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preface
It’s in all of us. Data science is what makes us humans what we are today. No, not the
computer-driven data science this book will introduce you to, but the ability of our
brains to see connections, draw conclusions from facts, and learn from our past expe-
riences. More so than any other species on the planet, we depend on our brains for
survival; we went all-in on these features to earn our place in nature. That strategy has
worked out for us so far, and we’re unlikely to change it in the near future. 

 But our brains can only take us so far when it comes to raw computing. Our biol-
ogy can’t keep up with the amounts of data we can capture now and with the extent of
our curiosity. So we turn to machines to do part of the work for us: to recognize pat-
terns, create connections, and supply us with answers to our numerous questions. 

 The quest for knowledge is in our genes. Relying on computers to do part of the
job for us is not—but it is our destiny. 
xiii
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about this book
I can only show you the door. You’re the one that has to walk through it.

Morpheus, The Matrix

Welcome to the book! When reading the table of contents, you probably noticed
the diversity of the topics we’re about to cover. The goal of Introducing Data Science
is to provide you with a little bit of everything—enough to get you started. Data sci-
ence is a very wide field, so wide indeed that a book ten times the size of this one
wouldn’t be able to cover it all. For each chapter, we picked a different aspect we
find interesting. Some hard decisions had to be made to keep this book from col-
lapsing your bookshelf!

 We hope it serves as an entry point—your doorway into the exciting world of
data science. 

Roadmap
Chapters 1 and 2 offer the general theoretical background and framework necessary
to understand the rest of this book: 

■ Chapter 1 is an introduction to data science and big data, ending with a practi-
cal example of Hadoop.

■ Chapter 2 is all about the data science process, covering the steps present in
almost every data science project.
xvi



ABOUT THIS BOOK xvii
In chapters 3 through 5, we apply machine learning on increasingly large data sets:

■ Chapter 3 keeps it small. The data still fits easily into an average computer’s
memory.

■ Chapter 4 increases the challenge by looking at “large data.” This data fits on
your machine, but fitting it into RAM is hard, making it a challenge to process
without a computing cluster.

■ Chapter 5 finally looks at big data. For this we can’t get around working with
multiple computers.

Chapters 6 through 9 touch on several interesting subjects in data science in a more-
or-less independent matter:

■ Chapter 6 looks at NoSQL and how it differs from the relational databases.
■ Chapter 7 applies data science to streaming data. Here the main problem is not

size, but rather the speed at which data is generated and old data becomes
obsolete.

■ Chapter 8 is all about text mining. Not all data starts off as numbers. Text min-
ing and text analytics become important when the data is in textual formats
such as emails, blogs, websites, and so on.

■ Chapter 9 focuses on the last part of the data science process—data visualization
and prototype application building—by introducing a few useful HTML5 tools.

Appendixes A–D cover the installation and setup of the Elasticsearch, Neo4j, and
MySQL databases described in the chapters and of Anaconda, a Python code package
that's especially useful for data science.

Whom this book is for
This book is an introduction to the field of data science. Seasoned data scientists will
see that we only scratch the surface of some topics. For our other readers, there are
some prerequisites for you to fully enjoy the book. A minimal understanding of SQL,
Python, HTML5, and statistics or machine learning is recommended before you dive
into the practical examples.

Code conventions and downloads
We opted to use the Python script for the practical examples in this book. Over the
past decade, Python has developed into a much respected and widely used data sci-
ence language.

 The code itself is presented in a fixed-width font like this to separate it from
ordinary text. Code annotations accompany many of the listings, highlighting impor-
tant concepts.

 The book contains many code examples, most of which are available in the online
code base, which can be found at the book’s website, https://www.manning.com/
books/introducing-data-science.

https://www.manning.com/books/introducing-data-science
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Data science in
a big data world
Big data is a blanket term for any collection of data sets so large or complex that it
becomes difficult to process them using traditional data management techniques
such as, for example, the RDBMS (relational database management systems). The
widely adopted RDBMS has long been regarded as a one-size-fits-all solution, but the
demands of handling big data have shown otherwise. Data science involves using
methods to analyze massive amounts of data and extract the knowledge it contains.
You can think of the relationship between big data and data science as being like
the relationship between crude oil and an oil refinery. Data science and big data
evolved from statistics and traditional data management but are now considered to
be distinct disciplines. 

This chapter covers
■ Defining data science and big data
■ Recognizing the different types of data
■ Gaining insight into the data science process
■ Introducing the fields of data science and

big data
■ Working through examples of Hadoop
1



2 CHAPTER 1 Data science in a big data world
 The characteristics of big data are often referred to as the three Vs:

■ Volume—How much data is there?
■ Variety—How diverse are different types of data?
■ Velocity—At what speed is new data generated?

Often these characteristics are complemented with a fourth V, veracity: How accu-
rate is the data? These four properties make big data different from the data found
in traditional data management tools. Consequently, the challenges they bring can
be felt in almost every aspect: data capture, curation, storage, search, sharing, trans-
fer, and visualization. In addition, big data calls for specialized techniques to extract
the insights.

 Data science is an evolutionary extension of statistics capable of dealing with the
massive amounts of data produced today. It adds methods from computer science to
the repertoire of statistics. In a research note from Laney and Kart, Emerging Role of
the Data Scientist and the Art of Data Science, the authors sifted through hundreds of
job descriptions for data scientist, statistician, and BI (Business Intelligence) analyst
to detect the differences between those titles. The main things that set a data scien-
tist apart from a statistician are the ability to work with big data and experience in
machine learning, computing, and algorithm building. Their tools tend to differ
too, with data scientist job descriptions more frequently mentioning the ability to
use Hadoop, Pig, Spark, R, Python, and Java, among others. Don’t worry if you feel
intimidated by this list; most of these will be gradually introduced in this book,
though we’ll focus on Python. Python is a great language for data science because it
has many data science libraries available, and it’s widely supported by specialized
software. For instance, almost every popular NoSQL database has a Python-specific
API. Because of these features and the ability to prototype quickly with Python while
keeping acceptable performance, its influence is steadily growing in the data sci-
ence world. 

 As the amount of data continues to grow and the need to leverage it becomes
more important, every data scientist will come across big data projects throughout
their career. 

1.1 Benefits and uses of data science and big data
Data science and big data are used almost everywhere in both commercial and non-
commercial settings. The number of use cases is vast, and the examples we’ll provide
throughout this book only scratch the surface of the possibilities. 

 Commercial companies in almost every industry use data science and big data to
gain insights into their customers, processes, staff, completion, and products. Many
companies use data science to offer customers a better user experience, as well as to
cross-sell, up-sell, and personalize their offerings. A good example of this is Google
AdSense, which collects data from internet users so relevant commercial messages can
be matched to the person browsing the internet. MaxPoint (http://maxpoint.com/us)

http://maxpoint.com/us


3Benefits and uses of data science and big data
is another example of real-time personalized advertising. Human resource profession-
als use people analytics and text mining to screen candidates, monitor the mood of
employees, and study informal networks among coworkers. People analytics is the cen-
tral theme in the book Moneyball: The Art of Winning an Unfair Game. In the book (and
movie) we saw that the traditional scouting process for American baseball was ran-
dom, and replacing it with correlated signals changed everything. Relying on statistics
allowed them to hire the right players and pit them against the opponents where they
would have the biggest advantage. Financial institutions use data science to predict
stock markets, determine the risk of lending money, and learn how to attract new cli-
ents for their services. At the time of writing this book, at least 50% of trades world-
wide are performed automatically by machines based on algorithms developed by
quants, as data scientists who work on trading algorithms are often called, with the
help of big data and data science techniques. 

 Governmental organizations are also aware of data’s value. Many governmental
organizations not only rely on internal data scientists to discover valuable informa-
tion, but also share their data with the public. You can use this data to gain insights or
build data-driven applications. Data.gov is but one example; it’s the home of the US
Government’s open data. A data scientist in a governmental organization gets to work
on diverse projects such as detecting fraud and other criminal activity or optimizing
project funding. A well-known example was provided by Edward Snowden, who leaked
internal documents of the American National Security Agency and the British Govern-
ment Communications Headquarters that show clearly how they used data science
and big data to monitor millions of individuals. Those organizations collected 5 bil-
lion data records from widespread applications such as Google Maps, Angry Birds,
email, and text messages, among many other data sources. Then they applied data sci-
ence techniques to distill information.

 Nongovernmental organizations (NGOs) are also no strangers to using data. They
use it to raise money and defend their causes. The World Wildlife Fund (WWF), for
instance, employs data scientists to increase the effectiveness of their fundraising
efforts. Many data scientists devote part of their time to helping NGOs, because NGOs
often lack the resources to collect data and employ data scientists. DataKind is one
such data scientist group that devotes its time to the benefit of mankind.

 Universities use data science in their research but also to enhance the study experi-
ence of their students. The rise of massive open online courses (MOOC) produces a
lot of data, which allows universities to study how this type of learning can comple-
ment traditional classes. MOOCs are an invaluable asset if you want to become a data
scientist and big data professional, so definitely look at a few of the better-known ones:
Coursera, Udacity, and edX. The big data and data science landscape changes quickly,
and MOOCs allow you to stay up to date by following courses from top universities. If
you aren’t acquainted with them yet, take time to do so now; you’ll come to love them
as we have.



4 CHAPTER 1 Data science in a big data world
1.2 Facets of data
In data science and big data you’ll come across many different types of data, and each
of them tends to require different tools and techniques. The main categories of data
are these:

■ Structured
■ Unstructured
■ Natural language
■ Machine-generated
■ Graph-based
■ Audio, video, and images
■ Streaming

Let’s explore all these interesting data types.

1.2.1 Structured data

Structured data is data that depends on a data model and resides in a fixed field
within a record. As such, it’s often easy to store structured data in tables within data-
bases or Excel files (figure 1.1). SQL, or Structured Query Language, is the preferred
way to manage and query data that resides in databases. You may also come across
structured data that might give you a hard time storing it in a traditional relational
database. Hierarchical data such as a family tree is one such example.

 The world isn’t made up of structured data, though; it’s imposed upon it by
humans and machines. More often, data comes unstructured. 

Figure 1.1 An Excel table is an example of structured data.
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1.2.2 Unstructured data

Unstructured data is data that isn’t easy to fit into a data model because the content is
context-specific or varying. One example of unstructured data is your regular email
(figure 1.2). Although email contains structured elements such as the sender, title,
and body text, it’s a challenge to find the number of people who have written an
email complaint about a specific employee because so many ways exist to refer to a
person, for example. The thousands of different languages and dialects out there fur-
ther complicate this.

 A human-written email, as shown in figure 1.2, is also a perfect example of natural
language data. 

1.2.3 Natural language

Natural language is a special type of unstructured data; it’s challenging to process
because it requires knowledge of specific data science techniques and linguistics.

Delete

Reply Reply to All Forward

New team of UI engineers

Move Spam

CDA@engineer.com

To xyz@program.com
Today 10:21

An investment banking client of mine has had the go ahead to build a new team of UI engineers to work on

various areas of a cutting-edge single-dealer trading platform.

They will be recruiting at all levels and paying between 40k & 85k (+ all the usual benefits of the banking

world). I understand you may not be looking. I also understand you may be a contractor. Of the last 3 hires

they brought into the team, two were contractors of 10 years who I honestly thought would never turn to

what they considered “the dark side.”

This is a genuine opportunity to work in an environment that’s built up for best in industry and allows you to

gain commercial experience with all the latest tools, tech, and processes.

There is more information below. I appreciate the spec is rather loose – They are not looking for specialists

in Angular / Node / Backbone or any of the other buzz words in particular, rather an “engineer” who can

wear many hats and is in touch with current tech & tinkers in their own time.

For more information and a confidential chat, please drop me a reply email. Appreciate you may not have

an updated CV, but if you do that would be handy to have a look through if you don’t mind sending.

Figure 1.2 Email is simultaneously an example of unstructured data and natural language data.
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 The natural language processing community has had success in entity recognition,
topic recognition, summarization, text completion, and sentiment analysis, but mod-
els trained in one domain don’t generalize well to other domains. Even state-of-the-art
techniques aren’t able to decipher the meaning of every piece of text. This shouldn’t
be a surprise though: humans struggle with natural language as well. It’s ambiguous
by nature. The concept of meaning itself is questionable here. Have two people listen
to the same conversation. Will they get the same meaning? The meaning of the same
words can vary when coming from someone upset or joyous.

1.2.4 Machine-generated data

Machine-generated data is information that’s automatically created by a computer,
process, application, or other machine without human intervention. Machine-generated
data is becoming a major data resource and will continue to do so. Wikibon has fore-
cast that the market value of the industrial Internet (a term coined by Frost & Sullivan
to refer to the integration of complex physical machinery with networked sensors and
software) will be approximately $540 billion in 2020. IDC (International Data Corpo-
ration) has estimated there will be 26 times more connected things than people in
2020. This network is commonly referred to as the internet of things.

 The analysis of machine data relies on highly scalable tools, due to its high volume
and speed. Examples of machine data are web server logs, call detail records, network
event logs, and telemetry (figure 1.3).

Figure 1.3 Example of machine-generated data
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The machine data shown in figure 1.3 would fit nicely in a classic table-structured
database. This isn’t the best approach for highly interconnected or “networked” data,
where the relationships between entities have a valuable role to play. 

1.2.5 Graph-based or network data

“Graph data” can be a confusing term because any data can be shown in a graph.
“Graph” in this case points to mathematical graph theory. In graph theory, a graph is a
mathematical structure to model pair-wise relationships between objects. Graph or
network data is, in short, data that focuses on the relationship or adjacency of objects.
The graph structures use nodes, edges, and properties to represent and store graphi-
cal data. Graph-based data is a natural way to represent social networks, and its struc-
ture allows you to calculate specific metrics such as the influence of a person and the
shortest path between two people.

 Examples of graph-based data can be found on many social media websites (fig-
ure 1.4). For instance, on LinkedIn you can see who you know at which company.
Your follower list on Twitter is another example of graph-based data. The power and
sophistication comes from multiple, overlapping graphs of the same nodes. For exam-
ple, imagine the connecting edges here to show “friends” on Facebook. Imagine
another graph with the same people which connects business colleagues via LinkedIn.
Imagine a third graph based on movie interests on Netflix. Overlapping the three
different-looking graphs makes more interesting questions possible.

Graph databases are used to store graph-based data and are queried with specialized
query languages such as SPARQL.

 Graph data poses its challenges, but for a computer interpreting additive and
image data, it can be even more difficult.

Liam Kim

Lucy

Elizabeth

Jack Barack

Carlos

Myriam

Guy

Maria

Er John

Florin William

Figure 1.4 Friends in a social network are an example of graph-based data.
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1.2.6 Audio, image, and video

Audio, image, and video are data types that pose specific challenges to a data scientist.
Tasks that are trivial for humans, such as recognizing objects in pictures, turn out to
be challenging for computers. MLBAM (Major League Baseball Advanced Media)
announced in 2014 that they’ll increase video capture to approximately 7 TB per
game for the purpose of live, in-game analytics. High-speed cameras at stadiums will
capture ball and athlete movements to calculate in real time, for example, the path
taken by a defender relative to two baselines. 

 Recently a company called DeepMind succeeded at creating an algorithm that’s
capable of learning how to play video games. This algorithm takes the video screen as
input and learns to interpret everything via a complex process of deep learning. It’s a
remarkable feat that prompted Google to buy the company for their own Artificial
Intelligence (AI) development plans. The learning algorithm takes in data as it’s pro-
duced by the computer game; it’s streaming data. 

1.2.7 Streaming data

While streaming data can take almost any of the previous forms, it has an extra
property. The data flows into the system when an event happens instead of being
loaded into a data store in a batch. Although this isn’t really a different type of data,
we treat it here as such because you need to adapt your process to deal with this type
of information. 

 Examples are the “What’s trending” on Twitter, live sporting or music events, and
the stock market.  

1.3 The data science process
The data science process typically consists
of six steps, as you can see in the mind map
in figure 1.5. We will introduce them briefly
here and handle them in more detail in
chapter 2. 

1.3.1 Setting the research goal

Data science is mostly applied in the con-
text of an organization. When the business
asks you to perform a data science project,
you’ll first prepare a project charter. This
charter contains information such as what
you’re going to research, how the company
benefits from that, what data and resources
you need, a timetable, and deliverables.

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

4: Data exploration +

5: Data modeling +

6: Presentation and automation +

Figure 1.5 The data science process
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Throughout this book, the data science process will be applied to bigger case studies
and you’ll get an idea of different possible research goals. 

1.3.2 Retrieving data

The second step is to collect data. You’ve stated in the project charter which data you
need and where you can find it. In this step you ensure that you can use the data in
your program, which means checking the existence of, quality, and access to the data.
Data can also be delivered by third-party companies and takes many forms ranging
from Excel spreadsheets to different types of databases.

1.3.3 Data preparation

Data collection is an error-prone process; in this phase you enhance the quality of the
data and prepare it for use in subsequent steps. This phase consists of three sub-
phases: data cleansing removes false values from a data source and inconsistencies
across data sources, data integration enriches data sources by combining information
from multiple data sources, and data transformation ensures that the data is in a suit-
able format for use in your models.

1.3.4 Data exploration

Data exploration is concerned with building a deeper understanding of your data.
You try to understand how variables interact with each other, the distribution of the
data, and whether there are outliers. To achieve this you mainly use descriptive statis-
tics, visual techniques, and simple modeling. This step often goes by the abbreviation
EDA, for Exploratory Data Analysis.

1.3.5 Data modeling or model building

In this phase you use models, domain knowledge, and insights about the data you
found in the previous steps to answer the research question. You select a technique
from the fields of statistics, machine learning, operations research, and so on. Build-
ing a model is an iterative process that involves selecting the variables for the model,
executing the model, and model diagnostics. 

1.3.6 Presentation and automation

Finally, you present the results to your business. These results can take many forms,
ranging from presentations to research reports. Sometimes you’ll need to automate
the execution of the process because the business will want to use the insights you
gained in another project or enable an operational process to use the outcome from
your model.
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AN ITERATIVE PROCESS The previous description of the data science process
gives you the impression that you walk through this process in a linear way,
but in reality you often have to step back and rework certain findings. For
instance, you might find outliers in the data exploration phase that point to
data import errors. As part of the data science process you gain incremental
insights, which may lead to new questions. To prevent rework, make sure that
you scope the business question clearly and thoroughly at the start.

Now that we have a better understanding of the process, let’s look at the technologies. 

1.4 The big data ecosystem and data science
Currently many big data tools and frameworks exist, and it’s easy to get lost because
new technologies appear rapidly. It’s much easier once you realize that the big data
ecosystem can be grouped into technologies that have similar goals and functional-
ities, which we’ll discuss in this section. Data scientists use many different technolo-
gies, but not all of them; we’ll dedicate a separate chapter to the most important data
science technology classes. The mind map in figure 1.6 shows the components of the
big data ecosystem and where the different technologies belong.

 Let’s look at the different groups of tools in this diagram and see what each does.
We’ll start with distributed file systems.

1.4.1 Distributed file systems

A distributed file system is similar to a normal file system, except that it runs on multiple
servers at once. Because it’s a file system, you can do almost all the same things you’d
do on a normal file system. Actions such as storing, reading, and deleting files and
adding security to files are at the core of every file system, including the distributed
one. Distributed file systems have significant advantages: 

■ They can store files larger than any one computer disk.
■ Files get automatically replicated across multiple servers for redundancy or par-

allel operations while hiding the complexity of doing so from the user.
■ The system scales easily: you’re no longer bound by the memory or storage

restrictions of a single server.

In the past, scale was increased by moving everything to a server with more memory,
storage, and a better CPU (vertical scaling). Nowadays you can add another small server
(horizontal scaling). This principle makes the scaling potential virtually limitless. 

 The best-known distributed file system at this moment is the Hadoop File System
(HDFS). It is an open source implementation of the Google File System. In this book
we focus on the Hadoop File System because it is the most common one in use. How-
ever, many other distributed file systems exist: Red Hat Cluster File System, Ceph File Sys-
tem, and Tachyon File System, to name but three.
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Big data ecosystem

Distributed filesystem

HDFS: Hadoop File System

Red Hat GlusterFS

QuantCast FileSystem

Ceph FileSystem

…

Apache MapReduce

Apache Pig

Apache Spark

Netflix PigPen

Apache Twill

Apache Hama

JAQL

…

–

–

Distributed programming –

Mahout

WEKA

Onyx

H2O

Scikit-learn

Sparkling Water

MADLib

R libraries

SPARK

…

PyBrain

Theano

Python libraries

Machine learning –

NoSQL

New SQL

–

–

–

Document store

Key-value store

Bayes DB

Column database

…

–
Neo4J

…
Graph database

SQL on Hadoop

New SQL

NoSQL & New SQL databases –

Others

Tika

GraphBuilder

Giraph

…

–

System deployment

Mesos

HUE

Ambari

…

–

Service programming

Apache Thrift

Zookeeper

…

–

Security

Sentry

Ranger

Scribe

Chukwa

…

–

Data integration

Apache Flume

Sqoop

…

–

Scheduling

Oozie

Falcon

…

–

Benchmarking

GridMix 3

PUMA Benchmarking

…

–

Sensei

Drizzle

–

Hive

…

HCatalog

Drill

Impala

–

HBase

…

HyperTable

Cassandra

–

Reddis

…

MemCache

VoldeMort

–

MongoDB

…

Elasticsearch

PyLearn2

Figure 1.6 Big data technologies can be classified into a few main components.
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1.4.2 Distributed programming framework

Once you have the data stored on the distributed file system, you want to exploit it.
One important aspect of working on a distributed hard disk is that you won’t move
your data to your program, but rather you’ll move your program to the data. When
you start from scratch with a normal general-purpose programming language such as
C, Python, or Java, you need to deal with the complexities that come with distributed
programming, such as restarting jobs that have failed, tracking the results from the
different subprocesses, and so on. Luckily, the open source community has developed
many frameworks to handle this for you, and these give you a much better experience
working with distributed data and dealing with many of the challenges it carries.

1.4.3 Data integration framework

Once you have a distributed file system in place, you need to add data. You need to
move data from one source to another, and this is where the data integration frame-
works such as Apache Sqoop and Apache Flume excel. The process is similar to an
extract, transform, and load process in a traditional data warehouse.

1.4.4 Machine learning frameworks

When you have the data in place, it’s time to extract the coveted insights. This is where
you rely on the fields of machine learning, statistics, and applied mathematics. Before
World War II everything needed to be calculated by hand, which severely limited
the possibilities of data analysis. After World War II computers and scientific com-
puting were developed. A single computer could do all the counting and calcula-
tions and a world of opportunities opened. Ever since this breakthrough, people only
need to derive the mathematical formulas, write them in an algorithm, and load
their data. With the enormous amount of data available nowadays, one computer
can no longer handle the workload by itself. In fact, several algorithms developed in
the previous millennium would never terminate before the end of the universe,
even if you could use every computer available on Earth. This has to do with time
complexity (https://en.wikipedia.org/wiki/Time_complexity). An example is trying
to break a password by testing every possible combination. An example can be found
at http://stackoverflow.com/questions/7055652/real-world-example-of-exponential-
time-complexity. One of the biggest issues with the old algorithms is that they don’t
scale well. With the amount of data we need to analyze today, this becomes proble-
matic, and specialized frameworks and libraries are required to deal with this amount
of data. The most popular machine-learning library for Python is Scikit-learn. It’s a
great machine-learning toolbox, and we’ll use it later in the book. There are, of course,
other Python libraries: 

■ PyBrain for neural networks—Neural networks are learning algorithms that mimic
the human brain in learning mechanics and complexity. Neural networks are
often regarded as advanced and black box.

https://en.wikipedia.org/wiki/Time_complexity
http://stackoverflow.com/questions/7055652/real-world-example-of-exponential-time-complexity
http://stackoverflow.com/questions/7055652/real-world-example-of-exponential-time-complexity
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■ NLTK or Natural Language Toolkit—As the name suggests, its focus is working
with natural language. It’s an extensive library that comes bundled with a num-
ber of text corpuses to help you model your own data.

■ Pylearn2—Another machine learning toolbox but a bit less mature than Scikit-learn.
■ TensorFlow—A Python library for deep learning provided by Google.

The landscape doesn’t end with Python libraries, of course. Spark is a new Apache-
licensed machine-learning engine, specializing in real-learn-time machine learning. It’s
worth taking a look at and you can read more about it at http://spark.apache.org/.

1.4.5 NoSQL databases
If you need to store huge amounts of data, you require software that’s specialized in
managing and querying this data. Traditionally this has been the playing field of rela-
tional databases such as Oracle SQL, MySQL, Sybase IQ, and others. While they’re still
the go-to technology for many use cases, new types of databases have emerged under
the grouping of NoSQL databases.

 The name of this group can be misleading, as “No” in this context stands for “Not
Only.” A lack of functionality in SQL isn’t the biggest reason for the paradigm shift,
and many of the NoSQL databases have implemented a version of SQL themselves. But
traditional databases had shortcomings that didn’t allow them to scale well. By solving
several of the problems of traditional databases, NoSQL databases allow for a virtually
endless growth of data. These shortcomings relate to every property of big data: their
storage or processing power can’t scale beyond a single node and they have no way to
handle streaming, graph, or unstructured forms of data. 

 Many different types of databases have arisen, but they can be categorized into the
following types:

■ Column databases—Data is stored in columns, which allows algorithms to per-
form much faster queries. Newer technologies use cell-wise storage. Table-like
structures are still important.

■ Document stores—Document stores no longer use tables, but store every observa-
tion in a document. This allows for a much more flexible data scheme.

■ Streaming data—Data is collected, transformed, and aggregated not in batches
but in real time. Although we’ve categorized it here as a database to help you in
tool selection, it’s more a particular type of problem that drove creation of tech-
nologies such as Storm.

■ Key-value stores—Data isn’t stored in a table; rather you assign a key for every
value, such as org.marketing.sales.2015: 20000. This scales well but places almost
all the implementation on the developer.

■ SQL on Hadoop—Batch queries on Hadoop are in a SQL-like language that uses
the map-reduce framework in the background.

■ New SQL—This class combines the scalability of NoSQL databases with the
advantages of relational databases. They all have a SQL interface and a rela-
tional data model.

http://spark.apache.org/
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■ Graph databases—Not every problem is best stored in a table. Particular prob-
lems are more naturally translated into graph theory and stored in graph data-
bases. A classic example of this is a social network.

1.4.6 Scheduling tools

Scheduling tools help you automate repetitive tasks and trigger jobs based on events
such as adding a new file to a folder. These are similar to tools such as CRON on Linux
but are specifically developed for big data. You can use them, for instance, to start a
MapReduce task whenever a new dataset is available in a directory.

1.4.7 Benchmarking tools

This class of tools was developed to optimize your big data installation by providing
standardized profiling suites. A profiling suite is taken from a representative set of big
data jobs. Benchmarking and optimizing the big data infrastructure and configura-
tion aren’t often jobs for data scientists themselves but for a professional specialized in
setting up IT infrastructure; thus they aren’t covered in this book. Using an optimized
infrastructure can make a big cost difference. For example, if you can gain 10% on a
cluster of 100 servers, you save the cost of 10 servers.

1.4.8 System deployment

Setting up a big data infrastructure isn’t an easy task and assisting engineers in
deploying new applications into the big data cluster is where system deployment tools
shine. They largely automate the installation and configuration of big data compo-
nents. This isn’t a core task of a data scientist.

1.4.9 Service programming

Suppose that you’ve made a world-class soccer prediction application on Hadoop, and
you want to allow others to use the predictions made by your application. However,
you have no idea of the architecture or technology of everyone keen on using your
predictions. Service tools excel here by exposing big data applications to other appli-
cations as a service. Data scientists sometimes need to expose their models through
services. The best-known example is the REST service; REST stands for representa-
tional state transfer. It’s often used to feed websites with data.

1.4.10 Security

Do you want everybody to have access to all of your data? You probably need to have
fine-grained control over the access to data but don’t want to manage this on an
application-by-application basis. Big data security tools allow you to have central and
fine-grained control over access to the data. Big data security has become a topic in its
own right, and data scientists are usually only confronted with it as data consumers;
seldom will they implement the security themselves. In this book we don’t describe
how to set up security on big data because this is a job for the security expert.



15An introductory working example of Hadoop
1.5 An introductory working example of Hadoop
We’ll end this chapter with a small application in a big data context. For this we’ll use
a Hortonworks Sandbox image. This is a virtual machine created by Hortonworks to
try some big data applications on a local machine. Later on in this book you’ll see how
Juju eases the installation of Hadoop on multiple machines. 

 We’ll use a small data set of job salary data to run our first sample, but querying a
large data set of billions of rows would be equally easy. The query language will seem
like SQL, but behind the scenes a MapReduce job will run and produce a straightfor-
ward table of results, which can then be turned into a bar graph. The end result of this
exercise looks like figure 1.7. 

To get up and running as fast as possible we use a Hortonworks Sandbox inside Virtual-
Box. VirtualBox is a virtualization tool that allows you to run another operating system
inside your own operating system. In this case you can run CentOS with an existing
Hadoop installation inside your installed operating system.

 A few steps are required to get the sandbox up and running on VirtualBox. Caution,
the following steps were applicable at the time this chapter was written (February 2015): 

1 Download the virtual image from http://hortonworks.com/products/hortonworks-
sandbox/#install.

2 Start your virtual machine host. VirtualBox can be downloaded from
https://www.virtualbox.org/wiki/Downloads.

Figure 1.7 The end result: the average salary by job description

http://hortonworks.com/products/hortonworks-sandbox/#install
https://www.virtualbox.org/wiki/Downloads
http://hortonworks.com/products/hortonworks-sandbox/#install
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3 Press CTRL+I and select the virtual image from Hortonworks.
4 Click Next.
5 Click Import; after a little time your image should be imported.
6 Now select your virtual machine and click Run.
7 Give it a little time to start the CentOS distribution with the Hadoop installation

running, as shown in figure 1.8. Notice the Sandbox version here is 2.1. With
other versions things could be slightly different.

You can directly log on to the machine or use SSH to log on. For this application you’ll
use the web interface. Point your browser to the address http://127.0.0.1:8000 and
you’ll be welcomed with the screen shown in figure 1.9.

 Hortonworks has uploaded two sample sets, which you can see in HCatalog. Just
click the HCat button on the screen and you’ll see the tables available to you (fig-
ure 1.10).

Figure 1.8 Hortonworks Sandbox running within VirtualBox

http://127.0.0.1:8000
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Figure 1.9 The 
Hortonworks Sandbox 
welcome screen 
available at 
http://127.0.0.1:8000

Figure 1.10 A list 
of available tables 
in HCatalog

http://127.0.0.1:8000
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To see the contents of the data, click the Browse Data button next to the sample_07
entry to get the next screen (figure 1.11).

 This looks like an ordinary table, and Hive is a tool that lets you approach it like an
ordinary database with SQL. That’s right: in Hive you get your results using HiveQL, a
dialect of plain-old SQL. To open the Beeswax HiveQL editor, click the Beeswax but-
ton in the menu (figure 1.12).

 To get your results, execute the following query:

Select description, avg(salary) as average_salary from sample_07 group by 
description order by average_salary desc.

Click the Execute button. Hive translates your HiveQL into a MapReduce job and exe-
cutes it in your Hadoop environment, as you can see in figure 1.13.

 Best however to avoid reading the log window for now. At this point, it’s mislead-
ing. If this is your first query, then it could take 30 seconds. Hadoop is famous for its
warming periods. That discussion is for later, though.

Figure 1.11 The contents of the table
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Figure 1.12 You can execute a HiveQL command in the Beeswax HiveQL 
editor. Behind the scenes it’s translated into a MapReduce job.

Figure 1.13 The logging shows that your HiveQL is translated into a MapReduce 
job. Note: This log was from the February 2015 version of HDP, so the current 
version might look slightly different.
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After a while the result appears. Great work! The conclusion of this, as shown in fig-
ure 1.14, is that going to medical school is a good investment. Surprised?

 With this table we conclude our introductory Hadoop tutorial. 
 Although this chapter was but the beginning, it might have felt a bit overwhelming

at times. It’s recommended to leave it be for now and come back here again when all
the concepts have been thoroughly explained. Data science is a broad field so it comes
with a broad vocabulary. We hope to give you a glimpse of most of it during our time
together. Afterward, you pick and choose and hone your skills in whatever direction
interests you the most. That’s what “Introducing Data Science” is all about and we
hope you’ll enjoy the ride with us.

1.6 Summary
In this chapter you learned the following:

■ Big data is a blanket term for any collection of data sets so large or complex
that it becomes difficult to process them using traditional data management
techniques. They are characterized by the four Vs: velocity, variety, volume,
and veracity.

■ Data science involves using methods to analyze small data sets to the gargantuan
ones big data is all about.

Figure 1.14 The end result: an overview of the average salary by profession
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■ Even though the data science process isn’t linear it can be divided into steps:

1 Setting the research goal
2 Gathering data
3 Data preparation
4 Data exploration
5 Modeling
6 Presentation and automation

■ The big data landscape is more than Hadoop alone. It consists of many differ-
ent technologies that can be categorized into the following:
– File system
– Distributed programming frameworks
– Data integration
– Databases
– Machine learning
– Security
– Scheduling
– Benchmarking
– System deployment
– Service programming

■ Not every big data category is utilized heavily by data scientists. They focus
mainly on the file system, the distributed programming frameworks, databases,
and machine learning. They do come in contact with the other components,
but these are domains of other professions.

■ Data can come in different forms. The main forms are
– Structured data
– Unstructured data
– Natural language data
– Machine data
– Graph-based data
– Streaming data



The data science process
The goal of this chapter is to give an overview of the data science process without
diving into big data yet. You’ll learn how to work with big data sets, streaming data,
and text data in subsequent chapters.

2.1 Overview of the data science process
Following a structured approach to data science helps you to maximize your
chances of success in a data science project at the lowest cost. It also makes it possi-
ble to take up a project as a team, with each team member focusing on what they
do best. Take care, however: this approach may not be suitable for every type of
project or be the only way to do good data science.

 The typical data science process consists of six steps through which you’ll iter-
ate, as shown in figure 2.1.

This chapter covers
■ Understanding the flow of a data science

process
■ Discussing the steps in a data science

process
22
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Figure 2.1 summarizes the data science process and shows the main steps and actions
you’ll take during a project. The following list is a short introduction; each of the steps
will be discussed in greater depth throughout this chapter.

1 The first step of this process is setting a research goal. The main purpose here is
making sure all the stakeholders understand the what, how, and why of the proj-
ect. In every serious project this will result in a project charter.

2 The second phase is data retrieval. You want to have data available for analysis, so
this step includes finding suitable data and getting access to the data from the

Data science process

1: Setting the research goal

2: Retrieving data

3: Data preparation

4: Data exploration

5: Data modeling

6: Presentation and automation

–

Define research goal

Create project charter

–

Presenting data

Automating data analysis

–

–

Internal data

External data

–
Data retrieval

Data ownership

Data cleansing –

Physically impossible values

Errors against codebook

Missing values

Errors from data entry

Outliers

Spaces, typos, …

Data transformation

Combining data

–

–

Simple graphs

Nongraphical techniques

–

Extrapolating data

Derived measures

Link and brush

Combined graphs

Aggregating data

Creating dummies

– Set operators

Merging/joining data sets

Creating views

Model execution

Model and variable selection

Model diagnostic and model comparison

Reducing number of variables

Figure 2.1 The six steps of the data science process
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data owner. The result is data in its raw form, which probably needs polishing
and transformation before it becomes usable.

3 Now that you have the raw data, it’s time to prepare it. This includes transform-
ing the data from a raw form into data that’s directly usable in your models. To
achieve this, you’ll detect and correct different kinds of errors in the data, com-
bine data from different data sources, and transform it. If you have successfully
completed this step, you can progress to data visualization and modeling.

4 The fourth step is data exploration. The goal of this step is to gain a deep under-
standing of the data. You’ll look for patterns, correlations, and deviations based
on visual and descriptive techniques. The insights you gain from this phase will
enable you to start modeling.

5 Finally, we get to the sexiest part: model building (often referred to as “data mod-
eling” throughout this book). It is now that you attempt to gain the insights or
make the predictions stated in your project charter. Now is the time to bring
out the heavy guns, but remember research has taught us that often (but not
always) a combination of simple models tends to outperform one complicated
model. If you’ve done this phase right, you’re almost done. 

6 The last step of the data science model is presenting your results and automating the
analysis, if needed. One goal of a project is to change a process and/or make
better decisions. You may still need to convince the business that your findings
will indeed change the business process as expected. This is where you can
shine in your influencer role. The importance of this step is more apparent in
projects on a strategic and tactical level. Certain projects require you to per-
form the business process over and over again, so automating the project will
save time.

In reality you won’t progress in a linear way from step 1 to step 6. Often you’ll regress
and iterate between the different phases. 

 Following these six steps pays off in terms of a higher project success ratio and
increased impact of research results. This process ensures you have a well-defined
research plan, a good understanding of the business question, and clear deliverables
before you even start looking at data. The first steps of your process focus on getting
high-quality data as input for your models. This way your models will perform better
later on. In data science there’s a well-known saying: Garbage in equals garbage out. 

 Another benefit of following a structured approach is that you work more in pro-
totype mode while you search for the best model. When building a prototype, you’ll
probably try multiple models and won’t focus heavily on issues such as program
speed or writing code against standards. This allows you to focus on bringing busi-
ness value instead.

 Not every project is initiated by the business itself. Insights learned during analy-
sis or the arrival of new data can spawn new projects. When the data science team
generates an idea, work has already been done to make a proposition and find a
business sponsor. 
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 Dividing a project into smaller stages also allows employees to work together as a
team. It’s impossible to be a specialist in everything. You’d need to know how to
upload all the data to all the different databases, find an optimal data scheme that
works not only for your application but also for other projects inside your company,
and then keep track of all the statistical and data-mining techniques, while also being
an expert in presentation tools and business politics. That’s a hard task, and it’s why
more and more companies rely on a team of specialists rather than trying to find one
person who can do it all.

 The process we described in this section is best suited for a data science project
that contains only a few models. It’s not suited for every type of project. For instance, a
project that contains millions of real-time models would need a different approach
than the flow we describe here. A beginning data scientist should get a long way fol-
lowing this manner of working, though.

2.1.1 Don’t be a slave to the process

Not every project will follow this blueprint, because your process is subject to the prefer-
ences of the data scientist, the company, and the nature of the project you work on.
Some companies may require you to follow a strict protocol, whereas others have a
more informal manner of working. In general, you’ll need a structured approach when
you work on a complex project or when many people or resources are involved.

 The agile project model is an alternative to a sequential process with iterations. As
this methodology wins more ground in the IT department and throughout the com-
pany, it’s also being adopted by the data science community. Although the agile meth-
odology is suitable for a data science project, many company policies will favor a more
rigid approach toward data science. 

 Planning every detail of the data science process upfront isn’t always possible,
and more often than not you’ll iterate between the different steps of the process.
For instance, after the briefing you start your normal flow until you’re in the explor-
atory data analysis phase. Your graphs show a distinction in the behavior between
two groups—men and women maybe? You aren’t sure because you don’t have a vari-
able that indicates whether the customer is male or female. You need to retrieve an
extra data set to confirm this. For this you need to go through the approval process,
which indicates that you (or the business) need to provide a kind of project char-
ter. In big companies, getting all the data you need to finish your project can be
an ordeal. 

2.2 Step 1: Defining research goals and creating 
a project charter
A project starts by understanding the what, the why, and the how of your project (fig-
ure 2.2). What does the company expect you to do? And why does management place
such a value on your research? Is it part of a bigger strategic picture or a “lone wolf”
project originating from an opportunity someone detected? Answering these three
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questions (what, why, how) is the goal of the first phase, so that everybody knows what
to do and can agree on the best course of action.

 The outcome should be a clear research goal, a good understanding of the con-
text, well-defined deliverables, and a plan of action with a timetable. This information
is then best placed in a project charter. The length and formality can, of course, differ
between projects and companies. In this early phase of the project, people skills and
business acumen are more important than great technical prowess, which is why this
part will often be guided by more senior personnel.

2.2.1 Spend time understanding the goals and context of your research

An essential outcome is the research goal that states the purpose of your assignment
in a clear and focused manner. Understanding the business goals and context is criti-
cal for project success. Continue asking questions and devising examples until you
grasp the exact business expectations, identify how your project fits in the bigger pic-
ture, appreciate how your research is going to change the business, and understand
how they’ll use your results. Nothing is more frustrating than spending months
researching something until you have that one moment of brilliance and solve the
problem, but when you report your findings back to the organization, everyone imme-
diately realizes that you misunderstood their question. Don’t skim over this phase
lightly. Many data scientists fail here: despite their mathematical wit and scientific bril-
liance, they never seem to grasp the business goals and context. 

2.2.2 Create a project charter

Clients like to know upfront what they’re paying for, so after you have a good under-
standing of the business problem, try to get a formal agreement on the deliverables.
All this information is best collected in a project charter. For any significant project
this would be mandatory.

–

Define research goal

Create project charter

Data science process

1: Setting the research goal

2: Retrieving data +

3: Data preparation +

4: Data exploration +

5: Data modeling +

6: Presentation and automation +
Figure 2.2 Step 1: Setting 
the research goal
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 A project charter requires teamwork, and your input covers at least the following: 

■ A clear research goal
■ The project mission and context
■ How you’re going to perform your analysis
■ What resources you expect to use
■ Proof that it’s an achievable project, or proof of concepts
■ Deliverables and a measure of success
■ A timeline

Your client can use this information to make an estimation of the project costs and the
data and people required for your project to become a success.

2.3 Step 2: Retrieving data
The next step in data science is to retrieve the required data (figure 2.3). Sometimes
you need to go into the field and design a data collection process yourself, but most of
the time you won’t be involved in this step. Many companies will have already col-
lected and stored the data for you, and what they don’t have can often be bought
from third parties. Don’t be afraid to look outside your organization for data, because
more and more organizations are making even high-quality data freely available for
public and commercial use.

Data can be stored in many forms, ranging from simple text files to tables in a data-
base. The objective now is acquiring all the data you need. This may be difficult, and
even if you succeed, data is often like a diamond in the rough: it needs polishing to be
of any use to you.

Data science process

1: Setting the research goal

2: Retrieving data

3: Data preparation +

+

+

4: Data exploration +

5: Data modeling +

6: Presentation and automation +

–

Internal data

External data

–
Data retrieval

Data ownership

Figure 2.3 Step 2: 
Retrieving data
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2.3.1 Start with data stored within the company 

Your first act should be to assess the relevance and quality of the data that’s readily
available within your company. Most companies have a program for maintaining key
data, so much of the cleaning work may already be done. This data can be stored in
official data repositories such as databases, data marts, data warehouses, and data lakes
maintained by a team of IT professionals. The primary goal of a database is data stor-
age, while a data warehouse is designed for reading and analyzing that data. A data
mart is a subset of the data warehouse and geared toward serving a specific business
unit. While data warehouses and data marts are home to preprocessed data, data lakes
contains data in its natural or raw format. But the possibility exists that your data still
resides in Excel files on the desktop of a domain expert. 

 Finding data even within your own company can sometimes be a challenge. As
companies grow, their data becomes scattered around many places. Knowledge of
the data may be dispersed as people change positions and leave the company. Doc-
umentation and metadata aren’t always the top priority of a delivery manager, so
it’s possible you’ll need to develop some Sherlock Holmes–like skills to find all the
lost bits.

 Getting access to data is another difficult task. Organizations understand the value
and sensitivity of data and often have policies in place so everyone has access to what
they need and nothing more. These policies translate into physical and digital barriers
called Chinese walls. These “walls” are mandatory and well-regulated for customer data
in most countries. This is for good reasons, too; imagine everybody in a credit card
company having access to your spending habits. Getting access to the data may take
time and involve company politics. 

2.3.2 Don’t be afraid to shop around

If data isn’t available inside your organization, look outside your organization’s walls.
Many companies specialize in collecting valuable information. For instance, Nielsen
and GFK are well known for this in the retail industry. Other companies provide data
so that you, in turn, can enrich their services and ecosystem. Such is the case with
Twitter, LinkedIn, and Facebook.

 Although data is considered an asset more valuable than oil by certain companies,
more and more governments and organizations share their data for free with the
world. This data can be of excellent quality; it depends on the institution that creates
and manages it. The information they share covers a broad range of topics such as the
number of accidents or amount of drug abuse in a certain region and its demograph-
ics. This data is helpful when you want to enrich proprietary data but also convenient
when training your data science skills at home. Table 2.1 shows only a small selection
from the growing number of open-data providers.
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2.3.3 Do data quality checks now to prevent problems later

Expect to spend a good portion of your project time doing data correction and cleans-
ing, sometimes up to 80%. The retrieval of data is the first time you’ll inspect the data
in the data science process. Most of the errors you’ll encounter during the data-
gathering phase are easy to spot, but being too careless will make you spend many
hours solving data issues that could have been prevented during data import.

 You’ll investigate the data during the import, data preparation, and exploratory
phases. The difference is in the goal and the depth of the investigation. During data
retrieval, you check to see if the data is equal to the data in the source document and
look to see if you have the right data types. This shouldn’t take too long; when you
have enough evidence that the data is similar to the data you find in the source docu-
ment, you stop. With data preparation, you do a more elaborate check. If you did a
good job during the previous phase, the errors you find now are also present in the
source document. The focus is on the content of the variables: you want to get rid of
typos and other data entry errors and bring the data to a common standard among
the data sets. For example, you might correct USQ to USA and United Kingdom to UK.
During the exploratory phase your focus shifts to what you can learn from the data. Now
you assume the data to be clean and look at the statistical properties such as distribu-
tions, correlations, and outliers. You’ll often iterate over these phases. For instance,
when you discover outliers in the exploratory phase, they can point to a data entry
error. Now that you understand how the quality of the data is improved during the
process, we’ll look deeper into the data preparation step.

2.4 Step 3: Cleansing, integrating, and transforming data
The data received from the data retrieval phase is likely to be “a diamond in the
rough.” Your task now is to sanitize and prepare it for use in the modeling and report-
ing phase. Doing so is tremendously important because your models will perform bet-
ter and you’ll lose less time trying to fix strange output. It can’t be mentioned nearly
enough times: garbage in equals garbage out. Your model needs the data in a specific

Table 2.1 A list of open-data providers that should get you started

Open data site Description

Data.gov The home of the US Government’s open data

https://open-data.europa.eu/ The home of the European Commission’s open data

Freebase.org An open database that retrieves its information from sites like 
Wikipedia, MusicBrains, and the SEC archive

Data.worldbank.org Open data initiative from the World Bank

Aiddata.org Open data for international development

Open.fda.gov Open data from the US Food and Drug Administration

https://open-data.europa.eu/
http://www.ebook3000.org
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format, so data transformation will always come into play. It’s a good habit to correct
data errors as early on in the process as possible. However, this isn’t always possible in
a realistic setting, so you’ll need to take corrective actions in your program.

 Figure 2.4 shows the most common actions to take during the data cleansing, inte-
gration, and transformation phase.

 This mind map may look a bit abstract for now, but we’ll handle all of these
points in more detail in the next sections. You’ll see a great commonality among all
of these actions. 

2.4.1 Cleansing data

Data cleansing is a subprocess of the data science process that focuses on removing
errors in your data so your data becomes a true and consistent representation of the
processes it originates from.

 By “true and consistent representation” we imply that at least two types of errors
exist. The first type is the interpretation error, such as when you take the value in your

Data science process

3: Data preparation –

Data cleansing –

Physically impossible values

Errors against codebook

Missing values

Errors from data entry

Outliers

Spaces, typos, …

Data transformation

Combining data

–

Extrapolating data

Derived measures

Aggregating data

Creating dummies

– Set operators

Merging/joining data sets

Creating views

Reducing number of variables

1: Setting the research goal +

2: Retrieving data +

4: Data exploration +

5: Data modeling +

6: Presentation and automation +

Figure 2.4 Step 3: Data preparation
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data for granted, like saying that a person’s age is greater than 300 years. The second
type of error points to inconsistencies between data sources or against your company’s
standardized values. An example of this class of errors is putting “Female” in one table
and “F” in another when they represent the same thing: that the person is female.
Another example is that you use Pounds in one table and Dollars in another. Too
many possible errors exist for this list to be exhaustive, but table 2.2 shows an overview
of the types of errors that can be detected with easy checks—the “low hanging fruit,”
as it were.

Sometimes you’ll use more advanced methods, such as simple modeling, to find and
identify data errors; diagnostic plots can be especially insightful. For example, in fig-
ure 2.5 we use a measure to identify data points that seem out of place. We do a
regression to get acquainted with the data and detect the influence of individual
observations on the regression line. When a single observation has too much influ-
ence, this can point to an error in the data, but it can also be a valid point. At the data
cleansing stage, these advanced methods are, however, rarely applied and often
regarded by certain data scientists as overkill.

 Now that we’ve given the overview, it’s time to explain these errors in more detail.

Table 2.2 An overview of common errors

General solution 

Try to fix the problem early in the data acquisition chain or else fix it in the program.

Error description Possible solution

Errors pointing to false values within one data set

Mistakes during data entry Manual overrules

Redundant white space Use string functions

Impossible values Manual overrules

Missing values Remove observation or value

Outliers Validate and, if erroneous, treat as missing value 
(remove or insert)

Errors pointing to inconsistencies between data sets

Deviations from a code book Match on keys or else use manual overrules

Different units of measurement Recalculate

Different levels of aggregation Bring to same level of measurement by aggregation 
or extrapolation
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DATA ENTRY ERRORS

Data collection and data entry are error-prone processes. They often require human
intervention, and because humans are only human, they make typos or lose their con-
centration for a second and introduce an error into the chain. But data collected by
machines or computers isn’t free from errors either. Errors can arise from human
sloppiness, whereas others are due to machine or hardware failure. Examples of
errors originating from machines are transmission errors or bugs in the extract, trans-
form, and load phase (ETL). 

 For small data sets you can check every value by hand. Detecting data errors when
the variables you study don’t have many classes can be done by tabulating the data
with counts. When you have a variable that can take only two values: “Good” and
“Bad”, you can create a frequency table and see if those are truly the only two values
present. In table 2.3, the values “Godo” and “Bade” point out something went wrong
in at least 16 cases.

Table 2.3 Detecting outliers on simple variables with 
a frequency table

Value Count

Good 1598647

Bad 1354468

Godo 15

Bade 1

Distance

Row number

A single outlier can throw
off a regression estimate.

Regression line

influenced by outlier

Normal regression line
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Figure 2.5 The encircled point influences the model heavily and is worth investigating because it 
can point to a region where you don’t have enough data or might indicate an error in the data, but it 
also can be a valid data point.
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Most errors of this type are easy to fix with simple assignment statements and if-then-
else rules:

if x == “Godo”:
    x = “Good”
if x == “Bade”:
    x = “Bad”

REDUNDANT WHITESPACE

Whitespaces tend to be hard to detect but cause errors like other redundant charac-
ters would. Who hasn’t lost a few days in a project because of a bug that was caused by
whitespaces at the end of a string? You ask the program to join two keys and notice
that observations are missing from the output file. After looking for days through
the code, you finally find the bug. Then comes the hardest part: explaining the
delay to the project stakeholders. The cleaning during the ETL phase wasn’t well
executed, and keys in one table contained a whitespace at the end of a string. This
caused a mismatch of keys such as “FR ” – “FR”, dropping the observations that
couldn’t be matched.

 If you know to watch out for them, fixing redundant whitespaces is luckily easy
enough in most programming languages. They all provide string functions that will
remove the leading and trailing whitespaces. For instance, in Python you can use the
strip() function to remove leading and trailing spaces.

FIXING CAPITAL LETTER MISMATCHES Capital letter mismatches are common.
Most programming languages make a distinction between “Brazil” and “bra-
zil”. In this case you can solve the problem by applying a function that returns
both strings in lowercase, such as .lower() in Python. “Brazil”.lower() ==
“brazil”.lower() should result in true.

IMPOSSIBLE VALUES AND SANITY CHECKS

Sanity checks are another valuable type of data check. Here you check the value
against physically or theoretically impossible values such as people taller than 3
meters or someone with an age of 299 years. Sanity checks can be directly expressed
with rules:

check = 0 <= age <= 120

OUTLIERS

An outlier is an observation that seems to be distant from other observations or, more
specifically, one observation that follows a different logic or generative process than
the other observations. The easiest way to find outliers is to use a plot or a table with
the minimum and maximum values. An example is shown in figure 2.6.

 The plot on the top shows no outliers, whereas the plot on the bottom shows possi-
ble outliers on the upper side when a normal distribution is expected. The normal dis-
tribution, or Gaussian distribution, is the most common distribution in natural sciences.



34 CHAPTER 2 The data science process
It shows most cases occurring around the average of the distribution and the occur-
rences decrease when further away from it. The high values in the bottom graph can
point to outliers when assuming a normal distribution. As we saw earlier with the
regression example, outliers can gravely influence your data modeling, so investigate
them first. 

DEALING WITH MISSING VALUES

Missing values aren’t necessarily wrong, but you still need to handle them separately;
certain modeling techniques can’t handle missing values. They might be an indicator
that something went wrong in your data collection or that an error happened in the
ETL process. Common techniques data scientists use are listed in table 2.4.
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Figure 2.6 Distribution plots are helpful in detecting outliers and helping you understand the variable.
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Which technique to use at what time is dependent on your particular case. If, for
instance, you don’t have observations to spare, omitting an observation is probably
not an option. If the variable can be described by a stable distribution, you could
impute based on this. However, maybe a missing value actually means “zero”? This can
be the case in sales for instance: if no promotion is applied on a customer basket, that
customer’s promo is missing, but most likely it’s also 0, no price cut. 

DEVIATIONS FROM A CODE BOOK

Detecting errors in larger data sets against a code book or against standardized values
can be done with the help of set operations. A code book is a description of your data,
a form of metadata. It contains things such as the number of variables per observa-
tion, the number of observations, and what each encoding within a variable means.
(For instance “0” equals “negative”, “5” stands for “very positive”.) A code book also
tells the type of data you’re looking at: is it hierarchical, graph, something else? 

 You look at those values that are present in set A but not in set B. These are values
that should be corrected. It’s no coincidence that sets are the data structure that we’ll
use when we’re working in code. It’s a good habit to give your data structures addi-
tional thought; it can save work and improve the performance of your program.

 If you have multiple values to check, it’s better to put them from the code book
into a table and use a difference operator to check the discrepancy between both
tables. This way, you can profit from the power of a database directly. More on this in
chapter 5.

Table 2.4 An overview of techniques to handle missing data

Technique Advantage Disadvantage

Omit the values Easy to perform You lose the information from an 
observation

Set value to null Easy to perform Not every modeling technique 
and/or implementation can han-
dle null values

Impute a static value such as 0 
or the mean

Easy to perform

You don’t lose information 
from the other variables in 
the observation

Can lead to false estimations 
from a model

Impute a value from an esti-
mated or theoretical distribution

Does not disturb the model 
as much

Harder to execute

You make data assumptions

Modeling the value (nondepen-
dent)

Does not disturb the model 
too much

Can lead to too much confidence 
in the model

Can artificially raise depen-
dence among the variables

Harder to execute

You make data assumptions
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DIFFERENT UNITS OF MEASUREMENT

When integrating two data sets, you have to pay attention to their respective units of
measurement. An example of this would be when you study the prices of gasoline in
the world. To do this you gather data from different data providers. Data sets can con-
tain prices per gallon and others can contain prices per liter. A simple conversion will
do the trick in this case.

