

What Readers Are Saying About Hello, Android

Learn to develop Android apps with this complete yet gentle introduc-

tion to the Android platform. Out of all the books on Android, Hello,

Android has the best flow and coverage for developers new to this plat-

form. You’ll be writing Android apps in no time!

Marko Gargenta

CEO, , Marakana.com

The third edition of Hello, Android gets you on the fast track of

Android application development, from the basic concepts to pub-

lishing to the Android Market. Ed shows his vast experience on the

subject and even covers hard-to-find topics such as multi-touch and

OpenGL. This is a must-read for everyone starting on the fascinating

journey of Android development.

Diego Torres Milano

Android expert and blogger,

I thoroughly enjoyed the Hello, Android book, and it helped me get on

the right track to releasing my first two apps to the Market.

Nathan Rapp

Founder, , KMBurrito Designs

More than a greeting, Hello, Android welcomes both beginners and

pros to Android development.

Michael Martin PMP

Founder, , GoogleAndBlog and Mobile Martin

Hello, Android
Introducing Google’s

Mobile Development Platform, 3rd Edition

Ed Burnette

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Portions of the book’s cover are reproduced from work created and shared by Google and

used according to terms described in the Creative Commons 2.5 Attribution License. See

http://code.google.com/policies.html#restrictions for details.

Gesture icons in Chapter 11 courtesy of GestureWorks (www.gestureworks.com).

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Susannah Davidson Pfalzer

Indexing: Seth Maislin

Copy edit: Kim Wimpsett

Layout: Steve Peter

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-56-5

ISBN-13: 978-1-934356-56-2

Printed on acid-free paper.

P1.0 printing, July 2010

Version: 2010-7-16

Contents
Acknowledgments 9

Preface 10

What Makes Android Special? 10

Who Should Read This Book? 11

What’s in This Book? . 12

What’s New in the Third Edition? 12

Online Resources . 14

Fast-Forward >> . 14

I Introducing Android 16

1 Quick Start 17

1.1 Installing the Tools . 17

1.2 Creating Your First Program 23

1.3 Running on the Emulator 23

1.4 Running on a Real Phone 28

1.5 Fast-Forward >> . 29

2 Key Concepts 30

2.1 The Big Picture . 30

2.2 It’s Alive! . 35

2.3 Building Blocks . 39

2.4 Using Resources . 40

2.5 Safe and Secure . 40

2.6 Fast-Forward >> . 41

CONTENTS 6

II Android Basics 42

3 Designing the User Interface 43

3.1 Introducing the Sudoku Example 43

3.2 Designing by Declaration 44

3.3 Creating the Opening Screen 45

3.4 Using Alternate Resources 55

3.5 Implementing an About Box 57

3.6 Applying a Theme . 61

3.7 Adding a Menu . 64

3.8 Adding Settings . 65

3.9 Starting a New Game . 66

3.10 Debugging . 69

3.11 Exiting the Game . 71

3.12 Fast-Forward >> . 71

4 Exploring 2D Graphics 73

4.1 Learning the Basics . 73

4.2 Adding Graphics to Sudoku 78

4.3 Handling Input . 87

4.4 The Rest of the Story . 93

4.5 Making More Improvements 103

4.6 Fast-Forward >> . 103

5 Multimedia 105

5.1 Playing Audio . 105

5.2 Playing Video . 112

5.3 Adding Sounds to Sudoku 115

5.4 Fast-Forward >> . 119

6 Storing Local Data 120

6.1 Adding Options to Sudoku 120

6.2 Continuing an Old Game 122

6.3 Remembering the Current Position 124

6.4 Accessing the Internal File System 126

6.5 Accessing SD Cards . 127

6.6 Fast-Forward >> . 128

R t t

CONTENTS 7

III Beyond the Basics 129

7 The Connected World 130

7.1 Browsing by Intent . 131

7.2 Web with a View . 135

7.3 From JavaScript to Java and Back 140

7.4 Using Web Services . 147

7.5 Fast-Forward >> . 160

8 Locating and Sensing 161

8.1 Location, Location, Location 161

8.2 Set Sensors to Maximum 168

8.3 Bird’s-Eye View . 172

8.4 Fast-Forward >> . 177

9 Putting SQL to Work 178

9.1 Introducing SQLite . 178

9.2 SQL 101 . 179

9.3 Hello, Database . 181

9.4 Data Binding . 189

9.5 Using a ContentProvider 192

9.6 Implementing a ContentProvider 195

9.7 Fast-Forward >> . 196

10 3D Graphics in OpenGL 198

10.1 Understanding 3D Graphics 198

10.2 Introducing OpenGL . 199

10.3 Building an OpenGL Program 200

10.4 Rendering the Scene . 202

10.5 Building a Model . 206

10.6 Lights, Camera, ... 209

10.7 Action! . 212

10.8 Applying Texture . 212

10.9 Peekaboo . 216

10.10 Measuring Smoothness 217

10.11 Fast-Forward >> . 218

R t t

CONTENTS 8

IV The Next Generation 219

11 Multi-Touch 220

11.1 Introducing Multi-Touch 220

11.2 Building the Touch Example 222

11.3 Understanding Touch Events 225

11.4 Setting Up for Image Transformation 228

11.5 Implementing the Drag Gesture 229

11.6 Implementing the Pinch Zoom Gesture 230

11.7 Fast-Forward >> . 232

12 There’s No Place Like Home 233

12.1 Hello, Widget . 233

12.2 Live Wallpaper . 242

12.3 Fast-Forward >> . 254

13 Write Once, Test Everywhere 256

13.1 Gentlemen, Start Your Emulators 257

13.2 Building for Multiple Versions 257

13.3 Evolving with Android APIs 259

13.4 Bug on Parade . 265

13.5 All Screens Great and Small 267

13.6 Installing on the SD Card 268

13.7 Fast-Forward >> . 270

14 Publishing to the Android Market 271

14.1 Preparing . 271

14.2 Signing . 272

14.3 Publishing . 273

14.4 Updating . 275

14.5 Closing Thoughts . 276

V Appendixes 277

A Java vs. the Android Language and APIs 278

A.1 Language Subset . 278

A.2 Standard Library Subset 280

A.3 Third-Party Libraries . 281

B Bibliography 282

Index 283

R t t

Acknowledgments
I’d like to thank the many people who made this book possible, includ-

ing the readers of the previous editions for all their great suggestions;

my editor, Susannah Pfalzer, for her attention to detail; Javier Collado,

Marilynn Huret, and Staffan Nöteberg for providing valuable review

comments; and especially Lisa, Michael, and Christopher for their con-

tinued patience and support.

Preface
Android is an open source software toolkit for mobile phones that was

created by Google and the Open Handset Alliance. It’s inside millions of

cell phones and other mobile devices, making Android a major platform

for application developers. Whether you’re a hobbyist or a professional

programmer, whether you are doing it for fun or for profit, it’s time to

learn more about developing for Android. This book will help you get

started.

What Makes Android Special?

There are already many mobile platforms on the market today, includ-

ing Symbian, iPhone, Windows Mobile, BlackBerry, Java Mobile Edi-

tion, Linux Mobile (LiMo), and more. When I tell people about Android,

their first question is often, Why do we need another mobile standard?

Where’s the “wow”?

Although some of its features have appeared before, Android is the first

environment that combines the following:

• A truly open, free development platform based on Linux and open

source: Handset makers like it because they can use and cus-

tomize the platform without paying a royalty. Developers like it

because they know that the platform “has legs” and is not locked

into any one vendor that may go under or be acquired.

• A component-based architecture inspired by Internet mashups:

Parts of one application can be used in another in ways not orig-

inally envisioned by the developer. You can even replace built-in

components with your own improved versions. This will unleash a

new round of creativity in the mobile space.

• Tons of built-in services out of the box: Location-based services use

GPS or cell tower triangulation to let you customize the user expe-

rience depending on where you are. A full-powered SQL database

WHO SHOULD READ THIS BOOK? 11

lets you harness the power of local storage for occasionally con-

nected computing and synchronization. Browser and map views

can be embedded directly in your applications. All these built-in

capabilities help raise the bar on functionality while lowering your

development costs.

• Automatic management of the application life cycle: Programs are

isolated from each other by multiple layers of security, which will

provide a level of system stability not seen before in smart phones.

The end user will no longer have to worry about what applications

are active or close some programs so that others can run. Android

is optimized for low-power, low-memory devices in a fundamental

way that no previous platform has attempted.

• High-quality graphics and sound: Smooth, antialiased 2D vector

graphics and animation inspired by Flash are melded with 3D-

accelerated OpenGL graphics to enable new kinds of games and

business applications. Codecs for the most common industry-

standard audio and video formats are built right in, including

H.264 (AVC), MP3, and AAC.

• Portability across a wide range of current and future hardware:

All your programs are written in Java and executed by Android’s

Dalvik virtual machine, so your code will be portable across

ARM, x86, and other architectures. Support for a variety of input

methods is included such as keyboard, touch, and trackball.

User interfaces can be customized for any screen resolution and

orientation.

Android offers a fresh take on the way mobile applications interact with

users, along with the technical underpinnings to make it possible. But

the best part of Android is the software that you are going to write for

it. This book will help you get off to a great start.

Who Should Read This Book?

The only requirement is a basic understanding of programming in Java

or a similar object-oriented language (C# will do in a pinch). You don’t

need any prior experience developing software for mobile devices. In

fact, if you do, it’s probably best if you try to forget that experience.

Android is so different that it’s good to start with an open mind.

R t t

WHAT’S IN THIS BOOK? 12

What’s in This Book?

Hello, Android is divided into four parts. Roughly speaking, the book

progresses from less advanced to more advanced topics, or from more

common to less common aspects of Android.

Several chapters share a common example: an Android Sudoku game.

By gradually adding features to the game, you’ll learn about many

aspects of Android programming including user interfaces, multime-

dia, and the Android life cycle.

In Part I, we’ll start with an introduction to Android. This is where you’ll

learn how to install the Android emulator and how to use an integrated

development environment (IDE) to write your first program. Then we’ll

introduce a few key concepts like the Android life cycle. Programming

in Android is a little different from what you’re probably used to, so

make sure you get these concepts before moving on.

Part II talks about Android’s user interface, two-dimensional graphics,

multimedia components, and simple data access. These features will be

used in most programs you write.

Part III digs deeper into the Android platform. Here you’ll learn about

connecting to the outside world, location-based services, the built-in

SQLite database, and three-dimensional graphics.

Part IV wraps things up with a discussion on using advanced input

techniques including multi-touch and extending your home screen with

widgets and live wallpaper. Finally, we’ll explore making your app com-

patible with multiple Android devices and versions and then publishing

it on the Android Market.

At the end of the book, you’ll find an appendix that covers the differ-

ences between Android and Java Standard Edition (SE), along with a

bibliography.

What’s New in the Third Edition?

The third edition has been updated to support all versions of Android

from 1.5 through 2.2 and beyond. Here’s a summary of the new features

introduced in each version and the corresponding sections that cover

those features.

R t t

WHAT’S NEW IN THE THIRD EDITION? 13

New for Cupcake

Android 1.5 (Cupcake) introduced a large number of enhancements to

the Android platform including support for soft (onscreen) keyboards,

video recording, and application widgets. Under the covers, there were

more than 1,000 changes to the Android API between 1.1 and 1.5.1

Widgets are covered in Section 12.1, Hello, Widget, on page 233.

New for Donut

Android 1.6 (Donut) added support for high- and low-density displays,

plus a number of minor changes that don’t affect most developers.2

You can learn how to support these different device form factors in

Section 13.5, All Screens Great and Small, on page 267.

New for Eclair

Android 2.0 (Eclair) added support for multi-touch, virtual keys, cen-

tralized account management, synchronization APIs, docking, HTML5,

and more.3 The 2.0 version was quickly replaced by Android 2.0.1 (also

called Eclair), which contains all the changes in the 2.0 version plus a

few bug fixes.4 Multi-touch is covered in Chapter 11, Multi-Touch, on

page 220.

New for Eclair MR1

Android 2.1 (Eclair Maintenance Release 1) added support for live wall-

papers, more HTML5 support, and other minor improvements.5 Home

screen enhancements, including live wallpapers and widgets, are cov-

ered in Chapter 12, There’s No Place Like Home, on page 233.

New for FroYo and Beyond

Android 2.2 (FroYo) supports application installation on external stor-

age (SD cards), a much faster Java virtual machine, OpenGL ES 2.0

APIs, and more.6 Section 13.6, Installing on the SD Card, on page 268

explains how to set up your program to install on external storage and

when you should and shouldn’t do that.

1. http://d.android.com/sdk/api_diff/3/changes.html

2. http://d.android.com/sdk/api_diff/4/changes.html

3. http://d.android.com/sdk/api_diff/5/changes.html

4. http://d.android.com/sdk/api_diff/6/changes.html

5. http://d.android.com/sdk/api_diff/7/changes.html

6. http://d.android.com/sdk/api_diff/8/changes.html

R t t

ONLINE RESOURCES 14

Android 1.5 (or newer) is now available for all shipping Android devices.

All new devices have it installed, and Google says that almost all older

devices have upgraded. See the Android Device Dashboard7 for the lat-

est market share of active Android devices in the wild. This edition of

the book does not cover version 1.1 or earlier.

Note: It may be a while before all devices are upgraded to the latest ver-

sion of Android (if ever), so Chapter 13, Write Once, Test Everywhere, on

page 256 covers how to create a single program that supports multiple

versions. All the examples in this book have been tested on versions 1.5

through 2.2.

Online Resources

At the website for this book (http://pragprog.com/titles/eband3), you’ll find

the following:

• The full source code for all the sample programs used in this book

• An errata page, listing any mistakes in the current edition (let’s

hope that will be empty!)

• A discussion forum where you can communicate directly with the

author and other Android developers (let’s hope that will be full!)

You are free to use the source code in your own applications as you see

fit. Note: If you’re reading the ebook, you can also click the little gray

rectangle before the code listings to download that source file directly.

Fast-Forward >>

Although most authors expect you to read every word in their books, I

know you’re not going to do that. You want to read just enough to let

you get something done, and then maybe you’ll come back later and

read something else to let you get another piece done. So, I’ve tried to

provide you with a little help so you won’t get lost.

Each chapter in this book ends with a “Fast-Forward >>” section. These

sections will provide some guidance for where you should go next when

you need to read the book out of order. You’ll also find pointers to other

resources such as books and online documentation here in case you

want to learn more about the subject.

7. http://d.android.com/resources/dashboard/platform-versions.html

R t t

FAST -FORWARD >> 15

So, what are you waiting for? The next chapter—Chapter 1, Quick Start,

on page 17—drops you right into the deep end with your first Android

program. Chapter 2, Key Concepts, on page 30 takes a step back and

introduces you to the basic concepts and philosophy of Android, and

Chapter 3, Designing the User Interface, on page 43 digs into the user

interface, which will be the most important part of most Android

programs.

Your ultimate goal will be to make your apps available for sale or free

download in the Android Market. When you’re ready, Chapter 14, Pub-

lishing to the Android Market, on page 271 will show you how to take

that final step.

R t t

Part I

Introducing Android

Chapter 1

Quick Start
Android combines the ubiquity of cell phones, the excitement of open

source software, and the corporate backing of Google and other Open

Handset Alliance members like Motorola, HTC, Verizon, and AT&T. The

result is a mobile platform you can’t afford not to learn.

Luckily, getting started developing with Android is easy. You don’t even

need access to an Android phone—just a computer where you can

install the Android SDK and phone emulator.

In this chapter, I’ll show you how to get all the development tools

installed, and then we’ll jump right in and create a working applica-

tion: Android’s version of “Hello, World.”

1.1 Installing the Tools

The Android software development kit (SDK) works on Windows, Linux,

and Mac OS X. The applications you create, of course, can be deployed

on any Android devices.

Before you start coding, you need to install Java, an IDE, and the

Android SDK.

Java 5.0+

First you need a copy of Java. All the Android development tools require

it, and programs you write will be using the Java language. JDK 5 or 6

is required.

It’s not enough to just have a runtime environment (JRE); you need the

full development kit. I recommend getting the latest Sun JDK SE 6.0

INSTALLING THE TOOLS 18

update from the Sun download site.1 The 32-bit version seems to work

best (see the “32-bit vs. 64-bit” sidebar). Mac OS X users should get the

latest version of Mac OS X and the JDK from the Apple website.

To verify you have the right version, run this command from your shell

window. Here’s what I get when I run it:

C:\> java -version

java version "1.6.0_14"

Java(TM) SE Runtime Environment (build 1.6.0_14-b08)

Java HotSpot(TM) Client VM (build 14.0-b16, mixed mode, sharing)

You should see something similar, with version “1.6.something” or later.

Eclipse

Next, you should install a Java development environment if you don’t

have one already. I recommend Eclipse, because it’s free and because

it’s used and supported by the Google developers who created Android.

The minimum version of Eclipse is 3.3.1, but you should always use

whatever is the most up-to-date production version. Go to the Eclipse

downloads page,2 and pick “Eclipse IDE for Java Developers.” Note that

you need more than just the standard Eclipse SDK “classic” platform.

Download the package into a temporary directory, unpack it (usually

this is just a matter of double-clicking it), and move the entire unpacked

directory to a permanent location (like C:\Eclipse on Windows or /Appli-

cations/Eclipse on Mac OS X).

If you don’t want to use Eclipse (there’s always one in every crowd),

support for other IDEs such as NetBeans and JetBrains IDEA is avail-

able from their respective communities. Or if you’re really old-school,

you can forgo an IDE entirely and just use the command-line tools.3

The rest of the book will assume you’re using Eclipse, so if you’re not,

you’ll need to make adjustments as necessary.

Android SDK Starter Package

Starting with Android 2.0, the Android SDK has been broken into two

parts: the SDK Starter Package and the SDK Components. First, use

your web browser to get the starter package. The Android download

1. http://java.sun.com/javase/downloads

2. http://www.eclipse.org/downloads

3. See http://d.android.com/guide/developing/tools for documentation on the command-line

tools.

R t t

INSTALLING THE TOOLS 19

32-bit vs. 64-bit

If you’re using a 64-bit version of Windows, you may be tempted
to install the 64-bit version of the Java Development Kit instead
of the 32-bit version. Unfortunately, Eclipse 3.5 does not provide
a 64-bit version of the Eclipse IDE for Java Developers package
(see bug 293969).∗ There is a workaround (unzip the main pack-
age first and then unzip the 64-bit “classic” platform on top of
that), but unless you really need 64-bit Java, it’s easier to just
use the 32-bit version of the JDK for now. A 64-bit package will
be available in the next release of Eclipse (version 3.6, “Helios”),
so this whole problem will go away soon.

∗. https://bugs.eclipse.org/bugs/show_bug.cgi?id=293969

page4 has packages for Windows, Mac OS X, and Linux. After down-

loading the package that’s right for you, unpack the .zip file to a tempo-

rary directory.

By default, the SDK will be expanded into a subdirectory like android-

sdk-windows. Move that subdirectory underneath a permanent directory

such as C:\Google or /Applications/Google. Then make a note of the full

path so you can refer to it later as your SDK install directory.

No special install program is needed for either Eclipse or the SDK, but

I do recommend you add the SDK’s tools directory to your PATH.

Android SDK Components

Next, invoke the SDK Setup program. On Windows, run SDK Setup.exe.

On Linux and Mac OS X, run the tools/android program, select Available

Packages, put a check mark next to every package, and click Install

Selected.

The Setup program will now display a list of available components

including documentation, platforms, add-on libraries, and USB drivers

(see Figure 1.1, on the following page). Select Accept All and then click

Install. All the components listed will be downloaded and installed into

your SDK install directory. Note: this can take a long time to complete.

4. http://d.android.com/sdk

R t t

INSTALLING THE TOOLS 20

Figure 1.1: Installing the Android SDK Components

To make it go faster, you can accept or reject the individual components

separately instead of installing them all.

If you get an HTTPS SSL error, then cancel the window and select Set-

tings from the main SDK and AVD Manager window. Select the option

Force https:// sources to be fetched using http://, and then click Save

& Apply. Exit the Setup program and start it again.

The next step is to start Eclipse and configure it.

Eclipse Plug-In

To make development easier, Google has written a plug-in for Eclipse

called the Android Development Toolkit (ADT). To install the plug-in,

follow these steps (note these directions are for Eclipse 3.5—different

versions may have slightly different menus and options):

1. Start Eclipse by running eclipse.exe on Windows or eclipse on Mac

OS X or Linux. If you’re prompted for a workspace directory, just

accept the default and click OK.

2. Select the Help menu and then select Install New Software... (Help

> Install New Software...). See the Joe Asks. . . on page 22 if you

get a connection error.

R t t

INSTALLING THE TOOLS 21

Figure 1.2: Installing the Android Development Toolkit

3. Click the Available Software Sites link in the dialog that appears.

4. Click the Add... button.

5. Enter the location of the Android Development Tools update site:

https://dl-ssl.google.com/android/eclipse/.

Once you’ve filled it out, the dialog box should look like Figure 1.2.

6. Click OK to return to the Sites list, and click Test Connection

to verify the site you just entered. If you have trouble with this

address, try using http in the location instead of https. Once you’re

satisfied the address is correct, click OK again to return to the

Install New Software dialog.

7. Type the word “android” in the Work With field and press Return.

“Developer Tools” should now appear in the list below.

8. Select the checkbox next to Developer Tools and then click Next.

If you get an error message at this point, then you may not have

the right version of Eclipse. I strongly recommend using either the

prebuilt Eclipse IDE for Java Developers or the Eclipse IDE for

Java EE Development package, version 3.5 or newer.

If you have a custom install of Eclipse, then to use the Android

editors, you will also need to install the Web Standard Tools (WST)

plug-in and all its prerequisites.

R t t

INSTALLING THE TOOLS 22

Joe Asks. . .

It Says “Connection Error,” So Now What?

If you get a connection error, the most likely cause is some kind
of firewall erected by your system administrators. To get outside
the firewall, you’ll need to configure Eclipse with the address
of your proxy server. This is the same proxy server you use for
your web browser, but unfortunately Eclipse isn’t smart enough
to pick up the setting from there.

To tell Eclipse about the proxy, select Window > Preferences >
General > Network Connections (Eclipse > Preferences on Mac
OS X), turn on the option for Manual proxy configuration, enter
the server name and port number, and click OK. If you don’t
see the option, you may be running an older version of Eclipse.
Try looking under Preferences > Install/Update, or search the
preferences for the word proxy.

See the Web Tools platform home page5 for more details and down-

load links. These are already built into the recommended packages

mentioned earlier.

9. Review the list of items to be installed, click Next again, accept the

license agreements, and then click Finish to start the download

and install process.

10. Once the install is done, restart Eclipse.

11. When Eclipse comes back up, you may see a few error messages

because you need to tell it where the Android SDK is located.

Select Window > Preferences > Android (Eclipse > Preferences on

Mac OS X), and enter the SDK install directory you noted earlier.

Click OK.

Whew! Luckily, you have to do that only once (or at least once every

time a new version of ADT or Eclipse comes out). Now that everything

is installed, it’s time to write your first program.

5. http://www.eclipse.org/webtools

R t t

CREATING YOUR FIRST PROGRAM 23

1.2 Creating Your First Program

ADT comes with a built-in example program, or template, that we’re

going to use to create a simple “Hello, Android” program in just a few

seconds. Get your stopwatch ready. Ready? Set? Go!

Select File > New > Project... to open the New Project dialog box. Then

select Android > Android Project, and click Next.

Enter the following information:

Project name: HelloAndroid

Build Target: Android 2.2

Application name: Hello, Android

Package name: org.example.hello

Create Activity: Hello

Min SDK Version: 8

When you’re done, it should look something like Figure 1.3, on the next

page.

Click Finish. The Android plug-in will create the project and fill it in

with some default files. Eclipse will build it and package it up so it will

be ready to execute. If you get an error about missing source folders,

select Project > Clean to fix it.

OK, that takes care of writing the program; now all that’s left is to try

running it. First we’ll run it under the Android emulator.

1.3 Running on the Emulator

To run your Android program, go to the Package Explorer window,

right-click the HelloAndroid project, and select Run As > Android Appli-

cation. If you’re following along in Eclipse, you may see an error dialog

like the one in Figure 1.4, on page 25. This indicates we haven’t told

the emulator what kind of phone to emulate.

Creating an AVD

To do this, you need to create an Android Virtual Device (AVD) using

either Eclipse or the android avd command.6 It’s easier to use Eclipse,

so select Yes in the AVD Error dialog to open the AVD Manager. You can

open the manager again later by selecting Window > Android SDK and

AVD Manager.

6. http://d.android.com/guide/developing/tools/avd.html

R t t

RUNNING ON THE EMULATOR 24

Figure 1.3: New Android project

R t t

RUNNING ON THE EMULATOR 25

Keeping Up with the Plug-In

The Android Eclipse plug-in is a work in progress that changes
much more often than the Android SDK. The version you down-
load may be different from the one I used when writing this
book, and it may contain a few, shall we say, idiosyncrasies. I
recommend you check the plug-in site monthly to pick up any
new features and fixes.

Figure 1.4: Missing Android Virtual Device (AVD)

Click the New... button, and then fill out the fields for the new AVD as

follows:

Name: em22

Target: Android 2.2 - API Level 8

SDCard: 64

Skin: Default (HVGA)

This tells Eclipse to set up a generic device called “em22,” which has the

Android 2.2 (FroYo) firmware installed. A 64MB virtual Secure Digital

(SD) card will be allocated, along with a half-VGA (320×480) display.

When you are done, you should see something like Figure 1.6, on

page 27. Because of updates in the SDK tools since this was written,

your screen may look slightly different.

Click Create AVD to create the virtual device. A few seconds later you

should see a message that the device has been created. Click OK, select

the AVD, and then click Start... and then Launch to bring it up. Close

the AVD Manager window when you’re done.

R t t

RUNNING ON THE EMULATOR 26

Cupcake vs. Donut vs. Eclair vs. FroYo

The version of Android running on your emulator (or real phone)
must be compatible with your program’s build target. For exam-
ple, if you try to run an Android 2.2 (FroYo) program on an
Android 1.5 (Cupcake) phone, it won’t work because Android
1.5 phones can only run 1.5 or earlier programs. Android 2.2
phones, on the other hand, can run programs built for 2.2, 2.1,
2.0.1, 2.0, 1.6, 1.5, and earlier. But it may be a while before most
phones have been upgraded (if ever).

So, why not just target Android 1.5? Unfortunately, applica-
tions built for 1.5 don’t always display correctly on the larger
and smaller screens found on 1.6 phones. Luckily, there’s an
easy way to make your programs compatible with all versions
of Android. See Chapter 13, Write Once, Test Everywhere, on
page 256 for instructions.

Figure 1.5: Running the “Hello, Android” program

R t t

RUNNING ON THE EMULATOR 27

Figure 1.6: Creating an AVD in Eclipse

R t t

RUNNING ON A REAL PHONE 28

Shortening the Turnaround

Starting the emulator is expensive. Think about it this way—
when you first turn on your phone, it needs to boot up just like
any computer system. Closing the emulator is just like turning off
the phone or pulling the batteries out. So, don’t turn it off!

Leave the emulator window running as long as Eclipse is run-
ning. The next time you start an Android program, Eclipse will
notice the emulator is already there and will just send it the new
program to run.

Let’s Try That Again

Once you have a valid AVD, the Android emulator window will start up

and boot the Android operating system. The first time you do this, it

may take a minute or two, so be patient. You may need to right-click

the project and select Run As > Android Application again. If you see

an error message saying that the application is not responding, select

the option to continue waiting. If you see a key guard screen, swipe it

as directed to unlock.

Eclipse will send a copy of your program to the emulator to execute.

The application screen comes up, and your “Hello, Android” program is

now running (see Figure 1.5, on page 26). That’s it! Congratulations on

your first Android program.

1.4 Running on a Real Phone

Running an Android program on a physical device such as the Droid

or Nexus One during development is almost identical to running it on

the emulator. You need to enable USB debugging on the phone itself

(by starting the Settings application and selecting Applications > Devel-

opment > USB Debugging), install the Android USB device driver if you

haven’t already (Windows only), and then plug the phone into your com-

puter using the USB cable that came with the phone.7

7. See http://d.android.com/guide/developing/device.html for the latest device driver and

installation instructions.

R t t

FAST -FORWARD >> 29

Close the emulator window if it’s already open. As long as the phone is

plugged in, Eclipse will load and run applications on the phone instead.

When you’re ready to publish your application for others to use, there

are a few more steps you’ll need to take. Chapter 14, Publishing to the

Android Market, on page 271 will cover that in more detail.

1.5 Fast-Forward >>

Thanks to the Eclipse plug-in, creating a skeletal Android program

takes only a few seconds. In Chapter 3, Designing the User Interface, on

page 43, we’ll begin to flesh out that skeleton with a real application—a

Sudoku game. This sample will be used in several chapters to demon-

strate Android’s API.

But before delving into that, you should take a few minutes to read

Chapter 2, Key Concepts, on the following page. Once you grasp the

basic concepts such as activities and life cycles, the rest will be much

easier to understand.

Although the use of Eclipse to develop Android programs is optional, I

highly recommend it. If you’ve never used Eclipse before, you may want

to invest in a quick reference such as the Eclipse IDE Pocket Guide

[Bur05].

R t t

Chapter 2

Key Concepts
Now that you have an idea of what Android is, let’s take a look at how it

works. Some parts of Android may be familiar, such as the Linux ker-

nel, OpenGL, and the SQL database. Others will be completely foreign,

such as Android’s idea of the application life cycle.

You’ll need a good understanding of these key concepts in order to write

well-behaved Android applications, so if you read only one chapter in

this book, read this one.

2.1 The Big Picture

Let’s start by taking a look at the overall system architecture—the key

layers and components that make up the Android open source software

stack. In Figure 2.1, on the next page, you can see the “20,000-foot”

view of Android. Study it closely—there will be a test tomorrow.

Each layer uses the services provided by the layers below it. Starting

from the bottom, the following sections highlight the layers provided by

Android.

Linux Kernel

Android is built on top of a solid and proven foundation: the Linux

kernel. Created by Linus Torvalds in 1991, Linux can be found today

in everything from wristwatches to supercomputers. Linux provides the

hardware abstraction layer for Android, allowing Android to be ported

to a wide variety of platforms in the future.

Internally, Android uses Linux for its memory management, process

management, networking, and other operating system services. The

Android phone user will never see Linux, and your programs will not

THE BIG PICTURE 31

Figure 2.1: Android system architecture

make Linux calls directly. As a developer, though, you’ll need to be

aware it’s there.

Some utilities you need during development interact with Linux. For

example, the adb shell command1 will open a Linux shell in which you

can enter other commands to run on the device. From there you can

examine the Linux file system, view active processes, and so forth, sub-

ject to security restrictions.

Native Libraries

The next layer above the kernel contains the Android native libraries.

These shared libraries are all written in C or C++, compiled for the

particular hardware architecture used by the phone, and preinstalled

by the phone vendor.

Some of the most important native libraries include the following:

• Surface Manager: Android uses a compositing window manager

similar to Vista or Compiz, but it’s much simpler. Instead of draw-

1. http://d.android.com/guide/developing/tools/adb.html

R t t

THE BIG PICTURE 32

ing directly to the screen buffer, your drawing commands go into

off-screen bitmaps that are then combined with other bitmaps to

form the display the user sees. This lets the system create all

sorts of interesting effects such as see-through windows and fancy

transitions.

• 2D and 3D graphics: Two- and three-dimensional elements can be

combined in a single user interface with Android. The library will

use 3D hardware if the device has it or a fast software renderer if

it doesn’t. See Chapter 4, Exploring 2D Graphics, on page 73 and

Chapter 10, 3D Graphics in OpenGL, on page 198.

• Media codecs: Android can play video and record and play back

audio in a variety of formats including AAC, AVC (H.264), H.263,

MP3, and MPEG-4. See Chapter 5, Multimedia, on page 105 for an

example.

• SQL database: Android includes the lightweight SQLite database

engine,2 the same database used in Firefox and the Apple iPhone.3

You can use this for persistent storage in your application. See

Chapter 9, Putting SQL to Work, on page 178 for an example.

• Browser engine: For the fast display of HTML content, Android

uses the WebKit library.4 This is the same engine used in the

Google Chrome browser, Apple’s Safari browser, the Apple iPhone,

and Nokia’s S60 platform. See Chapter 7, The Connected World,

on page 130 for an example.

These libraries are not applications that stand by themselves. They

exist only to be called by higher-level programs. Starting in Android

1.5, you can write and deploy your own native libraries using the Native

Development Toolkit (NDK). Native development is beyond the scope of

this book, but if you’re interested, you can read all about it online.5

Android Runtime

Also sitting on top of the kernel is the Android runtime, including the

Dalvik virtual machine and the core Java libraries.

2. http://www.sqlite.org

3. See http://www.zdnet.com/blog/burnette/iphone-vs-android-development-day-1/682 for a

comparison of iPhone and Android development.
4. http://www.webkit.org

5. http://d.android.com/sdk/ndk

R t t

THE BIG PICTURE 33

Joe Asks. . .

What’s a Dalvik?

Dalvik is a virtual machine (VM) designed and written by Dan
Bornstein at Google. Your code gets compiled into machine-
independent instructions called bytecodes, which are then
executed by the Dalvik VM on the mobile device.

Although the bytecode formats are a little different, Dalvik is
essentially a Java virtual machine optimized for low memory
requirements. It allows multiple VM instances to run at once and
takes advantage of the underlying operating system (Linux) for
security and process isolation.

Bornstein named Dalvik after a fishing village in Iceland where
some of his ancestors lived.

The Dalvik VM is Google’s implementation of Java, optimized for mobile

devices. All the code you write for Android will be written in Java and

run within the VM. Dalvik differs from traditional Java in two important

ways:

• The Dalvik VM runs .dex files, which are converted at compile time

from standard .class and .jar files. .dex files are more compact and

efficient than class files, an important consideration for the limited

memory and battery-powered devices that Android targets.

• The core Java libraries that come with Android are different from

both the Java Standard Edition (Java SE) libraries and the Java

Mobile Edition (Java ME) libraries. There is a substantial amount

of overlap, however. In Appendix A, on page 278, you’ll find a com-

parison of Android and standard Java libraries.

Application Framework

Sitting above the native libraries and runtime, you’ll find the Applica-

tion Framework layer. This layer provides the high-level building blocks

you will use to create your applications. The framework comes pre-

installed with Android, but you can also extend it with your own com-

ponents as needed.

The most important parts of the framework are as follows:

• Activity Manager: This controls the life cycle of applications (see

Section 2.2, It’s Alive!, on page 35) and maintains a common

“backstack” for user navigation.

R t t

THE BIG PICTURE 34

Embrace and Extend

One of the unique and powerful qualities of Android is that all
applications have a level playing field. What I mean is that the
system applications have to go through the same public API
that you use. You can even tell Android to make your applica-
tion replace the standard applications if you want.

• Content providers: These objects encapsulate data that needs to be

shared between applications, such as contacts. See Section 2.3,

Content Providers, on page 40.

• Resource manager: Resources are anything that goes with your

program that is not code. See Section 2.4, Using Resources, on

page 40.

• Location manager: An Android phone always knows where it is.

See Chapter 8, Locating and Sensing, on page 161.

• Notification manager: Events such as arriving messages, appoint-

ments, proximity alerts, alien invasions, and more can be pre-

sented in an unobtrusive fashion to the user.

Applications and Widgets

The highest layer in the Android architecture diagram is the Applica-

tions and Widgets layer. Think of this as the tip of the Android iceberg.

End users will see only these programs, blissfully unaware of all the

action going on below the waterline. As an Android developer, however,

you know better.

Applications are programs that can take over the whole screen and

interact with the user. On the other hand, widgets (which are some-

times called gadgets), operate only in a small rectangle of the Home

screen application.

The majority of this book will cover application development, because

that’s what most of you will be writing. Widget development is covered

in Chapter 12, There’s No Place Like Home, on page 233.

When someone buys an Android phone, it will come prepackaged with

a number of standard system applications, including the following:

• Phone dialer

• Email

R t t

IT’S ALIVE! 35

• Contacts

• Web browser

• Android Market

Using the Android Market, the user will be able to download new pro-

grams to run on their phone. That’s where you come in. By the time

you finish this book, you’ll be able to write your own killer applications

for Android.

Now let’s take a closer look at the life cycle of an Android application.

It’s a little different from what you’re used to seeing.

2.2 It’s Alive!

On your standard Linux or Windows desktop, you can have many appli-

cations running and visible at once in different windows. One of the

windows has keyboard focus, but otherwise all the programs are equal.

You can easily switch between them, but it’s your responsibility as the

user to move the windows around so you can see what you’re doing and

close programs you don’t need.

Android doesn’t work that way.

In Android, there is one foreground application, which typically takes

over the whole display except for the status line. When the user turns

on their phone, the first application they see is the Home application

(see Figure 2.2, on the next page).

When the user runs an application, Android starts it and brings it to the

foreground. From that application, the user might invoke another appli-

cation, or another screen in the same application, and then another and

another. All these programs and screens are recorded on the applica-

tion stack by the system’s Activity Manager. At any time, the user can

press the Back button to return to the previous screen on the stack.

From the user’s point of view, it works a lot like the history in a web

browser. Pressing Back returns them to the previous page.

Process != Application

Internally, each user interface screen is represented by an Activity class

(see Section 2.3, Activities, on page 39). Each activity has its own life

cycle. An application is one or more activities plus a Linux process to

contain them. That sounds pretty straightforward, doesn’t it? But don’t

get comfortable yet; I’m about to throw you a curve ball.

R t t

IT’S ALIVE! 36

Figure 2.2: The Home application

In Android, an application can be “alive” even if its process has been

killed. Put another way, the activity life cycle is not tied to the process

life cycle. Processes are just disposable containers for activities. This is

probably different from every other system you’re familiar with, so let’s

take a closer look before moving on.

Life Cycles of the Rich and Famous

During its lifetime, each activity of an Android program can be in one

of several states, as shown in Figure 2.3, on the next page. You, the

developer, do not have control over what state your program is in. That’s

all managed by the system. However, you do get notified when the state

is about to change through the onXX () method calls.

You override these methods in your Activity class, and Android will call

them at the appropriate time:

• onCreate(Bundle): This is called when the activity first starts up.

You can use it to perform one-time initialization such as creating
R t t

IT’S ALIVE! 37

Figure 2.3: Life cycle of an Android activity

the user interface. onCreate() takes one parameter that is either

null or some state information previously saved by the onSaveIn-

stanceState() method.

• onStart(): This indicates the activity is about to be displayed to the

user.

• onResume(): This is called when your activity can start interacting

with the user. This is a good place to start animations and music.

• onPause(): This runs when the activity is about to go into the back-

ground, usually because another activity has been launched in

front of it. This is where you should save your program’s persis-

tent state, such as a database record being edited.

• onStop(): This is called when your activity is no longer visible to

the user and it won’t be needed for a while. If memory is tight,

onStop() may never be called (the system may simply terminate

your process).

R t t

IT’S ALIVE! 38

Flipping the Lid

Here’s a quick way to test that your state-saving code is working
correctly. In current versions of Android, an orientation change
(between portrait and landscape modes) will cause the system
to go through the process of saving instance state, pausing,
stopping, destroying, and then creating a new instance of the
activity with the saved state. On the T-Mobile G1 phone, for
example, flipping the lid on the keyboard will trigger this, and
on the Android emulator, pressing Ctrl+F11 or the 7 or 9 key
on the keypad will do it.

• onRestart(): If this method is called, it indicates your activity is

being redisplayed to the user from a stopped state.

• onDestroy(): This is called right before your activity is destroyed. If

memory is tight, onDestroy() may never be called (the system may

simply terminate your process).

• onSaveInstanceState(Bundle): Android will call this method to allow

the activity to save per-instance state, such as a cursor position

within a text field. Usually you won’t need to override it because

the default implementation saves the state for all your user inter-

face controls automatically.

• onRestoreInstanceState(Bundle): This is called when the activity is

being reinitialized from a state previously saved by the onSave-

InstanceState() method. The default implementation restores the

state of your user interface.

Activities that are not running in the foreground may be stopped, or

the Linux process that houses them may be killed at any time in order

to make room for new activities. This will be a common occurrence,

so it’s important that your application be designed from the beginning

with this in mind. In some cases, the onPause() method may be the last

method called in your activity, so that’s where you should save any data

you want to keep around for next time.

In addition to managing your program’s life cycle, the Android frame-

work provides a number of building blocks that you use to create your

applications. Let’s take a look at those next.

R t t

BUILDING BLOCKS 39

2.3 Building Blocks

A few objects are defined in the Android SDK that every developer needs

to be familiar with. The most important ones are activities, intents,

services, and content providers. You’ll see several examples of them in

the rest of the book, so I’d like to briefly introduce them now.

Activities

An activity is a user interface screen. Applications can define one or

more activities to handle different phases of the program. As discussed

in Section 2.2, It’s Alive!, on page 35, each activity is responsible for

saving its own state so that it can be restored later as part of the

application life cycle. See Section 3.3, Creating the Opening Screen, on

page 45 for an example.

Intents

An intent is a mechanism for describing a specific action, such as “pick

a photo,” “phone home,” or “open the pod bay doors.” In Android, just

about everything goes through intents, so you have plenty of opportu-

nities to replace or reuse components. See Section 3.5, Implementing

an About Box, on page 57 for an example of an intent.

For example, there is an intent for “send an email.” If your application

needs to send mail, you can invoke that intent. Or if you’re writing a

new email application, you can register an activity to handle that intent

and replace the standard mail program. The next time somebody tries

to send an email, they’ll get the option to use your program instead of

the standard one.

Services

A service is a task that runs in the background without the user’s direct

interaction, similar to a Unix daemon. For example, consider a music

player. The music may be started by an activity, but you want it to keep

playing even when the user has moved on to a different program. So, the

code that does the actual playing should be in a service. Later, another

activity may bind to that service and tell it to switch tracks or stop play-

ing. Android comes with many services built in, along with convenient

APIs to access them. Section 12.2, Live Wallpaper, on page 242 uses a

service to draw an animated picture behind the Home screen.

R t t

USING RESOURCES 40

Content Providers

A content provider is a set of data wrapped up in a custom API to read

and write it. This is the best way to share global data between appli-

cations. For example, Google provides a content provider for contacts.

All the information there—names, addresses, phone numbers, and so

forth—can be shared by any application that wants to use it. See Sec-

tion 9.5, Using a ContentProvider, on page 192 for an example.

2.4 Using Resources

A resource is a localized text string, bitmap, or other small piece of

noncode information that your program needs. At build time all your

resources get compiled into your application. This is useful for interna-

tionalization and for supporting multiple device types (see Section 3.4,

Using Alternate Resources, on page 55).

You will create and store your resources in the res directory inside your

project. The Android resource compiler (aapt)6 processes resources

according to which subfolder they are in and the format of the file.

For example, PNG and JPG format bitmaps should go in a directory

starting with res/drawable, and XML files that describe screen layouts

should go in a directory starting with res/layout. You can add suffixes

for particular languages, screen orientations, pixel densities, and more

(see Section 13.5, All Screens Great and Small, on page 267).

The resource compiler compresses and packs your resources and then

generates a class named R that contains identifiers you use to reference

those resources in your program. This is a little different from standard

Java resources, which are referenced by key strings. Doing it this way

allows Android to make sure all your references are valid and saves

space by not having to store all those resource keys. Eclipse uses a

similar method to store and reference the resources in Eclipse plug-ins.

We’ll see an example of the code to access a resource in Chapter 3,

Designing the User Interface, on page 43.

2.5 Safe and Secure

As mentioned earlier, every application runs in its own Linux process.

The hardware forbids one process from accessing another process’s

6. http://d.android.com/guide/developing/tools/aapt.html

R t t

FAST -FORWARD >> 41

memory. Furthermore, every application is assigned a specific user ID.

Any files it creates cannot be read or written by other applications.

In addition, access to certain critical operations are restricted, and you

must specifically ask for permission to use them in a file named Android-

Manifest.xml. When the application is installed, the Package Manager

either grants or doesn’t grant the permissions based on certificates

and, if necessary, user prompts. Here are some of the most common

permissions you will need:

• INTERNET: Access the Internet.

• READ_CONTACTS: Read (but don’t write) the user’s contacts data.

• WRITE_CONTACTS: Write (but don’t read) the user’s contacts data.

• RECEIVE_SMS: Monitor incoming SMS (text) messages.

• ACCESS_COARSE_LOCATION: Use a coarse location provider such as

cell towers or wifi.

• ACCESS_FINE_LOCATION: Use a more accurate location provider such

as GPS.

For example, to monitor incoming SMS messages, you would specify

this in the manifest file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.google.android.app.myapp" >

<uses-permission android:name="android.permission.RECEIVE_SMS" />

</manifest>

Android can even restrict access to entire parts of the system. Using

XML tags in AndroidManifest.xml, you can restrict who can start an activ-

ity, start or bind to a service, broadcast intents to a receiver, or access

the data in a content provider. This kind of control is beyond the scope

of this book, but if you want to learn more, read the online help for the

Android security model.7

2.6 Fast-Forward >>

The rest of this book will use all the concepts introduced in this chap-

ter. In Chapter 3, Designing the User Interface, on page 43, we’ll use

activities and life-cycle methods to define a sample application. Chap-

ter 4, Exploring 2D Graphics, on page 73 will use some of the graphics

classes in the Android native libraries. Media codecs will be explored

in Chapter 5, Multimedia, on page 105, and content providers will be

covered in Chapter 9, Putting SQL to Work, on page 178.

7. http://d.android.com/guide/topics/security/security.html

R t t

Part II

Android Basics

Chapter 3

Designing the User Interface
In Chapter 1, Quick Start, on page 17, we used the Android Eclipse

plug-in to put together a simple “Hello, Android” program in a few min-

utes. In Part II, we’ll create a more substantial example: a Sudoku

game. By gradually adding features to the game, you’ll learn about

many aspects of Android programming. We’ll start with the user inter-

face.

You can find all the sample code used in this book at http://pragprog.

com/titles/eband3. If you’re reading the PDF version of this book, you

can click the little gray rectangle before the code listings to download

that file directly.

3.1 Introducing the Sudoku Example

Sudoku makes a great sample program for Android because the game

itself is so simple. You have a grid of eighty-one tiles (nine across and

nine down), and you try to fill them in with numbers so that each col-

umn, each row, and each of the three-by-three boxes contains the num-

bers 1 through 9 only once. When the game starts, some of the numbers

(the givens) are already filled in. All the player has to do is supply the

rest. A true Sudoku puzzle has only one unique solution.

Sudoku is usually played with pencil and paper, but computerized ver-

sions are quite popular too. With the paper version, it’s easy to make

a mistake early on, and when that happens, you have to go back and

erase most of your work. In the Android version, you can change the

tiles as often as you like without having to brush away all those pesky

eraser shavings.

DESIGNING BY DECLARATION 44

Sudoku Trivia

Most people think Sudoku is some kind of ancient Japanese
game, but it’s not. Although similar puzzles can be traced
to 19th-century French magazines, most experts credit retired
American architect Howard Garns with the invention of mod-
ern Sudoku. Number Place, as it was known at the time, was
first published in the United States in 1979 by Dell Magazines.

Android Sudoku (see Figure 3.1, on the next page) will also offer a

few hints to take some of the grunt work out of puzzle solving. At one

extreme, it could just solve the puzzle for you, but that wouldn’t be any

fun, would it? So, we have to balance the hints against the challenge

and not make it too easy.

3.2 Designing by Declaration

User interfaces can be designed using one of two methods: procedural

and declarative. Procedural simply means in code. For example, when

you’re programming a Swing application, you write Java code to cre-

ate and manipulate all the user interface objects such as JFrame and

JButton. Thus, Swing is procedural.

