually	Saucy	Cardboard</h2>	

				<textarea	[formControl]="bodyControl"	

														placeholder="Article	text">	

				</textarea>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleBody:string	=	'';	

		bodyControl:FormControl	=	new	FormControl();	

			

		saveArticle():void	{	

				if	(this.bodyControl.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Invalid!');	

				}	

		}	

}	

Your	objective	is	to	configure	this	form	in	a	way	that	it	will	become	valid	only	5	seconds	after	the
user	enters	the	input	in	order	to	deter	simple	spambots.

How	to	do	it...
First,	create	your	validator	class,	and	inside	it,	place	a	static	validation	method.	This	is	similar	to
a	synchronous	validation	method,	but	it	will	instead	return	a	Promise	object,	passing	the	result
data	to	the	resolve	method.	The	FormControl	object	accepts	the	async	Validator	as	its	third
argument.	If	you	weren't	using	any	normal	Validators,	you	could	leave	it	as	null.

Tip

As	you	would	combine	several	Validators	into	one	using	Validators.compose,	async
Validators	can	be	combined	using	Validators.composeAsync.

Create	the	validator	skeleton	in	its	own	file:

[app/delay.validator.ts]	

	

import	{FormControl,	Validator}	from	'@angular/forms';	

	

export	class	DelayValidator	implements	Validator	{	

		static	validate(c:FormControl):Promise<{[key:string]:any}>	{	

		}	

}	

Though	the	validator	does	not	yet	do	anything,	you	may	still	add	it	to	the	component:

[app/article-editor.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{FormControl,	Validators}	from	'@angular/forms';	

import	{DelayValidator}	from	'./delay.validator';	

	

@Component({	

		selector:	'article-editor',	

		template:	`	

				<h2>New	York-Style	Pizza	Actually	Saucy	Cardboard</h2>	

				<textarea	[formControl]="bodyControl"	

														placeholder="Article	text">	

				</textarea>	

				<p><button	(click)="saveArticle()">Save</button></p>	

		`	

})	

export	class	ArticleEditorComponent	{	

		articleBody:string	=	'';	

		bodyControl:FormControl	=		

				new	FormControl(null,	null,	DelayValidator.validate);	

			

		saveArticle():void	{	

				if	(this.bodyControl.valid)	{	

						alert('Valid!');	

				}	else	{	

						alert('Invalid!');	

				}	

		}	

}	

The	validator	must	return	a	promise,	but	this	promise	doesn't	ever	need	to	be	resolved.
Furthermore,	you'd	like	to	set	the	delay	to	only	one	time	per	rendering.	So	in	this	case,	you	can
just	attach	the	promise	to	the	FormControl:

[app/delay.validator.ts]	

	

import	{FormControl,	Validator}	from	'@angular/forms';	

	

export	class	DelayValidator	implements	Validator	{	

		static	validate(c:FormControl):Promise<{[key:string]:any}>	{	

				if	(c.pristine	&&	!c.value)	{	

						return	new	Promise;	

				}	

				if	(!c.delayPromise)	{	

						c.delayPromise	=	new	Promise((resolve)	=>	{	

								setTimeout(()	=>	{	

										console.log('resolve');	

										resolve();	

								},	5000);	

						});	

				}	

				return	c.delayPromise;	

		}	

}	

With	this	addition,	the	form	will	remain	invalid	until	5	seconds	after	the	first	time	the	value	of	the
textarea	is	changed.

How	it	works...
Asynchronous	validators	are	handled	independently	via	regular	(synchronous)	validators,	but
other	than	their	internal	latency	differences,	they	ultimately	behave	in	nearly	the	exact	same	way.
The	important	difference	is	that	an	async	Validator,	apart	from	the	valid	and	invalid	states	that	it
shares	with	a	normal	Validator,	has	a	pending	state.	The	FormControl	will	remain	in	this	state
until	a	promise	is	made	indicating	the	Validator	will	return	either	resolves	or	rejects.

Note

A	FormControl	in	a	pending	state	is	treated	as	invalid	for	the	purpose	of	checking	the	validity
of	aggregating	constructs,	such	as	FormGroup	or	FormArray.

In	the	Validator	you	just	created,	checking	the	pristine	property	of	FormControl	is	a	fine
way	of	ascertaining	whether	or	not	the	form	is	"fresh."	Before	the	user	modifies	the	input,
pristine	is	true;	following	any	modification	(even	removing	all	of	the	entered	text),	pristine
becomes	false.	Therefore,	it	is	a	perfect	tool	in	this	example,	as	it	allows	us	to	have	the
FormControl	maintain	the	form	state	without	overcomplicating	the	Validator.

There's	more...
It's	critical	to	note	the	form	that	this	validator	takes.	The	validation	method	inside	the
DelayValidator	class	is	a	static	method	and	nowhere	is	the	DelayValidator	class	being
instantiated.	The	purpose	of	the	class	is	merely	to	house	the	validator.	Therefore,	you	are	unable
to	store	information	inside	this	class,	since	there	are	no	instances	in	which	you	can	do	so.

Tip

In	this	example,	you	might	be	tempted	to	add	member	data	to	the	validator	since	you	want	to	track
whether	the	input	has	been	modified	yet.	Doing	so	is	very	much	an	anti-pattern!	The	FormControl
object	should	act	as	your	sole	source	of	stateful	information	in	this	scenario.	A	FormControl
object	is	instantiated	for	each	input	field,	and	therefore	it	is	the	ideal	"datastore"	with	which	you
can	track	what	the	input	is	doing.

Validator	execution

If	you	were	to	inspect	when	the	validator	method	is	being	called,	you	would	find	that	it	executes
only	on	a	keypress	inside	textarea.	This	may	seem	arbitrary,	but	the	default
FormControl/input	assignment	is	to	evaluate	the	validators	of	FormControl	on	a	change	event
emitted	from	the	input.	FormControl	objects	expose	a	registerOnChange	method,	which	lets
you	hook	onto	the	same	point	that	the	validators	will	be	evaluated.

See	also
Creating	and	using	a	custom	validator	demonstrates	how	to	create	a	custom	directive	that
behaves	as	input	validation

Chapter	4.	Mastering	Promises
This	chapter	will	cover	the	following	recipes:

Understanding	and	implementing	basic	Promises
Chaining	Promises	and	Promise	handlers
Creating	Promise	wrappers	with	Promise.resolve()	and	Promise.reject()
Implementing	Promise	barriers	with	Promise.all()
Canceling	asynchronous	actions	with	Promise.race()
Converting	a	Promise	into	an	Observable
Converting	an	HTTP	service	Observable	into	ZoneAwarePromise

Introduction
In	Angular	1,	promises	acted	as	strange	birds.	They	were	essential	for	building	robust
asynchronous	applications,	but	using	them	seemed	to	come	at	a	price.	Their	implementation	by
way	of	the	$q	service	and	the	duality	of	promise	and	deferred	objects	seemed	bizarre.
Nonetheless,	once	you	were	able	to	master	them,	it	was	easy	to	see	how	they	could	be	the
foundation	of	extremely	robust	implementations	in	the	single-threaded	event-driven	world	of
JavaScript.

Fortunately,	for	developers	everywhere,	ES6	formally	embraces	the	Promise	feature	as	a	central
component.	Since	TypeScript	is	a	superset	of	ES6,	you	will	be	pleased	to	know	that	you	can
wield	promises	everywhere	in	Angular	without	extra	baggage.	Although	Observables	subsume	a
lot	of	the	utility	offered	by	promises,	there	is	still	very	much	a	place	for	them	in	your	toolkit.

Tip

Being	able	to	use	Promises	natively	is	a	privilege	of	TypeScript	to	a	JavaScript	transpilation.	As
of	now,	some	browsers	support	Promises	natively,	while	some	do	not.	Good	news	is	that	if	you're
writing	your	applications	in	TypeScript	and	are	transpiling	them	properly,	you	don't	have	to
worry	about	this!	Really,	the	only	time	you	would	need	to	consider	the	actual	transpilation
mechanics	is	when	you	need	information	related	to	the	performance	or	payload	size	benefits	of
native	implementations	versus	their	respective	polyfills,	and	this	should	never	be	an	issue	for
nearly	all	applications.

Understanding	and	implementing	basic
Promises
Promises	are	very	useful	in	many	of	the	core	aspects	of	Angular.	Although	they	are	no	longer
bound	to	the	core	framework	service,	they	still	manifest	themselves	throughout	Angular's	APIs.
The	implementation	is	considerably	simpler	than	Angular	1,	but	the	main	rhythms	have	remained
consistent.

Note

You	can	refer	to	the	code,	links,	and	a	live	example	of	this	at
http://ngcookbook.herokuapp.com/5195	.

http://ngcookbook.herokuapp.com/5195

Getting	ready
Before	you	start	using	promises,	you	should	first	understand	the	problem	they	are	trying	to	solve.
Without	worrying	too	much	about	the	internals,	you	can	classify	the	concept	of	a	Promise	into
three	distinct	stages:

Initialization:	I	have	a	piece	of	work	that	I	want	to	accomplish,	and	I	want	to	define	what
should	happen	when	this	work	is	completed.	I	do	not	know	whether	this	work	will	be	ever
completed;	also,	the	work	may	either	fail	or	succeed.
Pending:	I	have	started	the	work,	but	it	has	not	been	completed	yet.
Completed:	The	work	is	finished,	and	the	promise	assumes	a	final	state.	The	"completed"
state	assumes	two	forms:	resolved	and	rejected.	These	correspond	to	success	and	failure,
respectively.

There	is	more	nuance	to	how	promises	work,	but	for	now,	this	is	sufficient	to	get	into	some	of	the
code.

How	to	do	it...
A	promise	implementation	in	one	of	its	simplest	forms	is	as	follows:

//	promises	are	instantiated	with	the	'new'	keyword	

var	promise	=	new	Promise(()	=>	{});	

The	function	passed	to	the	Promise	constructor	is	the	piece	of	work	that	is	expected	to	execute
asynchronously.	The	formal	term	for	this	function	is	executor.

Note

The	Promise	constructor	doesn't	care	at	all	about	how	the	executor	function	behaves.	It	merely
provides	it	with	the	two	resolve	and	reject	functions.	It	is	left	up	to	the	executor	function	to
utilize	them	appropriately.	Note	that	the	executor	function	doesn't	need	to	be	asynchronous	at	all;
however,	if	it	isn't	asynchronous,	then	you	might	not	need	a	Promise	for	what	you	are	trying	to
accomplish.

When	this	function	is	executed,	internally	it	understands	when	it	is	completed;	however,	on	the
outside,	there	is	no	construct	that	represents	the	concept	of	"run	this	when	the	executor	function
is	completed".	Therefore,	its	first	two	parameters	are	the	resolve	and	reject	functions.	The
promise	wrapping	the	executor	function	is	in	the	pending	state	until	one	of	these	is	invoked.
Once	invoked,	the	promise	irreversibly	assumes	the	respective	state.

Note

The	executor	function	is	invoked	immediately	when	the	promise	is	instantiated.	Just	as
importantly,	it	is	invoked	before	the	promise	instantiation	is	returned.	This	means	that	if	the
promise	reaches	either	a	fulfilled	or	rejected	state	inside	the	executor	synchronously,	then
the	return	value	of	new	Promise(...)	will	be	the	freshly	constructed	Promise	with	a	resolved
or	rejected	status,	skipping	the	pending	state	entirely.

The	return	value	of	executor	is	unimportant.	No	matter	what	it	returns,	the	promise	constructor
will	always	return	the	freshly	created	promise.

The	following	code	demonstrates	five	different	examples	of	ways	that	a	promise	can	be
instantiated,	resolved,	or	rejected:

//	This	executor	is	passed	resolve	and	reject,	but	is		

//	effectively	a	no-op,	so	the	promise	p2	will	forever		

//	remain	in	the	'pending'	state.	

const	p1	=	new	Promise((resolve,	reject)	=>	{});	

	

//	This	executor	invokes	'resolve'	immediately,	so	

//	p2	will	transition	directly	to	the	'fulfilled'	state.	

const	p2	=	new	Promise((resolve,	reject)	=>	resolve());	

	

//	This	executor	invokes	'reject'	immediately,	so	

//	p3	will	transition	directly	to	the	'rejected'	state.	

//	A	transition	to	the	'rejected'	state	will	also	throw	

//	an	exception.	This	exception	is	thrown	after	the		

//	executor	completes,	so	any	logic	following	the		

//	invocation	of	reject	will	still	be	executed.	

const	p3	=	new	Promise((resolve,	reject)	=>	{	

		reject();	

		//	This	log()	prints	before	the	exception	is	thrown	

		console.log('I	got	rejected!');		

});	

	

//	This	executor	invokes	'resolve'	immediately,	so	

//	p4	will	transition	directly	to	the	'fulfilled'	state.	

//	Once	a	promise	exits	the	'pending'	state,	it	cannot	change	

//	again,	so	even	though	reject	is	invoked	afterwards,	the	

//	final	state	of	p4	is	still	'fulfilled'.	

const	p4	=	new	Promise((resolve,	reject)	=>	{	

		resolve();	

		reject();	

});	

	

//	This	executor	assigns	its	resolve	function	to	a	variable	

//	in	the	encompassing	lexical	scope	so	it	can	be	called	

//	outside	the	promise	definition.	

var	outerResolve;	

const	p5	=	new	Promise((resolve,	reject)	=>	{	

		outerResolve	=	resolve();	

});	

//	State	of	p5	is	'pending'	

	

outerResolve();	

//	State	of	p5	is	'fulfilled'	

With	what	you've	done	so	far,	you	will	not	find	the	promise	construct	to	be	of	much	use;	this	is
because	all	that	the	preceding	code	accomplishes	is	the	setting	up	of	the	state	of	a	single	promise.
The	real	value	emerges	when	you	set	the	subsequent	state	handlers.	A	Promise	object's	API
exposes	a	then()	method,	which	allows	you	to	set	handlers	to	be	executed	when	the	Promise
reaches	its	final	state:

//	p1	is	a	simple	promise	to	which	you	can	attach	handlers	

const	p1	=	new	Promise((resolve,	reject)	=>	{});	

	

//	p1	exposes	a	then()	method	which	accepts	a		

//	resolve	handler	(onFulfilled),	and	a		

//	reject	handler	(onRejected)	

p1.then(

		//	onFulfilled	is	invoked	when	resolve()	is	invoked	

		()	=>	{},	

		//	onRejected	is	invoke	when	reject()	is	invoked	

		()	=>	{});	

//	If	left	here,	p1	will	forever	remain	"pending"	

	

	

//	Using	the	'new'	keyword	still	allows	you	to	call	a	

//	method	on	the	returned	instance,	so	defining	the	

//	then()	handlers	immediately	is	allowed.	

//	

//	Instantly	resolves	p2	

const	p2	=	new	Promise((resolve,	reject)	=>	resolve())	

		.then(

				//	This	method	will	immediately	be	invoked	following	

				//	the	p2	executor	invoking	resolve()	

				()	=>	console.log('resolved!'));	

//	"resolved!"	

	

	

//	Instantly	rejects	p3	

const	p3	=	new	Promise((resolve,	reject)	=>	reject())	

		.then(

				()	=>	console.log('resolved!'),	

				//	This	second	method	will	immediately	be	invoked	following	

				//	the	p3	executor	invoking	reject()	

				()	=>	console.log('rejected!'));	

//	"rejected!"	

	

	

const	p4	=	new	Promise((resolve,	reject)	=>	reject())	

		//	If	you	don't	require	use	of	the	resolve	handler,	

		//	catch()	allows	you	to	define	just	the	error	handling	

		.catch(()	=>	console.log('rejected!'));	

	

	

//	executor	parameters	can	be	captured	outside	its	lexical	

//	scope	for	later	invocation	

var	outerResolve;	

const	p5	=	new	Promise((resolve,	reject)	=>	{	

		outerResolve	=	resolve;	

}).then(()	=>	console.log('resolved!'));	

	

outerResolve();	

//	"resolved!"	

How	it	works...
Promises	in	JavaScript	confer	to	the	developer	the	ability	to	write	asynchronous	code	in	parallel
with	synchronous	code	more	easily.	In	JavaScript,	this	was	formerly	solved	with	nested
callbacks,	colloquially	referred	to	as	"callback	hell."	A	single	callback-oriented	function	might
be	written	as	follows:

//	a	generic	asynchronous	callback	function	

function	asyncFunction(data,	successCallback,	errorCallback)	{	

		//	asyncFunction	will	perform	some	operation	that	may	succeed,	

		//	may	fail,	or	may	not	return	at	all,	any	of	which	

		//	occurs	in	an	unknown	amount	of	time	

	

		//	this	pseudo-response	contains	a	success	boolean,	

		//	and	the	returned	data	if	successful	

		asyncOperation(data,	function(response)	{	

				if	(response.success	===	true)	{	

						successCallback(response.data);	

				}	else	{	

						errorCallback();	

				}	

		});	

};	

If	your	application	does	not	demand	any	semblance	of	in-order	or	collective	completion,	then	the
following	will	suffice:

function	successCallback(data)	{	

		//	asyncFunction	succeeded,	handle	data	appropriately	

};	

function	errorCallback()	{	

		//	asyncFunction	failed,	handle	appropriately	

};	

	

asyncFunction(data1,	successCallback,	errorCallback);	

asyncFunction(data2,	successCallback,	errorCallback);	

asyncFunction(data3,	successCallback,	errorCallback);	

This	is	almost	never	the	case	though.	Often,	your	application	will	either	demand	that	this	data	is
acquired	in	a	sequence,	or	that	an	operation	that	requires	multiple	asynchronously	acquired	pieces
of	data	executes	once	all	of	the	data	has	been	successfully	acquired.	In	this	case,	without	access
to	promises,	the	callback	hell	emerges:

asyncFunction(data1,	(foo)	=>	{	

		asyncFunction(data2,	(bar)	=>	{	

				asyncFunction(data3,	(baz)	=>	{	

						//	foo,	bar,	baz	can	now	all	be	used	together	

						combinatoricFunction(foo,	bar,	baz);	

				},	errorCallback);	

		},	errorCallback);	

},	errorCallback);	

This	so-called	callback	hell	here	is	really	just	an	attempt	to	serialize	three	asynchronous	calls,
but	the	parametric	topology	of	these	asynchronous	functions	forces	the	developer	to	subject	their
application	to	this	ugliness.

There's	more...
An	important	point	to	remember	about	promises	is	that	they	allow	you	to	break	apart	a	calculation
into	two	parts:	the	part	that	understands	when	the	promise's	"execution"	has	been	completed	and
the	part	that	signals	to	the	rest	of	the	program	that	the	execution	has	been	completed.

Decoupled	and	duplicated	Promise	control

Because	a	promise	can	give	away	the	control	of	who	decides	where	the	Promise	will	be	made
ready,	multiple	foreign	parts	of	the	code	can	set	the	state	of	the	promise.

A	promise	instance	can	be	either	resolved	or	rejected	at	multiple	places	inside	the	executor::

const	p	=	new	Promise((resolve,	reject)	=>	{	

		//	the	following	are	pseudo-methods,	each	of	which	can	be	called		

		//	independently	and	asynchronously,	or	not	at	all	

		function	canHappenFirst()	{	resolve();	};	

		function	mayHappenFirst()	{	resolve();	}	

		function	mightHappenFirst()	{	reject();	};	

});		

A	promise	instance	can	also	be	resolved	at	multiple	places	outside	the	executor:

var	outerResolve;	

const	p	=	new	Promise((resolve,	reject)	=>	{	

		outerResolve	=	resolve;	

});		

	

//	the	following	are	pseudo-methods,	each	of	which	can	be	called		

//	independently	and	asynchronously,	or	not	at	all	

function	canHappenFirst()	{	outerResolve	();	};	

function	mayHappenFirst()	{	outerResolve	();	}	

function	mightHappenFirst()	{	outerResolve	();	};	

Note

Once	a	Promise's	state	becomes	fulfilled	or	rejected,	attempts	to	reject	or	resolve	that
promise	further	will	be	silently	ignored.	A	promise	state	transition	occurs	only	once,	and	it	cannot
be	altered	or	reversed.

Resolving	a	Promise	to	a	value

Part	of	the	central	concept	of	promise	constructs	is	that	they	are	able	to	"promise"	that	there	will
be	a	value	available	when	the	promise	is	resolved.

States	do	not	necessarily	have	a	data	value	associated	with	them;	they	only	confer	to	the	promise
a	defined	state	of	evaluation:

var	resolveHandler	=	()	=>	{},		

				rejectHandler	=	()	=>	{};	

const	p0	=	new	Promise((resolve,	reject)	=>	{	

		//	state	can	be	defined	with	any	of	the	following:	

		//	resolve();	

		//	reject();	

		//	resolve(myData);	

		//	reject(myData);	

}).then(resolveHandler,	rejectHandler);	

An	evaluated	promise	(resolved	or	rejected)	is	associated	with	a	handler	for	each	of	the	states.
This	handler	is	invoked	upon	the	promise's	transition	into	that	respective	state.	These	handlers
can	access	the	data	returned	by	the	resolution	or	rejection:

const	p1	=	new	Promise((resolve,	reject)	=>	{	

		//	console.info	is	the	resolve	handler,	

		//	console.error	is	the	reject	handler	

			

		resolve(123);	

}).then(console.info,	console.error);		

	

//	(info)	123	

	

//	reset	to	demonstrate	reject()	

const	p2	=	new	Promise((resolve,	reject)	=>	{	

		//	console.info	is	the	resolve	handler,	

		//	console.error	is	the	reject	handler	

			

		reject(456);	

}).then(console.info,	console.error);		

	

//	(error)	456	

Delayed	handler	definition

Unlike	callbacks,	handlers	can	be	defined	at	any	point	in	the	promise	life	cycle,	including	after
the	promise	state	has	been	defined:

const	p3	=	new	Promise((resolve,	reject)	=>	{	

		//	immediately	resolve	the	promise	

		resolve(123);	

});	

	

//	subsequently	define	a	handler,	will	be	immediately	

//	invoked	since	promise	is	already	resolved		

p3.then(console.info);	

	

//	(info)	123	

Multiple	handler	definition

Similar	to	how	a	single	deferred	object	can	be	resolved	or	rejected	at	multiple	places	in	the
application,	a	single	promise	can	have	multiple	handlers	that	can	be	bound	to	a	single	state.	For

example,	a	single	promise	with	multiple	resolved	handlers	attached	to	it	will	invoke	all	the
handlers	if	the	resolved	state	is	reached;	the	same	is	true	for	rejected	handlers:

const	p4	=	new	Promise((resolve,	reject)	=>	{	

		//	Invoke	resolve()	after	1	second	

		setTimeout(()	=>	resolve(),	1000);	

});	

	

const	cb	=	()	=>	console.log('called');	

	

p4.then(cb);	

p4.then(cb);	

	

//	After	1	second:	

//	"called"	

//	"called"	

Private	Promise	members

An	extremely	important	departure	from	Angular	1	is	that	the	state	of	a	promise	is	totally	opaque	to
the	execution.	Formerly,	you	were	able	to	tease	out	the	state	of	the	promise	using	the	pseudo-
private	$$state	property.	With	the	formal	ES6	Promise	implementation,	the	state	cannot	be
inspected	by	your	application.	You	can,	however,	glean	the	state	of	a	promise	from	the	console.
For	example,	inspecting	a	promise	in	Google	Chrome	yields	something	like	the	following:

Promise	{	

		[[PromiseStatus]]:	"fulfilled",		

		[[PromiseValue]]:	123	

}	

Note

PromiseStatus	and	PromiseValue	are	private	Symbols,	which	are	a	new	construct	in	ES6.
Symbol	can	be	thought	of	as	a	unique	key	that	is	useful	for	setting	properties	on	objects	that
shouldn't	be	easily	accessed	from	elsewhere.	For	example,	if	a	promise	were	to	use	the
'PromiseStatus'	string	to	key	a	property,	it	could	be	easily	used	outside	the	object,	even	if	the
property	was	supposed	to	remain	private.	With	ES6	private	symbols,	however,	a	symbol	is
unique	when	generated,	and	there	is	no	good	way	to	access	it	inside	the	instance.

See	also
Chaining	Promises	and	Promise	handlers	details	how	you	can	wield	this	powerful	chaining
construct	to	serialize	asynchronous	operations
Creating	Promise	wrappers	with	Promise.resolve()	and	Promise.reject()	demonstrates	how
to	use	the	core	Promise	utilities

Chaining	Promises	and	Promise	handlers
Much	of	the	purpose	of	promises	is	to	allow	the	developer	to	serialize	and	reason	about
independent	asynchronous	actions.	This	can	be	accomplished	by	utilizing	the	Promise	chaining
feature.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/6828/	.

http://ngcookbook.herokuapp.com/6828/

How	to	do	it...
The	promise	handler	definition	method	then()	returns	another	promise,	which	can	have	further
handlers	defined	upon	it—in	a	handler	called	chain:

var	successHandler	=	()	=>	{	console.log('called');	};	

	

var	p	=	new	Promise((resolve,	reject)	=>	{	resolve();	})	

		.then(successHandler)	

		.then(successHandler)	

		.then(successHandler);	

	

//	called	

//	called	

//	called	

Chained	handlers'	data	handoff

Chained	handlers	can	pass	data	to	their	subsequent	handlers	in	the	following	manner:

var	successHandler	=	(val)	=>	{		

		console.log(val);		

		return	val+1;	

};	

	

var	p	=	new	Promise((resolve,	reject)	=>	{	resolve(0);	})	

		.then(successHandler)	

		.then(successHandler)	

		.then(successHandler);	

	

//	0	

//	1	

//	2	

Rejecting	a	chained	handler

Returning	normally	from	a	promise	handler	(not	the	executor)	will,	by	default,	signal	child
promise	states	to	become	resolved.	However,	if	either	the	executor	or	the	subsequent	handlers
throw	an	uncaught	exception,	they	will,	by	default,	reject;	this	will	serve	to	catch	the	exception:

const	p	=	new	Promise((resolve,	reject)	=>	{		

		//	executor	will	immediately	throw	an	exception,	forcing	

		//	a	reject	

		throw	123;		

})	

.then(

		//	child	promise	resolved	handler	

		data	=>	console.log('resolved',	data),		

		//	child	promise	rejected	handler	

		data	=>	console.log('rejected',	data));	

	

//	"rejected",	123	

Note

Note	that	the	exception,	here	a	number	primitive,	is	the	data	that	is	passed	to	the	rejection	handler.

How	it	works...
A	Promise	reaching	a	final	state	will	trigger	child	promises	to	follow	it	in	turn.	This	simple	but
powerful	concept	allows	you	to	build	broad	and	fault-tolerant	promise	structures	that	elegantly
mesh	collections	of	dependent	asynchronous	actions.

There's	more...
The	topology	of	promises	lends	itself	to	some	interesting	utilization	patterns.

Promise	handler	trees

Promise	handlers	will	execute	in	the	order	that	the	promises	are	defined.	If	a	promise	has
multiple	handlers	attached	to	a	single	state,	then	that	state	will	execute	all	its	handlers	before
resolving	the	following	chained	promise:

const	incr	=	val	=>	{	

		console.log(val);	

		return	++val;	

};	

	

var	outerResolve;	

const	firstPromise	=	new	Promise((resolve,	reject)	=>	{		

		outerResolve	=	resolve;		

});	

	

//	define	firstPromise's	handler	

firstPromise.then(incr);	

//	append	another	handler	for	firstPromise,	and	collect	

//	the	returned	promise	in	secondPromise	

const	secondPromise	=	firstPromise.then(incr);	

//	append	another	handler	for	the	second	promise,	and	collect	

//	the	returned	promise	in	thirdPromise	

const	thirdPromise	=	secondPromise.then(incr);	

	

//	at	this	point,	invoking	outerResolve()	will:	

//	resolve	firstPromise;	firstPromise's	handlers	executes	

//	resolve	secondPromise;	secondPromises's	handler	executes	

//	resolve	thirdPromise;	no	handlers	defined	yet	

	

//	additional	promise	handler	definition	order	is	

//	unimportant;	they	will	be	resolved	as	the	promises	

//	sequentially	have	their	states	defined	

secondPromise.then(incr);	

firstPromise.then(incr);	

thirdPromise.then(incr);	

	

//	the	setup	currently	defined	is	as	follows:	

//	firstPromise	->	secondPromise	->	thirdPromise	

//	incr()										incr()											incr()	

//	incr()										incr()	

//	incr()	

	

outerResolve(0);	

//	0	

//	0	

//	0	

//	1	

//	1	

//	2	

Note

Since	the	return	value	of	a	handler	decides	whether	or	not	the	promise	state	is	resolved	or
rejected,	any	of	the	handlers	associated	with	a	promise	is	able	to	set	the	state—which,	as	you	may
recall,	can	only	be	set	once.	The	defining	of	the	parent	promise	state	will	trigger	the	child
promise	handlers	to	be	executed.

It	should	now	be	apparent	how	the	trees	of	the	promise	functionality	can	be	derived	from	the
combination	of	promise	chaining	and	handler	chaining.	When	used	properly,	they	can	yield
extremely	elegant	solutions	for	difficult	and	ugly	asynchronous	action	serializations.

catch()

The	catch()	method	is	a	shorthand	for	promise.then(null,	errorCallback).	Using	it	can
lead	to	slightly	cleaner	promise	definitions,	but	it	is	nothing	more	than	syntactical	sugar:

var	outerReject;	

const	p	=	new	Promise((resolve,	reject)	=>	{	

		outerReject	=	reject;	

})	

.catch(()	=>	console.log('rejected!'));	

	

outerReject();	

//	"rejected"	

Tip

It	is	also	possible	to	chain	p.then().catch().	An	error	thrown	by	the	original	promise	will
propagate	through	the	promise	created	by	then(),	cause	it	to	reject,	and	reach	the	promise
created	by	catch().	It	creates	one	extra	level	of	promise	indirection,	but	to	an	outside	observer,
it	will	behave	the	same.

See	also
Understanding	and	implementing	basic	Promises	gives	an	extensive	rundown	of	how	and
why	to	use	Promises
Creating	Promise	wrappers	with	Promise.resolve()	and	Promise.reject()	demonstrates	how
to	use	the	core	Promise	utilities

Creating	Promise	wrappers	with
Promise.resolve()	and	Promise.reject()
It	is	useful	to	have	the	ability	to	create	promise	objects	that	have	already	reached	a	final	state
with	a	defined	value,	and	also	to	be	able	to	normalize	JavaScript	objects	into	promises.
Promise.resolve()	and	Promise.reject()	afford	you	the	ability	to	perform	both	these
actions.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/9315/	.

http://ngcookbook.herokuapp.com/9315/

How	to	do	it...
Like	all	other	static	Promise	methods,	Promise.resolve()	and	Promise.reject()	return	a
promise	object.	In	this	case,	there	is	no	executor	definition.

If	one	of	these	methods	is	provided	with	a	non-promise	argument,	the	returned	promise	will
assume	either	a	fulfilled	or	rejected	state	(corresponding	to	the	invoked	method).	This
method	will	pass	the	argument	to	Promise.resolve()	and	Promise.reject(),	along	with	any
corresponding	handlers:

Promise.resolve('foo');	

//	Promise	{[[PromiseStatus]]:	"resolved",	[[PromiseValue]]:	"foo"}	

	

Promise.reject('bar');	

//	Promise	{[[PromiseStatus]]:	"rejected",	[[PromiseValue]]:	"bar"}	

//	(error)	Uncaught	(in	promise)	bar	

The	preceding	code	is	behaviorally	equivalent	to	the	following:

new	Promise((resolve,	reject)	=>	resolve('foo'));	

//	Promise	{[[PromiseStatus]]:	"resolved",	[[PromiseValue]]:	"foo"}	

	

new	Promise((resolve,	reject)	=>	reject	('bar'));	

>>	Promise	{[[PromiseStatus]]:	"rejected",	[[PromiseValue]]:	"bar"}	

//	(error)	Uncaught	(in	promise)	bar	

Promise	normalization

Promise.resolve()	will	uniquely	handle	scenarios	where	it	is	passed	with	a	promise	object	as
its	argument.	Promise.resolve()	will	effectively	operate	as	a	no-op,	returning	the	initial
promise	argument	without	any	modification.	It	will	not	make	an	attempt	to	coerce	the	argument
promise's	state:

const	a	=	Promise.resolve('baz');	

console.log(a);	

//	Promise	{status:	'resolved',	value:	'baz'}	

	

const	b	=	Promise.resolve(a);	

console.log(b);	

//	Promise	{status:	'resolved',	value:	'baz'}	

	

console.log(a	===	b);	

//	true	

	

const	c	=	Promise.reject('qux');	

//	Error	qux	

console.log(c)	

//	Promise	{status:	'rejected',	value:	'qux'}	

	

const	d	=	Promise.resolve(c);	

console.log(d);	

//	Promise	{status:	'rejected',	value:	'qux'}	

	

console.log(c	===	d);	

//	true	

How	it	works...
When	thinking	about	Promises	in	the	context	of	them	"promising"	to	eventually	assume	a	value,
these	methods	are	simply	ameliorating	any	latent	period	separating	the	pending	and	final	states.

The	dichotomy	is	very	simple:

Promise.reject()	will	return	a	rejected	promise	no	matter	what	its	argument	is.	Even	if	it
is	a	promise	object,	the	value	of	the	returned	promise	will	be	that	of	the	promise	object.
Promise.resolve()	will	return	a	fulfilled	promise	with	the	wrapped	value	if	that	value	is
not	a	promise.	If	it	is	a	promise,	it	behaves	as	a	no-op.

There's	more...
Importantly,	the	behavior	of	Promise.resolve()	is	nearly	the	same	as	how	$q.when()	operated
in	Angular	1.	$q.when()	was	able	to	normalize	promise	objects,	but	it	would	always	return	a
newly	created	promise	object:

//	Angular	1	

const	a	=	$q(()	=>	{});	

console.log(a);	

//	Promise	{...}	

	

const	b	=	$q.when(a);	

console.log(b);	

//	Promise	{...}	

	

console.log(a	===	b);	

//	false	

See	also
Understanding	and	implementing	basic	Promises	gives	an	extensive	rundown	of	how	and
why	to	use	Promises
Implementing	Promise	barriers	with	Promise.all()	show	you	how	Promises	can	be
composable
Canceling	asynchronous	actions	with	Promise.race()	guides	you	through	the	process	of
implementing	a	zero-failure-tolerant	Promise	system

Implementing	Promise	barriers	with
Promise.all()
You	may	find	your	application	requires	the	use	of	promises	in	an	all-or-nothing	type	of	situation.
That	is,	it	will	need	to	collectively	evaluate	a	group	of	promises,	and	this	collection	will	resolve
as	a	single	promise	if	and	only	if	all	of	the	contained	promises	are	resolved;	if	any	one	of	them	is
rejected,	the	aggregate	promise	will	be	rejected.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/8496/	.

http://ngcookbook.herokuapp.com/8496/

How	to	do	it...
The	Promise.all()	method	accepts	an	iterable	collection	of	promises	(for	example,	an	array	of
Promise	objects	or	an	object	with	a	number	of	promise	properties),	and	it	will	attempt	to	resolve
all	of	them	as	a	single	aggregate	promise.	The	parameter	of	the	aggregate	resolved	handler	will
be	an	array	or	object	that	matches	the	resolved	values	of	the	contained	promises:

var	outerResolveA,	outerResolveB;	

const	promiseA	=	new	Promise((resolve,	reject)	=>	{	

		outerResolveA	=	resolve;	

});	

const	promiseB	=	new	Promise((resolve,	reject)	=>	{	

		outerResolveB	=	resolve;	

});	

	

const	multiPromiseAB	=	Promise.all([promiseA,	promiseB])	

		.then((values)	=>	console.log(values));	

	

outerResolveA(123);	

outerResolveB(456);	

	

//	[123,	456]	

If	any	of	the	promises	in	the	collection	are	rejected,	the	aggregate	promise	will	be	rejected.	The
parameter	of	the	aggregate	rejected	handler	will	be	the	returned	value	of	the	rejected	promise:

var	outerResolveC,	outerRejectD;	

const	promiseC	=	new	Promise((resolve,	reject)	=>	{	

		outerResolveC	=	resolve;	

});	

const	promiseD	=	new	Promise((resolve,	reject)	=>	{	

		outerRejectD	=	reject;	

});	

	

const	multiPromiseCD	=	Promise.all([promiseC,	promiseD])	

		.then(

				values	=>	console.log(values),	

				rejectedValue	=>	console.error(rejectedValue));	

	

//	resolve	a	collection	promise,	no	handler	execution	

outerResolveC(123);	

//	reject	a	collection	promise,	rejection	handler	executes	

outerRejectD(456);	

	

//	(error)	456	

How	it	works...
As	demonstrated,	the	aggregate	promise	will	reach	the	final	state	only	when	all	of	the	enclosed
promises	are	resolved,	or	when	a	single	enclosed	promise	is	rejected.	Using	this	type	of	promise
is	useful	when	the	collection	of	promises	do	not	need	to	reason	about	one	another,	but	collective
completion	is	the	only	metric	of	success	for	the	group.

In	the	case	of	a	contained	rejection,	the	aggregate	promise	will	not	wait	for	the	remaining
promises	to	complete,	but	those	promises	will	not	be	prevented	from	reaching	their	final	state.
Only	the	first	promise	to	be	rejected	will	be	able	to	pass	rejection	data	to	the	aggregate	promise
rejection	handler.

There's	more...
Promise.all()	is	in	many	ways	extremely	similar	to	an	operating-system-level	process
synchronization	barrier.	A	process	barrier	is	a	common	point	in	the	thread	instruction	execution
that	a	collection	of	processes	will	reach	independently	and	at	different	times,	and	no	process	can
proceed	further	until	all	have	reached	this	point.	In	the	same	way,	Promise.all()	will	not
proceed	unless	either	all	of	the	contained	promises	have	been	resolved—reached	the	barrier—or
a	single	contained	rejection	will	prevent	that	state	from	ever	being	achieved,	in	which	case	the
failover	handler	logic	will	take	over.

Since	Promise.all()	allows	you	to	have	a	recombination	of	promises,	it	also	allows	your
application's	Promise	chains	to	become	a	directed	acyclic	graph	(DAG).	The	following	is	an
example	of	a	promise	progression	graph	that	diverges	first	and	converges	later:

This	level	of	complexity	is	uncommon,	but	it	is	available	for	use	should	your	application	require
it.

See	also
Creating	Promise	Wrappers	with	Promise.resolve()	and	Promise.reject()	demonstrates	how
to	use	the	core	Promise	utilities
Canceling	asynchronous	actions	with	Promise.race()	guides	you	through	the
implementation	of	a	zero-failure-tolerant	Promise	system

Canceling	asynchronous	actions	with
Promise.race()
ES6	introduces	Promise.race(),	which	is	absent	from	the	$q	spec	in	Angular	1.	Like
Promise.all(),	this	static	method	accepts	an	iterable	collection	of	promise	objects;	whichever
one	resolves	or	rejects	first	will	become	the	result	of	the	promise	wrapping	the	collection.	This
may	seem	like	unusual	behavior,	but	it	becomes	quite	useful	when	you're	building	a	cancellation
behavior	into	the	system.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4362/	.

http://ngcookbook.herokuapp.com/4362/

Getting	ready
Suppose	you	started	with	a	simple	promise	that	resolves	to	a	value	after	3	seconds:

const	delayedPromise	=	new	Promise((resolve,	reject)	=>		

		setTimeout(resolve.bind(null,	'foobar'),	3000))	

.then(val	=>	console.log(val));	

You	would	like	to	have	the	ability	to	detach	a	part	of	your	application	from	waiting	for	this
promise.

How	to	do	it...
A	simple	solution	would	be	to	expose	the	promise's	reject	handler	and	just	invoke	it	from
whatever	is	to	perform	the	cancelation.	However,	it	is	preferable	to	stop	waiting	for	this	promise
instead	of	destroying	it.

Note

A	concrete	example	of	this	would	be	a	slow	but	critical	HTTP	request	that	your	application
makes.	You	might	not	want	the	UI	to	wait	for	it	to	complete,	but	you	may	have	resolve	handlers
attached	to	the	request	that	you	still	want	to	handle	the	result,	once	it	is	returned.

Instead,	you	can	take	advantage	of	Promise.race()	and	introduce	a	cancellation	promise
alongside	the	original	one:

//	Use	this	method	to	capture	the	cancellation	function	

var	cancel;		

	

const	cancelPromise	=	new	Promise((resolve,	reject)	=>	{		

		cancel	=	reject;		

});		

const	delayedPromise	=	new	Promise((resolve,	reject)	=>		

		setTimeout(resolve.bind(null,	'foobar'),	3000));		

	

//	Promise.race()	creates	a	new	promise	

Promise.race([cancelPromise,	delayedPromise])	

.then(

		val	=>	console.log(val),		

		()	=>	console.error('cancelled!'));	

	

//	If	you	invoke	cancel()	before	3	seconds	elapses	

//	(error)	"cancelled!"	

	

	

//	Instead,	if	3	seconds	elapses	

//	"foobar"	

Now,	if	delayedPromise	resolves	first,	the	promise	created	by	Promise.race()	will	log	the
value	passed	to	it	here,	foobar.	If,	however,	you	invoke	cancel()	before	it	happens,	then	that
same	Promise	will	print	a	cancelled!	error.

How	it	works...
Promise.race()	just	waits	for	any	of	its	inner	promises	to	arrive	at	the	final	state.	It	creates	and
returns	a	new	promise	that	is	beholden	to	the	state	of	the	contained	promises.	When	it	observes
that	any	of	them	transitions	to	the	final	state,	the	new	promise	also	assumes	this	state.

Note

In	this	example,	the	executor	of	cancelPromise	and	delayedPromise	are	invoked	before
Promise.race()	is	called.	Since	promises	only	care	about	the	state	of	other	promises,	it	isn't
important	that	the	promises	passed	to	Promise.race()	need	to	be	already	technically	started.

Note	that	the	use	of	Promise.race()	doesn't	affect	the	implementation	of	delayedPromise.
Even	when	cancel()	is	invoked,	delayedPromise	will	still	be	resolved	and	its	handlers	will
still	be	executed	normally,	unaware	that	the	surrounding	Promise.race()	has	already	been
rejected.	You	can	prove	this	to	yourself	by	adding	a	resolve	handler	to	delayedPromise,
invoking	cancel()	and	seeing	the	resolve	handler	of	delayedPromise	being	executed	anyway:

var	cancel;		

const	cancelPromise	=	new	Promise((resolve,	reject)	=>	{		

		cancel	=	reject;		

});		

const	delayedPromise	=	new	Promise((resolve,	reject)	=>			

		setTimeout(resolve.bind(null,	'foobar'),	3000))	

.then(()	=>	console.log('still	resolved!'));		

	

Promise.race([cancelPromise,	delayedPromise])	

.then(

		val	=>	console.log(val),		

		()	=>	console.error('cancelled!'));	

	

cancel();	

//	(error)	cancelled!	

	

//	After	3	seconds	elapses	

//	"still	resolved!"	

See	also
Creating	Promise	wrappers	with	Promise.resolve()	and	Promise.reject()	demonstrates	how
to	use	the	core	Promise	utilities
Implementing	Promise	barriers	with	Promise.all()	show	you	how	Promises	can	be
composable

Converting	a	Promise	into	an	Observable
Observables	and	Promises	serve	different	purposes	and	are	good	at	different	things,	but	in	a
specific	part	of	an	application,	you	will	almost	certainly	want	to	be	dealing	with	a	single
denomination.	This	means	converting	observables	into	promises	and	vice	versa.	Thanks	to	RxJS,
this	is	quite	simple.

Tip

For	more	on	RxJS	Observables,	refer	to	Chapter	5	,	ReactiveX	Observables,	which	covers	them
in	depth.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/5244/	.

http://ngcookbook.herokuapp.com/5244/

How	to	do	it...
There	is	a	good	deal	of	parity	between	Promise	and	Observable.	There	are	discrete	success	and
error	cases,	and	the	concept	of	successful	completion	only	corresponds	to	the	success	case.

RxJS	observables	expose	a	fromPromise	method,	which	wraps	Promise	as	an	Observable:

import	{Observable}	from	'rxjs/Rx';	

	

var	outerResolve,	outerReject;	

	

const	p1	=	new	Promise((resolve,	reject)	=>	{	

		outerResolve	=	resolve;	

		outerReject	=	reject;	

});	

	

var	o1	=	Observable.fromPromise(p1);	

Now	that	you	have	an	Observable	instance,	you	can	utilize	its	subscribe()	events,	which
correspond	to	the	state	of	the	Promise	instance:

import	{Observable}	from	'rxjs/Rx';	

	

var	outerResolve,	outerReject;	

	

const	p1	=	new	Promise((resolve,	reject)	=>	{	

		outerResolve	=	resolve;	

		outerReject	=	reject;	

});	

	

var	o1	=	Observable.fromPromise(p1);	

	

o1.subscribe(

		//	onNext	handler	

		()	=>	console.log('resolved!'),	

		//	onError	handler	

		()	=>	console.log('rejected'),	

		//	onCompleted	handler	

		()	=>	console.log('finished!'));	

			

outerResolve();	

//	"resolved!"	

//	"finished!"	

How	it	works...
The	new	Observable	instance	doesn't	replace	the	promise.	It	just	attaches	itself	to	the	Promise's
resolved	and	rejected	states.	When	this	happens,	it	emits	events	and	invokes	the	respective
callbacks.	The	Observable	instance	is	bound	to	the	state	of	the	Promise,	but	Promise	is	not
aware	that	anything	has	been	attached	to	it	since	it	blindly	exposes	its	resolve	and	reject	hooks.

Tip

Note	that	only	a	resolved	Promise	will	invoke	the	onCompleted	handler;	rejecting	the	promise
will	not	invoke	it.

There's	more...
Observables	and	Promises	are	interchangeable	if	you	are	so	inclined,	but	do	consider	that	they
are	both	appropriate	in	different	situations.

Observables	are	good	at	stream-type	operations,	where	the	length	of	the	stream	is	indeterminate.
It	is	certainly	possible	to	have	an	Observable	that	only	ever	emits	one	event,	but	an	Observable
will	not	broadcast	this	state	to	listeners	that	are	attached	later,	unless	you	configure	it	to	do	so
(such	as	BehaviorObservable).

Promises	are	good	at	masking	asynchronous	behavior.	They	allow	you	to	write	code	and	set
handlers	upon	the	Promise	as	if	the	promised	state	or	value	was	realized	at	the	time	of	execution.
Of	course	it's	not,	but	the	ability	to	define	a	handler	synchronously	at	runtime	and	have	the
Promise	instance	decide	when	it's	appropriate	to	execute	it,	as	well	as	the	ability	to	chain	these
handlers,	is	extremely	valuable.

See	also
Understanding	and	implementing	basic	Promises	gives	an	extensive	rundown	of	how	and
why	to	use	Promises
Converting	an	HTTP	service	Observable	into	ZoneAwarePromise	gives	you	an	Angular-
centric	view	of	how	Promises,	Observables,	and	Zones	integrate	inside	an	Angular
application

Converting	an	HTTP	service	Observable	into
a	ZoneAwarePromise
In	Angular	2,	the	RxJS	asynchronous	observables	are	first-class	citizens	and	much	of	the	core
toolkit	has	been	configured	to	rely	upon	them.	Nonetheless,	it	is	still	valuable	to	be	able	to	have
conversion	between	them,	especially	since	they	have	similar	duties.

Tip

For	more	on	RxJS	Observables,	refer	to	Chapter	5	,	ReactiveX	Observables,	which	covers	them
in	depth.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/0905/.

http://ngcookbook.herokuapp.com/0905/

Getting	ready
You'll	begin	with	the	following	simplistic	application:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Http}	from	'@angular/http';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<p></p>	

		`	

})	

export	class	ArticleComponent	{	

		constructor(private	http:Http)	{	

				//	For	demo	purposes,	have	this	plunk	request	itself	to	

				//	avoid	cross	origin	errors	

				console.log(

						http.get('//run.plnkr.co/plunks/TBtcNDRelAOHDVpIuWw1'));	

		}	

}	

	

//	Observable	{...}	

Suppose	your	goal	was	to	convert	this	HTTP	call	to	use	promises	instead.

How	to	do	it...
For	the	purposes	of	this	recipe,	you	don't	really	need	to	understand	any	details	about	the	http
service	or	RxJS	asynchronous	observables.	All	that	you	need	to	know	is	that	any	method	exposed
by	the	http	service	will	return	an	observable.	Happily,	the	RxJS	implementation	can	expose	a
.toPromise()	method	that	converts	the	observable	into	its	equivalent	Promise	object:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Http}	from	'@angular/http';	

import	'rxjs/Rx';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<p></p>	

		`	

})	

export	class	ArticleComponent	{	

		constructor(private	http:Http)	{	

				//	For	demo	purposes,	have	this	plunk	request	itself	to	

				//	avoid	cross	origin	errors	

				console.log(

						http.get('//run.plnkr.co/plunks/TBtcNDRelAOHDVpIuWw1')	

						.toPromise());	

		}	

}	

	

//	ZoneAwarePromise	{...}	

How	it	works...
The	HTTP	service,	by	default,	returns	an	observable;	however,	without	the	imported	Rx	module,
this	will	throw	an	error,	saying	it	cannot	find	the	toPromise()	method.

The	Rx	module	confers	to	an	observable	the	ability	to	convert	itself	into	a	promise	object.
Angular	2	is	intentionally	not	utilizing	the	Observable	spec	with	all	the	RxJS	operators	to	allow
you	to	specify	exactly	which	ones	you	want.	Because	the	operators	exist	as	separate	modules,	this
leads	to	a	smaller	payload	sent	to	the	browser.

Once	the	.toPromise()	method	is	invoked,	the	object	is	created	to	a	ZoneAwarePromise
instance.

Note

This	sounds	gnarly,	but	really,	it's	just	wrapping	the	Promise	implementation	as	zone.js	so	that	the
Angular	zone	is	aware	of	any	actions	the	Promise	could	cause	that	it	should	be	aware	of.	For	your
purposes,	this	can	be	treated	as	a	regular	Promise.

See	also
Understanding	and	implementing	basic	Promises	gives	an	extensive	rundown	of	how	and
why	to	use	Promises
Converting	a	Promise	into	an	Observable	gives	you	an	example	of	how	RxJS	can	be	used
to	convert	between	these	two	powerful	types

Chapter	5.	ReactiveX	Observables
This	chapter	will	cover	the	following	recipes:

Basic	utilization	of	Observables	with	HTTP
Implementing	a	Publish-Subscribe	model	using	Subjects
Creating	an	Observable	Authentication	Service	using	BehaviorSubjects
Building	a	generalized	Publish-Subscribe	service	to	replace	$broadcast,	$emit,	and	$on
Using	QueryLists	and	Observables	to	follow	the	changes	in	ViewChildren
Building	a	fully	featured	AutoComplete	with	Observables

Introduction
Before	you	get	into	the	meat	of	Angular	2	Observables,	it	is	important	to	first	understand	the
problem	you	are	trying	to	solve.

A	frequently	encountered	scenario	in	software	is	where	you	are	expecting	some	entity	to
broadcast	that	something	happened;	let's	call	this	an	"event"	(distinct	from	a	browser	event).	You
would	like	to	hook	into	this	entity	and	attach	behavior	to	it	whenever	an	event	occurs.	You	would
also	like	to	be	able	to	detach	from	this	entity	when	you	no	longer	care	about	the	events	it	is
broadcasting.

There	is	more	nuance	and	additional	complexity	to	Observables	that	this	chapter	will	cover,	but
this	concept	of	events	underscores	the	fundamental	pattern	that	is	useful	to	you	as	the	developer.

The	Observer	Pattern
The	Observer	Pattern	isn't	a	library	or	framework.	It	is	just	a	software	design	pattern	upon	which
ReactiveX	Observables	are	built.	Many	languages	and	libraries	implement	this	pattern,	and
ReactiveX	is	just	one	of	these	implementations;	however,	ReactiveX	is	the	one	that	Angular	2	has
formally	incorporated	into	itself.

The	Observer	Pattern	describes	the	relationship	between	subject,	which	was	described	as	the
"entity"	earlier,	and	its	observers.	The	subject	is	aware	of	any	observers	that	are	watching	it.
When	an	event	is	emitted,	the	subject	is	able	to	pass	this	event	to	each	observer	via	methods
that	are	provided	when	the	observer	begins	to	subscribe	it.

ReactiveX	and	RxJS
The	ReactiveX	library	is	implemented	in	numerous	languages,	including	Python,	Java,	and	Ruby.
RxJS,	the	JavaScript	implementation	of	the	ReactiveX	library,	is	the	dependency	that	Angular	2
utilizes	to	incorporate	Observables	into	native	framework	behavior.	Similar	to	Promises,	you	can
create	a	standalone	Observable	instance	through	direct	instantiation,	but	many	Angular	2	methods
and	services	will	also	utilize	an	Observable	interface	by	default.

Observables	in	Angular	2
Angular	2	integrates	Observables	in	a	wide	variety	of	ways.	If	you	are	new	to	them,	you	may
initially	feel	odd	using	them.	However,	it	is	important	you	recognize	that	Observables	provide	a
superior	software	development	pattern.

Along	with	the	bulk	RxJS	module	rxjs/Rx,	you	are	also	provided	with	the	stripped	down
Observable	module	rxjs/Observable.	This	minimal	module	allows	individual	pieces	of	non-
essential	behavior	to	be	imported	as	required	in	order	to	reduce	module	bloat.	For	example,
when	using	this	lightweight	Observable	module,	using	operators	or	other	such	ReactiveX
conventions	necessitates	that	you	explicitly	incorporate	these	modules,	in	order	to	extend	the
available	Observable	interface.

Observables	and	Promises
Both	Observables	and	Promises	offer	solutions	to	asynchronous	constructs,	but	Observables	are
more	robust,	extensible,	and	useful.	Although	Promises	are	available	by	default	in	the	ES6
specification,	you	will	quickly	realize	that	they	become	brittle	when	you	attempt	to	apply	them
outside	the	realm	of	basic	application	behavior.