DIFFERENT LEVELS OF AGGREGATION

Having different levels of aggregation is similar to having different types of measure-
ment. An example of this would be a data set containing data per week versus one
containing data per work week. This type of error is generally easy to detect, and sum-
marizing (or the inverse, expanding) the data sets will fix it.

 After cleaning the data errors, you combine information from different data
sources. But before we tackle this topic we’ll take a little detour and stress the impor-
tance of cleaning data as early as possible.

2.4.2 Correct errors as early as possible

A good practice is to mediate data errors as early as possible in the data collection
chain and to fix as little as possible inside your program while fixing the origin of the
problem. Retrieving data is a difficult task, and organizations spend millions of dollars
on it in the hope of making better decisions. The data collection process is error-
prone, and in a big organization it involves many steps and teams.

 Data should be cleansed when acquired for many reasons:

■ Not everyone spots the data anomalies. Decision-makers may make costly mis-
takes on information based on incorrect data from applications that fail to cor-
rect for the faulty data.

■ If errors are not corrected early on in the process, the cleansing will have to be
done for every project that uses that data.

■ Data errors may point to a business process that isn’t working as designed. For
instance, both authors worked at a retailer in the past, and they designed a cou-
poning system to attract more people and make a higher profit. During a data
science project, we discovered clients who abused the couponing system and
earned money while purchasing groceries. The goal of the couponing system
was to stimulate cross-selling, not to give products away for free. This flaw cost
the company money and nobody in the company was aware of it. In this case
the data wasn’t technically wrong but came with unexpected results.

■ Data errors may point to defective equipment, such as broken transmission
lines and defective sensors.

■ Data errors can point to bugs in software or in the integration of software that
may be critical to the company. While doing a small project at a bank we discov-
ered that two software applications used different local settings. This caused
problems with numbers greater than 1,000. For one app the number 1.000
meant one, and for the other it meant one thousand.
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Fixing the data as soon as it’s captured is nice in a perfect world. Sadly, a data scientist
doesn’t always have a say in the data collection and simply telling the IT department to
fix certain things may not make it so. If you can’t correct the data at the source, you’ll
need to handle it inside your code. Data manipulation doesn’t end with correcting
mistakes; you still need to combine your incoming data. 

 As a final remark: always keep a copy of your original data (if possible). Sometimes
you start cleaning data but you’ll make mistakes: impute variables in the wrong way,
delete outliers that had interesting additional information, or alter data as the result
of an initial misinterpretation. If you keep a copy you get to try again. For “flowing
data” that’s manipulated at the time of arrival, this isn’t always possible and you’ll have
accepted a period of tweaking before you get to use the data you are capturing. One
of the more difficult things isn’t the data cleansing of individual data sets however, it’s
combining different sources into a whole that makes more sense. 

2.4.3 Combining data from different data sources

Your data comes from several different places, and in this substep we focus on inte-
grating these different sources. Data varies in size, type, and structure, ranging from
databases and Excel files to text documents. 

 We focus on data in table structures in this chapter for the sake of brevity. It’s easy
to fill entire books on this topic alone, and we choose to focus on the data science pro-
cess instead of presenting scenarios for every type of data. But keep in mind that other
types of data sources exist, such as key-value stores, document stores, and so on, which
we’ll handle in more appropriate places in the book.

THE DIFFERENT WAYS OF COMBINING DATA

You can perform two operations to combine information from different data sets. The
first operation is joining: enriching an observation from one table with information
from another table. The second operation is appending or stacking: adding the observa-
tions of one table to those of another table.

 When you combine data, you have the option to create a new physical table or a
virtual table by creating a view. The advantage of a view is that it doesn’t consume
more disk space. Let’s elaborate a bit on these methods.

JOINING TABLES

Joining tables allows you to combine the information of one observation found in one
table with the information that you find in another table. The focus is on enriching a
single observation. Let’s say that the first table contains information about the pur-
chases of a customer and the other table contains information about the region where
your customer lives. Joining the tables allows you to combine the information so that
you can use it for your model, as shown in figure 2.7.

 To join tables, you use variables that represent the same object in both tables, such
as a date, a country name, or a Social Security number. These common fields are
known as keys. When these keys also uniquely define the records in the table they
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are called primary keys. One table may have buying behavior and the other table may
have demographic information on a person. In figure 2.7 both tables contain the cli-
ent name, and this makes it easy to enrich the client expenditures with the region of
the client. People who are acquainted with Excel will notice the similarity with using a
lookup function. 

 The number of resulting rows in the output table depends on the exact join type
that you use. We introduce the different types of joins later in the book.

APPENDING TABLES

Appending or stacking tables is effectively adding observations from one table to
another table. Figure 2.8 shows an example of appending tables. One table contains
the observations from the month January and the second table contains observations
from the month February. The result of appending these tables is a larger one with
the observations from January as well as February. The equivalent operation in set the-
ory would be the union, and this is also the command in SQL, the common language
of relational databases. Other set operators are also used in data science, such as set
difference and intersection.
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Figure 2.7 Joining two tables 
on the Item and Region keys
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USING VIEWS TO SIMULATE DATA JOINS AND APPENDS

To avoid duplication of data, you virtually combine data with views. In the previous
example we took the monthly data and combined it in a new physical table. The prob-
lem is that we duplicated the data and therefore needed more storage space. In the
example we’re working with, that may not cause problems, but imagine that every
table consists of terabytes of data; then it becomes problematic to duplicate the data.
For this reason, the concept of a view was invented. A view behaves as if you’re work-
ing on a table, but this table is nothing but a virtual layer that combines the tables for
you. Figure 2.9 shows how the sales data from the different months is combined virtu-
ally into a yearly sales table instead of duplicating the data. Views do come with a draw-
back, however. While a table join is only performed once, the join that creates the view
is recreated every time it’s queried, using more processing power than a pre-calculated
table would have.

ENRICHING AGGREGATED MEASURES

Data enrichment can also be done by adding calculated information to the table, such
as the total number of sales or what percentage of total stock has been sold in a cer-
tain region (figure 2.10).

 Extra measures such as these can add perspective. Looking at figure 2.10, we now
have an aggregated data set, which in turn can be used to calculate the participation
of each product within its category. This could be useful during data exploration
but more so when creating data models. As always this depends on the exact case, but
from our experience models with “relative measures” such as % sales (quantity of
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Figure 2.9 A view helps you combine data without replication.
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product sold/total quantity sold) tend to outperform models that use the raw num-
bers (quantity sold) as input. 

2.4.4 Transforming data

Certain models require their data to be in a certain shape. Now that you’ve cleansed
and integrated the data, this is the next task you’ll perform: transforming your data so
it takes a suitable form for data modeling. 

TRANSFORMING DATA

Relationships between an input variable and an output variable aren’t always linear.
Take, for instance, a relationship of the form y = aebx. Taking the log of the indepen-
dent variables simplifies the estimation problem dramatically. Figure 2.11 shows how
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Figure 2.10 Growth, sales by product class, and rank sales are examples of derived and 
aggregate measures.
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Figure 2.11 Transforming x to log x makes the relationship between x and y linear (right), compared 
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transforming the input variables greatly simplifies the estimation problem. Other
times you might want to combine two variables into a new variable.

REDUCING THE NUMBER OF VARIABLES

Sometimes you have too many variables and need to reduce the number because they
don’t add new information to the model. Having too many variables in your model
makes the model difficult to handle, and certain techniques don’t perform well when
you overload them with too many input variables. For instance, all the techniques
based on a Euclidean distance perform well only up to 10 variables. 

Data scientists use special methods to reduce the number of variables but retain the
maximum amount of data. We’ll discuss several of these methods in chapter 3. Fig-
ure 2.12 shows how reducing the number of variables makes it easier to understand the

Euclidean distance
Euclidean distance or “ordinary” distance is an extension to one of the first things
anyone learns in mathematics about triangles (trigonometry): Pythagoras’s leg theo-
rem. If you know the length of the two sides next to the 90° angle of a right-angled
triangle you can easily derive the length of the remaining side (hypotenuse). The for-
mula for this is hypotenuse = . The Euclidean distance between
two points in a two-dimensional plane is calculated using a similar formula: distance

= . If you want to expand this distance calculation to more
dimensions, add the coordinates of the point within those higher dimensions to the for-

mula. For three dimensions we get distance = .

side1 + side2 2

x1 x2– 2 y1 y2– 2+ 

x1 x2– 2 y1 y2– 2 z1 z2– 2+ + 

–8 80
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Figure 2.12 Variable 
reduction allows you to 
reduce the number of 
variables while 
maintaining as much 
information as possible.
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key values. It also shows how two variables account for 50.6% of the variation within
the data set (component1 = 27.8% + component2 = 22.8%). These variables, called
“component1” and “component2,” are both combinations of the original variables.
They’re the principal components of the underlying data structure. If it isn’t all that clear
at this point, don’t worry, principal components analysis (PCA) will be explained more
thoroughly in chapter 3. What you can also see is the presence of a third (unknown)
variable that splits the group of observations into two.

TURNING VARIABLES INTO DUMMIES

Variables can be turned into dummy variables (figure 2.13). Dummy variables can
only take two values: true(1) or false(0). They’re used to indicate the absence of a
categorical effect that may explain the observation. In this case you’ll make separate
columns for the classes stored in one variable and indicate it with 1 if the class is
present and 0 otherwise. An example is turning one column named Weekdays into
the columns Monday through Sunday. You use an indicator to show if the observa-
tion was on a Monday; you put 1 on Monday and 0 elsewhere. Turning variables into
dummies is a technique that’s used in modeling and is popular with, but not exclu-
sive to, economists.

 In this section we introduced the third step in the data science process—cleaning,
transforming, and integrating data—which changes your raw data into usable input
for the modeling phase. The next step in the data science process is to get a better
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Figure 2.13 Turning variables into 
dummies is a data transformation that 
breaks a variable that has multiple 
classes into multiple variables, each 
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understanding of the content of the data and the relationships between the variables
and observations; we explore this in the next section.

2.5 Step 4: Exploratory data analysis
During exploratory data analysis you take a deep dive into the data (see figure 2.14).
Information becomes much easier to grasp when shown in a picture, therefore you
mainly use graphical techniques to gain an understanding of your data and the inter-
actions between variables. This phase is about exploring data, so keeping your mind
open and your eyes peeled is essential during the exploratory data analysis phase. The
goal isn’t to cleanse the data, but it’s common that you’ll still discover anomalies you
missed before, forcing you to take a step back and fix them.

The visualization techniques you use in this phase range from simple line graphs or
histograms, as shown in figure 2.15, to more complex diagrams such as Sankey and
network graphs. Sometimes it’s useful to compose a composite graph from simple
graphs to get even more insight into the data. Other times the graphs can be ani-
mated or made interactive to make it easier and, let’s admit it, way more fun. An
example of an interactive Sankey diagram can be found at http://bost.ocks.org/
mike/sankey/.

 Mike Bostock has interactive examples of almost any type of graph. It’s worth
spending time on his website, though most of his examples are more useful for data
presentation than data exploration.

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

5: Data modeling +

6: Presentation and automation +

4: Data exploration –

Simple graphs

Nongraphical techniques

Link and brush

Combined graphs

Figure 2.14 Step 4: 
Data exploration

http://bost.ocks.org/mike/sankey/
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Figure 2.15 From top to bottom, a bar chart, a line plot, and a distribution 
are some of the graphs used in exploratory analysis.
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These plots can be combined to provide even more insight, as shown in figure 2.16.
 Overlaying several plots is common practice. In figure 2.17 we combine simple

graphs into a Pareto diagram, or 80-20 diagram.
 Figure 2.18 shows another technique: brushing and linking. With brushing and link-

ing you combine and link different graphs and tables (or views) so changes in one
graph are automatically transferred to the other graphs. An elaborate example of this
can be found in chapter 9. This interactive exploration of data facilitates the discovery
of new insights.

 Figure 2.18 shows the average score per country for questions. Not only does this
indicate a high correlation between the answers, but it’s easy to see that when you
select several points on a subplot, the points will correspond to similar points on the
other graphs. In this case the selected points on the left graph correspond to points
on the middle and right graphs, although they correspond better in the middle and
right graphs.
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Figure 2.16 Drawing multiple plots together can help you understand the structure of your data 
over multiple variables.
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Two other important graphs are the histogram shown in figure 2.19 and the boxplot
shown in figure 2.20.

 In a histogram a variable is cut into discrete categories and the number of occur-
rences in each category are summed up and shown in the graph. The boxplot, on the
other hand, doesn’t show how many observations are present but does offer an
impression of the distribution within categories. It can show the maximum, minimum,
median, and other characterizing measures at the same time.
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Figure 2.17 A Pareto diagram is a combination of the values and a cumulative distribution. It’s easy 
to see from this diagram that the first 50% of the countries contain slightly less than 80% of the total 
amount. If this graph represented customer buying power and we sell expensive products, we probably 
don’t need to spend our marketing budget in every country; we could start with the first 50%.

0 0.05 0.1 0.2

Q28_1

0.15

0.8

0.6

0.4

0.2

0

0 0.05 0.1 0.2

Q28_2

0.15

0.8

0.6

0.4

0.2

0

0 0.05 0.1 0.2

Q28_3

0.15

0.8

0.6

0.4

0.2

0

Figure 2.18 Link and brush allows you to select observations in one plot and highlight the same 
observations in the other plots.
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The techniques we described in this phase are mainly visual, but in practice they’re
certainly not limited to visualization techniques. Tabulation, clustering, and other
modeling techniques can also be a part of exploratory analysis. Even building simple
models can be a part of this step. 

 Now that you’ve finished the data exploration phase and you’ve gained a good
grasp of your data, it’s time to move on to the next phase: building models.

Frequency

Age

60

10

8

6

4

2

0
65 70 75 80 85 90
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Figure 2.20 Example boxplot: each user category has a distribution of the 
appreciation each has for a certain picture on a photography website.
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2.6 Step 5: Build the models
With clean data in place and a good understanding of the content, you’re ready to
build models with the goal of making better predictions, classifying objects, or gain-
ing an understanding of the system that you’re modeling. This phase is much more
focused than the exploratory analysis step, because you know what you’re looking
for and what you want the outcome to be. Figure 2.21 shows the components of
model building.

The techniques you’ll use now are borrowed from the field of machine learning, data
mining, and/or statistics. In this chapter we only explore the tip of the iceberg of
existing techniques, while chapter 3 introduces them properly. It’s beyond the scope
of this book to give you more than a conceptual introduction, but it’s enough to get
you started; 20% of the techniques will help you in 80% of the cases because tech-
niques overlap in what they try to accomplish. They often achieve their goals in similar
but slightly different ways. 

 Building a model is an iterative process. The way you build your model depends on
whether you go with classic statistics or the somewhat more recent machine learning
school, and the type of technique you want to use. Either way, most models consist of
the following main steps:

1 Selection of a modeling technique and variables to enter in the model
2 Execution of the model
3 Diagnosis and model comparison

2.6.1 Model and variable selection

You’ll need to select the variables you want to include in your model and a modeling
technique. Your findings from the exploratory analysis should already give a fair idea

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

4: Data exploration +

6: Presentation and automation +

5: Data modeling – Model execution

Model and variable selection

Model diagnostic and model comparison

Figure 2.21 Step 5: 
Data modeling
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of what variables will help you construct a good model. Many modeling techniques
are available, and choosing the right model for a problem requires judgment on your
part. You’ll need to consider model performance and whether your project meets all
the requirements to use your model, as well as other factors: 

■ Must the model be moved to a production environment and, if so, would it be
easy to implement?

■ How difficult is the maintenance on the model: how long will it remain relevant
if left untouched?

■ Does the model need to be easy to explain?

When the thinking is done, it’s time for action. 

2.6.2 Model execution

Once you’ve chosen a model you’ll need to implement it in code.

REMARK This is the first time we’ll go into actual Python code execution so
make sure you have a virtual env up and running. Knowing how to set this up
is required knowledge, but if it’s your first time, check out appendix D. 

All code from this chapter can be downloaded from https://www.manning
.com/books/introducing-data-science. This chapter comes with an ipython
(.ipynb) notebook and Python (.py) file.

Luckily, most programming languages, such as Python, already have libraries such as
StatsModels or Scikit-learn. These packages use several of the most popular tech-
niques. Coding a model is a nontrivial task in most cases, so having these libraries
available can speed up the process. As you can see in the following code, it’s fairly easy
to use linear regression (figure 2.22) with StatsModels or Scikit-learn. Doing this your-
self would require much more effort even for the simple techniques. The following
listing shows the execution of a linear prediction model.

import statsmodels.api as sm   
import numpy as np             
predictors = np.random.random(1000).reshape(500,2)
target = predictors.dot(np.array([0.4, 0.6])) + np.random.random(500)    
lmRegModel = sm.OLS(target,predictors)  
result = lmRegModel.fit()
result.summary() 

Listing 2.1 Executing a linear prediction model on semi-random data

Imports required 
Python modules.

Creates random data for
predictors (x-values) and

semi-random data for
the target (y-values) of the

model. We use predictors as
input to create the target so
we infer a correlation here.

Fits linear 
regression 
on data.Shows model 

fit statistics.

https://www.manning.com/books/introducing-data-science
https://www.manning.com/books/introducing-data-science
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Okay, we cheated here, quite heavily so. We created predictor values that are meant to pre-
dict how the target variables behave. For a linear regression, a “linear relation” between
each x (predictor) and the y (target) variable is assumed, as shown in figure 2.22.

 We, however, created the target variable, based on the predictor by adding a bit of
randomness. It shouldn’t come as a surprise that this gives us a well-fitting model. The
results.summary() outputs the table in figure 2.23. Mind you, the exact outcome
depends on the random variables you got.

Y (target variable)

X (predictor variable)

Figure 2.22 Linear 
regression tries to fit a 
line while minimizing the 
distance to each point

Model fit: higher is
better but too high is
suspicious.

p-value to show whether
a predictor variable has
a significant influence on
the target. Lower is better
and <0.05 is often
considered “significant.”

Linear equation coefficients.
y = 0.7658xl + 1.1252x2.

Figure 2.23 Linear regression 
model information output
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Let’s ignore most of the output we got here and focus on the most important parts: 

■ Model fit—For this the R-squared or adjusted R-squared is used. This measure
is an indication of the amount of variation in the data that gets captured by
the model. The difference between the adjusted R-squared and the R-squared
is minimal here because the adjusted one is the normal one + a penalty for
model complexity. A model gets complex when many variables (or features) are
introduced. You don’t need a complex model if a simple model is available, so
the adjusted R-squared punishes you for overcomplicating. At any rate, 0.893 is
high, and it should be because we cheated. Rules of thumb exist, but for models
in businesses, models above 0.85 are often considered good. If you want to win
a competition you need in the high 90s. For research however, often very low
model fits (<0.2 even) are found. What’s more important there is the influence
of the introduced predictor variables.

■ Predictor variables have a coefficient—For a linear model this is easy to interpret. In
our example if you add “1” to x1, it will change y by “0.7658”. It’s easy to see how
finding a good predictor can be your route to a Nobel Prize even though your
model as a whole is rubbish. If, for instance, you determine that a certain gene
is significant as a cause for cancer, this is important knowledge, even if that
gene in itself doesn’t determine whether a person will get cancer. The example
here is classification, not regression, but the point remains the same: detecting
influences is more important in scientific studies than perfectly fitting models
(not to mention more realistic). But when do we know a gene has that impact?
This is called significance.

■ Predictor significance—Coefficients are great, but sometimes not enough evi-
dence exists to show that the influence is there. This is what the p-value is
about. A long explanation about type 1 and type 2 mistakes is possible here
but the short explanations would be: if the p-value is lower than 0.05, the vari-
able is considered significant for most people. In truth, this is an arbitrary
number. It means there’s a 5% chance the predictor doesn’t have any influ-
ence. Do you accept this 5% chance to be wrong? That’s up to you. Several
people introduced the extremely significant (p<0.01) and marginally signifi-
cant thresholds (p<0.1).

Linear regression works if you want to predict a value, but what if you want to classify
something? Then you go to classification models, the best known among them being
k-nearest neighbors.

As shown in figure 2.24, k-nearest neighbors looks at labeled points nearby an
unlabeled point and, based on this, makes a prediction of what the label should be.
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tor 
 

Let’s try it in Python code using the Scikit learn library, as in this next listing. 

from sklearn import neighbors 
predictors = np.random.random(1000).reshape(500,2)
target = np.around(predictors.dot(np.array([0.4, 0.6])) +  

np.random.random(500))
clf = neighbors.KNeighborsClassifier(n_neighbors=10)  
knn = clf.fit(predictors,target)
knn.score(predictors, target) 

As before, we construct random correlated data and surprise, surprise we get 85% of
cases correctly classified. If we want to look in depth, we need to score the model.
Don’t let knn.score() fool you; it returns the model accuracy, but by “scoring a
model” we often mean applying it on data to make a prediction. 

prediction = knn.predict(predictors)

Now we can use the prediction and compare it to the real thing using a confusion
matrix.

metrics.confusion_matrix(target,prediction)

We get a 3-by-3 matrix as shown in figure 2.25.

Listing 2.2 Executing k-nearest neighbor classification on semi-random data

(a) 1-nearest neighbor
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Figure 2.24 K-nearest neighbor techniques look at the k-nearest point to make a prediction.

Imports modules.
Creates random predic
data and semi-random
target data based on 
predictor data.

Fits 10-nearest 
neighbors model.

Gets model fit score: what 
percent of the classification 
was correct?



53Step 5: Build the models
The confusion matrix shows we have correctly predicted 17+405+5 cases, so that’s
good. But is it really a surprise? No, for the following reasons:

■ For one, the classifier had but three options; marking the difference with last
time np.around() will round the data to its nearest integer. In this case that’s
either 0, 1, or 2. With only 3 options, you can’t do much worse than 33% cor-
rect on 500 guesses, even for a real random distribution like flipping a coin.

■ Second, we cheated again, correlating the response variable with the predic-
tors. Because of the way we did this, we get most observations being a “1”. By
guessing “1” for every case we’d already have a similar result.

■ We compared the prediction with the real values, true, but we never predicted
based on fresh data. The prediction was done using the same data as the data
used to build the model. This is all fine and dandy to make yourself feel good,
but it gives you no indication of whether your model will work when it encoun-
ters truly new data. For this we need a holdout sample, as will be discussed in
the next section.

Don’t be fooled. Typing this code won’t work miracles by itself. It might take a while to
get the modeling part and all its parameters right. 

 To be honest, only a handful of techniques have industry-ready implementa-
tions in Python. But it’s fairly easy to use models that are available in R within Python
with the help of the RPy library. RPy provides an interface from Python to R. R is a
free software environment, widely used for statistical computing. If you haven’t
already, it’s worth at least a look, because in 2014 it was still one of the most popular

Actual value

Predicted value

Number of correctly
predicted cases

Figure 2.25 Confusion matrix: it shows how many cases were correctly classified and incorrectly 
classified by comparing the prediction with the real values. Remark: the classes (0,1,2) were 
added in the figure for clarification.



54 CHAPTER 2 The data science process
(if not the most popular) programming languages for data science. For more infor-
mation, see http://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-
data-science.html.

2.6.3 Model diagnostics and model comparison

You’ll be building multiple models from which you then choose the best one based on
multiple criteria. Working with a holdout sample helps you pick the best-performing
model. A holdout sample is a part of the data you leave out of the model building so it
can be used to evaluate the model afterward. The principle here is simple: the model
should work on unseen data. You use only a fraction of your data to estimate the
model and the other part, the holdout sample, is kept out of the equation. The model
is then unleashed on the unseen data and error measures are calculated to evaluate it.
Multiple error measures are available, and in figure 2.26 we show the general idea on
comparing models. The error measure used in the example is the mean square error.

Mean square error is a simple measure: check for every prediction how far it was from
the truth, square this error, and add up the error of every prediction.

 Figure 2.27 compares the performance of two models to predict the order size
from the price. The first model is size = 3 * price and the second model is size = 10. To

MSE 1
n
--- Ŷi Yi–( )2

i 1=

n

∑= Figure 2.26 Formula for 
mean square error
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Figure 2.27 A holdout sample helps you compare models and ensures that you can 
generalize results to data that the model has not yet seen.

http://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-data-science.html
http://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-data-science.html
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estimate the models, we use 800 randomly chosen observations out of 1,000 (or 80%),
without showing the other 20% of data to the model. Once the model is trained, we
predict the values for the other 20% of the variables based on those for which we
already know the true value, and calculate the model error with an error measure.
Then we choose the model with the lowest error. In this example we chose model 1
because it has the lowest total error.

 Many models make strong assumptions, such as independence of the inputs, and
you have to verify that these assumptions are indeed met. This is called model diagnostics.

 This section gave a short introduction to the steps required to build a valid model.
Once you have a working model you’re ready to go to the last step.

2.7 Step 6: Presenting findings and building applications 
on top of them
After you’ve successfully analyzed the data and built a well-performing model, you’re
ready to present your findings to the world (figure 2.28). This is an exciting part; all
your hours of hard work have paid off and you can explain what you found to the
stakeholders. 

Sometimes people get so excited about your work that you’ll need to repeat it over
and over again because they value the predictions of your models or the insights that
you produced. For this reason, you need to automate your models. This doesn’t always
mean that you have to redo all of your analysis all the time. Sometimes it’s sufficient
that you implement only the model scoring; other times you might build an applica-
tion that automatically updates reports, Excel spreadsheets, or PowerPoint presenta-
tions. The last stage of the data science process is where your soft skills will be most
useful, and yes, they’re extremely important. In fact, we recommend you find dedi-
cated books and other information on the subject and work through them, because
why bother doing all this tough work if nobody listens to what you have to say?

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

4: Data exploration +

5: Data modeling +

6: Presentation and automation –

Presenting data

Automating data analysis

Figure 2.28 Step 6: 
Presentation and 
automation
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 If you’ve done this right, you now have a working model and satisfied stakeholders,
so we can conclude this chapter here.

2.8 Summary
In this chapter you learned the data science process consists of six steps:

■ Setting the research goal—Defining the what, the why, and the how of your project
in a project charter.

■ Retrieving data—Finding and getting access to data needed in your project. This
data is either found within the company or retrieved from a third party.

■ Data preparation—Checking and remediating data errors, enriching the data
with data from other data sources, and transforming it into a suitable format for
your models.

■ Data exploration—Diving deeper into your data using descriptive statistics and
visual techniques.

■ Data modeling—Using machine learning and statistical techniques to achieve
your project goal.

■ Presentation and automation—Presenting your results to the stakeholders and
industrializing your analysis process for repetitive reuse and integration with
other tools.



Machine learning
Do you know how computers learn to protect you from malicious persons? Com-
puters filter out more than 60% of your emails and can learn to do an even better
job at protecting you over time. 

 Can you explicitly teach a computer to recognize persons in a picture? It’s possi-
ble but impractical to encode all the possible ways to recognize a person, but you’ll
soon see that the possibilities are nearly endless. To succeed, you’ll need to add a
new skill to your toolkit, machine learning, which is the topic of this chapter.

This chapter covers
■ Understanding why data scientists use

machine learning
■ Identifying the most important Python libraries

for machine learning
■ Discussing the process for model building
■ Using machine learning techniques
■ Gaining hands-on experience with machine

learning
57
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3.1 What is machine learning and why should you care 
about it?

“Machine learning is a field of study that gives computers the ability to
learn without being explicitly programmed.” 

—Arthur Samuel, 19591

The definition of machine learning coined by Arthur Samuel is often quoted and is
genius in its broadness, but it leaves you with the question of how the computer
learns. To achieve machine learning, experts develop general-purpose algorithms that
can be used on large classes of learning problems. When you want to solve a specific
task you only need to feed the algorithm more specific data. In a way, you’re program-
ming by example. In most cases a computer will use data as its source of information
and compare its output to a desired output and then correct for it. The more data or
“experience” the computer gets, the better it becomes at its designated job, like a
human does.

 When machine learning is seen as a process, the following definition is insightful: 

“Machine learning is the process by which a computer can work more
accurately as it collects and learns from the data it is given.” 

—Mike Roberts2

For example, as a user writes more text messages on a phone, the phone learns more
about the messages’ common vocabulary and can predict (autocomplete) their words
faster and more accurately.

 In the broader field of science, machine learning is a subfield of artificial intelli-
gence and is closely related to applied mathematics and statistics. All this might sound
a bit abstract, but machine learning has many applications in everyday life. 

3.1.1 Applications for machine learning in data science

Regression and classification are of primary importance to a data scientist. To achieve
these goals, one of the main tools a data scientist uses is machine learning. The uses
for regression and automatic classification are wide ranging, such as the following:

■ Finding oil fields, gold mines, or archeological sites based on existing sites (class-
ification and regression)

■ Finding place names or persons in text (classification)
■ Identifying people based on pictures or voice recordings (classification)
■ Recognizing birds based on their whistle (classification)

1 Although the following paper is often cited as the source of this quote, it’s not present in a 1967 reprint of
that paper. The authors were unable to verify or find the exact source of this quote. See Arthur L. Samuel,
“Some Studies in Machine Learning Using the Game of Checkers,” IBM Journal of Research and Development 3,
no. 3 (1959):210–229. 

2 Mike Roberts is the technical editor of this book. Thank you, Mike.
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■ Identifying profitable customers (regression and classification)
■ Proactively identifying car parts that are likely to fail (regression)
■ Identifying tumors and diseases (classification)
■ Predicting the amount of money a person will spend on product X (regression)
■ Predicting the number of eruptions of a volcano in a period (regression)
■ Predicting your company’s yearly revenue (regression)
■ Predicting which team will win the Champions League in soccer (classification)

Occasionally data scientists build a model (an abstraction of reality) that provides
insight to the underlying processes of a phenomenon. When the goal of a model isn’t
prediction but interpretation, it’s called root cause analysis. Here are a few examples:

■ Understanding and optimizing a business process, such as determining which
products add value to a product line

■ Discovering what causes diabetes
■ Determining the causes of traffic jams

This list of machine learning applications can only be seen as an appetizer because it’s
ubiquitous within data science. Regression and classification are two important tech-
niques, but the repertoire and the applications don’t end, with clustering as one other
example of a valuable technique. Machine learning techniques can be used through-
out the data science process, as we’ll discuss in the next section. 

3.1.2 Where machine learning is used in the data science process

Although machine learning is mainly linked to the data-modeling step of the data sci-
ence process, it can be used at almost every step. To refresh your memory from previ-
ous chapters, the data science process is shown in figure 3.1.

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

4: Data exploration +

6: Presentation and automation +

5: Data modeling – Model execution

Model and variable selection

Model diagnostic and model comparison

Figure 3.1 The data 
science process

http://www.ebook3000.org
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The data modeling phase can’t start until you have qualitative raw data you can under-
stand. But prior to that, the data preparation phase can benefit from the use of machine
learning. An example would be cleansing a list of text strings; machine learning can
group similar strings together so it becomes easier to correct spelling errors.

 Machine learning is also useful when exploring data. Algorithms can root out under-
lying patterns in the data where they’d be difficult to find with only charts. 

 Given that machine learning is useful throughout the data science process, it
shouldn’t come as a surprise that a considerable number of Python libraries were
developed to make your life a bit easier.

3.1.3 Python tools used in machine learning

Python has an overwhelming number of packages that can be used in a machine
learning setting. The Python machine learning ecosystem can be divided into three
main types of packages, as shown in figure 3.2.

Python for machine learning

Data fits in memory –

Pandas

matplotlib

SymPy

SciPy

Theano

NumPy
–Data

StatsModels

Scikit-learn

RPy2

–Modeling

NLTK

PP

Blaze

Cython

Text analysis

Numba

Use GPU

Out of memory

Distributed

Parallel

Use C Code

Optimize your code

Big data

…

–

–
Dispy

IPCluster

–
PyCUDA

NumbaPro

PyDoop

Hadoopy

PySpark
–

Figure 3.2 Overview of Python packages used during the machine-learning phase
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The first type of package shown in figure 3.2 is mainly used in simple tasks and when
data fits into memory. The second type is used to optimize your code when you’ve fin-
ished prototyping and run into speed or memory issues. The third type is specific to
using Python with big data technologies.

PACKAGES FOR WORKING WITH DATA IN MEMORY

When prototyping, the following packages can get you started by providing advanced
functionalities with a few lines of code:

■ SciPy is a library that integrates fundamental packages often used in scientific
computing such as NumPy, matplotlib, Pandas, and SymPy.

■ NumPy gives you access to powerful array functions and linear algebra functions.
■ Matplotlib is a popular 2D plotting package with some 3D functionality.
■ Pandas is a high-performance, but easy-to-use, data-wrangling package. It intro-

duces dataframes to Python, a type of in-memory data table. It’s a concept that
should sound familiar to regular users of R.

■ SymPy is a package used for symbolic mathematics and computer algebra.
■ StatsModels is a package for statistical methods and algorithms.
■ Scikit-learn is a library filled with machine learning algorithms.
■ RPy2 allows you to call R functions from within Python. R is a popular open

source statistics program.
■ NLTK (Natural Language Toolkit) is a Python toolkit with a focus on text analytics.

These libraries are good to get started with, but once you make the decision to run a
certain Python program at frequent intervals, performance comes into play. 

OPTIMIZING OPERATIONS

Once your application moves into production, the libraries listed here can help you
deliver the speed you need. Sometimes this involves connecting to big data infrastruc-
tures such as Hadoop and Spark.

■ Numba and NumbaPro—These use just-in-time compilation to speed up applica-
tions written directly in Python and a few annotations. NumbaPro also allows
you to use the power of your graphics processor unit (GPU).

■ PyCUDA—This allows you to write code that will be executed on the GPU instead
of your CPU and is therefore ideal for calculation-heavy applications. It works
best with problems that lend themselves to being parallelized and need little
input compared to the number of required computing cycles. An example is
studying the robustness of your predictions by calculating thousands of differ-
ent outcomes based on a single start state.

■ Cython, or C for Python—This brings the C programming language to Python. C is
a lower-level language, so the code is closer to what the computer eventually uses
(bytecode). The closer code is to bits and bytes, the faster it executes. A computer
is also faster when it knows the type of a variable (called static typing). Python
wasn’t designed to do this, and Cython helps you to overcome this shortfall.
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■ Blaze —Blaze gives you data structures that can be bigger than your computer’s
main memory, enabling you to work with large data sets.

■ Dispy and IPCluster —These packages allow you to write code that can be distrib-
uted over a cluster of computers.

■ PP —Python is executed as a single process by default. With the help of PP you
can parallelize computations on a single machine or over clusters.

■ Pydoop and Hadoopy—These connect Python to Hadoop, a common big data
framework.

■ PySpark—This connects Python and Spark, an in-memory big data framework.

Now that you’ve seen an overview of the available libraries, let’s look at the modeling
process itself. 

3.2 The modeling process
The modeling phase consists of four steps:

1 Feature engineering and model selection
2 Training the model
3 Model validation and selection
4 Applying the trained model to unseen data

Before you find a good model, you’ll probably iterate among the first three steps. 
 The last step isn’t always present because sometimes the goal isn’t prediction but

explanation (root cause analysis). For instance, you might want to find out the
causes of species’ extinctions but not necessarily predict which one is next in line to
leave our planet. 

 It’s possible to chain or combine multiple techniques. When you chain multiple
models, the output of the first model becomes an input for the second model. When
you combine multiple models, you train them independently and combine their
results. This last technique is also known as ensemble learning.

 A model consists of constructs of information called features or predictors and a target
or response variable. Your model’s goal is to predict the target variable, for example,
tomorrow’s high temperature. The variables that help you do this and are (usually)
known to you are the features or predictor variables such as today’s temperature, cloud
movements, current wind speed, and so on. The best models are those that accurately
represent reality, preferably while staying concise and interpretable. To achieve this,
feature engineering is the most important and arguably most interesting part of mod-
eling. For example, an important feature in a model that tried to explain the extinc-
tion of large land animals in the last 60,000 years in Australia turned out to be the
population number and spread of humans. 

3.2.1 Engineering features and selecting a model

With engineering features, you must come up with and create possible predictors for
the model. This is one of the most important steps in the process because a model
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recombines these features to achieve its predictions. Often you may need to consult
an expert or the appropriate literature to come up with meaningful features. 

 Certain features are the variables you get from a data set, as is the case with the pro-
vided data sets in our exercises and in most school exercises. In practice you’ll need to
find the features yourself, which may be scattered among different data sets. In several
projects we had to bring together more than 20 different data sources before we had
the raw data we required. Often you’ll need to apply a transformation to an input
before it becomes a good predictor or to combine multiple inputs. An example of
combining multiple inputs would be interaction variables: the impact of either single
variable is low, but if both are present their impact becomes immense. This is espe-
cially true in chemical and medical environments. For example, although vinegar and
bleach are fairly harmless common household products by themselves, mixing them
results in poisonous chlorine gas, a gas that killed thousands during World War I.

 In medicine, clinical pharmacy is a discipline dedicated to researching the effect
of the interaction of medicines. This is an important job, and it doesn’t even have to
involve two medicines to produce potentially dangerous results. For example, mixing
an antifungal medicine such as Sporanox with grapefruit has serious side effects.

 Sometimes you have to use modeling techniques to derive features: the output of a
model becomes part of another model. This isn’t uncommon, especially in text min-
ing. Documents can first be annotated to classify the content into categories, or you
can count the number of geographic places or persons in the text. This counting is
often more difficult than it sounds; models are first applied to recognize certain words
as a person or a place. All this new information is then poured into the model you
want to build. One of the biggest mistakes in model construction is the availability bias:
your features are only the ones that you could easily get your hands on and your
model consequently represents this one-sided “truth.” Models suffering from availabil-
ity bias often fail when they’re validated because it becomes clear that they’re not a
valid representation of the truth. 

 In World War II, after bombing runs on German territory, many of the English
planes came back with bullet holes in the wings, around the nose, and near the tail of
the plane. Almost none of them had bullet holes in the cockpit, tail rudder, or engine
block, so engineering decided extra armor plating should be added to the wings. This
looked like a sound idea until a mathematician by the name of Abraham Wald
explained the obviousness of their mistake: they only took into account the planes
that returned. The bullet holes on the wings were actually the least of their concern,
because at least a plane with this kind of damage could make it back home for repairs.
Plane fortification was hence increased on the spots that were unscathed on returning
planes. The initial reasoning suffered from availability bias: the engineers ignored an
important part of the data because it was harder to obtain. In this case they were lucky,
because the reasoning could be reversed to get the intended result without getting the
data from the crashed planes.

 When the initial features are created, a model can be trained to the data. 
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3.2.2 Training your model

With the right predictors in place and a modeling technique in mind, you can prog-
ress to model training. In this phase you present to your model data from which it
can learn.

 The most common modeling techniques have industry-ready implementations in
almost every programming language, including Python. These enable you to train
your models by executing a few lines of code. For more state-of-the art data science
techniques, you’ll probably end up doing heavy mathematical calculations and imple-
menting them with modern computer science techniques. 

 Once a model is trained, it’s time to test whether it can be extrapolated to reality:
model validation. 

3.2.3 Validating a model

Data science has many modeling techniques, and the question is which one is the
right one to use. A good model has two properties: it has good predictive power and it
generalizes well to data it hasn’t seen. To achieve this you define an error measure
(how wrong the model is) and a validation strategy.

 Two common error measures in machine learning are the classification error rate for
classification problems and the mean squared error for regression problems. The classifi-
cation error rate is the percentage of observations in the test data set that your model
mislabeled; lower is better. The mean squared error measures how big the average
error of your prediction is. Squaring the average error has two consequences: you
can’t cancel out a wrong prediction in one direction with a faulty prediction in the
other direction. For example, overestimating future turnover for next month by 5,000
doesn’t cancel out underestimating it by 5,000 for the following month. As a second
consequence of squaring, bigger errors get even more weight than they otherwise
would. Small errors remain small or can even shrink (if <1), whereas big errors are
enlarged and will definitely draw your attention.

 Many validation strategies exist, including the following common ones: 

■ Dividing your data into a training set with X% of the observations and keeping the rest
as a holdout data set (a data set that’s never used for model creation)—This is the
most common technique.

■ K-folds cross validation—This strategy divides the data set into k parts and uses
each part one time as a test data set while using the others as a training data set.
This has the advantage that you use all the data available in the data set.

■ Leave-1 out—This approach is the same as k-folds but with k=1. You always
leave one observation out and train on the rest of the data. This is used only
on small data sets, so it’s more valuable to people evaluating laboratory exper-
iments than to big data analysts.

Another popular term in machine learning is regularization. When applying regulariza-
tion, you incur a penalty for every extra variable used to construct the model. With L1
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regularization you ask for a model with as few predictors as possible. This is important
for the model’s robustness: simple solutions tend to hold true in more situations. L2
regularization aims to keep the variance between the coefficients of the predictors as
small as possible. Overlapping variance between predictors makes it hard to make out
the actual impact of each predictor. Keeping their variance from overlapping will
increase interpretability. To keep it simple: regularization is mainly used to stop a
model from using too many features and thus prevent over-fitting.

 Validation is extremely important because it determines whether your model works
in real-life conditions. To put it bluntly, it’s whether your model is worth a dime. Even
so, every now and then people send in papers to respected scientific journals (and
sometimes even succeed at publishing them) with faulty validation. The result of this is
they get rejected or need to retract the paper because everything is wrong. Situations
like this are bad for your mental health so always keep this in mind: test your models on
data the constructed model has never seen and make sure this data is a true representa-
tion of what it would encounter when applied on fresh observations by other people.
For classification models, instruments like the confusion matrix (introduced in chap-
ter 2 but thoroughly explained later in this chapter) are golden; embrace them.

 Once you’ve constructed a good model, you can (optionally) use it to predict
the future.

3.2.4 Predicting new observations

If you’ve implemented the first three steps successfully, you now have a performant
model that generalizes to unseen data. The process of applying your model to new
data is called model scoring. In fact, model scoring is something you implicitly did
during validation, only now you don’t know the correct outcome. By now you should
trust your model enough to use it for real.

 Model scoring involves two steps. First, you prepare a data set that has features
exactly as defined by your model. This boils down to repeating the data preparation
you did in step one of the modeling process but for a new data set. Then you apply the
model on this new data set, and this results in a prediction. 

 Now let’s look at the different types of machine learning techniques: a different
problem requires a different approach.

3.3 Types of machine learning
Broadly speaking, we can divide the different approaches to machine learning by the
amount of human effort that’s required to coordinate them and how they use labeled
data—data with a category or a real-value number assigned to it that represents the
outcome of previous observations.

■ Supervised learning techniques attempt to discern results and learn by trying to
find patterns in a labeled data set. Human interaction is required to label the data.

■ Unsupervised learning techniques don’t rely on labeled data and attempt to find
patterns in a data set without human interaction.
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■ Semi-supervised learning techniques need labeled data, and therefore human
interaction, to find patterns in the data set, but they can still progress toward a
result and learn even if passed unlabeled data as well.

In this section, we’ll look at all three approaches, see what tasks each is more appro-
priate for, and use one or two of the Python libraries mentioned earlier to give you a
feel for the code and solve a task. In each of these examples, we’ll work with a down-
loadable data set that has already been cleaned, so we’ll skip straight to the data mod-
eling step of the data science process, as discussed earlier in this chapter.

3.3.1 Supervised learning

As stated before, supervised learning is a learning technique that can only be applied
on labeled data. An example implementation of this would be discerning digits from
images. Let’s dive into a case study on number recognition. 

CASE STUDY: DISCERNING DIGITS FROM IMAGES 
One of the many common approaches on the web to stopping computers from hack-
ing into user accounts is the Captcha check—a picture of text and numbers that the
human user must decipher and enter into a form field before sending the form back
to the web server. Something like figure 3.3 should look familiar.

With the help of the Naïve Bayes classifier, a simple yet powerful algorithm to categorize
observations into classes that’s explained in more detail in the sidebar, you can recog-
nize digits from textual images. These images aren’t unlike the Captcha checks many
websites have in place to make sure you’re not a computer trying to hack into the user
accounts. Let’s see how hard it is to let a computer recognize images of numbers.

 Our research goal is to let a computer recognize images of numbers (step one of
the data science process).

 The data we’ll be working on is the MNIST data set, which is often used in the data
science literature for teaching and benchmarking.

Figure 3.3 A simple 
Captcha control can be 
used to prevent automated 
spam being sent through an 
online web form.
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With the bit of theory in the sidebar, you’re ready to perform the modeling itself.
Make sure to run all the upcoming code in the same scope because each piece
requires the one before it. An IPython file can be downloaded for this chapter from
the Manning download page of this book.3

 The MNIST images can be found in the data sets package of Scikit-learn and are
already normalized for you (all scaled to the same size: 64x64 pixels), so we won’t
need much data preparation (step three of the data science process). But let’s first
fetch our data as step two of the data science process, with the following listing.

from sklearn.datasets import load_digits 
import pylab as pl
digits = load_digits() 

Introducing Naïve Bayes classifiers in the context of a spam filter
Not every email you receive has honest intentions. Your inbox can contain unsolicited
commercial or bulk emails, a.k.a. spam. Not only is spam annoying, it’s often used
in scams and as a carrier for viruses. Kaspersky3 estimates that more than 60% of
the emails in the world are spam. To protect users from spam, most email clients run
a program in the background that classifies emails as either spam or safe. 

A popular technique in spam filtering is employing a classifier that uses the words
inside the mail as predictors. It outputs the chance that a specific email is spam
given the words it’s composed of (in mathematical terms, P(spam | words) ). To reach
this conclusion it uses three calculations:

■ P(spam)—The average rate of spam without knowledge of the words. According
to Kaspersky, an email is spam 60% of the time.

■ P(words)—How often this word combination is used regardless of spam.
■ P(words | spam)—How often these words are seen when a training mail was

labeled as spam.
To determine the chance that a new email is spam, you’d use the following formula: 

P(spam|words) = P(spam)P(words|spam) / P(words)

This is an application of the rule P(B|A) = P(B) P(A|B) / P(A), which is known as
Bayes’s rule and which lends its name to this classifier. The “naïve” part comes from
the classifier’s assumption that the presence of one feature doesn’t tell you anything
about another feature (feature independence, also called absence of multicollinear-
ity). In reality, features are often related, especially in text. For example the word
“buy” will often be followed by “now.” Despite the unrealistic assumption, the naïve
classifier works surprisingly well in practice.

3 Kaspersky 2014 Quarterly Spam Statistics Report, http://usa.kaspersky.com/internet-security-center/threats/
spam-statistics-report-q1-2014#.VVym9blViko.

Listing 3.1 Step 2 of the data science process: fetching the digital image data

Imports digits 
database.

Loads digits.

http://usa.kaspersky.com/internet-security-center/threats/spam-statistics-report-q1-2014#.VVym9blViko
http://usa.kaspersky.com/internet-security-center/threats/spam-statistics-report-q1-2014#.VVym9blViko
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Working with images isn’t much different from working with other data sets. In the
case of a gray image, you put a value in every matrix entry that depicts the gray value
to be shown. The following code demonstrates this process and is step four of the data
science process: data exploration.

pl.gray() 
pl.matshow(digits.images[0])   
pl.show()
digits.images[0] 

Figure 3.4 shows how a blurry “0” image translates into a data matrix.
 Figure 3.4 shows the actual code output, but perhaps figure 3.5 can clarify this

slightly, because it shows how each element in the vector is a piece of the image.
 Easy so far, isn’t it? There is, naturally, a little more work to do. The Naïve Bayes

classifier is expecting a list of values, but pl.matshow() returns a two-dimensional
array (a matrix) reflecting the shape of the image. To flatten it into a list, we need to
call reshape() on digits.images. The net result will be a one-dimensional array that
looks something like this:

array([[ 0., 0., 5., 13., 9., 1., 0., 0., 0., 0., 13., 15., 10., 15., 5., 0., 
0., 3., 15., 2., 0., 11., 8., 0., 0., 4., 12., 0., 0., 8., 8., 0., 
0., 5., 8., 0., 0., 9., 8., 0., 0., 4., 11., 0., 1., 12., 7., 0., 
0., 2., 14., 5., 10., 12., 0., 0., 0., 0., 6., 13., 10., 0., 0., 0.]])

Listing 3.2 Step 4 of the data science process: using Scikit-learn

Turns image into 
gray-scale values.Shows first 

images.

Shows the 
corresponding matrix.

Figure 3.4 Blurry grayscale 
representation of the number 0 
with its corresponding matrix. The 
higher the number, the closer it is 
to white; the lower the number, 
the closer it is to black.
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Step 3: S
into 
set
trai
The previous code snippet shows the matrix of figure 3.5 flattened (the number of
dimensions was reduced from two to one) to a Python list. From this point on, it’s a
standard classification problem, which brings us to step five of the data science pro-
cess: model building. 

 Now that we have a way to pass the contents of an image into the classifier, we need
to pass it a training data set so it can start learning how to predict the numbers in the
images. We mentioned earlier that Scikit-learn contains a subset of the MNIST data-
base (1,800 images), so we’ll use that. Each image is also labeled with the number it
actually shows. This will build a probabilistic model in memory of the most likely digit
shown in an image given its grayscale values.

 Once the program has gone through the training set and built the model, we can
then pass it the test set of data to see how well it has learned to interpret the images
using the model. 

 The following listing shows how to implement these steps in code.

from sklearn.cross_validation import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
import pylab as plt

y = digits.target 

n_samples = len(digits.images)
X= digits.images.reshape((n_samples, -1))   

print X

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) 

Listing 3.3 Image data classification problem on images of digits
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Figure 3.5 We’ll turn an 
image into something 
usable by the Naïve Bayes 
classifier by getting the 
grayscale value for each 
of its pixels (shown on the 
right) and putting those 
values in a list.

Step 1: Select 
target variable.

Step 2: Prepare data. Reshape adapts the 
matrix form. This method could, for instance, 
turn a 10x10 matrix into 100 vectors.

plit
test
 and
ning
set.
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S
Fit
gnb = GaussianNB()
fit = gnb.fit(X_train,y_train)
predicted = fit.predict(X_test)
confusion_matrix(y_test, predicted)

The end result of this code is called a confusion matrix, such as the one shown in fig-
ure 3.6. Returned as a two-dimensional array, it shows how often the number pre-
dicted was the correct number on the main diagonal and also in the matrix entry (i,j),
where j was predicted but the image showed i. Looking at figure 3.6 we can see that
the model predicted the number 2 correctly 17 times (at coordinates 3,3), but also
that the model predicted the number 8 15 times when it was actually the number 2 in
the image (at 9,3).

Confusion matrices
A confusion matrix is a matrix showing how wrongly (or correctly) a model predicted,
how much it got “confused.” In its simplest form it will be a 2x2 table for models that
try to classify observations as being A or B. Let’s say we have a classification model
that predicts whether somebody will buy our newest product: deep-fried cherry pud-
ding. We can either predict: “Yes, this person will buy” or “No, this customer won’t
buy.” Once we make our prediction for 100 people we can compare this to their
actual behavior, showing us how many times we got it right. An example is shown in
table 3.1.

Step 4: Select a Naïve 
Bayes classifier; use a 
Gaussian distribution to 
estimate probability.

tep 5:
 data.

Step 6: Predict data 
for unseen data.

Step 7: Create
confusion matrix.

Figure 3.6 Confusion matrix 
produced by predicting what number 
is depicted by a blurry image

Table 3.1 Confusion matrix example

Confusion matrix Predicted “Person will buy” Predicted “Person will not buy”

Person bought the deep-fried 
cherry pudding

35 (true positive) 10 (false negative)

Person didn’t buy the deep-
fried cherry pudding

15 (false positive) 40 (true negative)
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From the confusion matrix, we can deduce that for most images the predictions are
quite accurate. In a good model you’d expect the sum of the numbers on the main
diagonal of the matrix (also known as the matrix trace) to be very high compared to
the sum of all matrix entries, indicating that the predictions were correct for the
most part. 

 Let’s assume we want to show off our results in a more easily understandable way
or we want to inspect several of the images and the predictions our program has
made: we can use the following code to display one next to the other. Then we can
see where the program has gone wrong and needs a little more training. If we’re sat-
isfied with the results, the model building ends here and we arrive at step six: pre-
senting the results.

images_and_predictions = list(zip(digits.images, fit.predict(X)))
for index, (image, prediction) in enumerate(images_and_predictions[:6]):
    plt.subplot(6, 3 ,index + 5) 
    plt.axis('off')  
    plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') 
    plt.title('Prediction: %i' % prediction)  
plt.show() 

Figure 3.7 shows how all predictions seem to be correct except for the digit number 2,
which it labels as 8. We should forgive this mistake as this 2 does share visual similarities

The model was correct in (35+40) 75 cases and incorrect in (15+10) 25 cases,
resulting in a (75 correct/100 total observations) 75% accuracy. 

All the correctly classified observations are added up on the diagonal (35+40) while
everything else (15+10) is incorrectly classified. When the model only predicts two
classes (binary), our correct guesses are two groups: true positives (predicted to buy
and did so) and true negatives (predicted they wouldn’t buy and they didn’t). Our
incorrect guesses are divided into two groups: false positives (predicted they would
buy but they didn’t) and false negatives (predicted not to buy but they did). The matrix
is useful to see where the model is having the most problems. In this case we tend
to be overconfident in our product and classify customers as future buyers too easily
(false positive). 

Listing 3.4 Inspecting predictions vs actual numbers

Stores number image matrix and
its prediction (as a number)

together in array. Loo
thr
firs
ima

Adds an extra subplot on a 6x3 plot grid. This code 
could be simplified as: plt.subplot (3, 2 ,index) but 
this looks visually more appealing.

Does
show
an ax

Shows
image in

grayscale.
Shows the predicted
value as the title to

the shown image.
Shows the full plot that is now

populated with 6 subplots.
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with 8. The bottom left number is ambiguous, even to humans; is it a 5 or a 3? It’s
debatable, but the algorithm thinks it’s a 3.

 By discerning which images were misinterpreted, we can train the model further
by labeling them with the correct number they display and feeding them back into
the model as a new training set (step 5 of the data science process). This will make the
model more accurate, so the cycle of learn, predict, correct continues and the predic-
tions become more accurate. This is a controlled data set we’re using for the example.
All the examples are the same size and they are all in 16 shades of gray. Expand that
up to the variable size images of variable length strings of variable shades of alphanu-
meric characters shown in the Captcha control, and you can appreciate why a model
accurate enough to predict any Captcha image doesn’t exist yet.

 In this supervised learning example, it’s apparent that without the labels associated
with each image telling the program what number that image shows, a model cannot
be built and predictions cannot be made. By contrast, an unsupervised learning
approach doesn’t need its data to be labeled and can be used to give structure to an
unstructured data set. 