Declarative design, on the other hand, does not involve any code. When

you’re designing a simple web page, you use HTML, a markup language

similar to XML that describes what you want to see on the page, not

how you want to do it. HTML is declarative.

Android tries to straddle the gap between the procedural and declar-

ative worlds by letting you create user interfaces in either style. You

can stay almost entirely in Java code, or you can stay almost entirely

in XML descriptors. If you look up the documentation for any Android

user interface component, you’ll see both the Java APIs and the corre-

sponding declarative XML attributes that do the same thing.

Which should you use? Either way is valid, but Google’s advice is to use

declarative XML as much as possible. The XML code is often shorter

and easier to understand than the corresponding Java code, and it’s

less likely to change in future versions.

R t t

CREATING THE OPENING SCREEN 45

Figure 3.1: The Sudoku example program for Android

Now let’s see how we can use this information to create the Sudoku

opening screen.

3.3 Creating the Opening Screen

We’ll start with a skeleton Android program created by the Eclipse plug-

in. Just as you did in Section 1.2, Creating Your First Program, on

page 23, create a new “Hello, Android” project, but this time use the

following values:

Project name: Sudoku

Build Target: Android 2.2

Application name: Sudoku

Package name: org.example.sudoku

Create Activity: Sudoku

Min SDK Version: 8

R t t

CREATING THE OPENING SCREEN 46

In a real program, of course, you would use your own names here. The

package name is particularly important. Each application in the system

must have a unique package name. Once you choose a package name,

it’s a little tricky to change it because it’s used in so many places.

I like to keep the Android emulator window up all the time and run the

program after every change, since it takes only a few seconds. If you

do that and run the program now, you’ll see a blank screen that just

contains the words “Hello World, Sudoku.” The first order of business is

to change that into an opening screen for the game, with buttons to let

the player start a new game, continue a previous one, get information

about the game, and exit. So, what do we have to change to do that?

As discussed in Chapter 2, Key Concepts, on page 30, Android applica-

tions are a loose collection of activities, each of which define a user

interface screen. When you create the Sudoku project, the Android

plug-in makes a single activity for you in Sudoku.java:

Download Sudokuv0/src/org/example/sudoku/Sudoku.java

package org.example.sudoku;

import android.app.Activity;

import android.os.Bundle;

public class Sudoku extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

}

Android calls the onCreate() method of your activity to initialize it. The

call to setContentView() fills in the contents of the activity’s screen with

an Android view widget.

We could have used several lines of Java code, and possibly another

class or two, to define the user interface procedurally. But instead,

the plug-in chose the declarative route, and we’ll continue along those

lines. In the previous code, R.layout.main is a resource identifier that

refers to the main.xml file in the res/layout directory (see Figure 3.2, on the

following page). main.xml declares the user interface in XML, so that’s

the file we need to modify. At runtime, Android parses and instanti-

ates (inflates) the resource defined there and sets it as the view for the

current activity.

R t t

CREATING THE OPENING SCREEN 47

Figure 3.2: Initial resources in the Sudoku project

It’s important to note that the R class is managed automatically by the

Android Eclipse plug-in. When you put a file anywhere in the res direc-

tory, the plug-in notices the change and adds resource IDs in R.java

in the gen directory for you. If you remove or change a resource file,

R.java is kept in sync. If you bring up the file in the editor, it will look

something like this:

Download Sudokuv0/gen/org/example/sudoku/R.java

/* AUTO-GENERATED FILE. DO NOT MODIFY.

*

* This class was automatically generated by the

* aapt tool from the resource data it found. It

* should not be modified by hand.

*/

R t t

CREATING THE OPENING SCREEN 48

package org.example.sudoku;

public final class R {

public static final class attr {

}

public static final class drawable {

public static final int icon=0x7f020000;

}

public static final class layout {

public static final int main=0x7f030000;

}

public static final class string {

public static final int app_name=0x7f040001;

public static final int hello=0x7f040000;

}

}

The hex numbers are just integers that the Android resource manager

uses to load the real data, the strings, and the other assets that are

compiled into your package. You don’t need to worry about their values.

Just keep in mind that they are handles that refer to the data, not the

objects that contain the data. Those objects won’t be inflated until they

are needed. Note that almost every Android program, including the base

Android framework itself, has an R class. See the online documentation

on android.R for all the built-in resources you can use.1

So, now we know we have to modify main.xml. Let’s dissect the origi-

nal definition to see what we have to change. Double-click main.xml in

Eclipse to open it. Depending on how you have Eclipse set up, you may

see either a visual layout editor or an XML editor. In current versions

of ADT, the visual layout editor isn’t that useful, so click main.xml or the

Source tab at the bottom to see the XML. The first line of main.xml is as

follows:

<?xml version="1.0" encoding="utf-8"?>

All Android XML files start with this line. It just tells the compiler that

the file is XML format, in UTF-8 encoding. UTF-8 is almost exactly like

regular ASCII text, except it has escape codes for non-ASCII characters

such as Japanese glyphs.

1. http://d.android.com/reference/android/R.html

R t t

CREATING THE OPENING SCREEN 49

Joe Asks. . .

Why Does Android Use XML? Isn’t That Inefficient?

Android is optimized for mobile devices with limited memory
and horsepower, so you may find it strange that it uses XML so
pervasively. After all, XML is a verbose, human-readable format
not known for its brevity or efficiency, right?

Although you see XML when writing your program, the Eclipse
plug-in invokes the Android resource compiler, aapt, to prepro-
cess the XML into a compressed binary format. It is this format,
not the original XML text, that is stored on the device.

Next we see a reference to <LinearLayout>:

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<!-- ... -->

</LinearLayout>

A layout is a container for one or more child objects and a behavior to

position them on the screen within the rectangle of the parent object.

Here is a list of the most common layouts provided by Android:

• FrameLayout: Arranges its children so they all start at the top left of

the screen. This is used for tabbed views and image

switchers.

• LinearLayout: Arranges its children in a single column or row. This

is the most common layout you will use.

• RelativeLayout: Arranges its children in relation to each other or to

the parent. This is often used in forms.

• TableLayout: Arranges its children in rows and columns, similar to

an HTML table.

Some parameters are common to all layouts:

xmlns:android="http://schemas.android.com/apk/res/android"

Defines the XML namespace for Android. You should define this

once, on the first XML tag in the file.

R t t

CREATING THE OPENING SCREEN 50

android:layout_width="fill_parent", android:layout_height="fill_parent"

Takes up the entire width and height of the parent (in this case,

the window). Possible values are fill_parent and wrap_content.

Inside the <LinearLayout> tag you’ll find one child widget:

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello" />

This defines a simple text label. Let’s replace that with some different

text and a few buttons. Here’s our first attempt:

Download Sudokuv1/res/layout/main1.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/main_title" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/continue_label" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/new_game_label" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/about_label" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/exit_label" />

</LinearLayout>

If you see warnings in the editor about missing grammar constraints

(DTD or XML schema), just ignore them. Instead of hard-coding English

text into the layout file, we use the @string/resid syntax to refer to strings

in the res/values/strings.xml file. You can have different versions of this

and other resource files based on the locale or other parameters such

as screen resolution and orientation.

R t t

CREATING THE OPENING SCREEN 51

Figure 3.3: First version of the opening screen

Open that file now, switch to the strings.xml tab at the bottom if neces-

sary, and enter this:

Download Sudokuv1/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Sudoku</string>

<string name="main_title">Android Sudoku</string>

<string name="continue_label">Continue</string>

<string name="new_game_label">New Game</string>

<string name="about_label">About</string>

<string name="exit_label">Exit</string>

</resources>

Save strings.xml so Eclipse will rebuild the project. When you run the

program now, you should see something like Figure 3.3.

Note: Because this is the third edition of the book, I have a pretty good

idea where most people run into trouble. This is it, right here. You’ve

made a lot of changes, so don’t be surprised if you get an error mes-

R t t

CREATING THE OPENING SCREEN 52

sage instead of the opening screen. Don’t panic; just skip ahead to

Section 3.10, Debugging, on page 69 for advice on how to diagnose the

problem. Usually a clue to the problem is waiting for you in the LogCat

view. Sometimes selecting Project > Clean will fix things. If you’re still

stuck, drop by the book’s web forum, and somebody would be happy to

help you there.2

The current screen is readable, but it could use some cosmetic changes.

Let’s make the title text larger and centered, make the buttons smaller,

and use a different background color. Here’s the color definition, which

you should put in res/values/colors.xml:

Download Sudokuv1/res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="background">#3500ffff</color>

</resources>

And here’s the new layout:

Download Sudokuv1/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:background="@color/background"

android:layout_height="fill_parent"

android:layout_width="fill_parent"

android:padding="30dip"

android:orientation="horizontal">

<LinearLayout

android:orientation="vertical"

android:layout_height="wrap_content"

android:layout_width="fill_parent"

android:layout_gravity="center">

<TextView

android:text="@string/main_title"

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center"

android:layout_marginBottom="25dip"

android:textSize="24.5sp" />

<Button

android:id="@+id/continue_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/continue_label" />

2. http://forums.pragprog.com/forums/152

R t t

CREATING THE OPENING SCREEN 53

Figure 3.4: Opening screen with new layout

<Button

android:id="@+id/new_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/new_game_label" />

<Button

android:id="@+id/about_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/about_label" />

<Button

android:id="@+id/exit_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/exit_label" />

</LinearLayout>

</LinearLayout>

R t t

CREATING THE OPENING SCREEN 54

Joe Asks. . .

What Are Dips and Sps?

Historically, programmers always designed computer interfaces
in terms of pixels. For example, you might make a field 300 pixels
wide, allow 5 pixels of spacing between columns, and define
icons 16-by-16 pixels in size. The problem is that if you run that
program on new displays with more and more dots per inch
(dpi), the user interface appears smaller and smaller. At some
point, it becomes too hard to read.

Resolution-independent measurements help solve this problem.
Android supports all the following units:

• px (pixels): Dots on the screen.

• in (inches): Size as measured by a ruler.

• mm (millimeters): Size as measured by a ruler.

• pt (points): 1/72 of an inch.

• dp (density-independent pixels): An abstract unit based
on the density of the screen. On a display with 160 dots
per inch, 1dp = 1px.

• dip: Synonym for dp, used more often in Google examples.

• sp (scale-independent pixels): Similar to dp but also scaled
by the user’s font size preference.

To make your interface scalable to any current and future type
of display, I recommend you always use the sp unit for text sizes
and the dip unit for everything else. You should also consider
using vector graphics instead of bitmaps (see Chapter 4, Explor-
ing 2D Graphics, on page 73).

R t t

USING ALTERNATE RESOURCES 55

Figure 3.5: In landscape mode, we can’t see the Exit button.

In this version, we introduce a new syntax, @+id/resid. Instead of refer-

ring to a resource ID defined somewhere else, this is how you create

a new resource ID to which others can refer. For example, @+id/about_

button defines the ID for the About button, which we’ll use later to make

something happen when the user presses that button.

The result is shown in Figure 3.4, on page 53. This new screen looks

good in portrait mode (when the screen is taller than it is wide), but

how about landscape mode (wide-screen)? The user can switch modes

at any time, for example, by flipping out the keyboard or turning the

phone on its side, so you need to handle that.

3.4 Using Alternate Resources

As a test, try switching the emulator to landscape mode (Ctrl+F11 or

the 7 or 9 key on the keypad). Oops! The Exit button runs off the

bottom of the screen (see Figure 3.5). How do we fix that?

You could try to adjust the layout so that it works with all orienta-

tions. Unfortunately, that’s often not possible or leads to odd-looking

screens. When that happens, you’ll need to create a different layout for

landscape mode. That’s the approach we’ll take here.

R t t

USING ALTERNATE RESOURCES 56

Create a file called res/layout-land/main.xml (note the -land suffix) that

contains the following layout:

Download Sudokuv1/res/layout-land/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:background="@color/background"

android:layout_height="fill_parent"

android:layout_width="fill_parent"

android:padding="15dip"

android:orientation="horizontal">

<LinearLayout

android:orientation="vertical"

android:layout_height="wrap_content"

android:layout_width="fill_parent"

android:layout_gravity="center"

android:paddingLeft="20dip"

android:paddingRight="20dip">

<TextView

android:text="@string/main_title"

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center"

android:layout_marginBottom="20dip"

android:textSize="24.5sp" />

<TableLayout

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center"

android:stretchColumns="*">

<TableRow>

<Button

android:id="@+id/continue_button"

android:text="@string/continue_label" />

<Button

android:id="@+id/new_button"

android:text="@string/new_game_label" />

</TableRow>

<TableRow>

<Button

android:id="@+id/about_button"

android:text="@string/about_label" />

<Button

android:id="@+id/exit_button"

android:text="@string/exit_label" />

</TableRow>

</TableLayout>

</LinearLayout>

</LinearLayout>

R t t

IMPLEMENTING AN ABOUT BOX 57

Figure 3.6: Using a landscape-specific layout lets us see all the buttons.

This uses a TableLayout to create two columns of buttons. Now run the

program again (see Figure 3.6). Even in landscape mode, all the buttons

are visible.

You can use resource suffixes to specify alternate versions of any re-

sources, not just the layout. For example, you can use them to provide

localized text strings in different languages. Android’s screen density

support depends heavily on these resource suffixes (see Section 13.5,

All Screens Great and Small, on page 267).

3.5 Implementing an About Box

When the user selects the About button, meaning that either they touch

it (if they have a touch screen) or they navigate to it with the D-pad

(directional pad) or trackball and press the selection button, we want

to pop up a window with some information about Sudoku.

After scrolling through the text, the user can press the Back button to

dismiss the window.

We can accomplish this in several ways:

• Define a new Activity, and start it.

• Use the AlertDialog class, and show it.

R t t

IMPLEMENTING AN ABOUT BOX 58

• Subclass Android’s Dialog class, and show that.

For this example, let’s define a new activity. Like the main Sudoku activ-

ity, the About activity will need a layout file. We will name it res/layout/

about.xml:

Download Sudokuv1/res/layout/about.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:padding="10dip">

<TextView

android:id="@+id/about_content"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/about_text" />

</ScrollView>

We need only one version of this layout because it will look fine in both

portrait and landscape modes.

Now add strings for the title of the About dialog box and the text it

contains to res/values/strings.xml:

Download Sudokuv1/res/values/strings.xml

<string name="about_title">About Android Sudoku</string>

<string name="about_text">\

Sudoku is a logic-based number placement puzzle.

Starting with a partially completed 9x9 grid, the

objective is to fill the grid so that each

row, each column, and each of the 3x3 boxes

(also called <i>blocks</i>) contains the digits

1 to 9 exactly once.

</string>

Note how a string resource can contain simple HTML formatting and

can span multiple lines. In case you’re wondering, the backslash char-

acter (\) in about_text prevents an extra blank from appearing before

the first word.

The About activity should be defined in About.java. All it needs to do is

override onCreate() and call setContentView(). To create a new class in

Eclipse, use File > New > Class. Specify the following:

Source folder: Sudoku/src

Package: org.example.sudoku

Name: About

R t t

IMPLEMENTING AN ABOUT BOX 59

Edit the class so it looks like this:

Download Sudokuv1/src/org/example/sudoku/About.java

package org.example.sudoku;

import android.app.Activity;

import android.os.Bundle;

public class About extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.about);

}

}

Next we need to wire all this up to the About button in the Sudoku class.

Start by adding a few imports that we’ll need to Sudoku.java:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

import android.content.Intent;

import android.view.View;

import android.view.View.OnClickListener;

In the onCreate() method, add code to call findViewById() to look up an

Android view given its resource ID, and add code to call setOnClickLis-

tener() to tell Android which object to tickle when the user touches or

clicks the view:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// Set up click listeners for all the buttons

View continueButton = findViewById(R.id.continue_button);

continueButton.setOnClickListener(this);

View newButton = findViewById(R.id.new_button);

newButton.setOnClickListener(this);

View aboutButton = findViewById(R.id.about_button);

aboutButton.setOnClickListener(this);

View exitButton = findViewById(R.id.exit_button);

exitButton.setOnClickListener(this);

}

While we’re in here, we do the same for all the buttons. Recall that

constants like R.id.about_button are created by the Eclipse plug-in in

R.java when it sees @+id/about_button in res/layout/main.xml.

R t t

IMPLEMENTING AN ABOUT BOX 60

The setOnClickListener() method needs to be passed an object that imple-

ments the OnClickListener Java interface. We’re passing it the this vari-

able, so we had better make the current class (Sudoku) implement that

interface, or we’ll get a compiler error. OnClickListener has one method in

it called onClick(), so we have to add that method to our class as well:3

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

public class Sudoku extends Activity implements OnClickListener {

// ...

public void onClick(View v) {

switch (v.getId()) {

case R.id.about_button:

Intent i = new Intent(this, About.class);

startActivity(i);

break;

// More buttons go here (if any) ...

}

}

}

To start an activity in Android, we first need to create an instance of

the Intent class. There are two kinds of intents: public (named) intents

that are registered with the system and can be called from any appli-

cation and private (anonymous) intents that are used within a single

application. For this example, we just need the latter kind. If you run

the program and select the About button now, you will get an error (see

Figure 3.7, on the following page). What happened?

We forgot one important step: every activity needs to be declared in

AndroidManifest.xml. To do that, double-click the file to open it, switch

to XML mode if necessary by selecting the AndroidManifest.xml tab at the

bottom, and add a new <activity> tag after the closing tag of the first

one:

<activity android:name=".About"

android:label="@string/about_title">

</activity>

Now if you save the manifest, run the program again, and select the

About button, you should see something like Figure 3.8, on page 62.

Press the Back button (Esc on the emulator) when you’re done.

3. If you’re a Java expert, you may be wondering why we didn’t use an anonymous inner

class to handle the clicks. You could, but according to the Android developers, every new

inner class takes up an extra 1KB of memory.

R t t

APPLYING A THEME 61

Figure 3.7: Mountain View, we have a problem

That looks OK, but wouldn’t it be nice if we could see the initial screen

behind the About text?

3.6 Applying a Theme

A theme is a collection of styles that override the look and feel of Android

widgets. Themes were inspired by Cascading Style Sheets (CSS) used

for web pages—they separate the content of a screen and its presen-

tation or style. Android is packaged with several themes that you can

reference by name,4 or you can make up your own theme by subclass-

ing existing ones and overriding their default values.

We could define our own custom theme in res/values/styles.xml, but for

this example we’ll just take advantage of a predefined one. To use it,

open the AndroidManifest.xml editor again, and change the definition of

the About activity so it has a theme property.

4. See http://d.android.com/reference/android/R.style.html for symbols beginning with

“Theme_.”

R t t

APPLYING A THEME 62

Figure 3.8: First version of the About screen

Download Sudokuv1/AndroidManifest.xml

<activity android:name=".About"

android:label="@string/about_title"

android:theme="@android:style/Theme.Dialog">

</activity>

The @android: prefix in front of the style name means this is a refer-

ence to a resource defined by Android, not one that is defined in your

program.

Running the program again, the About box now looks like Figure 3.9,

on the following page.

Many programs need menus and options, so the next two sections will

show you how to define them.

R t t

APPLYING A THEME 63

Figure 3.9: About screen after applying the dialog box theme

Joe Asks. . .

Why Not Use an HTML View?

Android supports embedding a web browser directly into a
view through the WebView class (see Section 7.2, Web with a
View , on page 135). So, why didn’t we just use that for the
About box?

Actually, you could do it either way. A WebView would support
far more sophisticated formatting than a simple TextView, but
it does have some limitations (such as the inability to use a
transparent background). Also, WebView is a heavyweight wid-
get that will be slower and take more memory than TextView.
For your own applications, use whichever one makes the most
sense for your needs.

R t t

ADDING A MENU 64

Figure 3.10: The options menu contains one item for changing the Set-

tings

3.7 Adding a Menu

Android supports two kinds of menus. First, there is the menu you get

when you press the physical Menu button. Second, there is a context

menu that pops up when you press and hold your finger on the screen

(or press and hold the trackball or the D-pad center button).

Let’s do the first kind so that when the user presses the Menu key,

they’ll open a menu like the one in Figure 3.10. First we need to define

a few strings that we’ll use later:

Download Sudokuv1/res/values/strings.xml

<string name="settings_label">Settings...</string>

<string name="settings_title">Sudoku settings</string>

<string name="settings_shortcut">s</string>

<string name="music_title">Music</string>

<string name="music_summary">Play background music</string>

<string name="hints_title">Hints</string>

<string name="hints_summary">Show hints during play</string>

Then we define the menu using XML in res/menu/menu.xml:

Download Sudokuv1/res/menu/menu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/settings"

android:title="@string/settings_label"

android:alphabeticShortcut="@string/settings_shortcut" />

</menu>

Next we need to modify the Sudoku class to bring up the menu we just

defined. To do that, we’ll need a few more imports:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

R t t

ADDING SETTINGS 65

Then we override the Sudoku.onCreateOptionsMenu() method:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

@Override

public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);

MenuInflater inflater = getMenuInflater();

inflater.inflate(R.menu.menu, menu);

return true;

}

getMenuInflater() returns an instance of MenuInflater that we use to read

the menu definition from XML and turns it into a real view. When

the user selects any menu item, onOptionsItemSelected() will be called.

Here’s the definition for that method:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.settings:

startActivity(new Intent(this, Prefs.class));

return true;

// More items go here (if any) ...

}

return false;

}

Prefs is a class that we’re going to define that displays all our preferences

and allows the user to change them.

3.8 Adding Settings

Android provides a nice facility for defining what all your program pref-

erences are and how to display them using almost no code. You define

the preferences in a resource file called res/xml/settings.xml:

Download Sudokuv1/res/xml/settings.xml

<?xml version="1.0" encoding="utf-8"?>

<PreferenceScreen

xmlns:android="http://schemas.android.com/apk/res/android">

<CheckBoxPreference

android:key="music"

android:title="@string/music_title"

android:summary="@string/music_summary"

android:defaultValue="true" />

<CheckBoxPreference

android:key="hints"

android:title="@string/hints_title"

android:summary="@string/hints_summary"

android:defaultValue="true" />

</PreferenceScreen>

R t t

STARTING A NEW GAME 66

The Sudoku program has two settings: one for background music and

one for displaying hints. The keys are constant strings that will be used

under the covers in Android’s preferences database.

Next define the Prefs class, and make it extend PreferenceActivity:

Download Sudokuv1/src/org/example/sudoku/Prefs.java

package org.example.sudoku;

import android.os.Bundle;

import android.preference.PreferenceActivity;

public class Prefs extends PreferenceActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.settings);

}

}

The addPreferencesFromResource() method reads the settings definition

from XML and inflates it into views in the current activity. All the heavy

lifting takes place in the PreferenceActivity class.

Don’t forget to register the Prefs activity in AndroidManifest.xml:

Download Sudokuv1/AndroidManifest.xml

<activity android:name=".Prefs"

android:label="@string/settings_title">

</activity>

Now rerun Sudoku, press the Menu key, select the Settings... item, and

watch with amazement as the Sudoku settings page appears (see Fig-

ure 3.11, on the next page). Try changing the values there and exiting

the program, and then come back in and make sure they’re all still set.

Code that reads the settings and does something with them will be

discussed in a different chapter (Chapter 6, Storing Local Data, on

page 120). For now let’s move on to the New Game button.

3.9 Starting a New Game

If you’ve played any Sudoku games, you know that some are easy and

some are maddeningly hard. So when the user selects New Game, we

want to pop up a dialog box asking them to select between three diffi-

culty levels. Selecting from a list of things is easy to do in Android.

R t t

STARTING A NEW GAME 67

Figure 3.11: It’s not much to look at, but we got it for free.

First we’ll need a few more strings in res/values/strings.xml:

Download Sudokuv1/res/values/strings.xml

<string name="new_game_title">Difficulty</string>

<string name="easy_label">Easy</string>

<string name="medium_label">Medium</string>

<string name="hard_label">Hard</string>

Create the list of difficulties as an array resource in res/values/arrays.xml:

Download Sudokuv1/res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<array name="difficulty">

<item>@string/easy_label</item>

<item>@string/medium_label</item>

<item>@string/hard_label</item>

</array>

</resources>

R t t

STARTING A NEW GAME 68

Figure 3.12: Difficulty selection dialog box

We’ll need a few more imports in the Sudoku class:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.util.Log;

Add code in the switch statement of the onClick() method to handle click-

ing the New Game button:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

case R.id.new_button:

openNewGameDialog();

break;

The openNewGameDialog() method takes care of creating the user inter-

face for the difficulty list.

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

private static final String TAG = "Sudoku";

private void openNewGameDialog() {

new AlertDialog.Builder(this)

.setTitle(R.string.new_game_title)

R t t

DEBUGGING 69

.setItems(R.array.difficulty,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialoginterface,

int i) {

startGame(i);

}

})

.show();

}

private void startGame(int i) {

Log.d(TAG, "clicked on " + i);

// Start game here...

}

The setItems() method takes two parameters: the resource ID of the item

list and a listener that will be called when one of the items is selected.

When you run the program now and press New Game, you’ll get the

dialog box in Figure 3.12, on the previous page.

We’re not actually going to start the game yet, so instead when you

select a difficulty level, we just print a debug message using the Log.d()

method, passing it a tag string and a message to print.

3.10 Debugging

The same techniques you use to debug programs on other platforms

can be applied to Android. These include printing messages to the log

and stepping through your program in a debugger.

Debugging with Log Messages

The Log class provides several static methods to print messages of var-

ious severity levels to the Android system log:

• Log.e(): Errors

• Log.w(): Warnings

• Log.i(): Information

• Log.d(): Debugging

• Log.v(): Verbose

• Log.wtf(): What a Terrible Failure5

5. Since Android 2.2.

R t t

DEBUGGING 70

Figure 3.13: Debugging output in the LogCat view

Users will never see this log, but as a developer you can view it in a

couple ways. In Eclipse, open the LogCat view by selecting Window >

Show View > Other... > Android > LogCat (see Figure 3.13). The view

can be filtered by severity or by the tag you specified on the method

call.

If you’re not using Eclipse, you can see the same output by running

the adb logcat command.6 I recommend you start this command in a

separate window and leave it running all the time that the emulator is

running. It won’t interfere with any other monitors.

I can’t stress enough how useful the Android log will be during devel-

opment. Remember that error we saw earlier with the About box (Fig-

ure 3.7, on page 61)? If you had opened the LogCat view at that point,

you would have seen this message: “ActivityNotFoundException: Un-

able to find explicit activity class...have you declared this activity in

your AndroidManifest.xml?” It doesn’t get any plainer than that.

6. http://d.android.com/guide/developing/tools/adb.html

R t t

EXITING THE GAME 71

Debugging with the Debugger

In addition to log messages, you can use the Eclipse debugger to set

breakpoints, single step, and view the state of your program. First, en-

able your project for debugging by adding the android:debuggable="true"

option in your AndroidManifest.xml file:7

Download Sudokuv1/AndroidManifest.xml

<application android:icon="@drawable/icon"

android:label="@string/app_name"

android:debuggable="true">

Then, simply right-click the project, and select Debug As > Android

Application.

3.11 Exiting the Game

This game doesn’t really need an Exit button, because the user can just

press the Back key or the Home key to do something else. But I wanted

to add one to show you how to terminate an activity.

Add this to the switch statement in the onClick() method:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

case R.id.exit_button:

finish();

break;

When the Exit button is selected, we call the finish() method. This shuts

down the activity and returns control to the next activity on the Android

application stack (usually the Home screen).

3.12 Fast-Forward >>

Whew, that was a lot to cover in one chapter! Starting from scratch, you

learned how to use layout files to organize your user interface and how

to use Android resources for text, colors, and more. You added controls

such as buttons and text fields, applied themes to change the program’s

appearance, and even added menus and preferences for good measure.

7. This is optional if you’re using the emulator but is required on a real device. Just

remember to remove the option before releasing your code to the public.

R t t

FAST -FORWARD >> 72

Android is a complex system, but you don’t have to know all of it to

get started. When you need help, the hundreds of pages of reference

material online go into more depth on all the classes and methods used

here.8 Another great source for tips and tricks is Planet Android.9 And

of course, if you get stuck, you can always drop by the discussion forum

for this book.10 The other readers and I will be happy to help you out.

In Chapter 4, Exploring 2D Graphics, on the following page, we’ll use

Android’s graphics API to draw the tiles for the Sudoku game.

8. To view the online documentation, open the docs subdirectory of your Android SDK

install directory, or point your browser to http://d.android.com/guide.
9. http://www.planetandroid.com

10. http://forums.pragprog.com/forums/152

R t t

Chapter 4

Exploring 2D Graphics
So far, we’ve covered the basic concepts and philosophy of Android and

how to create a simple user interface with a few buttons and a dialog

box. You’re really starting to get the hang of this Android thing. But

something is missing...what is it? Oh yeah, the fun!

Good graphics can add a bit of fun and excitement to any application.

Android puts one of the most powerful graphics libraries available on a

mobile device at your fingertips. Actually, it puts two of them there: one

for two-dimensional graphics and one for three-dimensional graphics.1

In this chapter, we will cover 2D graphics and apply that knowledge

to implement the game part of our Sudoku example. Chapter 10, 3D

Graphics in OpenGL, on page 198 will cover 3D graphics using the

OpenGL ES library.

4.1 Learning the Basics

Android provides a complete native two-dimensional graphics library

in its android.graphics package. With a basic understanding of classes

such as Color and Canvas, you’ll be up and drawing in no time.

Color

Android colors are represented with four numbers, one each for alpha,

red, green, and blue (ARGB). Each component can have 256 possible

values, or 8 bits, so a color is typically packed into a 32-bit integer. For

efficiency, Android code uses an integer instead of an instance of the

Color class.

1. Functionality for four-dimensional graphics was considered for Android, but it was

dropped because of a lack of time.

LEARNING THE BASICS 74

Red, green, and blue are self-explanatory, but alpha might not be.

Alpha is a measure of transparency. The lowest value, 0, indicates the

color is completely transparent. It doesn’t really matter what the val-

ues for RGB are, if A is 0. The highest value, 255, indicates the color

is completely opaque. Values in the middle are used for translucent, or

semitransparent, colors. They let you see some of what is underneath

the object being drawn in the foreground.

To create a color, you can use one of the static constants on the Color

class, like this:

int color = Color.BLUE; // solid blue

or if you know the alpha, red, green, and blue numbers, you can use

one of the static factory methods such as the following:

// Translucent purple

color = Color.argb(127, 255, 0, 255);

If possible, though, you’re usually better off defining all your colors in

an XML resource file. This lets you change them easily in one place

later:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="mycolor">#7fff00ff</color>

</resources>

You can reference colors by name in other XML files, as we did in Chap-

ter 3, or you can use them in Java code like this:

color = getResources().getColor(R.color.mycolor);

The getResources() method returns the ResourceManager class for the

current activity, and getColor() asks the manager to look up a color

given a resource ID.

Paint

One of the Android native graphics library’s most important classes is

the Paint class. It holds the style, color, and other information needed

to draw any graphics including bitmaps, text, and geometric shapes.

Normally when you paint something on the screen, you want to draw it

in a solid color. You set that color with the Paint.setColor() method.

For example:

cPaint.setColor(Color.LTGRAY);

This uses the predefined color value for light gray.

R t t

LEARNING THE BASICS 75

Canvas

The Canvas class represents a surface on which you draw. Initially can-

vases start off devoid of any content, like blank transparencies for an

overhead projector. Methods on the Canvas class let you draw lines,

rectangles, circles, or other arbitrary graphics on the surface.

In Android, the display screen is taken up by an Activity, which hosts a

View, which in turn hosts a Canvas. You get an opportunity to draw on

that canvas by overriding the View.onDraw() method. The only parameter

to onDraw() is a canvas on which you can draw.

Here’s an example activity called Graphics, which contains a view called

GraphicsView:

public class Graphics extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(new GraphicsView(this));

}

static public class GraphicsView extends View {

public GraphicsView(Context context) {

super(context);

}

@Override

protected void onDraw(Canvas canvas) {

// Drawing commands go here

}

}

We’re going to put some drawing commands into the onDraw() method

in the next section.

Path

The Path class holds a set of vector-drawing commands such as lines,

rectangles, and curves. Here’s an example that defines a circular path:

circle = new Path();

circle.addCircle(150, 150, 100, Direction.CW);

This defines a circle at position x=150, y=150, with a radius of 100

pixels. Now that we’ve defined the path, let’s use it to draw the circle’s

outline plus some text around the inside:

private static final String QUOTE = "Now is the time for all " +

"good men to come to the aid of their country.";

canvas.drawPath(circle, cPaint);

canvas.drawTextOnPath(QUOTE, circle, 0, 20, tPaint);

R t t

LEARNING THE BASICS 76

Figure 4.1: Drawing text around a circle

You can see the result in Figure 4.1. Since the circle was drawn in the

clockwise direction (Direction.CW), the text is also drawn that way.

If you want to get really fancy, Android provides a number of PathEffect

classes that let you do things such as apply a random permutation to a

path, cause all the line segments along a path to be smoothed out with

curves or broken up into segments, and create other effects.

Drawable

In Android, a Drawable class is used for a visual element like a bitmap or

solid color that is intended for display only. You can combine drawables

with other graphics, or you can use them in user interface widgets (for

example, as the background for a button or view).

Drawables can take a variety of forms:

• Bitmap: A PNG or JPEG image.

R t t

LEARNING THE BASICS 77

• NinePatch: A stretchable PNG image, so named because originally

it divided the image into nine sections. These are used for the

background of resizable bitmap buttons.

• Shape: Vector-drawing commands, based on Path. This is sort of a

poor man’s SVG.

• Layers: A container for child drawables that draw on top of each

other in a certain z-order.

• States: A container that shows one of its child drawables based on

its state (a bit mask). One use is to set various selection and focus

states for buttons.

• Levels: A container that shows only one of its child drawables

based on its level (a range of integers). This could be used for a

battery or signal strength gauge.

• Scale: A container for one child drawable that modifies its size

based on the current level. One use might be a zoomable picture

viewer.

Drawables are often defined in XML. Here’s a common example where

a drawable is defined to be a gradient from one color to another (in this

case, white to gray). The angle specifies the direction of the gradient

(270 degrees means top to bottom). This will be used for the background

of a view:

<?xml version="1.0" encoding="utf-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android">

<gradient

android:startColor="#FFFFFF"

android:endColor="#808080"

android:angle="270" />

</shape>

To use it, we could either refer to it in XML with the android:background=

attribute or call the setBackgroundResource() method in the view’s onCre-

ate() method like this:

setBackgroundResource(R.drawable.background);

This gives our GraphicsView example a nice gradient background, as

shown in Figure 4.2, on the next page.

Drawables should be placed in different directories depending on the

screen density for which they are designed (see Section 3.4, Using Alter-

nate Resources, on page 55).

R t t

ADDING GRAPHICS TO SUDOKU 78

Figure 4.2: Using a gradient background defined in XML

4.2 Adding Graphics to Sudoku

It’s time to apply what we’ve learned to our Sudoku example. When we

left it at the end of Chapter 3, the Sudoku game had an opening screen,

an About dialog box, and a way to start a new game. But it was missing

one very important part: the game! We’ll use the native 2D graphics

library to implement that part.

Starting the Game

First we need to fill in the code that starts the game. startGame() takes

one parameter, the index of the difficulty name selected from the list.

Here’s the new definition:

Download Sudokuv2/src/org/example/sudoku/Sudoku.java

private void startGame(int i) {

Log.d(TAG, "clicked on " + i);

Intent intent = new Intent(Sudoku.this, Game.class);

intent.putExtra(Game.KEY_DIFFICULTY, i);

startActivity(intent);

}

R t t

ADDING GRAPHICS TO SUDOKU 79

Sudoku Trivia

A few years after it was published in the United States, Num-
ber Place was picked up by the Japanese publisher Nikoli, who
gave it the much cooler-sounding name Sudoku (which means
“single number” in Japanese). From there it was exported
around the world, and the rest is history. Sadly, Garns died in
1989 before getting a chance to see his creation become a
worldwide sensation.

The game part of Sudoku will be another activity called Game, so we

create a new intent to kick it off. We place the difficulty number in an

extraData area provided in the intent, and then we call the startActivity()

method to launch the new activity.

The extraData area is a map of key/value pairs that will be passed along

to the intent. The keys are strings, and the values can be any prim-

itive type, array of primitives, Bundle, or a subclass of Serializable or

Parcelable.

Defining the Game Class

Here’s the outline of the Game activity:

Download Sudokuv2/src/org/example/sudoku/Game.java

package org.example.sudoku;

import android.app.Activity;

import android.app.Dialog;

import android.os.Bundle;

import android.util.Log;

import android.view.Gravity;

import android.widget.Toast;

public class Game extends Activity {

private static final String TAG = "Sudoku";

public static final String KEY_DIFFICULTY =

"org.example.sudoku.difficulty";

public static final int DIFFICULTY_EASY = 0;

public static final int DIFFICULTY_MEDIUM = 1;

public static final int DIFFICULTY_HARD = 2;

private int puzzle[] = new int[9 * 9];

private PuzzleView puzzleView;

R t t

ADDING GRAPHICS TO SUDOKU 80

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Log.d(TAG, "onCreate");

int diff = getIntent().getIntExtra(KEY_DIFFICULTY,

DIFFICULTY_EASY);

puzzle = getPuzzle(diff);

calculateUsedTiles();

puzzleView = new PuzzleView(this);

setContentView(puzzleView);

puzzleView.requestFocus();

}

// ...

}

The onCreate() method fetches the difficulty number from the intent

and selects a puzzle to play. Then it creates an instance of the PuzzleView

class, setting the PuzzleView as the new contents of the view. Since this

is a fully customized view, it was easier to do this in code than in XML.

The calculateUsedTiles() method, which is defined in Section 4.4, The

Rest of the Story, on page 93, uses the rules of Sudoku to figure out, for

each tile in the nine-by-nine grid, which numbers are not valid for the

tile because they appear elsewhere in the horizontal or vertical direction

or in the three-by-three subgrid.

This is an activity, so we need to register it in AndroidManifest.xml:

Download Sudokuv2/AndroidManifest.xml

<activity android:name=".Game"

android:label="@string/game_title"/>

We also need to add a few more string resources to res/values/strings.xml:

Download Sudokuv2/res/values/strings.xml

<string name="game_title">Game</string>

<string name="no_moves_label">No moves</string>

<string name="keypad_title">Keypad</string>

Defining the PuzzleView Class

Next we need to define the PuzzleView class. Instead of using an XML

layout, this time let’s do it entirely in Java.

R t t

ADDING GRAPHICS TO SUDOKU 81

What Size Is It Anyway?

A common mistake made by new Android developers is to use
the width and height of a view inside its constructor. When
a view’s constructor is called, Android doesn’t know yet how
big the view will be, so the sizes are set to zero. The real sizes
are calculated during the layout stage, which occurs after
construction but before anything is drawn. You can use the
onSizeChanged() method to be notified of the values when they
are known, or you can use the getWidth() and getHeight() meth-
ods later, such as in the onDraw() method.

Here’s the outline:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

package org.example.sudoku;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.graphics.Rect;

import android.graphics.Paint.FontMetrics;

import android.graphics.Paint.Style;

import android.util.Log;

import android.view.KeyEvent;

import android.view.MotionEvent;

import android.view.View;

import android.view.animation.AnimationUtils;

public class PuzzleView extends View {

private static final String TAG = "Sudoku";

private final Game game;

public PuzzleView(Context context) {

super(context);

this.game = (Game) context;

setFocusable(true);

setFocusableInTouchMode(true);

}

// ...

}

In the constructor we keep a reference to the Game class and set the

option to allow user input in the view. Inside PuzzleView, we need to

implement the onSizeChanged() method. This is called after the view is

created and Android knows how big everything is.

R t t

ADDING GRAPHICS TO SUDOKU 82

Other Ways to Do It

When I was writing this example, I tried several different ap-
proaches such as using a button for each tile or declaring a
grid of ImageView classes in XML. After many false starts, I found
that the approach of having one view for the entire puzzle and
drawing lines and numbers inside that proved to be the fastest
and easiest way for this application.

It does have its drawbacks, though, such as the need to draw
the selection and explicitly handle keyboard and touch events.
When designing your own program, I recommend trying stan-
dard widgets and views first and then falling back to custom
drawing only if that doesn’t work for you.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

private float width; // width of one tile

private float height; // height of one tile

private int selX; // X index of selection

private int selY; // Y index of selection

private final Rect selRect = new Rect();

@Override

protected void onSizeChanged(int w, int h, int oldw, int oldh) {

width = w / 9f;

height = h / 9f;

getRect(selX, selY, selRect);

Log.d(TAG, "onSizeChanged: width " + width + ", height "

+ height);

super.onSizeChanged(w, h, oldw, oldh);

}

private void getRect(int x, int y, Rect rect) {

rect.set((int) (x * width), (int) (y * height), (int) (x

* width + width), (int) (y * height + height));

}

We use onSizeChanged() to calculate the size of each tile on the screen

(1/9th of the total view width and height). Note this is a floating-point

number, so it’s possible that we could end up with a fractional num-

ber of pixels. selRect is a rectangle we’ll use later to keep track of the

selection cursor.

R t t

ADDING GRAPHICS TO SUDOKU 83

At this point we’ve created a view for the puzzle, and we know how big

it is. The next step is to draw the grid lines that separate the tiles on

the board.

Drawing the Board

Android calls a view’s onDraw() method every time any part of the view

needs to be updated. To simplify things, onDraw() pretends that you’re

re-creating the entire screen from scratch. In reality, you may be draw-

ing only a small portion of the view as defined by the canvas’s clip

rectangle. Android takes care of doing the clipping for you.

Start by defining a few new colors to play with in res/values/colors.xml:

Download Sudokuv2/res/values/colors.xml

<color name="puzzle_background">#ffe6f0ff</color>

<color name="puzzle_hilite">#ffffffff</color>

<color name="puzzle_light">#64c6d4ef</color>

<color name="puzzle_dark">#6456648f</color>

<color name="puzzle_foreground">#ff000000</color>

<color name="puzzle_hint_0">#64ff0000</color>

<color name="puzzle_hint_1">#6400ff80</color>

<color name="puzzle_hint_2">#2000ff80</color>

<color name="puzzle_selected">#64ff8000</color>

Here’s the basic outline for onDraw():

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

protected void onDraw(Canvas canvas) {

// Draw the background...

Paint background = new Paint();

background.setColor(getResources().getColor(

R.color.puzzle_background));

canvas.drawRect(0, 0, getWidth(), getHeight(), background);

// Draw the board...

// Draw the numbers...

// Draw the hints...

// Draw the selection...

}

The first parameter is the Canvas on which to draw. In this code, we’re

just drawing a background for the puzzle using the puzzle_background

color.

R t t

ADDING GRAPHICS TO SUDOKU 84

Now let’s add the code to draw the grid lines for the board:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the board...

// Define colors for the grid lines

Paint dark = new Paint();

dark.setColor(getResources().getColor(R.color.puzzle_dark));

Paint hilite = new Paint();

hilite.setColor(getResources().getColor(R.color.puzzle_hilite));

Paint light = new Paint();

light.setColor(getResources().getColor(R.color.puzzle_light));

// Draw the minor grid lines

for (int i = 0; i < 9; i++) {

canvas.drawLine(0, i * height, getWidth(), i * height,

light);

canvas.drawLine(0, i * height + 1, getWidth(), i * height

+ 1, hilite);

canvas.drawLine(i * width, 0, i * width, getHeight(),

light);

canvas.drawLine(i * width + 1, 0, i * width + 1,

getHeight(), hilite);

}

// Draw the major grid lines

for (int i = 0; i < 9; i++) {

if (i % 3 != 0)

continue;

canvas.drawLine(0, i * height, getWidth(), i * height,

dark);

canvas.drawLine(0, i * height + 1, getWidth(), i * height

+ 1, hilite);

canvas.drawLine(i * width, 0, i * width, getHeight(), dark);

canvas.drawLine(i * width + 1, 0, i * width + 1,

getHeight(), hilite);

}

The code uses three different colors for the grid lines: a light color

between each tile, a dark color between the three-by-three blocks, and

a highlight color drawn on the edge of each tile to make them look

like they have a little depth. The order in which the lines are drawn is

important, since lines drawn later will be drawn over the top of earlier

lines. You can see what this will look like in Figure 4.3, on the following

page. Next, we need some numbers to go inside those lines.

R t t

ADDING GRAPHICS TO SUDOKU 85

Figure 4.3: Drawing the grid lines with three shades of gray for an

embossed effect

Drawing the Numbers

The following code draws the puzzle numbers on top of the tiles. The

tricky part here is getting each number positioned and sized so it goes

in the exact center of its tile.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the numbers...

// Define color and style for numbers

Paint foreground = new Paint(Paint.ANTI_ALIAS_FLAG);

foreground.setColor(getResources().getColor(

R.color.puzzle_foreground));

foreground.setStyle(Style.FILL);

foreground.setTextSize(height * 0.75f);

foreground.setTextScaleX(width / height);

foreground.setTextAlign(Paint.Align.CENTER);

R t t

ADDING GRAPHICS TO SUDOKU 86

Figure 4.4: Centering the numbers inside the tiles

// Draw the number in the center of the tile

FontMetrics fm = foreground.getFontMetrics();

// Centering in X: use alignment (and X at midpoint)

float x = width / 2;

// Centering in Y: measure ascent/descent first

float y = height / 2 - (fm.ascent + fm.descent) / 2;

for (int i = 0; i < 9; i++) {

for (int j = 0; j < 9; j++) {

canvas.drawText(this.game.getTileString(i, j), i

* width + x, j * height + y, foreground);

}

}

We call the getTileString() method (defined in Section 4.4, The Rest of the

Story, on page 93) to find out what numbers to display. To calculate the

size of the numbers, we set the font height to three-fourths the height

of the tile, and we set the aspect ratio to be the same as the tile’s aspect

R t t

HANDLING INPUT 87

ratio. We can’t use absolute pixel or point sizes because we want the

program to work at any resolution.

To determine the position of each number, we center it in both the x

and y dimensions. The x direction is easy—just divide the tile width

by 2. But for the y direction, we have to adjust the starting position

downward a little so that the midpoint of the tile will be the midpoint

of the number instead of its baseline. We use the graphics library’s

FontMetrics class to tell how much vertical space the letter will take in

total, and then we divide that in half to get the adjustment. You can see

the results in Figure 4.4, on the preceding page.

That takes care of displaying the puzzle’s starting numbers (the givens).

The next step is to allow the player to enter their guesses for all the

blank spaces.

4.3 Handling Input

One difference in Android programming—as opposed to, say, iPhone

programming—is that Android phones come in many shapes and sizes

and have a variety of input methods. They might have a keyboard, a

D-pad, a touch screen, a trackball, or some combination of these.

A good Android program, therefore, needs to be ready to support what-

ever input hardware is available, just like it needs to be ready to support

any screen resolution.

Defining and Updating the Selection

First we’re going to implement a little cursor that shows the player

which tile is currently selected. The selected tile is the one that will

be modified when the player enters a number. This code will draw the

selection in onDraw():

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the selection...

Log.d(TAG, "selRect=" + selRect);

Paint selected = new Paint();

selected.setColor(getResources().getColor(

R.color.puzzle_selected));

canvas.drawRect(selRect, selected);

We use the selection rectangle calculated earlier in onSizeChanged() to

draw an alpha-blended color on top of the selected tile.

