

AndEngine for Android
Game Development
Cookbook

Over 70 highly effective recipes with real-world examples
to get to grips with the powerful capabilities of AndEngine
and GLES 2

Jayme Schroeder

Brian Broyles

BIRMINGHAM - MUMBAI

AndEngine for Android Game Development
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1070113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-898-7

www.packtpub.com

Cover Image by Jayme Schroeder (jayme.schroeder@gmail.com)

Credits

Authors
Jayme Schroeder

Brian Broyles

Reviewers
Mateusz Mysliwiec

Sergio Viudes Carbonell

Jafar Abdulrasoul [Jimmar]

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Sweny M. Sukumaran

Technical Editors
Sharvari Baet

Dominic Pereira

Project Coordinator
Priya Sharma

Proofreader
Kevin McGowan

Indexer
Rekha Nair

Graphics
Aditi Gajjar

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Jayme Schroeder was introduced to computers at a very young age. By 11, he had started
creating modifications and level packs for his favorite game. By age 16, he had found his true
passion in game development and network programming in C++ and OpenGL. In early 2011,
Jayme had received an Android smartphone and immediately fell in love with the development
experience. Since then, he has been researching and developing for the Android platform on a
daily basis.

There are many people I would like to thank for the opportunity to write this
book and also thank those who helped me out every step of the way.

First and foremost, I would like to thank Packt Publishing for the acceptance
of AndEngine for Android Game Development Cookbook and Amber D'souza
for first approaching me with the opportunity to write this book. I would also
like to thank Kartikey Pandey, Michelle Quadros, Sweny Sukumaran, Priya
Sharma from Packt Publishing who all played a large part in making the
writing process much easier than anticipated and comfortable for me. I would
also like to thank Dominic Pereira and Sharvari Baet for the effort they've put
in throughout the production stage and the suggestions they've made.

I would like to thank Nicolas Gramlich for creating AndEngine. Not only has
he created an amazing engine for novice and advanced developers alike,
but he's created a great community for Android developers to both learn
and strengthen their development skills relating to game development.

I would like to also thank my co-author, Brian Broyles, for his contributions
and commitment
to the book. It's been an honor to share the experience with him.

Finally, I would like to thank all of my family and friends who showed their
support and provided feedback during this experience. More specifically, I
would like to thank Kent and Judy Schroeder; my parents, Shannon, Hollie,
Taylor, and Brittanie; my brothers and sisters and my girlfriend, Krystal
Guevremont. Of my friends, I would like to specifically thank Leo Wandersleb
and Jordi Puigdellívol, with whom I've spent many days discussing the finer
details of AndEngine which greatly helped to improve my knowledge.

Brian Broyles is a freelance programmer and 2D/3D graphic designer with over
12 years of experience. Before entering the mobile development industry in 2010 as the
lead programmer of IFL Game Studio, he designed advanced artificial intelligence systems
and graphical effects for interactive PC applications. In addition to his vast programming and
design experience, he is also a commercial pilot, instrument flight instructor, and advanced
instrument ground instructor.

I'd like to thank my amazing, beautiful wife, Bethany, for her support and
enthusiasm as well as my family for encouraging me in all of my endeavors.

About the Reviewers

Mateusz Mysliwiec was born 1993 in Tarnow, Poland, graduating from high school
in 2012. He currently lives in England. During his last year of high school, he decided that
he would like to study Software Engineering or a different subject connected with math,
programming, and engineering. He is also an independent game developer. In his free time,
he develops professional mobile games focusing especially on the Android platform. His goal
is to permanently impact the global mobile gaming industry in the near future. He is active in
a variety of projects, including open source. His passions away from game development are
sports and recreation such as football, skydiving, and jogging. His family and friends are the
important aspects of his life.

Sergio Viudes is a 30 years old software developer from Elche (Spain). He works
developing commercial web apps, and develops video games for Android in his free time.

He likes to play video games since childhood. He started playing with his brother's Spectrum
when he was 5 years old. When he bought his first PC (well, his parents did), he was 14 years
old, and started learning computer programming, computer drawing, and music composing
(using the famous "FastTracker 2"). When he finished high school, he studied Computer
Science at the University of Alicante.

His interest in mobile devices started with his first smart phone, ten years ago (2002), when
he bought the first Symbian device from Nokia, the Nokia 7650. He really liked the idea that
he could develop software that could run everywhere. So, along with his studies and his job,
Sergio started creating simple mobile apps for his phone. About two years ago he decided to
create his first video game for mobile devices. He really enjoys developing for mobile devices,
he likes to compose music, he likes to draw, and, of course, he likes to play video games.
So he decided to put all his hobbies together and develop his first video game for his favorite
mobile platform—Android.

So far Sergio has released 3 games and he continues developing apps and games for Android
as a hobby. He wishes that someday it will be his job, not just a hobby.

Jafar Abdulrasoul—a graduate from the Kuwait University—is a Computer Engineer and an
Android game enthusiast who wrote a couple of excellent tutorials on his blog about creating
games using AndEngine. He is known online by the name Jimmar.

My gratitude goes to my mother who tries to support me in everything I do,
so thank you mama!

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: AndEngine Game Structure	 7

Introduction	 7
Know the life cycle	 8
Choosing our engine type 	 14
Selecting a resolution policy	 17
Creating object factories	 18
Creating the game manager	 20
Introducing sounds and music	 23
Working with different types of textures 	 27
Applying texture options	 34
Using AndEngine font resources	 39
Creating the resource manager	 42
Saving and loading game data	 45

Chapter 2: Working with Entities	 51
Introduction	 51
Understanding AndEngine entities	 52
Applying primitives to a layer	 58
Bringing a scene to life with sprites	 62
Applying text to a layer	 69
Using relative rotation	 74
Overriding the onManagedUpdate method	 77
Using modifiers and entity modifiers	 81
Working with particle systems	 93

ii

Table of Contents

Chapter 3: Designing Your Menu	 105
Introduction	 105
Adding buttons to the menu	 105
Adding music to the menu	 109
Applying a background	 113
Using parallax backgrounds to create perspective	 120
Creating our level selection system	 126
Hiding and retrieving layers	 137

Chapter 4: Working with Cameras	 145
Introduction	 145
Introducing the camera object	 146
Limiting the camera area with the bound camera	 148
Taking a closer look with zoom cameras	 149
Creating smooth moves with a smooth camera	 150
Pinch-zoom camera functionality	 152
Stitching a background together	 155
Applying a HUD to the camera	 158
Applying a controller to the display	 159
Coordinate conversion	 162
Creating a split screen game	 165

Chapter 5: Scene and Layer Management	 171
Introduction	 171
Creating the scene manager	 172
Setting up the resource manager for scene resources	 175
Customizing managed scenes and layers	 177
Setting up an activity to use the scene manager	 182

Chapter 6: Applications of Physics	 187
Introduction to the Box2D physics extension	 188
Understanding different body types	 193
Creating category-filtered bodies	 196
Creating multiple-fixture bodies	 199
Creating unique bodies by specifying vertices	 203
Using forces, velocities, and torque	 206
Applying anti-gravity to a specific body	 208
Working with joints	 211
Creating a rag doll	 222
Creating a rope	 224
Working with collisions	 227

iii

Table of Contents

Using preSolve and postSolve	 231
Creating destructible objects	 236
Raycasting	 240

Chapter 7: Working with Update Handlers	 245
Getting started with update handlers	 245
Attaching an update handler to an entity	 248
Using update handlers with conditionals	 251
Handling the removal of an entity from the game	 253
Adding game timers	 256
Setting entity properties based on the time passed	 258

Chapter 8: Maximizing Performance	 263
Introduction	 263
Ignoring entity updates	 264
Disabling background window rendering	 265
Limiting simultaneous sound streams	 266
Creating sprite pools	 267
Cutting down render time with sprite groups	 271

Chapter 9: AndEngine Extensions Overview	 277
Introduction	 277
Creating live wallpaper	 278
Networking with the multiplayer extension	 286
Creating high-resolution graphics with SVG	 296
Color mapping with SVG texture regions	 300

Chapter 10: Getting More From AndEngine	 307
Loading all textures from a folder	 307
Using textured meshes	 313
Applying a sprite-based shadow	 316
Creating a physics-based moving platform	 323
Creating a physics-based rope bridge	 327

Appendix A: Source Code for MagneTank	 335
Game level classes	 336
Input classes	 347
Layer classes	 348
Manager classes	 350
Menu classes	 351

Index	 355

iv

Table of Contents

Preface
AndEngine is an excellent, full-featured, free, and open source 2D framework for the Android
platform. It is one of few 2D frameworks for the Android platform which is consistently being
used to create stylish and fun games by both independent and professional developers
alike, and has even been used in some of the most successful games on the market to
date. However, it takes more than just using a specific framework to achieve success.

AndEngine for Android Game Development Cookbook provides many informative
walkthroughs relating to the most important aspects of AndEngine at a general
game-programming level. The book covers everything from the life cycle of an AndEngine
game to placing sprites on the scene and moving them around, all the way through
to creating destructible objects and raycasting techniques. Even more importantly, this
book is entirely based on AndEngine's latest and most efficient Anchor-Center branch.

What this book covers
Chapter 1, AndEngine Game Structure, covers the important aspects of game development
with AndEngine regarding the core components that most games need to survive. Everything
from audio, textures, the AndEngine life cycle, saving/loading game data, and more, are
covered in this chapter.

Chapter 2, Working with Entities, begins to familiarize us with AndEngine's Entity class
as well as its subtypes, such as sprites, text, primitives, and more. The Entity class is the
core component of AndEngine that allows objects in code to be displayed onscreen. More
specifically, this chapter includes a list of the most important methods included in the Entity
class in order to allow us to take full control over how our entities act, react, or simply what
they will look like.

Chapter 3, Designing Your Menu, introduces some of the more common aspects of menu
design in mobile games. The topics covered in this chapter include creating buttons, adding
theme music to the menu, creating parallax backgrounds, and menu screen navigation.
The topics found within this chapter can easily be used in other areas of a game as well.

Preface

2

Chapter 4, Working with Cameras, discusses the various options included in AndEngine
when it comes to how the game camera and engine view the game's scene. We begin by
going over the different types of camera objects available to us in order to give us a proper
understanding of the benefits of each for an informative decision. From there, we continue on
to cover camera movement and zooming, creating extra large backgrounds, creating a heads-
up-display, and even go as far as introducing the split screen game engine for more complex
game design.

Chapter 5, Scene and Layer Management, shows how to create a robust scene manager
framework that incorporates scene-specific loading screens and animated layers. The
managed scenes in this chapter utilize a resource manager and are extremely customizable.

Chapter 6, Applications of Physics, explores the various techniques used to create an
AndEngine physics simulation with the Box2D physics extension. The recipes in this chapter
cover the basic setup for a Box2D physics world: body types, category filtering, bodies with
multiple fixtures, polygon-based bodies, forces, joints, rag dolls, rope, collision events,
destructible objects, and raycasting.

Chapter 7, Working with Update Handlers, demonstrates the use of update handlers that are
called once per engine update. The recipes in this chapter show how to register entity-based
update handlers, conditional updating, and the creation of a game timer.

Chapter 8, Maximizing Performance, introduces some of the most beneficial, high-level
practices to follow when it comes to improving the performance of any Android game. This
chapter covers optimization techniques involving audio, graphical/rendering, and general
memory management to help alleviate performance issues where necessary.

Chapter 9, AndEngine Extensions Overview, is where we discuss some of the more popular
AndEngine extensions which can be beneficial to a project, depending on the game. These
extensions may not be for everyone, but for those interested, this chapter includes insight on
how we can go about creating live wallpapers, multiplayer components via networking servers
and clients, creating high resolution SVG textures, and color mapping textures.

Chapter 10, Getting More From AndEngine, provides several useful recipes that expand upon
the concepts presented in the previous chapters. The recipes in this chapter include batch
texture-loading, textured meshes, autonomous shadows, moving platforms, and rope bridges.

Appendix A, Source Code for MagneTank, outlines the game, MagneTank, with class-by-class
descriptions to show how a full game made with AndEngine can be set up. The game includes
many of the recipes found throughout the chapters, and the source code is available with the
bundled code.

Appendix B, Additional Recipes, is not present in the book but is available as a free download
from the following link: http://downloads.packtpub.com/sites/default/files/
downloads/8987OS_AppB_Final.pdf.

Preface

3

What you need for this book
AndEngine for Android Game Development Cookbook is useful for the majority of AndEngine
developers. Starting with the first few chapters, the reader will begin to work with the basics of
AndEngine, and even intermediate developers will find useful tips throughout these chapters.
As the reader progresses through the chapters, topics that are more difficult will be covered
so it is important that beginners do not skip ahead. Additionally, intermediate developers who
have not yet made the transition to AndEngine's latest development branch will find useful
information throughout the book on the differences between the GLES1/GLES2 branches
versus the Anchor-Center branch discussed in this book.

A fundamental understanding of the Java programming language is suggested.

The software required in order to execute the various topics in this book include the Eclipse
IDE for building and compiling the code, GIMP for image drawing/editing, and Inkscape for
SVG drawing/editing. Please feel free to use alternatives to these products if you are more
comfortable with them. Additionally, this book assumes the reader has obtained the required
libraries, including AndEngine and its various extensions prior to working with the recipes.

Who this book is for
AndEngine for Android Game Development Cookbook is geared toward developers who are
interested in working with the most up-to-date version of AndEngine, sporting the brand new
GLES 2.0 Anchor-Center branch. The book will be helpful for developers who are attempting
to break into the mobile game market intending to release fun and exciting games while
eliminating a large portion of the learning curve that is otherwise inevitable when getting
into AndEngine development.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " To start with the absolute most basic Entity
method, we will attach an Entity object to a Scene object."

A block of code is set as follows:

 float baseBufferData[] = {
 /* First Triangle */
 0, BASE_HEIGHT, UNUSED, /* first point */
 BASE_WIDTH, BASE_HEIGHT, UNUSED, /* second point */
 BASE_WIDTH, 0, UNUSED, 	 /* third point */

 /* Second Triangle */
 BASE_WIDTH, 0, UNUSED, /* first point */

Preface

4

 0, 0, UNUSED, /* second point */
 0, BASE_HEIGHT, UNUSED, /* third point */
 };

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
AndEngine Game

Structure

In this chapter, we're going to take a look at the main components needed for structuring a
game in AndEngine. The topics include:

ff Know the life cycle

ff Choosing our engine type

ff Selecting a resolution policy

ff Creating object factories

ff Creating the game manager

ff Introducing sounds and music

ff Working with different types of textures

ff Applying texture options

ff Using AndEngine font resources

ff Creating the resource manager

ff Saving and loading game data

Introduction
The most appealing aspect of AndEngine is the incredible ease of creating games. The
possibility of designing and coding a game in a matter of weeks after first looking into
AndEngine is not too farfetched, but that's not to say it will be a perfect game. The coding
process can be a tedious task when we do not understand how the engine works. It is a good
idea to understand the main building blocks of AndEngine and the game structure in order to
create precise, organized, and expandable projects.

AndEngine Game Structure

8

In this chapter, we're going to go over a few of the most necessary components of AndEngine
and general game programming. We're going to take a look at some classes that will aid us
in quickly and efficiently creating a foundation for all sorts of games. Additionally, we'll cover
some of the differences between resources and object types, which play the biggest role in
shaping the overall look and feel of our games. It is encouraged to keep tabs on this chapter
as reference if needed.

Know the life cycle
It is important to understand the order of operations when it comes to the initialization of
our games. The basic needs for a game include creating the engine, loading the game's
resources, and setting up the initial screen and settings. This is all it takes in order to create
the foundation for an AndEngine game. However, if we plan on more diversity within our
games, it is wise to get to know the full life cycle included in AndEngine.

Getting ready
Please refer to the class named PacktRecipesActivity in the code bundle.

How to do it…
The AndEngine life cycle includes a few methods that we are responsible for defining directly.
These methods include creating the EngineOptions object, creating the Scene object,
and populating the scene with child entities. These methods are called in the following order:

1.	 Define the onCreateEngineOptions() method:
@Override
public EngineOptions onCreateEngineOptions() {

 // Define our mCamera object
 mCamera = new Camera(0, 0, WIDTH, HEIGHT);

 // Declare & Define our engine options to be applied to our
Engine object
 EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_FIXED, new
FillResolutionPolicy(),
 mCamera);

 // It is necessary in a lot of applications to define the
following
 // wake lock options in order to disable the device's display
 // from turning off during gameplay due to inactivity

Chapter 1

9

 engineOptions.setWakeLockOptions(WakeLockOptions.SCREEN_ON);

 // Return the engineOptions object, passing it to the engine
 return engineOptions;
}

2.	 Define the onCreateResources() method:
@Override
public void onCreateResources(
 OnCreateResourcesCallback pOnCreateResourcesCallback) {

 /* We should notify the pOnCreateResourcesCallback that we've
finished
 * loading all of the necessary resources in our game AFTER
they are loaded.
 * onCreateResourcesFinished() should be the last method
called. */
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}

3.	 Define the onCreateScene() method:
@Override
public void onCreateScene(OnCreateSceneCallback
pOnCreateSceneCallback) {
 // Create the Scene object
 mScene = new Scene();

 // Notify the callback that we're finished creating the scene,
returning
 // mScene to the mEngine object (handled automatically)
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}

4.	 Define the onPopulateScene() method:

@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {

 // onPopulateSceneFinished(), similar to the resource and scene
callback
 // methods, should be called once we are finished populating the
scene.
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

AndEngine Game Structure

10

How it works…
The code found in this recipe's class is the foundation for any AndEngine game. We've set up
a main activity class which serves as the entry point into our application. The activity contains
the four main methods included in AndEngine's activity life cycle that we are responsible for,
beginning with creating the EngineOptions options, creating the resources, creating the
scene, and populating the scene.

In the first step, we are overriding the Engine's onCreateEngineOptions() method.
Inside this method, our main focus is to instantiate our Camera object as well as our
EngineOptions object. These two object's constructors allow us to define the display
properties of our application. Additionally, we've disabled the screen from automatically
turning off during application inactivity via the engineOptions.setWakeLockOptions(Wa
keLockOptions.SCREEN_ON) method call.

In step two, we continue to override the onCreateResources() method, which gives us a
specified method for creating and setting up any resources needed within our game. These
resources may include textures, sounds and music, and fonts. In this step and the following
two, we are required to make a call to the respective method callbacks in order to proceed
through the application's life cycle. For the onCreateResources() method, we must call
pOnCreateResourcesCallback.onCreateResourcesFinished(), which should be
included at the end of the method.

Step three involves instantiating and setting up the Scene object. Setting up the
Scene can be as simple as displayed in this recipe, or for more complex projects, it
may include setting up touch event listeners, update handlers, and more. Once we've
finished setting up the Scene, we must make a call to the pOnCreateSceneCallback.
onCreateSceneFinished(mScene) method, passing our newly created mScene object
to the Engine to be displayed on the device.

The final step to take care of includes defining the onPopulateScene() method.
This method is in place specifically for attaching child entities to the Scene. As with
the previous two steps, we must make a call to pOnPopulateSceneCallback.
onPopulateSceneFinished() in order to proceed with the remaining AndEngine
life cycle calls.

In the following list, we will cover the life cycle methods in the order they are called from the
start up of an activity to the time it is terminated.

The life cycle calls during launch are as follows:

ff onCreate: This method is the Android SDK's native application entry point. In
AndEngine development, this method simply calls the onCreateEngineOptions()
method in our BaseGameActivity class then applies the returned options to the
game engine.

Chapter 1

11

ff onResume: This is another Android SDK native method. Here, we simply acquire
the wake lock settings from our EngineOptions object and proceed to call the
onResume() method for the engine's RenderSurfaceView object.

ff onSurfaceCreated: This method will either call onCreateGame() during the
initial startup process of our activity or register a Boolean variable as true for
resource reloading if the activity had previously been deployed.

ff onReloadResources: This method reloads our game resources if our application
is brought back into focus from minimization. This method is not called on the initial
execution of an application.

ff onCreateGame: This is in place to handle the order of execution of the next three
callbacks in the AndEngine life cycle.

ff onCreateResources: This method allows us to declare and define our application's
initial resources needed during the launch of our activity. These resources include,
but are not limited to, textures, sounds and music, and fonts.

ff onCreateScene: Here, we handle the initialization of our activity's Scene
object. It is possible to attach entities to the Scene within this method, but for
the sake of keeping things organized, it's usually best to attach entities within
onPopulateScene().

ff onPopulateScene: In the onPopuplateScene() method of the life cycle we are
just about finished setting up the scene, though there are still a few life cycle calls
which will be handled automatically by the Engine. This method should be used to
define the visual result of the Scene when our application first starts up. Note that
the Scene is already created and applied to the Engine at this point. It is possible
in some cases to see the entities being attached to the Scene if there is no loading
screen or splash screen in place and if there are a large number of entities to attach.

ff onGameCreated: It signals that the onCreateGame() sequence has finished,
reloading resources if necessary, otherwise doing nothing. Reloading resources
depends on the Boolean variable briefly mentioned in the onSurfaceCreated
method five life cycle calls back.

ff onSurfaceChanged: This method is called every time our application's orientation
changes from landscape to portrait mode or vice versa.

ff onResumeGame: Here we have the final method call which takes place during an
activity's startup cycle. If our activity reaches this point without any problems, the
engine's start() method is called, bringing the game's update thread to life.

The life cycle calls during minimization/termination are as follows:

ff onPause: The first method call when an activity is minimized or terminated.
This is the native android pause method which calls the pause method for the
RenderSurfaceView objects and reverts the wake lock settings applied by the
game engine.

AndEngine Game Structure

12

ff onPauseGame: Next, AndEngine's implementation of onPause() which simply calls
the stop() method on the Engine, causing all of the Engine's update handlers to
halt along with the update thread.

ff onDestroy: In the onDestroy() method, AndEngine clears all graphical resources
contained within ArrayList objects held by the Engine's manager classes. These
managers include the VertexBufferObjectManager class, the FontManager
class, the ShaderProgramManager class, and finally the TextureManager class.

ff onDestroyResources: This method name may be a little misleading since
we've already unloaded the majority of resources in onDestroy(). What this
method really does is release all of the sound and music objects stored within
the respective managers by calling their releaseAll() methods.

ff onGameDestroyed: Finally, we reach the last method call required during a full
AndEngine life cycle. Not a whole lot of action takes place in this method. AndEngine
simply sets an mGameCreated Boolean variable used in the Engine to false, which
states that the activity is no longer running.

In the following image, we can see what the life cycle looks like in action when the game is
created, minimized, or destroyed:

Chapter 1

13

Due to the asynchronous nature of the AndEngine life cycle, it is possible for
some methods to be executed multiple times during a single startup instance.
The occurrence of these events varies between devices.

There's more…
In the previous section of this recipe, we covered the main BaseGameActivity class.
The following classes can be used as alternatives to the BaseGameActivity class,
each providing their own slight differences.

The LayoutGameActivity class
The LayoutGameActivity class is a useful activity class that allows us to incorporate the
AndEngine scene-graph view into an ordinary Android application. On the other hand, with
this class we are also able to include native Android SDK views, such as buttons, seek bars,
spinners, additional layouts, or any other view into our game. However, the most popular
reason for using this sort of activity is to allow easy implementation of advertisements into
games for a means to gain revenue.

There are a few additional steps for setting up a LayoutGameActivity class.

1.	 Add the following line to the project's default layout XML file. This file is usually called
main.xml. The following code snippet adds the AndEngine RenderSurfaceView
class to our layout file. This is the view that will display our game on the device:
<org.andengine.opengl.view.RenderSurfaceView
android:id="@+id/gameSurfaceView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"/>

2.	 The second and final additional step for this activity type is to reference the layout
XML file and RenderSurfaceView in step one, in the LayoutGameActivity
overridden methods. The following code is assuming the layout file is called main.
xml in the res/layout/ folder; in which case they can be copied/pasted into our
LayoutGameActivity class after step one has been completed:
@Override
protected int getLayoutID() {
 return R.layout.main;
}

@Override
protected int getRenderSurfaceViewID() {
 return R.id.gameSurfaceView;
}

AndEngine Game Structure

14

The SimpleBaseGameActivity and SimpleLayoutGameActivity
classes
The SimpleBaseGameActivity and the SimpleLayoutGameActivity classes, as
suggested, make the overridden life cycle methods somewhat easier to deal with. They do
not require us to override the onPopulateScene() method and on top of that, we are not
required to make calls to the method callbacks when we are finished defining the overridden
methods. With these activity types, we can simply add the unimplemented life cycle methods
and AndEngine will handle the callbacks for us.

The SimpleAsyncGameActivity class
The final game activity class we will talk about is the SimpleAsyncGameActivity class.
This class includes three alternative life cycle methods called onCreateResourcesAsync(),
onCreateSceneAsync(), and onPopulateSceneAsync() along with the usual
onCreateEngineOptions() method. The main difference between this activity and others
is that it provides us with loading bars for each of the "Async" methods. The following snippet
shows how we can increment the loading bar in the event of a texture being loaded:

@Override
public void onCreateResourcesAsync(IProgressListener
pProgressListener)
 throws Exception {

 // Load texture number one
 pProgressListener.onProgressChanged(10);

 // Load texture number two
 pProgressListener.onProgressChanged(20);

 // Load texture number three
 pProgressListener.onProgressChanged(30);

 // We can continue to set progress to whichever value we'd like
 // for each additional step through onCreateResourcesAsync...
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Choosing our engine type
Before we start programming our game, it is a good idea to come up with the performance needs
of the game. AndEngine includes a few different types of engines we can choose to use, each
with their own benefits. The benefits, of course, depend on the type of game we plan to create.

Chapter 1

15

Getting ready
Carry out the Know the life cycle recipe in this chapter to get a basic AndEngine project set up
in our IDE, then continue on to the How to do it... section.

How to do it…
In order for us to properly define a specific Engine object for our game to use, we must
override the onCreateEngine() method, which is part of AndEngine's startup process.
Add the following code to any base AndEngine activity in order to handle the Engine's
creation manually:

/* The onCreateEngine method allows us to return a 'customized' Engine
object
* to the Activity which for the most part affects the way frame
updates are
* handled. Depending on the Engine object used, the overall feel of
the
* gameplay can alter drastically.
*/
@Override
public Engine onCreateEngine(EngineOptions pEngineOptions) {
 return super.onCreateEngine(pEngineOptions);
 /* The returned super method above simply calls:
 return new Engine(pEngineOptions);
 */
}

How it works…
The following is an overview of the various Engine objects available in AndEngine, as well as
a brief code snippet displaying how to set up each of the Engine objects:

ff Engine: First and foremost, we have the ordinary Engine object. The Engine
object is not ideal for most game development as it has absolutely no limitations
in regards to frames per second. On two separate devices, it is very likely that you
will notice differences in the speed of the game. One way to think of this is if two
separate devices are watching a video which was started at the same time, the
faster device is likely to finish the video first rather than both finishing at the same
time. For this reason, noticeable issues can arise in devices which might not run as
fast, especially when physics are a big part of the game. There are no extra steps
involved in incorporating this type of engine into our game.

AndEngine Game Structure

16

ff FixedStepEngine: The second type of engine we have at our disposal is the
FixedStepEngine. This is the ideal engine used in game development as it forces
the game loop to update at a constant speed regardless of the device. This is done
by updating the game based on the time passed rather than the device's ability to
execute code faster. FixedStepEngine requires us to pass the EngineOptions
object, as well as an int value, in that order. The int value defines the number of
steps per second that the engine will be forced to run at. The following code creates
an engine that will run at a constant 60 steps per second:
@Override
public Engine onCreateEngine(EngineOptions pEngineOptions) {
 // Create a fixed step engine updating at 60 steps per second
 return new FixedStepEngine(pEngineOptions, 60);
 }

ff LimitedFPSEngine: The LimitedFPSEngine engine allows us to set a limit on
the frames per second that the Engine will run at. This will cause the Engine to do
some internal calculations, and if the difference between the preferred FPS is greater
than the current FPS that the Engine is achieving, the Engine will wait a fraction of a
second before proceeding with the next update. LimitedFPSEngine requires two
parameters in the constructor, including the EngineOptions object and an int
value specifying the maximum frames per second. The following code creates an
engine that will run at a maximum of 60 frames per second:
@Override
public Engine onCreateEngine(EngineOptions pEngineOptions) {
 // Create a limited FPS engine, which will run at a maximum of
60 FPS
 return new LimitedFPSEngine(pEngineOptions, 60);
}

ff SingleSceneSplitScreenEngine and DoubleSceneSplitScreenEngine:
The SingleSceneSplitScreenEngine engine and
DoubleSceneSplitScreenEngine engine allow us to create a game with two
separate cameras, either with a single scene, most generally used for single player
games, or two scenes for multiplayer games on a single device. These are just
examples, however, but these two engine's can have a wide range of uses, including
mini-maps, multiple perspectives, menu systems, and much more. See Chapter 4,
Creating a Split-screen Game, for more specific details on setting up these types of
Engine objects.

Chapter 1

17

Selecting a resolution policy
Choosing a resolution policy can be a sensitive topic, especially since we're dealing with a
platform which currently runs on devices ranging from 3-inch displays up to 10.1-inch for the
most part. Generally developers and users alike prefer that a game takes up the full width and
height of the device's display, but in some cases our resolution policy may need to be carefully
selected in order to properly display our scenes as we—the developer—see fit. In this recipe,
we're going to discuss the various resolution policies included in AndEngine, which will help
us decide which policy might best fit our application's needs.

How to do it…
The resolution policy that we choose to adhere to must be included as a parameter in the
EngineOptions constructor which is created in the onCreateEngineOptions() method
of AndEngine's life cycle. The following code creates our EngineOptions object using the
FillResolutionPolicy class, which will be explained later in the chapter:

EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_FIXED, new FillResolutionPolicy(),
 mCamera);

We can select a different resolution policy by simply passing another variation of the
resolution policy classes to this constructor.

How it works…
The following is an overview of AndEngine's BaseResolutionPolicy subtypes. These
policies are used to specify how AndEngine will handle our application's display width and
height based on various factors:

ff FillResolutionPolicy: The FillResolutionPolicy class is the typical
resolution policy if we simply want our application to take up the full width and height
of the display. While this policy allows our application to run in true full screen mode,
it may cause some noticeable stretching in order for our scene to take up the full
available dimensions of the display. We can select this resolution policy by simply
including new FillResolutionPolicy() as our resolution policy parameter in
the EngineOptions constructor.

AndEngine Game Structure

18

ff FixedResolutionPolicy: The FixedResolutionPolicy class allows us to
apply a fixed display size for our application, regardless of the size of the device's
display or Camera object dimensions. This policy can be passed to EngineOptions
via new FixedResolutionPolicy(pWidth, pHeight), where pWidth defines
the final width that the application's view will cover, and pHeight defines the final
height that the application's view will cover. For example, if we pass a width of 800
and a height of 480 to this policy-types constructor, on a tablet with a resolution
of 1280 x 752, we'd be left with an empty black area since there will be
no compensation between the resolution policy and the actual display size.

ff RatioResolutionPolicy: The RatioResolutionPolicy class is the best
choice for resolution policies if we need to obtain the maximum display size without
causing any distortion of sprites. On the other hand, due to the wide range of
Android devices spanning many display sizes, it is possible that some devices may
see "black bars" either on the top and bottom, or left and right sides of the display.
This resolution policy's constructor can be passed either a float value, which
defines a preferred ratio value for the display dimensions, or a width and a height
parameter from which a ratio value will be extracted by dividing the width by the
height. For example, new RatioResolutionPolicy(1.6f) to define a ratio, or
new RatioResolutionPolicy(mCameraWidth, mCameraHeight), assuming
mCameraWidth and mCameraHeight are the defined Camera object dimensions.

ff RelativeResolutionPolicy: This is the final resolution policy. This policy allows
us to apply scaling, either larger or smaller, to the overall application view based
on a scaling factor with 1f being the default value. We can apply general scaling
to the view with the constructor—new RelativeResolutionPolicy(1.5f)—
which will increase the scale of both the width and height by 1.5 times,
or we can specify individual width and height scales, for example, new
RelativeResolutionPolicy(1.5f, 0.5f). One thing to note with this policy
is that we must be careful with the scaling factors, as scaling too large will cause an
application to close without warning. Try to keep the scaling factor to less than 1.8f;
otherwise make sure to do extensive testing on various devices.

Creating object factories
Object factories are a useful design pattern used in all sorts of areas in programming.
In game development specifically, a factory might be used to spawn enemy objects, spawn
bullet objects, particle effects, item objects, and much more. In fact, AndEngine even uses the
factory pattern when we create sounds, music, textures, and fonts, among other things. In this
recipe, we'll find out how we can create an object factory and discuss how we can use them to
provide simplicity in object creation within our own projects.

Chapter 1

19

Getting ready
Please refer to the class named ObjectFactory in the code bundle.

How to do it…
In this recipe, we're using the ObjectFactory class as a way for us to easily create and
return subtypes of the BaseObject class. However, in a real-world project, the factory
would not normally contain inner classes.

1.	 Before we create our object factory, we should create our base class as well as at
least a couple subtypes extending the base class:
public static class BaseObject {

 /* The mX and mY variables have no real purpose in this recipe,
however in
 * a real factory class, member variables might be used to
define position,
 * color, scale, and more, of a sprite or other entity. */
 private int mX;
 private int mY;

 // BaseObject constructor, all subtypes should define an mX and
mY value on creation
 BaseObject(final int pX, final int pY){
 this.mX = pX;
 this.mY = pY;
 }
}

2.	 Once we've got a base class with any number of subtypes, we can now start to
consider implementing the factory design pattern. The ObjectFactory class
contains the methods which will handle creating and returning objects of types
LargeObject and SmallObject in this case:

public class ObjectFactory {

 // Return a new LargeObject with the defined 'x' and 'y' member
variables.
 public static LargeObject createLargeObject(final int pX, final
int pY){
 return new LargeObject(pX, pY);
 }

AndEngine Game Structure

20

 // Return a new SmallObject with the defined 'x' and 'y' member
variables.
 public static SmallObject createSmallObject(final int pX, final
int pY){
 return new SmallObject(pX, pY);
 }
}

How it works…
In the first step of this recipe, we are creating a BaseObject class. This class includes
two member variables called mX and mY, which we can imagine would define the position
on the device's display if we are dealing with AndEngine entities. Once we've got our base
class set up, we can start creating subtypes of the base class. The BaseObject class in
this recipe has two inner classes which extend it, one named LargeObject and the other,
SmallObject. The object factory's job is to determine which subtype of the base class that
we need to create, as well as define the object's properties, or mX and mY member variables
in this instance.

In the second step, we are taking a look at the ObjectFactory code. This class should
contain any and all variations for object creation relating to the specific object-types that the
factory deals with. In this case, the two separate objects simply require an mX and mY variable
to be defined. In a real-world situation, we may find it helpful to create a SpriteFactory
class. This class might contain a few different methods for creating ordinary sprites, button
sprites, or tiled sprites, via SpriteFactory.createSprite(), SpriteFactory.
createButtonSprite(), and SpriteFactory.createTiledSprite(). On top of that,
each of these methods would probably require parameters that define the position, scale,
texture region, color, and more. The most important aspect to this class is that its methods
return a new subtype of an object as this is the whole purpose behind the factory class.

Creating the game manager
The game manager is an important part of most games. A game manager is a class that
should contain data relating to gameplay; including, but not limited to keeping track of score,
credits/currency, player health, and other general gameplay information. In this topic, we're
going to take a look at a game manager class to gain an understanding of how they work into
our game structure.

Getting ready
Please refer to the class named GameManager in the code bundle.

Chapter 1

21

How to do it…
The game manager we're going to introduce will be following the singleton design pattern. This
means that we will only create a single instance of the class throughout the entire application
life cycle and we can access its methods across our entire project. Follow these steps:

1.	 Create the game manager singleton:
private static GameManager INSTANCE;

// The constructor does not do anything for this singleton
GameManager(){
}

public static GameManager getInstance(){
 if(INSTANCE == null){
 INSTANCE = new GameManager();
 }
 return INSTANCE;
}

2.	 Create the member variables with corresponding getters and setters which should
keep track of gameplay data:
// get the current score
public int getCurrentScore(){
 return this.mCurrentScore;
}

// get the bird count
public int getBirdCount(){
 return this.mBirdCount;
}

// increase the current score, most likely when an enemy is
destroyed
public void incrementScore(int pIncrementBy){
 mCurrentScore += pIncrementBy;
}

// Any time a bird is launched, we decrement our bird count
public void decrementBirdCount(){
 mBirdCount -= 1;
}

AndEngine Game Structure

22

3.	 Create a reset method that will revert all data back to their initial values:

// Resetting the game simply means we must revert back to initial
values.
public void resetGame(){
 this.mCurrentScore = GameManager.INITIAL_SCORE;
 this.mBirdCount = GameManager.INITIAL_BIRD_COUNT;
 this.mEnemyCount = GameManager.INITIAL_ENEMY_COUNT;
}

How it works…
Depending on the type of game being created, the game manager is bound to have different
tasks. This recipe's GameManager class is meant to resemble that of a certain emotional
bird franchise. We can see that the tasks involved in this particular GameManager class are
limited, but as gameplay becomes more complex, the game manager will often grow as it has
more info to keep track of.

In the first step for this recipe, we're setting up the GameManager class as a singleton. The
singleton is a design pattern that is meant to ensure that there is only one static instance
of this class that will be instantiated throughout the entire application's life cycle. Being
static, this will allow us to make calls to the game manager's methods on a global level,
meaning we can reach its methods from any class in our project without having to create a
new GameManager class. In order to retrieve the GameManager class' instance, we can call
GameManager.getInstance() in any of our project's classes. Doing so will assign a new
GameManager class to INSTANCE, if the GameManager class has not yet been referenced.
The INSTANCE object will then be returned, allowing us to make calls to the GameManager
class' data-modifying methods, for example, GameManager.getInstance().
getCurrentScore().

In step two, we create the getter and setter methods that will be used to modify and
obtain the data being stored in the GameManager class. The GameManager class in this
recipe contains three int values that are used to keep track of important gameplay data;
mCurrentScore, mBirdCount, and mEnemyCount. Each of these variables have their
own corresponding getters and setters that allow us to easily make modifications to the
game data. During gameplay, if an enemy happened to be destroyed then we could call
GameManager.getInstance().decrementEnemyCount() along with GameManager.
getInstance().incrementScore(pValue), where pValue would likely be provided by
the enemy object being destroyed.

The final step involved in setting up this game manager is to provide a reset method for game
data. Since we are working with a singleton, whether we move from gameplay to the main
menu, to the shop, or any other scene, our GameManager class' data will not automatically
revert back to default values. This means that any time a level is reset, we must reset the
game manager's data as well. In the GameManager class, we've set up a method called
resetGame(), whose job is to simply revert data back to original values.

Chapter 1

23

When starting a new level, we can call GameManager.getInstance().resetGame()
in order to quickly revert all data back to the initial values. However, this is a general
GameManager class and it is entirely up to the developer which data should be reset pending
level reset or level loading. If the GameManager class is storing credit/currency data, it might
be wise not to reset that particular variable back to default for use in a shop, for example.

Introducing sounds and music
Sound and music plays a big role in gameplay for the user. If used properly, they can give
a game the extra edge it needs to allow the player to become fully immersed while playing.
On the other hand, they can also cause annoyance and disapproval if used incorrectly. In
this recipe, we're going to jump into the subject of Sound and Music objects in AndEngine,
covering the "how-to's" of loading them through to modifying their rates and more.

Getting ready
Complete the Know the life cycle recipe given in this chapter, so that we've got a basic
AndEngine project set up in our IDE. Additionally, we should create a new subfolder in our
project's assets/ folder. Name this folder as sfx and add a sound file named sound.mp3
and another named music.mp3. Once this is done, continue on to the How to do it... section.

How to do it…
Perform the following steps to set up a game to use the Sound and Music objects. Note
that Sound objects are meant for sound effects, such as explosions, collisions, or other
short audio playback events. The Music objects are meant for long audio playback events
such as looping menu music or game music.

1.	 The first step involves making sure that our Engine object recognizes that we
plan to use Sound and Music objects in our game. Add the following lines in
the onCreateEngineOptions() method of our activity's life cycle after the
EngineOptions object has been created:
engineOptions.getAudioOptions().setNeedsMusic(true);
engineOptions.getAudioOptions().setNeedsSound(true);

2.	 In step two, we will set our asset paths for the sound and music factories, then
load the Sound and Music objects. Sound and Music objects are resources,
so as you may have guessed, the following code can be dropped into the
onCreateResources() method of our activity's life cycle:
/* Set the base path for our SoundFactory and MusicFactory to
 * define where they will look for audio files.
 */
SoundFactory.setAssetBasePath("sfx/");

AndEngine Game Structure

24

MusicFactory.setAssetBasePath("sfx/");

// Load our "sound.mp3" file into a Sound object
try {
 Sound mSound = SoundFactory.createSoundFromAsset(getSoundManag
er(), this, "sound.mp3");
} catch (IOException e) {
 e.printStackTrace();
}

// Load our "music.mp3" file into a music object
try {
 Music mMusic = MusicFactory.createMusicFromAsset(getMusicManag
er(), this, "music.mp3");
} catch (IOException e) {
 e.printStackTrace();
}

3.	 Once the Sound objects are loaded into the SoundManager class, we can play
them as we see fit by calling play() on them, be it during a collision, button click,
or otherwise:
// Play the mSound object
mSound.play();

4.	 The Music objects should be handled in a different manner to Sound objects.
In cases where our Music object should loop continuously throughout the game,
which is in most cases, we handle all play() and pause() methods within the
activity life cycle:

/* Music objects which loop continuously should be played in
* onResumeGame() of the activity life cycle
*/
@Override
public synchronized void onResumeGame() {
 if(mMusic != null && !mMusic.isPlaying()){
 mMusic.play();
 }

 super.onResumeGame();
}

/* Music objects which loop continuously should be paused in
* onPauseGame() of the activity life cycle
*/
@Override

Chapter 1

25

public synchronized void onPauseGame() {
 if(mMusic != null && mMusic.isPlaying()){
 mMusic.pause();
 }

 super.onPauseGame();
}

How it works…
In the first step for this recipe, we are required to let the Engine know whether we will be
taking advantage of AndEngine's ability to play Sound or Music objects. Failing to address
this step will cause an error in the application, so before we move forward in implementing
audio into our game, make sure this step is done before returning EngineOptions in the
onCreateEngineOptions() method.

In the second step, we are visiting the onCreateResources() method of the application's
life cycle. Firstly, we are setting the base path of both SoundFactory and MusicFactory.
As mentioned in the Getting ready section, we should have a folder for our audio files
in the assets/sfx folder in our project, which includes all of our audio files. By calling
setAssetBasePath("sfx/") on each of the two factory classes used for audio, we are
now pointing to the proper folder to look for audio files. Once this is done, we can load our
Sound objects through the use of the SoundFactory class and Music objects through
the use of the MusicFactory class. The Sound and Music objects require us to pass the
following parameters: mEngine.getSoundManager() or mEngine.getMusicManager()
depending on the type of audio object we're loading, the Context class which is
BaseGameActivity, or this activity, and the name of the audio file in string format.

In the third step, we can now call the play() method on the audio object that we wish to
play. However, this method should only be called after the onCreateResources()callback
has been notified that all resources have been loaded. To be safe, we should simply not play
any Sound or Music objects until after the onCreateResources() portion of AndEngine's
life cycle.

In the final step, we are setting up our Music object to call its play() method when our
activity starts up and onResumeGame() is called from the life cycle. On the other end, during
onPauseGame(), the Music object's pause() method is called. It is best practice in most
cases to set our Music objects up this way, especially due to the eventual inevitability of
application interruptions, such as phone calls or accidental pop-up clicking. This approach
will allow our Music object to automatically be paused when the application leaves focus
and start back up once we return from minimization, including execution.

AndEngine Game Structure

26

In this recipe, and others relating to resource loading, the names of
the files have been hardcoded in to the code snippets. This is done to
add simplicity, but it is advisable to use the strings.xml Android
resource file provided for our project in order to keep strings organized
and easy to manage.

There's more…
AndEngine uses Android native sound classes to provide audio entertainment within our
games. These classes include a few additional methods aside from play() and pause()
that allow us to have more control over the audio objects during runtime.

Music objects
The following list includes methods provided for the Music objects:

ff seekTo: The seekTo(pMilliseconds) method allows us to define where the
audio playback of a specific Music object should start from. pMilliseconds is
equal to the position of the audio track, in milliseconds, where we'd like to start
playback upon calling play() on the Music object. In order to obtain the duration
of a Music object in milliseconds, we can call mMusic.getMediaPlayer().
getDuration().

ff setLooping: The setLooping(pBoolean) method simply defines whether or
not the Music object should replay from the beginning once it reaches the end of its
duration. If setLooping(true), the Music object will continuously repeat until the
application is closed or until setLooping(false) is called.

ff setOnCompletionListener: This method allows us to apply a listener into the
Music object, which gives us the opportunity to execute a function pending track
completion. This is done by adding OnCompletionListener to our Music object,
as follows:
mMusic.setOnCompletionListener(new OnCompletionListener(){
 /* In the event that a Music object reaches the end of its
duration,
 * the following method will be called
 */
 @Override
 public void onCompletion(MediaPlayer mp) {
 // Do something pending Music completion
 }
});

Chapter 1

27

ff setVolume: With the setVolume(pLeftVolume, pRightVolume) method, we
are able to adjust the left and/or right stereo channels independently. The minimum
and maximum range for volume control is equal to 0.0f for no volume and 1.0f for
full volume.

Sound objects
The following list includes methods provided for the Sound objects:

ff setLooping: See the Music object's setLooping method's description above for
details. Additionally, Sound objects allow us to set how many times the audio track
will loop with mSound.setLoopCount(pLoopCount), where pLoopCount is an
int value defining the number of times to loop.

ff setRate: The setRate(pRate) method allows us to define the rate, or speed, at
which the Sound object will play, where pRate is equal to the rate as a floating point
value. The default rate is equal to 1.0f, while decreasing the rate will lower the audio
pitch and increasing the rate will increase audio pitch. Keep in mind, the Android API
documentation states that the rate accepts values between a range of 0.5f through
to 2.0f. Exceeding this range on a negative or positive scale may cause errors
in playback.

ff setVolume: See the Music object's setVolume method's description above
for details.

For those of us who are not geared toward audio creativity, there are
plenty of resources out there which are free to use. There are plenty
of free sound databases that can be found online that we can use
in public projects, such as http://www.soundjay.com. Keep in
mind, most free-to-use databases require attribution for the files used.

Working with different types of textures
Getting to know how to manage textures should be one of the main priorities for every
game developer. Of course, it's possible to build a game while only knowing the basics of
texturing, but down the road that can very well lead to performance issues, texture bleeding,
and other unwanted results. In this recipe, we're going to take a look at how we can build
textures into our games in order to provide efficiency, while reducing the possibility of
texture padding issues.

http://www.soundjay.com/#_blank

AndEngine Game Structure

28

Getting ready
Perform the Know the life cycle recipe given in this chapter, so that we've get a basic
AndEngine project set up in our IDE. Additionally, this recipe will require three images in
PNG format. The first rectangle will be named rectangle_one.png, at 30 pixels wide by
40 pixels in height. The second rectangle named rectangle_two.png, is 40 pixels wide
by 30 pixels in height. The final rectangle is named rectangle_three.png, at 70 pixels
wide by 50 pixels in height. Once these rectangle images have been added to the project's
assets/gfx/ folder, continue on to the How to do it... section.

How to do it…
There are two main components involved when building a texture in AndEngine. In the
following steps, we will be creating what is known as a texture atlas that will store three
texture regions out of the three rectangle PNG images mentioned in the Getting ready section.

1.	 This step is optional. We point the BitmapTextureAtlasTextureRegionFactory
class to the folder in which our graphical images are located. The factory is pointed
to the assets/ folder by default. By appending gfx/ to the default base path of the
factory, it will now look in assets/gfx/ for our images:
BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx/");

2.	 Next, we will create BitmapTextureAtlas. The texture atlas can be thought
of as a map which contains many different textures. In this case, our "map" or
BitmapTextureAtlas, will have a size of 120 x 120 pixels:
// Create the texture atlas at a size of 120x120 pixels
BitmapTextureAtlas mBitmapTextureAtlas = new
BitmapTextureAtlas(mEngine.getTextureManager(), 120, 120);

3.	 Once we have BitmapTextureAtlas to work with, we can now
create our ITextureRegion objects and place them onto specific
locations within the BitmapTextureAtlas texture. We will use the
BitmapTextureAtlasTextureRegionFactory class, which helps us with
binding our PNG images to a specific ITextureRegion object as well as define a
position to place the ITextureRegion object within the BitmapTextureAtlas
texture atlas we'd created in the previous step:
/* Create rectangle one at position (10, 10) on the
mBitmapTextureAtlas */
ITextureRegion mRectangleOneTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createFromAsset(mBitmapText
ureAtlas, this, "rectangle_one.png", 10, 10);

/* Create rectangle two at position (50, 10) on the
mBitmapTextureAtlas */

Chapter 1

29

ITextureRegion mRectangleTwoTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createFromAsset(mBitmapText
ureAtlas, this, "rectangle_two.png", 50, 10);

/* Create rectangle three at position (10, 60) on the
mBitmapTextureAtlas */
ITextureRegion mRectangleThreeTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createFromAsset(mBitmapText
ureAtlas, this, "rectangle_three.png", 10, 60);

4.	 The final step is to load our ITextureRegion objects into memory. We can
do this in one call to the BitmapTextureAtlas atlas which contains the said
ITextureRegion objects:

mBitmapTextureAtlas.load();

How it works…
In AndEngine development, there are two main components we will use in order to create
textures for our projects. The first component is known as BitmapTextureAtlas, which can
be thought of as a flat surface with a maximum width and height that can store sub-textures
within its width and height boundaries. These sub-textures are called texture regions, or
ITextureRegion objects in AndEngine to be specific. The purpose of the ITextureRegion
object is to act solely as a reference to a specific texture in memory, which is located at
position x and y within a BitmapTextureAtlas atlas. One way to look at these two
components is to picture a blank canvas, which will represent a texture atlas, and a handful
of stickers, which will represent the texture regions. A canvas would have a maximum size,
and within that area we can place the stickers wherever we'd like. With this in mind, we place
a handful of stickers on the canvas. We've now got all of our stickers neatly laid out on this
canvas and accessible to grab and place wherever we'd like. There is a little bit more to it as
well, but that will be covered shortly.

With the basics of BitmapTextureAtlas and ITextureRegion objects out of the way, the
steps involved in creating our textures should now make more sense. As mentioned in the first
step, setting the base path of the BitmapTextureAtlasTextureRegionFactory class
is completely optional. We are simply including this step as it saves us from having to repeat
saying which folder our images are in once we move on to creating the ITextureRegion
objects. For example, if we were not to set the base path, we'd have to reference our images
as gfx/rectangle_one.png, gfx/rectangle_two.png, and so on.

In the second step, we are creating our BitmapTextureAtlas object. This step is pretty
straightforward as we must simply specify the Engine's TextureManager object which
will handle the loading of textures, as well as a width and height for the texture atlas, in that
order. Since we're only dealing with three small images in these steps, 120 x 120 pixels will
be just fine.

AndEngine Game Structure

30

One important thing to keep in mind about texture atlases is to never create excessive texture
atlases; as in do not create an atlas that is 256 x 256 for holding a single image which is 32
x 32 pixels for example. The other important point is to avoid creating texture atlases which
are larger than 1024 x 1024 pixels. Android devices vary in their maximum texture sizes and
while some may be able to store textures up to 2048 x 2048 pixels, a large number of devices
have a maximum limit of 1024 x 1024. Exceeding the maximum texture size will either cause
a force-closure on startup or simply fail to display proper textures depending on the device. If
there is no other option and a large image is absolutely necessary, see Background stitching
in Chapter 4, Working with Cameras.

In the third step of this recipe, we are creating our ITextureRegion objects. In
other words, we are applying a specified image to the mBitmapTextureAtlas object
as well as defining where, exactly, that image will be placed on the atlas. Using the
BitmapTextureAtlasTextureRegionFactory class, we can call the createFromAss
et(pBitmapTextureAtlas, pContext, pAssetPath, pTextureX, pTextureY)
method, which makes creating the texture region a piece of cake. In the order the parameters
are listed from left to right, the pBitmapTextureAtlas parameter specifies the texture
atlas which we'd like the ITextureRegion object to be stored in. The pContext parameter
allows the class to open the image from the gfx/ folder. The pAssetPath parameter defines
the name of the specific file we're looking for; example, rectangle_one.png. And the final
two parameters, pTextureX and pTextureY, define the location on the texture atlas in
which to place the ITextureRegion object. The following image represents what the three
ITextureRegion objects would look like as defined in step three. Note that the positions
are consistent between the code and image:

Chapter 1

31

In the previous image, notice that there is a minimum gap of 10 pixels between each of the
rectangles and the texture edge. The ITextureRegion objects are not spaced out like
this to make things more understandable, although it helps. They are actually spaced out in
order to add what is known as texture atlas source spacing. What this spacing does is that
it prevents the possibility of texture overlapping when a texture is applied to a sprite. This
overlapping is called texture bleeding. Although creating textures as seen in this recipe does
not completely mitigate the chance of texture bleeding, it does reduce the likelihood of this
issue when certain texture options are applied to the texture atlas.

See the Applying texture options recipe given in this chapter for more information on
texture options. Additionally, the There's more... section in this topic describes another
method of creating texture atlases, which completely solves the texture bleeding issue!
It is highly recommended.

There's more…
There is an abundance of different approaches we can take when it comes to adding
textures into our game. They all have their own benefits and some even have negative
aspects involved.

BuildableBitmapTextureAtlas
The BuildableBitmapTextureAtlas object is a great way to implement
ITextureRegion objects into our texture atlases without having to manually define
positions. The purpose of the BuildableBitmapTextureAtlas texture atlas is to
automatically place its ITextureRegion objects onto the atlas by applying them to the most
convenient coordinates. This approach to creating textures is the easiest and most efficient
method as it can become time-consuming and sometimes even error-prone when building
large games with many texture atlases. In addition to BuildableBitmapTextureAtlas
being automated, it also allows for the developer to define transparent padding to the
texture atlas sources, removing any occurrence of texture bleeding. This was one of the most
prominent visual issues in AndEngine's GLES 1.0 branch as there was no built-in method for
supplying padding to the texture atlases.

Using a BuildableBitmapTextureAtlas atlas differs slightly from the
BitmapTextureAtlas route. See the following code for this recipe's code
using a BuildableBitmapTextureAtlas atlas instead:

/* Create a buildable bitmap texture atlas - same parameters required
* as with the original bitmap texture atlas */
BuildableBitmapTextureAtlas mBuildableBitmapTextureAtlas = new Buildab
leBitmapTextureAtlas(mEngine.getTextureManager(), 120, 120);

/* Create the three ITextureRegion objects. Notice that when using
 * the BuildableBitmapTextureAtlas, we do not need to include the
final

AndEngine Game Structure

32

 * two pTextureX and pTextureY parameters. These are handled
automatically! */
ITextureRegion mRectangleOneTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createFromAsset(mBuildableBitma
pTextureAtlas, this, "rectangle_one.png");
ITextureRegion mRectangleTwoTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createFromAsset(mBuildableBitma
pTextureAtlas, this, "rectangle_two.png");
ITextureRegion mRectangleThreeTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createFromAsset(mBuildableBitma
pTextureAtlas, this, "rectangle_three.png");

// Buildable bitmap texture atlases require a try/catch statement
try {
 /* Build the mBuildableBitmapTextureAtlas, supplying a
BlackPawnTextureAtlasBuilder
 * as its only parameter. Within the BlackPawnTextureAtlasBuilder's
parameters, we
 * provide 1 pixel in texture atlas source space and 1 pixel for
texture atlas source
 * padding. This will alleviate the chance of texture bleeding.
 */
 mBuildableBitmapTextureAtlas.build(new BlackPawnTextureAtlasBuilder<
IBitmapTextureAtlasSource, BitmapTextureAtlas>(0, 1, 1));
} catch (TextureAtlasBuilderException e) {
 e.printStackTrace();
}

// Once the atlas has been built, we can now load
mBuildableBitmapTextureAtlas.load();

As we can see in this code, there are some minor differences between the
BuildableBitmapTextureAtlas and the BitmapTextureAtlas atlases. The first
main point to note is that when creating our ITextureRegion objects, we no longer have
to specify where the texture region should be placed on the texture atlas. The second minor
change when using the BuildableBitmapTextureAtlas alternative is that we must call
the build(pTextureAtlasBuilder) method on mBuildableBitmapTextureAtlas
before we call the load() method. Within the build(pTextureAtlasBuilder)
method, we must provide a BlackPawnTextureAtlasBuilder class, defining three
parameters. In this order, the parameters are pTextureAtlasBorderSpacing,
pTextureAtlasSourceSpacing, and pTextureAtlasSourcePadding. In the previous
code snippet, we will remove the likelihood of texture bleeding in almost all cases. However, in
extreme cases, if there is texture bleeding, then simply increase the third parameter, this will
help to alleviate any issues.

Chapter 1

33

TiledTextureRegion
A tiled texture region is essentially the same object as a normal texture region. The difference
between the two is that a tiled texture region allows us to pass a single image file to it and
create a sprite sheet out of it. This is done by specifying the number of columns and rows
within our sprite sheet. From there, AndEngine will automatically divide the tiled texture region
into evenly distributed segments. This will allow us to navigate through each segment within
the TiledTextureRegion object. This is how the tiled texture region will appear to create a
sprite with animation:

A real sprite sheet should not have outlines around each column and row.
They are in place in the previous image to display how a sprite sheet is
divided up into equal segments.

Let's assume that the previous image is 165 pixels wide and 50 pixels high. Since we have
11 individual columns and a single row, we could create the TiledTextureRegion object
like so:

TiledTextureRegion mTiledTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createTiledFromAsset(mBitmapTex
tureAtlas, context,"sprite_sheet.png",11,1);

What this code does is it tells AndEngine to divide the sprite_sheet.png image into 11
individual segments, each 15 pixels wide (since 165 pixels divided by 11 segments equals
15). We can now use this tiled texture region object to instantiate a sprite with animation.

Compressed textures
In addition to the more common image types (.bmp, .jpeg, and .png), AndEngine also has
built-in support for PVR and ETC1 compressed textures. The main benefit in using compressed
textures is the impact it has on reducing the load time and possibly increasing frame rates
during gameplay. On that note, there are also disadvantages in using compressed textures.
ETC1, for example, doesn't allow for an alpha channel to be used in its textures. Compressed
textures may also cause a noticeable loss of quality in your textures. The use of these types
of textures should be relevant to the significance of the object being represented by the
compressed texture. You most likely wouldn't want to base your entire game's texture format
on compressed textures, but for large quantities of subtle images, using compressed textures
can add noticeable performance to your game.

AndEngine Game Structure

34

See also
ff Creating the resource manager in this chapter.

ff Applying texture options in this chapter.

Applying texture options
We've discussed the different types of textures AndEngine provides; now let's go over the
options we can supply our textures with. The contents in this topic tend to have noticeable
effects on the quality and performance of our games.

Getting ready
Perform the Working with different types of textures recipe given in this chapter,
so that we've got a basic AndEngine project set up with BitmapTextureAtlas
or BuildableBitmapTextureAtlas loading in place.

How to do it…
In order to modify a texture atlas' option and/or format, we need to add a parameter or two
to the BitmapTextureAtlas constructor depending on whether we'd like to define either
the options, format, or both. See the following code for modifying both, texture format and
texture options:

BitmapTextureAtlas mBitmapTextureAtlas = new
BitmapTextureAtlas(mEngine.getTextureManager(), 1024, 1024,
BitmapTextureFormat.RGB_565, TextureOptions.BILINEAR);

From here on, all texture regions placed on this specific texture atlas will have the defined
texture format and option applied to it.

How it works…
AndEngine allows us to apply texture options and formats to our texture atlases. The
various combination of options and formats applied to a texture atlas will affect the overall
quality and performance impact that sprites have on our game. Of course, that is if the
mentioned sprites are using ITextureRegion objects, which are related to the modified
BitmapTextureAtlas atlas.

Chapter 1

35

The base texture options available in AndEngine are as follows:

ff Nearest: This texture option is applied to texture atlases by default. This is the
fastest-performing texture option we can apply to a texture atlas, but also the poorest
in quality. This option means that the texture will apply blending of pixels that make
up the display by obtaining the nearest texel color to a pixel. Similar to how a pixel
represents the smallest element of a digital image, a texel represents the smallest
element of a texture.

ff Bilinear: The second main texture filtering option in AndEngine is called bilinear
texture filtering. This approach takes a hit performance-wise, but the quality of scaled
sprites will increase. Bilinear filtering obtains the four nearest texels per pixel in order
to provide smoother blending to an onscreen image.

Take a look at the following figure to see a comparison between bilinear filtering and
nearest filtering:

These two images are rendered in the highest bitmap format. The difference between nearest
and bilinear filtering is very clear in this case. In the left-hand side of the image, the bilinear
star has almost no jagged edges and the colors are very smooth. On the right-hand side, we've
got a star rendered with the nearest filtering. The quality level suffers as jagged edges are
more apparent and if observed closely, the colors aren't as smooth.

The following are a few additional texture options:

Repeating: The repeating texture option allows the sprite to "repeat" the texture assuming
that the ITextureRegion object's width and height has been exceeded by the size of the
sprite. In most games, the terrain is usually generated by creating a repeating texture and
stretching the size of the sprite, rather than creating many separate sprites to cover
the ground.

AndEngine Game Structure

36

Let's take a look at how to create a repeating texture:

 /* Create our repeating texture. Repeating textures require width/
height which are a power of two */
 BuildableBitmapTextureAtlas texture = new BuildableBitmapTexture
Atlas(engine.getTextureManager(), 32, 32, TextureOptions.REPEATING_
BILINEAR);

 // Create our texture region - nothing new here
 mSquareTextureRegion = BitmapTextureAtlasTextureRegionFactory.
createFromAsset(texture, context, "square.png");

 try {
 // Repeating textures should not have padding
 texture.build(new BlackPawnTextureAtlasBuilder<IBitmapTextureAtl
asSource, BitmapTextureAtlas>(0, 0, 0));
 texture.load();

 } catch (TextureAtlasBuilderException e) {
 Debug.e(e);
 }

The previous code is based on a square image which is 32 x 32 pixels in dimension.
Two things to keep in mind when creating repeating textures are as follows:

ff Texture atlases using the repeating texture option format require the power of two
dimensions (2, 4, 8, 16, and so on)

ff If you are using a buildable texture atlas, do not apply padding or spacing during the
build() method, as it will be taken into account in the repeating of the texture,
breaking the first rule of repeating textures

Next, we have to create a sprite which uses this repeated texture:

/* Increase the texture region's size, allowing repeating textures to
stretch up to 800x480 */
ResourceManager.getInstance().mSquareTextureRegion.setTextureSize(800,
480);
// Create a sprite which stretches across the full screen
Sprite sprite = new Sprite(0, 0, 800, 480, ResourceManager.
getInstance().mSquareTextureRegion, mEngine.
getVertexBufferObjectManager());

What we're doing here is increasing the texture region's size to 800 x 480 pixels in dimension.
This doesn't alter the size of the image while the repeating option is applied to a texture,
rather it allows the image to be repeated up to 800 x 480 pixels. This means that if we create
a sprite and supply the repeating texture, we can scale the sprite up to 800 x 480 pixels in
dimension, while still displaying a repeat effect. However, if the sprite exceeds the width or
height dimensions of the texture region, no texture will be applied to the exceeding area.

Chapter 1

37

Here's the outcome taken from a device screenshot:

Pre-multiply alpha: Lastly, we have the option to add the pre-multiply alpha texture option to
our textures. What this option does is multiply each of the RGB values by the specified alpha
channel and then apply the alpha channel in the end. The main purpose of this option is to
allow us to modify the opacity of the colors without loss of color. Keep in mind, modifying the
alpha value of a sprite directly may introduce unwanted effects when using pre-multiplied
alpha values. Sprites will likely not appear fully transparent when this option is applied to
sprites with an alpha value of 0.

When applying texture options to our texture atlases, we can choose either nearest or bilinear
texture filtering options. On top of these texture filtering options, we can include either the
repeating option, the pre-multiply alpha option, or even both.

There's more…
Aside from texture options, AndEngine also allows us to set the texture format of each of our
texture atlases. Texture formats, similar to texture options, are often decided upon depending
on its purpose. The format of a texture can greatly affect both the performance and quality of
an image even more noticeably than the texture options. Texture formats allow us to choose
the available color ranges of the RGB values in a texture atlas. Depending on the texture
format being used, we may also allow or disallow a sprite from having any alpha value which
affects the transparency of the textures.

AndEngine Game Structure

38

The texture format naming conventions are not very complicated. All formats have a name
similar to RGBA_8888, where the left-hand side of the underscore refers to the color or
alpha channels available to the texture. The right-hand side of the underscore refers to
the bits available to each of the color channels.

Texture formats
The following texture formats are available:

ff RGBA_8888: Allows the texture to use red, green, blue, and alpha channels, assigned
8 bits each. Since we have 4 channels each assigned 8 bits (4 x 8), we're left with a
32-bit texture format. This is the slowest texture format of the four.

ff RGBA_4444: Allows the texture to use red, green, blue, and alpha channels, assigned
4 bits each. Following the same rule as the previous format, we're left with a 16-bit
texture format. You will notice an improvement with this format over RGBA_8888 as
we're only saving half as much information as the 32-bit format. The quality will suffer
noticeably; see the following image:

In this image, we compare the difference between two texture formats. The stars are
both rendered with the default texture option (nearest), which has nothing to do with
the RGBA format of the image. What we're more interested here is the color quality of
the two stars. The left-hand side star is rendered with full 32-bit color capabilities, the
right with 16-bit. The difference between the two stars is rather apparent.

ff RGB_565: Another 16-bit texture format, though this one does not include an alpha
channel; textures using this texture format will not allow for transparency. Due to the
lack of transparency, the need for this format is limited, but it is still valuable. One
example of this texture format being used would be to display a fullscreen image
such as a background. Backgrounds don't require transparency, so it is wise to
keep this format in mind when introducing a background. The performance
saved is fairly noticeable.

Chapter 1

39

The RGB_565 format color quality is more or less the
same as you would expect from the RGBA_4444 star
image shown previously.

ff A_8: Finally, we have the last texture format, which is an 8-bit alpha channel (does
not support colors). Another limited-use format; the A_8 format is generally used as
an alpha mask (overlay) for sprites which have colors. One example of a use for this
format is a screen fading in or out by simply overlaying a sprite with this texture, then
altering the transparency as time passes.

When creating your texture atlases, it is a good idea to think about which types of sprites will
use which type of texture regions and pack them into texture atlases accordingly. For more
important sprites, we'll most likely want to use the RGBA_8888 texture format, since these
sprites will be the main focus of our games. These objects might include the foreground
sprites, main character sprites, or anything on the screen that would be more visually
prominent. Backgrounds underlay the entire surface area of the device, so we most likely
have no use for transparency. We will use RGB_565 for these sprites in order to remove the
alpha channel, which will help improve performance. Finally, we have objects which might not
be very colorful, might be small, or simply may not need as much visual appeal. We can use
the texture format RGBA_4444 for these types of sprites in order to cut the memory needed
for these textures in half.

See also
ff Know the life cycle in this chapter.

ff Working with different types of textures in this chapter.

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities.

Using AndEngine font resources
AndEngine fonts are simple to set up and include for use in our Text objects to be displayed
on screen. We can choose from preset fonts or we can add our own via the assets folder.

Getting ready
Perform the Know the life cycle recipe given in this chapter, so that we've got a basic
AndEngine project set up in our IDE, then continue on to the How to do it... section.

AndEngine Game Structure

40

How to do it…
The following code snippets display the four different options we have for creating preset,
custom asset, preset stroke, and custom asset stroke font objects. Font creation should take
place in the onCreateResources() method of our BaseGameActivity class.

ff The create() method for preset fonts is as follows:
Font mFont = FontFactory.create(mEngine.getFontManager(), mEngine.
getTextureManager(), 256, 256, Typeface.create(Typeface.DEFAULT,
Typeface.NORMAL), 32f, true, org.andengine.util.adt.color.Color.
WHITE_ABGR_PACKED_INT)

mFont.load();

ff The createFromAsset() method for custom fonts is as follows:
Font mFont = FontFactory.createFromAsset(mEngine.getFontManager(),
mEngine.getTextureManager(), 256, 256, this.getAssets(), "Arial.
ttf", 32f, true, org.andengine.util.adt.color.Color.WHITE_ABGR_
PACKED_INT);

mFont.load();

ff The createStroke() and createStrokeFromAsset() methods for outlined
fonts are:

BitmapTextureAtlas mFontTexture = new BitmapTextureAtlas(mEngine.
getTextureManager(), 256, 256, TextureOptions.BILINEAR);

Font mFont = FontFactory.createStroke(mEngine.getFontManager(),
mFontTexture, Typeface.create(Typeface.DEFAULT, Typeface.BOLD),
32, true, org.andengine.util.adt.color.Color.WHITE_ABGR_PACKED_
INT, 3, org.andengine.util.adt.color.Color.BLACK_ABGR_PACKED_INT);

mFont.load();

How it works…
As we can see, there are different approaches we can take to create our Font objects
depending on how we'd like the font to look. However, all fonts share the need for us to define
a texture width and texture height, whether it be directly as parameters in the FontFactory
class' create methods or indirectly through the use of a BitmapTextureAtlas object.
In the previous code snippets, we'd created all three Font objects using a texture size of
256 pixels in width by 256 pixels in height. Unfortunately, there is currently no easy way to
automatically determine the texture size needed at runtime in order to support different
languages, text sizes, stroke value, or font style.

Chapter 1

41

For now, the most common approach is to set the texture width and height to about 256 pixels
and make small adjustments upward or downward until the texture is just the right size so as
to not cause artifacts in the Text objects. The font size plays the biggest role in determining
the final texture size needed for the Font object, so exceedingly large fonts, such as 32 and
higher, may need larger texture sizes.

All Font objects require a method call to load() before they can properly
display characters in the Text objects.

Let's take a look at how each of the methods presented in the How to do it... section work:

ff The create() method: The create() method doesn't allow for too much
customization. This method's parameters, starting at the fifth parameter, include
supplying a typeface, font size, anti-aliasing option, and a color. We're using the
Android native typeface class which only supports a few different fonts and styles.

ff The createFromAsset() method: We can use this method in order to introduce
custom fonts into our project via our assets folder. Let's assume that we have a
true-type font called Arial.ttf located in our project's assets folder. We can see
that the general creation is the same. In this method, we must pass the activity's
AssetManager class, which can be obtained through our activity's getAssets()
method. The parameter following that is the true type font we would like to import.

ff The createStroke() and createStrokeFromAsset() methods: Finally, we have
our stroke fonts. The stroke font gives us the ability to add outlines to the characters
in our Text object. These fonts are useful in situations where we would like our text
to "pop". For creating stroke fonts, we'll need to supply a texture atlas as the second
parameter rather than passing the engine's texture manager. From this point, we can
either create the stroke font via a typeface or through our assets folder. Additionally,
we're given the option to define two new color values which have been added as the
final two parameters. With these new parameters, we are able to adjust the thickness
of the outline as well as the color.