3.3.2 Unsupervised learning

It’s generally true that most large data sets don’t have labels on their data, so unless you
sort through it all and give it labels, the supervised learning approach to data won’t
work. Instead, we must take the approach that will work with this data because

■ We can study the distribution of the data and infer truths about the data in differ-
ent parts of the distribution.

■ We can study the structure and values in the data and infer new, more meaningful
data and structure from it.

Many techniques exist for each of these unsupervised learning approaches. However, in
the real world you’re always working toward the research goal defined in the first
phase of the data science process, so you may need to combine or try different tech-
niques before either a data set can be labeled, enabling supervised learning tech-
niques, perhaps, or even the goal itself is achieved. 

Figure 3.7 For each blurry image a number is 
predicted; only the number 2 is misinterpreted 
as 8. Then an ambiguous number is predicted 
to be 3 but it could as well be 5; even to 
human eyes this isn’t clear.
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DISCERNING A SIMPLIFIED LATENT STRUCTURE FROM YOUR DATA

Not everything can be measured. When you meet someone for the first time you
might try to guess whether they like you based on their behavior and how they
respond. But what if they’ve had a bad day up until now? Maybe their cat got run over
or they’re still down from attending a funeral the week before? The point is that cer-
tain variables can be immediately available while others can only be inferred and are
therefore missing from your data set. The first type of variables are known as observable
variables and the second type are known as latent variables. In our example, the emo-
tional state of your new friend is a latent variable. It definitely influences their judg-
ment of you but its value isn’t clear.

 Deriving or inferring latent variables and their values based on the actual contents
of a data set is a valuable skill to have because

■ Latent variables can substitute for several existing variables already in the data set.
■ By reducing the number of variables in the data set, the data set becomes more

manageable, any further algorithms run on it work faster, and predictions may
become more accurate.

■ Because latent variables are designed or targeted toward the defined research
goal, you lose little key information by using them.

If we can reduce a data set from 14 observable variables per line to 5 or 6 latent vari-
ables, for example, we have a better chance of reaching our research goal because of
the data set’s simplified structure. As you’ll see from the example below, it’s not a case
of reducing the existing data set to as few latent variables as possible. You’ll need to
find the sweet spot where the number of latent variables derived returns the most
value. Let’s put this into practice with a small case study.

CASE STUDY: FINDING LATENT VARIABLES IN A WINE QUALITY DATA SET

In this short case study, you’ll use a technique known as Principal Component Analysis
(PCA) to find latent variables in a data set that describes the quality of wine. Then
you’ll compare how well a set of latent variables works in predicting the quality of wine
against the original observable set. You’ll learn 

1 How to identify and derive those latent variables.
2 How to analyze where the sweet spot is—how many new variables return the

most utility—by generating and interpreting a scree plot generated by PCA. (We’ll
look at scree plots in a moment.)

Let’s look at the main components of this example.

■ Data set—The University of California, Irvine (UCI) has an online repository of
325 data sets for machine learning exercises at http://archive.ics.uci.edu/ml/.
We’ll use the Wine Quality Data Set for red wines created by P. Cortez, A. Cer-
deira, F. Almeida, T. Matos, and J. Reis4. It’s 1,600 lines long and has 11 vari-
ables per line, as shown in table 3.2.

4 You can find full details of the Wine Quality Data Set at https://archive.ics.uci.edu/ml/datasets/Wine+Quality.

http://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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ed 
■ Principal Component Analysis—A technique to find the latent variables in your
data set while retaining as much information as possible.

■ Scikit-learn—We use this library because it already implements PCA for us and is
a way to generate the scree plot.

Part one of the data science process is to set our research goal: We want to explain the
subjective “wine quality” feedback using the different wine properties.

 Our first job then is to download the data set (step two: acquiring data), as shown
in the following listing, and prepare it for analysis (step three: data preparation).
Then we can run the PCA algorithm and view the results to look at our options.

import pandas as pd
from sklearn import preprocessing
from sklearn.decomposition import PCA
import pylab as plt
from sklearn import preprocessing

url = http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
winequality-red.csv 

data = pd.read_csv(url, sep= ";")
X = data[[u'fixed acidity', u'volatile acidity', u'citric acid', 

u'residual sugar', u'chlorides', u'free sulfur dioxide', 
u'total sulfur dioxide', u'density', u'pH', u'sulphates', 
u'alcohol']] 

y = data.quality 
X= preprocessing.StandardScaler().fit(X).transform(X) 

Table 3.2 The first three rows of the Red Wine Quality Data Set

Fixed 
acidity

Volatile 
acidity

Citric 
acid

Residual 
sugar

Chlorides
Free 
sulfur 

dioxide

Total 
sulfur 

dioxide
Density pH Sulfates Alcohol Quality

7.4 0.7 0 1.9 0.076 11 34 0.9978 3.51 0.56 9.4 5

7.8 0.88 0 2.6 0.098 25 67 0.9968 3.2 0.68 9.8 5

7.8 0.76 0.04 2.3 0.092 15 54 0.997 3.26 0.65 9.8 5

Listing 3.5 Data acquisition and variable standardization 

Downloads location of
wine-quality data set.

Reads in the CSV
data. It’s separat
by a semi-colon. 

X is a matrix of predictor variables. These 
variables are wine properties such as 
density and alcohol presence.

y is a vector and 
represents the 
dependent variable 
(target variable). 
y is the perceived 
wine quality.

When standardizing data, the following formula is applied to every data
point:  z = (x-)/, where z is the new observation value, x the old one,  is
the mean, and  the standard deviation. The PCA of a data matrix is easier

to interpret when the columns have first been centered by their means.
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With the initial data preparation behind you, you can execute the PCA. The resulting
scree plot (which will be explained shortly) is shown in figure 3.8. Because PCA is an
explorative technique, we now arrive at step four of the data science process: data
exploration, as shown in the following listing.

model = PCA() 
results = model.fit(X) 
Z = results.transform(X) 
plt.plot(results.explained_variance_) 
plt.show() 

Now let’s look at the scree plot in figure 3.8.
 The plot generated from the wine data set is shown in figure 3.8. What you hope to

see is an elbow or hockey stick shape in the plot. This indicates that a few variables can
represent the majority of the information in the data set while the rest only add a little
more. In our plot, PCA tells us that reducing the set down to one variable can capture
approximately 28% of the total information in the set (the plot is zero-based, so variable

Listing 3.6 Executing the principal component analysis

Creates instance of 
principal component 
analysis class

Applies PCA on predictor 
variables to see if they can be 
compacted into fewer variables

Turns result into array so we 
can use newly created data

Plots explained variance 
in variables; this plot is 
a scree plot

Shows plot 

Figure 3.8 PCA scree plot showing the marginal amount of information of every new variable 
PCA can create. The first variables explain approximately 28% of the variance in the data, the 
second variable accounts for another 17%, the third approximately 15%, and so on. 
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one is at position zero on the x axis), two variables will capture approximately 17%
more or 45% total, and so on. Table 3.3 shows you the full read-out.

An elbow shape in the plot suggests that five variables can hold most of the informa-
tion found inside the data. You could argue for a cut-off at six or seven variables
instead, but we’re going to opt for a simpler data set versus one with less variance in
data against the original data set. 

 At this point, we could go ahead and see if the original data set recoded with five
latent variables is good enough to predict the quality of the wine accurately, but
before we do, we’ll see how we might identify what they represent.

INTERPRETING THE NEW VARIABLES

With the initial decision made to reduce the data set from 11 original variables to 5
latent variables, we can check to see whether it’s possible to interpret or name them
based on their relationships with the originals. Actual names are easier to work with
than codes such as lv1, lv2, and so on. We can add the line of code in the following list-
ing to generate a table that shows how the two sets of variables correlate.

pd.DataFrame(results.components_, columns=list(

➥ [u'fixed acidity', u'volatile acidity', u'citric acid', u'residual sugar',

➥ u'chlorides', u'free sulfur dioxide',  u'total sulfur dioxide', u'density',

➥ u'pH', u'sulphates',  u'alcohol']))

The rows in the resulting table (table 3.4) show the mathematical correlation. Or, in
English, the first latent variable lv1, which captures approximately 28% of the total
information in the set, has the following formula.

Lv1 = (fixed acidity * 0.489314) + (volatile acidity * -0.238584) + … + 
(alcohol * -0.113232)

Table 3.3 The findings of the PCA  

Number of variables Extra information captured Total data captured

1 28% 28%

2 17% 45%

3 14% 59%

4 10% 69%

5 8% 77%

6 7% 84%

7 5% 89%

8 - 11 … 100%

Listing 3.7 Showing PCA components in a Pandas data frame 
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Giving a useable name to each new variable is a bit trickier and would probably
require consultation with an actual wine expert for accuracy. However, as we don’t
have a wine expert on hand, we’ll call them the following (table 3.5).

We can now recode the original data set with only the five latent variables. Doing this
is data preparation again, so we revisit step three of the data science process: data prep-
aration. As mentioned in chapter 2, the data science process is a recursive one and this
is especially true between step three: data preparation and step 4: data exploration.

 Table 3.6 shows the first three rows with this done.

Already we can see high values for wine 0 in volatile acidity, while wine 2 is particularly
high in persistent acidity. Don’t sound like good wines at all! 

Table 3.4 How PCA calculates the 11 original variables’ correlation with 5 latent variables

Fixed 
acidity

Volatile 
acidity

Citric 
acid

Residual 
sugar Chlorides

Free 
sulfur 

dioxide

Total 
sulfur 

dioxide
Density pH Sulphates Alcohol

0 0.489314 -0.238584 0.463632 0.146107 0.212247 -0.036158 0.023575 0.395353 -0.438520 0.242921 -0.113232

1 -0.110503 0.274930 -0.151791 0.272080 0.148052 0.513567 0.569487 0.233575 0.006711 -0.037554 -0.386181

2 0.123302 0.449963 -0.238247 -0.101283 0.092614 -0.428793 -0.322415 0.338871 -0.057697 -0.279786 -0.471673

3 -0.229617 0.078960 -0.079418 -0.372793 0.666195 -0.043538 -0.034577 -0.174500 -0.003788 0.550872 -0.122181

4 0.082614 -0.218735 0.058573 -0.732144 -0.246501 0.159152 0.222465 -0.157077 -0.267530 -0.225962 -0.350681

Table 3.5 Interpretation of the wine quality PCA-created variables

Latent variable Possible interpretation

0 Persistent acidity

1 Sulfides

2 Volatile acidity

3 Chlorides

4 Lack of residual sugar

Table 3.6 The first three rows of the Red Wine Quality Data Set recoded in five latent variables

Persistent acidity Sulfides Volatile acidity Chlorides Lack of residual sugar

0 -1.619530 0.450950 1.774454 0.043740 -0.067014

1 -0.799170 1.856553 0.911690 0.548066 0.018392

2 2.357673 -0.269976 -0.243489 -0.928450 1.499149
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COMPARING THE ACCURACY OF THE ORIGINAL DATA SET WITH LATENT VARIABLES

Now that we’ve decided our data set should be recoded into 5 latent variables rather
than the 11 originals, it’s time to see how well the new data set works for predicting
the quality of wine when compared to the original. We’ll use the Naïve Bayes Classifier
algorithm we saw in the previous example for supervised learning to help.

 Let’s start by seeing how well the original 11 variables could predict the wine qual-
ity scores. The following listing presents the code to do this.

from sklearn.cross_validation import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
import pylab as plt

gnb = GaussianNB() 
fit = gnb.fit(X,y) 
pred = fit.predict(X) 
print confusion_matrix(pred,y)
print confusion_matrix(pred,y).trace()

Now we’ll run the same prediction test, but starting with only 1 latent variable instead of
the original 11. Then we’ll add another, see how it did, add another, and so on to see
how the predictive performance improves. The following listing shows how this is done.

predicted_correct = []
for i in range(1,10):
    model = PCA(n_components = i)
    results = model.fit(X)
    Z = results.transform(X) 
    fit = gnb.fit(Z,y) 
    pred = fit.predict(Z)
    predicted_correct.append(confusion_matrix(pred,y).trace())
    print predicted_correct 
plt.plot(predicted_correct) 
plt.show()

Listing 3.8 Wine score prediction before principal component analysis

Listing 3.9 Wine score prediction with increasing number of principal components

Use Gaussian distribution 
Naïve Bayes classifier for 
estimation.

Fit data.

Predict data for 
unseen data.

Study 
confusion 
matrix.

Count of all correctly classified cases: all counts on
trace or diagonal summed up after analyzing confusion

matrix. We can see the Naïve Bayes classifier scores
897 correct predictions out of 1599.

Array will be filled with correctly
predicted observations

Loops through 
first 10 detected 
principal 
components

Instantiate PCA model with 1 
component (first iteration) up to 
10 components (in 10th iteration)Fit PCA

odel on
ariables
eatures) Z is result in matrix form (actua

an array filled with arrays)

Use Gaussian distribution N
Bayes classifier for estimat

 actual
diction

itself
ing the

fitted
model

At end of each
iteration we 
append numb
of correctly 
classified 
observations

Printing this array we 
can see how after each 
iteration, new count 
of correctly classified 
observations is 
appended

Easier to
see when

array
plotted

Plot 
shown



79Types of machine learning
The resulting plot is shown in figure 3.9.
 The plot in figure 3.9 shows that with only 3 latent variables, the classifier does a

better job of predicting wine quality than with the original 11. Also, adding more
latent variables beyond 5 doesn’t add as much predictive power as the first 5. This
shows our choice of cutting off at 5 variables was a good one, as we’d hoped.

 We looked at how to group similar variables, but it’s also possible to group
observations.

GROUPING SIMILAR OBSERVATIONS TO GAIN INSIGHT FROM THE DISTRIBUTION OF YOUR DATA

Suppose for a moment you’re building a website that recommends films to users
based on preferences they’ve entered and films they’ve watched. The chances are
high that if they watch many horror movies they’re likely to want to know about new
horror movies and not so much about new teen romance films. By grouping together
users who’ve watched more or less the same films and set more or less the same pref-
erences, you can gain a good deal of insight into what else they might like to have
recommended. 

 The general technique we’re describing here is known as clustering. In this process, we
attempt to divide our data set into observation subsets, or clusters, wherein observations
should be similar to those in the same cluster but differ greatly from the observations in
other clusters. Figure 3.10 gives you a visual idea of what clustering aims to achieve. The
circles in the top left of the figure are clearly close to each other while being farther
away from the others. The same is true of the crosses in the top right.

 Scikit-learn implements several common algorithms for clustering data in its
sklearn.cluster module, including the k-means algorithm, affinity propagation, and
spectral clustering. Each has a use case or two for which it’s more suited,5 although

5 You can find a comparison of all the clustering algorithms in Scikit-learn at http://scikit-learn.org/stable/
modules/clustering.html.

Figure 3.9 The results plot shows 
that adding more latent variables to 
a model (x-axis) greatly increases 
predictive power (y-axis) up to a 
point but then tails off. The gain in 
predictive power from adding 
variables wears off eventually.

http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/clustering.html
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k-means is a good general-purpose algorithm with which to get started. However, like
all the clustering algorithms, you need to specify the number of desired clusters in
advance, which necessarily results in a process of trial and error before reaching a
decent conclusion. It also presupposes that all the data required for analysis is avail-
able already. What if it wasn’t?

 Let’s look at the actual case of clustering irises (the flower) by their properties
(sepal length and width, petal length and width, and so on). In this example we’ll use
the k-means algorithm. It’s a good algorithm to get an impression of the data but it’s
sensitive to start values, so you can end up with a different cluster every time you run
the algorithm unless you manually define the start values by specifying a seed (con-
stant for the start value generator). If you need to detect a hierarchy, you’re better off
using an algorithm from the class of hierarchical clustering techniques. 

 One other disadvantage is the need to specify the number of desired clusters in
advance. This often results in a process of trial and error before coming to a satisfying
conclusion.

 Executing the code is fairly simple. It follows the same structure as all the other
analyses except you don’t have to pass a target variable. It’s up to the algorithm to
learn interesting patterns. The following listing uses an iris data set to see if the algo-
rithm can group the different types of irises.

0 10.2 0.3 0.4 0.5 0.6 0.7 0.90.80.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 3.10 The goal of clustering is 
to divide a data set into “sufficiently 
distinct” subsets. In this plot for 
instance, the observations have been 
divided into three clusters.
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import sklearn
from sklearn import cluster
import pandas as pd

data = sklearn.datasets.load_iris()  
X = pd.DataFrame(data.data, columns = list(data.feature_names))  
print X[:5] 
model   = cluster.KMeans(n_clusters=3, random_state=25)  
results = model.fit(X) 
X["cluster"] = results.predict(X) 
X["target"] = data.target 
X["c"] = "lookatmeIamimportant" 
print X[:5]
classification_result = X[["cluster", 

"target","c"]].groupby(["cluster","target"]).agg("count") 
print(classification_result)

Figure 3.11 shows the output of the iris classification.
 This figure shows that even without using a label

you’d find clusters that are similar to the official iris
classification with a result of 134 (50+48+36) correct
classifications out of 150.

 You don’t always need to choose between super-
vised and unsupervised; sometimes combining them
is an option.

Listing 3.10 Iris classification example

Load in iris (flowers) 
data of Scikit-learn.

Transform iris data into
Pandas data frame.

Print first 5 observations of data 
frame to screen; now we can clearly 
see 4 variables: sepal length, sepal 
width, petal length, and petal width.

Initialize a k-means cluster model with 3 
clusters. The random_state is a random 
seed; if you don’t put it in, the seed will also 
be random. We opt for 3 clusters because 
we saw in the last listing this might be a 
good compromise between complexity 
and performance.

Fit model to data. All variables
are considered independent

variables; unsupervised learning
has no target variable (y).

Add another variable called "cluster" to data
frame. This indicates the cluster membership

of every flower in data set.

Let’s finally add a target 
variable (y) to the data frame. 

Adding a variable c is just a little trick 
we use to do a count later. The value 
here is arbitrary because we need a 
column to count the rows.

Three parts to this code. First we select the cluster,
target, and c columns. Then we group by the cluster
and target columns. Finally, we aggregate the row of

the group with a simple count aggregation.

The matrix this classification result represents 
gives us an indication of whether our clustering 
was successful. For cluster 0, we’re spot on. On 
clusters 1 and 2 there has been a slight mix-up, 
but in total we only get 16 (14+2) 
misclassifications out of 150.

Figure 3.11
Output of the iris 
classification
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3.4 Semi-supervised learning
It shouldn’t surprise you to learn that while we’d like all our data to be labeled so we
can use the more powerful supervised machine learning techniques, in reality we often
start with only minimally labeled data, if it’s labeled at all. We can use our unsupervised
machine learning techniques to analyze what we have and perhaps add labels to the
data set, but it will be prohibitively costly to label it all. Our goal then is to train our pre-
dictor models with as little labeled data as possible. This is where semi-supervised learn-
ing techniques come in—hybrids of the two approaches we’ve already seen.

 Take for example the plot in figure 3.12. In this case, the data has only two labeled
observations; normally this is too few to make valid predictions.

A common semi-supervised learning technique is label propagation. In this technique,
you start with a labeled data set and give the same label to similar data points. This is
similar to running a clustering algorithm over the data set and labeling each cluster
based on the labels they contain. If we were to apply this approach to the data set in
figure 3.12, we might end up with something like figure 3.13.

 One special approach to semi-supervised learning worth mentioning here is active
learning. In active learning the program points out the observations it wants to see
labeled for its next round of learning based on some criteria you have specified. For
example, you might set it to try and label the observations the algorithm is least cer-
tain about, or you might use multiple models to make a prediction and select the
points where the models disagree the most.

0 4 6 102 128

7

6

5

4

3

2

1

0

Buys

Does not buy

Figure 3.12 This plot has only two labeled observations—too few for supervised 
observations, but enough to start with an unsupervised or semi-supervised approach.
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With the basics of machine learning at your disposal, the next chapter discusses using
machine learning within the constraints of a single computer. This tends to be chal-
lenging when the data set is too big to load entirely into memory. 

3.5 Summary
In this chapter, you learned that

■ Data scientists rely heavily on techniques from statistics and machine learning to
perform their modeling. A good number of real-life applications exist for machine
learning, from classifying bird whistling to predicting volcanic eruptions.

■ The modeling process consists of four phases:

1 Feature engineering, data preparation, and model parameterization—We define the
input parameters and variables for our model.

2 Model training—The model is fed with data and it learns the patterns hidden
in the data. 

3 Model selection and validation—A model can perform well or poorly; based on
its performance we select the model that makes the most sense. 

4 Model scoring—When our model can be trusted, it’s unleashed on new data. If
we did our job well, it will provide us with extra insights or give us a good pre-
diction of what the future holds. 
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Figure 3.13 The previous figure shows that the data has only two labeled observations, 
far too few for supervised learning. This figure shows how you can exploit the structure 
of the underlying data set to learn better classifiers than from the labeled data only. The 
data is split into two clusters by the clustering technique; we only have two labeled 
values, but if we’re bold we can assume others within that cluster have that same label 
(buyer or non-buyer), as depicted here. This technique isn’t flawless; it’s better to get 
the actual labels if you can.
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■ The two big types of machine learning techniques
1 Supervised—Learning that requires labeled data.
2 Unsupervised—Learning that doesn’t require labeled data but is usually less

accurate or reliable than supervised learning. 
■ Semi-supervised learning is in between those techniques and is used when only

a small portion of the data is labeled.
■ Two case studies demonstrated supervised and unsupervised learning, respectively:

1 Our first case study made use of a Naïve Bayes classifier to classify images of
numbers as the number they represent. We also took a look at the confusion
matrix as a means to determining how well our classification model is doing.

2 Our case study on unsupervised techniques showed how we could use princi-
pal component analysis to reduce the input variables for further model build-
ing while maintaining most of the information.



Handling large data on
a single computer
What if you had so much data that it seems to outgrow you, and your techniques no
longer seem to suffice? What do you do, surrender or adapt? 

 Luckily you chose to adapt, because you’re still reading. This chapter introduces
you to techniques and tools to handle larger data sets that are still manageable by a
single computer if you adopt the right techniques.

 This chapter gives you the tools to perform the classifications and regressions
when the data no longer fits into the RAM (random access memory) of your com-
puter, whereas chapter 3 focused on in-memory data sets. Chapter 5 will go a step
further and teach you how to deal with data sets that require multiple computers to

This chapter covers
■ Working with large data sets on a single

computer
■ Working with Python libraries suitable for

larger data sets
■ Understanding the importance of choosing

correct algorithms and data structures
■ Understanding how you can adapt algorithms

to work inside databases
85



86 CHAPTER 4 Handling large data on a single computer
be processed. When we refer to large data in this chapter we mean data that causes
problems to work with in terms of memory or speed but can still be handled by a sin-
gle computer.

 We start this chapter with an overview of the problems you face when handling
large data sets. Then we offer three types of solutions to overcome these problems:
adapt your algorithms, choose the right data structures, and pick the right tools.
Data scientists aren’t the only ones who have to deal with large data volumes, so you
can apply general best practices to tackle the large data problem. Finally, we apply
this knowledge to two case studies. The first case shows you how to detect malicious
URLs, and the second case demonstrates how to build a recommender engine inside
a database.

4.1 The problems you face when handling large data
A large volume of data poses new challenges, such as overloaded memory and algo-
rithms that never stop running. It forces you to adapt and expand your repertoire of
techniques. But even when you can perform your analysis, you should take care of issues
such as I/O (input/output) and CPU starvation, because these can cause speed issues.
Figure 4.1 shows a mind map that will gradually unfold as we go through the steps:
problems, solutions, and tips.

A computer only has a limited amount of RAM. When you try to squeeze more data
into this memory than actually fits, the OS will start swapping out memory blocks to
disks, which is far less efficient than having it all in memory. But only a few algorithms
are designed to handle large data sets; most of them load the whole data set into
memory at once, which causes the out-of-memory error. Other algorithms need to
hold multiple copies of the data in memory or store intermediate results. All of these
aggravate the problem. 

Handling large data

Problems

Solutions

General tips

Not enough memory

Not enough speed

Processes that never end

Some components form a bottleneck while others remain idle–

+

+

Figure 4.1 Overview of problems encountered when working with more data than can 
fit in memory
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 Even when you cure the memory issues, you may need to deal with another lim-
ited resource: time. Although a computer may think you live for millions of years, in
reality you won’t (unless you go into cryostasis until your PC is done). Certain algo-
rithms don’t take time into account; they’ll keep running forever. Other algorithms
can’t end in a reasonable amount of time when they need to process only a few mega-
bytes of data.

 A third thing you’ll observe when dealing with large data sets is that components
of your computer can start to form a bottleneck while leaving other systems idle.
Although this isn’t as severe as a never-ending algorithm or out-of-memory errors, it
still incurs a serious cost. Think of the cost savings in terms of person days and com-
puting infrastructure for CPU starvation. Certain programs don’t feed data fast
enough to the processor because they have to read data from the hard drive, which is
one of the slowest components on a computer. This has been addressed with the
introduction of solid state drives (SSD), but SSDs are still much more expensive than
the slower and more widespread hard disk drive (HDD) technology. 

4.2 General techniques for handling large volumes of data
Never-ending algorithms, out-of-memory errors, and speed issues are the most com-
mon challenges you face when working with large data. In this section, we’ll investi-
gate solutions to overcome or alleviate these problems. 

 The solutions can be divided into three categories: using the correct algorithms,
choosing the right data structure, and using the right tools (figure 4.2).

No clear one-to-one mapping exists between the problems and solutions because
many solutions address both lack of memory and computational performance. For
instance, data set compression will help you solve memory issues because the data set
becomes smaller. But this also affects computation speed with a shift from the slow
hard disk to the fast CPU. Contrary to RAM (random access memory), the hard disc
will store everything even after the power goes down, but writing to disc costs more
time than changing information in the fleeting RAM. When constantly changing the
information, RAM is thus preferable over the (more durable) hard disc. With an

Handling large data

Problems

Solutions

General tips

Choose the right algorithms

Choose the right tools

Choose the right data structures
–

+

+
Figure 4.2 Overview of solutions 
for handling large data sets
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unpacked data set, numerous read and write operations (I/O) are occurring, but the
CPU remains largely idle, whereas with the compressed data set the CPU gets its fair
share of the workload. Keep this in mind while we explore a few solutions.

4.2.1 Choosing the right algorithm

Choosing the right algorithm can solve more problems than adding more or better
hardware. An algorithm that’s well suited for handling large data doesn’t need to load
the entire data set into memory to make predictions. Ideally, the algorithm also sup-
ports parallelized calculations. In this section we’ll dig into three types of algorithms
that can do that: online algorithms, block algorithms, and MapReduce algorithms, as shown
in figure 4.3.

ONLINE LEARNING ALGORITHMS

Several, but not all, machine learning algorithms can be trained using one observa-
tion at a time instead of taking all the data into memory. Upon the arrival of a new
data point, the model is trained and the observation can be forgotten; its effect is
now incorporated into the model’s parameters. For example, a model used to pre-
dict the weather can use different parameters (like atmospheric pressure or temper-
ature) in different regions. When the data from one region is loaded into the
algorithm, it forgets about this raw data and moves on to the next region. This “use
and forget” way of working is the perfect solution for the memory problem as a single
observation is unlikely to ever be big enough to fill up all the memory of a modern-
day computer. 

 Listing 4.1 shows how to apply this principle to a perceptron with online learning.
A perceptron is one of the least complex machine learning algorithms used for binary
classification (0 or 1); for instance, will the customer buy or not?

Handling large data

Problems

Solutions

General tips

Choose the right algorithms

Choose the right tools

Choose the right data structures
–

Online algorithms

Block matrices

MapReduce

–

+

+

Figure 4.3 Overview of techniques to adapt algorithms to large data sets



89General techniques for handling large volumes of data

en 
 
 
e.
import numpy as np
class perceptron():   
    def __init__(self, X,y, threshold = 0.5, 
learning_rate = 0.1, max_epochs = 10): 

self.threshold = threshold  
self.learning_rate = learning_rate  
self.X = X    
self.y = y    
self.max_epochs = max_epochs  

    def initialize(self, init_type = 'zeros'):  
if init_type == 'random':  

self.weights = np.random.rand(len(self.X[0])) * 0.05 
if init_type == 'zeros':   

self.weights = np.zeros(len(self.X[0])) 

    def train(self):  
epoch = 0 
while True: 

error_count = 0  
epoch += 1 
for (X,y) in zip(self.X, self.y): 
    error_count += self.train_observation(X,y,error_count) 

Listing 4.1 Training a perceptron by observation

Sets up 
perceptron class.

The __init__ method of any Python 
class is always run when creating 
an instance of the class. Several 
default values are set here.

The threshold is an arbitrary cutoff betwe
0 and 1 to decide whether the prediction
becomes a 0 or a 1. Often it’s 0.5, right in
the middle, but it depends on the use cas

The learning rate of an algorithm is the adjustment it makes every time a new 
observation comes in. If this is high, the model will adjust quickly to new observations 
but might "overshoot" and never get precise. An oversimplified example: the optimal 
(and unknown) weight for an x-variable = 0.75. Current estimation is 0.4 with a 
learning rate of 0.5; the adjustment = 0.5 (learning rate) * 1(size of error) *  1 (value 
of x) = 0.5. 0.4 (current weight) + 0.5 (adjustment) = 0.9 (new weight), instead of 
0.75. The adjustment was too big to get the correct result.

X and y variables are 
assigned to the class.One epoch is one run through 

all the data. We allow for a 
maximum of 10 runs until we 
stop the perceptron. Each observation will end up with a 

weight. The initialize function sets 
these weights for each incoming 
observation. We allow for 2 
options: all weights start at 0 or 
they are assigned a small (between 
0 and 0.05) random weight.

The training 
function.

We start at the first epoch.

True is always true, so technically this is a 
never-ending loop, but we build in several 
stop (break) conditions.

Initiates the number of encountered errors 
at 0 for each epoch. This is important; if an 
epoch ends without errors, the algorithm 
converged and we’re done. 

Adds one to the current 
number of epochs.

We loop through the data and feed
it to the train observation function,

one observation at a time.
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if error_count == 0: 
     print "training successful"
     break 
     if epoch >= self.max_epochs: 
       print "reached maximum epochs, no perfect prediction"
     break

    def train_observation(self,X,y, error_count):   
result = np.dot(X, self.weights) > self.threshold 
error = y - result 

  if error != 0:   
  error_count += 1 

for index, value in enumerate(X): 
    self.weights[index] +=  self.learning_rate * error * value 
  return error_count 

    def predict(self, X):  
return int(np.dot(X, self.weights) > self.threshold) 

X = [(1,0,0),(1,1,0),(1,1,1),(1,1,1),(1,0,1),(1,0,1)] 
y = [1,1,0,0,1,1] 

p = perceptron(X,y)  
p.initialize()
p.train()
print p.predict((1,1,1))
print p.predict((1,0,1))

If by the end of the epoch we don’t have
an error, the training was successful.

If we reach the
maximum number

of allowed runs,
we stop looking

for a solution.

The train observation function is run for
every observation and will adjust the

weights using the formula explained earlier.

A prediction is made
for this observation.
Because it’s binary, t
will be either 0 or 1.

The real value (y) is either 0 or 1; the 
prediction is also 0 or 1. If it’s wrong we 
get an error of either 1 or -1.

 case we have a
rong prediction

(an error), we
need to adjust

the model.

Adds 1 to the 
error count. For every predictor variable 

in the input vector (X), we’ll 
adjust its weight.

Adjusts the weight for every
predictor variable using the learning
rate, the error, and the actual value

of the predictor variable.

We return
the error count
use we need to
aluate it at the
d of the epoch.

The
predict

class. The values of the predictor values are multiplied by their
respective weights (this multiplication is done by np.dot).

Then the outcome is compared to the overall threshold
(here this is 0.5) to see if a 0 or 1 should be predicted.

Our X 
(predictors) 
data matrix.

ur y
get)
data
ctor.

We instantiate our perceptron class with 
the data from matrix X and vector y.

The weights for the predictors are 
initialized (as explained previously).

The perceptron model is trained. It will try to 
train until it either converges (no more errors) 
or it runs out of training runs (epochs).

We check what the perceptron would
now predict given different values for the

predictor variables. In the first case it will
predict 0; in the second it predicts a 1.



91General techniques for handling large volumes of data

 
 

n 
We’ll zoom in on parts of the code that might not be so evident to grasp without fur-
ther explanation. We’ll start by explaining how the train_observation() function
works. This function has two large parts. The first is to calculate the prediction of an
observation and compare it to the actual value. The second part is to change the
weights if the prediction seems to be wrong. 

    def train_observation(self,X,y, error_count):   
result = np.dot(X, self.weights) > self.threshold 
error = y - result 
if error != 0:   

error_count += 1 
 for index, value in enumerate(X): 
    self.weights[index]+=self.learning_rate * error * value 
 return error_count 

The prediction (y) is calculated by multiplying the input vector of independent vari-
ables with their respective weights and summing up the terms (as in linear regres-
sion). Then this value is compared with the threshold. If it’s larger than the threshold,
the algorithm will give a 1 as output, and if it’s less than the threshold, the algorithm
gives 0 as output. Setting the threshold is a subjective thing and depends on your busi-
ness case. Let’s say you’re predicting whether someone has a certain lethal disease,
with 1 being positive and 0 negative. In this case it’s better to have a lower threshold:
it’s not as bad to be found positive and do a second investigation than it is to overlook
the disease and let the patient die. The error is calculated, which will give the direc-
tion to the change of the weights. 

result = np.dot(X, self.weights) > self.threshold
error = y - result

The weights are changed according to the sign of the error. The update is done with
the learning rule for perceptrons. For every weight in the weight vector, you update its
value with the following rule:

wi = xi

where wi is the amount that the weight needs to be changed,  is the learning rate, 
is the error, and xi is the ith value in the input vector (the ith predictor variable). The

The train observation function is
run for every observation and

will adjust the weights using the
formula explained earlier.

A prediction is made
for this observation.
Because it’s binary, 
this will be either 
0 or 1.

The real value (y) is either 0 
or 1; the prediction is also 0 
or 1. If it’s wrong we get an 
error of either 1 or -1.

In case we have a wrong prediction (a
error), we need to adjust the model.

Adds 1
to error

count.

For every predictor variable in the input
vector (X), we’ll adjust its weight.

Adjusts the weight for every predictor variable
using the learning rate, the error, and the

actual value of the predictor variable.We return the error count
because we need to evaluate

it at the end of the epoch.
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ob
error count is a variable to keep track of how many observations are wrongly predicted
in this epoch and is returned to the calling function. You add one observation to the
error counter if the original prediction was wrong. An epoch is a single training run
through all the observations. 

if error != 0:  
error_count += 1

for index, value in enumerate(X):
  self.weights[index] +=  self.learning_rate * error * value 

The second function that we’ll discuss in more detail is the train() function. This
function has an internal loop that keeps on training the perceptron until it can either
predict perfectly or until it has reached a certain number of training rounds (epochs),
as shown in the following listing.

def train(self):  
epoch = 0 

  while True: 
  error_count = 0   
  epoch += 1 
  for (X,y) in zip(self.X, self.y): 

    error_count += self.train_observation(X,y,error_count) 
if error_count == 0: 

print "training succesfull"
     break 
     if epoch >= self.max_epochs: 
       print "reached maximum epochs, no perfect prediction"
     break an loop to train the data

Most online algorithms can also handle mini-batches; this way, you can feed them
batches of 10 to 1,000 observations at once while using a sliding window to go over
your data. You have three options: 

■ Full batch learning (also called statistical learning)—Feed the algorithm all the data
at once. This is what we did in chapter 3.

■ Mini-batch learning—Feed the algorithm a spoonful (100, 1000, …, depending
on what your hardware can handle) of observations at a time.

■ Online learning—Feed the algorithm one observation at a time.

Listing 4.2 Using train functions

Training
function.

Starts at 
the first 
epoch.

True is always true so technically this 
is a never-ending loop, but we build 
in several stop (break) conditions.

Initiates the number of encountered 
errors at 0 for each epoch. This is 
important, because if an epoch ends 
without errors, the algorithm 
converged and we’re done.

Adds one to
the current
number of

epochs.

We loop through
the data and

feed it to the train
servation function,

one observation
at a time.

If by the end of the epoch 
we don’t have an error, 
training was successful.

If we reach the maximum
number of allowed runs, we
stop looking for a solution.
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Online learning techniques are related to streaming algorithms, where you see every
data point only once. Think about incoming Twitter data: it gets loaded into the algo-
rithms, and then the observation (tweet) is discarded because the sheer number of
incoming tweets of data might soon overwhelm the hardware. Online learning algo-
rithms differ from streaming algorithms in that they can see the same observations
multiple times. True, the online learning algorithms and streaming algorithms can
both learn from observations one by one. Where they differ is that online algorithms are
also used on a static data source as well as on a streaming data source by presenting
the data in small batches (as small as a single observation), which enables you to go
over the data multiple times. This isn’t the case with a streaming algorithm, where data
flows into the system and you need to do the calculations typically immediately.
They’re similar in that they handle only a few at a time. 

DIVIDING A LARGE MATRIX INTO MANY SMALL ONES

Whereas in the previous chapter we barely needed to deal with how exactly the algo-
rithm estimates parameters, diving into this might sometimes help. By cutting a large
data table into small matrices, for instance, we can still do a linear regression. The
logic behind this matrix splitting and how a linear regression can be calculated with
matrices can be found in the sidebar. It suffices to know for now that the Python
libraries we’re about to use will take care of the matrix splitting, and linear regression
variable weights can be calculated using matrix calculus.

Block matrices and matrix formula of linear regression coefficient estimation
Certain algorithms can be translated into algorithms that use blocks of matrices
instead of full matrices. When you partition a matrix into a block matrix, you divide
the full matrix into parts and work with the smaller parts instead of the full matrix. In
this case you can load smaller matrices into memory and perform calculations,
thereby avoiding an out-of-memory error. Figure 4.4 shows how you can rewrite matrix
addition A + B into submatrices.

A B+ =

a a1,1 1,
...

m

..
. ... ..
.

a an n m,1 ,
...

b b1,1 1,
...

m

..
. ... ..
.

b bn n m,1 ,
...

+

a a1,1 1,
...

m

..
. ... ..
.

aj,1

a aj j m+1,1 +1,
...

..
. ... ..
.
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...

aj m,...

b b1,1 1,
...

m

..
. ... ..
.
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b bj j m+1,1 +1,
...

..
. ... ..
.

b bn n m,1 ,
...

bj m,...

+= =
A1

A2

+
B1

B2

Figure 4.4 Block matrices can be used to calculate the sum of the 
matrices A and B.
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The Python tools we have at our disposal to accomplish our task are the following:1

■ bcolz is a Python library that can store data arrays compactly and uses the hard
drive when the array no longer fits into the main memory.

■ Dask is a library that enables you to optimize the flow of calculations and makes
performing calculations in parallel easier. It doesn’t come packaged with the
default Anaconda setup so make sure to use conda install dask on your virtual
environment before running the code below. Note: some errors have been
reported on importing Dask when using 64bit Python. Dask is dependent on a
few other libraries (such as toolz), but the dependencies should be taken care
of automatically by pip or conda.

The following listing demonstrates block matrix calculations with these libraries.

(continued)

The formula in figure 4.4 shows that there’s no difference between adding matrices
A and B together in one step or first adding the upper half of the matrices and then
adding the lower half.

All the common matrix and vector operations, such as multiplication, inversion, and
singular value decomposition (a variable reduction technique like PCA), can be written
in terms of block matrices.1 Block matrix operations save memory by splitting the
problem into smaller blocks and are easy to parallelize.

Although most numerical packages have highly optimized code, they work only with
matrices that can fit into memory and will use block matrices in memory when
advantageous. With out-of-memory matrices, they don’t optimize this for you and
it’s up to you to partition the matrix into smaller matrices and to implement the
block matrix version.

A linear regression is a way to predict continuous variables with a linear combination
of its predictors; one of the most basic ways to perform the calculations is with a
technique called ordinary least squares. The formula in matrix form is 

 = XTX-1XTy

where  is the coefficients you want to retrieve, X is the predictors, and y is the target
variable.

1 For those who want to give it a try, Given transformations are easier to achieve than Householder transforma-
tions when calculating singular value decompositions.
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import dask.array as da
import bcolz as bc
import numpy as np
import dask

n = 1e4 

ar = bc.carray(np.arange(n).reshape(n/2,2)  , dtype='float64', 
rootdir = 'ar.bcolz', mode = 'w')

y  = bc.carray(np.arange(n/2), dtype='float64', rootdir = 
'yy.bcolz', mode = 'w')

dax = da.from_array(ar, chunks=(5,5)) 
dy = da.from_array(y,chunks=(5,5))    

XTX = dax.T.dot(dax) 
Xy  = dax.T.dot(dy)

coefficients = np.linalg.inv(XTX.compute()).dot(Xy.compute()) 

coef = da.from_array(coefficients,chunks=(5,5)) 

ar.flush()  
y.flush()

predictions = dax.dot(coef).compute() 
print predictions   

Note that you don’t need to use a block matrix inversion because XTX is a square
matrix with size nr. of predictors * nr. of predictors. This is fortunate because Dask

Listing 4.3 Block matrix calculations with bcolz and Dask libraries

Number of observations 
(scientific notation). 
1e4 = 10.000. Feel 
free to change this. 

Creates fake data: np.arange(n).reshape(n/2,2) creates
a matrix of 5000 by 2 (because we set n to 10.000).

bc.carray = numpy is an array extension that can
swap to disc. This is also stored in a compressed way.

rootdir = 'ar.bcolz'  --> creates a file on disc in case out of
RAM. You can check this on your file system next to this

ipython file or whatever location you ran this code from.
mode = 'w' --> is the write mode. dtype = 'float64' --> is

the storage type of the data (which is float numbers).

Block matrices are created for the predictor variables
(ar) and target (y). A block matrix is a matrix cut in 
pieces (blocks). da.from_array() reads data 
from disc or RAM (wherever it resides currently). 
chunks=(5,5): every block is a 5x5 matrix 
(unless < 5 observations or variables are left).

The XTX is defined (defining it as “lazy”) as the 
X matrix multiplied with its transposed version.
This is a building block of the formula to do 
linear regression using matrix calculation.

Xy is the y vector multiplied with the transposed 
X matrix. Again the matrix is only defined, not 
calculated yet. This is also a building block of the 
formula to do linear regression using matrix 
calculation (see formula).

The coefficients are calculated using the matrix 
linear regression function. np.linalg.inv() is the 
^(-1) in this function, or “inversion” of the 
matrix. X.dot(y) --> multiplies the matrix X 
with another matrix y.

The coefficients are also put 
into a block matrix. We got a 
numpy array back from the las
step so we need to explicitly 
convert it back to a “da array.”

Flush memory data. It’s no longer needed 
to have large matrices in memory.

Score the model 
(make predictions). 
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doesn’t yet support block matrix inversion. You can find more general information on
matrix arithmetic on the Wikipedia page at https://en.wikipedia.org/wiki/Matrix_
(mathematics).

MAPREDUCE

MapReduce algorithms are easy to understand with an analogy: Imagine that you were
asked to count all the votes for the national elections. Your country has 25 parties,
1,500 voting offices, and 2 million people. You could choose to gather all the voting
tickets from every office individually and count them centrally, or you could ask the
local offices to count the votes for the 25 parties and hand over the results to you, and
you could then aggregate them by party.

 Map reducers follow a similar process to the second way of working. They first map
values to a key and then do an aggregation on that key during the reduce phase. Have
a look at the following listing’s pseudo code to get a better feeling for this.

For each person in voting office:
    Yield (voted_party, 1)
For each vote in voting office:
    add_vote_to_party()

One of the advantages of MapReduce algorithms is that they’re easy to parallelize and
distribute. This explains their success in distributed environments such as Hadoop,
but they can also be used on individual computers. We’ll take a more in-depth look at
them in the next chapter, and an example (JavaScript) implementation is also pro-
vided in chapter 9. When implementing MapReduce in Python, you don’t need to
start from scratch. A number of libraries have done most of the work for you, such as
Hadoopy, Octopy, Disco, or Dumbo. 

4.2.2 Choosing the right data structure

Algorithms can make or break your program, but the way you store your data is of
equal importance. Data structures have different storage requirements, but also influ-
ence the performance of CRUD (create, read, update, and delete) and other opera-
tions on the data set.

 Figure 4.5 shows you have many different data structures to choose from, three of
which we’ll discuss here: sparse data, tree data, and hash data. Let’s first have a look at
sparse data sets.

SPARSE DATA

A sparse data set contains relatively little information compared to its entries (observa-
tions). Look at figure 4.6: almost everything is “0” with just a single “1” present in the
second observation on variable 9. 

 Data like this might look ridiculous, but this is often what you get when converting
textual data to binary data. Imagine a set of 100,000 completely unrelated Twitter

Listing 4.4 MapReduce pseudo code example

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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tweets. Most of them probably have fewer than 30 words, but together they might have
hundreds or thousands of distinct words. In the chapter on text mining we’ll go
through the process of cutting text documents into words and storing them as vectors.
But for now imagine what you’d get if every word was converted to a binary variable,
with “1” representing “present in this tweet,” and “0” meaning “not present in this
tweet.” This would result in sparse data indeed. The resulting large matrix can cause
memory problems even though it contains little information.

 Luckily, data like this can be stored compacted. In the case of figure 4.6 it could
look like this:

data = [(2,9,1)]

Row 2, column 9 holds the value 1.
 Support for working with sparse matrices is growing in Python. Many algorithms

now support or return sparse matrices.

TREE STRUCTURES

Trees are a class of data structure that allows you to retrieve information much faster
than scanning through a table. A tree always has a root value and subtrees of children,
each with its children, and so on. Simple examples would be your own family tree or a
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biological tree and the way it splits into branches, twigs, and leaves. Simple decision
rules make it easy to find the child tree in which your data resides. Look at figure 4.7
to see how a tree structure enables you to get to the relevant information quickly.

In figure 4.7 you start your search at the top and first choose an age category, because
apparently that’s the factor that cuts away the most alternatives. This goes on and on
until you get what you’re looking for. For whoever isn’t acquainted with the Akinator,
we recommend visiting http://en.akinator.com/. The Akinator is a djinn in a magical
lamp that tries to guess a person in your mind by asking you a few questions about him
or her. Try it out and be amazed . . . or see how this magic is a tree search. 

 Trees are also popular in databases. Databases prefer not to scan the table from the
first line until the last, but to use a device called an index to avoid this. Indices are
often based on data structures such as trees and hash tables to find observations faster.
The use of an index speeds up the process of finding data enormously. Let’s look at
these hash tables. 

HASH TABLES

Hash tables are data structures that calculate a key for every value in your data and put
the keys in a bucket. This way you can quickly retrieve the information by looking in
the right bucket when you encounter the data. Dictionaries in Python are a hash table
implementation, and they’re a close relative of key-value stores. You’ll encounter
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Figure 4.7 Example of a tree data structure: decision rules such as age categories can be 
used to quickly locate a person in a family tree

http://en.akinator.com/


99General techniques for handling large volumes of data
them in the last example of this chapter when you build a recommender system within
a database. Hash tables are used extensively in databases as indices for fast informa-
tion retrieval.

4.2.3 Selecting the right tools

With the right class of algorithms and data structures in place, it’s time to choose the
right tool for the job. The right tool can be a Python library or at least a tool that’s
controlled from Python, as shown figure 4.8. The number of helpful tools available is
enormous, so we’ll look at only a handful of them.

PYTHON TOOLS

Python has a number of libraries that can help you deal with large data. They range
from smarter data structures over code optimizers to just-in-time compilers. The fol-
lowing is a list of libraries we like to use when confronted with large data:

■ Cython—The closer you get to the actual hardware of a computer, the more vital
it is for the computer to know what types of data it has to process. For a com-
puter, adding 1 + 1 is different from adding 1.00 + 1.00. The first example con-
sists of integers and the second consists of floats, and these calculations are
performed by different parts of the CPU. In Python you don’t have to specify
what data types you’re using, so the Python compiler has to infer them. But
inferring data types is a slow operation and is partially why Python isn’t one of
the fastest languages available. Cython, a superset of Python, solves this prob-
lem by forcing the programmer to specify the data type while developing the
program. Once the compiler has this information, it runs programs much
faster. See http://cython.org/ for more information on Cython.

■ Numexpr —Numexpr is at the core of many of the big data packages, as is
NumPy for in-memory packages. Numexpr is a numerical expression evaluator
for NumPy but can be many times faster than the original NumPy. To achieve
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100 CHAPTER 4 Handling large data on a single computer
this, it rewrites your expression and uses an internal (just-in-time) compiler. See
https://github.com/pydata/numexpr for details on Numexpr.

■ Numba —Numba helps you to achieve greater speed by compiling your code
right before you execute it, also known as just-in-time compiling. This gives you
the advantage of writing high-level code but achieving speeds similar to those of
C code. Using Numba is straightforward; see http://numba.pydata.org/.

■ Bcolz—Bcolz helps you overcome the out-of-memory problem that can occur
when using NumPy. It can store and work with arrays in an optimal compressed
form. It not only slims down your data need but also uses Numexpr in the back-
ground to reduce the calculations needed when performing calculations with
bcolz arrays. See http://bcolz.blosc.org/.

■ Blaze —Blaze is ideal if you want to use the power of a database backend but like
the “Pythonic way” of working with data. Blaze will translate your Python code
into SQL but can handle many more data stores than relational databases such
as CSV, Spark, and others. Blaze delivers a unified way of working with many
databases and data libraries. Blaze is still in development, though, so many fea-
tures aren’t implemented yet. See http://blaze.readthedocs.org/en/latest/
index.html.

■ Theano—Theano enables you to work directly with the graphical processing
unit (GPU) and do symbolical simplifications whenever possible, and it comes
with an excellent just-in-time compiler. On top of that it’s a great library for
dealing with an advanced but useful mathematical concept: tensors. See http://
deeplearning.net/software/theano/.

■ Dask—Dask enables you to optimize your flow of calculations and execute
them efficiently. It also enables you to distribute calculations. See http://
dask.pydata.org/en/latest/.

These libraries are mostly about using Python itself for data processing (apart from
Blaze, which also connects to databases). To achieve high-end performance, you can
use Python to communicate with all sorts of databases or other software. 

USE PYTHON AS A MASTER TO CONTROL OTHER TOOLS

Most software and tool producers support a Python interface to their software. This
enables you to tap into specialized pieces of software with the ease and productivity
that comes with Python. This way Python sets itself apart from other popular data sci-
ence languages such as R and SAS. You should take advantage of this luxury and
exploit the power of specialized tools to the fullest extent possible. Chapter 6 features
a case study using Python to connect to a NoSQL database, as does chapter 7 with
graph data.

 Let’s now have a look at more general helpful tips when dealing with large data.

https://github.com/pydata/numexpr
http://numba.pydata.org/
http://bcolz.blosc.org/
http://blaze.readthedocs.org/en/latest/index.html
http://blaze.readthedocs.org/en/latest/index.html
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/
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4.3 General programming tips for dealing with 
large data sets
The tricks that work in a general programming context still apply for data science.
Several might be worded slightly differently, but the principles are essentially the same
for all programmers. This section recapitulates those tricks that are important in a
data science context.

 You can divide the general tricks into three parts, as shown in the figure 4.9
mind map:

■ Don’t reinvent the wheel. Use tools and libraries developed by others.
■ Get the most out of your hardware. Your machine is never used to its full potential;

with simple adaptions you can make it work harder.
■ Reduce the computing need. Slim down your memory and processing needs as

much as possible.

“Don’t reinvent the wheel” is easier said than done when confronted with a specific
problem, but your first thought should always be, ‘Somebody else must have encoun-
tered this same problem before me.’

4.3.1 Don’t reinvent the wheel

“Don’t repeat anyone” is probably even better than “don’t repeat yourself.” Add value
with your actions: make sure that they matter. Solving a problem that has already been
solved is a waste of time. As a data scientist, you have two large rules that can help you
deal with large data and make you much more productive, to boot:

■ Exploit the power of databases. The first reaction most data scientists have when
working with large data sets is to prepare their analytical base tables inside a
database. This method works well when the features you want to prepare are
fairly simple. When this preparation involves advanced modeling, find out if it’s
possible to employ user-defined functions and procedures. The last example of
this chapter is on integrating a database into your workflow.

■ Use optimized libraries. Creating libraries like Mahout, Weka, and other machine-
learning algorithms requires time and knowledge. They are highly optimized
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and incorporate best practices and state-of-the art technologies. Spend your
time on getting things done, not on reinventing and repeating others people’s
efforts, unless it’s for the sake of understanding how things work. 

Then you must consider your hardware limitation.

4.3.2 Get the most out of your hardware

Resources on a computer can be idle, whereas other resources are over-utilized. This
slows down programs and can even make them fail. Sometimes it’s possible (and nec-
essary) to shift the workload from an overtaxed resource to an underutilized resource
using the following techniques:

■ Feed the CPU compressed data. A simple trick to avoid CPU starvation is to feed the
CPU compressed data instead of the inflated (raw) data. This will shift more work
from the hard disk to the CPU, which is exactly what you want to do, because a
hard disk can’t follow the CPU in most modern computer architectures.

■ Make use of the GPU. Sometimes your CPU and not your memory is the bottle-
neck. If your computations are parallelizable, you can benefit from switching
to the GPU. This has a much higher throughput for computations than a CPU.
The GPU is enormously efficient in parallelizable jobs but has less cache than
the CPU. But it’s pointless to switch to the GPU when your hard disk is the
problem. Several Python packages, such as Theano and NumbaPro, will use
the GPU without much programming effort. If this doesn’t suffice, you can
use a CUDA (Compute Unified Device Architecture) package such as PyCUDA.
It’s also a well-known trick in bitcoin mining, if you’re interested in creating
your own money.

■ Use multiple threads. It’s still possible to parallelize computations on your CPU.
You can achieve this with normal Python threads.

4.3.3 Reduce your computing needs

“Working smart + hard = achievement.” This also applies to the programs you write.
The best way to avoid having large data problems is by removing as much of the work
as possible up front and letting the computer work only on the part that can’t be
skipped. The following list contains methods to help you achieve this:

■ Profile your code and remediate slow pieces of code. Not every piece of your code
needs to be optimized; use a profiler to detect slow parts inside your program
and remediate these parts.

■ Use compiled code whenever possible, certainly when loops are involved. Whenever pos-
sible use functions from packages that are optimized for numerical computa-
tions instead of implementing everything yourself. The code in these packages
is often highly optimized and compiled.

■ Otherwise, compile the code yourself. If you can’t use an existing package, use
either a just-in-time compiler or implement the slowest parts of your code in a
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lower-level language such as C or Fortran and integrate this with your codebase.
If you make the step to lower-level languages (languages that are closer to the uni-
versal computer bytecode), learn to work with computational libraries such as
LAPACK, BLAST, Intel MKL, and ATLAS. These are highly optimized, and it’s dif-
ficult to achieve similar performance to them.

■ Avoid pulling data into memory. When you work with data that doesn’t fit in your
memory, avoid pulling everything into memory. A simple way of doing this is by
reading data in chunks and parsing the data on the fly. This won’t work on
every algorithm but enables calculations on extremely large data sets.