R t t

HANDLING INPUT 88

Figure 4.5: Drawing and moving the selection

Next we provide a way to move the selection by overriding the onKey-

Down() method:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

Log.d(TAG, "onKeyDown: keycode=" + keyCode + ", event="

+ event);

switch (keyCode) {

case KeyEvent.KEYCODE_DPAD_UP:

select(selX, selY - 1);

break;

case KeyEvent.KEYCODE_DPAD_DOWN:

select(selX, selY + 1);

break;

case KeyEvent.KEYCODE_DPAD_LEFT:

select(selX - 1, selY);

break;

case KeyEvent.KEYCODE_DPAD_RIGHT:

select(selX + 1, selY);

break;

default:

return super.onKeyDown(keyCode, event);

}

return true;

}

R t t

HANDLING INPUT 89

If the user has a directional pad (D-pad) and they press the up, down,

left, or right button, we call select() to move the selection cursor in that

direction.

How about a trackball? We could override the onTrackballEvent() method,

but it turns out that if you don’t handle trackball events, Android will

translate them into D-pad events automatically. Therefore, we can leave

it out for this example.

Inside the select() method, we calculate the new x and y coordinates of

the selection and then use getRect() again to calculate the new selection

rectangle.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

private void select(int x, int y) {

invalidate(selRect);

selX = Math.min(Math.max(x, 0), 8);

selY = Math.min(Math.max(y, 0), 8);

getRect(selX, selY, selRect);

invalidate(selRect);

}

Notice the two calls to invalidate(). The first one tells Android that the

area covered by the old selection rectangle (on the left of Figure 4.5,

on the previous page) needs to be redrawn. The second invalidate() call

says that the new selection area (on the right of the figure) needs to be

redrawn too. We don’t actually draw anything here.

This is an important point: never call any drawing functions except in

the onDraw() method. Instead, you use the invalidate() method to mark

rectangles as dirty. The window manager will combine all the dirty rect-

angles at some point in the future and call onDraw() again for you. The

dirty rectangles become the clip region, so screen updates are optimized

to only those areas that change.

Now let’s provide a way for the player to enter a new number on the

selected tile.

Entering Numbers

To handle keyboard input, we just add a few more cases to the onKey-

Down() method for the numbers 0 through 9 (0 or space means erase

the number).

R t t

HANDLING INPUT 90

Optimizing Refreshes

In an earlier version of this example, I invalidated the entire
screen whenever the cursor was moved. Thus, on every key
press, the whole puzzle had to be redrawn. This caused it to lag
noticeably. Switching the code to invalidate only the smallest
rectangles that changed made it run much faster.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

case KeyEvent.KEYCODE_0:

case KeyEvent.KEYCODE_SPACE: setSelectedTile(0); break;

case KeyEvent.KEYCODE_1: setSelectedTile(1); break;

case KeyEvent.KEYCODE_2: setSelectedTile(2); break;

case KeyEvent.KEYCODE_3: setSelectedTile(3); break;

case KeyEvent.KEYCODE_4: setSelectedTile(4); break;

case KeyEvent.KEYCODE_5: setSelectedTile(5); break;

case KeyEvent.KEYCODE_6: setSelectedTile(6); break;

case KeyEvent.KEYCODE_7: setSelectedTile(7); break;

case KeyEvent.KEYCODE_8: setSelectedTile(8); break;

case KeyEvent.KEYCODE_9: setSelectedTile(9); break;

case KeyEvent.KEYCODE_ENTER:

case KeyEvent.KEYCODE_DPAD_CENTER:

game.showKeypadOrError(selX, selY);

break;

To support the D-pad, we check for the Enter or center D-pad button

in onKeyDown() and have it pop up a keypad that lets the user select

which number to place.

For touch, we override the onTouchEvent() method and show the same

keypad, which will be defined later:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

public boolean onTouchEvent(MotionEvent event) {

if (event.getAction() != MotionEvent.ACTION_DOWN)

return super.onTouchEvent(event);

select((int) (event.getX() / width),

(int) (event.getY() / height));

game.showKeypadOrError(selX, selY);

Log.d(TAG, "onTouchEvent: x " + selX + ", y " + selY);

return true;

}

R t t

HANDLING INPUT 91

Ultimately, all roads will lead back to a call to setSelectedTile() to change

the number on a tile:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

public void setSelectedTile(int tile) {

if (game.setTileIfValid(selX, selY, tile)) {

invalidate();// may change hints

} else {

// Number is not valid for this tile

Log.d(TAG, "setSelectedTile: invalid: " + tile);

}

}

The showKeypadOrError() and setTileIfValid() methods will be defined in

Section 4.4, The Rest of the Story, on page 93.

Note the call to invalidate() with no parameters. That marks the whole

screen as dirty, which violates my own advice earlier! However, in this

case, it’s necessary because any new numbers added or removed might

change the hints that we are about to implement in the next section.

Adding Hints

How can we help the player out a little without solving the whole puzzle

for them? How about if we draw the background of each tile differently

depending on how many possible moves it has. Add this to onDraw()

before drawing the selection:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the hints...

// Pick a hint color based on #moves left

Paint hint = new Paint();

int c[] = { getResources().getColor(R.color.puzzle_hint_0),

getResources().getColor(R.color.puzzle_hint_1),

getResources().getColor(R.color.puzzle_hint_2), };

Rect r = new Rect();

for (int i = 0; i < 9; i++) {

for (int j = 0; j < 9; j++) {

int movesleft = 9 - game.getUsedTiles(i, j).length;

if (movesleft < c.length) {

getRect(i, j, r);

hint.setColor(c[movesleft]);

canvas.drawRect(r, hint);

}

}

}

R t t

HANDLING INPUT 92

Figure 4.6: Tiles are highlighted based on how many possible values

the tile can have.

We use three states for zero, one, and two possible moves. If there

are zero moves, that means the player has done something wrong and

needs to backtrack.

The result will look like Figure 4.6. Can you spot the mistake(s) made

by the player?2

Shaking Things Up

What if the user tries to enter an obviously invalid number, such as a

number that already appears in the three-by-three block? Just for fun,

let’s make the screen wiggle back and forth when they do that. First we

add a call to the invalid number case in setSelectedTile().

2. The two numbers on the bottom row’s middle block are wrong.

R t t

THE REST OF THE STORY 93

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

Log.d(TAG, "setSelectedTile: invalid: " + tile);

startAnimation(AnimationUtils.loadAnimation(game,

R.anim.shake));

This loads and runs a resource called R.anim.shake, defined in res/anim/

shake.xml, that shakes the screen for 1,000 milliseconds (1 second) by

10 pixels from side to side.

Download Sudokuv2/res/anim/shake.xml

<?xml version="1.0" encoding="utf-8"?>

<translate

xmlns:android="http://schemas.android.com/apk/res/android"

android:fromXDelta="0"

android:toXDelta="10"

android:duration="1000"

android:interpolator="@anim/cycle_7" />

The number of times to run the animation and the velocity and accel-

eration of the animation are controlled by an animation interpolator

defined in XML.

Download Sudokuv2/res/anim/cycle_7.xml

<?xml version="1.0" encoding="utf-8"?>

<cycleInterpolator

xmlns:android="http://schemas.android.com/apk/res/android"

android:cycles="7" />

This particular one will cause the animation to be repeated seven times.

4.4 The Rest of the Story

Now let’s go back and tie up a few loose ends, starting with the Key-

pad class. These pieces are necessary for the program to compile and

operate but have nothing to do with graphics. Feel free to skip ahead to

Section 4.5, Making More Improvements, on page 103 if you like.

Creating the Keypad

The keypad is handy for phones that don’t have keyboards. It displays

a grid of the numbers 1 through 9 in an activity that appears on top of

the puzzle. The whole purpose of the keypad dialog box is to return a

number selected by the player.

R t t

THE REST OF THE STORY 94

Here’s the user interface layout from res/layout/keypad.xml:

Download Sudokuv2/res/layout/keypad.xml

<?xml version="1.0" encoding="utf-8"?>

<TableLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/keypad"

android:orientation="vertical"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:stretchColumns="*">

<TableRow>

<Button android:id="@+id/keypad_1"

android:text="1">

</Button>

<Button android:id="@+id/keypad_2"

android:text="2">

</Button>

<Button android:id="@+id/keypad_3"

android:text="3">

</Button>

</TableRow>

<TableRow>

<Button android:id="@+id/keypad_4"

android:text="4">

</Button>

<Button android:id="@+id/keypad_5"

android:text="5">

</Button>

<Button android:id="@+id/keypad_6"

android:text="6">

</Button>

</TableRow>

<TableRow>

<Button android:id="@+id/keypad_7"

android:text="7">

</Button>

<Button android:id="@+id/keypad_8"

android:text="8">

</Button>

<Button android:id="@+id/keypad_9"

android:text="9">

</Button>

</TableRow>

</TableLayout>

Next let’s define the Keypad class.

R t t

THE REST OF THE STORY 95

Here’s the outline:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

package org.example.sudoku;

import android.app.Dialog;

import android.content.Context;

import android.os.Bundle;

import android.view.KeyEvent;

import android.view.View;

public class Keypad extends Dialog {

protected static final String TAG = "Sudoku";

private final View keys[] = new View[9];

private View keypad;

private final int useds[];

private final PuzzleView puzzleView;

public Keypad(Context context, int useds[], PuzzleView puzzleView) {

super(context);

this.useds = useds;

this.puzzleView = puzzleView;

}

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setTitle(R.string.keypad_title);

setContentView(R.layout.keypad);

findViews();

for (int element : useds) {

if (element != 0)

keys[element - 1].setVisibility(View.INVISIBLE);

}

setListeners();

}

// ...

}

If a particular number is not valid (for example, the same number

already appears in that row), then we make the number invisible in

the grid so the player can’t select it (see Figure 4.7, on the next page).

R t t

THE REST OF THE STORY 96

Figure 4.7: Invalid values are hidden in the keypad view.

The findViews() method fetches and saves the views for all the keypad

keys and the main keypad window:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

private void findViews() {

keypad = findViewById(R.id.keypad);

keys[0] = findViewById(R.id.keypad_1);

keys[1] = findViewById(R.id.keypad_2);

keys[2] = findViewById(R.id.keypad_3);

keys[3] = findViewById(R.id.keypad_4);

keys[4] = findViewById(R.id.keypad_5);

keys[5] = findViewById(R.id.keypad_6);

keys[6] = findViewById(R.id.keypad_7);

keys[7] = findViewById(R.id.keypad_8);

keys[8] = findViewById(R.id.keypad_9);

}

setListeners() loops through all the keypad keys and sets a listener for

each one. It also sets a listener for the main keypad window.

R t t

THE REST OF THE STORY 97

Download Sudokuv2/src/org/example/sudoku/Keypad.java

private void setListeners() {

for (int i = 0; i < keys.length; i++) {

final int t = i + 1;

keys[i].setOnClickListener(new View.OnClickListener(){

public void onClick(View v) {

returnResult(t);

}});

}

keypad.setOnClickListener(new View.OnClickListener(){

public void onClick(View v) {

returnResult(0);

}});

}

When the player selects one of the buttons on the keypad, it calls

the returnResult() method with the number for that button. If the player

selects a place that doesn’t have a button, then returnResult() is called

with a zero, indicating the tile should be erased.

onKeyDown() is called when the player uses the keyboard to enter a

number:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

int tile = 0;

switch (keyCode) {

case KeyEvent.KEYCODE_0:

case KeyEvent.KEYCODE_SPACE: tile = 0; break;

case KeyEvent.KEYCODE_1: tile = 1; break;

case KeyEvent.KEYCODE_2: tile = 2; break;

case KeyEvent.KEYCODE_3: tile = 3; break;

case KeyEvent.KEYCODE_4: tile = 4; break;

case KeyEvent.KEYCODE_5: tile = 5; break;

case KeyEvent.KEYCODE_6: tile = 6; break;

case KeyEvent.KEYCODE_7: tile = 7; break;

case KeyEvent.KEYCODE_8: tile = 8; break;

case KeyEvent.KEYCODE_9: tile = 9; break;

default:

return super.onKeyDown(keyCode, event);

}

if (isValid(tile)) {

returnResult(tile);

}

return true;

}

R t t

THE REST OF THE STORY 98

If the number is valid for the current tile, then it calls returnResult();

otherwise, the keystroke is ignored.

The isValid() method checks to see whether the given number is valid for

the current position:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

private boolean isValid(int tile) {

for (int t : useds) {

if (tile == t)

return false;

}

return true;

}

If it appears in the used array, then it’s not valid because the same

number is already used in the current row, column, or block.

The returnResult() method is called to return the number selected to the

calling activity:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

private void returnResult(int tile) {

puzzleView.setSelectedTile(tile);

dismiss();

}

We call the PuzzleView.setSelectedTile() method to change the puzzle’s cur-

rent tile. The dismiss call terminates the Keypad dialog box. Now that we

have the activity, let’s call it in the Game class and retrieve the result:

Download Sudokuv2/src/org/example/sudoku/Game.java

protected void showKeypadOrError(int x, int y) {

int tiles[] = getUsedTiles(x, y);

if (tiles.length == 9) {

Toast toast = Toast.makeText(this,

R.string.no_moves_label, Toast.LENGTH_SHORT);

toast.setGravity(Gravity.CENTER, 0, 0);

toast.show();

} else {

Log.d(TAG, "showKeypad: used=" + toPuzzleString(tiles));

Dialog v = new Keypad(this, tiles, puzzleView);

v.show();

}

}

To decide which numbers are possible, we pass the Keypad a string in

the extraData area containing all the numbers that have already been

used.

R t t

THE REST OF THE STORY 99

Implementing the Game Logic

The rest of the code in Game.java concerns itself with the logic of the

game, in particular with determining which are and aren’t valid moves

according to the rules. The setTileIfValid() method is a key part of that.

Given an x and y position and the new value of a tile, it changes the tile

only if the value provided is valid.

Download Sudokuv2/src/org/example/sudoku/Game.java

protected boolean setTileIfValid(int x, int y, int value) {

int tiles[] = getUsedTiles(x, y);

if (value != 0) {

for (int tile : tiles) {

if (tile == value)

return false;

}

}

setTile(x, y, value);

calculateUsedTiles();

return true;

}

To detect valid moves, we create an array for every tile in the grid. For

each position, it keeps a list of filled-in tiles that are currently visible

from that position. If a number appears on the list, then it won’t be

valid for the current tile. The getUsedTiles() method retrieves that list for

a given tile position:

Download Sudokuv2/src/org/example/sudoku/Game.java

private final int used[][][] = new int[9][9][];

protected int[] getUsedTiles(int x, int y) {

return used[x][y];

}

The array of used tiles is somewhat expensive to compute, so we cache

the array and recalculate it only when necessary by calling calculate-

UsedTiles():

Download Sudokuv2/src/org/example/sudoku/Game.java

private void calculateUsedTiles() {

for (int x = 0; x < 9; x++) {

for (int y = 0; y < 9; y++) {

used[x][y] = calculateUsedTiles(x, y);

// Log.d(TAG, "used[" + x + "][" + y + "] = "

// + toPuzzleString(used[x][y]));

}

}

}

R t t

THE REST OF THE STORY 100

calculateUsedTiles() simply calls calculateUsedTiles(x, y) on every position

in the nine-by-nine grid:

Download Sudokuv2/src/org/example/sudoku/Game.java

Line 1 private int[] calculateUsedTiles(int x, int y) {
- int c[] = new int[9];
- // horizontal
- for (int i = 0; i < 9; i++) {
5 if (i == y)
- continue;
- int t = getTile(x, i);
- if (t != 0)
- c[t - 1] = t;

10 }
- // vertical
- for (int i = 0; i < 9; i++) {
- if (i == x)
- continue;

15 int t = getTile(i, y);
- if (t != 0)
- c[t - 1] = t;
- }
- // same cell block

20 int startx = (x / 3) * 3;
- int starty = (y / 3) * 3;
- for (int i = startx; i < startx + 3; i++) {
- for (int j = starty; j < starty + 3; j++) {
- if (i == x && j == y)

25 continue;
- int t = getTile(i, j);
- if (t != 0)
- c[t - 1] = t;
- }

30 }
- // compress
- int nused = 0;
- for (int t : c) {
- if (t != 0)

35 nused++;
- }
- int c1[] = new int[nused];
- nused = 0;
- for (int t : c) {

40 if (t != 0)
- c1[nused++] = t;
- }
- return c1;
- }

We start with an array of nine zeros. On line 4, we check all the tiles on

the same horizontal row as the current tile, and if a tile is occupied, we

stuff its number into the array.
R t t

THE REST OF THE STORY 101

On line 12, we do the same thing for all the tiles on the same vertical

column, and on line 20, we do the same for tiles in the three-by-three

block.

The last step, starting at line 32, is to compress the zeros out of the

array before we return it. We do this so that array.length can be used to

quickly tell how many used tiles are visible from the current position.

Miscellaneous

Here are a few other utility functions and variables that round out the

implementation. easyPuzzle, mediumPuzzle, and hardPuzzle are our hard-

coded Sudoku puzzles for easy, medium, and hard difficulty levels,

respectively.

Download Sudokuv2/src/org/example/sudoku/Game.java

private final String easyPuzzle =

"360000000004230800000004200" +

"070460003820000014500013020" +

"001900000007048300000000045";

private final String mediumPuzzle =

"650000070000506000014000005" +

"007009000002314700000700800" +

"500000630000201000030000097";

private final String hardPuzzle =

"009000000080605020501078000" +

"000000700706040102004000000" +

"000720903090301080000000600";

getPuzzle() simply takes a difficulty level and returns a puzzle:

Download Sudokuv2/src/org/example/sudoku/Game.java

private int[] getPuzzle(int diff) {

String puz;

// TODO: Continue last game

switch (diff) {

case DIFFICULTY_HARD:

puz = hardPuzzle;

break;

case DIFFICULTY_MEDIUM:

puz = mediumPuzzle;

break;

case DIFFICULTY_EASY:

default:

puz = easyPuzzle;

break;

}

return fromPuzzleString(puz);

}

Later we’ll change getPuzzle() to implement a continue function.

R t t

THE REST OF THE STORY 102

toPuzzleString() converts a puzzle from an array of integers to a string.

fromPuzzleString() does the opposite.

Download Sudokuv2/src/org/example/sudoku/Game.java

static private String toPuzzleString(int[] puz) {

StringBuilder buf = new StringBuilder();

for (int element : puz) {

buf.append(element);

}

return buf.toString();

}

static protected int[] fromPuzzleString(String string) {

int[] puz = new int[string.length()];

for (int i = 0; i < puz.length; i++) {

puz[i] = string.charAt(i) - '0';

}

return puz;

}

The getTile() method takes x and y positions and returns the number

currently occupying that tile. If it’s zero, that means the tile is blank.

Download Sudokuv2/src/org/example/sudoku/Game.java

private int getTile(int x, int y) {

return puzzle[y * 9 + x];

}

private void setTile(int x, int y, int value) {

puzzle[y * 9 + x] = value;

}

getTileString() is used when displaying a tile. It will return either a string

with the value of the tile or an empty string if the tile is blank.

Download Sudokuv2/src/org/example/sudoku/Game.java

protected String getTileString(int x, int y) {

int v = getTile(x, y);

if (v == 0)

return "";

else

return String.valueOf(v);

}

Once all these pieces are in place, you should have a playable Sudoku

game. Give it a try to verify it works. As with any code, though, there is

room for improvement.

R t t

MAKING MORE IMPROVEMENTS 103

4.5 Making More Improvements

Although the code presented in this chapter performs acceptably for

a Sudoku game, more complex programs will likely need to be more

carefully written in order to squeeze the last drop of performance out

of the device. In particular, the onDraw() method is a very performance-

critical piece of code, so it’s best to do as little as possible there.

Here are some ideas for speeding up this method:

• If possible, avoid doing any object allocations in the method

onDraw().

• Prefetch things such as color constants elsewhere (for example, in

the view’s constructor).

• Create your Paint objects up front, and just use existing instances

in onDraw().

• For values used multiple times, such as the width returned by

getWidth(), retrieve the value at the beginning of the method and

then access it from your local copy.

As a further exercise for the reader, I encourage you to think about how

you could make the Sudoku game graphically richer. For example, you

could add some fireworks when the player solves the puzzle or make the

tiles spin around like Vanna White does. A moving background behind

the puzzle might be interesting. Let your imagination go wild. If you

want to make a top-notch product, touches like this can add pizzazz to

an otherwise ordinary offering.

In Chapter 5, Multimedia, on page 105, we’ll enhance the program with

a little mood music, and in Chapter 6, Storing Local Data, on page 120,

we’ll see how to remember the puzzle state and finally implement that

Continue button.

4.6 Fast-Forward >>

In this chapter, we just scratched the surface of Android’s graphics

capabilities. The native 2D library is quite large, so as you’re actually

writing your programs, be sure to take advantage of the tooltips, auto-

completion, and Javadoc provided by the Android Eclipse plug-in. The

online documentation for the android.graphics3 package goes into much

more detail if you need it.

3. http://d.android.com/reference/android/graphics/package-summary.html

R t t

FAST -FORWARD >> 104

If your program needs more advanced graphics, you may want to look

ahead a bit and read Chapter 10, 3D Graphics in OpenGL, on page 198.

There you’ll find information on how to use Android’s 3D graphics

library, which is based on the OpenGL ES standard. Otherwise, turn to

the next chapter for an introduction to the wonderful world of Android

audio and video.

R t t

Chapter 5

Multimedia
Remember those Apple television ads with the silhouette people danc-

ing wildly to the beat of their iPods? That’s the kind of excitement

you want your products to generate.1 Music, sound effects, and video

can make your programs more immersive and engaging than text and

graphics alone.

This chapter will show you how to add multimedia to your Android

application. You may not have your users cavorting in the aisles, but if

you do it properly, you can at least put smiles on their faces.

5.1 Playing Audio

It was a dark and stormy night.... There goes the starting shot, and

they’re off.... The crowd goes wild as State sinks a three-pointer with

one second remaining....

Audio cues permeate the environment and set the tempo for our emo-

tions. Think of sound as another way to get into your user’s head. Just

like you use graphics on the display to convey some information to the

user, you can use audio to back that up and reinforce it.

Android supports sound and music output through the MediaPlayer

class in the android.media package.2 Let’s try it with a simple example

that plays sounds when you press a key on the keyboard or D-pad.

1. Of course, normal people older than the age of 8 can’t dance like that...except perhaps

that time when my kids put a lizard in my...well, I digress.
2. http://d.android.com/guide/topics/media

PLAYING AUDIO 106

Figure 5.1: Save sound effects in a compressed format that Android can

play.

We’ll start by creating a “Hello, Android” project, using the following

parameters in the New Android Project dialog box:

Project name: Audio

Build Target: Android 2.2

Application name: Audio

Package name: org.example.audio

Create Activity: Audio

Min SDK Version: 8

Next we’ll need a few sounds to play. For this example, I created my own

with the Windows Sound Recorder program (Start > Programs > Acces-

sories > Entertainment > Sound Recorder on Windows XP) and an inex-

pensive headset. After getting the sound levels right, I recorded each

sound, selected File > Save As... from the menu, clicked the Change...

button, and selected a format Android can recognize (see Figure 5.1).

You can find all the sound files and source code for these examples on

the book’s website.

R t t

PLAYING AUDIO 107

Copy the sound files into the res/raw directory of your project. As you

recall from Section 2.4, Using Resources, on page 40, simply copying a

file into the res directory causes the Android Eclipse plug-in to define

a Java symbol for you in the R class. When you’re done, the project

should look like Figure 5.2, on the next page.

Now it’s time to fill out the Audio activity. First we declare a field called

mp to hold an instance of the MediaPlayer class. In this program we’re

just going to have one MediaPlayer active at any given time.

Download Audio/src/org/example/audio/Audio.java

package org.example.audio;

import android.app.Activity;

import android.media.AudioManager;

import android.media.MediaPlayer;

import android.os.Bundle;

import android.view.KeyEvent;

public class Audio extends Activity {

private MediaPlayer mp;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

setVolumeControlStream(AudioManager.STREAM_MUSIC);

}

}

The setVolumeControlStream() method tells Android that when the user

presses the volume up or down key while this application is running,

it should adjust the volume for music and other media instead of the

ringer.

Next, we need to intercept the key presses and play the right sounds.

We do that by overriding the Activity.onKeyDown() method.

Download Audio/src/org/example/audio/Audio.java

Line 1 @Override
- public boolean onKeyDown(int keyCode, KeyEvent event) {
- int resId;
- switch (keyCode) {
5 case KeyEvent.KEYCODE_DPAD_UP:
- resId = R.raw.up;
- break;
- case KeyEvent.KEYCODE_DPAD_DOWN:
- resId = R.raw.down;

10 break;

R t t

PLAYING AUDIO 108

Figure 5.2: Copy audio files into the res/raw directory of your project.

R t t

PLAYING AUDIO 109

- case KeyEvent.KEYCODE_DPAD_LEFT:
- resId = R.raw.left;
- break;
- case KeyEvent.KEYCODE_DPAD_RIGHT:

15 resId = R.raw.right;
- break;
- case KeyEvent.KEYCODE_DPAD_CENTER:
- case KeyEvent.KEYCODE_ENTER:
- resId = R.raw.enter;

20 break;
- case KeyEvent.KEYCODE_A:
- resId = R.raw.a;
- break;
- case KeyEvent.KEYCODE_S:

25 resId = R.raw.s;
- break;
- case KeyEvent.KEYCODE_D:
- resId = R.raw.d;
- break;

30 case KeyEvent.KEYCODE_F:
- resId = R.raw.f;
- break;
- default:
- return super.onKeyDown(keyCode, event);

35 }
-

- // Release any resources from previous MediaPlayer
- if (mp != null) {
- mp.release();

40 }
-

- // Create a new MediaPlayer to play this sound
- mp = MediaPlayer.create(this, resId);
- mp.start();

45

- // Indicate this key was handled
- return true;
- }

The first part of the method selects a resource based on which key

you pressed. Then on line 39, we call the release() method to stop any

sounds already playing and free up any resources associated with the

old MediaPlayer. If you forget to do that, the program will crash (see the

sidebar on the next page).

On line 43, we use the create() method to create a new MediaPlayer

using the selected sound resource and call the start() method to begin

playing it. The start() method is asynchronous, so it returns immedi-

ately regardless of how long the sound lasts. If you like, you can use

setOnCompletionListener() to be notified when the clip is finished.

R t t

PLAYING AUDIO 110

When Things Go Wrong

If you do much multimedia programming, you’ll soon discover
that Android’s MediaPlayer can be a fickle beast. The version
in newer versions of Android is much improved over its prede-
cessors, but it can still crash at the slightest provocation. One
reason this happens is that MediaPlayer is mostly a native appli-
cation with a thin layer of Java on top of it. The native player
code is optimized for performance, and it doesn’t seem to do
much error checking.

Fortunately, Android’s strong Linux process protections prevent
any harm from being done if a crash occurs. The emulator (or
the phone if you’re running on a real device) and other appli-
cations will continue to run normally. The user would just see the
application go away, possibly with a dialog box containing an
error message.

During development, though, you can get considerably more
diagnostic information to help you determine what went
wrong. Messages and tracebacks will be printed to the Android
system log, which you can view with the LogCat view in Eclipse
or the adb logcat command (see Section 3.10, Debugging with
Log Messages, on page 69).

If you run the program now and then press one of the keys (for example,

the Enter key or the center D-pad key), you should hear a sound. If you

don’t hear anything, check your volume control (don’t laugh), or look at

the debugging messages in the LogCat view. If you run this on a phone

with no keyboard, D-pad, or trackball, press and hold the Menu key to

get the soft keyboard to appear.

Note that audio output may be choppy or delayed in some cases. Try

different formats (such as OGG instead of MP3) and lower bit rates. You

may also want to investigate using the SoundPool class, which explicitly

supports simultaneous streams. It was buggy and poorly documented

in the 1.0 release, but as of 1.5 it appears to be stable.

For our next trick, we’ll play a movie using only one line of code.

R t t

PLAYING AUDIO 111

Joe Asks. . .

What Audio Formats Does Android Support?

Well, there’s support on paper, there’s support in the emulator,
and there’s support on the actual devices. On paper, Android
supports the following file types (this is subject to change with
new releases):

• WAV (PCM uncompressed)

• AAC (Apple iPod format, unprotected)

• MP3 (MPEG-3)

• WMA (Windows media audio)

• AMR (Speech codec)

• OGG (Ogg Vorbis)∗

• MIDI (Instruments)

In reality, I’ve found that only the OGG, WAV, and MP3 formats
work well in the emulator, and thus those are the only ones
that I can recommend for application development. Android’s
native audio format appears to be 44.1kHz 16-bit stereo. How-
ever, since WAV files at that rate are huge, you should just stick
to OGG or MP3 files (mono for voice or stereo for music). OGG
files seem to work best for short clips like game sound effects.

Stay away from unusual rates like 8kHz because the resam-
pling artifacts make those rates sound terrible. Use 11kHz, 22kHz,
or 44.1kHz sampling rates for the best results. Remember that
although the phone may have a tiny speaker, many of your
users are going to be plugging in headphones (like an iPod), so
you want your audio to be high quality.

∗. http://www.vorbis.com

R t t

PLAYING VIDEO 112

Joe Asks. . .

What Kind of Video Can You Watch on Android?

Here’s what is officially supported:

• MP4 (MPEG-4 low bit rate)

• H.263 (3GP)

• H.264 (AVC)

As of Android 1.5, H.263 is the recommended video format
because every hardware platform supports it and it’s relatively
efficient to encode and decode. It is also compatible with
other devices such as the iPhone. You can use a program like
QuickTime Pro∗ to convert video from one format to another.
Use the lowest resolution and bit rate that you can in order to
save space, but don’t set it so low that you sacrifice quality.

∗. http://www.apple.com/quicktime/pro

5.2 Playing Video

Video is more than just a bunch of pictures shown one right after

another. It’s sound as well, and the sound has to be closely synchro-

nized with the images.

Android’s MediaPlayer class works with video the same way it does with

plain audio. The only difference is that you need to create a Surface for

the player to use to draw the images. You can use the start() and stop()

methods to control playback.

I’m not going to show you another MediaPlayer example, however, be-

cause there is a simpler way to embed videos in your application: the

VideoView class. To demonstrate it, create a new Android project called

Video using these parameters:

Project name: Video

Build Target: Android 2.2

Application name: Video

Package name: org.example.video

Create Activity: Video

Min SDK Version: 8

R t t

PLAYING VIDEO 113

Change the layout (res/layout/main.xml) to this:

Download Videov1/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<VideoView

android:id="@+id/video"

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center" />

</FrameLayout>

Open Video.java, and change the onCreate() method as follows:

Download Videov1/src/org/example/video/Video.java

package org.example.video;

import android.app.Activity;

import android.os.Bundle;

import android.widget.VideoView;

public class Video extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Fill view from resource

setContentView(R.layout.main);

VideoView video = (VideoView) findViewById(R.id.video);

// Load and start the movie

video.setVideoPath("/data/samplevideo.3gp");

video.start();

}

}

The setVideoPath() method opens the file, sizes it to its container while

preserving the aspect ratio, and begins playing it.

Now you need to upload something to play. To do that, run the following

command:

C:\> adb push c:\code\samplevideo.3gp /data/samplevideo.3gp

1649 KB/s (369870 bytes in 0.219s)

You can find samplevideo.3gp in the download package for this book, or

you can create one of your own. The directory used here (/data) is just

for illustrative purposes and should not really be used for media files.

R t t

PLAYING VIDEO 114

Figure 5.3: Embedding a video is easy with VideoView.

It will work only on the emulator because that directory is protected on

real devices.

Note that Android doesn’t seem to care what extension you give the

file. You can also upload and download files in Eclipse with the File

Explorer view in the Android perspective, but I find the command line

to be easier for simple things like this.

There’s one more thing: we’d like the video to take over the whole screen

including the title bar and status bar. To do that, all you need to do is

specify the right theme in AndroidManifest.xml:

Download Videov1/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.video"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

R t t

ADDING SOUNDS TO SUDOKU 115

<activity android:name=".Video"

android:label="@string/app_name"

android:theme="@android:style/Theme.NoTitleBar.Fullscreen">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="8" />

</manifest>

Once all that is done, when you run the program, you should see and

hear the movie clip (see Figure 5.3, on the preceding page). Try rotating

the display to verify it works in both portrait and landscape modes.

Voila! Instant video goodness.

Now let’s polish up the Sudoku sample with a little mood music.

5.3 Adding Sounds to Sudoku

In this section, we’re going to take what we’ve learned and add back-

ground music to the Sudoku game we’ve been building. One song will

play during the opening screen, and another will play during the actual

game. This will demonstrate not just how to play music but also some

important life-cycle considerations.

To add music to the main screen, we just need to override these two

methods in the Sudoku class:

Download Sudokuv3/src/org/example/sudoku/Sudoku.java

@Override

protected void onResume() {

super.onResume();

Music.play(this, R.raw.main);

}

@Override

protected void onPause() {

super.onPause();

Music.stop(this);

}

If you recall from Section 2.2, It’s Alive!, on page 35, the onResume()

method is called when the activity is ready to begin interacting with the

user. This is a good place to start up the music, so we put a Music.play()

call there. The Music class will be defined shortly.

R t t

ADDING SOUNDS TO SUDOKU 116

Joe Asks. . .

Why Does It Restart the Video When I Rotate the Display?

Android assumes by default that your program knows nothing
about screen rotations. To pick up possible resource changes,
Android destroys and re-creates your activity from scratch. That
means onCreate() is called again, which means the video is
started again (as this example is currently written).

This behavior will be fine for 90 percent of all applications,
so most developers will not have to worry about it. It’s even
a useful way to test your application life-cycle and state-
saving/restoring code (see Section 2.2, It’s Alive!, on page 35).
However, there are a couple of ways to be smarter and opti-
mize the transition.

The simplest way is to implement onRetainNonConfigurationIn-

stance() in your activity to save some data that will be kept
across the calls to onDestroy() and onCreate(). When you
come back, you use getLastNonConfigurationInstance() in the
new instance of your activity to recover that information. You
can keep anything, even references to your current intent and
running threads.

The more complicated way is to use the android:configChanges=

property in AndroidManifest.xml to inform Android which
changes you can handle. For example, if you set it to
keyboardHidden|orientation, then Android will not destroy and
re-create your activity when the user flips the keyboard.
Instead, it will call onConfigurationChanged(Configuration) and
assume you know what you’re doing.∗

∗. See http://d.android.com/reference/android/app/Activity.html#ConfigurationChanges

for more details.

R t t

ADDING SOUNDS TO SUDOKU 117

Joe Asks. . .

Shouldn’t We Use a Background Service for Music?

We haven’t said much about the Android Service class, but you
may have seen it used in some music-playing examples on the
Web. Basically, a Service is a way to start a background pro-
cess that can run even after your current activity finishes. Ser-
vices are similar to, but not quite the same as, Linux daemons.
If you’re writing a general-purpose music player and want the
music to continue while you’re reading mail or browsing the
Web, then, yes, a Service would be appropriate. In most cases,
though, you want the music to end when your program ends,
so you don’t need to use the Service class.

R.raw.main refers to res/raw/main.mp3. You can find these sound files

in the Sudokuv3 project of the downloadable samples on the book’s

website.

The onPause() method is the paired bookend for onResume(). Android

pauses the current activity prior to resuming a new one, so in Sudoku,

when you start a new game, the Sudoku activity will be paused, and then

the Game activity will be started. onPause() will also be called when the

user presses the Back or Home key. These are all places where we want

our title music to stop, so we call Music.stop() in onPause().

Now let’s do something similar for the music on the Game activity:

Download Sudokuv3/src/org/example/sudoku/Game.java

@Override

protected void onResume() {

super.onResume();

Music.play(this, R.raw.game);

}

@Override

protected void onPause() {

super.onPause();

Music.stop(this);

}

R t t

ADDING SOUNDS TO SUDOKU 118

Sudoku Trivia

Dozens of Sudoku variants exist, although none has gained the
popularity of the original. One uses a sixteen-by-sixteen grid,
with hexadecimal numbers. Another, called Gattai 5 or Samurai
Sudoku, uses five nine-by-nine grids that overlap at the corner
regions.

If you compare this to what we did to the Sudoku class, you’ll notice

that we’re referencing a different sound resource, R.raw.game (res/raw/

game.mp3).

The final piece of the musical puzzle is the Music class, which will man-

age the MediaPlayer class used to play the current music:

Download Sudokuv3/src/org/example/sudoku/Music.java

Line 1 package org.example.sudoku;
-

- import android.content.Context;
- import android.media.MediaPlayer;
5

- public class Music {
- private static MediaPlayer mp = null;
-

- /** Stop old song and start new one */
10 public static void play(Context context, int resource) {

- stop(context);
- mp = MediaPlayer.create(context, resource);
- mp.setLooping(true);
- mp.start();

15 }
-

- /** Stop the music */
- public static void stop(Context context) {
- if (mp != null) {

20 mp.stop();
- mp.release();
- mp = null;
- }
- }

25 }

The play() method first calls the stop() method to halt whatever music

is currently playing. Next, it creates a new MediaPlayer instance using

MediaPlayer.create(), passing it a context and a resource ID.

R t t

FAST -FORWARD >> 119

After we have a player, we then set an option to make it repeat the

music in a loop and then start it playing. The start() method comes

back immediately.

The stop() method that begins on line 18 is simple. After a little defen-

sive check to make sure we actually have a MediaPlayer to work with,

we call its stop() and release() methods. The MediaPlayer.stop() method,

strangely enough, stops the music. The release() method frees system

resources associated with the player. Since those are native resources,

we can’t wait until normal Java garbage collection reclaims them. Leav-

ing out release() is a good way to make your program fail unexpectedly

(not that this has ever happened to me, of course; I’m just saying you

should keep that in mind).

Now comes the fun part—try playing Sudoku with these changes in

place. Stress test it in every way you can imagine, such as switch-

ing to different activities, pressing the Back button and the Home but-

ton from different points in the game, starting the program when it’s

already running at different points, rotating the display, and so forth.

Proper life-cycle management is a pain sometimes, but your users will

appreciate the effort.

5.4 Fast-Forward >>

In this chapter, we covered playing audio and video clips using the

Android SDK. We didn’t discuss recording because most programs will

not need to do that, but if you happen to be the exception, then look up

the MediaRecorder class in the online documentation.3

In Chapter 6, Storing Local Data, on the next page, you’ll learn about

some simple ways Android programs can store data between invoca-

tions. If you don’t need to do that, then you can skip ahead to Chap-

ter 7, The Connected World, on page 130 and learn about network

access.

3. http://d.android.com/reference/android/media/MediaRecorder.html

R t t

Chapter 6

Storing Local Data
So far, we’ve concentrated on writing applications that don’t need to

keep data around when they exit. They start up, run, and go away,

leaving no trace that they were ever there. However, most real programs

need persistent state, whether it’s a simple font size setting, an embar-

rassing photo from your last office party, or next week’s meal plan.

Whatever it is, Android lets you permanently store it on your mobile

device for later use and protects it from accidental or malicious access

by other programs.

Your application can store data using several different techniques de-

pending on the size of the data, its structure, its lifetime, and whether it

will be shared with other programs. In this chapter, we’ll take a look at

three simple methods to keep local data: the preferences API, instance

state bundles, and flash memory files. In Chapter 9, Putting SQL to

Work, on page 178, we’ll delve into more advanced techniques using

the built-in SQLite database engine.

6.1 Adding Options to Sudoku

In Section 3.7, Adding a Menu, on page 64, we used the onCreateOption-

sMenu() method to add a menu containing one item to the main Sudoku

screen. When the user presses the Menu key and selects the Settings...

item, the code starts the Prefs activity, which lets the user change the

options for the game. Because Prefs extends PreferenceActivity, the values

for the settings are stored in the program’s preferences area, but orig-

inally we didn’t do anything with them. Now we’re going to implement

them.

ADDING OPTIONS TO SUDOKU 121

Sudoku Trivia

There are 6,670,903,752,021,072,936,960 possible classic Sudoku
solution grids. If you eliminate duplicates that are just rotations,
reflections, or relabelings of each other, you’re left with “only”
5,472,730,538 solutions.

First let’s modify the Prefs class to add a couple of getter methods that

retrieve the current values of our two options. Here’s the new definition:

Download Sudokuv4/src/org/example/sudoku/Prefs.java

package org.example.sudoku;

import android.content.Context;

import android.os.Bundle;

import android.preference.PreferenceActivity;

import android.preference.PreferenceManager;

public class Prefs extends PreferenceActivity {

// Option names and default values

private static final String OPT_MUSIC = "music";

private static final boolean OPT_MUSIC_DEF = true;

private static final String OPT_HINTS = "hints";

private static final boolean OPT_HINTS_DEF = true;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.settings);

}

/** Get the current value of the music option */

public static boolean getMusic(Context context) {

return PreferenceManager.getDefaultSharedPreferences(context)

.getBoolean(OPT_MUSIC, OPT_MUSIC_DEF);

}

/** Get the current value of the hints option */

public static boolean getHints(Context context) {

return PreferenceManager.getDefaultSharedPreferences(context)

.getBoolean(OPT_HINTS, OPT_HINTS_DEF);

}

}

Be careful that the option keys (music and hints) match the keys used

in res/xml/settings.xml.

R t t

CONTINUING AN OLD GAME 122

Music.play() has to be modified to check for the music preference:

Download Sudokuv4/src/org/example/sudoku/Music.java

public static void play(Context context, int resource) {

stop(context);

// Start music only if not disabled in preferences

if (Prefs.getMusic(context)) {

mp = MediaPlayer.create(context, resource);

mp.setLooping(true);

mp.start();

}

}

And PuzzleView.onDraw() also needs to be modified to check for the hints

preference:

Download Sudokuv4/src/org/example/sudoku/PuzzleView.java

if (Prefs.getHints(getContext())) {

// Draw the hints...

}

If getHints() returns true, we draw the highlights for the hints, as shown

in Figure 4.6, on page 92. Otherwise, we just skip that part.

Next I’ll show you how to use the preferences API to store things other

than just options.

6.2 Continuing an Old Game

At any time the player can decide to quit playing our Sudoku game

and go do something else. Maybe their boss walked in, or they got a

phone call or a notification of an important appointment. Whatever the

reason, we want to allow the player to come back later and continue

where they left off.

First we need to save the current state of the puzzle somewhere. The

preferences API can be used for more than just options; it can store

any small stand-alone bits of information that go with your program.

In this case, the state of the puzzle can be saved as a string of eighty-

one characters, one for each tile.

In the Game class, we’ll start by defining a couple of constants—one for

the puzzle data key and one for a flag to tell us to continue the previous

game rather than start a new one.

R t t

CONTINUING AN OLD GAME 123

Download Sudokuv4/src/org/example/sudoku/Game.java

private static final String PREF_PUZZLE = "puzzle" ;

protected static final int DIFFICULTY_CONTINUE = -1;

Next we need to save the current puzzle whenever the game is paused.

See Section 2.2, It’s Alive!, on page 35 for a description of onPause() and

the other life-cycle methods.

Download Sudokuv4/src/org/example/sudoku/Game.java

@Override

protected void onPause() {

super.onPause();

Log.d(TAG, "onPause");

Music.stop(this);

// Save the current puzzle

getPreferences(MODE_PRIVATE).edit().putString(PREF_PUZZLE,

toPuzzleString(puzzle)).commit();

}

Now the puzzle is saved, but how do we read the saved data? Remember

that when the game is started, the getPuzzle() method is called, and the

difficulty level is passed in. We’ll use that for continuing as well.

Download Sudokuv4/src/org/example/sudoku/Game.java

private int[] getPuzzle(int diff) {

String puz;

switch (diff) {

case DIFFICULTY_CONTINUE:

puz = getPreferences(MODE_PRIVATE).getString(PREF_PUZZLE,

easyPuzzle);

break;

// ...

}

return fromPuzzleString(puz);

}

All we need to do is add a check for DIFFICULTY_CONTINUE. If that is set,

then instead of starting with a fresh puzzle, we read the one we stuffed

into the preferences.

Next, we need to make the Continue button on the main screen (see

Figure 3.4, on page 53) actually do something. Here is where we set

that up.

R t t

REMEMBERING THE CURRENT POSITION 124

Download Sudokuv4/src/org/example/sudoku/Sudoku.java

public void onClick(View v) {

switch (v.getId()) {

case R.id.continue_button:

startGame(Game.DIFFICULTY_CONTINUE);

break;

// ...

}

}

We added a case in Sudoku.onClick() to call startGame() when the Con-

tinue button is pressed, passing it DIFFICULTY_CONTINUE. startGame()

passes the difficulty to the Game activity, and Game.onCreate() calls

Intent.getIntExtra() to read the difficulty and passes that to getPuzzle()

(you can see the code for that in Section 4.2, Starting the Game, on

page 78).

There’s one more thing to do: restore from our saved game when our

activity goes away and comes back on its own (such as if another activ-

ity is started and then the user comes back to the Game activity). This

modification to the Game.onCreate() method will take care of that:

Download Sudokuv4/src/org/example/sudoku/Game.java

@Override

protected void onCreate(Bundle savedInstanceState) {

// ...

// If the activity is restarted, do a continue next time

getIntent().putExtra(KEY_DIFFICULTY, DIFFICULTY_CONTINUE);

}

That pretty much covers it for preferences. Next let’s look at saving

instance state.

6.3 Remembering the Current Position

If you change the screen orientation while Sudoku is running, you’ll

notice that it forgets where its cursor is. That’s because we use a cus-

tom PuzzleView view. Normal Android views save their view state auto-

matically, but since we made our own, we don’t get that for free.

Unlike persistent state, instance state is not permanent. It lives in a

Bundle class on Android’s application stack. Instance state is intended

to be used for small bits of information such as cursor positions.

R t t

REMEMBERING THE CURRENT POSITION 125

Here’s what we have to do to implement it:

Download Sudokuv4/src/org/example/sudoku/PuzzleView.java

Line 1 import android.os.Bundle;
- import android.os.Parcelable;
-

- public class PuzzleView extends View {
5 private static final String SELX = "selX";
- private static final String SELY = "selY";
- private static final String VIEW_STATE = "viewState";
- private static final int ID = 42;
-

10 public PuzzleView(Context context) {
- // ...
- setId(ID);
- }
-

15 @Override
- protected Parcelable onSaveInstanceState() {
- Parcelable p = super.onSaveInstanceState();
- Log.d(TAG, "onSaveInstanceState");
- Bundle bundle = new Bundle();

20 bundle.putInt(SELX, selX);
- bundle.putInt(SELY, selY);
- bundle.putParcelable(VIEW_STATE, p);
- return bundle;
- }

25 @Override
- protected void onRestoreInstanceState(Parcelable state) {
- Log.d(TAG, "onRestoreInstanceState");
- Bundle bundle = (Bundle) state;
- select(bundle.getInt(SELX), bundle.getInt(SELY));

30 super.onRestoreInstanceState(bundle.getParcelable(VIEW_STATE));
- return;
- }
- // ...
- }

On line 5, we define some constants for keys to save and restore the

cursor position. We need to save both our own x and y positions, plus

any state needed by the underlying View class.

As part of Activity.onSaveInstanceState() processing, Android will walk

down the view hierarchy and call View.onSaveInstanceState() on every

view it finds that has an ID. The same thing happens for onRestoreIn-

stanceState(). Normally, this ID would come from XML, but since Puzzle-

View was created in code, we need to set it ourselves. We make up an

arbitrary number on line 8 (any value will do as long as it’s positive)

and then use the setId() method to assign it on line 12.

R t t

ACCESSING THE INTERNAL FILE SYSTEM 126

The onSaveInstanceState() method is defined on line 16. We call the

superclass to get its state, and then we save ours and theirs in a Bundle.

Failing to call the superclass will result in a runtime error.