The	ReactiveX	library	offers	powerful	tooling	to	which	Promises	cannot	compare.	Observables
are	composable,	allowing	you	to	transform	and	combine	them	into	new	Observables.	They	also
encapsulate	the	concept	of	a	continuous	stream	of	events-a	paradigm	that	is	encountered	in	client-
side	programming	extremely	frequently	and	that	Promises	do	not	translate	well	to.

Basic	utilization	of	Observables	with	HTTP
In	Angular	2,	the	Http	module	now	by	default	utilizes	the	Observable	pattern	to	wrap
XMLHttpRequest.	For	developers	that	are	familiar	with	the	pattern,	it	readily	translates	to	the
asynchronous	nature	of	requests	to	remote	resources.	For	developers	that	are	newer	to	the	pattern,
learning	the	ins	and	outs	of	Http	Observables	is	a	good	way	to	wrap	your	head	around	this	new
paradigm.

Note

The	code,	links,	and	a	live	example	related	to	this	are	available	at
http://ngcookbook.herokuapp.com/4121.

http://ngcookbook.herokuapp.com/4121

Getting	ready
For	the	purpose	of	this	example,	you'll	just	serve	a	static	JSON	file	to	the	application.	However
note	that	this	would	be	no	different	if	you	were	sending	requests	to	a	dynamic	API	endpoint.

Begin	by	creating	a	skeleton	component,	including	all	the	necessary	modules	for	making	HTTP
requests:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Http}	from	'@angular/http';	

									

@Component({	

		selector:	'article',	

		template:	`																				

				<h1>{{title}}</h1>	

				<p>{{author}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		title:string;	

		body:string;	

		constructor	(private	http:	Http)	{	

		}	

}	

For	this	example,	assume	there	is	a	JSON	file	inside	the	static	directory	named	article.json:

[article.json]	

	

{	

		"title":	"Orthopedic	Doctors	Ask	City	for	More	Sidewalk	Cracks",	

		"author":	"Jake	Hsu"	

}	

How	to	do	it...
Since	you	have	already	injected	the	Http	service,	you	can	begin	by	defining	the	get	request:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Http}	from	'@angular/http';	

									

@Component({	

		selector:	'article',	

		template:	`																				

				<h1>{{title}}</h1>	

				<p>{{author}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		title:string;	

		body:string;	

		constructor	(private	http_:	Http)	{	

				http_.get('static/article.json');	

		}	

}	

This	creates	an	Observable	instance,	but	you	still	need	to	add	instructions	on	how	to	handle	the
raw	string	of	the	response.

Note

At	this	point,	you	will	notice	that	this	does	not	actually	fire	a	browser	GET	request.	This	is
covered	in	this	recipe's	There's	more	section.

Since	you	know	the	request	will	return	JSON,	you	can	utilize	the	json()	method	that	a	Response
would	expose.	This	can	be	done	inside	the	map()	method.	However,	the	Observable	does	not
expose	the	map()	method	by	default,	so	you	must	import	it	from	the	rxjs	module:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Http}	from	'@angular/http';	

import	'rxjs/add/operator/map';	

	

@Component({	

		selector:	'article',	

		template:	`																				

				<h1>{{title}}</h1>	

				<p>{{author}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		title:string;	

		author:string;	

		constructor	(private	http_:	Http)	{	

				http_.get('static/article.json')

.map(response	=>	response.json());	

		}	

}	

So	far	so	good,	but	you're	still	not	done.	The	preceding	code	will	create	the	Observable
instance,	but	you	still	have	to	subscribe	to	it	in	order	to	handle	any	data	it	would	emit.	This	can	be
accomplished	with	the	subscribe()	method,	which	allows	you	to	attach	the	callback	and	error
handling	methods	of	observer:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Http}	from	'@angular/http';	

import	'rxjs/add/operator/map';	

	

@Component({	

		selector:	'article',	

		template:	`																				

				<h1>{{title}}</h1>	

				<p>{{author}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		title:string;	

		author:string;	

		constructor	(private	http_:	Http)	{	

				http_.get('static/article.json')	

						.map(response	=>	response.json())	

						.subscribe(

								article	=>	{	

										this.title	=	article.title;	

										this.author	=	article.author;	

								},	

								error	=>	console.error(error));	

		}	

}	

With	all	of	this,	the	GET	request	will	return	the	JSON	file,	and	the	response	data	will	be	parsed
and	its	data	interpolated	into	the	DOM	by	the	component.

How	it	works...
The	previous	section	gave	a	good	high-level	overview	of	what	was	happening,	but	it	is	useful	to
break	things	down	more	carefully	to	understand	what	each	individual	step	accomplishes.

Observable<Response>

The	Http	service	class	exposes	the	methods	get(),	post(),	put(),	and	so	on—all	the	HTTP
verbs	that	you	would	expect.	Each	of	these	will	return	Observable<Response>,	which	will	emit
a	Response	instance	when	the	request	is	returned:

console.log(http_.get('static/article.json'));	

//	Observable	{	...	}	

Note

It	sounds	obvious,	but	Observables	are	observed	by	an	observer.	The	observer	will	wait	for
Observable	to	emit	objects,	which	in	this	example	takes	the	form	of	Response.

The	RxJS	map()	operator

The	Response	instance	exposes	a	json()	method,	which	converts	the	returned	serialized	payload
string	into	its	corresponding	in-memory	object	representation.	You	would	like	to	be	able	to	pass	a
regular	object	to	the	observer	handler,	so	the	ideal	tool	here	is	a	wedge	method	that	still	gives
you	an	Observable	in	the	end:

console.log(http_.get('static/article.json')	

		.map(response	=>	response.json()));	

//	Observable	{source:	Observable,	operator:	MapOperator,	...}	

Recall	that	the	canonical	form	of	Observables	is	a	stream	of	events.	In	this	case,	we	know	there
will	only	ever	be	one	event,	which	is	the	HTTP	response.	Nonetheless,	all	the	normal	operators
that	would	be	used	on	a	stream	of	events	can	just	as	easily	be	used	on	this	single-event
Observable.

In	the	same	way	that	Array.map()	can	be	used	to	transform	each	instance	in	the	array,
Observable.map()	allows	you	to	transform	each	event	emitted	from	Observable.	More
specifically,	it	creates	another	Observable	that	emits	the	modified	event	passed	from	the	initial
observable.

Subscribe

Observable	instances	expose	a	subscribe()	method	that	accepts	an	onNext	handler,	an
onError	handler,	and	an	onCompleted	handler	as	arguments.	These	handlers	correspond	to	the
events	in	the	life	cycle	of	the	Observable	when	it	emits	Response	instances.	The	parameter	for
the	onNext	method	is	whatever	is	emitted	from	the	Observable.	In	this	case,	the	emitted	data	is

the	returned	value	from	map(),	so	it	will	be	the	parsed	object	that	has	returned	after	invoking
json()	on	the	Response	instance.

All	these	methods	are	optional,	but	in	this	example,	the	onNext	and	onError	methods	are	useful.

Note

Together,	these	methods	when	provided	to	subscribe()	constitute	what	is	identified	as	the
observer.

http_.get('static/article.json')	

		.map(respose	=>	respose.json())	

		.subscribe(

				article	=>	{	

						this.title	=	article.title;	

						this.body	=	article.body;	

				},	

				error	=>	console.error(error));	

With	all	of	this	together,	the	browser	will	fetch	the	JSON	and	parse	it,	and	the	subscriber	will
pass	its	data	to	the	respective	component	members.

There's	more...
When	constructing	this	recipe	piece	by	piece,	if	you	are	watching	your	browser's	network
requests	as	you	assemble	it,	you	will	notice	that	the	actual	GET	request	is	not	fired	until	the
subscribe()	method	is	invoked.	This	is	because	the	type	Observable	you	are	using	is	"cold".

Hot	and	cold	Observables

The	"cold"	designation	means	that	the	Observable	does	not	begin	to	emit	until	an	observer
begins	to	subscribe	to	it.	This	is	different	from	a	"hot"	Observable,	which	will	emit	items	even	if
there	are	no	observers	subscribed	to	it.	Since	this	means	that	events	that	occur	before	an
observer	is	attached	are	lost,	HTTP	Observables	demand	a	cold	designation.

The	onNext	method	is	termed	"emission"	since	there	is	associated	data	that	is	being	emitted.	The
onCompleted	and	onError	methods	are	termed	"notifications,"	as	they	represent	something	of
significance,	but	they	do	not	have	an	associated	event	that	would	be	considered	part	of	the	stream.

See	also
Implementing	a	Publish-Subscribe	model	using	Subjects	shows	you	how	to	configure	input
and	output	for	RxJS	Observables
Building	a	fully	featured	AutoComplete	with	Observables	gives	you	a	broad	tour	of	some
of	the	utilities	offered	to	you	as	part	of	the	RxJS	library

Implementing	a	Publish-Subscribe	model
using	Subjects
Angular	2	will	often	provide	you	with	an	Observable	interface	to	attach	to	for	free,	but	it	is
important	to	know	how	they	are	created,	configured,	and	used.	More	specifically,	it	is	valuable
for	you	to	know	how	to	take	Observables	and	apply	them	to	real	scenarios	that	will	be
encountered	in	the	client.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4839/.

http://ngcookbook.herokuapp.com/4839/

Getting	ready
Suppose	you	started	with	the	following	skeleton	application:

[app/click-observer.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'click-observer',	

		template:	`	

			<button>	

					Emit	event!	

			</button>	

			<p	*ngFor="let	click	of	clicks;	let	i	=	index">	

					{{i}}:	{{click}}	

			</p>	

		`	

})	

export	class	ClickObserverComponent	{	

		clicks:Array<Event>	=	[];	

}	

Your	goal	is	to	convert	this	so	that	all	the	button	click	events	are	logged	in	to	the	repeated	field.

How	to	do	it...
Accomplishing	this	with	a	component	member	method	and	using	it	in	the	click	event	binding	in
the	template	is	possible,	but	this	doesn't	capture	the	real	value	of	Observables.	You	want	to	be
able	to	expose	an	Observable	on	ClickObserverComponent.	This	will	allow	any	other	part	of
your	application	to	subscribe	to	these	click	events	and	handle	them	in	its	own	way.

Instead,	you	would	like	to	be	able	to	funnel	the	click	events	from	the	button	into	the
Observable.	With	a	regular	Observable	instance,	this	isn't	possible	since	it	is	only	acting	as	the
Subscribe	part	of	the	Publish-Subscribe	model.	To	accomplish	the	Publish	aspect,	you	must	use	a
Subject	instance:

[app/click-observer.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Subject}	from	'rxjs/Subject';	

	

@Component({	

		selector:	'click-observer',	

		template:	`	

			<button>	

					Emit	event!	

			</button>	

			<p	*ngFor="let	click	of	clicks;	let	i	=	index">	

					{{i}}:	{{click}}	

			</p>	

		`	

})	

export	class	ClickObserverComponent	{	

		clickEmitter:Subject<Event>	=	new	Subject();	

		clicks:Array<Event>	=	[];	

}	

ReactiveX	Subjects	act	as	both	the	Observable	and	the	Observer.	Therefore,	it	exposes	both
the	subscribe()	method,	used	for	the	Subscribe	behavior,	and	the	next()	method,	used	for	the
Publish	behavior.

Note

In	this	example,	the	next()	method	is	useful	because	you	want	to	explicitly	specify	when	an
emission	should	occur	and	what	that	emission	should	contain.	There	are	lots	of	ways	of
instantiating	Observables	in	order	to	implicitly	generate	emissions,	such	as	(but	certainly	not
limited	to)	Observable.range().	In	these	cases,	Observable	understands	how	its	input
behaves,	and	thus	it	does	not	need	direction	as	to	when	emissions	occur	and	what	they	should
contain.

In	this	case,	you	can	pass	the	event	directly	to	next()	in	the	template	click	handler	definition.

With	this,	all	that	is	left	is	to	populate	the	array	by	directing	the	emissions	into	it:

[app/click-observer.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Subject}	from	'rxjs/Subject';	

	

@Component({	

		selector:	'click-observer',	

		template:	`	

			<button	(click)="clickEmitter.next($event)">	

					Emit	event!	

			</button>	

			<p	*ngFor="let	click	of	clicks;	let	i	=	index">	

					{{i}}:	{{click}}	

			</p>	

		`	

})	

export	class	ClickObserverComponent	{	

		clickEmitter:Subject<Event>	=	new	Subject();	

		clicks:Array<Event>	=	[];	

	

		constructor()	{	

			this.clickEmitter	

					.subscribe(clickEvent	=>	this.clicks.push(clickEvent));	

		}	

}	

That's	all!	With	this,	you	should	see	click	events	populate	in	the	browser	with	each	successive
button	click.

How	it	works...
ReactiveX	Observables	and	Observers	are	distinct,	but	their	behavior	is	mutually	compatible
in	such	a	way	that	their	union,	Subject,	can	act	as	either	one	of	them.	In	this	example,	the
Subject	is	used	as	the	interface	to	feed	in	Event	objects	as	the	Publish	modality	as	well	as	to
handle	the	result	that	would	come	out	as	the	Subscribe	modality.

There's	more...
The	way	this	is	constructed	might	feel	a	bit	strange	to	you.	The	component	is	exposing	the
Subject	instance	as	the	point	where	your	application	will	attach	observer	handlers.

However,	you	want	to	prevent	other	parts	of	the	application	from	adding	additional	events,	which
is	still	possible	should	they	choose	to	use	the	next()	method.	What's	more,	the	Subject	instance
is	referenced	directly	inside	the	template	and	exposing	it	there	may	feel	a	bit	odd.	Therefore,	it	is
desirable,	and	certainly	good	software	practice,	to	only	expose	the	Observable	component	of	the
Subject.

To	do	this,	you	must	import	the	Observable	module	and	utilize	the	Subject	instance's	member
method,	namely	asObservable().	This	method	will	create	a	new	Observable	instance	that	will
effectively	pipe	the	observed	emissions	from	the	Subject	into	the	new	Observable,	which	will
be	exposed	as	a	public	component	member:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Observable}	from	'rxjs/Observable';	

import	{Subject}	from	'rxjs/Subject';	

	

@Component({	

		selector:	'click-observer',	

		template:	`	

			<button	(click)="publish($event)">	

					Emit	event!	

			</button>	

			<p	*ngFor="let	click	of	clicks;	let	i	=	index">	

					{{i}}:	{{click}}	

			</p>	

		`	

})	

export	class	ClickObserverComponent	{	

		clickEmitter:	Observable<Event>;

private	clickSubject_:	Subject<Event>	=	new	Subject();	

		clicks:Array<Event>	=	[];	

	

		constructor()	{	

			this.clickEmitter	=	this.clickSubject_.asObservable();	

			this.clickEmitter.subscribe(clickEvent	=>		

					this.clicks.push(clickEvent));	

		}	

	

		publish(e:Event):void	{	

			this.clickSubject_.next(e);	

		}	

}	

Now	even	though	only	this	component	is	referencing	clickEmitter,	every	component	that	uses
clickEmitter	will	not	need	or	be	able	to	touch	the	source,		Subject.

Native	RxJS	implementation

This	has	all	been	a	great	example,	but	this	is	such	a	common	pattern	in	that	the	RxJS	library
already	provides	a	built-in	way	of	implementing	it.	The	Observable	class	exposes	a	static
method	fromEvent(),	which	takes	in	an	element	that	is	expected	to	generate	events	and	the	event
type	to	listen	to.

However,	you	need	a	reference	to	the	actual	element,	which	you	currently	do	not	have.	For	the
present	implementation,	the	Angular	2	ViewChild	faculties	will	give	you	a	very	nice	reference	to
the	button,	which	will	then	be	passed	to	the	fromEvent()	method	once	the	template	has	been
rendered:

[app/click-observer.component.ts]	

	

import	{Component,	ViewChild,	ngAfterViewInit}		

		from	'@angular/core';	

import	{Observable}	from	'rxjs/Observable';	

import	'rxjs/add/observable/fromEvent';	

	

@Component({	

		selector:	'click-observer',	

		template:	`	

			<button	#btn>	

					Emit	event!	

			</button>	

			<p	*ngFor="let	click	of	clicks;	let	i	=	index">	

					{{i}}:	{{click}}	

			</p>	

		`	

})	

export	class	ClickObserverComponent	implements	AfterViewInit	{	

		@ViewChild('btn')	btn;	

		clickEmitter:Observable<Event>;	

		clicks:Array<Event>	=	[];	

	

		ngAfterViewInit()	{	

				this.clickEmitter	=	Observable.fromEvent(

								this.btn.nativeElement,	'click');	

			this.clickEmitter.subscribe(clickEvent	=>		

								this.clicks.push(clickEvent));	

		}	

}	

With	all	of	this,	the	component	should	still	behave	identically.

See	also
Basic	utilization	of	Observables	with	HTTP	demonstrates	the	basics	of	how	to	use	an
observable	interface
Creating	an	Observable	authentication	service	using	BehaviorSubjects	instructs	you	on
how	to	reactively	manage	the	state	in	your	application
Building	a	fully	featured	AutoComplete	with	Observables	gives	you	a	broad	tour	of	some
of	the	utilities	offered	to	you	as	part	of	the	RxJS	library

Creating	an	Observable	authentication
service	using	BehaviorSubjects
One	of	the	most	obvious	and	useful	cases	of	the	Observer	Pattern	is	the	one	in	which	a	single
entity	in	your	application	unidirectionally	communicates	information	to	a	field	of	listeners	on	the
outside.	These	listeners	would	like	to	be	able	to	attach	and	detach	freely	from	the	single
broadcasting	entity.	A	good	initial	example	of	this	is	the	login/logout	component.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/6957/.

http://ngcookbook.herokuapp.com/6957/

Getting	ready
Suppose	you	have	the	following	skeleton	application:

[app/login.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'login',	

		template:	`	

				<button	*ngIf="!loggedIn"		

												(click)="loggedIn=true">	

						Login	

				</button>	

				<button	*ngIf="loggedIn"		

												(click)="loggedIn=false">	

						Logout	

				</button>	

		`	

})	

export	class	LoginComponent	{	

		loggedIn:boolean	=	false;	

}	

As	it	presently	exists,	this	component	will	allow	you	to	toggle	between	the	login/logout	button,
but	there	is	no	concept	of	shared	application	state,	and	other	components	cannot	utilize	the	login
state	that	this	component	would	track.

You	would	like	to	introduce	this	state	to	a	shared	service	that	is	operated	using	the	Observer
Pattern.

How	to	do	it...
Begin	by	creating	an	empty	service	and	injecting	it	into	this	component:

[app/authentication.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	AuthService	{	

		private	authState_:	AuthState;	

}	

	

export	const	enum	AuthState	{	

			LoggedIn,	

			LoggedOut	

}	

Notice	that	you	are	using	a	TypeScript	const	enum	to	keep	track	of	the	user's	authentication	state.

Note

If	you're	new	to	ES6	and	TypeScript,	these	keywords	may	feel	a	bit	bizarre	to	you.	The	const
keyword	is	from	the	ES6	specification,	signifying	that	this	value	is	read	only	once	declared.	In
vanilla	ES6,	this	will	throw	an	error,	usually	SyntaxError,	at	runtime.	With	TypeScript
compilation	though,	const	will	be	caught	at	compile	time.

The	enum	keyword	is	an	offering	of	TypeScript.	It	is	not	dissimilar	to	a	regular	object	literal,	but
note	that	the	enum	members	do	not	have	values.

Throughout	the	application,	you	will	reference	these	via	AuthState.LoggedIn	and
AuthState.LoggedOut.	If	you	reference	the	compiled	JavaScript	that	TypeScript	generates,	you
will	see	that	these	are	actually	assigned	integer	values.	But	for	the	purposes	of	building	large
applications,	this	allows	us	to	develop	a	centralized	repository	of	possible	AuthState	values
without	worrying	about	their	actual	values.

Injecting	the	authentication	service

As	the	skeleton	service	currently	exists,	you	are	going	to	instantiate	a	Subject	that	will	emit
AuthState,	but	there	is	no	way	available	currently	to	interact	with	it.	You	will	set	this	up	in	a	bit.
First,	you	must	inject	this	service	into	your	component:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{LoginComponent}	from	'./login.component';	

import	{AuthService}	from	'./authentication.service';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				LoginComponent	

],	

		providers:	[

				AuthService			

],	

		bootstrap:	[

				LoginComponent	

]	

})	

export	class	AppModule	{}	

This	is	all	well	and	good,	but	the	service	is	still	unusable	as	is.

Tip

Note	that	the	path	you	import	your	AuthService	from	may	vary	depending	on	where	it	lies	in
your	file	tree.

Adding	BehaviorSubject	to	the	authentication	service

The	core	of	this	service	is	to	maintain	a	global	application	state.	It	should	expose	itself	to	the	rest
of	the	application	by	letting	other	parts	say	to	the	service,	"Let	me	know	whenever	the	state
changes.	Also,	I'd	like	to	know	what	the	state	is	right	now."	The	perfect	tool	for	this	task	is
BehaviorSubject.

Note

RxJS	Subjects	also	have	several	subclasses,	and	BehaviorSubject	is	one	of	them.
Fundamentally,	it	follows	all	the	rhythms	of	Subjects,	but	the	main	difference	is	that	it	will	emit
its	current	state	to	any	observer	that	begins	to	listen	to	it,	as	if	that	event	is	entirely	new.	In	cases
like	this,	where	you	want	to	keep	track	of	the	state,	this	is	extremely	useful.

Add	a	private	BehaviorSubject	(initialized	to	the	LoggedOut	state)	and	a	public	Observable
to	AuthService:

[app/authentication.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{BehaviorSubject}	from	'rxjs/BehaviorSubject';	

import	{Observable}	from	'rxjs/Observable';	

	

@Injectable()	

export	class	AuthService	{	

		private	authManager_:BehaviorSubject<AuthState>	

				=	new	BehaviorSubject(AuthState.LoggedOut);	

		private	authState_:AuthState;	

		authChange:Observable<AuthState>;

constructor()	{	

				this.authChange	=	this.authManager_.asObservable();	

		}	

}	

	

export	const	enum	AuthState	{	

			LoggedIn,	

			LoggedOut	

}	

Adding	API	methods	to	the	authentication	service

Recall	that	you	do	not	want	to	expose	the	BehaviorSubject	instance	to	outside	actors.	Instead,
you	would	like	to	offer	only	its	Observable	component,	which	you	can	openly	subscribe	to.
Furthermore,	you	would	like	to	allow	outside	actors	to	set	the	authentication	state,	but	only
indirectly.	This	can	be	accomplished	with	the	following	methods:

[app/authentication.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{BehaviorSubject}	from	'rxjs/BehaviorSubject';	

import	{Observable}	from	'rxjs/Observable';	

	

@Injectable()	

export	class	AuthService	{	

		private	authManager_:BehaviorSubject<AuthState>	

				=	new	BehaviorSubject(AuthState.LoggedOut);	

		private	authState_:AuthState;	

		authChange:Observable<AuthState>;	

	

		constructor()	{	

				this.authChange	=	this.authManager_.asObservable();	

		}	

		login():void	{	

				this.setAuthState_(AuthState.LoggedIn);	

		}	

		logout():void	{	

				this.setAuthState_(AuthState.LoggedOut);	

		}	

		emitAuthState():void	{	

				this.authManager_.next(this.authState_);	

		}	

		private	setAuthState_(newAuthState:AuthState):void	{	

				this.authState_	=	newAuthState;	

				this.emitAuthState();	

		}	

}	

	

export	const	enum	AuthState	{	

			LoggedIn,	

			LoggedOut	

}	

Outstanding!	With	all	of	this,	outside	actors	will	be	able	to	subscribe	to	authChange
Observable	and	will	indirectly	control	the	state	via	login()	and	logout().

Tip

Note	that	the	Observable	component	of	BehaviorSubject	is	named	authChange.	Naming	the
different	components	of	the	elements	in	the	Observer	Pattern	can	be	tricky.	This	naming
convention	was	selected	to	represent	what	an	event	emitted	from	the	Observable	actually	meant.
Quite	literally,	authChange	is	the	answer	to	the	question,	"What	event	am	I	observing?".
Therefore,	it	makes	good	semantic	sense	that	your	component	subscribes	to	authChanges	when
the	authentication	state	changes.

Wiring	the	service	methods	into	the	component

LoginComponent	does	not	yet	utilize	the	service,	so	add	in	its	newly	created	methods:

[app/login.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{AuthService,	AuthState}	from	'./authentication.service';	

	

@Component({	

		selector:	'login',	

		template:	`	

				<button	*ngIf="!loggedIn"		

												(click)="login()">	

						Login	

				</button>	

				<button	*ngIf="loggedIn"		

												(click)="logout()">	

						Logout	

					</button>	

		`	

})	

export	class	LoginComponent	{	

		loggedIn:boolean;	

	

		constructor(private	authService_:AuthService)	{	

				authService_.authChange.subscribe(

						newAuthState	=>	

								this.loggedIn	=	(newAuthState	===	AuthState.LoggedIn));	

		}	

	

		login():void	{	

				this.authService_.login();	

		}	

	

		logout():void	{	

				this.authService_.logout();	

		}	

}	

With	all	of	this	in	place,	you	should	be	able	to	see	your	login/logout	buttons	function	well.	This
means	you	have	correctly	incorporated	Observable	into	your	component.

Tip

This	recipe	is	a	good	example	of	conventions	you're	required	to	maintain	when	using
public/private.	Note	that	the	injected	service	is	declared	as	a	private	member	and	wrapped	with
public	component	member	methods.	Anything	that	another	part	of	the	application	calls	or	anything
that	is	used	inside	the	template	should	be	a	public	member.

How	it	works...
Central	to	this	implementation	is	that	each	component	that	is	listening	to	Observable	has	an
idempotent	handling	of	events	that	are	emitted.	Each	time	a	new	component	is	connected	to
Observable,	it	instructs	the	service	to	emit	whatever	the	current	state	is,	using
emitAuthState().	Necessarily,	all	components	don't	behave	any	differently	if	they	see	the	same
state	emitted	multiple	times	in	a	row;	they	will	only	alter	their	behavior	if	they	see	a	change	in	the
state.

Notice	how	you	have	totally	encapsulated	the	authentication	state	inside	the	authentication
service,	and	at	the	same	time,	have	exposed	and	utilized	a	reactive	API	for	the	entire	application
to	build	upon.

There's	more...
Two	critical	components	of	hooking	into	services	such	as	these	are	the	setup	and	teardown
processes.	A	fastidious	developer	will	have	noticed	that	even	if	an	instance	of	LoginComponent
is	destroyed,	the	subscription	to	Observable	will	still	persist.	This,	of	course,	is	extremely
undesirable!

Fortunately,	the	subscribe()	method	of	Observables	returns	an	instance	of	Subscription,	which
exposes	an	unsubscribe()	method.	You	can	therefore	capture	this	instance	upon	the	invocation
of	subscribe()	and	then	invoke	it	when	the	component	is	being	torn	down.

Similar	to	listener	teardown	in	Angular	1,	you	must	invoke	the	unsubscribe	method	when	the
component	instance	is	being	destroyed.	Happily,	the	Angular	2	life	cycle	provides	you	with	such
a	method,	ngOnDestroy,	in	which	you	can	invoke	unsubscribe():

[app/login.component.ts]	

	

import	{Component,	ngOnDestroy}	from	'@angular/core';	

import	{AuthService,	AuthState}	from	'./authentication.service';	

import	{Subscription}	from	'rxjs/Subscription';	

	

@Component({	

		selector:	'login',	

		template:	`	

				<button	*ngIf="!loggedIn"		

												(click)="login()">	

						Login	

				</button>	

				<button	*ngIf="loggedIn"		

												(click)="logout()">	

						Logout	

				</button>	

		`	

})	

export	class	LoginComponent	implements	OnDestroy	{	

		loggedIn:boolean;	

		private	authChangeSubscription_:	Subscription;	

	

		constructor(private	authService_:AuthService)	{	

				this.authChangeSubscription_	=		

						authService_.authChange.subscribe(

								newAuthState	=>	

										this.loggedIn	=	(newAuthState	===	AuthState.LoggedIn));	

		}	

	

		login():void	{	

				this.authService_.login();	

		}	

		logout():void	{	

				this.authService_.logout();	

		}	

		ngOnDestroy()	{	

				this.authChangeSubscription_.unsubscribe();	

		}	

}	

Now	your	application	is	safe	from	memory	leaks	should	any	instance	of	this	component	ever	be
destroyed	in	the	lifetime	of	your	application.

See	also
Basic	utilization	of	Observables	with	HTTP	demonstrates	the	basics	of	how	to	use	an
observable	interface
Implementing	a	Publish-Subscribe	model	using	Subjects	shows	you	how	to	configure	input
and	output	for	RxJS	Observables
Building	a	generalized	Publish-Subscribe	service	to	replace	$broadcast,	$emit,	and	$on
assembles	a	robust	PubSub	model	for	connecting	application	components	with	channels
Building	a	fully	featured	AutoComplete	with	Observables	gives	you	a	broad	tour	of	some
of	the	utilities	offered	to	you	as	part	of	the	RxJS	library

Building	a	generalized	Publish-Subscribe
service	to	replace	$broadcast,	$emit,	and	$on
In	Angular	1,	the	$emit	and	$broadcast	behaviors	were	indeed	very	useful	tools.	They	gave	you
the	ability	to	send	custom	events	upwards	and	downwards	through	the	scope	tree	to	any	listeners
that	might	be	waiting	for	such	an	event.	This	pushed	the	developer	towards	a	very	useful	pattern:
the	ability	for	many	components	to	be	able	to	transmit	events	to	and	from	a	central	source.
However,	using	$emit	and	$broadcast	for	such	a	purpose	was	grossly	inappropriate;	they	had
the	effect	of	feeding	the	event	through	huge	numbers	of	scopes	only	to	reach	the	single	intended
target.

Note

In	the	previous	edition	of	this	book,	the	corresponding	recipe	demonstrated	how	to	build	a
Publish-Subscribe	service	that	used	the	$emit	and	$rootScope	injection.	The	version	in	this
recipe,	although	different	in	a	handful	of	ways,	achieves	similar	results	in	a	substantially	cleaner
and	more	elegant	fashion.

It	is	preferable	to	create	a	single	entity	that	can	serve	as	a	generic	throughway	for	events	to	pass
from	publishers	to	their	subscribers.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/2417/.

http://ngcookbook.herokuapp.com/2417/

Getting	ready
Begin	with	a	skeleton	service	injected	into	a	component:

[app/node.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

import	{PubSubService}	from	'./publish-subscribe.service';	

	

@Component({	

		selector:	'node',	

		template:	`	

				<p>Heard	{{count}}	of	{{subscribeChannel}}</p>	

				<button	(click)="send()">Send	{{publishChannel}}</button>	

		`	

})	

export	class	NodeComponent	{	

		@Input()	publishChannel:string;	

		@Input()	subscribeChannel:string;	

		count:number	=	0;	

	

		constructor(private	pubSubService_:PubSubService)	{}	

			

		send()	{}	

}	

[app/publish-subscribe.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	PubSubService	{	

		constructor()	{}	

	

		publish()	{}	

	

		subscribe()	{}	

}	

How	to	do	it...
The	groundwork	for	this	implementation	should	be	pretty	obvious.	The	service	is	going	to	host	a
single	Subject	instance	that	is	going	to	funnel	events	of	any	type	into	the	service	and	out	through
the	observers	of	the	Subject.

First,	implement	the	following	so	that	subscribe()	and	publish()	actually	do	work	when	you
involve	the	Subject	instance:

[app/publish-subscribe.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{Subject}	from	'rxjs/Subject';	

import	{Observable}	from	'rxjs/Observable';	

import	{Observer}	from	'rxjs/Observer';		

import	{Subscriber}	from	'rxjs/Subscriber;	

	

@Injectable()	

export	class	PubSubService	{	

		private	publishSubscribeSubject_:Subject<any>	=	new	Subject();	

		emitter_:Observable<any>;	

	

		constructor()	{	

				this.emitter_	=	this.publishSubscribeSubject_.asObservable();	

		}	

	

		publish(event:any):void	{	

				this.publishSubscribeSubject_.next(event);	

		}	

	

		subscribe(handler:NextObserver<any>):Subscriber	{	

				return	this.emitter_.subscribe(handler);	

		}	

}	

This	is	terrific	for	an	initial	implementation,	but	yields	a	problem:	every	event	published	to	this
service	will	be	broadcasted	to	all	the	subscribers.

Introducing	channel	abstraction

It	is	possible	and	in	fact	quite	easy	to	restrict	publish	and	subscribe	in	such	a	way	that	they	will
only	pay	attention	to	the	channel	they	specify.	First,	modify	publish()	to	nest	the	event	inside	the
emitted	object:

[app/publish-subscribe.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{Subject}	from	'rxjs/Subject';	

import	{Observable}	from	'rxjs/Observable';	

import	{Observer}	from	'rxjs/Observer';		

import	{Subscriber}	from	'rxjs/Subscriber;	

@Injectable()	

export	class	PubSubService	{	

		private	publishSubscribeSubject_:Subject<any>	=	new	Subject();	

		emitter_:Observable<any>;	

	

		constructor()	{	

				this.emitter_	=	this.publishSubscribeSubject_.asObservable();	

		}	

	

		publish(channel:string,	event:any):void	{	

				this.publishSubscribeSubject_.next({	

						channel:	channel,	

						event:	event	

				});	

		}	

	

		subscribe(handler:NextObserver<any>):Subscriber	{	

				return	this.emitter_.subscribe(handler);	

		}	

}	

With	this,	you	are	now	able	to	utilize	some	Observable	behavior	to	restrict	which	events	the
subscription	is	paying	attention	to.

Observable	emissions	can	have	filter()	and	map()	applied	to	them.	filter()	will	return	a
new	Observable	instance	that	only	emits	whichever	emissions	evaluate	as	true	in	its	filter
function.	map()	returns	a	new	Observable	instance	that	transforms	all	emissions	into	a	new
value.

[app/publish-subscribe.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{Subject}	from	'rxjs/Subject';	

import	{Observable}	from	'rxjs/Observable';	

import	{Observer}	from	'rxjs/Observer';		

import	{Subscriber}	from	'rxjs/Subscriber;	

import	'rxjs/add/operator/filter';	

import	'rxjs/add/operator/map';	

	

@Injectable()	

export	class	PubSubService	{	

		private	publishSubscribeSubject_:Subject<any>	=	new	Subject();	

		emitter_:Observable<any>;	

	

		constructor()	{	

				this.emitter_	=	this.publishSubscribeSubject_.asObservable();	

		}	

	

		publish(channel:string,	event:any):void	{	

				this.publishSubscribeSubject_.next({	

						channel:	channel,	

						event:	event	

				});	

		}	

	

		subscribe(channel:string,	handler:((value:any)	=>	void)):Subscriber	{	

				return	this.emitter_	

						.filter(emission	=>	emission.channel	===	channel)	

						.map(emission	=>	emission.event)	

						.subscribe(handler);	

		}	

}	

Hooking	components	into	the	service

The	service	is	complete,	but	the	component	doesn't	yet	have	the	ability	to	use	it.	Use	the	injected
service	to	link	the	component	to	the	channels	specified	by	its	input	strings:

[app/node.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

import	{PubSubService}	from	'./publish-subscribe.service';	

	

@Component({	

		selector:	'node',	

		template:	`	

				<p>Heard	{{count}}	of	{{subscribeChannel}}</p>	

				<button	(click)="send()">Send	{{publishChannel}}</button>	

		`	

})	

export	class	NodeComponent	{	

		@Input()	publishChannel:string;	

		@Input()	subscribeChannel:string;	

		count:number	=	0;	

	

		constructor(private	pubSubService_:PubSubService)	{}	

	

		send()	{	

				this.pubSubService_	

						.publish(this.publishChannel,	{});	

		}	

	

		ngAfterViewInit()	{	

				this.pubSubService_	

						.subscribe(this.subscribeChannel,		

																	event	=>	++this.count);	

		}	

}	

Tip

The	publish()	method	has	an	empty	object	literal	as	its	second	argument.	This	is	the	payload	for
the	published	message,	which	isn't	used	in	this	recipe.	If	you	want	to	send	data	along	with	a

message,	this	is	where	it	would	go.

With	all	of	this,	test	your	application	with	the	following:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<node	subscribeChannel="foo"		

										publishChannel="bar">	

				</node>	

				<node	subscribeChannel="bar"		

										publishChannel="foo">	

				</node>	

		`	

})	

export	class	RootComponent	{}	

You	will	see	that	channel	publishing	and	subscribing	is	happening	as	you	would	expect.

Unsubscribing	from	channels

Of	course,	you	want	to	avoid	memory	leaks	wherever	possible.	This	requires	that	you	explicitly
complete	the	cleanup	process	when	your	component	instance	is	destroyed:

[app/node.component.ts]	

	

import	{Component,	Input,	OnDestroy}	from	'@angular/core';	

import	{PubSubService}	from	'./publish-subscribe.service';	

import	{Subscription}	from	'rxjs/Subscription';	

	

@Component({	

		selector:	'node',	

		template:	`	

				<p>Heard	{{count}}	of	{{subscribeChannel}}</p>	

				<button	(click)="send()">Send	{{publishChannel}}</button>	

		`	

})	

export	class	NodeComponent	implements	OnDestroy	{	

		@Input()	publishChannel:string;	

		@Input()	subscribeChannel:string;	

		count:number	=	0;	

		private	pubSubServiceSubscription_:Subscription;	

	

		constructor(private	pubSubService_:PubSubService)	{}	

	

		send()	{	

				this.pubSubService_	

						.publish(this.publishChannel,	{});	

		}	

	

		ngAfterViewInit()	{	

				this.pubSubService_	

						.subscribe(this.subscribeChannel,		

																	event	=>	++this.count);	

		}	

	

		ngOnDestroy()	{	

				this.pubSubServiceSubscription_.unsubscribe();

}	

}	

How	it	works...
Each	time	publish()	is	invoked,	the	provided	event	is	wrapped	by	the	provided	channel	and
submitted	to	a	central	Subject,	which	is	private	inside	the	service.	At	the	same	time,	the	fact	that
each	invocation	of	subscribe()	wants	to	listen	to	a	different	channel	presents	a	problem.	This	is
because	an	Observable	does	not	draw	distinctions	regarding	what	is	being	emitted	without
explicit	direction.

You	are	able	to	utilize	the	filter()	and	map()	operators	to	establish	a	customized	view	of	the
emissions	of	Subject	and	use	this	view	in	the	application	of	the	Observer	handler.	Each	time
subscribe()	is	invoked,	it	creates	a	new	Observable	instance;	however,	these	are	all	merely
points	of	indirection	from	the	one	true	Observable,	which	is	owned	by	the	private	instance
hidden	inside	the	service.

There's	more...
It's	important	to	understand	why	this	service	is	not	built	in	a	different	way.

An	important	feature	of	Observables	is	their	ability	to	be	composed.	That	is,	several
Observable	instances	independently	emitting	events	can	be	combined	into	one	Observable
instance,	which	will	emit	all	the	events	from	a	combined	source.	This	can	be	accomplished	in
several	different	ways,	including	flatMap()	or	merge().	This	ability	is	what	is	being	referred	to
when	ReactiveX	Observables	are	described	as	"composable."

Therefore,	a	developer	might	see	this	composition	ability	and	think	it	would	be	suitable	for	a
Publish-Subscribe	entity.	The	entity	would	accept	Observable	instances	from	the	publishers.
They	would	be	combined	to	create	a	single	Observable	instance,	and	subscribers	would	attach
Observable	to	this	combination.	What	could	possibly	go	wrong?

Considerations	of	an	Observable's	composition	and	manipulation

One	primary	concern	is	that	the	composed	Observable	that	the	subscribers	are	being	attached	to
will	change	constantly.	As	is	the	case	with	map()	and	filter(),	any	modulation	performed	on	an
Observable	instance,	including	composition,	will	return	a	new	Observable	instance.	This	new
instance	would	become	the	Observable	that	subscribers	would	attach	to,	and	therein	lies	the
problem.

Let's	examine	this	problem	step	by	step:

1.	 PubSub	service	emits	events	from	Observable	A.
2.	 Node	X	subscribes	to	the	service	and	receives	events	from	Observable	A.
3.	 Some	other	part	of	the	application	adds	Observable	B	to	the	PubSub	service.
4.	 The	PubSub	service	composes	Observable	A	and	Observable	B	into	Observable	AB.
5.	 Node	Y	subscribes	to	the	service	and	receives	events	from	Observable	AB.

Note	that	in	this	case,	Node	X	would	still	receive	events	from	only	Observable	A	since	that	is	the
Observable	instance	where	it	invoked	subscribe().

Certainly,	there	are	steps	that	can	be	taken	to	mitigate	this	problem,	such	as	having	an	additional
level	of	indirection	between	the	subscribe	Observable	and	the	composed	Observable.
However,	a	wise	engineer	will	step	back	at	this	point	and	take	stock	of	the	situation.	Publish-
Subscribe	is	supposed	to	be	a	relatively	"dumb"	protocol,	meaning	that	it	shouldn't	be	delegated
too	much	responsibility	around	managing	the	events	it	has	been	passed	with—messages	in	and
messages	out,	with	no	real	concern	for	what	is	contained	as	long	as	they	get	there.	One	could
make	a	very	strong	argument	that	introducing	Observables	in	the	Publish	side	greatly
overcomplicates	things.

In	the	case	of	this	recipe,	you	have	developed	an	elegant	and	simple	version	of	a	Publish-
Subscribe	module,	and	it	feels	right	to	delegate	complexity	outside	of	it.	In	the	case	of	entities
wanting	to	use	Publish	with	Observables,	a	solution	might	be	to	just	pipe	the	Observable
emissions	into	the	service's	publish()	method.

See	also
Basic	utilization	of	Observables	with	HTTP	demonstrates	the	basics	of	how	to	use	an
observable	interface
Implementing	a	Publish-Subscribe	model	using	Subjects	shows	you	how	to	configure	input
and	output	for	RxJS	Observables
Creating	an	Observable	authentication	service	using	BehaviorSubjects	instructs	you	on
how	to	reactively	manage	the	state	in	your	application
Building	a	fully	featured	AutoComplete	with	Observables	gives	you	a	broad	tour	of	some
of	the	utilities	offered	to	you	as	part	of	the	RxJS	library

Using	QueryLists	and	Observables	to	follow
changes	in	ViewChildren
One	very	useful	piece	of	behavior	in	components	is	the	ability	to	track	changes	to	the	collections
of	children	in	the	view.	In	many	ways,	this	is	quite	a	nebulous	subject,	as	the	number	of	ways	in
which	view	collections	can	be	altered	is	numerous	and	subtle.	Thankfully,	Angular	2	provides	a
solid	foundation	for	tracking	these	changes.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4112/.

http://ngcookbook.herokuapp.com/4112/

Getting	ready
Suppose	you	begin	with	the	following	skeleton	application:

[app/inner.component.ts]	

	

import	{Component,	Input}	from	'@angular/core';	

	

@Component({	

		selector:	'inner',	

		template:	`<p>{{val}}`	

})	

export	class	InnerComponent	{	

		@Input()	val:number;	

}	

[app/outer.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'outer',	

		template:	`	

				<button	(click)="add()">Moar</button>	

				<button	(click)="remove()">Less</button>	

				<button	(click)="shuffle()">Shuffle</button>	

				<inner	*ngFor="let	i	of	list"	

												val="{{i}}">	

				</inner>	

		`	

})	

export	class	OuterComponent	{	

		list:Array<number>	=	[];	

	

		add():void	{	

				this.list.push(this.list.length)	

		}	

	

		remove():void	{	

				this.list.pop();	

		}	

	

		shuffle():void	{	

				//	simple	assignment	shuffle	

				this.list	=	this.list.sort(()	=>	(4*Math.random()>2)?1:-1);	

		}	

}	

As	is,	this	is	a	very	simple	list	manager	that	gives	you	the	ability	to	add,	remove,	and	shuffle	a	list
interpolated	as	InnerComponent	instances.	You	want	the	ability	to	track	when	this	list	undergoes
changes	and	keep	references	to	the	component	instances	that	correspond	to	the	view	collection.

How	to	do	it...
Begin	by	using	ViewChildren	to	collect	the	InnerComponent	instances	into	a	single	QueryList:

[app/outer.component.ts]	

	

import	{Component,	ViewChildren,	QueryList}	from	'@angular/core';	

import	{InnerComponent}	from	'./inner.component';	

	

@Component({	

		selector:	'outer',	

		template:	`	

				<button	(click)="add()">Moar</button>	

				<button	(click)="remove()">Less</button>	

				<button	(click)="shuffle()">Shuffle</button>	

				<inner	*ngFor="let	i	of	list"	

															val="{{i}}">	

				</inner>	

		`	

})	

export	class	OuterComponent	{	

		@ViewChildren(InnerComponent)	innerComponents:		

				QueryList<InnerComponent>;	

		list:Array<number>	=	[];	

	

		add():void	{	

				this.list.push(this.list.length)	

		}	

	

		remove():void	{	

				this.list.pop();	

		}	

	

		shuffle():void	{	

				//	simple	assignment	shuffle	

				this.list	=	this.list.sort(()	=>	(4*Math.random()>2)?1:-1);	

		}	

}	

Easy!	Now,	once	the	view	of	OuterComponent	is	initialized,	you	will	be	able	to	use
this.innerComponents	to	reference	QueryList.

Dealing	with	QueryLists

QueryLists	are	strange	birds	in	Angular	2,	but	like	many	other	facets	of	the	framework,	they	are
just	a	convention	that	you	will	have	to	learn.	In	this	case,	they	are	an	immutable	and	iterable
collection	that	exposes	a	handful	of	methods	to	inspect	what	they	contain	and	when	these	contents
are	altered.

In	this	case,	the	two	instance	properties	you	care	about	are	last	and	changes.	last,	as	you	might

expect,	will	return	the	last	instance	of	QueryList—in	this	case,	an	instance	of	InnerComponent
if	QueryList	is	not	empty.	changes	will	return	an	Observable	that	will	emit	QueryList
whenever	a	change	occurs	inside	it.	In	the	case	of	a	collection	of	InnerComponent	instances,	the
addition,	removal,	and	shuffling	options	will	all	be	registered	as	changes.

Using	these	properties,	you	can	very	easily	set	up	OuterComponent	to	keep	track	of	what	the
value	of	the	last	InnerComponent	instance	is:

import	{Component,	ViewChildren,	QueryList}	from	'@angular/core';	

import	{InnerComponent}	from	'./inner.component';	

	

@Component({	

		selector:	'app-outer',	

		template:	`	

				<button	(click)="add()">Moar</button>	

				<button	(click)="remove()">Less</button>	

				<button	(click)="shuffle()">Shuffle</button>	

				<app-inner	*ngFor="let	i	of	list"	

															val="{{i}}">	

				</app-inner>	

				<p>Value	of	last:	{{lastVal}}</p>	

		`		

})	

export	class	OuterComponent	{	

		@ViewChildren(InnerComponent)	innerComponents:		

				QueryList<InnerComponent>;	

		list:	Array<number>	=	[];	

		lastVal:	number;	

	

		constructor()	{}	

	

		add()	{	

				this.list.push(this.list.length)	

		}	

	

		remove()	{	

				this.list.pop();	

		}	

	

		shuffle()	{	

				this.list	=	this.list.sort(()	=>	(4*Math.random()>2)?1:-1);	

		}	

	

		ngAfterViewInit()	{	

				this.innerComponents.changes	

						.subscribe(e	=>	this.lastVal	=	(e.last	||	{}).val);	

		}	

}			

With	all	of	this,	you	should	be	able	to	find	that	lastVal	will	stay	up	to	date	with	any	changes	you
would	trigger	in	the	InnerComponent	collection.

Correcting	the	expression	changed	error

If	you	run	the	application	as	is,	you	will	notice	that	an	error	is	thrown	after	you	click	on	the	Moar
button	the	first	time:

Expression	has	changed	after	it	was	checked	

This	is	an	error	you	will	most	likely	see	frequently	in	Angular	2.	The	meaning	is	simple:	since
you	are,	by	default,	operating	in	development	mode,	Angular	will	check	twice	to	see	that	any
bound	values	do	not	change	after	all	of	the	change	detection	logic	has	been	resolved.	In	the	case
of	this	recipe,	the	emission	by	QueryList	modifies	lastVal,	which	Angular	does	not	expect.
Thus,	you'll	need	to	explicitly	inform	the	framework	that	the	value	is	expected	to	change	again.
This	can	be	accomplished	by	injecting	ChangeDetectorRef,	which	allows	you	to	trigger	a
change	detection	cycle	once	the	value	is	changed:

import	{Component,	ViewChildren,	QueryList,	ngAfterViewInit,		

		ChangeDetectorRef}	from	'@angular/core';	

import	{InnerComponent}	from	'./inner.component';	

	

@Component({	

		selector:	'outer',	

		template:	`	

				<button	(click)="add()">Moar</button>	

				<button	(click)="remove()">Less</button>	

				<button	(click)="shuffle()">Shuffle</button>	

				<inner	*ngFor="let	i	of	list"	

											val="{{i}}">	

				</inner>	

				<p>Value	of	last:	{{lastVal}}</p>	

		`	

})	

export	class	OuterComponent	implements	AfterViewInit	{	

		@ViewChildren(InnerComponent)	innerComponents:		

				QueryList<InnerComponent>;	

		list:Array<number>	=	[];	

		lastVal:number;	

	

		constructor(private	changeDetectorRef_:ChangeDetectorRef)	{}	

	

		add():void	{	

				this.list.push(this.list.length)	

		}	

	

		remove():void	{	

				this.list.pop();	

		}	

	

		shuffle():void	{	

				//	simple	assignment	shuffle	

				this.list	=	this.list.sort(()	=>	(4*Math.random()>2)?1:-1);	

		}	

			

		ngAfterViewInit()	{	

				this.innerComponents.changes	

						.subscribe(innerComponents	=>	{	

								this.lastVal	=	(innerComponents.last	||	{}).val;	

								this.changeDetectorRef_.detectChanges();	

						});	

		}	

}	

At	this	point,	everything	should	work	correctly	with	no	errors.

How	it	works...
Once	the	OuterComponent	view	is	initialized,	you	will	be	able	to	interact	with	QueryList	that
is	obtained	using	ViewChildren.	Each	time	the	collection	that	QueryList	wraps	is	modified,	the
Observable	exposed	by	its	changes	property	will	emit	QueryList,	signaling	that	something	has
changed.

Hate	the	player,	not	the	game

Importantly,	Observable<QueryList>	does	not	track	changes	in	the	array	of	numbers.	It	tracks
the	generated	collection	of	InnerComponents.	The	ngFor	structural	directive	is	responsible	for
generating	the	list	of	InnerComponent	instances	in	the	view.	It	is	this	collection	that	QueryList
is	concerned	with,	not	the	original	array.

This	is	a	good	thing!	ViewChildren	should	only	be	concerned	with	the	components	as	they	have
been	rendered	inside	the	view,	not	the	data	that	caused	them	to	be	rendered	in	such	a	fashion.

One	important	consideration	of	this	is	that	upon	each	emission,	it	is	entirely	possible	that
QueryList	will	be	empty.	As	shown	above,	since	the	Observer	of	the	QueryList.changes
Observable	tries	to	reference	a	property	of	last,	it	is	necessary	to	have	a	fallback	object	literal
in	the	event	that	last	returns	undefined.

See	also
Basic	Utilization	of	Observables	with	HTTP	demonstrates	the	basics	of	how	to	use	an
observable	interface
Building	a	fully	featured	AutoComplete	with	Observables	gives	you	a	broad	tour	of	some
of	the	utilities	offered	to	you	as	part	of	the	RxJS	library

Building	a	fully	featured	AutoComplete	with
Observables
RxJS	Observables	afford	you	a	lot	of	firepower,	and	it	would	be	a	shame	to	miss	out	on	them.	A
huge	library	of	transformations	and	utilities	are	baked	right	in	that	allow	you	to	elegantly	architect
complex	portions	of	your	application	in	a	reactive	fashion.

In	this	recipe,	you'll	take	a	naïve	autocomplete	form	and	build	a	robust	set	of	features	to	enhance
behavior	and	performance.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/8629/.

http://ngcookbook.herokuapp.com/8629/

Getting	ready
Begin	with	the	following	application:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{SearchComponent}	from	'./search.component';	

import	{APIService}	from	'./api.service';	

import	{HttpModule}	from	'@angular/http';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				HttpModule	

],	

		declarations:	[

				SearchComponent	

],	

		providers:	[

				APIService	

],	

		bootstrap:	[

				SearchComponent	

]	

})	

export	class	AppModule	{}	

[app/search.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{APIService}	from	'./api.service';	

	

@Component({	

		selector:	'search',	

		template:	`	

				<input	#queryField	(keyup)="search(queryField.value)">	

				<p	*ngFor="let	result	of	results">{{result}}</p>	

		`	

})	

export	class	SearchComponent	{	

		results:Array<string>	=	[];	

			

		constructor(private	apiService_:APIService)	{}	

			

		search(query:string):void	{	

				this.apiService_	

						.search(query)	

						.subscribe(result	=>	this.results.push(result));	

		}	

}

	

[app/api.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{Http}	from	'@angular/http';		

import	{Observable}	from	'rxjs/Rx';	

	

@Injectable()	

export	class	APIService	{	

		constructor(private	http_:Http)	{}	

			

		search(query:string):Observable<string>	{	

				return	this.http_	

						.get('static/response.json')	

						.map(r	=>	r.json()['prefix']	+	query)		

						//	Below	is	just	a	clever	way	of	randomly		

						//	delaying	the	response	between	0	to	1000ms	

						.concatMap(

								x	=>	Observable.of(x).delay(Math.random()*1000));			

		}	

}	

Your	objective	is	to	dramatically	enhance	this	using	RxJS.

How	to	do	it...
As	is,	this	application	is	listening	for	keyup	events	in	the	search	input,	performing	an	HTTP
request	to	a	static	JSON	file	and	adding	the	response	to	a	list	of	results.