There's more…
The way the Font class is currently set up, it is best to preload the characters that we expect
to display via a Text object. Unfortunately, AndEngine currently makes calls to the garbage
collector when new letters are still to be drawn, so in order to avoid hiccups when a Text
object is first getting "acquainted" with the letters, we can call the method:

mFont.prepareLetters("abcdefghijklmnopqrstuvwxyz".toCharArray())

AndEngine Game Structure

42

This method call would prepare the lowercase letters from a to z. This method should be called
during a loading screen at some point within the game in order to avoid any noticeable garbage
collection. There's one more important class that we should discuss before moving off the
topic of Font objects. AndEngine includes a class called FontUtils that allows us to retrieve
information regarding a Text object's width on the screen via the measureText(pFont,
pText) method. This is important when dealing with dynamically-changing strings as it gives
us the option to relocate our Text object, assuming that the width or height of the string in
pixels has changed.

See also
ff Know the life cycle in this chapter.

ff Working with different types of textures in this chapter.

ff Applying text to a layer in Chapter 2, Working with Entities.

Creating the resource manager
In this topic, we're finally going to look at our resources from a bigger picture. With the
resource manager in place, we will easily be able to make a single call to methods such as
loadTextures(), loadSounds(), or loadFonts() in order to load the different types of
resources needed by our game, all from a single, convenient location.

Getting ready
Please refer to the class named ResourceManager in the code bundle.

How to do it…
The ResourceManager class is designed with the singleton design pattern in mind.
This allows for global access to all of our game's resources through a simple call to
ResourceManager.getInstance(). The main purpose of the ResourceManager
class is to store resource objects, load resources, and unload resources. The following steps
display how we can use ResourceManager to handle textures of one of our game's scenes.

1.	 Declare all of the resources that will be used throughout the different scenes in
our game:
/* The variables listed should be kept public, allowing us easy
access
to them when creating new Sprites, Text objects and to play sound
files */
public ITextureRegion mGameBackgroundTextureRegion;
public ITextureRegion mMenuBackgroundTextureRegion;

Chapter 1

43

public Sound mSound;

public Font mFont;

2.	 Provide load methods that will handle loading the audio, graphical, and font
resources declared in the ResourceManager class:
public synchronized void loadGameTextures(Engine pEngine, Context
pContext){
// Set our game assets folder in "assets/gfx/game/"
 BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx/
game/");

BuildableBitmapTextureAtlas mBitmapTextureAtlas = new BuildableBit
mapTextureAtlas(pEngine.getTextureManager(), 800, 480);

mGameBackgroundTextureRegion =
BitmapTextureAtlasTextureRegionFactory.createFromAsset(mBitmapText
ureAtlas, pContext, "game_background.png");

try {
 mBitmapTextureAtlas.build(new BlackPawnTextureAtlasBuilder<IBitm
apTextureAtlasSource, BitmapTextureAtlas>(0, 1, 1));
 mBitmapTextureAtlas.load();
} catch (TextureAtlasBuilderException e) {
 Debug.e(e);
}
}

3.	 The third step involves providing a method of unloading all resources corresponding
to our ResourceManager class' load methods:

public synchronized void unloadGameTextures(){
 // call unload to remove the corresponding texture atlas from
memory
 BuildableBitmapTextureAtlas mBitmapTextureAtlas =
(BuildableBitmapTextureAtlas) mGameBackgroundTextureRegion.
getTexture();
 mBitmapTextureAtlas.unload();

 // ... Continue to unload all textures related to the 'Game'
scene

 // Once all textures have been unloaded, attempt to invoke the
Garbage Collector
 System.gc();
}

AndEngine Game Structure

44

How it works…
By implementing a ResourceManager class into our project, we can easily load our various
scene resources completely indepenently of one another. Because of this, we must make sure
that our public class methods are synchronized in order to make sure that we're running in
a thread-safe environment. This is especially important with the use of singletons, as we've
only got one instance of the class, with the potential for multiple threads accessing it. On top
of that, we now only require one line of code when it comes to loading our scene resources
which helps greatly in keeping our main activity class more organized. Here is what our
onCreateResources() methods should look like with the use of a resource manager:

@Override
public void onCreateResources(
 OnCreateResourcesCallback pOnCreateResourcesCallback) {

 // Load the game texture resources
 ResourceManager.getInstance().loadGameTextures(mEngine, this);

 // Load the font resources
 ResourceManager.getInstance().loadFonts(mEngine);

 // Load the sound resources
 ResourceManager.getInstance().loadSounds(mEngine, this);

 pOnCreateResourcesCallback.onCreateResourcesFinished();
}

In the first step, we are declaring all of our resources, including Font objects,
ITextureRegion objects, and Sound/Music objects. In this particular recipe, we're only
working with a limited number of resources, but in a fully-functional game, this class may
include 50, 75, or even more than 100 resources. In order to obtain a resource from our
ResourceManager class, we can simply include the following line into any class within
our project:

ResourceManager.getInstance().mGameBackgroundTextureRegion.

In the second step, we create the loadGameTextures(pEngine, pContext) method
which is used to load the Game scene textures. For every additional scene within our game,
we should have a separate load method in place. This allows for easy loading of resources
on the fly.

In the final step, we're creating unload methods which handle unloading the resources
corresponding to each of the load methods. However, if there are any number of resources
which happen to be used throughout a number of our game's scenes, it might be necessary
to create a load method which doesn't come with an accompanying unload method.

Chapter 1

45

There's more…
In larger projects, sometimes we may find ourselves passing main objects to classes very
frequently. Another use for the resource manager is to store some of the more important
game objects such as the Engine or Camera. This way we no longer have to continuously
pass these objects as parameters, rather we can call respective get methods in order to get
the game's Camera, Engine, or any other specific object we'll need to reference throughout
the classes.

See also
ff Introducing sounds and music in this chapter.

ff Working with different types of textures in this chapter.

ff Using AndEngine font resources in this chapter.

Saving and loading game data
In the final topic for the game structure chapter, we're going to set up a class that can be
used in our project to manage data and settings. The more obvious game data we must save
should include character stats, high scores, and other various data we may have included in
our game. We should also keep track of certain options a game might have, such as whether
the user has sounds muted or not, gore effects, and more. In this recipe, we're going to work
with a class called SharedPreferences, which will allow us to easily store data to a device
for retrieval at a later time.

The SharedPreferences class is a great way to quickly store and retrieve
primitive datatypes. However, as the data size increases, so will the needs
of the method we use to store data. If our games do require a large amount
of data to be stored, something to consider is to take a look into SQLite
databases for data storage.

Getting ready
Please refer to the class named UserData in the code bundle.

AndEngine Game Structure

46

How to do it…
In this recipe, we're setting up a UserData class that will store a Boolean variable to
determine sound muting and an int variable that will define the highest, unlocked level
a user has reached. Depending on the needs of the game, there may be more or less
datatypes to include within the class for different reasons, be it high score, currency,
or other game-related data. The following steps describe how to set up a class to contain
and store user data on a user's device:

1.	 The first step involves declaring our constant String variables, which will hold
references to our preference file, as well as "key" names, which will hold references
to data within the preference file, as well as corresponding "value" variables.
Additionally, we declare the SharedPreferences object as well as an editor:
// Include a 'filename' for our shared preferences
private static final String PREFS_NAME = "GAME_USERDATA";

/* These keys will tell the shared preferences editor which
 data we're trying to access */

private static final String UNLOCKED_LEVEL_KEY = "unlockedLevels";
private static final String SOUND_KEY = "soundKey";

/* Create our shared preferences object & editor which will
 be used to save and load data */
private SharedPreferences mSettings;
private SharedPreferences.Editor mEditor;

// keep track of our max unlocked level
private int mUnlockedLevels;

// keep track of whether or not sound is enabled
private boolean mSoundEnabled;

2.	 Create an initialization method for our SharedPreferences file. This method will be
called when our game is first launched, either creating a new file for our game if one
does not already exist, or load existing values from our preference file if it does exist:
public synchronized void init(Context pContext) {
 if (mSettings == null) {
 /* Retrieve our shared preference file, or if it's not yet
 * created (first application execution) then create it now
 */
 mSettings = context.getSharedPreferences(PREFS_NAME, Context.
MODE_PRIVATE);

Chapter 1

47

 /* Define the editor, used to store data to our preference
file
 */
 mEditor = mSettings.edit();

 /* Retrieve our current unlocked levels. if the UNLOCKED_
LEVEL_KEY
 * does not currently exist in our shared preferences, we'll
create
 * the data to unlock level 1 by default
 */
 mUnlockedLevels = mSettings.getInt(UNLOCKED_LEVEL_KEY, 1);

 /* Same idea as above, except we'll set the sound boolean to
true
 * if the setting does not currently exist
 */
 mSoundEnabled = mSettings.getBoolean(SOUND_KEY, true);
 }
}

3.	 Next, we will provide getter methods for each of the values that are meant to
be stored in our SharedPreferences file, so that we can access the data
throughout our game:
/* retrieve the max unlocked level value */
public synchronized int getMaxUnlockedLevel() {
 return mUnlockedLevels;
}

4.	 And finally, we must provide setter methods for each of the values that are meant to
be stored in our SharedPreferences file. The setter methods will be responsible
for saving the data to the device:

public synchronized void unlockNextLevel() {
 // Increase the max level by 1
 mUnlockedLevels++;

 /* Edit our shared preferences unlockedLevels key, setting its
 * value our new mUnlockedLevels value
 */
 mEditor.putInt(UNLOCKED_LEVEL_KEY, mUnlockedLevels);

 /* commit() must be called by the editor in order to save
 * changes made to the shared preference data
 */
 mEditor.commit();
}

AndEngine Game Structure

48

How it works…
This class demonstrates just how easily we are able to store and retrieve a game's data and
options through the use of the SharedPreferences class. The structure of the UserData
class is fairly straightforward and can be used in this same fashion in order to adapt to various
other options we might want to include in our games.

In the first step, we simply start off by declaring all of the necessary constants and member
variables that we'll need to handle different types of data within our game. For constants,
we have one String variable named PREFS_NAME that defines the name of our game's
preference file, as well as two other String variables that will each act as references to a
single primitive datatype within the preference file. For each key constant, we should declare
a corresponding variable that preference file data will be stored to when it is first loaded.

In the second step, we provide a means of loading the data from our game's preference
file. This method only needs to be called once, during the startup process of a game
in order to load the UserData classes member variables with the data stored in the
SharedPreferences file. By first calling context.getSharedPreferences(PREFS_
NAME, Context.MODE_PRIVATE), we check to see whether or not a SharedPreference
file exists for our application under the PREFS_NAME string, and if not, then we create a new
one a—MODE_PRIVATE, meaning the file is not visible to other applications.

Once that is done, we can call getter methods from the preference file such as
mUnlockedLevels = mSettings.getInt(UNLOCKED_LEVEL_KEY, 1). This
will pass the data stored in the UNLOCKED_LEVEL_KEY key of the preference file to
mUnlockedLevels. If the game's preference file does not currently hold any value for the
defined key, then a default value of 1 is passed to mUnlockedLevels. This would continue to
be done for each of the datatypes being handled by the UserData class. In this case, just the
levels and sound.

In the third step, we set up the getter methods that will correspond to each of the datatypes
being handled by the UserData class. These methods can be used throughout the game; for
example, we could call UserData.getInstance().isSoundMuted() during level loading
to determine whether or not we should call play() on the Music object.

In the fourth step, we create the methods that save data to the device. These
methods are pretty straightforward and should be fairly similar regardless of the
data we're working with. We can either take a value from a parameter as seen with
setSoundMuted(pEnableSound) or simply increment as seen in unlockNextLevel().

When we want to finally save the data to the device, we use the mEditor object, using putter
methods which are suitable for the primitive datatype we wish to store, specifying the key
to store the data as well as the value. For example, for level unlocking, we use the method,
mEditor.putInt(UNLOCKED_LEVEL_KEY, mUnlockedLevels) as we are storing an
int variable. For a boolean variable, we call putBoolean(pKey, pValue), for a String
variable, we call putString(pKey, pValue), and so on..

Chapter 1

49

There's more...
Unfortunately, when storing data on a client's device, there's no way of guaranteeing that a
user will not have access to the data in order to manipulate it. On the Android platform, most
users will not have access to the SharedPreferences file that holds our game data, but
users with rooted devices on the other hand will be able to see the file and make changes as
they see fit. For the sake of explanation, we used obvious key names, such as soundKey and
unlockedLevels. Using some sort of misconstruction can help to make the file look more
like gibberish to an average user who had accidentally stumbled upon the game data with
their rooted device.

If we feel like going further to protect the game data, then the even more secure approach
would be to encrypt the preference file. Java's javax.crypto.* package is a good place to
start, but keep in mind that encryption and decryption does take time and will likely increase
the duration of loading times within the game.

2
Working with Entities

In this chapter, we're going to start getting into displaying objects on the screen and various
ways we can work with these objects. The topics include:

ff Understanding AndEngine entities

ff Applying primitives to a layer

ff Bringing a scene to life with sprites

ff Applying text to a layer

ff Using relative rotation

ff Overriding the onManagedUpdate method

ff Using modifiers and entity modifiers

ff Working with particle systems

Introduction
In this chapter, we're going to start working with all of the wonderful entities included in
AndEngine. Entities provide us with a base foundation that every object displayed within our
game world will rely on, be it the score text, the background image, the player's character,
buttons, and everything else. One way to think of this is that any object in our game which has
the ability to be placed, via AndEngine's coordinate system, is an entity at its most basic level.
In this chapter, we're going to start working with Entity objects and many of its subtypes in
order to allow us to make the most out of them in our own games.

Working with Entities

52

Understanding AndEngine entities
The AndEngine game engine follows the entity-component model. The entity-component
design is very common in a lot of game engines today, and for a good reason. It's easy to
use, it's modular, and it is extremely useful in the sense that all game objects can be traced
back to the single, most basic Entity object. The entity-component model can be thought
of as the "entity" portion referring to the most basic level of the game engine's object system.
The Entity class handles only the most basic data that our game objects rely on, such
as position, rotation, color, attaching and detaching to and from the scene, and more. The
"component" portion refers to the modular subtypes of the Entity class, such as the Scene,
Sprite, Text, ParticleSystem, Rectangle, Mesh, and every other object which can be
placed within our game. The components are meant to handle more specific tasks, while the
entity is meant to act as a base foundation that all components will rely on.

How to do it...
To start with the absolute most basic Entity method, we will attach an Entity object to a
Scene object:

Creating and attaching an Entity object to the Scene object requires only the following two
lines of code:

Entity layer = new Entity();
mScene.attachChild(layer);

How it works…
The two lines of code given here allow us to create and attach a basic Entity object to our
Scene object. An Entity object that is defined as seen in the How to do it... section of this
recipe will most commonly be used as a layer. The purpose of a layer will be discussed in the
coming paragraphs.

Entities are very important when developing games. In AndEngine, the fact of the matter is
that all objects displayed on our scenes are derived from entities (including the Scene object
itself!). In most cases, we can assume that the entity is either a visually displayed object such
as a Sprite, Text, or Rectangle object on the scene, or a layer, such as the Scene object.
Seeing as how broad the Entity class is, we're going to talk about each of the two uses for
entities as if they were separate objects.

Chapter 2

53

The first and arguably most important aspect of an entity is the layering capabilities. A layer
is a very simple concept in game design; however, due to the amount of entities games tend
to support during gameplay, things can quickly become confusing when first getting to know
them. We must think of a layer as an object which has one parent and an unlimited amount
of children unless otherwise defined. As the name suggests, the purpose of a layer is to apply
our various entity objects on our scene in an organized fashion, which fortunately also gives
us the ability to perform one action on the layer that will affect all of its children in unison,
for example, repositioning and applying certain entity modifiers. We can assume that if we
have a background, a mid-ground, and a foreground, that our game will have three separate
layers. These three layers would appear in a specific order depending on the order they are
attached to the scene, as if stacking pieces of paper on top of each other. The last piece of
paper added to the stack will appear in front of the rest if we were to look down on that stack
of paper. The same rule applies for Entity objects attached to a Scene object; this is shown
in the following image:

The previous image depicts a basic game scene consisting of three Entity object layers.
Each of the three layers has a specific purpose, which is to store all relative entities in terms
of depth. The first layer applied to the scene is the background layer, including a sprite, which
contains a blue sky and a sun. The second layer applied to the scene is the mid-ground layer.
On this layer, we would find objects which are relative to the player, including the landscape
the player walks on, collectable items, enemies, and more. Lastly, we have the foreground
layer, used to display the front-most entities on the device's display. In the figure shown, the
foreground layer is used to display the user interface, which includes a button, and two
Text objects.

Working with Entities

54

Let's take another look at what a scene might look like with layers with child entities
attached to it:

This figure shows how a scene would display entities on the screen in terms of depth/layering.
At the bottom of the figure, we've got the device's display. We can see that Background Layer
is attached to the Scene first, then Player Layer is attached. This means that the entities
attached to the background will be displayed behind the Player Layer children. Keeping this
in mind, the rule applies to the child entities as well. The first child attached to the layer will
appear behind any subsequently attached object as far as depth goes.

Finally, one last vital topic relating to general AndEngine entities is Entity composition. One
thing we should go over before moving on is the fact that children inherit parent values! This
is an area where many new AndEngine developers run into issues when setting up multiple
layers in their games. Everything from skew, scale, position, rotation, visibility, and more are
all taken into account by child entities when their parent's properties change. Take a look at
the following figure, which displays the entity's position composition in AndEngine:

Chapter 2

55

First of all, we should know that in AndEngine's anchor center branch, coordinate systems
start in the bottom-left corner of an entity. Increasing the x value will move the entity position
to the right, and increasing the y value will move the entity position upward. Decreasing x/y
values will have the opposite affect. With this in mind, we can see that the bigger rectangle
which is attached to the Scene has its position set to coordinates (6, 6) on the Scene. Since
the smaller rectangle is attached to the bigger rectangle, rather than its coordinate system
being relative to the Scene, it is actually using the large rectangle's coordinate system. This
means that the small rectangle's anchor center position will rest directly on position (0, 0)
of the large rectangle's coordinate system. As we can see in the previous image, the (0, 0)
position on the large rectangle's coordinate system is its bottom-left corner.

The main difference between the older AndEngine branches and AndEngine's
newest anchor center branch is the fact that positioning an entity no longer
means we are setting the upper-left corner of an entity to a position on the
coordinate system. Rather, the entity's center-point will be placed at the
defined position, also seen in the previous figure.

Working with Entities

56

There's more...
The Entity object in AndEngine includes many different methods which affect many aspects
of the entity. These methods play a vital role in shaping the overall characteristics of Entity
objects regardless of the entity's subtype. It is a good idea to get to know how to manipulate
entities in order to take full control over how the entities appear, react, store information,
and much more. Use the following list to familiarize yourself with some of the most important
methods of the Entity object, paired with their corresponding getter methods. Methods
missing from this list will be covered in more detail in this and the following chapters:

ff setVisible(pBoolean) and isVisible(): This method can be used to set
whether or not the entity is visible on the scene. Setting these methods to true
will allow the entity to render, setting them to false will disable rendering.

ff setChildrenVisible(pBoolean) and isChildrenVisible(): Similar to the
setVisible(pBoolean) method, except that it defines the visibility of the calling
entity's children and not itself.

ff setCullingEnabled(pBoolean) and isCullingEnabled(): Entity culling can
be a very promising performance optimization technique. See Disabling rendering
with entity culling in Chapter 8, Maximizing Performance, for more details.

ff collidesWith(pOtherEntity): This method is used to detect when the entity
that is calling this method collides, or overlaps, with the Entity object supplied as
this method's parameter. If the entities are colliding, this method returns true.

ff setIgnoreUpdate(pBoolean) and isIgnoreUpdate(): Ignoring entity updates
can provide noticeable performance improvements. See Ignoring entity updates in
Chapter 8, Maximizing Performance, for more details.

ff setChildrenIgnoreUpdate(pBoolean) and isChildrenIgnoreUpdate():
Similar to the setIgnoreUpdate(pBoolean) method, except that it only affects
the calling entity's children and not itself.

ff getRootEntity(): This method will iterate through the entity's parent until it
reaches the root parent. Once the root parent is found, this method will return the
root Entity object; in most cases, the root being our game's Scene object.

ff setTag(pInt) and getTag(): This method can be used for storing an integer
value within an entity. Typically used for setting up identification values to entities.

ff setParent(pEntity) and hasParent(): Sets the parent entity to the entity
calling this method. The hasParent() method returns a true or false value
depending on whether or not the calling entity has a parent.

Chapter 2

57

ff setZIndex(pInt) and getZIndex(): Set the Z index of the calling entity. Entities
with a greater value will appear in front of entities with a lesser value. By default, all
entities have a Z index of 0, meaning that they simply appear in the order they are
attached. See the following sortChildren() method for more details.

ff sortChildren(): This method must be called on the parent of an entity or group
of entities which have had their Z index modified before changes take effect on
the screen.

ff setPosition(pX, pY) or setPosition(pEntity): This method can be used to
set the position of an entity to specific x/y values, or it can be used to set to another
entity's position. Additionally, we can use the setX(pX) and setY(pY) methods to
make changes to only a single axis position.

ff getX() and getY(): These methods are used to obtain the position of an entity in
local coordinates; that is, relation to its parent.

ff setWidth(pWidth) and setHeight(pHeight) or setSize(pWidth,
pHeight): These methods can be used to set the width and height of the calling
entity. Additionally, we can use the getWidth() and getHeight() methods,
which return their respective values in as a float datatype.

ff setAnchorCenter(pAnchorCenterX, pAnchorCenterY): This method can be
used to set the anchor center of the entity. The anchor center is the position within
an Entity object that it will rotate around, skew from, and scale from. Additionally,
modifying the anchor center values will relocate the entity's "positioning" anchor from
the default center-point. For example, if we move the anchor center position to the
upper-left corner of an entity, calling setPosition(0,0) would place the entity's
upper-left corner to position (0,0).

ff setColor(pRed, pGreen, pBlue) and getColor(): This method can be used
to set the color of an entity, from values ranging from 0.0f for no color through to
1.0f for full color.

ff setUserData(pObject) and getUserData(): These two methods are incredibly
useful when developing games with AndEngine. They allow us to store an object
of our choice within the entity and modify it or retrieve it at any point in time. One
possibility for user data storage would be to determine what type of weapon a
player's character is holding. Use these methods to the fullest!

Working with Entities

58

Applying primitives to a layer
AndEngine's primitive types include Line, Rectangle, Mesh, and Gradient objects. In this
topic, we're going to focus on the Mesh class. Meshes are useful for creating more complex
shapes in our games which can have an unlimited amount of uses. In this recipe, we're going
to use Mesh objects to build a house as seen in the the following figure:

Getting ready…
Please refer to the class named ApplyingPrimitives in the code bundle.

How to do it…
In order to create a Mesh object, we need to do a little bit more work than what's required for
a typical Rectangle or Line object. Working with Mesh objects is useful for a number of
reasons. They allow us to strengthen our skills as far as the OpenGL coordinate system goes,
we can create oddly-shaped primitives, and we are able to alter individual vertice positions,
which can be useful for certain types of animation.

1.	 The first step involved in creating Mesh objects is to create our buffer data which is
used to specify the points that will make up the shape of the mesh:
 float baseBufferData[] = {
 /* First Triangle */
 0, BASE_HEIGHT, UNUSED, /* first point */
 BASE_WIDTH, BASE_HEIGHT, UNUSED, /* second point */
 BASE_WIDTH, 0, UNUSED, 	 /* third point */

 /* Second Triangle */

Chapter 2

59

 BASE_WIDTH, 0, UNUSED, /* first point */
 0, 0, UNUSED, /* second point */
 0, BASE_HEIGHT, UNUSED, /* third point */
 };

2.	 Once the buffer data is configured to our liking, we can go ahead and create the
Mesh object.
Mesh baseMesh = new Mesh((WIDTH * 0.5f) - (BASE_WIDTH * 0.5f),
0, baseBufferData, baseBufferData.length / POINTS_PER_TRIANGLE,
DrawMode.TRIANGLES, mEngine.getVertexBufferObjectManager());

How it works…
Let's break down the process a little bit more in order to find out just how we ended up with a
house made out of primitive Mesh objects.

In step one, we're creating the baseMesh object's buffer data. This buffer data is used
to store points in 3D space. Every three values stored in the buffer data, separated by
line-breaks, make up a single vertice in the 3D world. However, it should be understood
that since we are working with a 2D game engine, the third value, which is the Z index, is of
no use to us. For that reason, we have defined the third value for each vertice as the UNUSED
constant declared within this recipe's class, which is equal to 0. The points are represented as
(x, y, z) for each triangle, as to not get the order confused. See the following figure for a
representation of the how the points defined in step one will draw a rectangle onto a mesh:

Working with Entities

60

The previous figure represents the baseMesh object's buffer data, or plotted points, as seen
in the How to do it... section's first step. The black lines represent the first set of points:

 0, BASE_HEIGHT, UNUSED, /* first point */
 BASE_WIDTH, BASE_HEIGHT, UNUSED, /* second point */
 BASE_WIDTH, 0, UNUSED, /* third point */

The second set of points in the baseMesh object's buffer data is represented by the
grey lines:

 BASE_WIDTH, 0, UNUSED, /* first point */
 0, 0, UNUSED, /* second point */
 0, BASE_HEIGHT, UNUSED, /* third point */

Since BASE_HEIGHT is equal to 200 and BASE_WIDTH is equal to 400, we can read that the
first triangle's first point, which is (0, BASE_HEIGHT), is located in the upper-left corner
of the rectangular shape. Moving clockwise, the second point for the first triangle is located
at position (BASE_WIDTH, BASE_HEIGHT), which would be the upper-right corner of the
rectangular shape. A triangle is obviously made up of three points, so this leaves us with one
more vertice to plot. The last vertice of our first triangle is located at position (BASE_WIDTH,
0). As a personal challenge, use the scene graph in the previous figure to find out how the
grey triangle's plotted points compare to the buffer data!

In step two, we are taking our baseMesh object's buffer data and using it to build the Mesh
object. The Mesh object is a subtype of the Entity class, so once we have created the Mesh
object, we can reposition it, scale it, rotate it, and and make any other adjustments we need.
The parameters, in the order they appear in the constructor are as follows; x axis position, y
axis position, buffer data, vertex count, draw mode, and vertex buffer object manager. The
first two and last parameters are typical for all entities, but the buffer data, vertex count and
draw mode are new to us. The buffer data is the array which specifies the plotted vertices,
which was covered in step one. The vertex count is simply the number of vertices that the
buffer data contains. Every x, y, and z coordinate within our buffer data makes up a single
vertice, which is why we are dividing the baseBufferData.length value by three for this
parameter. And finally, DrawMode defines how the Mesh object will interpret the buffer data,
which can drastically alter the resulting shape of the mesh. The different DrawMode types and
purposes can be found within the There's more... section of this topic.

Before moving on, you may notice that the "door", or rather the blue lines that represent the
door are not created in the same manner as the roof and base Mesh objects. Instead, we've
used lines rather than triangles to draw the outline of the door. Take a look at the following
code, which is taken from the doorBufferData array, defining the points in which
lines connect:

 0, DOOR_HEIGHT, UNUSED, /* first point */
 DOOR_WIDTH, DOOR_HEIGHT, UNUSED, /* second point */
 DOOR_WIDTH, 0, UNUSED, /* third point */
 0, 0, UNUSED, /* fourth point */
 0, DOOR_HEIGHT, UNUSED /* fifth point */

Chapter 2

61

Once again, if we draw a scene graph and plot these points similar to the previous figure
representing the baseMesh object's points, we can actually connect the dots and the lines
will result in a rectangular shape. It might seem confusing at first, especially when trying to
create the shapes in our heads. The trick to getting started with drawing custom shapes from
defined vertices is to keep a blank scene graph saved in a favorite document or image editing
software. Create a scene graph similar to the baseMesh object's buffer data representation
figure and use it to plot points, then simply copy the points to code!

It is very important to remember that the (0,0) position on the previous
scene graph figure represents the center of the Mesh object. Since we are
building the mesh vertices up and to the right, the anchor center position of
the mesh will not represent the center of the manually-drawn shapes! This is
very important to keep in mind when building Mesh objects.

There's more...
Creating meshes can be a pretty daunting subject for beginners, but it's a good idea to get
used to them for many reasons. One of the main reasons for AndEngine developers is that
it can help us to understand how OpenGL draws shapes to a display on a lower level, which
in turn allows us to grasp the higher-level game development functions more easily. The
following image contains the various DrawMode types that AndEngine has conveniently
made available for us in order to create Mesh objects in different ways:

Working with Entities

62

The previous figure shows how vertices within our buffer data will be drawn to the scene by
our Mesh object depending on the DrawMode type selected. Each p# in this figure represents
a vertice (x, y, and z value) within our buffer data array. See the following points
for an explanation of the image representations of each DrawMode type:

ff DrawMode.POINTS: This selection allows us to draw single points for each vertice
within the mesh's buffer data. These points will not be connected by any lines; they
will simply display a dot on the mesh for each point.

ff DrawMode.LINES: This selection allows us to draw individual lines on the mesh.
Every two vertices will be connected by a line.

ff DrawMode.LINE_STRIP: This selection allows us to draw points on the mesh, with
each point after the first point being connected to the previous point. For example, p1
will be connected to p0, p2 will be connected to p1, and so on.

ff DrawMode.LINE_LOOP: This selection acts in a similar way to the DrawMode.
LINE_STRIP type, however, the first point and the final point will also be connected
by a line. This allows us to create closed shapes via lines.

ff DrawMode.TRIANGLES:– This selection allows us to draw individual triangles on the
mesh for each three vertices defined within our buffer data. We are required to keep
our vertices at multiples of three for this draw mode.

ff DrawMode.TRIANGLE_FAN: This selection allows us to draw coned or
pyramidal-shaped meshes. As we can see in the previous figure, we start by
specifying a point which defines the top-most point of the cone, then continue
on to specify any number of base points for the shape. This draw mode requires
three or more vertices to be defined within the buffer data.

ff DrawMode.TRIANGLE_STRIP: This selection allows us to easily create customized
polygonal meshes. Every vertice defined in the buffer data after the third vertice of
the initial triangle will result in a new triangle, creating a new "strip". See the figure
representation for an example. This draw mode requires three or more vertices to be
defined within the buffer data.

See also
ff Understanding AndEngine entities given in this chapter.

Bringing a scene to life with sprites
Here, we come to the topic which might be considered to be the most necessary aspect to
creating any 2D game. Sprites allow us to display 2D images on our scene which can be used
to display buttons, characters/avatars, environments and themes, backgrounds, and any
other entity in our game which may require representation by means of an image file. In this
recipe, we'll be covering the various aspects of AndEngine's Sprite entities which will
give us the information we need to continue to work with Sprite objects later on in more
complex situations.

Chapter 2

63

Getting ready…
Before we dive into the inner-workings of how sprites are created, we need to
understand how to create and manage AndEngine's BitmapTextureAtlas/
BuildableBitmapTextureAtlas objects as well as the ITextureRegion object. For
more information, please refer to the recipes, Working with different types of textures and
Applying texture options in Chapter 1, AndEngine Game Structure.

Once these recipes have been covered, create a new empty AndEngine project with the
BaseGameActivity class, provide a PNG formatted image of any size up to 1024 x 1024
pixels in dimension, naming it as sprite.png and place it in the assets/gfx/ folder of
the project, then continue to the How to do it... section of this recipe.

How to do it…
Sprites can be created and applied to our Scene object in just a few quick steps. We must
first set up the necessary texture resources that the sprite will use, we must create the
Sprite object, and then we must attach the Sprite object to our Scene object. See the
following steps for more detail:

1.	 We will start by creating the texture resources in the onCreateResources()
method of our BaseGameActivity class. Make sure the mBitmapTextureAtlas
and mSpriteTextureRegion objects are global variables, so that they can be
reached throughout the various life cycle methods of our activity:
 BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx/");

 /* Create the bitmap texture atlas for the sprite's texture
region */
 BuildableBitmapTextureAtlas mBitmapTextureAtlas = new Buil
dableBitmapTextureAtlas(mEngine.getTextureManager(), 256, 256,
TextureOptions.BILINEAR);

 /* Create the sprite's texture region via the
BitmapTextureAtlasTextureRegionFactory */
 mSpriteTextureRegion = BitmapTextureAtlasTextureRegionFactory.
createFromAsset(mBitmapTextureAtlas, this, "sprite.png");

 /* Build the bitmap texture atlas */
 try {
 mBitmapTextureAtlas.build(new BlackPawnTextureAtlasBuilder<I
BitmapTextureAtlasSource, BitmapTextureAtlas>(0, 1, 1));
 } catch (TextureAtlasBuilderException e) {
 e.printStackTrace();
 }
 /* Load the bitmap texture atlas into the device's gpu memory
*/
 mBitmapTextureAtlas.load();

Working with Entities

64

2.	 Next, we will create the Sprite object. We can create and attach the Sprite object
to the Scene object in either the onCreateScene() or the onPopulateScene()
methods of our activity. The parameters to supply in its constructor include, in this
order, the sprites initial x coordinate, initial y coordinate, ITextureRegion object,
and finally the mEngine object's vertex buffer object manager:

 final float positionX = WIDTH * 0.5f;
 final float positionY = HEIGHT * 0.5f;

 /* Add our marble sprite to the bottom left side of the Scene
initially */
 Sprite mSprite = new Sprite(positionX, positionY,
mSpriteTextureRegion, mEngine.getVertexBufferObjectManager());
The last step is to attach our Sprite to the Scene, as is
necessary in order to display any type of Entity on the device's
display:
 /* Attach the marble to the Scene */
 mScene.attachChild(mSpriteTextureRegion);

How it works…
As it might appear in the steps in the previous section, setting up the
mBitmapTextureAtlas and mSpriteTextureRegion objects actually require more work
than creating and setting up the mSprite object specifically. For this reason, it is encouraged
to complete the two recipes mentioned in the Getting started... section beforehand.

In the first step, we will create our mBitmapTextureAtlas and mSpriteTextureRegion
objects, suitable to the needs of our sprite.png image. Feel free to use any texture options
or texture format in this step. It is a very good idea to get to know them well.

Once we've our ITextureRegion object created and it's ready for use, we can move to step
two where we will create the Sprite object. Creating a sprite is a straightforward task. The
first two parameters will be used to define the initial position of the sprite, relative to its center
point. For the third parameter, we will pass in the ITextureRegion object that we created
in step one in order to provide the sprite with its appearance as an image on the scene.
Finally, we pass in the mEngine.getVertexBufferObjectManager() method,
which is necessary for most entity subtypes.

Once our Sprite object is created, we must attach it to the Scene object before it will
be displayed on the device, or we can attach it to another Entity object which is already
attached to the Scene object. See the Understanding AndEngine entities recipe given in this
chapter for more information on entity composition, placement, and other various must-know
aspects of Entity objects.

Chapter 2

65

There's more...
No game is complete without some sort of sprite animation. After all, a player can only return
to a game so many times before getting bored in a game where the characters slide around
the screen without moving their feet, don't swing their weapon when attacking an enemy, or
even when a grenade simply disappears rather than causing a nice explosion effect. In this
day and age, people want to play games which look and feel nice, and nothing says, "Nice!",
like buttery smooth animating sprites, right?

In the Working with different types of textures recipe in Chapter 1, AndEngine Game
Structure, we'd covered how to create a TiledTextureRegion object which allows us to
import useable sprite sheets into our game as a texture. Now let's find out how we can use
that TiledTextureRegion object with an AnimatedSprite object in order to add some
animation to our game's sprites. For this demonstration, the code will be working with an
image of 300 x 50 pixels in dimension. The sprite sheet can be something as simple as the
following figure, just to get an idea of how to create the animation:

The sprite sheet in the previous figure can be used to create a TiledTextureRegion
object with 12 columns and 1 row. Creating the BuildableBitmapTextureAtlas and
TiledTextureRegion objects for this sprite sheet can be done with the following code.
However, before importing this code, be sure to make a global declaration of the texture
region—TiledTextureRegion mTiledTextureRegion—in your test project:

 /* Create the texture atlas at the same dimensions as the image
(300x50)*/
 BuildableBitmapTextureAtlas mBitmapTextureAtlas = new BuildableBit
mapTextureAtlas(mEngine.getTextureManager(), 300, 50, TextureOptions.
BILINEAR);

 /* Create the TiledTextureRegion object, passing in the usual
parameters,
 * as well as the number of rows and columns in our sprite sheet
for the
 * final two parameters */
 mTiledTextureRegion = BitmapTextureAtlasTextureRegionFactory.creat
eTiledFromAsset(mBitmapTextureAtlas, this, "gfx/sprite_sheet.png", 12,
1);

 /* Build and load the mBitmapTextureAtlas object */
 try {

Working with Entities

66

 mBitmapTextureAtlas.build(new BlackPawnTextureAtlasBuilder<IBitm
apTextureAtlasSource, BitmapTextureAtlas>(0, 0, 0));
 } catch (TextureAtlasBuilderException e) {
 e.printStackTrace();
 }
 mBitmapTextureAtlas.load();

Now that we've got the mTiledTextureRegion sprite sheet to play with in our project, we
can create and animate the AnimatedSprite object. If you are using a sprite sheet with
black circles as seen in the previous figure, don't forget to change the color of the Scene
object to a non-black color so we can see the AnimatedSprite object:

 /* Create a new animated sprite in the center of the scene */
 AnimatedSprite animatedSprite = new AnimatedSprite(WIDTH
* 0.5f, HEIGHT * 0.5f, mTiledTextureRegion, mEngine.
getVertexBufferObjectManager());

 /* Length to play each frame before moving to the next */
 long frameDuration[] = {100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 1100, 1200};

 /* We can define the indices of the animation to play between */
 int firstTileIndex = 0;
 int lastTileIndex = mTiledTextureRegion.getTileCount();

 /* Allow the animation to continuously loop? */
 boolean loopAnimation = true;

 * Animate the sprite with the data as set defined above */
 animatedSprite.animate(frameDuration, firstTileIndex,
lastTileIndex, loopAnimation, new IAnimationListener(){

 @Override
 public void onAnimationStarted(AnimatedSprite pAnimatedSprite,
 int pInitialLoopCount) {
 /* Fired when the animation first begins to run*/
 }

 @Override
 public void onAnimationFrameChanged(AnimatedSprite
pAnimatedSprite,
 int pOldFrameIndex, int pNewFrameIndex) {
 /* Fired every time a new frame is selected to display*/
 }

 @Override

Chapter 2

67

 public void onAnimationLoopFinished(AnimatedSprite
pAnimatedSprite,
 int pRemainingLoopCount, int pInitialLoopCount) {
 /* Fired when an animation loop ends (from first to last
frame) */
 }

 @Override
 public void onAnimationFinished(AnimatedSprite pAnimatedSprite)
{
 /* Fired when an animation sequence ends */
 }
);

 mScene.attachChild(animatedSprite);

Creating the AnimatedSprite object can be done following the steps in this recipe while
creating a regular Sprite object. Once it's created, we are able to set up its animation data,
including individual frame duration, first and last tile indices to animate through, and whether
or not to loop the animation continuously. Note that the frameDuration array must be equal
to the frame count! Failing to follow this rule will result in an IllegalArgumentException
exception. Once the data has been set up, we can call the animate() method on the
AnimatedSprite object, supplying all of the data and adding an IAnimationListener
listener if we wish. As the comments in the listener suggest, we gain a large portion of control
over the animations with AndEngine's AnimatedSprite class.

Using OpenGL's dithering capability
When developing visually appealing games on the mobile platform, it is a likely scenario
that we'll want to include some gradients in our images, especially when dealing with 2D
graphics. Gradients are great for creating lighting effects, shadows, and many other objects
we'd otherwise not be able to apply to a full 2D world. The problem lies in the fact that we're
developing for mobile devices, so we unfortunately do not have an unlimited amount of
resources at our disposal. Because of this, AndEngine down-samples the surface view color
format to RGB_565 by default. Regardless of the texture format we define within our textures,
they will always be down-sampled before being displayed on the device. We could alter the
color format applied to AndEngine's surface view, but it's likely that the performance-hit will
not be worth it when developing larger games with many sprites.

Working with Entities

68

Here, we have two separate screenshots of a simple sprite with a gradient texture; both
textures are using the RGBA_8888 texture format and BILINEAR texture filtering (the
highest quality).

The image on the right-hand side is applied to the Scene object without any modifications,
while the image on the left-hand side has OpenGL's dithering capability enabled. The
difference between the two otherwise identical images is immediately noticeable. Dithering is
a great way for us to combat down-sampling applied by the surface view without us having to
rely on maximum color quality formats. In short, by dithering low-levels of randomized noise
within our image's colors, it results in a smoother finish which is found in the image to the left.

Enabling dithering is simple to apply to our entities in AndEngine, but as with everything, it's
wise to pick and choose which textures apply dithering. The algorithm does add a little bit of
extra overhead, where if used too often could result in a larger performance loss than simply
reverting our surface view to RGBA_8888. In the following code, we are enabling dithering in
our preDraw() method and disabling it in our postDraw() method:

@Override
protected void preDraw(GLState pGLState, Camera pCamera) {
 // Enable dithering
 pGLState.enableDither();
 super.preDraw(pGLState, pCamera);
}

@Override
protected void postDraw(GLState pGLState, Camera pCamera) {

Chapter 2

69

 // Disable dithering
 pGLState.disableDither();
 super.postDraw(pGLState, pCamera);
}

Dithering can be applied to any subtype of AndEngine's Shape class (Sprites, Text,
primitives, and so on.).

For more information about OpenGL ES 2.0 and how to work with all of
the different functions, visit the link at http://www.khronos.org/
opengles/sdk/docs/man/.

See also
ff Working with different types of textures in Chapter 1, Working with Entities

ff Applying texture options in Chapter 1, Working with Entities.

ff Understanding AndEngine entities in this chapter.

Applying text to a layer
Text is an important part of game development as it can be used to dynamically display point
systems, tutorials, descriptions, and more. AndEngine also allows us to create text styles
which suit individual game types better by specifying customized Font objects. In this recipe,
we're going to create a Text object, which updates itself with the current system time as well
as correct its position every time the length of the string grows or shrinks. This will prepare us
for the use of Text objects in cases where we need to display scores, time, and other non-
specific dynamic string situations.

Getting ready…
Applying Text objects to our Scene object requires a working knowledge of AndEngine's
font resources. Please perform the the recipe, Using AndEngine font resources in Chapter 1,
Working with Entities, then proceed with the How to do it... section of this recipe. Refer to the
class named ApplyingText in the code bundle for this recipe's activity in code.

Working with Entities

70

How to do it…
When applying Text objects to our Scene object, we are required to create a Font object
which will define the text's style, and create the Text object itself. See the folllowing steps
for the specific actions we must take in order to properly display a Text object on our scene:

1.	 The first step to creating any Text object is to prepare ourselves a Font object.
The Font object will act as the resource which defines the style of the Text
object. Additionally, we need to prepare the letters that we plan for the Text
object to display:
 mFont = FontFactory.create(mEngine.getFontManager(),
 mEngine.getTextureManager(), 256, 256,
 Typeface.create(Typeface.DEFAULT, Typeface.NORMAL), 32f,
true,
 Color.WHITE);
 mFont.load();

 /*
 * Prepare the mFont object for the most common characters
used. This
 * will eliminate the need for the garbage collector to run
when using a
 * letter/number that's never been used before
 */
 mFont.prepareLetters("Time: 1234567890".toCharArray());
Once we've got our Font object created and ready for use, we can
create the Text:
 /* Create the time Text object which will update itself as
time passes */
 Text mTimeText = new Text(0, timeTextHeight, mFont, TIME_
STRING_PREFIX
 + TIME_FORMAT, MAX_CHARACTER_COUNT, mEngine.
getVertexBufferObjectManager()) {

 // Overridden methods as seen in step 3...
 };

2.	 If we're dealing with final strings which may never change, only the first two
steps need to be covered. However, in this recipe we will need to override the
onManagedUpdate() method of the Text entity in order to make adjustments
to its string over time. In this case, we're updating the time value of the string
after every second passed:

 int lastSecond = 0;

 @Override

Chapter 2

71

 protected void onManagedUpdate(float pSecondsElapsed) {

 Calendar c = Calendar.getInstance();

 /*
 * We will only obtain the second for now in order to verify
 * that it's time to update the Text's string
 */
 final int second = c.get(Calendar.SECOND);

 /*
 * If the last update's second value is not equal to the
 * current...
 */
 if (lastSecond != second) {

 /* Obtain the new hour and minute time values */
 final int hour = c.get(Calendar.HOUR);
 final int minute = c.get(Calendar.MINUTE);

 /* also, update the latest second value */
 lastSecond = second;

 /* Build a new string with the current time */
 final String timeTextSuffix = hour + ":" + minute + ":"
 + second;

 /* Set the Text object's string to that of the new time */
 this.setText(TIME_STRING_PREFIX + timeTextSuffix);

 /*
 * Since the width of the Text will change with every
change
 * in second, we should realign the Text position to the
 * edge of the screen minus half the Text's width
 */
 this.setX(WIDTH - this.getWidth() * 0.5f);
 }

 super.onManagedUpdate(pSecondsElapsed);
 }
Finally, we can make color adjustments to the Text and then attach
it to the Scene or another Entity:
 /* Change the color of the Text to blue */
 mTimeText.setColor(0, 0, 1);

 /* Attach the Text object to the Scene */
 mScene.attachChild(mTimeText);

Working with Entities

72

How it works…
By this point, we should already have an understanding of how to create the Font object as
we had discussed it in the first chapter. If creating Font objects is not yet understood, please
visit the recipe, Using AndEngine font resources in Chapter 1, Working with Entities.

In the first step, we are simply creating a basic Font object which will create a rather generic
style for our Text object. Once the Font object has been created, we are preparing only
the necessary characters that will be displayed throughout the life of the Text object with
the mFont.prepareLetters() method. Doing so allows us to avoid garbage collector
invocations within the Font object. The values used in this recipe will obviously range from
0 to 9 as we are dealing with time, as well as the individual characters that make up the
string, Time:.

Once step one is completed, we can move onto step two where we create the Text
object. The Text object requires that we specify its initial position on the screen in x and
y coordinates, the Font object to use as a style, the initial string to display, its maximum
character count, and finally the vertex buffer object manager as needed by all Entity
objects. However, since we're dealing with a dynamically-updating String value for this
Text object, which will require adjustments on the x axis, the parameters including the
x coordinate as well as the initial string are not so important as they will be adjusted
frequently during updates to the Text object. The most important parameter is the
maximum character count. Failing to keep the Text object's maximum character count
below that of the value specified within this parameter will result in the application receiving
an ArrayIndexOutOfBoundsException exception and will likely require termination.
For this reason, we are adding up the length of the largest string as seen in the following
code snippet:

 private static final String TIME_STRING_PREFIX = "Time: ";
 private static final String TIME_FORMAT = "00:00:00";

 /* Obtain the maximum number of characters that our Text
 * object will need to display*/
 private static final int MAX_CHARACTER_COUNT = TIME_STRING_PREFIX.
length() + TIME_FORMAT.length();

In the third step, we are overriding the Text object's onManagedUpdate() method in order
to apply changes to the Text object's string after every second passed. At first, we simply
obtain the device's current second value, using it to compare with the second value in the
previous call to the Text object's onManagedUpdate() method. This allows us to avoid
updating the Text object with the system time on every single update. If the previous
second that the Text object's string was updated with is not the same as the new second
value, then we continue on to obtain the current minute and hour values as well via the
Calendar.getInstance().get(HOUR) method and MINUTE variation. Now that
we've got all of the values, we build a new string containing the updated time, and call
setText(pString) on the Text object to change the string it will display on the device.

Chapter 2

73

However, due to the fact that each individual character width might have a different value,
we also need to make corrections in the position in order to keep the full Text object on the
screen. By default, the anchor position is set to the center of an Entity object, so by calling
this.setX(WIDTH - this.getWidth() * 0.5f), where this refers to the Text
object, we position the entity's center-most point at the maximum screen width to the right,
and then subtract half of the entity's width. This will allow the text to sit right along the edge
of the screen even after its characters change the width of the Text object.

There's more...
Sometimes our games may require a little bit of formatting to the Text object's strings. In
cases where we need to adjust the Text object's horizontal alignment, apply auto-wrapping
to the text if its string exceeds a certain width, or a leading space to the text, we can do these
with some very easy-to-use methods. The following methods can be called directly on the
Text object; for example, mText.setLeading(3):

ff setAutoWrap(pAutoWrap): This method allows us to define whether or not,
and if so, how a Text entity will perform auto-wrapping. The options we have for
parameters include AutoWrap.NONE, AutoWrap.LETTERS, AutoWrap.WORDS,
and AutoWrap.CJK. With LETTERS, line break won't wait for a whitespace before
breaking to a new line while WORDS will. The CJK variant is an option which allows
auto-wrapping for Chinese, Japanese, and Korean characters. This method should
be used alongside setAutoWrapWidth(pWidth), where pWidth defines the
maximum width of any single line within the Text object's string, causing line-breaks
when necessary.

ff setHorizontalAlign(pHorizontalAlign): This method allows us to define
the type of alignment the Text object's string should follow. The parameters include
HorizontalAlign.LEFT, HorizontalAlign.CENTER, and HorizontalAlign.
RIGHT. The result is similar to what we'd see when setting alignment within a
text editor.

ff setLeading(pLeading): This method allows us to set a leading space at the
beginning of the Text object's string. The parameter required is a float value,
which defines the leading width of the string.

See also
ff Using AndEngine font resources in Chapter 1, Working with Entities.

ff Overriding the onManagedUpdate method in this chapter.

Working with Entities

74

Using relative rotation
Rotating entities relative to the position of other entities in 2D space is a great function to
know. The uses for relative rotation are limitless and always seems to be a "hot topic" for
newer mobile game developers. One of the more prominent examples of this technique being
used is in tower-defense games, which allows a tower's turret to aim towards the direction
that an enemy, non-playable character is walking. In this recipe, we're going to introduce a
method of rotating our Entity objects in order to point them in the direction of a given x/y
position. The following image displays how we will create an arrow on the scene, which will
automatically point to the position of the circle image, wherever it moves to:

Getting ready…
We'll need to include two images for this recipe; one named marble.png at 32 x 32 pixels
in dimension and another named arrow.png at 31 pixels wide by 59 pixels high. The marble
can be any image. We will simply drag this image around the scene as we please. The arrow
image should be in the shape of an arrow, with the arrowhead pointing directly upward on the
image. See the screenshot in the introduction for an example of the images to include. Include
these assets in an empty BaseGameActivity test project then please refer to the class
named RelativeRotation in the code bundle.

How to do it…
Follow these steps:

1.	 Implement the IOnSceneTouchListener listener in the BaseGameActivity class:
public class RelativeRotation extends BaseGameActivity implements
IOnSceneTouchListener{

Chapter 2

75

2.	 Set the Scene object's onSceneTouchListener in the activity's
onCreateScene() method:
mScene.setOnSceneTouchListener(this);

3.	 Populate the Scene object with the marble and arrow sprites. The arrow sprite is
positioned in the center of the scene, while the marble's position is updated to the
coordinates of any touch event location:
 /* Add our marble sprite to the bottom left side of the Scene
initially */
 mMarbleSprite = new Sprite(mMarbleTextureRegion.getWidth(),
mMarbleTextureRegion.getHeight(), mMarbleTextureRegion, mEngine.
getVertexBufferObjectManager());

 /* Attach the marble to the Scene */
 mScene.attachChild(mMarbleSprite);

 /* Create the arrow sprite and center it in the Scene */
 mArrowSprite = new Sprite(WIDTH * 0.5f, HEIGHT * 0.5f,
mArrowTextureRegion, mEngine.getVertexBufferObjectManager());

 /* Attach the arrow to the Scene */
 mScene.attachChild(mArrowSprite);

4.	 Step four introduces the onSceneTouchEvent() method which handles the
movement of the marble sprite via a touch event on the device's display:

 @Override
 public boolean onSceneTouchEvent(Scene pScene, TouchEvent
pSceneTouchEvent) {
 // If a user moves their finger on the device
 if(pSceneTouchEvent.isActionMove()){

 /* Set the marble's position to that of the touch even
coordinates */
 mMarbleSprite.setPosition(pSceneTouchEvent.getX(),
pSceneTouchEvent.getY());

 /* Calculate the difference between the two sprites x and y
coordinates */
 final float dX = mMarbleSprite.getX() - mArrowSprite.getX();
 final float dY = mMarbleSprite.getY() - mArrowSprite.getY();

 /* Calculate the angle of rotation in radians*/
 final float angle = (float) Math.atan2(-dY, dX);

Working with Entities

76

 /* Convert the angle from radians to degrees, adding the
default image rotation */
 final float rotation = MathUtils.radToDeg(angle) + DEFAULT_
IMAGE_ROTATION;

 /* Set the arrow's new rotation */
 mArrowSprite.setRotation(rotation);

 return true;
 }

 return false;
 }

How it works…
In this class, we're creating a sprite which is represented by an arrow image and
placing it in the direct center of the screen, automatically pointing to a another sprite
represented by a marble. The marble is draggable via touch events through the use of an
IOnSceneTouchListener listener implementation within our BaseGameActivity class.
We then register the touch listener to the mScene object. In situations where an entity rotates
according to another entity's position, we'll have to include the rotation functionality in some
method that is consistently updated, otherwise our arrow would not continuously react. We
can do this through update threads, but in this instance we'll include that functionality in the
onSceneTouchEvent() overridden method as the "target" will not actually move until we
touch the scene anyway.

In the first step, we're allowing our activity to override the onSceneTouchEvent() method
by implementing the IOnSceneTouchListener interface. Once we've implemented
the touch listener, we can take care of step two and allow the Scene object to receive
touch events and respond according to the code situated inside the activity's overridden
onSceneTouchEvent() method. This is done with the setOnSceneTouchListener(pSc
eneTouchListener) method.

In step four, the if(pSceneTouchEvent.isActionMove()) conditional statement
determines whether a finger is moving over the scene, updating the marble's position, and
calculating the new rotation for the arrow sprite if the conditional statement returns true.

We first start by updating the marble's position to the location of touch through the use of the
setPosition(pX, pY) method as seen in the following code snippet:

mMarbleSprite.setPosition(pSceneTouchEvent.getX(), pSceneTouchEvent.
getY());

Chapter 2

77

Next, we subtract the pointer's x/y coordinates from the target's x/y coordinates. This gives
us the difference between each of the sprites' coordinates which will be used to calculate the
angle between the two positions. In this case, the pointer is the mArrowSprite object and
the target is the mMarbleSprite object:

/* Calculate the difference between the two sprites x and y
coordinates */
final float dX = mMarbleSprite.getX() - mArrowSprite.getX();
final float dY = mMarbleSprite.getY() - mArrowSprite.getY();

/* Calculate the angle of rotation in radians*/
final float angle = (float) Math.atan2(-dY, dX);

Lastly, since AndEngine's setRotation(pRotation) method uses degrees and the
atan2(pY, pX) method returns radians, we must perform a simple conversion. We will use
AndEngine's MathUtils class which includes a radToDeg(pRadian) method to convert
our angle value from radians to degrees. Once we obtain the correct angle in degrees, we will
set the mArrowSprite object's rotation:

/* Convert the angle from radians to degrees, adding the default image
rotation */
final float rotation = MathUtils.radToDeg(angle) + DEFAULT_IMAGE_
ROTATION;

/* Set the arrow's new rotation */
mArrowSprite.setRotation(rotation);

One last thing to note is that the DEFAULT_IMAGE_ROTATION value is an int value which
represents 90 degrees. This value is simply used to offset the rotation of the mArrowSprite
sprite, otherwise we would be required to properly rotate the image within our image editing
software. If the pointer within our custom images is not facing the uppermost point of the
image, this value may require adjustments in order to properly align the pointer with
the target.

Overriding the onManagedUpdate method
Overriding an Entity object's onManagedUpdate() method can be extremely useful in
all types of situations. By doing so, we can allow our entities to execute code every time the
entity is updated through the update thread, occuring many times per second unless the
entity is set to ignore updates. There are so many possibilities including animating our entity,
checking for collisions, producing timed events, and much more. Using our Entity objects's
onManagedUpdate() method also saves us from having to create and register new timer
handlers for time-based events for a single entity.

Working with Entities

78

Getting ready…
This recipe requires basic knowledge of the Entity object in AndEngine. Please read through
the entire recipe, Understanding AndEngine entities given in this chapter, then create a new
empty AndEngine project with a BaseGameActivity class and refer to the class named
OverridingUpdates in the code bundle.

How to do it…
In this recipe, we are creating two Rectangle objects. One rectangle will remain in the center
of the scene, rotating consistently. The second rectangle will continuously move from left to
right and bottom to top on the scene, resetting back to the left-hand side when it reaches
the right, and resetting back to the bottom when it reaches the top of the scene. Additionally,
the moving rectangle will turn green anytime it collides with the center rectangle. All of these
movements and conditionals will be applied and executed through the use of each object's
overridden onManagedUpdate(pSecondsElapsed) method.

1.	 Override the first Rectangle object's onManagedUpdate() method for
continuous rotation:
 /* Value which defines the rotation speed of this Entity */
 final int rotationIncrementalFactor = 25;

 /* Override the onManagedUpdate() method of this Entity */
 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {

 /* Calculate a rotation offset based on time passed */
 final float rotationOffset = pSecondsElapsed *
rotationIncrementalFactor;

 /* Apply the rotation offset to this Entity */
 this.setRotation(this.getRotation() + rotationOffset);

 /* Proceed with the rest of this Entity's update process */
 super.onManagedUpdate(pSecondsElapsed);
 }

2.	 Override the second Rectangle object's onManagedUpdate() method for
continuous position updates, conditional checking, and collision detection:

 /* Value to increment this rectangle's position by on each
update */
 final int incrementXValue = 5;

 /* Obtain half the Entity's width and height values */

Chapter 2

79

 final float halfWidth = this.getWidth() * 0.5f;
 final float halfHeight = this.getHeight() * 0.5f;

 /* Override the onManagedUpdate() method of this Entity */
 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {

 /* Obtain the current x/y values */
 final float currentX = this.getX();
 final float currentY = this.getY();

 /* obtain the max width and next height, used for condition
checking */
 final float maxWidth = currentX + halfWidth;
 final float nextHeight = currentY + halfHeight;

 // On every update...
 /* Increment the x position if this Entity is within the
camera WIDTH */
 if(maxWidth <= WIDTH){
 /* Increase this Entity's x value by 5 pixels */
 this.setX(currentX + incrementXValue);
 } else {
 /* Reset the Entity back to the bottom left of the Scene
if it exceeds the mCamera's
 * HEIGHT value */
 if(nextHeight >= HEIGHT){
 this.setPosition(halfWidth, halfHeight);
 } else {
 /* if this Entity reaches the WIDTH value of our camera,
move it
 * back to the left side of the Scene and slightly
increment its y position */
 this.setPosition(halfWidth, nextHeight);
 }
 }

 /* If the two rectangle's are colliding, set this
rectangle's color to GREEN */
 if(this.collidesWith(mRectangleOne) && this.getColor() !=
org.andengine.util.adt.color.Color.GREEN){
 this.setColor(org.andengine.util.adt.color.Color.GREEN);

 /* If the rectangle's are no longer colliding, set this
rectangle's color to RED */

Working with Entities

80

 } else if(this.getColor() != org.andengine.util.adt.color.
Color.RED){
 this.setColor(org.andengine.util.adt.color.Color.RED);
 }

 /* Proceed with the rest of this Entity's update process */
 super.onManagedUpdate(pSecondsElapsed);
 }

How it works…
In the first Rectangle object that we created, we are overriding its onManagedUpdate(pSe
condsElapsed) method to continuously update the rotation to a new value. For the second
Rectangle object, we're moving it from the far left-hand side of the screen to the far
right-hand side of the screen continuously. Once the second rectangle reaches the far
right-hand side of the screen, it is repositioned back to the left-hand side and we raise
the Rectangle object on the scene by half of the Rectangle object's height. Additionally,
when the two rectangles overlap, the moving rectangle will change its color to green until
they are no longer touching.

The code in step one allows us to create an event every time the entity is updated. In this
specific overridden method, we're calculating a rotation offset for the Rectangle object
based on the seconds passed since it was last updated. Because the entity is updated many
times per second, depending on the number of frames per second the device is able to
achieve, we multiply pSecondsElapsed by 25 in order to increase the rotation speed a bit.
Otherwise, we'd be rotating our entity along the lines of 0.01 degrees every update which
would take quite a while for an object to make a full revolution at that rate. We can use the
pSecondsElapsed update to our advantage when dealing with updates in order to make
modifications to events based on time passed since the last update.

Step two is a little bit more robust than the first step. In step two, we are overriding the
second rectangle's onManagedUpdate() method in order to perform position-checking,
collision-checking, and updating the rectangle's position on every update to the entity. To
start off, we are declaring variables which will contain values such as the current position
of the entity, the half width and half height values of the entity for proper offsetting from the
anchor center, and the next update position used for checking the position. Doing so allows
us to reduce the number of calculations needed throughout the entity's update. Applying
poorly-optimized code in the update thread can lead to lowered frame rate very quickly. It is
important to make as method calls and calculations as possible; for example, obtaining the
currentX value five times throughout the onManagedUpdate() method would be more
ideal than calling this.getX() five times.

Chapter 2

81

Continuing on with the position-checking and updating in step two, we start off by determining
whether the Rectangle object's anchor center plus half its width, which is represented by
the maxWidth variable, is less than or equal to the WIDTH value that represents the furthest
coordinate to the right of the display. If true, we proceed to increment the x coordinate of the
Rectangle object by incrementXValue, which is equal to 5 pixels. On the other hand,
we will either reset the Rectangle object back to the bottom-left corner of the scene if the
nextHeight value is greater than or equal to our camera's HEIGHT value, or simply increase
the Rectangle object's height by half its width and return it to the left-hand side of the
display if the rectangle has not yet reached the top of the display.

Finally, we've got our collision-checking method within the onManagedUpdate() method
of our second Rectangle object. By calling this.collidesWith(mRectangleOne), we
can determine whether or not the this object is overlapping with the object specified, or in
this case, mRectangleOne. We will then make one additional check to determine whether or
not the color is not already equal to the color we plan on changing the Rectangle object to
if collision is detected; setting the Rectangle object to green if the conditions return true.
However, collidesWith() can be a rather expensive collision-checking method if it is
being performed by multiple Entity objects on every update! In this recipe, we're purely
using this collision-checking method as an example. One option to look into would be to
perform a lightweight distance detection between the two objects prior to performing the
collision detection.

There's more…
As briefly mentioned before, all children receive the update call from their parent. Child
entities in this case also inherit the modified pSecondsElapsed value of the parent. We can
even go as far as slowing our entire Scene object, including all of its children, by overriding its
onManagedUpdate() method and reducing the pSecondsElapsed value like so:

super.onManagedUpdate(pSecondsElapsed * 0.5f);

Returning a value equal to half the pSecondsElapsed value to the super method would
cause all entities attached to that Scene object to slow down by half in all aspects. That's
just a little something to keep in mind when considering options for pausing or creating a
slow motion effect for our games.

Using modifiers and entity modifiers
AndEngine provides us with what are known as modifiers and entity modifiers. Through
the use of these modifiers we can apply neat effects to our entities with great ease. These
modifiers apply specific changes to an Entity object over a defined period of time, such
as movement, scaling, rotation, and more. On top of that, we can include listeners and ease
functions to entity modifiers for full control over how they work, making them some of the
most powerful-to-use methods for applying certain types of animation to our Scene object
in AndEngine.

Working with Entities

82

Before continuing, we should mention that a modifier and an entity modifier in
AndEngine are two different objects. A modifier is meant to be applied directly
to an entity, causing modifications to an entity's properties over time, such
as scaling, movement, and rotation. An entity modifier on the other hand, is
meant to act as a container for any number of modifiers, which handle the
order in which a group of modifiers are executed. This will be discussed more
in depth throughout this recipe.

Getting ready…
This recipe requires basic knowledge of the Entity object in AndEngine. Please read through
the entire recipe, Understanding AndEngine entities given in this chapter, then create a new
empty AndEngine project with a BaseGameActivity class and then refer to the How to do
it... section of this recipe.

How to do it…
In this recipe, we're going to cover AndEngine's entity modifiers, including modifier listeners
and ease functions to apply smooth transitional effects to the modifiers. If that sounds
confusing, have no fear! AndEngine modifiers are actually very simple to work with and can be
used to apply different types of animations to our Entity objects in as little as a few steps
for basic modifiers. The following steps cover setting up an Entity object with a movement
modifier which will ease us into further discussion of entity modifiers. Import the code in these
steps to the onPopulateScene() method of the activity:

1.	 Create and attach any type of entity to the Scene object. We will be applying entity
modifiers to this entity:
/* Define the rectangle's width/height values */
final int rectangleDimensions = 80;

/* Define the initial rectangle position in the bottom
 * left corner of the Scene */
final int initialPosition = (int) (rectangleDimensions * 0.5f);

/* Create the Entity which we will apply modifiers to */
Rectangle rectangle = new Rectangle(initialPosition,
initialPosition, rectangleDimensions, rectangleDimensions,
mEngine.getVertexBufferObjectManager());

/* Set the rectangle's color to white so we can see it on the
Scene */
rectangle.setColor(org.andengine.util.adt.color.Color.WHITE);

/* Attach the rectangle to the Scene */
mScene.attachChild(rectangle);

Chapter 2

83

2.	 Once we've got an entity placed on our Scene object, we can start to create our
modifiers. In this step, we'll be creating a MoveModifier object, which allows us to
apply a positional change to an entity over time. But first, we will define its values:
/* Define the movement modifier values */
final float duration = 3;
final float fromX = initialPosition;
final float toX = WIDTH - rectangleDimension * 0.5f;
final float fromY = initialPosition;
final float toY = HEIGHT - rectangleDimension * 0.5f;

/* Create the MoveModifier with the defined values */
MoveModifier moveModifier = new MoveModifier(duration, fromX,
fromY, toX, toY);

3.	 Now that we've got our moveModifier object created and set up as we'd like, we
can register this modifier to any entity we wish with the following call, which will start
the movement effect:

/* Register the moveModifier to our rectangle entity */
rectangle.registerEntityModifier(moveModifier);

How it works…
The topic of entity modifiers is quite extensive, so we will start by jumping in to the steps. From
there we will use the steps as a base foundation for us to dive deeper into more complex
discussions and examples on the use of entity modifiers.

In the first step, we're simply creating our Entity object, which is a Rectangle in this case,
that we'll be using as our test subject for applying modifiers to. Simply add the code in this
step to the onPopulateScene() method; this code shall remain untouched throughout our
upcoming modifier and entity modifier "experiments".

In the second step, we will start to work with one of the most basic modifiers, which is of
course the MoveModifier modifier. This modifier simply allows us define a start position
for the movement, an ending position for the movement, and a duration, in seconds, that it
will take to move from the starting point to the ending point. This is very simple stuff as we
can see and what's most notable about modifiers is that, for the most part, this is all it really
takes to set up most modifiers. All modifiers really require is a "from" value, a "to" value, and
a duration defining the time in seconds in which "from-to" occurs. Keep that in mind and
working with modifiers will be an absolute breeze for the most part!

Next, in our third step we simply apply our newly created moveModifier object to our
rectangle object via the registerEntityModifier(pModifier) method. This will
apply the moveModifier effect to the rectangle, first positioning it to its "from" coordinate,
then move it to the "to" coordinates over a 3 second time span.

Working with Entities

84

We know that to register a modifier or entity modifier to an Entity object, we can call
entity.registerEntityModifier(pEntityModifier), but we should also know
that once we are finished with a modifier we should remove it from the Entity object. We
can do this by either calling entity.unregisterEntityModifier(pEntityModifi
er) or if we want to remove all entity modifiers attached to an Entity object, we can call
entity.clearEntityModifiers(). On the other hand, if a modifier or entity modifier
runs its full duration and we're not quite ready to remove it from the entity, we must call
modifier.reset() in order to replay the effect. Or if we'd like to make a small adjustment
to the modifier before replaying the effect, we can call modifier.reset(duration,
fromValue, toValue). Where the parameters in the reset method would be relative
to the type of modifier we're resetting.

The moveModifier object works, but it's dreadfully boring! After all, we're just moving a
rectangle from the bottom-left corner of our scene to the upper-right corner. Fortunately, that's
only just scratching the surface of modifier application. The following subheading contains a
reference, and example where necessary, to all of the modifiers that AndEngine is capable of
applying to our Entity objects.

AndEngine's modifiers
The following is a collection of all of the AndEngine modifiers that we are able to apply to our
entities. The more advanced modifiers will be provided with a quick example code snippet.
Feel free to try them out in your test project as we cover them:

ff AlphaModifier: Adjust the alpha value of an entity over time with this modifier.
The parameters for the constructor include duration, from alpha, and to alpha,
in that order.

ff ColorModifier: Adjust the color values of an entity over time with this modifier.
The parameters for the constructor include duration, from red, to red, from green,
to green, from blue, and to blue, in that order.

ff DelayModifier: This modifier is meant to be attributed to the entity modifier
objects in order to provide a delay between one modifier being executed and
another modifier being executed. The parameter includes duration.

ff FadeInModifier: Based on the AlphaModifier class, the FadeInModifier
modifier changes an entity's alpha value from 0.0f to 1.0f over a defined duration,
supplied in the constructor.

ff FadeOutModifier: Similar to FadeOutModifier, except the alpha values
are swapped.

ff JumpModifier: This modifier can be used to apply a "jump" motion to an entity.
The parameters include duration, from x, to x, from y, to y, and jump height. These
values will define the distance and height that the entity appears to jump over the
defined duration.