Later, onRestoreInstanceState() (line 26) will be called to tease out the

information we saved. We get our own x and y positions from the Bundle,

and then we call the superclass to let it get whatever it needs. After

making these changes, the cursor will be remembered by PuzzleView,

just like any other Android view.

Next let’s look at keeping data in plain old files.

6.4 Accessing the Internal File System

Android runs Linux under the covers, so there’s a real file system

mounted in there with a root directory and everything. The files are

stored on nonvolatile flash memory built into the device, so they are

not lost when the phone is turned off.

All of the usual Java file I/O routines from the java.io package are avail-

able for your program to use, with the caveat that your process has

limited permissions so it can’t mess up any other application’s data. In

fact, the main thing it can access is a package private directory created

at install time (/data/data/packagename).

A few helper methods are provided on the Context class (and thus on

the Activity class extended by each of your activities) to let you read and

write data there. Here are the ones you’re most likely to need:

deleteFile() Delete a private file. Returns true if it worked, false

otherwise.

fileList() Return a list of all files in the application’s private

area in a String array.

openFileInput() Open a private file for reading. Returns a

java.io.FileInputStream.

openFileOutput() Open a private file for writing. Returns a

java.io.FileOutputStream.

However, since this internal memory is limited, I recommend you keep

the size of any data you put there low, say a megabyte or two at the

most, and carefully handle I/O errors when writing in case the space

runs out.

Luckily, internal memory isn’t the only storage that you have to work

with.

R t t

ACCESSING SD CARDS 127

All in the Family

If you recall from Section 2.5, Safe and Secure, on page 40,
each application normally gets its own user ID at install time.
That user ID is the only one that is allowed to read and write from
the application’s private directory. However, if two applica-
tions are signed∗ by the same digital certificate, then Android
assumes they are from the same developer and gives them the
same user ID.

On the one hand, that allows them to share all sorts of data with
each other if they so choose. But on the other, it also means
they’ll need to take special care to stay out of each other’s
way.

∗. http://d.android.com/guide/topics/security/security.html#signing

6.5 Accessing SD Cards

Some Android devices will include a slot for additional flash memory to

be plugged in, typically a Secure Digital (SD) card. These memory cards,

if present, are much larger than the built-in memory, and thus they’re

ideal for storing multimegabyte music and video files. They cannot be

used for code, and every application can read and write files there.

In Section 5.2, Playing Video, on page 112, we uploaded a sample video

file to the /data directory of the emulated device. This is the wrong

place for it, since we’re not supposed to put large files on the internal

file system. So, now I’m going to show you a better way.

The first step is to create and format a virtual SD card that we can

“plug in” to the emulator. Luckily we’ve already done this—if you recall,

in Section 1.3, Creating an AVD, on page 23 when we created the “em22”

virtual device, we gave it a 64MB virtual SD card as well. You can make

it any size you like, but if you make it too small, it may cause the

emulator to crash; if you make it too big, you’ll just waste space on

your computer’s disk drive.

Next, let’s copy the sample video to the SD card:

C:\> adb push c:\code\samplevideo.3gp /sdcard/samplevideo.3gp

1468 KB/s (369870 bytes in 0.246s)

R t t

FAST -FORWARD >> 128

Then we need to modify the onCreate() method of the Video class to play

the movie from the SD card instead of the /data directory:

Download Videov2/src/org/example/video/Video.java

// Load and start the movie

video.setVideoPath("/sdcard/samplevideo.3gp");

video.start();

Now try to run the program. The video should play normally.

Note: Starting with Android 1.6, you will need to request the WRITE_

EXTERNAL_STORAGE permission in your manifest file if you want to write

to the SD card from your application. Reading from the card doesn’t

require any special permissions.

Starting with Android 2.2, your application can use the Context.getEx-

ternalFilesDir() method to get the directory on the external file system

where it can place persistent files it owns. Android will delete the files

when the application is uninstalled.

6.6 Fast-Forward >>

In this chapter, we covered a couple of basic ways to store local data

on the Android platform. That should be enough to get you started, but

for structured data such as phone lists and recipes, you’ll need some-

thing more advanced. See Chapter 9, Putting SQL to Work, on page 178

for directions on how to use Android’s built-in SQLite database and

how to share information between applications using content providers.

For instructions on installing applications on external storage, see Sec-

tion 13.6, Installing on the SD Card, on page 268

This brings us to the end of Part II. With the help of the Sudoku exam-

ple, you’ve learned all the basics of Android programming, including

user interfaces, 2D graphics, audio, video, and simple data storage.

Now it’s time to leave Sudoku behind and move beyond the basics.

R t t

Part III

Beyond the Basics

Chapter 7

The Connected World
Over the next few chapters, we’ll cover more advanced topics such as

network access and location-based services. You can write many useful

applications without these features, but going beyond the basic fea-

tures of Android will really help you add value to your programs, giving

them much more functionality with a minimum of effort.

What do you use your mobile phone for? Aside from making calls, more

and more people are using their phones as mobile Internet devices.

Analysts predict that in a few years mobile phones will surpass desktop

computers as the number-one way to connect to the Internet.1 This

point has already been reached in some parts of the world.2

Android phones are well equipped for the new connected world of the

mobile Internet. First, Android provides a full-featured web browser

based on the WebKit open source project.3 This is the same engine you

will find in Google Chrome, the Apple iPhone, and the Safari desktop

browser but with a twist. Android lets you use the browser as a compo-

nent right inside your application.

Second, Android gives your programs access to standard network ser-

vices like TCP/IP sockets. This lets you consume web services from

Google, Yahoo, Amazon, and many other sources on the Internet.

1. http://archive.mobilecomputingnews.com/2010/0205.html

2. http://www.comscore.com/press/release.asp?press=1742

3. http://webkit.org

BROWSING BY INTENT 131

Figure 7.1: Opening a browser using an Android intent

In this chapter, you’ll learn how to take advantage of all these features

and more through four example programs:

• BrowserIntent: Demonstrates opening an external web browser

using an Android intent

• BrowserView: Shows you how to embed a browser directly into

your application

• LocalBrowser: Explains how JavaScript in an embedded WebView

and Java code in your Android program can talk to each other

• Translate: Uses data binding, threading, and web services for an

amusing purpose

7.1 Browsing by Intent

The simplest thing you can do with Android’s networking API is to open

a browser on a web page of your choice. You might want to do this to

provide a link to your home page from your program or to access some

server-based application such as an ordering system. In Android all it

takes is three lines of code.

To demonstrate, let’s write a new example called BrowserIntent, which

will have an edit field where you can enter a URL and a Go button

you press to open the browser on that URL (see Figure 7.1). Start by

creating a new “Hello, Android” project with the following values in the

New Project wizard:

Project name: BrowserIntent

Build Target: Android 2.2

Application name: BrowserIntent

Package name: org.example.browserintent

Create Activity: BrowserIntent

Min SDK Version: 8

R t t

BROWSING BY INTENT 132

Once you have a the basic program, change the layout file (res/layout/

main.xml) so it looks like this:

Download BrowserIntent/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<EditText

android:id="@+id/url_field"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_weight="1.0"

android:lines="1"

android:inputType="textUri"

android:imeOptions="actionGo" />

<Button

android:id="@+id/go_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/go_button" />

</LinearLayout>

This defines our two controls, an EditText control and a Button.

On EditText, we set android:layout_weight="1.0" to make the text area fill

up all the horizontal space to the left of the button, and we also set

android:lines="1" to limit the height of the control to one vertical line.

Note that this has no effect on the amount of text the user can enter

here, just the way it is displayed.

Android 1.5 introduced support for soft keyboards and other alternate

input methods. The options for android:inputType="textUri" and

android:imeOptions="actionGo" are hints for how the soft keyboard should

appear. They tell Android to replace the standard keyboard with one

that has convenient buttons for “.com” and “/” to enter web addresses

and has a Go button that opens the web page.4

As always, human-readable text should be put in a resource file, res/

values/strings.xml.

4. See http://d.android.com/reference/android/widget/TextView.html and

http://android-developers.blogspot.com/2009/04/updating-applications-for-on-screen.html for

more information on input options.

R t t

BROWSING BY INTENT 133

Download BrowserIntent/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">BrowserIntent</string>

<string name="go_button">Go</string>

</resources>

Next we need to fill in the onCreate() method in the BrowserIntent class.

This is where we’ll build the user interface and hook up all the behav-

ior. If you don’t feel like typing all this in, the complete source code is

available online at the book’s website.5

Download BrowserIntent/src/org/example/browserintent/BrowserIntent.java

Line 1 package org.example.browserintent;
-

- import android.app.Activity;
- import android.content.Intent;
5 import android.net.Uri;
- import android.os.Bundle;
- import android.view.KeyEvent;
- import android.view.View;
- import android.view.View.OnClickListener;

10 import android.view.View.OnKeyListener;
- import android.widget.Button;
- import android.widget.EditText;
-

- public class BrowserIntent extends Activity {
15 private EditText urlText;

- private Button goButton;
-

- @Override
- public void onCreate(Bundle savedInstanceState) {

20 super.onCreate(savedInstanceState);
- setContentView(R.layout.main);
-

- // Get a handle to all user interface elements
- urlText = (EditText) findViewById(R.id.url_field);

25 goButton = (Button) findViewById(R.id.go_button);
-

- // Setup event handlers
- goButton.setOnClickListener(new OnClickListener() {
- public void onClick(View view) {

30 openBrowser();
- }
- });
- urlText.setOnKeyListener(new OnKeyListener() {
- public boolean onKey(View view, int keyCode, KeyEvent event) {

5. http://pragprog.com/titles/eband3

R t t

BROWSING BY INTENT 134

35 if (keyCode == KeyEvent.KEYCODE_ENTER) {
- openBrowser();
- return true;
- }
- return false;

40 }
- });
- }
- }

Inside onCreate(), we call setContentView() on line 21 to load the view

from its definition in the layout resource, and then we call findViewById()

on line 24 to get a handle to our two user interface controls.

Line 28 tells Android to run some code when the user selects the Go

button, either by touching it or by navigating to it and pressing the

center D-pad button. When that happens, we call the openBrowser()

method, which will be defined in a moment.

As a convenience, if the user types an address and hits the Enter key

(if their phone has one), we want the browser to open just like they

had clicked Go. To do this, we define a listener starting on line 33 that

will be called every time the user types a keystroke into the edit field.

If it’s the Enter key, then we call the openBrowser() method to open the

browser; otherwise, we return false to let the text control handle the key

normally.

Now comes the part you’ve been waiting for: the openBrowser() method.

As promised, it’s three lines long:

Download BrowserIntent/src/org/example/browserintent/BrowserIntent.java

/** Open a browser on the URL specified in the text box */

private void openBrowser() {

Uri uri = Uri.parse(urlText.getText().toString());

Intent intent = new Intent(Intent.ACTION_VIEW, uri);

startActivity(intent);

}

The first line retrieves the address of the web page as a string (for exam-

ple, “http://www.android.com”) and converts it to a uniform resource

identifier (URI).

Note: Don’t leave off the “http://” part of the URL when you try this.

If you do, the program will crash because Android won’t know how to

handle the address. In a real program you could add that if the user

omitted it.

R t t

WEB WITH A VIEW 135

Figure 7.2: Viewing a web page with the default browser

The next line creates a new Intent class with an action of ACTION_VIEW,

passing it the Uri class just created as the object we want to view.

Finally, we call the startActivity() method to request that this action be

performed.

When the Browser activity starts, it will create its own view (see Fig-

ure 7.2), and your program will be paused. If the user presses the Back

key at that point, the browser window will go away, and your appli-

cation will continue. But what if you want to see some of your user

interface and a web page at the same time? Android allows you to do

that by using the WebView class.

7.2 Web with a View

On your desktop computer, a web browser is a large, complicated,

memory-gobbling program with all sorts of features like bookmarks,

plug-ins, Flash animations, tabs, scroll bars, printing, and so forth.

When I was working on the Eclipse project and someone suggested

replacing some common text views with embedded web browsers, I

thought they were crazy. Wouldn’t it make more sense, I argued, to

simply enhance the text viewer to do italics or tables or whatever it was

that was missing?

R t t

WEB WITH A VIEW 136

It turns out they weren’t crazy because:

• A web browser can be (relatively) lean and mean if you strip out

everything but the basic rendering engine.

• If you enhance a text view to add more and more things that a

browser engine can do, you end up with either an overly compli-

cated, bloated text viewer or an underpowered browser.

Android provides a wrapper around the WebKit browser engine called

WebView that you can use to get the real power of a browser with as little

as 1MB of overhead. Although 1MB is still significant on an embedded

device, there are many cases where using a WebView is appropriate.

WebView works pretty much like any other Android view except that it

has a few extra methods specific to the browser. I’m going to show you

how it works by doing an embedded version of the previous example.

This one will be called BrowserView instead of BrowserIntent, since it

uses an embedded View instead of an Intent. Start by creating a new

“Hello, Android” project using these settings:

Project name: BrowserView

Build Target: Android 2.2

Application name: BrowserView

Package name: org.example.browserview

Create Activity: BrowserView

Min SDK Version: 8

The layout file for BrowserView is similar to the one in BrowserIntent,

except we’ve added a WebView at the bottom:

Download BrowserView/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<LinearLayout

android:orientation="horizontal"

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<EditText

android:id="@+id/url_field"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_weight="1.0"

android:lines="1"

android:inputType="textUri"

android:imeOptions="actionGo" />

R t t

WEB WITH A VIEW 137

<Button

android:id="@+id/go_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/go_button" />

</LinearLayout>

<WebView

android:id="@+id/web_view"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_weight="1.0" />

</LinearLayout>

We use two LinearLayout controls to make everything appear in the right

place. The outermost control divides the screen into top and bottom

regions; the top has the text area and button, and the bottom has the

WebView. The innermost LinearLayout is the same as before; it just makes

the text area go on the left and the button on the right.

The onCreate() method for BrowserView is exactly the same as before,

except that now there is one extra view to look up:

Download BrowserView/src/org/example/browserview/BrowserView.java

import android.webkit.WebView;

// ...

public class BrowserView extends Activity {

private WebView webView;

// ...

@Override

public void onCreate(Bundle savedInstanceState) {

// ...

webView = (WebView) findViewById(R.id.web_view);

// ...

}

}

The openBrowser() method, however, is different:

Download BrowserView/src/org/example/browserview/BrowserView.java

/** Open a browser on the URL specified in the text box */

private void openBrowser() {

webView.getSettings().setJavaScriptEnabled(true);

webView.loadUrl(urlText.getText().toString());

}

R t t

WEB WITH A VIEW 138

Figure 7.3: Embedding a browser using WebView

The loadUrl() method causes the browser engine to begin loading and

displaying a web page at the given address. It returns immediately even

though the actual loading may take some time (if it finishes at all).

Don’t forget to update the string resources:

Download BrowserView/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">BrowserView</string>

<string name="go_button">Go</string>

</resources>

We need to make one more change to the program. Add this line to

AndroidManifest.xml before the <application> tag:

Download BrowserView/AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

If you leave this out, Android will not give your application access to

the Internet, and you’ll get a “Web page not available” error.

Try running the program now, and enter a valid web address starting

with “http://”; when you press Return or select the Go button, the web

page should appear (see Figure 7.3).

R t t

WEB WITH A VIEW 139

Joe Asks. . .

Why Didn’t BrowserIntent Need <uses-permission>?

The previous example, BrowserIntent, simply fired off an intent to
request that some other application view the web page. That
other application (the browser) is the one that needs to ask for
Internet permissions in its own AndroidManifest.xml.

WebView has dozens of other methods you can use to control what is

being displayed or get notifications on state changes.

You can find a complete list in the online documentation for WebView,

but here are the methods you are most likely to need:

• addJavascriptInterface(): Allows a Java object to be accessed from

JavaScript (more on this one in the next section)

• createSnapshot(): Creates a screenshot of the current page

• getSettings(): Returns a WebSettings object used to control the

settings

• loadData(): Loads the given string data into the browser

• loadDataWithBaseURL(): Loads the given data using a base URL

• loadUrl(): Loads a web page from the given URL

• setDownloadListener(): Registers callbacks for download events,

such as when the user downloads a .zip or .apk file

• setWebChromeClient(): Registers callbacks for events that need to

be done outside the WebView rectangle, such as updating the title

or progress bar or opening a JavaScript dialog box

• setWebViewClient(): Lets the application set hooks in the browser to

intercept events such as resource loads, key presses, and autho-

rization requests

• stopLoading(): Stops the current page from loading

One of the most powerful things you can do with the WebView control

is to talk back and forth between it and the Android application that

contains it. Let’s take a closer look at this feature now.

R t t

FROM JAVASCRIPT TO JAVA AND BACK 140

Joe Asks. . .

Is Allowing JavaScript to Call Java Dangerous?

Whenever you allow a web page to access local resources or
call functions outside the browser sandbox, you need to con-
sider the security implications very carefully. For example, you
wouldn’t want to create a method to allow JavaScript to read
data from any arbitrary path name because that might expose
some private data to a malicious site that knew about your
method and your filenames.

Here are a few things to keep in mind. First, don’t rely on
security by obscurity. Enforce limits on the pages that can use
your methods and on the things those methods can do. And
remember the golden rule of security: don’t rule things out;
rule them in. In other words, don’t try to check for all the
bad things that someone can ask you to do (for example,
invalid characters in a query). You’re bound to miss something.
Instead, disallow everything, and pass only the good things you
know are safe.

7.3 From JavaScript to Java and Back

Your Android device can do a number of cool things such as store local

data, draw graphics, play music, make calls, and determine its location.

Wouldn’t it be nice if you could access that functionality from a web

page? With an embedded WebView control, you can.

The key is the addJavascriptInterface() method in the WebView class.

You can use it to extend the Document Object Model (DOM) inside the

embedded browser and to define a new object that JavaScript code can

access. When the JavaScript code invokes methods on that object, it

will actually be invoking methods in your Android program.

You can call JavaScript methods from your Android program too. All

you have to do is call the loadUrl() method, passing it a URL of the form

javascript:code-to-execute. Instead of going to a new page, the browser

will execute the given JavaScript expression inside the current page.

You can call a method, change JavaScript variables, modify the browser

document—anything you need.

R t t

FROM JAVASCRIPT TO JAVA AND BACK 141

Figure 7.4: Communicating between Android and an embedded Web-

View

To demonstrate calls between JavaScript in the WebView and Java in

the Android program, let us now build a program that is half HTML/

JavaScript and half Android (see Figure 7.4). The top part of the appli-

cation window is a WebView control, and the bottom part is a TextView

and Button from the Android user interface. When you click the buttons

and links, it makes calls between the two environments.

Start by creating a “Hello, Android” program using these parameters:

Project name: LocalBrowser

Build Target: Android 2.2

Application name: LocalBrowser

Package name: org.example.localbrowser

Create Activity: LocalBrowser

Min SDK Version: 8

R t t

FROM JAVASCRIPT TO JAVA AND BACK 142

The user interface for this program will be split into two parts. The first

part is defined in the Android layout file, res/layout/main.xml:

Download LocalBrowser/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<WebView

android:id="@+id/web_view"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:layout_weight="1.0" />

<LinearLayout

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:layout_weight="1.0"

android:padding="5sp">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="24sp"

android:text="@string/textview" />

<Button

android:id="@+id/button"

android:text="@string/call_javascript_from_android"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textSize="18sp" />

<TextView

android:id="@+id/text_view"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="18sp" />

</LinearLayout>

</LinearLayout>

The second part is the index.html file that will be loaded into the Web-

View. This file goes in the assets directory, not the res directory, because

it’s not a compiled resource. Anything in the assets directory is copied

verbatim onto local storage when your program is installed. The direc-

tory is intended to be used for local copies of HTML, images, and scripts

that the browser can view without being connected to the network.

R t t

FROM JAVASCRIPT TO JAVA AND BACK 143

Download LocalBrowser/assets/index.html

Line 1 <html>

- <head>

- <script language="JavaScript">

- function callJS(arg) {
5 document.getElementById('replaceme').innerHTML = arg;
- }
- </script>

- </head>

- <body>

10 <h1>WebView</h1>
- <p>

-

- Display JavaScript alert
- </p>

15 <p>

-

- Call Android from JavaScript
- </p>

- <p id="replaceme">

20 </p>

- </body>

- </html>

Line 4 of index.html defines the callJS() function that our Android pro-

gram will be calling later. It takes a string argument and inserts it at

the replaceme tag, which is at line 19.

In Figure 7.4, on page 141, you see two HTML links that are defined

starting at line 12. The first one just calls a standard window.alert() func-

tion to open a window displaying a short message. The second link, at

line 16, calls the callAndroid() method on the window.an-

droid object. If you loaded this page into a normal web browser, win-

dow.android would be undefined. But since we’re embedding a browser

into an Android application, we can define the object ourselves so the

page can use it.

Next we turn to the Android code in the LocalBrowser class. Here’s the

basic outline, including all the imports we’ll need later:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

Line 1 package org.example.localbrowser;
-

- import android.app.Activity;
- import android.os.Bundle;
5 import android.os.Handler;
- import android.util.Log;

R t t

FROM JAVASCRIPT TO JAVA AND BACK 144

- import android.view.View;
- import android.view.View.OnClickListener;
- import android.webkit.JsResult;

10 import android.webkit.WebChromeClient;
- import android.webkit.WebView;
- import android.widget.Button;
- import android.widget.TextView;
- import android.widget.Toast;

15

- public class LocalBrowser extends Activity {
- private static final String TAG = "LocalBrowser";
- private final Handler handler = new Handler();
- private WebView webView;

20 private TextView textView;
- private Button button;
-

- @Override
- public void onCreate(Bundle savedInstanceState) {

25 super.onCreate(savedInstanceState);
- setContentView(R.layout.main);
-

- // Find the Android controls on the screen
- webView = (WebView) findViewById(R.id.web_view);

30 textView = (TextView) findViewById(R.id.text_view);
- button = (Button) findViewById(R.id.button);
- // Rest of onCreate follows...
- }
- }

Note the initialization of a Handler object at line 18. JavaScript calls

come in on a special thread dedicated to the browser, but Android user

interface calls can be made only from the main (GUI) thread. We’ll use

the Handler class to make the transition.

To call Android Java code from JavaScript, you need to define a plain

old Java object with one or more methods, like this:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

/** Object exposed to JavaScript */

private class AndroidBridge {

public void callAndroid(final String arg) { // must be final

handler.post(new Runnable() {

public void run() {

Log.d(TAG, "callAndroid(" + arg + ")");

textView.setText(arg);

}

});

}

}

R t t

FROM JAVASCRIPT TO JAVA AND BACK 145

When JavaScript calls the callAndroid() method, the application creates

a new Runnable object and posts it on the running queue of the main

thread using Handler.post(). As soon as the main thread gets a chance,

it will invoke the run() method, which will call setText() to change the

text on the TextView object. Now it’s time to tie everything together in

the onCreate() method. First we turn on JavaScript (it’s off by default)

and register our bridge to JavaScript:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// Turn on JavaScript in the embedded browser

webView.getSettings().setJavaScriptEnabled(true);

// Expose a Java object to JavaScript in the browser

webView.addJavascriptInterface(new AndroidBridge(),

"android");

Then we create an anonymous WebChromeClient object and register it

with the setWebChromeClient() method.

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// Set up a function to be called when JavaScript tries

// to open an alert window

webView.setWebChromeClient(new WebChromeClient() {

@Override

public boolean onJsAlert(final WebView view,

final String url, final String message,

JsResult result) {

Log.d(TAG, "onJsAlert(" + view + ", " + url + ", "

+ message + ", " + result + ")");

Toast.makeText(LocalBrowser.this, message, 3000).show();

result.confirm();

return true; // I handled it

}

});

The term chrome here refers to all the trimmings around a browser

window. If this were a full-blown browser client, we’d need to handle

navigation, bookmarks, menus, and so forth. In this case, all we want

to do is change what happens with JavaScript code when the browser

tries to open a JavaScript alert (using window.alert()). Inside onJsAlert()

we use the Android Toast class to create a message window that will

appear for a short amount of time (in this case, 3000 milliseconds, or 3

seconds).

R t t

FROM JAVASCRIPT TO JAVA AND BACK 146

Once we finish configuring the WebView, we can use loadUrl() to load the

local web page:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// Load the web page from a local asset

webView.loadUrl("file:///android_asset/index.html");

URLs of the form “file:///android_asset/filename” (note the three for-

ward slashes) have a special meaning to Android’s browser engine. As

you might have guessed, they refer to files in the assets directory. In this

case, we’re loading the index.html file defined earlier.

Here is the res/values/strings.xml file for the LocalBrowser example:

Download LocalBrowser/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">LocalBrowser</string>

<string name="textview">TextView</string>

<string name="call_javascript_from_android">

Call JavaScript from Android

</string>

</resources>

The last thing we have to do is wire up the button at the bottom of the

screen so it will make a JavaScript call (a call from Java to JavaScript).

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// This function will be called when the user presses the

// button on the Android side

button.setOnClickListener(new OnClickListener() {

public void onClick(View view) {

Log.d(TAG, "onClick(" + view + ")");

webView.loadUrl("javascript:callJS('Hello from Android')");

}

});

To do that, we set a listener for button clicks using setOnClickListener().

When the button is pressed, onClick() is called, which turns around and

calls WebView.loadUrl(), passing it a JavaScript expression to evaluate in

the browser. The expression is a call to the callJS() function defined in

index.html.

Run the program now, and try it. When you click “Display JavaScript

alert,” an Android message window will appear. When you click “Call

Android from JavaScript,” the string “Hello from Browser” will be dis-

played in an Android text control. And finally, when you press the “Call

JavaScript from Android” button, the string “Hello from Android” is sent

R t t

USING WEB SERVICES 147

to the browser and inserted in the HTML where it will be displayed at

the end of the web page.

Sometimes you don’t need to display a web page, but you just need to

access some kind of web service or other server-side resource. In the

next section, I’ll show you how to do this.

7.4 Using Web Services

Android provides a full set of Java-standard networking APIs, such as

the java.net.HttpURLConnection package, that you can use in your pro-

grams. The tricky part is to make the calls asynchronously so that your

program’s user interface will be responsive at all times.

Consider what would happen if you just make a blocking network call

in your main (GUI) thread. Until that call returns (and it might never

return), your application cannot respond to any user interface events

such as keystrokes or button presses. It will appear hung to the user.

Obviously, that’s something you’ll have to avoid.

The java.util.concurrent package is perfect for this kind of work. First cre-

ated by Doug Lea as a stand-alone library and later incorporated into

Java 5, this package supports concurrent programming at a higher

level than the regular Java Thread class. The ExecutorService class man-

ages one or more threads for you, and all you have to do is submit

tasks (instances of Runnable or Callable) to the executor to have them

run. An instance of the Future class is returned, which is a reference to

some as-yet-unknown future value that will be returned by your task

(if any). You can limit the number of threads that are created, and you

can interrupt running tasks if necessary.

To illustrate these concepts, let’s create a fun little program that calls

the Google Translation API.6 Have you ever laughed at strange trans-

lations to and from foreign languages, especially computer-generated

translations? This program will let the user enter a phrase in one lan-

guage, ask Google to translate to a second language, and then ask

Google to translate it back into the first language. Ideally, you’d end

up with the same words you started with, but this is not always the

case, as you can see in Figure 7.5, on the next page.

6. http://code.google.com/apis/ajaxlanguage

R t t

USING WEB SERVICES 148

Figure 7.5: Machine translation is still a work in progress.

To use this program, simply select the starting and target languages,

and then start typing a phrase. As you type, the program will use the

Google Translation web service to translate your text into and out of

the target language.

To create this application, start with a “Hello, Android” application

using these parameters:

Project name: Translate

Build Target: Android 2.2

Application name: Translate

Package name: org.example.translate

Create Activity: Translate

Min SDK Version: 8

Since this example will access the Internet to make a web service call,

we will need to tell Android to grant us permission.

R t t

USING WEB SERVICES 149

Lost in Translation

When I first thought of this example, I imagined that it would be
easy to get some hilarious results. Unfortunately (or fortunately,
depending on your point of view), the Google service does
a pretty good job with most languages. If you find any espe-
cially funny cases where the translator really flubs up, please
post them on the discussion forum at the book’s website (http://

pragprog.com/titles/eband3) for others to enjoy.

Add this line to AndroidManifest.xml before the <application> XML tag:

Download Translate/AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

The layout for this example is a little more complicated than usual, so

we’ll use the TableLayout view. TableLayout lets you arrange your views

into rows and columns, taking care of alignment and stretching the

columns to fit the content. It’s similar to using <table> and <tr> tags

in HTML.

Download Translate/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TableLayout

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:stretchColumns="1"

android:padding="10dip">

<TableRow>

<TextView android:text="@string/from_text" />

<Spinner android:id="@+id/from_language" />

</TableRow>

<EditText

android:id="@+id/original_text"

android:hint="@string/original_hint"

android:padding="10dip"

android:textSize="18sp" />

<TableRow>

<TextView android:text="@string/to_text" />

<Spinner android:id="@+id/to_language" />

</TableRow>

R t t

USING WEB SERVICES 150

<TextView

android:id="@+id/translated_text"

android:padding="10dip"

android:textSize="18sp" />

<TextView android:text="@string/back_text" />

<TextView

android:id="@+id/retranslated_text"

android:padding="10dip"

android:textSize="18sp" />

</TableLayout>

</ScrollView>

In this example, we have six rows, each row containing one or two

columns. Note that if there is only one view in a row, you don’t have

to use a TableRow to contain it. Also, it’s not necessary to use android:

layout_width= and android:layout_height= on every view like you have to

with LinearLayout.

The Spinner class is a new one we haven’t seen before. It’s similar to a

combo box in other user interface toolkits. The user selects the spin-

ner (for example, by touching it), and a list of possible values appears

for them to pick. In this example, we’re going to use this control for

selecting from a list of languages.

The actual list is stored as an Android resource in the file res/values/

arrays.xml:

Download Translate/res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<array name="languages">

<item>Bulgarian (bg)</item>

<item>Chinese Simplified (zh-CN)</item>

<item>Chinese Traditional (zh-TW)</item>

<item>Catalan (ca)</item>

<item>Croatian (hr)</item>

<item>Czech (cs)</item>

<item>Danish (da)</item>

<item>Dutch (nl)</item>

<item>English (en)</item>

<item>Filipino (tl)</item>

<item>Finnish (fi)</item>

<item>French (fr)</item>

<item>German (de)</item>

<item>Greek (el)</item>

<item>Indonesian (id)</item>

<item>Italian (it)</item>

<item>Japanese (ja)</item>

<item>Korean (ko)</item>

R t t

USING WEB SERVICES 151

<item>Latvian (lv)</item>

<item>Lithuanian (lt)</item>

<item>Norwegian (no)</item>

<item>Polish (pl)</item>

<item>Portuguese (pt-PT)</item>

<item>Romanian (ro)</item>

<item>Russian (ru)</item>

<item>Spanish (es)</item>

<item>Serbian (sr)</item>

<item>Slovak (sk)</item>

<item>Slovenian (sl)</item>

<item>Swedish (sv)</item>

<item>Ukrainian (uk)</item>

</array>

</resources>

This defines a list called languages that contains most of the languages

recognized by the Google Translation API. Note that each value has a

long name (for example, Spanish) and a short name (for example, es).

We’ll use the short name when passing the language to the translator.

Now let’s start modifying the Translate class. Here’s the basic outline:

Download Translate/src/org/example/translate/Translate.java

Line 1 package org.example.translate;
-

- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
5 import java.util.concurrent.Future;
- import java.util.concurrent.RejectedExecutionException;
-

- import android.app.Activity;
- import android.os.Bundle;

10 import android.os.Handler;
- import android.text.Editable;
- import android.text.TextWatcher;
- import android.view.View;
- import android.widget.AdapterView;

15 import android.widget.ArrayAdapter;
- import android.widget.EditText;
- import android.widget.Spinner;
- import android.widget.TextView;
- import android.widget.AdapterView.OnItemSelectedListener;

20

- public class Translate extends Activity {
- private Spinner fromSpinner;
- private Spinner toSpinner;
- private EditText origText;

R t t

USING WEB SERVICES 152

25 private TextView transText;
- private TextView retransText;
-

- private TextWatcher textWatcher;
- private OnItemSelectedListener itemListener;

30

- private Handler guiThread;
- private ExecutorService transThread;
- private Runnable updateTask;
- private Future transPending;

35

- @Override
- public void onCreate(Bundle savedInstanceState) {
- super.onCreate(savedInstanceState);
-

40 setContentView(R.layout.main);
- initThreading();
- findViews();
- setAdapters();
- setListeners();

45 }
- }

After declaring a few variables, we define the onCreate() method starting

at line 37 to initialize the threading and user interface. Don’t worry,

we’ll fill out all those other methods it calls as we go.

The findViews() method, called from line 42, just gets a handle to all the

user interface elements defined in the layout file:

Download Translate/src/org/example/translate/Translate.java

private void findViews() {

fromSpinner = (Spinner) findViewById(R.id.from_language);

toSpinner = (Spinner) findViewById(R.id.to_language);

origText = (EditText) findViewById(R.id.original_text);

transText = (TextView) findViewById(R.id.translated_text);

retransText = (TextView) findViewById(R.id.retranslated_text);

}

The setAdapters() method, called from onCreate() on line 43, defines a

data source for the spinners:

Download Translate/src/org/example/translate/Translate.java

private void setAdapters() {

// Spinner list comes from a resource,

// Spinner user interface uses standard layouts

ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(

this, R.array.languages,

android.R.layout.simple_spinner_item);

R t t

USING WEB SERVICES 153

Joe Asks. . .

Is All This Delay and Threading Stuff Really Necessary?

One reason you need to do it this way is to avoid making too
many calls to the external web service. Imagine what happens
as the user enters the word scissors. The program sees the word
typed in a character at a time, first s, then c, then i, and so
on, possibly with backspaces because nobody can remem-
ber how to spell scissors. Do you really want to make a web
service request for every character? Not really. Besides putting
unnecessary load on the server, it would be wasteful in terms
of power. Each request requires the device’s radio to transmit
and receive several data packets, which uses up a bit of bat-
tery power. You want to wait until the user finishes typing before
sending the request, but how do you tell they are done?

The algorithm used here is that as soon as the user types a let-
ter, a delayed request is started. If they don’t type another let-
ter before the one-second delay is up, then the request goes
through. Otherwise, the first request is removed from the request
queue before it goes out. If the request is already in progress,
we try to interrupt it. The same goes for language changes,
except we use a smaller delay. The good news is that now that
I’ve done it once for you, you can use the same pattern in your
own asynchronous programs.

adapter.setDropDownViewResource(

android.R.layout.simple_spinner_dropdown_item);

fromSpinner.setAdapter(adapter);

toSpinner.setAdapter(adapter);

// Automatically select two spinner items

fromSpinner.setSelection(8); // English (en)

toSpinner.setSelection(11); // French (fr)

}

In Android, an Adapter is a class that binds a data source (in this case,

the languages array defined in arrays.xml) to a user interface control (in

this case, a spinner). We use the standard layouts provided by Android

for individual items in the list and for the drop-down box you see when

you select the spinner.

R t t

USING WEB SERVICES 154

Next we set up the user interface handlers in the setListeners() routine

(called from line 44 of onCreate()):

Download Translate/src/org/example/translate/Translate.java

private void setListeners() {

// Define event listeners

textWatcher = new TextWatcher() {

public void beforeTextChanged(CharSequence s, int start,

int count, int after) {

/* Do nothing */

}

public void onTextChanged(CharSequence s, int start,

int before, int count) {

queueUpdate(1000 /* milliseconds */);

}

public void afterTextChanged(Editable s) {

/* Do nothing */

}

};

itemListener = new OnItemSelectedListener() {

public void onItemSelected(AdapterView parent, View v,

int position, long id) {

queueUpdate(200 /* milliseconds */);

}

public void onNothingSelected(AdapterView parent) {

/* Do nothing */

}

};

// Set listeners on graphical user interface widgets

origText.addTextChangedListener(textWatcher);

fromSpinner.setOnItemSelectedListener(itemListener);

toSpinner.setOnItemSelectedListener(itemListener);

}

We define two listeners: one that is called when the text to translate is

changed and one that is called when the language is changed. queue-

Update() puts a delayed update request on the main thread’s to-do list

using a Handler. We arbitrarily use a 1,000-millisecond delay for text

changes and a 200-millisecond delay for language changes.

The update request is defined inside the initThreading() method:

Download Translate/src/org/example/translate/Translate.java

Line 1 private void initThreading() {
- guiThread = new Handler();
- transThread = Executors.newSingleThreadExecutor();
-

R t t

USING WEB SERVICES 155

5 // This task does a translation and updates the screen
- updateTask = new Runnable() {
- public void run() {
- // Get text to translate
- String original = origText.getText().toString().trim();

10

- // Cancel previous translation if there was one
- if (transPending != null)
- transPending.cancel(true);
-

15 // Take care of the easy case
- if (original.length() == 0) {
- transText.setText(R.string.empty);
- retransText.setText(R.string.empty);
- } else {

20 // Let user know we're doing something
- transText.setText(R.string.translating);
- retransText.setText(R.string.translating);
-

- // Begin translation now but don't wait for it
25 try {

- TranslateTask translateTask = new TranslateTask(
- Translate.this, // reference to activity
- original, // original text
- getLang(fromSpinner), // from language

30 getLang(toSpinner) // to language
-);
- transPending = transThread.submit(translateTask);
- } catch (RejectedExecutionException e) {
- // Unable to start new task

35 transText.setText(R.string.translation_error);
- retransText.setText(R.string.translation_error);
- }
- }
- }

40 };
- }

We have two threads: the main Android thread used for the user inter-

face and a translate thread that we’ll create for running the actual

translation job. We represent the first one with an Android Handler and

the second with Java’s ExecutorService.

Line 6 defines the update task, which will be scheduled by the queue-

Update() method. When it gets to run, it first fetches the current text to

translate and then prepares to send a translation job to the translate

thread. It cancels any translation that is already in progress (on line

13), takes care of the case where there is no text to translate (line 17),

and fills in the two text controls where translated text will appear with

R t t

USING WEB SERVICES 156

the string “Translating...” (line 21). That text will be replaced later by

the actual translated text.

Finally, on line 26, we create an instance of TranslateTask, giving it a

reference to the Translate activity so it can call back to change the text,

a string containing the original text, and the short names of the two

languages selected in the spinners. Line 32 submits the new task to the

translation thread, returning a reference to the Future return value. In

this case, we don’t really have a return value since TranslateTask changes

the GUI directly, but we use the Future reference back on line 13 to

cancel the translation if necessary.

To finish up the Translate class, here are a few utility functions used in

other places:

Download Translate/src/org/example/translate/Translate.java

/** Extract the language code from the current spinner item */

private String getLang(Spinner spinner) {

String result = spinner.getSelectedItem().toString();

int lparen = result.indexOf('(');

int rparen = result.indexOf(')');

result = result.substring(lparen + 1, rparen);

return result;

}

/** Request an update to start after a short delay */

private void queueUpdate(long delayMillis) {

// Cancel previous update if it hasn't started yet

guiThread.removeCallbacks(updateTask);

// Start an update if nothing happens after a few milliseconds

guiThread.postDelayed(updateTask, delayMillis);

}

/** Modify text on the screen (called from another thread) */

public void setTranslated(String text) {

guiSetText(transText, text);

}

/** Modify text on the screen (called from another thread) */

public void setRetranslated(String text) {

guiSetText(retransText, text);

}

/** All changes to the GUI must be done in the GUI thread */

private void guiSetText(final TextView view, final String text) {

guiThread.post(new Runnable() {

public void run() {

view.setText(text);

}

});

}

R t t

USING WEB SERVICES 157

The getLang() method figures out which item is currently selected in a

spinner, gets the string for that item, and parses out the short language

code needed by the Translation API.

queueUpdate() puts an update request on the main thread’s request

queue but tells it to wait a little while before actually running it. If there

was already a request on the queue, it’s removed.

The setTranslated() and setRetranslated() methods will be used by Trans-

lateTask to update the user interface when translated results come back

from the web service. They both call a private function called guiSet-

Text(), which uses the Handler.post() method to ask the main GUI thread

to update the text on a TextView control. This extra step is necessary

because you can’t call user interface functions from non-user-interface

threads, and guiSetText() will be called by the translate thread.

Here is the res/values/strings.xml file for the Translate example:

Download Translate/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Translate</string>

<string name="from_text">From:</string>

<string name="to_text">To:</string>

<string name="back_text">And back again:</string>

<string name="original_hint">Enter text to translate</string>

<string name="empty"></string>

<string name="translating">Translating...</string>

<string name="translation_error">(Translation error)</string>

<string name="translation_interrupted">(Translation

interrupted)</string>

</resources>

Finally, here’s the definition of the TranslateTask class:

Download Translate/src/org/example/translate/TranslateTask.java

package org.example.translate;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.net.URLEncoder;

import org.json.JSONException;

import org.json.JSONObject;

import android.util.Log;

R t t

USING WEB SERVICES 158

public class TranslateTask implements Runnable {

private static final String TAG = "TranslateTask";

private final Translate translate;

private final String original, from, to;

TranslateTask(Translate translate, String original, String from,

String to) {

this.translate = translate;

this.original = original;

this.from = from;

this.to = to;

}

public void run() {

// Translate the original text to the target language

String trans = doTranslate(original, from, to);

translate.setTranslated(trans);

// Then translate what we got back to the first language.

// Ideally it would be identical but it usually isn't.

String retrans = doTranslate(trans, to, from); // swapped

translate.setRetranslated(retrans);

}

/**

* Call the Google Translation API to translate a string from one

* language to another. For more info on the API see:

* http://code.google.com/apis/ajaxlanguage

*/

private String doTranslate(String original, String from,

String to) {

String result = translate.getResources().getString(

R.string.translation_error);

HttpURLConnection con = null;

Log.d(TAG, "doTranslate(" + original + ", " + from + ", "

+ to + ")");

try {

// Check if task has been interrupted

if (Thread.interrupted())

throw new InterruptedException();

// Build RESTful query for Google API

String q = URLEncoder.encode(original, "UTF-8");

URL url = new URL(

"http://ajax.googleapis.com/ajax/services/language/translate"

+ "?v=1.0" + "&q=" + q + "&langpair=" + from

+ "%7C" + to);

con = (HttpURLConnection) url.openConnection();

con.setReadTimeout(10000 /* milliseconds */);

con.setConnectTimeout(15000 /* milliseconds */);

R t t

USING WEB SERVICES 159

con.setRequestMethod("GET");

con.addRequestProperty("Referer",

"http://www.pragprog.com/titles/eband3/hello-android");

con.setDoInput(true);

// Start the query

con.connect();

// Check if task has been interrupted

if (Thread.interrupted())

throw new InterruptedException();

// Read results from the query

BufferedReader reader = new BufferedReader(

new InputStreamReader(con.getInputStream(), "UTF-8"));

String payload = reader.readLine();

reader.close();

// Parse to get translated text

JSONObject jsonObject = new JSONObject(payload);

result = jsonObject.getJSONObject("responseData")

.getString("translatedText")

.replace("'", "'")

.replace("&", "&");

// Check if task has been interrupted

if (Thread.interrupted())

throw new InterruptedException();

} catch (IOException e) {

Log.e(TAG, "IOException", e);

} catch (JSONException e) {

Log.e(TAG, "JSONException", e);

} catch (InterruptedException e) {

Log.d(TAG, "InterruptedException", e);

result = translate.getResources().getString(

R.string.translation_interrupted);

} finally {

if (con != null) {

con.disconnect();

}

}

// All done

Log.d(TAG, " -> returned " + result);

return result;

}

}

R t t

FAST -FORWARD >> 160

This is a nice example of calling a RESTful web service using HttpURL-

Connection, parsing results in JavaScript Object Notation (JSON) for-

mat, and handling all sorts of network errors and requests for inter-

ruptions. I’m not going to explain it in detail here because it contains

nothing Android-specific except for a few debugging messages.

7.5 Fast-Forward >>

In this chapter, we covered a lot of ground, from opening a simple web

page to using an asynchronous web service. HTML/JavaScript pro-

gramming is beyond the scope of this book, but several good references

are available. If you’re going to do much concurrent programming with

classes such as ExecutorService, I recommend Java Concurrency in Prac-

tice [Goe06] by Brian Goetz.

The next chapter will explore a new level of interactivity through loca-

tion and sensor services. If you’re anxious to learn more about data

sources and data binding, you can skip ahead to Chapter 9, Putting

SQL to Work, on page 178.

R t t

Chapter 8

Locating and Sensing
The Android platform uses many different technologies. Some of them

are new, and some have been seen before in other settings. What’s

unique about Android is how these technologies work together. In this

chapter, we’ll consider the following:

• Location awareness, through inexpensive GPS devices

• Handheld accelerometers, such as those found on the Nintendo

Wii remote

• Mashups, often combining maps with other information

Several popular Android programs use these concepts to create a more

compelling and relevant experience for the user. For example, the Locale

application1 can adapt the settings on your phone based on where you

are. Are you always forgetting to set your ringer to vibrate when you’re

at work or the movies? Locale can take care of that using the Android

Location API described here.

8.1 Location, Location, Location

Right now there are thirty-one satellites zipping around the world with

nothing better to do than help you find your way to the grocery store.

The Global Positioning System (GPS), originally developed by the mili-

tary but then converted to civilian use, beams highly precise time sig-

nals to Earth-based receivers such as the one in your Android phone.

With good reception and a little math, the GPS chip can figure out your

position to within 50 feet.2

1. http://www.androidlocale.com

2. You don’t have to know how GPS works to use it, but if you’re curious, see

http://adventure.howstuffworks.com/gps.htm.

LOCATION, LOCATION, LOCATION 162

Joe Asks. . .

Does GPS Let Anyone Snoop on My Location?

No. GPS receivers are just that—receivers. The GPS chip, and
thus any program running in your Android device, knows where
it is. But unless one of those programs deliberately transmits that
information, nobody can use it to find you.

In addition to GPS, Android also supports calculating your position

using information from nearby cell phone towers, and if you’re con-

nected to a wifi hotspot, it can use that too. Keep in mind that all these

location providers are unreliable to some extent. When you walk inside

a building, for example, GPS signals can’t reach you.

To demonstrate Android’s location services, let’s write a test program

that simply displays your current position and keeps updating it on the

screen as you move around. You can see the program in Figure 8.1, on

the next page.

Where Am I?

Start by creating a “Hello, Android” application using these parameters

in the New Project wizard:

Project name: LocationTest

Build Target: Android 2.2

Application name: LocationTest

Package name: org.example.locationtest

Create Activity: LocationTest

Min SDK Version: 8

Access to location information is protected by Android permissions. To

gain access, you’ll need to add these lines in the AndroidManifest.xml file

before the <application> tag:

Download LocationTest/AndroidManifest.xml

<uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

R t t

LOCATION, LOCATION, LOCATION 163

Figure 8.1: Testing the LocationManager

In this example, both fine-grained location providers such as GPS and

coarse-grained location providers such as cell tower triangulation will

be supported.

For the user interface, we’re going to print all the location data into a

big scrolling TextView, which is defined in res/layout/main.xml:

Download LocationTest/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:id="@+id/output"

android:layout_width="fill_parent"

android:layout_height="wrap_content" />

</ScrollView>

R t t

LOCATION, LOCATION, LOCATION 164

With the preliminaries out of the way, we can start coding. Here’s the

outline of the LocationTest class and the onCreate() method. (Ignore the

reference to LocationListener on line 15 for now; we’ll come back to it

later.)