■ Use generators to avoid intermediate data storage. Generators help you return data
per observation instead of in batches. This way you avoid storing intermedi-
ate results.

■ Use as little data as possible. If no large-scale algorithm is available and you aren’t
willing to implement such a technique yourself, then you can still train your
data on only a sample of the original data.

■ Use your math skills to simplify calculations as much as possible. Take the following
equation, for example: (a + b)2 = a2 + 2ab + b2. The left side will be computed
much faster than the right side of the equation; even for this trivial example, it
could make a difference when talking about big chunks of data.

4.4 Case study 1: Predicting malicious URLs
The internet is probably one of the greatest inventions of modern times. It has
boosted humanity’s development, but not everyone uses this great invention with hon-
orable intentions. Many companies (Google, for one) try to protect us from fraud by
detecting malicious websites for us. Doing so is no easy task, because the internet has
billions of web pages to scan. In this case study we’ll show how to work with a data set
that no longer fits in memory. 

 What we’ll use

■ Data—The data in this case study was made available as part of a research proj-
ect. The project contains data from 120 days, and each observation has approx-
imately 3,200,000 features. The target variable contains 1 if it’s a malicious
website and -1 otherwise. For more information, please see “Beyond Blacklists:
Learning to Detect Malicious Web Sites from Suspicious URLs.”2

■ The Scikit-learn library—You should have this library installed in your Python
environment at this point, because we used it in the previous chapter.

As you can see, we won’t be needing much for this case, so let’s dive into it.

2 Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker, “Beyond Blacklists: Learning to Detect
Malicious Web Sites from Suspicious URLs,” Proceedings of the ACM SIGKDD Conference, Paris (June
2009), 1245–53.
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4.4.1 Step 1: Defining the research goal 

The goal of our project is to detect whether certain URLs can be trusted or not.
Because the data is so large we aim to do this in a memory-friendly way. In the next
step we’ll first look at what happens if we don’t concern ourselves with memory
(RAM) issues.

4.4.2 Step 2: Acquiring the URL data

Start by downloading the data from http://sysnet.ucsd.edu/projects/url/#datasets
and place it in a folder. Choose the data in SVMLight format. SVMLight is a text-based
format with one observation per row. To save space, it leaves out the zeros.

The following listing and figure 4.10 show what happens when you try to read in 1 file
out of the 120 and create the normal matrix as most algorithms expect. The todense()
method changes the data from a special file format to a normal matrix where every
entry contains a value.

import glob
from sklearn.datasets import load_svmlight_file
files = glob.glob('C:\Users\Gebruiker\Downloads\
url_svmlight.tar\url_svmlight\*.svm')
files = glob.glob('C:\Users\Gebruiker\Downloads\
url_svmlight\url_svmlight\*.svm') 
print "there are %d files" % len(files) 
X,y = load_svmlight_file(files[0],n_features=3231952) 
X.todense()

Surprise, surprise, we get an out-of-memory error. That is, unless you run this code on
a huge machine. After a few tricks you’ll no longer run into these memory problems
and will detect 97% of the malicious sites.

Listing 4.5 Generating an out-of-memory error

Figure 4.10 Memory error when trying to take a large data set into memory
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Points to files (Windows: 
tar file needs to be 
untarred first).

Indication of 
number of files.

Loads files.
The data is a big, but sparse, matrix. 
By turning it into a dense matrix 
(every 0 is represented in the file), 
we create an out-of-memory error.

http://sysnet.ucsd.edu/projects/url/#datasets
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TOOLS AND TECHNIQUES 
We ran into a memory error while loading a single file—still 119 to go. Luckily, we
have a few tricks up our sleeve. Let’s try these techniques over the course of the
case study:

■ Use a sparse representation of data.
■ Feed the algorithm compressed data instead of raw data.
■ Use an online algorithm to make predictions.

We’ll go deeper into each “trick” when we get to use it. Now that we have our data
locally, let’s access it. Step 3 of the data science process, data preparation and cleans-
ing, isn’t necessary in this case because the URLs come pre-cleaned. We’ll need a form
of exploration before unleashing our learning algorithm, though.  

4.4.3 Step 4: Data exploration

To see if we can even apply our first trick (sparse representation), we need to find out
whether the data does indeed contain lots of zeros. We can check this with the follow-
ing piece of code:

print "number of non-zero entries %2.6f"  % float((X.nnz)/(float(X.shape[0]) 
* float(X.shape[1])))

This outputs the following:

number of non-zero entries 0.000033

Data that contains little information compared to zeros is called sparse data. This can
be saved more compactly if you store the data as [(0,0,1),(4,4,1)] instead of 

[[1,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,1]]

One of the file formats that implements this is SVMLight, and that’s exactly why we
downloaded the data in this format. We’re not finished yet, though, because we need
to get a feel of the dimensions within the data. 

 To get this information we already need to keep the data compressed while check-
ing for the maximum number of observations and variables. We also need to read in
data file by file. This way you consume even less memory. A second trick is to feed the
CPU compressed files. In our example, it’s already packed in the tar.gz format. You
unpack a file only when you need it, without writing it to the hard disk (the slowest
part of your computer).

 For our example, shown in listing 4.6, we’ll only work on the first 5 files, but feel
free to use all of them.
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import tarfile
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import classification_report
from sklearn.datasets import load_svmlight_file
import numpy as np

uri = 'D:\Python Book\Chapter 4\url_svmlight.tar.gz' 
tar = tarfile.open(uri,"r:gz")
max_obs = 0 
max_vars = 0 
i = 0 
split = 5 
for tarinfo in tar: 
    print " extracting %s,f size %s" % (tarinfo.name, tarinfo.size)
    if tarinfo.isfile():

f = tar.extractfile(tarinfo.name)
X,y = load_svmlight_file(f) 
max_vars = np.maximum(max_vars, X.shape[0]) 
max_obs = np.maximum(max_obs, X.shape[1])   

    if i  > split:
break  

    i+= 1

print "max X = %s, max y dimension = %s" % (max_obs, max_vars ) 

Part of the code needs some extra explanation. In this code we loop through the svm
files inside the tar archive. We unpack the files one by one to reduce the memory
needed. As these files are in the SVM format, we use a helper, functionload_svmlight
_file() to load a specific file. Then we can see how many observations and variables
the file has by checking the shape of the resulting data set. 

 Armed with this information we can move on to model building.

4.4.4 Step 5: Model building

Now that we’re aware of the dimensions of our data, we can apply the same two tricks
(sparse representation of compressed file) and add the third (using an online algo-
rithm), in the following listing. Let’s find those harmful websites!

Listing 4.6 Checking data size

The uri variable holds the 
location in which you saved 
the downloaded files. You’ll 
need to fill out this uri 
variable yourself for the cod
to run on your computer.

We don’t know how many observations 
we have, so let’s initialize it at 0.

We don’t know how many features 
we have, so let’s initialize it at 0.

ialize
file

nter
at 0.

Stop at the 5th file 
(instead of all of them, for 
demonstration purposes).

All files together take up 
around 2.05 Gb. The 
trick here is to leave the 
data compressed in 
main memory and only 
unpack what you need.

We unpack
he files one

by one to
reduce the

memory
needed.

Use a helper function, 
load_svmlight_file() 
to load a specific file.

Adjust maximum number of 
observations and variables 
when necessary (big file).Stop when we 

reach 5 files.

Print 
results.
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ion, 
() 
ile.

g 
t 
ts 
classes = [-1,1] 
sgd = SGDClassifier(loss="log")  
n_features=3231952 
split = 5 
i = 0 
for tarinfo in tar: 
    if i  > split:

break
    if tarinfo.isfile():

f = tar.extractfile(tarinfo.name)
X,y = load_svmlight_file(f,n_features=n_features) 
if i < split:

sgd.partial_fit(X, y, classes=classes) 
if i == split:

print classification_report(sgd.predict(X),y) 
    i += 1

The code in the previous listing looks fairly similar to what we did before, apart from
the stochastic gradient descent classifier SGDClassifier().

 Here, we trained the algorithm iteratively by presenting the observations in one
file with the partial_fit() function.

 Looping through only the first 5 files here gives the output shown in table 4.1. The
table shows classification diagnostic measures: precision, recall, F1-score, and support.

Only 3% (1 - 0.97) of the malicious sites aren’t detected (precision), and 6% (1 - 0.94)
of the sites detected are falsely accused (recall). This is a decent result, so we can con-
clude that the methodology works. If we rerun the analysis, the result might be slightly

Listing 4.7 Creating a model to distinguish the malicious from the normal URLs

Table 4.1 Classification problem: Can a website be trusted or not? 

precision recall f1-score support

-1 0.97 0.99 0.98 14045

1 0.97 0.94 0.96 5955

avg/total 0.97 0.97 0.97 20000

The target variable can be 1 
or -1. “1”: website safe to 
visit, “-1”: website unsafe. Set up stochastic 

gradient 
classifier.

We know number 
of features from 
data exploration.

Stop at 5th file (instead of all 
of them, for demonstration 
purposes).

Initialize file 
counter at 0.

All files together take up around 2.05 
Gb. The trick here is to leave data 
compressed in main memory and 
only unpack what you need.

We unpack the 
files one by one 
to reduce the 
memory needed.

Use a helper funct
load_svmlight_file
to load a specific f

Third important thin
is online algorithm. I
can be fed data poin
file by file (batches).

Stop when we
reach 5 files and

print results.



108 CHAPTER 4 Handling large data on a single computer
different, because the algorithm could converge slightly differently. If you don’t mind
waiting a while, you can go for the full data set. You can now handle all the data without
problems. We won’t have a sixth step (presentation or automation) in this case study. 

 Now let’s look at a second application of our techniques; this time you’ll build a
recommender system inside a database. For a well-known example of recommender
systems visit the Amazon website. While browsing, you’ll soon be confronted with rec-
ommendations: “People who bought this product also bought…”

4.5 Case study 2: Building a recommender system inside 
a database
In reality most of the data you work with is stored in a relational database, but most
databases aren’t suitable for data mining. But as shown in this example, it’s possible to
adapt our techniques so you can do a large part of the analysis inside the database
itself, thereby profiting from the database’s query optimizer, which will optimize the
code for you. In this example we’ll go into how to use the hash table data structure
and how to use Python to control other tools.

4.5.1 Tools and techniques needed

Before going into the case study we need to have a quick look at the required tools
and theoretical background to what we’re about to do here. 

TOOLS

■ MySQL database —Needs a MySQL database to work with. If you haven’t installed
a MySQL community server, you can download one from www.mysql.com.
Appendix C: “Installing a MySQL server” explains how to set it up.

■ MySQL database connection Python library—To connect to this server from Python
you’ll also need to install SQLAlchemy or another library capable of communicat-
ing with MySQL. We’re using MySQLdb. On Windows you can’t use Conda right
off the bat to install it. First install Binstar (another package management service)
and look for the appropriate mysql-python package for your Python setup.

conda install binstar
binstar search -t conda mysql-python

The following command entered into the Windows command line worked for us
(after activating the Python environment):

conda install --channel https://conda.binstar.org/krisvanneste mysql-python

Again, feel free to go for the SQLAlchemy library if that’s something you’re more com-
fortable with. 

■ We will also need the pandas python library, but that should already be installed
by now.

With the infrastructure in place, let’s dive into a few of the techniques. 

http://www.mysql.com
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TECHNIQUES 
A simple recommender system will look for customers who’ve rented similar movies as
you have and then suggest those that the others have watched but you haven’t seen
yet. This technique is called k-nearest neighbors in machine learning. 

 A customer who behaves similarly to you isn’t necessarily the most similar customer.
You’ll use a technique to ensure that you can find similar customers (local optima)
without guarantees that you’ve found the best customer (global optimum). A com-
mon technique used to solve this is called Locality-Sensitive Hashing. A good overview of
papers on this topic can be found at http://www.mit.edu/~andoni/LSH/.

 The idea behind Locality-Sensitive Hashing is simple: Construct functions that
map similar customers close together (they’re put in a bucket with the same label)
and make sure that objects that are different are put in different buckets. 

 Central to this idea is a function that performs the mapping. This function is
called a hash function: a function that maps any range of input to a fixed output. The
simplest hash function concatenates the values from several random columns. It
doesn’t matter how many columns (scalable input); it brings it back to a single col-
umn (fixed output). 

 You’ll set up three hash functions to find similar customers. The three functions
take the values of three movies: 

■ The first function takes the values of movies 10, 15, and 28.
■ The second function takes the values of movies 7, 18, and 22.
■ The last function takes the values of movies 16, 19, and 30.

This will ensure that the customers who are in the same bucket share at least several
movies. But the customers inside one bucket might still differ on the movies that
weren’t included in the hashing functions. To solve this you still need to compare the
customers within the bucket with each other. For this you need to create a new dis-
tance measure.

 The distance that you’ll use to compare customers is called the hamming distance.
The hamming distance is used to calculate how much two strings differ. The distance
is defined as the number of different characters in a string. Table 4.2 offers a few
examples of the hamming distance.

Table 4.2 Examples of calculating the hamming distance 

String 1 String 2 Hamming distance

Hat Cat 1

Hat Mad 2

Tiger Tigre 2

Paris Rome 5

http://www.mit.edu/~andoni/LSH/
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Comparing multiple columns is an expensive operation, so you’ll need a trick to
speed this up. Because the columns contain a binary (0 or 1) variable to indicate
whether a customer has bought a movie or not, you can concatenate the information
so that the same information is contained in a new column. Table 4.3 shows the “mov-
ies” variable that contains as much information as all the movie columns combined.

This allows you to calculate the hamming distance much more efficiently. By handling
this operator as a bit, you can exploit the XOR operator. The outcome of the XOR
operator (^) is as follows:

1^1 = 0
1^0 = 1
0^1 = 1
0^0 = 0

With this in place, the process to find similar customers becomes very simple. Let’s
first look at it in pseudo code:

Preprocessing:

1 Define p (for instance, 3) functions that select k (for instance, 3) entries from
the vector of movies. Here we take 3 functions (p) that each take 3 (k) movies.

2 Apply these functions to every point and store them in a separate column. (In
literature each function is called a hash function and each column will store
a bucket.)

Querying point q:

1 Apply the same p functions to the point (observation) q you want to query.
2 Retrieve for every function the points that correspond to the result in the corre-

sponding bucket.
Stop when you’ve retrieved all the points in the buckets or reached 2p points
(for example 10 if you have 5 functions).

3 Calculate the distance for each point and return the points with the mini-
mum distance. 

Table 4.3 Combining the information from different columns into the movies column. This is also how
DNA works: all information in a long string. 

Column 1 Movie 1 Movie 2 Movie 3 Movie 4 movies

Customer 1 1 0 1 1 1011

Customer 2 0 0 0 1 0001



111Case study 2: Building a recommender system inside a database
Let’s look at an actual implementation in Python to make this all clearer.

4.5.2 Step 1: Research question

Let’s say you’re working in a video store and the manager asks you if it’s possible to
use the information on what movies people rent to predict what other movies they
might like. Your boss has stored the data in a MySQL database, and it’s up to you to do
the analysis. What he is referring to is a recommender system, an automated system
that learns people’s preferences and recommends movies and other products the cus-
tomers haven’t tried yet. The goal of our case study is to create a memory-friendly rec-
ommender system. We’ll achieve this using a database and a few extra tricks. We’re
going to create the data ourselves for this case study so we can skip the data retrieval
step and move right into data preparation. And after that we can skip the data explo-
ration step and move straight into model building.

4.5.3 Step 3: Data preparation

The data your boss has collected is shown in table 4.4. We’ll create this data ourselves
for the sake of demonstration.

For each customer you get an indication of whether they’ve rented the movie before
(1) or not (0). Let’s see what else you’ll need so you can give your boss the recom-
mender system he desires.

 First let’s connect Python to MySQL to create our data. Make a connection to
MySQL using your username and password. In the following listing we used a database
called “test”. Replace the user, password, and database name with the appropriate val-
ues for your setup and retrieve the connection and the cursor. A database cursor is a
control structure that remembers where you are currently in the database. 

Table 4.4 Excerpt from the client database and the movies customers rented

Customer Movie 1 Movie 2 Movie 3 … Movie 32

Jack Dani 1 0 0 1

Wilhelmson 1 1 0 1

…

Jane Dane 0 0 1 0

Xi Liu 0 0 0 1

Eros Mazo 1 1 0 1

…
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, 
e 
import MySQLdb
import pandas as pd

user = '****'
password = '****'
database = 'test'
mc = MySQLdb.connect('localhost',user,password,database)  
cursor = mc.cursor()

nr_customers = 100
colnames = ["movie%d" %i for i in range(1,33)]
pd.np.random.seed(2015)
generated_customers = pd.np.random.randint(0,2,32 * 

nr_customers).reshape(nr_customers,32)

data = pd.DataFrame(generated_customers, columns = list(colnames))    
data.to_sql('cust',mc, flavor = 'mysql', index = True, if_exists = 

'replace', index_label = 'cust_id')

We create 100 customers and randomly assign whether they did or didn’t see a certain
movie, and we have 32 movies in total. The data is first created in a Pandas data frame
but is then turned into SQL code. Note: You might run across a warning when running
this code. The warning states: The “mysql” flavor with DBAPI connection is deprecated and
will be removed in future versions. MySQL will be further supported with SQLAlchemy engines.
Feel free to already switch to SQLAlchemy or another library. We’ll use SQLAlchemy in
other chapters, but used MySQLdb here to broaden the examples.  

 To efficiently query our database later on we’ll need additional data preparation,
including the following things:

■ Creating bit strings. The bit strings are compressed versions of the columns’
content (0 and 1 values). First these binary values are concatenated; then the
resulting bit string is reinterpreted as a number. This might sound abstract now
but will become clearer in the code.

■ Defining hash functions. The hash functions will in fact create the bit strings.
■ Adding an index to the table, to quicken data retrieval.

CREATING BIT STRINGS 
Now you make an intermediate table suited for querying, apply the hash functions,
and represent the sequence of bits as a decimal number. Finally, you can place them
in a table.

 First, you need to create bit strings. You need to convert the string “11111111” to a
binary or a numeric value to make the hamming function work. We opted for a numeric
representation, as shown in the next listing.

Listing 4.8 Creating customers in the database

First we establish the 
connection; you’ll need to 
fill out your own username
password, and schema-nam
(variable “database”).

Next we simulate 
a database with 
customers and create 
a few observations.

Store the data inside a Pandas data frame and
write the data frame in a MySQL table called
“cust”. If this table already exists, replace it.
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def createNum(x1,x2,x3,x4,x5,x6,x7,x8): 
    return  [int('%d%d%d%d%d%d%d%d' % (i1,i2,i3,i4,i5,i6,i7,i8),2) 
for (i1,i2,i3,i4,i5,i6,i7,i8) in zip(x1,x2,x3,x4,x5,x6,x7,x8)]

assert int('1111',2) == 15
assert int('1100',2) == 12
assert createNum([1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,0],[1,0]) 

== [255,252]

store = pd.DataFrame()
store['bit1'] = createNum(data.movie1, 

data.movie2,data.movie3,data.movie4,data.movie5,
data.movie6,data.movie7,data.movie8)
store['bit2'] = createNum(data.movie9, 

data.movie10,data.movie11,data.movie12,data.movie13,
data.movie14,data.movie15,data.movie16)
store['bit3'] = createNum(data.movie17, 

data.movie18,data.movie19,data.movie20,data.movie21,
data.movie22,data.movie23,data.movie24)
store['bit4'] = createNum(data.movie25, 

data.movie26,data.movie27,data.movie28,data.movie29,
data.movie30,data.movie31,data.movie32)

By converting the information of 32 columns into 4 numbers, we compressed it for
later lookup. Figure 4.11 shows what we get when asking for the first 2 observations
(customer movie view history) in this new format.

store[0:2]

The next step is to create the hash functions, because they’ll enable us to sample the
data we’ll use to determine whether two customers have similar behavior. 

Listing 4.9 Creating bit strings

We represent the string as a numeric value. The string will be a concatenation
of zeros (0) and ones (1) because these indicate whether someone has seen a
certain movie or not. The strings are then regarded as bit code. For example:

0011 is the same as the number 3. What def createNum() does: takes in 8
values, concatenates these 8 column values and turns them into a string, then

turns the byte code of the string into a number.

Test if the function works correctly. Binary code 1111 is the 
same as 15 (=1*8+1*4+1*2+1*1). If the assert fails, it 
will raise an assert error; otherwise nothing will happen.

Translate the 
movie column to 
4 bit strings in 
numeric form. 
Each bit string 
represents 8 
movies. 4*8 = 32 
movies. Note: you 
could use a 32-bit 
string instead of 
4*8 to keep the 
code short.

Figure 4.11 First 2 customers' 
information on all 32 movies after 
bit string to numeric conversion
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CREATING A HASH FUNCTION

The hash functions we create take the values of movies for a customer. We decided in
the theory part of this case study to create 3 hash functions: the first function com-
bines the movies 10, 5, and 18; the second combines movies 7, 18, and 22; and the
third one combines 16, 19, and 30. It’s up to you if you want to pick others; this can be
picked randomly. The following code listing shows how this is done.

def hash_fn(x1,x2,x3): 
    return [b'%d%d%d' % (i,j,k) for (i,j,k) in zip(x1,x2,x3)]

assert hash_fn([1,0],[1,1],[0,0]) == [b'110',b'010'] 

store['bucket1'] = hash_fn(data.movie10, data.movie15,data.movie28)
store['bucket2'] = hash_fn(data.movie7, data.movie18,data.movie22)
store['bucket3'] = hash_fn(data.movie16, data.movie19,data.movie30)
store.to_sql('movie_comparison',mc, flavor = 'mysql', index = True, 

index_label = 'cust_id', if_exists = 'replace') 

The hash function concatenates the values from the different movies into a binary
value like what happened before in the createNum() function, only this time we don’t
convert to numbers and we only take 3 movies instead of 8 as input. The assert function
shows how it concatenates the 3 values for every observation. When the client has
bought movie 10 but not movies 15 and 28, it will return b’100’ for bucket 1. When the
client bought movies 7 and 18, but not 22, it will return b’110’ for bucket 2. If we look at
the current result we see the 4 variables we created earlier (bit1, bit2, bit3, bit4)
from the 9 handpicked movies (figure 4.12). 

The last trick we’ll apply is indexing the customer table so lookups happen more quickly.

Listing 4.10 Creating hash functions

Define hash function (it is exactly like 
the createNum() function without 
the final conversion to a number 
and for 3 columns instead of 8).

Test if it works 
correctly (if no error
is raised, it works). 
It’s sampling on 
columns but all 
observations will 
be selected.

Create hash values from customer
movies, respectively [10,15, 28],

[7,18, 22], [16,19, 30].

Store this information 
in database. 

Figure 4.12 Information from the 
bit string compression and the 9 
sampled movies
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ADDING AN INDEX TO THE TABLE

Now you must add indices to speed up retrieval as needed in a real-time system. This is
shown in the next listing. 

def createIndex(column, cursor): 
    sql = 'CREATE INDEX %s ON movie_comparison (%s);' % (column, column)
    cursor.execute(sql)

createIndex('bucket1',cursor)   
createIndex('bucket2',cursor)   
createIndex('bucket3',cursor)   

With the data indexed we can now move on to the “model building part.” In this case
study no actual machine learning or statistical model is implemented. Instead we’ll use a
far simpler technique: string distance calculation. Two strings can be compared using
the hamming distance as explained earlier in the theoretical intro to the case study.

4.5.4 Step 5: Model building

To use the hamming distance in the database we need to define it as a function.

CREATING THE HAMMING DISTANCE FUNCTION

We implement this as a user-defined function. This function can calculate the distance
for a 32-bit integer (actually 4*8), as shown in the following listing.

Sql = '''
CREATE FUNCTION HAMMINGDISTANCE(
  A0 BIGINT, A1 BIGINT, A2 BIGINT, A3 BIGINT, 
  B0 BIGINT, B1 BIGINT, B2 BIGINT, B3 BIGINT
)

RETURNS INT DETERMINISTIC    
RETURN
  BIT_COUNT(A0 ^ B0) +
  BIT_COUNT(A1 ^ B1) +
  BIT_COUNT(A2 ^ B2) +
  BIT_COUNT(A3 ^ B3); '''    

cursor.execute(Sql) 

Sql = '''Select hammingdistance(
    b'11111111',b'00000000',b'11011111',b'11111111'
,b'11111111',b'10001001',b'11011111',b'11111111'
)''' 
pd.read_sql(Sql,mc) 

Listing 4.11 Creating an index

Listing 4.12 Creating the hamming distance

Create function to easily create 
indices. Indices will quicken retrieval.

Put index on 
bit buckets.

Define function. It takes 8 input 
arguments: 4 strings of length 8 
for the first customer and 
another 4 strings of length 8 for 
the second customer. This way 
we can compare 2 customers 
side-by-side for 32 movies.

The function is stored in a 
database. You can only do 
this once; running this code a
second time will result in an
error: OperationalError: 
(1304, 'FUNCTION HAMMING
DISTANCE already exists'). 

To check this function yo
can run this SQL statem
with 8 fixed strings. Not
the “b” before each stri
indicating that you’re 
passing bit values. The 
outcome of this particul
test should be 3, which 
indicates the series of st
differ in only 3 places.

his
ns

the
ry.
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If all is well, the output of this code should be 3. 
 Now that we have our hamming distance function in position, we can use it to find

similar customers to a given customer, and this is exactly what we want our application
to do. Let’s move on to the last part: utilizing our setup as a sort of application. 

4.5.5 Step 6: Presentation and automation

Now that we have it all set up, our application needs to perform two steps when con-
fronted with a given customer:

■ Look for similar customers.
■ Suggest movies the customer has yet to see based on what he or she has already

viewed and the viewing history of the similar customers.

First things first: select ourselves a lucky customer. 

FINDING A SIMILAR CUSTOMER

Time to perform real-time queries. In the following listing, customer 27 is the happy
one who’ll get his next movies selected for him. But first we need to select customers
with a similar viewing history. 

customer_id = 27
sql = "select * from movie_comparison where cust_id = %s" % customer_id   
cust_data = pd.read_sql(sql,mc)
sql =  """ select cust_id,hammingdistance(bit1,
bit2,bit3,bit4,%s,%s,%s,%s) as distance

from movie_comparison where bucket1 = '%s' or bucket2 ='%s' 
or bucket3='%s' order by distance limit 3""" % 

(cust_data.bit1[0],cust_data.bit2[0], 
cust_data.bit3[0], cust_data.bit4[0],

cust_data.bucket1[0], cust_data.bucket2[0],cust_data.bucket3[0])
shortlist = pd.read_sql(sql,mc) 

Table 4.5 shows customers 2 and 97 to be the most similar to customer 27. Don’t for-
get that the data was generated randomly, so anyone replicating this example might
receive different results.

 Now we can finally select a movie for customer 27 to watch. 

Listing 4.13 Finding similar customers

Pick customer
from database.

We do two-step sampling. First sampling: index must be exactly the same 
as the one of the selected customer (is based on 9 movies). Selected people 
must have seen (or not seen) these 9 movies exactly like our customer did. 
Second sampling is a ranking based on the 4-bit strings. These take into 
account all the movies in the database.

We show the 3 customers that 
most resemble customer 27. 
Customer 27 ends up first.
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FINDING A NEW MOVIE

We need to look at movies customer 27 hasn’t seen yet, but the nearest customer has,
as shown in the following listing. This is also a good check to see if your distance func-
tion worked correctly. Although this may not be the closest customer, it’s a good
match with customer 27. By using the hashed indexes, you’ve gained enormous speed
when querying large databases.

cust = pd.read_sql('select * from cust where cust_id in (27,2,97)',mc)
dif = cust.T 
dif[dif[0] != dif[1]] 

Table 4.6 shows you can recommend movie 12, 15, or 31 based on customer 2’s
behavior.

Table 4.5 The most similar customers to customer 27

cust_id distance

0 27 0

1 2 8

2 97 9

Listing 4.14 Finding an unseen movie

Table 4.6 Movies from customer 2 can be used as suggestions for 
customer 27.

0 1 2

Cust_id 2 27 97

Movie3 0 1 1

Movie9 0 1 1

Movie11 0 1 1

Movie12 1 0 0

Movie15 1 0 0

Movie16 0 1 1

Movie25 0 1 1

Movie31 1 0 0

Select movies
customers 27, 2,

97 have seen.
Transpose for 
convenience.

Select movies 
customer 27 
didn’t see yet.
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Mission accomplished. Our happy movie addict can now indulge himself with a new
movie, tailored to his preferences. 

 In the next chapter we’ll look at even bigger data and see how we can handle that
using the Horton Sandbox we downloaded in chapter 1. 

4.6 Summary
This chapter discussed the following topics:

■ The main problems you can run into when working with large data sets are these:
– Not enough memory
– Long-running programs
– Resources that form bottlenecks and cause speed problems

■ There are three main types of solutions to these problems:
– Adapt your algorithms.
– Use different data structures.
– Rely on tools and libraries.

■ Three main techniques can be used to adapt an algorithm:
– Present algorithm data one observation at a time instead of loading the full data

set at once.
– Divide matrices into smaller matrices and use these to make your calculations.
– Implement the MapReduce algorithm (using Python libraries such as Hadoopy,

Octopy, Disco, or Dumbo).
■ Three main data structures are used in data science. The first is a type of matrix

that contains relatively little information, the sparse matrix. The second and
third are data structures that enable you to retrieve information quickly in a
large data set: the hash function and tree structure.

■ Python has many tools that can help you deal with large data sets. Several tools
will help you with the size of the volume, others will help you parallelize the
computations, and still others overcome the relatively slow speed of Python
itself. It’s also easy to use Python as a tool to control other data science tools
because Python is often chosen as a language in which to implement an API.

■ The best practices from computer science are also valid in a data science con-
text, so applying them can help you overcome the problems you face in a big
data context.



First steps in big data
Over the last two chapters, we’ve steadily increased the size of the data. In chapter 3
we worked with data sets that could fit into the main memory of a computer. Chap-
ter 4 introduced techniques to deal with data sets that were too large to fit in mem-
ory but could still be processed on a single computer. In this chapter you’ll learn to
work with technologies that can handle data that’s so large a single node (com-
puter) no longer suffices. In fact it may not even fit on a hundred computers. Now
that’s a challenge, isn’t it?

 We’ll stay as close as possible to the way of working from the previous chapters;
the focus is on giving you the confidence to work on a big data platform. To do this,
the main part of this chapter is a case study. You’ll create a dashboard that allows

This chapter covers
■ Taking your first steps with two big data

applications: Hadoop and Spark
■ Using Python to write big data jobs
■ Building an interactive dashboard that connects

to data stored in a big data database
119
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you to explore data from lenders of a bank. By the end of this chapter you’ll have
gone through the following steps:

■ Load data into Hadoop, the most common big data platform.
■ Transform and clean data with Spark.
■ Store it into a big data database called Hive.
■ Interactively visualize this data with Qlik Sense, a visualization tool.

All this (apart from the visualization) will be coordinated from within a Python
script. The end result is a dashboard that allows you to explore the data, as shown in
figure 5.1.

Bear in mind that we’ll only scratch the surface of both practice and theory in this
introductory chapter on big data technologies. The case study will touch three big
data technologies (Hadoop, Spark, and Hive), but only for data manipulation, not
model building. It will be up to you to combine the big data technologies you get to
see here with the model-building techniques we touched upon in previous chapters. 

5.1 Distributing data storage and processing with 
frameworks
New big data technologies such as Hadoop and Spark make it much easier to work
with and control a cluster of computers. Hadoop can scale up to thousands of com-
puters, creating a cluster with petabytes of storage. This enables businesses to grasp
the value of the massive amount of data available. 

Figure 5.1 Interactive Qlik dashboard
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5.1.1 Hadoop: a framework for storing and processing large data sets

Apache Hadoop is a framework that simplifies working with a cluster of computers. It
aims to be all of the following things and more:

■ Reliable—By automatically creating multiple copies of the data and redeploying
processing logic in case of failure.

■ Fault tolerant —It detects faults and applies automatic recovery.
■ Scalable—Data and its processing are distributed over clusters of computers

(horizontal scaling).
■ Portable—Installable on all kinds of hardware and operating systems.

The core framework is composed of a distributed file system, a resource manager, and
a system to run distributed programs. In practice it allows you to work with the distrib-
uted file system almost as easily as with the local file system of your home computer.
But in the background, the data can be scattered among thousands of servers.

THE DIFFERENT COMPONENTS OF HADOOP

At the heart of Hadoop we find

■ A distributed file system (HDFS)
■ A method to execute programs on a massive scale (MapReduce)
■ A system to manage the cluster resources (YARN)

On top of that, an ecosystem of applications arose (figure 5.2), such as the databases
Hive and HBase and frameworks for machine learning such as Mahout. We’ll use Hive
in this chapter. Hive has a language based on the widely used SQL to interact with data
stored inside the database.

Oozie

(workflow

manager)

MapReduce

(distributed processing framework)

YARN

(cluster resource management)

HDFS

(Hadoop File System)

Ambari

(provisioning, managing, and monitoring)

Ranger

(security)

Sqoop

(data

exchange)

Flume

(log

collector)

Zookeeper

(coordination)

HBase

(columnar

store)

Mahout

(machine

learning)

Pig

(scripting)

HCatalog

(metadata)

Hive

(SQL engine)

Figure 5.2 A sample from the ecosystem of applications that arose around the Hadoop Core Framework
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It’s possible to use the popular tool Impala to query Hive data up to 100 times faster.
We won’t go into Impala in this book, but more information can be found at http://
impala.io/. We already had a short intro to MapReduce in chapter 4, but let’s elabo-
rate a bit here because it’s such a vital part of Hadoop.  

MAPREDUCE: HOW HADOOP ACHIEVES PARALLELISM

Hadoop uses a programming method called MapReduce to achieve parallelism. A
MapReduce algorithm splits up the data, processes it in parallel, and then sorts, com-
bines, and aggregates the results back together. However, the MapReduce algorithm
isn’t well suited for interactive analysis or iterative programs because it writes the data
to a disk in between each computational step. This is expensive when working with
large data sets. 

 Let’s see how MapReduce would work on a small fictitious example. You’re the
director of a toy company. Every toy has two colors, and when a client orders a toy
from the web page, the web page puts an order file on Hadoop with the colors of the
toy. Your task is to find out how many color units you need to prepare. You’ll use a
MapReduce-style algorithm to count the colors. First let’s look at a simplified version
in figure 5.3.

 As the name suggests, the process roughly boils down to two big phases: 

■ Mapping phase—The documents are split up into key-value pairs. Until we
reduce, we can have many duplicates.

■ Reduce phase—It’s not unlike a SQL “group by.” The different unique occur-
rences are grouped together, and depending on the reducing function, a differ-
ent result can be created. Here we wanted a count per color, so that’s what the
reduce function returns.

In reality it’s a bit more complicated than this though.

Green, Blue,

Blue, Orange

File 1

Map Reduce

Green : 1

Blue: 1

Blue: 1

Orange: 1

Green, Red,

Blue, Orange

File 2
Green : 1

Red: 1

Blue: 1

Orange: 1

Green: 2

Blue: 3

Orange: 2

Red: 1

Figure 5.3 A simplified example of 
a MapReduce flow for counting the 
colors in input texts

http://impala.io/
http://impala.io/
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The whole process is described in the following six steps and depicted in figure 5.4.

1 Reading the input files.
2 Passing each line to a mapper job.
3 The mapper job parses the colors (keys) out of the file and outputs a file for each

color with the number of times it has been encountered (value). Or more techni-
cally said, it maps a key (the color) to a value (the number of occurrences).

4 The keys get shuffled and sorted to facilitate the aggregation.
5 The reduce phase sums the number of occurrences per color and outputs one

file per key with the total number of occurrences for each color.
6 The keys are collected in an output file.

NOTE While Hadoop makes working with big data easy, setting up a good
working cluster still isn’t trivial, but cluster managers such as Apache Mesos
do ease the burden. In reality, many (mid-sized) companies lack the compe-
tence to maintain a healthy Hadoop installation. This is why we’ll work with
the Hortonworks Sandbox, a pre-installed and configured Hadoop ecosys-
tem. Installation instructions can be found in section 1.5: An introductory
working example of Hadoop. 

Now, keeping the workings of Hadoop in mind, let’s look at Spark.

5.1.2 Spark: replacing MapReduce for better performance

Data scientists often do interactive analysis and rely on algorithms that are inherently
iterative; it can take awhile until an algorithm converges to a solution. As this is a weak
point of the MapReduce framework, we’ll introduce the Spark Framework to over-
come it. Spark improves the performance on such tasks by an order of magnitude.

Input files

1

Each line

passed to a

mapper

2

Every key

gets mapped

to a value of 1

3

Keys get

sorted (or

shuffled)

4

Reduce

(aggregate)

key-value pairs

5

Collect

output to file

6

Green, Blue,

Blue, Orange Blue: 3

Green: 2

Red: 1

Orange: 2

Green: 1

Blue: 1

Blue: 1

Orange: 1

Green: 1

Red: 1

Blue: 1

Orange: 1

Blue: 1

Blue: 1

Blue: 1

Green: 1

Green: 1

Red: 1

Orange: 1

Orange: 1

Blue: 3

Green: 2

Red: 1

Orange: 2

Green, Blue

Blue, Orange

Green, Red

Blue, Orange

Green, Red,

Blue, Orange

Figure 5.4 An example of a MapReduce flow for counting the colors in input texts
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WHAT IS SPARK?
Spark is a cluster computing framework similar to MapReduce. Spark, however,
doesn’t handle the storage of files on the (distributed) file system itself, nor does it
handle the resource management. For this it relies on systems such as the Hadoop
File System, YARN, or Apache Mesos. Hadoop and Spark are thus complementary sys-
tems. For testing and development, you can even run Spark on your local system.

HOW DOES SPARK SOLVE THE PROBLEMS OF MAPREDUCE?
While we oversimplify things a bit for the sake of clarity, Spark creates a kind of shared
RAM memory between the computers of your cluster. This allows the different workers
to share variables (and their state) and thus eliminates the need to write the interme-
diate results to disk. More technically and more correctly if you’re into that: Spark
uses Resilient Distributed Datasets (RDD), which are a distributed memory abstraction
that lets programmers perform in-memory computations on large clusters in a fault-
tolerant way.1 Because it’s an in-memory system, it avoids costly disk operations.

THE DIFFERENT COMPONENTS OF THE SPARK ECOSYSTEM

Spark core provides a NoSQL environment well suited for interactive, exploratory
analysis. Spark can be run in batch and interactive mode and supports Python.

Spark has four other large components, as listed below and depicted in figure 5.5.

1 Spark streaming is a tool for real-time analysis.
2 Spark SQL provides a SQL interface to work with Spark.
3 MLLib is a tool for machine learning inside the Spark framework.
4 GraphX is a graph database for Spark. We’ll go deeper into graph databases in

chapter 7. 

1 See https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf.

Oozie

(workflow

manager)

MapReduce

(distributed processing framework)

Hive

(SQL engine)

YARN

(cluster resource management)

HDFS

(Hadoop File System)

Ambari

(provisioning, managing, and monitoring)

Ranger

(security)

Sqoop

(data

exchange)

Flume

(log

collector)

Zookeeper

(coordination)

Spark

streaming

Spark

SQL

MLLib

(machine

learning)

GraphX

(graph

DB)

HBase

(columnar

store)

Mahout

(machine

learning)

Pig

(scripting)

HCatalog

(metadata)

Hive

(SQL engine)

Figure 5.5 The Spark framework when used in combination with the Hadoop framework

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf
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Now let’s dip our toes into loan data using Hadoop, Hive, and Spark.

5.2 Case study: Assessing risk when loaning money
Enriched with a basic understanding of Hadoop and Spark, we’re now ready to get
our hands dirty on big data. The goal of this case study is to have a first experience
with the technologies we introduced earlier in this chapter, and see that for a large
part you can (but don’t have to) work similarly as with other technologies. Note: The
portion of the data used here isn’t that big because that would require serious band-
width to collect it and multiple nodes to follow along with the example. 

 What we’ll use

■ Horton Sandbox on a virtual machine. If you haven’t downloaded and imported
this to VM software such as VirtualBox, please go back to section 1.5 where this
is explained. Version 2.3.2 of the Horton Sandbox was used when writing
this chapter.

■ Python libraries: Pandas and pywebhdsf. They don’t need to be installed on
your local virtual environment this time around; we need them directly on the
Horton Sandbox. Therefore we need to fire up the Horton Sandbox (on Virtu-
alBox, for instance) and make a few preparations.

In the Sandbox command line there are several things you still need to do for this all
to work, so connect to the command line. You can do this using a program like PuTTY.
If you’re unfamiliar with PuTTY, it offers a command line interface to servers and
can be downloaded freely at http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html. 

 The PuTTY login configuration is shown in figure 5.6.

Figure 5.6 Connecting to Horton Sandbox using PuTTY

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
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The default user and password are (at the time of writing) “root” and “hadoop”, respec-
tively. You’ll need to change this password at the first login, though.

  Once connected, issue the following commands:

■ yum -y install python-pip—This installs pip, a Python package manager.
■ pip install git+https://github.com/DavyCielen/pywebhdfs.git –upgrade—

At the time of writing there was a problem with the pywebhdfs library and we
fixed that in this fork. Hopefully you won’t require this anymore when you read
this; the problem has been signaled and should be resolved by the maintainers
of this package.

■ pip install pandas—To install Pandas. This usually takes awhile because of the
dependencies.

An .ipynb file is available for you to open in Jupyter or (the older) Ipython and follow
along with the code in this chapter. Setup instructions for Horton Sandbox are
repeated there; make sure to run the code directly on the Horton Sandbox. Now, with
the preparatory business out of the way, let’s look at what we’ll need to do.

 In this exercise, we’ll go through several more of the data science process steps:

Step 1: The research goal. This consists of two parts:

■ Providing our manager with a dashboard
■ Preparing data for other people to create their own dashboards

Step 2: Data retrieval

■ Downloading the data from the lending club website
■ Putting the data on the Hadoop File System of the Horton Sandbox

Step 3: Data preparation

■ Transforming this data with Spark
■ Storing the prepared data in Hive

Steps 4 & 6: Exploration and report creation

■ Visualizing the data with Qlik Sense

We have no model building in this case study, but you’ll have the infrastructure in
place to do this yourself if you want to. For instance, you can use SPARK Machine
learning to try to predict when someone will default on his debt. 

 It’s time to meet the Lending Club.

5.2.1 Step 1: The research goal

The Lending Club is an organization that connects people in need of a loan with peo-
ple who have money to invest. Your boss also has money to invest and wants informa-
tion before throwing a substantial sum on the table. To achieve this, you’ll create a
report for him that gives him insight into the average rating, risks, and return for
lending money to a certain person. By going through this process, you make the data
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accessible in a dashboard tool, thus enabling other people to explore it as well. In a
sense this is the secondary goal of this case: opening up the data for self-service BI.
Self-service Business Intelligence is often applied in data-driven organizations that
don’t have analysts to spare. Anyone in the organization can do the simple slicing and
dicing themselves while leaving the more complicated analytics for the data scientist. 

 We can do this case study because the Lending Club makes anonymous data avail-
able about the existing loans. By the end of this case study, you’ll create a report simi-
lar to figure 5.7.

First things first, however; let’s get ourselves data.

5.2.2 Step 2: Data retrieval

It’s time to work with the Hadoop File System (or hdfs). First we’ll send commands
through the command line and then through the Python scripting language with the
help of the pywebhdfs package. 

 The Hadoop file system is similar to a normal file system, except that the files and
folders are stored over multiple servers and you don’t know the physical address of
each file. This is not unfamiliar if you’ve worked with tools such as Dropbox or Google
Drive. The files you put on these drives are stored somewhere on a server without you

Bar charts

Pivot table

KPI Selection

Figure 5.7 The end result of this exercise is an explanatory dashboard to compare a lending opportunity to 
similar opportunities.



128 CHAPTER 5 First steps in big data
knowing exactly on which server. As on a normal file system, you can create, rename,
and delete files and folders.

USING THE COMMAND LINE TO INTERACT WITH THE HADOOP FILE SYSTEM 
Let’s first retrieve the currently present list of directories and files in the Hadoop root
folder using the command line. Type the command hadoop fs –ls / in PuTTY to
achieve this. 

 Make sure you turn on your virtual machine with the Hortonworks Sandbox before
attempting a connection. In PuTTY you should then connect to 127.0.0.1:2222, as
shown before in figure 5.6.

 The output of the Hadoop command is shown in figure 5.8. You can also add
arguments such as hadoop fs –ls –R / to get a recursive list of all the files and
subdirectories.

We’ll now create a new directory “chapter5” on hdfs to work with during this chapter.
The following commands will create the new directory and give everybody access to
the folder: 

sudo -u hdfs hadoop fs -mkdir /chapter5
sudo -u hdfs hadoop fs –chmod 777 /chapter5

You probably noticed a pattern here. The Hadoop commands are very similar to our
local file system commands (POSIX style) but start with Hadoop fs and have a dash -
before each command. Table 5.1 gives an overview of popular file system commands
on Hadoop and their local file system command counterparts.

Table 5.1 List of common Hadoop file system commands

Goal Hadoop file system command Local file system command

Get a list of files and directories 
from a directory

hadoop fs –ls URI ls URI

Create a directory hadoop fs –mkdir URI mkdir URI

Remove a directory hadoop fs –rm –r URI rm –r URI

Figure 5.8 Output from the Hadoop list command: hadoop fs –ls /. The Hadoop root folder 
is listed.
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There are two special commands you’ll use often. These are 

■ Upload files from the local file system to the distributed file system (hadoop fs
–put LOCALURI REMOTEURI).

■ Download a file from the distributed file system to the local file system (hadoop
–get REMOTEURI).

Let’s clarify this with an example. Suppose you have a .CSV file on the Linux virtual
machine from which you connect to the Linux Hadoop cluster. You want to copy the
.CSV file from your Linux virtual machine to the cluster hdfs. Use the command
hadoop –put mycsv.csv /data.

 Using PuTTY we can start a Python session on the Horton Sandbox to retrieve our
data using a Python script. Issue the “pyspark” command in the command line to start
the session. If all is well you should see the welcome screen shown in figure 5.9.

Now we use Python code to fetch the data for us, as shown in the following listing.

import requests
import zipfile
import StringIO
source = requests.get("https://resources.lendingclub.com/

LoanStats3d.csv.zip", verify=False) 
stringio = StringIO.StringIO(source.content) 
unzipped = zipfile.ZipFile(stringio) 

Change the permission of files hadoop fs –chmod MODE URI chmod MODE URI

Move or rename file hadoop fs –mv OLDURI NEWURI mv OLDURI NEWURI

Listing 5.1 Drawing in the Lending Club loan data

Table 5.1 List of common Hadoop file system commands

Goal Hadoop file system command Local file system command

Figure 5.9 The welcome screen of Spark for interactive use with Python

Downloads data from 
Lending Club. This is 
https so it should verify, 
but we won't bother 
(verify=False).

Creates 
virtual file.Unzips 

data.
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We download the file “LoanStats3d.csv.zip” from the Lending Club’s website at https://
resources.lendingclub.com/LoanStats3d.csv.zip and unzip it. We use methods from
the requests, zipfile, and stringio Python packages to respectively download the data,
create a virtual file, and unzip it. This is only a single file; if you want all their data you
could create a loop, but for demonstration purposes this will do. As we mentioned
before, an important part of this case study will be data preparation with big data
technologies. Before we can do so, however, we need to put it on the Hadoop file sys-
tem. PyWebHdfs is a package that allows you to interact with the Hadoop file system
from Python. It translates and passes your commands to rest calls for the webhdfs
interface. This is useful because you can use your favorite scripting language to auto-
mate tasks, as shown in the following listing.

import pandas as pd 
from pywebhdfs.webhdfs import PyWebHdfsClient
subselection_csv = pd.read_csv(unzipped.open('LoanStats3d.csv'), 

skiprows=1,skipfooter=2,engine='python') 
stored_csv = subselection_csv.to_csv('./stored_csv.csv') 
hdfs = PyWebHdfsClient(user_name="hdfs",port=50070,host="sandbox")
hdfs.make_dir('chapter5')
with open('./stored_csv.csv') as file_data: 

hdfs.create_file('chapter5/LoanStats3d.csv',file_data, 
overwrite=True)

We had already downloaded and unzipped the file in listing 5.1; now in listing 5.2 we
made a sub-selection of the data using Pandas and stored it locally. Then we created a
directory on Hadoop and transferred the local file to Hadoop. The downloaded data
is in .CSV format and because it’s rather small, we can use the Pandas library to
remove the first line and last two lines from the file. These contain comments and will
only make working with this file cumbersome in a Hadoop environment. The first line
of our code imports the Pandas package, while the second line parses the file into
memory and removes the first and last two data lines. The third code line saves the
data to the local file system for later use and easy inspection.

 Before moving on, we can check our file using the following line of code:

print hdfs.get_file_dir_status('chapter5/LoanStats3d.csv')

The PySpark console should tell us our file is safe and well on the Hadoop system, as
shown in figure 5.10.

Listing 5.2 Storing data on Hadoop

Does preliminary data cleaning using Pandas: removes
top row and bottom 2 rows because they’re useless.

Opening original file will show you this.

Stores it locally because we need to 
transfer it to Hadoop file system.

Connects to 
Hadoop Sandbox.

Creates fold
"chapter5" 
Hadoop file
system.

Opens locally 
stored csv.Creates .csv file on

Hadoop file system.

https://resources.lendingclub.com/LoanStats3d.csv.zip
https://resources.lendingclub.com/LoanStats3d.csv.zip
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y 
With the file ready and waiting for us on Hadoop, we can move on to data preparation
using Spark, because it’s not clean enough to directly store in Hive.

5.2.3 Step 3: Data preparation

Now that we’ve downloaded the data for analysis, we’ll use Spark to clean the data
before we store it in Hive.

DATA PREPARATION IN SPARK

Cleaning data is often an interactive exercise, because you spot a problem and fix the
problem, and you’ll likely do this a couple of times before you have clean and crisp
data. An example of dirty data would be a string such as “UsA”, which is improperly
capitalized. At this point, we no longer work in jobs.py but use the PySpark command
line interface to interact directly with Spark.

 Spark is well suited for this type of interactive analysis because it doesn’t need to
save the data after each step and has a much better model than Hadoop for sharing
data between servers (a kind of distributed memory).

 The transformation consists of four parts:

1 Start up PySpark (should still be open from section 5.2.2) and load the Spark
and Hive context.

2 Read and parse the .CSV file.
3 Split the header line from the data.
4 Clean the data.

Okay, onto business. The following listing shows the code implementation in the
PySpark console.

from pyspark import SparkContext 
from pyspark.sql import HiveContext 
#sc = SparkContext()
sqlContext = HiveContext(sc)
data = sc.textFile("/chapter5/LoanStats3d.csv") 

Listing 5.3 Connecting to Apache Spark

Figure 5.10 Retrieve file status on Hadoop via the PySpark console

Imports Spark context -->
not necessary when working

directly in PySpark.
Imports 
Hive 
context.

In the PySpark session, the 
Spark context is automaticall
present. In other cases 
(Zeppelin notebook) you’ll 
need to create this explicitly.

Creates Hive 
context.

Loads in data set from 
Hadoop directory.
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e
s.
parts = data.map(lambda r:r.split(',')) 
firstline = parts.first() 
datalines = parts.filter(lambda x:x != firstline)
def cleans(row): 

row [7] = str(float(row [7][:-1])/100)
return [s.encode('utf8').replace(r"_"," ").lower() for s in row]

datalines = datalines.map(lambda x: cleans(x))

Let’s dive a little further into the details for each step.

Step 1: Starting up Spark in interactive mode and loading the context
The Spark context import isn’t required in the PySpark console because a context is
readily available as variable sc. You might have noticed this is also mentioned when
opening PySpark; check out figure 5.9 in case you overlooked it. We then load a
Hive context to enable us to work interactively with Hive. If you work interactively
with Spark, the Spark and Hive contexts are loaded automatically, but if you want to
use it in batch mode you need to load it manually. To submit the code in batch you
would use the spark-submit filename.py command on the Horton Sandbox com-
mand line. 

from pyspark import SparkContext 
from pyspark.sql import HiveContext 
sc = SparkContext()
sqlContext = HiveContext(sc)

With the environment set up, we’re ready to start parsing the .CSV file.

Step 2: Reading and parsing the .CSV file
Next we read the file from the Hadoop file system and split it at every comma we
encounter. In our code the first line reads the .CSV file from the Hadoop file system.
The second line splits every line when it encounters a comma. Our .CSV parser is
naïve by design because we’re learning about Spark, but you can also use the .CSV
package to help you parse a line more correctly.

data = sc.textFile("/chapter5/LoanStats3d.csv") 
parts = data.map(lambda r:r.split(',')) 

Splits data set with comma (,) 
delimiter. This is the end of 
line delimiter for this file.

Grabs first line.

Grabs all lines but first line, becaus
first line is only variable name

Cleaning function will use power of
Spark to clean data. The input of this

function will be a line of data.

Column 8 (index = 7) has % 
formatted numbers. We don’t 
need that % sign.

Encodes everything in utf8,
replaces underscores with

spaces, and lowercases
everything.

Executes data
cleaning line by line.
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Notice how similar this is to a functional programming approach. For those who’ve
never encountered it, you can naïvely read lambda r:r.split(‘,’) as “for every input r
(a row in this case), split this input r when it encounters a comma.” As in this case, “for
every input” means “for every row,” but you can also read it as “split every row by a
comma.” This functional-like syntax is one of my favorite characteristics of Spark.

Step 3: Split the header line from the data
To separate the header from the data, we read in the first line and retain every line
that’s not similar to the header line:

firstline = parts.first() 
datalines = parts.filter(lambda x:x != firstline)

Following the best practices in big data, we wouldn’t have to do this step because the
first line would already be stored in a separate file. In reality, .CSV files do often con-
tain a header line and you’ll need to perform a similar operation before you can start
cleaning the data.

Step 4: Clean the data
In this step we perform basic cleaning to enhance the data quality. This allows us to
build a better report. 

 After the second step, our data consists of arrays. We’ll treat every input for a
lambda function as an array now and return an array. To ease this task, we build a helper
function that cleans. Our cleaning consists of reformatting an input such as “10,4%”
to 0.104 and encoding every string as utf-8, as well as replacing underscores with
spaces and lowercasing all the strings. The second line of code calls our helper func-
tion for every line of the array.

def cleans(row): 
row [7] = str(float(row [7][:-1])/100)
return [s.encode('utf8').replace(r"_"," ").lower() for s in row]

datalines = datalines.map(lambda x: cleans(x))

Our data is now prepared for the report, so we need to make it available for our
reporting tools. Hive is well suited for this, because many reporting tools can connect
to it. Let’s look at how to accomplish this.