Chapter 2

85

ff MoveByModifier: This modifier allows us to offset the position of an entity.
The parameters include duration, x offset, and y offset, in that order. For example,
specifying an offset of -15 will move the entity to the left by 15 units on the scene.

ff MoveXModifier and MoveYModifier: These modifiers, similar to MoveModifier,
allow us to provide movement to an entity. However, these methods apply the
movement only on a single axis as determined by the method names. The
parameters include duration, from coordinate, and to coordinate, in that order.

ff RotationAtModifier: This modifier allows us to apply a rotation to the entity
while offsetting the center of rotation. The parameters include duration, from
rotation, to rotation, rotation center x, and rotation center y.

ff RotationByModifier: This modifier allows us to offset the entity's current rotation
value. The parameters include duration and rotation offset value. For example,
providing a rotation offset value of 90 will rotate the entity ninety degrees clockwise.

ff RotationModifier: This modifier allows us to rotate an entity from a specific
value, to another specific value. The parameters include duration, from rotation,
and to rotation.

ff ScaleAtModifier: This modifier allows us to scale an entity while offsetting the
center of scaling. The parameters include duration, from scale, to scale, scale center
x, and scale center y.

ff ScaleModifier: This modifier allows us to scale an entity from a specific value, to
another specific value. The parameters include duration, from scale, and to scale,
in that order.

ff SkewModifier: This modifier allows us to skew an entity's x and y values over time.
The parameters include duration, from skew x, to skew x, from skew y, and to skew y,
in that specific order.

ff PathModifier: This modifier is relative to MoveModifier, except we are able to
add as many "to" coordinates as we please. This allows us to create a path on the
Scene object for the entity to follow by specifying pairs of x/y coordinates for the
PathModifier modifier. See the following steps for a walkthrough on the topic
of creating a PathModifier modifier for our entities:

1.	 Define the way-points for the path. The way-point arrays for the x and y
coordinates should have the same number of points, as they will be paired
up in order to make a single x/y coordinate for PathModifier. We must
have at least two points set in each of the arrays, as we'll need at least a
start and end point:
 /* Create a list which specifies X coordinates to follow
*/
 final float pointsListX[] = {
 initialPosition, /* First x position */
 WIDTH - initialPosition, /* Second x position */
 WIDTH - initialPosition, /* Third x position */
 initialPosition, /* Fourth x position */
 initialPosition /* Fifth x position */

Working with Entities

86

 };

 /* Create a list which specifies Y coordinates to follow
*/
 final float pointsListY[] = {
 initialPosition, /* First y position */
 HEIGHT - initialPosition, /* Second y position */
 initialPosition, /* Third y position */
 HEIGHT - initialPosition, /* Fourth y position */
 initialPosition /* Fifth y position */
 };

2.	 Create a Path object which we will use to pair the individual points in the
separate arrays into way-points. We do this by iterating through the arrays
and calling the to(pX, pY) method on the path object. Note that every
time we call this method, we are adding an additional way-point to the
path object:
 /* Obtain the number of control points we have */

 final int controlPointCount = pointsListX.length;

 /* Create our Path object which we will pair our x/y
coordinates into */

 org.andengine.entity.modifier.PathModifier.Path path =
new Path(controlPointCount);

 /* Iterate through our point lists */

 for(int i = 0; i < controlPointCount; i++){

 /* Obtain the coordinates of the control point at the
index */

 final float positionX = pointsListX[i];

 final float positionY = pointsListY[i];

 /* Setup a new way-point by pairing together an x and
y coordinate */

 path.to(positionX, positionY);

 }

3.	 Lastly, once we've defined our way-points, we can create the PathModifier
object, supplying a duration as well as our path object as the parameters:

 /* Movement duration */
 final float duration = 3;

Chapter 2

87

 /* Create the PathModifier */
 PathModifier pathModifier = new PathModifier(duration,
path);

 /* Register the pathModifier object to the rectangle */
 rectangle.registerEntityModifier(pathModifier);

ff CardinalSplineMoveModifier: This is the final modifier we will be discussing.
This modifier is relatively similar to the PathModifier modifier, except we are able
to apply tension to the Entity object's movement. This allows for a more fluid and
smooth movement when approaching corners, or reversing direction, which looks
quite nice actually. See the following steps for a walkthrough on the topic of
creating a CardinalSplineMoveModifier modifier for our entities:

1.	 The first step, similar to the PathModifier modifier, is to create our
point arrays. In this example, we can copy the code from PathModifier
example's first step. However, one difference between this modifier and the
PathModifier object is that we require a minimum of 4 individual x and
y points.

2.	 The second step is to determine the number of control points, define the
tension, and create a CardinalSplineMoveModifierConfig object.
This is the CardinalSplineMoveModifier modifier's equivalent of the
PathModifier modifier's Path object. The tension can be between -1
and 1, no more and no less. A tension of -1 will leave the Entity object's
movement very loose, making extremely loose corners and changes in
direction while a tension of 1 will react very much like the PathModifier
modifier in the sense that it is very strict in its movements:
 /* Obtain the number of control points we have */
 final int controlPointCount = pointsListX.length;

 /* Define the movement tension. Must be between -1 and 1
*/
 final float tension = 0f;

 /* Create the cardinal spline movement modifier
configuration */
 CardinalSplineMoveModifierConfig config = new CardinalSp
lineMoveModifierConfig(controlPointCount, tension);

3.	 In step three, again very similar to the PathModifier modifier, we must
pair the x/y coordinates within our point arrays, except in this case we're
storing them within the config object:
 /* Iterate through our control point indices */
 for(int index = 0; index < controlPointCount; index++){

Working with Entities

88

 /* Obtain the coordinates of the control point at the
index */
 final float positionX = pointsListX[index];
 final float positionY = pointsListY[index];

 /* Set position coordinates at the current index in
the config object */
 config.setControlPoint(index, positionX, positionY);
 }

4.	 Next, we will simply define the duration for the movement, Create the
CardinalSplineMoveModifier modifier, supply the duration and
config object as parameters, and finally register the modifier to the
Entity object:

 /* Movement duration */
 final float duration = 3;

 /* Create the cardinal spline move modifier object */
 CardinalSplineMoveModifier cardinalSplineMoveModifier =
new CardinalSplineMoveModifier(duration, config);

 /* Register the cardinalSplineMoveModifier object to the
rectangle object */
 rectangle.registerEntityModifier(cardinalSplineMoveModi
fier);

Now that we've got a solid understanding of the individual modifiers that we are able to apply
to our entities, we will cover the three main entity modifiers in AndEngine and what they're
used for.

AndEngine's entity modifiers
AndEngine includes three entity modifier objects which are used for building complex
animations for our Entity objects by combining two or more modifiers into a single event
or sequence. The three different entity modifiers include the LoopEntityModifier,
ParallelEntityModifier, and SequenceEntityModifier objects. Next, we describe
the specifics of these entity modifiers and examples, displaying how they can be used to
combine multiple modifiers into a single animation event.

ff LoopEntityModifier: This entity modifier allows us to loop a specified modifier
either indefinitely or N number of times if supplied a second int parameter. This is
the simplest of entity modifiers. Once we set up the LoopEntityModifier modifier,
we can apply it directly to the Entity object:
 /* Define the move modifiers properties */
 final float duration = 3;
 final float fromX = 0;

Chapter 2

89

 final float toX = 100;

 /* Create the move modifier */
 MoveXModifier moveXModifier = new MoveXModifier(duration,
fromX, toX);

 /* Create a loop entity modifier, which will loop the move
modifier
 * indefinitely, or until unregistered from the rectangle.
 * If we want to provide a loop count, we can add a second
int parameter
 * to this constructor */
 LoopEntityModifier loopEntityModifier = new LoopEntityModifier
(moveXModifier);

 /* register the loopEntityModifier to the rectangle */
 rectangle.registerEntityModifier(loopEntityModifier);

ff ParallelEntityModifier: This entity modifier allows us to combine an unlimited
number of modifiers into a single animation. The modifiers supplied as parameters
of this entity modifier will all run on the Entity object at the same time. This allows
us to scale a modifier while rotating it, for example, as seen in the following example.
Feel free to add more modifiers to the example for some practice:
 /* Scale modifier properties */
 final float scaleDuration = 2;
 final float fromScale = 1;
 final float toScale = 2;
 /* Create a scale modifier */
 ScaleModifier scaleModifier = new ScaleModifier(scaleDuration,
fromScale, toScale);

 /* Rotation modifier properties */
 final float rotateDuration = 3;
 final float fromRotation = 0;
 final float toRotation = 360 * 4;
 /* Create a rotation modifier */
 RotationModifier rotationModifier = new RotationModifier(rotat
eDuration, fromRotation, toRotation);

 /* Create a parallel entity modifier */
 ParallelEntityModifier parallelEntityModifier = new ParallelEn
tityModifier(scaleModifier, rotationModifier);

 /* Register the parallelEntityModifier to the rectangle */
 rectangle.registerEntityModifier(parallelEntityModifier);

Working with Entities

90

ff SequenceEntityModifier: This entity modifier allows us to string together
modifiers that will be executed sequentially on a single Entity object. This modifier
is ideally the proper entity modifier to use the DelayModifier object as previously
mentioned in the modifiers list. The following example displays an Entity object
which moves from the bottom-left corner to the center of the screen, pauses for 2
seconds, then scales down to a scale factor of 0:

 /* Move modifier properties */
 final float moveDuration = 2;
 final float fromX = initialPosition;
 final float toX = WIDTH * 0.5f;
 final float fromY = initialPosition;
 final float toY = HEIGHT * 0.5f;
 /* Create a move modifier */
 MoveModifier moveModifier = new MoveModifier(moveDuration,
fromX, fromY, toX, toY);

 /* Create a delay modifier */
 DelayModifier delayModifier = new DelayModifier(2);

 /* Scale modifier properties */
 final float scaleDuration = 2;
 final float fromScale = 1;
 final float toScale = 0;
 /* Create a scale modifier */
 ScaleModifier scaleModifier = new ScaleModifier(scaleDuration,
fromScale, toScale);

 /* Create a sequence entity modifier */
 SequenceEntityModifier sequenceEntityModifier = new SequenceEn
tityModifier(moveModifier, delayModifier, scaleModifier);

 /* Register the sequenceEntityModifier to the rectangle */
 rectangle.registerEntityModifier(sequenceEntityModifier);

What's even more important to know is that we can add a SequenceEntityModifier
modifier to a ParallelEntityModifier modifier, a ParallelEntityModifier modifier
to a LoopEntityModifier modifier, or any other variation we can think of! This makes the
possibilities of modifiers and entity modifiers extremely extensive and allows us to create
incredibly complex animations for our entities with a rather significant amount of ease.

Chapter 2

91

There's more…
Before moving on to the next topic, we should take a look at the extra features included for
entity modifiers. There are two more parameters that we can pass to our entity modifiers
which we haven't discussed yet; those being modifiers listeners and ease functions. These two
classes can help to make our modifiers even more customized than we've already seen in the
How it works... section!

The IEntityModifierListener listener can be used in order to fire events when a
modifier starts and when a modifier finishes. In the following snippet, we're simply printing
logs to logcat which notify us when the modifier has started and finished.

IEntityModifierListener entityModifierListener = new
IEntityModifierListener(){

 // When the modifier starts, this method is called
 @Override
 public void onModifierStarted(IModifier<IEntity> pModifier,
 IEntity pItem) {
 Log.i("MODIFIER", "Modifier started!");
 }

 // When the modifier finishes, this method is called
 @Override
 public void onModifierFinished(final IModifier<IEntity> pModifier,
 final IEntity pItem) {
 Log.i("MODIFIER", "Modifier started!");
 }
};

modifier.addModifierListener();

The previous code shows the skeleton of a modifier listener with basic log outputs. In a more
relative scenario to game development, we could call pItem.setVisible(false) once
the modifier is finished. For example, this could be useful for handling subtle falling leaves
or raindrops in a scene that leaves the camera's view. However, what we decide to use the
listener for is completely up to our own discretion.

Working with Entities

92

Finally, we'll quickly discuss the ease functions in AndEngine. Ease functions are a great way
to add an extra layer of "awesomeness" to our entity modifiers. After getting used to modifiers,
it is likely that ease functions will really grow on you as they give modifiers that extra kick they
need to make the perfect effects. The best way to explain an ease function is to think about
a game where the menu buttons fall from the top of the screen and "bounce" into place. The
bounce in this case would be our ease function taking effect.

 /* Move modifier properties */
 final float duration = 3;
 final float fromX = initialPosition;
 final float toX = WIDTH - initialPosition;
 final float fromY = initialPosition;
 final float toY = HEIGHT - initialPosition;

 /* Create a move modifier with an ease function */
 MoveModifier moveModifier = new MoveModifier(duration, fromX,
fromY, toX, toY, org.andengine.util.modifier.ease.EaseElasticIn.
getInstance());

 rectangle.registerEntityModifier(moveModifier);

As we can see here, applying an ease function to a modifier is as easy as adding an extra
parameter to the modifier's constructor. Often the hardest part is choosing which one to use
as the list of ease functions is somewhat large. Take some time to look through the various
ease functions provided by locating the org.andengine.util.modifier.ease package.
Simply replace EaseElasticIn from the previous code with the ease function you'd like to
test out, and rebuild the project to see it in action!

Ease function reference
Download the AndEngine – Examples application from Google
Play to your device. Open the application and locate the Using
EaseFunctions example. While the example application is quite
outdated compared to the latest AndEngine branch, the ease
function example is still an absolutely effective tool for determining
which ease functions best suit our own game's needs!

See also
ff Understanding AndEngine entities in this chapter.

Chapter 2

93

Working with particle systems
Particle systems can provide our games with very attractive effects for many different
events in our games, such as explosions, sparks, gore, rain, and much more. In this chapter,
we're going to cover AndEngine's ParticleSystem classes which will be used to create
customized particle effects that will suit our every need.

Getting ready…
This recipe requires basic knowledge of the Sprite object in AndEngine. Please read through
the entire recipes, Working with different types of textures in Chapter 1, AndEngine Game
Structure, as well as Understanding AndEngine entities given in this chapter. Next, create a
new empty AndEngine project with a BaseGameActivity class and import the code from
the WorkingWithParticles class in the code bundle.

How to do it…
In order to begin creating particle effects in AndEngine, we require a bare minimum of three
objects. These objects include an ITextureRegion object which will represent the individual
particles spawned, a ParticleSystem object, and a ParticleEmitter object. Once we
have these in place, we can begin to add what are known as particle initializers and particle
modifiers to our particle system in order to create our own personalized effects. See the
following steps for a walkthrough on how to set up a basic particle system in which we
can build on.

1.	 The first step involves deciding the image we'd like our particle system to spawn.
This can be any image, any color, and any size. Feel free to create an image and set
up BuildableBitmapTextureAtlas and ITextureRegion to load the image
into the test project's resources. For the sake of keeping things simple, please keep
the image under 33 x 33 pixels in dimension for this recipe.

2.	 Create the ParticleEmitter object. For now we'll be using a
PointParticleEmitter object subtype:
 /* Define the center point of the particle system spawn
location */
 final int particleSpawnCenterX = (int) (WIDTH * 0.5f);
 final int particleSpawnCenterY = (int) (HEIGHT * 0.5f);

 /* Create the particle emitter */
 PointParticleEmitter particleEmitter = new PointParticleEmitte
r(particleSpawnCenterX, particleSpawnCenterY);

Working with Entities

94

3.	 Create the ParticleSystem object. We'll be using the
BatchedSpriteParticleSystem object implementation as it is the latest and
greatest ParticleSystem object subtype included in AndEngine. It allows us to
create large amounts of particles while greatly reducing overhead of the typical
SpriteParticleSystem object:
 /* Define the particle system properties */
 final float minSpawnRate = 25;
 final float maxSpawnRate = 50;
 final int maxParticleCount = 150;

 /* Create the particle system */
 BatchedSpriteParticleSystem particleSystem = new
BatchedSpriteParticleSystem(
 particleEmitter, minSpawnRate, maxSpawnRate,
maxParticleCount,
 mTextureRegion,
 mEngine.getVertexBufferObjectManager());

4.	 In the final step to creating a particle system, we will add any combination of
particle emitters and particle modifiers and then attach the particle system
to the Scene object:

 /* Add an acceleration initializer to the particle system */
 particleSystem.addParticleInitializer(new AccelerationParticle
Initializer<UncoloredSprite>(25f, -25f, 50f, 100f));

 /* Add an expire initializer to the particle system */
 particleSystem.addParticleInitializer(new ExpireParticleInitia
lizer<UncoloredSprite>(4));

 /* Add a particle modifier to the particle system */
 particleSystem.addParticleModifier(new ScaleParticleModifier<U
ncoloredSprite>(0f, 3f, 0.2f, 1f));

 /* Attach the particle system to the Scene */
 mScene.attachChild(particleSystem);

How it works…
It seems that working with particles for many new AndEngine developers is a rather difficult
subject, but, in fact, it's quite the opposite. Creating particle effects in AndEngine is extremely
simple, but as always, we should learn to walk before we can fly! In this recipe's steps, we're
setting up a rather basic particle system. As the topic progresses, we will discuss and plug in
additional modular components of the particle system in order to broaden our knowledge of
the individual pieces that make up complex particle system effects.

Chapter 2

95

In the first step, we need to set up an ITextureRegion object to supply our particle system.
The ITextureRegion object will visually represent each individual particle that spawns.
The texture region can be of any size, but typically they will be between 2 x 2 to 32 x 32
pixels. Remember that the particle system is meant to spawn a large number of objects,
so the smaller the ITextureRegion object, the better off the performance will be as far
as the particle system goes.

In the second step, we create our particle emitter and center it on the Scene object. The
particle emitter is the component within a particle system that controls where particles will
initially spawn. In this recipe, we are using a PointParticleEmitter object type, which
simply spawns all particles in the exact same coordinates on the scene as defined by the
particleSpawnCenterX and particleSpawnCenterY variables. AndEngine includes
four other particle emitter types which will be discussed shortly.

Once we've got our particle emitter created and set up as we see fit, we can move onto the
third step and create the BatchedSpriteParticleSystem object. The parameters that we
are required to pass to the BatchedSpriteParticleSystem object include, in this order,
the particle emitter, the minimum spawn rate of the particles, the maximum spawn rate, the
maximum number of particles that can be simultaneously displayed, the ITextureRegion
object that the particles should visually represent, and the mEngine object's vertex buffer
object manager.

Finally, in the fourth step we are adding an AccelerationParticleInitializer
object, which will provide an accelerating movement to the particles so that they're not
simply sitting where they spawn. We are also adding an ExpireParticleInitializer
object, which is used to destroy particles after a defined amount of time. Without some sort
of initializer or modifier removing particles, the BatchedParticleSystem object would
eventually reach its maximum particle limit and discontinue particle spawning. Lastly, we're
adding a ScaleParticleModifier object to the particle system which will change each
particle's scale over time. These particle initializers and particle modifiers will be explained
more in-depth shortly, for now, just know that this is the step where we'd apply them to the
particle system. Once we've added our initializers and modifiers of choice, we attach the
particleSystem object to the Scene object.

After completing these four steps, the particle system will begin to spawn particles. However,
we may not always want the particles to spawn from a specific particle system. To disable
particle spawning, we can make the call, particleSystem.setParticlesSpawnE
nabled(false), or true to re-enable particle spawning. Aside from this method, the
BatchedSpriteParticleSystem object contains all of the ordinary functionality and
methods of an Entity object.

For more information on the individual components of a particle system, see the following
subtopics. These topics include particle emitters, particle initializers, and particle modifiers.

Working with Entities

96

Particle emitter selection
AndEngine includes a selection of five ready-to-use particle emitters which can alter the initial
placement of particles on the scene, this is not to be confused with defining a particle emitter
position. See the list of particle emitters for details on how each of them work. Please feel free
to substitute the particle emitter in step two of the recipe with a particle emitter given in the
following list:

ff PointParticleEmitter: The most basic particle emitter of the bunch; this
particle emitter causes all spawning particles to be initially spawned in the same
defined position on the scene. There will be no variance in the position that particles
spawn. However, general particle emitter position can change via a call to the
pointParticleEmitter.setCenter(pX, pY) method, where pX and pY
define the new coordinates to spawn particles.

ff CircleOutlineParticleEmitter: This particle emitter subtype will cause
particles to spawn in positions outlining the shape of a circle. The parameters to
include in this emitter's constructor include the x coordinate, the y coordinate, and a
radius which defines the overall size of the circle outline. See the following example:
 /* Define the center point of the particle system spawn
location */
 final int particleSpawnCenterX = (int) (WIDTH * 0.5f);
 final int particleSpawnCenterY = (int) (HEIGHT * 0.5f);

 /* Define the radius of the circle for the particle emitter */
 final float particleEmitterRadius = 50;

 /* Create the particle emitter */
 CircleOutlineParticleEmitter particleEmitter = new CircleOut
lineParticleEmitter(particleSpawnCenterX, particleSpawnCenterY,
particleEmitterRadius);

ff CircleParticleEmitter: This particle emitter subtype will allow particles
to spawn within any area of a circle opposed to just the outlining edge in the
CircleOutlineParticleEmitter object. The CircleParticleEmitter
object requires the same parameters in its constructor as the
CircleOutlineParticleEmitter object. To test this particle emitter subtype,
simply refactor the object in the CircleOutlineParticleEmitter example to
use the CircleParticleEmitter object instead.

ff RectangleOutlineParticleEmitter: This particle emitter subtype will cause
the particles to spawn from four corners of a rectangle whose size is defined by the
constructor parameters. Unlike the CircleOutlineParticleEmitter object,
this particle emitter doesn't allow particles to spawn around the full parameter of
the rectangle. See the following example:
 /* Define the center point of the particle system spawn
location */

Chapter 2

97

 final int particleSpawnCenterX = (int) (WIDTH * 0.5f);
 final int particleSpawnCenterY = (int) (HEIGHT * 0.5f);

 /* Define the width and height of the rectangle particle
emitter */
 final float particleEmitterWidth = 50;
 final float particleEmitterHeight = 100;

 /* Create the particle emitter */
 RectangleOutlineParticleEmitter particleEmitter
= new RectangleOutlineParticleEmitter(particleSpawnC
enterX, particleSpawnCenterY, particleEmitterWidth,
particleEmitterHeight);

ff RectangleParticleEmitter: This particle emitter subtype allows for particles
to spawn anywhere within the bounding area of a rectangle shape as defined by
the constructor parameters. To test this particle emitter subtype, simply refactor
the object in the RectangleOutlineParticleEmitter example to use the
RectangleParticleEmitter object instead.

Particle initializer selection
Particle initializers are of vital importance to particle systems. They provide us with the
possibility to perform actions on each individual particle that is initially spawned. The greatest
thing about these particle initializers is that they allow us to provide min/max values, giving us
the opportunity to randomize the properties of spawned particles. Here, find a list of all of the
particle initializers that AndEngine has to offer as well as examples of their use. Feel free to
substitute the particle initializers in the recipe with those found in this list.

The following particle initializers can be added with a simple call to
particleSystem.addParticleInitializer(pInitializer).
Additionally, they can be removed via particleSystem.removeParticl
eInitializer(pInitializer).

ff ExpireParticleInitializer: We will start off with the most necessary particle
initializer in the list. The ExpireParticleInitializer object provides a means of
removing particles which have been alive for too long. If we were not to include some
form of particle expiration, our particle would quickly run out of particles to spawn as
all particle systems have a limit to the number of particles that can be active at any
given time. The following example creates an ExpireParticleModifier object
which causes individual particles to expire between 2 and 4 seconds:
 /* Define min/max particle expiration time */
 final float minExpireTime = 2;
 final float maxExpireTime = 4;

Working with Entities

98

 ExpireParticleInitializer<UncoloredSprite>
expireParticleInitializer = new ExpireParticleInitializer<Uncolore
dSprite>(minExpireTime, maxExpireTime);

ff AccelerationParticleInitializer: This initializer allows us to apply
movement in the form of acceleration, causing the spawned particles to pick up
speed before reaching the defined velocity. A positive value on the x or y axis will
cause the particle to move up and to the right, while negative values will move the
particle down and to the left. In the following example, the particles will be given
min/max values which will cause particle movement direction to be random:
 /* Define the acceleration values */
 final float minAccelerationX = -25;
 final float maxAccelerationX = 25;
 final float minAccelerationY = 25;
 final float maxAccelerationY = 50;

 AccelerationParticleInitializer<UncoloredSprite>
accelerationParticleInitializer = new AccelerationParticleIni
tializer<UncoloredSprite>(minAccelerationX, maxAccelerationX,
minAccelerationY, maxAccelerationY);

ff AlphaInitializer: The AlphaInitializer object is pretty basic. It simply
allows us to initialize particles with an undetermined alpha value. The following
example will cause individual particles to spawn with an alpha value of between
0.5f and 1f:
 /* Define the alpha values */
 final float minAlpha = 0.5f;
 final float maxAlpha = 1;

 AlphaParticleInitializer<UncoloredSprite>
alphaParticleInitializer = new AlphaParticleInitializer<UncoloredS
prite>(minAlpha, maxAlpha);

ff BlendFunctionParticleInitializer: This particle initializer allows us to spawn
particles with specific OpenGL blend functions applied to them. For more information
on blend functions and results, there are many resources that can be found online. The
following is an example using the BlendFunctionParticleInitializer object:
 BlendFunctionParticleInitializer<UncoloredSprite>
blendFunctionParticleInitializer = new BlendFunctionParticleInit
ializer<UncoloredSprite>(GLES20.GL_ONE, GLES20.GL_ONE_MINUS_SRC_
ALPHA);

Chapter 2

99

ff ColorParticleInitializer: The ColorParticleInitializer object allows
us to provide our sprites with colors between min/max values. This allows us to
randomize the color of each particle spawned. The following example will generate
particles, each with a completely different random color:
 /* Define min/max values for particle colors */
 final float minRed = 0f;
 final float maxRed = 1f;
 final float minGreen = 0f;
 final float maxGreen = 1f;
 final float minBlue = 0f;
 final float maxBlue = 1f;

 ColorParticleInitializer<UncoloredSprite>
colorParticleInitializer = new ColorParticleInitializer<UncoloredS
prite>(minRed, maxRed, minGreen, maxGreen, minBlue, maxBlue);

ff GravityParticleInitializer: This particle initializer allows us to spawn
particles which will act as though they follow the rules of the earth's gravity. The
GravityParticleInitializer object requires no parameters in its constructor:
 GravityParticleInitializer<UncoloredSprite>
gravityParticleInitializer = new GravityParticleInitializer<Uncolo
redSprite>();

ff RotationParticleInitializer: The RotationParticleInitializer object
allows us to define the min/max values for the particle's rotation when spawned. The
following example will cause individual particles to spawn anywhere between 0 and
359 degrees:
 /* Define min/max values for the particle's rotation */
 final float minRotation = 0;
 final float maxRotation = 359;

 RotationParticleInitializer<UncoloredSprite>
rotationParticleInitializer = new RotationParticleInitializer<Unco
loredSprite>(minRotation, maxRotation);

ff ScaleParticleInitializer: The ScaleParticleInitializer object allows
us to define the min/max values for the particle's scale when spawned. The following
example will allow particles to spawn with a scale factor of anywhere between 0.5f
and 1.5f:
 /* Define min/max values for the particle's scale */
 final float minScale = 0.5f;
 final float maxScale = 1.5f;

Working with Entities

100

 ScaleParticleInitializer<UncoloredSprite>
scaleParticleInitializer = new ScaleParticleInitializer<UncoloredS
prite>(minScale, maxScale);

ff VelocityParticleInitializer: This final particle initializer, similar to the
AccelerationParticleInitializer object, allows us to provide movement to
individual particles when spawned. However, this initializer causes the particles to
move at a constant speed, and will not increase or decrease velocity over time unless
manually configured to do so:

 /* Define min/max velocity values of the particles */
 final float minVelocityX = -25;
 final float maxVelocityX = 25;
 final float minVelocityY = 25;
 final float maxVelocityY = 50;

 VelocityParticleInitializer<UncoloredSprite>
velocityParticleInitializer = new VelocityParticleInitialize
r<UncoloredSprite>(minVelocityX, maxVelocityX, minVelocityY,
maxVelocityY);

See the following section for a list of AndEngine's particle modifiers.

Particle modifier selection
AndEngine's particle modifiers are useful in the development of complex particle systems.
They allow us to provide changes to individual particles depending on how long they've been
alive for. Similar to entity modifiers, particle modifiers are of the "from time-to time, from
value-to value" format. Once again, feel free to add any of the particle modifiers in the list to
your current test project.

The following particle modifiers can be added with a simple call to
particleSystem.addParticleModifier(pModifier). Additionally,
they can be removed via particleSystem.removeParticleModifier
(pModifier).

ff AlphaParticleModifier: This modifier allows a particle to shift in alpha values
between two points in time during a particle's lifetime. In the following example, the
modifier will transition from an alpha value of 1 to 0 over a duration of 1 second.
The modifier will take effect 1 second after the particle has spawned:
 /* Define the alpha modifier's properties */
 final float fromTime = 1;
 final float toTime = 2;
 final float fromAlpha = 1;
 final float toAlpha = 0;

Chapter 2

101

 AlphaParticleModifier<UncoloredSprite> alphaParticleModifier
= new AlphaParticleModifier<UncoloredSprite>(fromTime, toTime,
fromAlpha, toAlpha);

ff ColorParticleModifier: This modifier will allow a particle to change in color
between two points in time during a particle's lifetime. The following modifier will
cause particles to change from green to red over two seconds, with a from time
of 0. This means the transition will begin as soon as a particle is spawned:
 /* Define the color modifier's properties */
 final float fromTime = 0;
 final float toTime = 2;
 final float fromRed = 0;
 final float toRed = 1;
 final float fromGreen = 1;
 final float toGreen = 0;
 final float fromBlue 0;
 final float toBlue = 0;

 ColorParticleModifier<UncoloredSprite> colorParticleModifier
= new ColorParticleModifier<UncoloredSprite>(fromTime, toTime,
fromRed, toRed, fromGreen, toGreen, fromBlue, toBlue);

ff OffCameraExpireParticleModifier: By adding this modifier to the particle
system, particles that leave the view of our Camera object will be destroyed. We can
use this as an alternative to the ExpireParticleInitializer object, but at least
one of the two should be active on any particle system. The only parameter to supply
to this modifier is our Camera object:
 OffCameraExpireParticleModifier<UncoloredSprite>
offCameraExpireParticleModifier = new OffCameraExpireParticleModif
ier<UncoloredSprite>(mCamera);

ff RotationParticleModifier: This modifier allows us to change the rotation
of particles between two points in time during a particle's lifetime. The following
example will cause particles to rotate 180 degrees between 1 and 4 seconds of
a particle's lifetime:
 /* Define the rotation modifier's properties */
 final float fromTime = 1;
 final float toTime = 4;
 final float fromRotation = 0;
 final float toRotation = 180;

 RotationParticleModifier<UncoloredSprite>
rotationParticleModifier = new RotationParticleModifier<UncoloredS
prite>(fromTime, toTime, fromRotation, toRotation);

Working with Entities

102

ff ScaleParticleModifier: The ScaleParticleModifier object allows us to
change the scale of a particle between two points in time during a particle's lifetime.
The following example will cause particles to grow from a scale of 0.5f to 1.5f
between 1 and 3 seconds of a particle's lifetime:
 /* Define the scale modifier's properties */
 final float fromTime = 1;
 final float toTime = 3;
 final float fromScale = 0.5f;
 final float toScale = 1.5f;

 ScaleParticleModifier<UncoloredSprite> scaleParticleModifier
= new ScaleParticleModifier<UncoloredSprite>(fromTime, toTime,
fromScale, toScale);

ff IParticleModifier: Finally, we have the particle modifier interface which allows
us to create our own modifications to individual particles in the event of particle
initialization or on every update to a particle via the update thread. The following
example displays how we can simulate a particle landing on the ground by disabling
movement on the y axis once a particle reaches less than a value of 20 on the Scene
object's coordinate system. We can use this interface to virtually make any changes
we'd like to particles as we see fit:

 IParticleModifier<UncoloredSprite> customParticleModifier =
new IParticleModifier<UncoloredSprite>(){

 /* Fired only once when a particle is first spawned */
 @Override
 public void onInitializeParticle(Particle<UncoloredSprite>
pParticle) {
 * Make customized modifications to a particle on
initialization */
 }

 /* Fired on every update to a particle in the particle
system */
 @Override
 public void onUpdateParticle(Particle<UncoloredSprite>
pParticle) {
 * Make customized modifications to a particle on every
update to the particle */
 Entity entity = pParticle.getEntity();

Chapter 2

103

 * Obtain the particle's position and movement properties
*/
 final float currentY = entity.getY();
 final float currentVelocityY = pParticle.
getPhysicsHandler().getVelocityY();
 final float currentAccelerationY = pParticle.
getPhysicsHandler().getAccelerationY();

 /* If the particle is close to the bottom of the Scene and
is moving... */
 if(entity.getY() < 20 && currentVelocityY != 0 ||
currentAccelerationY != 0){

 /* Restrict movement on the Y axis. Simulates landing on
the ground */
 pParticle.getPhysicsHandler().setVelocityY(0);
 pParticle.getPhysicsHandler().setAccelerationY(0);
 }
 }

 };

Now that we've covered all of the particle emitters, particle initializers, and particle modifiers,
practice making more complex particle systems by combining any number of initializers and
modifiers you'd like to your own systems!

See also
ff Working with different types of textures in Chapter 1, AndEngine Game Structure.

ff Understanding AndEngine entities in this chapter.

3
Designing Your Menu

In this chapter, we will begin to take a look at how to create a manageable menu system with
AndEngine. The topics include:

ff Adding buttons to the menu

ff Adding music to the menu

ff Applying a background

ff Using parallax backgrounds to create perspective

ff Creating our level selection system

ff Hiding and retrieving layers

Introduction
Menu systems in games are essentially a map of the scenes or activities a game provides.
In a game, a menu should look attractive and give a subtle hint of what to expect during
gameplay. The menu should be organized and easy for a player to understand. In this chapter,
we're going to take a look at various options we have which we can apply to our own games in
order to create functional and appealing menus for any type of game.

Adding buttons to the menu
In AndEngine, we can create touch-responsive buttons out of any Entity object or Entity
object subtype. However, AndEngine includes a class called ButtonSprite whose texture
representation depends on whether the Entity object is pressed or unpressed. In this
recipe, we're going to take advantage of AndEngine's ButtonSprite class and override its
onAreaTouched() method in order to add touch-responsive buttons to our menu and/or
game's Scene object. Additionally, the code within this recipe regarding touch events can
be applied to any other Entity object within our game.

Designing Your Menu

106

Getting ready…
This recipe requires basic knowledge of the Sprite object in AndEngine. Please read
through the entire recipe, Working with different types of textures in Chapter 1, AndEngine
Game Structure, specifically the section regarding tiled texture regions. Next, visit the recipe,
Bringing a scene to life with sprites in Chapter 2, Working with Entities.

Once the recipes regarding textures and sprites have been covered, create a new AndEngine
project with an empty BaseGameActivity class. Finally, we will need to create a sprite sheet
named button_tiles.png with two images and place it in the assets/gfx/ folder of
the project; one for the "unpressed" button representation and one for the "pressed" button
representation. See the following image for an idea of what the image should look like.
The following image is 300 x 50 pixels, or 150 x 50 pixels per tile:

Refer to the class named CreatingButtons in the code bundle and import the code into
your project.

How to do it…
The ButtonSprite class is convenient as it handles the tiled texture region versus
button state changes for us. The following steps outline the tasks involved in setting
up a ButtonSprite object:

1.	 Declare a global ITiledTextureRegion object, naming it
mButtonTextureRegion, then in the onCreateResources() method of the
BaseGameActivity class, create a new BuildableBitmapTextureAtlas
object suitable for your button_tiles.png image. Build and load the texture
region and texture atlas objects so that we can use them later to create the
ButtonSprite object.

2.	 In order for the ButtonSprite object to work as intended, we should set up
proper touch area binding on the mScene object. Copy the following code into
the onCreateScene() method of the activity:
mScene.setTouchAreaBindingOnActionDownEnabled(true);

3.	 Create the ButtonSprite object, supplying it the mButtonTextureRegion object
and overriding its onAreaTouched() method:
/* Create the buttonSprite object in the center of the Scene */
ButtonSprite buttonSprite = new ButtonSprite(WIDTH * 0.5f,
 HEIGHT * 0.5f, mButtonTextureRegion,

Chapter 3

107

 mEngine.getVertexBufferObjectManager()) {
 /* Override the onAreaTouched() event method */
 @Override
 public boolean onAreaTouched(TouchEvent pSceneTouchEvent,
 float pTouchAreaLocalX, float pTouchAreaLocalY) {
 /* If buttonSprite is touched with the finger */
 if(pSceneTouchEvent.isActionDown()){
 /* When the button is pressed, we can create an event
 * In this case, we're simply displaying a quick toast */
 CreatingButtons.this.runOnUiThread(new Runnable(){
 @Override
 public void run() {
 Toast.makeText(getApplicationContext(), "Button
Pressed!", Toast.LENGTH_SHORT).show();
 }
 });
 }
 /* In order to allow the ButtonSprite to swap tiled texture
region
 * index on our buttonSprite object, we must return the super
method */
 return super.onAreaTouched(pSceneTouchEvent, pTouchAreaLocalX,
pTouchAreaLocalY);
 }
};

4.	 The final step is to register the touch area and attach the buttonSprite object to
the mScene object:

/* Register the buttonSprite as a 'touchable' Entity */
mScene.registerTouchArea(buttonSprite);
/* Attach the buttonSprite to the Scene */
mScene.attachChild(buttonSprite);

How it works…
This recipe makes use of a ButtonSprite object with an ITiledTextureRegion object
to display two separate button states. One tile will act as the button's unpressed texture, the
other will act as the button's pressed texture when a finger is touching the Entity object on
the display.

Designing Your Menu

108

In the first step, we are creating our texture resources to be applied to the ButtonSprite
object, which will be implemented in the coming steps. The ButtonSprite class will need
an ITiledTextureRegion object with two indices, or two tiles as seen in the figure in
the Getting started... section of this recipe. The first index of the ITiledTextureRegion
object should contain the unpressed representation of the button, which will be applied to
the ButtonSprite object by default. The second ITiledTextureRegion index should
represent a pressed state of the ButtonSprite object. The ButtonSprite class will
automatically alternate between these two ITiledTextureRegion indices depending
on which state the ButtonSprite object is currently in; being either ButtonSprite.
State.NORMAL for unpressed, setting the ButtonSprite object's current tile index to 0,
and ButtonSprite.State.PRESSED for, you guessed it, the pressed state which sets the
ButtonSprite object's current tile index to 1.

In the second step, in order for the ButtonSprite object to work as intended, we need
to enable touch area binding on the down action within the mScene object. We enable this
within the onCreateScene() method of our activity's life cycle, just after the mScene object
is created. What this does is, it allows our ButtonSprite object to register as unpressed
when we drag our finger off of the ButtonSprite touch area. Disregarding this step will
cause the ButtonSprite object to remain in a pressed state in the event that we press
and drag our finger off the Entity object's touch area, which may very well be considered
"buggy" if left for players to deal with. In the third step, we create the ButtonSprite
object, centering it in within the scene. Ideally, we can create the ButtonSprite object
and place it on the scene and it will work as it should. However, ButtonSprite is a
button, after all, and therefore it should prompt an event to occur when pressed. We can
do this by overriding the onAreaTouched() super method and creating events based on
whether the ButtonSprite object's touch area is pressed down on, if a finger is dragged
over it, or if a finger is released from the display while inside the touch area. In this recipe,
we're simply displaying a Toast message in the event that the ButtonSprite object's
pSceneTouchEvent registers the isActionDown() method. In a more realistic scenario
during the development of a game, this button may just as well allow/disallow sound
muting, start a new game, or any other action we choose for it. The other two methods
used for touch event state-checking are pSceneTouchEvent.isActionMove() and
pSceneTouchEvent.isActionUp().

Finally, once the buttonSprite object has been created we will need to register the touch
area and attach the Entity object to the mScene object. By now, we should be well aware
that in order to display an entity on the scene we must first attach it. Just as well, in order
for the buttonSprite object's onAreaTouched() super method to execute, we must
remember to call mScene.registerTouchArea(buttonSprite). The same goes for
any other Entity object for which we wish to provide touch events.

Chapter 3

109

See also
ff Working with different types of textures in Chapter 1, AndEngine Game Structure.

ff Understanding AndEngine entities in Chapter 2, Working with Entities.

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities.

Adding music to the menu
In this topic, we're going to create a mute button which will control our menu's theme music.
Pressing the mute button will cause the music to either play if currently paused, or pause if
currently playing. This method for muting music and sounds can also be applied to in-game
options and other areas of a game which allow sound and music playback. The difference
between this recipe and the previous, is that we're going to be using a TiledSprite object
which will allow us to set the Sprite object's tile index depending on whether the sound is
playing or paused. Keep in mind that this recipe is useful for more than just enabling and
disabling menu music. We can also follow the same approach for many other toggle-able
options and states during gameplay.

Getting ready…
This recipe requires basic knowledge of the Sprite object in AndEngine as well as using
touch events to perform actions. Additionally, since we'll be incorporating the Music object
into this recipe, we should understand how to load Sound and Music objects into our game's
resources. Please read through the entire recipe, Working with different types of textures in
Chapter 1, AndEngine Game Structure, specifically the section regarding tiled texture regions.
Next, check into the recipe, Introducing sounds and music in Chapter 1, AndEngine Game
Structure. Finally, we will be working with sprites, so we should take a quick peak into the
recipe, Bringing a scene to life with sprites, in Chapter 2, Working with Entities.

Once the topics regarding textures, sounds, and sprites have been covered, create a new
AndEngine project with an empty BaseGameActivity class. We will need to create a sprite
sheet named sound_button_tiles.png with two images and place it in the assets/
gfx/ folder of the project; one for the "non-muted" button representation and one for the
"muted" button representation. See the following image for an idea of what the image
should look like. The following image is 100 x 50 pixels, or 50 x 50 pixels per tile:

Designing Your Menu

110

We will also need to include a sound file that is in the MP3 format in the assets/sfx/ folder
of our project. The sound file can be any preferred music track of your choice for the purpose
of executing this recipe.

Refer to the class named MenuMusic in the code bundle and import the code into your project.

How to do it…
This recipe introduces a combination of AndEngine features. We are combining music,
textures, sprites, tiled texture regions, and touch events all into one convenient little package.
The result—a toggle button that will control the playback of a Music object. Follow these steps
to see how we create the toggle button.

1.	 In the first step, we will be working with two global objects; mMenuMusic which is a
Music object and mButtonTextureRegion which is an ITiledTextureRegion
object. In the onCreateResources() method of the activity, we create these
objects with their respective resources in the assets/* folder. Refer to the recipes
mentioned in the Getting started... section for more information on creating these
resources if needed.

2.	 Next, we can skip directly to the onPopulateScene() method of the activity where
we will create our mMuteButton object using the TiledSprite class. We will need
to override the onAreaTouched() method of the mMuteButton object in order to
either pause or play the music when the button is pressed:
/* Create the music mute/unmute button */
TiledSprite mMuteButton = new TiledSprite(buttonX, buttonY,
 mButtonTextureRegion, mEngine.getVertexBufferObjectManager())
{

 /* Override the onAreaTouched() method allowing us to define
custom
 * actions */
 @Override
 public boolean onAreaTouched(TouchEvent pSceneTouchEvent,
 float pTouchAreaLocalX, float pTouchAreaLocalY) {
 /* In the event the mute button is pressed down on... */
 if (pSceneTouchEvent.isActionDown()) {
 if (mMenuMusic.isPlaying()) {
 /* If music is playing, pause it and set tile index to
MUTE */
 this.setCurrentTileIndex(MUTE);
 mMenuMusic.pause();
 } else {
 /* If music is paused, play it and set tile index to
UNMUTE */

Chapter 3

111

 this.setCurrentTileIndex(UNMUTE);
 mMenuMusic.play();
 }
 return true;
 }
 return super.onAreaTouched(pSceneTouchEvent, pTouchAreaLocalX,
 pTouchAreaLocalY);
 }
};

3.	 Once the button has been created, we need to initialize the mMuteButton and
mMenuMusic objects' initial states. This step involved setting the mMuteButton
object's tile index to that of the UNMUTE constant value which equals 1, registering
and attaching the mMuteButton object to the mScene object, setting mMenuMusic
to loop, and then finally calling play() on the mMenuMusic object:
/* Set the current tile index to unmuted on application startup */
mMuteButton.setCurrentTileIndex(UNMUTE);

/* Register and attach the mMuteButton to the Scene */
mScene.registerTouchArea(mMuteButton);
mScene.attachChild(mMuteButton);

/* Set the mMenuMusic object to loop once it reaches the track's
end */
mMenuMusic.setLooping(true);
/* Play the mMenuMusic object */
mMenuMusic.play();

4.	 The final step to include when dealing with any Music object is to make sure we
pause it upon app minimization, otherwise it will continue to play in the background.
In this recipe, we are pausing the mMenuMusic object on minimization. However,
in the event a user returns to the application, the music will play only if the
mMuteButton object's tile index was equal to the UNMUTE constant value
when the app was minimized:

@Override
public synchronized void onResumeGame() {
 super.onResumeGame();

 /* If the music and button have been created */
 if (mMenuMusic != null && mMuteButton != null) {
 /* If the mMuteButton is set to unmuted on resume... */
 if(mMuteButton.getCurrentTileIndex() == UNMUTE){
 /* Play the menu music */
 mMenuMusic.play();

Designing Your Menu

112

 }
 }
}

@Override
public synchronized void onPauseGame() {
 super.onPauseGame();

 /* Always pause the music on pause */
 if(mMenuMusic != null && mMenuMusic.isPlaying()){
 mMenuMusic.pause();
 }
}

How it works…
This particular recipe is very useful in game development; not only for sound and music
muting, but for all sorts of toggle buttons. While this recipe is dealing specifically with Music
object playback, it contains all of the necessary code in order to start working with various
other toggle buttons which might suit the more specific needs of our games.

In the first step, we must set up the necessary resources for use within the mMenuMusic
object and the mMuteButton object. The mMenuMusic object will load a sound file named
menu_music.mp3, which can be any MP3 file, preferably a music track. The mMuteButton
object will load a sprite sheet called sound_button_tiles.png with two separate tiles.
These objects are both taken care of within the onCreateResourceS() method of the
BaseGameActivity object's life cycle. More information on the creation of these resources
can be found within the recipes mentioned in the Getting started... section of this recipe.

In step two, we are setting up the mMuteButton object, which is of the TiledSprite
type. The TiledSprite class allows us to use an ITiledTextureRegion object which
gives us the ability to set the current tile index that the mMuteButton object will display on
our scene. In the overridden onAreaTouched() method, we check to see whether or not
the mMuteButton object has been pressed down on with the if (pSceneTouchEvent.
isActionDown()) statement. We then proceed to determine whether or not the
mMenuMusic object is currently playing with the isPlaying() method of the Music object.
If the music is playing, then pressing a finger down on the mMuteButton button will cause
the mMenuMusic object to call pause() and revert the mMuteButton object's current tile
index to that of the MUTE constant value, which is equal to 0. If the music is not playing,
then we do the exact opposite, calling play() on the mMenuMusic object and reverting
the mMuteButton object's tile index back to UNMUTE, which is equal to 1.

Chapter 3

113

In step three, we are setting up the mMenuMusic and mMuteButton objects' default state,
which is equal to playing the music and setting the current tile index to UNMUTE. This will
cause the music to play anytime the application initially starts up. Once we've set up the
default button and music states, we continue on to register the mMuteButton object's touch
area and attach the Entity object to the Scene object. This step can be taken further in
order to save the state of the mMuteButton object to the device, allowing us to load the
default state of music muting based on a user's past preference. For more information on
saving/loading data and states, see the recipe, Saving and loading game data in Chapter 1,
AndEngine Game Structure.

The final step is very important and should always be included when dealing with Music
objects. The purpose of this step is explained in more detail in the recipe, Introducing
sounds and music in Chapter 1, AndEngine Game Structure. However, there is a slight
variation to the code in the onResumeGame() method for this recipe. In the event of
application minimization, a user is likely expecting their game state to be waiting as it was
left when they finally return it to focus. For this reason, rather than playing the mMenuMusic
object when onResumeGame() is fired on app maximization, we determine whether
or not the mMuteButton button's tile index was set to UNMUTE just prior to our game's
window minimization. If so, then we can call the play() method on the mMenuMusic
object, otherwise we can ignore it until a user decides to play the music by pressing the
mMuteButton again.

See also
ff Working with different types of textures in Chapter 1, AndEngine Game Structure.

ff Introducing sounds and music in Chapter 1, AndEngine Game Structure.

ff Understanding AndEngine entities in Chapter 2, Working with Entities.

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities.

Applying a background
AndEngine's Scene object allows us to apply a static background to it. The background can be
used to display a solid color, an entity, a sprite, or a repeating sprite which are not affected by
changes to the Camera object's position or zoom factor. In this recipe, we're going to take a
look at how to apply the different types of backgrounds to our Scene object.

Designing Your Menu

114

How to do it..
The Background object is the most basic type of background for our Scene object in
AndEngine. This object allows the scene to visually represent a solid color. We will start this
recipe off by setting up the Scene object to display a Background object in order to become
familiar with how applying backgrounds to a scene works. Later on in this recipe we'll be
introducing the majority of the remaining Background object's subtypes in order to cover all
options as far as applying backgrounds to our scene goes. Setting the Scene object up with
a background involves just two steps as follows:

1.	 Define the properties of and create the Background object:
/* Define background color values */
final float red = 0;
final float green = 1;
final float blue = 1;
final float alpha = 1;

/* Create a new background with the specified color values */
Background background = new Background(red, green, blue, alpha);

2.	 Set the Background object to the Scene object and enable the background feature:

/* Set the mScene object's background */
mScene.setBackground(background);

/* Set the background to be enabled */
mScene.setBackgroundEnabled(true);

How it works…
Before deciding to use one of AndEngine's default backgrounds, we must figure out whether
or not our background should take camera movement into consideration. We can think of
these backgrounds as being "stuck" to the camera view. This means that any movements
made to the camera will have absolutely no effect on the position of the background. The
same rule applies for any other form of camera repositioning, including zooming. For this
reason, we should not include any objects on our background which we need to scroll with
camera movement. This is the difference between a Background object applied to the
Scene object and an Entity object attached to the Scene object. Any "backgrounds"
which should appear to move in response to the camera movement should be attached to
the Scene object as an Entity object instead. This is most conveniently accomplished by
applying an Entity object to the Scene object to act as a "background layer", which all
sprites representing the background image would be attached to.

Chapter 3

115

Now that we've covered the difference between a Background object and an Entity object,
we'll continue on to the steps for this recipe. As we can see in this recipe's steps, setting up
a boring, old colored background is a straightforward task. However, it still happens to be
useful to know. In the first step, we will define the properties of the Background object and
create the Background object supplying said properties as the parameters. For the basic
Background object, these parameters simply include the three color values and the alpha
value of the Background object's color. However, as we will soon discuss, the different types
of backgrounds will require different parameters depending on the type. The differences will
be outlined for convenience when we get to that point.

The second step for setting up a Background object on the Scene object will be the same
two method calls no matter what type of background we are applying. We must set the
scene's background with setBackground(pBackground) and make sure the scene's
background is enabled by calling setBackgroundEnabled(true). On the other hand,
we can also disable the background by supplying the latter method with a false parameter.

That's all it takes when setting up a background on our Scene object. However, in our own
games it is rather unlikely that we'll be satisfied with a basic colored background. See the
There's more... section of this recipe for a list and examples of the various Background
object subtypes.

There's more...
In the following sections we will cover the different types of static backgrounds which we can
use in our games. All of the Background object subtypes allow us to specify a background
color for portions of the background which are not covered by a Sprite entity, Rectangle
entity, or otherwise. These backgrounds all share the same "static" rule as mentioned in the
How it works... section, that they will not move pending camera movement.

The EntityBackground class
The EntityBackground class allows us to apply a single Entity object, or an entire Entity
object's layer as our scene's background. This can be useful for combining multiple Entity
objects into a single Background object to be displayed on the scene. In the following code,
we're attaching two rectangles to an Entity object's layer, then using the Entity object
as a background:

 /* Create a rectangle in the bottom left corner of the Scene */
 Rectangle rectangleLeft = new Rectangle(100, 100, 200, 200,
 mEngine.getVertexBufferObjectManager());

 /* Create a rectangle in the top right corner of the Scene */
 Rectangle rectangleRight = new Rectangle(WIDTH - 100, HEIGHT -
100, 200, 200,
 mEngine.getVertexBufferObjectManager());

Designing Your Menu

116

 /* Create the entity to be used as a background */
 Entity backgroundEntity = new Entity();

 /* Attach the rectangles to the entity which will be applied as a
background */
 backgroundEntity.attachChild(rectangleLeft);
 backgroundEntity.attachChild(rectangleRight);

 /* Define the background color properties */
 final float red = 0;
 final float green = 0;
 final float blue = 0;

 /* Create the EntityBackground, specifying its background color &
entity to represent the background image */
 EntityBackground background = new EntityBackground(red, green,
blue, backgroundEntity);

 /* Set & enable the background */
 mScene.setBackground(background);
 mScene.setBackgroundEnabled(true);

The EntityBackground object's parameters include red, green, and blue color
values and finally the Entity object or layer to display as the background. Once the
EntityBackground object has been created, we simply follow step two in this recipe's
How to do it... section and our EntityBackground object will be ready to display whatever
we choose to attach to the backgroundEntity object!

The SpriteBackground class
The SpriteBackground class allows us to attach a single Sprite object to our scene
as a background image. Keep in mind, the sprite will not be stretched or distorted in any
way to accommodate for the size of the display. In order to have a sprite stretch across
the full width and height of the camera's view, we must create the Sprite object while
taking into consideration the camera's width and height. With the following code, we
can apply a single Sprite object as our background image on the scene. Assume the
mBackgroundTextureRegion object's dimensions are the same as the WIDTH and
HEIGHT values in the following code, which represent the camera's width and height values:

/* Create the Sprite object */
Sprite sprite = new Sprite(WIDTH * 0.5f, HEIGHT * 0.5f,
mBackgroundTextureRegion,
 mEngine.getVertexBufferObjectManager());

/* Define the background color values */
final float red = 0;

Chapter 3

117

final float green = 0;
final float blue = 0;

/* Create the SpriteBackground object, specifying
 * the color values & Sprite object to display*/
SpriteBackground background = new SpriteBackground(red, green, blue,
sprite);

/* Set & Enable the background */
mScene.setBackground(background);
mScene.setBackgroundEnabled(true);

We can create the Sprite object as we would any other. When creating the
SpriteBackground object, we pass the usual color parameters along with
the Sprite object we wish to display on the background.

It is a good idea, when using SpriteBackground and
RepeatingSpriteBackground, to apply BitmapTextureFormat.
RGB_565 to the texture atlas. Since the background will likely stretch across
the full display, we usually do not require an alpha channel which can improve
the performance of our game on low-end devices.

The RepeatingSpriteBackground class
The RepeatingSpriteBackground class is useful for creating textured maps for terrain or
simply filling empty space on the scene with a texture. We can easily turn the following 128 x
128 pixel texture into a background which repeats the texture across the full length of
the display:

Designing Your Menu

118

The resulting background after creating a RepeatingSpriteBackground object out of the
preceding texture would look like the following image at 1280 x 752 pixels in dimension:

Creating a RepeatingSpriteBackground object requires a little bit more work than
the previous Background object subtypes. We will be loading our repeating image file
into an AssetBitmapTexture object which will then be extracted into an ITextureRegion
object for use by the background. Since we're using the texture for the purpose of repeating
it across RepeatingSpriteBackground, we must provide the TextureOptions.
REPEATING_BILINEAR or TextureOptions.REPEATING_NEAREST texture options
within the AssetBitmapTexture constructor. On top of that, when dealing with repeating
textures, we must keep our image file bound to the power of two dimensions. Texture
dimensions with a power of two are required by OpenGL's wrap modes in order to properly
repeat a texture. Failure to follow this rule will cause repeating sprites to appear as a black
shape instead. Place the following code into the onCreateResources() method of
your test activity. The mRepeatingTextureRegion object must be declared as a
global ITextureRegion object:

AssetBitmapTexture mBitmapTexture = null;

try {
 /* Create the AssetBitmapTexture with the REPEATING_* texture option
*/
 mBitmapTexture = new AssetBitmapTexture(mEngine.getTextureManager(),
this.getAssets(), "gfx/grass.png", BitmapTextureFormat.
RGB_565,TextureOptions.REPEATING_BILINEAR);
} catch (IOException e) {

Chapter 3

119

 e.printStackTrace();
}
/* Load the bitmap texture */
mBitmapTexture.load();

/* Extract the bitmap texture into an ITextureRegion */
mRepeatingTextureRegion = TextureRegionFactory.extractFromTexture(mBi
tmapTexture);

Next step is to create the RepeatingSpriteBackground object. We will include this code
in the onCreateScene() method of our activity's life cycle:

/* Define the RepeatingSpriteBackground sizing parameters */
final float cameraWidth = WIDTH;
final float cameraHeight = HEIGHT;
final float repeatingScale = 1f;

/* Create the RepeatingSpriteBackground */
RepeatingSpriteBackground background = new RepeatingSpriteBackground(c
ameraWidth, cameraHeight, mRepeatingTextureRegion, repeatingScale,
 mEngine.getVertexBufferObjectManager());

/* Set & Enable the background */
mScene.setBackground(background);
mScene.setBackgroundEnabled(true);

The first two parameters for the RepeatingSpriteBackground object define the
maximum area that the repeating texture will cover, extending from the bottom-left corner
of the display. In this case, we're covering the entire display. The third texture we pass is
the ITextureRegion object to be used as the repeating texture. As previously mentioned,
this texture region must be following the power-of-two dimension rule. The fourth parameter
is the scale factor of the repeating texture. The default scale is 1; increasing the scale will
cause the repeating texture to enlarge which can make it easier to see the repeating pattern.
Reducing the scale factor will shrink each repeated texture which can sometimes help to hide
the pattern or obvious flaws in the repeating textures. Keep in mind, adjusting the scale of
the repeating texture does not affect the overall size of the RepeatingSpriteBackground
object as defined in the first two parameters, so feel free to adjust them until the texture
looks right.

See also
ff Working with different types of textures in Chapter 1, AndEngine Game Structure.

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities.

Designing Your Menu

120

Using parallax backgrounds to create
perspective

Applying a parallax background to a game can result in a visually-pleasing perspective effect.
Even though we're working with a 2D engine, we can create a background which will gives off
an illusion of depth through the use of parallax values which determine the movement speed of
sprites based on the camera movement. This topic is going to introduce parallax backgrounds
and how we can use them to add a sense of depth to an otherwise fully 2D world. The classes
we will be using are the ParallaxBackground and the AutoParallaxBackground classes.

Getting ready…
This recipe requires basic knowledge of the Sprite object in AndEngine. Please read
through the entire recipe, Working with different types of textures in Chapter 1, AndEngine
Game Structure. Next, please visit the recipe, Bringing a scene to life with sprites in
Chapter 2, Working with Entities.

Once the recipes regarding textures and sprites have been covered, create a new AndEngine
project with an empty BaseGameActivity class. Finally, we will need to create an image
named hill.png and place it in the assets/gfx/ folder of the project. This image should
be 800 x 150 pixels in dimension. The image can resemble the following figure:

Refer to the class named UsingParallaxBackgrounds in the code bundle and import the
code into your project.

How to do it…
The ParallaxBackground object is the most advanced Background object subtype in
AndEngine. It requires the most setting up out of all of the Background object subtypes,
but if broken down into small steps, it is really not that difficult. Perform the following steps
for a walkthrough on how to set up a ParallaxBackground object to work in relation to
the camera's movement. For the sake of brevity, we're going to omit the automatic camera
movement code which can be found in the onCreateEngineOptions() method of the
activity's life cycle:

Chapter 3

121

1.	 The first step is typical when creating an ITextureRegion object for Sprite
objects and is to create our BuildableBitmapTextureAtlas. The texture atlas
should be just big enough to contain the hill.png image, which is 800 pixels wide
by 150 pixels high. Once the texture atlas has been created, continue on to create
the ITextureRegion object, then build and load the texture atlas as usual. This
should all take place within the onCreateResources() method of the activity's
life cycle.

2.	 The remaining steps will take place within the onCreateScene() method of the
activity's life cycle. First, we need to create all of the Sprite objects which will
appear on the background. In this recipe, we're applying three Sprite objects which
will be placed conveniently on the background in order to enhance the illusion of
distance between the different sprites:
final float textureHeight = mHillTextureRegion.getHeight();

/* Create the hill which will appear to be the furthest
* into the distance. This Sprite will be placed higher than the
 * rest in order to retain visibility of it */
Sprite hillFurthest = new Sprite(WIDTH * 0.5f, textureHeight *
0.5f + 50, mHillTextureRegion,
 mEngine.getVertexBufferObjectManager());

/* Create the hill which will appear between the furthest and
closest
 * hills. This Sprite will be placed higher than the closest hill,
but
* lower than the furthest hill in order to retain visibility */
Sprite hillMid = new Sprite(WIDTH * 0.5f, textureHeight * 0.5f +
25, mHillTextureRegion,
 mEngine.getVertexBufferObjectManager());

/* Create the closest hill which will not be obstructed by any
other hill
* Sprites. This Sprite will be placed at the bottom of the Scene
since
* nothing will be covering its view */
Sprite hillClosest = new Sprite(WIDTH * 0.5f, textureHeight *
0.5f, mHillTextureRegion,
 mEngine.getVertexBufferObjectManager());

3.	 Next, we will create the ParallaxBackground object. The three parameters for the
constructor define the background color as usual. More importantly, we must override
the onUpdate() method of the ParallaxBackground object in order to handle
movement of the Sprite objects on the background pending any camera movement:
/* Create the ParallaxBackground, setting the color values to
represent
* a blue sky */

Designing Your Menu

122

ParallaxBackground background = new ParallaxBackground(0.3f, 0.3f,
0.9f) {

 /* We'll use these values to calculate the parallax value of the
background */
 float cameraPreviousX = 0;
 float parallaxValueOffset = 0;

 /* onUpdates to the background, we need to calculate new
 * parallax values in order to apply movement to the background
 * objects (the hills in this case) */
 @Override
 public void onUpdate(float pSecondsElapsed) {
 /* Obtain the camera's current center X value */
 final float cameraCurrentX = mCamera.getCenterX();

 /* If the camera's position has changed since last
 * update... */
 if (cameraPreviousX != cameraCurrentX) {

 /* Calculate the new parallax value offset by
 * subtracting the previous update's camera x coordinate
 * from the current update's camera x coordinate */
 parallaxValueOffset += cameraCurrentX - cameraPreviousX;

 /* Apply the parallax value offset to the background, which
 * will in-turn offset the positions of entities attached
 * to the background */
 this.setParallaxValue(parallaxValueOffset);

 /* Update the previous camera X since we're finished with
this
 * update */
 cameraPreviousX = cameraCurrentX;
 }
 super.onUpdate(pSecondsElapsed);
 }
};

4.	 Once the ParallaxBackground object has been created, we must now
attach ParallaxEntity objects to the ParallaxBackground object. The
ParallaxEntity object requires that we define a parallax factor for the entity
as well as a Sprite object for visual representation, which would be the hills in
this case:
background.attachParallaxEntity(new ParallaxEntity(5,
hillFurthest));
background.attachParallaxEntity(new ParallaxEntity(10, hillMid));
background.attachParallaxEntity(new ParallaxEntity(15,
hillClosest));

Chapter 3

123

5.	 Lastly, as with all Background objects we must apply it to the Scene object and
enable it:

/* Set & Enabled the background */
mScene.setBackground(background);
mScene.setBackgroundEnabled(true);

How it works…
In this recipe, we're setting up a ParallaxBackground object which will contain three
separate ParallaxEntity objects. Each of these three ParallaxEntity objects will
represent a hill within the background of our scene. Through the use of parallax factors and
parallax values, the ParallaxBackground object allows each of the ParallaxEntity
objects to offset their position at different speeds in the event that the Camera object
changes its position. This allows the ParallaxEntity objects to give off the perspective
effect. As we all know, objects which are closer to us will appear to move much faster than
objects which are in the distance.

The first step in the How to do it... section is a basic and necessary task for creating our
Sprite objects. In this recipe, we're using a single texture region/image to represent all three
sprites which will be attached to the background. However, feel free to modify this recipe in
order to allow each of the three Sprite objects to use their own customized images. Practice
will help to further understand how a ParallaxBackground object can be manipulated to
create neat scenes within a game.

In the second step, we set up our three Sprite objects which will be attached to the
background as ParallaxEntity objects. We're placing them all in the center of the scene
as far as the x coordinate goes. The ParallaxBackground class is only meant for applying
perspective to the x coordinate movement, therefore the position of sprites on the background
will move out of the initial x coordinate as the camera moves. With that being said, it is
important to know that the ParallaxBackground object will continuously stitch together
copies of each ParallaxEntity object attached to the background in order to compensate
for background objects which may leave the camera's view. See the following figure for a
visual representation of how the ParallaxBackground object stitches background objects
end-to-end:

Designing Your Menu

124

Due to the way ParallaxEntity object stitching works on the ParallaxBackground
object, in order to create objects which may not appear so often on the background,
we must include transparent padding within the image file itself.

As for defining a sprite's y coordinate, it is best to spread the sprites out in order to be able to
differentiate between the closest and the furthest hills on the background. In order to create
the best perspective effect, the most distant objects should appear to be higher up on the
scene as they will be hiding behind the closer objects as far as layering goes.

In the third step, we create the ParallaxBackground object. The constructor, similar to
all other Background object subtypes, defines the background color. The real magic takes
place within the overridden onUpdate() method of the ParallaxBackground object. We
have two variables; cameraPreviousX and cameraCurrentX which will be tested against
initially to make sure there is a difference between the two in order to reduce any unnecessary
execution of code. If the two values are not equal to each other, we accumulate the difference
between the previous and current camera position into a parallaxValueOffset variable.
By calling setParallaxValue(parallaxValueOffset) on the ParallaxBackground
object, we are basically just telling the background that the camera has changed positions
and it's time to update all of the ParallaxEntity object positions to compensate.
Increasing the parallax value will cause ParallaxEntity objects to pan to the left,
while decreasing it causes them to pan to the right.

In the fourth step, we finally create the ParallaxEntity objects, supplying each of them
with a parallax factor and a Sprite object. The parallax factor will define exactly how fast or
how slow the Sprite object will move based on the camera's movement. In order to create
a more realistic scenery, the objects furthest away should have a lesser value than closer
objects. Additionally, the attachParallaxEntity(pParallaxEntity) method is similar
to attaching Entity objects to a Scene object in the sense that the second object attached
will appear in front of the first, the third will appear in front of the second, and so on. For this
reason, we attach ParallaxEntity objects to ParallaxBackground from furthest first,
then work our way up to the closest object.

Once all of the previous steps have been done, we can simply apply ParallaxBackground
to the Scene object and enable it. From here on out, any and all camera movement will
determine the position of the objects within the background scenery!

Chapter 3

125

There's more…
AndEngine also includes an AutoParallaxBackground class which is similar to the
ParallaxBackground class in terms of setting up a visual effect. The difference between
the two is that the AutoParallaxBackground class allows us to specify a constant rate in
which the ParallaxEntity objects will move across the screen regardless of the camera's
movement. This type of background is useful for games which should appear to be constantly
moving such as a racing game or any type of fast-paced side-scroller. On the other hand, the
AutoParallaxBackground class can also be used to create simple effects such as clouds
scrolling consistently across the screen during gameplay, even in games which may appear to
remain static in terms of Camera and Scene object position.

We can create an AutoParallaxBackground object by making a simple adjustment to
this recipe's activity. Replace the current ParallaxBackground object creation with the
following code snippet. Note that the autoParallaxSpeed variable defines how fast the
ParallaxEntity objects will move on the background, since they're no longer based on
the camera's movement:

/* Define the speed that the parallax entities will move at.
 *
* Set to a negative value for movement in the opposite direction */
final float autoParallaxSpeed = 3;

/* Create an AutoParallaxBackground */
AutoParallaxBackground background = new AutoParallaxBackground(0.3f,
0.3f, 0.9f, autoParallaxSpeed);

Additionally, remove all code associated with the mCamera object's onUpdate() method as it
will no longer affect the position of the ParallaxEntity objects.

The following figure displays the outcome of attaching three hill layers to the
ParallaxBackground or AutoParallaxBackground objects at different
heights, minus the movement, of course:

Designing Your Menu

126

See also
ff Working with different types of textures in Chapter 1, AndEngine Game Structure.

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities.

ff Applying a background given in this chapter.

Creating our level selection system
Chances are, if you've ever played a mobile game with multiple levels then you already have
an idea of what we'll be working with in this chapter. We're going to be creating a class which
provides our game with a grid containing level tiles that we can use in order to allow a user
to select a level to play. This class can be very easily managed and is highly customizable,
from button texture, column count, row count, and more, with ease. The end result will look
something like this:

This implementation of the LevelSelector class extends AndEngine's
Entity object. This makes applying transitional effects with entity modifiers
and allowing scrolling based on touch events a rather trivial task.

Getting ready…
The LevelSelector class is highly based on the use of AndEngine's Entity, Sprite, and
Text objects. In order to understand how LevelSelector works, please take the time to go
over the recipes regarding these objects. These recipes include, Understanding AndEngine
entities in Chapter 2, Working with Entities, Bringing a scene to life with sprites in Chapter 2,
Working with Entities, and Applying text to a layer in Chapter 2, Working with Entities.

Chapter 3

127

The LevelSelector object requires an ITextureRegion object with a reference to an
image file. Feel free to create an image which will represent a square button at 50 x 50
pixels in dimension, such as those seen in the figure in this recipe's introduction. While this
ITextureRegion object is not needed internally within the LevelSelector class, it is
needed in order to test out the LevelSelector class in an empty BaseGameActivity
test project at the end of this recipe.

Refer to the class named LevelSelector in the code bundle for the working code for this
recipe. Feel free to use this class and modify it as you see fit in order to fit the needs of your
own games!

How to do it…
The LevelSelector class is actually quite simple to work with even though its size might
be quite large. In this recipe, we're actually going to be introducing two classes; the first is
the LevelSelector class which handles how the level tiles, or buttons, come to form a
grid on the scene. The second is an inner class of LevelSelector, called LevelTile. The
LevelTile class allows us to easily add or remove additional data that may be necessary for
our own games. For the sake of keeping things simple, we're going to discuss each of the two
classes in their own steps starting with the LevelSelector class.