Download LocationTest/src/org/example/locationtest/LocationTest.java

Line 1 package org.example.locationtest;
-

- import java.util.List;
-

5 import android.app.Activity;
- import android.location.Criteria;
- import android.location.Location;
- import android.location.LocationListener;
- import android.location.LocationManager;

10 import android.location.LocationProvider;
- import android.os.Bundle;
- import android.widget.TextView;
-

- public class LocationTest extends Activity implements

15 LocationListener {
- private LocationManager mgr;
- private TextView output;
- private String best;
-

20 @Override
- public void onCreate(Bundle savedInstanceState) {
- super.onCreate(savedInstanceState);
- setContentView(R.layout.main);
-

25 mgr = (LocationManager) getSystemService(LOCATION_SERVICE);
- output = (TextView) findViewById(R.id.output);
-

- log("Location providers:");
- dumpProviders();

30

- Criteria criteria = new Criteria();
- best = mgr.getBestProvider(criteria, true);
- log("\nBest provider is: " + best);
-

35 log("\nLocations (starting with last known):");
- Location location = mgr.getLastKnownLocation(best);
- dumpLocation(location);
- }
- }

The starting point for Android location services is the getSystemService()

call on line 25. It returns a LocationManager class that we save into a

field for later use.

R t t

LOCATION, LOCATION, LOCATION 165

On line 29, we call our dumpProviders() method to print a list of all the

location providers in the system.

Next we need to pick one of the possible providers to use. I’ve seen

some examples that simply pick the first available one, but I recom-

mend using the getBestProvider() method, as shown here. Android will

pick the best provider according to a Criteria that you provide (see line

31). If you have any restrictions on cost, power, accuracy, and so on,

this is where you put them. In this example, there are no restrictions.

Depending on the provider, it may take some time for the device to

figure out your current location. This could be a few seconds, a minute,

or more. However, Android remembers the last position it returned, so

we can query and print that immediately on line 36. This location could

be out of date—for example, if the device was turned off and moved—

but it’s usually better than nothing.

Knowing where we were is only half the fun. Where are we going next?

Updating the Location

To have Android notify you about location changes, call the requestLo-

cationUpdates() method on the LocationManager object. To save battery

power, we want updates only when the program is in the foreground.

Therefore, we need to hook into the Android activity life-cycle methods

by overriding onResume() and onPause():

Download LocationTest/src/org/example/locationtest/LocationTest.java

@Override

protected void onResume() {

super.onResume();

// Start updates (doc recommends delay >= 60000 ms)

mgr.requestLocationUpdates(best, 15000, 1, this);

}

@Override

protected void onPause() {

super.onPause();

// Stop updates to save power while app paused

mgr.removeUpdates(this);

}

When the application resumes, we call requestLocationUpdates() to start

the update process. It takes four parameters: the provider name, a

delay (so you don’t get updates too often), a minimum distance (changes

less than this are ignored), and a LocationListener object.

R t t

LOCATION, LOCATION, LOCATION 166

When the application pauses, we call removeUpdates() to stop getting

updates. The location provider will be powered down if it’s not needed

for a while.

Now you know why LocationTest implements LocationListener, so we could

just pass a reference to the activity instead of making a new listener

object. That will save us about 1KB of memory at runtime.

Here’s the definition of the four methods required by that interface:

Download LocationTest/src/org/example/locationtest/LocationTest.java

public void onLocationChanged(Location location) {

dumpLocation(location);

}

public void onProviderDisabled(String provider) {

log("\nProvider disabled: " + provider);

}

public void onProviderEnabled(String provider) {

log("\nProvider enabled: " + provider);

}

public void onStatusChanged(String provider, int status,

Bundle extras) {

log("\nProvider status changed: " + provider + ", status="

+ S[status] + ", extras=" + extras);

}

The most important method in the bunch is onLocationChanged().

As the name suggests, it’s called every time the provider notices that

the device’s location has changed. The onProviderDisabled(), onProviderEn-

abled(), and onStatusChanged() methods can be used to switch to other

providers in case your first choice becomes unavailable.

The code for the remaining methods of LocationTest—log(), dumpProvi-

ders(), and dumpLocation()—is not very interesting, but here it is for

completeness:

Download LocationTest/src/org/example/locationtest/LocationTest.java

// Define human readable names

private static final String[] A = { "invalid", "n/a", "fine", "coarse" };

private static final String[] P = { "invalid", "n/a", "low", "medium",

"high" };

private static final String[] S = { "out of service",

"temporarily unavailable", "available" };

R t t

LOCATION, LOCATION, LOCATION 167

/** Write a string to the output window */

private void log(String string) {

output.append(string + "\n");

}

/** Write information from all location providers */

private void dumpProviders() {

List<String> providers = mgr.getAllProviders();

for (String provider : providers) {

dumpProvider(provider);

}

}

/** Write information from a single location provider */

private void dumpProvider(String provider) {

LocationProvider info = mgr.getProvider(provider);

StringBuilder builder = new StringBuilder();

builder.append("LocationProvider[")

.append("name=")

.append(info.getName())

.append(",enabled=")

.append(mgr.isProviderEnabled(provider))

.append(",getAccuracy=")

.append(A[info.getAccuracy() + 1])

.append(",getPowerRequirement=")

.append(P[info.getPowerRequirement() + 1])

.append(",hasMonetaryCost=")

.append(info.hasMonetaryCost())

.append(",requiresCell=")

.append(info.requiresCell())

.append(",requiresNetwork=")

.append(info.requiresNetwork())

.append(",requiresSatellite=")

.append(info.requiresSatellite())

.append(",supportsAltitude=")

.append(info.supportsAltitude())

.append(",supportsBearing=")

.append(info.supportsBearing())

.append(",supportsSpeed=")

.append(info.supportsSpeed())

.append("]");

log(builder.toString());

}

/** Describe the given location, which might be null */

private void dumpLocation(Location location) {

if (location == null)

log("\nLocation[unknown]");

else

log("\n" + location.toString());

}

R t t

SET SENSORS TO MAXIMUM 168

If you don’t want to type it all in, you can find it all in the downloadable

samples on the book’s website.

Emulation Notes

If you run the LocationTest example on a real device, it will show your

current position as you walk around. On the emulator, it uses a fake

GPS provider that always returns the same position unless you change

it. Let’s do that now.

In Eclipse you can change your simulated location using the Emulator

Control view (Window > Show View > Other... > Android > Emulator

Control). Scroll down to the bottom, and you’ll find a place to enter

the longitude and latitude manually. When you click the Send button,

Eclipse will send the new position to the emulated device, and you’ll see

it displayed in any programs that are watching for it.

You can also run the Dalvik Debug Monitor Service (DDMS) program

outside of Eclipse and send fake position changes in that way. In addi-

tion to manual, position-at-a-time updates, you can use a recorded

path read from an external file. See the DDMS documentation for more

information.3

With Android location providers, you can find out where you are in a

broad, global sense. If you want more local information such as tilt and

temperature, you have to use a different API. That’s the subject of the

next section.

8.2 Set Sensors to Maximum

Let’s say you’re writing a racing game so you need to give the player a

way to steer their car on the screen. One way would be to use buttons,

like driving games on a Sony PlayStation or the Nintendo DS. Press

right to steer right, press left to steer left, and hold down another button

for the gas. It works, but it’s not very natural.

Have you ever watched somebody play one of those games? Uncon-

sciously, they sway from side to side when making a hairpin curve,

jerk the controller when bumping into another car, lean forward when

speeding up, and pull back when putting on the brakes. Wouldn’t it be

3. http://d.android.com/guide/developing/tools/ddms.html

R t t

SET SENSORS TO MAXIMUM 169

cool if those motions actually had some effect on the game play? Now

they can.

Engaging Sensors

The Android SDK supports many different types of sensor devices:

• TYPE_ACCELEROMETER: Measures acceleration in the x-, y-, and z-

axes

• TYPE_LIGHT: Tells you how bright your surrounding area is

• TYPE_MAGNETIC_FIELD: Returns magnetic attraction in the x-, y-,

and z-axes

• TYPE_ORIENTATION: Measures the yaw, pitch, and roll of the

device

• TYPE_PRESSURE: Senses the current atmospheric pressure

• TYPE_PROXIMITY: Provides the distance between the sensor and

some object

• TYPE_TEMPERATURE: Measures the temperature of the surrounding

area

Not all devices will offer all this functionality, of course.4

The SensorTest example, available on the book’s website, demonstrates

using the Sensor API. Android’s SensorManager class is similar to Loca-

tionManager, except the updates will come much more quickly, perhaps

hundreds per second. To get access to the sensors, you first call the

getSystemService() method like this:

Download SensorTest/src/org/example/sensortest/SensorTest.java

private SensorManager mgr;

// ...

mgr = (SensorManager) getSystemService(SENSOR_SERVICE);

Then you call the registerListener() in your onResume() method to start

getting updates and call unregisterListener() in your onPause() method to

stop getting them.

Interpreting Sensor Readings

The sensor service will call your onSensorChanged() method every time

a value changes. It should look something like this:

4. Unfortunately, Android 1.5 removed support for the TRICORDER sensor that turned

your device into a fully functional Star Trek tricorder. Darn it, Jim—I’m a programmer,

not an ovum paschalis.

R t t

SET SENSORS TO MAXIMUM 170

Download SensorTest/src/org/example/sensortest/SensorTest.java

public void onSensorChanged(SensorEvent event) {

for (int i = 0; i < event.values.length; i++) {

// ...

}

}

All the sensors return an array of floating-point values. The size of the

array depends on the particular sensor; for example, TYPE_

TEMPERATURE returns only one value, the temperature in degrees Cel-

sius. You may not even need to use all the numbers returned. For

instance, if you just need a compass heading, you can use the first

number returned from the TYPE_ORIENTATION sensor.

Turning the sensor readings (especially from the accelerometer) into

meaningful information is something of a black art. Here are a few tips

to keep in mind:

• Accelerometer readings are extremely jittery. You’ll need to smooth

out the data using some kind of weighted averaging, but you have

to be careful not to smooth it too much, or your interface will feel

laggy and soft.

• Sensor numbers will come in at random times. You may get several

in a row, then have a short pause, and then receive a bunch more.

Don’t assume a nice even rate.

• Try to get ahead of the user by predicting what they’re going to do

next. Let’s say the last three readings show the start of a roll to

the right, with each one a little faster than the last. You can guess

with some degree of accuracy what the next reading is going to be

and start reacting based on your prediction.

The most challenging use of sensors is an action game that requires

a one-to-one connection between how the player moves the device and

what happens on the screen. Unfortunately, the emulator isn’t going to

be much use for this kind of thing.

Emulation Notes

According to Google, it is not possible to test the sensors using the

emulator at all. Most computers don’t have a light sensor, a GPS chip,

or a compass built into them. Sure enough, if you run the SensorTest

program in the emulator, it will display no results at all. However, a

R t t

SET SENSORS TO MAXIMUM 171

Figure 8.2: Faking out the sensors with the Sensor Simulator

project called OpenIntents5 provides an alternate sensor’s API that you

can call just for testing purposes.

The way it works is that you connect the emulator to another applica-

tion running on your desktop computer called the Sensor Simulator.

The simulator shows a picture of a virtual phone and lets you move it

around on the screen with the mouse (see Figure 8.2), and then it feeds

those movements to your Android program running on the emulator. If

your development computer actually does have sensors of its own (like

the Apple MacBook) or you can connect to a Wii remote with Bluetooth,

the Sensor Simulator can use that as a data source.

The downside is that you have to modify your source code to make it

work. See the OpenIntents website for more information if you want

to try it. My recommendation is to forget about sensor emulation and

get your hands on a real device. Keep tweaking your algorithms until it

feels right.

5. http://www.openintents.org

R t t

BIRD’S-EYE VIEW 172

Now that you know the low-level calls to get your location and query

the sensors for numbers such as your compass heading, for certain

applications you can forget all that and just use the Google Maps API.

8.3 Bird’s-Eye View

One of the first “killer apps” for Ajax was Google Maps.6 Using Java-

Script and the XmlHttpRequest object, Google engineers created a drag-

gable, zoomable, silky smooth map viewer that ran in any modern web

browser without a plug-in. The idea was quickly copied by other ven-

dors such as Microsoft and Yahoo, but the Google version is arguably

still the best.

You can use these web-based maps in Android, perhaps with an embed-

ded WebView control as discussed in Section 7.2, Web with a View, on

page 135. But the architecture of your application would be overly con-

voluted. That’s why Google created the MapView control.

Embedding a MapView

A MapView can be embedded directly in your Android application with

just a few lines of code. Most of the functionality of Google Maps, plus

hooks for adding your own touches, is provided (see Figure 8.3, on the

following page).

The MapView class can also tie into your location and sensor providers.

It can show your current location on the map and even display a com-

pass showing what direction you’re heading. Let’s create a sample pro-

gram to demonstrate a few of its capabilities.

First create a “Hello, Android” application using these values in the

wizard:

Project name: MyMap

Build Target: Google APIs (Platform: 2.2)

Application name: MyMap

Package name: org.example.mymap

Create Activity: MyMap

Min SDK Version: 8

Note that we’re using the “Google APIs” build target instead of the

“Android 2.2” target. That’s because the Google Maps APIs are not part

of the normal Android distribution. Edit the layout file, and replace it

with a MapView that takes over the whole screen.

6. http://maps.google.com

R t t

BIRD’S-EYE VIEW 173

Figure 8.3: Embedded map showing your current location

Download MyMap/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/frame"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<com.google.android.maps.MapView

android:id="@+id/map"

android:apiKey="MapAPIKey"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:clickable="true" />

</LinearLayout>

Substitute MapAPIKey with a Google Maps API key that you get from

Google.7 Note that we have to use the fully qualified name (com.google.

7. http://code.google.com/android/maps-api-signup.html

R t t

BIRD’S-EYE VIEW 174

android.maps.MapView) because MapView is not a standard Android

class. We also need to stick a <uses-library> tag in the <application>

element of AndroidManifest.xml:

Download MyMap/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.mymap"

android:versionCode="1"

android:versionName="1.0">

<uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission

android:name="android.permission.INTERNET" />

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".MyMap"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<uses-library android:name="com.google.android.maps" />

</application>

<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="8" />

</manifest>

If you leave out the <uses-library> tag, you will get a ClassNotFoundEx-

ception at runtime.

In addition to the fine- and coarse-grained location providers, the Map-

View class needs Internet access so that it can call Google’s servers

to get the map image tiles. These will be cached in your application

directory automatically.

Here’s the outline of the MyMap class:

Download MyMap/src/org/example/mymap/MyMap.java

package org.example.mymap;

import android.os.Bundle;

import com.google.android.maps.MapActivity;

import com.google.android.maps.MapController;

import com.google.android.maps.MapView;

import com.google.android.maps.MyLocationOverlay;

R t t

BIRD’S-EYE VIEW 175

public class MyMap extends MapActivity {

private MapView map;

private MapController controller;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

initMapView();

initMyLocation();

}

@Override

protected boolean isRouteDisplayed() {

// Required by MapActivity

return false;

}

}

The most important part is that your activity has to extend MapActivity.

The MapActivity class spins up the background threads, connects to the

Internet for tile data, handles caching, does animations, takes care of

the life cycle, and much more. All you need to do is properly set it up

and let it go.

Getting Ready

The first thing we need to do is call findViewById() to get access to the

MapView and its container. We can do that in the initMapView() method:

Download MyMap/src/org/example/mymap/MyMap.java

private void initMapView() {

map = (MapView) findViewById(R.id.map);

controller = map.getController();

map.setSatellite(true);

map.setBuiltInZoomControls(true);

}

The getController() method returns a MapController that we’ll use to posi-

tion and zoom the map. setSatellite() switches the map into satellite

mode, and setBuiltInZoomControls()8 turns on the standard zoom controls.

The MapView class will take care of making the controls visible when the

user pans the map and will take care of fading them out slowly when

panning stops.

The last step is to tell the MapView to follow your position in the initMy-

Location() method.

8. Introduced in Android 1.5.

R t t

BIRD’S-EYE VIEW 176

Joe Asks. . .

Why Is MapView in the com.google.android.maps
Package and Not android.maps?

Any code in the android.* packages is part of the Android core.
It’s open source and available on every Android device. By
contrast, maps are proprietary to Google and to the data
providers that Google paid for the geological information and
imagery. Google provides the API free of charge as long as
you agree to certain conditions.∗ If you’re not happy with the
restrictions, you can roll your own views and find your own data
sources, but it’s not going to be easy or cheap.

∗. http://code.google.com/apis/maps/terms.html

Download MyMap/src/org/example/mymap/MyMap.java

private void initMyLocation() {

final MyLocationOverlay overlay = new MyLocationOverlay(this, map);

overlay.enableMyLocation();

//overlay.enableCompass(); // does not work in emulator

overlay.runOnFirstFix(new Runnable() {

public void run() {

// Zoom in to current location

controller.setZoom(8);

controller.animateTo(overlay.getMyLocation());

}

});

map.getOverlays().add(overlay);

}

Android provides a MyLocationOverlay class that does most of the heavy

lifting. An overlay is just something that is drawn on top of the map,

which in this case is a pulsing dot showing your current location. You

call enableMyLocation() to tell the overlay to start listening to location

updates and call enableCompass() to tell it to start listening to updates

from the compass.

The runOnFirstFix() method tells the overlay what to do the first time it

gets a position reading from the location provider. In this case, we set

the zoom level and then start an animation that moves the map from

wherever it’s pointing now to where you are located.

If you run the program now, you should see something like Figure 8.3,

on page 173. Touch and drag the screen to move around the map,

R t t

FAST -FORWARD >> 177

and use the zoom buttons to get a closer look. When you walk around

carrying the phone, the dot on the map should follow you.

Emulation Notes

The first time you run the MyMap program on the emulator you may get

an Android AVD Error. Follow the directions in Section 1.3, Creating an

AVD, on page 23 to create a new AVD for the “Google APIs (Google Inc.)

- API Level 8” build target called “em22google.”

On the emulator, you’ll initially see a zoomed-out map of the world and

no dot for your current location. As before, use the Emulator Control

view in Eclipse (or in the stand-alone DDMS program) to feed fake GPS

data to the sample application.

When running in the emulator, the compass inset will not be shown

because the compass sensor is not emulated.

8.4 Fast-Forward >>

This chapter introduced you to the exciting new world of location- and

environmental-aware mobile computing. These technologies, in combi-

nation with trends such as the adoption of broadband mobile Inter-

net and the exponential growth of computing power and storage, are

going to revolutionize the way we interact with computers and with

each other.

Another way to perceive the world is by looking and listening. Android

provides the Camera class9 for taking photographs using the built-in

camera (if there is one), but you can also use it to do other things like

make a bar-code reader. The MediaRecorder class10 allows you to record

and store audio clips. These are beyond the scope of this book, but if

you need them for your program, consult the online documentation.

Speaking of storage, the next chapter will show you how to use SQL

to store structured information (for example, a travel log of locations,

photographs, and notes) locally on your mobile phone. If that’s not your

area of interest, you can skip ahead to Chapter 10, 3D Graphics in

OpenGL, on page 198 and learn how to unlock Android’s hidden 3D

graphics potential.

9. http://d.android.com/reference/android/hardware/Camera.html

10. http://d.android.com/reference/android/media/MediaRecorder.html

R t t

Chapter 9

Putting SQL to Work
In Chapter 6, Storing Local Data, on page 120, we explored keeping

data around in preferences and in plain files. That works fine when the

amount of data is small or when the data is all one type (such as a

picture or an audio file). However, there is a better way to store large

amounts of structured data: a relational database.

For the past thirty years, databases have been a staple of enterprise

application development, but until recently they were too expensive and

unwieldy for smaller-scale use. That is changing with small embedded

engines such as the one included with the Android platform.

This chapter will show you how to use Android’s embedded database

engine, SQLite. You’ll also learn how to use Android’s data binding to

connect your data sources to your user interface. Finally, you’ll look

at the ContentProvider class, which allows two applications to share the

same data.

9.1 Introducing SQLite

SQLite1 is a tiny yet powerful database engine created by Dr. Richard

Hipp in 2000. It is arguably the most widely deployed SQL database

engine in the world. Besides Android, SQLite can be found in the Apple

iPhone, Symbian phones, Mozilla Firefox, Skype, PHP, Adobe AIR, Mac

OS X, Solaris, and many other places.

1. http://www.sqlite.org

SQL 101 179

SQLite License

The SQLite source code contains no license because it is in the
public domain. Instead of a license, the source offers you this
blessing:

May you do good and not evil.

May you find forgiveness for yourself and forgive others.

May you share freely, never taking more than you give.

There are three reasons why it is so popular:

• It’s free. The authors have placed it in the public domain and don’t

charge for its use.

• It’s small. The current version is about 150KB, well within the

memory budget of an Android phone.

• It requires no setup or administration. There is no server, no config

file, and no need for a database administrator.

A SQLite database is just a file. You can take that file, move it around,

and even copy it to another system (for example, from your phone

to your workstation), and it will work fine. Android stores the file in

the /data/data/packagename/databases directory (see Figure 9.1, on the

next page). You can use the adb command or the File Explorer view in

Eclipse (Window > Show View > Other... > Android > File Explorer) to

view, move, or delete it.

Instead of calling Java I/O routines to access this file from your pro-

gram, you run Structured Query Language (SQL) statements. Through

its helper classes and convenience methods, Android hides some of the

syntax from you, but you still need to know a bit of SQL to use it.

9.2 SQL 101

If you’ve used Oracle, SQL Server, MySQL, DB2, or other database

engines, then SQL should be old hat to you. You can skip this sec-

tion and go to Section 9.3, Hello, Database, on page 181. For the rest

of you, here’s a quick refresher.

R t t

SQL 101 180

Figure 9.1: SQLite stores an entire database in one file.

To use a SQL database, you submit SQL statements and get back

results. There are three main types of SQL statements: DDL, Modifi-

cation, and Query.

DDL Statements

A database file can have any number of tables. A table consists of rows,

and each row has a certain number of columns. Each column of the

table has a name and a data type (text string, number, and so forth).

You define these tables and column names by first running Data Def-

inition Language (DDL) statements. Here’s a statement that creates a

table with three columns:

Download SQLite/create.sql

create table mytable (

_id integer primary key autoincrement,

name text,

phone text);

One of the columns is designated as the PRIMARY KEY, a number that

uniquely identifies the row. AUTOINCREMENT means that the database

will add 1 to the key for every record to make sure it’s unique. By

convention, the first column is always called _id. The _id column isn’t

strictly required for SQLite, but later when we want to use an Android

ContentProvider, we’ll need it.

Note that, unlike most databases, in SQLite the column types are just

hints. If you try to store a string in an integer column, or vice versa, it

will just work with no complaints. The SQLite authors consider this to

be a feature, not a bug.

R t t

HELLO, DATABASE 181

Modification Statements

SQL provides a number of statements that let you insert, delete, and

update records in the database. For example, to add a few phone num-

bers, you could use this:

Download SQLite/insert.sql

insert into mytable values(null, 'Steven King', '555-1212');

insert into mytable values(null, 'John Smith', '555-2345');

insert into mytable values(null, 'Fred Smitheizen', '555-4321');

The values are specified in the same order you used in the CREATE TABLE

statement. We specify NULL for _id because SQLite will figure that value

out for us.

Query Statements

Once data has been loaded into a table, you run queries against the

table using a SELECT statement. For example, if you wanted to get the

third entry, you could do this:

Download SQLite/selectid.sql

select * from mytable where(_id=3);

It’s more likely you’d want to look up a person’s phone number by

name. Here’s how you’d find all the records containing “Smith” in the

name:

Download SQLite/selectwhere.sql

select name, phone from mytable where(name like "%smith%");

Keep in mind that SQL is case insensitive. Keywords, column names,

and even search strings can be specified in either uppercase or lower-

case.

Now you know just enough about SQL to be dangerous. Let’s see how

to put that knowledge to work in a simple program.

9.3 Hello, Database

To demonstrate SQLite, let’s create a little application called Events

that stores records in a database and displays them later. We’re going

to start simple and build up from there. Open a new “Hello, Android”

program using these values in the project wizard:

Project name: Events

Build Target: Android 2.2

Application name: Events

R t t

HELLO, DATABASE 182

Package name: org.example.events

Create Activity: Events

Min SDK Version: 8

As always, you can download the complete source code from the book’s

website.

We need somewhere to hold a few constants describing the database,

so let’s create a Constants interface:

Download Eventsv1/src/org/example/events/Constants.java

package org.example.events;

import android.provider.BaseColumns;

public interface Constants extends BaseColumns {

public static final String TABLE_NAME = "events";

// Columns in the Events database

public static final String TIME = "time";

public static final String TITLE = "title";

}

Each event will be stored as a row in the events table. Each row will

have an _id, time, and title column. _id is the primary key, declared in

the BaseColumns interface that we extend. time and title will be used for

a time stamp and event title, respectively.

Using SQLiteOpenHelper

Next we create a helper class called EventsData to represent the database

itself. This class extends the Android SQLiteOpenHelper class, which

manages database creation and versions. All you need to do is provide

a constructor and override two methods.

Download Eventsv1/src/org/example/events/EventsData.java

Line 1 package org.example.events;
-

- import static android.provider.BaseColumns._ID;
- import static org.example.events.Constants.TABLE_NAME;
5 import static org.example.events.Constants.TIME;
- import static org.example.events.Constants.TITLE;
- import android.content.Context;
- import android.database.sqlite.SQLiteDatabase;
- import android.database.sqlite.SQLiteOpenHelper;

10

- public class EventsData extends SQLiteOpenHelper {
- private static final String DATABASE_NAME = "events.db";
- private static final int DATABASE_VERSION = 1;
-

R t t

HELLO, DATABASE 183

15 /** Create a helper object for the Events database */
- public EventsData(Context ctx) {
- super(ctx, DATABASE_NAME, null, DATABASE_VERSION);
- }
-

20 @Override
- public void onCreate(SQLiteDatabase db) {
- db.execSQL("CREATE TABLE " + TABLE_NAME + " (" + _ID
- + " INTEGER PRIMARY KEY AUTOINCREMENT, " + TIME
- + " INTEGER," + TITLE + " TEXT NOT NULL);");

25 }
-

- @Override
- public void onUpgrade(SQLiteDatabase db, int oldVersion,
- int newVersion) {

30 db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
- onCreate(db);
- }
- }

The constructor starts on line 16. DATABASE_NAME is the actual filename

of the database we’ll be using (events.db), and DATABASE_VERSION is just

a number we make up. If this were a real program, you would increase

the version number whenever you had to make significant changes to

the database design (for example, to add a new column).

The first time you try to access a database, SQLiteOpenHelper will notice

it doesn’t exist and call the onCreate() method to create it. On line 21,

we override that and run a CREATE TABLE SQL statement. This will create

the events table and the events.db database file that contains it.

When Android detects you’re referencing an old database (based on

the version number), it will call the onUpgrade() method (line 28). In

this example, we just delete the old table, but you could do something

smarter here if you like. For example, you could run an ALTER TABLE SQL

command to add a column to an existing database.

Defining the Main Program

Our first attempt at the Events program will use a local SQLite database

to store the events, and it will show them as a string inside a TextView.

R t t

HELLO, DATABASE 184

Joe Asks. . .

Why Is Constants an Interface?

It’s a Java thing. I don’t know about you, but I dislike having to
repeat the class name every time I use a constant. For exam-
ple, I want to just type TIME and not Constants.TIME. Tradition-
ally, the way to do that in Java is to use interfaces. Classes
can inherit from the Constants interface and then leave out
the interface name when referencing any fields. If you look at
the BaseColumns interface, you’ll see the Android programmers
used the same trick.

Starting with Java 5, however, there’s a better way: static
imports. That’s the method I’ll use in EventsData and other
classes in this chapter. Since Constants is an interface, you can
use it the old way or the new way as you prefer.

Unfortunately, as of this writing, Eclipse’s support for static
imports is a little spotty, so if you use static imports in your own
programs, Eclipse may not insert the import statements for you
automatically. Here’s a little trick for Eclipse users: type a wild-
card static import after the package statement (for example,
import static org.example.events.Constants.*;) to make things com-
pile. Later, you can use Source > Organize Imports to expand
the wildcard and sort the import statements. Let’s hope this will
be more intuitive in future versions of Eclipse.

Define the layout file (layout/main.xml) as follows:

Download Eventsv1/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:id="@+id/text"

android:layout_width="fill_parent"

android:layout_height="wrap_content" />

</ScrollView>

This declares the TextView with an imaginative ID of text (R.id.text in code)

and wraps it with a ScrollView in case there are too many events to fit on

the screen. You can see how it looks in Figure 9.2, on the next page.

R t t

HELLO, DATABASE 185

Figure 9.2: The first version displays database records in a TextView.

The main program is the onCreate() method in the Events activity. Here’s

the outline:

Download Eventsv1/src/org/example/events/Events.java

Line 1 package org.example.events;
-

- import static android.provider.BaseColumns._ID;
- import static org.example.events.Constants.TABLE_NAME;
5 import static org.example.events.Constants.TIME;
- import static org.example.events.Constants.TITLE;
- import android.app.Activity;
- import android.content.ContentValues;
- import android.database.Cursor;

10 import android.database.sqlite.SQLiteDatabase;
- import android.os.Bundle;
- import android.widget.TextView;
-

- public class Events extends Activity {
15 private EventsData events;

-

- @Override
- public void onCreate(Bundle savedInstanceState) {
- super.onCreate(savedInstanceState);

20 setContentView(R.layout.main);
- events = new EventsData(this);
- try {
- addEvent("Hello, Android!");
- Cursor cursor = getEvents();

25 showEvents(cursor);
- } finally {
- events.close();
- }
- }

30 }

R t t

HELLO, DATABASE 186

On line 20 of onCreate(), we set the layout for this view. Then we create

an instance of the EventsData class on line 21 and start a try block. If

you look ahead to line 27, you can see we close the database inside the

finally block. So even if an error occurs in the middle, the database will

still be closed.

The events table wouldn’t be very interesting if there weren’t any events,

so on line 23 we call the addEvent() method to add an event to it. Every

time you run this program, you’ll get a new event. You could add menus

or gestures or keystrokes to generate other events if you like, but I’ll

leave that as an exercise to the reader.

On line 24, we call the getEvents() method to get the list of events, and

finally on line 25, we call the showEvents() method to display the list to

the user.

Pretty easy, eh? Now let’s define those new methods we just used.

Adding a Row

The addEvent() method cuts a new record in the database using the

string provided as the event title.

Download Eventsv1/src/org/example/events/Events.java

private void addEvent(String string) {

// Insert a new record into the Events data source.

// You would do something similar for delete and update.

SQLiteDatabase db = events.getWritableDatabase();

ContentValues values = new ContentValues();

values.put(TIME, System.currentTimeMillis());

values.put(TITLE, string);

db.insertOrThrow(TABLE_NAME, null, values);

}

Since we need to modify the data, we call getWritableDatabase() to get

a read/write handle to the events database. The database handle is

cached, so you can call this method as many times as you like.

Next we fill in a ContentValues object with the current time and the event

title and pass that to the insertOrThrow() method to do the actual INSERT

SQL statement. You don’t need to pass in the record ID because SQLite

will make one up and return it from the method call.

As the name implies, insertOrThrow() can throw an exception (of type

SQLException) if it fails. It doesn’t have to be declared with a throws key-

word because it’s a RuntimeException and not a checked exception. How-

ever, if you want to, you can still handle it in a try/catch block like any

R t t

HELLO, DATABASE 187

other exception. If you don’t handle it and there is an error, the program

will terminate, and a traceback will be dumped to the Android log.

By default, as soon as you do the insert, the database is updated. If you

need to batch up or delay modifications for some reason, consult the

SQLite website for more details.

Running a Query

The getEvents() method does the database query to get a list of events:

Download Eventsv1/src/org/example/events/Events.java

private static String[] FROM = { _ID, TIME, TITLE, };

private static String ORDER_BY = TIME + " DESC";

private Cursor getEvents() {

// Perform a managed query. The Activity will handle closing

// and re-querying the cursor when needed.

SQLiteDatabase db = events.getReadableDatabase();

Cursor cursor = db.query(TABLE_NAME, FROM, null, null, null,

null, ORDER_BY);

startManagingCursor(cursor);

return cursor;

}

We don’t need to modify the database for a query, so we call getRead-

ableDatabase() to get a read-only handle. Then we call query() to per-

form the actual SELECT SQL statement. FROM is an array of the columns

we want, and ORDER_BY tells SQLite to return the results in order from

newest to oldest.

Although we don’t use them in this example, the query() method has

parameters to specify a WHERE clause, a GROUP BY clause, and a HAVING

clause. Actually, query() is just a convenience for the programmer. If

you prefer, you could build up the SELECT statement yourself in a string

and use the rawQuery() method to execute it. Either way, the return

value is a Cursor object that represents the result set.

A Cursor is similar to a Java Iterator or a JDBC ResultSet. You call meth-

ods on it to get information about the current row, and then you call

another method to move to the next row. We’ll see how to use it when

we display the results in a moment.

The final step is to call startManagingCursor(), which tells the activity to

take care of managing the cursor’s life cycle based on the activity’s life

cycle. For example, when the activity is paused, it will automatically

deactivate the cursor and then requery it when the activity is restarted.

When the activity terminates, all managed cursors will be closed.

R t t

HELLO, DATABASE 188

Displaying the Query Results

The last method we need to define is showEvents(). This function takes a

Cursor as input and formats the output so the user can read it.

Download Eventsv1/src/org/example/events/Events.java

Line 1 private void showEvents(Cursor cursor) {
- // Stuff them all into a big string
- StringBuilder builder = new StringBuilder(
- "Saved events:\n");
5 while (cursor.moveToNext()) {
- // Could use getColumnIndexOrThrow() to get indexes
- long id = cursor.getLong(0);
- long time = cursor.getLong(1);
- String title = cursor.getString(2);

10 builder.append(id).append(": ");
- builder.append(time).append(": ");
- builder.append(title).append("\n");
- }
- // Display on the screen

15 TextView text = (TextView) findViewById(R.id.text);
- text.setText(builder);
- }

In this version of Events, we’re just going to create a big string (see line

3) to hold all the events items, separated by newlines. This is not the

recommended way to do things, but it’ll work for now.

Line 5 calls the Cursor.moveToNext() method to advance to the next row

in the data set. When you first get a Cursor, it is positioned before the

first record, so calling moveToNext() gets you to the first record. We keep

looping until moveToNext() returns false, which indicates there are no

more rows.

Inside the loop (line 7), we call getLong() and getString() to fetch data

from the columns of interest, and then we append the values to the

string (line 10). There is another method on Cursor, getColumnIndex-

OrThrow(), that we could have used to get the column index numbers

(the values 0, 1, and 2 passed to getLong() and getString()). However, it’s

a little slow, so if you need it, you should call it outside the loop and

remember the indexes yourself.

Once all the rows have been processed, we look up the TextView from

layout/main.xml and stuff the big string into it (line 15).

If you run the example now, you should see something like Figure 9.2,

on page 185. Congratulations on your first Android database program!

There is plenty of room for improvement, though.

R t t

DATA BINDING 189

What would happen if there were thousands or millions of events in

the list? The program would be very slow and might run out of memory

trying to build a string to hold them all. What if you wanted to let the

user select one event and do something with it? If everything is in a

string, you can’t do that. Luckily, Android provides a better way: data

binding.

9.4 Data Binding

Data binding allows you to connect your model (data) to your view with

just a few lines of code. To demonstrate data binding, we’ll modify the

Events example to use a ListView that is bound to the result of a database

query. First, we need to make the Events class extend ListActivity instead

of Activity:

Download Eventsv2/src/org/example/events/Events.java

import android.app.ListActivity;

// ...

public class Events extends ListActivity {

// ...

}

Next, we need to change how the events are displayed in the Events.

showEvents() method:

Download Eventsv2/src/org/example/events/Events.java

import android.widget.SimpleCursorAdapter;

// ...

private static int[] TO = { R.id.rowid, R.id.time, R.id.title, };

private void showEvents(Cursor cursor) {

// Set up data binding

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,

R.layout.item, cursor, FROM, TO);

setListAdapter(adapter);

}

Notice this code is much smaller than before (two lines vs. ten). The

first line creates a SimpleCursorAdapter for the Cursor, and the second

line tells the ListActivity to use the new adapter. The adapter acts as a

go-between, connecting the view with its data source.

If you recall, we first used an adapter in the Translate sample pro-

gram (see Translate.setAdapters() in Section 7.4, Using Web Services, on

page 147). In that example, we used an ArrayAdapter because the data

source was an array defined in XML. For this one, we use a SimpleCur-

sorAdapter because the data source is a Cursor object that came from a

database query.

R t t

DATA BINDING 190

The constructor for SimpleCursorAdapter takes five parameters:

• context: A reference to the current Activity

• layout: A resource that defines the views for a single list item

• cursor: The data set cursor

• from: The list of column names where the data is coming from

• to: The list of views where the data is going to

The layout for a list item is defined in layout/item.xml. Note the definitions

for the row ID, time, and title views that are referenced in the TO array.

Download Eventsv2/res/layout/item.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="horizontal"

android:padding="10sp">

<TextView

android:id="@+id/rowid"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<TextView

android:id="@+id/rowidcolon"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=": "

android:layout_toRightOf="@id/rowid" />

<TextView

android:id="@+id/time"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_toRightOf="@id/rowidcolon" />

<TextView

android:id="@+id/timecolon"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=": "

android:layout_toRightOf="@id/time" />

<TextView

android:id="@+id/title"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:ellipsize="end"

android:singleLine="true"

android:textStyle="italic"

android:layout_toRightOf="@id/timecolon" />

</RelativeLayout>

R t t

DATA BINDING 191

This looks more complicated than it is. All we’re doing is putting the ID,

time, and title on one line with colons in between the fields. I added a

little padding and formatting to make it look nice.

Finally, we need to change the layout for the activity itself in layout/

main.xml. Here’s the new version:

Download Eventsv2/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<!-- Note built-in ids for 'list' and 'empty' -->

<ListView

android:id="@android:id/list"

android:layout_width="wrap_content"

android:layout_height="wrap_content"/>

<TextView

android:id="@android:id/empty"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/empty" />

</LinearLayout>

Because the activity extends ListActivity, Android looks for two special

IDs in the layout file. If the list has items in it, the android:id/list view

will be displayed; otherwise, the android:id/empty view will be displayed.

So if there are no items, instead of a blank screen the user will see the

message “No events!”

Here are the string resources we need:

Download Eventsv2/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Events</string>

<string name="empty">No events!</string>

</resources>

For the final result, see Figure 9.3, on the following page. As an exercise

for the reader, think about how you could enhance this application now

that you have a real list to play with. For example, when the user selects

an event, you could open a detail viewer, mail the event to technical

support, or perhaps delete the selected event and all the ones below it

from the database.

R t t

USING A CONTENTPROVIDER 192

Figure 9.3: This version uses a ListActivity and data binding.

There’s still one little problem with this example. No other application

can add things to the events database or even look at them! For that,

we’ll need to use an Android ContentProvider.

9.5 Using a ContentProvider

In the Android security model (see the discussion in Section 2.5, Safe

and Secure, on page 40), files written by one application cannot be

read from or written to by any other application. Each program has its

own Linux user ID and data directory (/data/data/packagename) and

its own protected memory space. Android programs can communicate

with each other in two ways:

• Inter-Process Communication (IPC): One process declares an arbi-

trary API using the Android Interface Definition Language (AIDL)

and the IBinder interface. Parameters are marshaled safely and effi-

ciently between processes when the API is called. This advanced

technique is used for remote procedure calls to a background Ser-

vice thread.2

2. IPC, services, and binders are beyond the scope of this book.

For more information, see http://d.android.com/guide/developing/tools/aidl.html,

http://d.android.com/reference/android/app/Service.html, and http://d.android.com/reference/android/os/IBinder.html.

R t t

USING A CONTENTPROVIDER 193

• ContentProvider: Processes register themselves to the system as

providers of certain kinds of data. When that information is re-

quested, they are called by Android through a fixed API to query

or modify the content in whatever way they see fit. This is the

technique we’re going to use for the Events sample.

Any piece of information managed by a ContentProvider is addressed

through a URI that looks like this:

content://authority/path/id

where:

• content:// is the standard required prefix.

• authority is the name of the provider. Using your fully qualified

package name is recommended to prevent name collisions.

• path is a virtual directory within the provider that identifies the

kind of data being requested.

• id is the primary key of a specific record being requested. To

request all records of a particular type, omit this and the trailing

slash.

Android comes with several providers already built in, including the

following:3

• content://browser

• content://contacts

• content://media

• content://settings

To demonstrate using a ContentProvider, let’s convert the Events exam-

ple to use one. For our Events provider, these will be valid URIs:

content://org.example.events/events/3 -- single event with _id=3

content://org.example.events/events -- all events

First we need to add a two more constants to Constants.java:

Download Eventsv3/src/org/example/events/Constants.java

import android.net.Uri;

// ...

public static final String AUTHORITY = "org.example.events";

public static final Uri CONTENT_URI = Uri.parse("content://"

+ AUTHORITY + "/" + TABLE_NAME);

3. For an up-to-date list, see http://d.android.com/reference/android/provider/package-summary.html.

Instead of using the strings here, use the documented constants such as

Browser.BOOKMARKS_URI. Note that access to some providers requires additional per-

missions to be requested in your manifest file.

R t t

USING A CONTENTPROVIDER 194

The layout files (main.xml and item.xml) don’t need to be changed, so the

next step is to make a few minor changes to the Events class.

Changing the Main Program

The main program (the Events.onCreate() method) actually gets a little

simpler because there is no database object to keep track of:

Download Eventsv3/src/org/example/events/Events.java

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

addEvent("Hello, Android!");

Cursor cursor = getEvents();

showEvents(cursor);

}

We don’t need the try/finally block, and we can remove references to

EventData.

Adding a Row

Two lines change in addEvent(). Here’s the new version:

Download Eventsv3/src/org/example/events/Events.java

import static org.example.events.Constants.CONTENT_URI;

private void addEvent(String string) {

// Insert a new record into the Events data source.

// You would do something similar for delete and update.

ContentValues values = new ContentValues();

values.put(TIME, System.currentTimeMillis());

values.put(TITLE, string);

getContentResolver().insert(CONTENT_URI, values);

}

The call to getWritableDatabase() is gone, and the call to insertOrThrow()

is replaced by getContentResolver().insert(). Instead of a database handle,

we use a content URI.

Running a Query

The getEvents() method is also simplified when using a ContentProvider:

Download Eventsv3/src/org/example/events/Events.java

private Cursor getEvents() {

// Perform a managed query. The Activity will handle closing

// and re-querying the cursor when needed.

return managedQuery(CONTENT_URI, FROM, null, null, ORDER_BY);

}

R t t

IMPLEMENTING A CONTENTPROVIDER 195

Here we use the Activity.managedQuery() method, passing it the content

URI, the list of columns we’re interested in, and the order they should

be sorted in.

By removing all references to the database, we’ve decoupled the Events

client from the Events data provider. The client is simpler, but now we

have to implement a new piece we didn’t have before.

9.6 Implementing a ContentProvider

A ContentProvider is a high-level object like an Activity that needs to be

declared to the system. So, the first step when making one is to add

it to your AndroidManifest.xml file before the <activity> tag (as a child of

<application>):

Download Eventsv3/AndroidManifest.xml

<provider android:name=".EventsProvider"

android:authorities="org.example.events" />

android:name is the class name (appended to the manifest’s package

name), and android:authorities is the string used in the content URI.

Next we create the EventsProvider class, which must extend Content-

Provider. Here’s the basic outline:

Download Eventsv3/src/org/example/events/EventsProvider.java

package org.example.events;

import static android.provider.BaseColumns._ID;

import static org.example.events.Constants.AUTHORITY;

import static org.example.events.Constants.CONTENT_URI;

import static org.example.events.Constants.TABLE_NAME;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.net.Uri;

import android.text.TextUtils;

public class EventsProvider extends ContentProvider {

private static final int EVENTS = 1;

private static final int EVENTS_ID = 2;

/** The MIME type of a directory of events */

private static final String CONTENT_TYPE

= "vnd.android.cursor.dir/vnd.example.event";

R t t

FAST -FORWARD >> 196

/** The MIME type of a single event */

private static final String CONTENT_ITEM_TYPE

= "vnd.android.cursor.item/vnd.example.event";

private EventsData events;

private UriMatcher uriMatcher;

// ...

}

By convention we use vnd.example instead of org.example in the MIME

type.4 EventsProvider handles two types of data:

• EVENTS (MIME type CONTENT_TYPE): A directory or list of events

• EVENTS_ID (MIME type CONTENT_ITEM_TYPE): A single event

In terms of the URI, the difference is that the first type does not spec-

ify an ID, but the second type does. We use Android’s UriMatcher class

to parse the URI and tell us which one the client specified. And we

reuse the EventsData class from earlier in the chapter to manage the

real database inside the provider.

In the interest of space, I’m not going to show the rest of the class here,

but you can download the whole thing from the book website. All three

versions of the Events example can be found in the source code .zip file.

The final version of the Events sample looks exactly like the previous

version on the outside (see Figure 9.3, on page 192). On the inside,

however, you now have the framework for an event store that can be

used by other applications in the system, even ones written by other

developers.

9.7 Fast-Forward >>

In this chapter, we learned how to store data in an Android SQL data-

base. If you want to do more with SQL, you’ll need to learn about more

statements and expressions than the ones we covered here. A book

such as SQL Pocket Guide [Gen06] by Jonathan Gennick or The Defini-

tive Guide to SQLite [Owe06] by Mike Owens would be a good invest-

ment, but keep in mind that the SQL syntax and functions vary slightly

from database to database.

4. Multipurpose Internet Mail Extensions (MIME) is an Internet standard for describing

the type of any kind of content.

R t t

FAST -FORWARD >> 197

Another option for data storage on Android is db4o.5 This library is

larger than SQLite and uses a different license (GNU Public License),

but it’s free and may be easier for you to use, especially if you don’t

know SQL.

The SimpleCursorAdapter introduced in this chapter can be customized to

show more than just text. For example, you could display rating stars or

sparklines or other views based on data in the Cursor. Look for ViewBinder

in the SimpleCursorAdapter documentation for more information.6

And now for something completely different...the next chapter will cover

3D graphics with OpenGL.

5. http://www.db4o.com/android

6. http://d.android.com/reference/android/widget/SimpleCursorAdapter.html

R t t

Chapter 10

3D Graphics in OpenGL
Two-dimensional graphics are great for most programs, but sometimes

you need an extra level of depth, interactivity, or realism that isn’t

possible in 2D. For these times, Android provides a three-dimensional

graphics library based on the OpenGL ES standard. In this chapter,

we’ll explore 3D concepts and build up a sample program that uses

OpenGL.

10.1 Understanding 3D Graphics

The world is three-dimensional, yet we routinely view it in two dimen-

sions. When you watch television or look at a picture in a book, the 3D

images are flattened out, or projected, onto a 2D surface (the TV panel

or book page).

Try this simple experiment: cover one eye and look out the window.

What do you see? Light from the sun bounces off objects outside,

passes through the window, and travels to your eye so you can per-

ceive it. In graphics terms, the scene outside is projected onto the win-

dow (or viewport). If someone replaced your window with a high-quality

photograph, it would look the same until you moved.

Based on how close your eye is to the window and how big the window

is, you can see a limited amount of the world outside. This is called

your field of view. If you draw a line from your eye to the four corners

of the window and beyond, you would get the pyramid in Figure 10.1,

on the next page. This is called the view frustum (Latin for a “piece

broken off”). For performance reasons, the frustum is usually bounded

by near and far clipping planes as well. You can see everything inside

the frustum but nothing outside of it.