SAVE THE DATA IN HIVE

To store data in Hive we need to complete two steps:

1 Create and register metadata.
2 Execute SQL statements to save data in Hive.

In this section, we’ll once again execute the next piece of code in our beloved PySpark
shell, as shown in the following listing.
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from pyspark.sql.types import * 
fields = [StructField(field_name,StringType(),True) for field_name in 

firstline] 
schema = StructType(fields) 
schemaLoans = sqlContext.createDataFrame(datalines, schema) 
schemaLoans.registerTempTable("loans") 

sqlContext.sql("drop table if exists LoansByTitle")
sql = '''create table LoansByTitle stored as parquet as select title, 

count(1) as number from loans group by title order by number desc'''   
sqlContext.sql(sql)

sqlContext.sql('drop table if exists raw')
sql = '''create table raw stored as parquet as select title, 

emp_title,grade,home_ownership,int_rate,recoveries,
collection_recovery_fee,loan_amnt,term from loans'''

Let’s drill deeper into each step for a bit more clarification.

Step 1: Create and register metadata
Many people prefer to use SQL when they work with data. This is also possible with
Spark. You can even read and store data in Hive directly as we’ll do. Before you can do
that, however, you’ll need to create metadata that contains a column name and col-
umn type for every column. 

 The first line of code is the imports. The second line parses the field name and the
field type and specifies if a field is mandatory. The StructType represents rows as an
array of structfields. Then you place it in a dataframe that’s registered as a (tempo-
rary) table in Hive.

Listing 5.4 Storing data in Hive (full)

Imports SQL 
data types.

Creates metadata: the Spark SQL StructField function represents a field 
in a StructType. The StructField object is comprised of three fields: 
name (a string), dataType (a DataType), and “nullable” (a boolean). The 
field of name is the name of a StructField. The field of dataType specifies 
the data type of a StructField. The field of nullable specifies if values of a 
StructField can contain None values.

StructType function creates 
the data schema. A StructType 
object requires a list of 
StructFields as input.

Creates data 
frame from data 
(datalines) and 
data schema 
(schema).

Registers it 
as a table 
called loans. 

Drops table (in case it already exists), summarizes, 
and stores it in Hive. LoansByTitle represents the 
sum of loans by job title.

Drops table (in case 
it already exists) and 
stores a subset of 
raw data in Hive.
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from pyspark.sql.types import * 
fields = [StructField(field_name,StringType(),True) for field_name in firstline]
schema = StructType(fields)
schemaLoans = sqlContext.createDataFrame(datalines, schema) 
schemaLoans.registerTempTable("loans") 

With the metadata ready, we’re now able to insert the data into Hive.

Step 2: Execute queries and store table in Hive
Now we’re ready to use a SQL-dialect on our data. First we’ll make a summary table
that counts the number of loans per purpose. Then we store a subset of the cleaned
raw data in Hive for visualization in Qlik.

 Executing SQL-like commands is as easy as passing a string that contains the SQL-
command to the sqlContext.sql function. Notice that we aren’t writing pure SQL
because we’re communicating directly with Hive. Hive has its own SQL-dialect called
HiveQL. In our SQL, for instance, we immediately tell it to store the data as a Parquet
file. Parquet is a popular big data file format.

sqlContext.sql("drop table if exists LoansByTitle") 
sql = '''create table LoansByTitle stored as parquet as select title, 

count(1) as number from loans group by title order by number desc'''
sqlContext.sql(sql)

sqlContext.sql('drop table if exists raw') 
sql = '''create table raw stored as parquet as select title, 

emp_title,grade,home_ownership,int_rate,recoveries,collection_recovery_f
ee,loan_amnt,term from loans'''

sqlContext.sql(sql)

With the data stored in Hive, we can connect our visualization tools to it.

5.2.4 Step 4: Data exploration & Step 6: Report building 

We’ll build an interactive report with Qlik Sense to show to our manager. Qlik Sense
can be downloaded from http://www.qlik.com/try-or-buy/download-qlik-sense after
subscribing to their website. When the download begins you will be redirected to a
page containing several informational videos on how to install and work with Qlik
Sense. It’s recommended to watch these first. 

 We use the Hive ODBC connector to read data from Hive and make it available for
Qlik. A tutorial on installing ODBC connectors in Qlik is available. For major operat-
ing systems, this can be found at http://hortonworks.com/hdp/addons/.

NOTE In Windows, this might not work out of the box. Once you install the
ODBC, make sure to check your Windows ODBC manager (CTRL+F and look
for ODBC). In the manager, go to “System-DSN” and select the “Sample Hive
Hortonworks DSN”. Make sure your settings are correct (as shown in figure 5.11)
or Qlik won’t connect to the Hortonworks Sandbox. 

http://www.qlik.com/try-or-buy/download-qlik-sense
http://hortonworks.com/hdp/addons/
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Let’s hope you didn’t forget your Sandbox password; as you can see in figure 5.11, you
need it again. 

 Now open Qlik Sense. If installed in Windows you should have gotten the option
to place a shortcut to the .exe on your desktop. Qlik isn’t freeware; it’s a commercial

Figure 5.11 Windows 
Hortonworks ODBC 
configuration
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product with a bait version for single customers, but it will suffice for now. In the last
chapter we’ll create a dashboard using free JavaScript libraries. 

 Qlik can either take the data directly into memory or make a call every time to
Hive. We’ve chosen the first method because it works faster.

 This part has three steps:

1 Load data inside Qlik with an ODBC connection.
2 Create the report.
3 Explore data.

Let start with the first step, loading data into Qlik.

Step 1: Load data in Qlik
When you start Qlik Sense it will show you a welcome screen with the existing reports
(called apps), as shown in figure 5.12.

To start a new app, click on the Create new app button on the right of the screen, as
shown in figure 5.13. This opens up a new dialog box. Enter “chapter 5” as the new
name of our app.

Figure 5.12 The Qlik Sense welcome screen

Figure 5.13 The Create new 
app message box
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A confirmation box appears (figure 5.14) if the app is created successfully.

Click on the Open app button and a new screen will prompt you to add data to the
application (figure 5.15).

Click on the Add data button and choose ODBC as a data source (figure 5.16).
 In the next screen (figure 5.17) select User DSN, Hortonworks, and specify the

root as username and hadoop as a password (or the new one you gave when logging
into the Sandbox for the first time). 

NOTE The Hortonworks option doesn’t show up by default. You need to
install the HDP 2.3 ODBC connector for this option to appear (as stated
before). If you haven’t succeeded in installing it at this point, clear instruc-
tions for this can be found at https://blogs.perficient.com/multi-shoring/
blog/2015/09/29/how-to-connect-hortonworks-hive-from-qlikview-with-
odbc-driver/. 

Click on the arrow pointing to the right to go to the next screen.

Figure 5.14 A box confirms 
that the app was created 
successfully.

Figure 5.15 A start-adding-data 
screen pops up when you open a 
new app.

https://blogs.perficient.com/multi-shoring/blog/2015/09/29/how-to-connect-hortonworks-hive-from-qlikview-with-odbc-driver/
https://blogs.perficient.com/multi-shoring/blog/2015/09/29/how-to-connect-hortonworks-hive-from-qlikview-with-odbc-driver/
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Figure 5.16 Choose ODBC as data source in the Select a data source screen

Figure 5.17 Choose Hortonworks on the User DSN and specify the username and password.
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Choose the Hive data, and default as user in the next screen (figure 5.18). Select raw
as Tables to select and select every column for import; then click the button Load and
Finish to complete this step.

 After this step, it will take a few seconds to load the data in Qlik (figure 5.19).

Step 2: Create the report
Choose Edit the sheet to start building the report. This will add the report editor (fig-
ure 5.20).

Figure 5.18 Hive interface raw data column overview

Figure 5.19 A confirmation that the data is loaded in Qlik



141Case study: Assessing risk when loaning money
Substep 1: Adding a selection filter to the report The first thing we’ll add to the report
is a selection box that shows us why each person wants a loan. To achieve this, drop the
title measure from the left asset panel on the report pane and give it a comfortable size
and position (figure 5.21). Click on the Fields table so you can drag and drop fields.

Figure 5.20 An editor screen for reports opens

Figure 5.21 Drag the title from the left Fields pane to the report pane.
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Substep 2: Adding a KPI to the report A KPI chart shows an
aggregated number for the total population that’s selected. Num-
bers such as the average interest rate and the total number of
customers are shown in this chart (figure 5.22).

 Adding a KPI to a report takes four steps, as listed below and
shown in figure 5.23.

1 Choose a chart—Choose KPI as the chart and place it on the
report screen; resize and position to your liking.

2 Add a measure—Click the add measure button inside the
chart and select int_rate.

3 Choose an aggregation method—Avg(int_rate).
4 Format the chart—On the right pane, fill in average interest rate as Label.

Figure 5.22 An 
example of a KPI 
chart

1. Choose a chart 2. Add a measure

3. Choose an aggregation 4. Format

Figure 5.23 The four steps to add a KPI chart to a Qlik report
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In total we’ll add four KPI charts to our report, so you’ll need to repeat these steps for
the following KPI’s:

■ Average interest rate
■ Total loan amount
■ Average loan amount
■ Total recoveries

Substep 3: Adding bar charts to our report Next we’ll add four bar charts to the
report. These will show the different numbers for each risk grade. One bar chart will
explain the average interest rate per risk group, and another will show us the total
loan amount per risk group (figure 5.24).

Adding a bar chart to a report takes five steps, as listed below and shown in figure 5.25.

1 Choose a chart—Choose bar chart as the chart and place it on the report screen;
resize and position to your liking.

2 Add a measure—Click the Add measure button inside the chart and select
int_rate.

3 Choose an aggregation method—Avg(int_rate).
4 Add a dimension—Click Add dimension, and choose grade as the dimension.
5 Format the chart—On the right pane, fill in average interest rate as Label.

Figure 5.24 An example 
of a bar chart
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Repeat this procedure for the following dimension and measure combinations:

■ Average interest rate per grade
■ Average loan amount per grade
■ Total loan amount per grade
■ Total recoveries per grade

1. Choose a chart 2. Add a measure

3. Choose an aggregation

5. Format

4. Add a dimension

Figure 5.25 Adding a bar chart takes five steps.
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Substep 4: Adding a cross table to the report Suppose you want to know the average
interest rate paid by directors of risk group C. In this case you want to get a measure
(interest rate) for a combination of two dimensions (job title and risk grade). This can
be achieved with a pivot table such as in figure 5.26.

Adding a pivot table to a report takes six steps, as listed below and shown in figure 5.27.

1 Choose a chart—Choose pivot table as the chart and place it on the report
screen; resize and position to your liking.

2 Add a measure—Click the Add measure button inside the chart and select
int_rate.

3 Choose an aggregation method—Avg(int_rate).
4 Add a row dimension—Click Add dimension, and choose emp_title as the

dimension.
5 Add a column dimension—Click Add data, choose column, and select grade.
6 Format the chart—On the right pane, fill in average interest rate as Label.

Figure 5.26 An example of a pivot table, showing the average interest rate paid per job title/risk 
grade combination
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1. Choose a chart 2. Add a measure

3. Choose an aggregation

5. Add a column dimension 6. Format

4. Add a row dimension

Figure 5.27 Adding a pivot table takes six steps.
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After resizing and repositioning, you should achieve a result similar to figure 5.28.
Click the Done button on the left and you’re ready to explore the data.

Step 3: Explore the data
The result is an interactive graph that updates itself based on the selections you make.
Why don’t you try to look for the information from directors and compare them to
artists? To achieve this, hit the emp_title in the pivot table and type director in the
search field. The result looks like figure 5.29. In the same manner, we can look at
the artists, as shown in figure 5.30. Another interesting insight comes from compar-
ing the rating for home-buying purposes with debt consolidation purposes.

 We finally did it: We created the report our manager craves, and in the process we
opened the door for other people to create their own reports using this data. An inter-
esting next step for you to ponder on would be to use this setup to find those people
likely to default on their debt. For this you can use the Spark Machine learning capa-
bilities driven by online algorithms like the ones demonstrated in chapter 4. 

Figure 5.28 The end result in edit mode
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Figure 5.29 When we select directors, we can see that they pay an average rate of 11.97% for a loan.

Figure 5.30 When we select artists, we see that they pay an average interest rate of 13.32% for a loan.
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In this chapter we got a hands-on introduction to the Hadoop and Spark frameworks.
We covered a lot of ground, but be honest, Python makes working with big data tech-
nologies dead easy. In the next chapter we’ll dig deeper into the world of NoSQL data-
bases and come into contact with more big data technologies. 

5.3 Summary
In this chapter you learned that

■ Hadoop is a framework that enables you to store files and distribute calcula-
tions amongst many computers.

■ Hadoop hides all the complexities of working with a cluster of computers for you.
■ An ecosystem of applications surrounds Hadoop and Spark, ranging from data-

bases to access control.
■ Spark adds a shared memory structure to the Hadoop Framework that’s better

suited for data science work.
■ In the chapter case study we used PySpark (a Python library) to communicate

with  Hive and Spark from Python. We used the pywebhdfs Python library to work
with the Hadoop library, but you could do as well using the OS command line.

■ It’s easy to connect a BI tool such as Qlik to Hadoop.



Join the NoSQL movement
This chapter is divided into two parts: a theoretical start and a practical finish.

■ In the first part of this chapter we’ll look into NoSQL databases in general
and answer these questions: Why do they exist? Why not until recently? What
types are there and why should you care?

■ In part two we’ll tackle a real-life problem—disease diagnostics and profil-
ing—using freely available data, Python, and a NoSQL database.

This chapter covers
■ Understanding NoSQL databases and why

they’re used today
■ Identifying the differences between NoSQL and

relational databases
■ Defining the ACID principle and how it relates to

the NoSQL BASE principle
■ Learning why the CAP theorem is important for

multi-node database setup
■ Applying the data science process to a project

with the NoSQL database Elasticsearch
150
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No doubt you’ve heard about NoSQL databases and how they’re used religiously by
many high-tech companies. But what are NoSQL databases and what makes them so
different from the relational or SQL databases you’re used to? NoSQL is short for Not
Only Structured Query Language, but although it’s true that NoSQL databases can allow
you to query them with SQL, you don’t have to focus on the actual name. Much debate
has already raged over the name and whether this group of new databases should even
have a collective name at all. Rather, let’s look at what they represent as opposed to
relational database management systems (RDBMS). Traditional databases reside on a single
computer or server. This used to be fine as a long as your data didn’t outgrow your
server, but it hasn’t been the case for many companies for a long time now. With the
growth of the internet, companies such as Google and Amazon felt they were held
back by these single-node databases and looked for alternatives. 

 Numerous companies use single-node NoSQL databases such as MongoDB because
they want the flexible schema or the ability to hierarchically aggregate data. Here are
several early examples:

■ Google’s first NoSQL solution was Google BigTable, which marked the start of
the columnar databases.1

■ Amazon came up with Dynamo, a key-value store .2

■ Two more database types emerged in the quest for partitioning: the document
store and the graph database.

We’ll go into detail on each of the four types later in the chapter. 
 Please note that, although size was an important factor, these databases didn’t

originate solely from the need to handle larger volumes of data. Every V of big data
has influence (volume, variety, velocity, and sometimes veracity). Graph databases, for
instance, can handle network data. Graph database enthusiasts even claim that every-
thing can be seen as a network. For example, how do you prepare dinner? With ingre-
dients. These ingredients are brought together to form the dish and can be used
along with other ingredients to form other dishes. Seen from this point of a view,
ingredients and recipes are part of a network. But recipes and ingredients could also
be stored in your relational database or a document store; it’s all how you look at the
problem. Herein lies the strength of NoSQL: the ability to look at a problem from a
different angle, shaping the data structure to the use case. As a data scientist, your job
is to find the best answer to any problem. Although sometimes this is still easier to
attain using RDBMS, often a particular NoSQL database offers a better approach. 

 Are relational databases doomed to disappear in companies with big data because
of the need for partitioning? No, NewSQL platforms (not to be confused with NoSQL)
are the RDBMS answer to the need for cluster setup. NewSQL databases follow the rela-
tional model but are capable of being divided into a distributed cluster like NoSQL

1 See http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf.
2 See http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf.

http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
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databases. It’s not the end of relational databases and certainly not the end of SQL, as
platforms like Hive translate SQL into MapReduce jobs for Hadoop. Besides, not every
company needs big data; many do fine with small databases and the traditional rela-
tional databases are perfect for that. 

 If you look at the big data mind map shown in figure 6.1, you’ll see four types of
NoSQL databases.

These four types are document store, key-value store, graph database, and column data-
base. The mind map also includes the NewSQL partitioned relational databases. In the
future this big split between NoSQL and NewSQL will become obsolete because every
database type will have its own focus, while combining elements from both NoSQL and
NewSQL databases. The lines are slowly blurring as RDBMS types get NoSQL features
such as the column-oriented indexing seen in columnar databases. But for now it’s a
good way to show that the old relational databases have moved past their single-node
setup, while other database types are emerging under the NoSQL denominator.

 Let’s look at what NoSQL brings to the table. 

NoSQL

New SQL

–

–

–

Document store

Key-value store

Bayes DB

Column database

…

–
Neo4J

…
Graph database

SQL on Hadoop

New SQL

NoSQL & NewSQL databases –

Sensei

Drizzle

–

Hive

…

HCatalog

Drill

Impala

–

HBase

…

HyperTable

Cassandra

–

Reddis

…

MemCache

VoldeMort

–

MongoDB

…

Elasticsearch

Figure 6.1 NoSQL and NewSQL databases
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6.1 Introduction to NoSQL
As you’ve read, the goal of NoSQL databases isn’t only to offer a way to partition data-
bases successfully over multiple nodes, but also to present fundamentally different
ways to model the data at hand to fit its structure to its use case and not to how a rela-
tional database requires it to be modeled. 

 To help you understand NoSQL, we’re going to start by looking at the core ACID
principles of single-server relational databases and show how NoSQL databases rewrite
them into BASE principles so they’ll work far better in a distributed fashion. We’ll also
look at the CAP theorem, which describes the main problem with distributing data-
bases across multiple nodes and how ACID and BASE databases approach it.

6.1.1 ACID: the core principle of relational databases

The main aspects of a traditional relational database can be summarized by the con-
cept ACID:

■ Atomicity—The “all or nothing” principle. If a record is put into a database, it’s
put in completely or not at all. If, for instance, a power failure occurs in the
middle of a database write action, you wouldn’t end up with half a record; it
wouldn’t be there at all.

■ Consistency—This important principle maintains the integrity of the data. No
entry that makes it into the database will ever be in conflict with predefined
rules, such as lacking a required field or a field being numeric instead of text.

■ Isolation—When something is changed in the database, nothing can happen on
this exact same data at exactly the same moment. Instead, the actions happen
in serial with other changes. Isolation is a scale going from low isolation to high
isolation. On this scale, traditional databases are on the “high isolation” end.
An example of low isolation would be Google Docs: Multiple people can write
to a document at the exact same time and see each other’s changes happening
instantly. A traditional Word document, on the other end of the spectrum, has
high isolation; it’s locked for editing by the first user to open it. The second per-
son opening the document can view its last saved version but is unable to see
unsaved changes or edit the document without first saving it as a copy. So once
someone has it opened, the most up-to-date version is completely isolated from
anyone but the editor who locked the document.

■ Durability—If data has entered the database, it should survive permanently.
Physical damage to the hard discs will destroy records, but power outages and
software crashes should not.

ACID applies to all relational databases and certain NoSQL databases, such as the
graph database Neo4j. We’ll further discuss graph databases later in this chapter and
in chapter 7. For most other NoSQL databases another principle applies: BASE. To
understand BASE and why it applies to most NoSQL databases, we need to look at the
CAP Theorem.
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6.1.2 CAP Theorem: the problem with DBs on many nodes

Once a database gets spread out over different servers, it’s difficult to follow the ACID
principle because of the consistency ACID promises; the CAP Theorem points out why
this becomes problematic. The CAP Theorem states that a database can be any two of
the following things but never all three:

■ Partition tolerant—The database can handle a network partition or network failure.
■ Available—As long as the node you’re connecting to is up and running and you

can connect to it, the node will respond, even if the connection between the
different database nodes is lost.

■ Consistent—No matter which node you connect to, you’ll always see the exact
same data.

For a single-node database it’s easy to see how it’s always available and consistent:

■ Available—As long as the node is up, it’s available. That’s all the CAP availabil-
ity promises.

■ Consistent—There’s no second node, so nothing can be inconsistent.

Things get interesting once the database gets parti-
tioned. Then you need to make a choice between
availability and consistency, as shown in figure 6.2.

 Let’s take the example of an online shop with a
server in Europe and a server in the United States,
with a single distribution center. A German named
Fritz and an American named Freddy are shopping
at the same time on that same online shop. They
see an item and only one is still in stock: a bronze,
octopus-shaped coffee table. Disaster strikes, and
communication between the two local servers is
temporarily down. If you were the owner of the
shop, you’d have two options: 

■ Availability—You allow the servers to keep on
serving customers, and you sort out everything
afterward.

■ Consistency—You put all sales on hold until
communication is reestablished.

In the first case, Fritz and Freddy will both buy the octopus coffee table, because the
last-known stock number for both nodes is “one” and both nodes are allowed to sell it,
as shown in figure 6.3. 

 If the coffee table is hard to come by, you’ll have to inform either Fritz or Freddy
that he won’t receive his table on the promised delivery date or, even worse, he will

Partitioned

Available Consistent

Figure 6.2 CAP Theorem: when 
partitioning your database, you need 
to choose between availability and 
consistency.
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never receive it. As a good businessperson, you might compensate one of them with a
discount coupon for a later purchase, and everything might be okay after all. 

 The second option (figure 6.4) involves putting the incoming requests on hold
temporarily.

 This might be fair to both Fritz and Freddy if after five minutes the web shop is
open for business again, but then you might lose both sales and probably many more.
Web shops tend to choose availability over consistency, but it’s not the optimal choice

X
CAP available but not consistent:
both Fritz and Freddy order last
available item

Fritz

Local server

Local server

Disconnection

Freddy

Figure 6.3 CAP Theorem: if 
nodes get disconnected, you 
can choose to remain 
available, but the data could 
become inconsistent.

X
CAP consistent but not available:
Orders on hold until local server
connection restored

Fritz

Local server

Local server

Disconnection

Freddy

X

X

Figure 6.4 CAP Theorem: if 
nodes get disconnected, you can 
choose to remain consistent by 
stopping access to the databases 
until connections are restored
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in all cases. Take a popular festival such as Tomorrowland. Festivals tend to have a
maximum allowed capacity for safety reasons. If you sell more tickets than you’re
allowed because your servers kept on selling during a node communication failure,
you could sell double the number allowed by the time communications are reestab-
lished. In such a case it might be wiser to go for consistency and turn off the nodes
temporarily. A festival such as Tomorrowland is sold out in the first couple of hours
anyway, so a little downtime won’t hurt as much as having to withdraw thousands of
entry tickets.

6.1.3 The BASE principles of NoSQL databases

RDBMS follows the ACID principles; NoSQL databases that don’t follow ACID, such as
the document stores and key-value stores, follow BASE. BASE is a set of much softer
database promises:

■ Basically available—Availability is guaranteed in the CAP sense. Taking the web
shop example, if a node is up and running, you can keep on shopping. Depend-
ing on how things are set up, nodes can take over from other nodes. Elastic-
search, for example, is a NoSQL document–type search engine that divides
and replicates its data in such a way that node failure doesn’t necessarily mean
service failure, via the process of sharding. Each shard can be seen as an indi-
vidual database server instance, but is also capable of communicating with the
other shards to divide the workload as efficiently as possible (figure 6.5). Sev-
eral shards can be present on a single node. If each shard has a replica on
another node, node failure is easily remedied by re-dividing the work among
the remaining nodes.

■ Soft state—The state of a system might change over time. This corresponds to the
eventual consistency principle: the system might have to change to make the data

Shard 1

Replica

of

Shard 2

Replica

of

Shard 1

Shard 4

Node A Node B

Replica

of

Shard 3
Shard 3

Shard 2

Replica

of

Shard 4

Figure 6.5 Sharding: each shard 
can function as a self-sufficient 
database, but they also work 
together as a whole. The example 
represents two nodes, each 
containing four shards: two main 
shards and two replicas. Failure of 
one node is backed up by the other. 
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consistent again. In one node the data might say “A” and in the other it might
say “B” because it was adapted. Later, at conflict resolution when the network is
back online, it’s possible the “A” in the first node is replaced by “B.” Even
though no one did anything to explicitly change “A” into “B,” it will take on this
value as it becomes consistent with the other node. 

■ Eventual consistency—The database will become consistent over time. In the web
shop example, the table is sold twice, which results in data inconsistency. Once
the connection between the individual nodes is reestablished, they’ll communi-
cate and decide how to resolve it. This conflict can be resolved, for example, on
a first-come, first-served basis or by preferring the customer who would incur
the lowest transport cost. Databases come with default behavior, but given that
there’s an actual business decision to make here, this behavior can be overwrit-
ten. Even if the connection is up and running, latencies might cause nodes to
become inconsistent. Often, products are kept in an online shopping basket,
but putting an item in a basket doesn’t lock it for other users. If Fritz beats
Freddy to the checkout button, there’ll be a problem once Freddy goes to
check out. This can easily be explained to the customer: he was too late. But
what if both press the checkout button at the exact same millisecond and both
sales happen?

ACID versus BASE
The BASE principles are somewhat contrived to fit acid and base from chemistry: an
acid is a fluid with a low pH value. A base is the opposite and has a high pH value.
We won’t go into the chemistry details here, but figure 6.6 shows a mnemonic to
those familiar with the chemistry equivalents of acid and base.

0 1 76 102 3

ACID

• Atomicity

• Consistency

• Isolation

• Durability

BASE

• Basically available

• Soft state

• Eventual consistency

84 9 135 1211 14

Figure 6.6 ACID versus BASE: traditional relational databases versus 
most NoSQL databases. The names are derived from the chemistry concept 
of the pH scale. A pH value below 7 is acidic; higher than 7 is a base. On 
this scale, your average surface water fluctuates between 6.5 and 8.5.
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6.1.4 NoSQL database types

As you saw earlier, there are four big NoSQL types: key-value store, document store,
column-oriented database, and graph database. Each type solves a problem that can’t
be solved with relational databases. Actual implementations are often combinations
of these. OrientDB, for example, is a multi-model database, combining NoSQL types.
OrientDB is a graph database where each node is a document. 

 Before going into the different NoSQL databases, let’s look at relational databases
so you have something to compare them to. In data modeling, many approaches are
possible. Relational databases generally strive toward normalization: making sure
every piece of data is stored only once. Normalization marks their structural setup.
If, for instance, you want to store data about a person and their hobbies, you can do
so with two tables: one about the person and one about their hobbies. As you can
see in figure 6.7, an additional table is necessary to link hobbies to persons because of
their many-to-many relationship: a person can have multiple hobbies and a hobby can
have many persons practicing it.

 A full-scale relational database can be made up of many entities and linking tables.
Now that you have something to compare NoSQL to, let’s look at the different types. 

Person info table: represents
person-specific information

Name

Jos The Boss

Fritz von Braun

Birthday

11-12-1985

27-1-1978

Person ID

Freddy Stark

Delphine

Thewiseone
16-9-1986

2

3

4

1

Hobby ID Hobby Name Hobby Description

Shooting arrows

from a bow

Person-Hobby linking table:
necessary because of the
many-to-many relationship
between hobbies and persons

Hobby info table: represents
hobby-specific information

Person ID Hobby ID

1

2

2

1

2

3

4
Also known as

construction

Building

things3

3

5

6

3 1

2 1 Archery

Looking for

trouble with your

neighboring countries

Hanging around

doing nothing

Conquering

the world
2

3

Catching waves

on a plank
Surfing4

Fencing with swordsSwordplay5

Lollygagging6

Figure 6.7 Relational databases strive toward normalization (making sure every piece of data is stored only 
once). Each table has unique identifiers (primary keys) that are used to model the relationship between the 
entities (tables), hence the term relational.
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COLUMN-ORIENTED DATABASE

Traditional relational databases are row-oriented, with each row having a row id and
each field within the row stored together in a table. Let’s say, for example’s sake, that
no extra data about hobbies is stored and you have only a single table to describe peo-
ple, as shown in figure 6.8. Notice how in this scenario you have slight denormaliza-
tion because hobbies could be repeated. If the hobby information is a nice extra but
not essential to your use case, adding it as a list within the Hobbies column is an
acceptable approach. But if the information isn’t important enough for a separate
table, should it be stored at all?

Every time you look up something in a row-oriented database, every row is scanned,
regardless of which columns you require. Let’s say you only want a list of birthdays in
September. The database will scan the table from top to bottom and left to right, as
shown in figure 6.9, eventually returning the list of birthdays.

Indexing the data on certain columns can significantly improve lookup speed, but
indexing every column brings extra overhead and the database is still scanning all
the columns. 

Name

Jos The Boss

Fritz von Braun

Birthday

11-12-1985

27-1-1978

Freddy Stark

16-9-1986Delphine Thewiseone

Hobbies

Archery, conquering the world

Building things, surfing

Swordplay, lollygagging, archery

Row ID

2

3

4

1

Figure 6.8 Row-oriented database layout. Every entity (person) is represented 
by a single row, spread over multiple columns.

Name

Jos The Boss

Fritz von Braun

Birthday

11-12-1985

27-1-1978

Freddy Stark

16-9-1986Delphine Thewiseone

Hobbies

Archery, conquering the world

Building things, surfing

Swordplay, lollygagging, archery

Row ID

2

3

4

1

Figure 6.9 Row-oriented lookup: from top to bottom and for every entry, all columns are 
taken into memory
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Column databases store each column separately, allowing for quicker scans when only
a small number of columns is involved; see figure 6.10. 

This layout looks very similar to a row-oriented database with an index on every col-
umn. A database index is a data structure that allows for quick lookups on data at the
cost of storage space and additional writes (index update). An index maps the row
number to the data, whereas a column database maps the data to the row numbers; in
that way counting becomes quicker, so it’s easy to see how many people like archery,
for instance. Storing the columns separately also allows for optimized compression
because there’s only one data type per table. 

 When should you use a row-oriented database and when should you use a column-
oriented database? In a column-oriented database it’s easy to add another column
because none of the existing columns are affected by it. But adding an entire record
requires adapting all tables. This makes the row-oriented database preferable over
the column-oriented database for online transaction processing (OLTP), because
this implies adding or changing records constantly. The column-oriented database
shines when performing analytics and reporting: summing values and counting
entries. A row-oriented database is often the operational database of choice for
actual transactions (such as sales). Overnight batch jobs bring the column-oriented
database up to date, supporting lightning-speed lookups and aggregations using
MapReduce algorithms for reports. Examples of column-family stores are Apache
HBase, Facebook’s Cassandra, Hypertable, and the grandfather of wide-column stores,
Google BigTable. 

KEY-VALUE STORES

Key-value stores are the least complex of the NoSQL databases. They are, as the name
suggests, a collection of key-value pairs, as shown in figure 6.11, and this simplicity
makes them the most scalable of the NoSQL database types, capable of storing huge
amounts of data.

Name

Jos The Boss

Fritz von Braun

Row ID

Freddy Stark

Delphine Thewiseone

2

3

4

1

Row ID

2

4

1

Birthday

11-12-1985

27-1-1978

16-9-1986

Hobbies

Archery

Conquering the world

Building things

Surfing

Swordplay

Lollygagging

Row ID

1

2

2

3

3

1, 3

Figure 6.10 Column-oriented databases store each column separately with the related row 
numbers. Every entity (person) is divided over multiple tables.
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The value in a key-value store can be anything: a string, a number, but also an entire
new set of key-value pairs encapsulated in an object. Figure 6.12 shows a slightly more
complex key-value structure. Examples of key-value stores are Redis, Voldemort, Riak,
and Amazon’s Dynamo.

DOCUMENT STORES

Document stores are one step up in complexity from key-value stores: a document
store does assume a certain document structure that can be specified with a schema.
Document stores appear the most natural among the NoSQL database types because
they’re designed to store everyday documents as is, and they allow for complex query-
ing and calculations on this often already aggregated form of data. The way things are
stored in a relational database makes sense from a normalization point of view: every-
thing should be stored only once and connected via foreign keys. Document stores
care little about normalization as long as the data is in a structure that makes sense. A
relational data model doesn’t always fit well with certain business cases. Newspapers
or magazines, for example, contain articles. To store these in a relational database,
you need to chop them up first: the article text goes in one table, the author and all
the information about the author in another, and comments on the article when
published on a website go in yet another. As shown in figure 6.13, a newspaper article

Name

Key

Jos The Boss

Value

Birthday 11-12-1985

Archery, conquering the worldHobbies
Figure 6.11 Key-value stores 
store everything as a key and 
a value. 

Figure 6.12 Key-value 
nested structure
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{

"articles": [

{

"title": "title of the article",

"articleID": 1,

"body": "body of the article",

"author": "Isaac Asimov",

"comments": [

{

"username": "Fritz"

"join date": "1/4/2014"

"commentid": 1,

"body": "this is a great article",

"replies": [

{

"username": "Freddy",

"join date": "11/12/2013",

"commentid": 2,

"body": "seriously? it's rubbish"

}

]

},

{

"username": "Stark",

"join date": "19/06/2011",

"commentid": 3,

"body": "I don’t agree with the conclusion"

}

]

}

]

}

Document store approach

Relational
database approach

Author name

…

Comment table

Reader table

Author table

Article table

Figure 6.13 Document stores save documents as a whole, whereas an RDMS cuts up the article 
and saves it in several tables. The example was taken from the Guardian website.
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can also be stored as a single entity; this lowers the cognitive burden of working with
the data for those used to seeing articles all the time. Examples of document stores
are MongoDB and CouchDB.

GRAPH DATABASES

The last big NoSQL database type is the most complex one, geared toward storing
relations between entities in an efficient manner. When the data is highly intercon-
nected, such as for social networks, scientific paper citations, or capital asset clusters,
graph databases are the answer. Graph or network data has two main components: 

■ Node —The entities themselves. In a social network this could be people.
■ Edge —The relationship between two entities. This relationship is represented

by a line and has its own properties. An edge can have a direction, for example,
if the arrow indicates who is whose boss.

Graphs can become incredibly complex given enough relation and entity types. Fig-
ure 6.14 already shows that complexity with only a limited number of entities. Graph
databases like Neo4j also claim to uphold ACID, whereas document stores and key-
value stores adhere to BASE.

The possibilities are endless, and because the world is becoming increasingly inter-
connected, graph databases are likely to win terrain over the other types, including
the still-dominant relational database. A ranking of the most popular databases and
how they’re progressing can be found at http://db-engines.com/en/ranking.

Webshop

Archery

Freddy

Stark

customer of

owner of

knows

knows
Delphine

Thewiseone

Fritz

von Braun

customer of

friend of

friend of

likes

likes

Jos

The Boss

Octopus

table

Figure 6.14 Graph data example with four entity types (person, hobby, 
company, and furniture) and their relations without extra edge or node 
information

http://db-engines.com/en/ranking
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Figure 6.15 shows that with 9 entries, relational databases still dominate the top 15 at
the time this book was written, and with the coming of NewSQL we can’t count them
out yet. Neo4j, the most popular graph database, can be found at position 23 at the
time of writing, with Titan at position 53.

 Now that you’ve seen each of the NoSQL database types, it’s time to get your hands
dirty with one of them.

6.2 Case study: What disease is that?
It has happened to many of us: you have sudden medical symptoms and the first thing
you do is Google what disease the symptoms might indicate; then you decide whether
it’s worth seeing a doctor. A web search engine is okay for this, but a more dedicated
database would be better. Databases like this exist and are fairly advanced; they can be
almost a virtual version of Dr. House, a brilliant diagnostician in the TV series House
M.D. But they’re built upon well-protected data and not all of it is accessible by the
public. Also, although big pharmaceutical companies and advanced hospitals have
access to these virtual doctors, many general practitioners are still stuck with only their
books. This information and resource asymmetry is not only sad and dangerous, it
needn’t be there at all. If a simple, disease-specific search engine were used by all gen-
eral practitioners in the world, many medical mistakes could be avoided.

 In this case study, you’ll learn how to build such a search engine here, albeit using
only a fraction of the medical data that is freely accessible. To tackle the problem,
you’ll use a modern NoSQL database called Elasticsearch to store the data, and the

Figure 6.15 Top 15 databases ranked by popularity according to DB-Engines.com in March 2015
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data science process to work with the data and turn it into a resource that’s fast and
easy to search. Here’s how you’ll apply the process:

1 Setting the research goal. 
2 Data collection—You’ll get your data from Wikipedia. There are more sources

out there, but for demonstration purposes a single one will do. 
3 Data preparation—The Wikipedia data might not be perfect in its current for-

mat. You’ll apply a few techniques to change this.
4 Data exploration—Your use case is special in that step 4 of the data science pro-

cess is also the desired end result: you want your data to become easy to explore.
5 Data modeling—No real data modeling is applied in this chapter. Document-

term matrices that are used for search are often the starting point for advanced
topic modeling. We won’t go into that here. 

6 Presenting results —To make data searchable, you’d need a user interface such
as a website where people can query and retrieve disease information. In this
chapter you won’t go so far as to build an actual interface. Your secondary goal:
profiling a disease category by its keywords; you’ll reach this stage of the data
science process because you’ll present it as a word cloud, such as the one in fig-
ure 6.16. 

To follow along with the code, you’ll need these items:

■ A Python session with the elasticsearch-py and Wikipedia libraries installed (pip
install elasticsearch and pip install wikipedia)

■ A locally set up Elasticsearch instance; see appendix A for installation instructions
■ The IPython library

NOTE The code for this chapter is available to download from the Manning
website for this book at https://manning.com/books/introducing-data-science
and is in IPython format.

Figure 6.16 A sample word cloud 
on non-weighted diabetes keywords 

https://manning.com/books/introducing-data-science
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6.2.1 Step 1: Setting the research goal

Can you diagnose a disease by the end of this chapter, using nothing but your own
home computer and the free software and data out there? Knowing what you want to
do and how to do it is the first step in the data science process, as shown in figure 6.17.

■ Your primary goal is to set up a disease search engine that would help general
practitioners in diagnosing diseases.

■ Your secondary goal is to profile a disease: What keywords distinguish it from
other diseases?

This secondary goal is useful for educational purposes or as input to more advanced
uses such as detecting spreading epidemics by tapping into social media. With your
research goal and a plan of action defined, let’s move on to the data retrieval step. 

Elasticsearch: the open source search engine/NoSQL database
To tackle the problem at hand, diagnosing a disease, the NoSQL database you’ll
use is Elasticsearch. Like MongoDB, Elasticsearch is a document store. But unlike
MongoDB, Elasticsearch is a search engine. Whereas MongoDB is great at perform-
ing complex calculations and MapReduce jobs, Elasticsearch’s main purpose is full-
text search. Elasticsearch will do basic calculations on indexed numerical data such
as summing, counts, median, mean, standard deviation, and so on, but in essence
it remains a search engine. 

Elasticsearch is built on top of Apache Lucene, the Apache search engine created in
1999. Lucene is notoriously hard to handle and is more a building block for more
user-friendly applications than an end–to–end solution in itself. But Lucene is an
enormously powerful search engine, and Apache Solr followed in 2004, opening for
public use in 2006. Solr (an open source, enterprise search platform) is built on top
of Apache Lucene and is at this moment still the most versatile and popular open
source search engine. Solr is a great platform and worth investigating if you get
involved in a project requiring a search engine. In 2010 Elasticsearch emerged,
quickly gaining in popularity. Although Solr can still be difficult to set up and configure,
even for small projects, Elasticsearch couldn’t be easier. Solr still has an advantage in
the number of possible plugins expanding its core functionality, but Elasticsearch is
quickly catching up and today its capabilities are of comparable quality.

–

Define research goal

Create project charter

Data science process

1: Setting the research goal

Primary goal: disease search

Secondary goal: disease profiling
–

Figure 6.17 Step 1 in the data science process: setting the research goal
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6.2.2 Steps 2 and 3: Data retrieval and preparation

Data retrieval and data preparation are two distinct steps in the data science process,
and even though this remains true for the case study, we’ll explore both in the same sec-
tion. This way you can avoid setting up local intermedia storage and immediately do
data preparation while the data is being retrieved. Let’s look at where we are in the data
science process (see figure 6.18).

As shown in figure 6.18 you have two possible sources: internal data and external data.

■ Internal data—You have no disease information lying around. If you currently
work for a pharmaceutical company or a hospital, you might be luckier.

■ External data—All you can use for this case is external data. You have several
possibilities, but you’ll go with Wikipedia.

When you pull the data from Wikipedia, you’ll need to store it in your local Elastic-
search index, but before you do that you’ll need to prepare the data. Once data has
entered the Elasticsearch index, it can’t be altered; all you can do then is query it.
Look at the data preparation overview in figure 6.19. 

 As shown in figure 6.19 there are three distinct categories of data preparation to
consider:

■ Data cleansing—The data you’ll pull from Wikipedia can be incomplete or erro-
neous. Data entry errors and spelling mistakes are possible—even false informa-
tion isn’t excluded. Luckily, you don’t need the list of diseases to be exhaustive,
and you can handle spelling mistakes at search time; more on that later. Thanks
to the Wikipedia Python library, the textual data you’ll receive is fairly clean
already. If you were to scrape it manually, you’d need to add HTML cleaning,
removing all HTML tags. The truth of the matter is full-text search tends to be
fairly robust toward common errors such as incorrect values. Even if you
dumped in HTML tags on purpose, they’d be unlikely to influence the results;
the HTML tags are too different from normal language to interfere.

–

Internal data

External data

Data science process

1: Setting the research goal

2: Retrieving data

+

– Wikipedia

–
Data retrieval

Data ownership – No internal data available

– No internal data available

Figure 6.18 Data science process step 2: data retrieval. In this case there’s no internal 
data; all data will be fetched from Wikipedia.
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■ Data transformation—You don’t need to transform the data much at this point;
you want to search it as is. But you’ll make the distinction between page title,
disease name, and page body. This distinction is almost mandatory for search
result interpretation.

■ Combining data—All the data is drawn from a single source in this case, so you
have no real need to combine data. A possible extension to this exercise would
be to get disease data from another source and match the diseases. This is no
trivial task because no unique identifier is present and the names are often
slightly different.

You can do data cleansing at only two stages: when using the Python program that
connects Wikipedia to Elasticsearch and when running the Elasticsearch internal
indexing system:

■ Python—Here you define what data you’ll allow to be stored by your document
store, but you won’t clean the data or transform the data at this stage, because
Elasticsearch is better at it for less effort.

■ Elasticsearch—Elasticsearch will handle the data manipulation (creating the
index) under the hood. You can still influence this process, and you’ll do so
more explicitly later in this chapter.

Data science process

3: Data preparation –

Data cleansing –

Physically impossible values

Errors against codebook

Missing values

Errors from data entry

Outliers

Spaces, typos, …

Data transformation

Combining data

–

Extrapolating data

Derived measures

Aggregating data

Creating dummies

– Set operators

Merging/joining data sets

Creating views

Reducing number of variables

1: Setting the research goal +

2: Retrieving data +

Figure 6.19 Data science process step 3: data preparation
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Now that you have an overview of the steps to come, let’s get to work. If you followed
the instructions in the appendix, you should now have a local instance of Elastic-
search up and running. First comes data retrieval: you need information on the differ-
ent diseases. You have several ways to get that kind of data. You could ask companies
for their data or get data from Freebase or other open and free data sources. Acquir-
ing your data can be a challenge, but for this example you’ll be pulling it from Wiki-
pedia. This is a bit ironic because searches on the Wikipedia website itself are handled
by Elasticsearch. Wikipedia used to have its own system build on top of Apache
Lucene, but it became unmaintainable, and as of January 2014 Wikipedia began using
Elasticsearch instead.

 Wikipedia has a Lists of diseases page, as shown in figure 6.20. From here you can
borrow the data from the alphabetical lists.

You know what data you want; now go grab it. You could download the entire Wikipe-
dia data dump. If you want to, you can download it to http://meta.wikimedia.org/
wiki/Data_dump_torrents#enwiki.

 Of course, if you were to index the entire Wikipedia, the index would end up
requiring about 40 GB of storage. Feel free to use this solution, but for the sake of pre-
serving storage and bandwidth, we’ll limit ourselves in this book to pulling only the
data we intend to use. Another option is scraping the pages you require. Like Google,
you can make a program crawl through the pages and retrieve the entire rendered
HTML. This would do the trick, but you’d end up with the actual HTML, so you’d need
to clean that up before indexing it. Also, unless you’re Google, websites aren’t too
fond of crawlers scraping their web pages. This creates an unnecessarily high amount
of traffic, and if enough people send crawlers, it can bring the HTTP server to its

Figure 6.20 Wikipedia’s Lists of diseases page, the starting point for your data retrieval

http://meta.wikimedia.org/wiki/Data_dump_torrents#enwiki
http://meta.wikimedia.org/wiki/Data_dump_torrents#enwiki
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knees, spoiling the fun for everyone. Sending billions of requests at the same time is
also one of the ways denial of service (DoA) attacks are performed. If you do need to
scrape a website, script in a time gap between each page request. This way, your
scraper more closely mimics the behavior of a regular website visitor and you won’t
blow up their servers.

 Luckily, the creators of Wikipedia are smart enough to know that this is exactly
what would happen with all this information open to everyone. They’ve put an API in
place from which you can safely draw your information. You can read more about it at
http://www.mediawiki.org/wiki/API:Main_page.

 You’ll draw from the API. And Python wouldn’t be Python if it didn’t already have a
library to do the job. There are several actually, but the easiest one will suffice for your
needs: Wikipedia. 

 Activate your Python virtual environment and install all the libraries you’ll need
for the rest of the book:

pip install wikipedia
pip install Elasticsearch

You’ll use Wikipedia to tap into Wikipedia. Elasticsearch is the main Elasticsearch
Python library; with it you can communicate with your database. 

 Open your favorite Python interpreter and import the necessary libraries:

from elasticsearch import Elasticsearch
import wikipedia

You’re going to draw data from the Wikipedia API and at the same time index on your
local Elasticsearch instance, so first you need to prepare it for data acceptance. 

client = Elasticsearch()  
indexName = "medical"
client.indices.create(index=indexName)    

The first thing you need is a client. Elasticsearch() can be initialized with an
address but the default is localhost:9200. Elasticsearch() and Elasticsearch
('localhost:9200') are thus the same thing: your client is connected to your local
Elasticsearch node. Then you create an index named "medical". If all goes well, you
should see an "acknowledged:true" reply, as shown in figure 6.21.

 Elasticsearch claims to be schema-less, meaning you can use Elasticsearch without
defining a database schema and without telling Elasticsearch what kind of data it

Elasticsearch client 
used to communicate 
with database

Index 
name

Create 
index

http://www.mediawiki.org/wiki/API:Main_page
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needs to expect. Although this is true for simple cases, you can’t avoid having a
schema in the long run, so let’s create one, as shown in the following listing.

diseaseMapping = {    
'properties': {

'name': {'type': 'string'},
'title': {'type': 'string'},
'fulltext': {'type': 'string'}

}
    }
client.indices.put_mapping(index=indexName,
doc_type='diseases',body=diseaseMapping )

This way you tell Elasticsearch that your index will have a document type called
"disease", and you supply it with the field type for each of the fields. You have three
fields in a disease document: name, title, and fulltext, all of them of type string. If
you hadn’t supplied the mapping, Elasticsearch would have guessed their types by
looking at the first entry it received. If it didn’t recognize the field to be boolean,
double, float, long, integer, or date, it would set it to string. In this case, you
didn’t need to manually specify the mapping. 

 Now let’s move on to Wikipedia. The first thing you want to do is fetch the List of
diseases page, because this is your entry point for further exploration: 

dl = wikipedia.page("Lists_of_diseases")

You now have your first page, but you’re more interested in the listing pages because
they contain links to the diseases. Check out the links:

dl.links

The List of diseases page comes with more links than you’ll use. Figure 6.22 shows the
alphabetical lists starting at the sixteenth link.

dl = wikipedia.page("Lists_of_diseases")
dl.links

Listing 6.1 Adding a mapping to the document type

Figure 6.21 Creating an Elasticsearch index with Python-Elasticsearch

Defining a mapping 
and attributing it to 
the disease doc type.

The “diseases” doc type is 
updated with a mapping. Now we 
define the data it should expect. 
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This page has a considerable array of links, but only the alphabetic lists interest you,
so keep only those:

diseaseListArray = []
for link in dl.links[15:42]:
    try:

diseaseListArray.append(wikipedia.page(link))
    except Exception,e: 

print str(e)

You’ve probably noticed that the subset is hardcoded, because you know they’re the
16th to 43rd entries in the array. If Wikipedia were to add even a single link before
the ones you’re interested in, it would throw off the results. A better practice would be
to use regular expressions for this task. For exploration purposes, hardcoding the
entry numbers is fine, but if regular expressions are second nature to you or you
intend to turn this code into a batch job, regular expressions are recommended. You
can find more information on them at https://docs.python.org/2/howto/regex.html.

 One possibility for a regex version would be the following code snippet.

diseaseListArray = []
check = re.compile("List of diseases*")
for link in dl.links:
    if check.match(link):

try:
diseaseListArray.append(wikipedia.page(link))

except Exception,e: 
print str(e)

Figure 6.22 Links on the Wikipedia page Lists of diseases. It has more links 
than you’ll need. 

https://docs.python.org/2/howto/regex.html
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Figure 6.23 shows the first entries of what you’re after: the diseases themselves.

diseaseListArray[0].links

It’s time to index the diseases. Once they’re indexed, both data entry and data prepa-
ration are effectively over, as shown in the following listing.

checkList = [["0","1","2","3","4","5","6","7","8","9"],
["A"],["B"],["C"],["D"],["E"],["F"],["G"],["H"],
["I"],["J"],["K"],["L"],["M"],["N"],["O"],["P"],
["Q"],["R"],["S"],["T"],["U"],["V"],["W"],["X"],["Y"],["Z"]]   
docType = 'diseases'
for diseaselistNumber, diseaselist in enumerate(diseaseListArray):   
    for disease in diseaselist.links:

try:
if disease[0] in checkList[diseaselistNumber]  

and disease[0:3] !="List":
currentPage = wikipedia.page(disease)
client.index(index=indexName,

doc_type=docType,id = disease, body={"name": disease, 
"title":currentPage.title , 

"fulltext":currentPage.content})
except Exception,e: 

print str(e)

Because each of the list pages will have links you don’t need, check to see if an entry is
a disease. You indicate for each list what character the disease starts with, so you check
for this. Additionally you exclude the links starting with “list” because these will pop
up once you get to the L list of diseases. The check is rather naïve, but the cost of hav-
ing a few unwanted entries is rather low because the search algorithms will exclude
irrelevant results once you start querying. For each disease you index the disease
name and the full text of the page. The name is also used as its index ID; this is useful

Listing 6.2 Indexing diseases from Wikipedia

Figure 6.23 First 
Wikipedia disease list, 
“list of diseases (0-9)”

The checklist is an
array containing 
an array of allowed
first characters. If 
a disease doesn’t 
comply, skip it.

Document 
type you’ll 
index.

ping
ugh

ease
lists.

Looping through 
lists of links for 
every disease list.

First check if it’s 
a disease, then 
index it.
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for several advanced Elasticsearch features but also for quick lookup in the browser.
For example, try this URL in your browser: http://localhost:9200/medical/diseases/
11%20beta%20hydroxylase%20deficiency. The title is indexed separately; in most
cases the link name and the page title will be identical and sometimes the title will
contain an alternative name for the disease. 

 With at least a few diseases indexed it’s possible to make use of the Elasticsearch
URI for simple lookups. Have a look at a full body search for the word headache in fig-
ure 6.24. You can already do this while indexing; Elasticsearch can update an index
and return queries for it at the same time.

If you don’t query the index, you can still get a
few results without knowing anything about
the index. Specifying http://localhost:9200/
medical/diseases/_search will return the first
five results. For a more structured view on the
data you can ask for the mapping of this docu-
ment type at http://localhost:9200/medical/
diseases/_mapping?pretty. The pretty get argu-
ment shows the returned JSON in a more read-
able format, as can be seen in figure 6.25. The
mapping does appear to be the way you speci-
fied it: all fields are type string.

 The Elasticsearch URL is certainly useful, yet
it won’t suffice for your needs. You still have dis-
eases to diagnose, and for this you’ll send POST
requests to Elasticsearch via your Elasticsearch
Python library. 

 With data retrieval and preparation accom-
plished, you can move on to exploring your data. 

Server address

Port Document
type

? indicates a "get"
argument will follow

Index
name

Will do a
search query

Field in which
to search

Query
start

What to
search for

http://localhost:9200/medical/diseases/_search?q=fulltext:headache

Figure 6.24 The Elasticsearch URL example buildup

Figure 6.25 Diseases document 
type mapping via Elasticsearch URL

http://localhost:9200/medical/diseases/11%20beta%20hydroxylase%20deficiency
http://localhost:9200/medical/diseases/11%20beta%20hydroxylase%20deficiency
http://localhost:9200/medical/diseases/_search
http://localhost:9200/medical/diseases/_search
http://localhost:9200/medical/diseases/_mapping?pretty
http://localhost:9200/medical/diseases/_mapping?pretty


175Case study: What disease is that?
6.2.3 Step 4: Data exploration

It’s not lupus. It’s never lupus!

—Dr. House of House M.D.

Data exploration is what marks this case study, because the primary goal of the project
(disease diagnostics) is a specific way of exploring the data by querying for disease
symptoms. Figure 6.26 shows several data exploration techniques, but in this case it’s
non-graphical: interpreting text search query results.

The moment of truth is here: can you find certain diseases by feeding your search
engine their symptoms? Let’s first make sure you have the basics up and running.
Import the Elasticsearch library and define global search settings: 

from elasticsearch import Elasticsearch
client = Elasticsearch()
indexName = "medical"
docType="diseases"
searchFrom = 0
searchSize= 3

You’ll return only the first three results; the default is five. 
 Elasticsearch has an elaborate JSON query language; every search is a POST request

to the server and will be answered with a JSON answer. Roughly, the language consists
of three big parts: queries, filters, and aggregations. A query takes in search keywords
and puts them through one or more analyzers before the words are looked up in the
index. We’ll get deeper into analyzers a bit later in this chapter. A filter takes keywords
like a query does but doesn’t try to analyze what you give it; it filters on the conditions
we provide. Filters are thus less complex but many times more efficient because

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

4: Data exploration –

Simple graphs

Nongraphical techniques

Link and brush

Combined graphs

– Text search

Figure 6.26 Data science process step 4: data exploration
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they’re also temporarily stored within Elasticsearch in case you use the same filter
twice. Aggregations can be compared to the SQL group; buckets of words will be cre-
ated, and for each bucket relevant statistics can be calculated. Each of these three
compartments has loads of options and features, making elaborating on the entire
language here impossible. Luckily, there’s no need to go into the complexity that Elas-
ticsearch queries can represent. We’ll use the “Query string query language,” a way to
query the data that closely resembles the Google search query language. If, for
instance, you want a search term to be mandatory, you add a plus (+) sign; if you want
to exclude the search term, you use a minus (-) sign. Querying Elasticsearch isn’t rec-
ommended because it decreases performance; the search engine first needs to trans-
late the query string into its native JSON query language. But for your purposes it will
work nicely; also, performance won’t be a factor on the several thousand records you
have in your index. Now it’s time to query your disease data.