Using	the	FormControl	valueChanges	Observable

Angular	2	has	observable	behavior	already	available	to	you	in	a	number	of	places.	One	of	them	is
inside	ReactiveFormsModule,	which	allows	you	to	use	an	Observable	that	is	attached	to	a	form
input.	Convert	this	input	to	use	FormControl,	which	exposes	a	valueChanges	Observable:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{SearchComponent}	from	'./search.component';	

import	{APIService}	from	'./api.service';	

import	{HttpModule}	from	'@angular/http';	

import	{ReactiveFormsModule}	from	'@angular/forms';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				HttpModule,	

				ReactiveFormsModule	

],	

		declarations:	[

				SearchComponent	

],	

		providers:	[

				APIService	

],	

		bootstrap:	[

				SearchComponent	

]	

})	

export	class	AppModule	{}

	

[app/search.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{APIService}	from	'./api.service';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'search',	

		template:	`	

				<input	[formControl]="queryField">	

				<p	*ngFor="let	result	of	results">{{result}}</p>	

		`	

})	

export	class	SearchComponent	{	

		results:Array<string>	=	[];	

		queryField:FormControl	=	new	FormControl();	

			

		constructor(private	apiService_:APIService)	{	

				this.queryField.valueChanges	

						.subscribe(query	=>	this.apiService_	

								.search(query)	

								.subscribe(result	=>	this.results.push(result)));	

		}	

}	

Debouncing	the	input

Each	time	the	input	value	changes,	Angular	will	dutifully	fire	off	a	request	and	handle	the
response	as	soon	as	it	is	ready.	In	the	case	where	the	user	is	querying	a	very	long	term,	such	as
supercalifragilisticexpialidocious,	it	may	be	necessary	for	you	to	only	send	off	a	single	request
once	you	think	they're	done	with	typing,	as	opposed	to	34	requests,	one	for	each	time	the	input
changes.

RxJS	Observables	have	this	built	in.	debounceTime(delay)	will	create	a	new	Observable	that
will	only	pass	along	the	latest	value	when	there	haven't	been	any	other	values	for	<delay>	ms.
This	should	be	added	to	the	valueChanges	Observable	since	this	is	the	source	that	you	wish	to
debounce.	200	ms	will	be	suitable	for	your	purposes:

[app/search.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{APIService}	from	'./api.service';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'search',	

		template:	`	

				<input	[formControl]="queryField">	

				<p	*ngFor="let	result	of	results">{{result}}</p>	

		`	

})	

export	class	SearchComponent	{	

		results:Array<string>	=	[];	

		queryField:FormControl	=	new	FormControl();	

			

		constructor(private	apiService_:APIService)	{	

				this.queryField.valueChanges	

						.debounceTime(200)	

						.subscribe(query	=>	this.apiService_	

								.search(query)	

								.subscribe(result	=>	this.results.push(result)));	

		}	

}	

Note

The	origin	of	the	term	debounce	comes	from	the	world	of	circuits.	Mechanical	buttons	or
switches	utilize	metal	contacts	to	open	and	close	circuit	connections.	When	the	metal	contacts	are
closed,	they	will	bang	together	and	rebound	before	being	settled,	causing	bounce.	This	bounce	is
problematic	in	the	circuit,	as	it	will	often	register	as	a	repeat	toggling	of	the	switch	or	button—
obviously	buggy	behavior.	The	workaround	for	this	is	to	find	a	way	to	ignore	the	expected	bounce
noise—debouncing!	This	can	be	accomplished	by	either	ignoring	the	bounce	noise	or	introducing
a	delay	before	reading	the	value,	both	of	which	can	be	done	with	hardware	or	software.

Ignoring	serial	duplicates

Since	you	are	reading	input	from	a	textbox,	it	is	very	possible	that	the	user	will	type	one
character,	then	type	another	character	and	press	backspace.	From	the	perspective	of	the
Observable,	since	it	is	now	debounced	by	a	delay	period,	it	is	entirely	possible	that	the	user
input	will	be	interpreted	in	such	a	way	that	the	debounced	output	will	emit	two	identical	values
sequentially.	RxJS	offers	excellent	protection	against	this,	distinctUntilChanged(),	which
will	discard	an	emission	that	will	be	a	duplicate	of	its	immediate	predecessor:

[app/search.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{APIService}	from	'./api.service';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'search',	

		template:	`	

				<input	[formControl]="queryField">	

				<p	*ngFor="let	result	of	results">{{result}}</p>	

		`	

})	

export	class	SearchComponent	{	

		results:Array<string>	=	[];	

		queryField:FormControl	=	new	FormControl();	

			

		constructor(private	apiService_:APIService)	{	

				this.queryField.valueChanges	

						.debounceTime(200)	

						.distinctUntilChanged()	

						.subscribe(query	=>	this.apiService_	

								.search(query)	

								.subscribe(result	=>	this.results.push(result)));	

		}	

}	

Flattening	Observables

You	have	chained	quite	a	few	RxJS	methods	up	to	this	point,	and	seeing	nested	subscribe()

invocations	might	feel	a	bit	funny	to	you.	It	should	make	sense	since	the	valueChanges
Observable	handler	is	invoking	a	service	method,	which	returns	a	separate	Observable.	In
TypeScript,	this	is	effectively	represented	as	Observable<Observable<string>>.	Gross!

Since	you	only	really	care	about	the	emitted	strings	coming	from	the	service	method,	it	would	be
much	easier	to	just	combine	all	the	emitted	strings	coming	out	of	each	returned	Observable	into	a
single	Observable.	Fortunately,	RxJS	makes	this	easy	with	flatMap,	which	flattens	all	the
emissions	from	the	inner	Observables	into	a	single	outer	Observable.	In	TypeScript,	using
flatMap	would	convert	this	into	Observable<string>,	which	is	exactly	what	you	need:

[app/search.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{APIService}	from	'./api.service';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'search',	

		template:	`	

				<input	[formControl]="queryField">	

				<p	*ngFor="let	result	of	results">{{result}}</p>	

		`	

})	

export	class	SearchComponent	{	

		results:Array<string>	=	[];	

		queryField:FormControl	=	new	FormControl();	

			

		constructor(private	apiService_:APIService)	{	

				this.queryField.valueChanges	

						.debounceTime(200)	

						.distinctUntilChanged()	

						.flatMap(query	=>	this.apiService_.search(query))	

						.subscribe(result	=>	this.results.push(result));	

		}	

}	

Handling	unordered	responses

When	testing	input	now,	you	will	surely	notice	that	the	delay	intentionally	introduced	inside	the
API	service	will	cause	the	responses	to	be	returned	out	of	order.	This	is	a	pretty	effective
simulation	of	network	latency,	so	you'll	need	a	good	way	of	handling	this.

Ideally,	you	would	like	to	be	able	to	throw	out	Observables	that	are	in	flight	once	you	have	a
more	recent	query	to	execute.	For	example,	consider	that	you've	typed	g	and	then	o.	Now	once	the
second	query	for	go	is	returned	and	if	the	first	query	for	g	hasn't	returned	yet,	you'd	like	to	just
throw	it	out	and	forget	about	it	since	the	response	is	now	irrelevant.

RxJS	also	makes	this	very	easy	with	switchMap.	This	does	the	same	things	as	flatMap,	but	it

will	unsubscribe	from	any	in-flight	Observables	that	have	not	emitted	any	values	yet:

[app/search.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{APIService}	from	'./api.service';	

import	{FormControl}	from	'@angular/forms';	

	

@Component({	

		selector:	'search',	

		template:	`	

				<input	[formControl]="queryField">	

				<p	*ngFor="let	result	of	results">{{result}}</p>	

		`	

})	

export	class	SearchComponent	{	

		results:Array<string>	=	[];	

		queryField:FormControl	=	new	FormControl();	

			

		constructor(private	apiService_:APIService)	{	

				this.queryField.valueChanges	

						.debounceTime(200)	

						.distinctUntilChanged()	

						.switchMap(query	=>	this.apiService_.search(query))	

						.subscribe(result	=>	this.results.push(result));	

		}	

}	

Your	AutoComplete	input	should	now	be	debounced	and	it	should	ignore	redundant	requests	and
return	in-order	results.

How	it	works...
There	are	a	lot	of	moving	pieces	going	on	in	this	recipe,	but	the	core	theme	remains	the	same:
RxJS	Observables	expose	many	methods	that	can	pipe	the	output	from	one	observable	into	an
entirely	different	observable.	It	can	also	combine	multiple	observables	into	a	single	observable,
as	well	as	introduce	state-dependent	operations	into	a	stream	of	the	input.	At	the	end	of	this
recipe,	the	power	of	reactive	programming	should	be	obvious.

See	also
Basic	Utilization	of	Observables	with	HTTP	demonstrates	the	basics	of	how	to	use	an
observable	interface
Implementing	a	Publish-Subscribe	model	using	Subjects	shows	you	how	to	configure	input
and	output	for	RxJS	Observables
Creating	an	Observable	authentication	service	using	BehaviorSubjects	instructs	you	on
how	to	reactively	manage	the	state	in	your	application
Building	a	generalized	Publish-Subscribe	service	to	replace	$broadcast,	$emit,	and	$on
assembles	a	robust	PubSub	model	for	connecting	application	components	with	channels

Chapter	6.	The	Component	Router
This	chapter	will	cover	the	following	recipes:

Setting	up	an	application	to	support	simple	routes
Navigating	with	routerLinks
Navigating	with	the	Router	service
Selecting	LocationStrategy	for	Path	Construction
Building	stateful	RouterLink	behavior	with	RouterLinkActive
Implementing	nested	views	with	route	parameters	and	child	routes
Working	with	Matrix	URL	parameters	and	routing	arrays
Adding	route	authentication	controls	with	route	guards

Introduction
Few	features	of	Angular	2	should	be	anticipated	more	than	the	Component	Router.	This	new
routing	implementation	affords	you	a	dazzling	array	of	features	that	were	missing	or	severely
lacking	in	Angular	1.

Angular	2	implements	matrix	parameters;	this	is	an	entirely	new	syntax	for	URL	structures.
Originally	proposed	by	Tim	Berners-Lee	in	1996,	this	semicolon-based	syntax	gives	you	the
ability	to	robustly	associate	parameters	not	just	with	a	single	URL,	but	with	different	levels	in	that
URL.	Your	application	can	now	introduce	an	additional	dimension	of	application	state	in	the
URLs.

Additionally,	Component	Router	gives	you	a	method	of	elegantly	nesting	views	within	each	other
as	well	as	a	simple	way	of	defining	routes	and	links	to	these	component	hierarchies.	For	you,	this
means	your	applications	can	truly	take	maximal	advantage	of	defining	an	application	as	an
independent	module.

Finally,	Component	Router	fully	embraces	integration	with	Observable	structures	and	provides
you	with	some	beautiful	ways	of	navigating	and	controlling	navigation	within	your	application.

Setting	up	an	application	to	support	simple
routes
Central	to	the	behavior	of	single-page	applications	is	the	ability	to	perform	navigation	without	a
formal	browser	page	reload.	Angular	2	is	well-equipped	to	work	around	the	default	browser
page	reload	behavior	and	allow	you	to	define	a	routing	structure	within	it,	which	will	make	it
look	and	feel	like	actual	page	navigation.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/6214.

http://ngcookbook.herokuapp.com/6214

Getting	ready
Suppose	you	have	the	following	function	defined	globally:

function	visit(uri)	{	

		//	For	this	recipe,	you	don't	care	about	the	state	or	title	

		window.history.pushState(null,	null,	uri);	

}	

The	purpose	of	this	is	to	merely	allow	you	to	navigate	inside	the	browser	from	JavaScript	using
the	HTML5	History	API.

How	to	do	it...
In	order	for	Angular	to	simulate	page	navigation	inside	the	browser,	there	are	several	steps	you
must	take	to	create	a	navigable	single-page	application.

Setting	the	base	URL

The	first	step	in	configuring	your	application	is	to	specify	the	base	URL.	This	instructs	the
browser	what	network	requests	performed	with	a	relative	URL	should	begin	with.

Anytime	the	page	makes	a	request	using	a	relative	URL,	when	generating	the	network	request,	it
will	use	the	current	domain	and	then	append	the	relative	URL.	For	relative	URLs,	a	prepended	"/"
means	it	will	always	use	the	root	directory.	If	the	forward	slash	is	unavailable,	the	relative	path
will	prepend	whatever	is	specified	as	the	base	href.	Any	URL	behavior,	including	requesting
static	resources,	anchor	links,	and	the	history	API,	will	exhibit	this	behavior.

Note

<base>	is	not	a	part	of	Angular	but	rather	a	default	HTML5	element.

Here	are	some	examples	of	this:

[Example	1]	

//	<base	href="/">	

//	initial	page	location:	foo.com	

	

visit('bar');	

//	new	page	location:	foo.com/bar	

	

visit('bar');	

//	new	page	location:	foo.com/bar	

//	The	browser	recognizes	that	this	is	a	relative	path	

//	with	no	prepended	/	and	so	it	will	visit	the	page	at	the	

//	same	"depth"	as	before.	

	

visit('bar/');	

//	new	page	location:	foo.com/bar/	

//	Same	as	before,	but	the	trailing	slash	will	be	important	once	

//	you	invoke	this	again.	

	

visit('bar/');	

//	new	page	location:	foo.com/bar/bar/	

//	The	browser	recognizes	that	the	URL	ends	with	a	/,	and	so	

//	visiting	a	relative	path	is	treated	as	a	navigation	into	a		

//	subpath	

	

visit('/qux');	

//	new	page	location:	foo.com/qux	

//	With	a	/	prepended	to	the	URL,	the	browser	recognizes	that	it	

//	should	navigate	from	the	root	domain

	

[Example	2]	

//	<base	href="xyz/">	

//	initial	page	location:	foo.com	

	

visit('bar');	

//	new	page	location:	foo.com/xyz/bar	

//	Base	URL	is	prepended	to	the	relative	URL	

	

visit('bar');	

//	new	page	location:	foo.com/xyz/bar	

//	As	was	the	case	before,	the	local	path	is	treated	the	same	

//	by	the	browser	

	

visit('/qux');	

//	new	page	location:	foo.com/qux	

//	Note	that	in	this	case,	you	specified	a	relative	path		

//	originating	from	the	root	domain,	so	the	base	href	is	ignored	

Defining	routes

Next,	you	need	to	define	what	your	application's	routes	are.	For	the	purpose	of	this	recipe,	it	is
more	important	to	understand	the	setup	of	routing	than	how	to	define	and	navigate	between	routes.
So,	for	now,	you	will	just	define	a	single	catchall	route.

As	you	might	suspect,	route	views	in	Angular	2	are	defined	as	components.	Each	route	path	is
represented	at	the	very	least	by	the	string	that	the	browser's	location	will	match	against	and	the
component	that	it	will	map	to.	This	can	be	done	with	an	object	implementing	the	Routes
interface,	which	is	an	array	of	route	definitions.

It	makes	sense	that	the	route	definitions	should	happen	very	early	in	the	application	initialization,
so	you'll	do	it	inside	the	top-level	module	definition.

First,	create	your	view	component	that	this	route	will	map	to:

[app/default.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	'Default	component!'	

})	

export	class	DefaultComponent	{}		

Next,	wherever	your	application	module	is	defined,	import	RouterModule	and	the	Routes
interface,	namely	DefaultComponent,	and	define	a	catchall	route	inside	the	Routes	array:

[app/app.module.ts]	

		

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

	

const	appRoutes:Routes	=	[

		{path:	'**',	component:	DefaultComponent}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				DefaultComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}		

Providing	routes	to	the	application

You've	defined	the	routes	in	an	object,	but	your	application	still	is	not	aware	that	they	exist.	You
can	do	this	with	the	forRoot	method	defined	in	RouterModule.	This	function	does	all	the	dirty
work	of	installing	your	routes	in	the	application	as	well	as	passing	along	a	number	of	routing
providers	for	use	elsewhere	in	the	application:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

	

const	appRoutes:Routes	=	[

		{path:	'**',	component:	DefaultComponent}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}		

With	this,	your	application	is	fully	configured	to	understand	the	route	you	have	defined.

Rendering	route	components	with	RouterOutlet

The	component	needs	a	place	to	be	rendered,	and	in	Angular	2,	this	takes	the	form	of	a
RouterOutlet	tag.	This	directive	will	be	targeted	by	the	component	attached	to	the	active	route,
and	the	component	will	be	rendered	inside	it.	To	keep	things	simple,	in	this	recipe,	you	can	use
the	directive	inside	the	root	application	component:

[app/app.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{}	

That's	all!	Your	application	now	has	a	single	route	defined	that	will	render	DefaultComponent
inside	RootComponent.

How	it	works...
This	recipe	doesn't	show	a	very	complicated	example	of	routing,	since	every	possible	route	that
you	can	visit	will	lead	you	to	the	same	component.

Nonetheless,	it	demonstrates	several	fundamental	principles	of	Angular	routing:

In	its	most	basic	form,	a	route	is	comprised	of	a	string	path	(matched	against	the	browser
path)	and	the	component	that	should	be	rendered	when	this	route	is	active.
Routes	are	installed	via	RouterModule.	In	this	example,	since	there	is	only	one	module,	you
can	do	this	once	using	forRoot().	However,	keep	in	mind	that	you	can	break	your	routing
structure	into	pieces	and	between	different	NgModules.
Navigating	to	a	route	will	cause	a	component	to	be	rendered	inside	a	different	component-
more	specifically,	wherever	the	<router-outlet>	tag	exists.	There	are	many	ways	in
which	this	can	be	configured	and	made	more	complex,	but	for	the	purpose	of	this	simple
module,	you	don't	need	to	worry	about	these	different	ways.

There's	more...
Angular	2	applications	will	not	raise	issues	when	operating	with	no	form	of	routing.	If	your
application	does	not	need	to	understand	and	manage	the	page	URL,	then	feel	free	to	totally
discard	the	routing	files	and	modules	from	your	application.

Initial	page	load

The	flow	you	are	hoping	your	users	would	go	through	is	as	follows:

1.	 The	user	visits	http://www.foo.com/.
2.	 The	server	matches	the	empty	route	to	index.html.
3.	 The	page	loads,	requesting	static	files.
4.	 The	Angular	static	files	are	loaded	and	application	is	bootstrapped.
5.	 The	user	clicks	on	the	links	and	navigates	around	the	site.
6.	 Since	Angular	is	wholly	managing	the	navigation	and	routing,	everything	works	as	expected.

This	is	the	ideal	case.	Consider	a	different	case:

1.	 The	user	has	already	visited	http://www.foo.com/	before	and	bookmarked	it.
2.	 The	user	enters	foo.com/bar	in	their	URL	bar	and	navigates	to	it	from	there	directly.
3.	 The	server	sees	the	request	path	as	/bar	and	tries	to	handle	the	request.

Depending	on	how	your	server	is	configured,	this	might	cause	problems	for	you.	This	is	because
the	last	time	the	user	visited	foo.com/bar,	no	request	for	that	resource	reached	the	server
because	Angular	was	only	emulating	a	real	navigation	event.

This	scenario	is	discussed	elsewhere	in	this	chapter,	but	keep	in	mind	that	without	a	correctly
configured	server,	the	user	in	the	second	case	might	see	a	404	page	error	instead	of	your
application.

http://www.foo.com/
http://www.foo.com/

See	also
Navigating	with	routerLinks	demonstrates	how	to	navigate	around	Angular	applications
Navigating	with	the	Router	service	uses	an	Angular	service	to	navigate	around	an
application
Building	stateful	RouterLink	behavior	with	RouterLinkActive	shows	how	to	integrate
application	behavior	with	a	URL	state

Navigating	with	routerLinks
Navigating	around	a	single	page	application	is	a	fundamental	task,	and	Angular	offers	you	a	built-
in	directive,	routerLink,	to	accomplish	this.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/9983/.

http://ngcookbook.herokuapp.com/9983/

Getting	ready
Begin	with	the	application	setup	assembled	in	the	Setting	up	an	application	to	support	simple
routes	recipe.

Your	goal	is	to	add	an	additional	route	to	this	application	accompanied	by	a	component;	also,	you
want	to	be	able	to	navigate	between	them	using	links.

How	to	do	it...
To	begin,	create	another	component,	ArticleComponent,	and	an	associated	route:

[app/article/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	'Article	component!'	

})	

export	class	ArticleComponent	{}	

Next,	install	an	article	route	accompanied	by	this	new	component:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';		

import	{ArticleComponent}	from	'./article.component';	

	

const	appRoutes:Routes	=	[

		{path:	'article',	component:	ArticleComponent},	

		{path:	'**',	component:	DefaultComponent}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				ArticleComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

With	the	routes	defined,	you	can	now	build	a	rudimentary	navbar	comprised	of	routerLinks.
The	markup	surrounding	the	<router-outlet>	tag	will	remain	irrespective	of	the	route,	so	the
root	app	component	seems	like	a	suitable	place	for	the	nav	links.

The	routerLink	directive	is	available	as	part	of	RouterModule,	so	you	can	go	straight	to	adding

some	anchor	tags:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<a	[routerLink]="''">Default	

				<a	[routerLink]="'article'">Article	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{}	

In	this	case,	since	the	routes	are	simple	and	static,	binding	routerLink	to	a	string	is	allowed.
routerLink	also	accepts	the	array	notation:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<a	[routerLink]="['']">Default	

				<a	[routerLink]="['article']">Article	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{}	

Tip

For	the	purpose	of	this	recipe,	the	array	notation	doesn't	add	anything.	However,	when	developing
more	complicated	URL	structures,	the	array	notation	becomes	useful,	as	it	allows	you	to	generate
links	in	a	piecewise	fashion.

How	it	works...
At	a	high	level,	this	is	no	different	than	the	behavior	of	a	vanilla	href	attribute.	After	all,	the
routes	behave	in	the	same	way	and	are	structured	similarly.	The	important	difference	here	is	that
using	a	routerLink	directive	instead	of	href	allows	you	to	move	around	your	application	the
Angular	way,	without	ever	having	the	anchor	tag	click	interpreted	by	the	browser	as	a	non-
Angular	navigation	event.

There's	more...
Of	course,	the	routerLink	directive	is	also	superior	as	it	is	more	extensible	as	a	tool	for
navigating.	Since	it	is	an	HTML	attribute	after	all,	there's	no	reason	routerLink	can't	be	attached
to,	for	example,	a	button	instead:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<button	[routerLink]="['']">Default</button>	

				<button	[routerLink]="['article']">Article</button>	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{}	

What's	more,	you'll	also	note	that	the	array	notation	allows	the	dynamic	generation	of	links	via	all
of	the	tremendous	data	binding	that	Angular	affords	you:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<a	[routerLink]="[defaultPath]">Default	

				<a	[routerLink]="[articlePath]">Article	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{	

		defaultPath:string	=	'';	

		articlePath:string	=	'article';	

}		

As	the	URL	structure	gets	ever	more	advanced,	it	will	be	easy	to	see	how	a	clever	application	of
data	binding	could	make	for	some	very	elegant	dynamic	link	generation.

Route	order	considerations

The	ordering	of	routes	inside	the	Routes	definition	specifies	the	descending	priority	of	each	of
them.	In	this	recipe's	example,	suppose	you	were	to	reverse	the	order	of	the	routes:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ArticleComponent}	from	'./article.component';	

	

const	appRoutes:Routes	=	[

		{path:	'**',	component:	DefaultComponent},	

		{path:	'article',	component:	ArticleComponent}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				ArticleComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

When	experimenting,	you	will	find	that	the	browser's	URL	changes	correctly	with	the	various
routerLink	interactions,	but	both	routes	will	use	DefaultComponent	as	the	rendered	view.	This
is	simply	because	all	the	routes	match	the	**	catchall,	and	Angular	doesn't	bother	to	traverse	the
routes	any	further	once	it	has	a	matching	route.	Keep	this	in	mind	when	authoring	large	route
tables.

See	also
Setting	up	an	application	to	support	simple	routes	shows	you	the	basics	of	Angular	routing
Navigating	with	the	Router	service	uses	an	Angular	service	to	navigate	around	an
application
Building	stateful	RouterLink	behavior	with	RouterLinkActive	shows	how	to	integrate
application	behavior	with	a	URL	state
Implementing	nested	views	with	route	parameters	and	child	routes	gives	an	example	of
how	to	configure	Angular	URLs	to	support	nesting	and	data	passing
Working	with	matrix	URL	parameters	and	routing	arrays	demonstrates	Angular's	built-in
matrix	URL	support

Navigating	with	the	Router	service
The	companion	to	using	routerLink	inside	the	template	to	navigate	is	doing	it	from	inside
JavaScript.	Angular	exposes	the	navigate()	method	from	inside	a	service,	which	allows	you	to
accomplish	exactly	this.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/8004/.

http://ngcookbook.herokuapp.com/8004/

Getting	ready
Begin	with	the	application	that	exists	at	the	end	of	the	How	to	do	it...	section	of	the	Navigating
with	routerLinks	recipe.

Your	goal	is	to	add	an	additional	route	accompanied	by	a	component	to	this	application;	also,	you
wish	to	be	able	to	navigate	between	them	using	links.

How	to	do	it...
Instead	of	using	routerLink,	which	is	the	most	sensible	choice	in	this	situation,	you	can	also
trigger	a	navigation	using	the	Router	service.	First,	add	nav	buttons	and	attach	some	empty	click
handlers	to	them:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<button	(click)="visitDefault()">Default</button>	

				<button	(click)="visitArticle()">Article</button>	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{	

		visitDefault():void	{}

visitArticle():void	{}	

}	

Next,	import	the	Router	service	and	use	its	navigate()	method	to	change	the	page	location:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Router}	from	'@angular/router';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<button	(click)="visitDefault()">Default</button>	

				<button	(click)="visitArticle()">Article</button>	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{	

		constructor(private	router:Router)	{}	

		visitDefault():void	{	

				this.router.navigate(['']);	

		}	

		visitArticle():void	{	

				this.router.navigate(['article']);	

		}	

}	

With	this	addition,	you	should	be	able	to	navigate	around	your	application	in	the	same	way	you

did	before.

How	it	works...
The	Router	service	exposes	an	API	with	which	you	can	control	your	application's	navigation
behavior,	among	many	other	things.	Its	navigate()	method	accepts	an	array-structured	route,
which	operates	identically	to	the	Arrays	bound	to	routerLink.

There's	more...
Obviously,	this	is	an	utter	antipattern	for	building	applications	that	are	designed	to	scale.	In	this
scenario,	routerLink	is	a	much	more	succinct	and	effective	choice	for	building	a	simple	navbar.
Nevertheless,	the	Router	service	is	an	equally	effective	tool	for	traversing	an	Angular
application's	route	structure.

See	also
Navigating	with	routerLinks	demonstrates	how	to	navigate	around	Angular	applications
Building	stateful	RouterLink	behavior	with	RouterLinkActive	shows	how	to	integrate
application	behavior	with	a	URL	state
Working	with	matrix	URL	parameters	and	routing	arrays	demonstrates	Angular's	built-in
matrix	URL	support
Adding	route	authentication	controls	with	route	guards	details	the	entire	process	of
configuring	protected	routes	in	your	application

Selecting	a	LocationStrategy	for	path
construction
A	simple	but	important	choice	for	your	application	is	which	type	of	LocationStrategy	you	want
to	make	use	of.	The	following	two	URLs	are	equivalent	when	their	respective
LocationStrategy	is	selected:

PathLocationStrategy:	foo.com/bar
HashLocationStrategy:	foo.com/#/bar

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/1355/.

http://ngcookbook.herokuapp.com/1355/

How	to	do	it...
Angular	2	will	default	to	PathLocationStrategy.	Should	you	want	to	select
HashLocationStrategy,	it	can	be	imported	from	the	@angular/common	module.	Once
imported,	it	can	be	listed	as	a	provider	inside	an	object	literal:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ArticleComponent}	from	'./article.component';	

import	{LocationStrategy,	HashLocationStrategy}		

		from	'@angular/common';	

	

	

const	appRoutes:Routes	=	[

		{path:	'article',	component:	ArticleComponent},	

		{path:	'**',	component:	DefaultComponent},	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				ArticleComponent,	

				RootComponent	

],	

		providers:	[

				{provide:	LocationStrategy,	useClass:	HashLocationStrategy}	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

With	this	addition,	your	application	will	transition	to	prefix	#/	to	all	application-defined	URLs.
This	will	occur	in	transparence	with	the	rest	of	your	application,	which	can	use	its	routing
definitions	normally	without	having	to	worry	about	prefixing	#/.

There's	more...
There	are	tradeoffs	for	each	of	these	strategies.	As	the	Angular	documentation	notes,	once	you
choose	one,	it	is	inadvisable	to	switch	to	the	other	since	bookmarks,	SEO,	and	user	history	will
all	be	coupled	to	the	URL	strategy	utilized	during	that	visit.

PathLocationStrategy:

Here,	the	URLs	appear	normal	to	the	end	user
The	server	must	be	configured	to	handle	page	loads	from	any	application	path
This	allows	the	hybrid	server-side	rendering	of	routes	for	improved	performance

HashLocationStrategy:

Here,	the	URLs	may	look	funny	to	the	end	user.
No	server	configuration	is	required	if	the	root	domain	serves	index.html.	This	is	a	good
option	if	you	only	want	to	serve	static	files	(for	example,	an	Amazon	AWS-based	site).
It	cannot	be	easily	intermixed	with	hybrid	server-side	rendering.

Configuring	your	application	server	for	PathLocationStrategy

Angular	is	smart	enough	to	recognize	the	browser	state	and	manage	it	accordingly	once
bootstrapping	occurs.	However,	bootstrapping	requires	an	initial	load	of	the	static	compiled	JS
assets,	which	will	bootstrap	Angular	once	the	browser	loads	them.	When	the	user	initially	visits	a
root	domain,	such	as	foo.com,	the	server	is	normally	configured	to	respond	with	index.html,
which	will	in	turn	request	the	static	assets	at	render	time.	So,	Angular	will	work!

However,	in	cases	where	the	user	initially	visits	a	non-root	path,	such	as	foo.com/bar,	the
browser	will	send	a	request	to	the	server	at	foo.com/bar.	If	you	aren't	careful	when	setting	up
your	server,	a	common	mistake	you	may	commit	is	having	only	the	root	foo.com	path	return
index.html.

In	order	for	PathLocationStrategy	to	work	correctly	in	all	cases,	you	must	configure	your	web
server	to	set	up	a	catchall	route	for	all	the	requests	that	have	paths	intended	for	the	single-page
application's	route	in	the	client,	and	to	invariably	return	index.html.	In	other	words,	visiting
foo.com,	foo.com/bar,	or	foo.com/bar/baz	as	the	first	page	in	the	browser	will	all	return	the
same	thing:	index.html.	Once	you	do	this,	postbootstrap	Angular	will	examine	the	current
browser	path	and	recognize	which	path	it	is	on	and	what	view	needs	to	be	displayed.

Building	stateful	route	behavior	with
RouterLinkActive
It	is	often	the	case	when	building	applications	that	you	will	want	to	build	features	that	would
involve	which	page	the	application	is	currently	on.	When	this	is	a	one-time	inspection,	it	isn't	a
problem,	as	both	Angular	and	default	browser	APIs	allow	you	to	easily	inspect	the	current	page.

Things	get	a	bit	stickier	when	you	want	the	state	of	the	page	to	reflect	the	state	of	the	URL,	for
example,	if	you	want	to	visually	indicate	which	link	corresponds	to	the	current	page.	A	from-
scratch	implementation	of	this	would	require	some	sort	of	state	machine	that	would	know	when
navigation	events	occur	and	what	and	how	to	modify	at	each	given	route.

Fortunately,	Angular	2	gives	you	some	excellent	tools	to	do	this	right	out	of	the	box.

Note

The	code,	links,	and	a	live	example	of	this	are	all	available	at
http://ngcookbook.herokuapp.com/3308/.

http://ngcookbook.herokuapp.com/3308/

Getting	ready
Begin	with	the	Array	and	anchor-tag-based	implementation	shown	in	the	Navigating	with
routerLinks	recipe.

Your	goal	is	to	use	RouterLinkActive	to	introduce	some	simple	stateful	route	behavior.

How	to	do	it...
RouterLinkActive	allows	you	to	conditionally	apply	classes	when	the	current	route	matches	the
corresponding	routerLink	on	the	same	element.	Proceed	directly	to	adding	it	as	an	attribute
directive	to	each	link	as	well	as	a	matching	CSS	class:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<a	[routerLink]="['']"	

							[routerLinkActive]="'active-navlink'">Default	

				<a	[routerLink]="['article']"	

							[routerLinkActive]="'active-navlink'">Article	

				<router-outlet></router-outlet>	

		`,	

		styles:	[`	

				.active-navlink	{	

						color:	red;		

						text-transform:	uppercase;	

				}	

		`]	

})	

export	class	RootComponent	{}	

This	is	all	you	need	for	links	to	become	active!	You	will	notice	that	Angular	will	conditionally
apply	the	active-navlink	class	based	on	the	current	route.

However,	when	testing	this,	you	will	notice	that	the	/article	route	makes	both	the	links	appear
active.	This	is	due	to	the	fact	that	by	default,	Angular	marks	all	routerLinks	that	match	the
current	route	as	active.

Note

This	behavior	is	useful	in	cases	where	you	may	want	to	show	a	hierarchy	of	links	as	active	for
example,	at	route	/user/123/detail,	it	could	make	sense	that	the	separate	links	/user,
/user/123,	and	/user/123/detail	are	all	shown	as	active.

However,	in	the	case	of	this	recipe,	this	behavior	is	not	useful	to	you,	and	Angular	has	another
router	directive,	routerLinkActiveOptions,	which	binds	to	an	options	object.	The	exact
property	inside	the	options	object	is	useful	in	this	case;	it	controls	whether	the	active	state	should
only	be	applied	in	cases	of	an	exact	match:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Router}	from	'@angular/router';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<a	[routerLink]="['']"	

							[routerLinkActive]="'active-navlink'"	

							[routerLinkActiveOptions]="{exact:true}">Default	

				<a	[routerLink]="['article']"	

							[routerLinkActive]="'active-navlink'"	

							[routerLinkActiveOptions]="{exact:true}">Article	

				<router-outlet></router-outlet>	

		`,	

		styles:	[`	

				.active-navlink	{	

						color:	red;		

						text-transform:	uppercase;	

				}	

		`]	

})	

export	class	RootComponent	{}	

Now	you	will	find	that	each	link	will	only	be	active	at	its	respective	route.

How	it	works...
The	routerLinkActive	implementation	subscribes	to	navigation	change	events	that	Angular
emits	from	the	Router	service.	When	it	sees	a	NavigationEnd	event,	it	performs	an	update	of	all
the	attached	HTML	tags,	which	includes	adding	and	stripping	applicable	"active"	CSS	classes
that	the	element	is	bound	to	via	the	directive.

There's	more...
If	you	need	to	bind	routerLinkActive	to	a	dynamic	value,	the	preceding	syntax	will	allow	you
to	do	exactly	that.	For	example,	you	can	bind	to	a

component

member	and

modify

it	elsewhere,	and	Angular	will	handle	everything	for	you.	However,	if	this	is	not	required,
Angular	will	handle	routerLinkActive	without	the	data	binding	brackets.	In	this	case,	the	value
of	the	directive	no	longer	needs	to	be	an	Angular	expression,	so	you	can	remove	the	nested
quotes.

The	following	is	behaviorally	identical:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Router}	from	'@angular/router';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<a	[routerLink]="['']"	

							routerLinkActive="active-navlink"	

							[routerLinkActiveOptions]="{exact:true}">	

							Default	

				<a	[routerLink]="['article']"	

							routerLinkActive="active-navlink"	

							[routerLinkActiveOptions]="{exact:true}">	

							Article	

				<router-outlet></router-outlet>	

		`,	

		styles:	[`	

				.active-navlink	{	

						color:	red;		

						text-transform:	uppercase;	

				}	

		`]	

})	

export	class	RootComponent	{}	

See	also
Setting	up	an	application	to	support	simple	routes	shows	you	the	basics	of	Angular	routing
Navigating	with	routerLinks	demonstrates	how	to	navigate	around	Angular	applications
Building	stateful	RouterLink	behavior	with	RouterLinkActive	shows	how	to	integrate
application	behavior	with	a	URL	state
Implementing	nested	views	with	route	parameters	and	child	routes	gives	an	example	of
how	to	configure	Angular	URLs	to	support	nesting	and	data	passing
Adding	route	authentication	controls	with	route	guards	details	the	entire	process	of
configuring	protected	routes	in	your	application

Implementing	nested	views	with	route
parameters	and	child	routes
Angular	2's	component	router	offers	you	the	necessary	concept	of	child	routes.	As	you	might
expect,	this	brings	the	concept	of	recursively	defined	views	to	the	table,	which	affords	you	an
incredibly	useful	and	elegant	way	of	building	your	application.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/7892/.

http://ngcookbook.herokuapp.com/7892/

Getting	ready
Begin	with	the	Array	and	anchor-tag-based	implementation	shown	in	Navigating	with
routerLinks	recipe.

Your	goal	is	to	extend	this	simple	application	to	include	/article,	which	will	be	the	list	view,
and	/article/:id,	which	will	be	the	detail	view.

How	to	do	it...
First,	modify	the	route	structure	for	this	simple	application	by	extending	the	/article	path	to
include	its	subpaths:	/	and	/:id.	Routes	are	defined	hierarchically,	and	each	route	can	have	child
routes	using	the	children	property.

Adding	a	routing	target	to	the	parent	component

First,	you	must	modify	the	existing	ArticleComponent	so	that	it	can	contain	child	views.	As	you
might	expect,	the	child	view	is	rendered	in	exactly	the	same	way	as	it	is	done	from	the	root
component,	using	RouterOutlet:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	`	

				<h2>Article</h2>	

				<router-outlet></router-outlet>	

		`	

})	

export	class	ArticleComponent	{}	

This	won't	do	anything	yet,	but	adding	RouterOutlet	describes	to	Angular	how	route	component
hierarchies	should	be	rendered.

Defining	nested	child	views

In	this	recipe,	you	would	like	to	have	the	parent	ArticleComponent	contain	a	child	view,	either
ArticleListComponent	or	ArticleDetailComponent.	For	the	simplicity	of	this	recipe,	you
can	just	define	your	list	of	articles	as	an	array	of	integers.

Define	the	skeleton	of	these	two	components	as	follows:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	`	

				<h3>Article	List</h3>	

		`	

})	

export	class	ArticleListComponent	{	

		articleIds:Array<number>	=	[1,2,3,4,5];	

}	

[app/article-detail.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	`	

				<h3>Article	Detail</h3>	

				<p>Showing	article	{{articleId}}</p>	

		`	

})	

export	class	ArticleDetailComponent	{	

		articleId:number;	

}	

Defining	the	child	routes

At	this	point,	nothing	in	the	application	yet	points	to	either	of	these	child	routes,	so	you'll	need	to
define	them	now.

The	children	property	of	a	route	should	just	be	another	Route,	which	should	represent	the
nested	routes	that	are	appended	to	the	parent	route.

Note

In	this	way,	you	are	defining	a	sort	of	routing	"tree,"	where	each	route	entry	can	have	many	child
routes	defined	recursively.	This	will	be	discussed	in	greater	detail	later	in	this	chapter.

Furthermore,	you	should	also	use	the	URL	parameter	notation	to	declare	:articleId	as	a
variable	in	the	route.	This	allows	you	to	pass	values	inside	the	route	and	then	retrieve	these
values	inside	the	component	that	is	rendered.

Add	these	route	definitions	now:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ArticleComponent}	from	'./article.component';	

import	{ArticleListComponent}	from	'./article-list.component';	

import	{ArticleDetailComponent}	from	'./article-detail.component';	

	

const	appRoutes:Routes	=	[

		{path:	'article',	component:	ArticleComponent,	

				children:	[

						{path:	'',	component:	ArticleListComponent},		

						{path:	':articleId',	component:	ArticleDetailComponent}	

]	

		},	

		{path:	'**',	component:	DefaultComponent},	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				ArticleComponent,	

				ArticleListComponent,	

				ArticleDetailComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

You'll	note	that	ArticleListComponent	is	keyed	by	an	empty	string.	This	should	make	sense,	as
each	of	these	routes	are	joined	to	their	parent	routes	to	create	the	full	route.	If	you	were	to	join
each	route	in	this	tree	with	its	ancestral	path	to	get	the	full	route,	the	route	definition	you've	just
created	would	have	the	following	three	entries:

/article			=>	ArticleComponent	

																ArticleListComponent	

/article/4	=>	ArticleComponent	

																ArticleDetailComponent<articleId=4>	

/**								=>	DefaultComponent	

Note

Note	that	in	this	case,	the	number	of	actual	routes	corresponds	to	the	number	of	leaves	of	the	URL
tree	since	the	article	parent	route	will	also	map	to	the	child	article's	+	''	route.	Depending	on	how
you	configure	your	route	structure,	the	leaf/route	parity	will	not	always	be	the	case.

Defining	child	view	links

With	the	routes	being	mapped	to	the	child	components,	you	can	flesh	out	the	child	views.	Starting
with	ArticleList,	create	a	repeater	to	generate	the	links	to	each	of	the	child	views:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	`	

				<h3>Article	List</h3>	

				<p	*ngFor="let	articleId	of	articleIds">	

						<a	[routerLink]="articleId">	

								Article	{{articleId}}	

							

				</p>	

		`	

})	

export	class	ArticleListComponent	{	

		articleIds:Array<number>	=	[1,2,3,4,5];	

}	

Note

Note	that	routerLink	is	linking	to	the	relative	path	of	the	detail	view.	Since	the	current	path	for
this	view	is	/article,	a	relative	routerLink	of	4	will	navigate	the	application	to	/article/4
upon	a	click.

These	links	should	work,	but	when	you	click	on	them,	they	will	take	you	to	the	detail	view	that
cannot	display	articleId	from	the	route	since	you	have	not	extracted	it	yet.

Inside	ArticleDetailComponent,	create	a	link	that	will	take	the	user	back	to	the	article/
route.	Since	routes	behave	like	directories,	you	can	just	use	a	relative	path	that	will	take	the	user
up	one	level:

[app/article-detail.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	`	

				<h3>Article	Detail</h3>	

				<p>Showing	article	{{articleId}}</p>	

				<a	[routerLink]="'../'">Back	up	

		`	

})	

export	class	ArticleDetailComponent	{	

		articleId:number;	

}	

Extracting	route	parameters

A	crucial	difference	between	Angular	1	and	2	is	the	reliance	on	Observable	constructs.	In	the
context	of	routing,	Angular	2	wields	Observables	to	encapsulate	that	routing	occurs	as	a
sequence	of	events	and	that	values	are	produced	at	different	states	in	these	events	and	will	be
ready	eventually.

More	concretely,	route	params	in	Angular	2	are	not	exposed	directly,	but	rather	through	an
Observable	inside	ActivatedRoute.	You	can	set	Observer	on	its	params	Observable	to	extract
the	route	params	once	they	are	available.

Inject	the	ActivatedRoute	interface	and	use	the	params	Observable	to	extract	articleId	and

assign	it	to	the	ArticleDetailComponent	instance	member:

[app/article-detail/article-detail.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ActivatedRoute}	from	'@angular/router';	

	

@Component({	

		template:	`	

				<h3>Article	Detail</h3>	

				<p>Showing	article	{{articleId}}</p>	

				<a	[routerLink]="'../'">Back	up	

		`	

})	

export	class	ArticleDetailComponent	{	

		articleId:number;	

		constructor(private	activatedRoute_:	ActivatedRoute)	{	

				activatedRoute_.params	

						.subscribe(params	=>	this.articleId	=	params['articleId']);	

		}	

}	

With	this,	you	should	be	able	to	see	the	articleId	parameter	interpolated	into
ArticleDetailComponent.

How	it	works...
In	this	application,	you	have	nested	components,	AppComponent	and	ArticleComponent,	both	of
which	contain	RouterOutlet.	Angular	is	able	to	take	the	routing	hierarchy	you	defined	and	apply
it	to	the	component	hierarchy	that	it	maps	to.	More	specifically,	for	every	Route	you	define	in
your	routing	hierarchy,	there	should	be	an	equal	number	of	RouterOutlets	in	which	they	can
render.

There's	more...
To	some,	it	will	feel	strange	to	need	to	extract	the	route	params	from	an	Observable	interface.	If
this	solution	feels	a	bit	clunky	to	you,	there	are	ways	of	tidying	it	up.

Refactoring	with	async	pipes

Recall	that	Angular	has	the	ability	to	interpolate	Observable	data	directly	into	the	template	as	it
becomes	ready.	Especially	since	you	should	only	ever	expect	the	param	Observable	to	emit
once,	you	can	use	it	to	insert	articleId	into	the	template	without	explicitly	setting	an	Observer:

[app/article-detail.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ActivatedRoute	}	from	'@angular/router';	

	

@Component({	

		template:	`	

				<h3>Article	Detail</h3>	

				<p>Showing	article		

							{{(activatedRoute.params	|	async).articleId}}</p>	

				<a	[routerLink]="'../'">Back	up	

		`	

})	

export	class	ArticleDetailComponent	{	

		constructor(activatedRoute:	ActivatedRoute)	{}	

}	

Even	though	this	works	perfectly	well,	using	a	private	reference	to	an	injected	service	directly
into	the	template	may	feel	a	bit	funny	to	you.	A	superior	strategy	is	to	grab	a	reference	to	the
public	Observable	interface	you	need	and	interpolate	that	instead:

[app/article-detail.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Observable}	from	'rxjs/Observable';	

import	{ActivatedRoute,	Params}	from	'@angular/router';	

	

@Component({	

		template:	`	

				<h3>Article	Detail</h3>	

				<p>Showing	article	{{(params	|	async).articleId}}</p>	

				<a	[routerLink]="'../'">Back	up	

		`	

})	

export	class	ArticleDetailComponent	{	

		params:Observable<Params>;	

		constructor(private	activatedRoute_:	ActivatedRoute)	{	

				this.params	=	activatedRoute_.params;	

		}	

}	

See	also
Navigating	with	routerLinks	demonstrates	how	to	navigate	around	Angular	applications
Navigating	with	the	Router	service	uses	an	Angular	service	to	navigate	around	an
application
Building	stateful	RouterLink	behavior	with	RouterLinkActive	shows	how	to	integrate
application	behavior	with	a	URL	state
Working	with	matrix	URL	parameters	and	routing	arrays	demonstrates	Angular's	built-in
matrix	URL	support
Adding	route	authentication	controls	with	route	guards	details	the	entire	process	of
configuring	protected	routes	in	your	application

Working	with	matrix	URL	parameters	and
routing	arrays
Angular	2	introduces	native	support	for	an	awesome	feature	that	seems	to	be	frequently
overlooked:	matrix	URL	parameters.	Essentially,	these	allow	you	to	attach	an	arbitrary	amount	of
data	inside	a	URL	to	any	routing	level	in	Angular,	and	giving	you	the	ability	to	read	that	data	out
as	a	regular	URL	parameter.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4553/.

http://ngcookbook.herokuapp.com/4553/

Getting	ready
Begin	with	the	code	created	at	the	end	of	the	How	to	do	it...	section	in	Implementing	nested
views	with	route	parameters	and	child	routes.

Your	goal	is	to	pass	arbitrary	data	to	both	the	ArticleList	and	ArticleDetail	levels	of	this
application	via	only	the	URL.

How	to	do	it...
routerLink	arrays	are	processed	serially,	so	any	string	that	will	become	part	of	the	URL	that	is
followed	by	an	object	will	have	that	object	converted	into	matrix	URL	parameters.	It	will	be
easier	to	understand	this	by	example,	so	begin	by	passing	in	some	dummy	data	to	the
ArticleList	view	from	routerLink:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<a	[routerLink]="['']">	

							Default	

				<a	[routerLink]="['article',	{listData:	'foo'}]">	

							Article	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{}	

Now,	if	you	click	on	this	link,	you	will	see	your	browser	navigate	to	the	following	path	while	still
successfully	rendering	the	ArticleList	view:

/article;listData=foo	

To	access	this	data,	simply	extract	it	from	the	ActivatedRoute	params:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ActivatedRoute}	from	'@angular/router';	

	

@Component({	

		template:	`	

				<h3>Article	List</h3>	

				<p	*ngFor="let	articleId	of	articleIds">	

						<a	[routerLink]="[articleId]">	

								Article	{{articleId}}	

							

				</p>	

		`	

})	

export	class	ArticleListComponent	{	

		articleIds:Array<number>	=	[1,2,3,4,5];	

			

		constructor(private	activatedRoute_:ActivatedRoute)	{	

				activatedRoute_.params	

						.subscribe(params	=>	{	

								console.log('List	params:');	

								console.log(window.location.href)	

								console.log(params);	

						});	

		}	

}	

When	the	view	is	loaded,	you'll	see	the	following:

List	params:	

/article;listData=foo	

Object	{listData:	"foo"}	

Awesome!	Do	the	same	for	the	detail	view:

[app/article-list.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ActivatedRoute}	from	'@angular/router';	

	

@Component({	

		template:	`	

				<h3>Article	List</h3>	

				<p	*ngFor="let	articleId	of	articleIds">	

						<a	[routerLink]="[articleId,	{detailData:	'bar'}]">	

								Article	{{articleId}}	

							

				</p>	

		`	

})	

export	class	ArticleListComponent	{	

		articleIds:Array<number>	=	[1,2,3,4,5];	

			

		constructor(private	activatedRoute_:ActivatedRoute)	{	

				activatedRoute_.params	

						.subscribe(params	=>	{	

								console.log('List	params:');	

								console.log(window.location.href)	

								console.log(params);	

						});	

		}	

}	

Add	the	same	amount	of	logging	to	the	detail	view:

[app/article-detail.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ActivatedRoute}	from	'@angular/router';	

	

@Component({	

		template:	`	

				<h3>Article	Detail</h3>	

				<p>Showing	article	{{articleId}}</p>	

				<a	[routerLink]="'../'">Back	up	

		`	

})	

export	class	ArticleDetailComponent	{	

		articleId:number;	

			

		constructor(private	activatedRoute_:ActivatedRoute)	{	

				activatedRoute_.params	

						.subscribe(params	=>	{	

								console.log('Detail	params:');	

								console.log(window.location.href)	

								console.log(params);	

									

								this.articleId	=	params['articleId']	

						});	

		}	

}	

When	you	visit	a	detail	page,	you'll	see	the	following	logged:

Detail	params:	

/article;listData=foo/1;detailData=bar	

Object	{articleId:	"1",	detailData:	"foo"}	

Very	interesting!	Not	only	is	Angular	able	to	associate	different	matrix	parameters	with	different
routing	levels,	but	it	has	combined	both	the	expected	articleId	parameter	and	the	unexpected
detailData	parameter	into	the	same	Observable	emission.

How	it	works...
Angular	is	able	to	seamlessly	convert	from	a	routing	array	containing	a	matrix	param	object	to	a
serialized	URL	containing	the	matrix	params,	then	back	into	a	deserialized	JavaScript	object
containing	the	parameter	data.	This	allows	you	to	store	arbitrary	data	inside	URLs	at	different
levels,	without	having	to	cram	it	all	into	a	query	string	at	the	end.

There's	more...
Notice	that	when	you	click	on	Back	up	in	the	detail	view,	the	listData	URL	param	is	preserved.
Angular	will	dutifully	maintain	the	state	as	you	navigate	throughout	the	application,	so	using
matrix	parameters	can	be	a	very	effective	way	of	storing	stateful	data	that	survives	navigation	or
page	reloads.

See	also
Navigating	with	routerLinks	demonstrates	how	to	navigate	around	Angular	applications
Navigating	with	the	Router	service	uses	an	Angular	service	to	navigate	around	an
application
Building	stateful	RouterLink	behavior	with	RouterLinkActive	shows	how	to	integrate
application	behavior	with	a	URL	state
Implementing	nested	views	with	route	parameters	and	child	routes	gives	an	example	of
how	to	configure	Angular	URLs	to	support	nesting	and	data	passing

Adding	route	authentication	controls	with
route	guards
The	nature	of	single-page	applications	wholly	controlling	the	process	of	routing	affords	them	the
ability	to	control	each	stage	of	the	process.	For	you,	this	means	that	you	can	intercept	route
changes	as	they	happen	and	make	decisions	about	where	the	user	should	go.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/6135/.

http://ngcookbook.herokuapp.com/6135/

Getting	ready
In	this	recipe,	you'll	build	a	simple	pseudo-authenticated	application	from	scratch.

You	goal	is	to	protect	users	from	certain	views	when	they	are	not	authenticated,	and	at	the	same
time,	implement	a	sensible	login/logout	flow.

How	to	do	it...
Begin	by	defining	two	initial	views	with	routes	in	your	application.	One	will	be	a	Default	view,
which	will	be	visible	to	everybody,	and	one	will	be	a	Profile	view,	which	will	be	only	visible	to
authenticated	users:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ProfileComponent}	from	'./profile.component';	

	

const	appRoutes:Routes	=	[

		{path:	'profile',	component:	ProfileComponent},	

		{path:	'**',	component:	DefaultComponent}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				ProfileComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}

	

[app/default.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	`	

				<h2>Default	view!</h2>	

		`	

})	

export	class	DefaultComponent	{}	

[app/profile.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	`	

				<h2>Profile	view</h2>	

				Username:	<input>	

				<button>Update</button>	

		`	

})	

export	class	ProfileComponent	{}	

Obviously,	this	does	not	do	anything	yet.

Implementing	the	Auth	service

As	done	in	the	Observables	chapter,	you	will	implement	a	service	that	will	maintain	the	state
entirely	within	a	BehaviorSubject.

Note

Recall	that	a	BehaviorSubject	will	rebroadcast	its	last	emitted	value	whenever	an	Observer	is
subscribed	to	it.	This	means	it	requires	setting	the	initial	state,	but	for	an	authentication	service
this	is	easy;	it	can	just	start	in	the	unauthenticated	state.