INTRODUCING OPENGL 199

Figure 10.1: Viewing a three-dimensional scene

In 3D computer graphics, your computer screen acts as the viewport.

Your job is to fool the user into thinking it’s a window into another

world just on the other side of the glass. The OpenGL graphics library

is the API you use to accomplish that.

10.2 Introducing OpenGL

OpenGL1 was developed by Silicon Graphics in 1992. It provides a uni-

fied interface for programmers to take advantage of hardware from any

manufacturer. At its core, OpenGL implements familiar concepts such

as viewports and lighting and tries to hide most of the hardware layer

from the developer.

Because it was designed for workstations, OpenGL is too large to fit

on a mobile device. So, Android implements a subset of OpenGL called

OpenGL for Embedded Systems (OpenGL ES).2 This standard was cre-

1. http://www.opengl.org

2. http://www.khronos.org/opengles

R t t

BUILDING AN OPENGL PROGRAM 200

Thank You, John Carmack

OpenGL has proven to be very successful, but it almost wasn’t.
In 1995, Microsoft introduced a competitor called Direct3D.
Owing to Microsoft’s dominant market position and significant
R&D investments, for a while it looked like Direct3D was going to
take over as a de facto industry standard for gaming. However,
one man, John Carmack, cofounder of id Software, refused
to comply. His wildly popular Doom and Quake games almost
single-handedly forced hardware manufacturers to keep their
OpenGL device drivers up-to-date on the PC. Today’s Linux,
Mac OS X, and mobile device users can thank John and id
Software for helping to keep the OpenGL standard relevant.

ated by the Khronos Group, an industry consortium of companies such

as Intel, AMD, Nvidia, Nokia, Samsung, and Sony. The same library

(with minor differences) is now available on major mobile platforms

including Android, Symbian, and iPhone.

Every language has its own language bindings for OpenGL ES, and Java

is no exception. Java’s language binding was defined by Java Specifica-

tion Request (JSR) 239.3 Android implements this standard as closely

as possible, so you can refer to a variety of books and documentation

on JSR 239 and OpenGL ES for a full description of all its classes and

methods.

Now let’s take a look at how to create a simple OpenGL program in

Android.

10.3 Building an OpenGL Program

Begin by creating a new “Hello, Android” project as in Section 1.2, Cre-

ating Your First Program, on page 23, but this time supply the following

parameters in the New Android Project dialog box:

Project name: OpenGL

Build Target: Android 2.2

Application name: OpenGL

Package name: org.example.opengl

Create Activity: OpenGL

Min SDK Version: 8

3. http://jcp.org/en/jsr/detail?id=239

R t t

BUILDING AN OPENGL PROGRAM 201

Joe Asks. . .

Will Every Phone Have 3D?

Yes and no. Some low-end devices running Android may not
actually have 3D hardware. However, the OpenGL program-
ming interface will still be there. All the 3D functions will be emu-
lated in software. Your program will still run, but it will be much
slower than a hardware-accelerated device. For this reason,
it’s a good idea to provide options for users to turn off certain
details and special effects that take time to draw but aren’t
absolutely necessary for the program. That way, if the user is run-
ning your program on a slower device, they can disable some
of your eye candy to get better performance.

This will create OpenGL.java to contain your main activity. Edit this,

and change it to refer to a custom view named GLView, as shown here:

Download OpenGL/src/org/example/opengl/OpenGL.java

package org.example.opengl;

import android.app.Activity;

import android.os.Bundle;

public class OpenGL extends Activity {

GLView view;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

view = new GLView(this);

setContentView(view);

}

@Override

protected void onPause() {

super.onPause();

view.onPause();

}

@Override

protected void onResume() {

super.onResume();

view.onResume();

}

}

R t t

RENDERING THE SCENE 202

We override the onPause() and onResume() methods so they can call the

methods of the same name in the view.

We won’t need the layout resource (res/layout/main.xml), so you can delete

it. Now let’s define our custom view class:

Download OpenGL/src/org/example/opengl/GLView.java

package org.example.opengl;

import android.content.Context;

import android.opengl.GLSurfaceView;

class GLView extends GLSurfaceView {

private final GLRenderer renderer;

GLView(Context context) {

super(context);

// Uncomment this to turn on error-checking and logging

//setDebugFlags(DEBUG_CHECK_GL_ERROR | DEBUG_LOG_GL_CALLS);

renderer = new GLRenderer(context);

setRenderer(renderer);

}

}

GLSurfaceView is a new class introduced in Android 1.5 that greatly

simplifies using OpenGL in Android. It provides the glue to connect

OpenGL ES to the view system and activity life cycle. It takes care of

picking the appropriate frame buffer pixel format, and it manages a sep-

arate rendering thread to enable smooth animation. All GLView needs to

do is extend GLSurfaceView and define a renderer for the view.

In the next section, we’ll fill the screen with a solid color.

10.4 Rendering the Scene

As we saw in Section 4.2, Drawing the Board, on page 83, the Android

2D library calls the onDraw() method of your view whenever it needs to

redraw a section of the screen. OpenGL is a bit different.

In OpenGL ES on Android, drawing is separated into a rendering class

that is responsible for initializing and drawing the entire screen. Let’s

define that now.

R t t

RENDERING THE SCENE 203

Here’s the outline for the GLRenderer class:

Download OpenGL/src/org/example/opengl/GLRenderer.java

package org.example.opengl;

import javax.microedition.khronos.egl.EGLConfig;

import javax.microedition.khronos.opengles.GL10;

import android.content.Context;

import android.opengl.GLSurfaceView;

import android.opengl.GLU;

import android.util.Log;

class GLRenderer implements GLSurfaceView.Renderer {

private static final String TAG = "GLRenderer";

private final Context context;

GLRenderer(Context context) {

this.context = context;

}

public void onSurfaceCreated(GL10 gl, EGLConfig config) {

// ...

}

public void onSurfaceChanged(GL10 gl, int width, int height) {

// ...

}

public void onDrawFrame(GL10 gl) {

// ...

}

}

GLRenderer implements the GLSurfaceView.Renderer interface, which has

three methods. Let’s start with the onSurfaceCreated() method, which is

called when the OpenGL Surface (kind of like a Canvas in regular 2D) is

created or re-created:

Download OpenGL/src/org/example/opengl/GLRenderer.java

Line 1 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
2 // Set up any OpenGL options we need
3 gl.glEnable(GL10.GL_DEPTH_TEST);
4 gl.glDepthFunc(GL10.GL_LEQUAL);
5 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
6

7 // Optional: disable dither to boost performance
8 // gl.glDisable(GL10.GL_DITHER);
9 }

R t t

RENDERING THE SCENE 204

On line 3, we set a couple of OpenGL options. OpenGL has dozens of

options that can be enabled or disabled with glEnable() and glDisable().

The most commonly used ones include the following:

Option Description

GL_BLEND Blend the incoming color values with the values

already in the color buffer.

GL_CULL_FACE Ignore polygons based on their winding (clockwise

or counterclockwise) in window coordinates. This is

a cheap way to eliminate back faces.

GL_DEPTH_TEST Do depth comparisons, and update the depth

buffer. Pixels farther away than those already

drawn will be ignored.

GL_LIGHTi Include light number i when figuring out an object’s

brightness and color.

GL_LIGHTING Turn on lighting and material calculations.

GL_LINE_SMOOTH Draw antialiased lines (lines without jaggies).

GL_MULTISAMPLE Perform multisampling for antialiasing and other

effects.

GL_POINT_SMOOTH Draw antialiased points.

GL_TEXTURE_2D Use textures to draw surfaces.

All options are off by default except for GL_DITHER and GL_MULTISAMPLE.

Note that everything you enable has some cost in performance.

Next let’s fill out the onSurfaceChanged() method. This method is called

once after the Surface is created and then again whenever the size of the

Surface changes:

Download OpenGL/src/org/example/opengl/GLRenderer.java

Line 1 public void onSurfaceChanged(GL10 gl, int width, int height) {
2 // Define the view frustum
3 gl.glViewport(0, 0, width, height);
4 gl.glMatrixMode(GL10.GL_PROJECTION);
5 gl.glLoadIdentity();
6 float ratio = (float) width / height;
7 GLU.gluPerspective(gl, 45.0f, ratio, 1, 100f);
8 }

Here we configure our view frustum and set a few OpenGL options. Note

the call to the GLU.gluPerspective() helper function on line 7. The last two

arguments are the distance from the eye to the near and far clipping

planes (see Figure 10.1, on page 199).

R t t

RENDERING THE SCENE 205

Figure 10.2: That was a lot of trouble to get a black screen.

It’s time to draw something. The onDrawFrame() method is called over

and over in the rendering thread created by the GLSurfaceView class.

Download OpenGL/src/org/example/opengl/GLRenderer.java

public void onDrawFrame(GL10 gl) {

// Clear the screen to black

gl.glClear(GL10.GL_COLOR_BUFFER_BIT

| GL10.GL_DEPTH_BUFFER_BIT);

// Position model so we can see it

gl.glMatrixMode(GL10.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glTranslatef(0, 0, -3.0f);

// Other drawing commands go here...

}

To start with, we set the screen to black. We clear both the color and

depth buffers. Always remember to clear both, or you’ll get some very

R t t

BUILDING A MODEL 206

Version 1.what?

OpenGL ES 1.0 is based on full OpenGL version 1.3, and ES 1.1
is based on OpenGL 1.5. JSR 239 has two versions: the origi-
nal 1.0 and a maintenance release version 1.0.1. There are also
some OpenGL ES extensions that I won’t get into. All versions
of Android implement JSR 239 1.0.1, with OpenGL ES 1.0 and
some 1.1. For most programs, the JSR standard will suffice, so
that’s what we use in this chapter.

Starting with Android 2.2, OpenGL ES 2.0 is supported via the
android.opengl package.∗ You can also call it from the Native
Development Kit (NDK).† OpenGL ES 2.0 is defined relative to
the full OpenGL 2.0 specification and emphasizes shaders and
programmable 3D pipelines. There is no JSR standard yet for
OpenGL ES 2.0, and the programming interface is not back-
wards compatible with 1.0.

∗. http://d.android.com/reference/android/opengl/GLES20.html

†. http://d.android.com/sdk/ndk

strange results left over from the depth information for the previous

frame. We also set the starting position for the rest of the drawing com-

mands, which will be completed in the next section.

If you run the program now, you get Figure 10.2, on the previous page.

If you’re thinking that it’s silly to draw the same black screen over and

over again in a loop, you’re right. This will make more sense later when

we talk about animation, so just bear with me for now.

Let’s move on and draw something a little more interesting. But first we

need to define exactly what we’re drawing (the model).

10.5 Building a Model

Depending on the complexity of the objects you want to draw, you will

typically create them using a graphical design tool and import them

into your program. For the purposes of this example, we’ll just define a

simple model in code: a cube.

R t t

BUILDING A MODEL 207

Download OpenGL/src/org/example/opengl/GLCube.java

Line 1 package org.example.opengl;
-

- import java.nio.ByteBuffer;
- import java.nio.ByteOrder;
5 import java.nio.IntBuffer;
-

- import javax.microedition.khronos.opengles.GL10;
-

- import android.content.Context;
10 import android.graphics.Bitmap;

- import android.graphics.BitmapFactory;
- import android.opengl.GLUtils;
-

- class GLCube {
15 private final IntBuffer mVertexBuffer;

- public GLCube() {
- int one = 65536;
- int half = one / 2;
- int vertices[] = {

20 // FRONT
- -half, -half, half, half, -half, half,
- -half, half, half, half, half, half,
- // BACK
- -half, -half, -half, -half, half, -half,

25 half, -half, -half, half, half, -half,
- // LEFT
- -half, -half, half, -half, half, half,
- -half, -half, -half, -half, half, -half,
- // RIGHT

30 half, -half, -half, half, half, -half,
- half, -half, half, half, half, half,
- // TOP
- -half, half, half, half, half, half,
- -half, half, -half, half, half, -half,

35 // BOTTOM
- -half, -half, half, -half, -half, -half,
- half, -half, half, half, -half, -half, };
-

- // Buffers to be passed to gl*Pointer() functions must be
40 // direct, i.e., they must be placed on the native heap

- // where the garbage collector cannot move them.
- //
- // Buffers with multi-byte data types (e.g., short, int,
- // float) must have their byte order set to native order

45 ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);
- vbb.order(ByteOrder.nativeOrder());
- mVertexBuffer = vbb.asIntBuffer();
- mVertexBuffer.put(vertices);
- mVertexBuffer.position(0);

50 }
-

R t t

BUILDING A MODEL 208

- public void draw(GL10 gl) {
- gl.glVertexPointer(3, GL10.GL_FIXED, 0, mVertexBuffer);
-

55 gl.glColor4f(1, 1, 1, 1);
- gl.glNormal3f(0, 0, 1);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
- gl.glNormal3f(0, 0, -1);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4, 4);

60

- gl.glColor4f(1, 1, 1, 1);
- gl.glNormal3f(-1, 0, 0);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8, 4);
- gl.glNormal3f(1, 0, 0);

65 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12, 4);
-

- gl.glColor4f(1, 1, 1, 1);
- gl.glNormal3f(0, 1, 0);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 16, 4);

70 gl.glNormal3f(0, -1, 0);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 20, 4);
- }
- }

The vertices array on line 19 defines the corners of the cube in fixed-

point model coordinates (see the “Fixed vs. Floating Point” sidebar).

Each face of a cube is a square, which consists of two triangles. We use

a common OpenGL drawing mode called triangle strips. In this mode,

we specify two starting points, and then after that every subsequent

point defines a triangle with the previous two points. It’s a quick way to

get a lot of geometry pumped out to the graphics hardware in a hurry.

Note that each point has three coordinates (x, y, and z). The x- and

y-axes point to the right and up, respectively, and the z-axis points out

of the screen toward the eye point.

In the draw method (line 52), we use the vertex buffer created in the

constructor and draw six different runs of triangles (for the six sides

of the cube). In a real program, you would want to combine the calls

into one or two strips, because the fewer number of OpenGL calls you

make, the faster your program will go.

Now let’s use our new class in GLRenderer:

Download OpenGL/src/org/example/opengl/GLRenderer.java

private final GLCube cube = new GLCube();

public void onDrawFrame(GL10 gl) {

// ...

// Draw the model

cube.draw(gl);

}

R t t

LIGHTS, CAMERA, ... 209

Fixed vs. Floating Point

OpenGL ES provides fixed-point (integer) and floating-point
interfaces for all its methods. The fixed-point methods end with
the letter x, and the floating-point ones end with the letter f. For
example, you can use either glColor4x() and glColor4f() to set
the four components of a color.

A fixed-point number is scaled by 2^16, or 65,536. So, 32,768
in fixed point is equivalent to 0.5f. Put another way, the inte-
gral part uses the most significant two bytes of a four-byte int,
while the fractional part uses the least significant two bytes. This
is quite different from the way the native Android 2D library uses
integers, so be careful.

In a simple example like this one, it doesn’t matter whether you
use fixed-point or floating-point arithmetic, so I use them inter-
changeably as convenient. Keep in mind, though, that some
Android devices will not have floating-point hardware, so fixed
point might be faster. On the other hand, some developers
report it’s actually slower than emulated floating point for them.
Your mileage may vary.

My advice is to code it first using floating point, because it’s
easier to program. Then optimize the slow parts using fixed point
later if necessary.

Now if you run the program, you’ll see the exciting image in Figure 10.3,

on the following page. Well, it’s more exciting than black.

10.6 Lights, Camera, ...

In real life you have light sources such as the sun, headlights, torches,

or glowing lava pools. OpenGL lets you define up to eight light sources

in your scene. There are two parts to lighting—a light and something to

shine it on. Let’s start with the light.

All 3D graphics libraries support three types of lighting:

• Ambient: A general glow that the light contributes to the entire

scene, even to objects facing away from the light. It’s important to

have a little ambient light so you can pick out details even in the

shadows.

• Diffuse: Soft directional lighting, as you might get from a fluores-

cent panel. Most of the light contributed to your scene will typi-

cally come from diffuse sources.

R t t

LIGHTS, CAMERA, ... 210

Figure 10.3: Drawing an unshaded cube

• Specular: Shiny light, usually from bright point sources. Com-

bined with shiny materials, this gives you highlights (glints) that

add realism.

A single light source can contribute all three types of light. These values

go into a lighting equation that determines the color and brightness of

each pixel on the screen.

The lighting is defined in the GLRenderer.onSurfaceCreated() method:

Download OpenGL/src/org/example/opengl/GLRenderer.java

float lightAmbient[] = new float[] { 0.2f, 0.2f, 0.2f, 1 };

float lightDiffuse[] = new float[] { 1, 1, 1, 1 };

float[] lightPos = new float[] { 1, 1, 1, 1 };

gl.glEnable(GL10.GL_LIGHTING);

gl.glEnable(GL10.GL_LIGHT0);

gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_AMBIENT, lightAmbient, 0);

gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_DIFFUSE, lightDiffuse, 0);

gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, lightPos, 0);

R t t

LIGHTS, CAMERA, ... 211

Figure 10.4: Lighting the scene

In our code we define one light source at position (1, 1, 1). It’s a white

omnidirectional light that has a bright diffuse component and a dim

ambient component. In this example, we’re not using specular lighting.

Next, we need to tell OpenGL about the materials our cube is made of.

Light reflects differently off different materials, such as metal, plastic,

or paper. To simulate this in OpenGL, add this code in onSurfaceCre-

ated() to define how the material reacts with the three types of light:

ambient, diffuse, and specular:

Download OpenGL/src/org/example/opengl/GLRenderer.java

float matAmbient[] = new float[] { 1, 1, 1, 1 };

float matDiffuse[] = new float[] { 1, 1, 1, 1 };

gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT,

matAmbient, 0);

gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE,

matDiffuse, 0);

R t t

ACTION! 212

The object will appear to have a dull finish, as if it were made out of

paper (see Figure 10.4, on the previous page). The top-right corner of

the cube is closer to the light, so it appears brighter.

10.7 Action!

Up to now the cube has just been sitting there without moving. That’s

pretty boring, so let’s make it move. To do that, we need to make a

couple of changes to our onSurfaceCreated() and onDrawFrame() methods

in GLRenderer.

Download OpenGL/src/org/example/opengl/GLRenderer.java

private long startTime;

private long fpsStartTime;

private long numFrames;

public void onSurfaceCreated(GL10 gl, EGLConfig config) {

// ...

startTime = System.currentTimeMillis();

fpsStartTime = startTime;

numFrames = 0;

}

public void onDrawFrame(GL10 gl) {

// ...

// Set rotation angle based on the time

long elapsed = System.currentTimeMillis() - startTime;

gl.glRotatef(elapsed * (30f / 1000f), 0, 1, 0);

gl.glRotatef(elapsed * (15f / 1000f), 1, 0, 0);

// Draw the model

cube.draw(gl);

}

This code rotates the cube a little bit every time through the main loop.

Specifically, every second it rotates 30 degrees around the x-axis and 15

degrees around the y-axis. The result will be a nice, smooth, spinning

cube (see Figure 10.5, on the following page).

10.8 Applying Texture

Although the scene is starting to look more interesting, nobody would

mistake it for real life. Everyday objects have textures, like the rough

surface of a brick wall or the gravel on a garden path. Do you own a

laminated table? A wood laminate is just a photograph of wood grain

that is glued on the surface of a less expensive material like plastic or

particle board.

R t t

APPLYING TEXTURE 213

Figure 10.5: Rotating the cube

Time-Based Animation

The first version of this example kept track of the current rotation
angle and simply incremented it each time through the loop.
Can you think of a reason why that was a bad idea?

Since Android can run on a variety of different devices, you
can’t predict how long it will take to draw a single frame. It
might take half a second or 1/100th of a second. If you moved
an object a fixed amount every frame, then on slow devices
the object would move too slowly, and on fast devices it would
move too fast. By tying the amount of movement to how much
time has elapsed, you can achieve predictable movement
on any device. Faster hardware will draw the animation more
smoothly, but objects will get from A to B in the same amount
of time.

R t t

APPLYING TEXTURE 214

We’re going to do the same thing to our cube using a picture. Unfor-

tunately, the code to do this is fairly long. Don’t worry if you don’t

understand it all right away.

Download OpenGL/src/org/example/opengl/GLCube.java

private final IntBuffer mTextureBuffer;

public GLCube() {

int texCoords[] = {

// FRONT

0, one, one, one, 0, 0, one, 0,

// BACK

one, one, one, 0, 0, one, 0, 0,

// LEFT

one, one, one, 0, 0, one, 0, 0,

// RIGHT

one, one, one, 0, 0, one, 0, 0,

// TOP

one, 0, 0, 0, one, one, 0, one,

// BOTTOM

0, 0, 0, one, one, 0, one, one, };

// ...

ByteBuffer tbb = ByteBuffer.allocateDirect(texCoords.length * 4);

tbb.order(ByteOrder.nativeOrder());

mTextureBuffer = tbb.asIntBuffer();

mTextureBuffer.put(texCoords);

mTextureBuffer.position(0);

}

static void loadTexture(GL10 gl, Context context, int resource) {

Bitmap bmp = BitmapFactory.decodeResource(

context.getResources(), resource);

GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bmp, 0);

gl.glTexParameterx(GL10.GL_TEXTURE_2D,

GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_LINEAR);

gl.glTexParameterx(GL10.GL_TEXTURE_2D,

GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR);

bmp.recycle();

}

}

Next we need to tell OpenGL to use the texture coordinates. Add this to

the beginning of the draw() method:

Download OpenGL/src/org/example/opengl/GLCube.java

gl.glEnable(GL10.GL_TEXTURE_2D); // workaround bug 3623

gl.glTexCoordPointer(2, GL10.GL_FIXED, 0, mTextureBuffer);

R t t

APPLYING TEXTURE 215

Figure 10.6: Applying a texture

And finally we need to call the loadTexture() method in GLRenderer. Add

these lines to the end of the onSurfaceCreated() method:

Download OpenGL/src/org/example/opengl/GLRenderer.java

// Enable textures

gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

gl.glEnable(GL10.GL_TEXTURE_2D);

// Load the cube's texture from a bitmap

GLCube.loadTexture(gl, context, R.drawable.android);

This code enables textures and texture coordinates and then calls our

loadTexture() method, passing it the Activity context and resource ID so

it can load the texture image.

R.drawable.android is a PNG file 128 pixels square that I copied to res/

drawable-nodpi/android.png. You can find it in the downloadable code

package that accompanies this book. Note the number 128 doesn’t

R t t

PEEKABOO 216

Figure 10.7: The final version: a see-through cube

appear anywhere in the code, so you substitute a larger or smaller

image easily.

You can see our progress so far in Figure 10.6, on the previous page.

10.9 Peekaboo

Just for fun, let’s make the cube partially transparent. Add this to

GLRenderer.onSurfaceCreated():

Download OpenGL/src/org/example/opengl/GLRenderer.java

boolean SEE_THRU = true;

// ...

if (SEE_THRU) {

gl.glDisable(GL10.GL_DEPTH_TEST);

gl.glEnable(GL10.GL_BLEND);

gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE);

}

R t t

MEASURING SMOOTHNESS 217

This turns off depth testing, because we want to see obscured objects

as well as foreground ones. It also turns on a blending mode that lets

the opacity of objects be based on their alpha (transparency) channel.

The net effect is that the back faces of the cube will appear through the

front faces. For the final result, see Figure 10.7, on the preceding page.

I’ll leave it to you to implement an option to turn that on and off. Try

playing around with different blend modes to get cool effects.

10.10 Measuring Smoothness

How smooth is smooth? The smoothness of a game or other graphics-

heavy program is defined by how fast it can update the display screen.

This is typically measured by counting the number of screens or frames

per second (FPS) that are displayed. Different people perceive differ-

ent speeds as “smooth.” 15–30FPS is sometimes acceptable to casual

gamers, but more serious players have come to expect a higher rate

such as 60FPS or more. I recommend that you make every effort to

reach a consistent rate of 60FPS. That corresponds to the maximum

refresh rate of most LCD displays and is also the speed used on popular

gaming platforms such as Sony’s PlayStation and PlayStation Portable

(PSP).

Note: This won’t always be possible, because some Android phones are

fill-rate limited, which means their 3D graphics hardware is under-

powered compared to their display resolution. Depending on what you

are drawing, they may simply not be able to write pixels on the screen

fast enough to achieve 60FPS. The first generation of 800x480+ phones

such as the Nexus One and Droid Sholes suffer from this issue. Faster

devices are coming out that won’t have the problem.

A high frame rate is challenging, because at 60FPS you have only

1/60th of a second (16.67 milliseconds) between calls to onDrawFrame()

to do everything that needs to be done, including any animation,

physics, and game calculations, plus the time it takes to actually draw

the scene for the current frame. The only way to tell whether you’re

making your FPS target is to measure it.

R t t

FAST -FORWARD >> 218

To do that, try adding this bit of code to the end of the onDrawFrame()

method:

Download OpenGL/src/org/example/opengl/GLRenderer.java

numFrames++;

long fpsElapsed = System.currentTimeMillis() - fpsStartTime;

if (fpsElapsed > 5 * 1000) { // every 5 seconds

float fps = (numFrames * 1000.0F) / fpsElapsed;

Log.d(TAG, "Frames per second: " + fps + " (" + numFrames

+ " frames in " + fpsElapsed + " ms)");

fpsStartTime = System.currentTimeMillis();

numFrames = 0;

}

Every five seconds it will display your average FPS number to the An-

droid system log (see Section 3.10, Debugging with Log Messages, on

page 69). If this number drops below your target rate, then adjust your

algorithm and try again. Keep iterating until you reach your target.

A profiler such as traceview4 may also come in handy. Note that you

should avoid the temptation to display this on the screen on top of

your other graphics because the act of displaying it will throw off the

number.

If you try this now, you may notice that the emulator runs much more

slowly than the actual device. In my tests I saw about 12FPS on the

emulator and closer to 60FPS on a real phone. The lesson here is that

for performance testing you can’t trust the emulator.

10.11 Fast-Forward >>

In this chapter, you learned how to use Android’s 3D graphics library.

Because Android uses the industry-standard OpenGL ES API, a wide

variety of additional information is available if you want to learn more.

In particular, I recommend the Javadoc for the JSR 239 API specifi-

cation.5 For other graphics tips, check out the developer talks at the

Google I/O conference.6

4. http://d.android.com/guide/developing/tools/traceview.html

5. http://java.sun.com/javame/reference/apis/jsr239

6. http://code.google.com/events/io/2009/sessions/WritingRealTimeGamesAndroid.html and

http://code.google.com/events/io/2010/sessions/writing-real-time-games-android.html

R t t

Part IV

The Next Generation

Chapter 11

Multi-Touch
With each new version of Android, new features are added to the plat-

form. In this part, we’ll concentrate on those newer features and on

making your programs available to others.

In this chapter, we’ll learn how to use the new multi-touch features in

Android 2.0, warts and all. Then we’ll cover home screen widgets, intro-

duced in Android 1.6, and live wallpaper, introduced in Android 2.1.

Android’s popularity and its rapid pace of development have created

a problem with fragmentation, so there’s a whole chapter dedicated to

dealing with all the different versions and screen sizes you’ll encounter

in the field. Finally, there’s a chapter that discusses how to get your

program into users’ hands by publishing it on the Android Market.

11.1 Introducing Multi-Touch

Multi-touch is simply an extension of the regular touch-screen user

interface, using two or more fingers instead of one. We’ve used single-

finger gestures before,1 although we didn’t call it that. Remember in

Section 4.3, Entering Numbers, on page 89 when we let the user touch

a tile in the Sudoku game in order to change it? That’s called a tap

gesture. Another gesture is called drag. That’s where you hold one fin-

ger on the screen and move it around, causing the content under your

finger to scroll.

Tap, drag, and a few other single-fingered gestures have always been

supported in Android. However, because of the popularity of the Apple

iPhone, early Android users suffered from a kind of gesture envy. The

1. Some people use them more than others.

INTRODUCING MULTI-TOUCH 221

Figure 11.1: Three common touch gestures: a) tap, b) drag, and c) pinch

zoom

iPhone supported multi-touch, in particular the “pinch zoom” gesture

(see Figure 11.1).

With pinch zoom, you place two fingers on the screen and squeeze them

together to make the item you’re viewing smaller, or you pull them apart

to make it bigger. Before Android 2.0, you had to use a clunky zoom

control with icons that you pressed to zoom in and out (see the setBuilt-

InZoomControls() method in Section 8.3, Getting Ready, on page 175).

But thanks to its new multi-touch support, you can now pinch zoom

on Android too—as long as the application supports it, of course.

Note: Android 2.2 introduced a new class called ScaleGestureDetector

that recognizes the pinch zoom gesture. However, I decided not to use

it in order to be compatible with 2.0 and 2.1 devices. If you only need

to target 2.2, see the online documentation for more information.2

2. http://d.android.com/reference/android/view/ScaleGestureDetector.html

R t t

BUILDING THE TOUCH EXAMPLE 222

Warning: Multi-bugs Ahead

Multi-touch, as implemented on current Android phones, is
extremely buggy. In fact, it’s so buggy that it borders on the
unusable. The API routinely reports invalid or impossible data
points, especially during the transition from one finger to two
fingers on the screen, and vice versa.

On the developer forums, you can find complaints of fingers
getting swapped, x- and y-axes flipping, and multiple fingers
sometimes being treated as one. Some of these problems can
be traced back to hardware limitations in the touch-screen
sensors used in certain phones, but many could be fixed or
improved with software updates.

With a lot of trial and error, I was able to get the example in this
chapter working because the gesture it implements is so sim-
ple. Until Google acknowledges and fixes the issues with multi-
touch, that may be about all you can do. Luckily, pinch zoom
seems to be the only multi-touch gesture most people want.

If you try to run the example in this chapter on Android 1.5 or 1.6,

it will crash because those versions do not support multi-touch. We’ll

learn how to work around that in Section 13.3, Evolving with Android

APIs, on page 259.

11.2 Building the Touch Example

To demonstrate multi-touch, we’re going to build a simple image viewer

application that lets you zoom in and scroll around an image. The fin-

ished product is shown in Figure 11.2, on the following page.

Begin by creating a new “Hello, Android” project with the following

parameters in the New Android Project dialog box:

Project name: Touch

Build Target: Android 2.2

Application name: Touch

Package name: org.example.touch

Create Activity: Touch

Min SDK Version: 8

R t t

BUILDING THE TOUCH EXAMPLE 223

Figure 11.2: The touch example implements a simple image viewer with

drag-and-pinch zoom.

R t t

BUILDING THE TOUCH EXAMPLE 224

This will create Touch.java to contain your main activity. Let’s edit it to

show a sample image, put in a touch listener, and add a few imports

we’ll need later:

Download Touchv1/src/org/example/touch/Touch.java

package org.example.touch;

import android.app.Activity;

import android.graphics.Matrix;

import android.graphics.PointF;

import android.os.Bundle;

import android.util.FloatMath;

import android.util.Log;

import android.view.MotionEvent;

import android.view.View;

import android.view.View.OnTouchListener;

import android.widget.ImageView;

public class Touch extends Activity implements OnTouchListener {

private static final String TAG = "Touch";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

ImageView view = (ImageView) findViewById(R.id.imageView);

view.setOnTouchListener(this);

}

@Override

public boolean onTouch(View v, MotionEvent event) {

// Handle touch events here...

}

}

We’ll fill out that onTouch() method in a moment. First we need to define

the layout for our activity:

Download Touchv1/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<ImageView android:id="@+id/imageView"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:src="@drawable/butterfly"

android:scaleType="matrix">

</ImageView>

</FrameLayout>

R t t

UNDERSTANDING TOUCH EVENTS 225

The entire interface is a big ImageView control that covers the whole

screen. The android:src="@drawable/butterfly" value refers to the butter-

fly image used in the example. You can use any JPG or PNG for-

mat image you like; just put it in the res/drawable-nodpi directory. The

android:scaleType="matrix" attribute indicates we’re going to use a matrix

to control the position and scale of the image. More on that later.

The AndroidManifest.xml file is untouched except for the addition of the

android:theme= attribute:

Download Touchv1/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.touch"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name"

android:theme="@android:style/Theme.NoTitleBar.Fullscreen">

<activity android:name=".Touch"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="8" />

</manifest>

@android:style/Theme.NoTitleBar.Fullscreen, as the name suggests,

tells Android to use the entire screen with no title bar or status bar

at the top. You can run the application now, and it will simply display

the picture.

11.3 Understanding Touch Events

Whenever I first learn a new API, I like to first put in some code to

dump everything out so I can get a feel for what the methods do and

in what order events happen. So let’s start with that. First add a call to

the dumpEvent() method inside onTouch():

Download Touchv1/src/org/example/touch/Touch.java

@Override

public boolean onTouch(View v, MotionEvent event) {

// Dump touch event to log

dumpEvent(event);

return true; // indicate event was handled

}

R t t

UNDERSTANDING TOUCH EVENTS 226

Note that we need to return true to indicate to Android that the event

has been handled. Next, define the dumpEvent() method. The only

parameter is the event that we want to dump.

Download Touchv1/src/org/example/touch/Touch.java

/** Show an event in the LogCat view, for debugging */

private void dumpEvent(MotionEvent event) {

String names[] = { "DOWN", "UP", "MOVE", "CANCEL", "OUTSIDE",

"POINTER_DOWN", "POINTER_UP", "7?", "8?", "9?" };

StringBuilder sb = new StringBuilder();

int action = event.getAction();

int actionCode = action & MotionEvent.ACTION_MASK;

sb.append("event ACTION_").append(names[actionCode]);

if (actionCode == MotionEvent.ACTION_POINTER_DOWN

|| actionCode == MotionEvent.ACTION_POINTER_UP) {

sb.append("(pid ").append(

action >> MotionEvent.ACTION_POINTER_ID_SHIFT);

sb.append(")");

}

sb.append("[");

for (int i = 0; i < event.getPointerCount(); i++) {

sb.append("#").append(i);

sb.append("(pid ").append(event.getPointerId(i));

sb.append(")=").append((int) event.getX(i));

sb.append(",").append((int) event.getY(i));

if (i + 1 < event.getPointerCount())

sb.append(";");

}

sb.append("]");

Log.d(TAG, sb.toString());

}

Output will go to the Android debug log, which you can see by opening

the LogCat view (see Section 3.10, Debugging with Log Messages, on

page 69).

The easiest way to understand this code is to run it. Unfortunately, you

can’t run this program on the emulator (actually you can, but the emu-

lator doesn’t support multi-touch, so the results won’t be very interest-

ing). Therefore, hook up a real phone to your USB port, and run the

sample there (see Section 1.4, Running on a Real Phone, on page 28).

When I tried it on my phone and performed a few quick gestures, I

received the following output:

Line 1 event ACTION_DOWN[#0(pid 0)=135,179]
- event ACTION_MOVE[#0(pid 0)=135,184]
- event ACTION_MOVE[#0(pid 0)=144,205]
- event ACTION_MOVE[#0(pid 0)=152,227]
5 event ACTION_POINTER_DOWN(pid 1)[#0(pid 0)=153,230;#1(pid 1)=380,538]
- event ACTION_MOVE[#0(pid 0)=153,231;#1(pid 1)=380,538]

R t t

UNDERSTANDING TOUCH EVENTS 227

- event ACTION_MOVE[#0(pid 0)=155,236;#1(pid 1)=364,512]
- event ACTION_MOVE[#0(pid 0)=157,240;#1(pid 1)=350,498]
- event ACTION_MOVE[#0(pid 0)=158,245;#1(pid 1)=343,494]

10 event ACTION_POINTER_UP(pid 0)[#0(pid 0)=158,247;#1(pid 1)=336,484]
- event ACTION_MOVE[#0(pid 1)=334,481]
- event ACTION_MOVE[#0(pid 1)=328,472]
- event ACTION_UP[#0(pid 1)=327,471]

Here’s how to interpret the events:

• On line 1 we see an ACTION_DOWN event, so the user must have

pressed one finger on the screen. The finger was positioned at

coordinates x=135, y=179, which is near the upper left of the dis-

play. You can’t tell yet whether they’re trying to do a tap or a drag.

• Next, starting on line 2, there are some ACTION_MOVE events, indi-

cating the user moved their finger around a bit to those coordi-

nates given in the events. (It’s actually very hard to put your finger

on the screen and not move it at all, so you’ll get a lot of these.) By

the amount moved, you can tell the user is doing a drag gesture.

• The next event, ACTION_POINTER_DOWN on line 5, means the user

pressed down another finger. “pid 1” means that pointer ID 1 (that

is, finger number 1) was pressed. Finger number 0 was already

down, so we now have two fingers being tracked on the screen. In

theory, the Android API can support up to 256 fingers at once, but

the first crop of Android 2.x phones is limited to 2.3 The coordi-

nates for both fingers come back as part of the event. It looks like

the user is about to start a pinch zoom gesture.

• Here’s where it gets interesting. The next thing we see is a series of

ACTION_MOVE events starting on line 6. Unlike before, now we have

two fingers moving around. If you look closely at the coordinates,

you can see the fingers are moving closer together as part of a

pinch zoom.

• Then on line 10, we see an ACTION_POINTER_UP on pid 0. This means

that finger number 0 was lifted off the screen. Finger number 1 is

still there. Naturally, this ends the pinch zoom gesture.

• We see a couple more ACTION_MOVE events starting on line 11,

indicating the remaining finger is still moving around a little. If

you compare these to the earlier move events, you’ll notice a dif-

3. Although the idea of 256 fingers may seem silly outside of Men in Black headquarters,

keep in mind that Android is designed for a wide variety of devices, not just phones. If

you have a tabletop-sized screen with several people gathered around it, you could easily

have more than a handful of fingers on the display.

R t t

SETTING UP FOR IMAGE TRANSFORMATION 228

ferent pointer ID is reported. Unfortunately, the touch API is so

buggy you can’t always count on that (see the “Warning: Multi-

bugs Ahead” sidebar).

• Finally, on line 13, we get an ACTION_UP event as the last finger is

removed from the screen.

Now the code for dumpEvent() should make a little more sense. The

getAction() method returns the action being performed (up, down, or

move). The lowest 8 bits of the action is the action code itself, and the

next 8 bits is the pointer (finger) ID, so we have to use a bitwise AND

(&) and a right shift (>>) to separate them.

Then we call the getPointerCount() method to see how many finger posi-

tions are included. getX() and getY() return the X and Y coordinates,

respectively. The fingers can appear in any order, so we have to call

getPointerId() to find out which fingers we’re really talking about.

That covers the raw mouse event data. The trick, as you might imagine,

is in interpreting and acting on that data.

11.4 Setting Up for Image Transformation

To move and zoom the image, we’ll use a neat little feature on the

ImageView class called matrix transformation. Using a matrix we can

represent any kind of translation, rotation, or skew that we want to do

to the image. We already turned it on by specifying android:scaleType=

"matrix" in the res/layout/main.xml file. In the Touch class, we need to

declare two matrices as fields (one for the current value and one for

the original value before the transformation). We’ll use them in the

onTouch() method to transform the image. We also need a mode vari-

able to tell whether we’re in the middle of a drag or zoom gesture, and

we need the start, mid, and oldDist variables for controlling zooming:

Download Touchv1/src/org/example/touch/Touch.java

public class Touch extends Activity implements OnTouchListener {

// These matrices will be used to move and zoom image

Matrix matrix = new Matrix();

Matrix savedMatrix = new Matrix();

// We can be in one of these 3 states

static final int NONE = 0;

static final int DRAG = 1;

static final int ZOOM = 2;

int mode = NONE;

R t t

IMPLEMENTING THE DRAG GESTURE 229

// Remember some things for zooming

PointF start = new PointF();

PointF mid = new PointF();

float oldDist = 1f;

@Override

public boolean onTouch(View v, MotionEvent event) {

ImageView view = (ImageView) v;

// Dump touch event to log

dumpEvent(event);

// Handle touch events here...

switch (event.getAction() & MotionEvent.ACTION_MASK) {

}

view.setImageMatrix(matrix);

return true; // indicate event was handled

}

}

The matrix variable will be calculated inside the switch statement when

we implement the gestures.

11.5 Implementing the Drag Gesture

A drag gesture starts when the first finger is pressed to the screen

(ACTION_DOWN) and ends when it is removed (ACTION_UP or ACTION_

POINTER_UP).

Download Touchv1/src/org/example/touch/Touch.java

switch (event.getAction() & MotionEvent.ACTION_MASK) {

case MotionEvent.ACTION_DOWN:

savedMatrix.set(matrix);

start.set(event.getX(), event.getY());

Log.d(TAG, "mode=DRAG");

mode = DRAG;

break;

case MotionEvent.ACTION_UP:

case MotionEvent.ACTION_POINTER_UP:

mode = NONE;

Log.d(TAG, "mode=NONE");

break;

case MotionEvent.ACTION_MOVE:

if (mode == DRAG) {

matrix.set(savedMatrix);

matrix.postTranslate(event.getX() - start.x,

event.getY() - start.y);

}

break;

}

R t t

IMPLEMENTING THE PINCH ZOOM GESTURE 230

When the gesture starts, we remember the current value of the trans-

formation matrix and the starting position of the pointer. Every time

the finger moves, we start the transformation matrix over at its original

value and call the postTranslate() method to add a translation vector, the

difference between the current and starting positions.

If you run the program now, you should be able to drag the image

around the screen using your finger. Neat, huh?

11.6 Implementing the Pinch Zoom Gesture

The pinch zoom gesture is similar, except it starts when the second

finger is pressed to the screen (ACTION_POINTER_DOWN).

Download Touchv1/src/org/example/touch/Touch.java

case MotionEvent.ACTION_POINTER_DOWN:

oldDist = spacing(event);

Log.d(TAG, "oldDist=" + oldDist);

if (oldDist > 10f) {

savedMatrix.set(matrix);

midPoint(mid, event);

mode = ZOOM;

Log.d(TAG, "mode=ZOOM");

}

break;

case MotionEvent.ACTION_MOVE:

if (mode == DRAG) {

// ...

}

else if (mode == ZOOM) {

float newDist = spacing(event);

Log.d(TAG, "newDist=" + newDist);

if (newDist > 10f) {

matrix.set(savedMatrix);

float scale = newDist / oldDist;

matrix.postScale(scale, scale, mid.x, mid.y);

}

}

break;

When we get the down event for the second finger, we calculate and

remember the distance between the two fingers. In my testing, Android

would sometimes tell me (incorrectly) that there were two fingers

pressed down in almost exactly the same position. So, I added an check

to ignore the event if the distance is smaller than some arbitrary num-

ber of pixels. If it’s bigger than that, we remember the current transfor-

mation matrix, calculate the midpoint of the two fingers, and start the

zoom.

R t t

IMPLEMENTING THE PINCH ZOOM GESTURE 231

When a move event arrives while we’re in zoom mode, we calculate

the distance between the fingers again. If it’s too small, the event is

ignored; otherwise, we restore the transformation matrix and scale the

image around the midpoint.

The scale is simply the ratio of the new distance divided by the old

distance. If the new distance is bigger (that is, the fingers have gotten

farther apart), then the scale will be greater than 1, making the image

bigger. If it’s smaller (fingers closer together), then the scale will be less

than one, making the image smaller. And of course if everything is the

same, the scale is equal to 1 and the image is not changed.

Now let’s define the spacing() and midPoint() methods.

Distance Between Two Points

To find out how far apart two fingers are, we first construct a vector

(x, y) that is the difference between the two points. Then we use the

formula for Euclidean distance to calculate the spacing:4

Download Touchv1/src/org/example/touch/Touch.java

private float spacing(MotionEvent event) {

float x = event.getX(0) - event.getX(1);

float y = event.getY(0) - event.getY(1);

return FloatMath.sqrt(x * x + y * y);

}

The order of the points does not matter because any negative signs

will be lost when we square them. Note that all math is done using

Java’s float type. Although some Android devices may not have floating-

point hardware, we’re not doing this often enough to worry about its

performance.

Midpoint of Two Points

Calculating a point in the middle of two points is even easier:

Download Touchv1/src/org/example/touch/Touch.java

private void midPoint(PointF point, MotionEvent event) {

float x = event.getX(0) + event.getX(1);

float y = event.getY(0) + event.getY(1);

point.set(x / 2, y / 2);

}

4. http://en.wikipedia.org/wiki/Euclidean_distance

R t t

FAST -FORWARD >> 232

All we do is take the average of their X and Y coordinates. To avoid

garbage collections that can cause noticeable pauses in the application,

we reuse an existing object to store the result rather than allocating and

returning a new one each time.

Try running the program now on your phone. Drag the image with one

finger, and zoom it by pinching two fingers in or out. For best results,

don’t let your fingers get closer than an inch or so apart. Otherwise,

you’ll start to run into some of those bugs in the API I mentioned earlier.

11.7 Fast-Forward >>

In this chapter, we learned how to use the multi-touch API to create

a pinch zoom gesture. There’s a nice site called GestureWorks5 that

describes a whole library of gestures that have been implemented on the

Adobe Flash platform. If you’re willing to push the limits of Android’s

quirky multi-touch support, then perhaps you can find ideas there for

other gestures to implement in your Android programs.

Because multi-touch code uses new methods that didn’t exist before

Android 2.0, if you try to run the touch example on earlier versions, it

will fail with a “Force close” error. Luckily, there are ways around this

limitation, as described in Section 13.3, Evolving with Android APIs, on

page 259. You can’t teach an old phone new tricks, but you can at least

keep it from crashing.

In the next chapter, we’ll investigate home screen extensions, including

live wallpaper.

5. http://gestureworks.com

R t t

Chapter 12

There’s No Place Like Home
No matter how deeply you get into a game or other Android program,

it’s reassuring to know that you can press the Home button to return

to a familiar place—the Android Home screen. It’s the central location

where you start the web browser, make a phone call, open email, run

apps, and do everything else that makes Android fun.

Since you’re going to be spending a lot of time there, Android lets you

customize the Home screen in many different ways such as setting a

static background image and rearranging icons. In this chapter, you’ll

learn about two more ways: widgets and live wallpaper. Now click your

heels together, and let’s get started.

12.1 Hello, Widget

Introduced in Android 1.5 (Cupcake), widgets are miniature applica-

tion views that can be embedded in the Home screen. A few widgets are

provided with Android including an analog clock, a music controller,

and one that just shows a picture. Many developers have created inter-

esting widgets to display the weather, news headlines, horoscopes, and

more, and you can too. This section will show you how.

Creating Your First Widget

For this example we’re going to create a widget that shows today’s date.

If you’d like a peek at the final result, see Figure 12.5, on page 242.

Unfortunately, there is no special Eclipse wizard for making a widget,

so we’ll first create a regular “Hello, Android” application like we did in

Section 1.2, Creating Your First Program, on page 23 and then tweak

it a little. Select File > New > Project... to open the New Project dialog

HELLO, WIDGET 234

box. Then select Android > Android Project, and click Next. Enter the

following information:

Project name: Widget

Build Target: Android 2.2

Application name: Widget

Package name: org.example.widget

Min SDK Version: 8

Instead of entering a name for the Activity field, leave that field blank,

and turn off the check mark next to Create Activity. When you’re done,

it should look something like Figure 12.1, on the following page.

Click Finish. The Android plug-in will create the project and fill it in

with some default files. The files will not be correct for a widget project,

so let’s fix them up now.

Calling All Widgets!

Our first stop is the AndroidManifest.xml file. Although it’s technically

possible (and in fact common) to put widgets and activities in the same

application, this example will have a widget only. We don’t need an

<activity> tag, but we do need to add a <receiver> to define the widget.