PROJECT PRIMARY OBJECTIVE: DIAGNOSING A DISEASE BY ITS SYMPTOMS

If you ever saw the popular television series House M.D., the sentence “It’s never lupus”
may sound familiar. Lupus is a type of autoimmune disease, where the body’s immune
system attacks healthy parts of the body. Let’s see what symptoms your search engine
would need to determine that you’re looking for lupus. 

 Start off with three symptoms: fatigue, fever, and joint pain. Your imaginary patient
has all three of them (and more), so make them all mandatory by adding a plus sign
before each one:

searchBody={
"fields":["name"],
"query":{
    "simple_query_string" : {

"query": '+fatigue+fever+"joint pain"',
"fields": ["fulltext","title^5","name^10"]
}

    }
}
client.search(index=indexName,doc_type=docType, body=searchBody, from_ = 

searchFrom, size=searchSize)

Listing 6.3 "simple query string" Elasticsearch query with three mandatory keywords

The dictionary named
searchBody contains

the search request
information we’ll send.

We want 
the name 
field in our 
results.

The query part. 
Other things are 
possible here, like 
aggregations. 
More on that 
later.

A simple query string is a 
type of query that takes input 
in much the same way the 
Google homepage would.

Like a query on Google the + sign indicates 
the term is mandatory. Encapsulating two or 
more words in quotes signals you want to 
find them exactly like this. 

These fields are the fields 
in which it needs to search
They are not to be confuse
with the fields it has to 
return in the search resul
(specified in the second 
code line above).

The search is executed. Variables 
indexName, docType, searchFrom, and 
searchSize were declared earlier: indexName 
= "medical" , docType="diseases" , 
searchFrom = 0 , searchSize = 3.
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In searchBody, which has a JSON structure, you specify the fields you’d like to see
returned, in this case the name of the disease should suffice. You use the query string
syntax to search in all the indexed fields: fulltext, title, and name. By adding ^ you
can give each field a weight. If a symptom occurs in the title, it’s five times more
important than in the open text; if it occurs in the name itself, it’s considered ten
times as important. Notice how “joint pain” is wrapped in a pair of quotation marks. If
you didn’t have the “” signs, joint and pain would have been considered as two separate
keywords rather than a single phrase. In Elasticsearch this is called phrase matching.
Let’s look at the results in figure 6.27.

Figure 6.27 shows the top three results returned out of 34 matching diseases. The
results are sorted by their matching score, the variable _score. The matching score is
no simple thing to explain; it takes into consideration how well the disease matches
your query and how many times a keyword was found, the weights you gave, and so on.
Currently, lupus doesn’t even show up in the top three results. Luckily for you, lupus
has another distinct symptom: a rash. The rash doesn’t always show up on the person’s
face, but it does happen and this is where lupus got its name: the face rash makes peo-
ple vaguely resemble a wolf. Your patient has a rash but not the signature rash on the
face, so add “rash” to the symptoms without mentioning the face.

"query": '+fatigue+fever+"joint pain"+rash',

34 diseases found

Lupus is not
in the top 3
diseases
returned.

Figure 6.27 Lupus first search with 34 results
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The results of the new search are shown in figure 6.28.
 Now the results have been narrowed down to six and lupus is in the top three. At

this point, the search engine says Human Granulocytic Ehrlichiosis (HGE) is more likely.
HGE is a disease spread by ticks, like the infamous Lyme disease. By now a capable
doctor would have already figured out which disease plagues your patient, because in
determining diseases many factors are at play, more than you can feed into your hum-
ble search engine. For instance, the rash occurs only in 10% of HGE and in 50% of
lupus patients. Lupus emerges slowly, whereas HGE is set off by a tick bite. Advanced
machine-learning databases fed with all this information in a more structured way
could make a diagnosis with far greater certainty. Given that you need to make do with
the Wikipedia pages, you need another symptom to confirm that it’s lupus. The
patient experiences chest pain, so add this to the list. 

"query": '+fatigue+fever+"joint pain"+rash+"chest pain"',

The result is shown in figure 6.29.
 Seems like it’s lupus. It took a while to get to this conclusion, but you got there. Of

course, you were limited in the way you presented Elasticsearch with the symptoms.
You used only either single terms (“fatigue”) or literal phrases (“joint pain”). This
worked out for this example, but Elasticsearch is more flexible than this. It can take
regular expressions and do a fuzzy search, but that’s beyond the scope of this book,
although a few examples are included in the downloadable code.

Figure 6.28 Lupus second search attempt with six results and lupus in the 
top three
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HANDLING SPELLING MISTAKES: DAMERAU-LEVENSHTEIN

Say someone typed “lupsu” instead of “lupus.” Spelling mistakes happen all the time
and in all types of human-crafted documents. To deal with this data scientists often
use Damerau-Levenshtein. The Damerau-Levenshtein distance between two strings is
the number of operations required to turn one string into the other. Four operations
are allowed to calculate the distance:

■ Deletion—Delete a character from the string.
■ Insertion—Add a character to the string.
■ Substitution—Substitute one character for another. Without the substitution

counted as one operation, changing one character into another would take two
operations: one deletion and one insertion.

■ Transposition of two adjacent characters—Swap two adjacent characters.

This last operation (transposition) is what makes the difference between traditional
Levenshtein distance and the Damerau-Levenshtein distance. It’s this last operation
that makes our dyslexic spelling mistake fall within acceptable limits. Damerau-
Levenshtein is forgiving of these transposition mistakes, which makes it great for search
engines, but it’s also used for other things such as calculating the differences between
DNA strings. 

 Figure 6.30 shows how the transformation from “lupsu” to “lupus” is performed
with a single transposition.

With just this you’ve achieved your first objective: diagnosing a disease. But let’s not for-
get about your secondary project objective: disease profiling. 

PROJECT SECONDARY OBJECTIVE: DISEASE PROFILING

What you want is a list of keywords fitting your selected disease. For this you’ll use the sig-
nificant terms aggregation. The score calculation to determine which words are signifi-
cant is once again a combination of factors, but it roughly boils down to a comparison

Figure 6.29 Lupus third 
search: with enough 
symptoms to determine 
it must be lupus

Lupsu Lupsu Lupus

Figure 6.30 Adjacent character transposition is one of 
the operations in Damerau-Levenshtein distance. The 
other three are insertion, deletion, and substitution. 



180 CHAPTER 6 Join the NoSQL movement

 

of the number of times a term is found in the result set as opposed to all the other
documents. This way Elasticsearch profiles your result set by supplying the keywords
that distinguish it from the other data. Let’s do that on diabetes, a common disease
that can take many forms:

searchBody={
"fields":["name"],
"query":{
    "filtered" : {

"filter": {
'term': {'name':'diabetes'}

}
    }
},  
"aggregations" : {

"DiseaseKeywords" : {
"significant_terms" : { "field" : "fulltext", "size":30 }

}
    }
}
client.search(index=indexName,doc_type=docType, 
body=searchBody, from_ = searchFrom, size=searchSize)

You see new code here. You got rid of the query string search and used a filter instead.
The filter is encapsulated within the query part because search queries can be com-
bined with filters. It doesn’t occur in this example, but when this happens, Elastic-
search will first apply the far more efficient filter before attempting the search. If you
know you want to search in a subset of your data, it’s always a good idea to add a filter
to first create this subset. To demonstrate this, consider the following two snippets of
code. They yield the same results but they’re not the exact same thing.

Listing 6.4 Significant terms Elasticsearch query for "diabetes"

The dictionary named
searchBody contains

the search request
information we’ll send.

We want the 
name field in 
our results.

The query 
part.

A filtered query has two 
possible components: a 
query and a filter. The 
query performs a search 
while the filter matches 
exact values only and is 
therefore way more 
efficient but restrictive.

The filter part 
of the filtered 
query. A query
part isn’t 
mandatory; 
a filter is 
sufficient.

We want to filter the name 
field and keep only if it 
contains the term diabetes.

An aggregation can generally be compared 
to a group by in SQL. It’s mostly used to 
summarize values of a numeric variable over the 
distinct values within one or more variables. 

DiseaseKeywords is the 
name we give to our 
aggregation.

A significant term aggregation can be
compared to keyword detection. The

internal algorithm looks for words that are
“more important” for the selected set of

documents than they are in the overall
population of documents.
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 A simple query string searching for “diabetes” in the disease name:

"query":{
    "simple_query_string" : {

"query": 'diabetes',
"fields": ["name"]
}

    }

A term filter filtering in all the diseases with “diabetes” in the name:

"query":{
    "filtered" : {

"filter": {
'term': {'name':'diabetes'}

}
    }
}

Although it won’t show on the small amount of data at your disposal, the filter is way
faster than the search. A search query will calculate a search score for each of the dis-
eases and rank them accordingly, whereas a filter simply filters out all those that don’t
comply. A filter is thus far less complex than an actual search: it’s either “yes” or “no”
and this is evident in the output. The score is 1 for everything; no distinction is made
within the result set. The output consists of two parts now because of the significant
terms aggregation. Before you only had hits; now you have hits and aggregations.
First, have a look at the hits in figure 6.31.

 This should look familiar by now with one notable exception: all results have a
score of 1. In addition to being easier to perform, a filter is cached by Elasticsearch for

Figure 6.31 Hits output of filtered query with the filter “diabetes” on disease name
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awhile. This way, subsequent requests with the same filter are even faster, resulting in a
huge performance advantage over search queries. 

 When should you use filters and when search queries? The rule is simple: use fil-
ters whenever possible and use search queries for full-text search when a ranking
between the results is required to get the most interesting results at the top. 

 Now take a look at the significant terms in figure 6.32.

If you look at the first five keywords in figure 6.32 you’ll see that the top four are
related to the origin of diabetes. The following Wikipedia paragraph offers help:

The word diabetes (/ˌdaɪ.əˈbiːtiːz/ or /ˌdaɪ.əˈbiːtɨs/) comes from Latin
diabe–te–s, which in turn comes from Ancient Greek  (diabe–te–s)
which literally means “a passer through; a siphon” [69]. Ancient Greek
physician Aretaeus of Cappadocia (fl. 1st century CE) used that word, with
the intended meaning “excessive discharge of urine,” as the name for the
disease [70, 71, 72]. Ultimately, the word comes from Greek 
(diabainein), meaning “to pass through,” [69] which is composed of -
(dia-), meaning “through” and  (bainein), meaning “to go” [70].
The word “diabetes” is first recorded in English, in the form diabete, in a
medical text written around 1425.

—Wikipedia page Diabetes_mellitus

This tells you where the word diabetes comes from: “a passer through; a siphon” in
Greek. It also mentions diabainein and bainein. You might have known that the most

Figure 6.32 Diabetes significant terms aggregation, first five keywords
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relevant keywords for a disease would be the actual definition and origin. Luckily we
asked for 30 keywords, so let’s pick a few more interesting ones such as ndi. ndi is a
lowercased version of NDI, or “Nephrogenic Diabetes Insipidus,” the most common
acquired form of diabetes. Lowercase keywords are returned because that’s how
they’re stored in the index when we put it through the standard analyzer when index-
ing. We didn’t specify anything at all while indexing, so the standard analyzer was used
by default. Other interesting keywords in the top 30 are avp, a gene related to diabe-
tes; thirst, a symptom of diabetes; and Amiloride, a medication for diabetes. These key-
words do seem to profile diabetes, but we’re missing multi-term keywords; we stored
only individual terms in the index because this was the default behavior. Certain words
will never show up on their own because they’re not used that often but are still signif-
icant when used in combination with other terms. Currently we miss out on the rela-
tionship between certain terms. Take avp, for example; if avp were always written in its
full form “Nephrogenic Diabetes Insipidus,” it wouldn’t be picked up. Storing n-grams
(combinations of n number of words) takes up storage space, and using them for que-
ries or aggregations taxes the search server. Deciding where to stop is a balance exer-
cise and depends on your data and use case. 

 Generally, bigrams (combination of two terms) are useful because meaningful
bigrams exist in the natural language, though 10-grams not so much. Bigram key con-
cepts would be useful for disease profiling, but to create those bigram significant term
aggregations you’d need them stored as bigrams in your index. As is often the case in
data science, you’ll need to go back several steps to make a few changes. Let’s go back
to the data preparation phase. 

6.2.4 Step 3 revisited: Data preparation for disease profiling

It shouldn’t come as a surprise that you’re back to data preparation, as shown in fig-
ure 6.33. The data science process is an iterative one, after all. When you indexed
your data, you did virtually no data cleansing or data transformations. You can add
data cleansing now by, for instance, stop word filtering. Stop words are words that are
so common that they’re often discarded because they can pollute the results. We
won’t go into stop word filtering (or other data cleansing) here, but feel free to try
it yourself. 

 To index bigrams you need to create your own token filter and text analyzer. A
token filter is capable of putting transformations on tokens. Your specific token filter

3: Data preparation –

Data cleansing –

Data transformation

Combining data

–

Example: stop word filtering

Example: lowercasing

Figure 6.33 Data science process step 3: data preparation. 
Data cleansing for text can be stop word filtering; data 
transformation can be lowercasing of characters. 
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needs to combine tokens to create n-grams, also called shingles. The default Elastic-
search tokenizer is called the standard tokenizer, and it will look for word boundaries,
like the space between words, to cut the text into different tokens or terms. Take a
look at the new settings for your disease index, as shown in the following listing. 

settings={
    "analysis": {

"filter": {
"my_shingle_filter": {

"type": "shingle",
"min_shingle_size": 2, 
"max_shingle_size": 2, 
"output_unigrams":  False   

}
},
"analyzer": {

"my_shingle_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [

"lowercase",
"my_shingle_filter" 

]
}

}
}

    }
client.indices.close(index=indexName)
client.indices.put_settings(index=indexName , body = settings)
client.indices.open(index=indexName)

You create two new elements: the token filter called “my shingle filter” and a new
analyzer called “my_shingle_analyzer.” Because n-grams are so common, Elastic-
search comes with a built-in shingle token filter type. All you need to tell it is that
you want the bigrams “min_shingle_size” : 2, “max_shingle_size” : 2, as shown
in figure 6.34. You could go for trigrams and higher, but for demonstration purposes
this will suffice.

Listing 6.5 Updating Elasticsearch index settings

Before you can change certain 
settings, the index needs to be 
closed. After changing the settings, 
you can reopen the index.

Built-in token filter type

We want bigrams

We don’t need the unigrams
output next to our bigrams.

Name

Figure 6.34 A shingle token filter to produce bigrams
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The analyzer shown in figure 6.35 is the combination of all the operations required to
go from input text to index. It incorporates the shingle filter, but it’s much more than
this. The tokenizer splits the text into tokens or terms; you can then use a lowercase
filter so there’s no difference when searching for “Diabetes” versus “diabetes.” Finally,
you apply your shingle filter, creating your bigrams. 

Notice that you need to close the index before updating the settings. You can then
safely reopen the index knowing that your settings have been updated. Not all setting
changes require the index to be closed, but this one does. You can find an overview of
what settings need the index to be closed at http://www.elastic.co/guide/en/elastic-
search/reference/current/indices-update-settings.html. 

 The index is now ready to use your new analyzer. For this you’ll create a new docu-
ment type, diseases2, with a new mapping, as shown in the following listing. 

docType = 'diseases2'
diseaseMapping = {

'properties': {
'name': {'type': 'string'},
'title': {'type': 'string'},
'fulltext': {

"type": "string",
"fields": {

"shingles": {
"type":     "string",
"analyzer": "my_shingle_analyzer"

}

Listing 6.6 Create more advanced Elasticsearch doctype mapping

This is a custom-defined analyzer—
we specify every component ourselves.

We still make use of the token analyzer
(which is also the default analyzer).

The lowercase token filter
(which is also the default filter)
will lowercase every character.

Name

When lowercasing is done, our shingle
filter is applied, creating bigrams
instead of the default unigrams.

Figure 6.35 A custom analyzer with standard tokenization and a shingle token filter to produce 
bigrams

The new disease mapping 
differs from the old one by 
the addition of the 
fulltext.shingles field that 
contains your bigrams.

http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html


186 CHAPTER 6 Join the NoSQL movement

L
thro
dis
}
}

}
    }
client.indices.put_mapping(index=indexName,
doc_type=docType,body=diseaseMapping )

Within fulltext you now have an extra parameter, fields. Here you can specify all
the different isotopes of fulltext. You have only one; it goes by the name shingles
and will analyze the fulltext with your new my_shingle_analyzer. You still have
access to your original fulltext, and you didn’t specify an analyzer for this, so the
standard one will be used as before. You can access the new one by giving the property
name followed by its field name: fulltext.shingles. All you need to do now is go
through the previous steps and index the data using the Wikipedia API, as shown in
the following listing.

dl = wikipedia.page("Lists_of_diseases")
diseaseListArray = []
for link in dl.links[15:42]:
    try:

diseaseListArray.append(wikipedia.page(link))
    except Exception,e: 

print str(e)

checkList = [["0","1","2","3","4","5","6","7","8","9"],   
["A"],["B"],["C"],["D"],["E"],["F"],["G"],
["H"],["I"],["J"],["K"],["L"],["M"],["N"],
["O"],["P"],["Q"],["R"],["S"],["T"],["U"],
["V"],["W"],["X"],["Y"],["Z"]]

for diseaselistNumber, diseaselist in enumerate(diseaseListArray):
    for disease in diseaselist.links: #loop through lists of links for every 

disease list
try:

if disease[0] in checkList[diseaselistNumber]  
and disease[0:3] !="List":

currentPage = wikipedia.page(disease)
client.index(index=indexName,

doc_type=docType,id = disease, body={"name": disease, 
"title":currentPage.title ,
"fulltext":currentPage.content})

except Exception,e:
print str(e)

There’s nothing new here, only this time you’ll index doc_type diseases2 instead of
diseases. When this is complete you can again move forward to step 4, data explora-
tion, and check the results. 

Listing 6.7 Reindexing Wikipedia disease explanations with new doctype mapping

The checklist is an array 
containing allowed "first 
characters." If a disease 
doesn’t comply, you 
skip it.

oop
ugh

ease
lists.

First check if it’s 
a disease, then 
index it.
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6.2.5 Step 4 revisited: Data exploration for disease profiling

You’ve once again arrived at data exploration. You can adapt the aggregations query
and use your new field to give you bigram key concepts related to diabetes: 

searchBody={
"fields":["name"],
"query":{
    "filtered" : {

"filter": {
'term': {'name':'diabetes'}

}
    }
},  
"aggregations" : {

"DiseaseKeywords" : {
"significant_terms" : { "field" : "fulltext", "size" : 30 }

},
"DiseaseBigrams": {

"significant_terms" : { "field" : "fulltext.shingles", 
"size" : 30 }

}
    }
}
client.search(index=indexName,doc_type=docType, 
body=searchBody, from_ = 0, size=3)

Your new aggregate, called DiseaseBigrams, uses the fulltext.shingles field to pro-
vide a few new insights into diabetes. These new key terms show up:

■ Excessive discharge—A diabetes patient needs to urinate frequently.
■ Causes polyuria—This indicates the same thing: diabetes causes the patient to

urinate frequently.
■ Deprivation test—This is actually a trigram, “water deprivation test”, but it recog-

nized deprivation test because you have only bigrams. It’s a test to determine
whether a patient has diabetes.

■ Excessive thirst—You already found “thirst” with your unigram keyword search, but
technically at that point it could have meant “no thirst.”

There are other interesting bigrams, unigrams, and probably also trigrams. Taken as
a whole, they can be used to analyze a text or a collection of texts before reading
them. Notice that you achieved the desired results without getting to the modeling
stage. Sometimes there’s at least an equal amount of valuable information to be
found in data exploration as in data modeling. Now that you’ve fully achieved your
secondary objective, you can move on to step 6 of the data science process: presenta-
tion and automation.

Listing 6.8 Significant terms aggregation on “diabetes” with bigrams
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6.2.6 Step 6: Presentation and automation

Your primary objective, disease diagnostics, turned into a self-service diagnostics tool
by allowing a physician to query it via, for instance, a web application. You won’t build
a website in this case, but if you plan on doing so, please read the sidebar “Elastic-
search for web applications.”

The secondary objective, disease profiling, can also be taken to the level of a user
interface; it’s possible to let the search results produce a word cloud that visually
summarizes the search results. We won’t take it that far in this book, but if you’re
interested in setting up something like this in Python, use the word_cloud library
(pip install word_cloud). Or if you prefer JavaScript, D3.js is a good way to go. You
can find an example implementation at http://www.jasondavies.com/wordcloud/
#%2F%2Fwww.jasondavies.com%2Fwordcloud%2Fabout%2F.

 Adding your keywords on this D3.js-driven website will produce a unigram word
cloud like the one shown in figure 6.36 that can be incorporated into the presentation

Elasticsearch for web applications 
As with any other database, it’s bad practice to expose your Elasticsearch REST API
directly to the front end of web applications. If a website can directly make POST
requests to your database, anyone can just as easily delete your data: there’s always
a need for an intermediate layer. This middle layer could be Python if that suits you.
Two popular Python solutions would be Django or the Django REST framework in com-
bination with an independent front end. Django is generally used to build round-trip
applications (web applications where the server builds the front end dynamically,
given the data from the database and a templating system). The Django REST frame-
work is a plugin to Django, transforming Django into a REST service, enabling it to
become part of single-page applications. A single-page application is a web application
that uses a single web page as an anchor but is capable of dynamically changing the
content by retrieving static files from the HTTP server and data from RESTful APIs. Both
approaches (round-trip and single-page) are fine, as long as the Elasticsearch server
itself isn’t open to the public, because it has no built-in security measures. Security can
be added to Elasticsearch directly using “Shield,” an Elasticsearch payable service.

Figure 6.36 Unigram word cloud 
on non-weighted diabetes 
keywords from Elasticsearch 

http://www.jasondavies.com/wordcloud/#%2F%2Fwww.jasondavies.com%2Fwordcloud%2Fabout%2F
http://www.jasondavies.com/wordcloud/#%2F%2Fwww.jasondavies.com%2Fwordcloud%2Fabout%2F
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of your project results. The terms aren’t weighted by their score in this case, but it
already provides a nice representation of the findings.

 Many improvements are possible for your application, especially in the area of data
preparation. But diving into all the possibilities here would take us too far; thus we’ve
come to the end of this chapter. In the next one we’ll take a look at streaming data.

6.3 Summary
In this chapter, you learned the following:

■ NoSQL stands for “Not Only Structured Query Language” and has arisen from
the need to handle the exponentially increasing amounts and varieties of data,
as well as the increasing need for more diverse and flexible schemas such as net-
work and hierarchical structures.

■ Handling all this data requires database partitioning because no single machine
is capable of doing all the work. When partitioning, the CAP Theorem applies:
you can have availability or consistency but never both at the same time.

■ Relational databases and graph databases hold to the ACID principles: atomic-
ity, consistency, isolation, and durability. NoSQL databases generally follow the
BASE principles: basic availability, soft state, and eventual consistency.

■ The four biggest types of NoSQL databases
– Key-value stores—Essentially a bunch of key-value pairs stored in a database.

These databases can be immensely big and are hugely versatile but the data
complexity is low. A well-known example is Redis.

– Wide-column databases—These databases are a bit more complex than key-
value stores in that they use columns but in a more efficient way than a regu-
lar RDBMS would. The columns are essentially decoupled, allowing you to
retrieve data in a single column quickly. A well-known database is Cassandra.

– Document stores—These databases are little bit more complex and store data as
documents. Currently the most popular one is MongoDB, but in our case study
we use Elasticsearch, which is both a document store and a search engine.

– Graph databases—These databases can store the most complex data struc-
tures, as they treat the entities and relations between entities with equal care.
This complexity comes at a cost in lookup speed. A popular one is Neo4j, but
GraphX (a graph database related to Apache Spark) is winning ground.

■ Elasticsearch is a document store and full-text search engine built on top of
Apache Lucene, the open source search engine. It can be used to tokenize, per-
form aggregation queries, perform dimensional (faceted) queries, profile search
queries, and much more.



The rise of graph databases
Where on one hand we’re producing data at mass scale, prompting the likes of
Google, Amazon, and Facebook to come up with intelligent ways to deal with this,
on the other hand we’re faced with data that’s becoming more interconnected
than ever. Graphs and networks are pervasive in our lives. By presenting several
motivating examples, we hope to teach the reader how to recognize a graph prob-
lem when it reveals itself. In this chapter we’ll look at how to leverage those connec-
tions for all they’re worth using a graph database, and demonstrate how to use
Neo4j, a popular graph database.

This chapter covers
■ Introducing connected data and how it’s related

to graphs and graph databases
■ Learning how graph databases differ from

relational databases
■ Discovering the graph database Neo4j
■ Applying the data science process to a

recommender engine project with the graph
database Neo4j
190
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7.1 Introducing connected data and graph databases
Let’s start by familiarizing ourselves with the concept of connected data and its repre-
sentation as graph data. 

■ Connected data—As the name indicates, connected data is characterized by the
fact that the data at hand has a relationship that makes it connected.

■ Graphs—Often referred to in the same sentence as connected data. Graphs are
well suited to represent the connectivity of data in a meaningful way.

■ Graph databases—Introduced in chapter 6. The reason this subject is meriting
particular attention is because, besides the fact that data is increasing in size, it’s
also becoming more interconnected. Not much effort is needed to come up
with well-known examples of connected data.

A prominent example of data that takes a network form is social media data. Social
media allows us to share and exchange data in networks, thereby generating a great
amount of connected data. We can illustrate this with a simple example. Let’s assume
we have two people in our data, User1 and User2. Furthermore, we know the first
name and the last name of User1 (first name: Paul and last name: Beun) and User2
(first name: Jelme and last name: Ragnar). A natural way of representing this could be
by drawing it out on a whiteboard, as shown in figure 7.1.

The terminology of figure 7.1 is described below: 

■ Entities—We have two entities that represent people (User1 and User2). These
entities have the properties “name” and “lastname”.

■ Properties—The properties are defined by key-value pairs. From this graph we
can also infer that User1 with the “name” property Paul knows User2 with the
“name” property Jelme.

User1

knows

Name: Paul

Last name: Beun

User2

Name: Jelme

Last name: Ragnar

Relationship of
type “knows”

Entities: Nodes

Properties
of Jelme

Properties
of Paul

Figure 7.1 A simple connected data 
example: two entities or nodes (User1, 
User2), each with properties (first 
name, last name), connected by a 
relationship (knows)
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■ Relationships—This is the relationship between Paul and Jelme. Note that the
relationship has a direction: it’s Paul who “knows” Jelme and not the other way
around. User1 and User2 both represent people and could therefore be grouped.

■ Labels—In a graph database, one can group nodes by using labels. User1 and
User2 could in this case both be labeled as “User”.

Connected data often contains many more entities and connections. In figure 7.2
we can see a more extensive graph. Two more entities are included: Country1 with
the name Cambodia and Country2 with the name Sweden. Two more relationships
exist: “Has_been_in” and “Is_born_in”. In the previous graph, only the entities
included a property, now the relationships also contain a property. Such graphs are
known as property graphs. The relationship connecting the nodes User1 and
Country1 is of the type “Has_been_in” and has as a property “Date” which repre-
sents a data value. Similarly, User2 is connected to Country2 but through a different
type of relationship, which is of the type “Is_born_in”. Note that the types of rela-
tionships provide us a context of the relationships between nodes. Nodes can have
multiple relationships.

This kind of representation of our data gives us an intuitive way to store connected
data. To explore our data we need to traverse through the graph following pre-
defined paths to find the patterns we’re searching for. What if one would like to
know where Paul has been? Translated into graph database terminology, we’d like
to find the pattern “Paul has been in.” To answer this, we’d start at the node with the

User1

knows

Has_been_in Is_born_in

Name: Paul

Last name: Beun

User2

Name: Jelme

Last name: Ragnar

Country1

Relationship of
type “Is_born_in”
with a property

Date: 12-11-2014

Name: Cambodia

Country2

DOB: 02-02-2013

Name: Sweden

Figure 7.2 A more complicated connected data example where two more entities have 
been included (Country1 and Country2) and two new relationships ("Has_been_in" and 
"Is_born_in")
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name “Paul” and traverse to Cambodia via the relationship “Has_been_in”. Hence a
graph traversal, which corresponds to a database query, would be the following:

1 A starting node—In this case the node with name property “Paul”
2 A traversal path—In this case a path starting at node Paul and going to Cambodia
3 End node—Country node with name property “Cambodia”

To better understand how graph databases deal with connected data, it’s appropriate
to expand a bit more on graphs in general. Graphs are extensively studied in the
domains of computer science and mathematics in a field called graph theory. Graph
theory is the study of graphs, where graphs represent the mathematical structures
used to model pairwise relations between objects, as shown in figure 7.3. What makes
them so appealing is that they have a structure that lends itself to visualizing con-
nected data. A graph is defined by vertices (also known as nodes in the graph database
world) and edges (also known as relationships). These concepts form the basic funda-
mentals on which graph data structures are based.

Compared to other data structures, a distinctive feature of connected data is its non-
linear nature: any entity can be connected to any other via a variety of relationship
types and intermediate entities and paths. In graphs, you can make a subdivision
between directed and undirected graphs. The edges of a directed graph have—how
could it be otherwise—a direction. Although one could argue that every problem
could somehow be represented as a graph problem, it’s important to understand
when it’s ideal to do so and when it’s not.

7.1.1 Why and when should I use a graph database?

The quest of determining which graph database one should use could be an involved
process to undertake. One important aspect in this decision making process is

Vertex

Edge

Edge

Edge

Vertex Vertex

Alias: Relationship

Alias: Node

Figure 7.3 At its core a graph consists of 
nodes (also known as vertices) and edges 
(that connect the vertices), as known from the 
mathematical definition of a graph. These 
collections of objects represent the graph.
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finding the right representation for your data. Since the early 1970s the most com-
mon type of database one had to rely on was a relational one. Later, others emerged,
such as the hierarchical database (for example, IMS), and the graph database’s clos-
est relative: the network database (for example, IDMS). But during the last decades
the landscape has become much more diverse, giving end-users more choice
depending on their specific needs. Considering the recent development of the data
that’s becoming available, two characteristics are well suited to be highlighted here.
The first one is the size of the data and the other the complexity of the data, as
shown in figure 7.4.

As figure 7.4 indicates, we’ll need to rely on a graph database when the data is com-
plex but still small. Though “small” is a relative thing here, we’re still talking hundreds
of millions of nodes. Handling complexity is the main asset of a graph database and
the ultimate “why” you’d use it. To explain what kind of complexity is meant here, first
think about how a traditional relational database works. 

 Contrary to what the name of relational databases indicates, not much is rela-
tional about them except that the foreign keys and primary keys are what relate
tables. In contrast, relationships in graph databases are first-class citizens. Through
this aspect, they lend themselves well to modeling and querying connected data. A

Column-value

data store

Key-value

data store

Document

databases

Graph

databases

Complexity of data

Relational

databases

Size of data

Figure 7.4 This figure illustrates the positioning of graph databases on a two 
dimensional space where one dimension represents the size of the data one is 
dealing with, and the other dimension represents the complexity in terms of how 
connected the data is. When relational databases can no longer cope with the 
complexity of a data set because of its connectedness, but not its size, graph 
databases may be your best option.
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relational database would rather strive for minimizing data redundancy. This pro-
cess is known as database normalization, where a table is decomposed into smaller
(less redundant) tables while maintaining all the information intact. In a normal-
ized database one needs to conduct changes of an attribute in only one table. The
aim of this process is to isolate data changes in one table. Relational database man-
agement systems (RDBMS) are a good choice as a database for data that fits nicely
into a tabular format. The relationships in the data can be expressed by joining the
tables. Their fit starts to downgrade when the joins become more complicated, espe-
cially when they become many-to-many joins. Query time will also increase when
your data size starts increasing, and maintaining the database will be more of a chal-
lenge. These factors will hamper the performance of your database. Graph data-
bases, on the other hand, inherently store data as nodes and relationships. Although
graph databases are classified as a NoSQL type of database, a trend to present them
as a category in their own right exists. One seeks the justification for this by noting
that the other types of NoSQL databases are aggregation-oriented, while graph data-
bases aren’t. 

 A relational database might, for example, have a table representing “people” and
their properties. Any person is related to other people through kinship (and friend-
ship, and so on); each row might represent a person, but connecting them to other
rows in the people table would be an immensely difficult job. Do you add a variable
that holds the unique identifier of the first child and an extra one to hold the ID of
the second child? Where do you stop? Tenth child?

  An alternative would be to use an intermediate table for child-parent relation-
ships, but you’ll need a separate one for other relationship types like friendship. In
this last case you don’t get column proliferation but table proliferation: one relation-
ship table for each type of relationship. Even if you somehow succeed in modeling the
data in such a way that all family relations are present, you’ll need difficult queries to
get the answer to simple questions such as “I would like the grandsons of John
McBain.” First you need to find John McBain’s children. Once you find his children,
you need to find theirs. By the time you have found all the grandsons, you have hit the
“people” table three times:

1 Find McBain and fetch his children.
2 Look up the children with the IDs you got and get the IDs of their children. 
3 Find the grandsons of McBain. 

Figure 7.5 shows the recursive lookups in a relation database necessary to get from
John McBain to his grandsons if everything is in a single table.

 Figure 7.6 is another way to model the data: the parent-child relationship is a sepa-
rate table. 

 Recursive lookups such as these are inefficient, to say the least. 
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Graph databases shine when this type of complexity arises. Let’s look at the most popu-
lar among them.

7.2 Introducing Neo4j: a graph database
Connected data is generally stored in graph databases. These databases are specifically
designed to cope with the structure of connected data. The landscape of available
graph databases is rather diverse these days. The three most-known ones in order of
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Figure 7.5 Recursive lookup version 1: all data in one table
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Figure 7.6 Recursive lookup version 2: using a parent-child relationship table
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decreasing popularity are Neo4j, OrientDb, and Titan. To showcase our case study
we’ll choose the most popular one at the moment of writing (see http://db-engines
.com/en/ranking/graph+dbms, September 2015). 

 Neo4j is a graph database that stores the data in a graph containing nodes and
relationships (both are allowed to contain properties). This type of graph database is
known as a property graph and is well suited for storing connected data. It has a flexi-
ble schema that will give us freedom to change our data structure if needed, providing
us the ability to add new data and new relationships if needed. It’s an open source
project, mature technology, easy to install, user-friendly, and well documented. Neo4j
also has a browser-based interface that facilitates the creation of graphs for visualiza-
tion purposes. To follow along, this would be the right moment to install Neo4j. Neo4j
can be downloaded from http://neo4j.com/download/. All necessary steps for a suc-
cessful installation are summarized in appendix C.

 Now let’s introduce the four basic structures in Neo4j:

■ Nodes—Represent entities such as documents, users, recipes, and so on. Certain
properties could be assigned to nodes.

■ Relationships—Exist between the different nodes. They can be accessed either
stand-alone or through the nodes they’re attached to. Relationships can also
contain properties, hence the name property graph model. Every relationship
has a name and a direction, which together provide semantic context for the
nodes connected by the relationship.

■ Properties—Both nodes and relationships can have properties. Properties are
defined by key-value pairs.

■ Labels —Can be used to group similar nodes to facilitate faster traversal through
graphs.

Before conducting an analysis, a good habit is to design your database carefully so it
fits the queries you’d like to run down the road when performing your analysis. Graph
databases have the pleasant characteristic that they’re whiteboard friendly. If one tries
to draw the problem setting on a whiteboard, this drawing will closely resemble the
database design for the defined problem. Therefore, such a whiteboard drawing
would then be a good starting point to design our database. 

 Now how to retrieve the data? To explore our data, we need to traverse through
the graph following predefined paths to find the patterns we’re searching for. The
Neo4j browser is an ideal environment to create and play around with your connected
data until you get to the right kind of representation for optimal queries, as shown in
figure 7.7. The flexible schema of the graph database suits us well here. In this
browser you can retrieve your data in rows or as a graph. Neo4j has its own query lan-
guage to ease the creation and query capabilities of graphs. 

 Cypher is a highly expressive language that shares enough with SQL to enhance
the learning process of the language. In the following section, we’ll create our own
data using Cypher and insert it into Neo4j. Then we can play around with the data. 

http://db-engines.com/en/ranking/graph+dbms
http://neo4j.com/download/
http://db-engines.com/en/ranking/graph+dbms


198 CHAPTER 7 The rise of graph databases
7.2.1 Cypher: a graph query language

Let’s introduce Cypher and its basic syntax for graph operations. The idea of this sec-
tion is to present enough about Cypher to get us started using the Neo4j browser. At
the end of this section you should be able to create your own connected data using
Cypher in the Neo4j browser and run basic queries to retrieve the results of the query.
For a more extensive introduction to Cypher you can visit http://neo4j.com/docs/
stable/cypher-query-lang.html. We’ll start by drawing a simple social graph accompa-
nied by a basic query to retrieve a predefined pattern as an example. In the next step
we’ll draw a more complex graph that will allow us to use more complicated queries in
Cypher. This will help us to get acquainted with Cypher and move us down the path to
bringing our use case into reality. Moreover, we’ll show how to create our own simu-
lated connected data using Cypher.

 Figure 7.8 shows a simple social graph of two nodes, connected by a relationship of
type “knows”. The nodes have both the properties “name” and “lastname”.

 Now, if we’d like to find out the following pattern, “Who does Paul know?” we’d
query this using Cypher. To find a pattern in Cypher, we’ll start with a Match clause. In

Figure 7.7 Neo4j 2.2.5 interface with resolved query from the chapter case study

User

knows

Name: Paul

Last name: Beun

User

Name: Jelme

Last name: Ragnar

Figure 7.8 An example of a simple 
social graph with two users and 
one relationship

http://neo4j.com/docs/stable/cypher-query-lang.html
http://neo4j.com/docs/stable/cypher-query-lang.html
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this query we’ll start searching at the node User with the name property “Paul”. Note
how the node is enclosed within parentheses, as shown in the code snippet below, and
the relationship is enclosed by square brackets. Relationships are named with a colon (:)
prefix, and the direction is described using arrows. The placeholder p2 will contain all
the User nodes having the relationship of type “knows” as an inbound relationship.
With the return clause we can retrieve the results of the query.

  Match(p1:User { name: 'Paul' } )-[:knows]->(p2:User) 
 Return p2.name

Notice the close relationship of how we have formulated our question verbally and the
way the graph database translates this into a traversal. In Neo4j, this impressive expres-
siveness is made possible by its graph query language, Cypher.

 To make the examples more interesting, let’s assume that our data is represented
by the graph in figure 7.9.

Hobby

Loves

Likes

Likes

User

Name: Traveling Name: Muhuba

Is_friend_of

User

Name: Annelies

Country

Name: Cambodia

Country

Name: New Zealand

Has_been_in

Has_been_in

Country

Name: Sweden

Is_born_in

Has_been_in

Has_been_in

Country

Name: Mongolia

knows

Food

User

Name: Paul

Last name: Beun

User

Name: Jelme

Last name: Ragnar

Name: Sushi

Figure 7.9 A more complicated connected data example 
with several interconnected nodes of different types



200 CHAPTER 7 The rise of graph databases
We can insert the connected data in figure 7.9 into Neo4j by using Cypher. We can
write Cypher commands directly in the browser-based interface of Neo4j, or alterna-
tively through a Python driver (see http://neo4j.com/developer/python/ for an over-
view). This is a good way to get a hands-on feeling with connected data and graph
databases.

 To write an appropriate create statement in Cypher, first we should have a good
understanding of which data we’d like to store as nodes and which as relationships,
what their properties should be, and whether labels would be useful. The first deci-
sion is to decide which data should be regarded as nodes and which as relationships to
provide a semantic context for these nodes. In figure 7.9 we’ve chosen to represent
the users and countries they have been in as nodes. Data that provides information
about a specific node, for example a name that’s associated with a node, can be repre-
sented as a property. All data that provides context about two or more nodes will be
considered as a relationship. Nodes that share common features, for example Cambo-
dia and Sweden are both countries, will also be grouped through labels. In figure 7.9
this is already done.

 In the following listing we demonstrate how the different objects could be encoded
in Cypher through one big create statement. Be aware that Cypher is case sensitive.

CREATE (user1:User {name :'Annelies'}),
 (user2:User {name :'Paul' , LastName: 'Beun'}),
 (user3:User {name :'Muhuba'}),
 (user4:User {name : 'Jelme' , LastName: 'Ragnar'}),
 (country1:Country { name:'Mongolia'}),
 (country2:Country { name:'Cambodia'}),
 (country3:Country { name:'New Zealand'}),
 (country4:Country { name:'Sweden'}),
 (food1:Food { name:'Sushi' }),
 (hobby1:Hobby { name:'Travelling'}),
 (user1)-[:Has_been_in]->(country1),
 (user1)-[: Has_been_in]->(country2),
 (user1)-[: Has_been_in]->(country3),
 (user2)-[: Has_been_in]->(country2),
 (user1)-[: Is_mother_of]->(user4),
 (user2)-[: knows]->(user4),
 (user1)-[: Is_friend_of]->(user3),
 (user2)-[: Likes]->( food1),
 (user3)-[: Likes]->( food1),
 (user4)-[: Is_born_in]->(country4)

Running this create statement in one go has the advantage that the success of this exe-
cution will ensure us that the graph database has been successfully created. If an error
exists, the graph won’t be created. 

 In a real scenario, one should also define indexes and constraints to ensure a fast
lookup and not search the entire database. We haven’t done this here because our
simulated data set is small. However, this can be easily done using Cypher. Consult the

Listing 7.1 Cypher data creation statement

http://neo4j.com/developer/python/
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Cypher documentation to find out more about indexes and constraints (http://
neo4j.com/docs/stable/cypherdoc-labels-constraints-and-indexes.html). Now that we’ve
created our data, we can query it. The following query will return all nodes and rela-
tionships in the database:

MATCH (n)-[r]-() 
RETURN n,r 

Figure 7.10 shows the database that we’ve created. We can compare this graph with
the graph we’ve envisioned on our whiteboard. On our whiteboard we grouped nodes
of people in a label “User” and nodes of countries in a label “Country”. Although the
nodes in this figure aren’t represented by their labels, the labels are present in our
database. Besides that, we also miss a node (Hobby) and a relationship of type
“Loves”. These can be easily added through a merge statement that will create the
node and relationship if they don’t exist already: 

Merge (user3)-[: Loves]->( hobby1)

Find all nodes (n) and all 
their relationships [r].

Show all nodes n and 
all relationships r.

Figure 7.10 The graph drawn in figure 7.9 now has been created in the Neo4j web interface. 
The nodes aren’t represented by their labels but by their names. We can infer from the graph that 
we’re missing the label Hobby with the name Traveling. The reason for this is because we have 
forgotten to include this node and its corresponding relationship in the create statement.

http://neo4j.com/docs/stable/cypherdoc-labels-constraints-and-indexes.html
http://neo4j.com/docs/stable/cypherdoc-labels-constraints-and-indexes.html
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We can ask many questions here. For example:

■ Question 1: Which countries has Annelies visited? The Cypher code to create
the answer (shown in figure 7.11) is

Match(u:User{name:’Annelies’}) – [:Has_been_in]-> (c:Country)
Return u.name, c.name

■ Question 2: Who has been where? The Cypher code (explained in figure 7.12) is

Match ()-[r: Has_been_in]->()
Return r LIMIT 25

Start at node
User with name
property “Annelies”.

Placeholder that
can be used later
as a reference.

The results you want to
retrieve must be defined
in the Return clause.

There are two ways to represent your
results in Neo4j: in a graph or as rows.

The node User has an outgoing relationship of
type “Has_been_in”. (Note that we’ve chosen
not to include a placeholder in this case.)
The end node is Country.

Match(u:User{name:'Annelies'}) - [:Has_been_in]-> (c:Country)

Return u.name, c.name

Figure 7.11 Results of question 1: Which countries has Annelies visited? We can see the three 
countries Annelies has been in, using the row presentation of Neo4j. The traversal took only 97 
milliseconds.
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When we run this query we get the answer shown in figure 7.13.

In question 2 we have chosen not to specify a start node. Therefore, Cypher will go
to all nodes present in the database to find those with an outgoing relationship of
type “Has_been_in”. One should avoid not specifying a starting node since, depend-
ing on the size of your database, such a query could take a long time to converge.
Playing around with the data to obtain the right graph database also means a lot of
data deletion. Cypher has a delete statement suitable for deleting small amounts of

The end nodes are all nodes
with an incoming relationship
of the type “Has_been_in”.

This query is asking for all nodes
with an outgoing relationship
with the type “Has_been_in”.

MATCH ()-[r:Has_been_in]->()

RETURN r LIMIT 25

Figure 7.12 Who has been 
where? Query buildup explained.

Figure 7.13 Results of 
question 2: Who has been 
where? The results of our 
traversal are now shown in the 
graph representation of Neo4j. 
Now we can see that Paul, in 
addition to Annelies, has also 
been to Cambodia.
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data. The following query demonstrates how to delete all nodes and relationships in
the database:

MATCH(n)
Optional MATCH (n)-[r]-()
Delete n,r

Now that we’re acquainted with connected data and have basic knowledge of how it’s
managed in a graph database, we can go a step further and look into real, live applica-
tions of connected data. A social graph, for example, can be used to find clusters of
tightly connected nodes inside the graph communities. People in a cluster who don’t
know each other can then be introduced to each other. The concept of searching for
tightly connected nodes, nodes that have a significant amount of features in common,
is a widely used concept. In the next section we’ll use this idea, where the aim will be
to find clusters inside an ingredient network.

7.3 Connected data example: a recipe recommendation 
engine
One of the most popular use cases for graph databases is the development of recom-
mender engines. Recommender engines became widely adopted through their prom-
ise to create relevant content. Living in an era with such abundance in data can be
overwhelming to many consumers. Enterprises saw the clear need to be inventive in
how to attract customers through personalized content, thereby using the strengths of
recommender engines. 

 In our case study we’ll recommend recipes based on the dish preferences of users
and a network of ingredients. During data preparation we’ll use Elasticsearch to
quicken the process and allow for more focus on the actual graph database. Its main
purpose here will be to replace the ingredients list of the “dirty” downloaded data with
the ingredients from our own “clean” list. 

 If you skipped ahead to this chapter, it might be good to at least read appendix A
on installing Elasticsearch so you have it running on your computer. You can always
download the index we’ll use from the Manning download page for this chapter and
paste it into your local Elasticsearch data directory if you don’t feel like bothering with
the chapter 6 case study. 

 You can download the following information from the Manning website for this
chapter:

Three .py code files and their .ipynb counterparts

■ Data Preparation Part 1—Will upload the data to Elasticsearch (alternatively you
can paste the downloadable index in your local Elasticsearch data folder)

■ Data Preparation Part 2—Will move the data from Elasticsearch to Neo4j
■ Exploration & Recommender System



205Connected data example: a recipe recommendation engine
Three data files

■ Ingredients (.txt)—Self-compiled ingredients file
■ Recipes (.json)—Contains all the ingredients
■ Elasticsearch index (.zip)—Contains the “gastronomical” Elasticsearch index you

can use to skip data preparation part 1

Now that we have everything we need, let’s look at the research goal and the steps we
need to take to achieve it.

7.3.1 Step 1: Setting the research goal

Let’s look at what’s to come when we follow the data science process (figure 7.14). 
 Our primary goal is to set up a recommender engine that would help users of a

cooking website find the right recipe. A user gets to like several recipes and we’ll base

Data science process

1: Setting the research goal

2: Retrieving data

3: Data preparation

4: Data exploration

5: Data modeling

6: Presentation and automation

–

Define research goal

Create project charter

–
Primary goal: recommend dishes people will like

–

Presenting data

–

–

Internal data

External data

–
Data retrieval

Data ownership

–

–

Manually compiled ingredient list

Manually input user likes

Open to anyone

– Open recipes database

Data cleansing –
Make use of Elasticsearch default text data treatment for recipe data

–
Recipe data is transformed into searchable index

Data transformation

Combining data

–

–

Nongraphical techniques

–

Merging/joining data sets

–

Node search

–

Recipes and ingredients are merged

by searching recipes database, and

ingredients are used as keywords

–

Recipes are suggested based on number of

ingredients in common with recipes the user likes

–

Graph view of user recipe preferences

Recommender model

–

Find the most used ingredients

Find the recipes with the

greatest number of ingredients

Figure 7.14 Data science process overview applied to connected data recommender model



206 CHAPTER 7 The rise of graph databases
our dish recommendations on the ingredients’ overlap in a recipes network. This is a
simple and intuitive approach, yet already yields fairly accurate results. Let’s look at
the three data elements we require. 

7.3.2 Step 2: Data retrieval

For this exercise we require three types of data: 

■ Recipes and their respective ingredients
■ A list of distinct ingredients we like to model
■ At least one user and his preference for certain dishes

As always, we can divide this into internally available or created data and externally
acquired data.

■ Internal data—We don’t have any user preferences or ingredients lying around, but
these are the smallest part of our data and easily created. A few manually input
preferences should be enough to create a recommendation. The user gets
more interesting and accurate results the more feedback he gives. We’ll input
user preferences later in the case study. A list of ingredients can be manually com-
piled and will remain relevant for years to come, so feel free to use the list in the
downloadable material for any purpose, commercially or otherwise.

■ External data—Recipes are a different matter. Thousands of ingredients exist, but
these can be combined into millions of dishes. We are in luck, however, because
a pretty big list is freely available at https://github.com/fictivekin/openrecipes.
Many thanks to Fictive Kin for this valuable data set with more than a hundred
thousand recipes. Sure there are duplicates in here, but they won’t hurt our use
case that badly.

We now have two data files at our disposal: a list of 800+ ingredients (ingredients.txt)
and more than a hundred thousand recipes in the recipes.json file. A sample of the
ingredients list can be seen in the following listing.

Ditalini
Egg Noodles
Farfalle
Fettuccine
Fusilli
Lasagna
Linguine
Macaroni
Orzo

The “openrecipes” JSON file contains more than a hundred thousand recipes with
multiple properties such as publish date, source location, preparation time, description,

Listing 7.2 Ingredients list text file sample

https://github.com/fictivekin/openrecipes
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and so on. We’re only interested in the name and ingredients list. A sample recipe is
shown in the following listing.

{ "_id" : { "$oid" : "5160756b96cc62079cc2db15" }, 
    "name" : "Drop Biscuits and Sausage Gravy", 
    "ingredients" : "Biscuits\n3 cups All-purpose Flour\n2 Tablespoons Baking 

Powder\n1/2 teaspoon Salt\n1-1/2 stick (3/4 Cup) Cold Butter, Cut Into 
Pieces\n1-1/4 cup Butermilk\n SAUSAGE GRAVY\n1 pound Breakfast Sausage, 
Hot Or Mild\n1/3 cup All-purpose Flour\n4 cups Whole Milk\n1/2 teaspoon 
Seasoned Salt\n2 teaspoons Black Pepper, More To Taste", 

    "url" : "http://thepioneerwoman.com/cooking/2013/03/drop-biscuits-and-
sausage-gravy/", 

    "image" : "http://static.thepioneerwoman.com/cooking/files/2013/03/
bisgrav.jpg", 

    "ts" : { "$date" : 1365276011104 }, 
    "cookTime" : "PT30M", 
    "source" : "thepioneerwoman", 
    "recipeYield" : "12", 
    "datePublished" : "2013-03-11", 
    "prepTime" : "PT10M", 
    "description" : "Late Saturday afternoon, after Marlboro Man had returned 

home with the soccer-playing girls, and I had returned home with the..."
}

Because we’re dealing with text data here, the problem is two-fold: first, preparing the
textual data as described in the text mining chapter. Then, once the data is thor-
oughly cleansed, it can be used to produce recipe recommendations based on a net-
work of ingredients. This chapter doesn’t focus on the text data preparation because
this is described elsewhere, so we’ll allow ourselves the luxury of a shortcut during the
upcoming data preparation. 

7.3.3 Step 3: Data preparation

We now have two data files at our disposal, and we need to combine them into one
graph database. The “dirty” recipes data poses a problem that we can address using
our clean ingredients list and the use of the search engine and NoSQL database Elas-
ticsearch. We already relied on Elasticsearch in a previous chapter and now it will
clean the recipe data for us implicitly when it creates an index. We can then search
this data to link each ingredient to every recipe in which it occurs. We could clean the
text data using pure Python, as we did in the text mining chapter, but this shows it’s
good to be aware of the strong points of each NoSQL database; don’t pin yourself to a
single technology, but use them together to the benefit of the project. 

 Let’s start by entering our recipe data into Elasticsearch. If you don’t understand
what’s happening, please check the case study of chapter 6 again and it should
become clear. Make sure to turn on your local Elasticsearch instance and activate a
Python environment with the Elasticsearch module installed before running the code

Listing 7.3 A sample JSON recipe
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snippet in the following listing. It’s recommended not to run this code “as is” in Ipy-
thon (or Jupyter) because it prints every recipe key to the screen and your browser
can handle only so much output. Either turn off the print statements or run in
another Python IDE. The code in this snippet can be found in “Data Preparation
Part 1.py”.

from elasticsearch import Elasticsearch    
import json

client = Elasticsearch ()  
indexName = "gastronomical"
docType = 'recipes'

client.indices.create(index=indexName)   

file_name = 'C:/Users/Gebruiker/Downloads/recipes.json'  

recipeMapping = {   
'properties': {

'name': {'type': 'string'},  
 'ingredients': {'type': 'string'}     

}
    }

client.indices.put_mapping(index=indexName,doc_type=docType,body=recipeMapping )

with open(file_name, encoding="utf8") as data_file:   
    recipeData = json.load(data_file)

for recipe in recipeData: 
    print recipe.keys()
    print recipe['_id'].keys()
    client.index(index=indexName,

doc_type=docType,id = recipe['_id']['$oid'],
body={"name": recipe['name'], "ingredients":recipe['ingredients']})  

If everything went well, we now have an Elasticsearch index by the name “gastronomi-
cal” populated by thousands of recipes. Notice we allowed for duplicates of the same
recipe by not assigning the name of the recipe to be the document key. If, for

Listing 7.4 Importing recipe data into Elasticsearch

Import 
modules.

Elasticsearch client used 
to communicate with 
database.

Create index.
Location of JSON 
recipe file: change 
this to match your 
own setup!

Mapping for 
Elasticsearch 
“recipe” doctype.