For	the	purpose	of	this	recipe,	let's	assume	that	a	username	of	null	means	the	user	is	not
authenticated	and	any	other	string	value	means	they	are	authenticated:

[app/auth.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{BehaviorSubject}	from	'rxjs/BehaviorSubject';	

import	{Observable}	from	'rxjs/Observable';	

	

@Injectable()	

export	class	AuthService	{	

		private	authSubject_:BehaviorSubject<any>	=		

				new	BehaviorSubject(null);	

		usernameEmitter:Observable<string>;	

	

		constructor()	{	

				this.usernameEmitter	=	this.authSubject_.asObservable();	

				this.logout();	

		}	

	

		login(username:string):void	{	

				this.setAuthState_(username);	

		}	

	

		logout():void	{	

				this.setAuthState_(null);	

		}	

	

		private	setAuthState_(username:string):void	{	

				this.authSubject_.next(username);	

		}	

}	

Note	that	nowhere	are	we	storing	the	username	as	a	string.	The	state	of	the	authentication	lives
entirely	within	BehaviorSubject.

Wiring	up	the	profile	view

Next,	make	this	service	available	to	the	entire	application	and	wire	up	the	profile	view:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ProfileComponent}	from	'./profile.component';	

import	{AuthService}	from	'./auth.service';	

	

const	appRoutes:Routes	=	[

		{path:	'profile',	component:	ProfileComponent},	

		{path:	'**',	component:	DefaultComponent}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				ProfileComponent,	

				RootComponent	

],	

		providers:	[

				AuthService	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

[app/profile.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{AuthService}	from	'./auth.service';	

import	{Observable}	from	'rxjs/Observable';	

	

@Component({	

		template:	`	

				<h2>Profile	view</h2>	

				Username:	<input	#un	value="{{username	|	async}}">	

				<button	(click)=update(un.value)>Update</button>	

		`	

})	

export	class	ProfileComponent	{	

		username:Observable<string>;	

	

		constructor(private	authService_:AuthService)	{		

				this.username	=	authService_.usernameEmitter;	

		}	

	

		update(username:string):void	{	

				this.authService_.login(username);	

		}	

}	

Tip

It's	very	handy	to	use	the	async	pipe	when	interpolating	values.	Recall	that	when	you	invoke
subscribe()	on	a	service	Observable	from	inside	an	instantiated	view	component,	you	must
invoke	unsubscribe()	on	the	Subscription	when	the	component	is	destroyed;	otherwise,	your
application	will	have	a	leaked	listener.	Making	the	Observable	available	to	the	view	saves	you
this	trouble!

With	the	profile	view	wired	up,	add	links	and	interpolate	the	username	into	the	root	app	view	in	a
navbar,	to	give	yourself	the	ability	to	navigate	around.	You	don't	have	to	revisit	the	file;	just	add
all	the	links	you'll	need	in	this	recipe	now:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Router}	from	'@angular/router';	

import	{AuthService}	from	'./auth.service';	

import	{Observable}	from	'rxjs/Observable';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h3	*ngIf="!!(username	|	async)">	

						Hello,	{{username	|	async}}.	

				</h3>	

				<a	[routerLink]="['']">Default	

				<a	[routerLink]="['profile']">Profile	

				<a	*ngIf="!!(username	|	async)"	

							[routerLink]="['login']">Login	

				<a	*ngIf="!!(username	|	async)"	

							[routerLink]="['logout']">Logout	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{	

		username:Observable<string>;	

	

		constructor(private	authService_:AuthService)	{	

				this.username	=	authService_.usernameEmitter;	

		}	

}		

Tip

For	consistency,	here	you	are	using	the	async	pipe	to	make	the	component	definition	simpler.
However,	since	you	have	four	instances	in	the	template	referencing	the	same	Observable,	it
might	be	better	down	the	road	to	instead	set	one	subscriber	to	Observable,	bind	it	to	a	string
member	in	RootComponent,	and	interpolate	this	instead.	Angular's	data	binding	makes	this	easy
for	you,	but	you	would	still	need	to	deregister	the	subscriber	when	this	is	destroyed.	However,
since	it	is	the	application's	root	component,	you	shouldn't	really	expect	this	to	happen.

Restricting	route	access	with	route	guards

So	far	so	good,	but	you	will	notice	that	the	profile	view	is	allowing	the	user	to	effectively	log	in
willy-nilly.	You	would	instead	like	to	restrict	access	to	this	view	and	only	allow	the	user	to	visit
it	when	they	are	already	authenticated.

Angular	gives	you	the	ability	to	execute	code,	inspect	the	route,	and	redirect	it	as	necessary
before	the	navigation	occurs	using	a	Route	Guard.

Note

Guard	is	a	bit	of	a	misleading	term	here.	You	should	think	of	this	feature	as	a	route	shim	that	lets
you	add	logic	that	executes	before	Angular	actually	goes	to	the	new	route.	It	can	indeed	"Guard"	a
route	from	an	unauthenticated	user,	but	it	can	also	just	as	easily	conditionally	redirect,	save	the
current	URL,	or	perform	other	tasks.

Since	the	Route	Guard	needs	to	have	the	@Injectable	decorator,	it	makes	good	sense	to	treat	it
as	a	service	type.

Start	off	with	the	skeleton	AuthGuardService	defined	inside	a	new	file	for	route	guards:

[app/route-guards.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{CanActivate}	from	'@angular/router';	

	

	

@Injectable()	

export	class	AuthGuardService	implements	CanActivate	{	

		constructor()	{}	

	

		canActivate()	{	

				//	This	method	is	invoked	during	route	changes	if	this	

				//	class	is	listed	in	the	Routes	

		}	

}	

Before	having	this	do	anything,	import	the	module	and	add	it	to	Routes:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ProfileComponent}	from	'./profile.component';	

import	{AuthService}	from	'./auth.service';	

import	{AuthGuardService}	from	'./route-guards.service';	

	

const	appRoutes:Routes	=	[

		{		

				path:	'profile',		

				component:	ProfileComponent,		

				canActivate:	[AuthGuardService]		

		},	

		{		

				path:	'**',		

				component:	DefaultComponent		

		}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				DefaultComponent,	

				ProfileComponent,	

				RootComponent	

],	

		providers:	[

				AuthService,	

				AuthGuardService	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

Now,	each	time	the	application	matches	a	route	to	a	profile	and	tries	to	navigate	there,	the
canActivate	method	defined	inside	AuthGuardService	will	be	called.	The	return	value	of	true
means	the	navigation	can	occur;	the	return	value	of	false	means	the	navigation	is	cancelled.

Tip

canActivate	can	either	return	a	boolean	or	an	Observable<boolean>.	Be	aware,	should	you
return	Observable,	the	application	will	dutifully	wait	for	the	Observable	to	emit	a	value	and
complete	it	before	navigating.

Since	the	application's	authentication	state	lives	inside	BehaviorSubject,	all	this	method	needs
to	do	is	subscribe,	check	the	username,	and	navigate	if	it	is	not	null.	It	suits	this	to	return
Observable<boolean>:

[app/route-guards.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{CanActivate,	Router}	from	'@angular/router';	

import	{AuthService}	from	'./auth.service';		

import	{Observable}	from	'rxjs/Observable';	

	

@Injectable()	

export	class	AuthGuardService	implements	CanActivate	{	

		constructor(private	authService_:AuthService,		

				private	router_:Router)	{}	

	

		canActivate():Observable<boolean>	{	

				return	this.authService_.usernameEmitter.map(username	=>	{		

						if	(!username)	{	

								this.router_.navigate(['login']);	

						}	else	{	

								return	true;	

						}	

				});	

		}	

}	

Once	you	implement	this,	you	will	notice	that	the	navigation	will	never	occur,	even	though	the
service	is	emitting	the	username	correctly.	This	is	because	the	recipient	of	the	return	value	of
canActivate	isn't	just	waiting	for	an	Observable	emission;	it	is	waiting	for	the	Observable	to
complete.	Since	you	just	want	to	peek	at	the	username	value	inside	BehaviorSubject,	you	can
just	return	a	new	Observable	that	returns	one	value	and	then	is	completed	using	take():

[app/route-guards.service.ts]	

import	{Injectable}	from	'@angular/core';	

import	{CanActivate,	Router}	from	'@angular/router';	

import	{AuthService}	from	'./auth.service';		

import	{Observable}	from	'rxjs/Observable';	

import	'rxjs/add/operator/take';	

	

@Injectable()	

export	class	AuthGuardService	implements	CanActivate	{	

		constructor(private	authService_:AuthService,		

				private	router_:Router)	{}	

	

		canActivate():Observable<Boolean>	{	

				return	this.authService_.usernameEmitter.map(username	=>	{		

						if	(!username)	{	

								this.router_.navigate(['login']);	

						}	else	{	

								return	true;	

						}	

				}).take(1);	

		}	

}	

Superb!	However,	this	application	still	lacks	a	method	to	formally	log	in	and	log	out.

Adding	login	behavior

Since	the	login	page	will	need	its	own	view,	it	should	get	its	own	route	and	component.	Once	the
user	logs	in,	there	is	no	need	to	keep	them	on	the	login	page,	so	you	want	to	redirect	them	to	the
default	view	once	they	are	done.

First,	create	the	login	component	and	its	corresponding	view:

[app/login.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Router}	from	'@angular/router';	

import	{AuthService}	from	'./auth.service';	

	

@Component({	

		template:	`	

				<h2>Login	view</h2>	

				<input	#un>	

				<button	(click)="login(un.value)">Login</button>	

		`	

})	

export	class	LoginComponent	{	

		constructor(private	authService_:AuthService,		

				private	router_:Router)	{	}	

	

		login(newUsername:string):void	{	

				this.authService_.login(newUsername);	

				this.authService_.usernameEmitter	

						.subscribe(username	=>	{	

								if	(!!username)	{	

										this.router_.navigate(['']);	

								}	

						});	

		}	

}		

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ProfileComponent}	from	'./profile.component';	

import	{LoginComponent}	from	'./login.component';	

import	{AuthService}	from	'./auth.service';	

import	{AuthGuardService}	from	'./route-guards.service';	

	

const	appRoutes:Routes	=	[

		{		

				path:	'login',		

				component:	LoginComponent	

		},	

		{		

				path:	'profile',		

				component:	ProfileComponent,		

				canActivate:	[AuthGuardService]		

		},	

		{		

				path:	'**',		

				component:	DefaultComponent		

		}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				LoginComponent,	

				DefaultComponent,	

				ProfileComponent,	

				RootComponent	

],	

		providers:	[

				AuthService,	

				AuthGuardService	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}

You	should	now	be	able	to	log	in.	This	is	all	well	and	good,	but	you	will	notice	that	with	this
implemented,	updating	the	username	in	the	profile	view	will	navigate	to	the	default	view,
exhibiting	the	same	behavior	defined	in	the	login	component.	This	is	because	the	subscriber	is
still	listening	to	AuthService	Observable.	You	need	to	add	in	an	OnDestroy	method	to	correctly
tear	down	the	login	view:

[app/login.component.ts]	

	

import	{Component,	ngOnDestroy}	from	'@angular/core';	

import	{Router}	from	'@angular/router';	

import	{AuthService}	from	'./auth.service';	

import	{Subscription}	from	'rxjs/Subscription';	

	

@Component({	

		template:	`	

				<h2>Login	view</h2>	

				<input	#un>	

				<button	(click)="login(un.value)">Login</button>	

		`	

})	

export	class	LoginComponent	implements	OnDestroy	{	

		private	usernameSubscription_:Subscription;	

			

		constructor(private	authService_:AuthService,		

				private	router_:Router)	{	}	

	

		login(newUsername:string):void	{	

				this.authService_.login(newUsername);	

				this.usernameSubscription_	=	this.authService_	

						.usernameEmitter	

						.subscribe(username	=>	{	

								if	(!!username)	{	

										this.router_.navigate(['']);	

								}	

						});	

		}	

			

		ngOnDestroy()	{	

				//	Only	invoke	unsubscribe()	if	this	exists	

				this.usernameSubscription_	&&	

						this.usernameSubscription_.unsubscribe();	

		}	

}		

Adding	the	logout	behavior

Finally,	you	want	to	add	a	way	for	users	to	log	out.	This	can	be	accomplished	in	a	number	of
ways,	but	a	good	implementation	will	be	able	to	delegate	the	logout	behavior	to	its	associated
methods	without	introducing	too	much	boilerplate	code.

Ideally,	you	would	like	for	the	application	to	just	be	able	to	navigate	to	the	logout	route	and	let
Angular	handle	the	rest.	This,	too,	can	be	accomplished	with	canActivate.	First,	define	a	new
Route	Guard:

[app/route-guards.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{CanActivate,	Router}	from	'@angular/router';	

import	{AuthService}	from	'./auth.service';	

import	{Observable}	from	'rxjs/Observable';	

import	'rxjs/add/operator/take';	

	

	

@Injectable()	

export	class	AuthGuardService	implements	CanActivate	{	

		constructor(private	authService_:AuthService,		

				private	router_:Router)	{}	

	

		canActivate():Observable<boolean>	{	

				return	this.authService_.usernameEmitter.map(username	=>	{		

						if	(!username)	{	

								this.router_.navigate(['login']);	

						}	else	{	

								return	true;	

						}	

				}).take(1);	

		}	

}	

	

@Injectable()	

export	class	LogoutGuardService	implements	CanActivate	{			

		constructor(private	authService_:AuthService,		

				private	router_:Router)	{}	

	

		canActivate():boolean	{	

				this.authService_.logout();	

				this.router_.navigate(['']);	

				return	true;	

		}	

}

This	behavior	should	be	pretty	self-explanatory.

Tip

Your	canActivate	method	must	match	the	signature	defined	in	the	CanActivate	interface,	so
even	though	it	will	always	navigate	to	a	new	view,	you	should	add	a	return	value	to	please	the
compiler	and	to	handle	any	cases	where	the	preceding	code	should	fall	through.

Next,	add	the	logout	component	and	the	route.	The	logout	component	will	never	be	rendered,	but
the	route	definition	requires	that	it	is	mapped	to	a	valid	component.	So	LogoutComponent	will
consist	of	a	dummy	class:

[app/logout.component.ts}	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		template:	''	

})	

export	class	LogoutComponent{}	

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{DefaultComponent}	from	'./default.component';	

import	{ProfileComponent}	from	'./profile.component';	

import	{LoginComponent}	from	'./login.component';	

import	{LogoutComponent}	from	'./logout.component';	

import	{AuthService}	from	'./auth.service';	

import	{AuthGuardService,	LogoutGuardService}		

		from	'./route-guards.service';	

	

const	appRoutes:Routes	=	[

		{		

				path:	'login',		

				component:	LoginComponent	

		},	

		{		

				path:	'logout',		

				component:	LogoutComponent,	

				canActivate:	[LogoutGuardService]	

		},	

		{		

				path:	'profile',		

				component:	ProfileComponent,		

				canActivate:	[AuthGuardService]		

		},	

		{		

				path:	'**',		

				component:	DefaultComponent		

		}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				LoginComponent,	

				LogoutComponent,	

				DefaultComponent,	

				ProfileComponent,	

				RootComponent	

],	

		providers:	[

				AuthService,	

				AuthGuardService,	

				LogoutGuardService	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

With	this,	you	should	have	a	fully	functional	login/logout	behavior	process.

How	it	works...
The	core	of	this	implementation	is	built	around	Observables	and	Route	Guards.	Observables
allow	your	AuthService	module	to	maintain	the	state	and	expose	it	simultaneously	through
BehaviorSubject,	and	Route	Guards	allow	you	to	conditionally	navigate	and	redirect	at	your
application's	discretion.

There's	more...
Application	security	is	a	broad	and	involved	subject.	The	recipe	shown	here	involves	how	to
smoothly	move	your	user	around	the	application,	but	it	is	by	no	means	a	rigorous	security	model.

The	actual	authentication

You	should	always	assume	the	client	can	manipulate	its	own	execution	environment.	In	this
example,	even	if	you	protect	the	login/logout	methods	on	AuthService	as	well	as	you	can,	it	will
be	easy	for	the	user	to	gain	access	to	these	methods	and	authenticate	themselves.

User	interfaces,	which	Angular	applications	squarely	fall	into,	are	not	meant	to	be	secure.
Security	responsibilities	fall	on	the	server	side	of	the	client/server	model	since	the	user	does	not
control	that	execution	environment.	In	an	actual	application,	the	login()	method	here	would
make	a	network	request	get	some	sort	of	a	token	from	the	server.	Two	very	popular
implementations,	JSON	Web	Tokens	and	Cookie	auth,	do	this	in	different	ways,	but	they	are
essentially	variations	of	the	same	theme.	Angular	or	the	browser	will	store	and	send	these	tokens,
but	ultimately	the	server	should	act	as	the	gatekeeper	of	secure	information.

Secure	data	and	views

Any	secure	information	you	might	send	to	the	client	should	be	behind	server-based	authentication.
For	many	developers,	this	is	an	obvious	fact,	especially	when	dealing	with	an	API.	However,
Angular	also	requests	templates	and	static	files	from	the	server,	and	some	of	these	you	might	not
want	to	serve	to	the	wrong	people.	In	this	case,	you	will	need	to	configure	your	server	to
authenticate	requests	for	these	static	files	before	you	serve	them	to	the	client.

See	also
Navigating	with	the	Router	service	uses	an	Angular	service	to	navigate	around	an
application
Building	stateful	RouterLink	behavior	with	RouterLinkActive	shows	how	to	integrate
application	behavior	with	a	URL	state
Implementing	nested	views	with	route	parameters	and	child	routes	gives	an	example	of
how	to	configure	Angular	URLs	to	support	nesting	and	data	passing
Working	with	matrix	URL	parameters	and	routing	arrays	demonstrates	Angular's	built-in
matrix	URL	support

Chapter	7.	Services,	Dependency	Injection,
and	NgModule
This	chapter	will	cover	the	following	recipes:

Injecting	a	simple	service	into	a	component
Controlling	service	instance	creation	and	injection	with	NgModule
Service	injection	aliasing	with	useClass	and	useExisting
Injecting	a	value	as	a	service	with	useValue	and	OpaqueTokens
Building	a	provider-configured	service	with	useFactory

Introduction
Angular	1	gave	you	a	hodgepodge	of	different	service	types.	Many	of	them	had	a	great	deal	of
overlap.	Many	of	them	were	confusing.	And	all	of	them	were	singletons.

Angular	2	has	totally	thrown	away	this	concept.	In	its	place,	there	is	a	shiny	new	dependency
injection	system	that	is	far	more	extensible	and	sensible	than	its	predecessor.	It	allows	you	to
have	atomic	and	non-atomic	service	types,	aliasing,	factories,	and	all	kinds	of	incredibly	useful
tools	for	use	in	your	application.

If	you	are	looking	to	use	services	much	in	the	same	way	as	earlier,	you	will	find	that	your
understanding	of	service	types	will	easily	carry	over	to	the	new	system.	But	for	developers	who
want	more	out	of	their	applications,	the	new	world	of	dependency	injection	is	incredibly
powerful	and	obviously	built	for	applications	that	can	scale.

Injecting	a	simple	service	into	a	component
The	most	common	use	case	will	be	for	a	component	to	directly	inject	a	service	into	itself.
Although	the	rhythms	of	defining	service	types	and	using	dependency	injection	remain	mostly	the
same,	it's	important	to	get	a	good	hold	of	the	fundamentals	of	Angular	2's	dependency	injection
schema,	as	it	differs	in	several	important	ways.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4263.

http://ngcookbook.herokuapp.com/4263

Getting	ready
Suppose	you	had	the	following	skeleton	application:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>root	component!</h1>	

				<button	(click)="fillArticle()">Show	article</button>	

				<h2>{{title}}</h2>	

		`	

})	

export	class	RootComponent	{	

		title:string;	

		constructor()	{}	

		fillArticle()	{}	

}	

Your	objective	is	to	implement	a	service	that	can	be	injected	into	this	component	and	return	an
article	title	to	fill	the	template.

How	to	do	it...
As	you	might	expect,	services	in	Angular	2	are	represented	as	classes.	Similar	to	components,
services	are	designated	as	such	with	an	@Injectable	decorator.	Create	this	service	in	its	own
file:

[app/article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	ArticleService	{	

		private	title_:string	=	`	

				CFO	Yodels	Quarterly	Earnings	Call,	Stock	Skyrockets	

		`	

}	

This	service	has	a	private	title	that	you	need	to	transfer	to	the	component,	but	first	you	must	make
the	service	itself	available	to	the	component.	This	can	be	done	by	importing	the	service,	then
listing	it	in	the	providers	property	of	the	application	module:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleService}	from	'./article.service';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				RootComponent	

],	

		providers:	[

				ArticleService			

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

Now	that	the	service	can	be	provided,	inject	it	into	the	component:

[app/root.component.ts]	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>root	component!</h1>	

				<button	(click)="fillArticle()">Show	article</button>	

				<h2>{{title}}</h2>	

		`	

})	

export	class	RootComponent	{	

		title:string;	

	

		constructor(private	articleService_:ArticleService)	{}	

	

		fillArticle()	{}	

}	

This	new	code	will	create	a	new	instance	of	ArticleService	when	RootComponent	is
instantiated,	and	then	inject	it	into	the	constructor.	Anything	injected	into	a	component	will	be
available	as	a	component	instance	member,	which	you	can	use	to	connect	a	service	method	to	a
component	method:

[app/article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	ArticleService	{	

		private	title_:string	=	`	

				CFO	Yodels	Quarterly	Earnings	Call,	Stock	Skyrockets	

		`;	

		getTitle()	{	

				return	this.title_;	

		}	

}	

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>root	component!</h1>	

				<button	(click)="fillArticle()">Show	article</button>	

				<h2>{{title}}</h2>	

		`	

})	

export	class	RootComponent	{	

		title:string;	

	

		constructor(private	articleService_:ArticleService)	{}	

	

		fillArticle():void	{	

				this.title	=	this.articleService_.getTitle();					

		}	

}	

How	it	works...
Without	the	decorator,	the	service	you	have	just	built	is	rather	plain	in	composition.	With	the
@Injectable()	decoration,	the	class	is	designated	to	the	Angular	framework	as	one	that	will	be
injected	elsewhere.

Note

Designation	as	an	injectable	has	a	number	of	considerations	that	are	importantly	distinct	from	just
being	passed	in	parametrically.	When	is	the	injected	class	instantiated?	How	is	it	linked	to	the
component	instance?	How	are	global	and	local	instances	controlled?	These	are	all	discussed	in
the	more	advanced	recipes	in	this	chapter.

Designation	as	an	injectable	service	is	only	one	piece	of	the	puzzle.	The	component	needs	to	be
informed	of	the	existence	of	the	service.	You	must	first	import	the	service	class	into	the
component	module,	but	this	alone	is	not	sufficient.	Recall	that	the	syntax	used	to	inject	a	service
was	simply	a	way	to	list	it	as	a	constructor	parameter.	Behind	the	scenes,	Angular	is	smart	enough
to	recognize	that	these	component	arguments	are	to	be	injected,	but	it	requires	the	final	piece	to
connect	the	imported	module	to	its	place	as	an	injected	resource.

This	final	piece	takes	the	form	of	the	providers	property	of	the	NgModule	definition.	For	the
purpose	of	this	recipe,	it	isn't	important	that	you	know	the	details	of	the	property.	In	short,	this
array	designates	the	articleService	constructor	parameter	as	an	injectable	and	identifies	that
ArticleService	should	be	injected	into	the	constructor.

There's	more...
It's	important	to	acknowledge	here	how	the	TypeScript	decorators	help	the	dependency	injection
setup.	Decorators	do	not	modify	an	instance	of	a	class;	rather,	they	modify	the	class	definition.
The	NgModule	containing	the	providers	list	will	be	initialized	prior	to	any	instance	of	the	actual
component	being	instantiated.	Thus,	Angular	will	be	aware	of	all	the	services	that	you	might	want
to	inject	into	the	constructor.

See	also
Controlling	service	instance	creation	and	injection	with	NgModule	gives	a	broad
overview	of	how	Angular	2	architects	provider	hierarchies	using	modules

Controlling	service	instance	creation	and
injection	with	NgModule
In	a	stark	departure	from	Angular	1.x,	Angular	2	features	a	hierarchical	injection	scheme.	This
has	a	substantial	number	of	implications,	and	one	of	the	more	prominent	one	is	the	ability	to
control	when,	and	how	many,	services	are	created.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/2102/.

http://ngcookbook.herokuapp.com/2102/

Getting	ready
Suppose	you	begin	with	the	following	simple	application:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>root	component!</h1>	

				<article></article>	

				<article></article>	

		`	

})	

export	class	RootComponent	{}	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<p>Article	component!</p>	

		`	

})	

export	class	ArticleComponent	{}	

[app/article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	ArticleService	{	

		constructor()	{		

				console.log('ArticleService	constructor!');	

		}	

}	

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component;		

	

@NgModule({	

		imports:	[

				BrowserModule,	

],	

		declarations:	[

				RootComponent,	

				ArticleComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

Your	objective	is	to	inject	a	single	instance	of	ArticleService	into	the	two	child	components.	In
this	recipe,	console.log	inside	the	ArticleService	constructor	allows	you	to	see	when	one	is
instantiated.

How	to	do	it...
Begin	by	importing	the	service	into	AppModule,	then	providing	it	with	the	following:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component;		

import	{ArticleService}	from	'./article.service;	

	

	

@NgModule({	

		imports:	[

				BrowserModule,	

],	

		declarations:	[

				RootComponent,	

				ArticleComponent	

],	

		providers:	[

				ArticleService	

]	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

Since	ArticleService	is	provided	in	the	same	module	where	ArticleComponent	is	declared,
you	are	now	able	to	inject	ArticleService	into	the	child	ArticleComponent	instances:

[app/article/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<p>Article	component!</p>	

		`	

})	

export	class	ArticleComponent	{	

		constructor(private	articleService_:ArticleService)	{}	

}	

With	this,	you	will	find	that	the	same	service	instance	is	injected	into	both	the	child	components
as	the	ArticleService	constructor,	namely	console.log,	is	only	executed	once.

Splitting	up	the	root	module

As	the	application	grows,	it	will	make	less	and	less	sense	to	cram	everything	into	the	same	top-
level	module.	Instead,	it	would	be	ideal	for	you	to	break	apart	modules	into	chunks	that	make
sense.	In	the	case	of	this	recipe,	it	would	be	preferable	to	provide	ArticleService	to	the
application	pieces	that	are	actually	going	to	inject	it.

Define	a	new	ArticleModule	and	move	the	relevant	module	imports	into	that	file	instead:

[app/article.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

import	{ArticleService}	from	'./article.service';	

	

@NgModule({	

		declarations:	[

				ArticleComponent	

],	

		providers:	[

				ArticleService			

],	

		bootstrap:	[

				ArticleComponent	

]	

})	

export	class	ArticleModule	{}	

Then,	import	this	entire	module	into	AppModule	instead:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleModule}	from	'./article.module';	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				ArticleModule	

],	

		declarations:	[

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

If	you	stop	here,	you'll	find	that	there	are	no	errors,	but	AppModule	isn't	able	to	render
ArticleComponent.	This	is	because	Angular	modules,	like	other	module	systems,	need	to
explicitly	define	what	is	being	exported	to	other	modules:

[app/article.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

import	{ArticleService}	from	'./article.service';	

	

@NgModule({	

		declarations:	[

				ArticleComponent	

],	

		providers:	[

				ArticleService			

],	

		bootstrap:	[

				ArticleComponent	

],	

		exports:	[

				ArticleComponent			

]	

})	

export	class	ArticleModule	{}	

With	this,	you	will	still	see	that	ArticleService	is	instantiated	once.

How	it	works...
Angular	2's	dependency	injection	takes	advantage	of	its	hierarchy	structure	when	providing	and
injecting	services.	From	where	a	service	is	injected,	Angular	will	instantiate	a	service	wherever
it	is	provided.	Inside	a	module	definition,	this	will	only	ever	happen	once.

In	this	case,	you	provided	ArticleService	to	both	AppModule	and	ArticleModule.	Even
though	the	service	is	injected	twice	(once	for	each	ArticleComponent),	Angular	uses	the
providers	declaration	to	decide	when	to	create	the	service.

There's	more...
At	this	point,	a	curious	developer	should	have	lots	of	questions	about	how	exactly	this	injection
schema	behaves.	There	are	numerous	different	configuration	flavors	that	can	be	useful	to	the
developer,	and	these	configurations	only	require	a	minor	code	adjustment	from	the	preceding
result.

Injecting	different	service	instances	into	different	components

As	you	might	anticipate	from	the	preceding	explanation,	you	can	reconfigure	this	application	to
inject	a	different	ArticleService	instance	into	each	child,	two	in	total.	This	can	be	done	by
migrating	the	providers	declaration	out	of	the	module	definition	and	into	the
ArticleComponent	definition:

[app/article.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

	

@NgModule({	

		declarations:	[

				ArticleComponent	

],	

		bootstrap:	[

				ArticleComponent	

],	

		exports:	[

				ArticleComponent			

]	

})	

export	class	ArticleModule	{}	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<p>Article	component!</p>	

		`,	

		providers:	[

				ArticleService	

]	

})	

export	class	ArticleComponent	{	

		constructor(private	articleService_:ArticleService)	{}	

}	

You	can	verify	that	two	instances	are	being	created	by	observing	the	two	console.log	statements

called	from	the	ArticleService	constructor.

Service	instantiation

The	location	of	the	providers	also	means	that	service	instance	instantiation	is	bound	to	the
lifetime	of	the	component.	For	this	application,	this	means	that	whenever	a	component	is	created,
if	a	service	is	provided	inside	that	component	definition,	a	new	service	instance	will	be	created.

For	example,	if	you	were	to	toggle	the	existence	of	a	child	component	with	ArticleService
provided	inside	it,	it	will	create	a	new	ArticleService	every	time	ArticleComponent	is
constructed:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>root	component!</h1>	

				<button	(click)="toggle=!toggle">Toggle</button>	

				<article></article>	

				<article	*ngIf="toggle"></article>	

		`	

})	

export	class	RootComponent	{}	

You	can	verify	that	new	instances	are	being	created	each	time	ngIf	evaluates	to	true	by
observing	additional	console.log	statements	called	from	the	ArticleService	constructor.

See	also
Injecting	a	simple	service	into	a	component	walks	you	through	the	basics	of	Angular	2's
dependency	injection	schema
Service	injection	aliasing	with	useClass	and	useExisting	demonstrates	how	to	intercept
dependency	injection	provider	requests

Service	injection	aliasing	with	useClass	and
useExisting
As	your	application	becomes	more	complex,	you	may	come	to	a	situation	where	you	would	like	to
use	your	services	in	a	polymorphic	style.	More	specifically,	some	places	in	your	application	may
want	to	request	Service	A,	but	a	configuration	somewhere	in	your	application	will	actually	give	it
Service	B.	This	recipe	will	demonstrate	one	way	in	which	this	can	be	useful,	but	this	behavior
allows	your	application	to	be	more	extensible	in	multiple	ways.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/1109/.

http://ngcookbook.herokuapp.com/1109/

Getting	ready
Suppose	you	begin	with	the	following	skeleton	application.

Dual	services

You	begin	with	two	services,	ArticleService	and	EditorArticleService,	and	their	shared
interface,	ArticleSourceInterface.	EditorArticleService	inherits	from	ArticleService:

[app/article-source.interface.ts]	

	

export	interface	ArticleSourceInterface	{	

		getArticle():Article	

}	

	

export	interface	Article	{	

		title:string,		

		body:string,		

		//	?	denotes	an	optional	property	

		notes?:string		

}	

[app/article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{Article,	ArticleSourceInterface}		

		from	'./article-source.interface';	

	

@Injectable()	

export	class	ArticleService	implements	ArticleSourceInterface	{	

		private	title_:string	=		

				"Researchers	Determine	Ham	Sandwich	Not	Turing	Complete";	

		private	body_:string	=		

				"Computer	science	community	remains	skeptical";	

	

		getArticle():Article	{	

				return	{	

						title:	this.title_,	

						body:	this.body_	

				};	

		}	

}	

[app/editor-article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

import	{Article,	ArticleSourceInterface}		

		from	'./article-source.interface';	

	

@Injectable()	

export	class	EditorArticleService	extends	ArticleService		

				implements	ArticleSourceInterface	{	

		private	notes_:string	=	"Swing	and	a	miss!";	

	

		constructor()	{		

				super();		

		}	

	

		getArticle():Article	{	

				//	Combine	objects	and	return	the	joined	object	

				return	Object.assign(

						{},		

						super.getArticle(),		

						{		

								notes:	this.notes_		

						});	

		}	

}	

A	unified	component

Your	objective	is	to	be	able	to	use	the	following	component	so	that	both	these	services	can	be
injected	into	the	following	component:

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

import	{Article}	from	'./article-source.interface';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h2>{{article.title}}</h2>	

				<p>{{article.body}}</p>	

				<p	*ngIf="article.notes">	

						<i>Notes:	{{article.notes}}</i>	

				</p>	

		`	

})	

export	class	ArticleComponent	{	

		article:Article;	

		constructor(private	articleService_:ArticleService)	{		

				this.article	=	articleService.getArticle();	

		}	

}	

How	to	do	it...
When	listing	providers,	Angular	2	allows	you	to	declare	an	aliased	reference	that	specifies	what
service	should	actually	be	provided	when	one	of	the	certain	types	is	requested.	Since	Angular	2
injection	will	follow	the	component	tree	upwards	to	find	the	provider,	one	way	to	declare	this
alias	is	by	wrapping	the	component	with	a	parent	component	that	will	specify	this	alias:

[app/default-view.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

	

@Component({	

		selector:	'default-view',	

		template:	`	

				<h3>Default	view</h3>	

				<ng-content></ng-content>	

		`,	

		providers:	[ArticleService]	

})	

export	class	DefaultViewComponent	{}	

[app/editor-view.component.ts]	

	

import	{Component	}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@Component({	

		selector:	'editor-view',	

		template:	`	

				<h3>Editor	view</h3>	

				<ng-content></ng-content>	

		`,	

		providers:	[

				{provide:	ArticleService,	useClass:	EditorArticleService}	

]	

})	

export	class	EditorViewComponent	{}	

Note

Note	that	both	these	classes	are	acting	as	passthrough	components.	Other	than	adding	a	header
(which	is	merely	for	learning	the	purpose	of	instruction	in	this	recipe),	these	classes	are	only
specifying	a	provider	and	are	unconcerned	with	their	content.

With	the	wrapper	classes	defined,	you	can	now	add	them	to	the	application	module,	then	use	them
to	create	two	instances	of	ArticleComponent:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component';	

import	{DefaultViewComponent}	from	'./default-view.component';	

import	{EditorViewComponent}	from	'./editor-view.component';	

import	{ArticleComponent}	from	'./article.component';	

import	{ArticleService}	from	'./article.service';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				RootComponent,	

				ArticleComponent,	

				DefaultViewComponent,	

				EditorViewComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<default-view>	

						<article></article>	

				</default-view>	

				<hr	/>	

				<editor-view>	

						<article></article>	

				</editor-view>	

		`	

})	

export	class	RootComponent	{}	

With	this,	you	should	now	see	that	the	editor	version	of	ArticleComponent	gets	the	notes,	but	the
default	version	does	not.

How	it	works...
In	Angular	1,	the	service	type	that	was	supposed	to	be	injected	was	identified	from	a	function
parameter	by	doing	a	direct	match	of	the	parameter	symbol.	function(Article)	would	inject
the	Article	service,	function	(User)	the	User	service,	and	so	on.	This	led	to	nastiness,	such
as	the	minification-proofing	of	constructors	by	providing	an	array	of	strings	to	match	against
['Article',	function(Article)	{}].

This	is	no	longer	the	case.	When	a	provider	is	registered,	the	useClass	option	utilizes	the	two-
part	dependency	injection	matching	scheme	in	Angular	2.	The	first	part	is	the	provider	token,
which	is	the	parameter	type	of	the	service	being	injected.	In	this	case,	private
articleService_:ArticleService	uses	the	ArticleService	token	to	request	that	an	instance
be	injected.	Angular	2	takes	this	and	matches	this	token	against	the	declared	providers	in	the
component	hierarchy.	When	a	token	is	matched,	Angular	2	will	use	the	second	part,	the	provider
itself,	to	inject	an	instance	of	the	service.

In	reality,	providers:	[ArticleService]	is	a	shorthand	for	providers:	[{provide:
ArticleService,	useClass:	ArticleService}].	The	shorthand	is	useful	since	you	will
almost	always	be	requesting	the	service	class	that	would	match	the	injected	class.	However,	in
this	recipe,	you	are	configuring	Angular	2	to	recognize	an	ArticleService	token	and	so	use	the
EditorArticleService	provider.

There's	more...
An	attentive	developer	will	have	realized	by	this	point	that	the	utility	of	useClass	is	limited	in
the	sense	that	it	does	not	allow	you	to	independently	control	where	the	actual	service	is	provided.
In	other	words,	the	place	where	you	intercept	the	provider	definition	with	useClass	is	also	the
place	where	the	replacement	class	will	be	provided.

In	this	example,	useClass	is	suitable	since	you	are	perfectly	happy	to	provide
EditorArticleService	in	the	same	place	where	you	are	specifying	that	it	should	be	used	to
replace	ArticleService.	However,	it	is	not	difficult	to	imagine	a	scenario	in	which	you	would
like	to	specify	the	replacement	service	type	but	have	it	injected	higher	up	in	the	component	tree.
This,	after	all,	would	allow	you	to	reuse	instances	of	a	service	instead	of	having	to	create	a	new
one	for	each	useClass	declaration.

For	this	purpose,	you	can	use	useExisting.	It	requires	you	to	explicitly	provide	the	service	type
separately,	but	it	will	reuse	the	provided	instance	instead	of	creating	a	new	one.	For	the
application	you	just	created,	you	can	now	reconfigure	it	with	useExisting,	and	provide	both	the
services	at	the	RootComponent	level.

To	demonstrate	that	your	reasoning	about	the	service	behavior	is	correct,	double	the	number	of
Article	components,	and	add	a	log	statement	to	the	constructor	of	ArticleService	to	ensure
you	are	only	creating	one	of	each	service:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<default-view>	

						<article></article>	

				</default-view>	

				<editor-view>	

						<article></article>	

				</editor-view>	

				<default-view>	

						<article></article>	

				</default-view>	

				<editor-view>	

						<article></article>	

				</editor-view>	

		`	

})	

export	class	RootComponent	{}	

[app/article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

import	{Article,	ArticleSourceInterface}	from	'./article-source.interface';	

	

@Injectable()	

export	class	ArticleService	implements	ArticleSourceInterface	{	

		private	title_:string	=		

				"Researchers	Determine	Ham	Sandwich	Not	Turing	Complete";	

		private	body_:string	=		

				"Computer	science	community	remains	skeptical";	

	

		constructor()	{	

				console.log('Instantiated	ArticleService!');	

		}	

	

		getArticle():Article	{	

				return	{	

						title:	this.title_,	

						body:	this.body_	

				};	

		}	

}	

[app/editor-view.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@Component({	

		selector:	'editor-view',	

		template:	`	

				<h3>Editor	view</h3>	

				<ng-content></ng-content>	

		`,	

		providers:	[

				{provide:	ArticleService,	useExisting:	EditorArticleService}	

]	

})	

export	class	EditorViewComponent	{}	

[app/default-view.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

	

@Component({	

		selector:	'default-view',	

		template:	`	

				<h3>Default	view</h3>	

				<ng-content></ng-content>	

		`	

		//	providers	removed	

})	

export	class	DefaultViewComponent	{}	

In	this	configuration,	with	useClass,	you	will	see	that	one	instance	of	ArticleService	and	two
instances	of	EditorArticleService	are	created.	When	replaced	with	useExisting,	you	will
find	that	only	one	instance	of	each	is	created.

Thus,	in	this	reconfigured	version	of	the	recipe,	your	application	is	doing	the	following:

At	the	RootComponent	level,	it	is	providing	EditorArticleService
At	the	EditorViewComponent	level,	it	is	redirecting	ArticleService	injection	tokens	to
EditorArticleService

At	the	ArticleComponent	level,	it	is	injecting	ArticleService	using	the
ArticleService	token

Refactoring	with	directive	providers

If	this	implementation	seems	clunky	and	verbose	to	you,	you	are	certainly	on	to	something.	The
intermediate	components	are	performing	their	jobs	quite	well,	but	aren't	really	doing	anything
other	than	shimming	in	an	intermediate	provider's	declaration.	Instead	of	wrapping	in	a
component,	you	can	migrate	the	provider's	statement	into	a	directive	and	do	away	with	both	the
view	components:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{ArticleComponent}	from	'./	article.component';	

import	{ArticleService}	from	'./article.service';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<article></article>	

				<article	editor-view></article>	

				<article></article>	

				<article	editor-view></article>	

		`	

})	

export	class	RootComponent	{}	

[app/editor-view.directive.ts]	

	

import	{Directive	}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@Directive({	

		selector:	'[editor-view]',	

		providers:	[

				{provide:	ArticleService,	useExisting:	EditorArticleService}	

]	

})	

export	class	EditorViewDirective	{}	

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component';	

import	{DefaultViewComponent}	from	'./default-view.component';	

import	{EditorViewDirective}	from	'./editor-view.directive';	

import	{ArticleComponent}	from	'./article.component';	

import	{ArticleService}	from	'./article.service';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				RootComponent,	

				ArticleComponent,	

				DefaultViewComponent,	

				EditorViewDirective	

],	

		providers:	[

				ArticleService,	

				EditorArticleService	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

Your	application	should	work	just	the	same!

See	also
Injecting	a	simple	service	into	a	component	walks	you	through	the	basics	of	Angular	2's
dependency	injection	schema
Controlling	service	instance	creation	and	injection	with	NgModule	gives	a	broad
overview	of	how	Angular	2	architects	provider	hierarchies	using	modules
Injecting	a	value	as	a	service	with	useValue	and	OpaqueTokens	shows	how	you	can	use
dependency-injected	tokens	to	inject	generic	objects
Building	a	provider-configured	service	with	useFactory	details	the	process	of	setting	up	a
service	factory	to	create	configurable	service	definitions

Injecting	a	value	as	a	service	with	useValue
and	OpaqueTokens
In	Angular	1,	there	was	a	broad	selection	of	service	types	you	could	use	in	your	application.	A
subset	of	these	types	allowed	you	to	inject	a	static	value	instead	of	a	service	instance,	and	this
useful	ability	is	continued	in	Angular	2.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/3032/.

http://ngcookbook.herokuapp.com/3032/

Getting	ready
Begin	with	the	following	simple	application:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				RootComponent,	

				ArticleComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<article></article>	

		`	

})	

export	class	RootComponent	{}	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

					

				<h2>Fool	and	His	Money	Reunited	at	Last</h2>	

				<p>Author:	Jake	Hsu</p>	

		`	

})	

export	class	ArticleComponent	{}	

How	to	do	it...
Although	a	formal	service	class	declaration	and	@Injectable	decorator	designation	is	no	longer
necessary	for	injecting	a	value,	token/provider	mapping	is	still	needed.	Since	there	is	no	longer	a
class	available	that	can	be	used	to	type	the	injectable,	something	else	will	have	to	act	as	its
replacement.

Angular	2	solves	this	problem	with	OpaqueToken.	This	module	allows	you	to	create	a	classless
token	that	can	be	used	to	pair	the	injected	value	with	the	constructor	argument.	This	can	be	used
alongside	the	useValue	provide	option,	which	simply	directly	provides	whatever	its	contents	are
as	injected	values.

Define	a	token	using	a	unique	string	in	its	constructor:

[app/logo-url.token.ts]	

	

import	{OpaqueToken}	from	'@angular/core';	

	

export	const	LOGO_URL	=	new	OpaqueToken('logo.url');	

Incorporate	this	token	into	the	application	module	definition	as	you	normally	would.	However,
you	must	specify	what	it	will	actually	point	to	when	it	is	injected.	In	this	case,	it	should	resolve	to
an	image	URL	string:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component';	

import	{LOGO_URL}	from	'./logo-url.token';	

	

@NgModule({	

		imports:	[

				BrowserModule	

],	

		declarations:	[

				RootComponent,	

				ArticleComponent	

],	

		providers:	[

				{provide:	LOGO_URL,	useValue:		

						'https://angular.io/resources/images/logos/standard/logo-nav.png'}	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

Finally,	you'll	be	able	to	inject	this	into	a	component.	However,	since	you're	injecting	something
that	wasn't	defined	with	the	@Injectable()	decoration,	you'll	need	to	use	@Inject()	inside	the
constructor	to	tell	Angular	that	it	should	be	provided,	using	dependency	injection.	Furthermore,
the	injection	will	not	attach	itself	to	the	component's	this,	so	you'll	need	to	do	this	manually	as
well:

[app/article.component.ts]	

	

import	{Component,	Inject}	from	'@angular/core';	

import	{LOGO_URL}	from	'./logo-url.token';	

	

@Component({	

		selector:	'article',	

		template:	`	

					

				<h2>Fool	and	His	Money	Reunited	at	Last</h2>	

				<p>Author:	Jake	Hsu</p>	

		`	

})	

export	class	ArticleComponent	{	

		logoUrl:string;	

			

		constructor(@Inject(LOGO_URL)	private	logoUrl_)	{	

				this.logoUrl	=	logoUrl_;	

		}	

}	

With	this,	you	should	be	able	to	see	the	image	rendered	in	your	browser!

How	it	works...
OpaqueToken	allows	you	to	use	non-class	types	inside	Angular	2's	class-centric	provider
schema.	It	generates	a	simple	class	instance	that	essentially	is	just	a	wrapper	for	the	custom	string
you	provided.	This	class	is	what	the	dependency	injection	framework	will	use	when	attempting	to
map	injection	tokens	to	provider	declarations.	This	gives	you	the	ability	to	more	widely	utilize
dependency	injection	throughout	your	application	since	you	can	now	feed	any	type	of	value
wherever	a	service	type	can	be	injected.

There's	more...
One	other	way	in	which	injecting	values	is	useful	is	that	it	gives	you	the	ability	to	stub	out
services.	Suppose	you	wanted	to	define	a	default	stub	service	that	should	be	overridden	with	an
explicit	provider	to	enable	useful	behavior.	In	such	a	case,	you	can	imagine	a	default	article	entity
that	could	be	differently	configured	via	a	directive	while	reusing	the	same	component:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<article></article>	

				<article	editor-view></article>	

		`	

})	

export	class	RootComponent	{}	

	

[app/editor-article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

export	const	MockEditorArticleService	=	{	

		getArticle:	()	=>	({		

				title:	"Mock	title",	

				body:	"Mock	body"	

		})	

};	

	

@Injectable()	

export	class	EditorArticleService	{	

		private	title_:string	=		

				"Prominent	Vegan	Embroiled	in	Scrambled	Eggs	Scandal";	

		private	body_:string	=		

				"Tofu	Farming	Alliance	retracted	their	endorsement.";	

	

		getArticle()	{	

				return	{	

						title:	this.title_,	

						body:	this.body_	

				};	

		}	

}	

[app/editor-view.directive.ts]	

	

import	{Directive}	from	'@angular/core';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@Directive({	

		selector:	'[editor-view]',	

		providers:	[EditorArticleService]	

})	

export	class	EditorViewDirective	{}	

[app/article.component.ts]	

	

import	{Component,	Inject}	from	'@angular/core';	

import	{EditorArticleService}	from	'./editor-article.service';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h2>{{title}}</h2>	

				<p>{{body}}</p>	

		`	

})	

export	class	ArticleComponent	{	

		title:string;	

		body:string;	

			

		constructor(private	editorArticleService_:EditorArticleService)	{	

				let	article	=	editorArticleService_.getArticle();	

				this.title	=	article.title;	

				this.body	=	article.body;	

		}	

}	

With	this,	your	ArticleComponent,	as	defined	in	the	preceding	code,	would	use	the	mock
service	when	the	directive	is	not	attached	and	the	actual	service	when	it	is	attached.

See	also
Controlling	service	instance	creation	and	injection	with	NgModule	gives	a	broad
overview	of	how	Angular	2	architects	provider	hierarchies	using	modules
Service	injection	aliasing	with	useClass	and	useExisting	demonstrates	how	to	intercept
dependency	injection	provider	requests
Building	a	provider-configured	service	with	useFactory	details	the	process	of	setting	up	a
service	factory	to	create	configurable	service	definitions

Building	a	provider-configured	service	with
useFactory
One	further	extension	of	dependency	injection	in	Angular	2	is	the	ability	to	use	factories	when
defining	your	provider	hierarchy.	A	provider	factory	allows	you	to	accept	input,	perform	arbitrary
operations	to	configure	the	provider,	and	return	that	provider	instance	for	injection.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/0049/.

http://ngcookbook.herokuapp.com/0049/

Getting	ready
Begin	again	with	the	dual	service	and	article	component	setup	shown	in	Service	injection
aliasing	with	useClass	and	useExisting,	earlier	in	the	chapter.

How	to	do	it...
Provider	factories	in	Angular	2	are	exactly	as	you	might	imagine	they	would	be:	functions	that
return	a	provider.	The	factory	can	be	specified	in	a	separate	file	and	referenced	with	the
useFactory	provide	option.

Begin	by	combining	the	two	services	into	a	single	service,	which	will	be	configured	with	a
method	call:

[app/article.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	ArticleService	{	

		private	title_:string	=		

				"Flying	Spaghetti	Monster	Sighted";	

		private	body_:string	=		

				"Adherents	insist	we	are	missing	the	point";	

		private	notes_:string	=	"Spot	on!";	

		private	editorEnabled_:boolean	=	false;	

	

		getArticle():Object	{	

				var	article	=	{	

						title:	this.title_,	

						body:	this.body_	

				};	

				if	(this.editorEnabled_)	{	

						Object.assign(article,	article,	{	

								notes:	this.notes_	

						});	

				}	

				return	article;	

		}	

	

		enableEditor():void	{	

				this.editorEnabled_	=	true;	

		}	

}	

Defining	the	factory

Your	objective	is	to	configure	this	service	to	have	enableEditor()	invoked	based	on	a	boolean
flag.	With	provider	factories,	this	is	possible.	Define	the	factory	in	its	own	file:

[app/article.factory.ts]	

	

import	{ArticleService}	from	'./article.service';	

	

export	function	articleFactory(enableEditor?:boolean):ArticleService	{	

		return	(articleService:ArticleService)	=>	{	

				if	(enableEditor)	{	

						articleService.enableEditor();	

				}	

				return	articleService;	

		}	

}	

Injecting	OpaqueToken

Splendid!	Next,	you'll	need	to	reconfigure	ArticleComponent	to	inject	a	token	rather	than	the
desired	service:

[app/article.token.ts]	

	

import	{OpaqueToken}	from	'@angular/core';	

	

export	const	ArticleToken	=	new	OpaqueToken('app.article');	

[app/article.component.ts]	

	

import	{Component,	Inject}	from	'@angular/core';	

import	{ArticleToken}	from	'./article.token';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h2>{{article.title}}</h2>	

				<p>{{article.body}}</p>	

				<p	*ngIf="article.notes">	

						<i>Notes:	{{article.notes}}</i>	

				</p>	

		`	

})	

export	class	ArticleComponent	{	

		article:Object;	

			

		constructor(@Inject(ArticleToken)	private	articleService_)	{		

				this.article	=	articleService_.getArticle();	

		}	

}	

Creating	provider	directives	with	useFactory

Finally,	you'll	need	to	define	the	directives	that	specify	how	to	use	this	factory	and	incorporate
them	into	the	application:

[app/default-view.directive.ts]	

	

import	{Directive}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

import	{articleFactory}	from	'./article.factory';	

import	{ArticleToken}	from	'./article.token';	

	

@Directive({	

		selector:	'[default-view]',	

		providers:	[

				{provide:	ArticleToken,		

						useFactory:	articleFactory(),	

						deps:	[ArticleService]	

				}	

]	

})	

export	class	DefaultViewDirective	{}	

[app/editor-view.directive.ts]	

	

import	{Directive}	from	'@angular/core';	

import	{ArticleService}	from	'./article.service';	

import	{articleFactory}	from	'./article.factory';	

import	{ArticleToken}	from	'./article.token';	

	

@Directive({	

		selector:	'[editor-view]',	

		providers:	[

				{	

						provide:	ArticleToken,	

						useFactory:	articleFactory(true),	

						deps:	[ArticleService]	

				}	

]	

})	

export	class	EditorViewDirective	{}	

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<article	default-view></article>	

				<article	editor-view></article>	

		`	

})	

export	class	RootComponent	{}	

With	this,	you	should	be	able	to	see	both	the	versions	of	ArticleComponent.

How	it	works...
The	article	component	is	redefined	to	use	a	token	instead	of	a	service	injection.	With	the	token,
Angular	will	walk	up	the	component	tree	to	find	where	that	token	is	provided.	The	directives
declare	that	the	token	is	mapped	to	a	provider	factory,	which	is	a	method	invoked	to	return	the
actual	provider.

useFactory	is	the	property	that	maps	to	the	factory	function.	deps	is	the	property	that	maps	to	the
service	dependencies	that	the	factory	has.

There's	more...
An	important	distinction	at	this	point	is	to	recognize	that	all	these	factory	configurations	are
happening	before	any	components	are	instantiated.	The	class	decoration	that	defines	the	providers
will	invoke	the	factory	function	on	setup.

See	also
Controlling	service	instance	creation	and	injection	with	NgModule	gives	a	broad
overview	of	how	Angular	2	architects	provider	hierarchies	using	modules
Service	injection	aliasing	with	useClass	and	useExisting	demonstrates	how	to	intercept
dependency	injection	provider	requests
Injecting	a	value	as	a	service	with	useValue	and	OpaqueTokens	show	how	you	can	use
dependency	injected	tokens	to	inject	generic	objects

Chapter	8.	Application	Organization	and
Management
This	chapter	will	cover	the	following	recipes:

Composing	package.json	for	a	minimum	viable	Angular	2	application
Configuring	TypeScript	for	a	minimum	viable	Angular	2	application
Performing	in-browser	transpilation	with	SystemJS
Composing	application	files	for	a	minimum	viable	Angular	2	application
Migrating	the	minimum	viable	Angular	2	application	to	Webpack	bundling
Incorporating	shims	and	polyfills	into	Webpack
HTML	generation	with	html-webpack-plugin
Setting	up	an	application	with	Angular's	CLI

Introduction
The	Angular	2	project's	ambitions	goals	involve	the	utilization	of	a	different	language	with
different	syntax	and	constructs,	as	well	as	providing	high	efficiency	and	modularity.	What	this
means	for	you	is	that	the	process	of	maintaining	an	Angular	2	application	may	be	difficult.