Here is the revised manifest file:

Download Widget/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.widget"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<!-- Broadcast Receiver that will process AppWidget updates -->

<receiver android:name=".Widget"

android:label="@string/widget_name">

<intent-filter>

<action android:name=

"android.appwidget.action.APPWIDGET_UPDATE" />

</intent-filter>

<meta-data android:name="android.appwidget.provider"

android:resource="@xml/widget" />

</receiver>

</application>

<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="8" />

</manifest>

The <meta-data> tag tells Android it can find the widget definition in

res/xml/widget.xml.

R t t

HELLO, WIDGET 235

Figure 12.1: New Android widget project

R t t

HELLO, WIDGET 236

Here’s the definition:

Download Widget/res/xml/widget.xml

<?xml version="1.0" encoding="utf-8"?>

<appwidget-provider

xmlns:android="http://schemas.android.com/apk/res/android"

android:minWidth="146dip"

android:minHeight="72dip"

android:updatePeriodMillis="1800000"

android:initialLayout="@layout/main"

/>

This specifies a minimum size for the widget, how often it should be

updated (more on that later), and a reference to its starting layout.

The layout is defined in res/layout/main.xml:

Download Widget/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="@drawable/widget_bg"

>

<TextView android:id="@+id/text"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:text="@string/hello"

android:textSize="18sp"

android:gravity="center"

android:textColor="@android:color/black"

/>

</LinearLayout>

You may have noticed that this layout is almost the same as the one we

used for the “Hello, Android” example except that this version specifies

centered black text and a background image.

Stretch to Fit

For the background, we could have used any Android Drawable, such

as a solid color or a bitmap (see Section 4.1, Drawable, on page 76). We

could have even left it off to get a completely transparent background.

But for this example, I wanted to show you how to use a NinePatch

image.

R t t

HELLO, WIDGET 237

Figure 12.2: Defining a stretchable background with the Draw 9-patch

tool

A NinePatch image is a stretchable PNG image often used for the back-

ground of resizable buttons. You use the Draw 9-patch tool1 included

with the SDK to create one, as shown in Figure 12.2.

A 1-pixel border around the real image contains additional information

about how to stretch the image and insert padded content. Lines on

the bottom and right edges tell Android where content should go. If

the content doesn’t fit in that area (which is usually the case), then

the lines on the left and top edges tell Android which pixel rows and

columns should be duplicated in order to stretch the image.

The resulting file must use the extension .9.png and be placed in the

project’s res/drawable directory.

1. http://d.android.com/guide/developing/tools/draw9patch.html

R t t

HELLO, WIDGET 238

Figure 12.3: Customizing your Home screen with widgets

The next thing we need is the Widget class.

Embrace and Extend

The Widget needs to extend the AppWidgetProvider class provided by

Android. By using that class, we get a bunch of built-in functional-

ity for free, which is always a plus. So, here’s the definition for the

Widget class:

Download Widget/src/org/example/widget/Widget.java

package org.example.widget;

import android.appwidget.AppWidgetProvider;

public class Widget extends AppWidgetProvider {

// ...

}

R t t

HELLO, WIDGET 239

We’ll come back to fill in this class in a moment, but for now we can

just use the default behavior provided by AppWidgetProvider.

Finally, let’s get rid of a few pesky error messages by defining these

string values:

Download Widget/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">Hello World!</string>

<string name="app_name">Widget</string>

<string name="widget_name">Widget</string>

</resources>

All that’s left now is to run it.

Running the Widget

To run your new widget, go to the Package Explorer window, right-click

the Widget project, and select Run As > Android Application. Nothing

much will appear to happen as Eclipse builds and installs the widget

on your emulator or device.

To see the new widget, open the Home screen’s context menu: press and

hold your finger (or mouse) on the Home screen. A menu will appear

with options listing all the types of things you can add (see Figure 12.3,

on the previous page).

Select Widgets from the menu, and then select the widget named Widget

(clever, huh?). At last, your widget should appear (see Figure 12.4, on

the following page).

Try moving it around by pressing and holding your finger on the widget.

Rotate the display to see how the widget automatically resizes itself. To

remove it, drag it to the trash can icon at the bottom of the screen.

As exciting as that was, let’s do it one better by displaying the current

date and time in our widget.

Keeping Up-to-Date

In Android 1.5, widget hosts (programs like the Home screen that can

contain widgets) send a message to all their little widget kids when-

ever the widgets should display something. The Android way to send a

message is to broadcast an intent. In this case, the intent is android.

appwidget.action.APPWIDGET_UPDATE.

R t t

HELLO, WIDGET 240

Figure 12.4: Hello, Widget

Back when we set up the AndroidManifest.xml file, we told Android that

we could receive that intent and do something interesting with it. Now

it’s time to fill out the Widget class to do just that:

Download Widget/src/org/example/widget/Widget.java

Line 1 package org.example.widget;
-

- import java.text.SimpleDateFormat;
- import java.util.Date;
5

- import android.appwidget.AppWidgetManager;
- import android.appwidget.AppWidgetProvider;
- import android.content.Context;
- import android.widget.RemoteViews;

10

- public class Widget extends AppWidgetProvider {
- // ...
- // Define the format string for the date
- private SimpleDateFormat formatter = new SimpleDateFormat(

15 "EEEEEEEEE\nd MMM yyyy");
-

R t t

HELLO, WIDGET 241

- @Override
- public void onUpdate(Context context,
- AppWidgetManager appWidgetManager, int[] appWidgetIds) {

20 // Retrieve and format the current date
- String now = formatter.format(new Date());
-

- // Change the text in the widget
- RemoteViews updateViews = new RemoteViews(

25 context.getPackageName(), R.layout.main);
- updateViews.setTextViewText(R.id.text, now);
- appWidgetManager.updateAppWidget(appWidgetIds, updateViews);
-

- // Not really necessary, just a habit
30 super.onUpdate(context, appWidgetManager, appWidgetIds);

- }
- }

Whenever the APPWIDGET_UPDATE intent comes in, Android calls our

onUpdate() method. On line 21, we format the current date using a Sim-

pleDateFormat created on line 14. This shows the day of the week, day

of the month, month name, and year on the first row of the widget, and

then the hour, minute, second, and milliseconds on the second row.

Next, on line 24, we create a RemoteViews instance for the new view

layout that the widget will display. It just so happens that this example

uses the same layout, R.layout.main, when updating as it did when it

was started. Line 26 replaces the original “Hello, World” text with the

current date and time.

Finally, on line 27, we send our updated view to replace the current

contents of the widget. The call to super.onUpdate() on line 30 is just

there for code hygiene.

Remove the widget from your Home screen, and reinstall it from

Eclipse. When you add it back to the Home screen, you should see

something like Figure 12.5, on the next page.

The frequency of updates is controlled by the android:updatePeriodMillis=

parameter in res/xml/widget.xml. A value of 1800000 represents 30 min-

utes, so our widget will be updated twice an hour. Note that this is

only an approximate number. The actual update event may be delayed

(possibly a long time) because of other things happening on the phone.

Google recommends you set widgets to update infrequently, such as

once a day or once an hour, in order to conserve battery power. Starting

in Android 1.6, the android:updatePeriodMillis= parameter will not honor

any values under thirty minutes. If you need more frequent updates,

you’ll have to set up your own timer using the AlarmManager class. This

is left as an exercise for the reader.

R t t

LIVE WALLPAPER 242

Figure 12.5: Displaying the date and time

Go Wild

Now that you know the basics of widget building, there’s no end to the

interesting doodads you can create. If you need more advanced fea-

tures such as responding to events, background processing, and spec-

ifying an initial activity for configuration, consult the online documen-

tation.2 Try to keep your widgets simple and useful, though. By cleverly

using widgets, you can make the Android experience more personal and

dynamic for your users.

Do you find yourself wishing for a bit more room to express than a

widget provides? Then follow the yellow brick road to the land of live

wallpapers.

12.2 Live Wallpaper

Regular wallpaper just sits there. It looks nice, but it never changes.

Yawn.

2. http://d.android.com/guide/topics/appwidgets

R t t

LIVE WALLPAPER 243

Figure 12.6: The wallpaper example reuses code from the OpenGL

chapter.

Live wallpaper is a new feature in Android 2.1 (Eclair Maintenance

Release 1). It lets you replace boring static wallpaper images with every-

thing from vibrant and pulsing music visualizations to quiet, meditative

ponds that respond to your touch with gentle ripples.

Displaying current weather conditions, slide shows, Magic 8 Balls, and

pyrotechnics are just a few of the ideas that are possible. Let’s pull back

the curtain to see how the magic is done.

Creating the Wallpaper Project

In this example, we’ll create a live wallpaper that displays a rotating

cube using OpenGL. The final result is shown in Figure 12.6. Start by

creating a new Android project using these values in the project wizard:

Project name: Wallpaper

Build Target: Android 2.2

Application name: Wallpaper

Package name: org.example.wallpaper

Min SDK Version: 8

R t t

LIVE WALLPAPER 244

As with the widget project, leave the activity name blank, and turn off

the check mark next to Create Activity. After the project is created,

we need to perform some major changes to the AndroidManifest.xml file.

Here’s what it should look like:

Download Wallpaper/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.wallpaper"

android:versionCode="1"

android:versionName="1.0">

<application android:label="@string/app_name">

<service android:name=".Wallpaper"

android:label="@string/service_name"

android:permission="android.permission.BIND_WALLPAPER">

<intent-filter>

<action android:name=

"android.service.wallpaper.WallpaperService" />

</intent-filter>

<meta-data android:name="android.service.wallpaper"

android:resource="@xml/wallpaper" />

</service>

</application>

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="8" />

</manifest>

The <service> tag is new. It defines an Android service that will run in

the background and respond to events. The android:permission= attribute

means that any program that calls our service will need to have the

specified permission. The Android Home screen program already has

that permission set, so it will work fine.

The <intent-filter> tag tells Android what type of service this is, and

the <meta-data> tag lets it know where to find extra information about

the wallpaper. The android:resource="@xml/wallpaper" setting refers to the

res/xml/wallpaper.xml file, which is a new file you should create now using

the following contents:

Download Wallpaper/res/xml/wallpaper.xml

<?xml version="1.0" encoding="utf-8"?>

<wallpaper xmlns:android="http://schemas.android.com/apk/res/android"

android:author="@+string/author"

android:description="@string/description"

android:thumbnail="@drawable/thumbnail" />

The wallpaper metadata specifies the author of the wallpaper (that’s

you), a short description of what it does, and a thumbnail image. The

R t t

LIVE WALLPAPER 245

image and description will appear in a list when the user is asked to

pick a wallpaper to display.

Before we get any further, let’s define all the strings we’ll need for the

project in res/values/strings.xml:

Download Wallpaper/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Wallpaper</string>

<string name="service_name">Hello, Android!</string>

<string name="author">Hello, Android!</string>

<string name="description">Sample live wallpaper

from Hello, Android!</string>

</resources>

You should delete the layout file, res/layout/main.xml, because we won’t

be using it. We’ll fill in the Wallpaper class (Wallpaper.java) after we learn

a few things about Android services.

Introducing Services

One of the distinguishing features of Android is the ability to run pro-

grams in the background. To contrast them with foreground activities,

Android calls these programs services.

The main Java class for a service inherits from the Service class. Ser-

vices have a life cycle similar to activities (see Section 2.2, It’s Alive!, on

page 35) but are a little simpler. There’s an onCreate() method that is

called when the service is first created and an onDestroy() method that

is called when it is destroyed.

In between, Android will call the onStartCommand() method (onStart()

prior to version 2.0) when a client requests that the service be started.

Services can be sticky or not sticky, depending upon whether you want

the service to hang around between requests.

There are a few other methods for things such as low memory condi-

tions that you can implement if you like. See the online documentation

for all the gory details.3

For the wallpaper example, we don’t need to worry about any of these

methods because they are all handled by the WallpaperService class,

which is a subclass of Service.

3. http://d.android.com/reference/android/app/Service.html

R t t

LIVE WALLPAPER 246

Our main class needs to extend WallpaperService like this:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

package org.example.wallpaper;

import android.service.wallpaper.WallpaperService;

public class Wallpaper extends WallpaperService {

private class MyEngine extends Engine {

// Engine implementation goes here...

}

@Override

public Engine onCreateEngine() {

return new MyEngine();

}

}

All we had to do was implement the onCreateEngine() method, which

is a single line. It’s sole purpose is to create and return another class

called MyEngine.

Building a Drawing Engine

The MyEngine class has to be an inner class of Wallpaper, so in Java it’s

declared inside the enclosing class’s curly brackets. MyEngine extends

the Engine class provided by Android. Here’s the outline for MyEngine

with all the methods stubbed out:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

private class MyEngine extends Engine {

@Override

public void onCreate(final SurfaceHolder holder) {

super.onCreate(holder);

}

@Override

public void onDestroy() {

super.onDestroy();

};

@Override

public void onSurfaceCreated(final SurfaceHolder holder) {

super.onSurfaceCreated(holder);

}

@Override

public void onSurfaceDestroyed(final SurfaceHolder holder) {

super.onSurfaceDestroyed(holder);

}

R t t

LIVE WALLPAPER 247

@Override

public void onSurfaceChanged(final SurfaceHolder holder,

final int format, final int width, final int height) {

super.onSurfaceChanged(holder, format, width, height);

}

@Override

public void onVisibilityChanged(final boolean visible) {

super.onVisibilityChanged(visible);

}

@Override

public void onOffsetsChanged(final float xOffset,

final float yOffset, final float xOffsetStep,

final float yOffsetStep, final int xPixelOffset,

final int yPixelOffset) {

super.onOffsetsChanged(xOffset, yOffset, xOffsetStep,

yOffsetStep, xPixelOffset, yPixelOffset);

}

}

Note that every method should always call its superclass method. You

can get Eclipse to generate these stubs for you in the Java editor by

selecting the class name MyEngine, right-clicking, selecting Source >

Override/Implement Methods, and picking the methods you want to

create. There’s one difference in what Eclipse generates and what was

shown earlier, however. I’ve added the final keyword to every method

parameter. That will be needed later so inner classes within those meth-

ods can access the parameters. If you forget and leave them out, the

compiler will let you know.

During the engine’s life cycle, Android will call these methods in a spe-

cific order. Here is the entire sequence:

onCreate

onSurfaceCreated

onSurfaceChanged (1+ calls in any order)

onOffsetsChanged (0+ calls in any order)

onVisibilityChanged (0+ calls in any order)

onSurfaceDestroyed

onDestroy

We’ll be filling out all these methods in the rest of the chapter.

R t t

LIVE WALLPAPER 248

We’ll also need a few more import statements to prevent compiler errors.

I usually let Eclipse create those for me while I’m coding (using Content

Assist (Ctrl+spacebar) or Quick Fix (Ctrl+1) or in a batch with the

Source > Organize Imports command (Ctrl+Shift+O). But if you prefer,

you can just type them all in now. Here’s the full list:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import javax.microedition.khronos.egl.EGL10;

import javax.microedition.khronos.egl.EGL11;

import javax.microedition.khronos.egl.EGLConfig;

import javax.microedition.khronos.egl.EGLContext;

import javax.microedition.khronos.egl.EGLDisplay;

import javax.microedition.khronos.egl.EGLSurface;

import javax.microedition.khronos.opengles.GL10;

import android.service.wallpaper.WallpaperService;

import android.view.SurfaceHolder;

Next we need to borrow some code to draw our cube.

Reusing the OpenGL code

You don’t have to use OpenGL for live wallpapers, but I like it because

it’s faster than the regular Android 2D graphics libraries (see Chapter 4,

Exploring 2D Graphics, on page 73). Also, we just so happen to have a

nice rotating 3D cube example already written from another chapter

(Chapter 10, 3D Graphics in OpenGL, on page 198).

Grab three files from that project now: GLCube.java, GLRenderer.java,

and android.png. Put the Java files in the org.example.wallpaper package

(in other words, the org/example/wallpaper directory), and place the PNG

file in the res/drawable-nodpi directory.

If you haven’t done that chapter yet, you can download all these files

from the book’s website. Unzip the source code archive to a temporary

location, and copy the files from the OpenGL project.

You shouldn’t have to make any changes to the source code except for

the package name at the top of both Java files, which should read as

follows:

Download Wallpaper/src/org/example/wallpaper/GLRenderer.java

package org.example.wallpaper;

R t t

LIVE WALLPAPER 249

Now we just have to figure out how to call the code from our new wall-

paper project.

Creating and Destroying the Engine

To begin, let’s define a few fields for the engine to use. Put these at the

start of the MyEngine class:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

private GLRenderer glRenderer;

private GL10 gl;

private EGL10 egl;

private EGLContext glc;

private EGLDisplay glDisplay;

private EGLSurface glSurface;

private ExecutorService executor;

private Runnable drawCommand;

The most important variable here is executor. In Java, an executor is an

object that can run snippets of code (called runnables) asynchronously

in another thread. When the wallpaper engine is first created, we’re

going to create one of these executors to handle all interaction with

OpenGL.

We have to do that because OpenGL can be called only from a sin-

gle thread. The service has to create a thread to do drawing in the

background anyway, and we can’t call some of the OpenGL code in the

background thread and some in the foreground thread. So, we use a

single executor for everything. The definition of onCreate() shows how

to initialize it:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

@Override

public void onCreate(final SurfaceHolder holder) {

super.onCreate(holder);

executor = Executors.newSingleThreadExecutor();

drawCommand = new Runnable() {

public void run() {

glRenderer.onDrawFrame(gl);

egl.eglSwapBuffers(glDisplay, glSurface);

if (isVisible()

&& egl.eglGetError() != EGL11.EGL_CONTEXT_LOST) {

executor.execute(drawCommand);

}

}

};

}

R t t

LIVE WALLPAPER 250

Besides the executor, we also create a runnable called drawCommand,

which will be used later to draw each frame of the cube animation.

This is a Java anonymous inner class, so it has access to all the fields

and final parameters of its parents. Note that we haven’t initialized any

of those variables yet (such as glRenderer and glDisplay), but that’s OK

because we’re just defining this code to be run later, after everything is

ready.

The opposite of onCreate() is onDestroy(). onDestroy() is called when An-

droid is finished with the wallpaper engine. All it needs to do is shut

down the executor we created in onCreate():

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

@Override

public void onDestroy() {

executor.shutdownNow();

super.onDestroy();

};

Note that we call super.onDestroy() at the end of the method, not at the

beginning like we do in most places. That’s just a standard Java idiom

to let the superclass clean up after itself in a mirror image of the way

creation was done. I don’t know if it’s really necessary in this case, but

by following the convention, we don’t even have to think about it.

Managing the Surface

During the engine’s lifetime, Android will create a Surface representing

the background of the Home screen for the engine to draw on. When the

surface is first created, onSurfaceCreated() is called. We use this oppor-

tunity to initialize OpenGL and our GLRenderer class that we copied

from the other project:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

@Override

public void onSurfaceCreated(final SurfaceHolder holder) {

super.onSurfaceCreated(holder);

Runnable surfaceCreatedCommand = new Runnable() {

@Override

public void run() {

// Initialize OpenGL

egl = (EGL10) EGLContext.getEGL();

glDisplay = egl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);

int[] version = new int[2];

egl.eglInitialize(glDisplay, version);

int[] configSpec = { EGL10.EGL_RED_SIZE, 5,

EGL10.EGL_GREEN_SIZE, 6, EGL10.EGL_BLUE_SIZE,

5, EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE };

R t t

LIVE WALLPAPER 251

EGLConfig[] configs = new EGLConfig[1];

int[] numConfig = new int[1];

egl.eglChooseConfig(glDisplay, configSpec, configs,

1, numConfig);

EGLConfig config = configs[0];

glc = egl.eglCreateContext(glDisplay, config,

EGL10.EGL_NO_CONTEXT, null);

glSurface = egl.eglCreateWindowSurface(glDisplay,

config, holder, null);

egl.eglMakeCurrent(glDisplay, glSurface, glSurface,

glc);

gl = (GL10) (glc.getGL());

// Initialize Renderer

glRenderer = new GLRenderer(Wallpaper.this);

glRenderer.onSurfaceCreated(gl, config);

}

};

executor.execute(surfaceCreatedCommand);

}

It would be nice if Android would provide a helper class to hide some

of this OpenGL boilerplate detail from the programmer (something like

GLSurfaceView, but for wallpapers), but until then, just hold your nose

and copy the code.

The onSurfaceDestroyed() method is called when the background surface

is about to go away. This is a good place to terminate all that OpenGL

stuff we initialized earlier:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

@Override

public void onSurfaceDestroyed(final SurfaceHolder holder) {

Runnable surfaceDestroyedCommand = new Runnable() {

public void run() {

// Free OpenGL resources

egl.eglMakeCurrent(glDisplay, EGL10.EGL_NO_SURFACE,

EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT);

egl.eglDestroySurface(glDisplay, glSurface);

egl.eglDestroyContext(glDisplay, glc);

egl.eglTerminate(glDisplay);

};

};

executor.execute(surfaceDestroyedCommand);

super.onSurfaceDestroyed(holder);

}

R t t

LIVE WALLPAPER 252

While the surface is up, Android calls the onSurfaceChanged() method

to tell you its width and height.

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

@Override

public void onSurfaceChanged(final SurfaceHolder holder,

final int format, final int width, final int height) {

super.onSurfaceChanged(holder, format, width, height);

Runnable surfaceChangedCommand = new Runnable() {

public void run() {

glRenderer.onSurfaceChanged(gl, width, height);

};

};

executor.execute(surfaceChangedCommand);

}

So far, the surface has not been visible to the user, so we shouldn’t

draw anything on it yet. That’s about to change.

Making the Wallpaper Visible

After the WallpaperService is initialized, the Engine is initialized, and the

Surface is initialized (whew!), the only thing left to do is to make the

surface visible. When it’s ready to do that, Android calls the onVisibility-

Changed() method with a boolean parameter that says whether it has

become visible or invisible:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

@Override

public void onVisibilityChanged(final boolean visible) {

super.onVisibilityChanged(visible);

if (visible) {

executor.execute(drawCommand);

}

}

If it’s visible, all we need to do is queue up a call to the drawCommand

runnable, which will draw one frame of the animation and, if the sur-

face is still visible, queue itself up again over and over. To save the

battery, it is very important that a wallpaper run only while it is visible.

At this point, you should be able to try the example in the emulator or

on a real device. Right-click the project, and select Run As > Android

Application. As with widgets, the wallpaper will only be installed, not

executed, by running it from Eclipse. To really run it, go to the device

or emulator, and press and hold your finger (or mouse) on the Home

R t t

LIVE WALLPAPER 253

screen. A menu will appear with options listing all the types of things

you can add (see Figure 12.3, on page 238).

Select Wallpapers from the menu, and then Live wallpapers. A list of

all live wallpapers will appear. Pick the one called Hello, Android! and

the wallpaper should start spinning around happily in preview mode (if

it doesn’t, then follow the instructions in Section 3.10, Debugging, on

page 69 to diagnose the problem). Touch the Set wallpaper button to

make this the wallpaper for your Home screen, or press the Back button

to return to the list. For the live wallpaper in action, see Figure 12.6,

on page 243.

Responding to User Input

When you use regular, static wallpaper and you pan the Home screen

left or right with your finger, the wallpaper moves a little as well. How-

ever, if you try that with the live wallpaper example now, nothing hap-

pens.

To get that functionality, we have to implement the onOffsetsChanged()

method:

Download Wallpaper/src/org/example/wallpaper/Wallpaper.java

@Override

public void onOffsetsChanged(final float xOffset,

final float yOffset, final float xOffsetStep,

final float yOffsetStep, final int xPixelOffset,

final int yPixelOffset) {

super.onOffsetsChanged(xOffset, yOffset, xOffsetStep,

yOffsetStep, xPixelOffset, yPixelOffset);

Runnable offsetsChangedCommand = new Runnable() {

public void run() {

if (xOffsetStep != 0f) {

glRenderer.setParallax(xOffset - 0.5f);

}

};

};

executor.execute(offsetsChangedCommand);

}

If xOffsetStep is 0, it means panning is disabled (for example, in preview

mode). For other values, we shift the view based on the xOffset variable.

If the offset is 0, the user has panned all the way to the left, and if it’s

1, they have panned all the way to the right. Care to guess what 0.5

means?

R t t

FAST -FORWARD >> 254

Now I’m about to go back on what I said earlier about not modifying

GLRenderer. Since the OpenGL example did not have any user input, we

have to add an extra field and a setParallax() method that sets it to the

GLRenderer class:

Download Wallpaper/src/org/example/wallpaper/GLRenderer.java

class GLRenderer implements GLSurfaceView.Renderer {

// ...

private float xOffset;

public void setParallax(float xOffset) {

this.xOffset = -xOffset;

}

}

Then in the middle of the GLRenderer.onDrawFrame() method, we have to

change one line to use that new field to translate the model a little to

the left or right:

Download Wallpaper/src/org/example/wallpaper/GLRenderer.java

public void onDrawFrame(GL10 gl) {

// ...

// Position model so we can see it

gl.glMatrixMode(GL10.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glTranslatef(xOffset, 0, -3.0f);

// Other drawing commands go here...

}

We could have moved the eye point instead, but it was easier just to

move the cube. That’s it! Now try the example again, and you can pan

left or right with ease.

There are two other ways to interact with live wallpaper that you can

support if you like: commands and touch events. To support com-

mands, implement the onCommand() method, and to support raw touch

events, implement the onTouchEvent() method. I’ll leave that as an exer-

cise for you.

12.3 Fast-Forward >>

In this chapter, we learned how to jazz up the Android Home screen

with widgets and a live wallpaper. The Android Market is full of exam-

ples of both that people like you have created. I’d love to see yours there,

R t t

FAST -FORWARD >> 255

so read Chapter 14, Publishing to the Android Market, on page 271 for

directions and encouragement.

Note: If your application provides a widget, live wallpaper, or other home

screen enhancement, you should not allow it to be installed from the

SD card. See Section 13.6, Installing on the SD Card, on page 268 for

more information.

When Android first came out, there was only one version and one phone

model to worry about. Now there are several dozen devices of various

shapes and sizes running at least four different versions of Android.

You’re not in Kansas anymore, but the next chapter will help you avoid

the flying monkeys.

R t t

Chapter 13

Write Once, Test Everywhere
Today, Android can be found in a bewildering array of mobile phones,

tablets, and other devices. This is both a blessing and a curse. It’s

a blessing for consumers because they can choose between Android-

powered devices of different shapes, sizes, and prices. But for develop-

ers, it can be a curse to try to support all those variations.

To complicate things, the rapid pace of Android development has left

a fragmented trail of devices running different versions of the platform

in its wake. The following table shows all the versions of Android ever

released:1

Version Code name2 API Released Comments

1.0 BASE 1 Oct. 2008 No longer in use

1.1 BASE_1_1 2 Feb. 2009 No longer in use

1.5 CUPCAKE 3 May 2009 Widgets

1.6 DONUT 4 Sept. 2009 High- and low-density

displays

2.0 ECLAIR 5 Nov. 2009 No longer in use

2.0.1 ECLAIR_0_1 6 Dec. 2009 Multi-touch, no longer in

use

2.1 ECLAIR_MR1 7 Jan. 2010 Live wallpaper

2.2 FROYO 8 May 2010 SD card installs

This chapter will cover how to support multiple Android versions and

screen resolutions in one program. The first step is testing.

1. See http://d.android.com/resources/dashboard/platform-versions.html for an up-to-date chart

showing the percentage of devices running each version of Android.
2. Android version codes and API levels are specified in the Build.VERSION_CODES class.

GENTLEMEN, START YOUR EMULATORS 257

13.1 Gentlemen, Start Your Emulators

For most of this book I’ve been telling you to target your applications

to version 2.2 of the Android platform (also known as FroYo). However,

there’s one little problem with this advice: your programs may not run

on phones that have one of the older versions of Android installed.

The only reliable way of telling whether it will work is to test it. And

short of buying one of every Android phone on the market, the best way

to test your program on different Android versions and screen sizes is

to try it in the emulator.

To do this, you’ll need to set up several virtual devices with different

versions and emulator skins. A skin specifies the width, height, and

pixel density for an emulated device. In addition to the em22 AVD you

created in Section 1.3, Creating an AVD, on page 23, I recommend that

you create the following virtual devices for testing:

Name Target Skin Inspired by Device...

em15 1.5 HVGA (320×480) HTC G1, Eris

em16 1.6 HVGA (320×480) HTC Hero

em16-qvga 1.6 QVGA (200×320) HTC Tattoo

em21-854 2.1 WVGA854 (480×854) Motorola Droid (Sholes)

em22-800 2.2 WVGA800 (480×800) HTC Nexus One

em22-1024 2.2 Custom (1024×600) Notion Ink Adam

You can use the em22 AVD for development and then test your program

in the other AVDs before you release the application. And don’t forget

to try it in both portrait and landscape modes. In the emulator, press

Ctrl+F11 or use the 7 or 9 keys on the keypad (NumLock off) to toggle

between portrait and landscape.

Unless you have a very powerful desktop computer, you probably won’t

be able to run all these AVDs at once. In practice, I find that running

only one at a time works best. Try it now by starting up the em16

(Android 1.6) emulator. Wait until the emulator comes up to the home

screen, and turn off the screen lock if it appears. Now let’s see some of

the things that can go wrong.

13.2 Building for Multiple Versions

First, we’ll try running the “Hello, Android” program from Section 1.2,

Creating Your First Program, on page 23 in the 1.6 emulator. From the

menu, select Run > Run Configurations. Locate the configuration for

R t t

BUILDING FOR MULTIPLE VERSIONS 258

HelloAndroid and select it, or create a new Android Application con-

figuration if it doesn’t exist. Click the Target tab, and set Deployment

Target Selection Mode to Manual. Then click the Run button.

Eclipse will show a dialog asking you to choose a running Android

device. You may notice a red X next to the emulator name—ignore it.

Select the device called em16, and then click OK. The following error

will appear in the Console view:

ERROR: Application requires API version 8. Device API version

is 4 (Android 1.6).

Launch canceled!

Note: If you get a warning that says “Application does not specify an API

level requirement,” then you need to specify a minimum SDK version

(covered in a moment). If you don’t get an error and the application

launches in the em16 emulator, it means you’ve already applied the

change in this section. And finally, if Eclipse launches a new emula-

tor window, then you probably have your target selection mode set to

Automatic. Change it to Manual, and try again.

The error occurs because we specified version 2.2 as the target version

of Android when we created the project. Unless we change something,

it won’t run at all on older versions. On those devices, it won’t even

appear in the Android Market. But I happen to know that this program

will work just fine on any version of Android. So, how do we tell Android

that?

Easy: In the Android manifest, just set your target SDK version to one

number and your minimum SDK version to another number. This lets

you target a new version of Android but have it still work on phones

that have an older version.

To do this, edit the AndroidManifest.xml file, and change the line that says

the following:

<uses-sdk android:minSdkVersion="8" />

to read as follows:

<uses-sdk android:minSdkVersion="3" android:targetSdkVersion="8" />

If you don’t have this line, then add it right before the </manifest> tag.

This tells Android that your program is built for Android 2.2 (API level

8) but will work fine on Android 1.5 (API level 3). Save the file, and try

running the project again. It should work this time without any errors.

If you get a warning about “Manifest min SDK version (3) is lower than

project target API level (8),” just ignore it.

R t t

EVOLVING WITH ANDROID APIS 259

Figure 13.1: The touch example crashes on Android 1.6.

Unfortunately, for some programs, just saying that we support version

3 doesn’t make it so. We’ll see an example of that next.

13.3 Evolving with Android APIs

Sometimes you need to use an API that does not appear in all ver-

sions of Android. For instance, in the touch example (Chapter 11, Multi-

Touch, on page 220), we used some new methods of the MotionEvent

class that were not there before Android 2.0. If you try to run that

example in the em16 emulator, you will get the error in Figure 13.1.

If you then open the LogCat view in Eclipse (Window > Show View >

Other > Android Log) and scroll back a little, you’ll find a more detailed

error message, which will look something like this:

Could not find method android.view.MotionEvent.getPointerCount,

referenced from method org.example.touch.Touch.dumpEvent

VFY: unable to resolve virtual method 11:

Landroid/view/MotionEvent;.getPointerCount ()I

Verifier rejected class Lorg/example/touch/Touch;

Class init failed in newInstance call (Lorg/example/touch/Touch;)

Uncaught handler: thread main exiting due to uncaught exception

java.lang.VerifyError: org.example.touch.Touch

at java.lang.Class.newInstanceImpl(Native Method)

at java.lang.Class.newInstance(Class.java:1472)

...

R t t

EVOLVING WITH ANDROID APIS 260

The important part is the VerifyError exception. At runtime, Android

throws a VerifyError exception whenever it tries to load one class that

uses methods that don’t exist in a second class. In this case, the Touch

class references the getPointerCount() method of the MotionEvent class.

MotionEvent exists in 1.5, but the getPointerCount() method was not in-

troduced until version 2.0. Note that it didn’t complain about the con-

stants we used like ACTION_POINTER_DOWN because they are baked into

our program by the compiler at build time.

It would be nice if we could modify the definition of MotionEvent to add

the missing method, but unlike JavaScript or Ruby, Java doesn’t sup-

port that. We can do something similar, though, using one of three

techniques:

• Subclassing: We could make a new class that extends MotionEvent

and adds the new method. Unfortunately, MotionEvent is final,

which in Java means it can’t be extended, so that won’t work here.

• Reflection: Using utilities from the java.lang.reflect package, we

could write code to test for the existence of the new method. If

it exists, we’d call it, and if doesn’t exist, we’d do something else

like return 1. That would work, but Java reflection is slow to run

and messy to program.

• Delegation and factory: We could create two classes, one that will

be used on older versions of Android and one that will be used on

newer versions. The first one will implement dummy versions of

the new methods, while the second one will delegate all calls to

the real new methods. Then we pick which class to create using a

static factory method (a method the caller uses instead of the new

keyword to create a class). This technique is simple and can be

used to handle most API differences, so we’ll use it here.

One of our goals should be to minimize the changes to the original

Touch class. We start by replacing all references to MotionEvent with a

new class, WrapMotionEvent, like this:

Download Touchv2/src/org/example/touch/Touch.java

@Override

public boolean onTouch(View v, MotionEvent rawEvent) {

WrapMotionEvent event = WrapMotionEvent.wrap(rawEvent);

// ...

}

private void dumpEvent(WrapMotionEvent event) {

// ...

}

R t t

EVOLVING WITH ANDROID APIS 261

private float spacing(WrapMotionEvent event) {

// ...

}

private void midPoint(PointF point, WrapMotionEvent event) {

// ...

}

In the onTouch() method, we take the raw MotionEvent passed in by

Android and convert it to a WrapMotionEvent by calling the static factory

method WrapMotionEvent.wrap(). Other than these changes, the rest of

the Touch class is...untouched.

Now let’s create the WrapMotionEvent class. Delegation is a pretty com-

mon thing to do in Java, so Eclipse provides a command to make it

easy. Click the org.example.touch package in the Package Explorer view,

and then select the File > New > Class command. Enter the new class

name (WrapMotionEvent), and press Return. Now add a field inside the

class for the event we want to wrap. The code should look like this so

far:

Download Touchv2/src/org/example/touch/WrapMotionEvent.java

package org.example.touch;

import android.view.MotionEvent;

public class WrapMotionEvent {

protected MotionEvent event;

}

In the Java editor, click the event variable, and then select the Source

> Generate Delegate Methods command from the menu. Eclipse will

give you a big list of possible methods, but we don’t need the whole

list, so deselect all of them and select only the ones that are actu-

ally used in the program: getAction(), getPointerCount(), getPointerId(int),

getX(), getX(int), getY(), and getY(int). When you are done, the dialog

should look like Figure 13.2, on the next page. Click OK to generate the

code.

Before doing anything else, save the WrapMotionEvent.java file, and make

a copy called EclairMotionEvent.java. We’ll come back to that one in a

moment.

As it currently stands, WrapMotionEvent calls several methods that don’t

exist in older Android versions, so we need to replace those. You can

tell which ones are a problem by hovering your mouse cursor over each

method call.

R t t

EVOLVING WITH ANDROID APIS 262

Figure 13.2: Let Eclipse create the delegate methods for you.

The new methods will say “Since: API Level 5,” and the old methods will

say “Since: API Level 1.” Another way to tell would be to temporarily

change your build target to Android 1.6, rebuild, and see where the

errors are.

Here’s the new code that will work under Android 1.6:

Download Touchv2/src/org/example/touch/WrapMotionEvent.java

package org.example.touch;

import android.view.MotionEvent;

public class WrapMotionEvent {

protected MotionEvent event;

public int getAction() {

return event.getAction();

}

R t t

EVOLVING WITH ANDROID APIS 263

public float getX() {

return event.getX();

}

public float getX(int pointerIndex) {

verifyPointerIndex(pointerIndex);

return getX();

}

public float getY() {

return event.getY();

}

public float getY(int pointerIndex) {

verifyPointerIndex(pointerIndex);

return getY();

}

public int getPointerCount() {

return 1;

}

public int getPointerId(int pointerIndex) {

verifyPointerIndex(pointerIndex);

return 0;

}

private void verifyPointerIndex(int pointerIndex) {

if (pointerIndex > 0) {

throw new IllegalArgumentException(

"Invalid pointer index for Donut/Cupcake");

}

}

}

In this version, getPointerCount() will always return 1, indicating there is

only one finger pressed. That should ensure that getX(int) and getY(int)

will never be called with a pointer index greater than zero, but just in

case I’ve added a verifyPointerIndex() method to check for that error.

Next, we need to add the wrap() method and the constructor for the

WrapMotionEvent class:

Download Touchv2/src/org/example/touch/WrapMotionEvent.java

protected WrapMotionEvent(MotionEvent event) {

this.event = event;

}

R t t

EVOLVING WITH ANDROID APIS 264

static public WrapMotionEvent wrap(MotionEvent event) {

try {

return new EclairMotionEvent(event);

} catch (VerifyError e) {

return new WrapMotionEvent(event);

}

}

The wrap() method is our static factory method. First it tries to create

an instance of the EclairMotionEvent class. That will fail under Android

1.5 and 1.6 because EclairMotionEvent uses the new methods introduced

in Android 2.0 (Eclair). If it can’t create an EclairMotionEvent class, then

it creates an instance of the WrapMotionEvent class instead.3

Now it’s time for us to work on the EclairMotionEvent class that we saved

earlier. We’ll finish it by making it extend WrapMotionEvent and adding

a constructor. We can also take out the getAction() method and the

zero-parameter versions of getX() and getY() because they exist in all

versions of Android and are already implemented in WrapMotionEvent.

Here’s the full definition:

Download Touchv2/src/org/example/touch/EclairMotionEvent.java

package org.example.touch;

import android.view.MotionEvent;

public class EclairMotionEvent extends WrapMotionEvent {

protected EclairMotionEvent(MotionEvent event) {

super(event);

}

public float getX(int pointerIndex) {

return event.getX(pointerIndex);

}

public float getY(int pointerIndex) {

return event.getY(pointerIndex);

}

public int getPointerCount() {

return event.getPointerCount();

}

3. Design pattern purists will probably deride this code, saying I should have created a

separate class to hold the factory method and a common interface for both WrapMotion-

Event and EclairMotionEvent to implement. But this is simpler, and it works, which is more

important in my book.

R t t

BUG ON PARADE 265

public int getPointerId(int pointerIndex) {

return event.getPointerId(pointerIndex);

}

}

If you try to run the program now, it will work in the 1.6 emulator

as well as new versions (2.0 and beyond). On old versions, of course,

you’ll lose some functionality. Multi-touch is not supported on 1.6, so

you won’t be able to use the pinch zoom gesture to shrink or grow the

image. But you will be able to move the image around using the drag

gesture.

In a real program, you might have to implement some alternate way to

resize the picture when pinch zoom is not available. For example, you

could add buttons to zoom in and out.

Just for fun, start up the em15 (1.5 emulator), and run the program

there. It looks OK, but try doing the drag gesture. Nothing happens!

We’ve discovered a bug in Android 1.5.

13.4 Bug on Parade

It turns out that Android 1.5 (Cupcake) has a bug in the ImageView

class. The bug prevents the setImageMatrix() method from working when

the ImageView is in “matrix” mode, which is pretty ironic if you think

about it.

Unfortunately, there is no complete list of bugs, so figuring out this was

a bug in Android (as opposed to a bug in our code or a misunderstand-

ing of how something works) took a bit of sleuthing. In case you find

yourself in a similar situation, here are the steps that I went through:

1. My first suspect was the new code we just added: the WrapMo-

tionEvent and EclairMotionEvent classes. I put in a few logging state-

ments to verify events were being handled correctly and the trans-

formation matrix was created correctly. They turned up no prob-

lems, so I began to suspect something was wrong with the Image-

View class or matrix manipulation.

2. Next, I checked the release notes4 for each version of Android

to see whether there were any breaking changes mentioned that

4. http://d.android.com/sdk/RELEASENOTES.html

R t t

BUG ON PARADE 266

might affect the ImageView class. Breaking changes are updates

that cause code that was working to stop working, or vice versa. I

didn’t find any that seemed related.

3. Then I searched the Android bug database5 for the keywords

ImageView and matrix. Unfortunately, the public bug database is

incomplete because Google keeps its own private list of bugs, so I

didn’t find anything.

4. Next, I searched all the Android Developer Forums6 to see whether

anybody else was having the same problem. The groups all have

search forms of their own, but the quickest and most accurate way

to search the forums is just to use the Google search engine and

search the entire Web. Using the same keywords (ImageView and

matrix), I found a posting from 2009 that looked exactly the same.

Unfortunately, there was no follow-up or workaround posted, but

I knew I was on the right track.

5. Finally, I went to the source.7 With a few exceptions, all the code

for Android is available in a public repository online. I had a clue

about where the source to the ImageView class was located in

the source tree because one of the earlier searches had revealed

the path name. It was in the platform/frameworks/base.git project,

under the core/java/widget directory. I opened the history using

the repository’s web interface.8 And there it was, a change made

on July 30, 2009, with the comment: “Fix a bug in ImageView: The

drawing matrix is not updated when setImageMatrix is called.”

This bug fix was performed in between the Cupcake and Donut

versions of Android, which explained why the problem happened

in 1.5 but not in 1.6.

In almost all cases, you’ll be able to find a solution without resorting

to reading the Android source code. But it’s nice to know it’s there if

you need it. By studying the code and trying a few things, I was able to

create a workaround for the bug.

5. http://b.android.com

6. http://d.android.com/resources/community-groups.html

7. http://source.android.com

8. https://android.git.kernel.org/?p=platform/frameworks/base.git;a=history;f=core/java/android/widget/ImageView.java

R t t

ALL SCREENS GREAT AND SMALL 267

Add these lines to the end of the onCreate() method in the Touch class:

Download Touchv2/src/org/example/touch/Touch.java

@Override

public void onCreate(Bundle savedInstanceState) {

// ...

// Work around a Cupcake bug

matrix.setTranslate(1f, 1f);

view.setImageMatrix(matrix);

}

By running the program in the emulator using various versions of

Android, you can verify that this fixes the problem in Android 1.5 and

doesn’t break anything in later versions. Once your program is working

with different versions of Android, you should try it at different screen

sizes as well.

13.5 All Screens Great and Small

Supporting different screen sizes, resolutions, and pixel densities is

important because you want your application to look its best on as

many Android devices as possible. Unlike the iPhone, which has just

one standard screen (OK, three, if you count the iPad and the iPhone

4), Android-powered devices come in all shapes and sizes.

Android will try to scale your user interface to fit the device, but it

doesn’t always do a great job of it. The only way to tell is through,

you guessed it, testing. Use the emulator skins recommended in Sec-

tion 13.1, Gentlemen, Start Your Emulators, on page 257 to make sure

your program works on the most common sizes. If you need to tweak

the layouts or images for particular configurations, you can use suffixes

in the resource directory names.

For example, you can put images for high-density displays in the res/

drawable-hdpi directory, medium density in res/drawable-mdpi, and low

density in res/drawable-ldpi. All the examples do that for their program

icons, which will be shown on the home screen. Graphics that are

density-independent (that should not be scaled) go in the res/drawable-

nodpi directory.

R t t

INSTALLING ON THE SD CARD 268

The following is a list of the valid directory name qualifiers, in order of

precedence:9

Qualifier Values

MCC and MNC Mobile country code and optional mobile net-

work code. I don’t recommend using this.

Language and region Two-letter language and optional two-letter

region code (preceded by lowercase r). For

example: fr, en-rUS, fr-rFR, es-rES.

Screen dimensions small, normal, large.

Wider/taller screens long, notlong.

Screen orientation port, land, square.

Screen pixel density ldpi, mdpi, hdpi, nodpi.

Touchscreen type notouch, stylus, finger.

Keyboard available? keysexposed, keyshidden, keyssoft.

Keyboard type nokeys, qwerty, 12key.

Navigation available? navexposed, navhidden.

Navigation type nonav, dpad, trackball, wheel.

Screen dimensions 320x240, 640x480, and so on (not recommended

by Google but people use it anyway).

SDK version API level supported by the device (preceded by

lowercase “v”). For example: v3, v8.

To use more than one qualifier, just string them together with a hyphen

(-) in between. For example, the res/drawable-fr-land-ldpi directory could

contain pictures for low-density displays in landscape mode in French.

Note: In versions prior to 2.1, Android had bugs in how it matched

these qualifiers. For advice on dealing with quirks like this, see Justin

Mattson’s Google I/O presentation.10

13.6 Installing on the SD Card

Starting in Android 2.2, you can specify that your application may be

installed on the SD card instead of on the phone’s limited internal

memory.

9. See http://d.android.com/guide/topics/resources/resources-i18n.html#best-match for a full

explanation of how Android finds the best matching directory.
10. http://code.google.com/events/io/2010/sessions/casting-wide-net-android-devices.html

R t t

INSTALLING ON THE SD CARD 269

To do that, add the android:installLocation= attribute to the <manifest>

tag in your AndroidManifest.xml file like this:

<manifest ... android:installLocation="auto">

Valid values are auto and preferExternal. I recommend you use auto,

which lets the system decide where it should go. Specifying preferEx-

ternal requests that your app be installed on the SD card but doesn’t

guarantee it. Either way, the user can move your application between

internal and external storage with the Settings application.

The attribute will be quietly ignored on older versions of Android. If you

leave it off entirely, Android will always put your program in internal

storage.

So, why aren’t SD card installs the default? It turns out that there are

many situations where external installation is not a good idea. When

you plug your phone’s USB cable into your computer to charge it or

share files, any running application installed on external storage will

be killed. This is especially problematic for home screen widgets, which

will simply vanish and never reappear.

Therefore, Google recommends11 that you do not allow external instal-

lation of applications that use any of the following features:

• Account managers

• Alarms

• Device administrators

• Input method engines

• Live folders

• Live wallpapers

• Services

• Sync adapters

• Widgets

As Android 2.2 adoption grows, users will expect everything to be instal-

lable on the SD card. If you choose not to allow it, be prepared to explain

why to your users.

11. http://d.android.com/guide/appendix/install-location.html

R t t

FAST -FORWARD >> 270

13.7 Fast-Forward >>

Supporting multiple versions of Android running on multiple hardware

devices with multiple screen sizes is not easy. In this chapter, we’ve

covered the most common issues and solutions to get you started. If

you find yourself wanting more, I recommend reading the excellent

best-practices document called “Supporting Multiple Screens” at the

Android website.12

You’ve worked hard to get your application to this point. Now comes the

fun part: letting other people use it. The next chapter will cover how to

publish your app to the Android Market.

12. http://d.android.com/guide/practices/screens_support.html

R t t

Chapter 14

Publishing to the Android Market
Up to now you’ve just been creating software to run in the emulator or

to download to your personal Android phone. Are you ready to take the

next step? By publishing to the Android Market,1 you can make your

application available to millions of other Android users. This chapter

will show you how.