The following steps explain how the LevelSelector class works in order to arrange
LevelTile objects on the scene in a grid format:

1.	 Create the LevelSelector constructor, initializing all variables. This constructor
is straightforward until we come to the point where we must specify the very first
LevelTile object's position via the mInitialX and mInitialY variables:
final float halfLevelSelectorWidth = ((TILE_DIMENSION * COLUMNS) +
TILE_PADDING
 * (COLUMNS - 1)) * 0.5f;
this.mInitialX = (this.mCameraWidth * 0.5f) -
halfLevelSelectorWidth;

/* Same math as above applies to the Y coordinate */
final float halfLevelSelectorHeight = ((TILE_DIMENSION * ROWS) +
TILE_PADDING
 * (ROWS - 1)) * 0.5f;
this.mInitialY = (this.mCameraHeight * 0.5f) +
halfLevelSelectorHeight;

Designing Your Menu

128

2.	 Next, we must create the method which will be used to build the
LevelSelector object's tile grid. We are creating a method called
createTiles(pTextureRegion, pFont) which makes creating the
level tile grid completely automated by looping through a set number of
ROWS and COLUMNS values, placing tiles in predetermined coordinates:
public void createTiles(final ITextureRegion pTextureRegion,
 final Font pFont) {

 /* Temp coordinates for placing level tiles */
 float tempX = this.mInitialX + TILE_DIMENSION * 0.5f;
 float tempY = this.mInitialY - TILE_DIMENSION * 0.5f;

 /* Current level of the tile to be placed */
 int currentTileLevel = 1;

 /* Loop through the Rows, adjusting tempY coordinate after each
 * iteration */
 for (int i = 0; i < ROWS; i++) {

 /* Loop through the column positions, placing a LevelTile in
each
 * column */
 for (int o = 0; o < COLUMNS; o++) {

 final boolean locked;

 /* Determine whether the current tile is locked or not */
 if (currentTileLevel <= mMaxLevel) {
 locked = false;
 } else {
 locked = true;
 }

 /* Create a level tile */
 LevelTile levelTile = new LevelTile(tempX, tempY, locked,
 currentTileLevel, pTextureRegion, pFont);

 /* Attach the level tile's text based on the locked and
 * currentTileLevel variables pass to its constructor */
 levelTile.attachText();

 /* Register & Attach the levelTile object to the
LevelSelector */
 mScene.registerTouchArea(levelTile);
 this.attachChild(levelTile);

 /* Increment the tempX coordinate to the next column */

Chapter 3

129

 tempX = tempX + TILE_DIMENSION + TILE_PADDING;

 /* Increment the level tile count */
 currentTileLevel++;
 }

 /* Reposition the tempX coordinate back to the first row (far
left) */
 tempX = mInitialX + TILE_DIMENSION * 0.5f;

 /* Reposition the tempY coordinate for the next row to apply
tiles */
 tempY = tempY - TILE_DIMENSION - TILE_PADDING;
 }
}

3.	 The third and final step for the LevelSelector class is to include two methods;
one for displaying the LevelSelector class' grid and another for hiding the
LevelSelector class' grid. For simplicity, we'll call these methods show()
and hide() with no parameters:

/* Display the LevelSelector on the Scene. */
public void show() {

 /* Register as non-hidden, allowing touch events */
 mHidden = false;

 /* Attach the LevelSelector the the Scene if it currently has no
parent */
 if (!this.hasParent()) {
 mScene.attachChild(this);
 }

 /* Set the LevelSelector to visible */
 this.setVisible(true);
}

/* Hide the LevelSelector on the Scene. */
public void hide() {

 /* Register as hidden, disallowing touch events */
 mHidden = true;

 /* Remove the LevelSelector from view */
 this.setVisible(false);
}

Designing Your Menu

130

Now we move on to the LevelTile class' steps. The LevelTile inner class is an extension
of AndEngine's Sprite object. The reason we implement our own LevelTile class is to
allow each tile to store its own data, such as whether the level the tile represents is locked
or not, Font and Text objects used to display the tile's level number, the tile's level number
itself, and more. This class can easily be modified to store even more information such as a
user's high-score for a specific level, level color themes, or whatever else we'd like to include.
The following steps walk us through the creation of the LevelTile inner class:

1.	 Create the LevelTile constructor:
public LevelTile(float pX, float pY, boolean pIsLocked,
 int pLevelNumber, ITextureRegion pTextureRegion, Font pFont) {
 super(pX, pY, LevelSelector.this.TILE_DIMENSION,
 LevelSelector.this.TILE_DIMENSION, pTextureRegion,
 LevelSelector.this.mEngine.getVertexBufferObjectManager());

 /* Initialize the necessary variables for the LevelTile */
 this.mFont = pFont;
 this.mIsLocked = pIsLocked;
 this.mLevelNumber = pLevelNumber;
}

2.	 Create the necessary getters for the LevelTile class. For a basic LevelTile class
such as this, all we'll need access to is data regarding the locked state of the level
number the tile represents as well as the level number the tile represents:
/* Method used to obtain whether or not this level tile represents
a
 * level which is currently locked */
public boolean isLocked() {
 return this.mIsLocked;
}

/* Method used to obtain this specific level tiles level number */
public int getLevelNumber() {
 return this.mLevelNumber;
}

3.	 In order to display the level number on each LevelTile object, we'll create an
attachText() method to handle applying a Text object to each LevelTile
object after it is created:
public void attachText() {
 String tileTextString = null;

 /* If the tile's text is currently null... */
 if (this.mTileText == null) {

Chapter 3

131

 /* Determine the tile's string based on whether it's locked or
 * not */
 if (this.mIsLocked) {
 tileTextString = "Locked";
 } else {
 tileTextString = String.valueOf(this.mLevelNumber);
 }
 /* Setup the text position to be placed in the center of the
tile */
 final float textPositionX = LevelSelector.this.TILE_DIMENSION
* 0.5f;
 final float textPositionY = textPositionX;

 /* Create the tile's text in the center of the tile */
 this.mTileText = new Text(textPositionX,
 textPositionY, this.mFont,
 tileTextString, tileTextString.length(),
 LevelSelector.this.mEngine.
getVertexBufferObjectManager());

 /* Attach the Text to the LevelTile */
 this.attachChild(mTileText);
 }
}

4.	 Last but certainly not the least, we'll override the onAreaTouched() method
of the LevelTile class in order to provide a default action in the event a tile is
pressed down on. The event executed should differ depending on the mIsLocked
Boolean value:

@Override
public boolean onAreaTouched(TouchEvent pSceneTouchEvent,
 float pTouchAreaLocalX, float pTouchAreaLocalY) {
 /* If the LevelSelector is not hidden, proceed to execute the
touch
 * event */
 if (!LevelSelector.this.mHidden) {
 /* If a level tile is initially pressed down on */
 if (pSceneTouchEvent.isActionDown()) {
 /* If this level tile is locked... */
 if (this.mIsLocked) {
 /* Tile Locked event... */
 LevelSelector.this.mScene.getBackground().setColor(
 org.andengine.util.adt.color.Color.RED);
 } else {

Designing Your Menu

132

 /* Tile unlocked event... This event would likely prompt
 * level loading but without getting too complicated we
 * will simply set the Scene's background color to green
*/
 LevelSelector.this.mScene.getBackground().setColor(
 org.andengine.util.adt.color.Color.GREEN);

 /**
 * Example level loading:
 * LevelSelector.this.hide();
 * SceneManager.loadLevel(this.mLevelNumber);
 */
 }
 return true;
 }
 }
 return super.onAreaTouched(pSceneTouchEvent, pTouchAreaLocalX,
 pTouchAreaLocalY);
}

How it works…
This implementation of a LevelSelector class allows us to create a grid of selectable level
tiles by adding a minimal amount of code in our activity. Before we go over the implementation
of the LevelSelector class into our activity, let's take a look at how this class works in
order to give us an idea of how we might modify this class to better suit the specific needs
of a range of different games. Just as the How to do it... section divides the steps into two
segments based on each of the two classes used in this recipe, we will also explain how each
class works in two segments. We will start with the LevelSelector class once again.

Explaining the LevelSelector class
First and foremost, the LevelSelector class includes a number of member variables, which
we should get to know in order to take full advantage of this object. The following is a list of
the variables used in this class along with a description for each:

ff COLUMNS: The number of LevelTile objects to be displayed on the horizontal axis
of the LevelSelector class' grid.

ff ROWS: The number of LevelTile objects to be displayed on the vertical axis of the
LevelSelector class' grid.

ff TILE_DIMENSION: The width and height values of each individual LevelTile
object.

Chapter 3

133

ff TILE_PADDING: The spacing, in pixels, between each LevelTile object on the
LevelSelector class' grid.

ff mChapter: This value defines the LevelSelector class' chapter value. This
variable can allow us to create a number of LevelSelector objects which
represent different chapters/worlds/zones within our game by specifying
different chapter values for each LevelSelector object.

ff mMaxLevel: This value defines the maximum unlocked level that a user has currently
reached within our game. This variable would be tested against the level number of
each LevelTile object that is touched. Users should not be allowed entry into levels
which are greater than this variable.

ff mCameraWidth/mCameraHeight: These values are simply used to help properly
align the LevelSelector and LevelTile objects in the center of the scene.

ff mInitialX: This variable is in place to hold a reference to the initial x coordinate of
each of the LevelSelector class' grid rows. Each time an entire row of the grid is
laid out, the first LevelTile object of the next row reverts back to this x coordinate.

ff mInitialY: This variable is used only once to define the very first LevelTile
object's y coordinate. Since we're building the LevelSelector class' grid from left
to right and from the top to bottom, we will never have to revert back to the initial y
coordinate for subsequent tile placement.

ff mHidden: The boolean statement of this variable determines whether or not the
LevelTile objects will respond to touch events. This variable is set true if the
LevelSelector object is not visible on the scene, false otherwise.

With all of the member variables out of the way, understanding how the LevelSelector
class works will be a breeze! In the first step, we're creating the LevelSelector constructor
to initialize all of the class variables. The constructor should be easy to follow up until
the point where we define the mInitialX and mInitialY variables. All we are doing is
calculating half of the overall width and height of the LevelSelector class' grid based
on the number of columns, the number of rows, the tile dimension, and the tile padding. To
calculate the overall width, we need to multiply the number of COLUMNS values by the width
of each LevelTile object. Since we're including padding between each tile, we must also
calculate how much space the padding will consume. However, padding will only occur in
between tiles, meaning there will be no padding to calculate for the final column, so we can
subtract a column from the padding calculation. We then divide this value by half in order to
come up with half the width of the entire grid. Finally, subtracting half the width of the entire
grid from the center position of the Camera object will give us the first LevelTile object's x
coordinate! The same math applies to calculate the initial y coordinate, except the y axis deals
with rows instead of columns, so we need to make that adjustment in the mInitiaY variable
calculation in order to obtain the proper y coordinate.

Designing Your Menu

134

The second step for the LevelSelector class introduces the method of LevelTile
object creation and placement. This is where the grid-making magic begins. Before we
begin the iteration, we declare and define temporary coordinates which will be used to place
each LevelTile object on the grid, incrementing their value accordingly after each tile is
placed. The TILE_DIMENSION * 0.5f calculations are simply in place to accommodate
for AndEngine's Entity object's anchor, or placement coordinate relying on the center
of the Entity object. Additionally, we are initializing a temporary level number called
currentTileLevel which is initialized to 1, which signifies the level 1 tile. This variable is
incremented by a value of 1 each time a level tile is placed on the grid. Once the initial level
tile's values have been defined, we proceed to create the for loops which will loop through
each position of the rows and columns which make up the grid. Starting with the first row,
we will then loop N number of columns, incrementing the tempX variable by adding
TILE_DIMENSION and TILE_PADDING after each tile is placed which will give us the
next position. Once we reach the maximum number of columns, we decrease the tempY
variable by adding TILE_DIMENSION and TILE_PADDING in order to drop us to the next
row to populate. This process continues on until there are no rows left to populate.

The final step included in the LevelSelector class includes the code which calls
setVisible(pBoolean) on the LevelSelector object, enabling visibility if the show()
method is called and disabling visibility if the hide() method is called. The first time a
LevelSelector object calls show(), it will be attached to the Scene object. Additionally, the
mHidden variable will be adjusted according to the visibility of the LevelSelector object.

Explaining the LevelTile class
As with the LevelSelector class, we will begin by outlining the purpose of the different
LevelTile class member variables. The following is a list of the variables used in this class
along with a description for each:

ff mIsLocked: The mIsLocked Boolean variable is defined by a parameter in the
LevelTile constructor. This variable defines whether or not this LevelTile
object's touch event should produce a positive event, such as proceeding to load
a level, or a negative event, such as notification that the level is locked.

ff mLevelNumber: This variable simply holds the value of the LevelTile object's level
number representation. This value is determined according to its position on the grid;
for example, the first tile placed on a grid will represent level 1, the second tile will
represent level 2, and so on.

ff mFont and mTileText: The mFont and mTileText objects are used to display
a Text object on each LevelTile. If the LevelTile object is considered to be
locked, a string displaying the word, locked will be displayed on the tile, otherwise
the level number of the tile is displayed.

Chapter 3

135

In the LevelTile class' first step, we're simply introducing the constructor. There's
nothing out of the ordinary here. However, one thing to note is that the constructor does
rely on the constant TILE_DIMENSION value to specify the tile's width/height dimensions
without specifying a parameter. This is in place to keep a level of conformity between the
LevelSelector and LevelTile classes.

In the second step, we had introduced two getter methods which can be used to obtain the
more important values of the LevelTile class. Even though we aren't currently using these
methods within either class, they can be important later on when the LevelSelector/
LevelTile objects are implemented into a full-featured game which requires data such as
level numbers to be passed around within the game.

The third step introduces a method which is used to attach a Text object to LevelTile
called attachText(). This method will place the mTileText object in the direct center of
the LevelTile object with a string dependent on the LevelTile object's locked state. As
stated in the mFont and mTileText variable explanation, the mTileText object's String
variable will display either locked or the tile's level number.

The final step requires us to override the onAreaTouched() method of the LevelTile
object. Before we even consider responding to a touch event on any tile, we first determine
whether or not the LevelSelector object containing the LevelTile object is visible. If
not, there is no point in proceeding with any touch events, but if the LevelSelector object
is visible then we proceed to check whether the tile was pressed down on. If a LevelTile
object is pressed down on, we then continue to check whether or not the tile is locked or
unlocked. In the class' current state, we are simply setting the color of the scene's background
in order to signify whether or not the pressed tile is locked or not. However, in a real-world
application, the current locked event can be replaced with a basic notification stating that the
selected tile is locked. In the event that a tile is not locked, then the touch event should take
the user to the selected level based on the LevelTile object's mLevelNumber variable.
If the game contains multiple chapters/worlds/zones, then we could even go as far as the
following pseudo-code implementation, depending on the game's method of loading levels:

LevelSelector.this.hide();
SceneManager.loadLevel(this.mLevelNumber, LevelSelector.this.
mChapter);

Designing Your Menu

136

There's more…
Once we've included the LevelSelector class into any project we choose, we can easily
implement a working-level selection grid into our BaseGameActivity. In order to properly
create the LevelSelector object and display it on our scene, we'll need to make sure
we've created an ITextureRegion object and Font object to be used when creating the
LevelTile objects for the LevelSelector class. We're going to omit the resource creation
code in order to keep the LevelSelector class' example brief. If need be, please visit the
recipes, Working with different types of textures in Chapter 1, AndEngine Game Structure,
and Using AndEngine font resources in Chapter 1, AndEngine Game Structure, for more
information on how to set up the necessary resources for this class.

The following code displaying how to create the LevelSelector object can be copied
into the onCreateScene() method of any activity prior to creating the necessary
ITextureRegion and Font objects:

/* Define the level selector properties */
final int maxUnlockedLevel = 7;
final int levelSelectorChapter = 1;
final int cameraWidth = WIDTH;
final int cameraHeight = HEIGHT

/* Create a new level selector */
LevelSelector levelSelector = new LevelSelector(maxUnlockedLevel,
levelSelectorChapter, cameraWidth, cameraHeight, mScene, mEngine);

/* Generate the level tiles for the levelSelector object */
levelSelector.createTiles(mTextureRegion, mFont);

/* Display the levelSelector object on the scene */
levelSelector.show();

A great feature of this LevelSelector class is the fact that it is an Entity object subtype.
If we wish to apply fancy transition effects for it to move in and out of the camera's view as
needed, we can simply call levelSelector.registerEntityModifier(pEntityModif
ier). Since the LevelTile objects are attached to the LevelSelector object upon calling
the createTiles() method, any change in the LevelSelector object's position will
also affect all LevelTile objects, in sync. This also makes creating scrollable level selector
implementation very easy to add if dealing with multiple chapters.

See also
ff Understanding AndEngine entities in Chapter 2, Working with Entities.

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities.

Chapter 3

137

Hiding and retrieving layers
There are a few different options we have for screen management in our games; a screen
being a menu screen, loading screen, gameplay screen, and more. We can use multiple
activities to act as each screen, we can use the more obvious Scene object to act as each
screen in our game, or we can use Entity objects to act as each screen. While the majority
of developers tend to follow the multiple activities or multiple Scene objects to act as
different game screens, we're going to be taking a quick look into using Entity objects
to act as the different screens in our games.

Using Entity objects to act as the various screens of our game has many benefits over
the other two approaches mentioned. The entity approach allows us to apply many different
screens, or layers to our game at the same time. Unlike with using multiple activities or Scene
objects to act as different screens in our game, we can visually display a number of screens
on the device using Entity objects. This is extremely useful as we can apply transitional
effects when entering or leaving gameplay and easily load and unload resources as we see fit.

The following image displays this recipe's code in action. What we're seeing is two Entity
object layers with a number of Rectangle children objects alternating between being
transitioned in and transitioned out of the camera's view. This represents how we can use
Entity objects to handle transitional effects among a small or large group of children:

Designing Your Menu

138

Getting ready…
This recipe requires an understanding of Entity objects and how they can be used as layers
to contain a set of children. Additionally, we're incorporating transitional effects to these layers
through the use of entity modifiers. Before continuing on with this recipe, please make sure to
read through the entire recipes, Understanding AndEngine entities in Chapter 2, Working with
Entities, Overriding the onManagedUpdate() method in Chapter 2, Working with Entities, and
Using modifiers and entity modifiers in Chapter 2, Working with Entities.

Refer to the class named HidingAndRetrievingLayers in the code bundle for the working
code for this recipe and import it into an empty AndEngine BaseGameActivity class.

How to do it…
The following steps outline how we can use entity modifiers to handle transitional effects
between different screens/layers within our game. This recipe includes a simple method
which handles the transitioning of layers, however in a real-world application this task is
generally performed with the use of a screen/layer manager class. The layers are swapped
based on the time passed solely for the purpose of automated demonstration.

1.	 Create and define the layers/screens as Entity objects and the transitional effects
with ParallelEntityModifier objects. These objects should be global:
/* These three Entity objects will represent different screens */
private final Entity mScreenOne = new Entity();
private final Entity mScreenTwo = new Entity();
private final Entity mScreenThree = new Entity();

/* This entity modifier is defined as the 'transition-in' modifier
 * which will move an Entity/screen into the camera-view */
private final ParallelEntityModifier mMoveInModifier = new
ParallelEntityModifier(
 new MoveXModifier(3, WIDTH, 0),
 new RotationModifier(3, 0, 360),
 new ScaleModifier(3, 0, 1));

/* This entity modifier is defined as the 'transition-out'
modifier
 * which will move an Entity/screen out of the camera-view */
private final ParallelEntityModifier mMoveOutModifier = new
ParallelEntityModifier(
 new MoveXModifier(3, 0, -WIDTH),
 new RotationModifier(3, 360, 0),
 new ScaleModifier(3, 1, 0));

Chapter 3

139

2.	 Create the mScene object, overriding its onManagedUpdate() method in order to
handle calling the setLayer(pLayerIn, pLayerOut) method introduced in the
next step. Additionally, we will attach our Entity object layers once the mScene
object has been created:
mScene = new Scene() {
 /* Variable which will accumulate time passed to
 * determine when to switch screens */
 float timeCounter = 0;

 /* Define the first screen indices to be transitioned in and out
*/
 int layerInIndex = 0;
 int layerOutIndex = SCREEN_COUNT - 1;

 /* Execute the code below on every update to the mScene object
*/
 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {

 /* If accumulated time is equal to or greater than 4 seconds
*/
 if (timeCounter >= 4) {

 /* Set screens to be transitioned in and out */
 setLayer(mScene.getChildByIndex(layerInIndex),
 mScene.getChildByIndex(layerOutIndex));

 /* Reset the time counter */
 timeCounter = 0;

 /* Setup the next screens to be swapped in and out */
 if (layerInIndex >= SCREEN_COUNT - 1) {
 layerInIndex = 0;
 layerOutIndex = SCREEN_COUNT - 1;
 } else {
 layerInIndex++;
 layerOutIndex = layerInIndex - 1;
 }

 }
 /* Accumulate seconds passed since last update */
 timeCounter += pSecondsElapsed;
 super.onManagedUpdate(pSecondsElapsed);
 }

Designing Your Menu

140

};

/* Attach the layers to the scene.
 * Their layer index (according to mScene) is relevant to the
 * order in which they are attached */
mScene.attachChild(mScreenOne); // layer index == 0
mScene.attachChild(mScreenTwo); // layer index == 1
mScene.attachChild(mScreenThree); // layer index == 2

3.	 Lastly, we will create a setLayer(pLayerIn, pLayerOut) method which we
can use to handle registering the entity modifiers to the appropriate Entity object,
depending on if it should be entering or leaving the camera's view:
/* This method is used to swap screens in and out of the camera-
view */
private void setLayer(IEntity pLayerIn, IEntity pLayerOut) {

 /* If the layer being transitioned into the camera-view is
invisible,
 * set it to visibile */
 if (!pLayerIn.isVisible()) {
 pLayerIn.setVisible(true);
 }

 /* Global modifiers must be reset after each use */
 mMoveInModifier.reset();
 mMoveOutModifier.reset();

 /* Register the transitional effects to the screens */
 pLayerIn.registerEntityModifier(mMoveInModifier);
 pLayerOut.registerEntityModifier(mMoveOutModifier);
}

How it works…
This recipe covers a simple, yet useful system relating to working with Entity layer
transitioning. Larger games will likely involve more variables to take into account when
handling layer swapping, but the concept is relevant across all project sizes as far as
entity/screen indexing and creating the method of transitioning screens goes.

Chapter 3

141

In the first step we are creating our global objects. The three Entity objects will represent
the different screens within our game. In this recipe, all three of the Entity objects
contain four Rectangle children objects,which allow us to visualize the screen transitions,
however we can interpret each of the three Entity objects as a different screen such as
the menu screen, the loading screen, and the gameplay screen. We are also creating two
global ParallelEntityModifier entity modifiers to handle the positional changes
of the screens. The mMoveInModifier modifier will move the registered screen from
outside the right-hand side of the camera's view into the center of the camera's view. The
mMoveOutModifier modifier will move the registered screen from the center of the camera's
view to outside the left-hand side of the camera's view. Both modifiers include a simple
rotation and scaling effect to produce a "rolling" transitional effect.

In the next step, we are creating our mScene object and attaching the globally-declared
Entity objects to it. In this recipe, we are setting up the mScene object to handle
screen swapping based on the time passed, however before discussing how the
onManagedUpdate() method of the mScene object works to handle screen swapping,
let's take a look at how we're obtaining our Entity object indices as they will be used to
determine which screens will be transitioned:

mScene.attachChild(mScreenOne); // layer index == 0
mScene.attachChild(mScreenTwo); // layer index == 1
mScene.attachChild(mScreenThree); // layer index == 2

As we can see in this code snippet, we are attaching the screens in numerical order according
to their name. Once an Entity object has been attached to the Scene object, we can then
call the method, getChildByIndex(pIndex) on a parent in order to obtain an Entity
object by its index. A child's index is determined by the order they are attached to another
object. We use these indices within the mScene object's onManagedUpdate() method in
order to determine which entity/screen to swap in and which to swap out of the camera's
view every four seconds.

During the initialization of the mScene object, we are instantiating two int variables which
will be used to determine which screens to transition in and out of the camera's view.
Initially, we are defining layerInIndex to a value of 0, which is equal to the mScreenOne
object's index and layerOutIndex to a value of SCREEN_COUNT – 1, which is equal to
the mScreenThree object's index based on the order they were attached to the Scene
object. After every four seconds within the onManagedUpdate() method of the mScene
object, we are calling the setLayer(pLayerIn, pLayerOut) method to begin the screen
transitioning, resetting the timeCounter variable to accumulate the next four seconds,
and determining the next Entity objects to be transitioned in and out of the camera's
view. While this example is not exactly relative to most games, it is meant to give us an
understanding of how we can use child indices to make transition calls with a method
such as setLayer(pLayerIn,pLayerOut).

Designing Your Menu

142

In the final step, we introduce the setLayer(pLayerIn, pLayerOut) method which
handles the application of entity modifiers to the Entity objects passed in via parameters.
This method has three goals; first it sets the layer being transitioned into the view to be
visible if it's currently non-visible, it resets our mMoveInModifier and mMoveOutModifier
objects, so that they can provide the Entity objects with full transitional effects, and lastly
it calls registerEntityModifier(pEntityModifier) on both the pLayerIn and
pLayerOut parameters, initiating the transitional effects on the Entity objects.

There's more...
This recipe is only relevant for game structures which use multiple Entity objects to act as
different screens within our games. However, the choice between how to handle transitioning
between screens is entirely up to the developer. Before making a decision, it is wise to know
what the pros and cons are to the different options we have for handling multiple screens
within a game. Please take a look at the following list which covers the good and the bad of
the different approaches:

ff Activity/screen:

�� Pro: The Android OS will handle resource unloading for us with a simple
call to the activity's finish() method, making resource management
very simple.

�� Con: Each screen transition will prompt a brief black screen to be displayed
upon launching a new activity/screen.

�� Con: Multiple activities must each load their own resources. This means that
preloading resources is not an option, which can increase the overall loading
time, especially considering resources that may be used on all screens, such
as font, or music playback resources.

�� Con: Due to Android's memory management features, activities which are
considered background processes may be killed at any time assuming the
device is running low on memory. This can cause issues when we leave an
activity which should remain in a paused state until a user returns. There is a
possibility any activity transitioned from may not be returned to in the same
state when needed.

ff Scene/screen:

�� Pro: Possibility of preloading necessary resources which may be used across
multiple screens. This can drastically help reduce loading times depending
on the number of preloadable resources.

�� Pro: We are able to introduce a loading screen within our game, rather than
displaying a blank screen while the resources load.

Chapter 3

143

�� Pro/con: A screen and resource management system must be developed in
order to handle the loading/unloading of resources and screens. Depending
on the size and needs of the specific game, this can be a rather large
task. However, this approach can allow for seamless transition times when
moving between screens as we are able to load/unload resources at more
convenient times, rather than as soon as a user decides to switch between
screens.

�� Con: Typically only one Scene object can be applied to our Engine object at a
time, meaning that screen transitions will be lacking in terms of animation/
fluidity. The screen being set will simply replace the previous screen.

ff Entity/screen:

�� Pro: When dealing with Entity objects as screens, we are able to attach
as many as we'd like to a Scene object. This gives us all of the pro's of the
scene/screen approach, as well as the added benefit of being able to add
time-based transitional effects, such as "sliding" between the menu screen,
to the loading screen, to the gameplay screen. This is the demonstration
being made by this recipe's code.

�� Pro/con: As with the scene/screen route, we are required to handle all
screen and resource cleanup ourselves. The positive outweighs the negative,
but when comparing with the activity/screen approach, the need for a
screen/resource management system may be considered a con by some,
depending on the size of the project.

Before we wrap up this recipe, there's one more important topic that was not discussed in this
recipe. Take a look at the following figure which displays what this recipe's displayed results
on a device might resemble:

Designing Your Menu

144

The preceding figure displays the typical transitional events when a user navigates around the
different screens within a game. We covered how this navigation works in terms of bringing a
new screen into the camera's view. Even more importantly, these transitional events should
also handle the loading and unloading of resources. After all, there's no reason to have the
Menu screen taking up the device's precious resources while it's not being displayed to the
user. In an ideal situation if we are moving from the Menu screen to the Game-play screen
as seen in the previous figure, during the T1 phase the Game-play screen will begin to load its
resources. Once the T2 phase is reached, meaning the Loading screen is the game's current
main screen, the Menu screen will be unloaded of all necessary resources and detached from
the Scene object in order to remove the unnecessary overhead.

This is just a brief overview of how transitioning between screens within a game is best
handled in order to allow smooth transitions, and reduce the load-time involved between
transitions. For a more in-depth information on the inner-workings of screen management,
please see Chapter 5, Scene and layer management.

See also
ff Understanding AndEngine entities in Chapter 2, Working with Entities.

ff Overriding the onManagedUpdate() method in Chapter 2, Working with Entities.

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities.

4
Working with Cameras

This chapter will cover AndEngine's various camera objects and advanced camera control.
The topics include:

ff Introducing the camera object

ff Limiting the camera area with the bound camera

ff Taking a closer look with zoom cameras

ff Creating smooth moves with a smooth camera

ff Pinch-zoom camera functionality

ff Stitching a background together

ff Applying a HUD to the camera

ff Attaching a controller to the display

ff Coordinate conversion

ff Creating a split screen game

Introduction
AndEngine includes three types of cameras, not including the base Camera object, which
allow us to control (more specifically) how the camera behaves. Cameras can play many
different roles in a game, and in some cases, we may find ourselves in need of more than one
camera. This chapter is going to cover some of the different purposes and ways we can use
AndEngine's Camera objects in order to apply more advanced camera functionality into our
own games.

Working with Cameras

146

Introducing the camera object
Cameras can have many purposes when it comes to designing a large-scale game, but its
main objective is to display a particular area of the game world on the device's display. This
topic is going to introduce the base Camera class, covering the general aspects of the camera
in order to provide a reference for future camera use.

How to do it…
Cameras are important in game development as they control what we see on the device.
Creating our camera is as easy as the following code:

final int WIDTH = 800;
final int HEIGHT = 480;

// Create the camera
Camera mCamera = new Camera(0, 0, WIDTH, HEIGHT);

The WIDTH and HEIGHT values will define the area of the game's scene that will be displayed
on the device.

How it works…
It's important to get to know the main functions of a camera in order to make the most of it in
our projects. All of the different cameras inherit the methods found in this topic. Let's take a
look at some of the most necessary camera methods needed for AndEngine development:

Positioning the camera:

The Camera object follows the same coordinate system as entities. Setting the camera's
coordinates to (0,0), for example, will set the center point of the camera to the defined
coordinates. Additionally, increasing the x value moves the camera to the right-hand side
and increasing the y value moves the camera upward. Decreasing the values will have the
opposite effect. In order to relocate the camera to center on a defined location, we can call
the following method:

// We can position the camera anywhere in the game world
mCamera.setCenter(WIDTH / 2, HEIGHT / 2);

The preceding code would not have any effect on the default camera position (assuming
that the WIDTH and HEIGHT values were used to define the camera's width and height). This
would set the camera's center to the "center" of our scene, which is naturally equal to half
the camera WIDTH and HEIGHT values when the Camera object is created. The preceding
method call could be used in a situation where we'd like to reset the camera back to its initial
position, which is useful in cases where a camera moves during gameplay, but should return
to its initial position when a user returns to the menu.

Chapter 4

147

Moving the camera without setting specific coordinates can be achieved through the
offsetCenter(x,y) method, where the x and y values define the distance to offset
the camera in scene coordinates. This method adds the specified parameter values to the
camera's current position:

// Move the camera up and to the right by 5 pixels
mCamera.offsetCenter(5, 5);
// Move the camera down and to the left by 5 pixels
mCamera.offsetCenter(-5, -5);

Additionally, we can obtain the camera's center x and y coordinates through the use of the
following methods:

mCamera.getCenterX();
mCamera.getCenterY();

Adjusting the camera's width and height:

The camera's initial width and height can be adjusted via the camera's set() method. We
can also set the camera's minimum/maximum x and y values by calling methods such as
setXMin()/setXMax() and setYMin()/setYMax(). The following code will cause the
camera width to shrink by half, while sustaining the initial camera height:

// Shrink the camera by half its width
mCamera.set(0, 0, mCamera.getWidth() / 2, mCamera.getHeight());

Keep in mind that while shrinking the camera width, we lose visibility on the pixels and any
entities outside of the defined area. Additionally, shrinking or extending the camera's width
and height may cause entities to appear stretched or squeezed. Generally, modifying the
camera's width and height are not necessary in the development of a typical game.

The Camera object also allows us to obtain the camera's current min/max width and height
values by calling getXMin()/getXMax() and getYMin()/getYMax().

Visibility checking:

The Camera class allows us to check if specific Entity objects are visible within the
camera's view. Entity object subtypes include, but are not limited to, the Line and
Rectangle primitives, Sprite, and Text objects, as well as all of their subtypes such
as TiledSprite and ButtonSprite objects and more. Visibility checking can be called
through the use of the following method:

// Check if entity is visible. true if so, false otherwise
mCamera.isEntityVisible(entityObject);

Working with Cameras

148

Visibility checks can be very useful for many games in order to re-use objects which might
leave the camera's view, to name one scenario. This can allow us to limit the overall number
of objects created in situations where we may have many objects being spawned, which
eventually leave the camera view. Instead, we can re-use objects which leave the camera view.

The chase entity functionality:

Often times, games require the camera to follow an Entity object as it moves around the
screen, such as in a side-scroller. We can easily set up our camera to follow entities wherever
they move in the game world by calling a single method:

mCamera.setChaseEntity(entityObject);

The preceding code will apply the camera position to the specified entity's position on
every update to the camera. This ensures that the entity stays in the center of the camera
at all times.

In the majority of recipes in this book, we are specifying a camera width of
800 pixels and a camera height of 480 pixels. However, these values are
entirely up to the developer and should be defined by the needs of the game.
These specific values are chosen for this book's recipes due to the fact that
they are relatively suitable for both small and large screen devices.

Limiting the camera area with the bound
camera

The BoundCamera object allows us to define specific bounds on the camera's area,
limiting the distance the camera can travel on both the x and y axis. This camera is useful in
situations where the camera may follow a player, but still not exceed the level bounds if the
user travels close to a wall.

How to do it...
The BoundCamera object creation requires the same parameters as a regular Camera object:

BoundCamera mCamera = new BoundCamera(0, 0, WIDTH, HEIGHT);

How it works...
The BoundCamera object extends the ordinary Camera object, giving us all of the original
functionality of a camera as described in the Introducing the camera object recipe, which
is given in this chapter. In fact, unless we configure a bounded area on the BoundCamera
object, we are ideally working with a basic Camera object.

Chapter 4

149

Before our camera will apply restrictions to its available movement area, we must define the
available area in which the camera is free to move:

// WIDTH = 800;
// HEIGHT = 480;
// WIDTH and HEIGHT are equal to the camera's width and height
mCamera.setBounds(0, 0, WIDTH * 4, HEIGHT);

// We must call this method in order to apply camera bounds
mCamera.setBoundsEnabled(true);

The preceding code will set up the camera bounds starting from position (0,0) in scene
coordinates through to (3200,480) since we are multiplying the camera's width by four
times for the maximum x area, allowing the camera to scroll four times the camera's width.
The camera will not respond to changes on the y axis as the bound height is set to the same
value as the camera's height.

See also
ff Introducing the camera object given in this chapter.

Taking a closer look with zoom cameras
AndEngine's BoundCamera and Camera objects do not support zooming in and out by
default. If we would like to allow zooming of the camera, we can create a ZoomCamera object
which extends the BoundCamera class. This object includes all of the functionality of its
inherited classes, including creating camera bounds.

How to do it...
The ZoomCamera object, similar to BoundCamera, requires no additional parameters to be
defined while creating the camera:

ZoomCamera mCamera = new ZoomCamera(0, 0, WIDTH, HEIGHT);

How it works…
In order to apply zoom effects to the camera, we can call the setZoomFactor(factor)
method, where factor is the magnification we would like to apply to our Scene object.
Zooming in and out can be achieved with the following code:

// Divide the camera width/height by 1.5x (Zoom in)
mCamera.setZoomFactor(1.5f);

// Divide the camera width and height by 0.5x (Zoom out)
mCamera.setZoomFactor(0.5f);

Working with Cameras

150

When handling the camera's zoom factor, we must know that a factor of 1 is equal to the
default factor of the Camera class. A zoom factor greater than 1 will zoom the camera into
the scene, while any value less than 1 will zoom the camera out.

The math involved for handling the zoom factor is very basic. The camera will simply divide
the zoom factor by our camera's WIDTH and HEIGHT values, effectively causing the camera to
"zoom". If our camera's width is 800, then a zoom factor of 1.5f will zoom the camera inward,
ultimately setting the camera's width to 533.3333 which will limit the amount of area of the
scene that is displayed.

The getMinX(), getMaxX(), getMinY(), getMaxY(), getWidth(),
and getHeight() values returned by the ZoomCamera object in a
situation where a zoom factor (not equal to 1) is applied, will automatically
have had their values divided by the zoom factor.

There's more…
Enabling bounds on a zoom camera with a factor not equal to 1 will have an effect on the total
available area the camera is able to pan. Assuming that the bounds are set from 0 to 800 for
the bounds' minimum and maximum x values, if the camera width is equal to 800 there will
not be any movement allowed on the x axis. In the event we zoom the camera in, the camera's
width will decrease, allowing for slack in the movement of the camera.

In the event that a zoom factor is defined which would cause the camera's
width or height to exceed the camera bounds, the zoom factor would be
applied to the camera, but there would be no movement allowed on the
exceeded axis.

See also
ff Introducing the camera object given in this chapter.
ff Limiting camera area with the bound camera given in this chapter.

Creating smooth moves with a smooth
camera

The SmoothCamera object is the most advanced of the four cameras to choose from. This
camera allows for all of the different types of camera functionality (bounds, zooming, and
so on) with an additional option to apply a defined velocity to the camera's movement speed
upon setting a new position for the camera. The result may appear as if the camera "eases"
in and out of movement, allowing for rather subtle camera movements.

Chapter 4

151

How to do it…
This camera type is the only one of the four which requires additional parameters to be
defined in the constructor. These extra parameters include the maximum x and y velocities
in which the camera can travel and the maximum zoom factor change which handles the
speed that the camera will zoom in and out. Let's take a look at what this camera creation
will look like:

// Camera movement speeds
final float maxVelocityX = 10;
final float maxVelocityY = 5;
// Camera zoom speed
final float maxZoomFactorChange = 5;

// Create smooth camera
mCamera = new SmoothCamera(0, 0, WIDTH, HEIGHT, maxVelocityX,
maxVelocityY, maxZoomFactorChange);

How it works…
In this recipe, we're creating a camera that applies a smooth transitional affect to camera
movement and zooming. Unlike the other three camera types, rather than directly setting
the camera center to the defined position with setCenter(x,y), the camera uses the
maxVelocityX, maxVelocityY, and maxZoomFactorChange variables to define how fast
the camera will move from point A to point B. Increasing the velocities will cause the camera
to make faster movements.

There are two options, both for camera movement and camera zooming for the
SmoothCamera class. We can allow the camera to move or zoom smoothly by calling
the default camera methods for these tasks (camera.setCenter() and camera.
setZoomFactor()). On the other hand, sometimes we need to reposition our camera
immediately. This can be done by calling the camera.setCenterDirect() and camera.
setZoomFactorDirect() methods respectively. These methods are most commonly used
in order to reset the position of a smooth camera.

See also
ff Introducing the camera object given in this chapter.

ff Limiting camera area with the bound camera given in this chapter.

ff Taking a closer look with zoom cameras given in this chapter.

Working with Cameras

152

Pinch-zoom camera functionality
AndEngine includes a small list of "detector" classes which can be used in combination with
scene touch events. This topic is going to cover the use of the PinchZoomDetector class
in order to allow zooming of the camera by pressing two fingers on the display, moving them
closer or further apart to adjust the zoom factor.

Getting started…
Please refer to the class named ApplyingPinchToZoom in the code bundle.

How to do it…
Follow these steps for a walkthrough on setting up the pinch-to-zoom functionality.

1.	 The first thing we must do is implement the appropriate listeners into our
class. Since we'll be working with touch events, we'll need to include the
IOnSceneTouchListener interface. Additionally, we'll need to implement the
IPinchZoomDetectorListener interface to handle changes in the camera's
zoom factor pending touch events:
public class ApplyingPinchToZoom extends BaseGameActivity
implements
 IOnSceneTouchListener, IPinchZoomDetectorListener {

2.	 In the onCreateScene() method of the BaseGameActivity class, set
the Scene object's touch listener to the this activity since we are letting the
BaseGameActivity class implement the touch listener classes. We will also
create and enable the mPinchZoomDetector object within this method:
/* Set the scene to listen for touch events using
* this activity's listener */
mScene.setOnSceneTouchListener(this);

/* Create and set the zoom detector to listen for
 * touch events using this activity's listener */
mPinchZoomDetector = new PinchZoomDetector(this);

// Enable the zoom detector
mPinchZoomDetector.setEnabled(true);

3.	 In the implemented onSceneTouchEvent() method of the BaseGameActivity
class, we must pass the touch events to the mPinchZoomDetector object:
@Override
public boolean onSceneTouchEvent(Scene pScene, TouchEvent
pSceneTouchEvent) {

Chapter 4

153

 // Pass scene touch events to the pinch zoom detector
 mPinchZoomDetector.onTouchEvent(pSceneTouchEvent);
 return true;
}

4.	 Next, we will obtain the initial zoom factor of the ZoomCamera object when the
mPinchZoomDetector object registers that a user is applying two fingers to the
display. We will use the onPinchZoomStarted() method, which is implemented
via the IPinchZoomDetectorListener interface:
/* This method is fired when two fingers press down
* on the display */
@Override
public void onPinchZoomStarted(PinchZoomDetector
pPinchZoomDetector,
 TouchEvent pSceneTouchEvent) {
 // On first detection of pinch zooming, obtain the initial zoom
factor
 mInitialTouchZoomFactor = mCamera.getZoomFactor();
}

5.	 Lastly, we will make changes to the ZoomCamera object's zoom factor in the event
that a pinching motion is detected on the display. This code will be placed in both the
onPinchZoom() and onPinchZoomFinished() methods:

@Override
public void onPinchZoom(PinchZoomDetector pPinchZoomDetector,
 TouchEvent pTouchEvent, float pZoomFactor) {

 /* On every sub-sequent touch event (after the initial touch) we
offset
 * the initial camera zoom factor by the zoom factor calculated
by
 * pinch-zooming */
 final float newZoomFactor = mInitialTouchZoomFactor *
pZoomFactor;

 // If the camera is within zooming bounds
 if(newZoomFactor < MAX_ZOOM_FACTOR && newZoomFactor > MIN_ZOOM_
FACTOR){
 // Set the new zoom factor
 mCamera.setZoomFactor(newZoomFactor);
 }
}

Working with Cameras

154

How it works…
In this recipe, we are overriding the scene touch events which take place on our scene,
passing the touch events to the PinchZoomDetector object, which will handle the zoom
functionality of the ZoomCamera object. The following steps will guide us through the process
of how pinch-zooming works. Because we're working with zoom factors in this activity, we'll
need to use either a ZoomCamera class or a SmoothCamera class implementation.

In the first two steps for this recipe, we're implementing the required listeners and
registering them to the mScene object and the mPinchZoomDetector object. Since the
ApplyingPinchToZoom activity is implementing the listeners, we can pass this, which
represents our BaseGameActivity class, to the mScene object as the touch listener. We
can also pass this activity as the pinch detection listener. Once the pinch detector is created,
we can enable or disable it by calling the setEnabled(pSetEnabled) method.

In step three, we are passing the pSceneTouchEvent object to the onTouchEvent()
method of the pinch detector. Doing so will allow the pinch detector to obtain specific touch
coordinates which will be used internally to calculate zoom factors based on finger positions.

Upon pressing two fingers on the screen, the pinch detector will fire the code snippet
displayed in step four. We must obtain the initial zoom factor of the camera at this point in
order to properly offset the zoom factor when the touch coordinates change.

The final step involves calculating the offset zoom factor and applying it to the ZoomCamera
object. By multiplying the initial zoom factor by the zoom factor change calculated
by the PinchZoomDetector object, we can successfully offset the zoom factor of
the camera. Once we've calculated the value for our newZoomFactor object, we call
setZoomFactor(newZoomFactor) in order to change the zoom level of our camera.

Containing the zoom factor within a specific range is as simple as adding an if statement,
specifying the minimum and/or maximum zoom factors required for our needs. In this case,
our camera cannot zoom out further than 0.5f or zoom in closer than 1.5f.

See also
ff Taking a closer look with zoom cameras given in this chapter.

Chapter 4

155

Stitching a background together
Although AndEngine's Scene object allows us to set a background for the scene, this is
not always a viable solution for our projects. In order to allow panning and zooming of the
background, we can stitch together multiple texture regions and apply them directly to the
scene as sprites. This topic is going to cover stitching two 800 x 480 texture regions together
in order to create a larger pan-able and zoom-able background. The idea behind background
stitching is to allow for portions of a scene to be displayed in smaller chunks. This gives us
the opportunity to create smaller texture sizes as to not exceed the 1024 x 1024 maximum
texture size for most devices. Additionally, we can enable culling so that segments of the
scene are not drawn when they aren't displayed onscreen in order to improve performance.
See the following figure for a look at the results:

Getting started...
Perform the recipe, Pinch-zoom camera functionality, which is given in this chapter for an
understanding of how pinch-to-zoom works. Additionally, we must prepare two separate 800
x 480 images, similar to the previous figure in this recipe's introduction, in PNG format, then
refer to the class named StitchedBackground in the code bundle.

Working with Cameras

156

How to do it…
Background stitching is a simple concept which involves placing two or more sprites directly
beside each other, on top of each other, or below each other in order to appear to have one
single, large sprite. In this recipe, we're going to cover how to do this in order to avoid the
dreaded texture bleeding effect. Follow these steps:

1.	 First of all, we need to create our BuildableBitmapTextureAtlas and
ITextureRegion objects. It is very important that the texture atlas is the exact
same size as our image files in order to avoid texture bleeding. Also, we must not
include any padding or spacing during the build process of the texture atlas. The
following code will create the left-hand side texture atlas and texture region,
however the same code will apply for the right-hand side:
/* Create the background left texture atlas */
BuildableBitmapTextureAtlas backgroundTextureLeft = new
BuildableBitmapTextureAtlas(
 mEngine.getTextureManager(), 800, 480);

/* Create the background left texture region */
mBackgroundLeftTextureRegion =
BitmapTextureAtlasTextureRegionFactory
 .createFromAsset(backgroundTextureLeft, getAssets(),
 "background_left.png");

/* Build and load the background left texture atlas */
try {
 backgroundTextureLeft
 .build(new BlackPawnTextureAtlasBuilder<IBitmapTextureAtlasS
ource, BitmapTextureAtlas>(
 0, 0, 0));
 backgroundTextureLeft.load();
} catch (TextureAtlasBuilderException e) {
 e.printStackTrace();
}

2.	 Once the texture resources are in place, we can move to the onPopulateScene()
method of the activity where we will create and apply the sprites to the Scene object:

final int halfTextureWidth = (int) (mBackgroundLeftTextureRegion.
getWidth() * 0.5f);
final int halfTextureHeight = (int) (mBackgroundLeftTextureRegion.
getHeight() * 0.5f);

// Create left background sprite
mBackgroundLeftSprite = new Sprite(halfTextureWidth,
halfTextureHeight, mBackgroundLeftTextureRegion,

Chapter 4

157

 mEngine.getVertexBufferObjectManager())
;
// Attach left background sprite to the background scene
mScene.attachChild(mBackgroundLeftSprite);

// Create the right background sprite, positioned directly to the
right of the first segment
mBackgroundRightSprite = new Sprite(mBackgroundLeftSprite.getX() +
mBackgroundLeftTextureRegion.getWidth(),
 halfTextureHeight, mBackgroundRightTextureRegion,
 mEngine.getVertexBufferObjectManager());

// Attach right background sprite to the background scene
mScene.attachChild(mBackgroundRightSprite);

How it works…
Background stitching can be used in many different scenarios in order to avoid certain
problems. These problems range from excessive texture sizes which lead to incompatibility
on certain devices, static backgrounds which do not respond to changes in camera position
or zoom factor, and performance issues to name a few. In this recipe, we're creating a large
background which is created by stitching together two Sprite objects side-by-side, each
representing a different TextureRegion object. The result is a large background which is
double the size of the camera's width at 1600 x 480 pixels.

In most cases when dealing with stitched backgrounds which allow scrolling of the scene, we'll
need to enable some camera bounds in order to stop updating camera position if it attempts
to exceed the background's area. We can use a ZoomCamera object to do this, setting the
bounds to the predetermined size of the background. Since we're working with two PNG
images, each 800 x 480 pixels stitched side-by-side, it's safe to say coordinates (0,0) to
(1600 x 480) will suffice for the camera bounds.

As stated in step one, there are a few rules we must follow when creating large-scale
backgrounds with this approach. The image size must be exactly the same as the
BuildableBitmapTextureAtlas texture atlas size! Failing to follow this rule will likely
cause artifacts to occur between the sprites periodically, which is very distracting to the player.
This also means that we should not include more than one ITextureRegion object in a
BuildableBitmapTextureAtlas object that is meant for background stitching. Padding
and spacing is also one of the features we should avoid in this case. However, following these
rules, we are still able to apply the TextureOptions.BILINEAR texture filtering to the
texture atlas and it will not cause issues.

Working with Cameras

158

In step two, we continue on to create the Sprite objects. There's nothing special here;
we simply create one Sprite object in a given position, then set up the next sprite directly
beside the first. For backgrounds which are extremely large and diverse, this method of
stitching textures together can help to dramatically reduce the performance cost of an
application by allowing us to stop rendering smaller segments of a background which are
no longer visible. This feature is called culling. See Disabling rendering with entity culling
in Chapter 8, Maximizing Performance, for more information on how to achieve this.

See also
ff Bringing a scene to life with sprites in Chapter 2, Designing Your Menu.

ff Taking a closer look with zoom cameras given in this chapter.

ff Pinch-zoom camera functionality in this chapter.

ff Disabling rendering with entity culling in Chapter 8, Maximizing Performance.

Applying a HUD to the camera
A HUD (Heads-Up Display) can be a very useful component for even the simplest of games.
The purpose of the HUD is to contain a set of buttons, text, or any other Entity object in
order to supply the user with an interface. The HUD has two key points; the first being that
the HUD's children will always be visible onscreen, regardless of whether or not the camera
changes position. The second point is the fact that the HUD's children will always be shown in
front of the scene's children. In this chapter, we're going to be applying a HUD to the camera
in order to supply users with an interface during gameplay.

How to do it...
Import the following code into the onCreateEngineOptions() method of any
BaseGameActivity of your choice, substituting the camera type in this code
snippet if necessary:

@Override
public EngineOptions onCreateEngineOptions() {

 // Create the camera
 Camera mCamera = new Camera(0, 0, WIDTH, HEIGHT);

 // Create the HUD
 HUD mHud = new HUD();

 // Attach the HUD to the camera
 mCamera.setHUD(mHud);

 EngineOptions engineOptions = new EngineOptions(true,

Chapter 4

159

 ScreenOrientation.LANDSCAPE_FIXED, new FillResolutionPolicy(),
 mCamera);

 return engineOptions;
}

How it works…
Working with a HUD class is generally a very easy task. The usefulness of a HUD class can
range drastically depending on the type of game being created, but in any case, there are a
few things we must know before deciding to use this class:

ff The HUD entities will not change positions upon camera movement. Once their
position is defined, the entity will remain in that position onscreen unless otherwise
set via setPosition().

ff The HUD entities will always appear on top of any Scene entity, regardless of z-index,
order of application, or any other scenario.

ff Culling should not be applied to entities which are to be attached to the HUD class in
any circumstance. Culling affects an Entity object on the HUD class the same way
it would affect the Entity object on the Scene object, even though the Entity
object does not appear to move off-screen. This will cause what seems like randomly
disappearing HUD entities. Just don't do it!

In the code found in the How to do it... section, we can see that it's very easy to set up the
HUD class. Creating and applying the HUD object to the camera can be done in as little as
the following two lines of code:

 // Create the HUD
 HUD mHud = new HUD();

 // Attach the HUD to the camera
 mCamera.setHUD(mHud);

From this point, we can treat the HUD object as if it were any other layer in our game in terms
of applying entities.

Applying a controller to the display
Depending on the type of game we are creating, there are many possible solutions for
player interactivity. AndEngine includes two separate classes, one of which simulates a
directional control pad called a DigitalOnScreenControl, the other which simulates a
joystick called an AnalogOnScreenControl. This topic is going to introduce AndEngine's
AnalogOnScreenControl class, but working with this class will give us enough info to use
either controller.

Working with Cameras

160

Getting started...
This recipe requires two separate assets which will act as the base of the controller and the
knob of the controller. Before moving on to the How to do it... section, please include an image
called controller_base.png and controller_knob.png to the assets/gfx folder
in a project of your choice. The images may look something like the following figure, with the
base being 128 x 128 pixels and the knob being 64 x 64 pixels:

How to do it…
Once we've got the two necessary assets in place for our controller, we can
start coding it. First of all, we can start by creating the ITextureRegion and
BuildableBitmapTextureAtlas objects that will hold each of the controller's assets.
No special steps are required for the controller texture atlas or texture regions; simply create
them as we would for an ordinary sprite. As usual, do this in the onCreateResources()
method of an activity of your choice.

Once the ITextureRegion objects have been coded and are ready for use within the
activity, we can create the AnalogOnScreenControl class in the onCreateScene()
method of our activity object as follows:

// Position the controller in the bottom left corner of the screen
final float controllerX = mControllerBaseTextureRegion.getWidth();
final float controllerY = mControllerBaseTextureRegion.getHeight();

// Create the controller
mController = new AnalogOnScreenControl(controllerX, controllerY,
mCamera, mControllerBaseTextureRegion, mControllerKnobTextureRegion,
0.1f, mEngine.getVertexBufferObjectManager(), new
IAnalogOnScreenControlListener(){
 /* The following method is called every X amount of seconds,
 * where the seconds are determined by the pTimeBetweenUpdates
 * parameter in the controller's constructor */
 @Override
 public void onControlChange(
 BaseOnScreenControl pBaseOnScreenControl, float pValueX,

Chapter 4

161

 float pValueY) {
 mCamera.setCenter(mCamera.getCenterX() + (pValueX * 10), mCamera.
getCenterY() + (pValueY * 10));
 Log.d("Camera", String.valueOf(mCamera.getCenterX()));
 }

 // Fired when the knob is simply pressed
 @Override
 public void onControlClick(
 AnalogOnScreenControl pAnalogOnScreenControl) {
 // Do nothing
 }

});

// Initialize the knob to its center position
mController.refreshControlKnobPosition();

// Set the controller as a child scene
mScene.setChildScene(mController);

How it works…
As we can see, a few of the parameters are no different from what we would define while
creating a Sprite object. The first five parameters are self-explanatory. The sixth parameter
(0.1f) is the "time between updates" parameter. This value controls how often the events
within the onControlChange() method are fired. More CPU-intensive code may benefit
from increased time between updates, while less complex code may have no problem with
a very low update time.

The last parameter we have to include in the controller's constructor is
IanalogOnScreenControlListener, which handles events based on whether
the controller was simply clicked or whether the controller is pressed and held in an
offset position.

As we can see in the onControlChange() event, we can obtain the current position of the
controllers knob via the pValueX and pValueY variables. These values contain the x and y
offsets of the controller. In this recipe, we are using the x and y offsets of the knob to move
the camera's position, also giving us an idea of how we can put these variables to use in
order to move other entities such as a player's sprite.

Working with Cameras

162

Coordinate conversion
Coordinate conversion can be very useful in situations where a Scene object relies on a
number of entities to act as base layers for a game's sprites. It's not uncommon for games
which contain many parents, each with their own set of children, to need to obtain a child's
position relative to the Scene object at one point or another. This isn't a problem in situations
where each of the layers remain at the same (0, 0) coordinates on the scene throughout
the entire game. On the other hand, when our layers start to move around, child positions
will move with the parent but their coordinates on the layer will remain the same. This topic
is going to cover converting scene coordinates to local coordinates in order to allow nested
entities to be properly positioned on the scene.

How to do it…
Import the following code to the onCreateScene() method of any BaseGameActivity of
your choice.

1.	 The first step in this recipe is to create and apply a Rectangle object to the Scene
object. This Rectangle object will act as the parent entity to another Rectangle
object. We set its color to blue in order to differentiate between the two rectangles
when they overlap since the parent Rectangle object will constantly be moving:
/* Create a rectangle on the Scene that will act as a layer */
final Rectangle rectangleLayer = new Rectangle(0, HEIGHT * 0.5f,
200, 200, mEngine.getVertexBufferObjectManager()){

 /* Obtain the half width of this rectangle */
 int halfWidth = (int) (this.getWidth() * 0.5f);

 /* Boolean value to determine whether to pan left or right */
 boolean incrementX = true;

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {

 float currentX = this.getX();

 /* Determine whether or not the layer should pan left or right
*/
 if(currentX + halfWidth > WIDTH){
 incrementX = false;
 }
 else if (currentX - halfWidth < 0){
 incrementX = true;
 }

Chapter 4

163

 /* Increment or decrement the layer's position based on
incrementX */
 if(incrementX){
 this.setX(currentX + 5f);
 } else {
 this.setX(currentX - 5f);
 }

 super.onManagedUpdate(pSecondsElapsed);
 }
};

rectangleLayer.setColor(0, 0, 1);

// Attach the layer to the scene
mScene.attachChild(rectangleLayer);

2.	 Next, we will add the child Rectangle object to the first Rectangle object we had
created. This Rectangle object will not move; instead, it will remain in the center of
the screen while its parent continues to move around. This Rectangle object will be
making use of coordinate conversion in order to hold its position:

/* Create a smaller, second rectangle and attach it to the first
*/
Rectangle rectangle = new Rectangle(0, 0, 50, 50, mEngine.
getVertexBufferObjectManager()){

 /* Obtain the coordinates in the middle of the Scene that we
will
 * convert to everytime the parent rectangle moves */
 final float convertToMidSceneX = WIDTH * 0.5f;
 final float convertToMidSceneY = HEIGHT * 0.5f;

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {

 /* Convert the specified x/y coordinates into Scene
coordinates,
 * passing the resulting coordinates into the
convertedCoordinates array */
 final float convertedCoordinates[] = rectangleLayer.co
nvertSceneCoordinatesToLocalCoordinates(convertToMidSceneX,
convertToMidSceneY);

 /* Since the parent is moving constantly, we must adjust this
rectangle's

Working with Cameras

164

 * position on every update as well. This will keep in in the
center of the
 * display at all times */
 this.setPosition(convertedCoordinates[0],
convertedCoordinates[1]);

 super.onManagedUpdate(pSecondsElapsed);
 }

};

/* Attach the second rectangle to the first rectangle */
rectangleLayer.attachChild(rectangle);

How it works…
The onCreateScene() method above creates a Scene object which contains two separate
Rectangle entities. The first Rectangle entity will be attached directly to the Scene
object. The second Rectangle entity will be attached to the first Rectangle entity. The first
Rectangle entity, named rectangleLayer, will constantly be moving from left to right
and right to left. Typically, this would cause its child's position to follow the same movement
pattern, but in this recipe we're using coordinate conversion in order to allow the child
Rectangle entity to remain still as its parent moves.

The rectangle object in this recipe includes two variables named convertToMidSceneX
and convertToMidSceneY. These variables simply hold the position in Scene coordinates
that we would like to convert the local coordinates to. As we can see, their coordinates
are defined to the middle of the scene. Within the onManagedUpdate() method of the
rectangle object, we then use the rectangleLayer.convertSceneCoordinatesToLo
calCoordinates(convertToMidSceneX, convertToMidSceneY) method, passing the
resulting coordinates to a float array. What this does is basically asks the rectangleLayer
object, "Where is position x/y on the scene in your opinion?" Since the rectangleLayer
object is attached directly to the Scene object, it can easily determine where specific Scene
coordinates are as it relies on the native Scene coordinate system.

When attempting to access the returned coordinates, we can access
convertedCoordinates[0] to obtain the converted x coordinate and use
convertedCoordinates[1] to obtain the converted y coordinate.

On top of converting Scene to local Entity coordinates, we can also convert local Entity to
Scene coordinates, touch event coordinates, camera coordinates, and a whole slew of other
options. However, once we obtain a basic understanding of coordinate conversion, starting
with this recipe, the rest of the conversion methods will seem very similar to one another.

Chapter 4

165

Creating a split screen game
This recipe will introduce the DoubleSceneSplitScreenEngine class, most commonly
used in games which allow multiple players to play their own instance of a game on each half
of the display. The DoubleSceneSplitScreenEngine class allows us to provide each half
of the device's display with its own Scene and Camera objects, giving us full control over what
each half of the display will see.

Getting started…
Please refer to the class named SplitScreenExample in the code bundle.

How to do it…
Setting up our game to allow two separate Scene objects requires us to take a slightly
different approach when initially setting up the BaseGameActivity class. However, once we
have set up the separate Scene objects, managing them is actually very similar to if we were
dealing with only one scene, aside from the fact that we've only got half of the original display
space per scene. Perform the following steps to gain an understanding of how to set up the
DoubleSceneSplitScreenEngine class.

1.	 The first thing we must take care of is decreasing the WIDTH value by half, since
each camera will require half of the device's display. Attempting to fit 800 pixels in
width onto each camera will cause noticeable skewing of objects on each scene.
While we are declaring variables, we will also set up two Scene objects and two
Camera objects which will be needed for the DoubleSceneSplitScreenEngine
implementation:
 public static final int WIDTH = 400;
 public static final int HEIGHT = 480;

/* We'll need two Scene's for the DoubleSceneSplitScreenEngine */
 private Scene mSceneOne;
 private Scene mSceneTwo;

 /* We'll also need two Camera's for the
DoubleSceneSplitScreenEngine */
 private SmoothCamera mCameraOne;
 private SmoothCamera mCameraTwo;

Working with Cameras

166

2.	 Next, we will create two separate SmoothCamera objects in the
onCreateEngineOptions() method of the BaseGameActivity class. These
cameras will be used for displaying separate views for each half of the display.
In this recipe, we're applying automatic zooming in order to show the results of
DoubleSceneSplitScreenEngine:
/* Create the first camera (Left half of the display) */
mCameraOne = new SmoothCamera(0, 0, WIDTH, HEIGHT, 0, 0, 0.4f){
 /* During each update to the camera, we will determine whether
 * or not to set a new zoom factor for this camera */
 @Override
 public void onUpdate(float pSecondsElapsed) {
 final float currentZoomFactor = this.getZoomFactor();
 if(currentZoomFactor >= MAX_ZOOM_FACTOR){
 this.setZoomFactor(MIN_ZOOM_FACTOR);
 }
 else if(currentZoomFactor <= MIN_ZOOM_FACTOR){
 this.setZoomFactor(MAX_ZOOM_FACTOR);
 }
 super.onUpdate(pSecondsElapsed);
 }
};
/* Set the initial zoom factor for camera one*/
mCameraOne.setZoomFactor(MAX_ZOOM_FACTOR);

/* Create the second camera (Right half of the display) */
mCameraTwo = new SmoothCamera(0, 0, WIDTH, HEIGHT, 0, 0, 1.2f){
 /* During each update to the camera, we will determine whether
 * or not to set a new zoom factor for this camera */
 @Override
 public void onUpdate(float pSecondsElapsed) {
 final float currentZoomFactor = this.getZoomFactor();
 if(currentZoomFactor >= MAX_ZOOM_FACTOR){
 this.setZoomFactor(MIN_ZOOM_FACTOR);
 }
 else if(currentZoomFactor <= MIN_ZOOM_FACTOR){
 this.setZoomFactor(MAX_ZOOM_FACTOR);
 }
 super.onUpdate(pSecondsElapsed);
 }
};
/* Set the initial zoom factor for camera two */
mCameraTwo.setZoomFactor(MIN_ZOOM_FACTOR);

Chapter 4

167

3.	 One more task to take care of in the onCreateEngineOptions() method of our
BaseGameActivity class is to create the EngineOptions object, passing the
mCameraOne object as the main camera. Additionally, chances are the scenes
might require simultaneous touch events, so we will enable multitouch as well:
/* The first camera is set via the EngineOptions creation, as
usual */
EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_FIXED, new FillResolutionPolicy(),
 mCameraOne);

/* If users should be able to control each have of the display
 * simultaneously with touch events, we'll need to enable
 * multi-touch in the engine options */
engineOptions.getTouchOptions().setNeedsMultiTouch(true);

4.	 In the fourth step, we will override the BaseGameActivity
class' onCreateEngine() method in order to create a
DoubleSceneSplitScreenEngine object rather than the default Engine object:
@Override
public Engine onCreateEngine(EngineOptions pEngineOptions) {

 /* Return the DoubleSceneSplitScreenEngine, passing the
pEngineOptions
 * as well as the second camera object. Remember, the first
camera has
 * already been applied to the engineOptions which in-turn
applies the
 * camera to the engine. */
 return new DoubleSceneSplitScreenEngine(pEngineOptions,
mCameraTwo);
}

5.	 Moving onto the onCreateScene() method, we will create the two Scene
objects, set them up how we choose, and finally set each Scene object to the
DoubleSceneSplitScreenEngine object:
@Override
public void onCreateScene(OnCreateSceneCallback
pOnCreateSceneCallback) {

 /* Create and setup the first scene */
 mSceneOne = new Scene();
 mSceneOne.setBackground(new Background(0.5f, 0, 0));

 /* In order to keep our camera's and scenes organized, we can
 * set the Scene's user data to store its own camera */

Working with Cameras

168

 mSceneOne.setUserData(mCameraOne);

 /* Create and setup the second scene */
 mSceneTwo = new Scene();
 mSceneTwo.setBackground(new Background(0,0,0.5f));

 /* Same as the first Scene, we set the second scene's user data
 * to hold its own camera */
 mSceneTwo.setUserData(mCameraTwo);

 /* We must set the second scene within mEngine object manually.
 * This does NOT need to be done with the first scene as we will
 * be passing it to the onCreateSceneCallback, which passes it
 * to the Engine object for us at the end of onCreateScene()*/
 ((DoubleSceneSplitScreenEngine) mEngine).
setSecondScene(mSceneTwo);

 /* Pass the first Scene to the engine */
 pOnCreateSceneCallback.onCreateSceneFinished(mSceneOne);
}

6.	 Now that both of our Camera objects are set up and both of our Scene objects are
set up and attached to the engine, we can start attaching Entity objects to each
Scene object as we see fit, simply by specifying which Scene object to attach to as
usual. This code should be placed within the onPopulateScene() method of the
BaseGameActivity class:

 /* Apply a rectangle to the center of the first scene */
 Rectangle rectangleOne = new Rectangle(WIDTH * 0.5f, HEIGHT
* 0.5f, rectangleDimensions, rectangleDimensions, mEngine.
getVertexBufferObjectManager());
 rectangleOne.setColor(org.andengine.util.adt.color.Color.
BLUE);
 mSceneOne.attachChild(rectangleOne);

 /* Apply a rectangle to the center of the second scene */
 Rectangle rectangleTwo = new Rectangle(WIDTH * 0.5f, HEIGHT
* 0.5f, rectangleDimensions, rectangleDimensions, mEngine.
getVertexBufferObjectManager());
 rectangleTwo.setColor(org.andengine.util.adt.color.Color.RED);
 mSceneTwo.attachChild(rectangleTwo);

Chapter 4

169

How it works...
When working with the DoubleSceneSplitScreenEngine class, we can assume that
our project will need two of everything if we are setting up for a multiplayer game. More
specifically, we need two Scene objects for each half of the screen as well as two Camera
objects. Due to the fact that we are splitting the viewing area of each Camera object in half,
we shall reduce the WIDTH value of our cameras by half. Camera dimensions of 400 pixels
in width by 480 pixels in height are reasonable in most cases, which allow us to keep
a proper perspective on entities as well.

In the second step, we are setting up two SmoothCamera objects which will automatically
zoom in and out of their respective scenes in order to supply a visual result to this recipe.
However, the DoubleSceneSplitScreenEngine class can use any variation of the
Camera object, including the most basic type without causing any issue.

In the third step, we're continuing on to create the EngineOptions object. We supply
the mCameraOne object as the pCamera parameter in the EngineOptions constructor,
just as we would in any ordinary instance. Additionally, we are enabling multitouch in the
EngineOptions object in order to allow simultaneous touch events to register for each
Scene object. Ignoring the multitouch setup will result in each scene having to wait until
the other scene is not being pressed down on before it can register touch events.

In step four, we create the DoubleSceneSplitScreenEngine object, passing in the
pEngineOptions parameter created in the previous step as well as the second Camera
object—mCameraTwo. At this point in code, we've now got both of our cameras registered
to the engine; the first was registered within the EngineOptions object, and the second
passed as a parameter to the DoubleSceneSplitScreenEngine class.

Step five includes the onCreateScene() method of the BaseGameActivity class,
where we will create and set up each of the two Scene objects how we would like. At the
most basic level, this involves creating the Scene objects, enabling and setting up or disabling
the scene's background, setting the scene's user data to store its respective camera, and
finally passing the Scene object to our mEngine object. While the second Scene object
requires us to call the setSecondScene(mSceneTwo) method on our mEngine object,
the mSceneOne object is passed to the Engine object as in any BaseGameActivity; in
the pOnCreateSceneCallback.onCreateSceneFinished(mSceneOne) method.

In the sixth step, we are now "out of the woods", so to speak. At this point, we are finished
setting up the engine, scenes, and cameras and we can now start to populate each scene
however we'd like. The possibilities are quite extensive in terms of what we can do at this
point, including using the second scene as a mini-map, a view for a multiplayer game, an
alternative perspective on the first scene, and much more. Selecting which Scene object to
attach an Entity object to at this point would be as simple as calling either mSceneOne.
attachChild(pEntity) or mSceneTwo.attachChild(pEntity).

5
Scene and Layer

Management

Managing scenes and layers is a necessity for a game that utilizes menus and multiple
game levels. This chapter will cover the creation and use of a scene manager with the
following topics:

ff Creating the scene manager

ff Setting up the resource manager for scene resources

ff Customizing managed scenes and layers

ff Setting up an activity to use the scene manager

Introduction
Creating a process to manage and handle menus and scenes for a game is one of the
quickest ways to improve a framework. A well-designed game usually relies on a robust
and customized scene manager to handle menus and in-game levels. There are various
approaches to customize a scene manager, but the foundation usually consists of:

ff Switching between scenes

ff Automatic loading and unloading of scene resources and elements

ff Showing a loading screen while handling scene resources and scene construction

In addition to the core functions of a scene manager, we are going to create a method
of showing layers on top of our scenes so that we can add another level of usability to
our games.

Scene and Layer Management

172

Creating the scene manager
Creating a scene manager that just swaps the engine's current scene for another scene
is quite simple, but not graphically appealing to players. Showing a loading screen while
resources load and the scene is constructed has become a well-accepted practice in game
design because it lets the player know that the game is doing more than just idling.

Getting ready...
Open the SceneManager.java class in this chapter's code bundle. Also, open the
ManagedScene.java and ManagedLayer.java classes. We will be referencing all three
of these classes throughout this recipe. The inline comments within the classes provide
additional information to what is discussed throughout this recipe.

How to do it...
Follow these steps to understand how a SceneManager class functions so that we can create
a custom-tailored one for future projects:

1.	 First, notice that the SceneManager class is created as a singleton so that we
can access it from anywhere in our project. Furthermore, it uses the getEngine()
reference provided by our ResourceManager class to store a local reference to the
engine object, but this reference could be set at the creation of the SceneManager
class if we opted to not use a resource manager.

2.	 Second, note the variables created after the getInstance() method. The first
two variables, mCurrentScene and mNextScene, hold references to the currently
loaded scene and next scene to be loaded. The mEngine variable holds a reference
to the engine. We will use the engine reference to set our managed scenes and
for registering/unregistering the mLoadingScreenHandler update handler. The
mNumFramesPassed integer counts the number of rendered frames within the
update handler to ensure that the loading screen has been shown for at least one
frame. The functionality of showing a loading screen is achieved by the next variable,
mLoadingScreenHandler, at which we will take a closer look in the next step.
The remaining variables are used for the management of layers and either keep
track of the state of the layering process or hold references to entities related to
the layering process.

Chapter 5

173

3.	 Third, look at the onUpdate() method within the mLoadingScreenHandler
IUpdateHandler update handler. Take note that there are two conditional
blocks—the first waits one frame before it unloads the previous scene and
subsequently loads the next, while the second waits until the loading screen
for the next scene has been shown for the minimum amount of time before it
hides the loading screen and resets the variables used by the update handler.
This entire process within the update handler enables the use of a loading screen
while ManagedScene loads and constructs itself.