The	ultimate	goal	is	to	efficiently	serve	HTML,	CSS,	and	JS	to	a	web	browser	and	to	make	it
easy	to	develop	the	source	components	of	these	static	files.	How	one	arrives	at	this	endpoint	can
be	worked	out	in	a	number	of	different	ways,	and	it	would	be	an	exercise	in	futility	to	write	a
chapter	on	all	of	them.

Instead,	this	chapter	will	provide	a	few	opinionated	ways	of	arranging	your	Angular	2	application
in	a	way	that	it	would	reflect	the	most	popular	and	effective	strategies.	It	will	also	show	you	how
to	build	and	extend	a	minimum	viable	Angular	2	application.	For	some,	this	will	seem	a	bit
simple	and	rudimentary.	However,	the	majority	of	Quickstart	projects	or	code	generation
frameworks	simply	give	you	a	repository	and	a	few	commands	to	run	in	order	to	get	out	of	the
door,	and	these	commands	run	without	telling	you	what	they're	doing	or	how	they're	doing	it!	In
this	chapter,	you	will	learn	how	to	build	an	Angular	2	application	from	the	ground	up	along	with
the	packages	and	tools	that	will	help	you	do	it	and	why	these	methods	were	selected.

Composing	package.json	for	a	minimum
viable	Angular	2	application
When	thinking	about	a	minimum	viable	Angular	2	application,	the	configuration	files	are	as	close
to	the	metal	of	the	runtime	environment	as	you'll	get.	In	this	case,	there	are	two	configuration	files
that	will	control	how	npm	and	its	installed	packages	will	manage	the	files	and	the	start-up
processes:	package.json	and	tsconfig.json.

Some	part	of	this	recipe	may	be	a	review	for	developers	that	are	more	experienced	with	npm	and
its	faculties.	However,	it's	important	to	understand	how	a	very	simple	Angular	2	project
configuration	can	be	structured,	so	that	you	are	able	to	wholly	understand	more	complex
configurations	that	are	build	upon	its	fundamentals.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/1332/.

http://ngcookbook.herokuapp.com/1332/

Getting	ready
You'll	need	Node.js	installed	for	this	recipe	to	work;	you'll	also	need	an	empty	project	directory.
You	should	create	these	two	skeleton	configuration	files	in	the	root	project	directory:

[package.json]	

	

{	

		"name":	"angular2-minimum-viable-application"	

}	

[tsconfig.json]	

	

{	

		"compilerOptions":	{	

		}	

}	

Tip

For	a	quick	and	easy	way	to	ensure	you	have	npm	set	up	and	ready	to	go,	use	the	following:

npm	--version	It	should	spit	out	a	version	number	if	everything	is	set	up	properly.

How	to	do	it...
You'll	start	with	package.json.	The	package.json	file	for	a	minimum	viable	application
contains	three	sections:

dependencies:	This	is	a	list	of	package	targets	that	the	production	application	directly
depends	upon
devDependencies:	This	is	a	list	of	package	targets	that	the	local	environment	needs	for
various	reasons,	such	as	compilation,	running	tests,	or	linting
scripts:	These	are	custom-defined	command-line	utilities	run	through	npm

package.json	dependencies

First,	you	need	to	add	in	all	the	dependencies	that	your	application	will	need.	This	includes
Angular	2	core	modules,	which	live	inside	the	node_modules/@angular	directory,	as	well	as	a
handful	of	library	dependencies:

core-js	is	the	polyfill	for	the	ES6	syntax	that	the	TypeScript	compiler	depends	upon,	such
as	Set,	Promise,	and	Map.
reflect-metadata	is	the	polyfill	for	the	Reflect	Metadata	API.	This	allows	your
TypeScript	to	use	decorators	that	are	not	part	of	the	standard	TypeScript	specification,	such
as	@Component.
rxjs	is	available	for	the	ReactiveX	JavaScript	observables	library.	Angular	2	natively	uses
Observables,	and	this	is	a	direct	dependency	of	the	framework.
SystemJS	is	the	dynamic	module	loader	that	this	project	needs	for	two	purposes:	to	import
and	map	all	the	source	files,	and	to	be	able	to	resolve	the	ES6	import/export	declarations.
zonejs	is	the	ZoneJS	library	that	provides	Angular	2	with	the	ability	to	use	asynchronous
execution	contexts.	This	is	a	direct	dependency	of	the	framework.

This	leaves	you	with	the	following:

[package.json]	

	

{	

		"name":	"angular2-minimum-viable-application",	

		"dependencies":	{	

				"@angular/common":	"2.0.0",	

				"@angular/compiler":	"2.0.0",	

				"@angular/core":	"2.0.0",	

				"@angular/platform-browser":	"2.0.0",	

				"@angular/platform-browser-dynamic":	"2.0.0",	

				"core-js":	"^2.4.1",	

				"reflect-metadata":	"^0.1.3",	

				"rxjs":	"5.0.0-beta.12",	

				"systemjs":	"0.19.27",	

				"zone.js":	"^0.6.23"	

		}	

}	

package.json	devDependencies

Next,	you	need	to	specify	the	devDependencies.

Note

Here's	an	npm	refresher:	devDependencies	are	dependencies	that	are	specific	to	a	development
environment.	Build	scripts	can	use	this	to	differentiate	between	packages	that	need	to	be	included
in	a	production	bundle	and	ones	that	don't.

lite-server	is	the	simple	file	server	you'll	use	to	test	this	application	locally.	This	could
be	replaced	by	any	number	of	simple	file	servers.
typescript	is	the	TypeScript	compiler.
concurrently	is	a	simple	command-line	utility	for	running	simultaneous	commands	from	an
npm	script.

This	leaves	you	with	the	following:

[package.json]	

	

{	

		"name":	"angular2-minimum-viable-application",	

		"dependencies":	{	

				"@angular/common":	"2.0.0",	

				"@angular/compiler":	"2.0.0",	

				"@angular/core":	"2.0.0",	

				"@angular/platform-browser":	"2.0.0",	

				"@angular/platform-browser-dynamic":	"2.0.0",	

				"core-js":	"^2.4.1",	

				"reflect-metadata":	"^0.1.3",	

				"rxjs":	"5.0.0-beta.12",	

				"systemjs":	"0.19.27",	

				"zone.js":	"^0.6.23"	

		},	

		"devDependencies":	{	

				"concurrently":	"^2.2.0",	

				"lite-server":	"^2.2.2",	

				"typescript":	"^2.0.2"	

		}	

}	

package.json	scripts

Finally,	you	need	to	create	the	scripts	that	you'll	use	to	generate	compiled	files	and	run	the
development	server:

[package.json]	

	

{	

		"name":	"angular2-minimum-viable-application",	

		"scripts":	{	

				"lite":	"lite-server",	

				"postinstall":	"npm	install	-S	@types/node	@types/core-js",	

				"start":	"tsc	&&	concurrently	'npm	run	tsc:w'	'npm	run	lite'",	

				"tsc":	"tsc",	

				"tsc:w":	"tsc	-w"	

		},	

		"dependencies":	{	

				"@angular/common":	"2.0.0",	

				"@angular/compiler":	"2.0.0",	

				"@angular/core":	"2.0.0",	

				"@angular/platform-browser":	"2.0.0",	

				"@angular/platform-browser-dynamic":	"2.0.0",	

				"core-js":	"^2.4.1",	

				"reflect-metadata":	"^0.1.3",	

				"rxjs":	"5.0.0-beta.12",	

				"systemjs":	"0.19.27",	

				"zone.js":	"^0.6.23"	

		},	

		"devDependencies":	{	

				"concurrently":	"^2.2.0",	

				"lite-server":	"^2.2.2",	

				"typescript":	"^2.0.2"	

		}	

}	

Each	of	these	scripts	serves	a	purpose,	but	most	you	will	not	need	to	invoke	manually.	Here	is	a
brief	description	of	each	of	these	scripts:

lite	starts	off	an	instance	of	lite-server.
postinstall	is	the	hook	definition	that	will	run	after	npm	install	is	completed.	In	this
case,	after	npm	has	installed	all	the	project	dependencies,	you	want	to	install	the	declaration
files	for	modules	that	do	not	have	them.	npm	recognizes	the	pre-	and	post-	prefixes	for	script
strings.	Anytime	a	script	is	run,	npm	will	check	for	scripts	with	pre-	and	post-	prefixing
them	and	run	them	before	and	after	the	script,	respectively.	In	this	recipe,	prelite	would
run	before	lite,	and	postlite	would	run	after	lite	is	run.
start	is	the	definition	of	the	default	value	of	npm	start.	This	script	runs	the	TypeScript
compiler	once	to	completion,	then	simultaneously	invokes	the	TypeScript	compiler	watcher
and	starts	up	a	development	server.	It	is	a	reserved	script	keyword	in	npm,	thus	there	is	no
need	for	npm	run	start,	although	that	does	work.
tsc	kicks	off	the	TypeScript	compiler.	The	TypeScript	compiler	reads	its	settings	from	the
tsconfig.json	that	exists	in	the	same	directory.
tsc:w	sets	a	file	watcher	to	recompile	upon	file	changes.

See	also
Composing	package.json	for	a	minimum	viable	Angular	2	application	describes	how	all
the	pieces	work	for	the	core	node	project	file
Configuring	TypeScript	for	a	minimum	viable	Angular	2	application	talks	about	how	to
configure	the	compilation	to	support	an	Angular	2	project
Performing	in-browser	transpilation	with	SystemJS	demonstrates	how	SystemJS	can	be
used	to	connect	uncompiled	static	files	together
Composing	application	files	for	a	minimum	viable	Angular	2	Application	walks	you
through	how	to	create	an	extremely	simple	Angular	2	app	from	scratch
Migrating	the	minimum	viable	Angular	2	application	to	Webpack	bundling	describes	how
to	integrate	Webpack	into	your	Angular	application	build	process
Incorporating	shims	and	polyfills	into	Webpack	gives	you	a	handy	way	of	managing
Angular	2	polyfill	dependencies
HTML	generation	with	html-webpack-plugin	shows	you	how	you	can	configure	an	npm
package	to	add	compiled	files	to	your	HTML	automatically
Setting	up	an	application	with	Angular	CLI	gives	a	description	of	how	to	use	the	CLI,	what
it	gives	you,	and	what	these	individual	pieces	do

Configuring	TypeScript	for	a	minimum
viable	Angular	2	application
In	order	to	use	TypeScript	alongside	Angular	2,	there	are	two	major	considerations:	module
interoperability	and	compilation.	You'll	need	to	handle	both	in	order	to	take	your	application's
.ts	files,	mix	them	with	external	library	files,	and	output	the	files	that	would	be	compatible	with
your	target	device.

TypeScript	comes	ready	as	an	npm	package,	but	you	will	need	to	tell	it	how	to	interact	with	the
files	and	modules	you've	written,	and	with	files	from	other	packages	that	you	want	to	use	in	your
modules.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/1053/.

http://ngcookbook.herokuapp.com/1053/

Getting	ready
You	should	first	complete	the	instructions	mentioned	in	the	preceding	recipe.	This	will	give	you
the	framework	necessary	to	define	your	TypeScript	configuration.

How	to	do	it...
To	configure	TypeScript,	you'll	need	to	add	declaration	files	to	incompatible	modules	and
generate	a	configuration	file	that	will	specify	how	the	compiler	should	work.

Declaration	files

TypeScript	declaration	files	exist	to	specify	the	shape	of	a	library.	These	files	can	be	identified
by	a	.d.ts	suffix.	The	majority	of	npm	packages	and	other	JavaScript	libraries	already	include
these	files	in	a	standardized	location,	so	that	TypeScript	can	locate	them	and	learn	about	how	the
library	should	be	interpreted.	Libraries	that	don't	include	these	need	to	be	given	the	files,	and
fortunately	the	open	source	community	already	provides	a	lot	of	them.

Two	libraries	that	this	project	uses	don't	have	declaration	files:	node	and	core-js.	As	of
TypeScript	2.0,	you	are	able	to	natively	install	the	declaration	files	for	these	libraries	directly
through	npm.	The	-S	flag	is	a	shorthand	for	saving	them	to	package.json:

npm	install	-S	@types/node	@types/core-js

A	sensible	place	for	this	is	inside	the	postinstall	script.

tsconfig.json

The	TypeScript	compiler	will	look	for	the	tsconfig.json	file	to	determine	how	it	should
compile	the	TypeScript	files	in	this	directory.	This	configuration	file	isn't	required,	as	TypeScript
will	fall	back	to	the	compiler	defaults;	however,	you	want	to	manage	exactly	how	the	*.js	and
*.map.js	files	are	generated.	Modify	the	tsconfig.json	file	to	appear	as	follows:

[tsconfig.json]	

	

{	

		"compilerOptions":	{	

				"target":	"es5",	

				"module":	"commonjs",	

				"moduleResolution":	"node",	

				"emitDecoratorMetadata":	true,	

				"experimentalDecorators":	true,	

				"noImplicitAny":	false	

		}	

}	

The	compilerOptions	property,	as	you	might	expect,	specifies	the	settings	the	compiler	should
use	when	the	compiling	process	finds	TypeScript	files.	In	the	absence	of	a	files	property,
TypeScript	will	traverse	the	entire	project	directory	structure	searching	for	*.ts	and	*.tsx	files.

All	the	compilerOptions	properties	can	be	specified	equivalently	as	command-line	flags,	but
doing	so	in	tsconfig.json	is	a	more	organized	way	of	going	about	your	project.

target	specifies	the	ECMAScript	version	that	the	compiler	should	output.	For	broad
browser	compatibility,	ES5	is	a	sensible	default	here.	Recall	that	ECMAScript	is	the
specification	upon	which	JavaScript	is	built.	The	newest	finished	specification	is	ES6	(also
called	ES2015),	but	many	browsers	do	not	fully	support	this	specification	yet.	The
TypeScript	compiler	will	compile	ES6	constructs,	such	as	class	and	Promise,	to	non-
native	implementations.
module	specifies	how	the	output	files	will	handle	the	modules	in	the	output	files.	Since	you
cannot	assume	that	browsers	are	able	to	handle	ES6	modules,	the	TypeScript	compiler	will
have	to	convert	them	into	a	module	system	that	browsers	are	able	to	handle.	CommonJS	is	a
sensible	choice	here.	The	CommonJS	module	style	involves	defining	all	the	exports	in	a
single	module	as	properties	of	a	single	"exports"	object.	The	TypeScript	compiler	also
supports	AMD	modules	(require.js	style),	UMD	modules,	SystemJS	modules,	and	of
course,	leaving	the	modules	as	their	existing	ES6	module	style.	It's	out	of	the	scope	of	this
recipe	to	dive	deep	into	modules.
moduleResolution	defines	how	module	paths	will	be	resolved.	It's	not	critical	that	you
understand	the	exact	details	of	the	resolution	strategy,	but	the	node	setting	will	give	you	the
proper	output	format.
emitDecoratorMetadata	and	experimentalDecorators	enable	TypeScript	to	handle
Angular	2's	use	of	decorators.	Recall	the	addition	of	the	reflect-metadata	library	to
support	experimental	decorators.	These	flags	are	the	point	where	it	is	able	to	tie	into	the
TypeScript	compiler.
noImplicitAny	controls	whether	or	not	TypeScript	files	must	be	typed.	When	set	to	true,
this	will	throw	an	error	if	there	is	any	missed	typing	in	your	project.	There	is	an	ongoing
discussion	regarding	whether	or	not	this	flag	should	be	set,	as	forcing	objects	to	be	typed	is
obviously	useful	to	prevent	errors	that	may	arise	from	ambiguity	in	codebases.	If	you'd	like
to	see	an	example	of	the	compiler	throwing	an	error,	set	noImplicitAny	to	true	and	add
constructor	(foo)	{}	inside	AppComponent.	You	should	see	the	compiler	complain
about	foo	being	untyped.

How	it	works...
Running	the	following	command	will	start	up	the	TypeScript	compiler	from	the	command	line	at
the	root	level	of	your	project	directory:

npm	run	tsc

The	compiler	will	look	for	tsconfig.json	if	it	is	there	and	fall	back	to	its	defaults	otherwise.
The	settings	within	direct	the	compiler	how	to	handle	and	validate	the	files,	which	is	where
everything	you	just	set	up	comes	into	play.

The	TypeScript	compiler	doesn't	run	the	code	or	meaningfully	understand	what	it	does,	but	it	can
detect	when	different	pieces	of	the	application	are	trying	to	interact	in	a	way	that	doesn't	make
sense.	The	.d.ts	declaration	file	for	a	module	gives	TypeScript	a	way	to	inspect	the	interface
that	the	module	will	make	available	for	consumption	when	it	is	imported.

For	example,	suppose	that	auth	is	an	external	module	that	contains	a	User	class.	This	would	then
be	imported	via	the	following:

import	{User}	from	'./auth';	

By	adding	the	declaration	file	to	the	imported	module,	TypeScript	is	able	to	check	that	the	User
class	exists;	it	also	behaves	in	the	way	you	are	attempting	to	in	the	local	module.	If	it	sees	a
mismatch,	it	will	throw	an	error	at	compilation.

Compilation

Depending	on	your	framework	experience,	this	may	be	something	you	have	or	have	not	had
experience	with	previously.	Angular	2	(among	many	frameworks)	operates	under	the	notion	that
JavaScript,	as	it	currently	exists,	is	insufficient	for	writing	good	code.	The	definition	of	"good"
here	is	subjective,	but	all	frameworks	that	require	compilation	want	to	extend	or	modify
JavaScript	in	some	form	or	another.

However,	all	platforms	that	these	applications	need	to	run	on—for	your	purposes,	web	browsers
—only	have	a	JavaScript	execution	environment	that	executes	from	uncompiled	code.	It	isn't
feasible	for	you	to	extend	how	the	browser	handles	payloads	or	delivers	a	compiled	binary,	so
the	files	that	you	send	to	the	client	must	play	by	its	rules.

TypeScript,	by	definition	and	design,	is	a	strict	superset	of	ES6,	but	these	extensions	can't	be	used
natively	in	a	browser.	Even	today,	the	majority	of	browsers	still	do	not	fully	support	ES6.
Therefore,	a	sensible	objective	is	to	convert	TypeScript	into	ES5.1,	which	is	the	ECMAScript
standard	that	is	supported	on	all	modern	browsers.	How	you	arrive	at	this	output	can	occur	in	one
of	two	ways:

Send	the	TypeScript	to	the	client	as	is.	There	are	in-browser	compilation	libraries	that	can

perform	a	compilation	on	the	client	and	execute	the	resulting	ES5.1-compliant	code	as
normal	JavaScript.	This	method	makes	development	easier	since	your	backend	doesn't	need
to	do	much	other	than	serve	the	files;	however,	it	defers	computing	to	the	client,	which
degrades	performance	and	is	therefore	considered	a	bad	practice	for	production
applications.
Compile	the	TypeScript	into	JavaScript	before	sending	it	to	the	client.	The	overwhelming
majority	of	production	applications	will	elect	to	handle	their	business	this	way.	Especially
since	static	files	are	often	served	from	a	CDN	or	static	directory,	it	makes	good	sense	to
compile	your	descriptive	TypeScript	codebase	into	JavaScript	files	as	part	of	a	release	and
then	serve	those	files	to	the	client.

Tip

When	you	look	at	the	compiled	JavaScript	that	results	from	compiling	TypeScript,	it	can	appear
awfully	brutal	and	unreadable.	Don't	worry!	The	browser	does	not	care	how	mangled	the
JavaScript	files	are	as	long	as	they	can	be	executed.

With	the	compiler	options	you've	specified	in	this	recipe,	the	TypeScript	compiler	will	output	a
.js	file	of	the	same	name	right	next	to	its	source,	the	.ts	file.

There's	more...
By	no	means	is	the	TypeScript	compiler	limited	to	a	one-off	.ts	file	generation.	If	offers	you	a
broad	range	of	tooling	functions	for	specifying	exactly	how	your	output	files	should	appear.

Source	map	generation

The	TypeScript	compiler	is	also	capable	of	generating	source	maps	to	go	along	with	output	files.
If	you're	not	familiar	with	them,	the	utility	of	source	maps	stems	from	the	nature	of	compilation
and	minification:	files	being	debugged	in	the	browsers	are	not	the	files	that	you	have	written.
What's	more,	when	using	a	compiled	TypeScript,	the	compiled	files	won't	even	be	in	the	same
language.

Source	maps	are	indexes	that	pair	with	compiled	files	to	describe	how	they	originally	appeared
before	they	were	compiled.	More	specifically,	the	.js.map	files	contain	an	encoding	scheme	that
associates	the	compiled	and/or	minified	tokens	with	their	original	name	and	structure	in	the
uncompiled.ts	file.	Browsers	that	understand	how	to	use	source	maps	can	reconstruct	how	the
original	file	appeared	and	allow	you	to	set	breakpoints,	step	through,	and	inspect	lexical
constructs	inside	it	as	if	it	were	the	original.

Source	maps	can	be	specified	with	a	special	token	added	to	the	compiled	file://#
sourceMappingURL=/dist/example.js.map

If	you	want	to	generate	source	map	files	for	the	output,	you	can	specify	this	in	the	configuration
file	as	well	by	adding	"sourceMap":	true.	By	default,	the	.js.map	files	will	be	created	in	the
same	place	as	the	output	.js	files;	alternatively,	you	can	direct	the	compiler	to	create	the	source
maps	inside	the	.js	file	itself.

Tip

Even	though	extraneous	map	files	won't	affect	the	resultant	application	behavior,	adding	them
inline	may	be	undesirable	if	you	don't	want	to	bloat	your	.js	payload	size	unnecessarily.	This	is
because	clients	that	don't	want	or	need	the	map	files	can't	decline	to	request	them.

Single	file	compilation

Since	TypeScript	checks	all	the	linked	modules	against	their	imports	and	exports,	there's	no
reason	you	need	to	have	all	the	compiled	files	exist	as	1:1	mappings	to	their	input	files.
TypeScript	is	perfectly	happy	to	combine	the	compiled	files	into	a	single	file	if	the	output	module
format	supports	it.	Specify	the	single	file	where	you	wish	all	the	modules	to	be	compiled	with
"outFile":	"/dist/bundle.js".

Note

Certain	output	module	formats,	such	as	CommonJS,	won't	work	as	concatenated	modules	in	a

single	file,	so	using	them	in	conjunction	with	outFile	will	not	work.	As	of	the	TypeScript	1.8
release,	AMD	and	system	output	formats	are	supported.

If	you	plan	on	using	SystemJS,	this	compiler	option	can	potentially	help	you,	as	System	works
with	virtually	any	module	format.	If,	however,	you're	using	a	CommonJS-based	bundler,	such	as
Webpack,	it's	best	to	delegate	the	file	combination	to	the	bundler.

See	also
Composing	package.json	for	a	minimum	viable	Angular	2	application	describes	how	all
the	pieces	work	for	the	core	node	project	file
Performing	in-browser	transpilation	with	SystemJS	demonstrates	how	SystemJS	can	be
used	to	connect	uncompiled	static	files	together
Composing	application	files	for	a	minimum	viable	Angular	2	application	walks	you
through	how	to	create	an	extremely	simple	Angular	2	app	from	scratch
Migrating	the	minimum	viable	Angular	2	application	to	Webpack	bundling	describes	how
to	integrate	Webpack	into	your	Angular	application	build	process

Performing	in-browser	transpilation	with
SystemJS
It	can	be	often	useful	to	be	able	to	deliver	TypeScript	files	directly	to	the	browser	and	to	defer	the
transpilation	to	JavaScript	until	then.	While	this	method	has	performance	drawbacks,	it	is
extremely	useful	when	prototyping	and	performing	experimentations.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/2283/.

http://ngcookbook.herokuapp.com/2283/

Getting	ready
Create	an	empty	project	directory	and	create	the	following	package.json	inside	it:

[package.json]	

	

{	

		"scripts":	{	

				"lite-server":	"lite-server"	

		},	

		"devDependencies":	{	

				"lite-server":	"^2.2.2",	

				"systemjs":	"^0.19.38",	

				"typescript":	"^2.0.3"	

		}	

}	

Running	npm	install	should	get	you	ready	to	write	code.

How	to	do	it...
The	TypeScript	npm	package	comes	bundled	with	a	transpiler.	When	combined	with	SystemJS	as
the	designated	transpilation	utility,	this	allows	you	to	serve	TypeScript	files	to	the	client;
SystemJS	will	transpile	them	into	browser-compatible	JavaScript.

First,	create	the	index.html	file.	This	file	will	import	the	two	required	JS	libraries:	system.js
and	typescript.js.	Next,	it	specifies	the	typescript	as	the	desired	transpiler	and	imports	the
top-level	main.ts	file:

[index.html]	

	

<html>	

<head>	

		<script	src="node_modules/systemjs/dist/system.js">	

		</script>	

		<script	src="node_modules/typescript/lib/typescript.js">	

		</script>	

		<script>	

				System.config({	

						transpiler:	'typescript'	

				});	

				System.import('main.ts');	

		</script>	

</head>	

<body>	

		<h1	id="text"></h1>	

</body>	

</html>	

Next,	create	the	top-level	TypeScript	file:

[main.ts]	

	

import	{article}	from	'./article.ts';	

	

document.getElementById('text')	

		.innerHTML	=	article;	

Finally,	create	the	dependency	TypeScript	file:

[article.ts]	

	

export	const	article	=	"Cool	story,	bro";	

With	this,	you	should	be	able	to	start	a	development	server	with	npm	run	lite-server	and	see
the	TypeScript	application	running	normally	in	your	browser	at	localhost:3000.

How	it	works...
SystemJS	is	able	to	resolve	module	dependencies	as	well	as	apply	the	transpiler	to	the	module
before	it	reaches	the	browser.	If	you	look	at	the	transpiled	files	in	a	browser	inspector,	you	can
see	the	emitted	files	exist	as	vanilla	JavaScript	IIFEs	(instantaneously	invoked	function
expressions)	as	well	as	their	coupled	source	maps.	With	these	tools,	it	is	possible	to	build	a
surprisingly	complex	application	without	any	sort	of	backend	file	management.

There's	more...
Unless	you're	experimenting	or	doing	a	rough	project,	doing	transpilation	in	the	browser	isn't
preferred.	Any	computation	you	can	do	on	the	server	should	be	done	whenever	possible.
Additionally,	all	the	clients	transpiling	their	own	files	all	perform	highly	redundant	operations
since	all	of	them	transpile	the	same	files.

See	also
Composing	package.json	for	a	minimum	viable	Angular	2	application	describes	how	all
the	pieces	work	for	the	core	node	project	file
Configuring	TypeScript	for	a	minimum	viable	Angular	2	application	talks	about	how	to
configure	the	compilation	to	support	an	Angular	2	project
Composing	application	files	for	a	minimum	viable	Angular	2	application	walks	you
through	how	to	create	an	extremely	simple	Angular	2	app	from	scratch
Migrating	the	minimum	viable	Angular	2	application	to	Webpack	bundling	describes	how
to	integrate	Webpack	into	your	Angular	application	build	process
Incorporating	shims	and	polyfills	into	webpack	gives	you	a	handy	way	of	managing
Angular	2	polyfill	dependencies
HTML	generation	with	html-webpack-plugin	shows	you	how	you	can	configure	an	npm
package	to	add	compiled	files	to	your	HTML	automatically
Setting	up	an	application	with	Angular	CLI	gives	a	description	of	how	to	use	the	CLI,	what
it	gives	you,	and	what	these	individual	pieces	do

Composing	application	files	for	a	minimum
viable	Angular	2	application
When	approaching	Angular	2	initially,	it	is	useful	to	have	an	understanding	of	an	application
structure	that	is	torn	down	to	the	bare	metal.	In	the	case	of	a	minimum	viable	application,	it	will
consist	of	a	single	component.	Since	this	is	a	chapter	on	application	organization,	it	isn't	so	much
about	what	that	component	will	look	like,	but	rather	how	to	take	the	TypeScript	component
definition	and	actually	get	it	to	render	in	a	web	page.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/6323/.

http://ngcookbook.herokuapp.com/6323/

Getting	ready
This	recipe	assumes	you	have	completed	all	the	steps	given	in	the	Composing	configuration	files
for	a	minimum	viable	Angular	2	application	recipe.	The	npm	module	installation	should	succeed
with	no	errors:

npm	install

How	to	do	it...
The	simplest	place	to	start	is	the	core	application	component.

app.component.ts

Implement	a	component	inside	a	new	app/	directory	as	follows;	there	should	be	no	surprises:

[app/app.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	'<h1>AppComponent	template!</h1>'	

})	

export	class	AppComponent	{}	

This	is	about	as	simple	a	component	can	possibly	get.	Once	this	is	successfully	rendered	in	the
client,	this	component	should	just	be	a	big	line	of	text.

app.module.ts

Next,	you	need	to	define	the	NgModule	that	will	be	associated	with	this	component.	Create
another	file	in	the	app/	directory,	app.module.ts,	and	have	it	match	the	following:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{AppComponent}	from	'./app.component';	

	

@NgModule({	

		imports:	[BrowserModule],	

		declarations:	[AppComponent],	

		bootstrap:	[AppComponent]	

})	

export	class	AppModule	{}	

There's	a	bit	more	going	on	here:

imports	specifies	the	modules	whose	exported	directives/pipes	should	be	available	to	this
module.

Tip

Importing	BrowserModule	gives	you	access	to	core	directives	such	as	NgIf	and	also	specifies
the	type	of	renderer,	event	management,	and	document	type.	If	your	application	is	rendering	in	a
web	browser,	this	module	gives	you	the	tools	you	need	to	do	this.

declarations	specifies	which	directives/pipes	are	being	exported	by	this	module.	In	this
case,	AppComponent	is	the	sole	export.
bootstrap	specifies	which	components	should	be	bootstrapped	when	this	module	is
bootstrapped.	More	specifically,	components	listed	here	will	be	designated	for	rendering
within	this	module.	AppComponent	needs	to	be	bootstrapped	and	rendered	somewhere,	and
this	is	where	this	specification	will	occur.

This	completes	the	module	definition.	At	this	point,	you	have	successfully	linked	the	component	to
its	module,	but	this	module	isn't	being	bootstrapped	anywhere	or	even	included.

main.ts

You'll	change	this	next	with	main.ts,	the	top-level	TypeScript	file:

[app/main.ts]	

	

import	{platformBrowserDynamic}		

		from	'@angular/platform-browser-dynamic';	

import	{AppModule}	from	'./app.module';	

	

platformBrowserDynamic().bootstrapModule(AppModule);	

This	file	defines	the	NgModule	decorator	that	will	be	used	for	AppComponent.	Inside	it,	you
specify	that	the	module	must	import	BrowserModule.

Note

Recall	that	Angular	2	is	designed	to	be	platform-independent.	More	specifically,	it	strives	to
allow	you	to	write	code	that	might	not	necessarily	run	on	a	conventional	web	browser.	In	this
case,	you	are	targeting	a	standard	web	browser,	so	importing	BrowserModule	from	the
platformBrowser	target	is	the	way	in	which	you	can	inform	the	application	of	this.	If	you	were
targeting	a	separate	platform,	you	would	select	a	different	platform	to	import	into	your	root
application	component.

This	NgModule	declaration	also	specifies	that	AppComponent	exists	and	should	be	bootstrapped.

Note

Bootstrapping	is	how	you	kick	off	your	Angular	2	application,	but	it	has	a	very	specific
definition.	Invoking	bootstrap()	tells	Angular	to	mount	the	specified	application	component
onto	DOM	elements	identified	by	the	component's	selector.	This	kicks	off	the	initial	round	of
change	detection	and	its	side	effects,	which	will	complete	the	component	initialization.

Since	you've	declared	that	this	module	will	bootstrap	AppComponent	when	it	is	bootstrapped,
this	module	will	in	turn	be	the	one	bootstrapped	from	the	top-level	TypeScript	file.	Angular	2
pushes	for	this	convention	as	a	main.ts	file:

[app/main.ts]	

	

import	{platformBrowserDynamic}	

		from	'@angular/platform-browser-dynamic';	

import	{AppModule}	from	'./app.module';	

	

platformBrowserDynamic().bootstrapModule(AppModule);	

The	platformBrowserDynamic	method	returns	a	platform	object	that	exposes	the
bootstrapModule	method.	It	configures	your	application	to	be	bootstrapped	with	Angular	2's
just-in-time	(JIT)	compiler.

Tip

For	now,	the	details	of	why	you	are	specifying	just-in-time	compilation	aren't	important.	It's
enough	to	know	that	JIT	compilation	is	a	simpler	version	(as	opposed	to	ahead-of-time
compilation)	in	Angular	2's	offerings.

index.html

Finally,	you	need	to	build	an	HTML	file	that	is	capable	of	bundling	together	all	these	compiled
files	and	kicking	off	the	application	initialization.	Begin	with	the	following:

[index.html]	

	

<html>	

<head>	

		<title>Angular	2	Minimum	Viable	Application</title>	

		<script	src="node_modules/zone.js/dist/zone.js">	

		</script>	

		<script	src="node_modules/reflect-metadata/Reflect.js">	

		</script>	

		<script	src="node_modules/systemjs/dist/system.src.js">	

		</script>	

</head>	

<body>	

		<app-root></app-root>	

</body>	

</html>	

Most	of	this	so	far	should	be	expected.	ZoneJS	and	Reflect	are	Angular	2	dependencies.	The
module	loader	you'll	use	is	SystemJS.	<app-root>	is	the	element	that	AppComponent	will	render
inside.

Configuring	SystemJS

Next,	SystemJS	needs	to	be	configured	to	understand	how	to	import	module	files	and	how	to
connect	modules	from	being	imported	inside	other	modules.	In	other	words,	it	needs	to	be	given	a
file	to	begin	with	and	a	directory	of	mappings	for	dependencies	of	that	main	file.	This	can	be

accomplished	with	System.config()	and	System.import(),	which	are	methods	exposed	on	the
global	System	object:

[index.html]	

	

<html>	

<head>	

		<title>Angular	2	Minimum	Viable	Application</title>	

		<script	src="node_modules/zone.js/dist/zone.js">	

		</script>	

		<script	src="node_modules/reflect-metadata/Reflect.js">	

		</script>	

		<script	src="node_modules/systemjs/dist/system.src.js">	

		</script>	

		<script>	

				System.config({	

						paths:	{	

								'ng:':	'node_modules/@angular/'	

						},	

						map:	{	

								'@angular/core':	'ng:core/bundles/core.umd.js',	

								'@angular/common':	'ng:common/bundles/common.umd.js',	

								'@angular/compiler':		

										'ng:compiler/bundles/compiler.umd.js',	

								'@angular/platform-browser':		

										'ng:platform-browser/bundles/platform-browser.umd.js',	

								'@angular/platform-browser-dynamic':		

										'ng:platform-browser-dynamic/bundles/platform-browser-

										dynamic.umd.js',	

								'rxjs':	'node_modules/rxjs'	

						},	

						packages:	{	

								app:	{	

										main:	'./main.js'	

								},	

								rxjs:	{	

										defaultExtension:	'js'	

								}	

						}	

				});	

				System.import('app');	

		</script>	

</head>	

	

<body>	

		<app-root></app-root>	

</body>	

</html>	

System.config()	specifies	how	SystemJS	should	handle	the	files	passed	to	it.

The	paths	property	specifies	an	alias	to	shorten	the	path's	inside	map.	It	acts	as	a	simple

find	and	replace	function,	so	any	found	instances	of	ng:	are	replaced	with
node_modules/@angular/.
The	map	property	specifies	how	SystemJS	should	resolve	the	module	imports	that	you	have
not	explicitly	defined.	Here,	this	takes	the	form	of	five	core	Angular	modules	and	the	RxJS
library.
The	packages	property	specifies	the	targets	that	will	be	imported	by	this	property	and	the
files	they	need	to	map	to.

Tip

For	example,	the	app	property	will	be	used	when	a	module	imports	app,	and	inside	SystemJS,
this	will	map	to	main.js.	Similarly,	when	a	module	requires	an	RxJS	module,	such	as	Subject,
SystemJS	will	take	the	rxjs/Subject	import	path,	recognize	that	defaultExtension	is
specified	as	js,	map	the	module	to	its	file	representation	node_modules/rxjs/Subject.js,	and
import	it.

See	also
Composing	package.json	for	a	minimum	viable	Angular	2	application	describes	how	all
the	pieces	work	for	the	core	node	project	file
Configuring	TypeScript	for	a	minimum	viable	Angular	2	application	talks	about	how	to
configure	compilation	to	support	an	Angular	2	project
Performing	in-browser	transpilation	with	SystemJS	demonstrates	how	SystemJS	can	be
used	to	connect	uncompiled	static	files	together
Migrating	the	minimum	viable	Angular	2	application	to	Webpack	bundling	describes	how
to	integrate	Webpack	into	your	Angular	application	build	process
Incorporating	shims	and	polyfills	into	Webpack	gives	you	a	handy	way	of	managing
Angular	2	polyfill	dependencies
HTML	generation	with	html-webpack-plugin	shows	you	how	you	can	configure	an	npm
package	to	add	compiled	files	to	your	HTML	automatically
Setting	up	an	application	with	Angular	CLI	gives	a	description	of	how	to	use	the	CLI,	what
it	gives	you,	and	what	these	individual	pieces	do

Migrating	the	minimum	viable	application	to
Webpack	bundling
It	is	advantageous	for	many	reasons	to	make	it	as	easy	and	quick	as	possible	for	the	client	to	load
and	run	the	code	sent	from	your	server.	One	of	the	easiest	and	most	effective	ways	of	doing	this	is
by	bundling	lots	of	code	into	a	single	file.	In	nearly	all	cases,	it	is	highly	efficient	for	the	browser
to	load	a	single	file	that	contains	all	the	dependencies	required	to	bootstrap	an	application.

Webpack	offers	many	useful	tools	and	among	them	is	the	terrific	JS	bundler.	This	recipe
demonstrates	how	you	will	be	able	to	combine	your	entire	application	(including	npm	package
dependencies)	into	a	single	JavaScript	file	that	the	browser	will	be	served.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/3310/.

http://ngcookbook.herokuapp.com/3310/

Getting	ready
You	should	have	completed	all	the	steps	given	in	the	Composing	configuration	files	for	a
minimum	viable	Angular	2	application	and	Composing	application	files	for	a	minimum	viable
Angular	2	application	recipes.	npm	start	should	start	up	the	development	server,	and	it	should
be	visible	at	localhost:3000.

How	to	do	it...
Begin	by	removing	the	application's	dependency	on	SystemJS.	webpack	is	able	to	resolve
dependencies	and	bundle	all	your	files	into	a	single	JS	file.	Begin	by	installing	webpack	with	the
global	flag:

npm	install	webpack	-g

webpack.config.js

webpack	looks	for	a	webpack.config.js	file	for	instructions	on	how	to	behave.	Create	this
now:

[webpack.config.js]	

	

module.exports	=	{	

		entry:	"./app/main.js",	

		output:	{	

				path:	"./dist",	

				filename:	"bundle.js"	

		}	

};	

Nothing	exceptionally	complicated	is	going	on	here.	This	tells	webpack	to	select	main.js	as	the
top-level	application	file,	resolve	all	its	dependencies	to	the	files	that	define	them,	and	bundle
them	into	a	single	bundle.js	inside	a	dist/	directory.

Tip

At	this	point,	you	can	check	that	this	is	working	by	invoking	webpack	from	the	command	line,
which	will	run	the	bundler.	You	should	see	bundle.js	appear	inside	dist/	with	all	the	module
dependencies	inside	it.

This	is	a	good	start,	but	this	generated	file	still	isn't	being	used	anywhere.	Next,	you'll	modify
index.html	to	use	the	file:

[index.html]	

	

<html>	

<head>	

		<title>Angular	2	Minimum	Viable	Application</title>	

		<script	src="node_modules/zone.js/dist/zone.js">	

		</script>	

		<script	src="node_modules/reflect-metadata/Reflect.js">	

		</script>	

		<script	src="dist/bundle.js">	

		</script>	

</head>	

<body>	

		<app-root></app-root>	

</body>	

</html>	

Probably	not	what	you	were	expecting	at	all!	Since	bundle.js	is	the	application	entry	point	and
SystemJS	is	no	longer	needed	to	resolve	any	modules	(because	webpack	is	already	doing	this	for
you	when	bundling	the	files),	you	can	remove	the	application's	dependency	on	SystemJS.

Since	this	is	the	case,	you	can	remove	the	System	dependency	from	your	package.json	and	add
the	webpack	scripts	and	dependency:

[package.json]	

	

{	

		"name":	"mva-bundling",	

		"scripts":	{	

				"start":	"tsc	&&	webpack	&&	concurrently	'npm	run	tsc:w'

				'npm	run	wp:w'	'npm	run	lite'",	

				"lite":	"lite-server",	

				"postinstall":	"npm	install	-S	@types/node	@types/core-js",	

				"tsc":	"tsc",	

				"tsc:w":	"tsc	-w",	

				"wp":	"webpack",	

				"wp:w":	"webpack	--watch"	

		},	

		"dependencies":	{	

				"@angular/common":	"2.0.0",	

				"@angular/compiler":	"2.0.0",	

				"@angular/core":	"2.0.0",	

				"@angular/platform-browser":	"2.0.0",	

				"@angular/platform-browser-dynamic":	"2.0.0",	

				"core-js":	"^2.4.1",	

				"reflect-metadata":	"^0.1.3",	

				"rxjs":	"5.0.0-beta.12",	

				"zone.js":	"^0.6.23"	

		},	

		"devDependencies":	{	

				"concurrently":	"^2.2.0",	

				"lite-server":	"^2.2.2",	

				"typescript":	"^2.0.2",	

				"webpack":	"^1.13.2"	

		}	

}	

Whether	or	not	webpack	and	typescript	belong	to	devDependencies	here	is	a	matter	of	dispute
and	is	largely	subject	to	how	you	manage	your	local	environment.	If	you've	already	installed	them
with	the	global	flag,	then	you	don't	need	to	list	it	here	as	a	dependency.	This	is	because	npm	will
search	for	globally	installed	packages	and	find	them	for	you	to	run	npm	scripts.	Furthermore,
listing	it	here	will	install	a	duplicate	webpack	local	to	this	project,	which	is	obviously	redundant.

For	the	purpose	of	this	recipe,	it	is	helpful	to	have	it	here.	This	is	because	you	can	ensure	that	a
single	npm	install	on	the	command	line	will	fetch	all	the	packages	you	need	off	the	bat,	and	this
will	let	you	specify	the	version	you	want	within	the	project.

Now,	when	you	execute	npm	start,	the	following	occurs:

TypeScript	does	an	initial	compilation	of	.ts	files	into	.js	files.
Webpack	does	an	initial	bundling	of	all	the	JS	files	into	a	single	bundle.js	in	the	dist/
directory.
Simultaneously,	lite-server	is	started,	the	TypeScript	compiler	watcher	is	started,	and	the
Webpack	watcher	is	started.	Upon	a	.ts	file	change,	TypeScript	will	compile	it	into	a	.js
file,	and	Webpack	will	pick	up	that	file	change	and	rebundle	it	into	bundle.js.	The	lite-
server	will	see	that	bundle.js	is	changed	and	reload	the	page,	so	you	can	see	the	changes
being	updated	automatically.

Tip

Without	specifying	the	configurations	more	closely,	the	TypeScript,	Webpack,	and	the	lite-
server	file	watch	lists	will	use	their	default	settings,	which	may	be	too	broad	and	therefore
would	watch	files	they	do	not	care	about.	Ideally,	TypeScript	would	only	watch	.ts	files	(which
does	this	with	your	tsconfig.json),	Webpack	would	only	watch	.html,	.js,	and	.css	files,
and	lite-server	would	only	watch	the	files	it	actually	serves	to	the	client.

See	also
Incorporating	shims	and	polyfills	into	Webpack	gives	you	a	handy	way	of	managing
Angular	2	polyfill	dependencies
HTML	generation	with	html-webpack-plugin	shows	you	how	you	can	configure	an	npm
package	to	add	compiled	files	to	your	HTML	automatically

Incorporating	shims	and	polyfills	into
Webpack
So	far,	this	has	been	a	much	cleaner	implementation,	but	you	still	have	the	two	dangling	shims
inside	the	index.html	file.	You've	pared	down	index.html	such	that	it	is	now	requesting	only	a
handful	of	JS	files	instead	of	each	module	target	individually,	but	you	can	go	even	further	and
bundle	all	the	JS	files	into	a	single	file.

The	challenge	in	this	is	that	browser	shims	aren't	delivered	via	modules;	in	other	words,	there
aren't	any	other	files	that	will	import	these	to	use	them.	They	just	assume	their	use	is	available.
Therefore,	the	standard	Webpack	bundling	won't	pick	up	these	targets	and	include	them	in	the
bundled	file.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/7479/.

http://ngcookbook.herokuapp.com/7479/

Getting	ready
You	should	complete	the	Migrating	the	minimum	viable	application	to	Webpack	bundling	recipe
first,	which	will	give	you	all	the	source	files	needed	for	this	recipe.

How	to	do	it...
There	are	a	number	of	ways	to	go	about	doing	this,	including	some	that	involve	the	addition	of
Webpack	plugins,	but	there's	an	extremely	simple	way	as	well:	just	add	the	imports	manually.

Create	a	new	polyfills.ts:

[src/polyfills.ts]	

	

import	"reflect-metadata";	

import	"zone.js";	

Import	this	module	from	main.ts:

[src/main.ts]	

	

import	'./polyfills';	

import	{platformBrowserDynamic}		

		from	'@angular/platform-browser-dynamic';	

import	{AppModule}	from	'./app/app.module';	

	

platformBrowserDynamic().bootstrapModule(AppModule);	

Finally,	clean	up	index.html:

[index.html]	

	

<html>	

<head>	

		<title>Angular	2	Minimum	Viable	Application</title>	

<body>	

		<app-root></app-root>	

		<script	src="dist/bundle.js"></script>	

</body>	

</html>	

Now,	Webpack	should	be	able	to	resolve	the	shim	imports,	and	all	the	needed	files	will	be
included	inside	bundle.js.

How	it	works...
The	only	reason	that	the	polyfills	are	not	discovered	by	Webpack	is	because	they	are	not	required
anywhere	in	the	application.	Rather,	anywhere	they	are	used	leads	to	the	assumption	that	the
exposed	targets,	such	as	Zone,	have	previously	been	made	available.	Therefore,	it	is	easy	for	you
to	simply	import	them	at	the	very	top	of	your	application,	which	has	a	well-defined	point	in	the
code.	With	this	Webpack,	you	will	be	able	to	discover	the	existence	of	polyfills	and	incorporate
them	into	the	generated	bundle.

See	also
Migrating	the	minimum	viable	Angular	2	application	to	Webpack	bundling	describes	how
to	integrate	Webpack	into	your	Angular	application	build	process
HTML	generation	with	html-webpack-plugin	shows	you	how	you	can	configure	an	npm
package	to	add	compiled	files	to	your	HTML	automatically

HTML	generation	with	html-webpack-plugin
Ideally,	you	would	like	to	be	able	to	have	Webpack	manage	the	bundled	file	and	its	injection	into
the	template.	By	default,	Webpack	is	unable	to	do	this,	as	it	is	only	concerned	with	the	files
related	to	scripting.	Fortunately,	Webpack	offers	an	extremely	popular	plugin	that	allows	you	to
expand	the	scope	of	Webpack's	file	concerns.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/7185/.

http://ngcookbook.herokuapp.com/7185/

Getting	ready
Install	the	plugin	and	add	it	to	devDependencies	of	package.json	with	the	following:

npm	install	html-webpack-plugin	--save-dev

How	to	do	it...
First,	you'll	need	to	incorporate	the	plugin	into	package.json	if	it	isn't	already:

[package.json]	

	

{	

		"name":	"mva-bundling",	

		"scripts":	{	

				"start":	"tsc&&webpack&&	concurrently	'npm	run	tsc:w'

				'npm	run	wp:w'	'npm	run	lite'",	

				"lite":	"lite-server",	

				"postinstall":	"npm	install	-S	@types/node	@types/core-js",	

				"tsc":	"tsc",	

				"tsc:w":	"tsc	-w",	

				"wp":	"webpack",	

				"wp:w":	"webpack	--watch"	

		},	

		"dependencies":	{	

				"@angular/common":	"2.0.0",	

				"@angular/compiler":	"2.0.0",	

				"@angular/core":	"2.0.0",	

				"@angular/platform-browser":	"2.0.0",	

				"@angular/platform-browser-dynamic":	"2.0.0",	

				"core-js":	"^2.4.1",	

				"reflect-metadata":	"^0.1.3",	

				"rxjs":	"5.0.0-beta.12",	

				"zone.js":	"^0.6.23"	

		},	

		"devDependencies":	{	

				"concurrently":	"^2.2.0",	

				"html-webpack-plugin":	"^2.22.0",	

				"imports-loader":	"^0.6.5",	

				"lite-server":	"^2.2.2",	

				"typescript":	"^2.0.2",	

				"webpack":	"^1.13.2"	

		}	

}	

Once	this	module	is	installed,	define	its	operation	inside	the	Webpack	config:

[webpack.config.js]	

	

var	HtmlWebpackPlugin	=	require('html-webpack-plugin');	

	

module.exports	=	{	

		entry:	"./src/main.js",	

		output:	{	

				path:	"./dist",	

				filename:	"bundle.js"	

		},	

		plugins:	[new	HtmlWebpackPlugin({	

				template:	'./src/index.html'	

		})]	

};	

This	specifies	the	output	HTML	file	that	will	serve	the	entire	application.	Since	the	plugin	will
automatically	generate	the	HTML	file	for	you,	you'll	need	to	modify	the	existing	one	that	is
designated	as	the	template:

[src/index.html]	

	

<html>	

<head>	

		<title>Angular	2	Minimum	Viable	Application</title>	

</head>	

<body>	

		<app-root></app-root>	

</body>	

</html>	

Finally,	because	index.html	is	now	served	out	of	the	dist/	directory,	you'll	need	to	configure
the	development	server	to	serve	files	out	of	there.	Since	lite-server	is	just	a	wrapper	for
BrowserSync,	you	can	specify	baseDir	inside	a	bs-config.json	file,	which	you	should	create
now:

[bs-config.json]	

	

{	

				"server":	{	"baseDir":	"./dist"	}	

}	

How	it	works...
Webpack	is	very	much	aware	of	the	bundle	that	it	is	creating,	and	so	it	makes	sense	that	you
would	be	able	to	maintain	a	reference	to	this	bundle	(or	bundles)	and	directly	pipe	those	paths
into	an	index.html	file.	The	plugin	will	append	the	scripts	at	the	end	of	the	body	to	ensure	the
entire	initial	DOM	is	present.

See	also
Migrating	the	minimum	viable	Angular	2	application	to	Webpack	bundling	describes	how
to	integrate	Webpack	into	your	Angular	application	build	process
Incorporating	shims	and	polyfills	into	Webpack	gives	you	a	handy	way	of	managing
Angular	2	polyfill	dependencies

Setting	up	an	application	with	Angular	CLI
In	tandem	with	the	Angular	2	framework,	the	Angular	team	also	supports	a	build	tool	that	can
create,	build,	and	run	an	Angular	2	application	right	out	of	the	box.	What's	more,	it	includes	a
generator	that	can	create	style-guide-compliant	files	and	directories	for	various	application
pieces	from	the	command	line.

Note

The	code,	links,	and	a	live	example	of	this	are	available	at
http://ngcookbook.herokuapp.com/4068/.

http://ngcookbook.herokuapp.com/4068/

Getting	ready
Angular's	CLI	is	an	npm	module.	You'll	need	to	have	Node.js	installed	on	your	system—v7.0.0	or
later	works	as	a	suitable	recent	release	that's	compatible	with	the	Angular	CLI.

Tip

There	is	another	option	you	have:	manage	your	Node	environments	with	nvm,	the	Node	version
manager.	This	gives	you	a	transparent	wrapper	that	can	separately	manage	environments	with	the
Node	version	as	well	as	the	installed	npm	packages	in	that	environment.	If	you've	ever	dealt	with
messiness	involving	sudo	npm	install	-g,	you	will	be	delighted	by	this	tool.

Once	Node	is	installed	(and	if	you	use	nvm,	you've	selected	which	environment	to	use),	install	the
Angular	CLI:

npm	install	-g	angular-cli

How	to	do	it...
Angular	CLI	comes	ready	to	generate	a	fully	working	Angular	2	application.	To	create	an
application	named	PublisherApp,	invoke	the	following	command:

ng	new	publisher

The	Angular	CLI	will	dutifully	assemble	all	the	files	needed	for	a	minimal	Angular	2	TypeScript
application,	initialize	a	Git	repository,	and	install	all	the	required	npm	dependencies.	The	created
file	list	should	look	as	follows:

create	README.md

createsrc/app/app.component.css

createsrc/app/app.component.html

createsrc/app/app.component.spec.ts

createsrc/app/app.component.ts

createsrc/app/app.module.ts

createsrc/app/index.ts

createsrc/app/shared/index.ts

createsrc/environments/environment.prod.ts

createsrc/environments/environment.ts

createsrc/favicon.ico

createsrc/index.html

createsrc/main.ts

createsrc/polyfills.ts

createsrc/styles.css

createsrc/test.ts

createsrc/tsconfig.json

createsrc/typings.d.ts

create	angular-cli.json

create	e2e/app.e2e-spec.ts

create	e2e/app.po.ts

create	e2e/tsconfig.json

create	.gitignore

create	karma.conf.js

createpackage.json

create	protractor.conf.js

		create	tslint.json

Use	cd	publisher	to	move	into	the	application's	directory,	which	will	allow	you	to	invoke	all
the	project-specific	Angular	CLI	commands.