14.1 Preparing

The first step of publishing an application to the Market is, well, to

write the application. See the rest of the book for directions on how to

do that. But simply writing code is not enough. Your program needs to

be of a high quality, free of bugs (yeah right), and compatible with as

many devices as possible. Here are a few tips to help you:

• Test it on at least one real device before letting anyone else see it.

If you forget all the other tips, remember this one.

• Keep your program simple, and polish the heck out of it. Make

your program do one thing well, rather than a lot of things poorly.

• Pick a good Java package name, such as com.yourcompany.prog-

name, that you can live with for a long time. Android uses the

package name defined in AndroidManifest.xml as the primary iden-

tifier for your application. No two programs can have the same

package name, and once you upload a program to the Market with

that name, you cannot change it without completely removing it,

requiring all users to uninstall, and publishing a new program.

1. http://market.android.com

SIGNING 272

• Pick a meaningful value for android:versionCode= and android:

versionName= in your AndroidManifest.xml file.2 Consider future up-

dates, and leave room for them in your naming scheme.

• Follow the Android best practices,3 such as designing for perfor-

mance, responsiveness, and seamlessness.

• Follow the user interface guidelines,4 such as icon design, menu

design, and proper use of the Back button.

Compatibility with multiple devices is one of the toughest challenges

facing the Android programmer. One issue you’ll have to deal with

is users having different versions of the platform installed on their

phones. See Chapter 13, Write Once, Test Everywhere, on page 256

for advice.

Although first impressions and compatibility are important, you’ll need

to strike a balance between tweaking and polishing your application to

make it perfect vs. releasing it in a timely fashion. Once you think it’s

ready, the next step is to sign it.

14.2 Signing

Android requires that all applications be packaged up into an .apk and

signed with a digital certificate before it will consider running them.

This is true for the emulator and for your personal testing devices, but

it’s especially true for programs that you want to publish on the Market.

“But wait,” you say, “I haven’t been packaging or signing anything up

to now.” Actually, you have. The Android SDK tools have been secretly

building and signing everything using a certificate that Google created

using a known alias and password. Because the password was known,

you were never prompted for it and probably never even knew it existed.

However, the debug certificate cannot be used for applications in the

Market, so now it’s time to take off the training wheels and make your

own certificate.

There are two ways to do it: by hand with the standard Java keytool

and jarsigner commands5 or automatically with Eclipse. I’m just going

to cover the Eclipse way.

2. http://d.android.com/guide/publishing/versioning.html

3. http://d.android.com/guide/practices/design

4. http://d.android.com/guide/practices/ui_guidelines

5. http://d.android.com/guide/publishing/app-signing.html

R t t

PUBLISHING 273

Right-click the project in the Package Explorer, and select Android

Tools > Export Signed Application Package. The wizard will guide you

through the process of signing your application, including creating a

new keystore and private key if you don’t already have them. You should

use the same key for all versions of all your applications and take the

appropriate precautions for preventing your private key from falling into

the wrong hands.

Note: If you use the Google Maps API (see Section 8.3, Embedding a

MapView, on page 172), then you’ll need to get a new Maps API key from

Google because it is tied to your digital certificate. Export the program

once, obtain a new Maps API key using the online instructions,6 change

your XML layout file to use the new key, and then export the program

again.

When you’re done, you’ll have an .apk file that is ready for publishing.

14.3 Publishing

The Android Market is a Google-hosted service you can use for posting

all your programs. To get started with publishing, you first need to sign

up as a registered developer on the publisher’s website (also known as

the Developer Console).7 There is a small registration fee.

As an additional step, if you want to charge for your program, you’ll

need to sign up with a payment processor. The publisher’s website will

instruct you on how to do that. As of this writing, only Google Checkout

is supported, but in the future, other processors such as PayPal may

be supported.

Now you’re ready to upload. Click the Upload Application link, and fill

out the form. Here are three tips:

• Turn Copy Protection off. Android’s copy protection is completely

insecure and performs no useful function other than to irritate

your users.

• Unless you have a reason not to, set the Locations option to All

Current and Future Countries. New countries are being added all

the time, and this way your application will be available to all of

them.

6. http://code.google.com/android/add-ons/google-apis/mapkey.html

7. http://market.android.com/publish

R t t

PUBLISHING 274

• Do not supply your phone number in the application Contact In-

formation. All Market users will be able to see this number, and

they will call it when they have problems. Of course, if you have

a dedicated number and staff for phone support, then this tip

doesn’t apply.

Just to give you an example, here’s how I filled out the form for an appli-

cation I published called Re-Translate Pro (an updated version of the

translate example from Section 7.4, Using Web Services, on page 147):

Application .apk file: (select Browse and Upload)

Language: English (en_US)

Title (en_US): Re-Translate Pro

Description (en_US):

Re-Translate translates a phrase from one language to another and

then back again so you can make sure you're saying what you meant.

Try the Lite version to see if you like it first.

Features:

- Translates instantly as you type

- Long press for copy/paste

- Directly send SMS/Email

Application Type: Applications

Category: Tools

Price: USD $1.99

Copy Protection Off

Locations All Current and Future Countries with Payment

Website: http://www.zdnet.com/blog/burnette

Email: ed.burnette@gmail.com

Phone: (blank)

When you click the Publish button, your application will appear imme-

diately on the Android Market on all applicable devices. That’s right,

there is no approval process, no waiting period (other than a few sec-

onds to update the download servers), and no limits to what you can

do in your programs. Well, almost. You still have to follow the Android

Content Guidelines.8 Failure to adhere to the guidelines could result

in your application being removed from the Android Market. Among

other things, the guidelines say that your content must not be ille-

gal, be obscene, promote hate or violence, or be unsuitable for anyone

younger than 18 years of age. In addition, it must not knowingly violate

8. http://www.android.com/market/terms/developer-content-policy.html

R t t

UPDATING 275

an authorized carrier’s terms of service. There have been rare cases of

programs being pulled because of user or carrier complaints, but as

long as you use common sense, you shouldn’t have anything to worry

about.

The next section covers updates to already published applications.

14.4 Updating

Let’s say your app has been in the Market for a little while and you

want to make a change. The simplest kind of change is to the program’s

metadata, that is, the title, description, price, and all the other infor-

mation you filled out in the previous section. To change this noncode

information, simply select your program from the list on the Developer’s

Console, make the change, and then click Save.

Do you have a new version of your code? No problem, you can upload

it from this page too. Before you do that, however, take a moment to

verify that you have changed the two version numbers in your Android-

Manifest.xml file. Increment android:versionCode= by one every time you

upload (for example, from 1 to 2), and bump the human-readable ver-

sion number in android:versionName= by the appropriate amount (for

example, from 1.0.0 to 1.0.1 for a minor bug fix). Once the version num-

ber is correct and the package has been rebuilt and re-signed, select

Upload Upgrade; then click Browse, find your new .apk file, and click

Upload to send it to the server.

Here’s a tip: the value of android:versionName= can be anything. To save

space in the limited application description field, some developers in-

clude the change description in the version name instead, as in android:

versionName="1.0.1 (Fixed crash, improved performance)".

Regardless of the change, you must click the Publish button for your

changes to be visible to Android Market users. If you click Save instead,

changes will be kept in draft form until you finally commit and click

Publish.

If possible, I suggest you perform frequent updates, every two weeks or

so. This performs two functions:

• It makes users happy, because they think you are supporting

them and listening to their suggestions.

R t t

CLOSING THOUGHTS 276

• It keeps your app near the top of the Recently Updated list in the

Market. That’s one way for new users to discover your program

and give it the chance it deserves.

14.5 Closing Thoughts

Here are a few final tips about the Market that I learned the hard way

by publishing my own programs there:

• You can make a paid app free, but you can’t made a free app paid.

If there’s any chance you might want to have a free (light) version

and a paid (pro) version of your program, then create them both up

front. Never take anything away that you put in the free version,

or you risk a firestorm of protests.

• In the current version of the Market, you won’t be able to buy your

own paid application. I hope that will be fixed in a future version.

• Read all the comments left by users, but don’t hesitate to report

especially rude or vulgar ones as spam. Keep your comment area

clean for useful feedback, both positive and negative.

• Don’t get discouraged. People can be cruel, especially when post-

ing anonymous comments. A thick skin and a sense of humor are

invaluable tools of the trade.

R t t

Part V

Appendixes

Appendix A

Java vs. the Android
Language and APIs

For the most part, Android programs are written in the Java language,

and they use the Java 5 Standard Edition (SE) library APIs. I say “for the

most part” because there are a few differences. This appendix highlights

the differences between regular Java and what you’ll find in Android. If

you’re already proficient in Java development on other platforms, you

should take a close look to see what things you need to “unlearn.”

A.1 Language Subset

Android uses a standard Java compiler to compile your source code

into regular bytecodes and then translates those bytecodes into Dalvik

instructions. Therefore, the entire Java language is supported, not just

a subset. Compare this to the Google Web Toolkit (GWT), which has

its own Java to JavaScript translator. By using the stock compiler and

bytecodes, you don’t even need to have the source code for libraries

that you want to use in your applications.

Language Level

Android supports code compatible with Java Standard Edition 5 or ear-

lier. Java 6 and 7 class formats and features are not yet supported but

could be added in future releases.

LANGUAGE SUBSET 279

Intrinsic Types

All Java intrinsic types including byte, char, short, int, long, float, dou-

ble, Object, String, and arrays are supported. However, on some low-

end hardware, floating point is emulated. That means it’s performed

in software instead of hardware, making it much slower than integer

arithmetic. Although occasional use is fine, avoid using float or double

in performance-critical code unless your algorithm really requires float-

ing point or you’re sure your application will be running on a high-end

device.

Multithreading and Synchronization

Multiple threads are supported by time slicing: giving each thread a

few milliseconds to run and then performing a context switch to let

another thread have a turn. Although Android will support any num-

ber of threads, in general you should use only one or two. One thread

is dedicated for the main user interface (if you have one), and another

thread is used for long-running operations such as calculations or net-

work I/O.

The Dalvik VM implements the synchronized keyword and synchroni-

zation-related library methods such as Object.wait(), Object.notify(), and

Object.notifyAll(). It also supports the java.util.concurrent package for more

sophisticated algorithms. Use them as you would in any Java program

to keep multiple threads from interfering with each other.

Reflection

Although the Android platform supports Java reflection, as a general

rule you should not use it. The reason is simple performance: reflection

is slow. Consider alternatives such as compile-time tools and prepro-

cessors instead.

Finalization

The Dalvik VM supports object finalization during garbage collection

just like regular Java VMs. However, most Java experts advise you not

to rely on finalizers because you cannot predict when (or if) they will

run. Instead of finalizers, use explicit close() or terminate()

methods. Android is targeted toward resource-constrained hardware,

so it’s important that you release all resources as soon as you no longer

need them.

R t t

STANDARD LIBRARY SUBSET 280

A.2 Standard Library Subset

Android supports a relatively large subset of the Java Standard Edition

5.0 library. Some things were left out because they simply didn’t make

sense (such as printing), and others were omitted because better APIs

are available that are specific to Android (such as user interfaces).

Supported

The following standard packages are supported in Android. Consult the

Java 2 Platform Standard Edition 5.0 API documentation1 for informa-

tion on how to use them:

• java.awt.font: A few constants for Unicode and fonts

• java.beans: A few classes and interfaces for JavaBeans property

changes

• java.io: File and stream I/O

• java.lang (except java.lang.management): Language and exception

support

• java.math: Big numbers, rounding, precision

• java.net: Network I/O, URLs, sockets

• java.nio: File and channel I/O

• java.security: Authorization, certificates, public keys

• java.sql: Database interfaces

• java.text: Formatting, natural language, collation

• java.util (including java.util.concurrent): Lists, maps, sets, arrays,

collections

• javax.crypto: Ciphers, public keys

• javax.microedition.khronos: OpenGL graphics (from Java Micro Edition)

• javax.net: Socket factories, SSL

• javax.security (except javax.security.auth.kerberos, javax.security.auth.spi,

and javax.security.sasl)

• javax.sql (except javax.sql.rowset): More database interfaces

• javax.xml.parsers: XML parsing

• org.w3c.dom (but not subpackages): DOM nodes and elements

• org.xml.sax: Simple API for XML

Note that although the regular Java SQL database APIs (JDBC) are

included, you don’t use them to access local SQLite databases. Use the

1. http://java.sun.com/j2se/1.5.0/docs/api

R t t

THIRD-PARTY LIBRARIES 281

android.database APIs instead (see Chapter 9, Putting SQL to Work, on

page 178).

Not Supported

These packages, normally part of the Java 2 Platform Standard Edition,

are not supported by Android:

• java.applet

• java.awt

• java.lang.management

• java.rmi

• javax.accessibility

• javax.activity

• javax.imageio

• javax.management

• javax.naming

• javax.print

• javax.rmi

• javax.security.auth.kerberos

• javax.security.auth.spi

• javax.security.sasl

• javax.sound

• javax.swing

• javax.transaction

• javax.xml (except javax.xml.parsers)

• org.ietf.*

• org.omg.*

• org.w3c.dom.* (subpackages)

A.3 Third-Party Libraries

In addition to the standard libraries listed earlier, the Android SDK

comes with a number of third-party libraries for your convenience:

• org.apache.http: HTTP authentication, cookies, methods, and

protocol

• org.json: JavaScript Object Notation

• org.xml.sax: XML parsing

• org.xmlpull.v1: XML parsing

R t t

Appendix B

Bibliography

[Bur05] Ed Burnette. Eclipse IDE Pocket Guide. O’Reilly & Asso-

ciates, Inc, Sebastopol, CA, 2005.

[Gen06] Jonathan Gennick. SQL Pocket Guide. O’Reilly Media, Inc.,

Sebastopol, CA, second edition, 2006.

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley,

Reading, MA, 2006.

[Owe06] Mike Owens. The Definitive Guide to SQLite. Apress, Berke-

ley, CA, 2006.

Index
A
About box, 57–62

Accelerometer readings, 170

ACCESS_COARSE_LOCATION permission,

41, 162

ACCESS_FINE_LOCATION permission, 41,

162

ACTION_DOWN event, 227

ACTION_MOVE event, 227

ACTION_POINTER_DOWN event, 227

ACTION_POINTER_UP event, 227

ACTION_UP event, 228

ACTION_VIEW action, 135

Activity, 35, 37, 39

declaring, 60

defining, new, 58

Activity class, 35, 126

Activity Manager, 33

Adapter class, 153

addEvent() method, 186, 194

addJavaScriptInterface() method,

139–147

addPreferencesFromResource() method, 66

ADT (Android Development Toolkit), 20

AlarmManager class, 241

alert() method, 143, 145

AlertDialog class, 57

Alpha values, 74

ALTER TABLE statements, 183

Ambient lighting, 209

Android

activity in, 36, 37

architecture of, 30–35

audio formats supported by, 111

benefits of, 130

content providers, 193

installation, 20, 21

Java library support, 280

language, vs. Java, 278

libraries, 31–32

objects, 39–40

OpenGL and, 199

project, basic, 24

resources, 40

screen rotations, 116

sensors, support for, 169

third-party libraries for, 281

threads in, 279

user ID, 127

video formats supported by, 112

windows in, 35–38

Android 1.5 (Cupcake), 13, 26, 32, 110,

112, 169, 175, 202, 233

Android 1.6 (Donut), 13, 128

Android 2.0 (Eclair), 13

Android 2.0.1 (Eclair), 13

Android 2.1 (Eclair MR1), 13, 243

Android 2.2 (FroYo), 13, 25, 26, 69,

128, 206, 221, 257, 268, 269

Android APIs, 259–265

Android AVD Error, 177

android:background attribute, 77

android:configChanges property, 116

Android Developer Forums, 266

Android Development Toolkit (ADT), 20

Android Eclipse plug-in, 103

android.graphics package, 73

android:imeOptions option, 132

android:inputType option, 132

android:installLocation attribute, 269

android:height parameter, 50

android:layout_width parameter, 50

Android Location API, 161–168

sensors and, 168–172

Android Market, publishing to, 35,

271–276

updating published applications,

275

ANDROID.MEDIA PACKAGE DATA STORAGE

android.media package, 105

Android runtime, 32

Android SDK

Setup programs, 19

Starter Package, 18

Android versions

building for multiple, 257–259

list of, 256

Android Virtual Device (AVD), 23, 177

creating, 27

undefined, 25

AndroidManifest.xml file

defining widgets, 234

AndroidManifest.xml file, 41, 60, 61, 66,

71, 80, 114, 138, 149, 162, 174,

195, 225, 234, 244, 269

multiversion support, 258

Animation, OpenGL, 212–213

APIs, 259–265

.apk files, 139, 272

Application Framework, 33

Application stack, 35

Applications, 34

Applications and Widgets layer, 34

APPWIDGET_UPDATE message, 239

AppWidgetProvider class, 238–239

Architecture, 30–35

Application Framework, 33

Applications and Widgets layer, 34

Linux kernel, 30

native libraries, 31

ARGB for colors, 73

arrays.xml file, 67, 150

assets directory, 142, 146

Audio, 105–110

Audio formats, supported, 111

AUTOINCREMENT keyword, 180

AVD (Android Virtual Device), 23, 177

creating, 27

undefined, 25

B
Background gradient, 78

Background images, stretchable, 236

Background music, 115–119

Background services, 117

BaseColumns interface, 182

BIND_WALLPAPER permission, 244

Bitmap drawables, 76

Bitmaps, 54

Blending mode, 217

Bornstein, Dan, 33

BrowserIntent class, 131–135

BrowserView class, 131, 137

Bundle class, 124

Button class, 132

C
calculateUsedTiles() method, 80, 99

Callable class, 147

callAndroid() method, 143, 145

callJS() method, 143, 146

Camera class, 177

Canvas class, 75

Carmack, John, 200

Chrome, 145

Circular paths, 75

.class files, 33

ClassNotFoundException class, 174

Color class, 73

Colors, 73

colors.xml file, 52, 74, 83

concurrent package package, 147

Connection error, 22

Constants interface, 182, 184

Content providers, 34, 40, 193

ContentProvider class, 180, 192–196

ContentValues class, 186

Context class, 126

Context menus, 64

create() method, 109, 118

CREATE TABLE statements, 181, 183

createSnapshot() method, 139

Criteria class, 165

Cube model, 206–210, 213, 216

Cupcake (Android 1.5), 13, 26, 32, 110,

112, 169, 175, 202, 233

Cursor class, 187

D
d() method (Log class), 69

Dalvik virtual machine (VM), 32

Data binding, 192f, 189–192

Data definition language (DDL)

statements, 180

Data storage, 120–128

current screen position, 124–126

in /data directory, 113, 127

internal files, accessing, 126

options, adding, 120–122

pausing game, 122–124

secure digital (SD), 127–128

284

DDL STATEMENTS GENNICK

SQLite, 178–196

about, 178–179, 180f

basic application, 185f, 181–189

ContentProvider, 192–196

data binding, 192f, 189–192

overview of, 179–181

DDL statements, 180

Debugging, 69–71

Declarative design, 44

The Definitive Guide to SQLite (Owens),

196

Delayed requests, 153

Delegation, 260

delegation, 261

deleteFile() method, 126

Density-independent pixels, 54

Depth testing, 217

Developer Forums, 266

Device-specific interfaces, 267

.dex files, 33

Difficulty selection, 68

Diffuse lighting, 209

Digital signatures, 127, 272

Dips (density-independent pixels), 54

Directional lighting, 209

Directory name qualifiers, 268

Donut (Android 1.6), 13, 128

dp (density-independent pixels), 54

Drag gesture, 220, 229, 230

Drawable class, 76, 77

Drawables, 76, 77

Drawing functions, 89

dumpProviders() method, 165

E
e() method (Log class), 69

Eclair (Android 2.0), 13

Eclair (Android 2.0.1), 13

Eclair MR1 (Android 2.1), 13, 243

Eclipse, 18, 20, 29, 40, 45, 71, 168

management of R class, 47

version of, 25

Eclipse IDE Pocket Guide (Burnette), 29

EditText class, 132

Emulator, 23, 257

GPS and, 168

landscape mode, 55

MapView class and, 177

secure digital cards, 127

sensors and, 170

sound formats and, 111

speed and, 28, 218

Emulator skins, 257

enableCompass() method, 176

enableMyLocation() method, 176

Errors

activities, declaring, 60

connection, 22

MediaPlayer and, 110

release() method, 119

Events, touch, 225–228

Events class, 185, 194

EventsData class, 182, 196

EventsProvider class, 195

executor objects, 249

ExecutorService class, 147, 155, 160

Exit button, 71

extraData area, 79

F
Field of view, 198

FileInputStream class, 126

fileList() method, 126

FileOutputStream class, 126

Fill rate, limits on, 217

final keyword, 247

Finalization, 279

findViewById() method, 59, 134, 175

findViews() method, 96, 152

finish() method, 71

Fixed-point interface, 209

Flash memory card, 127–128, 268

float type, 231

Floating-point interface, 209

FontMetrics class, 87

Formats, audio, 111

Formats, video, 112

FPS (frames per second), 217

Frame rates, 217

FrameLayout class, 49

FROM parameter, SELECT statement, 187

fromPuzzleString() method, 102

FroYo (Android 2.2), 13, 25, 26, 69,

128, 206, 221, 257, 268, 269

Future class, 147, 156

G
Game class, defining, 79

Game logic, 99

Games, sensors for, 169

Garns, Howard, 44, 79

Gennick, Jonathan, 196

285

GESTURE EVENTS HINTS

Gesture events, 225–228

Gestures, multi-touch, 220

GestureWorks site, 232

getBestProviders() method, 165

getColor() method, 74

getColumnIndexOrThrow() method, 188

getContentResolver() method, 194

getEvents() method, 186, 187, 194

getExternalFilesDir() method, 128

getHeight() method, 81

getHints() method, 122

getIntExtra() method, 124

getLang() method, 157

getLastNonConfigurationInstance() method,

116

getLong() method, 188

getMenuInflater() method, 65

getPointerCount() method, 228, 260

getPointerId() method, 228

getPuzzle() method, 101, 123, 124

getReadableDatabase() method, 187

getRect() method, 89

getResources() method, 74

getSettings() method, 139

getString() method, 188

getSystemService() method, 164, 169

getTile() method, 102

getTileString() method, 86, 102

getUsedTiles() method, 99

getWidth() method, 81

getWritableDatabase() method, 186, 194

GL_BLEND option, 204

GL_CULL_FACE option, 204

GL_DEPTH_TEST option, 204

GL_DITHER option, 204

GL_LIGHT option, 204

GL_LIGHTING option, 204

GL_LINE_SMOOTH option, 204

GL_MULTISAMPLE option, 204

GL_POINT_SMOOTH option, 204

GL_TEXTURE_2D option, 204

glColor4f() method, 209

glColor4x() method, 209

glDisable() method, 204

glEnable() method, 204

Global Positioning System (GPS),

161–168

GLRenderer class, 203, 208

GLSurfaceView class, 202, 205

gluPerspective() method, 204

GLView class, 201

Goetz, Brian, 160

Google Maps, 172–177, 273

Google Translation API, 147

Google Web Toolkit (GWT), 278

Gradient background, 78

Gradient drawables, 77

Graphics, 73–104, 198–217

animation, 212–213

canvases, 75

color, 73

cube model, 206–210

drawable graphics, 76, 77

gradient background, 78

Hello, Android and, 200–202

input, 87–93

library, 87

lighting, 209–212

NinePatch, 77, 236–238

OpenGL and, 199–200

painting, 74

path, circular, 76

paths, 75

smoothness of, measuring, 217

Sudoku example, 78–87

texture, 212–216

threads, 202–206

three-dimensional, 198–199

transparency, 216

GraphicsView class, 75

Grid lines, Sudoku, 85

GROUP_BY clause, 187

guiSetText() method, 157

H
H.263 format, 112n

Handler class, 144, 154

HAVING clause, 187

Hello, Android

audio and, 106

browser view and, 136

browsing by intent, 131

Emulator, running in, 26

first project, 23, 24

JavaScript and, 141

location test, 162

MapView class, 172

Multi-touch and, 222

OpenGL and, 200–202

SQLite and, 181

translation program, 148

Hints, 91, 122

286

HIPP LOCATION MANAGER

Hipp, Richard, 178

Home application, 35, 36

Home screen, customizing, 233–254

live wallpaper, 242–254

widgets, 233–242

HTML views, 63

HttpURLConnection package, 147, 160

I
i() method (Log class), 69

IBinder interface, 192

Image transformation (multi-touch),

228–229

ImageView class

matrix transformation, 228

setImageMatrix() bug, 265–267

in. (inches) as resolution units, 54

index.html file, 142, 146

initMapView() method, 175

initMyLocation() method, 175

initThreading() method, 154

Inner class, 60

Input, 87–93

INSERT statements (SQL), 186

insertOrThrow() method, 186, 194

Install directory, 19

Installation

Android, 19–21

Eclipse, 18

Eclipse plug-in, 20

Java 5.0+, 17

Web Standard Tools, 21

Intent class, 60, 135

intent-filter tag, 244

Intents, 39, 60

Inter-Process Communication (IPC),

192

Internal files, accessing, 126

Internet

browsing by intent, 131–135

JavaScript and, 140–147

web services and, 147–160

web view, 135–139

INTERNET permission, 41, 138, 149

invalidate() method, 89

isValid() method, 98

J
.jar files, 33

jarsigner utility, 272

Java, 17

constants (as interface), 184

Dalvik and, 33

intrinsic language types, 279

JavaScript and, 140

language subset and, 278

libraries, support for, 280

naming packages, 271

reflection, support for, 279

time slicing, multiple threads, 279

web services, 147–160

java.io package, 126

java.net.HttpURLConnection package, 147

java.util.concurrent package package, 147

Java Concurrency in Practice (Goetz),

160

JavaScript, 140–147

K
keyboardHidden value,

android:configChanges, 116

Keypad class, 93

Keypads, 93, 96

keytool utility, 272

L
Landscape mode, 55

Layer containers, 77

Layout, widget, 236

Lea, Doug, 147

Level containers, 77

Libraries, 31–32

Lighting, OpenGL, 209–212

LinearLayout class, 49, 137, 150

Linux kernel, 30

ListActivity class, 189

ListView class, 189

live wallpaper, 242–254

loadData() method, 139

loadDataWithBaseURL() method, 139

loadTexture() method, 215

loadUrl() method, 138–140, 146

Local data storage, 120–128

current screen position, 124–126

internal files, accessing, 126

options, adding, 120–122

pausing game, 122–124

secure digital (SD), 127–128

LocalBrowser class, 131, 143, 146

Locale, 161–168

sensors, 168–172

Location manager, 34

287

LOCATION UPDATES ONRESUME() METHOD

Location updates, 166

LocationListener class, 164, 165

LocationManager class, 164, 165

LocationManager class, 163

LocationTest class, 164

Log class, 69

Log messages, 69

LogCat view, 70

M
main.xml file, 46, 48, 50, 52, 56, 59,

113, 132, 136, 142, 149, 163,

172, 184, 188, 191, 202, 224,

228, 236, 245

managedQuery() method, 195

MapActivity class, 175

MapController class, 175

MapView class, 172–177

embedding, 172

Hello, Android, 172

location of, 176

Market, publishing to, 35, 271–276

updating published applications,

275

Matrix transformation, 228

Media codes, 32

MediaPlayer, 110

MediaPlayer class, 105, 107, 118

MediaRecorder class, 119, 177

Menu button, 64

MenuInflator class, 65

Menus, adding, 64–65

meta-data tag, 234, 244

Midpoint between touches

(multi-touch), 231

mm. (millimeters) as resolution units,

54

Modification statements, 181

MotionEvent class, 259

moveToNext() method, 188

Movies, 112–115

MP3 audio format, 111

Multi-touch features, 220–232

about touch events, 225–228

image transformation, 228–229

implementing drag gesture, 229, 230

implementing pinch zoom, 230–232

Multimedia, 105–119

audio, 105–110

background music, Sudoku,

115–119

video, 112–115

Multithreading, 279

Music class, 118

MyLocationOverlay class, 176

MyMap class, 174, 177

N
Naming Java packagers, 271

Native Development Toolkit (NDK), 32

Native libraries, 31–32

NDK (Native Development Toolkit), 32

New game button, 67–69

Nikoli, 79

NinePatch, 77, 236–238

Notification manager, 34

O
Object finalization, 279

Objects, 39–40

OGG audio format, 111

onClick() method, 60, 68

onCommand() method, 254

onConfigurationChanged() method, 116

onCreate() method, 36, 46, 77, 80, 124,

128, 164

onCreate() method (Service), 245, 249

onCreateEngine() method, 246

onCreateOptionsMenu() method, 65, 120

onDestroy() method, 38, 116

onDestroy() method (Service), 245, 250

onDraw() method, 75, 81, 87, 122, 202

calling drawing functions, 89

re-creating screen from scratch, 83

speeding up, 103

onDrawFrame() method, 205, 212

frame rate and, 217

onJsAlert() method, 145

onKeyDown() method, 88, 89, 107

onLocationChanged() method, 166

onOffsetsChanged() method, 253

onOptionsItemSelected() method, 65

onPause() method, 37, 117, 165, 169,

202

onProviderDisabled() method, 166

onProviderEnabled() method, 166

onRestart() method, 38

onRestoreInstanceState() method, 38, 125,

126

onResume() method, 37, 115, 117, 165,

169, 202

288

ONRETAINNONCONFIGURATIONINSTANCE() METHOD PUBLISHING TO ANDROID MARKET

onRetainNonConfigurationInstance()

method, 116

onSaveInstanceState() method, 37, 38,

125, 126

onSensorChanged() method, 169

onSizeChanged() method, 81, 82

onStart() method, 37

onStartCommand() method (Service), 245

onStatusChanged() method, 166

onStop() method, 37

onSurfaceCreated() method, 203, 204,

210, 212

onTouchEvent() method, 90, 254

onTrackballEvent() method, 89

onUpdate() method, 241

onUpgrade() method, 183

onVisibilityChanged() method, 252

openBrowser() method, 134, 137

openFileInput() method, 126

openFileOutput() method, 126

OpenGL, 198–217

animation, 212–213

cube model, 206–210

fixed- vs. floating-point interface,

209

Hello, Android, 200–202

lighting, 209–212

for live wallpapers, 248

options, disabling/enabling, 204

overview of, 199–200

texture, 212–216

threads in, 202–206

three-dimensional graphics and,

198–199

transparency, 216

versions, 206

OpenGL.java file, 201

OpenGL options

GL_BLEND, 204

GL_CULL_FACE, 204

GL_DEPTH_TEST, 204

GL_DITHER, 204

GL_LIGHT, 204

GL_LIGHTING, 204

GL_LINE_SMOOTH, 204

GL_MULTISAMPLE, 204

GL_POINT_SMOOTH, 204

GL_TEXTURE_2D, 204

OpenIntents, 171

opennewGameDialog() method, 68

ORDER_BY parameter, SELECT statement,

187

orientation value, android:configChanges,

116

Owens, Mike, 196

P
Package names, 46, 271

Paint class, 74

Path class, 75

PathEffect classes, 76

Pausing multimedia play, 117

Performance, 28, 63, 103, 188, 189,

198, 201, 204, 209, 213, 217,

218, 231, 260, 279

Permissions, 41, 139, 162

ACCESS_COARSE_LOCATION

permission, 41, 162

ACCESS_FINE_LOCATION permission,

41, 162

BIND_WALLPAPER permission, 244

INTERNET permission, 41, 138, 149

READ_CONTACTS permission, 41

RECEIVE_SMS permission, 41

WRITE_CONTACTS permission, 41

WRITE_EXTERNAL_STORAGE permission,

128

Phone

3D hardware and, 201

installation, 28

keypads, 93, 96

prepackaged systems, 34

uses for, 130

Pinch zoom, 221, 230–232

Pixels, 54

Planet Android, 72

Platform, 17

play() method, 115, 118, 122

Playback, 112

post() method, 145

Prefs class, 65

Preparing to publish, 271

PRIMARY KEY designation, 180

Private intents, 60

Procedural design, 44

Processes vs. activities, 36

Proxy, 22

pt. (points) as resolution units, 54

Public intents, 60

Publishing to Android Market, 35,

271–276

289

PUZZLEVIEW CLASS SETID() METHOD

updating published applications,

275

PuzzleView class, 80, 81

px. (pixels) as resolution units, 54

Q
Queries, running, 187

query() method, 187

Query statements, 181

queueUpdate() method, 154, 155, 157

QuickTime Pro, 112

R
R class, 40, 48

managed by Eclipse, 47

R.java file, 47

raw directory, 107

rawQuery() method, 187

READ_CONTACTS permission, 41

RECEIVE_SMS permission, 41

receiver tag, 234

Reflection, 260, 279

Refresh, 90

Refresh rate, smoothness and, 217

registerListener() method, 169

RelativeLayout class, 49

release() method, 109, 119

RemoteViews class, 241

removeUpdates() method, 166

Renderer interface, 203

rendering, 202–206

requestLocationUpdates() method, 165

res directory, 47, 107

Resampling artifacts, 111

Resolution, 87

Resolution units

in. (inches) as resolution units, 54

mm. (millimeters) as resolution

units, 54

pt. (points) as resolution units, 54

px. (pixels) as resolution units, 54

Resolution-independent

measurements, 54

Resource compiler, 40

Resource manager, 34

Resources, 40

Resuming paused multimedia, 117

returnResult() method, 98

RGB color values, 74

Rows, adding, 186, 194

Runnable class, 145, 147

runOnFirstFix() method, 176

Runtime, 32

RuntimeException class, 186

S
Sampling rates, 111

Scale, with pinch zoom gesture, 231

Scale containers, 77

Scale-independent pixels, 54

ScaleGestureDetector class, 221

Screen layouts, 55, 57

Screen position, 124–126

Screen resolution, 54

Screen rotations, 116

SD cards, 127–128, 268

SDK install directory, 19

SDK Setup program, 19

SDK Starter Package, 18

Secure Digital (SD) cards, 127–128,

268

Security

JavaScript and, 140

permissions, 41, 128

select() method, 89

SELECT statements, 181, 187

Selecting tiles, 87

sensor types

TRICORDER type, 169n

TYPE_ACCELEROMETER type, 169

TYPE_LIGHT type, 169

TYPE_MAGNETIC_FIELD type, 169

TYPE_ORIENTATION type, 169, 170

TYPE_PRESSURE type, 169

TYPE_PROXIMITY type, 169

TYPE_TEMPERATURE type, 169, 170

SensorManager class, 169

Sensors, 168–172

Emulator and, 170

readings, interpreting, 169

simulator, 171

SensorTest class, 169

Service class, 117, 245

service tag, 244

Services, 39, 245

setAdapters() method, 152

setBackgroundResource() method, 77

setBuiltInZoomControls() method, 175

setColor() method, 74

setContentView() method, 46, 134

setDownloadListener() method, 139

setId() method, 125

290

SETIMAGEMATRIX() METHOD SUDOKU PROGRAM

setImageMatrix() method, 265–267

setItems() method, 69

setListeners() method, 154

setOnClickListener() method, 59, 146

setOnCompletionListener() method, 109

setSatellite() method, 175

setText() method, 145

settings.xml file, 65

Settings, adding, 66, 67

setTranslated() method, 157

Setup program (Android SDK), 19

setVideoPath() method, 113

setVolumeControlStream() method, 107

setWebChromeClient() method, 139, 145

setWebViewClient() method, 139

Shaking the screen (animation), 93

Shape drawables, 77

showEvents() method, 186, 188, 189

Signing applications, 272

Silicon Graphics, 199

SimpleCursorAdapter class, 189, 197

64-bit Java Development Kit, 19

Size, 81, 87

Skins, emulator, 257

Smoothness, measuring, 217

Soft keyboards, 132

Soft lighting, 209

Sound effects, 105–110

SoundPool class, 110n

sp (scale-independent pixels), 54

Spacing between fingers (multi-touch),

231

Specular lighting, 210

Speed, 28, 63, 103, 188, 189, 198, 201,

204, 209, 213, 217, 218, 231,

260, 279

Spinner class, 150

Spinners, 150

Sps, 54

SQL Pocket Guide (Gennick), 196

SQLException class, 186

SQLite, 32, 178–196

about, 178–179, 180f

application basics, 185f, 181–189

blessing (license), 179

ContentProvider class, 192–196

data binding, 192f, 189–192

DDL statements, 180

modification statements, 181

overview of, 179–181

queries, running, 187

query statements, 181

rows, adding, 186, 194

SQLiteOpenHelper class, 182

start() method, 109, 112, 119

startActivity method, 135

Starter Package (Android SDK), 18

startGame() method, 78, 124

startManagingCursor() method, 187

State containers, 77

State-saving code, 38

stop() method, 112, 117, 118

stopLoading() method, 139

Storing local data, 120–128

current screen position, 124–126

internal files, accessing, 126

options, adding, 120–122

pausing game, 122–124

secure digital (SD), 127–128

Stretchable backgrounds, 236

String resource, 58

strings.xml file, 58, 64, 67, 80, 132, 138,

146, 157, 191, 239, 245

strings.xml file, 50

styles.xml file, 61

Subclassing, 260

Sudoku history, 44, 79, 118, 121

Sudoku program, 43–72

About box, 57–62

debugging, 69–71

defined, 43

exit button, 71

game board, 83

game class for, 79

game logic, 99

graphics for, 78–87

hints, 91, 122

input and graphics, 87–93

interface design, 44–45

menus, 64–65

multimedia, 105–119

audio, 105–110

background music for, 115–119

video, 112–115

new game button, 67–69

opening screen, 45–54

pausing, 122

PuzzleView class, 81

screen layouts, 55–57

settings, 66, 67

starting game (code), 78

themes, 61–63

291

SURFACE CLASS WIDGETS

Surface class, 112, 203, 204

Surface Manager, 31

Synchronization, 279

T
TableLayout class, 49, 57, 149

TableRow class, 150

Tap gesture, 220

Testing, state-saving code, 38

Testing programs, 257

Texture, OpenGL, 212–216

TextView class, 63, 141, 145, 163

Themes, 61–63

32-bit Java Development Kit, 19

Thread class, 147

Threads

multiple, 279

OpenGL, 202–206

Tile selection, 87

Time slicing, 279

Time-based animation, 213

Toast class, 145

tools directory, SDK, 19

toPuzzleString() method, 102

Torvalds, Linus, 30

Touch.java file, 224

traceview profiler, 218

Trackball, 89

Translate class, 151

Translate program, 131

TranslateTask class, 156

Translator, 147, 148

Transparency, 216

Triangle strips, 208

TRICORDER sensor type, 169n

2D and 3D graphics, 32

TYPE_ACCELEROMETER sensor type, 169

TYPE_LIGHT sensor type, 169

TYPE_MAGNETIC_FIELD sensor type, 169

TYPE_ORIENTATION sensor type, 169, 170

TYPE_PRESSURE sensor type, 169

TYPE_PROXIMITY sensor type, 169

TYPE_TEMPERATURE sensor type, 169, 170

U
Uniform Resource Identifier (URI), 193

unregisterListener() method, 169

updatePeriodMillis parameter, 241

Updates, widget, 239–241

Updating published applications, 275

Uri class, 135

UriMatcher class, 196

User ID, 127

User interface design, 43–72

About box, 57–62

debugging, 69–71

device-specific UI, 267

exit button, 71

menus, 64–65

multi-touch features, 220–232

new game button, 67–69

opening screen, 45–54

screen layouts, 55–57

settings, 66, 67

Sudoku overview, 43, 45

themes, 61–63

types of, 44–45

uses-library tag, 174

uses-permission tag, 139, 148

V
v() method (Log class), 69

Vector graphics, 54, 75

VerifyError exceptions, 260

versionCode parameter, 272, 275

versionName parameter, 272, 275

Versions, Android, 256

building for multiple, 257–259

Video, 112–115

Video class, 128

Video formats, supported, 112

Video.java file, 113

VideoView class, 112

View frustrum, 198

View size, 81

W
w() method (Log class), 69

wallpaper, live, 242–254

WallpaperService class, 245

WAV audio format, 111

Web services, 147–160

Web Standard Tools (WST), 21

WebChromeClient class, 145

WebKit library, 32

WebView, 135–139

WebView class, 63, 136, 138

WHERE clause, 187

Widget class, 238

widget.xml file, 234

Widgets, 34, 233–242

292

WINDOWS ZOOM GESTURE (PINCH ZOOM)

extending AppWidgetProvider,

238–239

getting updates, 239–241

running, 239

stretchable backgrounds, 236–238

Windows, in Android, 35–38

WRITE_CONTACTS permission, 41

WRITE_EXTERNAL_STORAGE permission,

128

wtf() method (Log class), 69

X
XmlHttpRequest class, 172

xmlns:android parameter, 49

Z
.zip files, 139

Zoom gesture (pinch zoom), 221,

230–232

293

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of June 2010; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Beginning Mac Programming: Develop with

Objective-C and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Cocoa Programming: A Quick-Start Guide for

Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

Continued on next page

Title Year ISBN Pages

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program, 2nd Edition 2009 9781934356364 240

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Ajax: A Web 2.0 Primer 2006 9780976694083 296

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Continued on next page

Title Year ISBN Pages

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

2010 9781934356555 300

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

iPhone SDK Development 2009 9781934356258 576

Grow your Skills

Debug It!
Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with

confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from

constructing software that makes debugging easy;

through bug detection, reproduction, and

diagnosis; to rolling out your eventual fix. Learn

better debugging whether you’re writing Java or

assembly language, targeting servers or embedded

micro-controllers, or using agile or traditional

approaches.

Debug It! Find, Repair, and Prevent Bugs in Your

Code

Paul Butcher

(232 pages) ISBN: 978-1-9343562-8-9. $34.95

http://pragprog.com/titles/pbdp

SQL Antipatterns
If you’re programming applications that store data,

then chances are you’re using SQL, either directly

or through a mapping layer. But most of the SQL

that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you

all the common mistakes, and then leads you

through the best fixes. What’s more, it shows you

what’s behind these fixes, so you’ll learn a lot about

relational databases along the way.

SQL Antipatterns: Avoiding the Pitfalls of

Database Programming

Bill Karwin

(300 pages) ISBN: 978-19343565-5-5. $34.95

http://pragprog.com/titles/bksqla

Agile Techniques

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragprog.com/titles/dlret

iPhone/iPad

iPhone SDK Development
Jump into application development for today’s

most remarkable mobile communications platform,

the Pragmatic way. This Pragmatic guide takes you

through the tools and APIs, the same ones Apple

uses for its applications, that you can use to create

your own software for the iPhone and iPod touch.

Packed with useful examples, this book will give

you both the big-picture concepts and the everyday

“gotcha” details that developers need to make the

most of the beauty and power of the iPhone OS

platform.

iPhone SDK Development

Bill Dudney, Chris Adamson, Marcel Molina

(545 pages) ISBN: 978-1-9343562-5-8. $38.95

http://pragprog.com/titles/amiphd

iPad Programming
It’s not an iPhone and it’s not a laptop: the iPad is a

groundbreaking new device. You need to create true

iPad apps to take advantage of all that is possible

with the iPad. If you’re an experienced iPhone

developer, iPad Programming will show you how to

write these outstanding new apps while completely

fitting your users’ expectation for this device.

iPad Programming: A Quick-Start Guide for

iPhone Developers

Daniel H Steinberg and Eric T Freeman

(250 pages) ISBN: 978-19343565-7-9. $34.95

http://pragprog.com/titles/sfipad

Refactor Your Career

Land the Tech Job You Love
You’ve got the technical chops—the skills to get a

great job doing what you love. Now it’s time to get

down to the business of planning your job search,

focusing your time and attention on the job leads

that matter, and interviewing to wow your

boss-to-be.

You’ll learn how to find the job you want that fits

you and your employer. You’ll uncover the hidden

jobs that never make it into the classifieds or

Monster. You’ll start making and maintaining the

connections that will drive your future career

moves.

You’ll land the tech job you love.

Land the Tech Job You Love

Andy Lester

(280 pages) ISBN: 978-1934356-26-5. $23.95

http://pragprog.com/titles/algh

Manage It!
Manage It! is an award-winning, risk-based guide

to making good decisions about how to plan and

guide your projects. Author Johanna Rothman

shows you how to beg, borrow, and steal from the

best methodologies to fit your particular project.

You’ll find what works best for you.

• Learn all about different project lifecycles • See

how to organize a project • Compare sample

project dashboards • See how to staff a project

• Know when you’re done—and what that means.

Manage It! Your Guide to Modern, Pragmatic

Project Management

Johanna Rothman

(360 pages) ISBN: 0-9787392-4-8. $34.95

http://pragprog.com/titles/jrpm

Refactor Your Career

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(232 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Hello Android, Third Edition

http://pragprog.com/titles/eband3

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/eband3.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

	Contents
	Acknowledgments
	Preface
	What Makes Android Special?
	Who Should Read This Book?
	What's in This Book?
	What's New in the Third Edition?
	Online Resources
	Fast-Forward >>

	Introducing Android
	Quick Start
	Installing the Tools
	Creating Your First Program
	Running on the Emulator
	Running on a Real Phone
	Fast-Forward >>

	Key Concepts
	The Big Picture
	It's Alive!
	Building Blocks
	Using Resources
	Safe and Secure
	Fast-Forward >>

	Android Basics
	Designing the User Interface
	Introducing the Sudoku Example
	Designing by Declaration
	Creating the Opening Screen
	Using Alternate Resources
	Implementing an About Box
	Applying a Theme
	Adding a Menu
	Adding Settings
	Starting a New Game
	Debugging
	Exiting the Game
	Fast-Forward >>

	Exploring 2D Graphics
	Learning the Basics
	Adding Graphics to Sudoku
	Handling Input
	The Rest of the Story
	Making More Improvements
	Fast-Forward >>

	Multimedia
	Playing Audio
	Playing Video
	Adding Sounds to Sudoku
	Fast-Forward >>

	Storing Local Data
	Adding Options to Sudoku
	Continuing an Old Game
	Remembering the Current Position
	Accessing the Internal File System
	Accessing SD Cards
	Fast-Forward >>

	Beyond the Basics
	The Connected World
	Browsing by Intent
	Web with a View
	From JavaScript to Java and Back
	Using Web Services
	Fast-Forward >>

	Locating and Sensing
	Location, Location, Location
	Set Sensors to Maximum
	Bird's-Eye View
	Fast-Forward >>

	Putting SQL to Work
	Introducing SQLite
	SQL 101
	Hello, Database
	Data Binding
	Using a ContentProvider
	Implementing a ContentProvider
	Fast-Forward >>

	3D Graphics in OpenGL
	Understanding 3D Graphics
	Introducing OpenGL
	Building an OpenGL Program
	Rendering the Scene
	Building a Model
	Lights, Camera, ...
	Action!
	Applying Texture
	Peekaboo
	Measuring Smoothness
	Fast-Forward >>

	The Next Generation
	Multi-Touch
	Introducing Multi-Touch
	Building the Touch Example
	Understanding Touch Events
	Setting Up for Image Transformation
	Implementing the Drag Gesture
	Implementing the Pinch Zoom Gesture
	Fast-Forward >>

	There's No Place Like Home
	Hello, Widget
	Live Wallpaper
	Fast-Forward >>

	Write Once, Test Everywhere
	Gentlemen, Start Your Emulators
	Building for Multiple Versions
	Evolving with Android APIs
	Bug on Parade
	All Screens Great and Small
	Installing on the SD Card
	Fast-Forward >>

	Publishing to the Android Market
	Preparing
	Signing
	Publishing
	Updating
	Closing Thoughts

	Appendixes
	Java vs. the Android Language and APIs
	Language Subset
	Standard Library Subset
	Third-Party Libraries

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