4.	 The next method in the class is the showScene() method, which we will call
when we want to navigate away from the current scene to a following scene. It first
resets the position and size of the engine's camera to its starting location and size
to prevent any prior adjustments to the camera from ruining the presentation of
a new scene. Next, we check if the new scene will show a loading screen via the
hasLoadingScreen property of the ManagedScene class.

If the new ManagedScene class' will be showing a loading screen, we set its child
scene to the scene returned by the onLoadingScreenLoadAndShown() method
and pause all of the ManagedScene class' renderings, updates, and touch events.
The following if block ensures that a new scene can load if one is already in the
loading stage. This case should be rare, but can happen if a new scene is called
to be shown from the UI thread. The mNextScene variable is then set to the new
ManagedScene class' to be used by the mLoadingScreenHandler update
handler and the engine's scene is set to the new ManagedScene class.

If the new ManagedScene class will not be showing a loading screen, we set the
mNextScene variable to the new ManagedScene class, set the new ManagedScene
class as the engine's scene, unload the previously shown scene, and load the new
scene. If no loading screen is shown, the showScene() method simply acts to swap
the new scene for the previously shown one.

5.	 Next, take a look at the showLayer() method. Because our layers are shown on
top of everything else in the game, we attach them as the camera HUD object's child
scene. This method starts by first determining if the camera has a HUD object to
attach a child scene. If so, it sets the mCameraHadHud Boolean value to true. If not,
we create a placeholder HUD object and set it as the camera's HUD object. Next, if the
showLayer() method is called to suspend rendering, updates, or touch events of
the underlying ManagedScene, we set a placeholder scene as the ManagedScene
scene's child scene with the modal properties passed to the showLayer() method.
Finally, we set the layer's camera to the engine's camera, scale the layer to match the
camera's screen-dependent scale, and set the local layer-related variables to be used
by the hideLayer() method referenced in the next step.

Scene and Layer Management

174

6.	 The hideLayer() method first checks whether a layer is currently being shown. If
it is, the camera HUD object's child scene is cleared, the placeholder child scene is
cleared from the ManagedScene class, and the layer-showing system is reset.

Follow these steps to understand how the ManagedScene and MangedLayer classes
are constructed:

1.	 Looking at the ManagedScene class, take note of the variables listed
at the beginning of the class. The hasLoadingScreen Boolean,
minLoadingScreenTime float, and elapsedLoadingScreenTime float variables
are used by the SceneManager class when it is handling the ManagedScene
class' loading screen. The isLoaded Boolean value reflects the completion state
of the ManagedScene class' construction. The first constructor is a convenient
constructor in the event that no loading screen is needed. The second constructor
sets the loading screen variables according to the passed value, which determines
the minimum length of time that the loading screen should be shown. The public
methods following the constructor are called by the SceneManager class and call
the appropriate abstract methods, listed at the bottom of the class.

2.	 The ManagedLayer class is very similar to the ManagedScene class, but its
inherent function and lack of a loading screen make it easier to create. The
constructors set whether the layer should be unloaded after it is hidden according to
the passed pUnloadOnHidden Boolean variable. The public methods following the
constructors call the appropriate abstract methods below them.

How it works...
The scene manager stores a reference to the engine's current scene. When the scene
manager is told to show a new scene, it hides and unloads the current scene before setting
the new scene as the current scene. Then, it loads and shows the new scene's loading screen
if the scene has one. To show the loading screen before loading the rest of the scene, we
have to allow the engine to render one frame. The mNumFramesPassed integer value keeps
track of how many updates, and thus scene renderings, have occurred since the start of
the process.

After the loading screen is shown, or if no loading screen will be used, the scene manager
calls the scene to load itself by calling onLoadManagedScene(). Upon completion of the
load, and after the loading screen—if present—has been shown for a minimum amount of
time, the loading screen is hidden and the scene is shown. In case the loading screen has
not been shown for the minimum amount of time, we pause the scene's updates so that the
scene will keep from starting until the loading screen is hidden. Refer to the inline comments
of the supplemental code in SceneManager.java to learn even more about how this scene
manager handles the switching of scenes.

Chapter 5

175

To facilitate the use of layers, the scene manager utilizes the camera's HUD to ensure that
the layer is drawn on top of everything else. If the camera has a HUD already, we store it
before applying the layer so that we can restore the original HUD after the layer is hidden.
Furthermore, we have the option of pausing the underlying scene's updates, renderings, and
touch-areas via the use of a placeholder scene. The placeholder scene is attached as a child
to the underlying scene, so we must store any child scene that the underlying scene already
has attached. The loading and showing of layers is handled by the same method call from the
scene manager to let the layer's subclasses determine if reloading is necessary or if the layer
should be loaded only once to reduce performance-heavy loading.

See also...
ff Customizing managed scenes and layers given in this chapter.

ff Setting up an activity to use the scene manager given in this chapter.

ff Applying a HUD to the camera in Chapter 4, Working with Cameras.

Setting up the resource manager for scene
resources

In order to facilitate the loading of resources by the menu and game scenes, the resource
manager must be first set up to handle the resources. Our resource manager will
automatically load the respective resources when we call its loadMenuResources() or
loadGameResources() methods. Likewise, unloading resources for menus or game scenes
that use a large amount of memory will simply be a call to the resource manager using
unloadMenuResources(), unloadGameResources(), or unloadSharedResources().

Getting ready...
Open the ResourceManager.java class in this chapter's code bundle, as we will be
referencing it for this recipe. Also, refer to the inline comments of the class for more
information on specific portions of code.

Scene and Layer Management

176

How to do it...
Follow these steps to understand how the ResourceManager class is set up to be used with
our managed scenes:

1.	 Take note of the public, non-static variables defined in the ResourceManager
class. The engine and context variables are used in the class when loading
textures, but they also give us a way to access those important objects throughout
our project. The cameraWidth, cameraHeight, cameraScaleFactorX, and
cameraScaleFactorY variables are not used in this class, but will be used
throughout the project for placing and scaling entities relative to the screen.

2.	 Find the setup() method. This method sets the non-static variables referenced in
the previous step and will be called from the overridden onCreateResources()
method in our activity class. It is important that setup() is called prior to any other
calls to the ResourceManager class as every other method and variable relies on
the engine and context variables.

3.	 Next, take a look at the static resource variables. These will be used by our scenes
for entities or sounds and must be set before they are called. Also note that the
static variables with a game or menu prefix will be respectively used by our game or
menu scenes while the static variables without a prefix will be shared between the
two types.

4.	 Now find the loadGameResources() and loadMenuResources() methods. Our
managed game and menu scenes will call these methods when they first start. These
methods have the important duty of calling the subsequent ResourceManager
methods that set the static variables referenced in the previous step. Conversely,
unloadGameResources() and unloadMenuResources() unload the resources
for their respective scenes and should be called when the application's flow is
finished with the resources.

How it works...
The resource manager, at its most basic level, provides a means of loading and unloading
resources. In addition to this, we define a set of variables, including the engine and context
objects, that gives us easy access to some common elements of the game when creating
entities in our scenes. These variables can be placed within a game manager or object
factory as well, but we will include it in our resource manager since most calls to the
resource manager will be near code used to create entities.

See also...
ff Creating the resource manager in Chapter 1, AndEngine Game Structure.
ff Creating the game manager in Chapter 1, AndEngine Game Structure.
ff Creating object factories in Chapter 1, AndEngine Game Structure.

Chapter 5

177

Customizing managed scenes and layers
The main purpose of the scene manager is to handle the managed scenes in our game. The
managed scenes are highly customizable, but we want to avoid rewriting as much of our code
as possible. To achieve that task, we will use two classes that extend the ManagedScene
class, ManagedGameScene and ManagedMenuScene. By structuring our scene classes in
this way, we will have menus and game scenes that share a common, respective foundation.

Getting ready...
Open the following classes from this chapter's code bundle: ManagedMenuScene.java,
ManagedGameScene.java, MainMenu.java, GameLevel.java, and OptionsLayer.
java. We will be referencing these classes throughout this recipe.

How to do it...
Follow these steps to understand how the ManagedMenuScene and ManagedGameScene
classes build upon the ManagedScene class to create customized, extendable scenes that
can be passed to the SceneManager class:

1.	 Look at the ManagedMenuScene class. It holds only two simple constructors and the
overridden onUnloadManagedScene() method. The overridden method keeps the
isLoaded Boolean value from being set because we will not be taking advantage of
the scene manager's automatic unloading of menu scenes.

2.	 Now, we turn our attention to the ManagedGameScene class. The class starts off by
creating an in-game HUD object, a loading screen Text object, and a loading screen
Scene object. The main constructor of the ManagedGameScene class starts by
setting the touch-event-binding settings of the scene to true. Next, the scene's scale
is set to mirror the camera's screen-dependent scaling and the scene's position is set
to the bottom-center of the camera. Finally, the constructor sets the HUD's scale to
match the camera's scale.

The ManagedGameScene class overrides the onLoadingScreenLoadAndShown()
and onLoadingScreenUnloadAndHidden() methods of the ManagedScene
class to show and hide a simple loading screen that displays a single Text object.

The onLoadScene() method from the ManagedScene class is overridden to
construct a scene that represents the in-game portion of a game with a background
and two buttons that allow the player to return to the MainMenu or show the
OptionsLayer.

Scene and Layer Management

178

Follow these steps to understand how the ManagedMenuScene and ManagedGameScene
classes can be extended to create the MainMenu and GameLevel scenes:

1.	 The MainMenu class is created as a singleton to prevent more than one instance
of the class from being created and taking up valuable memory. It also foregoes a
loading screen because it is loaded and created almost instantly. All of the entities
that make up the MainMenu class are defined as class level variables and include
the background, buttons, text, and moving entities. The scene-flow methods inherited
from the ManagedScene class by the MainMenu class are the onLoadScene(),
onShowScene(), onHideScene(), and onUnloadScene() methods, of which
only the onLoadScene() method contains any code. The onLoadScene() method
loads and constructs a scene consisting of a background, 20 horizontally-moving
clouds, a title, and two buttons. Notice that each of the buttons makes a call to the
scene manager—the play button shows the GameLevel scene and the options button
shows OptionsLayer.

2.	 The GameLevel class extends the ManagedGameScene class and only overrides
the onLoadScene() method to create and randomly position a square rectangle
on the scene. This shows that the ManagedGameScene class creates the bulk of the
GameLevel class and that elements that differ between levels can still use the same
foundation created by the ManagedGameScene class.

Follow these steps to understand how the OptionsLayer class extends the layer-
functionality of the ManagedLayer class:

1.	 Concerning the OptionsLayer class, first notice that it is defined as a singleton,
so that it will remain in memory after it is first created. Next, note the two update
handlers, SlideIn and SlideOut. These animate the layer when it is shown
or hidden and give an extra layer of graphical interest to the game. The update
handlers simply move the layer to a specific position at a speed that is proportional
to the pSecondsElapsed parameter of the onUpdate() method to make the
movement smooth.

2.	 The onLoadLayer() method inherited from the ManagedLayer class is overridden
to create a black rectangle, which acts as a background for the layer, and two Text
objects that show a title and the way to exit the layer. The onShowLayer() and
onHideLayer() methods register the appropriate update handler with the engine.
Upon sliding the layer offscreen, notice that the SlideOut update handler calls the
scene manager to hide the layer—this is how an ending animation is implemented
using this particular scene manager's framework.

Chapter 5

179

How it works...
The single purpose of the ManagedMenuScene class is to override the
onUnloadManagedScene() method inherited from the ManagedScene class to prevent
the recreation of entities within the scene. Take note of the overridden onUnloadScene()
method within the MainMenu class, which extends ManagedMenuScene. We leave it empty
to ensure that the MainMenu class is kept in memory so that we can quickly switch back to it
from the game scenes and other menus.

When running this project, if there are any animations in the main menu,
take note that the animations pause while another scene is being displayed,
but resume as soon as the main menu is shown again. This is because the
main menu is not updated as the engine's current scene even though it is still
loaded in memory.

The ManagedGameScene class uses a HUD object to allow the game levels a set of controls
that move with the engine's camera. Even though we add buttons to the GameHud object
in this example, any control may be used on the HUD. The constructors that we use for the
ManagedGameScene class set the loading screen duration, touch options, and the scales of
the game scene and GameHud to improve the visual appeal of the game across devices. For
the game scenes, we take advantage of the loading screens enabled by the scene manager.
For the loading screen, we create a simple scene that shows the text, Loading..., but any
arrangement of non-animated entities can be used. While the loading screen is shown, we
load the game resources and create the game scene. In this case, a simple background
is constructed from a single sprite, and the onscreen controls are added to the GameHud
object. Notice that the controls added to the GameHud object are scaled to the inverse of
the camera's scale factor. This is necessary because we want to create them to be the same
physical size across all devices. The last method that we define in the ManagedGameScene
class, onUnloadScene(), unloads the scene.

Notice that we do all of the unloading on the update thread. This keeps the
engine from trying to process an entity if it was removed earlier in the thread
and prevents an ArrayIndexOutOfBoundsException exception from
being thrown.

Scene and Layer Management

180

For the main menu we do not need a loading screen so we simply return null in the
onLoadingScreenLoadAndShown() method. When creating the simple sprite background
for the main menu, we must scale it to fill the screen. Notice how the main menu utilizes the
menu assets from the ResourceManager class when creating sprites and buttons. Also,
notice that by clicking the buttons, we call the SceneManager class to load the next scene
or show a layer. The following two screenshots show the main menu on two different devices
to demonstrate how the camera scaling functions with the scene's composition. The first
screenshot is on a 10.1 inch Motorola Xoom:

And, the second is on a 5.3 inch Samsung Galaxy Note:

Chapter 5

181

Our GameLevel class is relatively small compared to its super class, ManagedGameScene.
This is because we want the levels to include only the information needed for each individual
level. The following screenshot shows the GameLevel class in action:

The OptionsLayer class can be shown from any scene, as seen in the following two
screenshots. The first is at the main menu:

Scene and Layer Management

182

While the second is in-game with the GameLevel class loaded:

See also...
ff Creating the scene manager in this chapter.

ff Attaching a controller to the display in Chapter 4, Working with Cameras.

Setting up an activity to use the scene
manager

Because of the way that our scene manager works, setting it up for use by an Activity
class that extends AndEngine's BaseGameActivity class requires little effort. We are also
going to implement an accurate screen-resolution scaling approach to ensure a consistent
appearance across all devices. The SceneManager class and ManagedScenes class rely on
the variables defined in the ResourceManager class to register update handlers and create
entities. As we go through the recipe, take note that we set up the ResourceManager class
prior to using any functions of the SceneManager class.

Chapter 5

183

Getting ready...
Create a new activity that extends AndEngine's BaseGameActivity class, or load one that
you have already created. Adapting an existing activity to use the scene manager requires the
same steps as a new one would require, so do not worry about starting over on a project just
to implement the scene manager.

How to do it...
Follow these steps to prepare an activity to use our scene manager:

1.	 Define the following variables in your activity to handle accurate screen-resolution
scaling. Doing so will make onscreen elements almost physically identical across all
Android devices:
static float DESIGN_SCREEN_WIDTH_PIXELS = 800f;
static float DESIGN_SCREEN_HEIGHT_PIXELS = 480f;
static float DESIGN_SCREEN_WIDTH_INCHES = 4.472441f;
static float DESIGN_SCREEN_HEIGHT_INCHES = 2.805118f;
static float MIN_WIDTH_PIXELS = 320f, MIN_HEIGHT_PIXELS = 240f;
static float MAX_WIDTH_PIXELS = 1600f, MAX_HEIGHT_PIXELS = 960f;
public float cameraWidth;
public float cameraHeight;
public float actualScreenWidthInches;
public float actualScreenHeightInches;

2.	 Place the following method in the activity's class to handle the Back button:
public boolean onKeyDown(final int keyCode, final KeyEvent event)
{
 if (keyCode == KeyEvent.KEYCODE_BACK
 && event.getAction() == KeyEvent.ACTION_DOWN) {
 if(ResourceManager.getInstance().engine!=null){
 if(SceneManager.getInstance().isLayerShown)
 SceneManager.getInstance().
 currentLayer.onHideLayer();
 else if(SceneManager.getInstance().
 mCurrentScene.getClass().
 getGenericSuperclass().
 equals(ManagedGameScene.class) ||
 (SceneManager.getInstance().
 mCurrentScene.getClass().
 getGenericSuperclass().
 equals(ManagedMenuScene.class) &!
 SceneManager.getInstance().
 mCurrentScene.getClass().

Scene and Layer Management

184

 equals(MainMenu.class)))
 SceneManager.getInstance().
 showMainMenu();
 else
 System.exit(0);
 }
 return true;
 } else {
 return super.onKeyDown(keyCode, event);
 }
}

3.	 Next, fill the onCreateEngineOptions() method with the following code:
actualScreenWidthInches = getResources().
 getDisplayMetrics().widthPixels /
 getResources().getDisplayMetrics().xdpi;
actualScreenHeightInches = getResources().
 getDisplayMetrics().heightPixels /
 getResources().getDisplayMetrics().ydpi;
cameraWidth = Math.round(
 Math.max(
 Math.min(
 DESIGN_SCREEN_WIDTH_PIXELS *
 (actualScreenWidthInches /
 DESIGN_SCREEN_WIDTH_INCHES),
 MAX_WIDTH_PIXELS),
 MIN_WIDTH_PIXELS));
cameraHeight = Math.round(
 Math.max(
 Math.min(
 DESIGN_SCREEN_HEIGHT_PIXELS *
 (actualScreenHeightInches /
 DESIGN_SCREEN_HEIGHT_INCHES),
 MAX_HEIGHT_PIXELS),
 MIN_HEIGHT_PIXELS));
EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(),
 new Camera(0, 0, cameraWidth, cameraHeight));
engineOptions.getAudioOptions().setNeedsSound(true);
engineOptions.getAudioOptions().setNeedsMusic(true);
engineOptions.getRenderOptions().setDithering(true);

Chapter 5

185

engineOptions.getRenderOptions().
 getConfigChooserOptions().setRequestedMultiSampling(true);
engineOptions.setWakeLockOptions(WakeLockOptions.SCREEN_ON);
return engineOptions;

4.	 Place the following line in the onCreateResources() method:
ResourceManager.getInstance().setup(this.getEngine(),
 this.getApplicationContext(),
 cameraWidth, cameraHeight,
 cameraWidth/DESIGN_SCREEN_WIDTH_PIXELS,
 cameraHeight/DESIGN_SCREEN_HEIGHT_PIXELS);

5.	 Finally, add the following code to the onCreateScene() method:

SceneManager.getInstance().showMainMenu();
pOnCreateSceneCallback.onCreateSceneFinished(
 MainMenu.getInstance());

How it works...
The first thing that we do is to define the attributes of our development device's screen
so that we can make the calculations to ensure that all players see our game as close
to the way that we see it as possible. The calculations are actually handled in the
onCreateEngineOptions() method as shown in the third step. For the engine options,
we enable sounds, music, dithering for smooth gradients, multisampling for smooth edges,
and wake-lock to keep our game's resources from being destroyed if the player briefly
switches away from our game.

In step 4, we set up the ResourceManager class by passing it the Engine object, Context,
the current camera width and height, and the ratio of the current camera's size to the design
device's screen size. Lastly, we tell the SceneManager class to show the main menu, and
we pass the MainMenu class as the engine's scene via the pOnCreateSceneCallback
parameter.

See also...
ff Creating the scene manager in this chapter.

ff Know the life cycle in Chapter 1, AndEngine Game Structure.

6
Applications of Physics

Physics-based games provide players with a unique type of experience not encountered in
many other genres. This chapter covers the use of AndEngine's Box2D physics extension.
Our recipes include:

ff Introduction to the Box2D physics extension

ff Understanding different body types

ff Creating category-filtered bodies

ff Creating multiple-fixture bodies

ff Creating unique bodies by specifying vertices

ff Using forces, velocities, and torque

ff Applying anti-gravity to a specific body

ff Working with joints

ff Creating a rag doll

ff Creating a rope

ff Working with collisions

ff Using preSolve and postSolve

ff Creating destructible objects

ff Raycasting

Applications of Physics

188

Introduction to the Box2D physics extension
Physics-based games are one of the most popular types of games available for mobile
devices. AndEngine allows the creation of physics-based games with the Box2D extension.
With this extension, we can construct any type of physically realistic 2D environment from
small, simple simulations to complex games. In this recipe, we will create an activity that
demonstrates a simple setup for utilizing the Box2D physics engine extension. Furthermore,
we will use this activity for the remaining recipes in this chapter.

Getting ready...
First, create a new activity class named PhysicsApplication that extends
BaseGameActivity and implements IAccelerationListener and
IOnSceneTouchListener.

How to do it...
Follow these steps to build our PhysicsApplication activity class:

1.	 Create the following variables in the class:
 public static int cameraWidth = 800;
 public static int cameraHeight = 480;
 public Scene mScene;
 public FixedStepPhysicsWorld mPhysicsWorld;
 public Body groundWallBody;
 public Body roofWallBody;
 public Body leftWallBody;
 public Body rightWallBody;

2.	 We need to set up the foundation of our activity. To start doing so, place these four,
common overridden methods in the class to set up the engine, resources, and the
main scene:
 @Override
 public Engine onCreateEngine(final EngineOptions
 pEngineOptions) {
 return new FixedStepEngine(pEngineOptions, 60);
 }

 @Override
 public EngineOptions onCreateEngineOptions() {
 EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR, new
 FillResolutionPolicy(), new Camera(0,

Chapter 6

189

 0, cameraWidth, cameraHeight));
 engineOptions.getRenderOptions().setDithering(true);
 engineOptions.getRenderOptions().
 getConfigChooserOptions()
 .setRequestedMultiSampling(true);
 engineOptions.setWakeLockOptions(
 WakeLockOptions.SCREEN_ON);
 return engineOptions;
 }

 @Override
 public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.
 onCreateResourcesFinished();
 }

 @Override
 public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
 }

3.	 Continue setting up the activity by adding the following overridden method, which will
be used to populate our scene:
 @Override
 public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 }

4.	 Next, we will fill the previous method with the following code to create our
PhysicsWorld object and Scene object:
 mPhysicsWorld = new FixedStepPhysicsWorld(60, new
 Vector2(0f,-SensorManager.GRAVITY_EARTH*2),
 false, 8, 3);
 mScene.registerUpdateHandler(mPhysicsWorld);
 final FixtureDef WALL_FIXTURE_DEF =
 PhysicsFactory.createFixtureDef(0, 0.1f,
 0.5f);
 final Rectangle ground =
 new Rectangle(cameraWidth / 2f, 6f,
 cameraWidth - 4f, 8f,

Applications of Physics

190

 this.getVertexBufferObjectManager());
 final Rectangle roof =
 new Rectangle(cameraWidth / 2f, cameraHeight –
 6f, cameraWidth - 4f, 8f,
 this.getVertexBufferObjectManager());
 final Rectangle left =
 new Rectangle(6f, cameraHeight / 2f, 8f,
 cameraHeight - 4f,
 this.getVertexBufferObjectManager());
 final Rectangle right =
 new Rectangle(cameraWidth - 6f,
 cameraHeight / 2f, 8f,
 cameraHeight - 4f,
 this.getVertexBufferObjectManager());
 ground.setColor(0f, 0f, 0f);
 roof.setColor(0f, 0f, 0f);
 left.setColor(0f, 0f, 0f);
 right.setColor(0f, 0f, 0f);
 groundWallBody =
 PhysicsFactory.createBoxBody(
 this.mPhysicsWorld, ground,
 BodyType.StaticBody, WALL_FIXTURE_DEF);
 roofWallBody =
 PhysicsFactory.createBoxBody(
 this.mPhysicsWorld, roof,
 BodyType.StaticBody, WALL_FIXTURE_DEF);
 leftWallBody =
 PhysicsFactory.createBoxBody(
 this.mPhysicsWorld, left,
 BodyType.StaticBody, WALL_FIXTURE_DEF);
 rightWallBody =
 PhysicsFactory.createBoxBody(
 this.mPhysicsWorld, right,
 BodyType.StaticBody, WALL_FIXTURE_DEF);
 this.mScene.attachChild(ground);
 this.mScene.attachChild(roof);
 this.mScene.attachChild(left);
 this.mScene.attachChild(right);
 // Further recipes in this chapter will require us
 to place code here.
 mScene.setOnSceneTouchListener(this);
 pOnPopulateSceneCallback.onPopulateSceneFinished();

Chapter 6

191

5.	 The following overridden activities handle the scene touch events, the accelerometer
input, and the two engine life cycle events—onResumeGame and onPauseGame.
Place them at the end of the class to finish this recipe:

 @Override
 public boolean onSceneTouchEvent(Scene pScene, TouchEvent
 pSceneTouchEvent) {
 // Further recipes in this chapter will require us
 to place code here.
 return true;
 }

 @Override
 public void onAccelerationAccuracyChanged(
 AccelerationData pAccelerationData) {}

 @Override
 public void onAccelerationChanged(
 AccelerationData pAccelerationData) {
 final Vector2 gravity = Vector2Pool.obtain(
 pAccelerationData.getX(),
 pAccelerationData.getY());
 this.mPhysicsWorld.setGravity(gravity);
 Vector2Pool.recycle(gravity);
 }

 @Override
 public void onResumeGame() {
 super.onResumeGame();
 this.enableAccelerationSensor(this);
 }

 @Override
 public void onPauseGame() {
 super.onPauseGame();
 this.disableAccelerationSensor();
 }

How it works...
The first thing that we do is define a camera width and height. Then, we define a Scene object
and a FixedStepPhysicsWorld object in which the physics simulations will take place.
The last set of variables defines what will act as the borders for our physics-based scenes.

Applications of Physics

192

In the second step, we override the onCreateEngine() method to return a
FixedStepEngine object that will process 60 updates per second. The reason that we do
this, while also using a FixedStepPhysicsWorld object, is to create a simulation that will
be consistent across all devices, regardless of how efficiently a device can process the physics
simulation. We then create the EngineOptions object with standard preferences, create the
onCreateResources() method with only a simple callback, and set the main scene with a
light-gray background.

In the onPopulateScene() method, we create our FixedStepPhysicsWorld object that
has double the gravity of the Earth, passed as an (x,y) coordinate Vector2 object, and will
update 60 times per second. The gravity can be set to other values to make our simulations
more realistic or 0 to create a zero gravity simulation. A gravity setting of 0 is useful for space
simulations or for games that use a top-down camera view instead of a profile. The false
Boolean parameter sets the AllowSleep property of the PhysicsWorld object, which tells
PhysicsWorld to not let any bodies deactivate themselves after coming to a stop. The last
two parameters of the FixedStepPhysicsWorld object tell the physics engine how many
times to calculate velocity and position movements. Higher iterations will create simulations
that are more accurate, but can cause lag or jitteriness because of the extra load on the
processor. After creating the FixedStepPhysicsWorld object, we register it with the
main scene as an update handler. The physics world will not run a simulation without
being registered.

The variable WALL_FIXTURE_DEF is a fixture definition. Fixture definitions hold the shape
and material properties of entities that will be created within the physics world as fixtures.
The shape of a fixture can be either circular or polygonal. The material of a fixture is defined
by its density, elasticity, and friction, all of which are required when creating a fixture
definition. Following the creation of the WALL_FIXTURE_DEF variable, we create four
rectangles that will represent the locations of the wall bodies. A body in the Box2D physics
world is made of fixtures. While only one fixture is necessary to create a body, multiple
fixtures can create complex bodies with varying properties.

Further along in the onPopulateScene() method, we create the box bodies that will act as
our walls in the physics world. The rectangles that were previously created are passed to the
bodies to define their position and shape. We then define the bodies as static, which means
that they will not react to any forces in the physics simulation. Lastly, we pass the wall fixture
definition to the bodies to complete their creation.

After creating the bodies, we attach the rectangles to the main scene and set the scene's
touch listener to our activity, which will be accessed by the onSceneTouchEvent() method.
The final line of the onPopulateScene() method tells the engine that the scene is ready to
be shown.

Chapter 6

193

The overridden onSceneTouchEvent() method will handle all touch interactions for our
scene. The onAccelerationAccuracyChanged() and onAccelerationChanged()
methods are inherited from the IAccelerationListener interface and allow us to change
the gravity of our physics world when the device is tilted, rotated, or panned. We override
onResumeGame() and onPauseGame() to keep the accelerometer from using unnecessary
battery power when our game activity is not in the foreground.

There's more...
In the overridden onAccelerationChanged() method, we make two calls to the
Vector2Pool class. The Vector2Pool class simply gives us a way of re-using our Vector2
objects that might otherwise require garbage collection by the system. On newer devices,
the Android Garbage Collector has been streamlined to reduce noticeable hiccups, but older
devices might still experience lag depending on how much memory the variables being
garbage collected occupy.

Visit http://www.box2d.org/manual.html to see the Box2D User
Manual. The AndEngine Box2D extension is based on a Java port of the
official Box2D C++ physics engine, so some variations in procedure exist,
but the general concepts still apply.

See also
ff Understanding different body types in this chapter.

Understanding different body types
The Box2D physics world gives us the means to create different body types that allow us to
control the physics simulation. We can generate dynamic bodies that react to forces and
other bodies, static bodies that do not move, and kinematic bodies that move but are not
affected by forces or other bodies. Choosing which type each body will be is vital to producing
an accurate physics simulation. In this recipe, we will see how three bodies react to each
other during collision, depending on their body types.

Getting ready...
Follow the recipe in the Introduction to the Box2D physics extension section given at the
beginning of this chapter to create a new activity that will facilitate the creation of our
bodies with varying body types.

Applications of Physics

194

How to do it...
Complete the following steps to see how specifying a body type for bodies affects them:

1.	 First, insert the following fixture definition into the onPopulateScene() method:
FixtureDef BoxBodyFixtureDef =
 PhysicsFactory.createFixtureDef(20f, 0f, 0.5f);

2.	 Next, place the following code that creates three rectangles and their corresponding
bodies after the fixture definition from the previous step:
Rectangle staticRectangle = new Rectangle(cameraWidth /
 2f,75f,400f,40f,this.getVertexBufferObjectManager());
staticRectangle.setColor(0.8f, 0f, 0f);
mScene.attachChild(staticRectangle);
PhysicsFactory.createBoxBody(mPhysicsWorld, staticRectangle,
 BodyType.StaticBody, BoxBodyFixtureDef);

Rectangle dynamicRectangle = new Rectangle(400f, 120f, 40f, 40f,
 this.getVertexBufferObjectManager());
dynamicRectangle.setColor(0f, 0.8f, 0f);
mScene.attachChild(dynamicRectangle);
Body dynamicBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
 dynamicRectangle, BodyType.DynamicBody, BoxBodyFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 dynamicRectangle, dynamicBody);

Rectangle kinematicRectangle = new Rectangle(600f, 100f,
 40f, 40f, this.getVertexBufferObjectManager());
kinematicRectangle.setColor(0.8f, 0.8f, 0f);
mScene.attachChild(kinematicRectangle);
Body kinematicBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
 kinematicRectangle, BodyType.KinematicBody, BoxBodyFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 kinematicRectangle, kinematicBody);

3.	 Lastly, add the following code after the definitions from the previous step to set the
linear and angular velocities for our kinematic body:

kinematicBody.setLinearVelocity(-2f, 0f);
kinematicBody.setAngularVelocity((float) (-Math.PI));

Chapter 6

195

How it works...
In the first step, we create the BoxBodyFixtureDef fixture definition that we will use when
creating our bodies in the second step. For more information on fixture definitions, see the
Introduction to the Box2D physics extension recipe in this chapter.

In step two, we first define the staticRectangle rectangle by calling the Rectangle
constructor. We place staticRectangle at the position of cameraWidth / 2f, 75f,
which is near the lower-center of the scene, and we set the rectangle to have a width
of 400f and a height of 40f, which makes the rectangle into a long, flat bar. Then, we
set the staticRectangle rectangle's color to be red by calling staticRectangle.
setColor(0.8f, 0f, 0f). Lastly, for the staticRectangle rectangle, we attach it to
the scene by calling the mScene.attachChild() method with staticRectangle as the
parameter. Next, we create a body in the physics world that matches our staticRectangle.
To do this, we call the PhysicsFactory.createBoxBody() method with the parameters
of mPhysicsWorld, which is our physics world, staticRectangle to tell the box to be
created with the same position and size as the staticRectangle rectangle, BodyType.
StaticBody to define the body as static, and our BoxBodyFixtureDef fixture definition.

Our next rectangle, dynamicRectangle, is created at the location of 400f and 120f,
which is the middle of the scene slightly above the staticRectangle rectangle. Our
dynamicRectangle rectangle's width and height are set to 40f to make it a small square.
Then, we set its color to green by calling dynamicRectangle.setColor(0f, 0.8f,
0f) and attach it to our scene using mScene.attachChild(dynamicRectangle). Next,
we create the dynamicBody variable using the PhysicsFactory.createBoxBody()
method in the same way that we did for our staticRectangle rectangle. Notice that
we set the dynamicBody variable to have BodyType of DynamicBody. This sets the
body to be dynamic. Now, we register PhysicsConnector with the physics world to link
dynamicRectangle and dynamicBody. A PhysicsConnecter class links an entity
within our scene to a body in the physics world, representing the body's realtime position
and rotation in our scene.

Our last rectangle, kinematicRectangle, is created at the location of 600f and 100f,
which places it on top of our staticRectangle rectangle toward the right-hand side of
the scene. It is set to have a height and width of 40f, which makes it a small square like
our dynamicRectangle rectangle. We then set the kinematicRectangle rectangle's
color to yellow and attach it to our scene. Similar to the previous two bodies that we
created, we call the PhysicsFactory.createBoxBody() method to create our
kinematicBody variable. Take note that we create our kinematicBody variable with a
BodyType type of KinematicBody. This sets it to be kinematic and thus moved only by
the setting of its velocities. Lastly, we register a PhysicsConnector class between our
kinematicRectangle rectangle and our kinematicBody body type.

Applications of Physics

196

In the last step, we set our kinematicBody body's linear velocity by calling the
setLinearVelocity() method with a vector of -2f on the x axis, which makes it move
to the left. Finally, we set our kinematicBody body's angular velocity to negative pi by
calling kinematicBody.setAngularVelocity((float) (-Math.PI)). For more
information on setting a body's velocities, see the Using forces, velocities, and torque
recipe in this chapter.

There's more...
Static bodies cannot move from applied or set forces, but can be relocated using the
setTransform() method. However, we should avoid using the setTransform() method
while a simulation is running, because it makes the simulation unstable and can cause some
strange behaviors. Instead, if we want to change the position of a static body, we can do so
whenever creating the simulation or, if we need to change the position at runtime, simply
check that the new position will not cause the static body to overlap existing dynamic bodies
or kinematic bodies.

Kinematic bodies cannot have forces applied, but we can set their velocities via the
setLinearVelocity() and setAngularVelocity() methods.

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Using forces, velocities, and torque in this chapter.

Creating category-filtered bodies
Depending on the type of physics simulation that we want to achieve, controlling which
bodies are capable of colliding can be very beneficial. In Box2D, we can assign a category,
and category-filter to fixtures to control which fixtures can interact. This recipe will cover the
defining of two category-filtered fixtures that will be applied to bodies created by touching the
scene to demonstrate category-filtering.

Getting ready...
Create an activity by following the steps in the Introduction to the Box2D physics extension
section given at the beginning of the chapter. This activity will facilitate the creation of the
category-filtered bodies used in this section.

Chapter 6

197

How to do it...
Follow these steps to build our category-filtering demonstration activity:

1.	 Define the following class-level variables within the activity:
private int mBodyCount = 0;
public static final short CATEGORYBIT_DEFAULT = 1;
public static final short CATEGORYBIT_RED_BOX = 2;
public static final short CATEGORYBIT_GREEN_BOX = 4;
public static final short MASKBITS_RED_BOX =
 CATEGORYBIT_DEFAULT + CATEGORYBIT_RED_BOX;
public static final short MASKBITS_GREEN_BOX =
 CATEGORYBIT_DEFAULT + CATEGORYBIT_GREEN_BOX;
public static final FixtureDef RED_BOX_FIXTURE_DEF =
 PhysicsFactory.createFixtureDef(1, 0.5f, 0.5f, false,
 CATEGORYBIT_RED_BOX, MASKBITS_RED_BOX, (short)0);
public static final FixtureDef GREEN_BOX_FIXTURE_DEF =
 PhysicsFactory.createFixtureDef(1, 0.5f, 0.5f, false,
 CATEGORYBIT_GREEN_BOX, MASKBITS_GREEN_BOX, (short)0);

2.	 Next, create this method within the class that generates new category-filtered bodies
at a given location:
private void addBody(final float pX, final float pY) {
 this.mBodyCount++;
 final Rectangle rectangle = new Rectangle(pX, pY, 50f, 50f,
 this.getVertexBufferObjectManager());
 rectangle.setAlpha(0.5f);
 final Body body;
 if(this.mBodyCount % 2 == 0) {
 rectangle.setColor(1f, 0f, 0f);
 body = PhysicsFactory.createBoxBody(this.mPhysicsWorld,
 rectangle, BodyType.DynamicBody, RED_FIXTURE_DEF);
 } else {
 rectangle.setColor(0f, 1f, 0f);
 body = PhysicsFactory.createBoxBody(this.mPhysicsWorld,
 rectangle, BodyType.DynamicBody, GREEN_FIXTURE_DEF);
 }
 this.mScene.attachChild(rectangle);
 this.mPhysicsWorld.registerPhysicsConnector(new
PhysicsConnector(
 rectangle, body, true, true));
}

Applications of Physics

198

3.	 Lastly, fill the body of the onSceneTouchEvent() method with the following code
that calls the addBody() method by passing the touched location:

if(this.mPhysicsWorld != null)
 if(pSceneTouchEvent.isActionDown())
 this.addBody(pSceneTouchEvent.getX(),
 pSceneTouchEvent.getY());

How it works...
In the first step, we create an integer, mBodyCount, which counts how many bodies we have
added to the physics world. The mBodyCount integer is used in the second step to determine
which color, and thus which category, should be assigned to the new body.

We also create the CATEGORYBIT_DEFAULT, CATEGORYBIT_RED_BOX, and CATEGORYBIT_
GREEN_BOX category bits by defining them with unique power-of-two short integers and the
MASKBITS_RED_BOX and MASKBITS_GREEN_BOX mask bits by adding their associated
category bits together. The category bits are used to assign a category to a fixture, while the
mask bits combine the different category bits to determine which categories a fixture can
collide with. We then pass the category bits and mask bits to the fixture definitions to create
fixtures that have category collision rules.

The second step is a simple method that creates a rectangle and its corresponding body. The
method takes the X and Y location parameters that we want to use to create a new body and
passes them to a Rectangle object's constructor, to which we also pass a height and width
of 50f and the activity's VertexBufferObjectManager. Then, we set the rectangle to be
50 percent transparent using the rectangle.setAlpha() method. After that, we define
a body and modulate the mBodyCount variable by 2 to determine the color and fixture of
every other created body. After determining the color and fixture, we assign them by setting
the rectangle's color and creating a body by passing our mPhysicsWorld physics world,
the rectangle, a dynamic body type, and the previously-determined fixture to use. Finally, we
attach the rectangle to our scene and register a PhysicsConnector class to connect the
rectangle to our body.

The third step calls the addBody() method from step two only if the physics world has
been created and only if the scene's TouchEvent is ActionDown. The parameters that are
passed, pSceneTouchEvent.getX() and pSceneTouchEvent.getY(), represent the
location on the scene that received a touch input, which is also the location where we want to
create a new category-filtered body.

There's more...
The default category of all fixtures has a value of one. When creating mask bits for specific
fixtures, remember that any combination that includes the default category will cause the
fixture to collide with all other fixtures that are not masked to avoid collision with the fixture.

Chapter 6

199

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

Creating multiple-fixture bodies
We sometimes need a body that has varying physics attributes on certain parts of it. For
instance, a car with a bumper should react differently if it hits a wall to a car without a
bumper. The creation of such a multifixture body in Box2D is fairly simple and straightforward.
In this recipe, we will see how to create a multifixture body by creating two fixtures and adding
them to an empty body.

Getting ready...
Follow the steps in the Introduction to the Box2D physics extension section at the beginning of
the chapter to create a new activity that will facilitate the creation of our multifixture body.

How to do it...
Follow these steps to see how we can create multifixture bodies:

1.	 Place the following code in the onPopulateScene() method to create two
rectangles that have a modified AnchorCenter value which allows for precise
placement when linked to a body:
Rectangle nonbouncyBoxRect = new Rectangle(0f, 0f, 100f, 100f,
 this.getEngine().getVertexBufferObjectManager());
nonbouncyBoxRect.setColor(0f, 0f, 0f);
nonbouncyBoxRect.setAnchorCenter(((nonbouncyBoxRect.getWidth() /
2) -
 nonbouncyBoxRect.getX()) / nonbouncyBoxRect.getWidth(),
 ((nonbouncyBoxRect.getHeight() / 2) –
 nonbouncyBoxRect.getY()) /
 nonbouncyBoxRect.getHeight());
mScene.attachChild(nonbouncyBoxRect);
Rectangle bouncyBoxRect = new Rectangle(0f, -55f, 90f, 10f,
 this.getEngine().getVertexBufferObjectManager());
bouncyBoxRect.setColor(0f, 0.75f, 0f);
bouncyBoxRect.setAnchorCenter(((bouncyBoxRect.getWidth() / 2) –
 bouncyBoxRect.getX()) / bouncyBoxRect.getWidth(),
 ((bouncyBoxRect.getHeight() / 2) –
 bouncyBoxRect.getY()) /
 bouncyBoxRect.getHeight());
mScene.attachChild(bouncyBoxRect);

Applications of Physics

200

2.	 The following code creates a Body object and two fixtures, one that is perfectly elastic
and another that is perfectly inelastic. Add it after the creation of the rectangles in
the preceding step:
Body multiFixtureBody = mPhysicsWorld.createBody(new BodyDef());
multiFixtureBody.setType(BodyType.DynamicBody);

FixtureDef nonbouncyBoxFixtureDef = PhysicsFactory.
createFixtureDef(20, 0.0f, 0.5f);
final PolygonShape nonbouncyBoxShape = new PolygonShape();
nonbouncyBoxShape.setAsBox((nonbouncyBoxRect.getWidth() / 2f) /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 (nonbouncyBoxRect.getHeight() / 2f) /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 new Vector2(nonbouncyBoxRect.getX() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 nonbouncyBoxRect.getY() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT), 0f);
nonbouncyBoxFixtureDef.shape = nonbouncyBoxShape;
multiFixtureBody.createFixture(nonbouncyBoxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 nonbouncyBoxRect, multiFixtureBody));

FixtureDef bouncyBoxFixtureDef =
 PhysicsFactory.createFixtureDef(20, 	 1f, 0.5f);
final PolygonShape bouncyBoxShape = new PolygonShape();
bouncyBoxShape.setAsBox((bouncyBoxRect.getWidth() / 2f) /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 (bouncyBoxRect.getHeight() / 2f) /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 new Vector2(bouncyBoxRect.getX() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 bouncyBoxRect.getY() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT), 0f);
bouncyBoxFixtureDef.shape = bouncyBoxShape;
multiFixtureBody.createFixture(bouncyBoxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 bouncyBoxRect, multiFixtureBody));

3.	 Lastly, we need to set the location of our multifixture body now that it has been
created. Place the following call to setTransform() after the creation of the
bodies in the previous step:

multiFixtureBody.setTransform(400f /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT, 240f /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT, 0f);

Chapter 6

201

How it works...
The first step that we take is to define a rectangle that will represent a non-bouncy fixture
by using the Rectangle constructor and passing 0f on the x axis and 0f on the y axis,
representing the origin of the world. We then pass a height and width of 100f, which makes
the rectangle a large square, and the activity's VertexBufferObjectManager.

Then, we set the color of the non-bouncy rectangle to black, 0f, 0f, 0f, and set its
anchor-center using the nonbouncyBoxRect.setAnchorCenter() method to represent
the location on the body, created in the second step, at which the non-bouncy rectangle
will be attached. The anchor-center location of (((nonbouncyBoxRect.getWidth()
/ 2) - nonbouncyBoxRect.getX()) / nonbouncyBoxRect.getWidth(),
((nonbouncyBoxRect.getHeight() / 2) – nonbouncyBoxRect.getY()) /
nonbouncyBoxRect.getHeight() converts the rectangle's location and size to the
location that the rectangle rests on the origin. In the case of our non-bouncy rectangle, the
anchor-center remains at the default 0.5f, 0.5f, but the formula is necessary for any
fixture that will be created from a rectangle that is not centered on the origin. Next, we attach
our non-bouncy rectangle to the scene. Then, we create a rectangle that will represent a
bouncy fixture using the same method that we used to create the non-bouncy rectangle, but
we place the rectangle at -55f on the y axis to put it directly below the non-bouncy rectangle.
We also set the width of the rectangle to 90f, making it slightly smaller than the previous
rectangle, and the height to 10f to make it a slim bar that will act as a bouncy portion directly
below the non-bouncy rectangle. After setting the bouncy rectangle's anchor-center using
the same formula used for the non-bouncy rectangle, we attach it to the scene. Take note
that we have modified the AnchorCenter values of each of the rectangles, so that the
PhysicsConnectors class that we register in the second step can place the rectangles in
the proper location when we run the simulation. Also, note that we create our rectangles and
multifixture body at the world's origin to make calculations simple and fast. After our body has
been created, we move it to the position that it should be in for the simulation, as can be seen
in the third step, when we call the multiFixtureBody.setTransform() method with the
parameters 400f / PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT and 240f
/ PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT, which represent the center
of the screen in the physics world, and 0f, which represents the zero-rotation that the body
will have.

In the second step, we create an empty body, multiFixtureBody, by calling
mPhysicsWorld.createBody(new BodyDef()) and set it to be dynamic by calling its
setType() method with the parameter BodyType.DynamicBody. Then, we define a fixture
definition, nonbouncyBoxFixtureDef, for the non-bouncy fixture.

Applications of Physics

202

Next, we create a PolygonShape shape named nonbouncyBoxShape and set it as a box
that mimics our nonbouncyBoxRect by calling nonbouncyBoxShape shape's setAsBox()
method with the first two parameters as nonbouncyBoxRect.getWidth() / 2f and
nonbouncyBoxRect.getHeight() / 2f to set the nonbouncyBoxShape object to have
the same width and height as our nonbouncyBoxRect rectangle. Both of the parameters are
divided by PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT to scale the values
to the physics world. Furthermore, the setAsBox() method's first two parameters are half
sizes. This means that a normal width of 10f will be passed to the setAsBox() method as
5f. The next parameter of the setAsBox() method is a Vector2 parameter that will identify
the location of our nonbouncyBoxShape shape in the physics world. We set it to the location
of our nonbouncyBoxRect rectangle, converting the location to physics world coordinates
by scaling with the PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT variable. The
last parameter of the setAsBox() method is the rotation that nonbouncyBoxShape should
have. Because our nonbouncyBoxRect rectangle is not rotated, we use 0f.

Then, we set the shape property of our nonbouncyBoxFixtureDef fixture definition to
nonbouncyBoxShape, which applies the shape to our fixture definition. Next, we attach
the fixture to our multifixture body by calling the body's createFixture() method with
the nonbouncyBoxFixtureDef fixture definition as the parameter. Then, we register a
PhysicsConnector class to link the nonbouncyBoxRect rectangle in our scene to the
multiFixtureBody body in the physics world. Finally, we follow the same procedures that
we used when creating the non-bouncy fixture to create our bouncy fixture. The result should
be a black square with one bouncy, green side.

By setting the isSensor property of a fixture definition to true, a fixture can be
created as a sensor, which allows it to contact other fixtures without a physical
interaction occurring. For more information on sensors, see the Fixtures section
of the Box2D manual at http://www.box2d.org/manual.html.

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

Chapter 6

203

Creating unique bodies by specifying
vertices

Not everything in our physics simulations must be made of rectangles or circles. We can also
create polygonal bodies by creating a list of the polygonal points. This approach is useful for
creating certain types of terrain, vehicles, and characters. In this recipe, we will demonstrate
how to create a unique body from a list of vertices.

Getting ready...
Create an activity by following the steps in the Introduction to the Box2D physics extension
section given at the beginning of the chapter. This activity will easily allow the creation of a
uniquely constructed body with vertices.

How to do it...
Complete the following steps to define and create our unique, polygonal body:

1.	 Our unique body's vertices will be defined by a list of Vector2 objects. Add the
following list to the onPopulateScene() method:
List<Vector2> UniqueBodyVertices = new ArrayList<Vector2>();
UniqueBodyVertices.addAll((List<Vector2>) ListUtils.toList(
 new Vector2[] {
 new Vector2(-53f,-75f),
 new Vector2(-107f,-14f),
 new Vector2(-101f,41f),
 new Vector2(-71f,74f),
 new Vector2(69f,74f),
 new Vector2(98f,41f),
 new Vector2(104f,-14f),
 new Vector2(51f,-75f),
 new Vector2(79f,9f),
 new Vector2(43f,34f),
 new Vector2(-46f,34f),
 new Vector2(-80f,9f)
}));

Applications of Physics

204

2.	 To use the preceding list of vertices, we must run them through the
EarClippingTriangulator class to turn the vertices list into a list of triangles
that the physics engine will use to create multiple fixtures that are joined into a
single body. Place this code after the creation of the initial Vector2 list:
List<Vector2> UniqueBodyVerticesTriangulated =
 new EarClippingTriangulator().
 computeTriangles(UniqueBodyVertices);

3.	 To create a mesh that will represent our unique body, as well as adapt the
triangulated vertices for use in the physics world, add the following code snippet:
float[] MeshTriangles =
 new float[UniqueBodyVerticesTriangulated.size() * 3];
for(int i = 0; i < UniqueBodyVerticesTriangulated.size(); i++) {
 MeshTriangles[i*3] = UniqueBodyVerticesTriangulated.get(i).x;
 MeshTriangles[i*3+1] = UniqueBodyVerticesTriangulated.get(i).y;
 UniqueBodyVerticesTriangulated.get(i).
 mul(1/PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT);
}
Mesh UniqueBodyMesh = new Mesh(400f, 260f, MeshTriangles,
 UniqueBodyVerticesTriangulated.size(), DrawMode.TRIANGLES,
 this.getVertexBufferObjectManager());
UniqueBodyMesh.setColor(1f, 0f, 0f);
mScene.attachChild(UniqueBodyMesh);

4.	 Now that we have adapted the vertices to be used in the physics world, we can create
the body:
FixtureDef uniqueBodyFixtureDef =
 PhysicsFactory.createFixtureDef(20f, 0.5f, 0.5f);
Body uniqueBody = PhysicsFactory.createTrianglulatedBody(
 mPhysicsWorld, UniqueBodyMesh, UniqueBodyVerticesTriangulated,
 BodyType.DynamicBody, uniqueBodyFixtureDef);
mPhysicsWorld.registerPhysicsConnector(
 new PhysicsConnector(UniqueBodyMesh, uniqueBody));

5.	 Lastly, we want the unique body to have something to collide with. Add the
following body definitions to create two static bodies that will act as small pegs
in our physics world:

FixtureDef BoxBodyFixtureDef =
 PhysicsFactory.createFixtureDef(20f, 0.6f, 0.5f);
Rectangle Box1 = new Rectangle(340f, 160f, 20f, 20f,
 this.getVertexBufferObjectManager());
mScene.attachChild(Box1);
PhysicsFactory.createBoxBody(mPhysicsWorld, Box1,
 BodyType.StaticBody, BoxBodyFixtureDef);

Chapter 6

205

Rectangle Box2 = new Rectangle(600f, 160f, 20f, 20f,
 this.getVertexBufferObjectManager());
mScene.attachChild(Box2);
PhysicsFactory.createBoxBody(mPhysicsWorld, Box2,
 BodyType.StaticBody, BoxBodyFixtureDef);

How it works...
The list of vertices that we first create represents the shape that our unique body will be,
relative to the center of the body. In the second step, we create another list of vertices
using the EarClippingTriangulator class. This list that is returned from the
computeTriangles() method of the EarClippingTriangulator class contains all
of the points of the triangles that make up our unique body. The following figure shows
what our polygonal body looks like before and after running its vertices through the
EarClippingTriangulator class. Notice that our body will be made from several
triangular shapes that represent the original shape:

In step three, after adding each vertex to the MeshTriangles array for use in creating a
mesh to represent our body, we multiply each vertex by 1/PhysicsConstants.PIXEL_
TO_METER_RATIO_DEFAULT, which is the same as dividing the vertex's coordinates by the
default pixel-to-meter ratio. This division process is a common practice used to convert the
scene coordinates to the physics world coordinates. The physics world measures distance in
meters, so a conversion from pixels is necessary. Any consistent, reasonable value can be
used as the conversion constant, but the default pixel-to-meter-ratio is 32 pixels per meter
and has been proven to work in almost every simulation.

Step four creates the unique body by calling PhysicsFactory.
createTrianglulatedBody. It is important to note that while it is possible to create
polygonal bodies from a non-triangulated list of vertices, the only benefit to doing so would be
if we were using a list with less than seven vertexes. Even with such a small list, triangulating
the body does not have a noticeable negative impact on the simulation.

Applications of Physics

206

Several physics-body editors are available to simplify body creation. The
following are all usable with AndEngine:

ff Physics Body Editor (free):
http://code.google.com/p/box2d-editor

ff PhysicsEditor (paid):
http://www.codeandweb.com/physicseditor

ff Inkscape (free, plugins required): http://inkscape.org/

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

Using forces, velocities, and torque
No matter what kind of simulation we are creating, we will more than likely want to control at
least one body. To move bodies in Box2D, we can apply linear or angular forces, set linear or
angular velocities, and apply an angular force in the form of torque. In this recipe, we will see
how we can apply these forces and velocities on multiple bodies.

Getting ready...
Follow the steps in the Introduction to the Box2D physics extension section at the beginning of
the chapter to create a new activity that will facilitate the creation of bodies that will react to
forces, velocities, and torque. Then, update the activity to include the additional code from the
ForcesVelocitiesTorqueActivity class found in the code bundle.

How to do it...
Refer to the supplemental ForcesVelocitiesTorqueActivity class for the complete
example of this recipe. We will cover only the basics of the recipe in this section:

1.	 We will first work with the methods that handle the linear motion of our bodies.
Place the following code snippet in the overridden onAreaTouched() method
of the LinearForceRect rectangle:
LinearForceBody.applyForce(0f, 2000f,
 LinearForceBody.getWorldCenter().x,
 LinearForceBody.getWorldCenter().y);

http://code.google.com/p/box2d-editor
http://code.google.com/p/box2d-editor
http://ww.codeandweb.com/physicseditor
http://ww.codeandweb.com/physicseditor
http://inkscape.org/

Chapter 6

207

2.	 Next, insert this code in the onAreaTouched() method of the
LinearImpulseRect rectangle:
LinearImpulseBody.applyLinearImpulse(0f, 200f,
 LinearImpulseBody.getWorldCenter().x,
 LinearImpulseBody.getWorldCenter().y);

3.	 Then, add this code to the onAreaTouched() method of the
LinearVelocityRect rectangle:
LinearVelocityBody.setLinearVelocity(0f, 20f);

4.	 Now, we will work with the Body methods that affect the angular motion
of our bodies. Place this code in the onAreaTouched() method of the
AngularTorqueRect rectangle:
AngularTorqueBody.applyTorque(2000f);

5.	 Insert the following code in the onAreaTouched() method of the
AngularImpulseRect rectangle:
AngularImpulseBody.applyAngularImpulse(20f);

6.	 Finally, add this code to the onAreaTouched() method of the
AngularVelocityRect rectangle:

AngularVelocityBody.setAngularVelocity(10f);

How it works...
In step one, we apply a linear force on LinearForceBody by calling its applyForce()
method with the force parameters of 0f on the x axis and 2000f on the y axis to
apply a strong, positive vertical force and the force location in world coordinates
of LinearForceBody.getWorldCenter().x and LinearForceBody.
getWorldCenter().y to apply the force at the center of the LinearForceBody body.

Step two applies a linear impulse on the LinearImpulseBody body via its
applyLinearImpulse() method. The applyLinearImpulse() method's first two
parameters are the impulse amount with respect to the world axis. We use the values
of 0f and 200f to apply the moderate impulse pointing straight up. The remaining two
parameters of the applyLinearImpulse() method are the x and y location that the
impulse will be applied to the body in world coordinates. We pass LinearImpulseBody.
getWorldCenter().x and LinearImpulseBody.getWorldCenter().y to apply the
impulse at the center of the LinearImpulseBody body.

Applications of Physics

208

In step three, we set the linear velocity of LinearVelocityBody by calling its
setLinearVelocity() method with the parameters 0f and 20f. The parameter
of 0f signifies that the body will not be moving on the x axis, and the parameter of
20f sets the y axis motion immediately to be 20 meters per second. When using the
setLinearVelocity() method, the velocity is automatically set at the body's center
of mass.

Step four applies a torque to AngularTorqueBody. We call the AngularTorqueBody.
applyTorque() method with a value of 2000f to apply a very strong torque to the
AngularTorqueBody body at the body's center of mass.

In the fifth step, we apply an angular impulse to the AngularImpulseBody body by calling
the AngularImpulseBody.applyAngularImpulse() method with a value of 20f. This
small, angular impulse will be applied to the AngularImpulseBody body's center of mass.

For the final step, we set the angular velocity of the AngularVelocityBody body. We call
the AngularVelocityBody.setAngularVelocity() method with the value of 10f to
make the body immediately rotate at 10 radians per second.

There's more...
Impulses differ from forces in that they function independently of the timestep. An impulse
actually equals force multiplied by time. Likewise, forces equal the impulse divided by time.

Setting the velocity of bodies and applying an impulse are similar, but there is an important
distinction to make—applying impulses directly adds to or subtracts from the velocity, while
setting a velocity does not incrementally increase or decrease the velocity.

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

Applying anti-gravity to a specific body
In the previous recipe, we looked at how forces affect bodies. Using a constant force that
opposes gravity, we can release a body from the gravity of the physics world. If the force that
opposes gravity is great enough, the body will even float away! In this recipe, we will create a
body that counteracts the force of gravity.

Chapter 6

209

Getting ready...
Create an activity by following the steps in the Introduction to the Box2D physics extension
section at the beginning of the chapter. This activity will facilitate the creation of a body that
has a constant force applied that opposes gravity.

How to do it...
For this recipe, follow these steps to create a body that opposes gravity:

1.	 Place the following definitions in the activity:
Body gravityBody;
Body antigravityBody;
final FixtureDef boxFixtureDef = PhysicsFactory.
createFixtureDef(2f, 0.5f, 0.9f);

2.	 Next, create a rectangle and body that will demonstrate the normal effects of gravity
on a body. Place the following code snippet in the onPopulateScene() method:
Rectangle GravityRect = new Rectangle(300f, 240f, 100f, 100f,
this.getEngine().getVertexBufferObjectManager());
GravityRect.setColor(0f, 0.7f, 0f);
mScene.attachChild(GravityRect);
mScene.registerTouchArea(GravityRect);
gravityBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
 GravityRect, BodyType.DynamicBody, boxFixtureDef);
gravityBody.setLinearDamping(0.4f);
gravityBody.setAngularDamping(0.6f);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 GravityRect, gravityBody));

3.	 Finally, create a rectangle and body that show how a body can ignore gravity by
applying an anti-gravity force during every update:

Rectangle AntiGravityRect = new Rectangle(500f, 240f, 100f, 100f,
 this.getEngine().getVertexBufferObjectManager()) {
 @Override
 protected void onManagedUpdate(final float pSecondsElapsed) {
 super.onManagedUpdate(pSecondsElapsed);
 antigravityBody.applyForce(
 -mPhysicsWorld.getGravity().x *
 antigravityBody.getMass(),
 -mPhysicsWorld.getGravity().y *
 antigravityBody.getMass(),
 antigravityBody.getWorldCenter().x,
 antigravityBody.getWorldCenter().y);
 }
};
AntiGravityRect.setColor(0f, 0f, 0.7f);

Applications of Physics

210

mScene.attachChild(AntiGravityRect);
mScene.registerTouchArea(AntiGravityRect);
antigravityBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
 AntiGravityRect, BodyType.DynamicBody, boxFixtureDef);
antigravityBody.setLinearDamping(0.4f);
antigravityBody.setAngularDamping(0.6f);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 AntiGravityRect, antigravityBody));

How it works...
The first step that we take is to define a body affected by gravity, a body that opposes gravity,
and a fixture definition used when creating the bodies.

Next, we create a rectangle and its corresponding body that is affected by gravity. For more
information on creating rectangles, refer to the Applying primitives to a layer recipe in
Chapter 2, Working with Entities, or for more information on creating bodies, refer to the
Understanding different body types recipe in this chapter.

Then, we create the anti-gravity body and its connected rectangle. By overriding the anti-
gravity rectangle's onManagedUpdate() method, we can place code in it that will run
after every engine update. In the case of our AntiGravityRect rectangle, we fill the
onManagedUpdate() method with the antigravityBody.applyForce() method,
passing the negated mPhysicsWorld.getGravity() method's x and y values multiplied
by antigravityBody body's mass and finally set the force to be applied at the world center
of antigravityBody. By using this force that is the exact opposite of the physics-world's
gravity within the onManagedUpdate() method, the anti-gravity body is corrected against
the physics-world's gravity after every update. Furthermore, the force that we apply must
be multiplied by the body's mass to fully compensate for the effects of gravity. Refer to the
following diagram to better understand how anti-gravity bodies function:

Chapter 6

211

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Using forces, velocities, and torque in this chapter.

Working with joints
In Box2d, joints are used to connect two bodies so that each body is in some way attached to
the other. The various types of joints make it possible to customize our characters, vehicles,
and the world. Furthermore, joints can be created and destroyed during a simulation, which
gives us endless possibilities for our games. In this recipe, we will create a line joint to
demonstrate how joints are set up and used in the physics world.

Getting ready...
Create an activity following the steps in the Introduction to the Box2D physics extension
section given at the beginning of the chapter. This activity will facilitate the creation
of two bodies and a connecting line joint that we will use for this recipe. Refer to the
JointsActivity class in the supplemental code for examples of more types of joints.

How to do it...
Follow these steps to create a line joint:

1.	 Define the following variables within our activity:
Body LineJointBodyA;
Body LineJointBodyB;
final FixtureDef boxFixtureDef =
 PhysicsFactory.createFixtureDef(20f, 0.2f, 0.9f);

2.	 Add the following code in the onPopulateScene() method to create two rectangles
and their associated bodies:
Rectangle LineJointRectA = new Rectangle(228f, 240f, 30f, 30f,
this.getEngine().getVertexBufferObjectManager());
LineJointRectA.setColor(0.5f, 0.25f, 0f);
mScene.attachChild(LineJointRectA);
LineJointBodyA = PhysicsFactory.createBoxBody(mPhysicsWorld,
 LineJointRectA, BodyType.KinematicBody, boxFixtureDef);
Rectangle LineJointRectB = new Rectangle(228f, 200f, 30f, 30f,
 this.getEngine().getVertexBufferObjectManager()) {
 @Override
 protected void onManagedUpdate(final float pSecondsElapsed)
 {

Applications of Physics

212

 super.onManagedUpdate(pSecondsElapsed);
 LineJointBodyB.applyTorque(1000f);
 LineJointBodyB.setAngularVelocity(Math.min(
 LineJointBodyB.getAngularVelocity(),0.2f));
 }
};
LineJointRectB.setColor(0.75f, 0.375f, 0f);
mScene.attachChild(LineJointRectB);
LineJointBodyB = PhysicsFactory.createBoxBody(mPhysicsWorld,
 LineJointRectB, BodyType.DynamicBody, boxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 LineJointRectB, LineJointBodyB));

3.	 Place the following code after the code shown in the previous step to create a line
joint that connects the bodies from the previous step:

final LineJointDef lineJointDef = new LineJointDef();
lineJointDef.initialize(LineJointBodyA, LineJointBodyB,
	 LineJointBodyB.getWorldCenter(), new Vector2(0f,1f));
lineJointDef.collideConnected = true;
lineJointDef.enableLimit = true;
lineJointDef.lowerTranslation = -220f /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT;
lineJointDef.upperTranslation = 0f;
lineJointDef.enableMotor = true;
lineJointDef.motorSpeed = -200f;
lineJointDef.maxMotorForce = 420f;
mPhysicsWorld.createJoint(lineJointDef);

How it works...
We first define the two bodies, LineJointBodyA and LineJointBodyB, that will be
connected to our line joint and the boxFixtureDef fixture definition that will be applied to
the bodies. For more information about creating fixture definitions, refer to the Introduction to
the Box2D physics extension recipe given at the beginning of this chapter.

In step two, we create the LineJointRectA rectangle using the Rectangle() constructor
with a position of 228f and 240f, which places it in the middle of the left-half of our scene,
and a height and width of 30f to make it a small square. We then set its color to dark orange
by calling the LineJointRectA.setColor() method with the parameters 0.5f, 0.25f
and 0f. Next, we create LineJointRectA rectangle's associated LineJointBodyA body
by calling the PhysicsFactory.createBoxBody() constructor with the parameters
mPhysicsWorld, which is our physics world, LineJointRectA, which is used to define
the shape and position of the body, BodyType of BodyType.KinematicBody, and the
boxFixtureDef fixture definition.

Chapter 6

213

Next, we handle the creation of LineJointRectB and LineJointBodyB in the same
way that we created LineJointRectA and LineJointBodyA, but with the addition of
the overridden onManagedUpdate() method in the creation of LineJointRectB and
a PhysicsConnector class to connect LineJointRectB and LineJointBodyB. The
overridden onManagedUpdate() method of LineJointRectB applies a large torque
to LineJointBodyB by calling the LineJointBodyB.applyTorque() method with
a value of 1000f. After we apply the torque, we make sure that LineJointBodyB body's
angular velocity does not exceed 0.2f by passing Math.min(LineJointBodyB.
getAngularVelocity(), 0.2f) to the LineJointBodyB.setAngularVelocity()
method. Finally, the PhysicsConnector class created and registered at the end of step
two links LineJointRectB in our scene to LineJointBodyB in the physics world.

In step three, we create our line joint. To initialize the line joint, we use the lineJointDef.
initialize() method to which we pass the associated bodies, LineJointBodyA and
LineJointBodyB. Then, we pass the world-based center of LineJointBodyB as the
anchor point of the joint and Vector2, that contains the unit vector world axis of our joint.
The world axis for our joint is set at 0f and 1f, which means zero movement on the x axis
and a movement with a scale of 1f on the y axis. We then tell the joint to allow collisions
between the joint's bodies by setting the lineJointDef.collideConnected variable to
true and enable the limit of the joint by setting the lineJointDef.enableLimit variable
to true, which limits LineJointBodyB body's distance from the first. To set the lower
distance limit of our joint, which represents how far from the joint that LineJointBodyB
body can travel in the negative, we set the lineJointDef.lowerTranslation variable
to -220f / PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT. For the upper
distance limit, we set the lineJointDef.upperTranslation variable to 0f to keep
LineJointBodyB from being forced above LineJointBodyA. Next, we enable the joint's
motor by setting the lineJointDef.enableMotor variable to true, which will either pull
or push LineJointBodyB toward or away from LineJointBodyA depending on the motor's
speed. Lastly, we give the joint's motor a fast, negative speed by setting the lineJointDef.
motorSpeed variable to -200f to move LineJointBodyB toward the lowerTranslation
limit and give the motor a strong maximum force by setting the lineJointDef.
maxMotorForce variable to 420f.

Applications of Physics

214

The line joint acts similarly to the suspension-and-wheel part of a car. It allows for constrained
movement on an axis, usually vertical for vehicles, and allows the second body to rotate or act
as a powered wheel if necessary. The following diagram illustrates the various components of
the line joint:

There's more...
All joints have two bodies and give us the option of allowing collision between those
connected bodies. We enable the collision whenever we need it, but the default value of
every joint's collideConnected variable is false. Furthermore, the second body of all
joints should always be one with a BodyType type of BodyType.DynamicBody.

For any joints that have a frequency, which determines how elastically the joint behaves, never
set the frequency to exceed more than half of the physics world timestep. If the timestep of
the physics world is 40, the maximum value that we should assign as the frequency of our
joints would be 20f.

If either body connected to a joint is destroyed while the joint is active, the joint is also
destroyed. This means that when we dispose of a physics world, we do not need to dispose
of the joints within it as long as we destroy all of the bodies.

More joint types
The line joint is only one of several types of joints available for use in our physics simulations.
The other types of joints are the distance, mouse, prismatic, pulley, revolute, and weld
joints. Continue reading to learn more about each type. Refer to the supplemental
JointsActivity class for a more in-depth example of each of the joint types.

Chapter 6

215

The distance joint
The distance joint simply attempts to keep its connected bodies a certain distance from each
other. If we do not set the length of the distance joint, it assumes the length to be the initial
distance between its bodies. The following code creates a distance joint:

final DistanceJointDef distanceJointDef = new DistanceJointDef();
distanceJointDef.initialize(DistanceJointBodyA,
 DistanceJointBodyB, DistanceJointBodyA.getWorldCenter(),
 DistanceJointBodyB.getWorldCenter());
distanceJointDef.length = 3.0f;
distanceJointDef.frequencyHz = 1f;
distanceJointDef.dampingRatio = 0.001f;

Notice that we initialize the distance joint by passing the two bodies to be connected,
DistanceJointBodyA and DistanceJointBodyB, and the centers of the bodies,
DistanceJointBodyA.getWorldCenter() and DistanceJointBodyB.
getWorldCenter(), as the anchor points for the joint. Next, we set the length of the
joint by setting the distanceJointDef.length variable to 3.0f, which tells the joint
that the two bodies should be 3 meters apart in the physics world. Finally, we set the
distanceJointDef.frequencyHz variable to 1f to force a small frequency for the spring
of the joint and the distanceJointDef.dampingRatio variable to 0.001f to produce a
very small dampening effect for the connected bodies. For an easier understanding of what
the distance joint looks like, refer to the preceding diagram.

Applications of Physics

216

The mouse joint
The mouse joint attempts to pull a body to a specific location, usually the location of a touch,
using a set maximum force. It is a great joint for testing purposes, but for the release version
of most games, we should opt for using a kinematic body with the appropriate code to move
it to where a touch is registered. To understand how the mouse joint acts, reference the
preceding diagram. The following code defines a mouse joint:

final MouseJointDef mouseJointDef = new MouseJointDef();
mouseJointDef.bodyA = MouseJointBodyA;
mouseJointDef.bodyB = MouseJointBodyB;
mouseJointDef.dampingRatio = 0.0f;
mouseJointDef.frequencyHz = 1f;
mouseJointDef.maxForce = (100.0f * MouseJointBodyB.getMass());

Unlike other joints, the mouse joint does not have an initialize() method to help
set up the joint. We first create the mouseJointDef mouse joint definition and set the
mouseJointDef.bodyA variable to MouseJointBodyA and the mouseJointDef.bodyB
variable to MouseJointBodyB in order to tell the joint which bodies it will be linking. In all of
our simulations, MouseJointBodyA should be an immobile body that does not move while
the mouse joint is active.