Load JSON recipe file into memory. 
Another way to do this would be: 
recipeData = []
with open(file_name) as f:
    for line in f:
        recipeData.append(json.loads(line))

Index recipes. Only name and ingredients
are important for our use case. In case a

timeout problem occurs it’s possible to
increase the timeout delay by specifying, for

example, timeout=30 as an argument.
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G
data
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instance, a recipe is called “lasagna” then this can be a salmon lasagna, beef lasagna,
chicken lasagna, or any other type. No single recipe is selected as the prototype lasa-
gna; they are all uploaded to Elasticsearch under the same name: “lasagna”. This is a
choice, so feel free to decide otherwise. It will have a significant impact, as we’ll see
later on. The door is now open for a systematic upload to our local graph database.
Make sure your local graph database instance is turned on when applying the follow-
ing code. Our username for this database is the default Neo4j and the password is
Neo4ja; make sure to adjust this for your local setup. For this we’ll also require a
Neo4j-specific Python library called py2neo. If you haven’t already, now would be the
time to install it to your virtual environment using pip install py2neo or conda
install py2neo when using Anaconda. Again, be advised this code will crash your
browser when run directly in Ipython or Jupiter. The code in this listing can be found
in “Data Preparation Part 2.py”.

from elasticsearch import Elasticsearch
from py2neo import Graph, authenticate, Node, Relationship   

client = Elasticsearch ()
indexName = "gastronomical"   
docType = 'recipes'

authenticate("localhost:7474", "user", "password") 
graph_db = Graph("http://localhost:7474/db/data/") 

filename = 'C:/Users/Gebruiker/Downloads/ingredients.txt'  
ingredients =[]
with open(filename) as f:
    for line in f:

ingredients.append(line.strip())

print ingredients

ingredientnumber = 0
grandtotal = 0
for ingredient in ingredients:   

    try:
IngredientNode = graph_db.merge_one("Ingredient","Name",ingredient)

    except:
continue

    ingredientnumber +=1
    searchbody = { 

"size" : 99999999,
"query": {

"match_phrase": 
{

"ingredients":{

Listing 7.5 Using the Elasticsearch index to fill the graph database

Import 
modules

Elasticsearch client 
used to communicate 
with database Authenticate with 

your own username 
and password

raph
base
ntity Ingredients text 

file gets loaded 
into memory

Strip because of the /n 
you get otherwise 
from reading the .txt 

Loop through 
ingredients and fetch 
Elasticsearch result

Create node in graph
database for current

ingredient

Phrase matching used, as 
some ingredients consist 
of multiple words
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"query":ingredient,
}

}
}

    }
    result = client.search(index=indexName,doc_type=docType,body=searchbody)

    print ingredient
    print ingredientnumber
    print "total: " +  str(result['hits']['total'])

    grandtotal = grandtotal + result['hits']['total']
    print "grand total: " +  str(grandtotal)

    for recipe in result['hits']['hits']: 

try:
RecipeNode = 

graph_db.merge_one("Recipe","Name",recipe['_source']['name']) 
  NodesRelationship = Relationship(RecipeNode, "Contains", 

IngredientNode)
graph_db.create_unique(NodesRelationship) 
print "added: " + recipe['_source']['name'] + " contains " + 

ingredient

except:
continue

    print "*************************************"

Great, we’re now the proud owner of a graph database filled with recipes! It’s time for
connected data exploration. 

7.3.4 Step 4: Data exploration

Now that we have our data where we want it, we can manually explore it using the
Neo4j interface at http://localhost:7474/browser/. 

 Nothing stops you from running your Cypher code in this environment, but Cypher
can also be executed via the py2neo library. One interesting question we can pose is
which ingredients are occurring the most over all recipes? What are we most likely to get
into our digestive system if we randomly selected and ate dishes from this database? 

from py2neo import Graph, authenticate, Node, Relationship
authenticate("localhost:7474", "user", "password")
graph_db = Graph("http://localhost:7474/db/data/")graph_db.cypher.execute("
   MATCH (REC:Recipe)-[r:Contains]->(ING:Ingredient) WITH ING, count(r) AS num
   RETURN ING.Name as Name, num ORDER BY num DESC LIMIT 10;")

Loop through 
recipes found for 
this particular 
ingredient

Create node for each
recipe that is not
already in graph

database

Create
relationship

between this
recipe and
ingredient

http://localhost:7474/browser/
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The query is created in Cypher and says: for all the recipes
and their ingredients, count the number of relations per
ingredient and return the ten ingredients with the most
relations and their respective counts. The results are shown
in figure 7.15.

 Most of the top 10 list in figure 7.15 shouldn’t come as
a surprise. With salt proudly at the top of our list, we
shouldn’t be shocked to find vascular diseases as the num-
ber one killer in most western countries. Another interest-
ing question that comes to mind now is from a different
perspective: which recipes require the most ingredients? 

from py2neo import Graph, Node, Relationship
graph_db = Graph("http://neo4j:neo4ja@localhost:7474/db/data/")
graph_db.cypher.execute("
    MATCH (REC:Recipe)-[r:Contains]->(ING:Ingredient) WITH REC, count(r) AS num
    RETURN REC.Name as Name, num ORDER BY num DESC LIMIT 10;")

The query is almost the same as before, but instead of returning the ingredients, we
demand the recipes. The result is figure 7.16.

Now this might be a surprising sight. Spaghetti Bolognese hardly sounds like the type
of dish that would require 59 ingredients. Let’s take a closer look at the ingredients
listed for Spaghetti Bolognese. 

from py2neo import Graph, Node, Relationship
graph_db = Graph("http://neo4j:neo4ja@localhost:7474/db/data/")
graph_db.cypher.execute("MATCH (REC1:Recipe{Name:'Spaghetti Bolognese'})-

[r:Contains]->(ING:Ingredient) RETURN REC1.Name, ING.Name;")

Figure 7.15 Top 10 
ingredients that occur in 
the most recipes 

Figure 7.16 Top 10 dishes 
that can be created with 
the greatest diversity of 
ingredients 
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The Cypher query merely lists the ingredients linked to Spaghetti Bolognese. Fig-
ure 7.17 shows the result in the Neo4j web interface.

 Let’s remind ourselves of the remark we made when indexing the data in Elastic-
search. A quick Elasticsearch search on Spaghetti Bolognese shows us it occurs mul-
tiple times, and all these instances were used to link ingredients to Spaghetti
Bolognese as a recipe. We don’t have to look at Spaghetti Bolognese as a single rec-
ipe but more as a collection of ways people create their own “Spaghetti Bolognese.”
This makes for an interesting way to look at this data. People can create their ver-
sion of the dish with ketchup, red wine, and chicken or they might even add soup.
With “Spaghetti Bolognese” as a dish being so open to interpretation, no wonder so
many people love it.

 The Spaghetti Bolognese story was an interesting distraction but not what we came
for. It’s time to recommend dishes to our gourmand “Ragnar”. 

7.3.5 Step 5: Data modeling 

With our knowledge of the data slightly enriched, we get to the goal of this exercise:
the recommendations. 

Figure 7.17 Spaghetti Bolognese possible ingredients
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 For this we introduce a user we call “Ragnar,” who likes a couple of dishes. This
new information needs to be absorbed by our graph database before we can expect
it to suggest new dishes. Therefore, let’s now create Ragnar’s user node with a few
recipe preferences.

from py2neo import Graph, Node, Relationship 

graph_db = Graph("http://neo4j:neo4ja@localhost:7474/db/data/")

UserRef = graph_db.merge_one("User","Name","Ragnar")

RecipeRef = graph_db.find_one("Recipe",property_key="Name", 
property_value="Spaghetti Bolognese") 

NodesRelationship = Relationship(UserRef, "Likes", RecipeRef) 
graph_db.create_unique(NodesRelationship) #Commit his like to database 

graph_db.create_unique(Relationship(UserRef, "Likes", 
graph_db.find_one("Recipe",property_key="Name", 
property_value="Roasted Tomato Soup with Tiny Meatballs 
and Rice")))

graph_db.create_unique(Relationship(UserRef, "Likes", 
graph_db.find_one("Recipe",property_key="Name", 
property_value="Moussaka")))

graph_db.create_unique(Relationship(UserRef, "Likes", 
graph_db.find_one("Recipe",property_key="Name", 
property_value="Chipolata &amp; spring onion frittata")))  

graph_db.create_unique(Relationship(UserRef, "Likes", 
graph_db.find_one("Recipe",property_key="Name", 
property_value="Meatballs In Tomato Sauce")))

graph_db.create_unique(Relationship(UserRef, "Likes", 
graph_db.find_one("Recipe",property_key="Name", 
property_value="Macaroni cheese")))

graph_db.create_unique(Relationship(UserRef, "Likes", 
graph_db.find_one("Recipe",property_key="Name", 
property_value="Peppered Steak")))

In listing 7.6 our food connoisseur Ragnar is added to the database along with his pref-
erence for a few dishes. If we select Ragnar in the Neo4j interface, we get figure 7.18.
The Cypher query for this is 

MATCH (U:User)-[r:Likes]->(REC:Recipe) RETURN U,REC LIMIT 25

No surprises in figure 7.18: many people like Spaghetti Bolognese, and so does our
Scandinavian gastronomist Ragnar. 

Listing 7.6 Creating a user node who likes certain recipes in the Neo4j graph database

Import 
modules

Make graph 
database 
connection 
object

eate
user
lled
ar”

ind
ipe
the
e of
etti
ese

Ragnar likes 
Spaghetti 
Bolognese

a like
nship
ween
gnar
d the
hetti

Repeat the 
same process 
as in the lines 
above but for 
several other 
dishes
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For the simple recommendation engine we like to build, all that’s left for us to do is
ask the graph database to give us the nearest dishes in terms of ingredients. Again, this
is a basic approach to recommender systems because it doesn’t take into account fac-
tors such as

■ Dislike of an ingredient or a dish.
■ The amount of like or dislike. A score out of 10 instead of a binary like or don’t

like could make a difference.
■ The amount of the ingredient that is present in the dish.
■ The threshold for a certain ingredient to become apparent in its taste. Certain

ingredients, such as spicy pepper, will represent a bigger impact for a smaller
dose than other ingredients would.

■ Food allergies. While this will be implicitly modeled in the like or dislike of
dishes with certain ingredients, a food allergy can be so important that a single
mistake can be fatal. Avoidance of allergens should overwrite the entire recom-
mendation system.

■ Many more things for you to ponder about.

Figure 7.18 The user Ragnar likes several dishes 
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It might come as a bit of a surprise, but a single Cypher command will suffice.

from py2neo import Graph, Node, Relationship
graph_db = Graph("http://neo4j:neo4ja@localhost:7474/db/data/")
graph_db.cypher.execute("
   MATCH (USR1:User{Name:'Ragnar'})-[l1:Likes]->(REC1:Recipe),

(REC1)-[c1:Contains]->(ING1:Ingredient) 
WITH  ING1,REC1 MATCH (REC2:Recipe)-[c2:Contains]->(ING1:Ingredient) 
WHERE REC1 <> REC2 

   RETURN REC2.Name,count(ING1) AS IngCount ORDER BY IngCount DESC LIMIT 20;")

First all recipes that Ragnar likes are collected. Then their ingredients are used to
fetch all the other dishes that share them. The ingredients are then counted for each
connected dish and ranked from many common ingredients to few. Only the top 20
dishes are kept; this results in the table of figure 7.19.

From figure 7.19 we can deduce it’s time for Ragnar to try Spaghetti and Meatballs, a
dish made immortally famous by the Disney animation Lady and the Tramp. This does
sound like a great recommendation for somebody so fond of dishes containing pasta
and meatballs, but as we can see by the ingredient count, many more ingredients back
up this suggestion. To give us a small hint of what’s behind it, we can show the pre-
ferred dishes, the top recommendations, and a few of their overlapping ingredients in
a single summary graph image. 

Figure 7.19 Output of the recipe recommendation; top 20 dishes the user may love
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7.3.6 Step 6: Presentation 

The Neo4j web interface allows us to run the model and retrieve a nice-looking graph
that summarizes part of the logic behind the recommendations. It shows how recom-
mended dishes are linked to preferred dishes via the ingredients. This is shown in fig-
ure 7.20 and is the final output for our case study.

With this beautiful graph image we can conclude our chapter in the knowledge that
Ragnar has a few tasty dishes to look forward to. Don’t forget to try the recommenda-
tion system for yourself by inserting your own preferences.  

7.4 Summary
In this chapter you learned

■ Graph databases are especially useful when encountering data in which rela-
tionships between entities are as important as the entities themselves. Com-
pared to the other NoSQL databases, they can handle the biggest complexity
but the least data.

Figure 7.20 Interconnectedness of user-preferred dishes and top 10 recommended dishes via a sub-selection 
of their overlapping ingredients
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■ Graph data structures consist of two main components:
– Nodes—These are the entities themselves. In our case study, these are recipes

and ingredients.
– Edges—The relationships between entities. Relationships, like nodes, can be

of all kinds of types (for example “contains,” “likes,” “has been to”) and can
have their own specific properties such as names, weights, or other measures.

■ We looked at Neo4j, currently the most popular graph database. For instruction
on how to install it, you can consult appendix B. We looked into adding data to
Neo4j, querying it using Cypher, and how to access its web interface.

■ Cypher is the Neo4j database-specific query language, and we looked at a few
examples. We also used it in the case study as part of our dishes recom-
mender system.

■ In the chapter’s case study we made use of Elasticsearch to clean a huge recipe
data dump. We then converted this data to a Neo4j database with recipes and
ingredients. The goal of the case study was to recommend dishes to people
based on previously shown interest in other dishes. For this we made use of the
connectedness of recipes via their ingredients. The py2neo library enabled us
to communicate with a Neo4j server from Python.

■ It turns out the graph database is not only useful for implementing a recom-
mendation system but also for data exploration. One of the things we found out
is the diversity (ingredient-wise) of Spaghetti Bolognese recipes out there.

■ We used the Neo4j web interface to create a visual representation of how we get
from dish preferences to dish recommendations via the ingredient nodes.



Text mining
and text analytics
Most of the human recorded information in the world is in the form of written text.
We all learn to read and write from infancy so we can express ourselves through
writing and learn what others know, think, and feel. We use this skill all the time
when reading or writing an email, a blog, text messages, or this book, so it’s no
wonder written language comes naturally to most of us. Businesses are convinced
that much value can be found in the texts that people produce, and rightly so
because they contain information on what those people like, dislike, what they
know or would like to know, crave and desire, their current health or mood, and so
much more. Many of these things can be relevant for companies or researchers,
but no single person can read and interpret this tsunami of written material by
themself. Once again, we need to turn to computers to do the job for us. 

 Sadly, however, the natural language doesn’t come as “natural” to computers
as it does to humans. Deriving meaning and filtering out the unimportant from

This chapter covers
■ Understanding the importance of text mining
■ Introducing the most important concepts in

text mining
■ Working through a text mining project
218
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the important is still something a human is better at than any machine. Luckily, data
scientists can apply specific text mining and text analytics techniques to find the rel-
evant information in heaps of text that would otherwise take them centuries to read
themselves. 

 Text mining or text analytics is a discipline that combines language science and com-
puter science with statistical and machine learning techniques. Text mining is used
for analyzing texts and turning them into a more structured form. Then it takes this
structured form and tries to derive insights from it. When analyzing crime from police
reports, for example, text mining helps you recognize persons, places, and types of
crimes from the reports. Then this new structure is used to gain insight into the evolu-
tion of crimes. See figure 8.1.

Danny W stole a watch in

Chelsea Market

A person punched me, Xi

Li, in the face in Orlando

Person

Danny W

Unknown

Place

Chelsea Market, New York

Orlando

Crime

Theft

Violence

Unknown Chelsea, London Theft

Victim

Unknown

Xi Li

Bart Smith

Date

10th June 2015

10th June 2015

10th June 2015

During the Chelsea soccer

game, my car was stolen

Add structure

Police reports of 10 June 2015

Months

Evolution of the theft in Chelsea Market

Theft
index

1 12

2

1

0
2 3 4 5 6 7 8 9 10 11

Analyze and visualize

Figure 8.1 In text analytics, (usually) the first challenge is to structure the input text; 
then it can be thoroughly analyzed.
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While language isn’t limited to the natural language, the focus of this chapter will
be on Natural Language Processing (NLP). Examples of non-natural languages would be
machine logs, mathematics, and Morse code. Technically even Esperanto, Klingon,
and Dragon language aren’t in the field of natural languages because they were
invented deliberately instead of evolving over time; they didn’t come “natural” to us.
These last languages are nevertheless fit for natural communication (speech, writing);
they have a grammar and a vocabulary as all natural languages do, and the same text
mining techniques could apply to them.

8.1 Text mining in the real world
In your day-to-day life you’ve already come across text mining and natural language
applications. Autocomplete and spelling correctors are constantly analyzing the text
you type before sending an email or text message. When Facebook autocompletes
your status with the name of a friend, it does this with the help of a technique called
named entity recognition, although this would be only one component of their reper-
toire. The goal isn’t only to detect that you’re typing a noun, but also to guess you’re
referring to a person and recognize who it might be. Another example of named
entity recognition is shown in figure 8.2. Google knows Chelsea is a football club but
responds differently when asked for a person.

 Google uses many types of text mining when presenting you with the results of a
query. What pops up in your own mind when someone says “Chelsea”? Chelsea
could be many things: a person; a soccer club; a neighborhood in Manhattan, New
York or London; a food market; a flower show; and so on. Google knows this and
returns different answers to the question “Who is Chelsea?” versus “What is Chelsea?”
To provide the most relevant answer, Google must do (among other things) all of
the following:

■ Preprocess all the documents it collects for named entities
■ Perform language identification
■ Detect what type of entity you’re referring to
■ Match a query to a result
■ Detect the type of content to return (PDF, adult-sensitive)

This example shows that text mining isn’t only about the direct meaning of text itself
but also involves meta-attributes such as language and document type. 

 Google uses text mining for much more than answering queries. Next to shielding
its Gmail users from spam, it also divides the emails into different categories such as
social, updates, and forums, as shown in figure 8.3. 

 It’s possible to go much further than answering simple questions when you com-
bine text with other logic and mathematics. 
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Figure 8.2 The different answers to the queries “Who is Chelsea?” and “What is Chelsea?” imply that Google 
uses text mining techniques to answer these queries.

Figure 8.3 Emails can be automatically divided by category based on content and 
origin.
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This allows for the creation of automatic reasoning engines driven by natural language
queries. Figure 8.4 shows how “Wolfram Alpha,” a computational knowledge engine,
uses text mining and automatic reasoning to answer the question “Is the USA popula-
tion bigger than China?”

If this isn’t impressive enough, the IBM Watson astonished many in 2011 when the
machine was set up against two human players in a game of Jeopardy. Jeopardy is an
American quiz show where people receive the answer to a question and points are
scored for guessing the correct question for that answer. See figure 8.5.

 It’s safe to say this round goes to artificial intelligence. IBM Watson is a cognitive
engine that can interpret natural language and answer questions based on an exten-
sive knowledge base.

Figure 8.4 The Wolfram Alpha engine uses text mining and logical reasoning to answer a question.
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Text mining has many applications, including, but not limited to, the following:

■ Entity identification
■ Plagiarism detection
■ Topic identification
■ Text clustering
■ Translation
■ Automatic text summarization
■ Fraud detection
■ Spam filtering
■ Sentiment analysis

Text mining is useful, but is it difficult? Sorry to disappoint: Yes, it is. 
 When looking at the examples of Wolfram Alpha and IBM Watson, you might have

gotten the impression that text mining is easy. Sadly, no. In reality text mining is a
complicated task and even many seemingly simple things can’t be done satisfactorily.
For instance, take the task of guessing the correct address. Figure 8.6 shows how diffi-
cult it is to return the exact result with certitude and how Google Maps prompts you
for more information when looking for “Springfield.” In this case a human wouldn’t
have done any better without additional context, but this ambiguity is one of the many
problems you face in a text mining application.

Figure 8.5 IBM Watson wins Jeopardy against human players.
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Another problem is spelling mistakes and different (correct) spelling forms of a word. Take
the following three references to New York: “NY,” “Neww York,” and “New York.” For a
human, it’s easy to see they all refer to the city of New York. Because of the way our
brain interprets text, understanding text with spelling mistakes comes naturally to us;
people may not even notice them. But for a computer these are unrelated strings
unless we use algorithms to tell it that they’re referring to the same entity. Related
problems are synonyms and the use of pronouns. Try assigning the right person to the
pronoun “she” in the next sentences: “John gave flowers to Marleen’s parents when he
met her parents for the first time. She was so happy with this gesture.” Easy enough,
right? Not for a computer.

 We can solve many similar problems with ease, but they often prove hard for a
machine. We can train algorithms that work well on a specific problem in a well-
defined scope, but more general algorithms that work in all cases are another beast
altogether. For instance, we can teach a computer to recognize and retrieve US
account numbers from text, but this doesn’t generalize well to account numbers from
other countries.

 Language algorithms are also sensitive to the context the language is used in, even
if the language itself remains the same. English models won’t work for Arabic and vice
versa, but even if we keep to English—an algorithm trained for Twitter data isn’t likely
to perform well on legal texts. Let’s keep this in mind when we move on to the chap-
ter case study: there’s no perfect, one-size-fits-all solution in text mining. 

Figure 8.6 Google Maps 
asks you for more context 
due to the ambiguity of the 
query “Springfield.”
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8.2 Text mining techniques 
During our upcoming case study we’ll tackle the problem of text classification: automat-
ically classifying uncategorized texts into specific categories. To get from raw textual
data to our final destination we’ll need a few data mining techniques that require
background information for us to use them effectively. The first important concept in
text mining is the “bag of words.” 

8.2.1 Bag of words

To build our classification model we’ll go with the bag of words approach. Bag of
words is the simplest way of structuring textual data: every document is turned into a
word vector. If a certain word is present in the vector it’s labeled “True”; the others
are labeled “False”. Figure 8.7 shows a simplified example of this, in case there are
only two documents: one about the television show Game of Thrones and one about
data science. The two word vectors together form the document-term matrix. The
document-term matrix holds a column for every term and a row for every docu-
ment. The values are yours to decide upon. In this chapter we’ll use binary: term is
present? True or False. 

The example from figure 8.7 does give you an idea of the structured data we’ll need to
start text analysis, but it’s severely simplified: not a single word was filtered out and no
stemming (we’ll go into this later) was applied. A big corpus can have thousands of
unique words. If all have to be labeled like this without any filtering, it’s easy to see we
might end up with a large volume of data. Binary coded bag of words as shown in figure 8.7
is but one way to structure the data; other techniques exist. 

Game of Thrones is a great television

series but the books are better.
[({'game':True,'of':True,'thrones':True,'is':True,'a':True,

'great':True,'television':True,'series':True,'but':True,

'the':True,'books':True,'are':True,'better':True,'doing':

False'data':False,'science':False,'more':False,'fun':False,

'than':False,'watching':False},

'gameofthrones'),

({'doing':True,'data':True,'science':True,'is':True,'more':

True,'fun':True,'than':True,'watching':True,'television':True,

'game':False,'of':False,'thrones':False,'a':False,'great':

False,'series':False,'but':False,'the':False,'books':False,

'are':False,'better':False},

'datascience')]

Doing data science is more fun than

watching television.

Figure 8.7 A text is transformed into a bag of words by labeling each word (term) with “True” if it is present in 
the document and “False” if not.
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Before getting to the actual bag of words, many other data manipulation steps take
place:

■ Tokenization—The text is cut into pieces called “tokens” or “terms.” These
tokens are the most basic unit of information you’ll use for your model. The
terms are often words but this isn’t a necessity. Entire sentences can be used for
analysis. We’ll use unigrams: terms consisting of one word. Often, however, it’s
useful to include bigrams (two words per token) or trigrams (three words per
token) to capture extra meaning and increase the performance of your models.

Term Frequency—Inverse Document Frequency (TF-IDF)
A well-known formula to fill up the document-term matrix is TF-IDF or Term Frequency
multiplied by Inverse Document Frequency. Binary bag of words assigns True or False
(term is there or not), while simple frequencies count the number of times the term
occurred. TF-IDF is a bit more complicated and takes into account how many times a
term occurred in the document (TF). TF can be a simple term count, a binary count
(True or False), or a logarithmically scaled term count. It depends on what works best
for you. In case TF is a term frequency, the formula of TF is the following:

TF = ft,d

TF is the frequency (f) of the term (t) in the document (d). 

But TF-IDF also takes into account all the other documents because of the Inverse
Document Frequency. IDF gives an idea of how common the word is in the entire cor-
pus: the higher the document frequency the more common, and more common words
are less informative. For example the words “a” or “the” aren’t likely to provide spe-
cific information on a text. The formula of IDF with logarithmic scaling is the most
commonly used form of IDF: 

IDF = log(N/|{d D:t d}|)

with N being the total number of documents in the corpus, and the |{d D:t d}|
being the number of documents (d) in which the term (t) appears.

The TF-IDF score says this about a term: how important is this word to distinguish this
document from the others in the corpus? The formula of TF-IDF is thus

We won’t use TF-IDF, but when setting your next steps in text mining, this should be
one of the first things you’ll encounter. TF-IDF is also what was used by Elasticsearch
behind the scenes in chapter 6. It’s a good way to go if you want to use TF-IDF for
text analytics; leave the text mining to specialized software such as SOLR or Elastic-
search and take the document/term matrix for text analytics from there. 

1F
IDF
--------- ft,d N d D:t d    log=
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This does come at a cost, though, because you’re building bigger term-vectors
by including bigrams and/or trigrams in the equation. 

■ Stop word filtering—Every language comes with words that have little value in text
analytics because they’re used so often. NLTK comes with a short list of English
stop words we can filter. If the text is tokenized into words, it often makes sense
to rid the word vector of these low-information stop words.

■ Lowercasing—Words with capital letters appear at the beginning of a sentence,
others because they’re proper nouns or adjectives. We gain no added value
making that distinction in our term matrix, so all terms will be set to lowercase.

Another data preparation technique is stemming. This one requires more elaboration. 

8.2.2 Stemming and lemmatization 

Stemming is the process of bringing words back to their root form; this way you end up
with less variance in the data. This makes sense if words have similar meanings but are
written differently because, for example, one is in its plural form. Stemming attempts
to unify by cutting off parts of the word. For example “planes” and “plane” both
become “plane.” 

 Another technique, called lemmatization, has this same goal but does so in a more
grammatically sensitive way. For example, while both stemming and lemmatization
would reduce “cars” to “car,” lemmatization can also bring back conjugated verbs to
their unconjugated forms such as “are” to “be.” Which one you use depends on your
case, and lemmatization profits heavily from POS Tagging (Part of Speech Tagging).
POS Tagging is the process of attributing a grammatical label to every part of a sen-
tence. You probably did this manually in school as a language exercise. Take the sen-
tence “Game of Thrones is a television series.” If we apply POS Tagging on it we get

({“game”:”NN”},{“of”:”IN},{“thrones”:”NNS},{“is”:”VBZ},{“a”:”DT},{“television”:”NN},
{“series”:”NN})

NN is a noun, IN is a preposition, NNS is a noun in its plural form, VBZ is a third-person
singular verb, and DT is a determiner. Table 8.1 has the full list.

Table 8.1 A list of all POS tags

Tag Meaning Tag Meaning

CC Coordinating conjunction CD Cardinal number

DT Determiner EX Existential

FW Foreign word IN Preposition or subordinating conjunction

JJ Adjective JJR Adjective, comparative

JJS Adjective, superlative LS List item marker

MD Modal NN Noun, singular or mass
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POS Tagging is a use case of sentence-tokenization rather than word-tokenization.
After the POS Tagging is complete you can still proceed to word tokenization, but a
POS Tagger requires whole sentences. Combining POS Tagging and lemmatization is
likely to give cleaner data than using only a stemmer. For the sake of simplicity we’ll
stick to stemming in the case study, but consider this an opportunity to elaborate on
the exercise. 

 We now know the most important things we’ll use to do the data cleansing and
manipulation (text mining). For our text analytics, let’s add the decision tree classifier
to our repertoire.

8.2.3 Decision tree classifier

The data analysis part of our case study will be kept simple as well. We’ll test a Naïve
Bayes classifier and a decision tree classifier. As seen in chapter 3 the Naïve Bayes
classifier is called that because it considers each input variable to be independent of
all the others, which is naïve, especially in text mining. Take the simple examples of
“data science,” “data analysis,” or “game of thrones.” If we cut our data in unigrams
we get the following separate variables (if we ignore stemming and such): “data,” “sci-
ence,” “analysis,” “game,” “of,” and “thrones.” Obviously links will be lost. This can, in
turn, be overcome by creating bigrams (data science, data analysis) and trigrams
(game of thrones). 

 The decision tree classifier, however, doesn’t consider the variables to be indepen-
dent of one another and actively creates interaction variables and buckets. An interaction

NNS Noun, plural NNP Proper noun, singular

NNPS Proper noun, plural PDT Predeterminer

POS Possessive ending PRP Personal pronoun

PRP$ Possessive pronoun RB Adverb

RBR Adverb, comparative RBS Adverb, superlative

RP Particle SYM Symbol

UH Interjection VB Verb, base form

VBD Verb, past tense VBG Verb, gerund or present participle

VBN Verb, past participle VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present WDT Wh-determiner

WP Wh-pronoun WP$ Possessive wh-pronoun

WRB Wh-adverb

Table 8.1 A list of all POS tags (continued)

Tag Meaning Tag Meaning
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variable is a variable that combines other variables. For instance “data” and “science”
might be good predictors in their own right but probably the two of them co-occurring
in the same text might have its own value. A bucket is somewhat the opposite. Instead
of combining two variables, a variable is split into multiple new ones. This makes sense
for numerical variables. Figure 8.8 shows what a decision tree might look like and
where you can find interaction and bucketing.

Whereas Naïve Bayes supposes independence of all the input variables, a decision
tree is built upon the assumption of interdependence. But how does it build this
structure? A decision tree has a few possible criteria it can use to split into branches
and decide which variables are more important (are closer to the root of the tree)
than others. The one we’ll use in the NLTK decision tree classifier is “information
gain.” To understand information gain, we first need to look at entropy. Entropy is a
measure of unpredictability or chaos. A simple example would be the gender of a
baby. When a woman is pregnant, the gender of the fetus can be male or female, but
we don’t know which one it is. If you were to guess, you have a 50% chance to guess
correctly (give or take, because gender distribution isn’t 100% uniform). However,
during the pregnancy you have the opportunity to do an ultrasound to determine
the gender of the fetus. An ultrasound is never 100% conclusive, but the farther
along in fetal development, the more accurate it becomes. This accuracy gain, or
information gain, is there because uncertainty or entropy drops. Let’s say an ultra-
sound at 12 weeks pregnancy has a 90% accuracy in determining the gender of the
baby. A 10% uncertainty still exists, but the ultrasound did reduce the uncertainty

Car insurance decision tree: Probability of

an insuree crashing the car within a year

Gender

Car color

1%0.5%

Female

Other Red

Male

Age

0.5%1% 1.5%

>65 <25

25–65

Interaction of
Male and “<25”

Age has been split into 3 buckets:
“>65”, “25–65”, and “<25”

Figure 8.8 Fictitious decision tree model. A decision tree 
automatically creates buckets and supposes interactions between 
input variables.
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from 50% to 10%. That’s a pretty good discriminator. A decision tree follows this
same principle, as shown in figure 8.9.

 If another gender test has more predictive power, it could become the root of the
tree with the ultrasound test being in the branches, and this can go on until we run
out of variables or observations. We can run out of observations, because at every
branch split we also split the input data. This is a big weakness of the decision tree,
because at the leaf level of the tree robustness breaks down if too few observations are
left; the decision trees starts to overfit the data. Overfitting allows the model to mistake
randomness for real correlations. To counteract this, a decision tree is pruned: its
meaningless branches are left out of the final model.

 Now that we’ve looked at the most important new techniques, let’s dive into the
case study.

8.3 Case study: Classifying Reddit posts
While text mining has many applications, in this chapter’s case study we focus on doc-
ument classification. As pointed out earlier in this chapter, this is exactly what Google
does when it arranges your emails in categories or attempts to distinguish spam from
regular emails. It’s also extensively used by contact centers that process incoming cus-
tomer questions or complaints: written complaints first pass through a topic detec-
tion filter so they can be assigned to the correct people for handling. Document
classification is also one of the mandatory features of social media monitoring sys-
tems. The monitored tweets, forum or Facebook posts, newspaper articles, and many
other internet resources are assigned topic labels. This way they can be reused in
reports. Sentiment analysis is a specific type of text classification: is the author of a post
negative, positive, or neutral on something? That “something” can be recognized
with entity recognition. 

 In this case study we’ll draw on posts from Reddit, a website also known as the self-
proclaimed “front page of the internet,” and attempt to train a model capable of dis-
tinguishing whether someone is talking about “data science” or “game of thrones.” 

 The end result can be a presentation of our model or a full-blown interactive appli-
cation. In chapter 9 we’ll focus on application building for the end user, so for now
we’ll stick to presenting our classification model. 

 To achieve our goal we’ll need all the help and tools we can get, and it happens
Python is once again ready to provide them.

Ultrasound

90%

Female Male

10%

Probability of fetus identified as

female—ultrasound at 12 weeks

Figure 8.9 Decision tree with one variable: the 
doctor’s conclusion from watching an ultrasound 
during a pregnancy. What is the probability of the 
fetus being female? 
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8.3.1 Meet the Natural Language Toolkit 

Python might not be the most execution efficient language on earth, but it has a
mature package for text mining and language processing: the Natural Language Toolkit
(NLTK). NLTK is a collection of algorithms, functions, and annotated works that will
guide you in taking your first steps in text mining and natural language processing.
NLTK is also excellently documented on nltk.org. NLTK is, however, not often used for
production-grade work, like other libraries such as scikit-learn.

Installing NLTK and its corpora 
Install NLTK with your favorite package installer. In case you’re using Anaconda, it
comes installed with the default Anaconda setup. Otherwise you can go for “pip” or
“easy_install”. When this is done you still need to install the models and corpora
included to have it be fully functional. For this, run the following Python code:

■ import nltk
■ nltk.download()

Depending on your installation this will give you a pop-up or more command-line options.

Figure 8.10 shows the pop-up box you get when issuing the nltk.download() command. 

You can download all the corpora if you like, but for this chapter we’ll only make use
of “punkt” and “stopwords”. This download will be explicitly mentioned in the code
that comes with this book. 

Figure 8.10 Choose 
All Packages to fully 
complete the NLTK 
installation.

http://nltk.org
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Two IPython notebook files are available for this chapter: 

■ Data collection—Will contain the data collection part of this chapter’s case study.
■ Data preparation and analysis—The stored data is put through data preparation

and then subjected to analysis.

All code in the upcoming case study can be found in these two files in the same
sequence and can also be run as such. In addition, two interactive graphs are available
for download: 

■ forceGraph.html—Represents the top 20 features of our Naïve Bayes model
■ Sunburst.html—Represents the top four branches of our decision tree model

To open these two HTML pages, an HTTP server is necessary, which you can get using
Python and a command window:

■ Open a command window (Linux, Windows, whatever you fancy).
■ Move to the folder containing the HTML files and their JSON data files: deci-

sionTreeData.json for the sunburst diagram and NaiveBayesData.json for the
force graph. It’s important the HTML files remain in the same location as their
data files or you’ll have to change the JavaScript in the HTML file.

■ Create a Python HTTP server with the following command: python –m Simple-
HTTPServer 8000

■ Open a browser and go to localhost:8000; here you can select the HTML files, as
shown in figure 8.11.

The Python packages we’ll use in this chapter:

■ NLTK—For text mining
■ PRAW—Allows downloading posts from Reddit
■ SQLite3—Enables us to store data in the SQLite format
■ Matplotlib—A plotting library for visualizing data

Make sure to install all the necessary libraries and corpora before moving on. Before
we dive into the action, however, let’s look at the steps we’ll take to get to our goal of
creating a topic classification model.

Figure 8.11 Python HTTP server 
serving this chapter’s output
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8.3.2 Data science process overview and step 1: The research goal

To solve this text mining exercise, we’ll once again make use of the data science process.
Figure 8.12 shows the data science process applied to our Reddit classification case. 

 Not all the elements depicted in figure 8.12 might make sense at this point, and
the rest of the chapter is dedicated to working this out in practice as we work toward
our research goal: creating a classification model capable of distinguishing posts
about “data science” from posts about “Game of Thrones.” Without further ado, let’s
go get our data. 

Data science process

1: Setting the research goal

2: Retrieving data

3: Data preparation

4: Data exploration

5: Data modeling

6: Presentation and automation

–

We need to distinguish Reddit posts about data science

from posts about Game of Thrones. Our goal: creating

a model that does this classification reliably.

–

–

–

Internal data

External data

–
We have no internal data on this.

–

–
Stop word filtering.

Hapaxes filtering.

Reddit is the external data source we use.

We are using PRAW to access their data API.

Data is stored in SQLite.

Data cleansing

–Data transformation

Combining data

–

–

We have but a single data set.

–

Not part of this chapter, but the model can be

turned into a batch program to score new posts.

Word tokenization.

Data labeling.

Stemming.

Term lowercasing.

–

–
–

Word frequencies histogram.

Visually inspect least and common terms.

–

Naive Bayes Most information features.

Decision trees Tree visual inspection.

–
Model accuracy.

Confusion matrix.

Model execution Document scoring.

Model and variable selection

Model diagnostic and model comparison

Figure 8.12 Data science process overview applied to Reddit topic classification case study
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8.3.3 Step 2: Data retrieval

We’ll use Reddit data for this case, and for those unfamiliar with Reddit, take the time
to familiarize yourself with its concepts at www.reddit.com. 

 Reddit calls itself “the front page of the internet” because users can post things
they find interesting and/or found somewhere on the internet, and only those things
deemed interesting by many people are featured as “popular” on its homepage. You
could say Reddit gives an overview of the trending things on the internet. Any user
can post within a predefined category called a “subreddit.” When a post is made,
other users get to comment on it and can up-vote it if they like the content or down-
vote it if they dislike it. Because a post is always part of a subreddit, we have this meta-
data at our disposal when we hook up to the Reddit API to get our data. We’re effectively
fetching labeled data because we’ll assume that a post in the subreddit “gameofthrones”
has something to do with “gameofthrones.” 

 To get to our data we make use of the official Reddit Python API library called
PRAW. Once we get the data we need, we’ll store it in a lightweight database-like file
called SQLite. SQLite is ideal for storing small amounts of data because it doesn’t
require any setup to use and will respond to SQL queries like any regular relational
database does. Any other data storage medium will do; if you prefer Oracle or Post-
gres databases, Python has an excellent library to interact with these without the need
to write SQL. SQLAlchemy will work for SQLite files as well. Figure 8.13 shows the data
retrieval step within the data science process.

Open your favorite Python interpreter; it’s time for action, as shown in listing 8.1.
First we need to collect our data from the Reddit website. If you haven’t already,
use pip install praw or conda install praw (Anaconda) before running the fol-
lowing script. 

NOTE The code for step 2 can also be found in the IPython file “Chapter 8
data collection.” It’s available in this book's download section.

2: Retrieving data –

Internal data

External data

–
We have no internal data on this.

–

Reddit is the external data source we use.

We are using PRAW to access their data API.

Data is stored in SQLite.

Figure 8.13 The data science process data retrieval step for a Reddit topic 
classification case

www.reddit.com
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import praw
import sqlite3    

conn = sqlite3.connect('reddit.db')   
c = conn.cursor()

c.execute('''DROP TABLE IF EXISTS topics''')
c.execute('''DROP TABLE IF EXISTS comments''')
c.execute('''CREATE TABLE topics

(topicTitle text, topicText text, topicID text,  
topicCategory text)''')
c.execute('''CREATE TABLE comments

(commentText text, commentID text ,
topicTitle text, topicText text, topicID text ,
 topicCategory text)''')

user_agent = "Introducing Data Science Book"
r = praw.Reddit(user_agent=user_agent)

subreddits = ['datascience','gameofthrones']

limit = 1000

Let’s first import the necessary libraries.
 Now that we have access to the SQLite3 and PRAW capabilities, we need to prepare

our little local database for the data it’s about to receive. By defining a connection to a
SQLite file we automatically create it if it doesn’t already exist. We then define a data
cursor that’s capable of executing any SQL statement, so we use it to predefine the
structure of our database. The database will contain two tables: the topics table con-
tains Reddit topics, which is similar to someone starting a new post on a forum, and
the second table contains the comments and is linked to the topic table via the “topicID”
column. The two tables have a one (topic table) to many (comment table) relation-
ship. For the case study, we’ll limit ourselves to using the topics table, but the data col-
lection will incorporate both because this allows you to experiment with this extra
data if you feel like it. To hone your text-mining skills you could perform sentiment
analysis on the topic comments and find out what topics receive negative or positive
comments. You could then correlate this to the model features we’ll produce by the
end of this chapter.

 We need to create a PRAW client to get access to the data. Every subreddit can be
identified by its name, and we’re interested in “datascience” and “gameofthrones.”
The limit represents the maximum number of topics (posts, not comments) we’ll
draw in from Reddit. A thousand is also the maximum number the API allows us to
fetch at any given request, though we could request more later on when people have

Listing 8.1 Setting up SQLLite database and Reddit API client

Import PRAW and 
SQLite3 libraries.

Set up connection to 
SQLite database.

Execute SQL 
statements to 
create topics and 
comments table.

Create PRAW user agent 
so we can use Reddit API.

Our list of subreddits 
we’ll draw into our 
SQLite database.Maximum number of posts we’ll fetch from 

Reddit per category. Maximum Reddit 
allows at any single time is also 1,000.
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posted new things. In fact we can run the API request periodically and gather data
over time. While at any given time you’re limited to a thousand posts, nothing stops
you from growing your own database over the course of months. It’s worth noting the
following script might take about an hour to complete. If you don’t feel like waiting,
feel free to proceed and use the downloadable SQLite file. Also, if you run it now you
are not likely to get the exact same output as when it was first run to create the output
shown in this chapter.

 Let’s look at our data retrieval function, as shown in the following listing.

def prawGetData(limit,subredditName):
    topics = r.get_subreddit(subredditName).get_hot(limit=limit) 
    commentInsert = []
    topicInsert = []
    topicNBR = 1
    for topic in topics:

if (float(topicNBR)/limit)*100 in xrange(1,100):
print '*********** TOPIC:' + str(topic.id) 

+ ' *********COMPLETE: ' + str((float(topicNBR)/limit)*100)
+ ' % ****'

topicNBR += 1
try:
   topicInsert.append((topic.title,topic.selftext,topic.id,

subredditName))
except:

pass
try:

for comment in topic.comments:
commentInsert.append((comment.body,comment.id,

topic.title,topic.selftext,topic.id,subredditName)) 
except:

pass
    print  '********************************'
    print  'INSERTING DATA INTO SQLITE'

c.executemany('INSERT INTO topics VALUES (?,?,?,?)', topicInsert)
print  'INSERTED TOPICS'
c.executemany('INSERT INTO comments VALUES (?,?,?,?,?,?)', commentInsert)
print  'INSERTED COMMENTS'

    conn.commit()

for subject in subreddits: 
    prawGetData(limit=limit,subredditName=subject)

Listing 8.2 Reddit data retrieval and storage in SQLite

From 
subreddits, g
hottest 1,000
(in our case) 
topics.

This part is an informa
print and not necessa
for code to work. It o
informs you about the
download progress.

Specific fields of the topic are appended to the list. We only use the 
title and text throughout the exercise but the topic ID would be 
useful for building your own (bigger) database of topics.

Append comment
to a list. These ar
not used in the 
exercise but now 
you have them fo
experimentation.Insert all

opics into
SQLite

database.

Insert all
comments into

SQLite database.

Commit changes (data insertions) to 
database. Without the commit, no 
data will be inserted.

The function is executed 
for all subreddits we 
specified earlier. 
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The prawGetData() function retrieves the “hottest” topics in its subreddit, appends
this to an array, and then gets all its related comments. This goes on until a thou-
sand topics are reached or no more topics exist to fetch and everything is stored in
the SQLite database. The print statements are there to inform you on its progress
toward gathering a thousand topics. All that’s left for us to do is execute the func-
tion for each subreddit. 

 If you’d like this analysis to incorporate more than two subreddits, this is a matter
of adding an extra category to the subreddits array. 

 With the data collected, we’re ready to move on to data preparation.

8.3.4 Step 3: Data preparation

As always, data preparation is the most crucial step to get correct results. For text min-
ing this is even truer since we don’t even start off with structured data. 

 The upcoming code is available online as IPython file “Chapter 8 data preparation
and analysis.” Let’s start by importing the required libraries and preparing the SQLite
database, as shown in the following listing.

import sqlite3
import nltk
import matplotlib.pyplot as plt
from collections import OrderedDict   
import random

nltk.download('punkt')
nltk.download('stopwords')

conn = sqlite3.connect('reddit.db')    
c = conn.cursor()

In case you haven’t already downloaded the full NLTK corpus, we’ll now download the
part of it we’ll use. Don’t worry if you already downloaded it, the script will detect if
your corpora is up to date. 

 Our data is still stored in the Reddit SQLite file so let’s create a connection to it.
 Even before exploring our data we know of at least two things we have to do to

clean the data: stop word filtering and lowercasing. 
 A general word filter function will help us filter out the unclean parts. Let’s create

one in the following listing. 

Listing 8.3 Text mining, libraries, corpora dependencies, and SQLite database connection

Import all 
required 
libraries

Download corpora 
we make use of

Make a connection to SQLite database 
that contains our Reddit data
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from 
s

 

def wordFilter(excluded,wordrow): 
    filtered = [word for word in wordrow if word not in excluded]
    return filtered  
stopwords = nltk.corpus.stopwords.words('english') 
def lowerCaseArray(wordrow): 
    lowercased = [word.lower() for word in wordrow]
    return lowercased  

The English stop words will be the first to leave our data. The following code will pro-
vide us these stop words:

stopwords = nltk.corpus.stopwords.words('english')
print stopwords

Figure 8.14 shows the list of English stop words in NLTK.

With all the necessary components in place, let’s have a look at our first data process-
ing function in the following listing.

Listing 8.4 Word filtering and lowercasing functions

wordFilter() 
function will 
remove a term 
an array of term

Stop word variable 
contains English stop
words per default 
present in NLTK

lowerCaseArray() function
transforms any term to its

lowercased version

Figure 8.14 English stop words list in NLTK
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def data_processing(sql):
c.execute(sql)
data = {'wordMatrix':[],'all_words':[]}
row = c.fetchone()
while row is not None:

wordrow = nltk.tokenize.word_tokenize(row[0]+" "+row[1]) 
wordrow_lowercased = lowerCaseArray(wordrow)
wordrow_nostopwords = wordFilter(stopwords,wordrow_lowercased)
data['all_words'].extend(wordrow_nostopwords) 
data['wordMatrix'].append(wordrow_nostopwords) 
row = c.fetchone()

    return data

subreddits = ['datascience','gameofthrones'] 
data = {}
for subject in subreddits: 
    data[subject] = data_processing(sql='''SELECT 

topicTitle,topicText,topicCategory FROM topics 
WHERE topicCategory = '''+"'"+subject+"'")

Our data_processing() function takes in a SQL statement and returns the document-
term matrix. It does this by looping through the data one entry (Reddit topic) at a
time and combines the topic title and topic body text into a single word vector with
the use of word tokenization. A tokenizer is a text handling script that cuts the text into
pieces. You have many different ways to tokenize a text: you can divide it into sen-
tences or words, you can split by space and punctuations, or you can take other char-
acters into account, and so on. Here we opted for the standard NLTK word tokenizer.
This word tokenizer is simple; all it does is split the text into terms if there’s a space
between the words. We then lowercase the vector and filter out the stop words. Note
how the order is important here; a stop word in the beginning of a sentence wouldn’t
be filtered if we first filter the stop words before lowercasing. For instance in “I like
Game of Thrones,”  the “I” would not be lowercased and thus would not be filtered
out. We then create a word matrix (term-document matrix) and a list containing all
the words. Notice how we extend the list without filtering for doubles; this way we can
create a histogram on word occurrences during data exploration. Let’s execute the
function for our two topic categories.

 Figure 8.15 shows the first word vector of the “datascience” category.

print data['datascience']['wordMatrix'][0]

Listing 8.5 First data preparation function and execution

Create pointer 
to AWLite data.

Fetch data 
row by row.

row[0] is 
title, row[1] 
is topic text; 
we turn them
into a single 
text blob.

We’ll use data['all_words'] 
for data exploration.

data['wordMatrix'] is a matrix 
comprised of word vectors; 
1 vector per document.

Get new document 
from SQLite database. 

Our subreddits as 
defined earlier.

Call data processing 
function for every 
subreddit.



240 CHAPTER 8 Text mining and text analytics
This sure looks polluted: punctuations are kept as separate terms and several words
haven’t even been split. Further data exploration should clarify a few things for us.

8.3.5 Step 4: Data exploration 

We now have all our terms separated, but the sheer size of the data hinders us from
getting a good grip on whether it’s clean enough for actual use. By looking at a single
vector, we already spot a few problems though: several words haven’t been split cor-
rectly and the vector contains many single-character terms. Single character terms
might be good topic differentiators in certain cases. For example, an economic text
will contain more $, £, and ¤ signs than a medical text. But in most cases these one-
character terms are useless. First, let’s have a look at the frequency distribution of
our terms. 

wordfreqs_cat1 = nltk.FreqDist(data['datascience']['all_words'])
plt.hist(wordfreqs_cat1.values(), bins = range(10))
plt.show()
wordfreqs_cat2 = nltk.FreqDist(data['gameofthrones']['all_words'])
plt.hist(wordfreqs_cat2.values(), bins = range(20))
plt.show()

By drawing a histogram of the frequency distribution (figure 8.16) we quickly notice
that the bulk of our terms only occur in a single document.

 Single-occurrence terms such as these are called hapaxes, and model-wise they’re
useless because a single occurrence of a feature is never enough to build a reliable
model. This is good news for us; cutting these hapaxes out will significantly shrink
our data without harming our eventual model. Let’s look at a few of these single-
occurrence terms. 

print wordfreqs_cat1.hapaxes()
print wordfreqs_cat2.hapaxes()

Terms we see in figure 8.17 make sense, and if we had more data they’d likely occur
more often. 

print wordfreqs_cat1.hapaxes()
print wordfreqs_cat2.hapaxes()

Figure 8.15 The first word vector of the “datascience” category after first 
data processing attempt
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Figure 8.16 This histogram of 
term frequencies shows both the 
“data science” and “game of 
thrones” term matrices have 
more than 3,000 terms that 
occur once.

Figure 8.17 “Data 
science” and “game 
of thrones” single 
occurrence terms 
(hapaxes)
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Many of these terms are incorrect spellings of otherwise useful ones, such as: Jaimie is
Jaime (Lannister), Milisandre would be Melisandre, and so on. A decent Game of
Thrones-specific thesaurus could help us find and replace these misspellings with a
fuzzy search algorithm. This proves data cleaning in text mining can go on indefi-
nitely if you so desire; keeping effort and payoff in balance is crucial here. 

 Let’s now have a look at the most frequent words.

print wordfreqs_cat1.most_common(20)
print wordfreqs_cat2.most_common(20)

Figure 8.18 shows the output of asking for the top 20 most common words for each
category.

Now this looks encouraging: several common words do seem specific to their topics.
Words such as “data,” “science,” and “season” are likely to become good differentia-
tors. Another important thing to notice is the abundance of the single character terms
such as  “.” and “,”; we’ll get rid of these. 

 With this extra knowledge, let’s revise our data preparation script. 

8.3.6 Step 3 revisited: Data preparation adapted

This short data exploration has already drawn our attention to a few obvious tweaks
we can make to improve our text. Another important one is stemming the terms. 

Figure 8.18 Top 20 most frequent words for the “data science” and “game of 
thrones” posts
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 The following listing shows a simple stemming algorithm called “snowball stem-
ming.” These snowball stemmers can be language-specific, so we’ll use the English
one; however, it does support many languages. 

stemmer = nltk.SnowballStemmer("english") 
def wordStemmer(wordrow): 
    stemmed = [stemmer.stem(word) for word in wordrow]
    return stemmed  

manual_stopwords = [',','.',')',',','(','m',"'m","n't",'e.g',"'ve",'s','#','/
','``',"'s","''",'!','r',']','=','[','s','&','%','*','...','1','2','3','
4','5','6','7','8','9','10','--',"''",';','-',':'] 

def data_processing(sql,manual_stopwords):  
    #create pointer to the sqlite data

c.execute(sql)
data = {'wordMatrix':[],'all_words':[]}
interWordMatrix = []
interWordList = []

    row = c.fetchone()   
    while row is not None:

tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+|[^\w\s]+')

wordrow = tokenizer.tokenize(row[0]+" "+row[1])
wordrow_lowercased = lowerCaseArray(wordrow)
wordrow_nostopwords = wordFilter(stopwords,wordrow_lowercased)

 wordrow_nostopwords =
 wordFilter(manual_stopwords,wordrow_nostopwords)  
 wordrow_stemmed = wordStemmer(wordrow_nostopwords)

interWordList.extend(wordrow_stemmed)   
interWordMatrix.append(wordrow_stemmed)  

row = c.fetchone() 

    wordfreqs = nltk.FreqDist(interWordList) s 
    hapaxes = wordfreqs.hapaxes()
    for wordvector in interWordMatrix:  

wordvector_nohapexes = wordFilter(hapaxes,wordvector) 
data['wordMatrix'].append(wordvector_nohapexes)  
data['all_words'].extend(wordvector_nohapexes)   

    return data

for subject in subreddits:
    data[subject] = data_processing(sql='''SELECT 

topicTitle,topicText,topicCategory FROM topics 
WHERE topicCategory = '''+"'"+subject+"'",
manual_stopwords=manual_stopwords)

Listing 8.6 The Reddit data processing revised after data exploration

Initializes stemmer 
from NLTK library.

Stop words array 
defines terms to 
remove/ignore.

Now we define 
our revised data 
preparation.

Fetch data (reddit posts) on
by one from SQLite database

row[0] and
row[1]

contain the
tle and text
of the post,
espectively.
e combine

them into a
single text

blob.

Remove
manually

added stop
words from

text blob.

Temporary word 
list used to 
remove hapaxes 
later on.

porary word
matrix; will

become final
 matrix after
xes removal.

Get new 
topic.

Make frequency 
distribution of 
all terms.

Get list of hapaxe

Loop
rough
orary
atrix.

Remove hapaxes
each word vecto

Append
correct

d vector
al word
matrix.

Extend list of all 
terms with corrected 
word vector.

Run new data 
processing function 
for both subreddits.
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Notice the changes since the last data_processing() function. Our tokenizer is now a
regular expression tokenizer. Regular expressions are not part of this book and are
often considered challenging to master, but all this simple one does is cut the text into
words. For words, any alphanumeric combination is allowed (\w), so there are no more
special characters or punctuations. We also applied the word stemmer and removed a
list of extra stop words. And, all the hapaxes are removed at the end because every-
thing needs to be stemmed first. Let’s run our data preparation again.

 If we did the same exploratory analysis as before, we’d see it makes more sense,
and we have no more hapaxes.

print wordfreqs_cat1.hapaxes()
print wordfreqs_cat2.hapaxes()

Let’s take the top 20 words of each category again (see figure 8.19). 

We can see in figure 8.19 how the data quality has improved remarkably. Also, notice
how certain words are shortened because of the stemming we applied. For instance,
“science” and “sciences” have become “scienc;” “courses” and “course” have become
“cours,” and so on. The resulting terms are not actual words but still interpretable.
If you insist on your terms remaining actual words, lemmatization would be the way
to go. 