Running	the	application	locally

To	run	this	application,	start	up	the	server:

ng	serve

The	default	application	page	will	be	available	on	localhost:4200.

Testing	the	application

To	run	the	application's	unit	tests,	use	this:

ng	test

To	run	the	application's	end-to-end	tests,	use	this:

ng	e2e

How	it	works...
Let's	roughly	go	through	what	each	of	these	files	offer	to	you:

Project	configuration	files
angular-cli.json	is	the	configuration	file	specifying	how	the	Angular	CLI	should	bundle
and	manage	your	application's	files	and	directories.
package.json	is	the	npm	package	configuration	file.	Inside	it,	you'll	find	scripts	and
command-line	targets	that	the	Angular	CLI	commands	will	tie	into.

TypeScript	configuration	files
tslint.json	specifies	the	configuration	for	the	tslint	npm	package.	The	Angular	CLI
creates	for	you	a	lint	command	for	.ts	files	with	npm	run	lint.
src/tsconfig.json	is	part	of	the	TypeScript	specification;	it	informs	the	compiler	that	this
is	the	root	of	the	TypeScript	project.	Its	contents	define	how	the	compilation	should	occur,
and	its	presence	enables	the	tsc	command	to	use	this	directory	as	the	root	compilation
directory.
e2e/tsconfig.json	is	the	end-to-end	TypeScript	compiler	configuration	file.
src/typings.d.ts	is	the	specification	file	for	the	typings	npm	module.	It	allows	you	to
describe	how	external	modules	should	be	wrapped	and	incorporated	into	the	TypeScript
compiler.	This	typings.d.ts	file	specifies	the	System	namespace	for	SystemJS.

Test	configuration	files
karma.conf.js	is	the	configuration	file	for	Karma,	the	test	runner	for	the	project
protractor.conf.js	is	the	configuration	file	for	Protractor,	the	end-to-end	test	framework
for	the	project
src/test.ts	describes	to	the	Karma	configuration	how	to	start	up	the	test	runner	and	where
to	find	the	test	files	throughout	the	application

Core	application	files
src/index.html	is	the	root	application	file	that	is	served	to	run	the	entire	single-page
application.	Compiled	JS	and	other	static	assets	will	be	automatically	added	to	this	file	by
the	build	script.
src/main.ts	is	the	top-level	TypeScript	file	that	serves	to	bootstrap	your	application	with
its	AppModule	definition.
src/polyfills.ts	is	just	a	file	that	keeps	the	long	list	of	imported	polyfill	modules	out	of
main.ts.
src/styles.css	is	the	global	application	style	file.

Environment	files
src/environments/environment.ts	is	the	default	environment	configuration	file.
Specifying	different	environments	when	building	and	testing	your	application	will	override

these.
src/environments/environment.prod.ts	is	the	prod	environment	configuration,	which
can	be	selected	from	the	command	line	with	--prod.

AppComponent	files

Every	Angular	2	application	has	a	top-level	component,	and	Angular	CLI	calls
this	AppComponent.

src/app/app.component.ts	is	the	core	TypeScript	component	class	definition.	This	is
where	all	of	the	logic	that	controls	this	component	should	go.
src/app/app.component.html	and	src/app/app.component.css	are	the	templating	and
styling	files	specific	to	AppComponent.	Recall	that	styling	specified	in	ComponentMetadata
is	encapsulated	only	to	this	component.
src/app/app.module.ts	is	the	NgModule	definition	for	AppComponent.
src/app/index.ts	is	the	file	that	informs	the	TypeScript	compiler	which	modules	are
available	inside	this	directory.	Any	modules	that	are	exported	in	this	directory	and	used
elsewhere	in	the	application	must	be	specified	here.

AppComponent	test	files
src/app/app.component.spec.ts	are	the	unit	tests	for	AppComponent
e2e/app.e2e-spec.ts	are	the	end-to-end	tests	for	AppComponent
e2e/app.po.ts	is	the	page	object	definition	for	use	in	AppComponent	end-to-end	testing

There's	more...
When	looking	at	the	entire	project	codebase,	the	bulk	of	the	files	break	down	into	four	categories:

Files	that	are	sent	to	the	browser:	This	includes	your	uncompiled/unminified	application
files	and	also	the	compiled/minified	files.	When	developing	your	application,	you	want	to	be
able	to	test	your	application	locally	with	uncompiled	files.	You	also	want	to	be	able	to	ship
your	application	to	production	with	compiled	and	minified	files,	which	optimizes	browser
performance.	The	uncompiled/unminified	files	are	collected	by	the	build	scripts,	to	be
combined	into	the	compiled/minified	files.
Files	used	for	testing:	The	test	files	themselves	are	usually	sprinkled	throughout	your
application	and	are	not	compiled.	This	category	also	includes	configuration	files	and	test
scripts	that	control	what	actually	happens	when	you	run	the	tests	and	where	the	test	runners
can	find	the	test	files	in	your	project	directory.
Files	that	control	your	development	environment:	Depending	on	your	setup,	your	single-
page	application	may	run	by	itself	(with	no	backend	codebase),	or	it	may	be	built	alongside
a	substantial	backend	codebase	that	exposes	APIs	and	other	server-side	behavior.	Quickstart
repositories	or	application	generators	(such	as	Angular	CLI)	usually	provide	you	with	a
minimal	HTTP	server	to	get	you	off	the	ground	and	serve	your	static	assets	to	the	browser.
How	exactly	you	run	your	development	environment	will	vary,	but	the	files	in	this	category
manage	how	your	application	will	work	both	locally	and	in	production.
Files	that	compile	your	application:	The	files	you	edit	in	your	code	editor	of	choice	are	not
the	ones	that	reach	the	browser	in	a	production	application.	Build	scripts	are	usually	set	up
to	combine	all	your	files	into	the	smallest	and	fewest	files	possible.	Frequently,	this	will
mean	a	single	compiled	JS	and	compiled	CSS	file	delivered	to	the	browser.	These	files	will
minify	your	codebase,	compile	TypeScript	into	vanilla	JavaScript,	select	environment	files
and	other	context-specific	files,	and	organize	file	includes	and	other	files	and	module
dependencies	so	that	your	application	works	when	it's	compiled.	Usually,	the	files	they
create	will	be	dumped	into	a	dist	directory,	which	will	contain	files	that	are	served	to	the
browser	in	production.

See	also
Composing	package.json	for	a	minimum	viable	Angular	2	application	describes	how	all
the	pieces	work	for	the	core	node	project	file
Configuring	TypeScript	for	a	minimum	viable	Angular	2	application	talks	about	how	to
configure	compilation	to	support	an	Angular	2	project
Performing	in-browser	transpilation	with	SystemJS	demonstrates	how	SystemJS	can	be
used	to	connect	uncompiled	static	files	together
Composing	application	files	for	a	minimum	viable	Angular	2	application	walks	you
through	how	to	create	an	extremely	simple	Angular	2	app	from	scratch
Incorporating	shims	and	polyfills	into	Webpack	gives	you	a	handy	way	of	managing
Angular	2	polyfill	dependencies

Chapter	9.	Angular	2	Testing
This	chapter	will	cover	the	following	recipes:

Creating	a	minimum	viable	unit	test	suite	with	Karma,	Jasmine,	and	TypeScript
Writing	a	minimum	viable	unit	test	suite	for	a	simple	component
Writing	a	minimum	viable	end-to-end	test	suite	for	a	simple	application
Unit	testing	a	synchronous	service
Unit	testing	a	component	with	a	service	dependency	using	stubs
Unit	testing	a	component	with	a	service	dependency	using	spies

Introduction
Writing	tests	is	like	brushing	your	teeth.	You	can	get	away	with	skipping	it	for	a	while,	but	it'll
catch	up	with	you	eventually.

The	world	of	testing	is	awash	with	conflicting	ideologies,	platitudes,	and	grandstanding.	What's
more,	there	is	a	dizzying	array	of	tools	available	that	allow	you	to	write	and	run	your	tests	in
different	ways,	automate	your	tests,	or	analyze	your	test	coverage	or	correctness.	On	top	of	that,
each	developer's	utility	and	style	of	testing	is	unique;	someone	hacking	away	at	a	pre-seed	startup
will	not	have	the	same	requirements	as	a	developer	that	is	part	of	a	large	team	inside	a	Fortune
500	company.

The	goal	of	this	chapter	is	to	walk	you	through	the	available	testing	utilities	that	the	Angular	2
framework	comes	with	out	of	the	box,	as	well	as	some	strategies	for	deploying	these	utilities.	The
recipes	will	focus	on	unit	tests	rather	than	E2E	tests,	as	an	overwhelming	majority	of	robust	test
suites	will	be	unit	tests.

Creating	a	minimum	viable	unit	test	suite
with	Karma,	Jasmine,	and	TypeScript
Before	you	jump	into	the	intricacies	of	testing	an	Angular	2	application,	it's	important	to	first
examine	the	supporting	infrastructure	that	will	make	running	these	tests	possible.	The	bulk	of
official	Angular	resources	offer	tests	on	top	of	Karma	and	Jasmine,	and	there's	no	reason	to	rock
the	boat	on	this	one,	as	these	are	both	fine	testing	tools.	That	said,	it's	a	whole	new	world	with
TypeScript	involved,	and	using	them	in	tests	will	require	some	considerations.

This	recipe	will	demonstrate	how	to	put	together	a	very	simple	unit	test	suite.	It	will	use	Karma
and	Jasmine	as	the	test	infrastructure,	TypeScript	and	Webpack	for	compilation	and	module
support,	and	PhantomJS	as	the	test	browser.	For	those	unfamiliar	with	these	tools,	here's	a	bit
about	them:

Karma	is	a	unit	test	runner.	You	run	tests	through	Karma	on	the	command	line.	It	has	the
ability	to	start	up	a	test	server	that	understands	how	to	find	test	files	and	serve	them	to	the
test	browser.
Jasmine	is	a	test	framework.	When	you	use	keywords	such	as	"it"	and	"describe,"	remember
that	they	are	part	of	Jasmine	unit	tests.	It	integrates	with	Karma	and	understands	how	to
expose	and	run	the	tests	you've	written.
PhantomJS	is	a	headless	webkit	browser.	(Headless	means	it	runs	as	a	process	that	does
not	have	a	visible	user	interface	but	still	constructs	a	DOM	and	has	a	JS	runtime.)	Unit	tests
require	a	browser	to	run,	as	the	JavaScript	unit	tests	are	designed	to	execute	inside	a
browser	runtime.	Karma	supports	a	large	number	of	browser	plugins	to	run	the	tests	on,
including	standard	browsers	such	as	Chrome	and	Firefox.	If	you	were	to	incorporate	these
browser	plugins,	Karma	would	start	up	an	instance	of	the	browser	and	run	the	tests	inside	it.
For	the	purpose	of	creating	a	minimum	viable	unit	test	suite,	you	are	fine	doing	the	testing
inside	a	headless	browser,	which	will	cleanly	report	its	results	to	the	command	line.	If	you
want	to	run	your	tests	inside	an	actual	browser,	Karma	will	expose	the	server	at	a	specified
port,	which	you	can	access	directly,	for	example,	visiting	http://localhost:9876	in	the
desired	test	browser.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/3998/.

http://ngcookbook.herokuapp.com/3998/

Getting	ready
Start	out	with	a	package.json	file:

[package.json]	

	

{}	

Note

This	still	needs	to	be	a	valid	JSON	file,	as	npm	needs	to	be	able	to	parse	it	and	add	to	it.

How	to	do	it...
Start	off	by	creating	the	file	that	will	be	tested.	You	intend	to	use	TypeScript,	so	go	ahead	and	use
its	syntax	here:

[src/article.ts]	

	

export	class	Article	{	

		title:string	=		

				"Lab	Mice	Strike	for	Improved	Working	Conditions,	Benefits"	

}	

Writing	a	unit	test

With	the	Article	class	defined,	you	can	now	import	it	into	a	new	test	file,	article.spec.ts,	and
use	it.

Note

Jasmine	test	files,	by	convention,	are	suffixed	with	.spec.ts.	Test	files	generated	by	the	Angular
CLI	will	exist	alongside	the	file	they	test,	but	by	no	means	is	this	mandatory.	You	can	define	your
convention	inside	your	Karma	configuration	later	on.

Start	off	by	importing	the	Article	class	and	create	an	empty	Jasmine	test	suite	using	describe:

[src/article.spec.ts]	

	

import	{Article}	from	'./article';	

	

describe('Article	unit	tests',	()	=>	{	

});	

Note

describe	defines	a	spec	suite,	which	includes	a	string	title	called	Article	unit	tests,	and	an
anonymous	function,	which	contains	the	suite.	A	spec	suite	can	be	nested	inside	another	spec
suite.

Inside	a	describe	suite	function,	you	can	define	beforeEach	and	afterEach,	which	are
functions	that	execute	before	and	after	each	unit	test	is	defined	inside	the	suite.	Therefore,	it	is
possible	to	define	nested	setup	logic	for	unit	tests	using	nested	describe	blocks.

Inside	the	spec	suite	function,	write	the	unit	test	that	is	using	it:

[src/article.spec.ts]	

	

import	{Article}	from	'./article';	

	

describe('Article	unit	tests',	()	=>	{	

		it('Has	correct	title',	()	=>	{	

				let	a	=	new	Article();	

				expect(a.title)	

						.toBe("Lab	Mice	Strike	for	Improved	Working	Conditions,

						Benefits");	

		});	

});	

Note	that	both	the	code	and	the	test	are	written	in	TypeScript.

Configuring	Karma	and	Jasmine

First,	install	Karma,	the	Karma	CLI,	Jasmine,	and	the	Karma	Jasmine	plugin:

npm	install	karma	jasmine-core	karma-jasmine	--save-dev

npm	install	karma-cli	-g

Alternately,	if	you	want	to	save	a	few	keystrokes,	the	following	is	equivalent:

npm	i	-D	karma	jasmine-core	karma-jasmine

npm	i	karma-cli	-g

Karma	reads	its	configuration	out	of	a	karma.conf.js	file,	so	create	that	now:

[karma.conf.js]	

	

module.exports	=	function(config)	{	

		config.set({	

		})	

}	

Karma	needs	to	know	how	to	find	the	test	files	and	also	how	to	use	Jasmine:

[karma.conf.js]	

	

module.exports	=	function(config)	{	

		config.set({	

				frameworks:	[

						'jasmine'	

],	

				files:	[

						'src/*.spec.js'	

],	

				plugins	:	[

						'karma-jasmine',		

]	

		})	

}	

Configuring	PhantomJS

PhantomJS	allows	you	to	direct	tests	entirely	from	the	command	line,	but	Karma	needs	to
understand	how	to	use	PhantomJS.	Install	the	PhantomJS	plugin:

npm	install	karma-phantomjs-launcher	--save-dev

Next,	incorporate	this	plugin	into	the	Karma	config:

[karma.conf.js]	

	

module.exports	=	function(config)	{	

		config.set({	

				browsers:	[

						'PhantomJS'	

],	

				frameworks:	[

						'jasmine'	

],	

				files:	[

						'src/*.spec.js'	

],	

				plugins	:	[

						'karma-jasmine',		

						'karma-phantomjs-launcher'	

]	

		})	

}	

Karma	now	knows	it	has	to	run	the	tests	in	PhantomJS.

Compiling	files	and	tests	with	TypeScript

If	you're	paying	attention	closely,	you'll	note	that	the	Karma	config	is	referencing	test	files	that	do
not	exist.	Since	you're	using	TypeScript,	you	must	create	these	files.	Install	TypeScript	and	the
Jasmine	type	definitions:

npm	install	typescript	@types/jasmine	--save-dev

Add	script	definitions	to	your	package.json:

[package.json]	

	

{	

		"scripts":	{	

				"tsc":	"tsc",	

				"tsc:w":	"tsc	-w"	

		},	

		"devDependencies":	{	

				"@types/jasmine":	"^2.5.35",	

				"jasmine-core":	"^2.5.2",	

				"karma":	"^1.3.0",	

				"karma-cli":	"^1.0.1",	

				"karma-jasmine":	"^1.0.2",	

				"karma-phantomjs-launcher":	"^1.0.2",	

				"typescript":	"^2.0.3"	

		}	

}	

Create	a	tsconfig.json	file.	Since	you're	fine	with	the	compiled	files	residing	in	the	same
directory,	a	simple	one	will	do:

[tsconfig.json]	

	

{	

		"compilerOptions":	{	

				"target":	"es5",	

				"module":	"commonjs",	

				"moduleResolution":	"node"	

		}	

}	

Tip

You	would	probably	not	do	it	this	way	for	a	production	application,	but	for	a	minimum	viable
setup,	this	will	do	in	a	pinch.	A	production	application	would	most	likely	put	compiled	files	into
an	entirely	different	directory,	frequently	named	dist/.

Incorporating	Webpack	into	Karma

Of	course,	you'll	need	a	way	of	resolving	module	definitions	for	code	and	tests.	Karma	isn't
capable	of	doing	this	on	its	own,	so	you'll	need	something	to	do	this.	Webpack	is	perfectly
suitable	for	such	a	task,	and	Karma	has	a	terrific	plugin	that	allows	you	to	preprocess	your	test
files	before	they	reach	the	browser.

Install	Webpack	and	its	Karma	plugin:

npm	install	webpack	karma-webpack	--save-dev

Modify	the	Karma	config	to	specify	Webpack	as	the	preprocessor.	This	allows	your	module
definitions	to	be	resolved	properly:

[karma.conf.js]	

	

module.exports	=	function(config)	{	

		config.set({	

				browsers:	[

						'PhantomJS'	

],	

				frameworks:	[

						'jasmine'	

],	

				files:	[

						'src/*.spec.js'	

],	

				plugins	:	[

						'karma-webpack',	

						'karma-jasmine',		

						'karma-phantomjs-launcher'	

],	

				preprocessors:	{	

						'src/*.spec.js':	['webpack']	

				}	

		})	

}	

Writing	the	test	script

You	can	kick	off	the	Karma	server	with	the	following:

karma	start	karma.conf.js

This	will	initialize	the	test	server	and	run	the	tests,	watching	for	changes	and	rerunning	the	tests.
However,	this	sidesteps	the	fact	that	the	TypeScript	files	require	compilation	in	the	files	that
Karma	is	watching.	The	TypeScript	compiler	also	has	a	file	watcher	that	will	recompile	on	the
fly.	You	would	like	both	of	these	to	recompile	whenever	you	save	changes	to	a	source	code	file,
so	it	makes	sense	to	run	them	simultaneously.	The	concurrently	package	is	suitable	for	this	task.

Note

concurrently	not	only	allows	you	to	run	multiple	commands	at	once,	but	also	to	kill	them	all	at
once.	Without	it,	a	kill	signal	from	the	command	line	would	only	target	whichever	process	was
run	most	recently,	ignoring	the	process	that	is	running	in	the	background.

Install	concurrently	with	the	following:

npm	install	concurrently	--save-dev

Finally,	build	your	test	script	to	run	Karma	and	the	TypeScript	compiler	simultaneously:

[package.json]	

	

{	

		"scripts":	{	

				"test":	"concurrently	'npm	run	tsc:w'	'karma	start

				karma.conf.js'",	

				"tsc":	"tsc",	

				"tsc:w":	"tsc	-w"	

		},	

		"devDependencies":	{	

				"@types/jasmine":	"^2.5.35",	

				"concurrently":	"^3.1.0",	

				"jasmine-core":	"^2.5.2",	

				"karma":	"^1.3.0",	

				"karma-cli":	"^1.0.1",	

				"karma-jasmine":	"^1.0.2",	

				"karma-phantomjs-launcher":	"^1.0.2",	

				"karma-webpack":	"^1.8.0",	

				"typescript":	"^2.0.3",	

				"webpack":	"^1.13.2"	

		}	

}	

With	this,	you	should	be	able	to	run	your	tests:

npm	test

If	everything	is	done	correctly,	the	Karma	server	should	boot	up	and	run	the	tests,	outputting	the
following:

PhantomJS	2.1.1	(Linux	0.0.0):	Executed	1	of	1	SUCCESS	(0.038	secs	/	0.001	

secs)

How	it	works...
Karma	and	Jasmine	work	together	to	deliver	test	files	to	the	test	browser.	TypeScript	and
Webpack	are	tasked	with	converting	your	TypeScript	files	into	a	JavaScript	format	that	will	be
usable	by	the	test	browser.

There's	more...
An	interesting	consideration	of	this	setup	is	how	exactly	TypeScript	is	handled.

Both	the	code	and	test	files	are	written	in	TypeScript,	which	allows	you	to	use	the	ES6	module
notation,	as	opposed	to	some	mix-and-match	strategy.	However,	this	leaves	you	with	some
choices	to	make	on	how	the	test	setup	should	work.

The	tests	need	to	be	able	to	use	different	pieces	of	your	application	in	a	piecemeal	fashion,	as
opposed	to	the	standard	application	setup	where	all	the	modules	get	pulled	together	at	once.	This
recipe	had	TypeScript	independently	compile	the	.ts	files,	and	it	then	directed	Karma	to	watch
the	resultant	.js	files.	This	is	perhaps	easier	to	comprehend	by	someone	who	is	easing	into	tests,
but	it	might	not	be	the	most	efficient	way	to	go	about	it.	Karma	also	supports	TypeScript	plugins,
which	allow	you	to	preprocess	the	files	into	TypeScript	before	handing	them	off	to	the	Webpack
preprocessor.

Karma	supports	the	chaining	of	preprocess	steps,	which	will	be	useful	if	you	want	to	compile	the
TypeScript	on	the	fly	as	part	of	preprocessing.

See	also
Writing	a	minimum	viable	unit	test	suite	for	a	simple	component	shows	you	a	basic
example	of	unit	testing	Angular	2	components
Unit	testing	a	synchronous	service	demonstrates	how	an	injection	is	mocked	in	unit	tests
Unit	testing	a	component	with	a	service	dependency	using	Stubs	shows	how	you	can	create
a	service	mock	to	write	unit	tests	and	avoid	direct	dependencies
Unit	testing	a	component	with	a	service	dependency	using	Spies	shows	how	you	can	keep
track	of	service	method	invocations	inside	a	unit	test

Writing	a	minimum	viable	unit	test	suite	for
a	simple	component
Unit	tests	are	the	bread	and	butter	of	your	application	testing	process.	They	exist	as	a	companion
to	your	source	code,	and	most	of	the	time,	the	bulk	of	your	application	tests	will	be	unit	tests.
They	are	lightweight,	run	quickly,	are	easy	to	read	and	reason	about,	and	can	give	context	as	to
how	the	code	should	be	used	and	how	it	might	behave.

Setting	up	Karma,	Jasmine,	TypeScript,	and	Angular	2	along	with	all	the	connecting
configurations	between	them	is	a	bit	of	an	imposing	task;	it	was	deemed	to	be	out	of	the	scope	of
this	chapter.	It's	not	a	very	interesting	discussion	to	get	all	of	them	to	work	together,	especially
since	there	are	already	so	many	example	projects	that	have	put	together	their	own	setups	for	you.
It's	far	more	interesting	to	dive	directly	into	the	tests	themselves	and	see	how	they	can	actually
interact	with	Angular	2.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/3935/.

http://ngcookbook.herokuapp.com/3935/

Getting	ready
This	recipe	will	assume	you	are	using	a	working	Angular	2	testing	environment.	The	one
provided	in	the	application	generated	by	the	Angular	CLI	is	ideal.	Tests	can	be	run	in	this
environment	with	the	following	command	inside	the	project	directory:

ng	test

Begin	with	the	following	component:

[src/app/article/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'app-article',	

		template:	`	

				<h1>	

						{{	title	}}	

				</h1>	

		`	

})	

export	class	ArticleComponent	{	

		title:	string	=	'Captain	Hook	Sues	Over	Spork	Snafu';	

}	

Your	goal	is	to	entirely	flesh	out	article.component.spec.ts	to	test	this	class.

How	to	do	it...
The	simplest	possible	test	you	can	think	of	is	the	one	that	will	simply	check	that	you	are	able	to
instantiate	an	instance	of	ArticleComponent.	Begin	with	that	test:

[src/app/article/article.component.spec.ts]	

	

import	{ArticleComponent}	from	'./article.component';	

	

describe('Component:	Article',	()	=>	{	

		it('should	create	an	instance',	()	=>	{	

				let	component	=	new	ArticleComponent();	

				expect(component).toBeTruthy();	

		});	

});	

Nothing	tricky	is	going	on	here.	Since	ArticleComponent	is	just	a	plain	old	TypeScript	class,
nothing	is	preventing	you	from	creating	an	instance	and	inspecting	it	in	the	memory.

However,	for	it	to	actually	behave	like	an	Angular	2	component,	you'll	need	some	other	tools.

Using	TestBed	and	async

When	you	try	to	puppet	an	Angular	2	environment	for	the	component	in	a	test,	there	are	a	number
of	considerations	you'll	need	to	account	for.	First,	Angular	2	unit	tests	heavily	rely	upon	TestBed,
which	can	be	thought	of	as	your	testing	multitool.

The	denomination	of	unit	tests	when	dealing	with	a	component	involves	ComponentFixture.
	TestBed.createComponent()	will	create	a	fixture	wrapping	an	instance	of	the	desired
component.

Tip

The	need	for	fixtures	is	centered	in	how	unit	tests	are	supposed	to	work.	An	ArticleComponent
does	not	make	sense	when	instantiated	as	it	was	with	the	initial	test	you	wrote.	There	is	no	DOM
element	to	attach	to,	no	running	application,	and	so	on.	It	doesn't	make	sense	for	the	component
unit	tests	to	have	an	explicit	dependency	on	these	things.	So,	ComponentFixture	is	Angular's
way	of	letting	you	test	only	the	concerns	of	the	component	as	it	would	normally	exist,	without
worrying	about	all	the	messiness	of	its	innate	dependencies.

The	TestBed	fixture's	asynchronous	behavior	mandates	that	the	test	logic	is	executed	inside	an
async()	wrapper.

Tip

The	async()	wrapper	simply	runs	the	test	inside	its	own	zone.	This	allows	the	test	runner	to	wait

for	all	the	asynchronous	calls	inside	the	test	to	complete	them	before	ending	the	test.

Begin	by	importing	TestBed	and	async	from	the	Angular	testing	module	and	put	together	the
skeleton	for	two	more	unit	tests:

[src/app/article/article.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{ArticleComponent}	from	'./article.component';	

	

describe('Component:	Article',	()	=>	{	

		it('should	create	an	instance',	()	=>	{	

				let	component	=	new	ArticleComponent();	

				expect(component).toBeTruthy();	

		});	

	

		it('should	have	correct	title',	async(()	=>	{	

		}));	

	

		it('should	render	title	in	an	h1	tag',	async(()	=>	{	

		}));	

});	

Now	that	you	have	the	skeletons	for	the	two	tests	you'd	like	to	write,	it's	time	to	use	TestBed	to
define	the	test	module.	Angular	2	components	are	paired	with	a	module	definition,	but	when
performing	unit	tests,	you'll	need	to	use	the	TestBed	module's	definition	for	the	component	to
work	properly.	This	can	be	done	with	TestBed.configureTestModule(),	and	you'll	want	to
invoke	this	before	each	test.

Jasmine's	describe	allows	you	to	group	beforeEach	and	afterEach	inside	it,	and	it	is	perfect
for	use	here:

[src/app/article/article.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{ArticleComponent}	from	'./article.component';	

	

describe('Component:	Article',	()	=>	{	

		it('should	create	an	instance',	()	=>	{	

				let	component	=	new	ArticleComponent();	

				expect(component).toBeTruthy();	

		});	

	

		describe('Async',	()	=>	{	

				beforeEach(()	=>	{	

						TestBed.configureTestingModule({	

								declarations:	[

										ArticleComponent	

],	

						});	

				});	

	

				it('should	have	correct	title',	async(()	=>	{	

				}));	

	

				it('should	render	title	in	an	h1	tag',	async(()	=>	{	

				}));	

		});	

});	

Creating	a	ComponentFixture

TestBed	gives	you	the	ability	to	create	a	fixture,	but	you	have	yet	to	actually	do	it.	You'll	need	a
fixture	for	both	the	async	tests,	so	it	makes	sense	to	do	this	in	beforeEach	too:

[src/app/article/article.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{ArticleComponent}	from	'./article.component';	

	

describe('Component:	Article',	()	=>	{	

		let	fixture;	

	

		it('should	create	an	instance',	()	=>	{	

				let	component	=	new	ArticleComponent();	

				expect(component).toBeTruthy();	

		});	

	

		describe('Async',	()	=>	{	

				beforeEach(()	=>	{	

						TestBed.configureTestingModule({	

								declarations:	[

										ArticleComponent	

],	

						});	

	

						fixture	=	TestBed.createComponent(ArticleComponent);	

				}));	

	

				afterEach(()	=>	{	

						fixture	=	undefined;	

				});	

	

				it('should	have	correct	title',	async(()	=>	{	

				}));	

	

				it('should	render	title	in	an	h1	tag',	async(()	=>	{	

				}));	

		});	

});	

Tip

Here,	fixture	is	assigned	to	undefined	in	the	afterEach	teardown.	This	is	technically

superfluous	for	the	purpose	of	these	tests,	but	it	is	good	to	get	into	the	habit	of	performing	a	robust
teardown	of	shared	variables	in	unit	tests.	This	is	because	one	of	the	most	frustrating	things	to
debug	in	a	test	suite	is	test	variable	bleed.	After	all,	these	are	just	functions	running	in	a	sequence
in	a	browser.

Now	that	the	fixture	is	defined	for	each	test,	you	can	use	its	methods	to	inspect	the	instantiated
component	in	different	ways.

For	the	first	test,	you'd	like	to	inspect	the	ArticleComponent	object	itself	from	within
ComponentFixture.	This	is	exposed	with	the	componentInstance	property:

[src/app/article/article.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{ArticleComponent}	from	'./article.component';	

	

describe('Component:	Article',	()	=>	{	

		let	expectedTitle	=	'Captain	Hook	Sues	Over	Spork	Snafu';	

		let	fixture;	

	

		it('should	create	an	instance',	()	=>	{	

				let	component	=	new	ArticleComponent();	

				expect(component).toBeTruthy();	

		});	

	

		describe('Async',	()	=>	{	

				beforeEach(async(()	=>	{	

						TestBed.configureTestingModule({	

								declarations:	[

										ArticleComponent	

],	

						});	

						fixture	=	TestBed.createComponent(ArticleComponent);	

				}));	

	

				afterEach(()	=>	{	

						fixture	=	undefined;	

				});	

	

				it('should	have	correct	title',	async(()	=>	{	

						expect(fixture.componentInstance.title)	

								.toEqual(expectedTitle);	

				}));	

	

				it('should	render	title	in	an	h1	tag',	async(()	=>	{	

				}));	

		});	

});	

For	the	second	test,	you	want	access	to	the	DOM	that	the	fixture	has	attached	the	component
instance	to.	The	root	element	that	the	component	is	targeting	is	exposed	with	the	nativeElement

property:

[src/app/article/article.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{ArticleComponent}	from	'./article.component';	

	

describe('Component:	Article',	()	=>	{	

		let	expectedTitle	=	'Captain	Hook	Sues	Over	Spork	Snafu';	

		let	fixture;	

	

		it('should	create	an	instance',	()	=>	{	

				let	component	=	new	ArticleComponent();	

				expect(component).toBeTruthy();	

		});	

	

		describe('Async',	()	=>	{	

				beforeEach(async(()	=>	{	

						TestBed.configureTestingModule({	

								declarations:	[

										ArticleComponent	

],	

						});	

						fixture	=	TestBed.createComponent(ArticleComponent);	

				}));	

	

				afterEach(()	=>	{	

						fixture	=	undefined;	

				});	

	

				it('should	have	correct	title',	async(()	=>	{	

						expect(fixture.componentInstance.title)	

								.toEqual(expectedTitle);	

				}));	

	

				it('should	render	title	in	an	h1	tag',	async(()	=>	{	

						expect(fixture.nativeElement.querySelector('h1')	

								.textContent).toContain(expectedTitle);	

				}));	

		});	

});	

If	you	run	these	tests,	you	will	notice	that	the	last	test	will	fail.	The	test	sees	an	empty	string
inside	<h1></h1>.	This	is	because	you	are	binding	a	value	in	the	template	to	a	component
member.	Since	the	fixture	controls	the	entire	environment	surrounding	the	component,	it	also
controls	the	change	detection	strategy—which,	here,	is	to	not	run	until	it	is	told	to	do	so.	You	can
trigger	a	round	of	change	detection	using	the	detectChanges()	method:

[src/app/article/article.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{ArticleComponent}	from	'./article.component';	

	

describe('Component:	Article',	()	=>	{	

		let	expectedTitle	=	'Captain	Hook	Sues	Over	Spork	Snafu';	

		let	fixture;	

	

		it('should	create	an	instance',	()	=>	{	

				let	component	=	new	ArticleComponent();	

				expect(component).toBeTruthy();	

		});	

	

		describe('Async',	()	=>	{	

				beforeEach(async(()	=>	{	

						TestBed.configureTestingModule({	

								declarations:	[

										ArticleComponent	

],	

						});	

						fixture	=	TestBed.createComponent(ArticleComponent);	

				}));	

	

				afterEach(()	=>	{	

						fixture	=	undefined;	

				});	

	

				it('should	have	correct	title',	async(()	=>	{	

									expect(fixture.componentInstance.title)	

											.toEqual(expectedTitle);	

				}));	

	

				it('should	render	title	in	an	h1	tag',	async(()	=>	{	

						fixture.detectChanges();	

						expect(fixture.nativeElement.querySelector('h1')	

								.textContent).toContain(expectedTitle);	

				}));	

		});	

});	

With	this,	you	should	see	Karma	run	and	pass	all	three	tests.

How	it	works...
When	it	comes	to	testing	components,	fixture	is	your	friend.	It	gives	you	the	ability	to	inspect	and
manipulate	the	component	in	an	environment	that	it	will	behave	comfortably	in.	You	are	then	able
to	manipulate	the	instances	of	input	made	to	the	component,	as	well	as	inspect	their	output	and
resultant	behavior.

This	is	the	core	of	unit	testing:	the	"thing"	you	are	testing—here,	a	component	class—should	be
treated	as	a	black	box.	You	control	what	goes	into	the	box,	and	your	tests	should	measure	and
define	what	they	expect	to	come	out	of	the	box.	If	the	tests	account	for	all	the	possible	cases	of
input	and	output,	then	you	have	achieved	100	percent	unit	test	coverage	of	that	thing.

See	also
Creating	a	minimum	viable	unit	test	suite	with	Karma,	Jasmine,	and	TypeScript	gives	you
a	gentle	introduction	to	unit	tests	with	TypeScript
Unit	testing	a	synchronous	service	demonstrates	how	an	injection	is	mocked	in	unit	tests
Unit	testing	a	component	with	a	service	dependency	using	Stubs	shows	how	you	can	create
a	service	mock	to	write	unit	tests	and	avoid	direct	dependencies
Unit	testing	a	component	with	a	service	dependency	using	Spies	shows	how	you	can	keep
track	of	service	method	invocations	inside	a	unit	test

Writing	a	minimum	viable	end-to-end	test
suite	for	a	simple	application
End-to-end	testing	(or	e2e	for	short)	is	on	the	other	end	of	the	spectrum	as	far	as	unit	testing	is
concerned.	The	entire	application	exists	as	a	black	box,	and	the	only	controls	at	your	disposal—
for	these	tests—are	actions	the	user	might	take	inside	the	browser,	such	as	firing	click	events	or
navigating	to	a	page.	Similarly,	the	correctness	of	tests	is	only	verified	by	inspecting	the	state	of
the	browser	and	the	DOM	itself.

More	explicitly,	an	end-to-end	test	will	(in	some	form)	start	up	an	actual	instance	of	your
application	(or	a	subset	of	it),	navigate	to	it	in	an	actual	browser,	do	stuff	to	a	page,	and	look	to
see	what	happens	on	the	page.	It's	pretty	much	as	close	as	you	are	going	to	get	to	having	an	actual
person	sit	down	and	use	your	application.

In	this	recipe,	you'll	put	together	a	very	basic	end-to-end	test	suite	so	that	you	might	better
understand	the	concepts	involved.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/8985/.

http://ngcookbook.herokuapp.com/8985/

Getting	ready
You'll	begin	with	the	code	files	created	in	the	minimum	viable	application	recipe	from	Chapter	8,
Application	Organization	and	Management.	The	most	important	files	that	you'll	be	editing	here
are	AppComponent	and	package.json:

[package.json]	

	

{	

		"scripts":	{	

				"start":	"tsc	&&	concurrently	'npm	run	tsc:w'	'npm	run	lite'",	

				"lite":	"lite-server",	

				"postinstall":	"npm	install	-s	@types/node	@types/core-js",	

				"tsc":	"tsc",	

				"tsc:w":	"tsc	-w"	

		},	

		"dependencies":	{	

				"@angular/common":	"2.1.0",	

				"@angular/compiler":	"2.1.0",	

				"@angular/core":	"2.1.0",	

				"@angular/platform-browser":	"2.1.0",	

				"@angular/platform-browser-dynamic":	"2.1.0",	

				"core-js":	"^2.4.1",	

				"reflect-metadata":	"^0.1.3",	

				"rxjs":	"5.0.0-beta.12",	

				"systemjs":	"0.19.27",	

				"zone.js":	"^0.6.23"	

		},	

		"devDependencies":	{	

				"concurrently":	"^2.2.0",	

				"lite-server":	"^2.2.2",	

				"typescript":	"^2.0.2"	

		}	

}	

[app/app.component.ts]	

	

import	{Component}	from	'@angular/core';	

@Component({	

		selector:	'app-root',	

		template:	'<h1>AppComponent	template!</h1>'	

})	

export	class	AppComponent	{}	

How	to	do	it...
The	Angular	team	maintains	the	Protractor	project,	which	by	many	accounts	is	the	best	way	to	go
about	performing	end-to-end	tests	on	your	applications,	at	least	initially.	It	comes	with	a	large
number	of	utilities	out	of	the	box	to	manipulate	the	browser	when	writing	your	tests,	and	explicit
integrations	with	Angular	2,	so	it's	a	terrific	place	to	start.

Getting	Protractor	up	and	running

Protractor	relies	on	Selenium	to	automate	the	browser.	The	specifics	of	Selenium	aren't
especially	important	for	the	purpose	of	creating	a	minimum	viable	e2e	test	suite,	but	you	will
need	to	install	a	Java	runtime:

sudo	apt-get	install	openjdk-8-jre

Tip

I	run	Ubuntu,	so	the	OpenJDK	Java	Runtime	Environment	V8	is	suitable	for	my	purposes.	Your
development	setup	may	differ.	Runtimes	for	different	operating	systems	can	be	found	on	Oracle's
website.

Protractor	itself	can	be	installed	from	npm,	but	it	should	be	global.	You'll	be	using	it	with
Jasmine,	so	install	it	and	its	TypeScript	typings	as	well:

npm	install	jasmine-core	@types/jasmine	--save-dev

npm	install	protractor	-g

Tip

You	may	need	to	fiddle	with	this	configuration.	Sometimes,	it	may	work	if	you	install
protractor	locally	rather	than	globally.	Errors	involving	webdriver-manager	are	part	of	the
protractor	package,	so	they	will	most	likely	be	involved	where	your	protractor	package
installation	is	as	well.

It	should	come	as	no	surprise	that	protractor	is	configured	with	a	file,	so	create	it	now:

[protractor.conf.js]	

	

exports.config	=	{	

		specs:	[

				'./e2e/**/*.e2e-spec.ts'	

],	

		capabilities:	{	

				'browserName':	'chrome'	

		},	

		baseUrl:	'http://localhost:3000/',	

		framework:	'jasmine',	

}	

None	of	these	settings	should	surprise	you:

The	e2e	test	files	are	going	to	live	in	an	e2e/	directory	and	will	be	suffixed	with	.e2e-
spec.ts

Protractor	is	going	to	spin	up	a	Chrome	instance	that	it	will	puppeteer	with	Selenium
The	server	you're	going	to	spin	up	will	exist	at	localhost:3000,	and	all	the	URLs	inside
the	Protractor	tests	will	be	relative	to	this
The	Protractor	tests	will	be	written	with	the	Jasmine	syntax

For	simplicity,	the	server	you	are	starting	up	for	the	end-to-end	tests	will	be	the	same	lite-server
you've	been	using	all	along.	When	it	starts	up,	lite-server	will	open	up	a	browser	window	of	its
own,	which	will	prove	to	be	a	bit	annoying	here.	Since	it	is	a	thin	wrapper	for	BrowserSync,	you
can	configure	it	to	not	do	this	by	simply	directing	it	not	to	do	so	in	a	config	file	that	is	only	used
when	running	e2e	tests.

Create	this	file	now	inside	the	test	directory:

[e2e/bs-config.json]	

	

{	

		"open":	false	

}	

Note

The	lite-server	wrapper	won't	find	this	automatically,	but	you'll	direct	it	to	the	file	in	a	moment.

Making	Protractor	compatible	with	Jasmine	and	TypeScript

First,	create	a	tsconfig.json	file	inside	the	test	directory:

[e2e/tsconfig.json]	

	

{	

		"compilerOptions":	{	

				"target":	"es5",	

				"module":	"commonjs",	

				"moduleResolution":	"node"	

		}	

}	

Next,	create	the	actual	e2e	test	file	skeleton:

[e2e/app.e2e-spec.ts]	

	

describe('App	E2E	Test	Suite',	()	=>	{	

		it('should	have	the	correct	h1	text',	()	=>	{	

		});	

});	

This	uses	the	standard	Jasmine	syntax	to	declare	a	spec	suite	and	an	empty	test	within	it.

Before	fleshing	out	the	test,	you	need	to	ensure	that	Protractor	can	actually	use	this	file.	Install	the
ts-node	plugin	so	that	Protractor	can	perform	the	compilation	and	use	these	files	in	e2e	tests:

npm	install	ts-node	--save-dev

Next,	instruct	Protractor	to	use	this	to	compile	the	test	source	files	into	a	usable	format.	This	can
be	done	in	its	config	file:

[protractor.conf.js]	

	

exports.config	=	{	

		specs:	[

				'./e2e/**/*.e2e-spec.ts'	

],	

		capabilities:	{	

				'browserName':	'chrome'	

		},	

		baseUrl:	'http://localhost:3000/',	

		framework:	'jasmine',	

		beforeLaunch:	function()	{	

				require('ts-node').register({	

						project:	'e2e'	

				});	

		}	

}	

With	all	this,	you're	left	with	a	working	but	empty	end-to-end	test.

Building	a	page	object

An	excellent	convention	that	I	highly	recommend	using	is	the	page	object.

Note

The	idea	behind	this	is	that	all	of	the	logic	surrounding	the	interaction	with	the	page	can	be
extracted	into	its	own	page	object	class,	and	the	actual	test	behavior	can	use	this	abstracted	page
object	inside	the	class.	This	allows	the	tests	to	be	written	independently	of	the	DOM	structure	or
routing	definitions,	which	makes	for	superior	test	maintenance.	What's	more,	it	makes	your	tests
totally	independent	of	Protractor,	which	makes	it	easier	should	you	want	to	change	your	end-to-
end	test	runner.

For	this	simple	end-to-end	test,	you'll	want	to	specify	how	to	arrive	at	this	page	and	how	to
inspect	it	to	get	what	you	want.	Define	the	page	object	as	follows	with	two	member	methods:

[e2e/app.po.ts]	

	

import	{browser,	element,	by}	from	'protractor';	

	

export	class	AppPage	{	

		navigate()	{	

				browser.get('/');	

		}	

	

		getHeaderText()	{	

				return	element(by.css('app-root	h1')).getText();	

		}	

}	

navigate()	instructs	Selenium	to	the	root	path	(which,	as	you	may	recall,	is	based	on
localhost:3000),	and	getHeaderText()	inspects	a	DOM	element	for	its	text	contents.

Note

Note	that	browser,	element,	and	by	are	all	utilities	imported	from	the	protractor	module.	More
on	this	later	in	the	recipe.

Writing	the	e2e	test

With	all	of	the	infrastructure	in	place,	you	can	now	easily	write	your	end-to-end	test.	You'll	want
to	instantiate	a	new	page	object	for	each	test:

[e2e/app.e2e-spec.ts]	

	

import	{AppPage}	from	'./app.po';	

	

describe('App	E2E	Test	Suite',	()	=>	{	

		let	page:AppPage;	

	

		beforeEach(()	=>	{	

				page	=	new	AppPage();	

		});	

	

		it('should	have	the	correct	h1	text',	()	=>	{	

				page.navigate();	

	

				expect(page.getHeaderText())	

						.toEqual('AppComponent	template!');	

		});	

});		

Scripting	the	e2e	tests

Finally,	you'll	want	to	give	yourself	the	ability	to	easily	run	the	end-to-end	test	suite.	Selenium	is
often	being	updated,	so	it	behoves	you	to	explicitly	update	it	before	you	run	the	tests:

[package.json]	

	

{	

		"scripts":	{	

				"pree2e":	"webdriver-manager	update	&&	tsc",	

				"e2e":	"concurrently	'npm	run	lite	--	-c=e2e/bs-config.json'

				'protractor	protractor.conf.js'",	

				"start":	"tsc	&&	concurrently	'npm	run	tsc:w'	'npm	run	lite'",	

				"lite":	"lite-server",	

				"postinstall":	"npm	install	-s	@types/node	@types/core-js",	

				"tsc":	"tsc",	

				"tsc:w":	"tsc	-w"	

		},	

		"dependencies":	{	

				...	

		},	

		"devDependencies":	{	

				...	

		}	

}	

Finally,	Angular	2	needs	to	integrate	with	Protractor	and	be	able	to	tell	it	when	the	page	is	ready
to	be	interacted	with.	This	requires	one	more	addition	to	the	Protractor	configuration:

[protractor.conf.js]	

	

exports.config	=	{	

		specs:	[

				'./e2e/**/*.e2e-spec.ts'	

],	

		capabilities:	{	

				'browserName':	'chrome'	

		},	

		baseUrl:	'http://localhost:3000/',	

		framework:	'jasmine',	

		useAllAngular2AppRoots:	true,	

		beforeLaunch:	function()	{	

				require('ts-node').register({	

						project:	'e2e'	

				});	

		}	

}	

That's	all!	You	should	now	be	able	to	run	the	end-to-end	test	suite	by	invoking	it	with	the
corresponding	npm	script:

npm	run	e2e

This	will	start	up	a	lite-server	instance	(without	starting	up	its	default	browser),	and	protractor
will	run	the	tests	and	exit.

How	it	works...
At	the	top	of	the	app.po.ts	page	object	file,	you	imported	three	targets	from	Protractor:
browser,	element,	and	by.	Here's	a	bit	about	these	targets:

browser	is	a	protractor	global	object	that	allows	you	to	perform	browser-level	actions,
such	as	visiting	URLs,	waiting	for	events	to	occur,	and	taking	screenshots.
element	is	a	global	function	that	takes	a	Locator	and	returns	an	ElementFinder.
ElementFinder	is	the	point	of	contact	to	interact	with	the	matching	DOM	element,	if	it
exists.
by	is	a	global	object	that	exposes	several	Locator	factories.	Here,	the	by.css()	locator
factory	performs	an	analogue	of	document.querySelector().

Tip

The	entire	Protractor	API	can	be	found	at	http://www.protractortest.org/#/api.

The	reason	for	writing	the	tests	this	way	may	feel	strange	to	you.	After	all,	it's	a	real	browser
running	a	real	application,	so	it	might	make	sense	to	reach	for	DOM	methods	and	the	like.

The	reason	for	using	the	Protractor	API	instead	is	simple:	the	test	code	you	are	writing	is	not
being	executed	inside	the	browser	runtime.	Instead,	Protractor	is	handing	off	these	instructions	to
Selenium,	which	in	turn	will	execute	them	inside	the	browser	and	return	the	results.	Thus,	the	test
code	you	write	can	only	indirectly	interface	with	the	browser	and	the	DOM.

http://www.protractortest.org/#/api

There's	more...
The	purpose	of	this	recipe	was	to	assemble	a	very	simple	end-to-end	test	suite	so	that	you	can	get
a	feel	of	what	goes	on	behind	the	scenes	in	some	form.	While	the	tests	themselves	will	appear
more	or	less	as	they	do	here,	regardless	of	the	test	infrastructure	they	are	running	on,	the
infrastructure	itself	is	far	from	being	optimal;	a	number	of	changes	and	additions	could	be	made	to
make	it	more	robust.

When	running	unit	tests,	it	is	often	useful	for	the	unit	tests	to	detect	the	changes	in	files	and	run
them	again	immediately.	A	large	part	of	this	is	because	unit	tests	should	be	very	lightweight.	Any
dependencies	on	the	rest	of	the	application	are	mocked	or	abstracted	away	so	that	a	minimal
amount	of	code	can	be	run	to	prepare	your	unit	test	environment.	Thus,	there	is	little	cost	to
running	a	suite	of	unit	tests	in	a	sequence.

End-to-end	tests,	on	the	other	hand,	behave	in	the	opposite	way.	They	do	indeed	require	the	entire
application	to	be	constructed	and	run,	which	can	be	computationally	expensive.	Page	navigations,
resetting	the	entire	application,	initializing	and	clearing	authentication,	and	other	operations	that
might	commonly	be	performed	in	an	end-to-end	test	can	take	a	long	time.	Therefore,	it	doesn't
make	as	much	sense	here	to	run	the	end-to-end	tests	with	a	file	watcher	observing	for	changes
made	to	the	tests.

See	also
Creating	a	minimum	viable	unit	test	suite	with	Karma,	Jasmine,	and	TypeScript	gives	you
a	gentle	introduction	to	unit	tests	with	TypeScript

Unit	testing	a	synchronous	service
Angular	2	service	types	are	essentially	classes	designated	for	injectability.	They	are	easy	to	test
since	you	have	a	great	deal	of	control	over	how	and	where	they	are	provided,	and	consequently,
how	many	instances	you'll	be	able	to	create.	Therefore,	tests	for	services	will	exist	largely	as
they	would	for	any	normal	TypeScript	class.

It'll	be	better	if	you	are	familiar	with	the	content	of	the	first	few	recipes	of	this	chapter	before	you
proceed	further.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/3107.

http://ngcookbook.herokuapp.com/3107

Getting	ready
Suppose	you	want	to	build	a	"magic	eight	ball"	service.	Begin	with	the	following	code,	with
added	comments	for	clarity:

[src/app/magic-eight-ball.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	MagicEightBallService	{	

		private	values:Array<string>;	

		private	lastIndex:number;	

	

		constructor()	{	

				//	Initialize	the	values	array	

				//	Must	have	at	least	two	entries	

				this.values	=	[

						'Ask	again	later',	

						'Outlook	good',	

						'Most	likely',	

						'Don't	count	on	it'	

];	

	

				//	Initialize	with	any	valid	index	

				this.lastIndex	=	this.getIndex();	

		}	

	

		private	getIndex():number	{	

				//	Return	a	random	index	for	this.values	

				return	Math.floor(Math.random()	*	this.values.length);	

		}	

	

		reveal():string	{	

				//	Generate	a	new	index	

				let	newIdx	=	this.getIndex();	

.	

				//	Check	if	the	index	was	the	same	one	used	last	time	

				if	(newIdx	===	this.lastIndex)	{	

						//	If	so,	shift	up	one	(wrapping	around)	in	the	array	

						//	This	is	still	random	behavior	

						newIdx	=	(++newIdx)	%	this.values.length;	

				}	

					

				//	Save	the	index	that	you	are	now	using	

				this.lastIndex	=	newIdx;	

	

				//	Access	the	string	and	return	it	

				return	this.values[newIdx];	

		}	

}	

There	are	several	things	to	note	about	how	this	service	behaves:

This	service	has	several	private	members	but	only	one	public	member	method
The	service	is	randomly	selected	from	an	array
The	service	shouldn't	return	the	same	value	twice	in	a	row

The	way	your	unit	tests	are	written	should	account	for	these	as	well	as	completely	test	the
behavior	of	this	service.