Next, we set the mouseJointDef.dampingRatio variable to 0.0f to cause the joint to
have absolutely no damping. We then set the mouseJointDef.frequencyHz variable
to 1f to force a slight frequency response whenever MouseJointBodyB has reached
the mouse joint's target, which we can see being set in the following code. Finally, we set
the maxForce variable of our mouseJointDef to (100.0f * MouseJointBodyB.
getMass()) method. The strong force of 100.0f is multiplied by MouseJointBodyB body's
mass to account for any changes in the mass of MouseJointBodyB.

In this code, we initialized the mouse joint, but it should only be active after the simulation
has started. To activate the mouse joint from within the onSceneTouchEvent() method of
a class while the simulation is running, see the following code. Note that the mouseJoint
variable, which is a mouse joint, is created at the class level:

if(pSceneTouchEvent.isActionDown()) {
 mouseJointDef.target.set(MouseJointBodyB.getWorldCenter());
 mouseJoint = (MouseJoint)mPhysicsWorld.createJoint(
 mouseJointDef);
 final Vector2 vec = Vector2Pool.obtain(
 pSceneTouchEvent.getX() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 pSceneTouchEvent.getY() /

Chapter 6

217

 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT);
 mouseJoint.setTarget(vec);
 Vector2Pool.recycle(vec);
} else if(pSceneTouchEvent.isActionMove()) {
 final Vector2 vec = Vector2Pool.obtain(
 pSceneTouchEvent.getX() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 pSceneTouchEvent.getY() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT);
 mouseJoint.setTarget(vec);
 Vector2Pool.recycle(vec);
} else if(pSceneTouchEvent.isActionCancel() ||
 pSceneTouchEvent.isActionOutside() ||
 pSceneTouchEvent.isActionUp()) {
 mPhysicsWorld.destroyJoint(mouseJoint);
}

When the screen is first touched, which is determined by checking pSceneTouchEvent.
isActionDown(), we set the initial mouse joint target using the mouseJointDef.target.
set() method to the world center of MouseJointBodyB via the MouseJointBodyB.
getWorldCenter() method. Then, we set the mouseJoint variable by creating the mouse
joint definition in the physics world using the MouseJoint joint-casted mPhysicsWorld.
createJoint() method with the mouseJointDef variable as the parameter. After the joint
is created, we create Vector2 from Vector2Pool, that holds the location of the scene's
touch location, pSceneTouchEvent.getX() and pSceneTouchEvent.getY(), converted
to physics-world coordinated by dividing the location by PhysicsConstants.PIXEL_TO_
METER_RATIO_DEFAULT.

Applications of Physics

218

We then change the mouseJoint joint's target variable to the previously created Vector2
and recycle Vector2 to Vector2Pool. While the touch is still active, determined by
checking pSceneTouchEvent.isActionMove(), we update the target of the mouse
joint using the same procedure that we used immediately after creating the mouse joint
in the physics world. We call for Vector2 from Vector2Pool, that is set to the physics
world-converted touch location, set the target of the mouse joint to that Vector2, and
then recycle Vector2. As soon as the touch is released, which is determined by checking
pSceneTouchEvent.isActionCancel(), pSceneTouchEvent.isActionOutside(),
or pSceneTouchEvent.isActionUp(), we destroy the mouse joint in the world by
calling the mPhysicsWorld.destroyJoint() method with our mouseJoint variable
as the parameter.

The prismatic joint
The prismatic joint allows its connected bodies to slide apart or together on a single axis,
powered by a motor if necessary. The bodies have a locked rotation, so we must keep that in
mind when designing a simulation that uses a prismatic joint. Consider the preceding diagram
to grasp how this joint functions. The following code creates a prismatic joint:

final PrismaticJointDef prismaticJointDef =
 new PrismaticJointDef();
prismaticJointDef.initialize(PrismaticJointBodyA,
 PrismaticJointBodyB, PrismaticJointBodyA.getWorldCenter(),
 new Vector2(0f,1f));
prismaticJointDef.collideConnected = false;
prismaticJointDef.enableLimit = true;

Chapter 6

219

prismaticJointDef.lowerTranslation = -80f /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT;
prismaticJointDef.upperTranslation = 80f /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT;
prismaticJointDef.enableMotor = true;
prismaticJointDef.maxMotorForce = 400f;
prismaticJointDef.motorSpeed = 500f;
mPhysicsWorld.createJoint(prismaticJointDef);

After defining our prismaticJointDef variable, we initialize it using the
prismaticJointDef.initialize() method and passing to it our connected bodies,
PrismaticJointBodyA and PrismaticJointBodyB, the anchor point, which we
declare to be the center of PrismaticJointBodyA in world coordinates, and the unit
vector world axis of the joint in terms of a Vector2 object, Vector2(0f,1f). We disable
collision between the bodies by setting the prismaticJointDef.collideConnected
variable to false and then enable limits for the range of sliding of the joint by setting the
prismaticJointDef.enableLimit variable to true.

To set the limits of the joint, we set the lowerTranslation and upperTranslation
properties to -80f and 80f pixels, respectively, divided by PhysicsConstants.PIXEL_
TO_METER_RATIO_DEFAULT to convert the pixel limits to meters in the physics world. Finally,
we enable the motor by setting the prismaticJointDef.enableMotor property to true,
set its max force to 400f via the prismaticJointDef.maxMotorForce property, and set
its speed to a positive 500f via the prismaticJointDef.motorSpeed property to drive
PrismaticJointBodyB toward the upper-limit of the joint.

The pulley joint
The pulley joint acts much like a realistic pulley—when one side descends, the other ascends.
The length of the pulley joint is determined at initialization and should not be changed after
creation. Refer to the preceding diagram to see what a pulley joint looks like. The following
code creates a pulley joint:

final PulleyJointDef pulleyJointDef = new PulleyJointDef();
pulleyJointDef.initialize(
 PulleyJointBodyA,
 PulleyJointBodyB,
 PulleyJointBodyA.getWorldPoint(
 new Vector2(0f, 2.5f)),
 PulleyJointBodyB.getWorldPoint(
 new Vector2(0f, 2.5f)),
 PulleyJointBodyA.getWorldCenter(),
 PulleyJointBodyB.getWorldCenter(),
 1f);
mPhysicsWorld.createJoint(pulleyJointDef);

Applications of Physics

220

After creating the pulleyJointDef variable, we initialize it via the pulleyJointDef.
initialize() method. The first two parameters of the pulleyJointDef.initialize()
method are the two connected bodies, PulleyJointBodyA and PulleyJointBodyB.
The next two parameters are the ground anchors for the pulley, which in this case are 2.5f
meters above each body. To get the relative point above each body in world coordinates,
we use the getWorldPoint() method of each of the bodies with an x parameter of 0
and a y parameter of 2.5 meters above each body. The fifth and sixth parameters of the
pulleyJointDef.initialize() method are the anchor points of each body in world
coordinates. We use the center in this simulation, so we pass the getWorldCenter()
method of each of the connected bodies.

The final parameter of the method is the ratio of the pulley, 1f in this case. A ratio of 2 would
cause PulleyJointBodyA to move twice the distance from its ground anchor for every
distance change of PulleyJointBodyB from its ground anchor. Furthermore, because the
work required by PulleyJointBodyA to move in relation to its ground anchor would be half
of the work that PulleyJointBodyB would take to move, PulleyJointBodyA would have
more leverage than PulleyJointBodyB, causing PulleyJointBodyA to be more easily
affected by gravity and thus acting to lift PulleyJointBodyB in a normal simulation. The
last step in creating a pulley joint is to call the mPhysicsWorld.createJoint() method by
passing to it our pulleyJointDef variable.

The revolute joint
The revolute joint is the most popular joint in Box2D simulations. It is essentially a pivot point
between its two connected bodies with an optional motor and limits. See the previous diagram
to help clarify how the revolute joint functions. The following code creates a revolute joint:

final RevoluteJointDef revoluteJointDef = new RevoluteJointDef();
revoluteJointDef.initialize(
 RevoluteJointBodyA,

Chapter 6

221

 RevoluteJointBodyB,
 RevoluteJointBodyA.getWorldCenter());
revoluteJointDef.enableMotor = true;
revoluteJointDef.maxMotorTorque = 5000f;
revoluteJointDef.motorSpeed = -1f;
mPhysicsWorld.createJoint(revoluteJointDef);

We first define the revoluteJointDef definition as a new RevoluteJointDef() method.
Then, we initialize it using the revoluteJointDef.initialize() method with the
parameters of RevoluteJointBodyA and RevoluteJointBodyB to connect the bodies
and the getWorldCenter() method of RevoluteJointBodyA to define where the joint
will rotate. Then, we enable our revolute joint's motor by setting the revoluteJointDef.
enableMotor property to true. Next, we set the maxMotorTorque property to 5000f to
make the motor very strong and the motorSpeed property to -1f to make the motor spin
clockwise at a very slow rate. Finally, we create the revolute joint in the physics world by calling
mPhysicsWorld.createJoint(revoluteJointDef) to make the physics world create a
revolute joint using our revoluteJointDef variable.

The weld joint
The weld joint bonds two bodies together and disables rotation between them. It is a useful
joint for destructible objects, but larger destructible objects will occasionally fail due to
jittering from Box2D's iterative position solver. In such a case, we would create the object from
multiple fixtures, and recreate each piece of the object, when detached, in the form of a new
body. Refer to the previous diagram of the weld joint to better understand how it works. The
following code creates a weld joint:

final WeldJointDef weldJointDef = new WeldJointDef();
weldJointDef.initialize(WeldJointBodyA, WeldJointBodyB,
 WeldJointBodyA.getWorldCenter());
mPhysicsWorld.createJoint(weldJointDef);

To create our weld joint, we first create a WeldJointDef definition named weldJointDef.
Then, we initialize it by calling the weldJointDef.initialize() method with the body
parameters of WeldJointBodyA and WeldJointBodyB to connect our bodies and the
anchor point of the joint at the center of WeldJointBodyA body in world coordinates. The
anchor point of a weld joint may seem like it could be placed anywhere, but because of how
Box2D handles the anchor of weld joints during collision, we want to put it at the center
location of one of the connected bodies. Doing otherwise can cause shearing or displacement
of the joint when colliding with a body that has a large mass.

Applications of Physics

222

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

Creating a rag doll
One of the most popular depictions of characters in physics simulations is the rag doll. The
visual look of such characters differs according to detail, but the underlying system is always
the same—we just attach several physics bodies to a larger physics body via joints. In this
recipe, we will create a rag doll.

Getting ready...
Review the creation of a physics-based activity in the Introduction to the Box2D physics
extension recipe, the creation of bodies in the Understanding different body types recipe,
and the use of revolute joints and mouse joints in the Working with joints recipe, all found
in this chapter.

How to do it...
Refer to the supplemental RagdollActivity class for the code that we use in this recipe.

How it works...
The first step is to define the variables that represent the multiple bodies that make up our
rag doll. Our bodies are the headBody, which represents the head, the torsoBody, which
represents the torso, the leftUpperarmBody and leftForearmBody, representing
the left arm, the rightUpperarmBody and rightForearmBody, representing the right
arm, the leftThighBody and leftCalfBody, which represent the left leg, and finally
the rightThighBody and rightCalfBody, which represent the right leg. The following
diagram shows how all of our bodies will be linked together using revolute joints:

Chapter 6

223

Next, we define the necessary variables used by our mouse joint to throw the rag doll when
the screen is touched, the Vector2 localMouseJointTarget target for the mouse joint,
the mouseJointDef mouse joint definition, the mouseJoint joint, and the ground body
for the mouse joint, MouseJointGround. We then create the fixture definitions that we will
apply to the various parts of our ragdoll—headFixtureDef for the head, torsoFixtureDef
for the torso, armsFixtureDef for the arms, and legsFixtureDef for the legs. For more
information on creating fixture definitions, refer to the Introduction to the Box2D physics
extension recipe in this chapter.

Then, in the onPopulateScene() method, we create individual rectangles and their linked
bodies, which are defined in the activity, for each body part of the rag doll. Each rectangle
matches the exact location and size in which its corresponding body part is located As we
create the bodies to be linked to the rectangles, we assign the appropriate fixture definition
defined in the activity via the final parameter of the PhysicsFactory.createBoxBody()
method. Finally, for each rectangle body group, we register a PhysicsConnector object with
the physics world. For more information on creating bodies and PhysicsConnector objects,
refer to the Understanding different body types recipe in this chapter.

Applications of Physics

224

Next, we create the many revolute joints that connect the body parts of our rag doll. The
locations of the anchor points of each joint are where we want that body part to rotate, in
world coordinates, passed via the final parameter of the initialize() method of each
of the joint definitions. We make sure that each joint's connected bodies do not collide by
setting the joint's collideConnected property to false. This does not keep the bodies
from colliding with other portions of the rag doll, but it does allow the joint's bodies to overlap
when rotating. Next, notice that we apply limits to the joint definitions to keep the body parts
from moving beyond a set range of motion, much like the limits that humans have when
moving their limbs. Not setting limits for the joints would create a rag doll that would allow
complete rotation of its limbs, which is an unrealistic representation but necessary for some
simulations. For more information on revolute joints, refer to the Working with joints recipe in
this chapter.

After creating the revolute joints that represent the joints of our rag doll, we create the
mouseJointDef mouse joint definition that will allow us to fling the rag doll around the
scene. We attach the headBody body of our rag doll as the mouse joint's second body,
but any of the bodies attached to the rag doll could be used depending on the simulation.
Our final step in creating our rag doll is to set up the mouse joint for use at runtime via
touch interactions passed by the onSceneTouchEvent() method of our activity. For more
information on using mouse joints, refer to the Working with joints recipe in this chapter.

 See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

ff Working with joints in this chapter.

Creating a rope
Though it is performance-intensive to simulate a realistic rope using Box2D, a simple rope is
not only fast, but also very customizable. A rope, from a construction standpoint, is similar to
a rag doll and can add an extra layer of playability to a game. If a physics simulation seems to
be too bland to attract players, the addition of rope will be sure to give players another reason
to like a game. In this recipe, we will create a physics-enabled rope for use in our simulations.

Getting ready...
Review the creation of a physics-based activity in the Introduction to the Box2D physics
extension recipe, the creation of bodies in the Understanding different body types recipe,
and the use of revolute joints and mouse joints in the Working with joints recipe, all found
in this chapter.

Chapter 6

225

How to do it...
Refer to the supplemental Rope and RopeActivity classes for the code that we use in
this recipe.

How it works...
A rope created in Box2D can be thought of as a chain of similar bodies linked together by
joints. We can use either rectangular or circular bodies to define each section of a rope,
but circular bodies will have less chance of catching onto and stretching from collision
with other bodies. See the following diagram to get an idea of how we design a rope for
a physics simulation:

First, refer to the Rope class, which will make it easier for us to create multiple ropes and
fine-tune all of the ropes at once for our simulation. The initial code in the Rope class is a
set of variables that reflect the specific properties of each rope. The numRopeSegments
variable holds the number of segments that our rope will have. The ropeSegmentsLength
and ropeSegmentsWidth variables hold the length and width that each segment of rope will
have. Next, the ropeSegmentsOverlap variable represents how much each rope segment
will overlap the previous rope segment, which prevents gaps during slight stretches. The
RopeSegments array and RopeSegmentsBodies array define the rectangles and bodies for
each segment of our rope. Finally, the RopeSegmentFixtureDef fixture definition will hold
the fixture data that we will apply to each segment of the rope.

Next, we create a constructor, named Rope, to handle the placement, detail, length, width,
weight, and general creation of the rope. Then, we assign values to the variables created in
the previous step. Notice that the RopeSegmentFixtureDef fixture definition starts with
the maximum density. As each segment of the rope is created via the for loop later in the
constructor, the density, and thus mass, of the fixture decrements to the minimum density.
This prevents stretching by giving the highest body segments the most strength to hold the
lower body segments.

Applications of Physics

226

At the beginning of the Rope constructor's for loop, we define the revolute joint for each rope
segment. For more information on revolute joints, see the Working with joints recipe in this
chapter. Then, we create the rectangle, RopeSegments[i], that will represent the segment,
checking to make sure that the first segment, when i is less than 1, is placed according to
the pAttachTo hinge passed in the constructor while the remaining segments are placed
relative to their previous segment, RopeSegments[i-1]. The creation of the rectangles
includes an overlap value, ropeSegmentsOverlap, to remove spacing in the rope caused
by the iterative process of Box2D.

After we have created the segment's rectangle and set its color to brown by calling
RopeSegments[i].setColor(0.97f, 0.75f, 0.54f), we apply the density calculation
to the RopeSegmentFixtureDef fixture definition and create a circular body based on
the segment's rectangle using the PhysicsFactory.createCircleBody() method.
For more information on creating bodies, refer to the Understanding different body types
recipe in this chapter. We then set a moderate angular damping of each rope segment
body via the setAngularDamping(4f) method and a slight linear damping via the
setLinearDamping(0.5f) method to remove unpredictability in the rope's behavior.

After that, we enable the rope segment to act as a bullet by setting the
RopeSegmentsBodies[i].setBullet property to true, which reduces the chances of
our segments slipping through colliding bodies. Finally, we create the revolute joint for the
current rope segment in relation to the previous segment, or the hinge if the current segment
is the first in the rope. For more information on revolute joints, refer to the Working with joints
recipe in this chapter.

For our activity class, we first create the variables necessary for our mouse joint, which will
move the rope's hinge body to the touched location, and define our RopeHingeBody body
that will act as the anchor point of the rope. Then, in the onPopulateScene() method, we
create our RopeHingeBody body and, subsequently, our rope object, passing the rope-hinge
body as the first parameter to the Rope constructor. For more information on creating bodies,
refer to the Understanding different body types recipe in this chapter. The next parameters of
the Rope constructor tell our rope to be 10 segments long, make each segment 25f pixels
long and 10f pixels wide with an overlap of 2f pixels, have a minimum density of 5f and
a maximum density of 50f, and our mScene scene to which we attach the rope segment
rectangles. The final two parameters of the Rope constructor tell the rope to create the
segment bodies in our mPhysicsWorld physics world and to set each segment's rectangle
to be managed by the activity's VertexBufferObjectManager class.

Next, we define and set up the variables used for our mouse joint. Take note that we
set the RopeHingeBody body as the mouse joint's second body. Finally, we set up the
onSceneTouchEvent() method to handle our mouse joint. For more information on
mouse joints, refer to the Working with joints recipe in this chapter.

Chapter 6

227

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

ff Working with joints in this chapter.

Working with collisions
Causing an effect to occur from the collisions between bodies, whether it is the playing of
sound or the disposal of a body, is often a necessary part of a game based on a physics
simulation. Handling collisions seems like an intimidating task at first, but it will become
second nature after we learn how each part of the ContactListener interface functions.
In this recipe, we will demonstrate how to handle collisions between fixtures.

Getting ready...
Follow the steps in the Introduction to the Box2D physics extension section at the beginning
of the chapter to create a new activity that will facilitate the creation of our simulation in which
we will control collision behavior.

How to do it...
Follow these steps to demonstrate our control of collisions:

1.	 Place the following definitions at the beginning of the activity class:
public Rectangle dynamicRect;
public Rectangle staticRect;
public Body dynamicBody;
public Body staticBody;
public boolean setFullAlphaForDynamicBody = false;
public boolean setHalfAlphaForDynamicBody = false;
public boolean setFullAlphaForStaticBody = false;
public boolean setHalfAlphaForStaticBody = false;
final FixtureDef boxFixtureDef = PhysicsFactory.
createFixtureDef(2f,
 0f, 0.9f);

Applications of Physics

228

2.	 To determine whether a specific body is contacted in the ContactListener
interface, insert the following method in the activity:
public boolean isBodyContacted(Body pBody, Contact pContact)
{
 if(pContact.getFixtureA().getBody().equals(pBody) ||
 pContact.getFixtureB().getBody().equals(pBody))
 return true;
 return false;
}

3.	 The following method is similar to the previous method, but tests another body in
addition to the first. Add it to the class after the previous method:
public boolean areBodiesContacted(Body pBody1, Body pBody2,
Contact pContact)
{
 if(pContact.getFixtureA().getBody().equals(pBody1) ||
 pContact.getFixtureB().getBody().equals(pBody1))
 if(pContact.getFixtureA().getBody().equals(pBody2) ||
 pContact.getFixtureB().getBody().equals(pBody2))
 return true;
 return false;
}

4.	 Next, we are going to create a dynamic body and a static body to test collisions.
Place the following in the onPopulateScene() method:
dynamicRect = new Rectangle(300f, 240f, 100f, 100f,
 this.getEngine().getVertexBufferObjectManager());
dynamicRect.setColor(0f, 0.7f, 0f);
dynamicRect.setAlpha(0.5f);
mScene.attachChild(dynamicRect);
dynamicBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
 dynamicRect, BodyType.DynamicBody, boxFixtureDef);
dynamicBody.setLinearDamping(0.4f);
dynamicBody.setAngularDamping(0.6f);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 dynamicRect, dynamicBody));

staticRect = new Rectangle(500f, 240f, 100f, 100f,
 this.getEngine().getVertexBufferObjectManager());
staticRect.setColor(0f, 0f, 0.7f);
staticRect.setAlpha(0.5f);
mScene.attachChild(staticRect);
staticBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
staticRect,
 BodyType.StaticBody, boxFixtureDef);

Chapter 6

229

5.	 Now we need to set the ContactListener property of the physics world. Add the
following to the onPopulateScene() method:
mPhysicsWorld.setContactListener(new ContactListener(){
 @Override
 public void beginContact(Contact contact) {
 if(contact.isTouching())
 if(areBodiesContacted(staticBody,dynamicBody,contact))
 setFullAlphaForStaticBody = true;
 if(isBodyContacted(dynamicBody,contact))
 setFullAlphaForDynamicBody = true;
 }
 @Override
 public void endContact(Contact contact) {
 if(areBodiesContacted(staticBody,dynamicBody,contact))
 setHalfAlphaForStaticBody = true;
 if(isBodyContacted(dynamicBody,contact))
 setHalfAlphaForDynamicBody = true;
 }
 @Override
 public void preSolve(Contact contact, Manifold oldManifold) {}
 @Override
 public void postSolve(Contact contact, ContactImpulse impulse)
{}
});

6.	 Because the physics world may call the ContactListener interface multiple
times per contact, we want to move all logic from the ContactListener interface
to an update handler called once per engine update. Place the following in the
onPopulateScene() method to complete our activity:

mScene.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 if(setFullAlphaForDynamicBody) {
 dynamicRect.setAlpha(1f);
 setFullAlphaForDynamicBody = false;
 } else if(setHalfAlphaForDynamicBody) {
 dynamicRect.setAlpha(0.5f);
 setHalfAlphaForDynamicBody = false;
 }
 if(setFullAlphaForStaticBody) {
 staticRect.setAlpha(1f);
 setFullAlphaForStaticBody = false;
 } else if(setHalfAlphaForStaticBody) {
 staticRect.setAlpha(0.5f);

Applications of Physics

230

 setHalfAlphaForStaticBody = false;
 }
 }
 @Override public void reset() {}
});

How it works...
First, we define the rectangles and bodies that we will be using to visualize collisions. We
also define several Boolean variables that will be changed depending on the results of the
ContactListener interface. The final variable is the fixture definition used to create the
collision-enabled bodies.

In steps two and three, we create two convenience methods, isBodyContacted() and
areBodiesContacted(), that will make determining the presence of bodies in the
ContactListener interface easier. Notice that the if statements in each of the methods
check both of the fixtures against each body. Because of the way that the contact listener
passes the Contact object, we cannot be certain which fixture will correlate with a certain
body, so we must check both.

Step four creates the rectangles and bodies—one static and one dynamic—used in this
simulation. We set the alpha of the rectangles using their setAlpha() method with a value
of 0.5f to demonstrate that contact is not currently occurring. The alpha of the rectangles is
restored to opaque upon collision and set back to transparent after the collision has ended.

In step five, we set the physics world's contact listener by overriding the inherited methods.
The first method, beginContact(), is called when a collision has occurred within the
physics world. In that method, we first test that the collision actually involves the touching
of two bodies by checking the isTouching() property of the contact parameter. Box2D
considers a collision to start whenever the AABB, or bounding box, of two bodies overlap, not
when the actual bodies touch. Refer to the next diagram to see how collisions and touching
differ. After that, we check to see if both, or just one, of our bodies are involved in the collision.
If so, we set our full-alpha Boolean variables to true. The next method, endContact(),
is called when bodies are no longer colliding. If our bodies are involved in the collision that
is ending, we set the half-alpha Boolean variables to true. The remaining methods in the
contact listener are called either before or after the collision-correcting calculations have
occurred. Because we simply want to test which bodies have collided, we do not need to
use those two methods.

Chapter 6

231

In step six, we create an update handler to remove the effective code from the
ContactListener interface. It simply checks the Boolean values set within the
ContactListener interface to determine which actions need to be taken after every engine
update. After the correct actions have been taken, we reset the Boolean variables. The reason
that we need to remove effectual code from the contact listener is that the contact listener
can, and often is, called multiple times per collision. If we were to change the score of a game
from inside the contact listener, the score would often change at a much greater magnitude
than we intended. We could have a variable that checks whether a contact has already been
handled, but the flow of such code becomes messy and eventually counter productive.

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

ff Pre-solve and Post-solve in this chapter.

Using preSolve and postSolve
Making use of the available data for a collision inside the contact listener's presolve
method, which is called before the Box2D iterator causes a reaction, allows us to have unique
control over how our collisions occur. The preSolve() method is most commonly used to
create “one-way” platforms that a character can jump through from below while still being
able to walk on them from above. The postSolve() method, which is called after a reaction
has been set in motion, gives us the corrective data, also known as the impact force, for
the collision. This data can then be used to destroy or break apart objects. In this recipe, we
will demonstrate how to properly use the preSolve() and postSolve() methods of a
ContactListener interface.

Applications of Physics

232

Getting ready...
Create a new activity by following the steps in the Introduction to the Box2D physics extension
section given at the beginning of the chapter. This new activity will facilitate our use of the
preSolve() and postSolve() methods called within the contact listener.

How to do it...
Follow these steps to complete the activity that demonstrates the use of these methods:

1.	 Place the following definitions at the beginning of the activity:
Body dynamicBody;
Body staticBody;
FixtureDef boxFixtureDef = PhysicsFactory.createFixtureDef(20f,
0.5f,
 0.9f);
Vector2 localMouseJointTarget = new Vector2();
MouseJointDef mouseJointDef;
MouseJoint mouseJoint;
Body groundBody;

2.	 To determine which body or bodies are contacted, insert these methods into the class:
public boolean isBodyContacted(Body pBody, Contact pContact)
{
 if(pContact.getFixtureA().getBody().equals(pBody) ||
 pContact.getFixtureB().getBody().equals(pBody))
 return true;
 return false;
}

public boolean areBodiesContacted(Body pBody1, Body pBody2,
Contact pContact)
{
 if(pContact.getFixtureA().getBody().equals(pBody1) ||
 pContact.getFixtureB().getBody().equals(pBody1))
 if(pContact.getFixtureA().getBody().equals(pBody2) ||
 pContact.getFixtureB().getBody().equals(pBody2))
 return true;
 return false;
}

Chapter 6

233

3.	 We are going to test the collisions between a small, dynamic body and a larger,
static body. Place the following code in the onPopulateScene() method to
create such bodies:
Rectangle dynamicRect = new Rectangle(400f, 60f, 40f, 40f,
 this.getEngine().getVertexBufferObjectManager());
dynamicRect.setColor(0f, 0.6f, 0f);
mScene.attachChild(dynamicRect);
dynamicBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
 dynamicRect, BodyType.DynamicBody, boxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 dynamicRect, dynamicBody));

Rectangle staticRect = new Rectangle(400f, 240f, 200f, 10f,
 this.getEngine().getVertexBufferObjectManager());
staticRect.setColor(0f, 0f, 0f);
mScene.attachChild(staticRect);
staticBody = PhysicsFactory.createBoxBody(mPhysicsWorld,
staticRect,
 BodyType.StaticBody, boxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 staticRect, staticBody));

4.	 Next, we need to set the contact listener for our physics world. Insert the following
into the onPopulateScene() method:
mPhysicsWorld.setContactListener(new ContactListener(){
 float maxImpulse;
 @Override
 public void beginContact(Contact contact) {}

 @Override
 public void endContact(Contact contact) {}

 @Override
 public void preSolve(Contact contact, Manifold oldManifold) {
 if(areBodiesContacted(dynamicBody, staticBody, contact))
 if(dynamicBody.getWorldCenter().y <
 staticBody.getWorldCenter().y)
 contact.setEnabled(false);
 }

 @Override
 public void postSolve(Contact contact, ContactImpulse impulse) {
 if(areBodiesContacted(dynamicBody, staticBody, contact)) {
 maxImpulse = impulse.getNormalImpulses()[0];

Applications of Physics

234

 for(int i = 1; i <
 impulse.getNormalImpulses().length;
 i++)
 maxImpulse = Math.max(
 impulse.getNormalImpulses()[i],
 maxImpulse);
 if(maxImpulse>400f)
 dynamicBody.setAngularVelocity(30f);
 }
 }
});

5.	 We want to be able to move the smaller body by touching where we want it to move
to. Add the following code to set up a mouse joint which will allow us to do so:
groundBody = mPhysicsWorld.createBody(new BodyDef());
mouseJointDef = new MouseJointDef();
mouseJointDef.bodyA = groundBody;
mouseJointDef.bodyB = dynamicBody;
mouseJointDef.dampingRatio = 0.5f;
mouseJointDef.frequencyHz = 1f;
mouseJointDef.maxForce = (40.0f * dynamicBody.getMass());
mouseJointDef.collideConnected = false;

6.	 Finally, insert the following in the onSceneTouchEvent() method to control the
mouse joint created in the previous step:

if(pSceneTouchEvent.isActionDown()) {
 mouseJointDef.target.set(dynamicBody.getWorldCenter());
 mouseJoint = (MouseJoint)mPhysicsWorld.
createJoint(mouseJointDef);
 final Vector2 vec = Vector2Pool.obtain(pSceneTouchEvent.getX() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 pSceneTouchEvent.getY() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT);
 mouseJoint.setTarget(vec);
 Vector2Pool.recycle(vec);
} else if(pSceneTouchEvent.isActionMove()) {
 final Vector2 vec = Vector2Pool.obtain(pSceneTouchEvent.getX() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 pSceneTouchEvent.getY() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT);
 mouseJoint.setTarget(vec);
 Vector2Pool.recycle(vec);
 return true;

Chapter 6

235

} else if(pSceneTouchEvent.isActionCancel() ||
 pSceneTouchEvent.isActionOutside() ||
 pSceneTouchEvent.isActionUp()) {
 mPhysicsWorld.destroyJoint(mouseJoint);
}

How it works...
We first define a static body, a dynamic body, and a fixture definition that will be used to create
the two bodies. Then, we create two methods that make managing collisions using the contact
listener much easier. Next, we create the bodies using their associated rectangles.

In step four, we set the physics world's contact listener. Notice that we create a variable,
maxImpulse, at the beginning of the contact listener for use in the postSolve() method at
the end of the contact listener. For this simulation we have no use for the beginContact()
and endContact() methods so we leave them empty. In the preSolve() method, we first
test to determine if the contact is between our two bodies, dynamicBody and staticBody.
If it is, we test if the dynamicBody body is below our staticBody body by checking
if the dynamicBody.getWorldCenter().y property is less than the staticBody.
getWorldCenter().y property, and if so, we cancel the collision. This allows the dynamic
body to pass through the static body from below while still colliding with the static body
from above.

Applications of Physics

236

In the postSolve() method, we test to ensure that we are only handling the dynamic and
static bodies that we had defined previously. If so, we set the maxImpulse variable to the
first impulse in the impulse.getNormalImpulses() array. This list holds the corrective
impulses of all contacted points between the two colliding fixtures. Next, we step through
the list of impulses and set the maxImpulse variable to either the current maxImpulse
value or the current impulse value from the list, whichever is greater. This gives us the
greatest corrective impulse in the collision, which we then use to spin the dynamic body
if the impulsive force is great enough, an impulse of 400f in this simulation.

Step five initializes the mouse joint for dragging our dynamic body around the screen, and
step six controls the mouse joint using the onSceneTouchEvent() method. Refer to
Working with joints for more information on the mouse joint.

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

ff Working with joints in this chapter.

ff Working with collisions in this chapter.

Creating destructible objects
Using the impulse data from the postSolve() method in the physics world's contact
listener gives us a force of impact for each collision. Extending that data to cause a multiple-
body object to break apart simply involves determining which body collided and if the force
was great enough to break the body from the multiple-body object. In this recipe, we will
demonstrate the creation of a destructible object made from bodies.

Getting ready...
Create an activity by following the steps in the Introduction to the Box2D physics extension
section at the beginning of the chapter. This activity will facilitate the creation of the
destructible body groups that we will use in this section.

How to do it...
Follow these steps to create a destructible object that breaks apart when it collides with a
large force:

1.	 Add the following definitions to the activity class:
public Body box1Body;
public Body box2Body;

Chapter 6

237

public Body box3Body;
public boolean breakOffBox1 = false;
public boolean breakOffBox2 = false;
public boolean breakOffBox3 = false;
public Joint box1And2Joint;
public Joint box2And3Joint;
public Joint box3And1Joint;
public boolean box1And2JointActive = true;
public boolean box2And3JointActive = true;
public boolean box3And1JointActive = true;
public final FixtureDef boxFixtureDef =
 PhysicsFactory.createFixtureDef(20f, 0.0f, 0.9f);

2.	 To determine which body is contacted easier, insert this method into the class:
public boolean isBodyContacted(Body pBody, Contact pContact)
{
 if(pContact.getFixtureA().getBody().equals(pBody) ||
 pContact.getFixtureB().getBody().equals(pBody))
 return true;
 return false;
}

3.	 We are going to create a physics object comprised of three boxes that are held
together by weld joints. Define the following boxes in the onPopulateScene()
method:
Rectangle box1Rect = new Rectangle(400f, 260f, 40f, 40f,
 this.getEngine().getVertexBufferObjectManager());
box1Rect.setColor(0.75f, 0f, 0f);
mScene.attachChild(box1Rect);
box1Body = PhysicsFactory.createBoxBody(mPhysicsWorld, box1Rect,
 BodyType.DynamicBody, boxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 box1Rect, box1Body));

Rectangle box2Rect = new Rectangle(380f, 220f, 40f, 40f,
 this.getEngine().getVertexBufferObjectManager());
box2Rect.setColor(0f, 0.75f, 0f);
mScene.attachChild(box2Rect);
box2Body = PhysicsFactory.createBoxBody(mPhysicsWorld, box2Rect,
 BodyType.DynamicBody, boxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 box2Rect, box2Body));

Applications of Physics

238

Rectangle box3Rect = new Rectangle(420f, 220f, 40f, 40f,
 this.getEngine().getVertexBufferObjectManager());
box3Rect.setColor(0f, 0f, 0.75f);
mScene.attachChild(box3Rect);
box3Body = PhysicsFactory.createBoxBody(mPhysicsWorld, box3Rect,
 BodyType.DynamicBody, boxFixtureDef);
mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(
 box3Rect, box3Body));

4.	 Next, place the following weld joint definitions in the onPopulateScene() method
after the box definitions defined in the previous step:
final WeldJointDef box1and2JointDef = new WeldJointDef();
box1and2JointDef.initialize(box1Body, box2Body,
 box1Body.getWorldCenter());
box1And2Joint = mPhysicsWorld.createJoint(box1and2JointDef);

final WeldJointDef box2and3JointDef = new WeldJointDef();
box2and3JointDef.initialize(box2Body, box3Body,
 box2Body.getWorldCenter());
box2And3Joint = mPhysicsWorld.createJoint(box2and3JointDef);

final WeldJointDef box3and1JointDef = new WeldJointDef();
box3and1JointDef.initialize(box3Body, box1Body,
 box3Body.getWorldCenter());
box3And1Joint = mPhysicsWorld.createJoint(box3and1JointDef);

5.	 We now need to set our physics world's contact listener. Add the following code to the
onPopulateScene() method:
mPhysicsWorld.setContactListener(new ContactListener(){
 float maxImpulse;
 @Override
 public void beginContact(Contact contact) {}
 @Override
 public void endContact(Contact contact) {}
 @Override
 public void preSolve(Contact contact, Manifold oldManifold) {}	
@Override
 public void postSolve(Contact contact, ContactImpulse impulse) {
 maxImpulse = impulse.getNormalImpulses()[0];
 for(int i = 1; i < impulse.getNormalImpulses().length; i++)
 {
 maxImpulse = Math.max(impulse.getNormalImpulses()[i],
 maxImpulse);
 }
 if(maxImpulse>800f) {

Chapter 6

239

 if(isBodyContacted(box1Body,contact))
 breakOffBox1 = true;
 else if(isBodyContacted(box2Body,contact))
 breakOffBox2 = true;
 else if(isBodyContacted(box3Body,contact))
 breakOffBox3 = true;
 }
 }
});

6.	 Lastly, to remove the logic from the contact listener, place the following update
handler in the onPopulateScene() method:

mScene.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 if(breakOffBox1) {
 if(box1And2JointActive)
 mPhysicsWorld.destroyJoint(box1And2Joint);
 if(box3And1JointActive)
 mPhysicsWorld.destroyJoint(box3And1Joint);
 box1And2JointActive = false;
 box3And1JointActive = false;
 breakOffBox1 = false;
 }
 if(breakOffBox2) {
 if(box1And2JointActive)
 mPhysicsWorld.destroyJoint(box1And2Joint);
 if(box2And3JointActive)
 mPhysicsWorld.destroyJoint(box2And3Joint);
 box1And2JointActive = false;
 box2And3JointActive = false;
 breakOffBox1 = false;
 }
 if(breakOffBox3) {
 if(box2And3JointActive)
 mPhysicsWorld.destroyJoint(box2And3Joint);
 if(box3And1JointActive)
 mPhysicsWorld.destroyJoint(box3And1Joint);
 box2And3JointActive = false;
 box3And1JointActive = false;
 breakOffBox1 = false;
 }
 }
 @Override public void reset() {}
});

Applications of Physics

240

How it works...
Step one initially defines three bodies that we will link together with weld joints. Next, we
define three Boolean variables that represent which body, if any, should be released from
the group of bodies. Then, we define three weld joints that hold our bodies together and their
respective Boolean values that represent whether the joint exists. Finally, we define a fixture
definition from which we will create our three box bodies.

Step two creates a method that allows us to determine if a particular body is involved in a
collision, as also seen in the Working with collisions recipe. Step three creates our bodies, and
step four creates the weld joints that attach them. Refer to the Understanding different body
types recipe for more information about creating bodies, or the Working with joints recipe for
more information on using joints.

In step five, we set the physics world's contact listener, creating only the maxImpulse variable
and filling only the postSolve() method. In the postSolve() method, we determine if the
force of the collision impulse is great enough to break the joints connected to a body. If it is,
we determine which of the bodies should be broken off from the group and set the associated
Boolean value for that body. After the ContactListener interface is set, we register an
update handler to destroy the appropriate joints according to which bodies are flagged to
be broken off. Because each of the three bodies is connected to the other two bodies, there
are two joints to destroy for each body in the group. As we destroy the joints, we flag each
destroyed joint as inactive so that we do not attempt to destroy an already destroyed joint.

See also
ff Introduction to the Box2D physics extension in this chapter.

ff Understanding different body types in this chapter.

ff Working with joints in this chapter.

ff Using preSolve and postSolve in this chapter.

Raycasting
Raycasting via the physics world is a calculation that shoots an imaginary line from one point
to another, and reports back with the distance, each encountered fixture, and the normal
vector of each surface hit. Raycasts can be used for anything from lasers and vision cones to
determining what an imaginary bullet hit. In this recipe, we will demonstrate raycasting within
our physics world.

Chapter 6

241

Getting ready...
Follow the steps in the Introduction to the Box2D physics extension section at the beginning
of the chapter to create a new activity that will facilitate our use of raycasting in the
physics world.

How to do it...
Follow these steps to create a raycasting demonstration:

1.	 Place the following definitions at the beginning of the activity:
Body BoxBody;
Line RayCastLine;
Line RayCastLineHitNormal;
Line RayCastLineHitBounce;
float[] RayCastStart = {cameraWidth/2f,15f};
float RayCastAngle = 0f;
float RayCastNormalAngle = 0f;
float RayCastBounceAngle = 0f;
float RaycastBounceLineLength = 200f;
final FixtureDef boxFixtureDef =
 PhysicsFactory.createFixtureDef(1f, 0.5f, 0.9f);

2.	 When we tell the physics world to perform a raycast, it will use a provided callback
interface to allow us to make use of the information gathered by the raycast. Place
the following RayCastCallback definition in the activity:
RayCastCallback rayCastCallBack = new RayCastCallback() {
 @Override
 public float reportRayFixture(Fixture fixture, Vector2 point,
 Vector2 normal, float fraction)
 {
 float[] linePos = {
 point.x *
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 point.y *
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 (point.x + (normal.x)) *
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 (point.y + (normal.y)) *
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT};
 RayCastLineHitNormal.setPosition(
 linePos[0],linePos[1],
 linePos[2],linePos[3]);
 RayCastLineHitNormal.setVisible(true);

Applications of Physics

242

 RayCastNormalAngle = MathUtils.radToDeg(
 (float) Math.atan2(
 linePos[3]-linePos[1],
 linePos[2]-linePos[0]));
 RayCastBounceAngle = (2*RayCastNormalAngle)-RayCastAngle;
 RayCastLineHitBounce.setPosition(
 linePos[0], linePos[1],
 (linePos[0] + FloatMath.cos((RayCastBounceAngle + 180f) *
 MathConstants.DEG_TO_RAD) * RaycastBounceLineLength),
 (linePos[1] + FloatMath.sin((RayCastBounceAngle + 180f) *
 MathConstants.DEG_TO_RAD)*RaycastBounceLineLength));
 RayCastLineHitBounce.setVisible(true);
 return 0f;
 }
};

3.	 To give our raycast something to impact, we will create a box in the physics world.
Insert the following code snippet in the onPopulateScene() method:
Rectangle Box1 = new Rectangle(400f, 350f, 200f, 200f,
 this.getEngine().getVertexBufferObjectManager());
Box1.setColor(0.3f, 0.3f, 0.3f);
BoxBody = PhysicsFactory.createBoxBody(mPhysicsWorld, Box1,
 BodyType.StaticBody, boxFixtureDef);
BoxBody.setTransform(BoxBody.getWorldCenter(), MathUtils.
random(0.349f, 1.222f));
mScene.attachChild(Box1);
mPhysicsWorld.registerPhysicsConnector(
 new PhysicsConnector(Box1, BoxBody));

4.	 Next, we will define the Line object that represents some of the information
gathered from the raycast. Add the following to the onPopulateScne() method:
RayCastLine = new Line(0f, 0f, 0f, 0f,
 mEngine.getVertexBufferObjectManager());
RayCastLine.setColor(0f, 1f, 0f);
RayCastLine.setLineWidth(8f);
mScene.attachChild(RayCastLine);

RayCastLineHitNormal = new Line(0f, 0f, 0f, 0f,
 mEngine.getVertexBufferObjectManager());
RayCastLineHitNormal.setColor(1f, 0f, 0f);
RayCastLineHitNormal.setLineWidth(8f);
mScene.attachChild(RayCastLineHitNormal);

RayCastLineHitBounce = new Line(0f, 0f, 0f, 0f,

Chapter 6

243

 mEngine.getVertexBufferObjectManager());
RayCastLineHitBounce.setColor(0f, 0f, 1f);
RayCastLineHitBounce.setLineWidth(8f);
mScene.attachChild(RayCastLineHitBounce);

5.	 Lastly, we want the raycast to occur wherever we touch the scene. Place the following
in the onSceneTouchEvent() method:

if(pSceneTouchEvent.isActionMove()||pSceneTouchEvent.
isActionDown()){
 RayCastAngle = MathUtils.radToDeg((float)
 Math.atan2(pSceneTouchEvent.getY() - RayCastStart[1],
 pSceneTouchEvent.getX() - RayCastStart[0]));
 RayCastLine.setPosition(
 RayCastStart[0], RayCastStart[1],
 pSceneTouchEvent.getX(), pSceneTouchEvent.getY());
 RayCastLine.setVisible(true);
 RayCastLineHitNormal.setVisible(false);
 RayCastLineHitBounce.setVisible(false);
 mPhysicsWorld.rayCast(rayCastCallBack,
 new Vector2(
 RayCastStart[0] /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 RayCastStart[1] /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT),
 new Vector2(
 pSceneTouchEvent.getX() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 pSceneTouchEvent.getY() /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT));
}
if(pSceneTouchEvent.isActionUp() ||
 pSceneTouchEvent.isActionOutside() ||
 pSceneTouchEvent.isActionCancel())
{
 RayCastLine.setVisible(false);
}

How it works...
We first define a body, BoxBody, against which we will use the raycast. Then, we define
several lines that will visually represent the raycast. Lastly, we define a series of variables
that help us to determine the positioning and results of the raycast.

Applications of Physics

244

In step two, we define a RayCastCallback interface, which we will pass to the physics
world whenever we request it to calculate a raycast. In the callback, we use the overridden
reportRayFixture() method. This method is called every time that a requested raycast
encounters a new fixture. In the method, we use the raycast-returned point and normal
variables to modify the position of our line that represents the normal line of the reported
fixture's hit surface. After setting the normal line to be visible, we determine the normal angle
and then the bounce angle. We then position the bounce line to represent the bounce of the
raycast and set the bounce line to be visible. Finally, we return 0 for the method to tell the
raycast to terminate after hitting the first fixture. For a better understanding of the various
parameters returned in a raycast callback, consider the following diagram:

Step three creates the body defined in step one and sets it to have a semi-random rotation
by calling the BoxBody.setTransform() method with the last parameter of MathUtils.
random(0.349f, 1.222f), which orients the body to a rotation between 0.349 radians
and 1.222 radians. Step four creates the visual lines that represent the various parts of the
raycast. For more information on creating bodies, see the Understanding different body types
recipe in this chapter, and for more information on lines, see Chapter 2, Working with Entities.

In step five, we assign the onSceneTouchEvent() method to handle our raycasting. When a
touch occurs, we first set the RayCastAngle variable for use in the raycast's callback. Then,
we position the main raycast line and set it to be visible while also setting the other lines
associated with the raycast to be invisible. Lastly, we request a raycast from the physics world
by passing our callback, the start position of the raycast, and the end position of the raycast.
When the touch event has ended, we set the main raycast line to be invisible.

See also
ff Introduction to the Box2D physics extension in this chapter.

7
Working with Update

Handlers

Update handlers give us a way to run specific portions of code every time that the engine
updates. Some game engines have one built in as a main loop, but with AndEngine we
can create as many of these loops as necessary with ease. This chapter will cover the
following recipes:

ff Getting started with update handlers

ff Attaching an update handler to an entity

ff Using update handlers with conditionals

ff Handling the removal of an entity from the game

ff Adding game timers

ff Setting entity properties based on the time passed

Getting started with update handlers
Update handlers are essentially portions of code that we register with either entities or the
engine, that are run whenever the engine updates the scene. In most situations, this updating
occurs every time a frame is drawn, regardless of whether entities or the scene have been
altered. Update handlers can be a powerful means of running a game, but overusing them or
performing heavy calculations in them will lead to poor performance. This recipe will cover the
basics of adding a simple update handler to an activity.

Working with Update Handlers

246

Getting ready...
Create a new class named UpdateHandlersActivity that extends BaseGameActivity.
We will use this class to create a basic update handler.

How to do it...
Follow these steps to create an update handler that displays how many updates
have occurred:

1.	 Place the following definitions within our UpdateHandlersActivity class:
public static int cameraWidth = 800;
public static int cameraHeight = 480;
public Scene mScene;public Font fontDefault32Bold;
public Text countingText;
public int countingInt = 0;

2.	 Next, add the following overridden methods to the class.
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(), new Camera(0, 0,
 cameraWidth, cameraHeight)).setWakeLockOptions(
 WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 fontDefault32Bold = FontFactory.create(
 mEngine.getFontManager(),
 mEngine.getTextureManager(), 256, 256,
 Typeface.create(Typeface.DEFAULT, Typeface.BOLD),
 32f, true, Color.BLACK_ARGB_PACKED_INT);
 fontDefault32Bold.load();
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}

Chapter 7

247

3.	 Finally, insert this last method into our class:
@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 countingText = new Text(400f, 240f,
 fontDefault32Bold, "0", 10,
 this.getVertexBufferObjectManager());
 mScene.attachChild(countingText);
 mScene.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 countingInt++;
 countingText.setText(
 String.valueOf(countingInt));
 }
 @Override public void reset() {}
 });
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

How it works...
The first and the second step cover the creation of a simple BaseGameActivity class.
For more information on creating a BaseGameActivity class, see the Know the life cycle
recipe in Chapter 1, AndEngine Game Structure. Notice, however, that we create and load a
Font object in the onCreateResources() method. For more information on fonts and the
Text entities that use them, see the Applying text to a layer recipe in Chapter 2, Working
with Entities.

In step three, we create a Text entity, countingText, by passing the fontDefault32Bold
font, created in the onCreateResources() method of the activity, to the Text constructor,
with location parameters to center it on the screen and a maximum string length parameter of
10 characters. After attaching the countingText entity to the scene, we register our update
handler. In the onUpdate() method of our update handler, we increment the countingInt
integer and set the countingText entity's text to the integer. This gives us a direct textual
display in our game of how many updates have occurred, and thus how many frames have
been drawn.

See also
ff Know the life cycle in Chapter 1, AndEngine Game Structure.

ff Applying text to a layer in Chapter 2, Working with Entities.

Working with Update Handlers

248

Attaching an update handler to an entity
In addition to being able to register an update handler with a Scene object, we can register
update handlers with specific entities. By registering an update handler with an entity, the
handler is only called whenever the entity is attached to the engine's scene. This recipe
demonstrates this process by creating an update handler, which is registered with an initially
unattached entity, that increments the onscreen text.

Getting ready...
Create a new class named AttachUpdateHandlerToEntityActivity that extends
BaseGameActivity and implements IOnSceneTouchListener. We will use this class to
attach an update handler to an Entity object that will wait to be attached to the scene until
the scene is touched.

How to do it...
Follow these steps to create an activity that demonstrates how update handlers depend on
their parent entity to run:

1.	 Insert the following definitions into our new activity class:
public static int cameraWidth = 800;
public static int cameraHeight = 480;
public Scene mScene;
public Font fontDefault32Bold;
public Text countingText;
public int countingInt = 0;
public Entity blankEntity;

2.	 Then, place the following overridden methods within the class:
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(), new Camera(0, 0,
 cameraWidth, cameraHeight)).setWakeLockOptions(
 WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 fontDefault32Bold = FontFactory.create(
 mEngine.getFontManager(),

Chapter 7

249

 mEngine.getTextureManager(), 256, 256,
 Typeface.create(Typeface.DEFAULT, Typeface.BOLD),
 32f, true, Color.BLACK_ARGB_PACKED_INT);
 fontDefault32Bold.load();
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}

3.	 Next, add this overridden onPopulateScene() method to our activity class:
@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 countingText = new Text(400f, 240f,
 fontDefault32Bold, "0", 10,
 this.getVertexBufferObjectManager());
 mScene.attachChild(countingText);
 blankEntity = new Entity();
 blankEntity.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 countingInt++;
 countingText.setText(
 String.valueOf(countingInt));
 }
 @Override public void reset() {}
 });
 mScene.setOnSceneTouchListener(this);
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

4.	 Lastly, insert the following overridden method in our
AttachUpdateHandlerToEntityActivity class to complete it:
@Override
public boolean onSceneTouchEvent(Scene pScene,
 TouchEvent pSceneTouchEvent) {
 if(pSceneTouchEvent.isActionDown() &&
 !blankEntity.hasParent())
 mScene.attachChild(blankEntity);
 return true;
}

Working with Update Handlers

250

How it works...
The first and the second step cover the creation of a simple BaseGameActivity class. For
more information on creating a BaseGameActivity class, see the Know the life cycle recipe
in Chapter 1, AndEngine Game Structure. Notice, however, that we create and load a Font
object in the onCreateResources() method. For more information on fonts and the
Text entities that use them, see the Applying text to a layer recipe in Chapter 2, Working
with Entities.

Step three creates a text entity, countingText, and attaches it to the center of our scene.
Then, our blank entity, blankEntity, is created by calling the Entity() constructor and
our update handler is registered with it. Note that the blank entity is not attached to the
scene until a touch occurs within the onSceneTouchEvent() method in step four. The
onUpdate() method of the update handler simply increments the countingText entity's
text to show that the update handler it is running.

Step four creates the onSceneTouchEvent() method that gets called when the scene is
touched. We check to make sure that the touch event is a down action and that our blank
entity does not already have a parent before attaching blankEntity to the scene.

There's more...
When running this recipe, we can see that the update handler is not called until the blank
entity is attached to the scene. This effect is similar to overriding the onManagedUpdate()
method of entities. The process of registering an update handler with an entity can be useful
for creating enemies that have their own logic, or portions of the scene that should not be
animated until shown. Update handlers registered with a child Entity object of another
Entity object that is attached to the Scene object will still be active. Furthermore, the
visibility of entities does not affect whether or not their registered update handlers will run.

See also
ff Getting started with update handlers in this chapter.

ff Know the life cycle in Chapter 1, AndEngine Game Structure.

ff Understanding AndEngine entities in Chapter 2, Working with Entities.

ff Applying text to a layer in Chapter 2, Working with Entities.

ff Overriding onManagedUpdate in Chapter 2, Working with Entities.

Chapter 7

251

Using update handlers with conditionals
To reduce the performance cost of running an update handler with heavy calculations, we
can include a conditional statement that tells the update handler to run a specific set of
instructions over another. For instance, if we have enemies that check to see if the player
is within their sight, we can choose to let the vision calculations run only once every three
updates. In this recipe, we will demonstrate a simple conditional statement that switches
between a performance-intensive calculation and a very simple calculation by touching
the screen.

Getting ready...
Create a new class named UpdateHandlersAndConditionalsActivity that extends
BaseGameActivity and implements IOnSceneTouchListener. We will use this class to
demonstrate how to use conditional statements with an update handler.

How to do it...
Follow these steps to create an update handler that uses a conditional block to determine
which code to run:

1.	 Place the following definitions in the new class:
public static int cameraWidth = 800;
public static int cameraHeight = 480;
public Scene mScene;
public Font fontDefault32Bold;
public Text countingText;
public int countingInt = 0;
public boolean performanceIntensiveLoop = true;
public double performanceHeavyVariable;

2.	 Then, add the following overridden methods:
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(), new Camera(0, 0,
 cameraWidth, cameraHeight)).setWakeLockOptions(
 WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {

Working with Update Handlers

252

 fontDefault32Bold = FontFactory.create(
 mEngine.getFontManager(),
 mEngine.getTextureManager(), 256, 256,
 Typeface.create(Typeface.DEFAULT, Typeface.BOLD),
 32f, true, Color.BLACK_ARGB_PACKED_INT);
 fontDefault32Bold.load();
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}

3.	 Next, insert the following overridden onPopulateScene() method:
@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 countingText = new Text(400f, 240f,
 fontDefault32Bold, "0", 10,
 this.getVertexBufferObjectManager());
 mScene.attachChild(countingText);
 mScene.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 if(performanceIntensiveLoop) {
 countingInt++;
 for(int i = 3; i < 1000000; i++)
 performanceHeavyVariable =
 Math.sqrt(i);
 } else {
 countingInt--;
 }
 countingText.setText(
 String.valueOf(countingInt));
 }
 @Override public void reset() {}
 });
 mScene.setOnSceneTouchListener(this);
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

Chapter 7

253

4.	 Finally, create this onSceneTouchEvent() method to complete our activity:

@Override
public boolean onSceneTouchEvent(Scene pScene, TouchEvent
 pSceneTouchEvent) {
 if(pSceneTouchEvent.isActionDown())
 performanceIntensiveLoop = !performanceIntensiveLoop;
 return true;
}

How it works...
In step one, we define variables that are common to our test bed as well as a Boolean
performanceIntensiveLoop variable, that tells our update handler which action to
take and a double variable, performanceHeavyVariable, that we will use in our
performance-intensive calculation. Step two creates the standard methods for our
activity. For more information on creating BaseGameActivity classes, see the
Know the life cycle recipe in Chapter 1, AndEngine Game Structure.

In step three, we create countingText before registering our update handler with the scene.
On every update, it checks the performanceIntensiveLoop Boolean variable to determine
whether it should perform a heavy task, calling the Math class' sqrt() method almost one
million times, or a simple task, decrementing the countingInt variable's text.

Step four is the onSceneTouchEvent() method that switches the
performanceIntensiveLoop Boolean variable every time the screen is touched.

See also
ff Getting started with update handlers in this chapter.

ff Know the life cycle in Chapter 1, AndEngine Game Structure.

ff Applying text to a layer in Chapter 2, Working with Entities.

Handling the removal of an entity from the
game

Detaching entities within an update handler can occasionally throw an
IndexOutOfBoundsException exception, because the entity is removed in the middle
of an engine update. To avoid that exception, we create a Runnable parameter that
is run last on the update thread, after all other updating has occurred. In this recipe,
we will safely remove an entity from the game by using the BaseGameActivity class'
runOnUpdateThread() method.

Working with Update Handlers

254

Getting ready...
Create a new class named HandlingRemovalOfEntityActivity that extends
BaseGameActivity. We will use this class to learn how to safely remove an entity
from an update handler.

How to do it...
Follow these steps to see how we can remove an entity from its parent without throwing
an exception:

1.	 Insert the following definitions into the HandlingRemovalOfEntityActivity
class:
public static int cameraWidth = 800;
public static int cameraHeight = 480;
public Scene mScene;
public Rectangle spinningRect;
public float totalElapsedSeconds = 0f;

2.	 Next, add these overridden methods to the class:
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(), new Camera(0, 0,
 cameraWidth, cameraHeight)).setWakeLockOptions(
 WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}

Chapter 7

255

3.	 Lastly, place the following onPopulateScene() method in the activity to finish it:

@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 spinningRect = new Rectangle(400f, 240f, 100f, 20f,
 this.getVertexBufferObjectManager());
 spinningRect.setColor(Color.BLACK);
 spinningRect.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 spinningRect.setRotation(
 spinningRect.getRotation()+0.4f);
 totalElapsedSeconds += pSecondsElapsed;
 if(totalElapsedSeconds > 5f) {
 runOnUpdateThread(new Runnable() {
 @Override
 public void run() {
 spinningRect.detachSelf();
 }});
 }
 }
 @Override public void reset() {}
 });
 mScene.attachChild(spinningRect);
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

How it works...
In step one, we define the normal BaseGameActivity variables as well as a square
Rectangle object, spinningRect, that will spin in place and a float variable,
totalElapsedSeconds, to keep track of how many seconds have elapsed since the start of
our update handler. Step two creates the standard BaseGameActivity methods. For more
information on creating AndEngine activities, see the Know the life cycle recipe in Chapter 1,
AndEngine Game Structure.

In step three, we create the spinningRect rectangle defined in step one by calling the
Rectangle constructor with a location at the center of the screen. The Rectangle object
is then set to a black color via the setColor() method. Next, it has our update handler
registered with it that records the elapsed time and removes the rectangle from the screen
if more than 5 seconds have elapsed since the start of the activity. Notice that the way we
detach the rectangle from the scene is by calling runOnUpdateThread(). This method
passes the Runnable parameter to the engine to be run at the completion of the
update cycle.

Working with Update Handlers

256

See also
ff Getting started with update handlers in this chapter.

ff Know the life cycle in Chapter 1, AndEngine Game Structure.

ff Applying primitives to a layer in Chapter 2, Working with Entities.

Adding game timers
Many games count down time and challenge the player to complete a task within the given
amount of time. Such challenges are rewarding for the player, and often add replay value to
a game. In the previous recipe, we kept track of the total elapsed time. In this recipe, we will
start with a time and subtract from it the elapsed time provided by the update handler.

Getting ready...
Create a new class named GameTimerActivity that extends BaseGameActivity. We will
use this class to create a game timer from an update handler.

How to do it...
Follow these steps to create a game timer using an update handler:

1.	 Place these variable definitions in our new activity class:
public static int cameraWidth = 800;
public static int cameraHeight = 480;
public Scene mScene;
public Font fontDefault32Bold;
public Text countingText;
public float EndingTimer = 10f;

2.	 Next, insert the following standard, overridden methods:
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(), new Camera(0, 0,
 cameraWidth, cameraHeight)).setWakeLockOptions(
 WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {

Chapter 7

257

 fontDefault32Bold = FontFactory.create(
 mEngine.getFontManager(),
 mEngine.getTextureManager(), 256, 256,
 Typeface.create(Typeface.DEFAULT, Typeface.BOLD),
 32f, true, Color.BLACK_ARGB_PACKED_INT);
 fontDefault32Bold.load();
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}

3.	 Finally, add this overridden onPopulateScene() method to the
GameTimerActivity class:

@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 countingText = new Text(400f, 240f,
 fontDefault32Bold, "10", 10,
 this.getVertexBufferObjectManager());
 mScene.attachChild(countingText);
 mScene.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 EndingTimer-=pSecondsElapsed;
 if(EndingTimer<=0) {
 // The timer has ended
 countingText.setText("0");
 mScene.unregisterUpdateHandler(this);
 } else {
 countingText.setText(String.valueOf(
 Math.round(EndingTimer)));
 }
 }
 @Override public void reset() {}
 });
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

Working with Update Handlers

258

How it works...
In step one, we define common BaseGameActivity variables as well as an EndingTimer
float variable set at 10 seconds. Step two creates the common methods for our activity. For
more information on creating a BaseGameActivity class, see the Know the life cycle recipe
in Chapter 1, AndEngine Game Structure.

In step three, we create the countingText entity, and use our scene to register an update
handler, which counts down the EndingTimer variable using the pSecondsElapsed
variable until it reaches 0. When it reaches 0, we simply unregister the update handler from
the scene by calling the scene's unregisterUpdateHandler() method. In an actual game,
the timer ending could end a level or even call the next wave of enemies to attack the player.

See also
ff Getting started with update handlers in this chapter.

ff Know the life cycle in Chapter 1, AndEngine Game Structure.

ff Applying text to a layer in Chapter 2, Working with Entities.

Setting entity properties based on the time
passed

Consistency across devices is one of the more important aspects of mobile game
development. Players expect a game to scale properly for their device's screen, but another
important, and often overlooked, aspect of game development is basing movements and
animations on time instead of engine updates. In this recipe, we will set an entity's property
using an update handler.

Getting ready...
Create a new class named SettingEntityPropertiesBasedOnTimePassedActivity
that extends BaseGameActivity. We will use this class to demonstrate how to set entity
properties in time with an update handler.

Chapter 7

259

How to do it...
Follow these steps to see how we can set an entity's property based on how much time has
passed in an update:

1.	 Define the following variables in the activity:
public static int cameraWidth = 800;
public static int cameraHeight = 480;
public Scene mScene;
public Rectangle spinningRect;

2.	 Then, place these overridden methods in the class:
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(), new Camera(0, 0,
 cameraWidth, cameraHeight)).setWakeLockOptions(
 WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}

3.	 Lastly, insert this onPopulateScene() method at the end of the activity to
complete it:

@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 spinningRect = new Rectangle(400f, 240f, 100f, 20f,
 this.getVertexBufferObjectManager());
 spinningRect.setColor(Color.BLACK);
 spinningRect.registerUpdateHandler(new IUpdateHandler() {
 @Override

Working with Update Handlers

260

 public void onUpdate(float pSecondsElapsed) {
 spinningRect.setRotation(
 spinningRect.getRotation() +
 ((pSecondsElapsed*360f)/2f));
 }
 @Override public void reset() {}
 });
 mScene.attachChild(spinningRect);
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

How it works...
As with the other recipes in this chapter, we first create common BaseGameActivity
variables. For this recipe, we also define a Rectangle object, spinningRect, that will spin
at specific revolutions per second. For more information on creating AndEngine activities, see
the Know the life cycle recipe in Chapter 1, AndEngine Game Structure.

In step three, we fill the onPopulateScene() method by first creating our spinningRect
rectangle, which we then use to register our update handler. Inside the update handler's
onUpdate() method, we set the rotation of the rectangle to equal its current rotation, via the
getRotation() method, plus a calculation that adjusts the pSecondsElapsed variable to
a set number of rotations per second. The following diagram shows how the updates in our
games do not have equal durations and thus must take advantage of the pSecondsElapsed
parameter instead of a constant value:

Chapter 7

261

There's more...
The calculation that we use in the onUpdate() method of our update handler sets the
Rectangle object to rotate at half of a rotation per second. If we were to multiply the
(pSecondsElapsed*360f) portion of the calculation by 4, the rectangle would spin at
4 revolutions per second. For linear movements based on time, simply multiply the desired
pixels per second with the pSecondsElapsed variable.

See also
ff Getting started with update handlers in this chapter.

ff Know the life cycle in Chapter 1, AndEngine Game Structure.

8
Maximizing

Performance

In this chapter, we're going to cover some of the best practices to improve the performance of
our AndEngine applications. The topics included are as follows:

ff Ignoring entity updates

ff Disabling background window rendering

ff Limiting simultaneous sound streams

ff Creating sprite pools

ff Cutting down render time with sprite groups

ff Disabling rendering with entity culling

Introduction
Game optimization plays a critical role in the success of a game on Google Play. It is likely
that a user will rate a game negatively if it doesn't run well on their device. Unfortunately, with
there being so many different devices out there and no way to effectively mass-restrict low-
end devices on Google Play, it's best to optimize Android games as much as possible. Ignoring
ratings, it's fair to assume that a game with poor performance across the mid-level devices
will not reach its full potential as far as downloads and active users go. This chapter is going
to cover some of the most helpful solutions for performance issues related to AndEngine.
This will help us to improve performance for mid- to low-end devices, eliminating the need
to sacrifice quality.

Maximizing Performance

264

While the recipes in this chapter can greatly improve the performance
of our games, it is important to keep in mind that clean and efficient
code goes equally as far. Game development is a very performance-
critical task and, as with all languages, there are plenty of little
things to do or avoid. There are many resources online that cover the
majority of the good versus bad topics related to both Java general
practices as well as Android-specific tips and tricks.

Ignoring entity updates
One of the most important rules for game development when it comes to optimizing a game
is, don't do work that does not need to be done!. In this recipe, we're going to talk about how
we can use the setIgnoreUpdate() method on our entities in order to restrict the update
thread to only update what should be updated, rather than constantly updating all of our
entities whether we're using them or not.

How to do it…
The following setIgnoreUpdate(boolean) methods allow us to control which entities will
be updated via the engine's update thread:

Entity entity = new Entity();

// Ignore updates for this entity
entity.setIgnoreUpdate(true);

// Allow this entity to continue updating
entity.setIgnoreUpdate(false);

How it works…
As we've discussed in the previous chapters, each child's onUpdate() method is called via
its parent. The engine first updates, calling the update method for the main Scene object. The
scene then proceeds to call all of the update methods of its children. Next, the children of the
scene will call the update method to their children respectively and so on in that fashion. With
this in mind, by calling setIgnoreUpdate() on our main Scene object, we can effectively
ignore updates to all entities on the scene as well.

Chapter 8

265

Ignoring updates to entities which are not in use, or even entities which should not react
unless a certain event occurs, can save quite a bit of CPU time. This is especially true on a
scene with a large number of entities. It may not seem like much work, but keep in mind that
for each entity with an entity modifier or update handler, those objects must be updated as
well. On top of that, each of the entities' children then proceed to update due to the parent/
child hierarchy.

It is best practice to set setIgnoreUpdate(true) to all entities which are offscreen or
do not require constant updates. For sprites which may not require any updates at all, such
as the background sprite of a scene, we can ignore updates indefinitely and not cause any
problems. In situations where the entity needs to be updated, but not very frequently, such as
a bullet being fired from a turret, we can enable the updates to that bullet while it is traveling
from the turret to the destination, disabling it when it's no longer needed.

See also
ff The Understanding AndEngine entities section in Chapter 2, Working with Entities

Disabling background window rendering
In most games, developers generally lean toward full-screen modes. This may not seem
obvious since we see no real difference visually, but the Android OS doesn't realize which
applications are running in full-screen. What this means is that the background window
will continue to be drawn underneath our application unless otherwise specified in the
AndroidManifest.xml. In this topic, we're going to cover how to disable background
rendering to improve application FPS, mainly benefiting lower-end devices.

Getting ready...
The first thing we must do in order to stop the background windows from rendering is
create a theme for our application. We will do this by adding a new xml file to our project's
res/values/ folder, called theme.xml.

Overwrite all code in the default xml file with the following code and save the file:

<?xml version="1.0" encoding="UTF-8"?>
<resources>
 <style name="Theme.NoBackground" parent="android:Theme">
 <item name="android:windowBackground">@null</item>
 </style>
</resources>

Maximizing Performance

266

How to do it...
Once we've created and filled out the theme.xml file, we can disable background window
rendering by applying the theme to our application tag in the AndroidManifest.xml file
of our project. The application tag's attributes might look similar to this:

<application
 android:theme="@style/Theme.NoBackground"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 >

Note that we can also apply the theme to specific activities, rather than on an application-wide
basis by adding the android:theme="@style/Theme.NoBackground" code to individual
activity tags. This would be most relevant for hybrid games which require both the AndEngine
view as well as native Android views across multiple activities.

How it works...
Disabling the background window rendering is a simple task and can offer a few
percentages of performance gain, mostly in older devices. The main line of code which
takes care of the background window is found in the theme.xml file. By nullifying the
android:windowBackground item, we're notifying the device that, rather than drawing
the background window, we want to completely remove it from being rendered.

Limiting simultaneous sound streams
Sound playback is generally not a problem when it comes to game performance with
AndEngine. However, there are situations where a large number of sounds may play in a
very short time-span which can cause a noticeable amount of lag on older and sometimes
newer devices depending on how many sounds are playing. AndEngine allows up to five
simultaneous sound streams, of the same Sound object, to play at any given time by default.
In this topic, we're going to work with EngineOptions in order to change the number of
simultaneous sound streams in order to better accommodate our application's needs.

How to do it...
In order to increase or decrease the number of simultaneous streams per Sound object, we
must make a simple adjustment to EngineOptions in the onCreateEngineOptions()
method of our activity:

@Override
public EngineOptions onCreateEngineOptions() {

Chapter 8

267

 mCamera = new Camera(0, 0, 800, 480);

 EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_FIXED, new
 FillResolutionPolicy(),mCamera);

 engineOptions.getAudioOptions().setNeedsSound(true);
 engineOptions.getAudioOptions().getSoundOptions().
setMaxSimultaneousStreams(2);

 return engineOptions;
}

How it works…
The Engine object's AudioOptions is set to allow five simultaneous sound streams for
each Sound object created within our applications by default. In most cases, this will not
cause any noticeable performance loss for applications which do not rely heavily on sound
playback. On the other hand, games which tend to produce sounds on collision or forces
applied to bodies may be susceptible to large numbers of sound streams being played at the
same time, especially in games with more than 100 sprites on the scene at any given time.