How	to	do	it...
Begin	by	creating	the	framework	of	your	test	file:

[src/app/magic-eight-ball.service.spec.ts]	

	

import	{TestBed}	from	'@angular/core/testing';	

import	{MagicEightBallService}	from		

		'./magic-eight-ball.service';	

	

describe('Service:	MagicEightBall',	()	=>	{	

		beforeEach(()	=>	{	

				TestBed.configureTestingModule({	

						providers:	[

								MagicEightBallService	

]	

				});	

		});	

});	

So	far,	none	of	this	should	surprise	you.	MagicEightBallService	is	an	injectable;	it	needs	to	be
provided	inside	a	module	declaration,	which	is	done	here.	However,	to	actually	use	it	inside	a
unit	test,	you	need	to	perform	a	formal	injection	since	this	is	what	would	be	required	to	access	it
from	inside	a	component.	This	can	be	accomplished	with	inject:

[src/app/magic-eight-ball.service.spec.ts]	

	

import	{TestBed,	inject}	from	'@angular/core/testing';	

import	{MagicEightBallService}	from		

		'./magic-eight-ball.service';	

	

describe('Service:	MagicEightBall',	()	=>	{	

		beforeEach(()	=>	{	

				TestBed.configureTestingModule({	

						providers:	[

								MagicEightBallService	

]	

				});	

		});	

	

		it('should	be	able	to	be	injected',	inject([MagicEightBallService],		

				(magicEightBallService:	MagicEightBallService)	=>	{	

						expect(magicEightBallService).toBeTruthy();	

				})	

);	

});	

Off	to	a	good	start,	but	this	doesn't	actually	test	anything	about	what	the	service	is	doing.	Next,
write	a	test	that	ensures	that	a	string	of	non-zero	length	is	being	returned:

[src/app/magic-eight-ball.service.spec.ts]	

	

import	{TestBed,	inject}	from	'@angular/core/testing';	

import	{MagicEightBallService}	from		

		'./magic-eight-ball.service';	

	

describe('Service:	MagicEightBall',	()	=>	{	

		beforeEach(()	=>	{	

				TestBed.configureTestingModule({	

						providers:	[

								MagicEightBallService	

]	

				});	

		});	

	

		it('should	be	able	to	be	injected',	inject([MagicEightBallService],		

				(magicEightBallService:	MagicEightBallService)	=>	{	

						expect(magicEightBallService).toBeTruthy();	

				})	

);	

	

		it('should	return	a	string	with	nonzero	length',

		inject([MagicEightBallService],	

				(magicEightBallService:	MagicEightBallService)	=>	{	

						let	result	=	magicEightBallService.reveal();	

	

						expect(result).toEqual(jasmine.any(String));	

						expect(result.length).toBeGreaterThan(0);	

				})	

);		

});	

Finally,	you	should	write	a	test	to	ensure	that	the	two	values	returned	are	not	the	same.	Since	this
method	is	random,	you	can	run	it	until	you	are	blue	in	the	face	and	still	not	be	totally	sure.
However,	checking	this	50	times	in	a	row	is	a	fine	way	to	be	fairly	certain:

[src/app/magic-eight-ball.service.spec.ts]	

	

import	{TestBed,	inject}	from	'@angular/core/testing';	

import	{MagicEightBallService}	from		

		'./magic-eight-ball.service';	

	

describe('Service:	MagicEightBall',	()	=>	{	

		beforeEach(()	=>	{	

				TestBed.configureTestingModule({	

						providers:	[

								MagicEightBallService	

]	

				});	

		});	

	

		it('should	be	able	to	be	injected',	inject([MagicEightBallService],		

				(magicEightBallService:	MagicEightBallService)	=>	{	

						expect(magicEightBallService).toBeTruthy();	

				})	

);	

	

		it('should	return	a	string	with	nonzero	length',

		inject([MagicEightBallService],	

				(magicEightBallService:	MagicEightBallService)	=>	{	

						let	result	=	magicEightBallService.reveal();	

	

						expect(result).toEqual(jasmine.any(String));	

						expect(result.length).toBeGreaterThan(0);	

				})	

);	

	

		it('should	not	return	the	same	value	twice	in	a	row',

		inject([MagicEightBallService],	

				(magicEightBallService:	MagicEightBallService)	=>	{	

						let	last;	

						for(let	i	=	0;	i	<	50;	++i)	{	

								let	next	=	magicEightBallService.reveal();	

								expect(next).not.toEqual(last);	

								last	=	next;	

						}	

				})	

);	

});	

Terrific!	All	these	tests	have	passed;	you've	done	a	good	job	building	some	incremental	and
descriptive	code	coverage	for	your	service.

How	it	works...
The	inject	test	function	performs	dependency	injection	for	you	each	time	it	is	invoked,	using	the
array	of	injectable	classes	passed	as	the	first	argument.	The	arrow	function	that	is	passed	as	its
second	argument	will	behave	in	essentially	the	same	way	as	a	component	constructor,	where	you
are	able	to	use	the	magicEightBallService	parameter	as	an	instance	of	the	service.

Tip

One	important	difference	from	how	it	is	injected	compared	to	a	component	constructor	is	that
inside	a	component	constructor,	you	would	be	able	to	use	this.magicEightBallService	right
away.	With	respect	to	injection	into	unit	tests,	it	does	not	automatically	attach	to	this.

There's	more...
Important	considerations	for	unit	testing	are	what	tests	should	be	written	and	how	they	should
proceed.	Respecting	the	boundaries	of	public	and	private	members	is	essential.	Since	these	tests
are	written	in	a	way	that	only	utilizes	the	public	members	of	the	service,	the	author	is	free	to	go
about	changing,	extending,	or	refactoring	the	internals	of	the	service	without	worrying	about
breaking	or	needing	to	update	the	tests.	A	well-designed	class	will	be	fully	testable	from	its
public	interface.

Tip

This	notion	brings	up	an	interesting	philosophical	point	regarding	unit	testing.	You	should	be	able
to	describe	the	behavior	of	a	well-formed	service	as	a	function	of	its	public	members.	Similarly,
a	well-formed	service	should	then	be	relatively	easy	to	write	unit	tests,	given	that	the	former
statement	is	true.

If	it	is	then	the	case	that	you	find	your	unit	tests	are	difficult	to	write—for	example,	you	are
needing	to	reach	into	a	private	member	of	the	service	to	test	it	properly—then	consider	the	notion
that	your	service	might	not	be	as	well	designed	as	it	could	be.

In	short,	if	it's	hard	to	test,	then	you	might	have	written	a	class	in	a	weird	way.

Testing	without	injection

An	observant	developer	will	note	here	that	the	service	you	are	testing	doesn't	have	any
meaningful	dependence	on	injection.	Injecting	it	into	various	places	in	the	application	surely
provides	it	with	a	consistent	way,	but	the	service	definition	is	wholly	unaware	of	this	fact.	After
all,	instantiation	is	instantiation,	and	this	service	doesn't	appear	to	be	more	than	an	injectable
class.	Therefore,	it	is	certainly	possible	to	not	bother	injecting	the	service	at	all	and	merely
instantiating	it	using	the	new	keyword:

[src/app/magic-eight-ball.service.spec.ts]	

	

import	{MagicEightBallService}	from		

		'./magic-eight-ball.service';	

	

describe('Service:	MagicEightBall',	()	=>	{	

		let	magicEightBallService;	

	

		beforeEach(()	=>	{	

				magicEightBallService	=	new	MagicEightBallService();	

		});	

	

		it('should	be	able	to	be	injected',	()	=>	{	

				expect(magicEightBallService).toBeTruthy();	

		});	

	

		it('should	return	a	string	with	nonzero	length',	()	=>	{	

				let	result	=	magicEightBallService.reveal();	

	

				expect(result).toEqual(jasmine.any(String));	

				expect(result.length).toBeGreaterThan(0);	

		});	

	

		it('should	not	return	the	same	value	twice	in	a	row',	()	=>	{	

				let	last;	

				for(let	i	=	0;	i	<	50;	++i)	{	

						let	next	=	magicEightBallService.reveal();	

						expect(next).not.toEqual(last);	

						last	=	next;	

				}	

		});	

});	

Of	course,	this	requires	that	you	keep	track	of	whether	the	service	cares	about	whether	or	not	it
has	been	injected	anywhere.

See	also
Unit	testing	a	component	with	a	service	dependency	using	stubs	shows	how	you	can	create
a	service	mock	to	write	unit	tests	and	avoid	direct	dependencies
Unit	testing	a	component	with	a	service	dependency	using	spies	shows	how	you	can	keep
track	of	service	method	invocations	inside	a	unit	test

Unit	testing	a	component	with	a	service
dependency	using	stubs
Standalone	component	testing	is	easy,	but	you	will	rarely	need	to	write	meaningful	tests	for	a
component	that	exists	in	isolation.	More	often	than	not,	the	component	will	have	one	or	many
dependencies,	and	writing	good	unit	tests	is	the	difference	between	delight	and	despair.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/6651/.

http://ngcookbook.herokuapp.com/6651/

Getting	ready
Suppose	you	already	have	the	service	from	the	Unit	testing	a	synchronous	service	recipe.	In
addition,	you	have	a	component,	which	makes	use	of	this	service:

[src/app/magic-eight-ball/magic-eight-ball.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

	

@Component({	

		selector:	'app-magic-eight-ball',	

		template:	`	

				<button	(click)="update()">Click	me!</button>	

				<h1>{{	result	}}</h1>	

		`	

})	

export	class	MagicEightBallComponent	{	

		result:	string	=	'';	

	

		constructor(private	magicEightBallService_:	MagicEightBallService)	{}	

	

		update()	{	

				this.result	=	this.magicEightBallService_.reveal();	

		}	

}	

Your	objective	is	to	write	a	suite	of	unit	tests	for	this	component	without	setting	an	explicit
dependency	on	the	service.

How	to	do	it...
Begin	with	a	skeleton	of	your	test	file:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		beforeEach(async(()	=>	{	

		}));	

	

		afterEach(()	=>	{	

		});	

	

		it('should	begin	with	no	text',	async(()	=>	{	

		}));	

	

		it('should	show	text	after	click',	async(()	=>	{	

		}));	

});	

You'll	first	want	to	configure	the	test	module	so	that	it	properly	provides	these	imported	targets	in
the	test:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								MagicEightBallService	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

		});	

	

		it('should	begin	with	no	text',	async(()	=>	{	

		}));	

	

		it('should	show	text	after	click',	async(()	=>	{	

		}));	

});	

Stubbing	a	service	dependency

Injecting	the	actual	service	works	just	fine,	but	this	isn't	what	you	want	to	do.	You	don't	want	to
actually	inject	an	instance	of	MagicEightBallService	into	the	component,	as	that	would	set	a
dependency	on	the	service	and	make	the	unit	test	more	complicated	than	it	needs	to	be.	However,
MagicEightBallComponent	needs	to	import	something	that	resembles	a
MagicEightBallService.	An	excellent	solution	here	is	to	create	a	service	stub	and	inject	it	in
its	place:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;	

		let	magicEightBallResponse	=	'Answer	unclear';	

		let	magicEightBallServiceStub	=	{	

				reveal:	()	=>	magicEightBallResponse	

		};	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								{		

										provide:	MagicEightBallService,		

										useValue:	magicEightBallServiceStub		

								}	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

		});	

	

		it('should	begin	with	no	text',	async(()	=>	{	

		}));	

	

		it('should	show	text	after	click',	async(()	=>	{	

		}));	

});	

A	component	can't	tell	the	difference	between	the	actual	service	and	its	mock,	so	it	will	behave
normally	in	the	test	conditions	you've	set	up.

Next,	you	should	write	the	preclick	test	by	checking	that	the	fixture's	nativeElement	contains	no
text:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;		

		let	getHeaderEl	=	()	=>		

				fixture.nativeElement.querySelector('h1');	

		let	magicEightBallResponse	=	'Answer	unclear';	

		let	magicEightBallServiceStub	=	{	

				reveal:	()	=>	magicEightBallResponse	

		};	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								{		

										provide:	MagicEightBallService,		

										useValue:	magicEightBallServiceStub		

								}	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

		});	

	

		it('should	begin	with	no	text',	async(()	=>	{	

				fixture.detectChanges();	

				expect(getHeaderEl().textContent).toEqual('');	

		}));	

	

		it('should	show	text	after	click',	async(()	=>	{	

		}));	

});	

Triggering	events	inside	the	component	fixture

For	the	second	test,	you	should	trigger	a	click	on	the	button,	instruct	the	fixture	to	perform	change
detection,	and	then	inspect	the	DOM	to	see	that	the	text	was	properly	inserted.	Since	you	have
defined	the	text	that	the	stub	will	return,	you	can	just	compare	it	directly	with	that:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';		

import	{By}	from	'@angular/platform-browser';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;		

		let	getHeaderEl	=	()	=>		

				fixture.nativeElement.querySelector('h1');	

		let	magicEightBallResponse	=	'Answer	unclear';	

		let	magicEightBallServiceStub	=	{	

				reveal:	()	=>	magicEightBallResponse	

		};	

	

		...	

	

		it('should	begin	with	no	text',	async(()	=>	{	

				expect(getHeaderEl().textContent).toEqual('');	

		}));	

			

it('should	show	text	after	click',	async(()	=>	{	

		fixture.debugElement.query(By.css('button'))	

				.triggerEventHandler('click',	null);	

		fixture.detectChanges();	

		expect(getHeaderEl().textContent)	

				.toEqual(magicEightBallResponse);	

		}));	

});	

You'll	note	that	this	needs	to	import	and	use	the	By.css	predicate,	which	is	required	to	perform
DebugElement	inspections.

How	it	works...
As	demonstrated	in	the	dependency	injection	chapter,	providing	a	stub	to	the	component	is	no
different	than	providing	a	regular	value	to	the	core	application.

The	stub	here	is	a	single	function	that	returns	a	static	value.	There	is	no	concept	of	randomly
selecting	from	the	service's	array	of	strings,	and	there	doesn't	need	to	be.	The	unit	tests	for	the
service	itself	ensure	that	it	is	behaving	properly.	Instead,	the	only	value	provided	by	the	service
here	is	the	information	it	passes	back	to	the	component	for	interpolation	back	into	the	template.

See	also
Writing	a	minimum	viable	unit	test	suite	for	a	simple	component	shows	you	a	basic
example	of	unit	testing	Angular	2	components
Unit	testing	a	synchronous	service	demonstrates	how	injection	is	mocked	in	unit	tests
Unit	testing	a	component	with	a	service	dependency	using	spies	shows	how	you	can	keep
track	of	service	method	invocations	inside	a	unit	test

Unit	testing	a	component	with	a	service
dependency	using	spies
The	ability	to	stub	out	services	is	useful,	but	it	can	be	limiting	in	a	number	of	ways.	It	can	also	be
tedious,	as	the	stubs	you	create	must	remain	up	to	date	with	the	public	interface	of	the	service.
Another	excellent	tool	at	your	disposal	when	writing	unit	tests	is	the	spy.

A	spy	allows	you	to	select	a	function	or	method.	It	also	helps	you	collect	information	about	if	and
how	it	was	invoked	as	well	as	how	it	will	behave	once	it	is	invoked.	It	is	similar	in	concept	to	a
stub	but	allows	you	to	have	a	much	more	robust	unit	test.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/3444/.

http://ngcookbook.herokuapp.com/3444/

Getting	ready
Begin	with	the	component	tests	you	wrote	in	the	last	recipe:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

import	{By}	from	'@angular/platform-browser';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;	

		let	getHeaderEl	=	()	=>	fixture.nativeElement.querySelector('h1');	

		let	magicEightBallResponse	=	'Answer	unclear';	

		let	magicEightBallServiceStub	=	{	

				reveal:	()	=>	magicEightBallResponse	

		};	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								{		

										provide:	MagicEightBallService,		

										useValue:	magicEightBallServiceStub		

								}	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

		});	

	

		it('should	begin	with	no	text',	async(()	=>	{	

				fixture.detectChanges();	

				expect(getHeaderEl().textContent).toEqual('');	

		}));	

	

		it('should	show	text	after	click',	async(()	=>	{	

				fixture.debugElement.query(By.css('button'))	

						.triggerEventHandler('click',	null);	

				fixture.detectChanges();	

				expect(getHeaderEl().textContent)	

						.toEqual(magicEightBallResponse);	

		}));	

});	

How	to	do	it...
Instead	of	using	a	stub,	configure	the	test	module	to	provide	the	actual	service:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

import	{By}	from	'@angular/platform-browser';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;	

		let	getHeaderEl	=	()	=>	fixture.nativeElement.querySelector('h1');	

		let	magicEightBallResponse	=	'Answer	unclear';	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								MagicEightBallService	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

		});	

	

		it('should	begin	with	no	text',	async(()	=>	{	

				fixture.detectChanges();	

				expect(getHeaderEl().textContent).toEqual('');	

		}));	

	

		it('should	show	text	after	click',	async(()	=>	{	

				fixture.debugElement.query(By.css('button'))	

						.triggerEventHandler('click',	null);	

				fixture.detectChanges();	

				expect(getHeaderEl().textContent)	

						.toEqual(magicEightBallResponse);	

		}));	

});	

Setting	a	spy	on	the	injected	service

Your	goal	is	to	use	a	method	spy	to	intercept	calls	to	reveal()	on	the	service.	The	problem	here,
however,	is	that	the	service	is	being	injected	into	the	component;	therefore,	you	don't	have	a

direct	ability	to	get	a	reference	to	the	service	instance	and	set	a	spy	on	it.	Fortunately,	the
component	fixture	provides	this	for	you:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

import	{By}	from	'@angular/platform-browser';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;	

		let	getHeaderEl	=	()	=>	fixture.nativeElement.querySelector('h1');	

		let	magicEightBallResponse	=	'Answer	unclear';	

		let	magicEightBallService;	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								MagicEightBallService	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);		

				magicEightBallService	=	fixture.debugElement.injector	

						.get(MagicEightBallService);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

				magicEightBallService	=	undefined;	

		});	

	

		...	

});	

Next,	set	a	spy	on	the	service	instance	using	spyOn().	Configure	the	spy	to	intercept	the	method
call	and	return	the	static	value	instead:

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

import	{By}	from	'@angular/platform-browser';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;	

		let	getHeaderEl	=	()	=>	fixture.nativeElement.querySelector('h1');	

		let	magicEightBallResponse	=	'Answer	unclear';	

		let	magicEightBallService;	

		let	revealSpy;	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								MagicEightBallService	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);	

				magicEightBallService	=	fixture.debugElement.injector	

						.get(MagicEightBallService);	

				revealSpy	=	spyOn(magicEightBallService,	'reveal')	

						.and.returnValue(magicEightBallResponse);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

				magicEightBallService	=	undefined;	

				revealSpy	=	undefined;	

		});	

		...	

});	

With	this	spy,	you	are	now	capable	of	seeing	how	the	rest	of	the	application	interacts	with	this
captured	method.	Add	a	new	test,	and	check	that	the	method	is	called	once	and	returns	the	proper
value	after	a	click	(this	also	pulls	the	clicking	action	into	its	own	test	helper):

[src/app/magic-eight-ball/magic-eight-ball.component.spec.ts]	

	

import	{TestBed,	async}	from	'@angular/core/testing';	

import	{MagicEightBallComponent}	from		

		'./magic-eight-ball.component';	

import	{MagicEightBallService}	from		

		'../magic-eight-ball.service';	

import	{By}	from	'@angular/platform-browser';	

	

describe('Component:	MagicEightBall',	()	=>	{	

		let	fixture;	

		let	getHeaderEl	=	()	=>	fixture.nativeElement.querySelector('h1');	

		let	magicEightBallResponse	=	'Answer	unclear';	

		let	magicEightBallService;	

		let	revealSpy;	

	

		let	clickButton	=	()	=>	{	

				fixture.debugElement.query(By.css('button'))	

						.triggerEventHandler('click',	null);	

		};	

	

		beforeEach(async(()	=>	{	

				TestBed.configureTestingModule({	

						declarations:	[

								MagicEightBallComponent	

],	

						providers:	[

								MagicEightBallService	

]	

				});	

				fixture	=	TestBed.createComponent(MagicEightBallComponent);	

				magicEightBallService	=	fixture.debugElement.injector	

						.get(MagicEightBallService);	

				revealSpy	=	spyOn(magicEightBallService,	'reveal')	

						.and.returnValue(magicEightBallResponse);	

		}));	

	

		afterEach(()	=>	{	

				fixture	=	undefined;	

				magicEightBallService	=	undefined;	

				revealSpy	=	undefined;	

		});	

	

		it('should	begin	with	no	text',	async(()	=>	{	

				fixture.detectChanges();	

				expect(getHeaderEl().textContent).toEqual('');	

		}));	

	

		it('should	call	reveal	after	a	click',	async(()	=>	{	

				clickButton();	

				expect(revealSpy.calls.count()).toBe(1);	

				expect(revealSpy.calls.mostRecent().returnValue)	

						.toBe(magicEightBallResponse);	

		}));	

	

		it('should	show	text	after	click',	async(()	=>	{	

				clickButton();	

				fixture.detectChanges();	

				expect(getHeaderEl().textContent)	

						.toEqual(magicEightBallResponse);	

		}));	

});	

Note

Note	that	detectChanges()	is	only	required	to	resolve	the	data	binding,	not	to	execute	event
handlers.

How	it	works...
Jasmine	spies	act	as	method	interceptors	and	are	capable	of	inspecting	everything	about	the	given
method	invocation.	It	can	track	if	and	when	a	method	was	called,	what	arguments	it	was	called
with,	how	many	times	it	was	called,	how	it	should	behave,	and	so	on.	This	is	extremely	useful
when	trying	to	remove	dependencies	from	component	unit	tests,	as	you	can	mock	out	the	public
interface	of	the	service	using	spies.

There's	more...
Spies	are	not	beholden	to	replace	the	method	outright.	Here,	it	is	useful	to	be	able	to	prevent	the
execution	from	reaching	the	internals	of	the	service,	but	it	is	not	difficult	to	imagine	cases	where
you	would	only	want	to	passively	observe	the	invocation	of	a	certain	method	and	allow	the
execution	to	continue	normally.

For	such	a	purpose,	instead	of	using	.and.returnValue(),	Jasmine	allows	you	to	use
.and.callThrough(),	which	will	allow	the	execution	to	proceed	uninterrupted.

See	also
Writing	a	minimum	viable	unit	test	suite	for	a	simple	component	shows	you	a	basic
example	of	unit	testing	Angular	2	components
Unit	testing	a	synchronous	service	demonstrates	how	injection	is	mocked	in	unit	tests
Unit	testing	a	component	with	a	service	dependency	using	stubs	shows	how	you	can	create
a	service	mock	to	write	unit	tests	and	avoid	direct	dependencies

Chapter	10.	Performance	and	Advanced
Concepts
This	chapter	will	cover	the	following	recipes:

Understanding	and	properly	utilizing	enableProdMode	with	pure	and	impure	pipes
Working	with	zones	outside	Angular
Listening	for	NgZone	events
Execution	outside	the	Angular	zone
Configuring	components	to	use	explicit	change	detection	with	OnPush
Configuring	ViewEncapsulation	for	maximum	efficiency
Configuring	the	Angular	2	Renderer	Service	to	use	web	workers
Configuring	applications	to	use	ahead-of-time	compilation
Configuring	an	application	to	use	lazy	loading

Introduction
Angular	2	was	a	total	rebuild	for	a	number	of	reasons,	but	one	of	the	biggest	ones	was	certainly
efficiency.	The	framework	that	emerged	from	the	ashes	is	a	sleek	and	elegant	one,	but	not	without
its	complexities.

This	chapter	serves	to	explore	some	of	the	new	features	that	it	builds	upon	and	how	to	most
effectively	employ	them	to	streamline	your	application.

Understanding	and	properly	utilizing
enableProdMode	with	pure	and	impure	pipes
Angular	2's	change	detection	process	is	an	elegant	but	fickle	beast	that	is	challenging	to
understand	at	first.	While	it	offers	huge	efficiency	gains	over	the	1.x	framework,	the	gains	can
come	at	a	cost.	The	development	mode	of	Angular	is	activated	by	default,	which	will	alert	you
when	your	code	is	in	danger	of	behaving	in	a	way	that	defeats	the	change	detection	efficiency
gains.	In	this	recipe,	you'll	implement	a	feature	that	violates	Angular's	change	detection	schema,
correct	it,	and	safely	use	enableProdMode.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/0623/.

http://ngcookbook.herokuapp.com/0623/

Getting	ready
Begin	with	a	simple	component:

[src/app/app.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	`	

				<input	#t>	

				<button	(click)="update(t.value)">Save</button>	

				<h1>{{	title	}}</h1>	

		`	

})	

export	class	AppComponent	{	

		title:string	=	'';	

	

		update(newTitle:string)	{	

				this.title	=	newTitle;	

		}	

}	

When	the	button	in	this	component	is	clicked,	it	grabs	the	value	of	the	input	and	interpolates	it	to
the	header	tag.	As	is,	this	implementation	is	perfectly	suitable.

How	to	do	it...
To	demonstrate	the	relevance	of	enableProdMode,	you'll	need	to	introduce	a	behavior	that
enableProdMode	would	mask.	More	specifically,	this	means	a	piece	of	your	application	will
behave	differently	when	two	sequential	passes	of	change	detection	are	run.

Note

There	are	a	significant	number	of	ways	to	implement	this,	but	for	the	purpose	of	this	recipe,	you'll
implement	a	nonsensical	pipe	that	changes	every	time	it's	used.

Generating	a	consistency	error

Create	a	nonsensical	pipe,	namely	AddRandomPipe:

[src/app/add-random.pipe.ts]	

	

import	{Pipe,	PipeTransform}	from	'@angular/core';	

	

@Pipe({	

		name:	'addRandomPipe'	

})	

export	class	AddRandomPipe	implements	PipeTransform	{	

		transform(value:string):string	{	

				return	value	+	Math.random();	

		}	

}	

Next,	take	this	pipe	and	introduce	it	to	your	component:

[src/app/app.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{AddRandomPipe}	from	'./add-random.pipe';	

	

@Component({	

		selector:	'app-root',	

		template:	`	

				<input	#t>	

				<button	(click)="update(t.value)">Save</button>	

				<h1>{{	title	|	addRandomPipe	}}</h1>	

		`	

})	

export	class	AppComponent	{	

		title:string	=	'';	

	

		update(newTitle:string)	{	

				this.title	=	newTitle;	

		}	

}	

This	won't	create	an	error	yet,	though.

Note

Angular	will	indeed	run	the	change	detection	process	twice,	so	it	might	seem	mysterious	that	it
doesn't	create	an	error.	Even	though	the	pipe	will	generate	a	new	output	every	time	its	transform
method	is	invoked,	Angular	is	smart	enough	to	recognize	that	the	input	of	the	interpolation	aren't
changing,	and	therefore,	reevaluating	the	pipe	is	unnecessary.	This	is	called	a	"pure"	pipe,	which
is	the	Angular	default.

In	order	to	get	Angular	to	evaluate	the	pipe	during	each	change	detection	cycle,	specify	the	pipe
as	"impure":

[src/app/add-random.pipe.ts]	

	

import	{Pipe,	PipeTransform}	from	'@angular/core';	

	

@Pipe({	

		name:	'addRandomPipe',	

		pure:	false	

})	

export	class	AddRandomPipe	implements	PipeTransform	{	

		transform(value:string):string	{	

				return	value	+	Math.random();	

		}	

}	

Now	the	fun	begins.	When	you	run	the	application,	you	should	see	something	similar	to	the
following	error	message:

EXCEPTION:	Error	in	./AppComponent	class	AppComponent	-	inline	template:3:8	

caused	by:	Expression	has	changed	after	it	was	checked.	Previous	value:	

'0.0495151713435904'.	Current	value:	'0.9266277919907477'.	

Introducing	change	detection	compliance

The	error	is	being	thrown	as	soon	as	the	application	starts	up,	before	you're	even	given	a	chance
to	press	the	button.	This	means	that	Angular	is	detecting	the	binding	mismatch	as	the	component	is
being	instantiated	and	rendered	for	the	first	time.

Note

You've	created	a	pipe	that	intentionally	changes	each	time,	so	your	goal	is	to	instruct	Angular	to
not	bother	checking	the	pipe	output	twice	against	itself	upon	component	instantiation.

At	this	point,	you've	managed	to	get	Angular	to	throw	a	consistency	error,	which	it	does	because
it's	running	change	detection	checks	twice	and	getting	different	results.	Switching	on
enableProdMode	at	this	point	would	stop	the	error	since	Angular	would	then	only	run	change

detection	once	and	not	bother	to	check	for	consistency.	This	is	because	it	trusts	you	to	have
verified	compliance	before	using	enableProdMode.	Turning	on	enableProdMode	to	mask
consistency	error	messages	is	a	bit	like	coming	home	to	find	your	house	is	on	fire	and	then
deciding	to	go	on	a	vacation.

Angular	allows	you	to	control	this	by	specifying	the	change	detection	strategy	for	the	component.
The	default	is	to	always	perform	a	change	detection	check,	but	this	can	be	overridden	with	the
OnPush	configuration:

[src/app/app.component.ts]	

	

import	{Component,	ChangeDetectionStrategy	}		

		from	'@angular/core';	

import	{AddRandomPipe}	from	'./add-random.pipe';	

	

@Component({	

		selector:	'app-root',	

		template:	`	

				<input	#t>	

				<button	(click)="update(t.value)">Save</button>	

				<h1>{{	title	|	addRandomPipe	}}</h1>	

		`,	

		changeDetection:	ChangeDetectionStrategy.OnPush	

})	

export	class	AppComponent	{	

		title:string	=	'';	

	

		update(newTitle:string)	{	

				this.title	=	newTitle;	

		}	

}	

Now	when	the	component	instance	is	initialized,	you	should	no	longer	see	the	consistency	error.

Switching	on	enableProdMode

Since	your	application	is	now	compliant	with	Angular's	change	detection	mechanism,	you're	free
to	use	enableProdMode.	This	lets	your	application	run	change	detection	once	each	time.	This	is
because	it	assumes	the	application	will	arrive	in	a	stable	state.

In	your	application's	bootstrapping	file,	invoke	enableProdMode	before	you	start	bootstrapping:

[src/main.ts]	

	

import	{platformBrowserDynamic}		

		from	'@angular/platform-browser-dynamic';	

import	{enableProdMode}	from	'@angular/core';	

import	{AppModule}	from	'./app/';	

	

enableProdMode();	

	

platformBrowserDynamic().bootstrapModule(AppModule);	

How	it	works...
enableProdMode	will	configure	your	application	in	a	number	of	ways,	including	silencing	error
and	informational	error	messages,	among	others;	however,	none	of	these	ways	is	as	visible	as	the
suppression	of	the	secondary	change	detection	process.

There's	more...
There	are	other	ways	to	mitigate	this	consistency	problem.	For	example,	suppose	you	want	to
generate	a	pipe	that	will	append	a	random	number	to	the	input.	It	doesn't	necessarily	need	to	be	a
different	random	number	every	single	time;	rather,	you	can	have	one	for	each	unique	input	within
a	certain	period	of	time.	Such	a	situation	could	allow	you	to	have	a	pipe	that	utilizes	some	sort	of
caching	strategy.	If	the	pipe	caches	results	for	a	period	of	time	longer	than	change	detection	takes
to	complete	(which	is	not	very	long),	then	altering	the	change	detection	strategy	of	the	component
is	not	necessary.	This	is	because	multiple	pipe	invocations	will	yield	an	identical	response.	For
example,	refer	to	the	following	code:

[src/app/add-random.pipe.ts]	

	

import	{Pipe,	PipeTransform}	from	'@angular/core';	

	

@Pipe({	

		name:	'addRandomPipe',	

		pure:	false	

})	

export	class	AddRandomPipe	implements	PipeTransform	{	

		cache:Object	=	{};	

	

		transform(input:string):string	{	

				let	value	=	this.cache[input];	

				if	(!value	||	value.expire	<	Date.now())	{	

						value	=	{	

								text:	input	+	Math.random(),	

								//	Expires	in	one	second	

								expire:	Date.now()	+	1000	

						}	

						this.cache[input]	=	value;	

				}	

				return	value.text;	

		}	

}	

With	this,	you	can	safely	strike	changeDetection:	ChangeDetectionStrategy.OnPush	from
ComponentMetadata	of	your	AppComponent	and	you	will	not	see	any	consistency	errors.

See	also
Configuring	the	Angular	2	renderer	service	to	use	web	workers	guides	you	through	the
process	of	setting	up	your	application	to	render	on	a	web	worker
Configuring	applications	to	use	ahead-of-time	compilation	guides	you	through	how	to
compile	an	application	during	the	build

Working	with	zones	outside	Angular
Working	with	zones	entirely	inside	of	the	Angular	framework	conceals	what	they	are	really	doing
behind	the	scenes.	It	would	be	a	disservice	to	you,	the	reader,	to	just	gloss	over	the	underlying
mechanism.	In	this	recipe,	you'll	take	the	vanilla	zone.js	implementation	outside	of	Angular	and
modify	it	a	bit	in	order	to	see	how	Angular	can	make	use	of	it.

There	will	be	no	Angular	used	in	this	recipe,	only	zone.js	inside	a	simple	HTML	file.
Furthermore,	this	recipe	will	be	written	in	plain	ES5	JavaScript	for	simplicity.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/0591/.

http://ngcookbook.herokuapp.com/0591/

Getting	ready
Begin	with	the	following	simple	HTML	file:

[index.html]	

	

<button	id="button">Click	me</button>	

<button	id="add">Add	listener</button>	

<button	id="remove">Remove	listener</button>	

	

<script>	

var	button	=	document.getElementById('button');	

var	add	=	document.getElementById('add');	

var	remove	=	document.getElementById('remove');	

	

var	clickCallback	=	function()	{	

		console.log('click!');	

};	

	

setInterval(function()	{	

		console.log('set	interval!');	

},	1000);	

			

add.addEventListener('click',	function()	{	

		button.addEventListener('click',	clickCallback);	

});	

			

remove.addEventListener('click',	function()	{	

		button.removeEventListener('click',	clickCallback);	

});	

</script>	

Each	of	these	callbacks	has	log	statements	inside	them	so	you	can	see	when	they	are	invoked:

setInterval	calls	its	associated	listener	every	second
Clicking	on	Click	me	calls	its	listener	if	it	is	attached
Clicking	on	Add	listener	attaches	a	click	listener	to	the	button
Clicking	on	Remove	listener	removes	the	click	listener

Note

There's	nothing	special	going	on	here,	because	all	of	these	are	default	browser	APIs.	The	magic
of	zones,	as	you	will	see,	is	that	the	zone	behavior	can	be	introduced	around	this	without
modifying	any	code.

How	to	do	it...
First,	add	the	zone.js	script	to	the	top	of	the	file:

[index.html]		

	

<script	src="https://cdnjs.cloudflare.com/ajax/libs/zone.js/0.6.26/zone.js">	

</script>	

	

<button	id="button">Click	me</button>	

<button	id="add">Add	listener</button>	

<button	id="remove">Remove	listener</button>	

...	

Note

There's	no	special	setup	needed	for	zone.js,	but	it	needs	to	be	added	before	you	set	listeners	or
do	anything	that	could	have	asynchronous	implications.	Angular	needs	this	dependency	to	be
added	before	it	is	initialized.

Adding	this	script	introduces	Zone	to	the	global	namespace.	zone.js	has	already	created	a
global	zone	for	you.	This	can	be	accessed	with	the	following:

Zone.current	

Forking	a	zone

The	global	zone	isn't	doing	anything	interesting	yet.	To	customize	a	zone,	you'll	need	to	create
your	own	by	forking	the	one	we	have	and	running	relevant	code	inside	it.	Do	this	as	follows:

[index.html]	

	

<script

		src="https://cdnjs.cloudflare.com/ajax/libs/zone.js/0.6.26/zone.js">

</script>	

	

<button	id="button">Click	me</button>	

<button	id="add">Add	listener</button>	

<button	id="remove">Remove	listener</button>	

	

<script>	

var	button	=	document.getElementById('button');	

var	add	=	document.getElementById('add');	

var	remove	=	document.getElementById('remove');	

	

Zone.current.fork({}).run(function()	{	

			var	clickCallback	=	function()	{	

				console.log('click!');	

		};	

	

		setInterval(function()	{	

				console.log('set	interval!');	

		},	1000);	

			

		add.addEventListener('click',	function()	{	

			button.addEventListener('click',	clickCallback);	

		});	

			

		remove.addEventListener('click',	function()	{	

			button.removeEventListener('click',	clickCallback);	

		});	

});	

</script>	

Behaviorally,	this	doesn't	change	anything	from	the	perspective	of	the	console.	fork()	takes	an
empty	ZoneSpec	object	literal,	which	you	will	modify	next.

Overriding	zone	events	with	ZoneSpec

When	a	piece	of	code	is	run	in	a	zone,	you	are	able	to	attach	behaviors	at	important	points	in	the
asynchronous	behavior	flow.	Here,	you'll	override	four	zone	events:

scheduleTask

invokeTask

hasTask

cancelTask

You'll	begin	with	scheduleTask.	Define	an	override	method	inside	ZoneSpec.	Overrides	use	the
event	names	prefixed	with	on:

[index.html]	

	

<script

		src="https://cdnjs.cloudflare.com/ajax/libs/zone.js/0.6.26/zone.js">

</script>	

	

<button	id="button">Click	me</button>	

<button	id="add">Add	listener</button>	

<button	id="remove">Remove	listener</button>	

	

<script>	

var	button	=	document.getElementById('button');	

var	add	=	document.getElementById('add');	

var	remove	=	document.getElementById('remove');	

	

Zone.current.fork({	

		onScheduleTask:	function(zoneDelegate,	zone,	targetZone,	task)	{	

				console.log('schedule');	

				zoneDelegate	

						.scheduleTask(targetZone,	task);	

		}	

}).run(function()	{	

		var	clickCallback	=	function()	{	

				console.log('click!');	

		};	

	

		setInterval(function()	{	

				console.log('set	interval!');	

		},	1000);	

			

		add.addEventListener('click',	function()	{	

			button.addEventListener('click',	clickCallback);	

		});	

			

		remove.addEventListener('click',	function()	{	

			button.removeEventListener('click',	clickCallback);	

		});	

});	

</script>	

With	this	addition,	you	should	see	that	the	zone	recognizes	that	three	tasks	are	being	scheduled.
This	should	make	sense,	as	you	are	declaring	three	instances	that	can	generate	asynchronous
actions:	setInterval,	addEventListener,	and	removeEventListener.	If	you	click	on	Add
listener,	you'll	see	it	schedule	the	fourth	task	as	well.

Note

zoneDelegate.scheduleTask()	is	required	because	you	are	actually	overwriting	what	the	zone
is	using	for	that	handler.	If	you	don't	perform	this	action,	the	scheduler	handler	will	exit	before
actually	scheduling	the	task.

The	opposite	of	scheduling	a	task	is	canceling	it,	so	override	that	event	handler	next:

[index.html]	

	

Zone.current.fork({	

		onScheduleTask:	function(zoneDelegate,	zone,	targetZone,	task)	{	

				console.log('schedule');	

				zoneDelegate	

						.scheduleTask(targetZone,	task);	

		},	

		onCancelTask:	function(zoneDelegate,	zone,	targetZone,	task)	{	

				console.log('cancel');	

				zoneDelegate	

						.cancelTask(targetZone,	task);	

		}	

}).run(function()	{	

		...	

});	

A	cancel	event	occurs	when	a	scheduled	task	is	destroyed,	in	this	example,	when
removeEventListener()	is	invoked.	If	you	click	on	Add	listener	and	then	Remove	listener,

you'll	see	a	cancel	event	occur.

The	scheduling	of	tasks	is	visible	during	the	startup,	but	each	time	a	button	is	clicked	or	a
setInterval	handler	is	executed,	you	don't	see	anything	being	logged.	This	is	because
scheduling	a	task,	which	occurs	during	registration,	is	distinct	from	invoking	a	task,	which	is
when	the	asynchronous	event	actually	occurs.

To	demonstrate	this,	add	an	invokeTask	override:

[index.html]	

	

Zone.current.fork({	

		onScheduleTask:	function(zoneDelegate,	zone,	targetZone,	task)	{	

				console.log('schedule');	

				zoneDelegate	

						.scheduleTask(targetZone,	task);	

		},	

		onCancelTask:	function(zoneDelegate,	zone,	targetZone,	task)	{	

				console.log('cancel');	

				zoneDelegate	

						.cancelTask(targetZone,	task);	

		},	

		onInvokeTask:	function(zoneDelegate,	zone,	targetZone,	task,		

																									applyThis,	applyArgs)	{		

				console.log('invoke');	

				zoneDelegate	

						.invokeTask(targetZone,	task,	applyThis,	applyArgs);	

		}	

}).run(function()	{	

		...	

});	

With	this	addition,	you	should	now	be	able	to	see	a	console	log	each	time	a	task	is	invoked—for	a
button	click	or	a	setInterval	callback.

So	far,	you've	been	able	to	see	when	the	zone	has	tasks	scheduled	and	invoked,	but	now,	do	the
reverse	of	this	to	detect	when	all	the	tasks	have	been	completed.	This	can	be	accomplished	with
hasTask,	which	can	also	be	overridden:

[index.html]	

	

Zone.current.fork({	

		onScheduleTask:	function(zoneDelegate,	zone,	targetZone,	task)	{	

				console.log('schedule');	

				zoneDelegate	

						.scheduleTask(targetZone,	task);	

		},	

		onCancelTask:	function(zoneDelegate,	zone,	targetZone,	task)	{	

				console.log('cancel');	

				zoneDelegate	

						.cancelTask(targetZone,	task);	

		},	

		onInvokeTask:	function(zoneDelegate,	zone,	targetZone,	task,		

																									applyThis,	applyArgs)	{		

				console.log('invoke');	

				zoneDelegate	

						.invokeTask(targetZone,	task,	applyThis,	applyArgs);	

		},	

		onHasTask:	function(zoneDelegate,	zone,	targetZone,	isEmpty)	{	

				console.log('has');	

				zoneDelegate.hasTask(targetZone,	isEmpty);	

		}	

}).run(function()	{	

		...	

});	

The	isEmpty	parameter	of	onHasTask	has	three	properties:	eventTask,	macroTask,	and
microTask.	These	three	properties	map	to	Booleans	describing	whether	the	associated	queues
have	any	tasks	inside	them.

With	these	four	callbacks,	you	have	successfully	intercepted	four	important	points	in	the
component	life	cycle:

When	a	task	"generator"	is	scheduled,	which	may	generate	tasks	from	browser	or	timer
events
When	a	task	"generator"	is	canceled
When	a	task	is	actually	invoked
How	to	determine	whether	any	tasks	are	scheduled	and	of	what	type

How	it	works...
The	concept	that	forms	the	core	of	zones	is	the	interception	of	asynchronous	tasks.	More	directly,
you	want	the	ability	to	know	when	asynchronous	tasks	are	being	created,	how	many	there	are,	and
when	they're	done.

zone.js	accomplishes	this	by	shimming	all	the	relevant	browser	methods	that	are	responsible	for
setting	up	asynchronous	tasks.	In	fact,	all	the	methods	used	in	this	method—setInterval,
addEventListener,	and	removeEventListener—are	all	shimmed	so	that	the	zone	they	are	run
inside	is	aware	of	any	asynchronous	tasks	they	might	add	to	the	queue.

There's	more...
To	begin	to	relate	this	to	Angular,	you'll	need	to	take	a	step	back	to	examine	the	zone	ecosystem.

Understanding	zone.run()

You'll	notice	in	this	example	that	invoke	is	printed	for	each	asynchronous	action,	even	for	those
that	were	registered	inside	another	asynchronous	action.	This	is	the	power	of	zones.	Anything
done	inside	the	zone.run()	block	will	cascade	within	the	same	zone.	This	way,	the	zone	can
keep	track	of	an	unbroken	segment	of	asynchronous	behavior	without	an	ocean	of	boilerplate
code.

Microtasks	and	macrotasks

This	actually	has	nothing	to	do	with	zone.js	at	all	but	rather	with	how	the	browser	event	loop
works.	All	the	events	generated	by	you	in	this	example—clicks,	timer	events,	and	so	on—are
macrotasks.	That	is,	the	browser	respects	their	handlers	as	a	synchronous,	blocking	segment	of
code.	The	code	that	executes	around	these	tasks—the	zone.js	callbacks,	for	example—are
microtasks.	They	are	distinct	from	macrotasks	but	are	still	synchronously	executed	as	part	of	the
entire	"turn"	for	that	macrotask.

Note

A	macrotask	may	generate	more	microtasks	for	itself	within	its	own	turn.

Once	the	microtask	and	macrotask	queues	are	empty,	the	zone	can	be	considered	to	be	stable,
since	there	is	no	asynchronous	behavior	to	be	anticipated.	For	Angular,	this	sounds	like	a	great
time	to	update	the	UI.

In	fact,	this	is	exactly	what	Angular	is	doing	behind	the	scenes.	Angular	views	the	browser
through	the	task-centric	goggles	of	zone.js	and	uses	this	clever	tool	to	decide	when	to	go	about
rendering.

See	also
Listening	for	NgZone	events	gives	a	basic	understanding	of	how	Angular	is	using	zones
Execution	outside	the	Angular	zone	shows	you	how	to	perform	long-running	operations
without	incurring	a	zone	overhead
Configuring	components	to	use	explicit	change	detection	with	OnPush	describes	how	to
manually	control	Angular's	change	detection	process

Listening	for	NgZone	events
With	the	introduction	of	Angular	2	comes	the	concept	of	zones.	Before	you	begin	this	recipe,	I
strongly	recommended	you	to	begin	by	working	through	the	Working	with	zones	outside
Angular	recipe.

zone.js
zone.js	is	a	library	that	Angular	2	directly	depends	upon.	It	allows	Angular	to	be	built	upon	a
zone	that	allows	the	framework	to	intimately	manage	its	execution	context.

More	plainly,	this	means	that	Angular	can	tell	when	asynchronous	things	are	happening	that	it
might	care	about.	If	this	sounds	a	bit	like	how	$scope.apply()	was	relevant	in	Angular	1.x,	you
are	thinking	in	the	right	way.

NgZone
Angular	2's	integration	with	zones	takes	the	form	of	the	NgZone	service,	which	acts	as	a	sort	of
wrapper	for	the	actual	Angular	zones.	This	service	exposes	a	useful	API	that	you	can	tap	into.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/8676/.

http://ngcookbook.herokuapp.com/8676/

Getting	ready
All	that	is	needed	for	this	recipe	is	a	component	into	which	the	NgZone	service	can	be	injected:

[src/app/app.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	``	

})	

export	class	AppComponent	{	

		constructor()	{	

		}	

}	

How	to	do	it...
Begin	by	injecting	the	NgZone	service	into	your	component,	which	is	made	available	inside	the
core	Angular	module:

[src/app/app.component.ts]	

	

import	{Component,	NgZone}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	``	

})	

export	class	AppComponent	{	

		constructor(private	zone:NgZone)	{	

		}	

}	

The	NgZone	service	exposes	a	number	of	EventEmitters	that	you	can	attach	to.	Since	zones	are
capable	of	tracking	asynchronous	activity	within	it,	the	NgZone	service	exposes	two
EventEmitters	that	understand	when	an	asynchronous	activity	becomes	enqueued	and	dequeued
as	microtasks.

The	onUnstable	EventEmitter	lets	you	know	when	one	or	more	microtasks	are	enqueued;
onStable	is	fired	when	the	the	microtask	queue	is	empty	and	Angular	does	not	plan	to	enqueue
any	more.

Add	handlers	to	each:

[src/app/app.component.ts]	

	

import	{Component,	NgZone}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	``	

})	

export	class	AppComponent	{	

		constructor(private	zone:NgZone)	{	

				zone.onStable.subscribe(()	=>	console.log('stable'));	

				zone.onUnstable.subscribe(()	=>	console.log('unstable'));	

		}	

}	

Terrific!	However,	the	log	output	of	this	is	quite	boring.	At	application	startup,	you'll	see	that	the
application	is	reported	as	stable,	but	nothing	further.

Demonstrating	the	zone	life	cycle

If	you	understand	how	Angular	uses	zones,	the	lack	of	logging	shouldn't	surprise	you.	There's
nothing	to	generate	asynchronous	tasks	in	this	zone.	Go	ahead	and	add	some	by	creating	a	button
with	a	handler	that	sets	a	timeout	log	statement:

[src/app/app.component.ts]	

	

import	{Component,	NgZone}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	`<button	(click)="foo()">foo</button>`	

})	

export	class	AppComponent	{	

		constructor(private	zone:NgZone)	{	

				zone.onStable.subscribe(()	=>	console.log('stable'));	

				zone.onUnstable.subscribe(()	=>	console.log('unstable'));	

		}	

	

		foo()	{	

				setTimeout(()	=>	console.log('timeout	handler'),	1000);	

		}	

}	

Now	with	each	click,	you	should	see	an	unstable-stable	pair,	followed	by	an	unstable-timeout
handler-stable	set	one	second	later.	This	means	you've	successfully	tied	into	Angular's	zone
emitters.

How	it	works...
In	order	to	obviate	the	necessity	of	a	$scope.apply()	construct,	Angular	needs	the	ability	to
intelligently	decide	when	it	should	check	to	see	whether	the	state	of	the	application	has	changed.

In	an	asynchronous	setting,	such	as	a	browser	environment,	this	seems	like	a	messy	task	at	first.
Something	like	timed	events	and	input	events	are,	by	their	very	nature,	difficult	to	keep	track	of.
For	example,	refer	to	the	following	code:

element.addEventListener('click',	_	=>	{	

		//	do	some	stuff	

		setInterval(_	=>	{	

				//	do	some	stuff	

		},	1000);	

});	

This	code	is	capable	of	changing	the	model	in	two	different	places,	both	of	which	are
asynchronous.	Code	such	as	this	is	written	all	the	time	and	in	so	many	different	places;	it's
difficult	to	imagine	a	way	of	keeping	track	of	such	code	without	sprinkling	something	like
$scope.$apply()	all	over	the	place.

The	utility	of	zone.js

The	big	idea	of	zones	is	to	give	you	the	ability	to	grasp	how	and	when	the	browser	is	performing
asynchronous	actions	that	you	care	about.

NgZone	is	wrapping	the	underlying	zone	API	for	you	instead	of	exposing	EventEmitters	to	the
various	parts	of	the	life	cycle,	but	this	shouldn't	confuse	you	one	bit.	For	this	example,	the	log
output	is	demonstrating	the	following:

1.	 The	application	initializes	and	examines	the	application	zone.	There	are	no	tasks	scheduled,
so	Angular	emits	a	stable	event.

2.	 You	click	on	the	button.
3.	 This	generates	a	click	event,	which	in	turn	generates	a	task	inside	the	zone	to	execute	the

click	handler.	Angular	sees	this	and	emits	an	unstable	event.
4.	 The	click	handler	is	executed,	scheduling	a	task	in	1	second.
5.	 The	click	handler	is	completed,	and	the	application	once	again	has	no	pending	tasks.	Angular

emits	a	stable	event.
6.	 One	second	elapses	and	the	browser	timer	adds	the	setTimeout	handler	to	the	task	queue.

Since	this	is	shimmed	by	the	zone,	Angular	sees	this	occur	and	emits	an	unstable	event.
7.	 The	setTimeout	handler	is	executed.
8.	 The	setTimeout	handler	is	completed,	and	the	application	once	again	has	no	pending	tasks.

Angular	emits	a	stable	event.

See	also
Working	with	zones	outside	Angular	is	an	excellent	introduction	to	how	zones	work	in	the
browser
Execution	outside	the	Angular	zone	shows	you	how	to	perform	long-running	operations
without	incurring	a	zone	overhead
Configuring	components	to	use	explicit	change	detection	with	OnPush	describes	how	to
manually	control	Angular's	change	detection	process

Execution	outside	the	Angular	zone
The	utility	of	zone.js	is	terrific,	since	it	works	automatically,	but	a	seasoned	software	engineer
knows	this	often	comes	at	a	price.	This	is	especially	true	when	the	concept	of	data	binding	comes
into	play.

In	this	recipe,	you'll	learn	how	to	execute	outside	the	Angular	zone	and	what	benefits	this	affords
you.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/3362/.

http://ngcookbook.herokuapp.com/3362/

How	to	do	it...
To	compare	execution	in	different	contexts,	create	two	buttons	that	run	the	same	code	in	different
zone	contexts.	The	buttons	should	count	to	100	with	setTimeout	increments.	Use	the	performance
global	to	measure	the	time	it	takes:

[src/app/app.component.ts]	

	

import	{Component,	NgZone}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	`	

				<button	(click)="runInsideAngularZone()">	

						Run	inside	Angular	zone	

				</button>	

				<button	(click)="runOutsideAngularZone()">	

						Run	outside	Angular	zone	

				</button>	

		`	

})	

export	class	AppComponent	{	

		progress:	number	=	0;	

		startTime:	number	=	0;	

	

		constructor(private	zone:	NgZone)	{}	

	

		runInsideAngularZone()	{	

				this.start();	

				this.step(()	=>	this.finish('Inside	Angular	zone'));	

		}	

	

		runOutsideAngularZone()	{	

				this.start();	

				this.step(()	=>	this.finish('Outside	Angular	zone'));	

		}	

	

		start()	{	

				this.progress	=	0;	

				this.startTime	=	performance.now();	

		}	

	

		finish(location:string)	{	

				this.zone.run(()	=>	{	

						console.log(location);	

						console.log('Took	'	+		

								(performance.now()	-	this.startTime)	+	'ms');	

				});	

		}	

	

		step(doneCallback:	()	=>	void)	{	

				if	(++this.progress	<	100)	{	

						setTimeout(()	=>	{	

								this.step(doneCallback);	

						},	10);	

				}	else	{	

						doneCallback();	

				}	

		}	

}	

At	this	point,	the	two	buttons	will	behave	identically,	as	both	of	them	are	being	executed	inside
the	Angular	zone.

In	order	to	execute	outside	the	Angular	zone,	you'll	need	to	use	the	runOutsideAngular()
method	exposed	by	NgZone:

		runInsideAngularZone()	{	

				this.start();	

				this.step(()	=>	this.finish('Inside	Angular	zone'));	

		}	

	

		runOutsideAngularZone()	{	

				this.start();	

				this.zone.runOutsideAngular(()	=>	{	

						this.step(()	=>	this.finish('Outside	Angular	zone'));	

				});	

		}	

At	this	point,	you	can	run	both	of	them	again	side	by	side	and	verify	that	they	still	take	(roughly)
the	same	amount	of	time	to	execute.	This	should	not	surprise	you,	as	they	are	still	performing	the
same	task.	The	inclusion	of	zone.js	means	that	the	browser	APIs	are	shimmed	outside	Angular,	so
even	running	this	outside	the	Angular	zone	means	it	is	still	running	inside	a	zone.

In	order	to	see	a	performance	difference,	you'll	need	to	introduce	some	binding	inside	the
template:

[src/app/app.component.ts]	

	

import	{Component,	NgZone}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	`	

				<h3>Progress:	{{progress}}%</h3>	

				<button	(click)="runInsideAngularZone()">	

						Run	inside	Angular	zone	

				</button>	

				<button	(click)="runOutsideAngularZone()">	

						Run	outside	Angular	zone	

				</button>	

		`	

})	

export	class	AppComponent	{	

		...	

}	

Now	you	should	begin	to	see	a	substantive	difference	between	the	runtimes	of	each	button.	This
shows	that	when	the	overhead	of	bindings	is	causing	the	application	to	slow	down,
runOutsideAngular()	has	the	potential	to	yield	surprisingly	substantive	performance
optimizations.

How	it	works...
When	you	examine	the	NgZone	source,	you'll	find	that	the	"outer"	zone	is	merely	the	topmost
browser	zone.	Angular	forks	this	zone	upon	initialization	and	builds	upon	it	to	yield	the	nice
NgZone	service	wrapper.