Limiting the number of simultaneous sound streams is an easy task to accomplish. By simply
calling getAudioOptions().getSoundOptions().setMaxSimultaneousStreams(n)
on our EngineOptions, where n is the number of maximum streams per Sound object,
we can reduce the number of unnecessary sounds to be played during gameplay at
inconvenient times.

See also
ff The Introducing sounds and music section in Chapter 1, AndEngine Game Structure

Creating sprite pools
The GenericPool classes are an incredibly important part of AndEngine game design
considering mobile platforms are relatively limited when it comes to hardware resources. In
Android game development, the key to a smooth gameplay experience throughout a lengthy
session is to create the least amount of objects as possible. This does not necessarily mean
we should limit ourselves to four or five objects on the screen, it means we should consider
the option of recycling objects which have already been created. This is where object pools
come into play.

Maximizing Performance

268

Getting started…
Refer to the class named SpritePool in the code bundle.

How to do it…
The GenericPool classes make use of a few useful methods, which make recycling objects
for later use very easy. We will cover the main methods to be used here.

Constructing the SpritePool class:

public SpritePool(ITextureRegion pTextureRegion,
VertexBufferObjectManager pVertexBufferObjectManager){
 this.mTextureRegion = pTextureRegion;
 this.mVertexBufferObjectManager = pVertexBufferObjectManager;
}

1.	 Allocating pool items:
@Override
protected Sprite onAllocatePoolItem() {
 return new Sprite(0, 0, this.mTextureRegion, this.
mVertexBufferObjectManager);
}

2.	 Obtaining pool items:
public synchronized Sprite obtainPoolItem(final float pX, final
float pY) {
 Sprite sprite = super.obtainPoolItem();

 sprite.setPosition(pX, pY);
 sprite.setVisible(true);
 sprite.setIgnoreUpdate(false);
 sprite.setColor(1,1,1);

 return sprite;
}

3.	 Recycling pool items:

@Override
protected void onHandleRecycleItem(Sprite pItem) {
 super.onHandleRecycleItem(pItem);

 pItem.setVisible(false);
 pItem.setIgnoreUpdate(true);
 pItem.clearEntityModifiers();
 pItem.clearUpdateHandlers();
}

Chapter 8

269

How it works…
The idea of the GenericPool class is very simple. Rather than creating new objects when
we need them and discarding them when we're finished with them, we can tell the pool
to allocate a limited number of objects and store them for later use. We can now call the
obtainPoolItem() method from the pool to obtain one of the stored allocated objects
for use in our levels, possibly as an enemy. Once that enemy is destroyed by the player, for
example, we can now call recyclePoolItem(pItem) to send that enemy object back into
the pool. This allows us to avoid garbage collection invocations and gives us the potential to
greatly reduce the memory needed for new objects.

The four methods in the How to do it... section are all that is needed when working with your
average pool. We must obviously create the pool before we can use it. Then the following
three methods define what happens in the event of object allocation, obtaining an object for
use, and what happens once an object is recycled, or sent back to be stored in the pool when
we are finished with it until we need a new object. Object pools can be used for more than
just sprite recycling, though, so we're going to go a little bit more in-depth about what each
of these methods does, how they do it, and why they do it, starting with the constructor.

In step one, we must pass any objects needed for the pool object's constructor. In this case,
we need to obtain a TextureRegion and VertexBufferObjectManager in order to
create the Sprite objects. This is nothing new, but keep in mind that the GenericPool
class is not limited to creating pools for sprites. We can create pools for any type of object or
datatype. The key note is to use the pool's constructor as a method to obtain the necessary
parameters to be passed to the pool's object allocations.

In step two, we're overriding the onAllocatePoolItem() method. The pool will call this
method any time it needs to allocate a new object. Two instances are if there are initially no
objects in the pool or if all of the recycled objects have been obtained and are in use. All we
need to take care of in this method is that we return a new instance of the object.

Step three involves the obtain method used in order to retrieve an object from the pool to
be used in our game. We can see that the obtainPoolItem() method in this case requires
us to pass in pX and pY parameters to be used by the sprite's setPosition(pX, pY)
method in order to reposition the sprite. We proceed to set the sprite's visibility to true,
allow updates to the sprite, as well as setting the color back to its initial value, white. In any
case, this method should be used to reset the values of the object back to a default state or
otherwise define the necessary new properties of the object. In the code, we might obtain a
new sprite from the pool as shown in the following code snippet:

// obtain a sprite and attach it to the scene at position (10, 10)
Sprite sprite = pool.obtainPoolItem(10, 10);
mScene.attachChild(sprite);

Maximizing Performance

270

In the final method, we will use from the GenericPool class the recyclePoolItem(pItem)
method, where pItem is the object to recycle back into the pool. This method should take care
of all aspects related to disabling the object from use within our game. In terms of sprites, in
order to increase performance while sprites are stored in the pool, we set the visibility to false,
ignore updates to the sprite, clear any entity modifiers and update handlers so that they are not
still running once we obtain a new sprite.

Even if not using pools, an option to consider is to use
setVisible(false) alongside setIgnoreUpdate(true) on an
Entity, which is no longer needed. Constantly attaching and detaching
Entity objects may provide opportunities for the garbage collector to run
and potentially cause noticeable hiccups in frame rate during gameplay.

There's more…
Creating pools to handle object recycling is very important to aid in the reduction of
performance hiccups, but when a game is first initialized the pool will not have any objects
ready for use. This means that, depending on how many objects the pool will need to allocate
in order to satisfy the maximum number of objects throughout a full level, a player may notice
sudden bursts of frame rate interruption during the first few minutes of gameplay. In order to
avoid an issue such as this, it is a good idea to preallocate pool objects during level loading to
avoid any object creation during gameplay.

In order to allocate a large number of pool items during loading, we can call
batchAllocatePoolItems(pCount) on any class extending GenericPool, where
pCount is the number of items we wish to allocate. Keep in mind it is a waste of resources
to load any more items than we need, but it can also cause hiccups in frame rate if we don't
allocate enough items. For example, in order to determine how many enemy objects should
be allocated within our game, we can come up with a formula such as default enemy count
multiplied by level difficulty. However, all games are different and so too will be the formula
needed for object creation.

See also
ff The Bringing a scene to life with sprites section in Chapter 2, Working with Entities

Chapter 8

271

Cutting down render time with sprite groups
Sprite groups are a great addition to any AndEngine game which deals with hundreds of
visible sprites on the scene at any given time. The SpriteGroup class allows us to eliminate
a large amount of overhead by grouping many sprite rendering calls into a limited number
of OpenGL calls. If a school bus were to pick up a single child, drop them off at school, then
pick up the next child, repeating until all children were at school, the process would take a far
greater time to complete. The same goes for drawing sprites with OpenGL.

Getting started…
Refer to the class named ApplyingSpriteGroups in the code bundle. This recipe requires
an image named marble.png, which is 32 pixels in width by 32 pixels in height.

How to do it…
When creating a SpriteGroup for use in our games, we can treat them as an Entity layer
which is specifically meant for Sprite objects only. The following steps explain how to create
and attach Sprite objects to a SpriteGroup.

1.	 Creating a sprite group can be achieved with the following code:
 // Create a new sprite group with a maximum sprite capacity of
500
 mSpriteGroup = new SpriteGroup(0, 0, mBitmapTextureAtlas, 500,
mEngine.getVertexBufferObjectManager());

 // Attach the sprite group to the scene
 mScene.attachChild(mSpriteGroup);

2.	 Attaching sprites to the sprite group is an equally simple task:

 // Create new sprite
 Sprite sprite = new Sprite(tempX, tempY,
spriteWidth, spriteHeight, mTextureRegion, mEngine.
getVertexBufferObjectManager());

 // Attach our sprite to the sprite group
 mSpriteGroup.attachChild(sprite);

Maximizing Performance

272

How it works…
In this recipe, we're setting up a scene which applies roughly 375 sprites to our scene, all
drawn through the use of the mSpriteGroup object. Once the sprite group is created,
we can basically treat it as an ordinary entity layer, attaching sprites as needed.

ff Create a BuildableBitmapTextureAtlas for our sprite in the
onCreateResources() method of our activity:
// Create texture atlas
mBitmapTextureAtlas = new BuildableBitmapTextureAtlas(mEngine.
getTextureManager(), 32, 32, TextureOptions.BILINEAR);

// Create texture region
mTextureRegion = BitmapTextureAtlasTextureRegionFactory.createFrom
Asset(mBitmapTextureAtlas, getAssets(), "marble.png");

// Build/load texture atlas
mBitmapTextureAtlas.build(new BlackPawnTextureAtlasBuilder<IBitmap
TextureAtlasSource, BitmapTextureAtlas>(0, 0, 0));
mBitmapTextureAtlas.load();

Creating the textures for use in a SpriteGroup can be handled as we would an
ordinary Sprite.

ff Construct our mSpriteGroup object and apply it to the scene:

// Create a new sprite group with a maximum sprite capacity of 500
mSpriteGroup = new SpriteGroup(0, 0, mBitmapTextureAtlas, 500,
mEngine.getVertexBufferObjectManager());

// Attach the sprite group to the scene
mScene.attachChild(mSpriteGroup);

SpriteGroup requires two new parameters that we've not dealt with yet.
SpriteGroup is an Entity subtype, so we already know that the first two
parameters are the x and y coordinates to position SpriteGroup. For the third
parameter, we're passing a BitmapTextureAtlas. The sprite group can only
contain sprites which share the same texture atlas as the sprite group! The fourth
parameter is the maximum capacity that SpriteGroup is able to draw. If the
capacity is 400, then we can apply up to 400 sprites to SpriteGroup. It is important
to limit the capacity to the maximum number of sprites we wish to draw. Exceeding
the limit will cause a force-closure of the application.

ff The final step is to apply the sprites to the sprite group.

Chapter 8

273

In this recipe, we have set a loop up in order to apply the sprites to various positions on the
screen. However, what we're really interested in here is the following code used to create a
Sprite and attach it to the SpriteGroup:

Sprite sprite = new Sprite(tempX, tempY, spriteWidth, spriteHeight,
mTextureRegion, mEngine.getVertexBufferObjectManager());

// Attach our sprite to the sprite group
mSpriteGroup.attachChild(sprite);

We can create our sprite as we would create any other sprite. We can set the position, scale,
and texture region as usual. Brace for the tricky part now! We must call mSpriteGroup.
attachChild(sprite) in order to allow the mSpriteGroup object to handle drawing
of the sprite object. That's all it takes!

Following these steps, we can successfully allow our sprite groups to draw many, many
sprites onto the screen before even noticing a drop in performance within our application.
The difference is huge compared to individually drawing sprites with separate buffers.
In many cases, users have claimed to achieve an improvement of up to 50 percent when
working with games which include large amounts of entities on the scene at one time.

There's more…
It's not time to run off and convert all of your projects to use sprite groups just yet! The
benefits to using sprite groups speak for themselves, but that's not to say there are no
negative side effects either. The SpriteGroup class is not supported directly by OpenGL.
The class is more or less a 'hack', which allows us to save some time with additional
rendering calls. Setting up sprite groups in more complex projects can be a hassle due
to the 'side effects'.

There are some situations after attaching and detaching many sprites which take advantage
of alpha modifiers and modified visibility, causing some of the sprites on the sprite group to
'flicker'. This outcome is most noticeable after more and more sprites have been attached and
detached or set to invisible/visible multiple times. There is a way around this that will not hurt
performance too much, which involves moving sprites off the screen rather than detaching
them from the layer or setting them to invisible. However, for larger games that only take
advantage of one activity and swap scenes based on the current level, moving the sprites off
the screen might only lead to future problems.

Take this into account and plan wisely before deciding to use a sprite group. It might also help
to test the sprite group in terms of how you plan to use your sprites before incorporating it
into your game. The sprite group will not always cause problems, but it's something to keep in
mind. Additionally, AndEngine is an open source project which is continuously being updated
and enhanced. Keep up to date with the latest revisions for fixes or improvements.

Maximizing Performance

274

See also
ff The Understanding AndEngine entities section in Chapter 2, Working with Entities

ff The Bringing a scene to life with sprites section in Chapter 2, Working with Entities

Disabling rendering with entity culling
Culling entities is a method used to prevent unnecessary entities from being rendered. This
can result in improved performance in cases where a sprite is not visible within the viewing
area of an AndEngine Camera.

How to do it…
Make the following method call to any preexisting Entity or Entity subtype:

entity.setCullingEnabled(true);

How it works…
Culling entities disallows certain entities from being rendered depending on their position on
the scene relative to the portion of the scene visible by the camera. This is useful when we
have many sprites on a scene that might occasionally move out of view of the camera. With
culling enabled, those entities which are outside of the camera view will not be rendered in
order to save us from unnecessary calls to OpenGL.

Note that culling only takes place on those entities which are entirely out of view of the
camera. This takes into account the full area of the entity, from the bottom left corner to the
top right corner. Culling is not applied to portions of an entity, which may be outside of the
camera's view.

Chapter 8

275

There's more…
Culling will only stop rendering those entities which move out of visibility of the Camera.
Because of this, it is not a bad idea to enable culling on all game objects (items, enemies,
and so on.) that are constantly moving out of the Camera area. For instances with large
backgrounds made up of smaller textures, culling can also greatly improve performance,
especially considering the size of background images.

Culling can really help us save some rendering time, but that doesn't necessarily mean that
we should enable it on all entities. After all, there's a reason why it's not enabled by default. It
is a bad idea to enable culling on HUD entities. It might seem like a viable option to include it
for pause menus or other large entities which might transition in and out of the camera view,
but this can lead to problems when moving the camera. AndEngine works in such a way that
the HUD never really moves with the camera, so if we enable culling on HUD entities, then
move our camera 800 pixels to the right (assuming our camera width is 800 pixels) our HUD
entities would still physically respond as if they were in the proper position on our screen but
they will not render. They would still react with touch events and other various scenarios, but
we simply won't see them on the screen.

Additionally, culling requires an added layer of visibility-checking before an Entity is drawn on
the Scene. Because of this, older devices have the potential to actually notice a performance
loss while Entity culling is enabled while those entities are not being culled. It may not sound
like much, but when we've got players running on devices that are just barely capable of running
at 30 frames per second, there's a good chance that those additional visibility checks on, for
example, 200 sprites may be just enough to tilt the scale toward 'inconvenient gameplay'.

See also
ff The Understanding AndEngine entities section in Chapter 2, Working with Entities.

9
AndEngine Extensions

Overview

In this chapter, we're going to cover the purpose and usage of some of AndEngine's most
popular extensions. The following topics are included in this chapter:

ff Creating live wallpapers

ff Networking with the multiplayer extension

ff Creating high-resolution graphics with scalable vector graphics (SVG)

ff Color mapping with SVG texture regions

Introduction
In the extensions overview chapter, we're going to begin to work with a number of classes that
don't come packaged with AndEngine. There are many extensions that can be written to add
various improvements or extra features to any default AndEngine game. In this chapter, we're
going to be working with three main extensions that will allow us to create live wallpapers with
AndEngine, create online games that allow multiple devices to connect directly to each other
or a dedicated server, and finally, incorporate SVG files into our games as texture regions,
allowing for high resolution and scalable graphics within our games.

AndEngine Extensions Overview

278

AndEngine includes a relatively long list of extensions which can be included in our projects
in order to make certain tasks easier to complete. Unfortunately, due to the number of
extensions and the current state of some of them, we are limited in the number of extensions,
which can be included within this chapter. However, most AndEngine extensions are relatively
easy to use and include example projects which can be acquired from Nicolas Gramlich's
public GitHub repository – https://github.com/nicolasgramlich. The following is a
list of additional AndEngine extensions, as well as a brief description describing its purpose:

ff AndEngineCocosBuilderExtension: This extension allows developers to
create games through the use of the WYSIWYG or what you see is what you get
concept. This approach allows developers to build applications in a GUI based
drag-and-drop environment using the CocosBuilder software for desktop computers.
This extension can help make menu and level design as simple as placing objects
on a screen and exporting the setup to a file which can be read in via the
AndEngineCocosBuilderExtension extension.

ff AndEngineAugmentedRealityExtension: The augmented reality extension
allows developers to easily convert an otherwise ordinary AndEngine activity into
an augmented reality activity, which will display the device's physical camera view
on the screen. We are then able to attach entities over the top of the camera's view
displayed on the screen.

ff AndEngineTexturePackerExtension: This extension allows developers to
import sprite sheets created through the use of the TexturePacker program for
desktop computers. This program makes creating sprite sheets remarkably easy by
allowing us to drag-and-drop our images into the program, export the finished sprite
sheet into an AndEngine-readable format, and simply load it into our project with the
AndEngineTexturePackerExtension extension.

ff AndEngineTMXTiledMapExtensions: This extension can greatly increase
productivity in games based on the tiled map style of gameplay. With the use
of a TMX tiled map editor, developers can simply drag-and-drop sprites/tiles
onto a grid-based level editor in order to create levels. Once a level is created
in the editor, simply export it to the .tmx file format and from there use the
AndEngineTMXTiledMapExtension to load the level into our project.

Creating live wallpaper
The live wallpaper extension is a great addition to the AndEngine lineup of available Android
development resources. With this extension, we can easily create wallpapers through the use
of all the normal AndEngine classes we're used to using for our game development. In this
topic, we're going to create a live wallpaper containing a simple particle system that spawns
particles at the top of the screen. The wallpaper settings will include a value that allows a user
to increase the speed of particle movement.

https://github.com/nicolasgramlich

Chapter 9

279

This recipe assumes that you have at least a basic knowledge of the Android
SDK's Activity class as well as a general understanding of Android view
objects, such as SeekBars and TextViews.

Getting ready
Live wallpapers are not your typical Android activity. Instead, they are a service, which requires
a slightly different approach in terms of setting a project up. Before visiting the code, let's go
ahead and create the necessary folders and files for the live wallpaper.

Refer to the project named LiveWallpaperExtensionExample in
the code bundle.

We will cover the code to reside in each file in the following section:

1.	 Create or overwrite the current main.xml file in the res/layout folder, naming
it settings_main.xml. This layout file will be used to create the settings activity
layout where the wallpaper's properties are adjusted by the user.

2.	 Create a new folder named xml in the res folder. Within this folder, create a new
xml file and name it wallpaper.xml. This file will be used as a reference to the
wallpaper's icon, description, as well as a reference to the setting's activity which
will be used to modify the wallpaper properties.

How to do it…
We will start off by populating all of the XML files in order to accommodate a live wallpaper
service. These files include settings_main.xml, wallpaper.xml, and finally
AndroidManifest.xml.

1.	 Create the settings_main.xml layout file:

The first step involves defining the settings_main.xml file as a layout for the
settings activity of the wallpaper. There are no rules limiting a developer to a
specific layout style, but the most common approach for a live wallpaper is a simple
TextView with a corresponding Spinner used to provide a means of modification
to the live wallpaper's adjustable values.

AndEngine Extensions Overview

280

2.	 Open the wallpaper.xml file in the res/xml/ folder. Import the following code to
wallpaper.xml:
<?xml version="1.0" encoding="utf-8"?>
<wallpaper xmlns:android="http://schemas.android.com/apk/res/
android"
 android:settingsActivity="com.Live.Wallpaper.Extension.
Example.LiveWallpaperSettings"
 android:thumbnail="@drawable/ic_launcher"/>

3.	 Modify AndroidManifest.xml to suit the wallpaper service needs:

In the third step, we must modify AndroidManifest.xml in order to allow our
project to run as a wallpaper service. In the project's AndroidManifest.xml file,
replace all code inside of the <manifest> tags with the following:

<uses-feature android:name="android.software.live_wallpaper" />

<application android:icon="@drawable/ic_launcher" >
 <service
 android:name=".LiveWallpaperExtensionService"
 android:enabled="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/service_name"
 android:permission="android.permission.BIND_WALLPAPER" >
 <intent-filter android:priority="1" >
 <action android:name="android.service.wallpaper.
WallpaperService" />
 </intent-filter>

 <meta-data
 android:name="android.service.wallpaper"
 android:resource="@xml/wallpaper" />
 </service>

 <activity
 android:name=".LiveWallpaperSettings"
 android:exported="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/live_wallpaper_settings"
 android:theme="@android:style/Theme.Black" >
 </activity>

Chapter 9

281

Once the three xml files have been taken care of, we can create the classes needed for the live
wallpaper. We will be using three classes to handle the live wallpaper's execution. These classes
are LiveWallpaperExtensionService.java, LiveWallpaperSettings.java, and
LiveWallpaperPreferences.java, which will be covered in the following steps:

1.	 Create the live wallpaper preferences class:

The LiveWallpaperPreferences.java class is similar to that of the preferences
class we covered in the Saving and loading game data section in Chapter 1,
AndEngine Game Structure. The main purpose of the preference class in this case
is to handle the speed value of the spawned particles. The following methods are
used for saving and loading the particle's speed value. Note that we negate the
mParticleSpeed value as we want the particles to travel toward the bottom
of the screen:

// Return the saved value for the mParticleSpeed variable
public int getParticleSpeed(){
 return -mParticleSpeed;
}

// Save the mParticleSpeed value to the wallpaper's preference
file
public void setParticleSpeed(int pParticleSpeed){
 this.mParticleSpeed = pParticleSpeed;
 this.mSharedPreferencesEditor.putInt(PARTICLE_SPEED_KEY,
mParticleSpeed);
 this.mSharedPreferencesEditor.commit();
}

2.	 Create the live wallpaper settings activity:

The live wallpaper's settings activity extends Android SDK's Activity class, using
the settings_main.xml file as the activity's layout. This activity's purpose is to
obtain a value for the mParticleSpeed variable depending on the progress of the
SeekBar object. Once the settings activity is exited, the mParticleSpeed value is
saved to our preferences.

AndEngine Extensions Overview

282

3.	 Create the live wallpaper service:

The final step involved for setting up our live wallpaper is to create the
LiveWallpaperExtensionService.java class, containing the code for the
live wallpaper service. In order to specify that we would like the class to use the live
wallpaper extension class, we simply add extends BaseLiveWallpaperService
to the LiveWallpaperExtensionService.java declaration. Once this is done
we can see that setting up a BaseLiveWallpaperService class is very much the
same as setting up a BaseGameActivity class from this point on, allowing us to
load resources, apply sprites, or any other common AndEngine task we're already
used to.

How it works…
This recipe is a rather big one if we look at the whole project, but fortunately most of the code
related to the class files has already been discussed in previous sections, so don't be worried!
For the sake of brevity we are going to omit the classes which have already been discussed
in previous chapters. Take a look at the topics mentioned in the See more... subsection for a
refresher if needed.

In the first step, all we're doing is creating a minimal Android xml layout to be used
for the settings activity. It is quite possible to skip this step and use AndEngine's
BaseGameActivity for the settings activity, but to keep things simple we are using a very
basic TextView/SeekBar approach. This makes things convenient for both the developer,
time-wise, as well as the user, for convenience. Try to keep this screen as clutter free as
possible as it is meant to be a simple screen, with a simple purpose.

In step two, we are creating the wallpaper.xml file to be used as a reference to a few
specifications needed for the live wallpaper service in the AndroidManifest.xml file. This
file is simply in place to store the service's properties, which include the package and class
name or "link" to the settings activity to be launched by pressing the Settings... button during
the wallpaper preview. wallpaper.xml also includes a reference to the icon to be used in
the wallpaper selection window.

In step three, we are modifying the AndroidManifest.xml file to allow us to run the live
wallpaper service as the main component for this project, rather than launching an activity.
Within the <service> tags, we are including the name, icon, and label attributes for the
wallpaper service. These attributes have the same purpose as they would for an activity. The
other two attributes are android:enabled="true", meaning that we'd like the wallpaper
service to be enabled by default, as well as the android:permission="android.
permission.BIND_WALLPAPER" attribute, meaning only the Android OS can bind to
the service. The activity's attributes are similar, except we're including the exported
and theme attributes and excluding the enabled and permission attributes. The
android:exported="true" attribute states that the activity can be launched through
outside processes while the theme attribute will alter the appearance of the settings
activity UI.

Chapter 9

283

Step four involves creating the preferences class that we will be using to store the values
available for adjustment by the user. In this recipe, we're including a single value called
mParticleSpeed within the preferences class with corresponding getter and setter
methods. In a more complex live wallpaper we can build on this class, allowing us to easily
add or remove variables for as many customizable properties to our wallpaper as we'd like.

In step five, we are creating the Activity class shown when a user presses the Settings...
button on the live wallpaper preview screen. In this particular Activity, we're obtaining the
settings_main.xml file to be used as our layout, containing two TextView view types
used to display labels and corresponding values, and one SeekBar to allow manipulation
of the wallpaper's adjustable values. The most important task for this Activity is to be
able to save to the preference file once a user has selected their ideal speed. This is done
by adjusting the mParticleSpeed variable when SeekBar realizes a user has moved the
SeekBar slider:

// OnProgressChanged represents a movement on the slider
 @Override
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 // Set the mParticleSpeed depending on the SeekBar's
position(progress)
 mParticleSpeed = progress;

As well as updating the mParticleSpeed value, the associating TextView is updated within
this event. This value, however, is not actually saved to the preference file until the user leaves
the settings activity, to avoid unnecessary overwriting to the preference file. In order to save the
new value to the preference file, we can call setParticleSpeed(mParticleSpeed) from
the LiveWallpaperPreferences singleton during minimization of the Activity class:

@Override
protected void onPause() {
 // onPause(), we save the current value of mParticleSpeed to the
preference file.
 // Anytime the wallpaper's lifecycle is executed, the mParticleSpeed
value is loaded
 LiveWallpaperPreferences.getInstance().setParticleSpeed(mParticleSp
eed);
 super.onPause();
}

AndEngine Extensions Overview

284

In the sixth and final step, we can finally start to code the visual aspects of our live wallpaper.
In this particular wallpaper, we're keeping it simple in terms of visual appeal, but we do
cover what all necessary information for developing a wallpaper. If we take a look at the
LiveWallpaperExtensionService class, a few of the key variables to pay attention to,
include the following:

 private int mParticleSpeed;

 // These ratio variables will be used to keep proper scaling of
entities
 // regardless of the screen orientation
 private float mRatioX;
 private float mRatioY;

While we've already discussed the mParticleSpeed variable throughout the other
class explanations, it should be obvious at this point that we'll be using this variable
to finally determine the speed of the particles, as this is the class that will handle the
ParticleSystem object. The other two 'ratio' variables declared above are to help us keep
a proper scaling ratio for our entities. These variables are needed in the event that a user
tilts their device from landscape to portrait or vice versa, so that we can calculate the scale
of the particles depending on the width and height of the surface view. This is to prevent our
entities from being stretched or distorted upon orientation changes. Skipping to the bottom
overridden method of this class, the following code determines the values for mRatioX
and mRatioY:

@Override
public void onSurfaceChanged(GLState pGLState, int pWidth, int
pHeight) {

 if(pWidth > pHeight){
 mRatioX = 1;
 mRatioY = 1;
 } else {
 mRatioX = ((float)pHeight) / pWidth;
 mRatioY = ((float)pWidth) / pHeight;
 }

 super.onSurfaceChanged(pGLState, pWidth, pHeight);
 }

We can see here that the if statement is checking whether or not the device is in landscape
or portrait mode. If pWidth is greater than pHeight, it means the orientation is currently in
landscape mode, setting the x and y scale ratios to the default 1 value. On the other hand,
if the device is set to portrait mode, then we must recalculate the scale ratio for our
particle entities.

Chapter 9

285

Once the onSurfaceChanged() method is taken care of, let's continue on to the remaining
key points with the next up being preference management. Taking care of preferences is a
fairly trivial task. First and foremost, we should initialize the preference file, in case it is the first
time the wallpaper is launched. We do this by calling the initPreferences(this) method
from the LiveWallpaperPreferences instance in onCreateEngineOptions(). We also
need to override the onResume() method in order to load the mParticleSpeed variable with
the value stored in the preference file by calling the getParticleSpeed() method from the
LiveWallpaperPreferences instance.

Finally, we come to the remaining setup step for the live wallpaper, which is setting
up the particle system. This particular particle system is none too fancy, but it does
include a ParticleModifier object, which includes some points to note. Since we're
adding an IParticleModifier interface to the particle system, we are given access
to individual particles spawned by the system on every update to each particle. In the
onUpdateParticle() method, we'll be setting the particle's speed based on the
mParticleSpeed variable loaded in from the preference file:

 // speed set by the preferences...
 if(currentVelocityY != mParticleSpeed){
 // Adjust the particle's velocity to the proper value
 particlePhysicsHandler.setVelocityY(mParticleSpeed);
 }

We must also adjust the scale of the particle if its scale is not equal to the mRatioX/
mRatioY values to compensate for device orientation:

 // If the particle's scale is not equal to the current ratio
 if(entity.getScaleX() != mRatioX){
 // Re-scale the particle to better suit the current screen ratio
 entity.setScale(mRatioX, mRatioY);
 }

That's all it takes to set up a live wallpaper with AndEngine! Try playing around with the
particle system, adding new customizable values to the settings, and see what you can come
up with. With this extension, you'll be up and running, creating new live wallpapers in no time
at all!

See also…
ff The Saving and loading game data section in Chapter 1, AndEngine Game Structure.

ff The Working with particle systems section in Chapter 2, Working with Entities.

AndEngine Extensions Overview

286

Networking with the multiplayer extension
Here we come to the undoubtedly most popular aspect of game design. This is of course
multiplayer gaming. In this project recipe, we're going to work with AndEngine's multiplayer
extension in order to create a fully functional client and server directly onto the mobile device.
Once we cover the range of classes and features that this extension includes to make
network programming easier, you will be able to take your online gaming ideas and
turn them into reality!

Getting ready
Creating a multiplayer game can require quite a few components in order to satisfy the
readability of the project.

Refer to the project named MultiplayerExtensionExample in the
code bundle.

For this reason, we're going to separate these different components into five classes.

Create a new Android project, naming it MultiplayerExtensionExample. Once the project
is ready to go, create four new class files with the following names:

ff MultiplayerExtensionExample.java: The BaseGameActivity class for the
recipe

ff MultiplayerServer.java: The class containing the main server component

ff MultiplayerClient.java: The class containing the main client component

ff ServerMessages.java: The class containing messages meant to be sent from the
server to clients

ff ClientMessages.java: The class containing messages meant to be sent from
clients to the server

Open the project's AndroidManifest.xml file and add the following two <uses-
permission> attributes:

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.INTERNET"/>

How to do it...
For the sake of keeping things relative throughout this recipe, we're going to work with
each class in the order they were mentioned in the Getting ready section, starting with
the MultiplayerExtensionExample class.

Chapter 9

287

1.	 Declare and register the server/client messages for mMessagePool:
this.mMessagePool.registerMessage(ServerMessages.SERVER_MESSAGE_
ADD_POINT, AddPointServerMessage.class);
this.mMessagePool.registerMessage(ClientMessages.CLIENT_MESSAGE_
ADD_POINT, AddPointClientMessage.class);

2.	 Configure the scene touch listener to allow the sending of messages to and from
the server:
if (pSceneTouchEvent.getAction() == TouchEvent.ACTION_MOVE) {
 if (mServer != null) {

 if(mClient != null){
 // Obtain a ServerMessage object from the mMessagePool
 AddPointServerMessage message = (AddPointServerMessage)
MultiplayerExtensionExample.this.mMessagePool.
obtainMessage(ServerMessages.SERVER_MESSAGE_ADD_POINT);
 // Set up the message with the device's ID, touch
coordinates and draw color
 message.set(SERVER_ID, pSceneTouchEvent.getX(),
pSceneTouchEvent.getY(), mClient.getDrawColor());
 // Send the client/server's draw message to all clients
 mServer.sendMessage(message);
 // Recycle the message back into the message pool
 MultiplayerExtensionExample.this.mMessagePool.
recycleMessage(message);
 return true;
 }
 // If device is running as a client...
 } else if(mClient != null){
 /* Similar to the message sending code above, except
 * in this case, the client is *not* running as a server.
 * This means we have to first send the message to the server
 * via a ClientMessage rather than ServerMessage
 */
 AddPointClientMessage message = (AddPointClientMessage)
MultiplayerExtensionExample.this.mMessagePool.
obtainMessage(ClientMessages.CLIENT_MESSAGE_ADD_POINT);
 message.set(CLIENT_ID, pSceneTouchEvent.getX(),
pSceneTouchEvent.getY(), mClient.getDrawColor());
 mClient.sendMessage(message);
 MultiplayerExtensionExample.this.mMessagePool.
recycleMessage(message);

 return true;
 }
}

AndEngine Extensions Overview

288

3.	 Create the dialog switch statement prompting users to select to either act as the
server or client. In the event a server or client component is selected, we will
initialize one of the two components:
mServer = new MultiplayerServer(SERVER_PORT);
mServer.initServer();

// or...

mClient = new MultiplayerClient(mServerIP,SERVER_PORT, mEngine,
mScene);
mClient.initClient();

4.	 Override the activity's onDestroy() method to terminate both the server and client
components when the activity is destroyed:
@Override
protected void onDestroy() {
 // Terminate the client and server socket connections
 // when the application is destroyed
 if (this.mClient != null)
 this.mClient.terminate();

 if (this.mServer != null)
 this.mServer.terminate();
 super.onDestroy();
}

Once all of the main activity's functionality is in place, we can move on to writing the
server-side code.

5.	 Create the server's initialization method—creating the SocketServer object, which
handles connections to the server's clients:
// Create the SocketServer, specifying a port, client listener and
// a server state listener (listeners are implemented in this
class)
MultiplayerServer.this.mSocketServer = new SocketServer<SocketConn
ectionClientConnector>(
 MultiplayerServer.this.mServerPort,
 MultiplayerServer.this, MultiplayerServer.this) {

 // Handle client connection here...
};

Chapter 9

289

6.	 Handle the client connection to the server. This involves registering client messages
and defining how to handle them:
 // Called when a new client connects to the server...
@Override
protected SocketConnectionClientConnector newClientConnector(
 SocketConnection pSocketConnection)
 throws IOException {
 // Create a new client connector from the socket connection
 final SocketConnectionClientConnector clientConnector = new
SocketConnectionClientConnector(pSocketConnection);

 // Register the client message to the new client
 clientConnector.registerClientMessage(ClientMessages.CLIENT_
MESSAGE_ADD_POINT, AddPointClientMessage.class, new IClientMessage
Handler<SocketConnection>(){

 // Handle message received by the server...
 @Override
 public void onHandleMessage(
 ClientConnector<SocketConnection> pClientConnector,
 IClientMessage pClientMessage)
 throws IOException {
 // Obtain the client message
 AddPointClientMessage incomingMessage =
(AddPointClientMessage) pClientMessage;

 // Create a new server message containing the contents of
the message received
 // from a client
 AddPointServerMessage outgoingMessage = new AddPointSe
rverMessage(incomingMessage.getID(), incomingMessage.getX(),
incomingMessage.getY(), incomingMessage.getColorId());

 // Reroute message received from client to all other clients
 sendMessage(outgoingMessage);
 }
 });

 // Return the new client connector
 return clientConnector;
}

AndEngine Extensions Overview

290

7.	 Once the SocketServer object has been declared and initialized, we need to call its
start() method:
// Start the server once it's initialized
MultiplayerServer.this.mSocketServer.start();

8.	 Create the sendMessage() server broadcasting method:
// Send broadcast server message to all clients
public void sendMessage(ServerMessage pServerMessage){
 try {
 this.mSocketServer.sendBroadcastServerMessage(pServerMessage);
 } catch (IOException e) {
 e.printStackTrace();
 }
}

9.	 Create the terminate() method to shut down the connection:
// Terminate the server socket and stop the server thread
public void terminate(){
 if(this.mSocketServer != null)
 this.mSocketServer.terminate();
}

With the server-side code out of the way, we will continue on to implement the
client-side code in the MultiplayerClient class. The class is quite similar to the
MultiplayerServer class, so we'll be omitting the unnecessary client-side steps
from here.

10.	 Create the Socket, SocketConnection, and finally the ServerConnector to
establish the connection with the server:
// Create the socket with the specified Server IP and port

Socket socket = new Socket(MultiplayerClient.this.mServerIP,
MultiplayerClient.this.mServerPort);

// Create the socket connection, establishing the input/output
stream

SocketConnection socketConnection = new SocketConnection(socket);

// Create the server connector with the specified socket
connection

// and client connection listener

MultiplayerClient.this.mServerConnector = new SocketConnectionServ
erConnector(socketConnection, MultiplayerClient.this);

Chapter 9

291

11.	 Handling the messages received from the server:
// obtain the class casted server message
AddPointServerMessage message = (AddPointServerMessage)
pServerMessage;

// Create a new Rectangle (point), based on values obtained via
the server
// message received
Rectangle point = new Rectangle(message.getX(), message.getY(), 3,
3, mEngine.getVertexBufferObjectManager());

// Obtain the color id from the message
final int colorId = message.getColorId();

12.	 Creating client and server messages:

ClientMessage and ServerMessage are meant to act as bundles of data that are
able to be sent and received to and from the server as well as to and from clients. In
this recipe, we're creating a message for both the client and server to handle sending
information about where to draw points on the client devices. The variables stored in
these messages include:

// Member variables to be read in from the server and sent to
clients
private int mID;
private float mX;
private float mY;
private int mColorId;

While reading and writing the data for communication is as simple as the following:
// Apply the read data to the message's member variables
@Override
protected void onReadTransmissionData(DataInputStream
pDataInputStream)
 throws IOException {
 this.mID = pDataInputStream.readInt();
 this.mX = pDataInputStream.readFloat();
 this.mY = pDataInputStream. readFloat();
 this.mColorId = pDataInputStream.readInt();
}

// Write the message's member variables to the output stream
@Override
protected void onWriteTransmissionData(
 DataOutputStream pDataOutputStream) throws IOException {
 pDataOutputStream.writeInt(this.mID);

AndEngine Extensions Overview

292

 pDataOutputStream.writeFloat(this.mX);
 pDataOutputStream.writeFloat(this.mY);
 pDataOutputStream.writeInt(mColorId);
}

How it works...
In this recipe's implementation of server/client communication, we're building an application
that allows a server to be deployed directly on a mobile device. From here, other mobile
devices are able to act as a client and connect to the aforementioned mobile server. Once the
server has been established with at least one client, the server will begin to relay messages
to all clients if a touch event is created by any client, drawing points on the screens of all
connected clients. If this sounds a bit confusing, have no fear. It will all come together shortly!

In the first five steps, we're writing the BaseGameActivity class. This class is simply the
entry point to the server and client, as well as a means to provide touch event capabilities
for clients to draw onscreen.

In the first step, we're registering the necessary ServerMessage and ClientMessage
objects to our mMessagePool. The mMessagePool object is an extension of the MultiPool
class in AndEngine. See the Creating sprite pools section in Chapter 8, Maximizing
Performance, for how to use the MessagePool class to recycle messages sent and
received across the network.

In step two, we are setting up the scene with a scene touch listener interface whose purpose
is to send messages across the network. Within the touch listener, we can use simple
conditional statements to check whether or not the device is running as a client or a server
with the line, if(mServer != null), returning true if the device is running as a server.
Additionally, we can call if(mClient != null) to check if the device is running as a
client. A nested client check inside a server check would return true in the event of a device
operating as both a client and a server. If a device is operating as a client, sending a message
is as easy as obtaining a new message from mMessagePool, calling the set(device_id,
touchX, touchY, colorId) method on the said message, then calling mClient.
sendMessage(message). Once the message is sent, we should always recycle it back
into the pool so as to not waste memory. One final point to mention before moving on; in the
nested client conditional, we're sending a server message rather than a client message. This
is because the client, in this case, is also the server. This means we can skip over sending a
client message to the server since the server already contains the touch event data.

Chapter 9

293

Step three will most likely not be an ideal situation for most developers as we're using
dialogs as a means to choose whether the device will act as a server or a client. This
scenario is simply used to display how to initialize the components, so a dialog is not
necessarily important. Choosing whether users should be able to host games or not is very
much dependent on the game type and developer's idea, but this recipe at least covers
how to set up a server if need be. Just keep in mind, when initializing a server, all we need
to know is the port number. A client, on the other hand, needs to know a valid server IP
and server port in order to establish a connection. Once the MultiplayerServer and/
or MultiplayerClient classes have been constructed with these parameters, we can
initialize the components. The purpose of the initialization will be covered shortly.

The fourth and final step for the BaseGameActivity class is to allow the activity to
terminate the MultiplayerServer and MultiplayerClient connections in the event
that the activity calls onDestroy(). This will shut down the communication threads and
sockets before the application is destroyed.

Moving on to the MultiplayerServer code, let's take a look at the initialization of a
server in step five. When creating a SocketServer object that a server uses in order to
listen for new client connections, we must pass in the server's port number, as well as a
ClientConnectorListener and a SocketServerListener. The MultiplayerServer
class implements those two listeners, logging whenever the server starts up, stops, when a
client connects to the server, and when a client disconnects.

In the sixth step, we're implementing the system which handles how the server will respond to
incoming connections, and how to handle messages received by clients. The following points
cover the process involved in the order they should be implemented:

ff protected SocketConnectionClientConnector
newClientConnector(...) is called when a new client has connected to
the server.

ff Create a new SocketConnectionClientConnector is for the client to use as a
means of communication between the new client and the server.

ff Register the ClientMessages you wish the server to recognize
via registerClientMessage(flag, message.class,
messageHandlerInterface).

ff Within the onHandleMessage()method of the messageHandlerInterface
interface, we handle any messages received from across the network. In this case,
the server is simply relaying the client's message back to all connected clients.

ff Return the new clientConnector object.

AndEngine Extensions Overview

294

These points outline the main functionality of server/client communication. In this recipe,
we're using a single message in order to draw points on client devices, but for a more broad
range of messages we can continue to call the registerClientMessage() method
so long as the flag parameter matches up with the message type we're obtaining in the
onHandleMessage() interface. Once all of the appropriate messages have been registered
and we're finished with the client handling code, we can continue on to step seven and call
start() on the mSocketServer object.

In step eight, we create the sendMessage(message) method for the server. The server's
variation of sendMessage(message) sends a broadcast message to all clients by simply
looping through the client connector list, calling sendServerMessage(message) to each
connector. If we wish to send a server message to individual clients, we can simply call
sendServerMessage(message) on an individual ClientConnector. On the other end,
we have the client's variation of sendMessage(message). The client's sendMessage()
method does not actually send a message to other clients; in fact, the client doesn't
communicate with other clients at all. A client's job is to communicate with the server,
which then communicates to the other clients. See the following figure for a better
understanding of how our network communication works:

Chapter 9

295

In the preceding figure, the process is outlined by the numbers. First, a client sends the
message to the server. Once the server receives the message, it will loop through each
of the ClientConnector objects in its client list, sending the broadcast to all clients.

The final step involved in creating the MultiplayerServer component is to create a
method for terminating the mSocketServer. This method is called by onDestroy() in
our main activity in order to destroy the communication thread when we are finished with it.

With all of the server-side code in place, we can move on to writing the client-side. The
MultiplayerClient code is somewhat similar to the server's, with a few differences.
When establishing a connection with the server, we must be a little bit more specific
than in the server's initialization. First, we must create a new Socket with a specified IP
address to connect to, along with a server port number. We then pass the Socket to a new
SocketConnection object, used to establish an input/output stream on the socket. Once
this is done we can then create our ServerConnector, whose purpose is to make the final
connection between the client and the server.

We're coming close to a full client/server communication project now! Step eleven is
where the real magic happens—the client receiving server messages. In order to receive
a server message, similar to the server implementation of receiving messages, we
simply call mServerConnector.registerServerMessage(...) which then gives
us the opportunity to fill in an interface for onHandleMessage(serverConnector,
serverMessage). Again, similar to the server-side implementation, we can class-cast the
serverMessage object to an AddPointServerMessage class, allowing us to obtain the
custom values stored in the message.

Now, with all of the server and client code out of the way, we come to the final step. This is, of
course, creating the messages that will be used for MessagePool as well as the objects that
we've been sending and receiving all over the place. There are two different types of Message
objects that we need to be aware of. The first type is ServerMessage, which consists of
messages that are meant to be sent from the client and received/read by the server. The
other type of message is, you've guessed it, ClientMessage, which is meant to be sent from
the server and received/read by the client(s). By creating our own message classes, we can
easily package together chunks of data represented by primitive datatypes and send them
across the network. The primitive datatypes include int, float, long, boolean, and so on.

AndEngine Extensions Overview

296

In the messages used in this recipe, we're storing an ID, which is meant to tell us whether the
message is sent from a client or the server, the x and y coordinates of every client touch event,
and the currently selected color id for drawing. Each value should have its own corresponding
get method so that we're able to obtain message details whenever a message is received.
Additionally, by overriding a client or server message, we must implement the onReadTransm
issionData(DataInputStream) method which allows us to obtain the datatypes from the
input stream and copy them to our member variables. We must also implement the onWrit
eTransmissionData(DataOutputStream), which is used to write the member variables
to the data stream and send it across the network. One thing we need to be aware of when
creating the server and client messages is that data read into our receiving member variables
are obtained in the same order they were sent. See the order of our server message read and
write methods:

 // write method
 pDataOutputStream.writeInt(this.mID);
 pDataOutputStream.writeFloat(this.mX);
 pDataOutputStream.writeFloat(this.mY);
 pDataOutputStream.writeInt(this.mColorId);

 // read method
 this.mID = pDataInputStream.readInt();
 this.mX = pDataInputStream.readFloat();
 this.mY = pDataInputStream. readFloat();
 this.mColorId = pDataInputStream.readInt();

Keeping the preceding code in mind, we can be sure that if we write a message containing an
int, float, int, boolean, and a float into the output stream, any device receiving the
message will read in an int, float, int, boolean, and a float respectively.

Creating high-resolution graphics with SVG
The ability to incorporate scalable vector graphics (SVG) into our mobile games is a
serious benefit to development, and even more so when working with Android. The
biggest benefit, and the one we'll be covering in this topic, is the fact that SVG's can be
scaled to suit the device running our applications. No more having to create multiple
PNG sets for larger displays, and even more importantly, no more having to deal with
terribly pixelated graphics on large screen devices! In this topic we're going to use the
AndEngineSVGTextureRegionExtension extension to create high-resolution texture
regions for our sprites. See the following screenshot for a standard resolution image scaled
on the left-hand side, versus SVG on the right-hand side:

Chapter 9

297

While SVG assets can be very convincing when it comes to creating high-resolution
graphics across multiple screen sizes, there are some downsides to them as well, in the SVG
extension's current state. The SVG extension will not render all of the elements available, such
as text and 3D shapes, for example. However, most of the necessary elements are available
and will properly load during runtime, such as paths, gradients, fill-colors, and some shapes.
Elements which fail to load will be displayed via the Logcat during SVG loading.

It is a wise choice to remove the elements which are not supported by the SVG extension
from SVG files as they can influence loading times, which is the other negative aspect when
it comes to using the SVG extension. The SVG textures will take considerably longer to load
than PNG files as they must first be converted to PNG before loading to memory. It is not
uncommon to see SVG textures take up to two or three times longer than the equivalent PNG
images, depending on how many elements are included in each SVG. The most common
workaround is to save the SVG textures to the device in PNG format during the first launch of
the application. Every subsequent launch would then load the PNG images in order to reduce
load time while keeping device-specific image resolutions.

Getting ready
Refer to the project named WorkingWithSVG in the code bundle.

AndEngine Extensions Overview

298

How to do it...
Creating a SVG texture region is an easy task to accomplish with big results.

1.	 Similar to your average TextureRegion, first we require a
BuildableBitmapTextureAtlas:
// Create a new buildable bitmap texture atlas to build and
contain texture regions
BuildableBitmapTextureAtlas bitmapTextureAtlas = new Buildabl
eBitmapTextureAtlas(mEngine.getTextureManager(), 1024, 1024,
TextureOptions.BILINEAR);

2.	 Now that we've got a texture atlas setup, we can create the SVG texture regions
through the use of the SVGBitmapTextureAtlasTextureRegionFactory
singleton:

// Create a low-res (32x32) texture region of svg_image.svg
mLowResTextureRegion = SVGBitmapTextureAtlasTextureRegionFactory.
createFromAsset(bitmapTextureAtlas, this, "svg_image.svg", 32,32);

// Create a med-res (128x128) texture region of svg_image.svg
mMedResTextureRegion = SVGBitmapTextureAtlasTextureRegionFactory.
createFromAsset(bitmapTextureAtlas, this, "svg_image.svg", 128,
128);

// Create a high-res (256x256) texture region of svg_image.svg
mHiResTextureRegion = SVGBitmapTextureAtlasTextureRegionFactory.cr
eateFromAsset(bitmapTextureAtlas, this, "svg_image.svg", 256,256);

How it works…
As we can see, creating an SVG texture region is not much different from your average
TextureRegion. The only real difference between the two in terms of instantiation is the
fact that we have to enter a width and height value as the final two parameters. This is
because, unlike your average raster image format whose width and height are more or less
hardcoded due to the fixed pixel positions, SVG pixel positions can be scaled up or down
to any size we'd like. If we scale the SVG texture region, the vector's coordinates will simply
adjust themselves in order to continue to produce a clear, precise image. Once the SVG
texture region is built, we can apply it to a sprite as we would any other texture region.

Chapter 9

299

That's all fine and dandy, knowing how to create the SVG texture region, but there's more to
it than that. After all, the beauty of being able to use SVG images in our games is the ability
to scale the image depending on the device's display size. In this way we can avoid having
to load larger images for smaller screened devices in order to accommodate for tablets, and
we won't have to make our tablet users suffer by creating small texture regions in order to
conserve memory. The SVG extension actually makes it quite simple for us to deal with the
idea of scaling depending on display size. The following code shows us how we can implement
a mass-scaling factor to all SVG texture regions created. This will allow us to avoid having to
create different sized texture regions manually, depending on display size:

float mScaleFactor = 1;

// Obtain the device display metrics (dpi)
DisplayMetrics displayMetrics = this.getResources().
getDisplayMetrics();

int deviceDpi = displayMetrics.densityDpi;

switch(deviceDpi){
case DisplayMetrics.DENSITY_LOW:
 // Scale factor already set to 1
 break;

case DisplayMetrics.DENSITY_MEDIUM:
 // Increase scale to a suitable value for mid-size displays
 mScaleFactor = 1.5f;
 break;

case DisplayMetrics.DENSITY_HIGH:
 // Increase scale to a suitable value for larger displays
 mScaleFactor = 2;
 break;

case DisplayMetrics.DENSITY_XHIGH:
 // Increase scale to suitable value for largest displays
 mScaleFactor = 2.5f;
 break;

default:
 // Scale factor already set to 1
 break;
}

SVGBitmapTextureAtlasTextureRegionFactory.
setScaleFactor(mScaleFactor);

AndEngine Extensions Overview

300

The preceding code can be copied and pasted into the onCreateEngineOptions()
method of an activity. All that needs to be done is to decide on the scale factors you'd like to
apply to the SVG's depending on device size! From this point on, we can create a single SVG
texture region and, depending on the display size, the texture region will scale accordingly.
For example, we can load up a texture region like the following:

 mLowResTextureRegion = SVGBitmapTextureAtlasTextureRegionFactory.cre
ateFromAsset(bitmapTextureAtlas, this, "svg_image.svg", 32,32);

We may define the texture region's width and height values to 32, but by adjusting the
scale factor in the factory class, the texture region would be built to 80x80 by multiplying
the specified value by the scale factor for a DENSITY_XHIGH display. Just be careful when
handling texture regions with autoscaling factors. The scale will also increase the space
they consume within the BuildableBitmapTextureAtlas object and may cause
errors if exceeded, as with any other TextureRegion.

See also…
ff The Different types of textures section in Chapter 1, AndEngine Game Structure.

Color mapping with SVG texture regions
A useful aspect of SVG texture regions is the fact that we are able to easily map the texture's
colors. This technique is common in games that allow users to select custom colors for their
player's character, be it clothing and accessory color, hair color, skin color, terrain themes, and
much more. In this topic, we're going to use the ISVGColorMapper interface while building
our SVG texture regions in order to create customized color sets for our sprites.

Getting ready
Before we get into the coding side of color mapping, we need to create an SVG image with
preset colors. We can think of these preset colors as our map. One of the most preferred
SVG editors amongst many developers is called Inkscape, which is a free, very easy to use,
and full-featured editor. Inkscape can be downloaded from the following link, http://
inkscape.org/download/, or feel free to work with another SVG editor of your choice.

How to do it...
Color mapping might sound like it will be a tedious job, but in reality it's actually very easy to
accomplish. All we need is to keep a little bit of consistency between the SVG image and the
code. Keeping this in mind, the idea of creating multicolored, single source textures can be a
very quick task. The steps below include the process starting from drawing the SVG image to
allow for easy color mapping, as well as writing the code for mapping colors to specific areas
of the SVG image within our application.

http://inkscape.org/download/
http://inkscape.org/download/

Chapter 9

301

ff Drawing our SVG image:

In order to easily map colors to an SVG texture region during runtime, we need to
draw an SVG image in the editor of our choice. This involves color-coding the different
segments of our images for easy recognition in our ISVGColorMapper interface.
The following figure depicts a shape with defined color values that are displayed on
the left of the figure.

ff Implementing the ISVGColorMapper interface:

Just prior to creating the SVG texture region via
SVGBitmapTextureAtlasTextureRegionFactory, we will define our
ISVGColorMapper interface in relation to our SVG image. If we look at the
conditionals in the following code, we can see that we are checking for the
same color values found in the preceding figure:

ISVGColorMapper svgColorMapper = new ISVGColorMapper(){
 @Override
 public Integer mapColor(final Integer pColor) {
 // If the path contains no color channels, return null
 if(pColor == null) {
 return null;
 }

 // Obtain color values from 0-255
 int alpha = Color.alpha(pColor);
 int red = Color.red(pColor);
 int green = Color.green(pColor);
 int blue = Color.blue(pColor);

 // If the SVG image's color values equal red, or
ARGB{0,255,0,0}

AndEngine Extensions Overview

302

 if(red == 255 && green == 0 && blue == 0){
 // Return a pure blue color
 return Color.argb(0, 0, 0, 255);

 // If the SVG image's color values equal green, or
ARGB{0,0,255,0}
 } else if(red == 0 && green == 255 && blue == 0){
 // Return a pure white
 return Color.argb(0, 255, 255, 255);

 // If the SVG image's color values equal blue, or
ARGB{0,0,0,255}
 } else if(red == 0 && green == 0 && blue == 255){
 // Return a pure blue color
 return Color.argb(0, 0, 0, blue);

 // If the SVG image's color values are white, or
ARGB{0,254,254,254}
 } else if(red == 254 && blue == 254 && green == 254){
 // Return a pure red color
 return Color.argb(0, 255, 0, 0);

 // If our "custom color" conditionals do not apply...
 } else {
 // Return the SVG image's default color values
 return Color.argb(alpha, red, green, blue);
 }
 }
};

// Create an SVG texture region
mSVGTextureRegion = SVGBitmapTextureAtlasTextureRegionFactory.
createFromAsset(bitmapTextureAtlas, this, "color_mapping.svg",
256,256, svgColorMapper);

ff Lastly, once the interface has been defined, we can pass it in as the final parameter
when creating the texture region. Once this is done, creating a new sprite with the
SVG texture region will yield the color values defined within the color mapper.

Chapter 9

303

How it works…
Just a brief lesson on colors before we start; if you're looking at this recipe's code and are
confused about the random values selected for our conditionals and color results, it's very
simple. Each color component, red, green and blue, can be supplied a color value anywhere
between 0 and 255. passing a value of 0 to a color component would result in no contribution
from that color, while passing 255 would be considered to be full color contribution. With
this in mind, we know that if all color components return a value of 0, we will be passing the
color black to our texture region's path. If we pass a value of 255 to the red component, while
passing 0 for both green and blue, we know that the texture region's path will be a bright
red color.

If we take a look back at the figure in the How to do it... section, we can see alpha, red,
green, and blue (ARGB) color values with arrows pointing to the area on the circle that they
represent. These will not directly affect the end result of our texture region's colors; they are
simply in place so that we can gain a reference to each portion of the circle within our color
mapper interface. Note that the very first, most outer portion of the circle, is bright red
at a value of 255. With that in mind, see the following condition within our color mapper:

 // If the SVG image's color values equal red, or ARGB{0,255,0,0}
 } else if(red == 255 && green == 0 && blue == 0){
 // Return a pure blue color
 return Color.argb(0, 0, 0, 255);

 // If the SVG image's color values equal green, or ARGB{0,0,255,0}
 }

The conditional statement in the preceding code will check for any path of the SVG image
which contains a pure red value with no contributions from green or blue, returning a pure
blue color instead. This is how the swapping of colors occurs, and this is how we can map
colors to our images! Knowing this, it is entirely possible to create many different sets of
colors for our SVG images, but for each color set, we must provide a separate texture region.

One important key point to note is that we should include a returning value that will return the
default path's color values in the event that none of our conditions are met. This allows us to
leave out conditionals for smaller details such as the SVG image's outline, or other colors, and
instead fill them in as they appear in the image if we were to open it in our favorite SVG editor.
This should be included as the final else statement in the color mapper:

 // If our "custom color" conditionals do not apply...
 } else {
 // Return the SVG image's default color values
 return Color.argb(alpha, red, green, blue);
 }

AndEngine Extensions Overview

304

There's more…
In the How it works... section of this recipe, we covered how to change the colors of static
SVG image paths. Without putting too much thought into the idea of creating color themes as
mentioned above, it might sound like this is the be-all-end-all to creating more objects, terrain,
characters, and so on. The truth is that, in this day and age, a lot of games need variance in
order to create an appealing asset. By variance, we are of course referring to gradients. If we
think back to the conditionals we'd written above, we are checking for absolute color values
before returning a customized color.

Thankfully, working with gradients is not too difficult as we can adjust the gradient's Stop
Color and the interpolation between colors will automatically be handled for us! We can think
of a stop as a color-defining point of the gradient which interpolates between other stops as
distance increases. This is what causes the gradient's blending effect and this also plays a
role in the ease of creating color themes through the use of the same method described in
this recipe. See the following screenshot for a gradient that starts out as a pure red color
RGB{255, 0, 0}, to pure green RGB{0, 255, 0}, and finally to blue RGB{0, 0, 255}:

Chapter 9

305

If we were to use the above gradient in an SVG image, we could easily apply color mapping
with proper interpolation between the color stops by simply modifying the specific color at the
position of each stop. The following code will change the gradient to appear red, green, and
yellow, rather than having blue as the third color stop:

 } else if(red == 0 && green == 0 && blue == 255){
 // Return a pure blue color
 return Color.argb(0, 255, 255, 0);
 }

See also…
ff The Creating high-resolution graphics with SVG section.

10
Getting More From

AndEngine

This chapter will cover additional recipes that have a more specific application than those in
previous chapters. These recipes include:

ff Loading all textures from a folder

ff Using textured meshes

ff Applying a sprite-based shadow

ff Creating a physics-based moving platform

ff Creating a physics-based rope bridge

Loading all textures from a folder
When creating a game that has a large amount of textures, loading each texture individually
can become tedious. Creating a method to load and retrieve textures in such a game can
be not only timesaving during development, but also reduce the overall loading times during
runtime. In this recipe, we will create a way to load a large amount of textures using only a
single line of code.

Getting ready...
First, create a new activity class named TextureFolderLoadingActivity that extends
the BaseGameActivity class. Next, create a folder named FolderToLoad in the assets/
gfx/ folder. Finally, place five images in the assets/gfx/FolderToLoad/ folder with the
names: Coin1, Coin5, Coin10, Coin50, and Coin100.

Getting More From AndEngine

308

How to do it...
Follow these steps to fill our TextureFolderLoadingActivity activity class:

1.	 Place the following, simple code in our activity to make it functional:
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(),
 new Camera(0, 0, 800, 480))
 .setWakeLockOptions(WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 Scene mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}
@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

2.	 Next, place this ArrayList variable and ManagedStandardTexture class inside
of the activity:
public final ArrayList<ManagedStandardTexture> loadedTextures =
 new ArrayList<ManagedStandardTexture>();
public class ManagedStandardTexture {
 public ITextureRegion textureRegion;
 public String name;
 public ManagedStandardTexture(String pName,
 final ITextureRegion pTextureRegion) {
 name = pName;
 textureRegion = pTextureRegion;
 }
 public void removeFromMemory() {

Chapter 10

309

 loadedTextures.remove(this);
 textureRegion.getTexture().unload();
 textureRegion = null;
 name = null;
 }
}

3.	 Then, add the next two methods to the activity class to allow us to load a texture by
passing only the TextureOptions parameter and the filename:
public ITextureRegion getTextureRegion(TextureOptions
 pTextureOptions, String pFilename) {
 loadAndManageTextureRegion(pTextureOptions,pFilename);
 return loadedTextures.get(
 loadedTextures.size()-1).textureRegion;
}
public void loadAndManageTextureRegion(TextureOptions
 pTextureOptions, String pFilename) {
 AssetBitmapTextureAtlasSource cSource =
 AssetBitmapTextureAtlasSource.create(
 this.getAssets(), pFilename);
 BitmapTextureAtlas TextureToLoad =
 new BitmapTextureAtlas(mEngine.getTextureManager(),
 cSource.getTextureWidth(),
 cSource.getTextureHeight(),
 pTextureOptions);
 TextureRegion TextureRegionToLoad =
 BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(TextureToLoad, this,
 pFilename, 0, 0);
 TextureToLoad.load();
 loadedTextures.add(new ManagedStandardTexture(
 pFilename.substring(
 pFilename.lastIndexOf("/")+1,
 pFilename.lastIndexOf(".")),
 TextureRegionToLoad));
}

4.	 Now insert the following method that allows us to load all of the textures within either
one folder or multiple folders:
public void loadAllTextureRegionsInFolders(TextureOptions
 pTextureOptions, String... pFolderPaths) {
 String[] listFileNames;
 String curFilePath;
 String curFileExtension;

Getting More From AndEngine

310

 for (int i = 0; i < pFolderPaths.length; i++)
 try {
 listFileNames = this.getAssets().
 list(pFolderPaths[i].substring(0,
 pFolderPaths[i].lastIndexOf("/")));
 for (String fileName : listFileNames) {
 curFilePath =
 pFolderPaths[i].concat(fileName);
 curFileExtension =
 curFilePath.substring(
 curFilePath.lastIndexOf("."));
 if(curFileExtension.
 equalsIgnoreCase(".png")
 || curFileExtension.
 equalsIgnoreCase(".bmp")
 || curFileExtension.
 equalsIgnoreCase(".jpg"))
 loadAndManageTextureRegion(
 pTextureOptions,
 curFilePath);
 }
 } catch (IOException e) {
 System.out.print("Failed to load textures
 from folder!");
 e.printStackTrace();
 return;
 }
}

5.	 Next, place the following methods into the activity to let us unload all
ManagedStandardTexture classes or retrieve a texture by its short filename:
public void unloadAllTextures() {
 for(ManagedStandardTexture curTex : loadedTextures) {
 curTex.removeFromMemory();
 curTex=null;
 loadedTextures.remove(curTex);
 }
 System.gc();
}

public ITextureRegion getLoadedTextureRegion(String pName) {
 for(ManagedStandardTexture curTex : loadedTextures)
 if(curTex.name.equalsIgnoreCase(pName))
 return curTex.textureRegion;
 return null;
}

Chapter 10

311

6.	 Now that we have all of our methods in the activity, place the following line of code in
the onCreateResources() method:
this.loadAllTextureRegionsInFolders(TextureOptions.BILINEAR, "gfx/
FolderToLoad/");

7.	 Finally, add the following code to the onPopulateScene() method to show how we
can retrieve a loaded texture by name:

pScene.attachChild(new Sprite(144f, 240f,
 getLoadedTextureRegion("Coin1"),
 this.getVertexBufferObjectManager()));
pScene.attachChild(new Sprite(272f, 240f,
 getLoadedTextureRegion("Coin5"),
 this.getVertexBufferObjectManager()));
pScene.attachChild(new Sprite(400f, 240f,
 getLoadedTextureRegion("Coin10"),
 this.getVertexBufferObjectManager()));
pScene.attachChild(new Sprite(528f, 240f,
 getLoadedTextureRegion("Coin50"),
 this.getVertexBufferObjectManager()));
pScene.attachChild(new Sprite(656f, 240f,
 getLoadedTextureRegion("Coin100"),
 this.getVertexBufferObjectManager()));

How it works...
In step one, we set up our TextureFolderLoadingActivity activity class by implementing
the standard, overridden BaseGameActivity methods that most AndEngine games use. For
more information on setting up an activity for use with AndEngine, see the Understanding the
life cycle recipe in Chapter 1, AndEngine Game Structure.

In step two, we create an ArrayList variable of ManagedStandardTexture
objects, which is defined directly following the definition of the ArrayList variable.
ManagedStandardTextures are simple containers that hold a pointer to an
ITextureRegion region and a string variable that represents the ITextureRegion
object's name. The ManagedStandardTexture class also includes a method to unload
ITextureRegion and prepare the variables to be removed from memory upon the next
garbage collection.

The third step includes two methods, getTextureRegion() and
loadAndManageTextureRegion():

ff The getTextureRegion() method calls the loadAndManageTextureRegion()
method and returns the recently-loaded texture from the ArrayList variable named
loadedTextures defined in step two.

Getting More From AndEngine

312

ff The loadAndManageTextureRegion() method creates an
AssetBitmapTextureAtlasSource source named cSource, which is only
used to pass the texture's width and height in the following definition of the
BitmapTextureAtlas object, TextureToLoad.

The TextureRegion object, TextureRegionToLoad, is created by calling the
BitmapTextureAtlasTextureRegionFactory object's createFromAsset() method.
TextureToLoad is then loaded, and the TextureRegionToLoad object is added to the
loadedTextures ArrayList variable by creating a new ManagedStandardTexture
class. For more information on textures, see the Different types of textures recipe in Chapter
1, AndEngine Game Structure.

In step four, we create a method that parses the list of files in each folder passed in the
pFolderPaths array and loads the image files as textures with the TextureOptions
parameter being applied to each image. The listFileNames string array holds the list of
files in each of the pFolderPaths folders, and the curFilePath and curFileExtension
variables are used to store the filepaths and their relative extensions for use in determining
which files are AndEngine-supported images. The first for loop simply runs the parsing and
loading process for each folder path given. The getAssets().list() method throws an
IOException exception and thus needs to be enclosed in a try-catch block. It is used
to retrieve a list of all of the files within the passed String parameter. The second for
loop sets curFilePath to the current i value's folder path concatenated with the current
filename from the listFileNames array. Next, the curFileExtension string variable
is set to the curFilePath variable's last index of ".", to return the extension, using the
substring() method. Then, we check to make sure that the current file's extension is equal
to one that is supported by AndEngine and call the loadAndManageTextureRegion()
method if true. Finally, we catch the IOException exception by sending a message to the
log and printing a StackTrace message from the IOException exception.

The fifth step includes two methods, unloadAllTextures() and
getLoadedTextureRegion(), that assist our managing of the textures loaded by our
previous methods:

ff The unloadAllTextures() method runs through all
ManagedStandardTextures in the loadedTextures ArrayList object and
unloads them using the removeFromMemory() method before removing them
from loadedTextures and requesting a garbage collection from the system

ff The getLoadedTextureRegion() method checks every
ManagedStandardTexture in the loadedTextures variable against the pName
string parameter and returns the current ManagedStandardTexture class'
ITextureRegion region if the names are equal, or null if no match is made

Chapter 10

313

Step six calls the loadAllTextureRegionsInFolders() method from inside the
onCreateResources() activity method by passing a BILINEAR TextureOption
parameter and the asset folder path of our FolderToLoad folder. For more information on
TextureOptions, see the Applying options to our textures recipe in Chapter 1, AndEngine
Game Structure.

In our final step, we attach five sprites to our scene inside of the onPopulateScene()
activity method. Each of the sprite constructors calls the getLoadedTextureRegion()
method and passes the respective short name of the sprite's image file. The locations of each
of the sprites place them in a horizontal line across the screen. The display of our sprites with
textures loaded all at once should look similar to the following image. For more information on
creating sprites, see the Adding sprites to a layer recipe in Chapter 2, Working with Entities.

See also
ff Understanding the life cycle in Chapter 1, AndEngine Game Structure.

ff Different types of textures in Chapter 1, AndEngine Game Structure.

ff Applying options to our textures in Chapter 1, AndEngine Game Structure.

ff Adding sprites to a layer in Chapter 2, Working with Entities.

Using textured meshes
Textured meshes, which are simply triangulated polygons with a texture applied, are
becoming more popular in mobile games because they allow for the creation and
manipulation of non-rectangular shapes. Having the ability to work with textured meshes often
creates an extra layer of game mechanics that were previously too costly to implement. In this
recipe, we will learn how to create a textured mesh from a predetermined set of triangles.

Getting ready...
First, create a new activity class named TexturedMeshActivity that extends
BaseGameActivity. Next, place a seamless-tiling texture named dirt.png with the
dimensions 512 x 128 in the assets/gfx/ folder of our project. Finally, import the
TexturedMesh.java class from the code bundle into our project.

Getting More From AndEngine

314

How to do it...
Follow these steps to build our TexturedMeshActivity activity class:

1.	 Place the following code in our activity to give us a standard AndEngine activity:
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(),
 new Camera(0, 0, 800, 480))
 .setWakeLockOptions(WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 Scene mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}
@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback) {
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

2.	 Add the following code snippet to the onPopulateScene() method:
BitmapTextureAtlas texturedMeshT = new BitmapTextureAtlas(
 this.getTextureManager(), 512, 128,
 TextureOptions.REPEATING_BILINEAR);
ITextureRegion texturedMeshTR =
 BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(texturedMeshT, this, "gfx/dirt.png", 0, 0);
texturedMeshT.load();
float[] meshTriangleVertices = {
 24.633111f,37.7835047f,-0.00898f,113.0324447f,
 -24.610162f,37.7835047f,0.00387f,-37.7900953f,
 -103.56176f,37.7901047f,103.56176f,37.7795047f,
 0.00387f,-37.7900953f,-39.814736f,-8.7311953f,
 -64.007044f,-83.9561953f,64.00771f,-83.9621953f,
 39.862562f,-8.7038953f,0.00387f,-37.7900953f};

Chapter 10

315

float[] meshBufferData = new float[TexturedMesh.VERTEX_SIZE *
 (meshTriangleVertices.length/2)];
for(int i = 0; i < meshTriangleVertices.length/2; i++) {
 meshBufferData[(i * TexturedMesh.VERTEX_SIZE) +
 TexturedMesh.VERTEX_INDEX_X] =
 meshTriangleVertices[i*2];
 meshBufferData[(i * TexturedMesh.VERTEX_SIZE) +
 TexturedMesh.VERTEX_INDEX_Y] =
 meshTriangleVertices[i*2+1];
}
TexturedMesh starTexturedMesh = new TexturedMesh(400f, 225f,
 meshBufferData, 12, DrawMode.TRIANGLES, texturedMeshTR,
 this.getVertexBufferObjectManager());
pScene.attachChild(starTexturedMesh);

How it works...
In step one, we prepare our TexturedMeshActivity class by inserting into it the standard,
overridden BaseGameActivity methods that most AndEngine games use. For more
information on setting up an activity for use with AndEngine, see the Understanding the life
cycle recipe in Chapter 1, AndEngine Game Structure.

In step two, we first define texturedMeshT, a BitmapTextureAtlas object, with the final
parameter of the constructor being a REPEATING_BILINEAR TextureOption parameter to
create a texture that will tile seamlessly within the triangles that make up our textured mesh.
For more information on TextureOptions, see the Applying options to our textures recipe in
Chapter 1, AndEngine Game Structure.

After creating the texturedMeshTR ITextureRegion object and loading our
texturedMeshT object, we define an array of float variables that specify the relative and
consecutive x and y positions of each of the vertices of each triangle that make up our
textured mesh. See the following image for a better idea of how the vertices of a triangle
are used in a textured mesh:

Getting More From AndEngine

316

Next, we create the meshBufferData float array and set its size to the vertex size of the
TexturedMesh class multiplied by the number of vertices in the meshTriangleVertices
array—one vertex occupies two indices in the array, X and Y, so we must divide the length by
2. Then, for each of the vertices in the meshTriangleVertices array, we apply the vertex's
position to the meshBufferData array. Finally, we create the TexturedMesh object, named
starTexturedMesh. The parameters of the TexturedMesh constructor are the following:

ff The first two parameters of the constructor are the x and y location of 400f, 225f

ff The next two parameters are the meshBufferData buffer data and the number of
vertices, 12, that we placed in the meshBufferData array

ff The final three parameters of the TexturedMesh constructor are
DrawMode of Triangles, ITextureRegion for the mesh, and our
VertexBufferObjectManager object.

For more information on creating Meshes, from which the TexturedMesh class is derived,
see the Applying primitives to a layer recipe in Chapter 2, Working with Entities.

See also
ff Understanding the life cycle in Chapter 1, AndEngine Game Structure.

ff Applying options to our textures in Chapter 1, AndEngine Game Structure.

ff Applying primitives to a layer in Chapter 2, Working with Entities.

Applying a sprite-based shadow
The addition of shadows to a game can increase the visual depth and give the game a more
appealing appearance. Simply placing a sprite with a shadow texture below an object is a fast
and efficient way to handle shadow creation. In this chapter, we will be learning how to do that
while keeping the shadow properly aligned with its parent object.

Getting ready...
First, create a new activity class named SpriteShadowActivity that extends
BaseGameActivity and implements IOnSceneTouchListener. Next, place a shadow
image with a size of 256 x 128 and named shadow.png into the assets/gfx/ folder.
Finally, place a character image of size 128 x 256 and named character.png into the
assets/gfx/ folder.

Chapter 10

317

How to do it...
Follow these steps to build our SpriteShadowActivity activity class:

1.	 Place the following standard AndEngine activity code in our activity class:
@Override
public EngineOptions onCreateEngineOptions() {
 EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(),
 new Camera(0, 0, 800, 480))
 .setWakeLockOptions(WakeLockOptions.SCREEN_ON);
 engineOptions.getRenderOptions().setDithering(true);
 return engineOptions;
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 Scene mScene = new Scene();
 mScene.setBackground(new Background(0.8f,0.8f,0.8f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}
@Override
public void onPopulateScene(Scene pScene, OnPopulateSceneCallback
 pOnPopulateSceneCallback) {
 pScene.setOnSceneTouchListener(this);
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}
@Override
public boolean onSceneTouchEvent(Scene pScene,
 TouchEvent pSceneTouchEvent) {
 return true;
}

Getting More From AndEngine

318

2.	 Next, place these variables in our activity to give us specific control over the shadow:
Static final float CHARACTER_START_X = 400f;
static final float CHARACTER_START_Y = 128f;
static final float SHADOW_OFFSET_X = 0f;
static final float SHADOW_OFFSET_Y = -64f;
static final float SHADOW_MAX_ALPHA = 0.75f;
static final float SHADOW_MIN_ALPHA = 0.1f;
static final float SHADOW_MAX_ALPHA_HEIGHT = 200f;
static final float SHADOW_MIN_ALPHA_HEIGHT = 0f;
static final float SHADOW_START_X = CHARACTER_START_X + SHADOW_
OFFSET_X;
static final float SHADOW_START_Y = CHARACTER_START_Y + SHADOW_
OFFSET_Y;
static final float CHARACTER_SHADOW_Y_DIFFERENCE =
 CHARACTER_START_Y - SHADOW_START_Y;
static final float SHADOW_ALPHA_HEIGHT_DIFFERENCE =
 SHADOW_MAX_ALPHA_HEIGHT - SHADOW_MIN_ALPHA_HEIGHT;
static final float SHADOW_ALPHA_DIFFERENCE =
 SHADOW_MAX_ALPHA - SHADOW_MIN_ALPHA;
Sprite shadowSprite;
Sprite characterSprite;

3.	 Now place the following method in our activity to make the shadow's alpha inversely
proportional to the distance of the character from the shadow:
public void updateShadowAlpha() {
 shadowSprite.setAlpha(MathUtils.bringToBounds(
 SHADOW_MIN_ALPHA, SHADOW_MAX_ALPHA,
 SHADOW_MAX_ALPHA - ((((characterSprite.getY()-
 CHARACTER_SHADOW_Y_DIFFERENCE)-SHADOW_START_Y) /
 SHADOW_ALPHA_HEIGHT_DIFFERENCE) *
 SHADOW_ALPHA_DIFFERENCE)));
}

4.	 Insert the following code snippet into the onSceneTouchEvent() method:
if(pSceneTouchEvent.isActionDown() ||
 pSceneTouchEvent.isActionMove()) {
 characterSprite.setPosition(
 pSceneTouchEvent.getX(),
 Math.max(pSceneTouchEvent.getY(),
 CHARACTER_START_Y));
}

Chapter 10

319

5.	 Finally, fill the onPopulateScene() method with the following snippet:
BitmapTextureAtlas characterTexture =
 new BitmapTextureAtlas(this.getTextureManager(), 128, 256,
 TextureOptions.BILINEAR);
TextureRegion characterTextureRegion =
 BitmapTextureAtlasTextureRegionFactory.createFromAsset(
 characterTexture, this, "gfx/character.png", 0, 0);
characterTexture.load();
BitmapTextureAtlas shadowTexture =
 new BitmapTextureAtlas(this.getTextureManager(), 256, 128,
 TextureOptions.BILINEAR);
TextureRegion shadowTextureRegion =
 BitmapTextureAtlasTextureRegionFactory.createFromAsset(
 shadowTexture, this, "gfx/shadow.png", 0, 0);
shadowTexture.load();
shadowSprite = new Sprite(SHADOW_START_X, SHADOW_START_Y,
 shadowTextureRegion,this.getVertexBufferObjectManager());
characterSprite = new Sprite(CHARACTER_START_X, CHARACTER_START_Y,
 characterTextureRegion,this.getVertexBufferObjectManager())
 {
 @Override
 public void setPosition(final float pX, final float pY) {
 super.setPosition(pX, pY);
 shadowSprite.setPosition(
 pX + SHADOW_OFFSET_X, shadowSprite.getY());
 updateShadowAlpha();
 }
};
pScene.attachChild(shadowSprite);
pScene.attachChild(characterSprite);
updateShadowAlpha();

How it works...
In step one, we set up our SpriteShadowActivity activity class by implementing the
standard, overridden BaseGameActivity methods that most AndEngine games use. For
more information on setting up an activity for use with AndEngine, see the Understanding the
life cycle recipe in Chapter 1, AndEngine Game Structure.

Getting More From AndEngine

320

The following image shows how this recipe places our shadow sprite in relation to the
character sprite:

In step two, we define several constants that will control how the shadow sprite,
shadowSprite, is aligned to the character sprite, characterSprite:

ff The first two constants, CHARACTER_START_X and CHARACTER_START_Y, set the
initial position of characterSprite

ff The next two constants, SHADOW_OFFSET_X and SHADOW_OFFSET_Y, control the
distance on the x and y axis as to how far the shadow will be initially positioned in
relation to the character sprite

ff The SHADOW_OFFSET_X constant is also used to update the shadow sprite's position
when the character sprite is moved

Chapter 10

321

The next four constants control how, and to what level, the shadowSprite sprite's alpha will
be controlled:

ff SHADOW_MAX_ALPHA and SHADOW_MIN_ALPHA set the absolute minimum and
maximum alpha, which is changed according to the character's distance on the y axis
from the shadow. The further the distance, the lower the alpha of the shadowSprite
sprite will be until the minimum level is reached.

ff The SHADOW_MAX_ALPHA_HEIGHT constant represents the maximum distance
of the character from the shadow that the shadowSprite sprite's alpha will be
affected before defaulting to SHADOW_MIN_ALPHA.

ff The SHADOW_MIN_ALPHA_HEIGHT constant represents the minimum distance of the
character from the shadow that the shadow's alpha should change. If SHADOW_MIN_
ALPHA_HEIGHT is greater than 0, the shadow's alpha will be at its maximum while
the character's distance from the shadow is below SHADOW_MIN_ALPHA_HEIGHT.

The remaining constants are calculated automatically from the previous set. SHADOW_
START_X and SHADOW_START_Y represent the starting position of the shadowSprite
sprite. They are calculated by adding the shadow's offset values to the character's starting
position. The CHARACTER_SHADOW_Y_DIFFERENCE constant represents the initial starting
distance between the character and the shadow on the y axis. The SHADOW_ALPHA_HEIGHT_
DIFFERENCE constant represents the difference between the minimum and maximum
heights and acts to modulate the shadow's alpha at runtime. The final constant, SHADOW_
ALPHA_DIFFERENCE, represents the difference between the minimum and maximum alpha
levels of the shadowSprite sprite. Similar to the SHADOW_ALPHA_HEIGHT_DIFFERENCE
constant, it is used at runtime to determine the alpha level of the shadow.

The final two variables in step two, shadowSprite and characterSprite, represent the
shadow and character in our scene.

In the third step, we create a method that will update the shadow's alpha. We call the
shadowSprite.setAlpha() method with the MathUtils.bringToBounds() method
as the parameter. The MathUtils.bringToBounds() method takes a minimum and
maximum value and ensures that the third value is within that range. We pass the
SHADOW_MIN_ALPHA and SHADOW_MAX_ALPHA constants as the first two parameters
of the bringToBounds() method.

Getting More From AndEngine

322

The third parameter is the algorithm for determining the alpha of the shadow based on the
distance of the characterSprite sprite from the shadowSprite sprite. The algorithm
starts by subtracting the CHARACTER_SHADOW_Y_DIFFERENCE constant from the character's
position on the y axis. This gives us the current ceiling of the y value that affects the shadow's
alpha. Next, we subtract the shadow's starting position on the y axis to get the current, ideal
distance of the character from the shadow. Next, we divide that distance by SHADOW_ALPHA_
HEIGHT_DIFFERENCE to get the unit ratio of constrained-distance to alpha and multiply
the ratio by the SHADOW_ALPHA_DIFFERENCE constant to get the unit ratio of constrained-
distance to constrained-alpha. Currently, our ratio is inverted and will increase the alpha with
distance, which opposes our goal of decreasing alpha as the character moves further, so we
subtract it from the SHADOW_MAX_ALPHA constant to give us a proper ratio that decreases
alpha as distance increases. Completing the algorithm, we then use the bringToBounds()
method to ensure that the alpha value produced by the algorithm is constrained within the
range of SHADOW_MIN_ALPHA to SHADOW_MAX_ALPHA.

Step four sets the position of the characterSprite sprite when the screen is first
touched, or if the touch is moved, by checking the touch event's isActionDown() and
isActionMove() properties. The setPosition() method, in this case, simply sets the x
value to the touched x value and the x value to the touched y value or the character's starting
y value, whichever is greater.

In the final step, we load the TextureRegions, characterTextureRegion, and
shadowTextureRegion objects, for the character and shadow. For more information on
TextureRegions, see the Different types of textures recipe in Chapter 1, AndEngine Game
Structure. Then, we create the shadowSprite and characterSprite sprites using their
starting constants as the positions in the constructors. For characterSprite, we override
the setPosition() method to also set the shadowSprite sprite's position with the x
offset applied and then call the updateShadowAlpha() method to set the proper alpha
for the shadow after the character has moved. Finally, we attach the shadowSprite and
characterSprite sprites to our scene and call the updateShadowAlpha() method to
set the initial alpha of the shadow. The following image shows how the shadow's alpha level is
changed in relation to the distance from the character:

Chapter 10

323

See also
ff Understanding the life cycle in Chapter 1, AndEngine Game Structure.

ff Different types of textures in Chapter 1, AndEngine Game Structure.

Creating a physics-based moving platform
Most platform-style games have some sort of moving platform, which challenges the player
to land with accurate timing. From a developer's standpoint, the platform is simply a physics-
enabled body that moves from one location to another. In this recipe, we will see how to
create a horizontally-moving platform.

Getting ready...
Create a new activity class named MovingPhysicsPlatformActivity that extends
BaseGameActivity.

How to do it...
Follow these steps to build our MovingPhysicsPlatformActivity activity class:

1.	 Insert the following code snippet into our activity to make it functional:
@Override
public Engine onCreateEngine(final EngineOptions pEngineOptions) {
 return new FixedStepEngine(pEngineOptions, 60);
}
@Override
public EngineOptions onCreateEngineOptions() {
 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(),
 new Camera(0, 0, 800, 480)
).setWakeLockOptions(WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {

Getting More From AndEngine

324

 Scene mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}
@Override
public void onPopulateScene(Scene pScene, OnPopulateSceneCallback
 pOnPopulateSceneCallback) {
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

2.	 Add the following code snippet to the onPopulateScene() method:
FixedStepPhysicsWorld mPhysicsWorld =
 new FixedStepPhysicsWorld(60,
 new Vector2(0,-SensorManager.GRAVITY_EARTH*2f),
 false, 8, 3);
pScene.registerUpdateHandler(mPhysicsWorld);
Rectangle platformRect = new Rectangle(400f, 200f, 250f, 20f,
 this.getVertexBufferObjectManager());
platformRect.setColor(0f, 0f, 0f);
final FixtureDef platformFixtureDef =
 PhysicsFactory.createFixtureDef(20f, 0f, 1f);
final Body platformBody = PhysicsFactory.createBoxBody(
 mPhysicsWorld, platformRect, BodyType.KinematicBody,
 platformFixtureDef);
mPhysicsWorld.registerPhysicsConnector(
 new PhysicsConnector(platformRect, platformBody));
pScene.attachChild(platformRect);
float platformRelativeMinX = -200f;
float platformRelativeMaxX = 200f;
final float platformVelocity = 3f;
final float platformMinXWorldCoords =
 (platformRect.getX() + platformRelativeMinX) /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT;
final float platformMaxXWorldCoords =
 (platformRect.getX() + platformRelativeMaxX) /
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT;
platformBody.setLinearVelocity(platformVelocity, 0f);

3.	 Insert the following code directly below the preceding code in the
onPopulateScene() method:
pScene.registerUpdateHandler(new IUpdateHandler() {
 @Override
 public void onUpdate(float pSecondsElapsed) {
 if(platformBody.getWorldCenter().x >

Chapter 10

325

 platformMaxXWorldCoords) {
 platformBody.setTransform(
 platformMaxXWorldCoords,
 platformBody.getWorldCenter().y,
 platformBody.getAngle());
 platformBody.setLinearVelocity(
 -platformVelocity, 0f);
 } else if(platformBody.getWorldCenter().x <
 platformMinXWorldCoords) {
 platformBody.setTransform(
 platformMinXWorldCoords,
 platformBody.getWorldCenter().y,
 platformBody.getAngle());
 platformBody.setLinearVelocity(
 platformVelocity, 0f);
 }
 }
 @Override
 public void reset() {}
});

4.	 Finish the onPopulateScene() method and our activity by placing the following
code after the preceding code to create a physics-enabled box that rests on
the platform:

Rectangle boxRect = new Rectangle(400f, 240f, 60f, 60f,
 this.getVertexBufferObjectManager());
boxRect.setColor(0.2f, 0.2f, 0.2f);
FixtureDef boxFixtureDef =
 PhysicsFactory.createFixtureDef(200f, 0f, 1f);
mPhysicsWorld.registerPhysicsConnector(
 new PhysicsConnector(boxRect,
 PhysicsFactory.createBoxBody(mPhysicsWorld, boxRect,
 BodyType.DynamicBody, boxFixtureDef)));
pScene.attachChild(boxRect);

Getting More From AndEngine

326

How it works...
In the first step, we prepare our MovingPhysicsPlatformActivity class by inserting into
it the standard, overridden BaseGameActivity methods that most AndEngine games use.
For more information on setting up an activity for use with AndEngine, see the Understanding
the life cycle recipe in Chapter 1, AndEngine Game Structure. The following image shows how
our platform moves on a single axis, in this case to the right, while keeping the box on top of it:

In step two, we first create a FixedStepPhysicsWorld object and register it as an update
handler with our scene. Then, we create a Rectangle object, named platformRect, that
will represent our moving platform and place it near the center of the screen. Next, we set the
color of the platformRect rectangle to black using the setColor() method with a value
of 0f for the red, green, and blue float parameters. We then create a fixture definition for the
platform. Notice that the friction is set to 1f to prevent objects on it from sliding too much
while it is moving.

Next, we create the Body object, named platformBody, for the platform. Then, we register a
PhysicsConnector class to connect the platformRect rectangle to the platformBody
body. After attaching platformRect to our scene, we declare and set the variables that will
control the moving platform:

ff The platformRelativeMinX and platformRelativeMaxX variables represent
how far to the left and right that the platform will move from its starting location in
scene units.

ff The platformVelocity variable represents the speed in meters per second for our
physics platform body.

ff The next two variables, platformMinXWorldCoords and
platformMaxXWorldCoords, represent the absolute position of the
platformRelativeMinX and platformRelativeMaxX variables and are
calculated from the platform's initial x position scaled by the default PIXEL_TO_
METER_RATIO_DEFAULT.

ff Finally, we set the initial velocity of our platformBody body to the
platformVelocity variable to make the body actively mobile as soon as the
scene is first drawn. For more information on creating physics simulations, see the
Introduction to the Box2D physics extension and the Understanding different body
types recipes in Chapter 6, Applications of Physics.

Chapter 10

327

The third step registers a new IUpdateHandler handler with our scene. In the onUpdate()
method, we test if the platform's location is beyond the absolute bounds that we previously
defined, platformMinXWorldCoords and platformMaxXWorldCoords. Depending
on which absolute bound is reached, we set the location of the platformBody body to the
reached bound and set its velocity to move away from the boundary. For more information on
conditional update handlers, see the Update handlers and conditionals recipe in Chapter 7,
Working with Update Handlers.

In step four, we create and attach a box body to rest on the platform. For more information on
creating a physics-enabled box, see the Understanding different body types recipe in Chapter
6, Applications of Physics.

See also
ff Understanding the life cycle in Chapter 1, AndEngine Game Structure.

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics.

ff Understanding different body types in Chapter 6, Applications of Physics.

ff Update handlers and conditionals in Chapter 7, Working with Update Handlers.

Creating a physics-based rope bridge
With the Box2D physics extension, creating complex physics-enabled elements is simple. One
example of such a complex element is a rope bridge that reacts to collisions. In this recipe, we
will see how to implement a method that creates a rope bridge tailored to specific parameters
that control the bridge's size and physical properties.

Getting ready...
Create a new activity class named PhysicsBridgeActivity that extends
BaseGameActivity.

How to do it...
Follow these steps to build our PhysicsBridgeActivity activity class:

1.	 Place the following code in our activity to give us a standard AndEngine activity:
@Override
public Engine onCreateEngine(final EngineOptions pEngineOptions) {
 return new FixedStepEngine(pEngineOptions, 60);
}
@Override
public EngineOptions onCreateEngineOptions() {

Getting More From AndEngine

328

 return new EngineOptions(true,
 ScreenOrientation.LANDSCAPE_SENSOR,
 new FillResolutionPolicy(),
 new Camera(0, 0, 800, 480))
 .setWakeLockOptions(WakeLockOptions.SCREEN_ON);
}
@Override
public void onCreateResources(OnCreateResourcesCallback
 pOnCreateResourcesCallback) {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}
@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback) {
 Scene mScene = new Scene();
 mScene.setBackground(new Background(0.9f,0.9f,0.9f));
 pOnCreateSceneCallback.onCreateSceneFinished(mScene);
}
@Override
public void onPopulateScene(Scene pScene, OnPopulateSceneCallback
 pOnPopulateSceneCallback) {
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

2.	 Next, place the following, incomplete method in our activity. This method will facilitate
the creation of our bridge:
public void createBridge(Body pGroundBody,
 final float[] pLeftHingeAnchorPoint,
 final float pRightHingeAnchorPointX,
 final int pNumSegments,
 final float pSegmentsWidth,
 final float pSegmentsHeight,
 final float pSegmentDensity,
 final float pSegmentElasticity,
 final float pSegmentFriction,
 IEntity pScene, PhysicsWorld pPhysicsWorld,
 VertexBufferObjectManager
 pVertexBufferObjectManager) {
 final Rectangle[] BridgeSegments =
 new Rectangle[pNumSegments];
 final Body[] BridgeSegmentsBodies = new Body[pNumSegments];
 final FixtureDef BridgeSegmentFixtureDef =
 PhysicsFactory.createFixtureDef(
 pSegmentDensity, pSegmentElasticity,

Chapter 10

329

 pSegmentFriction);
 final float BridgeWidthConstant = pRightHingeAnchorPointX –
 pLeftHingeAnchorPoint[0] + pSegmentsWidth;
 final float BridgeSegmentSpacing = (
 BridgeWidthConstant / (pNumSegments+1) –
 pSegmentsWidth/2f);
 for(int i = 0; i < pNumSegments; i++) {

 }
}

3.	 Insert the following code inside of the for loop of the createBridge()
method above:
BridgeSegments[i] = new Rectangle(
 ((BridgeWidthConstant / (pNumSegments+1))*i) +
 pLeftHingeAnchorPoint[0] + BridgeSegmentSpacing,
 pLeftHingeAnchorPoint[1]-pSegmentsHeight/2f,
 pSegmentsWidth, pSegmentsHeight,
 pVertexBufferObjectManager);
BridgeSegments[i].setColor(0.97f, 0.75f, 0.54f);
pScene.attachChild(BridgeSegments[i]);
BridgeSegmentsBodies[i] = PhysicsFactory.createBoxBody(
 pPhysicsWorld, BridgeSegments[i], BodyType.DynamicBody,
 BridgeSegmentFixtureDef);
BridgeSegmentsBodies[i].setLinearDamping(1f);
pPhysicsWorld.registerPhysicsConnector(
 new PhysicsConnector(BridgeSegments[i],
 BridgeSegmentsBodies[i]));
final RevoluteJointDef revoluteJointDef = new RevoluteJointDef();
if(i==0) {
 Vector2 anchorPoint = new Vector2(
 BridgeSegmentsBodies[i].getWorldCenter().x –
 (BridgeSegmentSpacing/2 + pSegmentsWidth/2)/
 PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 BridgeSegmentsBodies[i].getWorldCenter().y);
 revoluteJointDef.initialize(pGroundBody,
 BridgeSegmentsBodies[i], anchorPoint);
} else {
 Vector2 anchorPoint = new Vector2(
 (BridgeSegmentsBodies[i].getWorldCenter().x +
 BridgeSegmentsBodies[i-1]
 .getWorldCenter().x)/2,
 BridgeSegmentsBodies[i].getWorldCenter().y);
 revoluteJointDef.initialize(BridgeSegmentsBodies[i-1],

Getting More From AndEngine

330

 BridgeSegmentsBodies[i], anchorPoint);
}
pPhysicsWorld.createJoint(revoluteJointDef);
if(i==pNumSegments-1) {
 Vector2 anchorPoint = new Vector2(BridgeSegmentsBodies[i].
getWorldCenter().x + (BridgeSegmentSpacing/2 + pSegmentsWidth/2)/
PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
BridgeSegmentsBodies[i].getWorldCenter().y);
 revoluteJointDef.initialize(pGroundBody,
BridgeSegmentsBodies[i], anchorPoint);
 pPhysicsWorld.createJoint(revoluteJointDef);
}

4.	 Finally, add the following code inside of our onPopulateScene() method:
final FixedStepPhysicsWorld mPhysicsWorld = new
FixedStepPhysicsWorld(60, new Vector2(0,-SensorManager.GRAVITY_
EARTH), false, 8, 3);
pScene.registerUpdateHandler(mPhysicsWorld);

FixtureDef groundFixtureDef = PhysicsFactory.createFixtureDef(0f,
0f, 0f);
Body groundBody = PhysicsFactory.createBoxBody(mPhysicsWorld, 0f,
0f, 0f, 0f, BodyType.StaticBody, groundFixtureDef);

createBridge(groundBody, new float[] {0f,240f}, 800f, 16,
40f, 10f, 4f, 0.1f, 0.5f, pScene, mPhysicsWorld, this.
getVertexBufferObjectManager());

Rectangle boxRect = new Rectangle(100f,400f,50f,50f,this.
getVertexBufferObjectManager());
FixtureDef boxFixtureDef = PhysicsFactory.createFixtureDef(25f,
0.5f, 0.5f);
mPhysicsWorld.registerPhysicsConnector(new
PhysicsConnector(boxRect, PhysicsFactory.
createBoxBody(mPhysicsWorld, boxRect, BodyType.DynamicBody,
boxFixtureDef)));
pScene.attachChild(boxRect);

How it works...
In step one, we set up our PhysicsBridgeActivity activity class by implementing the
standard, overridden BaseGameActivity methods that most AndEngine games use. For
more information on setting up an activity for use with AndEngine, see the Understanding the
life cycle recipe in Chapter 1, AndEngine Game Structure. The following image shows what our
physics-enabled bridge looks like with a physics-enabled square resting on it:

Chapter 10

331

In the second step, we implement the beginning of a method, named createBridge(),
that will create our physics-enabled bridge. The first parameter, pGroundBody, is
the ground Body object to which the bridge will be attached. The second parameter,
pLeftHingeAnchorPoint, represents the x and y location of the upper-left side of the
bridge. The third parameter, pRightHingeAnchorPointX, represents the x location of the
right-hand side of the bridge. The next three parameters, pNumSegments, pSegmentsWidth,
and pSegmentsHeight, represent how many segments the bridge will consist of and the
width and height of each segment. The pSegmentDensity, pSegmentElasticity, and
pSegmentFriction parameters will be directly passed to a fixture definition that will be
applied to the segments of the bridge. For more information on fixture definitions, see the
Introduction to the Box2D physics extension recipe in Chapter 6, Applications of Physics.
The next two parameters, pScene and pPhysicsWorld, tell our method what the bridge
segment rectangles and bridge segment bodies should be attached to. The final parameter
is our VertexBufferObjectManager object and will be passed to the rectangles that
represent each segment of our bridge.

The first two variables, BridgeSegments and BridgeSegmentsBodies, defined in the
createBridge() method, are arrays that will hold the segment rectangles and segment
bodies. They are defined to have a length passed by the pNumSegments parameter. The next
variable, BridgeSegmentFixtureDef, is the fixture definition that each segment of the
bridge will have. The BridgeWidthConstant variable represents the width of the bridge,
calculated by finding the difference between the left and right anchors added to the width
of a single segment of the bridge. The last variable, BridgeSegmentSpacing, represents
how much space should be between each segment and is determined by dividing the width
of the bridge by one more than the number of segments, and subtracting from that the
half-width of the segments. We then create a for loop that will create and position the
number of segments passed in the pNumSegments parameter.

In the third step, we fill the previously created for loop. First, we create the current segment's
rectangle, BridgeSegments[i], that will act as the visual representation of the segment.
We place it on the x axis using the BridgeWidthConstant variable divided by one more
than the number of segments, and multiply that by the current segment number before
adding the left hinge's x position, pLeftHingeAnchorPoint[0] and the amount of spacing
between the segments, BridgeSegmentSpacing. For the y axis position of the current
segment's rectangle, we place it at the left hinge's y position minus the segments' height
divided by 2f to make it flush with the hinge position.

Getting More From AndEngine

332

Next, we set the color of each segment to a light orange, 0.97f red, 0.75f green, and 0.54f
blue. After attaching the Rectangle object to the passed scene, we create the current
segment's body by passing the segment's rectangle and a BodyType value of Dynamic
to the standard PhysicsFactory.CreateBoxBody() method. We then set the linear
damping to 1f to smoothen the rhythmic movements caused by a collision. Next, we register
a PhysicsConnector class to connect the current segment's rectangle to the current
segment's body.

Now that we have established a position and created corresponding rectangles and bodies
for each segment, we create a RevoluteJointDef object, revoluteJointDef, to
attach each segment to the bridge via a revolute joint. We test to see if the current segment
is the first and, if so, attach the segment to the ground Body object instead of a previous
segment. For the first bridge segment, the definition of the Vector2 anchorPoint places
the RevoluteJointDef definition's anchor at an x location of the segment's x value,
BridgeSegmentsBodies[i].getWorldCenter().x, minus the segment spacing,
BridgeSegmentSpacing, divided by 2, plus the segment width, pSegmentsWidth,
divided by 2, and scaled to the PIXEL_TO_METER_RATIO_DEFAULT default. The y
location of the first segment's anchor point is simply the current segment's y value,
BridgeSegmentsBodies[i].getWorldCenter().y. For the remaining segments,
the anchor point's x location is computed by averaging the x position of the current
segment with the x position of the previous segment.

Then, revoluteJointDef is initialized using the initialize() method with the first
body either set to the ground body, pGroundBody, if the current segment is the first, or the
previous segment's body, BridgeSegmentsBodies[i-1], if the current segment is not
the first. The second body of revoluteJointDef is set to the current segment's body,
and, after exiting the if statement, the joint is created with the pPhysicsWorld object's
createJoint() method. We then test if the current segment will be the last created and, if
so, create another revolute joint to attach the segment to the ground body to the right-hand
side of the segment using a similar anchor point x location formula as for the first segment.
For more information on physics simulations, see the Introduction to the Box2D physics
extension and the Understanding different body types recipes in Chapter 6, Applications
of Physics.

Chapter 10

333

In the final step, we first create a FixedStepPhysicsWorld object inside of the
onPopulateScene() method and register it as an update handler with our scene. Then,
we create a ground body to which our bridge will be attached. Next, we create our bridge
by calling the createBridge() method. We pass groundBody as the first parameter, a
position of 0f,240f to represent the mid-left side of the screen as the left anchor point, and
an x position representing the right-hand side of the screen as the right anchor point. We
then pass an integer of 16 as the number of segments to create and a segment width and
height of 40f and 10f. Next, we pass a segment density of 4f, a segment elasticity of 0.1f,
a segment friction of 0.5f, our scene to which the segment rectangles will be attached,
our physics world, and our VertexBufferObjectManager object. Now that our bridge is
created, we create a simple box body to show that the bridge reacts to collisions properly.

See also
ff Understanding the life cycle in Chapter 1, AndEngine Game Structure.

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics.

ff Understanding different body types in Chapter 6, Applications of Physics.

A
Source Code for

MagneTank

This chapter provides a short description of and references for all of the classes used in
the game MagneTank. MagneTank is available on the Google Play Store (http://play.
google.com/store/apps/details?id=ifl.games.MagneTank), formerly known as
Android Market, and the source code can be found in the code bundle for this book. The
gameplay includes aiming the tank's turret by touching where the turret should point and
tapping in the same location to fire the turret. For the sake of demonstrating physics-enabled
vehicles, the tank can be pulled to the left-hand side or the right-hand side by first touching it
and then sliding in the desired direction.

The game's classes are spread across the following topics:

ff Game level classes

ff Input classes

ff Layer classes

ff Manager classes

ff Menu classes

ff Activity and engine classes

Source Code for MagneTank

336

The following image is an in-game screenshot from MagneTank's second level:

Game level classes
These classes are present in the playable portion of the game:

ManagedGameScene.java
MagneTank's ManagedGameScene class builds upon the ManagedGameScene class
presented in Chapter 5, Scene and Layer Management, by adding a stepped loading screen
to show what the game is loading for each level. The idea behind using loading steps is the
same as showing a loading screen for one frame before loading the game, much like how
the SceneManager class functions when showing a new scene, but the loading screen is
updated for each loading step instead of just once at the first showing of the loading screen.

This class is based on the following recipes:

ff Applying text to a layer in Chapter 2, Working with Entities

ff Creating the scene manager in Chapter 5, Scene and Layer Management

ff What are update handlers? in Chapter 7, Working with Update Handlers

Appendix A

337

GameLevel.java
The GameLevel class brings all of the other in-game classes together to form the
playable part of MagneTank. It handles the construction and execution of each actual
game level. It extends a customized ManagedGameScene class that incorporates a list of
LoadingRunnable objects, which create the level in steps that allow each progression of
the level construction to be shown on the screen. The GameLevel class also determines
the completion or failure of each game level using the GameManager class to test for win
or lose conditions.

This class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

ff Using parallax backgrounds to create perspective in Chapter 3, Designing Your Menu

ff Introducing the camera object in Chapter 4, Working with Cameras

ff Limiting camera area with the bound camera in Chapter 4, Working with Cameras

ff Taking a closer look with zoom cameras in Chapter 4, Working with Cameras

ff Applying a HUD to the camera in Chapter 4, Working with Cameras

ff Customizing managed scenes and layers in Chapter 5, Scene and
Layer Management

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff What are update handlers? in Chapter 7, Working with Update Handlers

ff Creating sprite pools in Chapter 8, Maximizing Performance

LoadingRunnable.java
The LoadingRunnable class acts as a Runnable object while also updating the loading
screen in the ManagedGameScene class. An ArrayList type of LoadingRunnable objects
is present in each ManagedGameScene class to give the developer as much or as little
control over how much loading progression is shown to the player. It is important to note that,
while the updating of the loading screen is not processor-intensive in MagneTank, a more
complicated, graphically complex loading screen may take a large toll on the loading times
of each level.

Source Code for MagneTank

338

Levels.java
The Levels class holds an array of all of the levels that can be played in the game as well as
helper methods to retrieve specific levels.

BouncingPowerBar.java
The BouncingPowerBar class displays a bouncing indicator to the player that indicates how
powerful each shot from the vehicle will be. It transforms the visible location of the indicator
to a fractional value, which then has a cubic curve applied to add even more of a challenge
when trying to achieve the most powerful shot. The following image shows what the power bar
looks like after being constructed from three separate images:

The BouncingPowerBar class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Applying a HUD to the camera in Chapter 2, Working with Entities

MagneTank.java
The MagneTank class creates and controls the vehicle that the game is based on. It pieces
together Box2D bodies using joints to create the physics-enabled vehicle, and uses the
player's input, via BoundTouchInputs, to control how each part of the vehicle moves and
functions. The following image shows the MagneTank before and after construction:

Appendix A

339

The MagneTank class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Using relative rotation in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Limiting camera area with the bound camera in Chapter 4, Working with Cameras

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

ff Creating unique bodies by specifying vertices in Chapter 6, Applications of Physics

ff Using forces, velocities, and torque in Chapter 6, Applications of Physics

ff Working with joints in Chapter 6, Applications of Physics

ff What are update handlers? in Chapter 7, Working with Update Handlers

ff Applying a sprite-based shadow in Chapter 10, Getting More From AndEngine

Source Code for MagneTank

340

MagneticCrate.java
The MagneticCrate class extends the MagneticPhysObject class. It creates and handles
the various types of crates available to launch from the MagneTank vehicle. Each crate is
displayed in the form of a tiled sprite, with the tiled sprite's image index set to the crate's type.
The MagneticCrate class makes use of Box2D's postSolve() method from the physics
world's ContactListener. The following image shows the various sizes and types of crates
available in the game:

The MagneticCrate class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

ff Using preSolve and postSolve in Chapter 6, Applications of Physics

ff What are update handlers? in Chapter 7, Working with Update Handlers

MagneticOrb.java
The MagneticOrb class creates a visual effect around MagneTank's current projectile.
It rotates two swirl images (see the following image) in opposite directions to give the illusion
of a spherical force. The MagneticOrb class forms and fades as projectiles are loaded
and shot.

Appendix A

341

The MagneticOrb class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Using relative rotation in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

MagneticPhysObject.java
The MagneticPhysObject class extends the PhysObject class to allow an object to be
grabbed, or released, by the MagneTank vehicle. When grabbed, the object has anti-gravity
forces applied as well as forces that pull the object toward the MagneTank turret.

The MagneticPhysObject class is based on the following recipes:

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

ff Using forces, velocities, and torque in Chapter 6, Applications of Physics

ff Applying anti-gravity to a specific body in Chapter 6, Applications of Physics

ff What are update handlers? in Chapter 7, Working with Update Handlers

Source Code for MagneTank

342

MechRat.java
The MechRat class extends the PhysObject class to take advantage of the postSolve()
method that gets called when it collides with another physics-enabled object. If the force is
great enough, MechRat is destroyed, and previously loaded particle effects are immediately
shown. MechRat also has wheels connected by revolute joints, which add to the challenge of
destroying it. The following image shows the visual composition of MechRat:

This class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Update Handlers

ff Bringing a scene to life with sprites in Chapter 2, Working with Update Handlers

ff Overriding the onManagedUpdate method in Chapter 2, Working with
Update Handlers

ff Working with particle systems in Chapter 2, Working with Update Handlers

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

ff Creating unique bodies by specifying vertices in Chapter 6, Applications of Physics

ff Working with joints in Chapter 6, Applications of Physics

ff Using preSolve and postSolve in Chapter 6, Applications of Physics

ff Creating destructible objects in Chapter 6, Applications of Physics

ff What are update handlers? in Chapter 7, Working with Update Handlers

Appendix A

343

MetalBeamDynamic.java
This class represents the non-static, physics-enabled girders seen in the game. The length of
each beam can be set thanks to its repeating texture.

The MetalBeamDynamic class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Using relative rotation in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

MetalBeamStatic.java
Similar to the MetalBeamDynamic class above, this class also represents a girder, but the
BodyType option of this object is set to Static to create an immobile barrier.

The MetalBeamStatic class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Using relative rotation in Chapter 2, Working with Entities

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

Source Code for MagneTank

344

ParallaxLayer.java
The ParallaxLayer class, which was written and released by the co-author of this book, Jay
Schroeder, allows for the easy creation of ParallaxEntity objects that give the perception
of depth when the Camera object is moved across a scene. The level of parallax effect can be
set, and the ParallaxLayer class takes care of correctly rendering each ParallaxEntity
object. The following image shows the background layers of MagneTank that are attached to a
ParallaxLayer class:

Appendix A

345

The ParallaxLayer class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Working with OpenGL in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using parallax backgrounds to create perspective in Chapter 3, Designing Your Menu

PhysObject.java
The PhysObject class is used in MagneTank to delegate contacts received from the physics
world's ContactListener. It also facilitates a destroy() method to make destroying
physics objects easier.

The PhysObject class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

ff Using preSolve and postSolve in Chapter 6, Applications of Physics

ff What are update handlers? in Chapter 7, Working with Update Handlers

RemainingCratesBar.java
The RemainingCratesBar class gives a visual representation to the player of which crates
are left to be shot by MagneTank. The size, type, and number of crates left in each level are
retrieved from the GameLevel class and vary from level to level. When one crate is shot, the
RemainingCratesBar class animates to reflect the change in the game state.

This class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Working with OpenGL in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

Source Code for MagneTank

346

TexturedBezierLandscape.java
The TexturedBezierLandscape class creates two textured meshes and a physics body
that represent the ground of the level. As the name implies, the landscape is comprised of
Bezier curves to show rising or falling slopes. The textured meshes are made from repeating
textures to avoid any visible seams between landscaped areas. The following image shows
the two textures used to create the landscape as well as an example of how the combined
meshes appear after a Bezier slope has been applied:

The TexturedBezierLandscape class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Working with OpenGL in Chapter 2, Working with Entities

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

ff Creating unique bodies by specifying vertices in Chapter 6, Applications of Physics

ff Textured meshes in Chapter 10, Getting More From AndEngine

Appendix A

347

TexturedMesh.java
This class is the same TexturedMesh class as found in the recipe, Textured meshes in
Chapter 10, Getting More From AndEngine.

WoodenBeamDynamic.java
This class is similar to the MetalBeam classes, but adds a health aspect that causes the
WoodenBeamDynamic class to be replaced with a particle effect once its health reaches zero.

The WoodenBeamDynamic class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Using relative rotation in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Working with particle systems in Chapter 2, Working with Entities

ff Introduction to the Box2D physics extension in Chapter 6, Applications of Physics

ff Understanding different body types in Chapter 6, Applications of Physics

ff Using preSolve and postSolve in Chapter 6, Applications of Physics

ff What are update handlers? in Chapter 7, Working with Update Handlers

Input classes
Each of these classes handles a specific input method used in the game:

BoundTouchInput.java
The BoundTouchInput class facilitates the delegation of inputs, which are then bound to
the BoundTouchInput class. This can be easily seen in-game when moving MagneTank
to aim at the turret. When the touch enters another touchable area, it stays tied to the
original area.

GrowButton.java
The GrowButton class simply shows an image that grows to a specific scale when the player
is touching it and returns to its original scale when the touch is lifted or lost.

Source Code for MagneTank

348

This class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

GrowToggleButton.java
Based on the GrowButton class, this class adds the functionality to show one or two
TiledTextureRegion indices, depending on the state of a condition.

The GrowToggleButton class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

GrowToggleTextButton.java
Based on the GrowToggleButton class, this class uses a Text object instead of a
TiledTextureRegion object to show the state of a condition.

The GrowToggleTextButton class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

Layer classes
These classes represent the layers that are present within the game:

LevelPauseLayer.java
The LevelPauseLayer class represents the layer that is shown to the player when a level is
paused. It displays the current level number, score, and high score, as well as buttons to go
back to the game, back to the level-select screen, restart the level, or skip to the next level.

Appendix A

349

This class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities

ff Customizing managed scenes and layers in Chapter 5, Scene and Layer
Management

ff What are update handlers? in Chapter 7, Working with Update Handlers

LevelWonLayer.java
The LevelWonLayer class represents the layer that is shown to the player when a level
is completed successfully. It displays the current level number, score, and high score, as
well as the star rating that the player received. It also includes buttons to go back to the
level-select screen, replay the level, or go on to the next level. The following image shows
the LevelWonLayer class textures and what they look like when assembled in the game:

The LevelWonLayer class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

ff Customizing managed scenes and layers in Chapter 5, Scene and
Layer Management

ff What are update handlers? in Chapter 7, Working with Update Handlers

Source Code for MagneTank

350

ManagedLayer.java
This class is the same ManagedLayer class as found in the Creating the scene manager
recipe in Chapter 5, Scene and Layer Management.

OptionsLayer.java
This layer is accessible from the MainMenu scene and allows the player to enable or disable
music and sounds as well as choose a graphics quality or reset the level completion data that
they have achieved.

The OptionsLayer class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities

ff Customizing managed scenes and layers in Chapter 5, Scene and
Layer Management

ff What are update handlers? in Chapter 7, Working with Update Handlers

Manager classes
These classes each manage a specific aspect of the game:

GameManager.java
The GameManager class simply facilitates the checking of two conditions to determine
if a level is completed or failed. Using that information, the game manager then calls the
appropriate methods set in the GameLevel class.

This class is based on the following recipes:

ff Creating the game manager in Chapter 1, AndEngine Game Structure

ff What are update handlers? in Chapter 7, Working with Update Handlers

ResourceManager.java
The ResourceManager class is very similar to the one found in Chapter 1, AndEngine
Game Structure, but adds the ability to use a set of lower quality textures, if desired. It also
includes methods for determining an accurate font texture size to prevent wasting valuable
texture memory.

Appendix A

351

This class is based on the following recipes:

ff Applying texture options in Chapter 1, AndEngine Game Structure

ff Using AndEngine font resources in Chapter 1, AndEngine Game Structure

ff Creating the resource manager in Chapter 1, AndEngine Game Structure

ff Working with OpenGL in Chapter 2, Working with Entities

ff Setting up the resource manager for scene resources in Chapter 5, Scene and
Layer Management

SceneManager.java
This class is identical to the SceneManager class found in the Creating the scene manager
recipe in Chapter 5, Scene and Layer Management.

SFXManager.java
This simple class handles the playback of music and sounds as well as their muted state.

The SFXManager class is based on the following recipe:

ff Introducing sounds and music in Chapter 1, AndEngine Game Structure

Menu classes
These classes are used only for the menus in the game.

LevelSelector.java
This class closely resembles the level selector found in Chapter 3, Designing Your Menu, but
uses a series of LevelSelectorButton objects instead of sprites.

This class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Creating our level selection system in Chapter 3, Designing Your Menu

LevelSelectorButton.java
The LevelSelectorButton class visually shows the player the state of a level, locked or
unlocked, and the number of stars achieved if the level is unlocked.

Source Code for MagneTank

352

This class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

MainMenu.java
The MainMenu class holds two Entity objects, one representing the title screen and one
representing the level-select screen. The movement between the two screens is achieved
using entity modifiers. During the first showing of the main menu, a loading screen is shown
while the game's resources are being loaded.

The MainMenu class is based on the following recipes:

ff Understanding AndEngine entities in Chapter 2, Working with Entities

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Overriding the onManagedUpdate method in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

ff Customizing managed scenes and layers in Chapter 5, Scene and
Layer Management

ManagedMenuScene.java
This class is the same ManagedMenuScene class as presented in the Creating the scene
manager recipe in Chapter 5, Scene and Layer Management.

ManagedSplashScreen.java
This class is based on the ManagedMenuScene class found in the Customizing managed
scenes and layers recipe in Chapter 5, Scene and Layer Management. It adds code to unload
Entity objects after the splash screen is hidden.

SplashScreens.java
The SplashScreen class uses entity modifiers and resolution-independent positioning to
show the splash screens of the game. Each logo is clickable and starts an intent related to
the logo.

Appendix A

353

This class is based on the following recipes:

ff Bringing a scene to life with sprites in Chapter 2, Working with Entities

ff Applying text to a layer in Chapter 2, Working with Entities

ff Using modifiers and entity modifiers in Chapter 2, Working with Entities

ff Customizing managed scenes and layers in Chapter 5, Scene and
Layer Management

ff What are update handlers? in Chapter 7, Working with Update Handlers

Activity and Engine Classes
These classes act as the backbone of the game.

MagneTankActivity.java
This activity class builds upon the standard AndEngine BaseGameActivity
class with the addition of ads, some advanced resolution-scaling performed in the
onCreateEngineOptions() method, and shared preference methods to save and
restore options and scores.

This class is based on the following recipes:

ff Know the life cycle in Chapter 1, AndEngine Game Structure

ff Choosing our engine type in Chapter 1, AndEngine Game Structure

ff Saving and loading game data in Chapter 1, AndEngine Game Structure

ff Setting up an activity to use the scene manager in Chapter 5, Scene and
Layer Management

MagneTankSmoothCamera.java
This class extends the SmoothCamera object, but includes the ability to pan to the enemy
base for a specified amount of time, as well as track the MagneTank object.

This class is based on the following recipes:

ff Introducing the camera object in Chapter 4, Working with Cameras

ff Creating smooth moves with a smooth camera in Chapter 4, Working with Cameras

ff What are update handlers? in Chapter 7, Working with Update Handlers

Source Code for MagneTank

354

ManagedScene.java
This class is the same ManagedScene class as presented in the Creating the scene manager
recipe in Chapter 5, Scene and Layer Management.

SwitchableFixedStepEngine.java
This Engine object acts exactly like a FixedStepEngine object when the
EnableFixedStep() method has been called.

This class is based on the following recipes:

ff Choosing our engine type in Chapter 1, AndEngine Game Structure

ff What are update handlers? in Chapter 7, Working with Update Handlers

Index
A
AccelerationParticleInitializer 98
Activity and Engine Class

MagneTankActivity.java 353
MagneTankSmoothCamera.java 353
ManagedScene.java 354
SwitchableFixedStepEngine.java 354

Activity/screen
cons 142
pro 142

addBody() method 198
AlphaInitializer 98
AlphaModifier 84
AlphaParticleModifier 100
alpha, red, green, and blue. See ARGB
AndEngine

about 7
Box2D physics extension 187
camera 145
Engine objects, setting up 15, 16
engine type, choosing 14
entities 51
entity modifiers 88
extensions 277
font resources, using 39
lifecycle 8

AndEngineAugmentedRealityExtension 278
AndEngineCocosBuilderExtension 278
AndEngine engine type

choosing 14
AndEngine lifecycle

about 8
diagram view 12, 13

LayoutGameActivity class 13
methods, calling 8, 9
minimization/termination calls 11, 12
onCreateGame method 11
oncreate method 10
onCreateResources method 11
onCreateScene method 11
onGameCreated method 11
onPopulateScene method 11
onReloadResources method 11
onResumeGame method 11
onResume method 11
onSurfaceChanged method 11
onSurfaceCreated method 11
SimpleAsyncGameActivity class 14
SimpleBaseGameActivity class 14
SimpleLayoutGameActivity class 14
working 10

AndEngineTexturePackerExtension 278
AndEngineTMXTiledMapExtensions 278
Android Market 335
AngularImpulseBody.applyAngularImpulse()

method 208
AngularTorqueBody.applyTorque() method

208
AngularVelocityBody.setAngularVelocity()

method 208
anti-gravity

applying, to specific body 208-210
applyForce() method 207
applyLinearImpulse() method 207
ARGB 303
attachText() method 130, 135

356

B
background

about 113, 155
applying 114, 115
EntityBackground class 115, 116
RepeatingSpriteBackground class 117-119
SpriteBackground class 116, 117
stitching 155, 156, 157, 158

background window rendering
about 265
disabling 266

BaseGameActivity class 183
beginContact() 235
Bilinear texture option 35
BitmapTextureAtlasTextureRegionFactory

class 29
BlendFunctionParticleInitializer 98
body type

specifying 194-196
BouncingPowerBar class 338
BouncingPowerBar.java class 338
bound camera

used, for camera area limiting 148
working 148

BoundTouchInput.java class 347
Box2D physics extension

about 187, 188
body types 193
force, using 206
joints 211
torque, using 206
using 188-191
velocities, using 206
working 191-193

BoxBody.setTransform() method 244
bringToBounds() method 322
BuildableBitmapTextureAtlas 31, 32
buttons

adding, to menu 105-108

C
camera

about 146
chase entity functionality 148
height, adjusting 147
HUD, applying 158, 159

positioning 146
visibility, checking 147
width, adjusting 147
working 146

CardinalSplineMoveModifier modifier 87
category-filtered bodies

about 196
creating 197, 198
working 198

CircleOutlineParticleEmitter 96
CircleParticleEmitter 96
collideConnected property 224
collidesWith(pOtherEntity) method 56
collisions

about 227
working with 227-231

color mapping
SVG texture regions used 300-305

ColorModifier 84
ColorParticleInitializer 99
ColorParticleModifier 101
computeTriangles() method 205
conditionals

update handler, using with 251, 253
working 253

controller
applying to display 159-161

coordinate conversion
about 162
using 162, 163
working 164

createBridge() method 333
createFromAsset() method 41
createJoint() method 332
create() method 41
createStrokeFromAsset() method 41
createStroke() method 41
culling 275

D
DelayModifier 84
destructible objects

about 236
creating 237-239
working 240

357

display
controller, applying to 159-161

distance joint 215
DoubleSceneSplitScreenEngine 16
DoubleSceneSplitScreenEngine class 169
DrawMode type

image representations 62
dynamic bodies 193

E
EnableFixedStep() method 354
endContact() method 230
Engine 15
entities

about 51, 52
getColor() method 57
getRootEntity() method 56
getTag() method 56
getUserData() method 57
getX() method 57
getY() method 57
hasParent() method 56
isChildrenIgnoreUpdate() method 56
isIgnoreUpdate() method 56
isVisible() method 56
removing, from game 253-255
setAnchorCenter() method 57
setChildrenIgnoreUpdate(pBoolean) method

56
setChildrenVisible(pBoolean) method 56
setColor() method 57
setCullingEnabled(pBoolean) method 56
setParent(pEntity) method 56
setPosition(pX, pY) method 57
setTag(pInt) method 56
setUserData(pObject) method 57
setVisible(pBoolean method 56
setZIndex(pInt) method 57
sortChildren() method 57
update handler, attaching 248, 249
working 52-55

EntityBackground class 115, 116
entity-component model 52
entity culling

used, for rendering disable 274

entity modifiers
about 81
using 82, 83
working 83

entity modifiers, AndEngine
about 91, 92
LoopEntityModifier 88, 89
ParallelEntityModifier 89
SequenceEntityModifier 90

Entity/screen
con 143
pro 143

entity’s property
setting, update handler used 258-261

entity updates
ignoring 264, 265

ExpireParticleInitializer 97
extensions, AndEngine

AndEngineAugmentedRealityExtension 278
AndEngineCocosBuilderExtension 278
AndEngineTexturePackerExtension 278
AndEngineTMXTiledMapExtensions 278

F
FadeInModifier 84
FadeOutModifier 84
FillResolutionPolicy 17
FixedResolutionPolicy 18
FixedStepEngine 16
fixture definition 192
font resources, AndEngine

using 39-42

G
game data

about 45
loading 46, 47
saving 46, 47
working 48, 49

game level classes
BouncingPowerBar.java 338
GameLevel.java 337
Levels.java 338
LoadingRunnable.java 337

358

MagneTank.java 338
MagneticCrate.java 340
MagneticOrb.java 340
MagneticPhysObject.java 341
ManagedGameScene.java 336
MechRat.java 342
MetalBeamDynamic.java 343
MetalBeamStatic.java 343
ParallaxLayer.java 344, 345
PhysObject.java 345
RemainingCratesBar.java 345
TexturedBezierLandscape.java 346
TexturedMesh.java 347
WoodenBeamDynamic.java 347

GameLevel.java class 337
game manager

about 20
creating 21, 22
working 22, 23

GameManager.java class 350
Game optimization 263
game timers

about 256, 257
adding 256, 257
working 258

getColor() method 57
getInstance() method 172
getLoadedTextureRegion() method 312, 313
getParticleSpeed() method 285
getRootEntity() method 56
getRotation() method 260
getTag() method 56
getTextureRegion() method 311
getUserData() method 57
getWorldCenter() method 221
getX() method 57
getY() method 57
GravityParticleInitializer 99
GrowButton.java class 347
GrowToggleButton.java class 348
GrowToggleTextButton.java class 348

H
hasParent() method 56
Heads-Up Display. See HUD
hideLayer() method 174

hide() method 134
high-resolution graphics

creating, SVG used 296-300
HUD

about 158
applying to camera 158, 159

I
impact force 231
initialize() method 216, 332
Inkscape 206, 300
input classes

BoundTouchInput.java 347
GrowButton.java 347
GrowToggleButton.java 348
GrowToggleTextButton.java 348

IParticleModifier 102
isChildrenIgnoreUpdate() method 56
isIgnoreUpdate() method 56
isTouching() property 230
ISVGColorMapper interface 301
isVisible() method 56

J
joints

about 211
types 214
working with 211-214

joints, types
distance joint 215
mouse joint 216-218
prismatic joint 218, 219
pulley joint 219, 220
revolute joint 220, 221
weld joint 221

JumpModifier 84

K
kinematic bodies 193

L
layer class

LevelPauseLayer.java 348
LevelWonLayer.java 349

359

ManagedLayer.java 350
OptionsLayer.java 350

layers
about 137
hiding 138-142
primitives, applying 58, 59
retrieving 138-142
text, applying 69-73

LayoutGameActivity class 13
LevelPauseLayer.java class 348
level selection system

about 126
creating 126-131
LevelSelector class 132-134
LevelTile class 134, 135
working 132, 136

LevelSelectorButton class 351
LevelSelectorButton.java class 351
LevelSelector class variables

COLUMNS 132
mCameraWidth/mCameraHeight 133
mChapter 133
mHidden 133
mInitialX 133
mInitialY 133
mMaxLevel 133
ROWS 132
TILE_DIMENSION 132
TILE_PADDING 133

LevelSelector.java class 351
LevelTile class variables

mFont 134
mIsLocked 134
mLevelNumber 134
mTileText 134

LevelWonLayer.java class 349
LimitedFPSEngine 16
lineJointDef.initialize() method 213
LineJointRectA.setColor() method 212
live wallpaper

about 278
creating 278-282
working 282-285

loadAndManageTextureRegion() method 312
loadGameResources() method 176
loadGameTextures(pEngine, pContext)

method 44

LoadingRunnable.java
Levels.java 338

LoadingRunnable.java class 337
loadMenuResources() method 176
LoopEntityModifier 88

M
MagneTank

about 335
in-game screenshot 336

MagneTankActivity.java class 353
MagneTank.java class 338
MagneTankSmoothCamera.java class 353
MagneticCrate.java class 340
MagneticOrb.java class 340
MagneticPhysObject.java class 341
MainMenu.java class 352
ManagedGameScene.java class 336
ManagedLayer.java class 350
managed layers

customizing 177, 178
working 179-182

ManagedMenuScene.java 352
ManagedScene.java class 354
managed scenes

customizing 177, 178
working 179-182

ManagedSplashScreen.java 352
manager class

GameManager.java 350
ResourceManager.java 350
SceneManager.java 351
SFXManager.java 351

MathUtils.bringToBounds() method 321
MechRat.java class 342
menu

buttons, adding 105-108
music, adding 109-113

menu class
LevelSelectorButton.java 351
LevelSelector.java 351
MainMenu.java 352
ManagedMenuScene.java class 352
ManagedSplashScreen.java class 352
SplashScreens.java 352

Menu screen 144

360

menu system 105
MetalBeamDynamic class 343
MetalBeamDynamic.java class 343
MetalBeamStatic.java class 343
mMoveInModifier 142
modifiers

about 81
AndEngine 84
of AndEngine 84
using 82, 83
working 83

modifiers, AndEngine
AlphaModifier 84
CardinalSplineMoveModifier 87
ColorModifier 84
DelayModifier 84
FadeInModifier 84
FadeOutModifier 84
JumpModifier 84
MoveByModifier 85
MoveXModifier 85
MoveYModifier 85
PathModifier 85
RotationAtModifier 85
RotationByModifier 85
RotationModifier 85
ScaleAtModifier 85
ScaleModifier 85
SkewModifier 85
using 85, 86

mouse joint 216, 218
mouseJointDef.target.set() method 217
MoveByModifier 85
MoveXModifier 85
MovingPhysicsPlatformActivity class 326
mPhysicsWorld.destroyJoint() method 218
multiplayer extension

networking 286-296
multiple-fixture bodies

about 199
creating 199, 200
working 201, 202

music
adding, to menu 109-113

music objects
about 23
seekTo method 26

setLooping method 26, 27
setOnCompletionListener method 26
setRate method 27
setVolume method 27
using, setup 23-26

N
Nearest texture option 35
networking

multiplayer extension, using 286-296

O
object factories

about 18
creating 19
working 20

obtainPoolItem() method 269
OffCameraExpireParticleModifier 101
onAccelerationChanged() method 193
onAllocatePoolItem() method 269
onAreaTouched() method 105, 112, 207
onControlChange() method 161
onCreateEngine() method 167
onCreateEngineOptions() method 8, 14, 120
onCreate method 10
onCreateResources() method 9, 110, 160
onCreateScene() method 9, 136, 169
onDestroy() method 288
onDestroyResource method 12
onGameCreated method 11
onGameDestroyed method 12
onHandleMessage()method 293
onLoadingScreenLoadAndShown() method

173, 180
onLoadLayer() method 178
onLoadScene() method 177
onManagedUpdate method

about 77
overriding 78
working 80, 81

onManagedUpdate() method 81, 141, 250
onPauseGame method 12
onPause method 11
onPinchZoom() 153
onPinchZoomStarted() method 153
onPopulateScene() method 9, 14, 82, 83, 110

361

onReloadResources method 11
onResumeGame method 11
onResume method 11
onSceneTouchEvent() method 75, 253, 318
onSurfaceChanged() method 285
onSurfaceCreate method 11
onTouchEvent() method 154
onUnloadScene() method 179
onUpdate() method 125, 261, 264
onUpdateParticle() method 285
OptionsLayer class 181
OptionsLayer.java class 350

P
parallax background

about 120-126
used, for perspective creating 120-126

ParallaxBackground class 123
ParallaxLayer.java class 344, 345
ParallelEntityModifier 89
particle emitter

CircleOutlineParticleEmitter 96
CircleParticleEmitter 96
PointParticleEmitter 96
RectangleOutlineParticleEmitter 96

particle initializer
AccelerationParticleInitializer 98
AlphaInitializer 98
BlendFunctionParticleInitializer 98
ColorParticleInitializer 99
ExpireParticleInitializer 97
GravityParticleInitializer 99
RotationParticleInitializer 99
ScaleParticleInitializer 99
VelocityParticleInitializer 100

particle modifier
about 100
AlphaParticleModifier 100
ColorParticleModifier 101
IParticleModifier 102, 103
OffCameraExpireParticleModifier 101
RotationParticleModifier 101
ScaleParticleModifier 102

particle systems
about 93
particle emitter, selecting 96, 97

particle initializer, selecting 97-99
particle modifier, selecting 100-103
working with 93-95

PathModifier 85
pause() method 25
physics-based moving platform

about 323
creating 323-327

physics-based rope bridge
about 327
creating 327-332

Physics Body Editor 206
PhysicsEditor 206
PhysicsFactory.createBoxBody() method 223
PhysObject.java 345
PhysObject.java class 345
pinch-to-zoom functionality

about 152
using 152
working 154

play() method 25
PointParticleEmitter 96
port number 293
postSolve

about 231-234
working 235, 236

pre-multiply alpha 37
preSolve

about 231-234
working 235, 236

primitives
applying, to layer 58, 59
working 59-61

prismatic joint 218, 219
prismaticJointDef.initialize() method 219
prismaticJointDef.motorSpeed property 219
pulley joint 219, 220
pulleyJointDef.initialize() method 220

R
rag doll

about 222
creating 222
working 222-224

RatioResolutionPolicy 18

362

raycasting
about 240
creating 241-243
working 243, 244

RectangleOutlineParticleEmitter 96
RectangleParticleEmitter 97
rectangle.setAlpha() method 195, 198
recyclePoolItem(pItem) method 270
registerClientMessage() method 294
RelativeResolutionPolicy 18
relative rotation

about 74
using 74, 75
working 76, 77

RemainingCratesBar.java class 345
rendering

disabling, entity culling used 274
RepeatingSpriteBackground class 117-119
repeating texture option 35
reportRayFixture() method 244
resolution policy

about 17
selecting 17
working 17, 18

resource manager
about 42, 175
creating 42
setting up 176
working 44, 45, 176

ResourceManager class 350
ResourceManager.java class 350
revolute joint 220, 221
revoluteJointDef.initialize() method 221
RGBA_8888 format 38
rope

about 224
creating 224
working 225, 226

RotationAtModifier 85
RotationByModifier 85
RotationModifier 85
RotationParticleInitializer 99
RotationParticleModifier 101
runOnUpdateThread() method 253, 255

S
scalable vector graphics. See SVG
ScaleAtModifier 85
ScaleModifier 85
ScaleParticleInitializer 99
ScaleParticleModifier 102
scene manager

about 172
creating 172, 173
customizing 171
ManagedLayer, constructing 174
ManagedScene, constructing 174
using, activity setup 182-185
working 174, 175

SceneManager.java class 351
Scene/screen

cons 143
pro 142

seekTo method 26
sendMessage(message) method 294
SequenceEntityModifier 90
server IP 293
setAnchorCenter()method 57
setChildrenIgnoreUpdate(pBoolean) method

56
setChildrenVisible(pBoolean) method 56
setColor() method 57, 255
setCullingEnabled(pBoolean) method 56
setHeight(pHeight) method 57
setIgnoreUpdate() method 264
setIgnoreUpdate(pBoolean) method 56
setLinearVelocity() method 208
setLooping method 26, 27
setOnCompletionListener method 26
setParent(pEntity) method 56
setPosition() method 322
setPosition(pX, pY) method 57
setRate method 27
setSize(pWidth, pHeight) method 57
setTag(pInt) method 56
setUserData(pObject) method 57
setVisible(pBoolean method 56
setVolume method 27

363

setWidth(pWidth method 57
SFXManager.java class 351
SharedPreferences class 45
showLayer() method 173
showScene() method 173
SimpleAsyncGameActivity class 14
SimpleBaseGameActivity class 14
SimpleLayoutGameActivity class 14
simultaneous sound streams

about 266
limiting 267

SingleSceneSplitScreenEngine 16
SkewModifier 85
smooth camera

about 150
smooth moves, creating 151

sortChildren() method 57
sound objects

about 23
using, setup 23-26

specific body
anti-gravity, applying 208-210

SplashScreens.java class 352
split screen game

about 165
creating 165-168
working 169

SpriteBackground class 116, 117
sprite-based shadow

about 316
applying 317-319
working 319-323

SpriteGroup class 273
sprite groups

used, for render time cutting 271-273
sprite pools

about 267
creating 268
working 269-271

sprites
about 62
creating 63-67
OpenGL’s dithering capability, using 67-69

sqrt() method 253
static bodies 193

stop() method 12
SVG

about 296
high-resolution graphics, creating 296-300

SVG texture regions
used, for color mapping 300-305

SwitchableFixedStepEngine.java class 354

T
terminate() method 290
texel 35
text

applying, to layer 69-73
texture atlas source spacing 31
texture bleeding 31
TexturedBezierLandscape.java class 346
textured meshes

about 313
using 314
working 315, 316

TexturedMesh.java class 347
texture formats

A_8 39
RGB_565 38
RGBA_4444 38
RGBA_8888 38

texture options
about 34
applying 34
bilinear 35
nearest 35
repeating 35, 36
working 34

textures
about 27
BuildableBitmapTextureAtlas 31, 32
compressed textures 33
loading, from folder 307, 308-313
TiledTextureRegion 33
working with 28-31

TiledTextureRegion 33
torque

using 206-208

364

U
unique body

creating, from vertices 203-205
unloadAllTextures() method 312
unregisterUpdateHandler() method 258
update handler

about 245
attaching, to entity 248, 249
creating 246
using, for entity property setup 258-261
using, with conditionals 251-253
working 247, 250

UserData classes 48

V
velocities

using 206-208
VelocityParticleInitializer 100

W
weld joint 221
what you see is what you get. See WYSIWYG
WoodenBeamDynamic class 347
WoodenBeamDynamic.java class 347
WYSIWYG 278

Z
zoom cameras

about 149
working 149, 150

Thank you for buying

AndEngine for Android Game
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity iOS Game Development
Beginner's Guide
ISBN: 978-1-84969-040-9 Paperback: 314 pages

Develop iOS games from concept to cash flow
using Unity

1.	 Dive straight into game development with no
previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing
games for iOS

3.	 Add multiplayer, input controls, debugging, in app
and micro payments to your game

4.	 Implement the different business models that will
enable you to make money on iOS games

Creating Games with cocos2d
for iPhone 2
ISBN: 978-1-84951-900-7 Paperback: 388 pages

Master cocos2d through building nine complete games
fro the iPhone

1.	 Games are explained in detail, from the design
decisions to the code itself

2.	 Learn to build a wide variety of game types, from a
memory tile game to an endless runner

3.	 Use different design approaches to help you
explore the cocos2d framework

Please check www.PacktPub.com for information on our titles

Marmalade SDK Mobile Game
Development Essentials
ISBN: 978-1-84969-336-3 Paperback: 318 pages

Get to grips with the Marmalade SDK to develop games
fro a wide range of mobile devices, including iOS,
Android, and more

1.	 Easy to follow with lots of tips, examples and
diagrams, including a full game project that grows
with each chapter

2.	 Build video games for all popular mobile
platforms, from a single codebase, using your
existing C++ coding knowledge

3.	 Master 2D and 3D graphics techniques,
including animation of 3D models, to make
great looking games

Microsoft XNA 4.0 Game
Development Cookbook
ISBN: 978-1-84969-198-7 Paperback: 356 pages

Over 35 intermediate-advanced recipes for taking your
XNA development arsenal further

1.	 Accelerate your XNA learning with a myriad of tips
and tricks to solve your everyday problems

2.	 Get to grips with adding special effects, virtual
atmospheres and computer controlled characters
with this book and e-book

3.	 A fast-paced cookbook packed with screenshots
to illustrate each advanced step by step task

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
AndEngine Game Structure
	Introduction
	Know the life cycle
	Choosing our engine type
	Selecting a resolution policy
	Creating object factories
	Creating the game manager
	Introducing sounds and music
	Working with different types of textures
	Applying texture options
	Using AndEngine font resources
	Creating the resource manager
	Saving and loading game data

	Chapter 2
: Working with Entities
	Introduction
	Understanding AndEngine entities
	Applying primitives to a layer
	Bringing a scene to life with sprites
	Applying text to a layer
	Using relative rotation
	Overriding the onManagedUpdate method
	Using modifiers and entity modifiers
	Working with particle systems

	Chapter 3
: Designing Your Menu
	Introduction
	Adding buttons to the menu
	Adding music to the menu
	Applying a background
	Using parallax backgrounds to create perspective
	Creating our level selection system
	Hiding and retrieving layers

	Chapter 4
: Working with Cameras
	Introduction
	Introducing the camera object
	Limiting the camera area with the bound camera
	Taking a closer look with zoom cameras
	Creating smooth moves with a smooth camera
	Pinch-zoom camera functionality
	Stitching a background together
	Applying a HUD to the camera
	Applying a controller to the display
	Coordinate conversion
	Creating a split screen game

	Chapter 5
 : Scene and Layer Management
	Introduction
	Creating the scene manager
	Setting up the resource manager for scene resources
	Customizing managed scenes and layers
	Setting up an activity to use the scene manager

	Chapter 6
 : Applications of Physics
	Introduction to the Box2D physics extension
	Understanding different body types
	Creating category-filtered bodies
	Creating multiple-fixture bodies
	Creating unique bodies by specifying vertices
	Using forces, velocities, and torque
	Applying anti-gravity to a specific body
	Working with joints
	Creating a rag doll
	Creating a rope
	Working with collisions
	Using preSolve and postSolve
	Creating destructible objects
	Raycasting

	Chapter 7
 : Working with Update Handlers
	Getting started with update handlers
	Attaching an update handler to an entity
	Using update handlers with conditionals
	Handling the removal of an entity from the game
	Adding game timers
	Setting entity properties based on the time passed

	Chapter 8
 : Maximizing Performance
	Introduction
	Ignoring entity updates
	Disabling background window rendering
	Limiting simultaneous sound streams
	Creating sprite pools
	Cutting down render time with sprite groups

	Chapter 9
 : AndEngine Extensions Overview
	Introduction
	Creating live wallpaper
	Networking with the multiplayer extension
	Creating high-resolution graphics with SVG
	Color mapping with SVG texture regions

	Chapter 10
: Getting More From AndEngine
	Loading all textures from a folder
	Using textured meshes
	Applying a sprite-based shadow
	Creating a physics-based moving platform
	Creating a physics-based rope bridge

	Appendix A:
Source Code for MagneTank
	Game level classes
	Input classes
	Layer classes
	Manager classes
	Menu classes

	Index