However,	because	zones	do	not	discriminate	in	the	realm	of	asynchronous	callbacks	and	data
binding,	each	invocation	of	the	setTimeout	handler	inside	the	Angular	zone	is	recognized	as	an
event	that	has	implications	on	the	template	rendering	process.	In	every	invocation,	Angular	sees
an	update	to	the	bound	data	following	an	asynchronous	task,	and	proceeds	to	rerender	the	view.
When	this	is	done	100	times,	it	adds	up	to	several	hundred	extra	milliseconds	of	execution.

When	this	is	run	outside	the	Angular	zone,	Angular	is	no	longer	aware	of	the	setTimeout	tasks
that	are	being	executed	and	so	does	not	require	a	rerender.	Upon	the	very	final	iteration	though,
invoke	NgZone.run();	this	will	cause	the	execution	to	rejoin	the	Angular	zone.	Angular	sees	the
task	and	the	modified	data	and	updates	the	bindings	accordingly;	this	time	though,	this	is	done
only	once.

There's	more...
In	this	recipe,	the	finish()	method	invokes	the	run()	method	for	both	the	Angular	zone	and	the
non-Angular	zone.	When	the	zone	that	this	is	invoked	upon	is	already	the	contextual	zone	in	which
the	task	is	being	executed,	using	run()	becomes	redundant	and	is	effectively	a	no-op.

See	also
Working	with	zones	outside	Angular	is	an	excellent	introduction	to	how	zones	work	in	the
browser
Listening	for	NgZone	events	gives	a	basic	understanding	of	how	Angular	is	using	zones
Configuring	components	to	use	explicit	change	detection	with	OnPush	describes	how	to
manually	control	Angular's	change	detection	process

Configuring	components	to	use	explicit
change	detection	with	OnPush
The	convention	of	Angular's	data	flow,	in	which	data	flows	downward	through	the	component
tree	and	events	float	upwards,	engenders	some	interesting	possibilities.	One	of	these	involves
controlling	when	Angular	should	perform	change	detection	at	a	given	node	in	the	component	tree.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/4909/.

http://ngcookbook.herokuapp.com/4909/

Getting	ready
Begin	with	the	following	simple	application:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{Subject}	from	'rxjs/Subject';	

import	{Observable}	from	'rxjs/Observable';	

	

@Component({	

		selector:	'root',	

		template:	`	

			<button	(click)="shareSubject.next($event)">Share!</button>	

			<article	[shares]="shareEmitter"></article>	

		`	

})	

export	class	RootComponent		{	

		shareSubject:Subject<Event>	=	new	Subject();	

		shareEmitter:Observable<Event>	=		

				this.shareSubject.asObservable();	

}	

[app/article.component.ts]	

	

import	{Component,	Input,	ngOnInit}	from	'@angular/core';	

import	{Observable}	from	'rxjs/Observable';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Shares:	{{count}}</p>	

		`	

})	

export	class	ArticleComponent	implements	OnInit	{	

		@Input()	shares:Observable<Event>;	

		count:number	=	0;	

		title:string	=		

				'Insurance	Fraud	Grows	In	Wake	of	Apple	Pie	Hubbub';	

					

		ngOnInit()	{	

				this.shares.subscribe((e:Event)	=>	++this.count);	

		}	

}	

This	very	simple	application	is	just	using	an	observable	to	pass	share	events	down,	from	a	parent
component	to	a	child	component.	The	child	component	keeps	track	of	the	click	event	count	and
interpolates	this	count	to	the	page.

Your	objective	is	to	modify	this	setup	so	that	the	child	component	only	detects	a	change	when	an
event	is	emitted	from	the	observable.

How	to	do	it...
Out	of	the	box,	Angular	already	has	a	very	robust	way	of	detecting	change:	zones.	Whenever	there
is	an	event	inside	a	zone,	Angular	recognizes	that	this	event	has	the	potential	to	modify	the
application	in	a	meaningful	way.	It	then	performs	change	detection	from	the	top	of	the	component
tree	down	to	the	bottom,	checking	whether	anything	needs	to	be	updated	in	the	changed	model.
Since	data	only	flows	downward,	this	is	already	an	extremely	efficient	way	of	handling	it.

However,	you	might	like	to	exert	some	control	in	this	situation	since	you	may	be	able	to	hand-
optimize	when	change	detection	should	occur	inside	a	component.	Most	likely	you	will	very
easily	be	able	to	tell	when	a	component	may	or	may	not	change,	based	on	what	is	happening
around	it.

Configuring	the	ChangeDetectionStrategy

Angular	offers	you	the	option	of	changing	how	the	change	detection	scheme	works.	If	you	would
prefer	that	Angular	refrain	from	listening	to	zone	events	to	kick	off	a	round	of	change	detection,
you	can	instead	configure	a	component	to	only	perform	change	detection	when	an	input	is
changed.	This	can	be	done	by	configuring	the	component	to	use	the	OnPush	strategy	instead	of	the
default.

Surely,	this	will	occur	less	often	than	the	firehose	of	browser	events.	If	the	component	will	only
change	when	an	input	is	changed,	then	this	will	save	Angular	the	trouble	of	doing	an	iteration	of
change	detection	on	that	component.

Modify	ArticleComponent	to	instead	use	OnPush:

[app/article.component.ts]	

	

import	{Component,	Input,	ngOnInit,	ChangeDetectionStrategy}		

		from	'@angular/core';	

import	{Observable}	from	'rxjs/Observable';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Shares:	{{count}}</p>	

		`,	

		changeDetection:	ChangeDetectionStrategy.OnPush	

})	

export	class	ArticleComponent	implements	OnInit	{	

		@Input()	shares:Observable<Event>;	

		count:number	=	0;	

		title:string	=		

				'Insurance	Fraud	Grows	In	Wake	of	Apple	Pie	Hubbub';	

					

		ngOnInit()	{	

				this.shares.subscribe((e:Event)	=>	++this.count);	

		}	

}	

This	successfully	changes	the	strategy,	but	there	is	one	significant	problem	now:	the	count	will	no
longer	be	updated.	This	happens,	of	course,	because	the	input	to	this	component	is	not	being
changed.

The	count	only	updated	before	because	Angular	was	seeing	click	events	on	the	button,	which
caused	change	detection	on	ArticleComponent.	Now,	Angular	has	been	instructed	to	ignore
these	click	events,	even	though	the	count	inside	the	child	component	is	still	being	updated	from
the	observable	handlers.

Requesting	explicit	change	detection

You	are	able	to	inject	a	reference	to	the	component's	change	detector.	With	this,	it	exposes	a
method	that	allows	you	to	force	a	round	of	change	detection	whenever	you	like.	Since	the	model
is	being	updated	inside	an	observable	handler,	this	seems	like	a	fine	place	to	trigger	the	change
detection	process:

[app/article.component.ts]	

	

import	{Component,	Input,	ngOnInit,	ChangeDetectionStrategy,		

								ChangeDetectorRef}	from	'@angular/core';	

import	{Observable}	from	'rxjs/Observable';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

				<p>Shares:	{{count}}</p>	

		`,	

		changeDetection:	ChangeDetectionStrategy.OnPush	

})	

export	class	ArticleComponent	implements	OnInit	{	

		@Input()	shares:Observable<Event>;	

		count:number	=	0;	

		title:string	=		

				'Insurance	Fraud	Grows	In	Wake	of	Apple	Pie	Hubbub';	

					

		constructor(private	changeDetectorRef_:	ChangeDetectorRef)	{}	

					

		ngOnInit()	{	

				this.shares.subscribe((e:Event)	=>	{	

						++this.count;	

						this.changeDetectorRef_.markForCheck();			

				});	

		}	

}	

Now	you	will	see	the	count	getting	updated	once	again.

How	it	works...
Using	OnPush	essentially	converts	a	component	to	operate	like	a	black	box.	If	the	input	doesn't
change,	then	Angular	assumes	that	the	state	inside	the	component	will	remain	constant,	and
therefore	there	is	no	need	to	proceed	further	with	regard	to	detecting	a	change.

Since	change	detection	always	flows	from	top	to	bottom	in	the	component	tree,	the	request	for
change	detection	uses	markForCheck(),	marks	the	component's	change	detector	to	run	only	when
Angular	reaches	that	component	inside	the	tree.

There's	more...
This	is	a	useful	pattern	if	you're	looking	to	squeeze	additional	performance	from	your	application,
but	in	some	cases,	doing	this	can	develop	into	an	anti-pattern.	The	need	to	explicitly	define	when
Angular	should	perform	change	detection	can	become	tedious	as	your	component	code	grows	in
size.	There	can	potentially	be	bugs	that	arise	from	missing	one	place	where	markForCheck()
should	have	been	invoked	but	was	not.	Angular's	change	detection	strategy	is	already	quite
performant	and	robust,	so	use	this	configuration	wisely.

See	also
Working	with	zones	outside	Angular	is	an	excellent	introduction	to	how	zones	work	in	the
browser
Listening	for	NgZone	events	gives	a	basic	understanding	of	how	Angular	is	using	zones
Execution	outside	the	Angular	zone	shows	you	how	to	perform	long-running	operations
without	incurring	a	zone	overhead
Configuring	ViewEncapsulation	for	maximum	efficiency	shows	how	you	can	configure
components	to	utilize	the	shadow	DOM

Configuring	ViewEncapsulation	for
maximum	efficiency
Although	it	may	sound	clichéd,	Angular	2	was	built	for	the	browsers	of	tomorrow.	You	can	point
to	why	this	is	the	case	in	a	large	number	of	ways,	but	there	is	one	way	where	this	is	extremely
true:	component	encapsulation.

The	ideal	component	model	for	Angular	2	is	the	one	in	which	components	are	entirely	sandboxed,
save	for	the	few	pieces	that	are	externally	visible	and	modifiable.	In	this	respect,	it	does	a	bang-
up	job,	but	even	the	most	modern	browsers	limit	its	ability	to	strive	for	such	efficacy.	This	is
especially	true	in	the	realm	of	CSS	styling.

Several	features	of	Angular's	component	styling	are	especially	important:

You	are	able	to	write	styles	that	are	guaranteed	to	be	only	applicable	to	a	component
You	can	explicitly	specify	styles	that	should	be	inherited	downward	through	the	component
tree
You	can	specify	an	encapsulation	strategy	on	a	piecewise	basis

There	are	a	number	of	interesting	ways	to	accomplish	an	efficient	component	styling	schema.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/1463/.

http://ngcookbook.herokuapp.com/1463/

Getting	ready
Begin	with	a	simple	application	component:

[src/app/app.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	`	

				<h1>	

						{{title}}	

				</h1>	

		`,	

		styles:	[`	

				h1	{		

						color:	red;	

				}	

		`]	

})	

export	class	AppComponent	{	

		title	=	'app	works!';	

}	

How	to	do	it...
Angular	will	default	to	not	using	ShadowDOM	for	components,	as	the	majority	of	browsers	do
not	support	it	to	a	satisfactory	level.	The	next	best	thing,	which	it	will	default	to,	is	to	emulate	this
styling	encapsulation	by	nesting	your	selectors.	The	preceding	component	is	effectively	the
equivalent	of	the	following:

[src/app/app.component.ts]	

	

import	{Component,	ViewEncapsulation}	from	'@angular/core';	

	

@Component({	

		selector:	'app-root',	

		template:	`	

				<h1>	

						{{title}}	

				</h1>	

		`,	

		styles:	[`	

				h1	{	

						color:	red;	

				}	

		`],	

		encapsulation:	ViewEncapsulation.Emulated	

})	

export	class	AppComponent	{	

		title	=	'app	works!';	

}	

Emulated	styling	encapsulation

How	exactly	does	Angular	perform	this	emulation?	Look	at	the	rendered	application	to	find	out.
Your	component	will	appear	something	like	the	following:

<app-root	_nghost-mqf-1="">	

		<h1	_ngcontent-mqf-1="">	

				app	works!	

		</h1>	

</app-root>	

In	the	head	of	the	document:

<style>	

		h1[_ngcontent-mqf-1]	{	

				color:	red;	

		}	

</style>	

The	picture	should	be	a	bit	clearer	now.	Angular	is	assigning	this	component	class	(not	an
instance)	a	unique	ID,	and	the	styles	defined	for	the	global	document	will	only	be	applicable	to

tags	that	have	the	matching	attribute.

No	styling	encapsulation

If	this	encapsulation	isn't	necessary,	you	are	free	to	use	encapsulation:
ViewEncapsulation.None.	Angular	will	happily	skip	the	unique	ID	assignment	step	for	you,
giving	you	a	vanilla:

<app-root>	

		<h1>	

				app	works!	

		</h1>	

</app-root>	

In	the	head	of	the	document:

<style>	

		h1	{	

				color:	red;	

		}	

</style>	

Native	styling	encapsulation

The	best,	most	futuristic,	and	least	supported	method	of	going	about	this	is	to	use	ShadowDOM
instances	to	go	along	with	each	component	instance.	This	can	be	accomplished	using
encapsulation:	ViewEncapsulation.Native.	Now,	your	component	will	render:

<app-root>	

		#shadow-root	

				<style>	

						h1	{	

								color:	red;	

						}	

				</style>	

				<h1>	

						app	works!	

				</h1>	

</app-root>	

How	it	works...
Angular	is	smart	enough	to	recognize	where	it	needs	to	put	your	styles	and	how	to	modify	them	to
make	them	work	for	your	component	configuration:

For	None	and	Emulated,	styles	go	into	the	document	head
For	Native,	styles	go	inline	with	the	rendered	component
For	None	and	Native,	no	style	modifications	are	needed
For	Emulated,	styles	are	restricted	by	attribute	selectors

There's	more...
An	important	consideration	of	ViewEncapsulation	choices	is	CSS	performance.	It	is	well
known	and	entirely	intuitive	that	CSS	styling	is	more	efficient	when	it	has	to	traverse	a	smaller
part	of	the	DOM	and	has	to	match	using	a	simpler	selector.

Emulating	component	encapsulation	adds	an	attribute	selector	to	each	and	every	style	that	is
defined	for	that	component.	At	scale,	it	isn't	hard	to	see	how	this	can	degrade	performance.
ShadowDOM	elegantly	solves	this	problem	by	offering	unmodified	styles	inside	a	restricted
piece	of	DOM.	Its	styles	cannot	escape	but	can	be	applied	downward	to	other	components.
Furthermore,	ShadowDOM	components	can	be	nested	and	strategically	applied.

See	also
Understanding	and	properly	utilizing	enableProdMode	with	pure	and	impure	pipes
describes	how	to	take	the	training	wheels	off	your	application
Configuring	components	to	use	explicit	change	detection	with	OnPush	describes	how	to
manually	control	Angular's	change	detection	process

Configuring	the	Angular	2	Renderer	to	use
web	workers
One	of	the	most	compelling	introductions	in	the	new	rendition	of	the	Angular	framework	is	the
total	abstraction	of	the	rendering	execution.	This	stems	from	one	of	the	core	ideas	of	Angular:	you
should	be	able	to	seamlessly	substitute	out	any	behavior	module	and	replace	it	with	another.	This,
of	course,	means	that	Angular	cannot	have	any	dependency	bleed	outside	of	the	modules.

One	place	that	Angular	puts	emphasis	on	being	configurable	is	the	location	where	code	execution
takes	place.	This	is	manifested	in	a	number	of	ways,	and	this	recipe	will	focus	on	Angular's
ability	to	perform	rendering	execution	at	a	location	other	than	inside	the	main	browser's
JavaScript	runtime.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/1859/.

http://ngcookbook.herokuapp.com/1859/

Getting	ready
Begin	with	some	simple	application	elements	that	do	not	yet	form	a	full	application:

[index.html]	

	

<!DOCTYPE	html>	

<html>	

		<head>	

				<script	src="zone.js	"></script>	

				<script	src="reflect-metadata.js"></script>	

				<script	src="system.src.js"></script>	

				<script	src="system-config.js"></script>	

		</head>	

		<body>	

				<article></article>	

					

				<script>	

						System.import('system-config.js')	

								.then(function()	{	

										System.import('main.ts');	

								});	

				</script>	

		</body>	

</html>	

[app/article.component.ts]		

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h2>{{title}}</h2>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=		

				'Survey	Indicates	Plastic	Funnel	Best	Way	to	Drink	Rare	Wine';	

}	

Note	that	this	recipe	uses	SystemJS	to	handle	modules	and	TypeScript	transpilation,	but	this	is
merely	to	keep	the	demonstration	simple.	A	properly	compiled	application	can	use	regular
JavaScript	to	accomplish	the	same	feat,	with	no	dependency	on	SystemJS.

This	recipe	will	start	off	by	assuming	you	have	a	basic	knowledge	of	what	web	workers	are	and
how	they	work.	There	is	a	discussion	of	their	properties	later	in	this	recipe.

How	to	do	it...
The	SystemJS	startup	configuration	kicks	off	the	application	from	main.ts,	so	you'll	begin	there.
Instead	of	bootstrapping	the	application	in	this	file	as	you	normally	would,	you'll	use	an	imported
Angular	helper	to	initialize	the	web	worker	instance:

[main.ts]	

	

import	{bootstrapWorkerUi}	from	"@angular/platform-webworker";	

	

bootstrapWorkerUi(window.location.href	+	"loader.js");	

Concern	yourself	with	the	precise	details	of	what	this	is	doing	later,	but	the	high-level	idea	is	that
this	is	creating	a	web	worker	instance	that	is	integrated	with	the	Angular	Renderer.

Note

Recall	that	initializing	a	web	worker	requires	a	path	to	its	startup	JS	file,	and	a	relative	path
inside	this	file	might	not	always	work;	therefore,	you're	using	the	window	location	to	provide	an
absolute	URL.	The	necessity	of	this	may	differ	based	on	your	development	setup.

Since	this	file	references	a	web	worker	initialization	file	called	loader.js,	write	it	next.
Workers	cannot	be	given	a	TypeScript	file:

[loader.js]	

	

importScripts(

		"system.js",	

		"zone.js",	

		"reflect-metadata.js",	

		"./system-config.js");	

	

System.import("./web-worker-main.ts");	

This	file	first	imports	the	same	files	that	are	listed	inside	the	<head>	tag	of	index.html.	This
should	make	sense	since	the	web	worker	will	need	to	perform	some	of	the	duties	of	Angular	but
without	direct	access	to	anything	that	exists	inside	the	main	JavaScript	runtime.	For	example,
since	this	web	worker	will	be	rendering	a	component,	it	needs	to	be	able	to	understand	the
@Component({})	notation,	which	cannot	be	done	without	the	reflect-metadata	extension.

Just	like	the	main	application,	the	web	worker	also	has	an	initialization	file.	This	takes	the	form
of	web-worker-main.ts:

[web-worker-main.ts]	

	

import	{AppModule}	from	'./app/app.module';	

import	{platformWorkerAppDynamic}		

		from	'@angular/platform-webworker-dynamic';	

	

platformWorkerAppDynamic().bootstrapModule(AppModule);	

Compared	to	a	normal	main.ts	file,	this	file	should	look	delightfully	familiar.	Angular	provides
you	with	a	totally	separate	platform	module,	but	one	that	affords	you	an	identical	API,	which	you
are	using	here	to	bootstrap	the	application	from	the	yet-to-be-defined	AppModule.	Define	this
next:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{WorkerAppModule}	from	'@angular/platform-webworker';	

import	{AppModule}	from	'./app.module';	

import	{ArticleComponent}	from	'./article.component';	

	

@NgModule({	

		imports:	[

				WorkerAppModule	

],		

		bootstrap:	[

				ArticleComponent	

],	

		declarations:	[

				ArticleComponent	

]	

})	

export	class	AppModule	{}	

Similar	to	how	you	would	normally	use	BrowserModule	within	a	conventional	top-level	app
module,	Angular	provides	a	web-worker-flavored	WorkerAppModule	that	handles	all	the
necessary	integration.

How	it	works...
Make	no	mistake	about	what	is	happening	here:	your	application	is	now	running	on	two	separate
JavaScript	threads.

Web	workers	are	basically	just	really	dumb	JavaScript	execution	buckets.	When	initialized,	they
are	given	an	initial	piece	of	JavaScript	to	run,	which	in	this	example	took	the	form	of
loader.js/.	They	have	no	understanding	of	what	is	going	on	in	the	main	browser	runtime.	They
can't	interact	with	the	DOM,	and	you	are	only	able	to	communicate	with	them	via	PostMessages.
Angular	builds	an	elegant	abstraction	on	top	of	PostMessages	to	create	a	bus	interface,	and	it	is
this	interface	that	is	used	to	join	the	two	runtimes	together.

If	you	look	into	the	PostMessage	specification,	you	will	notice	that	all	of	the	data	passed	as	the
message	must	be	serialized	into	a	string.	How	then	can	this	rendering	configuration	possibly	work
with	the	DOM	in	the	main	browser,	handling	events	and	displaying	the	HTML	and	the	web
worker	performing	the	rendering	on	a	DOM	it	cannot	touch?

The	answer	is	simple:	Angular	serializes	everything.	When	the	initial	rendering	occurs,	or	an
event	in	the	browser	occurs,	Angular	grabs	everything	it	needs	to	know	about	the	current	state,
wraps	it	up	into	a	serialized	string,	and	ships	it	off	to	the	web	worker	renderer	on	the	proper
channel.	The	web	worker	renderer	understands	what's	being	passed	to	it.	Although	it	cannot
access	the	main	DOM,	it	is	certainly	able	to	construct	HTML	elements,	understand	how	the
serialized	events	passed	to	it	will	affect	them,	and	perform	the	rendering.

When	the	time	comes	to	tell	the	browser	what	to	actually	render,	it	will	in	turn	serialize	the
rendered	component	and	send	it	back	to	the	main	browser	runtime,	which	will	unpack	the	string
and	insert	it	into	the	DOM.

To	the	Angular	framework,	because	it	is	abstracted	from	all	the	browser	dependencies	that	might
get	in	the	way	of	this,	everything	seems	normal.	Events	come	in,	they're	handled,	and	a	renderer
service	tells	it	what	to	put	into	the	DOM.	Everything	that	happens	in	between	is	unimportant	to	the
Angular	framework,	which	doesn't	care	that	everything	happened	in	a	totally	separate	JavaScript
runtime.

Note

Note	that	the	elements	you	begin	with	have	nothing	unusual	about	them	to	allow	web	worker
compatibility.	This	underscores	the	elegance	of	Angular's	web	worker	abstraction.

There's	more...
As	web	workers	are	more	fully	supported	and	utilized,	patterns	such	as	these	will	most	likely
become	more	and	more	common,	and	it	is	extremely	prescient	of	the	Angular	team	to	support	this
behavior.	There	are,	however,	some	considerations.

Optimizing	for	performance	gains

One	of	the	primary	benefits	of	using	web	workers	is	that	you	now	have	access	to	an	execution
context	that	is	not	blocked	by	anything	running	on	the	browser	execution	context.	For	performance
drags,	such	as	reflow	and	blocking	of	event	loop	handlers,	the	web	worker	will	continue	with	the
execution	without	a	care	for	what	is	happening	elsewhere.

Therefore,	getting	a	performance	benefit	becomes	a	problem	of	optimization.	Communication
between	the	two	JavaScript	threads	requires	serialization	and	transmission	of	events,	which	is
obviously	not	as	fast	as	handling	them	in	the	same	thread.	However,	in	an	especially	complicated
application,	rendering	can	quickly	become	one	of	the	most	expensive	things	your	application	will
do.	Therefore,	you	may	need	to	experiment	and	make	a	judgment	call	for	your	application,	as	not
all	applications	will	see	performance	gains	from	using	web	workers—only	those	where
rendering	becomes	prohibitively	expensive.

Compatibility	considerations

Web	workers	have	extremely	good	support,	but	there	is	still	a	very	significant	number	of
browsers	that	do	not	support	them.	If	your	application	needs	to	work	universally,	web	workers
are	not	recommended;	since	they	will	not	gracefully	degrade,	your	application	will	merely	fail.

See	also
Configuring	the	Angular	2	renderer	service	to	use	web	workers	guides	you	through	the
setting	up	of	your	application	to	render	on	a	web	worker
Configuring	applications	to	use	ahead-of-time	compilation	guides	you	through	how	to
compile	an	application	during	the	build
Configuring	an	application	to	use	lazy	loading	shows	how	you	can	delay	serving	chunks	of
application	code	until	needed

Configuring	applications	to	use	ahead-of-time
compilation
Angular	2	introduces	the	concept	of	ahead-of-time	compilation	(AOT).	This	is	an	alternate
configuration	in	which	you	can	run	your	applications	to	move	some	processing	time	from	inside
the	browser	(referred	to	as	just-in-time	compilation	or	JIT)	to	when	you	compile	your	application
on	the	server.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/9253/.

http://ngcookbook.herokuapp.com/9253/

Getting	ready
AOT	compilation	is	application-agnostic,	so	you	should	be	able	to	add	this	to	any	existing
Angular	2	application	with	minimal	modification.

For	the	purposes	of	this	example,	suppose	you	have	an	existing	AppModule	inside
app/app.module.ts.	You	needn't	concern	yourself	with	its	content	since	it	is	irrelevant	for	the
purpose	of	AOT.

How	to	do	it...
Using	AOT	means	you	will	compile	and	bootstrap	your	application	differently.	Depending	on
how	it	is	configured,	you	will	probably	want	to	use	sibling	files	with	"aot"	added	to	the	name.
Bear	in	mind	that	this	is	only	for	organizational	purposes;	Angular	is	not	concerned	with	what	you
name	your	files.

Installing	AOT	dependencies

Angular	requires	a	new	compilation	tool	ngc,	which	is	included	in	the	@angular/compiler-cli
package.	It	will	also	make	use	of	platformBrowser	to	bootstrap,	which	is	provided	inside	the
@angular/platform-browser	package.	Install	both	of	these	and	save	the	dependency	to
package.json:

npm	install	@angular/compiler-cli	@angular/platform-server	--save	

Configuring	ngc

ngc	will	essentially	perform	a	superset	of	duties	of	the	tsc	compilation	tool	you	are	accustomed
to	using.	It	is	wise	to	provide	it	with	a	separate	config	file,	which	can	be	named	tsconfig-
aot.json	(but	you	are	not	beholden	to	this	name).

The	file	should	appear	identical	to	your	existing	tsconfig.json	file	but	with	the	following
important	modifications:

[tsconfig-aot.json]	

	

{	

		"compilerOptions":	{	

				(lots	of	settings	here	already,	only	change	'module')	

				"module":	"es2015",	

},	

		"files":	[

				"app/app.module.ts",

				"main.ts"

],	

		"angularCompilerOptions":	{	

			"genDir":	"aot",	

			"skipMetadataEmit"	:	true	

}

}

Aligning	component	definitions	with	AOT	requirements

AOT	compilation	requires	your	application	to	be	organized	in	a	few	specific	ways.	Nothing
should	break	an	existing	application,	but	they're	important	to	do	and	take	note	of.	If	you've	been

following	Angular	best	practices,	they	should	be	a	breeze.

First,	component	definitions	must	have	a	moduleId	specified.	You	will	find	that	components
generated	with	the	Angular	CLI	already	have	this	included.	If	not,	the	moduleId	should	always	be
module.id,	as	shown	here:

@Component({	

		moduleId:	module.id,	

		(lots	of	other	stuff)	

})	

Since	the	module	is	undefined	when	compiling	in	AOT,	you	can	provide	a	dummy	value	in	the
root	template:

<script>window.module	=	'aot';</script>	

Tip

AOT	doesn't	need	the	module	ID,	but	it	allows	you	to	have	a	compilation	without	errors.	Note
that	these	steps	involving	moduleId	may	be	changed	or	eliminated	entirely	in	future	versions	of
Angular,	as	they	only	exist	to	allow	you	to	have	compatibility	between	both	JIT	and	AOT
compilations.

Next,	you'll	need	to	change	the	path	of	the	templates,	both	CSS	and	HTML,	to	be	relative	to	the
component	definition	file,	not	application-root-relative.	If	you	are	using	the	convention	given	by
the	Angular	CLI	or	the	style	guide,	you	are	probably	already	doing	this.

Compiling	with	ngc

ngc	isn't	available	directly	on	the	command	line;	you'll	need	to	run	the	binary	file	directly.
Additionally,	since	in	this	example	it's	not	using	the	tsconfig.json	naming	convention,	you'll
need	to	point	the	binary	to	the	location	of	the	alternate	config	file.	Run	the	following	command
from	the	root	of	your	application	to	execute	the	compilation:

node_modules/.bin/ngc	-p	tsconfig-aot.json	

This	command	will	output	a	collection	of	NgFactory	files	with	.ngfactory.ts	inside	the	aot
directory,	as	you	specified	earlier	in	the	angularCompilerOptions	section	of	tsconfig-
aot.json.

The	compilation	is	done,	but	your	application	doesn't	yet	know	how	to	use	these	NgFactory
instances.

Bootstrapping	with	AOT

Your	application	will	now	start	off	with	AppModuleNgFactory	instead	of	AppModule.	Bootstrap

it	using	platformBrowser:

[main.ts]	

	

import	{platformBrowser}	from	'@angular/platform-browser';	

import	{AppModuleNgFactory}	from	'aot/app/app.module.ngfactory';	

	

platformBrowser().bootstrapModuleFactory(AppModuleNgFactory);	

With	this,	you'll	be	able	to	run	your	application	normally	but	this	time	using	precompiled	files.

How	it	works...
Compiling	in	Angular	is	a	complex	subject,	but	there	are	several	main	points	relevant	to
switching	an	application	to	an	AOT	build	process:

The	Angular	compiler	lives	inside	the	@angular/compiler	module,	which	is	quite	large.
Using	AOT	means	this	module	no	longer	needs	to	be	delivered	to	the	browser,	which	yields
substantial	bandwidth	savings.
The	Angular	compilation	process	involves	taking	the	template	strings	inside	your
components,	which	exist	as	defined	by	template	or	templateUrl,	and	converting	them	into
NgFactory	instances.	These	instances	specify	how	Angular	understands	how	you	defined	the
template.	The	conversion	to	Factory	instances	happens	both	in	JIT	and	AOT	compilation;
switching	to	AOT	simply	means	you	are	doing	this	processing	on	the	server	instead	of	the
client	and	serving	NgFactory	definitions	directly	instead	of	uncompiled	template	strings.
AOT	will	obviously	slow	down	your	build	time	since	more	computation	is	required	each
time	the	code	base	needs	updating.	Since	you	can	trust	that	Angular	will	be	able	to	correctly
interpret	NgFactory	definitions	that	the	AOT	compilation	generates,	it	is	best	to	do	JIT
compilation	when	developing	the	application	and	AOT	compilation	when	building	and
deploying	production	applications.

There's	more...
AOT	is	cool,	but	it	might	not	be	for	everybody.	It	will	very	likely	reduce	the	load	time	and
initialization	time	of	your	Angular	application,	but	your	build	process	is	considerably	more
involved	now.	What's	more,	if	you	want	to	use	JIT	in	development	but	AOT	in	production,	you
now	have	to	maintain	two	versions	of	three	different	files:	index.html,	main.ts,	and
tsconfig.json.	Perhaps	this	additional	build	complexity	overhead	is	worth	it,	but	it	should
certainly	be	a	judgment	call	based	on	your	development	situation.

Going	further	with	Tree	Shaking

Angular	also	supports	a	separate	step	of	optimization	called	Tree	Shaking.	This	uses	a	separate
npm	library	called	rollup.	Essentially,	this	library	reads	in	your	entire	application	(as	JS	files),
figures	out	what	modules	are	not	being	used,	and	cuts	them	out	of	the	compiled	codebase	and
therefore	of	the	payload	that	is	delivered	to	the	browser.	This	is	analogous	to	shaking	a	tree	to
make	the	dead	branches	fall	out,	hence	"tree	shaking."

Note

The	es2015	module	configuration	specified	earlier	in	tsconfig-aot.json	was	for	supporting
the	rollup	library,	as	it	is	a	requirement	for	compatibility.

If	your	application	code	base	is	well-maintained,	you	will	most	likely	see	limited	benefits	of	tree
shaking	since	unused	imports	and	the	like	will	be	caught	when	coding.	What's	more,	one	could
make	the	argument	that	tree	shaking	might	be	an	anti-pattern	since	it	subtly	encourages	a	liberal
use	of	module	inclusion	by	the	developer	with	the	knowledge	that	tree	shaking	will	do	the	dirty
working	of	cutting	out	any	unused	modules.	This	may	then	lead	to	a	cluttered	code	base.

Using	tree	shaking	can	be	a	useful	tool	when	it	comes	to	Angular	2	applications,	but	its	usefulness
is	in	many	ways	evaporated	by	keeping	a	code	base	tidy.

See	also
Understanding	and	properly	utilizing	enableProdMode	with	pure	and	impure	pipes
describes	how	to	take	the	training	wheels	off	your	application
Configuring	the	Angular	2	renderer	service	to	use	web	workers	guides	you	through	the
process	of	setting	up	your	application	to	render	on	a	web	worker
Configuring	an	application	to	use	lazy	loading	shows	how	you	can	delay	serving	chunks	of
application	code	until	needed

Configuring	an	application	to	use	lazy	loading
Lazy	loaded	applications	are	those	that	defer	the	retrieval	of	relevant	resources	until	they	are
actually	necessary.	Once	applications	begin	to	scale,	this	can	yield	meaningful	gains	in
performance,	and	Angular	2	supports	lazy	loading	right	out	of	the	box.

Note

The	code,	links,	and	a	live	example	related	to	this	recipe	are	available	at
http://ngcookbook.herokuapp.com/0279/.

http://ngcookbook.herokuapp.com/0279/

Getting	ready
Suppose	you	begin	with	the	following	simple	application:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{}	

[app/link.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'app-link',	

		template:	`	

				article	

		`	

})	

export	class	LinkComponent	{}	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=		

				'Baboon's	Stock	Picks	Crush	Top-Performing	Hedge	Fund';	

}	

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{ArticleComponent}	from	'./article.component';	

import	{LinkComponent}	from	'./link.component';	

	

const	appRoutes:Routes	=	[

		{	

				path:	'article',	

				component:	ArticleComponent	

		},	

		{	

				path:	'**',	

				component:	LinkComponent	

		}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				ArticleComponent,	

				LinkComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

This	application	has	only	two	routes:	the	default	route,	which	displays	a	link	to	the	article	page,
and	the	article	route,	which	display	ArticleComponent.	Your	objective	is	to	defer	the	loading	of
the	resources	required	by	the	article	route	until	it	is	actually	visited.

How	to	do	it...
Lazy	loading	means	the	initial	application	module	that	is	loaded	cannot	have	any	dependencies	on
the	module	that	you	wish	to	lazily	load	since	none	of	that	code	will	be	present	before	the	new
URL	is	visited.	First,	move	the	ArticleComponent	reference	to	its	own	module:

[app/article.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

	

@NgModule({	

		declarations:	[

				ArticleComponent	

],	

		exports:	[

				ArticleComponent	

]	

})	

export	class	ArticleModule	{}	

Removing	all	dependencies	means	moving	the	relevant	route	definitions	to	this	module	as	well:

[app/article.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

import	{Routes,	RouterModule}	from	'@angular/router';

const	articleRoutes:Routes	=	[

		{	

				path:	'',	

				component:	ArticleComponent	

		}	

];	

	

@NgModule({	

		imports:	[

				RouterModule.forChild(articleRoutes)	

],	

		declarations:	[

				ArticleComponent	

],	

		exports:	[

				ArticleComponent	

]	

})	

export	class	ArticleModule	{}	

Next,	remove	all	these	module	references	from	AppModule.	In	addition,	modify	the	route
definition,	so	that	instead	of	specifying	a	component	to	render,	it	simply	references	a	path	to	the
lazily	loaded	module,	as	well	as	the	name	of	the	module	using	a	special	#	syntax:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{LinkComponent}	from	'./link.component';	

	

const	appRoutes:Routes	=	[

		{	

				path:	'article',	

				loadChildren:	'./app/article.module#ArticleModule'	

		},	

		{	

				path:	'**',	

				component:	LinkComponent	

		}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes)	

],	

		declarations:	[

				LinkComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

This	is	all	that's	required	to	set	up	lazy	loading.	Your	application	should	behave	identically	to
when	you	began	this	recipe.

How	it	works...
To	verify	that	it	is	in	fact	performing	a	lazy	load,	start	the	application	and	keep	an	eye	on	the
Network	tab	of	your	browser's	developer	console.

When	you	click	on	the	article	routerLink,	you	should	see	article.module.ts	and
article.component.ts	requests	go	out	before	the	rendering	occurs.	This	means	Angular	is	only
fetching	the	required	files	once	you	actually	visit	the	route.	The	loadChildren	route	property
tells	Angular	that	when	it	visits	this	route,	if	it	hasn't	loaded	the	module	already,	it	should	use	the
relative	path	you	may	have	provided	to	fetch	the	module.	Once	the	module	file	is	retrieved,
Angular	is	able	to	parse	it	and	know	which	other	files	it	needs	to	request	to	load	all	the	module's
dependencies.

There's	more...
You'll	note	that	this	introduces	a	bit	of	additional	latency	to	your	application	since	Angular	waits
to	load	the	resources	right	when	it	actually	needs	them.	What's	more,	in	this	example,	it	has	to
actually	perform	two	additional	round	trips	to	the	server	when	it	visits	the	article	URL:	one	to
request	the	module	file	and	one	to	request	the	module's	dependencies.

In	a	production	environment,	this	latency	might	be	unacceptable.	A	workaround	might	be	to
compile	the	lazily	loaded	payload	into	a	single	file	that	can	be	fetched	with	one	request.
Depending	on	how	your	application	is	built,	your	mileage	may	vary.

Accounting	for	shared	modules

The	lazily	loaded	module	is	totally	separated	from	your	main	application	module,	and	this
includes	injectables.	If	a	service	is	provided	to	the	top-level	application	module,	you	will	find
that	it	will	create	two	separate	instances	of	that	service	for	each	place	it	is	provided—certainly
unexpected	behavior,	given	that	an	application	loaded	normally	will	only	create	one	instance	if	it
is	only	provided	once.

The	solution	is	to	piggyback	on	the	forRoot	method	that	Angular	uses	to	simultaneously	provide
and	configure	services.	More	relevant	to	this	recipe,	it	allows	you	to	technically	provide	a
service	at	multiple	locations;	however,	Angular	will	know	how	to	ignore	duplicates	of	this,
provided	it	is	done	inside	forRoot().

First,	define	the	AuthService	that	you	wish	to	create	only	a	single	instance	of:

[app/auth.service.ts]	

	

import	{Injectable}	from	'@angular/core';	

	

@Injectable()	

export	class	AuthService	{	

		constructor()	{	

				console.log('instantiated	AuthService');	

		}	

}	

This	includes	a	log	statement	so	you	can	see	that	only	one	instantiation	occurs.

Next,	create	an	NgModule	wrapper	specially	for	this	service:

[app/auth.module.ts]	

	

import	{NgModule,	ModuleWithProviders}	from	"@angular/core";	

import	{AuthService}	from	"./auth.service";	

	

@NgModule({})	

export	class	AuthModule	{	

		static	forRoot():ModuleWithProviders	{	

				return	{	

						ngModule:	AuthModule,	

						providers:	[

								AuthService	

]	

				};	

		}	

}	

Since	this	utilizes	the	forRoot()	strategy	as	detailed	in	the	preceding	code,	you're	free	to	import
this	module	both	inside	the	application	module	as	well	as	the	lazily	loaded	module:

[app/app.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{BrowserModule}	from	'@angular/platform-browser';	

import	{RouterModule,	Routes}	from	'@angular/router';	

import	{RootComponent}	from	'./root.component';	

import	{LinkComponent}	from	'./link.component';	

import	{AuthModule}	from	'./auth.module';	

	

const	appRoutes:Routes	=	[

		{	

				path:	'article',	

				loadChildren:	'./app/article.module#ArticleModule'	

		},	

		{	

				path:	'**',	

				component:	LinkComponent	

		}	

];	

	

@NgModule({	

		imports:	[

				BrowserModule,	

				RouterModule.forRoot(appRoutes),	

				AuthModule.forRoot()	

],	

		declarations:	[

				LinkComponent,	

				RootComponent	

],	

		bootstrap:	[

				RootComponent	

]	

})	

export	class	AppModule	{}	

You'll	add	it	to	the	lazily	loaded	module	too,	but	don't	invoke	forRoot().	This	method	is
reserved	for	only	the	root	application	module:

[app/article.module.ts]	

	

import	{NgModule}	from	'@angular/core';	

import	{ArticleComponent}	from	'./article.component';	

import	{Routes,	RouterModule}	from	'@angular/router';	

import	{AuthModule}	from	'./auth.module';	

	

const	articleRoutes:Routes	=	[

		{	

				path:	'',	

				component:	ArticleComponent	

		}	

];	

	

@NgModule({	

		imports:	[

				RouterModule.forChild(articleRoutes),	

				AuthModule	

],	

		declarations:	[

				ArticleComponent	

],	

		exports:	[

				ArticleComponent	

]	

})	

export	class	ArticleModule	{}	

Finally,	inject	the	service	into	RootComponent	and	ArticleComponent	and	use	log	statements	to
see	that	it	does	indeed	reach	both	the	components:

[app/root.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{AuthService}	from	'./auth.service';	

	

@Component({	

		selector:	'root',	

		template:	`	

				<h1>Root	component</h1>	

				<router-outlet></router-outlet>	

		`	

})	

export	class	RootComponent	{	

		constructor(private	authService_:AuthService)	{	

				console.log(authService_);	

		}	

}	

[app/article.component.ts]	

	

import	{Component}	from	'@angular/core';	

import	{AuthService}	from	'./auth.service';	

	

@Component({	

		selector:	'article',	

		template:	`	

				<h1>{{title}}</h1>	

		`	

})	

export	class	ArticleComponent	{	

		title:string	=		

				'Baboon's	Stock	Picks	Crush	Top-Performing	Hedge	Fund';	

	

		constructor(private	authService_:AuthService)	{	

				console.log(authService_);	

		}	

}	

You	should	see	a	single	service	instantiation	and	successful	injection	into	both	the	components.

See	also
Configuring	the	Angular	2	renderer	service	to	use	web	workers	guides	you	through	the
process	of	setting	up	your	application	to	render	on	a	web	worker
Configuring	applications	to	use	ahead-of-time	compilation	guides	you	through	how	to
compile	an	application	during	the	build

	Angular 2 Cookbook
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Dedication
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Strategies for Upgrading to Angular 2
	Introduction
	Componentizing directives using controllerAs encapsulation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Migrating an application to component directives
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Implementing a basic component in AngularJS 1.5
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Normalizing service types
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Connecting Angular 1 and Angular 2 with UpgradeModule
	Getting ready
	How to do it...
	Connecting Angular 1 to Angular 2
	How it works...
	There's more...
	See also
	Downgrading Angular 2 components to Angular 1 directives with downgradeComponent
	Getting ready
	How to do it...
	How it works...
	See also
	Downgrade Angular 2 providers to Angular 1 services with downgradeInjectable
	Getting ready
	How to do it...
	See also
	2. Conquering Components and Directives
	Introduction
	Using decorators to build and style a simple component
	Getting ready
	How to do it...
	Writing the class definition
	Writing the component class decorator
	How it works...
	There's more...
	See also
	Passing members from a parent component into a child component
	Getting ready
	How to do it...
	Connecting the components
	Declaring inputs
	How it works...
	There's more...
	Angular expressions
	Unidirectional data binding
	Member methods
	See also
	Binding to native element attributes
	How to do it...
	How it works...
	See also
	Registering handlers on native browser events
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Generating and capturing custom events using EventEmitter
	Getting ready
	How to do it...
	Capturing the event data
	Emitting a custom event
	Listening for custom events
	How it works...
	There's more...
	See also
	Attaching behavior to DOM elements with directives
	Getting ready
	How to do it...
	Attaching to events with HostListeners
	How it works...
	There's more...
	See also
	Projecting nested content using ngContent
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using ngFor and ngIf structural directives for model-based DOM control
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Referencing elements using template variables
	Getting ready
	How to do it...
	There's more...
	See also
	Attribute property binding
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Utilizing component lifecycle hooks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Referencing a parent component from a child component
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Configuring mutual parent-child awareness with ViewChild and forwardRef
	Getting ready
	How to do it...
	Configuring a ViewChild reference
	Correcting the dependency cycle with forwardRef
	Adding the disable behavior
	How it works...
	There's more...
	ViewChildren
	See also
	Configuring mutual parent-child awareness with ContentChild and forwardRef
	Getting ready
	How to do it...
	Converting to ContentChild
	Correcting data binding
	How it works...
	There's more...
	ContentChildren
	See also
	3. Building Template-Driven and Reactive Forms
	Introduction
	Implementing simple two-way data binding with ngModel
	How to do it...
	How it works...
	There's more...
	See also
	Implementing basic field validation with a FormControl
	Getting ready
	How to do it...
	How it works...
	There's more...
	Validators and attribute duality
	Tagless controls
	See also
	Bundling controls with a FormGroup
	Getting ready
	How to do it...
	How it works...
	There's more...
	FormGroup validators
	Error propagation
	See also
	Bundling FormControls with a FormArray
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Implementing basic forms with NgForm
	Getting ready
	How to do it...
	Declaring form fields with ngModel
	How it works...
	There's more...
	See also
	Implementing basic forms with FormBuilder and formControlName
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating and using a custom validator
	Getting ready
	How to do it...
	How it works...
	There's more...
	Refactoring into validator attributes
	See also
	Creating and using a custom asynchronous validator with Promises
	Getting ready
	How to do it...
	How it works...
	There's more...
	Validator execution
	See also
	4. Mastering Promises
	Introduction
	Understanding and implementing basic Promises
	Getting ready
	How to do it...
	How it works...
	There's more...
	Decoupled and duplicated Promise control
	Resolving a Promise to a value
	Delayed handler definition
	Multiple handler definition
	Private Promise members
	See also
	Chaining Promises and Promise handlers
	How to do it...
	Chained handlers' data handoff
	Rejecting a chained handler
	How it works...
	There's more...
	Promise handler trees
	catch()
	See also
	Creating Promise wrappers with Promise.resolve() and Promise.reject()
	How to do it...
	Promise normalization
	How it works...
	There's more...
	See also
	Implementing Promise barriers with Promise.all()
	How to do it...
	How it works...
	There's more...
	See also
	Canceling asynchronous actions with Promise.race()
	Getting ready
	How to do it...
	How it works...
	See also
	Converting a Promise into an Observable
	How to do it...
	How it works...
	There's more...
	See also
	Converting an HTTP service Observable into a ZoneAwarePromise
	Getting ready
	How to do it...
	How it works...
	See also
	5. ReactiveX Observables
	Introduction
	The Observer Pattern
	ReactiveX and RxJS
	Observables in Angular 2
	Observables and Promises
	Basic utilization of Observables with HTTP
	Getting ready
	How to do it...
	How it works...
	Observable<Response>
	The RxJS map() operator
	Subscribe
	There's more...
	Hot and cold Observables
	See also
	Implementing a Publish-Subscribe model using Subjects
	Getting ready
	How to do it...
	How it works...
	There's more...
	Native RxJS implementation
	See also
	Creating an Observable authentication service using BehaviorSubjects
	Getting ready
	How to do it...
	Injecting the authentication service
	Adding BehaviorSubject to the authentication service
	Adding API methods to the authentication service
	Wiring the service methods into the component
	How it works...
	There's more...
	See also
	Building a generalized Publish-Subscribe service to replace $broadcast, $emit, and $on
	Getting ready
	How to do it...
	Introducing channel abstraction
	Hooking components into the service
	Unsubscribing from channels
	How it works...
	There's more...
	Considerations of an Observable's composition and manipulation
	See also
	Using QueryLists and Observables to follow changes in ViewChildren
	Getting ready
	How to do it...
	Dealing with QueryLists
	Correcting the expression changed error
	How it works...
	Hate the player, not the game
	See also
	Building a fully featured AutoComplete with Observables
	Getting ready
	How to do it...
	Using the FormControl valueChanges Observable
	Debouncing the input
	Ignoring serial duplicates
	Flattening Observables
	Handling unordered responses
	How it works...
	See also
	6. The Component Router
	Introduction
	Setting up an application to support simple routes
	Getting ready
	How to do it...
	Setting the base URL
	Defining routes
	Providing routes to the application
	Rendering route components with RouterOutlet
	How it works...
	There's more...
	Initial page load
	See also
	Navigating with routerLinks
	Getting ready
	How to do it...
	How it works...
	There's more...
	Route order considerations
	See also
	Navigating with the Router service
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Selecting a LocationStrategy for path construction
	How to do it...
	There's more...
	Configuring your application server for PathLocationStrategy
	Building stateful route behavior with RouterLinkActive
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Implementing nested views with route parameters and child routes
	Getting ready
	How to do it...
	Adding a routing target to the parent component
	Defining nested child views
	Defining the child routes
	Defining child view links
	Extracting route parameters
	How it works...
	There's more...
	Refactoring with async pipes
	See also
	Working with matrix URL parameters and routing arrays
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding route authentication controls with route guards
	Getting ready
	How to do it...
	Implementing the Auth service
	Wiring up the profile view
	Restricting route access with route guards
	Adding login behavior
	Adding the logout behavior
	How it works...
	There's more...
	The actual authentication
	Secure data and views
	See also
	7. Services, Dependency Injection, and NgModule
	Introduction
	Injecting a simple service into a component
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Controlling service instance creation and injection with NgModule
	Getting ready
	How to do it...
	Splitting up the root module
	How it works...
	There's more...
	Injecting different service instances into different components
	Service instantiation
	See also
	Service injection aliasing with useClass and useExisting
	Getting ready
	Dual services
	A unified component
	How to do it...
	How it works...
	There's more...
	Refactoring with directive providers
	See also
	Injecting a value as a service with useValue and OpaqueTokens
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Building a provider-configured service with useFactory
	Getting ready
	How to do it...
	Defining the factory
	Injecting OpaqueToken
	Creating provider directives with useFactory
	How it works...
	There's more...
	See also
	8. Application Organization and Management
	Introduction
	Composing package.json for a minimum viable Angular 2 application
	Getting ready
	How to do it...
	package.json dependencies
	package.json devDependencies
	package.json scripts
	See also
	Configuring TypeScript for a minimum viable Angular 2 application
	Getting ready
	How to do it...
	Declaration files
	tsconfig.json
	How it works...
	Compilation
	There's more...
	Source map generation
	Single file compilation
	See also
	Performing in-browser transpilation with SystemJS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Composing application files for a minimum viable Angular 2 application
	Getting ready
	How to do it...
	app.component.ts
	app.module.ts
	main.ts
	index.html
	Configuring SystemJS
	See also
	Migrating the minimum viable application to Webpack bundling
	Getting ready
	How to do it...
	webpack.config.js
	See also
	Incorporating shims and polyfills into Webpack
	Getting ready
	How to do it...
	How it works...
	See also
	HTML generation with html-webpack-plugin
	Getting ready
	How to do it...
	How it works...
	See also
	Setting up an application with Angular CLI
	Getting ready
	How to do it...
	Running the application locally
	Testing the application
	How it works...
	Project configuration files
	TypeScript configuration files
	Test configuration files
	Core application files
	Environment files
	AppComponent files
	AppComponent test files
	There's more...
	See also
	9. Angular 2 Testing
	Introduction
	Creating a minimum viable unit test suite with Karma, Jasmine, and TypeScript
	Getting ready
	How to do it...
	Writing a unit test
	Configuring Karma and Jasmine
	Configuring PhantomJS
	Compiling files and tests with TypeScript
	Incorporating Webpack into Karma
	Writing the test script
	How it works...
	There's more...
	See also
	Writing a minimum viable unit test suite for a simple component
	Getting ready
	How to do it...
	Using TestBed and async
	Creating a ComponentFixture
	How it works...
	See also
	Writing a minimum viable end-to-end test suite for a simple application
	Getting ready
	How to do it...
	Getting Protractor up and running
	Making Protractor compatible with Jasmine and TypeScript
	Building a page object
	Writing the e2e test
	Scripting the e2e tests
	How it works...
	There's more...
	See also
	Unit testing a synchronous service
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing without injection
	See also
	Unit testing a component with a service dependency using stubs
	Getting ready
	How to do it...
	Stubbing a service dependency
	Triggering events inside the component fixture
	How it works...
	See also
	Unit testing a component with a service dependency using spies
	Getting ready
	How to do it...
	Setting a spy on the injected service
	How it works...
	There's more...
	See also
	10. Performance and Advanced Concepts
	Introduction
	Understanding and properly utilizing enableProdMode with pure and impure pipes
	Getting ready
	How to do it...
	Generating a consistency error
	Introducing change detection compliance
	Switching on enableProdMode
	How it works...
	There's more...
	See also
	Working with zones outside Angular
	Getting ready
	How to do it...
	Forking a zone
	Overriding zone events with ZoneSpec
	How it works...
	There's more...
	Understanding zone.run()
	Microtasks and macrotasks
	See also
	Listening for NgZone events
	zone.js
	NgZone
	Getting ready
	How to do it...
	Demonstrating the zone life cycle
	How it works...
	The utility of zone.js
	See also
	Execution outside the Angular zone
	How to do it...
	How it works...
	There's more...
	See also
	Configuring components to use explicit change detection with OnPush
	Getting ready
	How to do it...
	Configuring the ChangeDetectionStrategy
	Requesting explicit change detection
	How it works...
	There's more...
	See also
	Configuring ViewEncapsulation for maximum efficiency
	Getting ready
	How to do it...
	Emulated styling encapsulation
	No styling encapsulation
	Native styling encapsulation
	How it works...
	There's more...
	See also
	Configuring the Angular 2 Renderer to use web workers
	Getting ready
	How to do it...
	How it works...
	There's more...
	Optimizing for performance gains
	Compatibility considerations
	See also
	Configuring applications to use ahead-of-time compilation
	Getting ready
	How to do it...
	Installing AOT dependencies
	Configuring ngc
	Aligning component definitions with AOT requirements
	Compiling with ngc
	Bootstrapping with AOT
	How it works...
	There's more...
	Going further with Tree Shaking
	See also
	Configuring an application to use lazy loading
	Getting ready
	How to do it...
	How it works...
	There's more...
	Accounting for shared modules
	See also