Figure 8.19 Top 20 most frequent words in “data science” and “game of thrones” Reddit posts 
after data preparation
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 With the data cleaning process “completed” (remark: a text mining cleansing exer-
cise can almost never be fully completed), all that remains is a few data transforma-
tions to get the data in the bag of words format. 

 First, let’s label all our data and also create a holdout sample of 100 observations
per category, as shown in the following listing.

holdoutLength  = 100 

labeled_data1 = [(word,'datascience') for word in 
data['datascience']['wordMatrix'][holdoutLength:]]

labeled_data2 = [(word,'gameofthrones') for word in 
data['gameofthrones']['wordMatrix'][holdoutLength:]]    

labeled_data = []
labeled_data.extend(labeled_data1)
labeled_data.extend(labeled_data2)

holdout_data = data['datascience']['wordMatrix'][:holdoutLength]
holdout_data.extend(data['gameofthrones']['wordMatrix'][:holdoutLength])
holdout_data_labels = ([('datascience') 
for _ in xrange(holdoutLength)] + [('gameofthrones') for _ in 

xrange(holdoutLength)])

data['datascience']['all_words_dedup'] =
list(OrderedDict.fromkeys(
data['datascience']['all_words']))
data['gameofthrones']['all_words_dedup'] =
list(OrderedDict.fromkeys(
data['gameofthrones']['all_words']))
all_words = []
all_words.extend(data['datascience']['all_words_dedup'])
all_words.extend(data['gameofthrones']['all_words_dedup'])    
all_words_dedup = list(OrderedDict.fromkeys(all_words))

prepared_data = [({word: (word in x[0]) for word
in all_words_dedup}, x[1]) for x in labeled_data]
prepared_holdout_data = [({word: (word in x[0])
for word in all_words_dedup})
for x in holdout_data]

random.shuffle(prepared_data)
train_size = int(len(prepared_data) * 0.75)    
train = prepared_data[:train_size] 
test = prepared_data[train_size:]

Listing 8.7 Final data transformation and data splitting before modeling

Holdout sample will be used 
to determine the model’s 
flaws by constructing a 
confusion matrix.

We create a single data 
set with every word 
vector tagged as being 
either ‘datascience’ or 
‘gameofthrones.’ We 
keep part of the data 
aside for holdout sample

Holdout sample is comprised of unlabeled data from 
the two subreddits: 100 observations from each data 
set. The labels are kept in a separate data set.

A list of all unique 
terms is created to 
build the bag of 
words data we 
need for training or 
scoring a model.

Data is turned 
into a binary bag 
of words format. 

a for
odel

ining
and

ing is
first

ffled.

Size of training data will be 
75% of total and remaining 
25% will be used for testing 
model performance. 
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The holdout sample will be used for our final test of the model and the creation of a
confusion matrix. A confusion matrix is a way of checking how well a model did on pre-
viously unseen data. The matrix shows how many observations were correctly and
incorrectly classified. 

 Before creating or training and testing data we need to take one last step: pouring
the data into a bag of words format where every term is given either a “True” or “False”
label depending on its presence in that particular post. We also need to do this for the
unlabeled holdout sample.

 Our prepared data now contains every term for each vector, as shown in figure 8.20. 

 print prepared_data[0]

We created a big but sparse matrix, allowing us to apply techniques from chapter 5 if it
was too big to handle on our machine. With such a small table, however, there’s no
need for that now and we can proceed to shuffle and split the data into a training and
test set.

 While the biggest part of your data should always go to the model training, an opti-
mal split ratio exists. Here we opted for a 3-1 split, but feel free to play with this. The
more observations you have, the more freedom you have here. If you have few obser-
vations you’ll need to allocate relatively more to training the model. We’re now ready
to move on to the most rewarding part: data analysis. 

8.3.7 Step 5: Data analysis 

For our analysis we’ll fit two classification algorithms to our data: Naïve Bayes and decision
trees. Naïve Bayes was explained in chapter 3 and decision tree earlier in this chapter. 

 Let’s first test the performance of our Naïve Bayes classifier. NLTK comes with a
classifier, but feel free to use algorithms from other packages such as SciPy. 

classifier  = nltk.NaiveBayesClassifier.train(train)

With the classifier trained we can use the test data to get a measure on overall accuracy.

nltk.classify.accuracy(classifier, test)

Figure 8.20 A binary bag of words ready for modeling is very sparse data.
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The accuracy on the test data is estimated to be greater than 90%, as seen in figure 8.21.
Classification accuracy is the number of correctly classified observations as a percentage
of the total number of observations. Be advised, though, that this can be different in
your case if you used different data.

nltk.classify.accuracy(classifier, test)

That’s a good number. We can now lean back and relax, right? No, not really. Let’s
test it again on the 200 observations holdout sample and this time create a confu-
sion matrix. 

classified_data = classifier.classify_many(prepared_holdout_data)
cm = nltk.ConfusionMatrix(holdout_data_labels, classified_data)
print cm

The confusion matrix in figure 8.22 shows us the 97% is probably over the top
because we have 28 (23 + 5) misclassified cases. Again, this can be different with your
data if you filled the SQLite file yourself.

Twenty-eight misclassifications means we have an 86% accuracy on the holdout sample.
This needs to be compared to randomly assigning a new post to either the “datascience”
or “gameofthrones” group. If we’d randomly assigned them, we could expect an

Figure 8.21 Classification accuracy is a 
measure representing what percentage of 
observations was correctly classified on 
the test data.

Figure 8.22 Naïve Bayes 
model confusion matrix shows 
28 (23 + 5) observations out of 
200 were misclassified
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a 
accuracy of 50%, and our model seems to perform better than that. Let’s look at what it
uses to determine the categories by digging into the most informative model features.

print(classifier.show_most_informative_features(20))

Figure 8.23 shows the top 20 terms capable of distinguishing between the two categories. 

The term “data” is given heavy weight and seems to be the most important indicator of
whether a topic belongs in the data science category. Terms such as “scene,” “season,”
“king,” “tv,” and “kill” are good indications the topic is Game of Thrones rather than
data science. All these things make perfect sense, so the model passed both the accu-
racy and the sanity check. 

 The Naïve Bayes does well, so let’s have a look at the decision tree in the follow-
ing listing. 

classifier2 = nltk.DecisionTreeClassifier.train(train) 
nltk.classify.accuracy(classifier2, test) 
classified_data2 = classifier2.classify_many(prepared_holdout_data) 
cm = nltk.ConfusionMatrix(holdout_data_labels, classified_data2) 
print cm 

Listing 8.8 Decision tree model training and evaluation

Figure 8.23 The most important terms in the Naïve Bayes classification model

Train decision
tree classifier Test 

classifier 
accuracy

Attempt 
to classify 
holdout dat
(scoring) 

Create confusion matrix based on 
classification results and actual labels

Show confusion 
matrix
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As shown in figure 8.24, the promised accuracy is 93%.
 We now know better than to rely solely on this single

test, so once again we turn to a confusion matrix on a
second set of data, as shown in figure 8.25.

 Figure 8.25 shows a different story. On these 200
observations of the holdout sample the decision tree
model tends to classify well when the post is about Game
of Thrones but fails miserably when confronted with the
data science posts. It seems the model has a preference
for Game of Thrones, and can you blame it? Let’s have a
look at the actual model, even though in this case we’ll
use the Naïve Bayes as our final model. 

print(classifier2.pseudocode(depth=4))

The decision tree has, as the name suggests, a tree-like
model, as shown in figure 8.26.

 The Naïve Bayes considers all the terms and has
weights attributed, but the decision tree model goes
through them sequentially, following the path from the root to the outer branches
and leaves. Figure 8.26 only shows the top four layers, starting with the term “data.” If
“data” is present in the post, it’s always data science. If “data” can’t be found, it checks
for the term “learn,” and so it continues. A possible reason why this decision tree isn’t
performing well is the lack of pruning. When a decision tree is built it has many
leaves, often too many. A tree is then pruned to a certain level to minimize overfitting.
A big advantage of decision trees is the implicit interaction effects between words it

Figure 8.24 Decision tree 
model accuracy 

Figure 8.25 Confusion matrix 
on decision tree model

Figure 8.26 Decision tree model 
tree structure representation
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takes into account when constructing the branches. When multiple terms together
create a stronger classification than single terms, the decision tree will actually outper-
form the Naïve Bayes. We won’t go into the details of that here, but consider this one
of the next steps you could take to improve the model.

 We now have two classification models that give us insight into how the two con-
tents of the subreddits differ. The last step would be to share this newfound informa-
tion with other people. 

8.3.8 Step 6: Presentation and automation

As a last step we need to use what we learned and either turn it into a useful application
or present our results to others. The last chapter of this book discusses building an inter-
active application, as this is a project in itself. For now we’ll content ourselves with a nice
way to convey our findings. A nice graph or, better yet, an interactive graph, can catch
the eye; it’s the icing on the presentation cake. While it’s easy and tempting to represent
the numbers as such or a bar chart at most, it could be nice to go one step further. 

 For instance, to represent the Naïve Bayes model, we could use a force graph (fig-
ure 8.27), where the bubble and link size represent how strongly related a word is to
the “game of thrones” or “data science” subreddits. Notice how the words on the bub-
bles are often cut off; remember this is because of the stemming we applied. 

While figure 8.27 in itself is static, you can open the HTML file “forceGraph.html” to
enjoy the d3.js force graph effect as explained earlier in this chapter. d3.js is outside of
this book’s scope but you don’t need an elaborate knowledge of d3.js to use it. An
extensive set of examples can be used with minimal adjustments to the code provided
at https://github.com/mbostock/d3/wiki/Gallery. All you need is common sense and

Figure 8.27 Interactive 
force graph with the 
top 20 Naïve Bayes 
significant terms and 
their weights 

https://github.com/mbostock/d3/wiki/Gallery
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a minor knowledge of JavaScript. The code for the force graph example can found at
http://bl.ocks.org/mbostock/4062045.

 We can also represent our decision tree in a rather original way. We could go for a
fancy version of an actual tree diagram, but the following sunburst diagram is more
original and equally fun to use.

 Figure 8.28 shows the top layer of the sunburst diagram. It’s possible to zoom in by
clicking a circle segment. You can zoom back out by clicking the center circle. The
code for this example can be found at http://bl.ocks.org/metmajer/5480307.

Figure 8.28 Sunburst diagram created from the top four branches of the decision tree model

http://bl.ocks.org/mbostock/4062045
http://bl.ocks.org/metmajer/5480307
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Showing your results in an original way can be key to a successful project. People
never appreciate the effort you’ve put into achieving your results if you can’t commu-
nicate them and they’re meaningful to them. An original data visualization here and
there certainly helps with this. 

8.4 Summary
■ Text mining is widely used for things such as entity identification, plagiarism

detection, topic identification, translation, fraud detection, spam filtering,
and more.

■ Python has a mature toolkit for text mining called NLTK, or the natural language
toolkit. NLTK is good for playing around and learning the ropes; for real-life
applications, however, Scikit-learn is usually considered more “production-ready.”
Scikit-learn is extensively used in previous chapters.

■ The data preparation of textual data is more intensive than numerical data
preparation and involves extra techniques, such as
– Stemming—Cutting the end of a word in a smart way so it can be matched

with some conjugated or plural versions of this word.
– Lemmatization—Like stemming, it’s meant to remove doubles, but unlike

stemming, it looks at the meaning of the word.
– Stop word filtering—Certain words occur too often to be useful and filtering

them out can significantly improve models. Stop words are often corpus-
specific.

– Tokenization—Cutting text into pieces. Tokens can be single words, combina-
tions of words (n-grams), or even whole sentences.

– POS Tagging—Part-of-speech tagging. Sometimes it can be useful to know what
the function of a certain word within a sentence is to understand it better.

■ In our case study we attempted to distinguish Reddit posts on “Game of Thrones”
versus posts on “data science.” In this endeavor we tried both the Naïve Bayes
and decision tree classifiers. Naïve Bayes assumes all features to be independent
of one another; the decision tree classifier assumes dependency, allowing for
different models.

■ In our example, Naïve Bayes yielded the better model, but very often the deci-
sion tree classifier does a better job, usually when more data is available.

■ We determined the performance difference using a confusion matrix we calcu-
lated after applying both models on new (but labeled) data.

■ When presenting findings to other people, it can help to include an interesting
data visualization capable of conveying your results in a memorable way.



Data visualization
to the end user
APPLICATION FOCUSED CHAPTER You’ll notice quickly this chapter is cer-
tainly different from chapters 3 to 8 in that the focus here lies on step 6 of
the data science process. More specifically, what we want to do here is cre-
ate a small data science application. Therefore, we won’t follow the data
science process steps here. The data used in the case study is only partly
real but functions as data flowing from either the data preparation or data
modeling stage. Enjoy the ride. 

Often, data scientists must deliver their new insights to the end user. The results
can be communicated in several ways: 

■ A one-time presentation—Research questions are one-shot deals because the busi-
ness decision derived from them will bind the organization to a certain

This chapter covers
■ Considering options for data visualization for

your end users
■ Setting up a basic Crossfilter MapReduce

application
■ Creating a dashboard with dc.js
■ Working with dashboard development tools
253
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course for many years to come. Take, for example, company investment deci-
sions: Do we distribute our goods from two distribution centers or only one? Where do they
need to be located for optimal efficiency? When the decision is made, the exercise
may not be repeated until you’ve retired. In this case, the results are delivered
as a report with a presentation as the icing on the cake. 

■ A new viewport on your data—The most obvious example here is customer seg-
mentation. Sure, the segments themselves will be communicated via reports
and presentations, but in essence they form tools, not the end result itself.
When a clear and relevant customer segmentation is discovered, it can be fed
back to the database as a new dimension on the data from which it was derived.
From then on, people can make their own reports, such as how many products
were sold to each segment of customers.

■ A real-time dashboard—Sometimes your task as a data scientist doesn’t end when
you’ve discovered the new information you were looking for. You can send your
information back to the database and be done with it. But when other people
start making reports on this newly discovered gold nugget, they might interpret
it incorrectly and make reports that don’t make sense. As the data scientist
who discovered this new information, you must set the example: make the first
refreshable report so others, mainly reporters and IT, can understand it and fol-
low in your footsteps. Making the first dashboard is also a way to shorten the
delivery time of your insights to the end user who wants to use it on an everyday
basis. This way, at least they already have something to work with until the
reporting department finds the time to create a permanent report on the com-
pany’s reporting software.

You might have noticed that a few important factors are at play: 

■ What kind of decision are you supporting? Is it a strategic or an operational one?
Strategic decisions often only require you to analyze and report once, whereas
operational decisions require the report to be refreshed regularly.

■ How big is your organization? In smaller ones you’ll be in charge of the entire
cycle: from data gathering to reporting. In bigger ones a team of reporters
might be available to make the dashboards for you. But even in this last situa-
tion, delivering a prototype dashboard can be beneficial because it presents an
example and often shortens delivery time.

Although the entire book is dedicated to generating insights, in this last chapter we’ll
focus on delivering an operational dashboard. Creating a presentation to promote
your findings or presenting strategic insights is out of the scope of this book.

9.1 Data visualization options
You have several options for delivering a dashboard to your end users. Here we’ll
focus on a single option, and by the end of this chapter you’ll be able to create a dash-
board yourself. 
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 This chapter’s case is that of a hospital pharmacy with a stock of a few thousand
medicines. The government came out with a new norm to all pharmacies: all medi-
cines should be checked for their sensitivity to light and be stored in new, special con-
tainers. One thing the government didn’t supply to the pharmacies was an actual list
of light-sensitive medicines. This is no problem for you as a data scientist because
every medicine has a patient information leaflet that contains this information. You
distill the information with the clever use of text mining and assign a “light sensitive”
or “not light sensitive” tag to each medicine. This information is then uploaded to the
central database. In addition, the pharmacy needs to know how many containers
would be necessary. For this they give you access to the pharmacy stock data. When
you draw a sample with only the variables you require, the data set looks like figure 9.1
when opened in Excel.

As you can see, the information is time-series data for an entire year of stock move-
ment, so every medicine thus has 365 entries in the data set. Although the case study
is an existing one and the medicines in the data set are real, the values of the other
variables presented here were randomly generated, as the original data is classified.
Also, the data set is limited to 29 medicines, a little more than 10,000 lines of data.
Even though people do create reports using crossfilter.js (a Javascript MapReduce
library) and dc.js (a Javascript dashboarding library) with more than a million lines
of data, for the example’s sake you’ll use a fraction of this amount. Also, it’s not rec-
ommended to load your entire database into the user’s browser; the browser will
freeze while loading, and if it’s too much data, the browser will even crash. Normally
data is precalculated on the server and parts of it are requested using, for example, a
REST service. 

 To turn this data into an actual dashboard you have many options and you can find
a short overview of the tools later in this chapter. 

 Among all the options, for this book we decided to go with dc.js, which is a cross-
breed between the JavaScript MapReduce library Crossfilter and the data visualization
library d3.js. Crossfilter was developed by Square Register, a company that handles
payment transactions; it’s comparable to PayPal but its focus is on mobile. Square

Figure 9.1 Pharmacy 
medicines data set opened in 
Excel: the first 10 lines of stock 
data are enhanced with a light-
sensitivity variable
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developed Crossfilter to allow their customers extremely speedy slice and dice on
their payment history. Crossfilter is not the only JavaScript library capable of Map-
Reduce processing, but it most certainly does the job, is open source, is free to use,
and is maintained by an established company (Square). Example alternatives to Cross-
filter are Map.js, Meguro, and Underscore.js. JavaScript might not be known as a data
crunching language, but these libraries do give web browsers that extra bit of punch
in case data does need to be handled in the browser. We won’t go into how Java-
Script can be used for massive calculations within collaborative distributed frame-
works, but an army of dwarfs can topple a giant. If this topic interests you, you can
read more about it at https://www.igvita.com/2009/03/03/collaborative-map-reduce-
in-the-browser/ and at http://dyn.com/blog/browsers-vs-servers-using-javascript-for-
number-crunching-theories/.

 d3.js can safely be called the most versatile JavaScript data visualization library
available at the time of writing; it was developed by Mike Bostock as a successor to his
Protovis library. Many JavaScript libraries are built on top of d3.js. 

 NVD3, C3.js, xCharts, and Dimple offer roughly the same thing: an abstraction
layer on top of d3.js, which makes it easier to draw simple graphs. They mainly differ
in the type of graphs they support and their default design. Feel free to visit their web-
sites and find out for yourself: 

■ NVD3—http://nvd3.org/
■ C3.js—http://c3js.org/
■ xCharts—http://tenxer.github.io/xcharts/
■ Dimple—http://dimplejs.org/

Many options exist. So why dc.js? 
 The main reason: compared to what it delivers, an interactive dashboard where click-

ing one graph will create filtered views on related graphs, dc.js is surprisingly easy to set
up. It’s so easy that you’ll have a working example by the end of this chapter. As a data
scientist, you already put in enough time on your actual analysis; easy-to-implement
dashboards are a welcome gift. 

 To get an idea of what you’re about to create, you can go to the following website,
http://dc-js.github.io/dc.js/, and scroll down to the NASDAQ example, shown in fig-
ure 9.2. 

 Click around the dashboard and see the graphs react and interact when you select
and deselect data points. Don’t spend too long though; it’s time to create this yourself. 

 As stated before, dc.js has two big prerequisites: d3.js and crossfilter.js. d3.js has a
steep learning curve and there are several books on the topic worth reading if you’re
interested in full customization of your visualizations. But to work with dc.js, no knowl-
edge of it is required, so we won’t go into it in this book. Crossfilter.js is another mat-
ter; you’ll need to have a little grasp of this MapReduce library to get dc.js up and
running on your data. But because the concept of MapReduce itself isn’t new, this will
go smoothly. 

https://www.igvita.com/2009/03/03/collaborative-map-reduce-in-the-browser/
https://www.igvita.com/2009/03/03/collaborative-map-reduce-in-the-browser/
http://dyn.com/blog/browsers-vs-servers-using-javascript-for-number-crunching-theories/
http://dyn.com/blog/browsers-vs-servers-using-javascript-for-number-crunching-theories/
http://c3js.org/
http://dc-js.github.io/dc.js/
http://nvd3.org/
http://tenxer.github.io/xcharts/
http://dimplejs.org/
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9.2 Crossfilter, the JavaScript MapReduce library
JavaScript isn’t the greatest language for data crunching. But that didn’t stop people,
like the folks at Square, from developing MapReduce libraries for it. If you’re dealing
with data, every bit of speed gain helps. You don’t want to send enormous loads of
data over the internet or even your internal network though, for these reasons:

■ Sending a bulk of data will tax the network to the point where it will bother
other users.

■ The browser is on the receiving end, and while loading in the data it will tem-
porarily freeze. For small amounts of data this is unnoticeable, but when you
start looking at 100,000 lines, it can become a visible lag. When you go over

Figure 9.2 A dc.js interactive example on its official website



258 CHAPTER 9 Data visualization to the end user
1,000,000 lines, depending on the width of your data, your browser could give
up on you. 

Conclusion: it’s a balance exercise. For the data you do send, there is a Crossfilter to
handle it for you once it arrives in the browser. In our case study, the pharmacist
requested the central server for stock data of 2015 for 29 medicines she was particu-
larly interested in. We already took a look at the data, so let’s dive into the applica-
tion itself.

9.2.1 Setting up everything

It’s time to build the actual application, and the ingredients of our small dc.js applica-
tion are as follows:

■ JQuery—To handle the interactivity
■ Crossfilter.js—A MapReduce library and prerequisite to dc.js
■ d3.js—A popular data visualization library and prerequisite to dc.js
■ dc.js—The visualization library you will use to create your interactive dashboard
■ Bootstrap—A widely used layout library you’ll use to make it all look better

You’ll write only three files:

■ index.html—The HTML page that contains your application
■ application.js—To hold all the JavaScript code you’ll write
■ application.css—For your own CSS

In addition, you’ll need to run our code on an HTTP server. You could go through the
effort of setting up a LAMP (Linux, Apache, MySQL, PHP), WAMP (Windows, Apache,
MySQL, PHP), or XAMPP (Cross Environment, Apache, MySQL, PHP, Perl) server. But
for the sake of simplicity we won’t set up any of those servers here. Instead you can do
it with a single Python command. Use your command-line tool (Linux shell or Win-
dows CMD) and move to the folder containing your index.html (once it’s there). You
should have Python installed for other chapters of this book so the following com-
mand should launch a Python HTTP server on your localhost.

python -m SimpleHTTPServer

For Python 3.4 

python -m http.server 8000

As you can see in figure 9.3, an HTTP server is started on localhost port 8000. In your
browser this translates to “localhost:8000”; putting “0.0.0.0:8000” won’t work.
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Make sure to have all the required files available in the same folder as your index.html.
You can download them from the Manning website or from their creators’ websites. 

■ dc.css and dc.min.js—https://dc-js.github.io/dc.js/
■ d3.v3.min.js—http://d3js.org/
■ crossfilter.min.js—http://square.github.io/crossfilter/

Now we know how to run the code we’re about to create, so let’s look at the
index.html page, shown in the following listing.

<html>
<head>
    <title>Chapter 10.  Data Science Application</title>

    <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap  
/3.3.0/css/bootstrap.min.css">
    <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/ 
3.3.0/css/bootstrap-theme.min.css">

    <link rel="stylesheet" href="dc.css">
    <link rel="stylesheet" href="application.css">
</head>
<body>

    <main class='container'>               
<h1>Chapter 10:  Data Science Application</h1> 
<div class="row">

<div class='col-lg-12'>
 <div id="inputtable" class="well well-sm"></div>

</div>
</div>
<div class="row">

<div class='col-lg-12'>
  <div id="filteredtable" class="well well-sm"></div>    

</div>
</div>

    </main>

Listing 9.1 An initial version of index.html

Figure 9.3 Starting up a simple Python HTTP server

All CSS is
loaded here.

Make sure to have dc.css 
downloaded from the Manning 
download page or from the dc 
website: https://dc-js.github.io/
dc.js/. It must be present in the
same folder as index.html file.

Main
container

ncorporates
everything

visible to
user.

https://dc-js.github.io/dc.js/
http://d3js.org/
http://square.github.io/crossfilter/
https://dc-js.github.io/dc.js/
https://dc-js.github.io/dc.js/
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    <script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>  
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.0/js
/bootstrap.min.js"></script>

    <script src="crossfilter.min.js"></script>  
    <script src="d3.v3.min.js"></script>
    <script src="dc.min.js"></script>
    <script src="application.js"></script>
</body>
</html>

No surprises here. The header contains all the CSS libraries you’ll use, so we’ll load
our JavaScript at the end of the HTML body. Using a JQuery onload handler, your
application will be loaded when the rest of the page is ready. You start off with two
table placeholders: one to show what your input data looks like, <div id="input-
table"></div>, and the other one will be used with Crossfilter to show a filtered table,
<div id="filteredtable"></div>. Several Bootstrap CSS classes were used, such as
“well”, “container”, the Bootstrap grid system with “row” and “col-xx-xx”, and so on. They
make the whole thing look nicer but they aren’t mandatory. More information on the
Bootstrap CSS classes can be found on their website at http://getbootstrap.com/css/.

 Now that you have your HTML set up, it’s time to show your data onscreen. For
this, turn your attention to the application.js file you created. First, we wrap the entire
code “to be” in a JQuery onload handler. 

$(function() {
    //All future code will end up in this wrapper
})

Now we’re certain our application will be loaded only when all else is ready. This is
important because we’ll use JQuery selectors to manipulate the HTML. It’s time to
load in data.  

d3.csv('medicines.csv',function(data) {
    main(data)
});

You don’t have a REST service ready and waiting for you, so for the example you’ll
draw the data from a .csv file. This file is available for download on Manning’s website.
d3.js offers an easy function for that. After loading in the data you hand it over to your
main application function in the d3.csv callback function. 

 Apart from the main function you have a CreateTable function, which you will use
to…you guessed it…create your tables, as shown in the following listing.

All Javascript is 
loaded here.

Make sure to have crossfilter.min.js, 
d3.v3.min.js, and dc.min.js downloaded
from their websites or from the 
Manning website. Crossfilter: 
http://square.github.io/crossfilter/, 
d3.js: http://d3js.org/,
dc.min.js: https://dc-js.github.io/dc.js/.

http://getbootstrap.com/css/
http://square.github.io/crossfilter/
http://d3js.org/
https://dc-js.github.io/dc.js/
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var tableTemplate = $([
"<table class='table table-hover table-condensed table-striped'>",
"  <caption></caption>",
"  <thead><tr/></thead>",
"  <tbody></tbody>",
"</table>"

    ].join('\n'));

    CreateTable = function(data,variablesInTable,title){
var table = tableTemplate.clone();
var ths = variablesInTable.map(function(v) { return $("<th>").text(v) 

});
$('caption', table).text(title);
$('thead tr', table).append(ths);
data.forEach(function(row) {

var tr = $("<tr>").appendTo($('tbody', table));
variablesInTable.forEach(function(varName) {  

var val = row, keys = varName.split('.'); 
keys.forEach(function(key) { val = val[key] });
tr.append($("<td>").text(val));

});
});
return table;

    }

CreateTable() requires three arguments:

■ data—The data it needs to put into a table.
■ variablesInTable—What variables it needs to show.
■ Title—The title of the table. It’s always nice to know what you’re looking at.

CreateTable() uses a predefined variable, tableTemplate, that contains our overall
table layout. CreateTable() can then add rows of data to this template.

 Now that you have your utilities, let’s get to the main function of the application, as
shown in the following listing. 

    main = function(inputdata){ 

var medicineData = inputdata ; 

  var dateFormat = d3.time.format("%d/%m/%Y"); 
  medicineData.forEach(function (d) {
            d.Day = dateFormat.parse(d.Date);     
  })
  var variablesInTable =

  ['MedName','StockIn','StockOut','Stock','Date','LightSen']   
var sample = medicineData.slice(0,5);
var inputTable = $("#inputtable");    

Listing 9.2 The CreateTable function

Listing 9.3 JavaScript main function

Our data: normally this is fetched 
from a server but in this case we 
read it from a local .csv file

Convert date to correct 
format so Crossfilter wil
recognize date variable 

t the variables
e’ll show in the
ble in an array
so we can loop
through them
when creating

table code Only show a 
sample of data

Create table
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inputTable
.empty()
 .append(CreateTable(sample,variablesInTable,"The input table"));

}    

You start off by showing your data on the screen, but preferably not all of it; only the
first five entries will do, as shown in figure 9.4. You have a date variable in your data
and you want to make sure Crossfilter will recognize it as such later on, so you first
parse it and create a new variable called Day. You show the original, Date, to appear in
the table for now, but later on you’ll use Day for all your calculations.

This is what you end up with: the same thing you saw in Excel before. Now that you
know the basics are working, you’ll introduce Crossfilter into the equation.

9.2.2 Unleashing Crossfilter to filter the medicine data set

Now let’s go into Crossfilter to use filtering and MapReduce. Henceforth you can
put all the upcoming code after the code of section 9.2.1 within the main() func-
tion. The first thing you’ll need to do is declare a Crossfilter instance and initiate it
with your data. 

CrossfilterInstance = crossfilter(medicineData);

From here you can get to work. On this instance you can register dimensions, which
are the columns of your table. Currently Crossfilter is limited to 32 dimensions. If
you’re handling data wider than 32 dimensions, you should consider narrowing it
down before sending it to the browser. Let’s create our first dimension, the medicine
name dimension:

  var medNameDim = CrossfilterInstance.dimension(function(d) {return 
d.MedName;});

Figure 9.4 Input medicine table shown in browser: first five lines 
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Your first dimension is the name of the medicines, and you can already use this to fil-
ter your data set and show the filtered data using our CreateTable() function.

var dataFiltered= medNameDim.filter('Grazax 75 000 SQ-T')
var filteredTable = $('#filteredtable');
filteredTable

.empty().append(CreateTable(dataFiltered.top(5),variablesInTable,'Our 
First Filtered Table'));

You show only the top five observations (figure 9.5); you have 365 because you have
the results from a single medicine for an entire year.

This table doesn’t look sorted but it is. The top() function sorted it on medicine
name. Because you only have a single medicine selected it doesn’t matter. Sorting on
date is easy enough using your new Day variable. Let’s register another dimension, the
date dimension:

var DateDim = CrossfilterInstance.dimension(
function(d) {return d.Day;});

Now we can sort on date instead of medicine name:

filteredTable
.empty()
.append(CreateTable(DateDim.bottom(5),variablesInTable,'Our 

First Filtered Table')); 

The result is a bit more appealing, as shown in figure 9.6. 
 This table gives you a window view of your data but it doesn’t summarize it for you

yet. This is where the Crossfilter MapReduce capabilities come in. Let’s say you would
like to know how many observations you have per medicine. Logic dictates that you

Figure 9.5 Data filtered on medicine name Grazax 75 000 SQ-T
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should end up with the same number for every medicine: 365, or 1 observation per
day in 2015.

var countPerMed = medNameDim.group().reduceCount();
variablesInTable = ["key","value"]
filteredTable

.empty()
.append(CreateTable(countPerMed.top(Infinity),

variablesInTable,'Reduced Table'));

Crossfilter comes with two MapReduce functions: reduceCount() and reduceSum(). If
you want to do anything apart from counting and summing, you need to write reduce
functions for it. The countPerMed variable now contains the data grouped by the med-
icine dimension and a line count for each medicine in the form of a key and a value.
To create the table you need to address the variable key instead of medName and value
for the count (figure 9.7). 

By specifying .top(Infinity) you ask to show all 29 medicines onscreen, but for the
sake of saving paper figure 9.7 shows only the first five results. Okay, you can rest easy;
the data contains 365 lines per medicine. Notice how Crossfilter ignored the filter on
“Grazax”. If a dimension is used for grouping, the filter doesn’t apply to it. Only filters
on other dimensions can narrow down the results. 

Figure 9.6 Data filtered on medicine name Grazax 75 000 SQ-T and sorted by day

Figure 9.7 MapReduced table with the medicine as the group and a count of data lines as the value
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 What about more interesting calculations that don’t come bundled with Crossfil-
ter, such as an average, for instance? You can still do that but you’d need to write three
functions and feed them to a .reduce() method. Let’s say you want to know the aver-
age stock per medicine. As previously mentioned, almost all of the MapReduce logic
needs to be written by you. An average is nothing more than the division of sum by
count, so you will require both; how do you go about this? Apart from the reduce-
Count() and reduceSum() functions, Crossfilter has the more general reduce() func-
tion. This function takes three arguments: 

■ The reduceAdd() function—A function that describes what happens when an extra
observation is added.

■ The reduceRemove() function—A function that describes what needs to happen
when an observation disappears (for instance, because a filter is applied).

■ The reduceInit() function—This one sets the initial values for everything that’s cal-
culated. For a sum and count the most logical starting point is 0.

Let’s look at the individual reduce functions you’ll require before trying to call the
Crossfilter .reduce() method, which takes these three components as arguments. A
custom reduce function requires three components: an initiation, an add function, and
a remove function. The initial reduce function will set starting values of the p object:

var reduceInitAvg = function(p,v){
return {count: 0, stockSum : 0, stockAvg:0};

}

As you can see, the reduce functions themselves take two arguments. These are auto-
matically fed to them by the Crossfilter .reduce() method: 

■ p is an object that contains the combination situation so far; it persists over all
observations. This variable keeps track of the sum and count for you and thus
represents your goal, your end result.

■ v represents a record of the input data and has all its variables available to you.
Contrary to p, it doesn’t persist but is replaced by a new line of data every time
the function is called. The reduceInit() is called only once, but reduceAdd()
is called every time a record is added and reduceRemove() every time a line of
data is removed.

■ The reduceInit() function, here called reduceInitAvg() because you’re
going to calculate an average, basically initializes the p object by defining its
components (count, sum, and average) and setting their initial values. Let’s
look at reduceAddAvg():

var reduceAddAvg = function(p,v){
p.count += 1;
p.stockSum  = p.stockSum  + Number(v.Stock);
p.stockAvg = Math.round(p.stockSum  / p.count);
return p;

}
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reduceAddAvg() takes the same p and v arguments but now you actually use v; you
don’t need your data to set the initial values of p in this case, although you can if you
want to. Your Stock is summed up for every record you add, and then the average is
calculated based on the accumulated sum and record count:

var reduceRemoveAvg = function(p,v){
p.count -= 1;
p.stockSum  = p.stockSum  -  Number(v.Stock);
p.stockAvg = Math.round(p.stockSum  / p.count);
return p;

}

The reduceRemoveAvg() function looks similar but does the opposite: when a record
is removed, the count and sum are lowered. The average always calculates the same
way, so there’s no need to change that formula. 

 The moment of truth: you apply this homebrewed MapReduce function to the
data set:

dataFiltered = medNameDim.group().reduce(reduceAddAvg,
reduceRemoveAvg,reduceInitAvg)

variablesInTable = ["key","value.stockAvg"]  
filteredTable

.empty()
.append(CreateTable(dataFiltered.top(Infinity),

variablesInTable,'Reduced Table'));

Notice how the name of your output variable has changed from value to value
.stockAvg. Because you defined the reduce functions yourself, you can output many
variables if you want to. Therefore, value has changed into an object containing all
the variables you calculated; stockSum and count are also in there. 

 The results speak for themselves, as shown in figure 9.8. It seems we’ve borrowed
Cimalgex from other hospitals, going into an average negative stock. 

 This is all the Crossfilter you need to know to work with dc.js, so let’s move on and
bring out those interactive graphs.

reduce() takes the 3
functions

(reduceInitAvg(),
reduceAddAvg(), and
reduceRemoveAvg())
as input arguments.

usiness
s usual:

draw
result
table.

Figure 9.8 MapReduced table with average stock per medicine
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9.3 Creating an interactive dashboard with dc.js
Now that you know the basics of Crossfilter, it’s time to take the final step: building the
dashboard. Let’s kick off by making a spot for your graphs in the index.html page.
The new body looks like the following listing. You’ll notice it looks similar to our ini-
tial setup apart from the added graph placeholder <div> tags and the reset button
<button> tag.

<body>
    <main class='container'>

<h1>Chapter 10:  Data Science Application</h1>
<div class="row">

<div class='col-lg-12'>
<div id="inputtable" class="well well-sm">

</div>

</div>
</div>   
<div class="row">

<div class='col-lg-12'>
<div id="filteredtable" class="well well-sm">

</div>

</div>
</div>  

<button class="btn btn-success">Reset Filters</button>   
<div class="row">

<div class="col-lg-6">
   <div id="StockOverTime" class="well well-sm"></div>  

       <div id="LightSensitiveStock" class="well well-sm"></div> 

</div>
<div class="col-lg-6">
   <div id="StockPerMedicine" class="well well-sm"></div> 

</div>
</div>

    </main>

Listing 9.4 A revised index.html with space for graphs generated by dc.js

Layout:
             Title
             |  input table | (row 1)
             |  filtered table                    | (row 2)
             [ reset button ]
             |  stock-over-time chart | stock-per-medicine chart | (row 3)
             |  light-sensitive chart |                          | (row 4)

(column 1)               (column 2)

This is a placeholder 
<div> for input data
table inserted later. 

This is a placeholder 
<div> for filtered
table inserted later.This is

new: reset
button.

This is ne
time char
placehold

This is new: light
sensitivity pie-

hart placeholder.

This is new: stock per medicine
bar-chart placeholder.
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    <script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>  
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap
/3.3.0/js/bootstrap.min.js"></script>

    <script src="crossfilter.min.js"></script>   
    <script src="d3.v3.min.js"></script>
    <script src="dc.min.js"></script>

    <script src="application.js"></script>    
</body>

We’ve got Bootstrap formatting going on, but the most important elements are the
three <div> tags with IDs and the button. What you want to build is a representation
of the total stock over time, <div id="StockOverTime"></div>, with the possibility of
filtering on medicines, <div id="StockPerMedicine"></div>, and whether they’re light-
sensitive or not, <div id="LightSensitiveStock"></div>. You also want a button to
reset all the filters, <button class="btn btn-success">Reset Filters</button>.
This reset button element isn’t required, but is useful. 

 Now turn your attention back to application.js. In here you can add all the upcom-
ing code in your main() function as before. There is, however, one exception to the
rule: dc.renderAll(); is dc’s command to draw the graphs. You need to place this
render command only once, at the bottom of your main() function. The first graph
you need is the “total stock over time,” as shown in the following listing. You already
have the time dimension declared, so all you need is to sum your stock by the time
dimension. 

var SummatedStockPerDay = 
DateDim.group().reduceSum(function(d){return d.Stock;}) 

var minDate = DateDim.bottom(1)[0].Day;
var maxDate = DateDim.top(1)[0].Day;
var StockOverTimeLineChart = dc.lineChart("#StockOverTime");   

StockOverTimeLineChart
   .width(null) // null means size to fit container   
   .height(400)
   .dimension(DateDim)

.group(SummatedStockPerDay)

Listing 9.5 Code to generate "total stock over time" graph

Standard practice. JS libraries are last to speed page load.
             jQuery:          vital HTML-JavaScript interaction
             Bootstrap:     simplified CSS and layout from folks at Twitter
             Crossfilter:    our JavaScript MapReduce library of choice
             d3:                the d3 script, necessary to run dc.js
             DC:               our visualization library
             application:  our data science application; here we store all the logic
            *.min.js denotes minified JavaScript for our 3rd party libraries

Crossfilter, d3, and dc libraries 
can be downloaded from their 
respective websites. 

Our own application 
JavaScript code.

Stock over 
time data

Line 
chart

Deliveries
per day

graph
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    .x(d3.time.scale().domain([minDate,maxDate]))
   .xAxisLabel("Year 2015")
   .yAxisLabel("Stock")

.margins({left: 60, right: 50, top: 50, bottom: 50})   

dc.renderAll();

Look at all that’s happening here. First you need to calculate the range of your x-axis
so dc.js will know where to start and end the line chart. Then the line chart is initial-
ized and configured. The least self-explanatory methods here are .group() and
.dimension(). .group() takes the time dimension and represents the x-axis. .dimen-
sion() is its counterpart, representing the y-axis and taking your summated data as
input. Figure 9.9 looks like a boring line chart, but looks can be deceiving.

Things change drastically once you introduce a second element, so let’s create a row
chart that represents the average stock per medicine, as shown in the next listing. 

var AverageStockPerMedicineRowChart = dc.rowChart("#StockPerMedicine"); 
var AvgStockMedicine =  medNameDim.group().reduce(reduceAddAvg,
reduceRemoveAvg,reduceInitAvg);

AverageStockPerMedicineRowChart
.width(null)
.height(1200)

Listing 9.6 Code to generate “average stock per medicine” graph

Deliveries
per day

graph

Render all 
graphs

Figure 9.9 dc.js graph: sum of medicine stock over the year 2015

Average stock
per medicine

row chart
Null means “size 
to fit container”
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.dimension(medNameDim)

.group(AvgStockMedicine)
 .margins({top: 20, left: 10, right: 10, bottom: 20})

   .valueAccessor(function (p) {return p.value.stockAvg;});

This should be familiar because it’s a graph representation of the table you created
earlier. One big point of interest: because you used a custom-defined reduce() func-
tion this time, dc.js doesn’t know what data to represent. With the .valueAccessor()
method you can specify p.value.stockAvg as the value of your choice. The dc.js row
chart’s label’s font color is gray; this makes your row chart somewhat hard to read. You
can remedy this by overwriting its CSS in your application.css file: 

.dc-chart g.row text {fill: black;}

One simple line can make the difference between a clear and an obscure graph (fig-
ure 9.10).

Now when you select an area on the line chart, the row chart is automatically adapted
to represent the data for the correct time period. Inversely, you can select one or mul-
tiple medicines on the row chart, causing the line chart to adjust accordingly. Finally,
let’s add the light-sensitivity dimension so the pharmacist can distinguish between
stock for light-sensitive medicines and non-light-sensitive ones, as shown in the follow-
ing listing.

   var lightSenDim = CrossfilterInstance.dimension(
function(d){return d.LightSen;}); 

var SummatedStockLight =  lightSenDim.group().reduceSum(
function(d) {return d.Stock;}); 

var LightSensitiveStockPieChart = dc.pieChart("#LightSensitiveStock");

Listing 9.7 Adding the light-sensitivity dimension

Figure 9.10 dc.js line chart and row chart interaction
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W

su
(ou
LightSensitiveStockPieChart
.width(null) // null means size to fit container
.height(300)

    .dimension(lightSenDim)
.radius(90)

   .group(SummatedStockLight)  

We hadn’t introduced the light dimension yet, so you need to register it onto your
Crossfilter instance first. You can also add a reset button, which causes all filters to reset,
as shown in the following listing.

resetFilters = function(){
  StockOverTimeLineChart.filterAll();
  LightSensitiveStockPieChart.filterAll();
  AverageStockPerMedicineRowChart.filterAll();   
  dc.redrawAll();
  }

  $('.btn-success').click(resetFilters);    

The .filterAll() method removes all filters on a specific dimension; dc.redraw-
All() then manually triggers all dc charts to redraw. 

 The final result is an interactive dashboard (figure 9.11), ready to be used by our
pharmacist to gain insight into her stock’s behavior. 

Listing 9.8 The dashboard reset filters button

resetFilters() 
function will reset 
our dc.js data and 
redraw graphs.

hen an element
with class btn-
ccess is clicked
r reset button),

resetFilters()
is called.

Figure 9.11 dc.js fully interactive dashboard on medicines and their stock within the hospital pharmacy
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9.4 Dashboard development tools
We already have our glorious dashboard, but we want to end this chapter with a short
(and far from exhaustive) overview of the alternative software choices when it comes
to presenting your numbers in an appealing way. 

 You can go with proven and true software packages of renowned developers such as
Tableau, MicroStrategy, Qlik, SAP, IBM, SAS, Microsoft, Spotfire, and so on. These com-
panies all offer dashboard tools worth investigating. If you’re working in a big company,
chances are good you have at least one of those paid tools at your disposal. Developers
can also offer free public versions with limited functionality. Definitely check out Tab-
leau if you haven’t already at http://www.tableausoftware.com/public/download.

 Other companies will at least give you a trial version. In the end you have to pay for
the full version of any of these packages, and it might be worth it, especially for a big-
ger company that can afford it. 

 This book’s main focus is on free tools, however. When looking at free data visual-
ization tools, you quickly end up in the HTML world, which proliferates with free
JavaScript libraries to plot any data you want. The landscape is enormous: 

■ HighCharts—One of the most mature browser-based graphing libraries. The
free license applies only to noncommercial pursuits. If you want to use it in a
commercial context, prices range anywhere from $90 to $4000. See http://shop
.highsoft.com/highcharts.html.

■ Chartkick—A JavaScript charting library for Ruby on Rails fans. See  http://ank-
ane.github.io/chartkick/.

■ Google Charts—The free charting library of Google. As with many Google prod-
ucts, it is free to use, even commercially, and offers a wide range of graphs. See
https://developers.google.com/chart/.

■ d3.js—This is an odd one out because it isn’t a graphing library but a data visual-
ization library. The difference might sound subtle but the implications are not.
Whereas libraries such as HighCharts and Google Charts are meant to draw cer-
tain predefined charts, d3.js doesn’t lay down such restrictions. d3.js is currently
the most versatile JavaScript data visualization library available. You need only a
quick peek at the interactive examples on the official website to understand the
difference from a regular graph-building library. See http://d3js.org/.

Of course, others are available that we haven’t mentioned. 
 You can also get visualization libraries that only come with a trial period and no

free community edition, such as Wijmo, Kendo, and FusionCharts. They are worth
looking into because they also provide support and guarantee regular updates. 

 You have options. But why or when would you even consider building your own
interface with HTML5 instead of using alternatives such as SAP’s BusinessObjects, SAS
JMP, Tableau, Clickview, or one of the many others? Here are a few reasons:

■ No budget—When you work in a startup or other small company, the licensing
costs accompanying this kind of software can be high.

http://www.tableausoftware.com/public/download
http://shop.highsoft.com/highcharts.html
http://shop.highsoft.com/highcharts.html
http://ankane.github.io/chartkick/
http://ankane.github.io/chartkick/
https://developers.google.com/chart/
http://d3js.org/
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■ High accessibility—The data science application is meant to release results to any
kind of user, especially people who might only have a browser at their dis-
posal—your own customers, for instance. Data visualization in HTML5 runs flu-
ently on mobile.

■ Big pools of talent out there—Although there aren’t that many Tableau developers,
scads of people have web-development skills. When planning a project, it’s
important to take into account whether you can staff it.

■ Quick release—Going through the entire IT cycle might take too long at your
company, and you want people to enjoy your analysis quickly. Once your inter-
face is available and being used, IT can take all the time they want to industri-
alize the product.

■ Prototyping —The better you can show IT its purpose and what it should be capa-
ble of, the easier it is for them to build or buy a sustainable application that
does what you want it to do.

■ Customizability—Although the established software packages are great at what they
do, an application can never be as customized as when you create it yourself.

And why wouldn’t you do this? 

■ Company policy—This is the biggest one: it’s not allowed. Large companies have
IT backup teams that allow only a certain number of tools to be used so they can
keep their supporting role under control.

■ You have an experienced team of reporters at your disposal—You’d be doing their job,
and they might come after you with pitchforks.

■ Your tool does allow enough customization to suit your taste—Several of the bigger plat-
forms are browser interfaces with JavaScript running under the hood. Tableau,
BusinessObjects Webi, SAS Visual Analytics, and so on all have HTML interfaces;
their tolerance to customization might grow over time.

The front end of any application can win the hearts of the crowd. All the hard work
you put into data preparation and the fancy analytics you applied is only worth as
much as you can convey to those who use it. Now you’re on the right track to achieve
this. On this positive note we’ll conclude this chapter.

9.5 Summary
■ This chapter focused on the last part of the data science process, and our goal

was to build a data science application where the end user is provided with an
interactive dashboard. After going through all the steps of the data science pro-
cess, we’re presented with clean, often compacted or information dense, data.
This way we can query less data and get the insights we want.

■ In our example, the pharmacy stock data is considered thoroughly cleaned and
prepared and this should always be the case by the time the information
reaches the end user.
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■ JavaScript-based dashboards are perfect for quickly granting access to your data
science results because they only require the user to have a web browser. Alter-
natives exist, such as Qlik (chapter 5).

■ Crossfilter is a MapReduce library, one of many JavaScript MapReduce libraries,
but it has proven its stability and is being developed and used by Square, a com-
pany that does monetary transactions. Applying MapReduce is effective, even
on a single node and in a browser; it increases the calculation speed.

■ dc.js is a chart library build on top of d3.js and Crossfilter that allows for quick
browser dashboard building.

■ We explored the data set of a hospital pharmacy and built an interactive dash-
board for pharmacists. The strength of a dashboard is its self-service nature:
they don’t always need a reporter or data scientist to bring them the insights
they crave.

■ Data visualization alternatives are available, and it’s worth taking the time to
find the one that suits your needs best.

■ There are multiple reasons why you’d create your own custom reports instead
of opting for the (often more expensive) company tools out there:
– No budget—Startups can’t always afford every tool
– High accessibility—Everyone has a browser
– Available talent—(Comparatively) easy access to JavaScript developers
– Quick release—IT cycles can take a while
– Prototyping—A prototype application can provide and leave time for IT to build

the production version
– Customizability—Sometimes you just want it exactly as your dreams picture it.

■ Of course there are reasons against developing your own application:
– Company policy—Application proliferation isn’t a good thing and the com-

pany might want to prevent this by restricting local development.
– Mature reporting team—If you have a good reporting department, why would

you still bother?
– Customization is satisfactory—Not everyone wants the shiny stuff; basic can

be enough.

Congratulations! You’ve made it to the end of this book and the true beginning of
your career as a data scientist. We hope you had ample fun reading and working your
way through the examples and case studies. Now that you have basic insight into the
world of data science, it’s up to you to choose a path. The story continues, and we all
wish you great success in your quest of becoming the greatest data scientist who has
ever lived! May we meet again someday. ;)



appendix A
Setting up Elasticsearch

In this appendix, we’ll cover installing and setting up the Elasticsearch database
used in Chapters 6 and 7. Instructions for both Linux and Windows installations
are included. Note that if you get into trouble or want further information on Elas-
ticsearch, it has pretty decent documentation you can find located at https://
www.elastic.co/guide/en/elasticsearch/reference/1.4/setup.html.

NOTE Elasticsearch is dependent on Java, so we’ll cover how to install that
as well.

A.1 Linux installation
First check to see if you have Java already installed on your machine.

1 You can check your Java version in a console window with java –version. If
Java is installed, you’ll see a response like the one in figure A.1. You’ll need at
least Java 7 to run the version of Elasticsearch we use in this book (1.4). Note:
Elasticsearch had moved on to version 2 by the time this book was released,
but while code might change slightly, the core principles remain the same.

Figure A.1 Checking the Java version in Linux. Elasticsearch requires Java 7 
or higher.
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2 If Java isn’t installed or you don’t have a high enough version, Elasticsearch rec-
ommends the Oracle version of Java. Use the following console commands to
install it.

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get install oracle-java7-installer

Now you can install Elasticsearch: 

1 Add the Elasticsearch 1.4 repo, which is the latest one at the time of writing, to
your repo list and then install it with the following commands. 

sudo add-apt-repository "deb http://packages.Elasticsearch.org/

➥ Elasticsearch/1.4/debian stable main"
sudo apt-get update && sudo apt-get install Elasticsearch

2 To make sure Elasticsearch will start on reboot, run the following command.

sudo update-rc.d Elasticsearch defaults 95 10

3 Turn on Elasticsearch. See figure A.2.

sudo /etc/init.d/Elasticsearch start

If Linux is your local computer, open a browser and go to localhost:9200. 9200 is the
default port for the Elasticsearch API. See figure A.3.

Figure A.2 Starting Elasticsearch on Linux

Figure A.3 The Elasticsearch welcome screen on localhost 
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The Elasticsearch welcome screen should greet you. Notice your database even has a
name. The name is picked from the pool of Marvel characters and changes every time
you reboot your database. In production, having an inconsistent and non-unique
name such as this can be problematic. The instance you started is a single node of
what could be part of a huge distributed cluster. If all of these nodes change names on
reboot, it becomes nearly impossible to track them with logs in case of trouble. Elastic-
search takes pride in the fact it has little need for configuration to get you started and
is distributed by nature. While this is most certainly true, things such as this random
name prove that deploying an actual multi-node setup will require you to think twice
about certain default settings. Luckily Elasticsearch has adequate documentation on
almost everything, including deployment (http://www.Elasticsearch.org/guide/en/
Elasticsearch/guide/current/deploy.html). Multi-node Elasticsearch deployment isn’t
in the scope of this chapter but it’s good to keep in mind. 

A.2 Windows installation
InWindows, Elasticsearch also requires at least Java 7—the JRE and the JDK—to be
installed and for the JAVA_HOME variable to be pointing at the Java folder. 

1 Download the Windows installers for Java from http://www.oracle.com/tech-
network/java/javase/downloads/index.html and run them.

2 After installation make sure your JAVA_HOME Windows environment variable
points to where you installed the Java Development Kit. You can find your environ-
ment variables in System Control Panel > Advanced System Settings. See figure A.4.

Figure A.4 The JAVA_HOME 
variable set to the Java install 
folder

http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/deploy.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/deploy.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
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Attempting an install before you have an adequate Java version will result in an error.
See figure A.5.

Installing on a PC with limited rights 
Sometimes you want to try a piece of software but you aren’t free to install your own
programs. If that’s the case, don’t despair: portable JDKs are out there. When you
find one of those you can temporarily set your JAVA_HOME variable to the path of the
portable JDK and start Elasticsearch this way. You don’t even need to install Elastic-
search if you’re only checking it out. See figure A.6.

Figure A.5 The Elasticsearch install fails when JAVA_HOME is not set correctly.

Figure A.6 Starting Elasticsearch without an installation. This is only recommended for testing 
purposes on a computer where you have limited rights.
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Now that you have Java installed and set up, you can install Elasticsearch.

1 Download the Elasticsearch zip package manually from http://www.Elastic-
search.org/download/. Unpack it anywhere on your computer. This folder
will now become your self-contained database. If you have an SSD drive, con-
sider giving it a place there, because it significantly increases the speed of
Elasticsearch.

2 If you already have a Windows command window open, don’t use it for the
installation; open a fresh one instead. The environment variables in the open
window aren’t up to date anymore. Change the directory to your Elasticsearch
/bin folder and install using the service install command. See figure A.7.

3 The database should now be ready to start. Use the service start command.
See figure A.8.

Figure A.7 An Elasticsearch Windows 64-bit installation

Figure A.8 Elasticsearch starts up a node on Windows.

http://www.elasticsearch.org/download/
http://www.elasticsearch.org/download/
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If you want to stop the server, issue the service stop command. Open your browser
of choice and put localhost:9200 in the address bar. If the Elasticsearch welcome screen
appears (figure A.9), you’ve successfully installed Elasticsearch. 

Figure A.9 The Elasticsearch welcome screen on localhost
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Setting up Neo4j

In this appendix, we’ll cover installing and setting up the Neo4j community edition
database used in Chapter 7. Instructions for both Linux and Windows installations
are included.

B.1 Linux installation
To install Neo4j community edition on Linux, use your command line as instructed
here: http://debian.neo4j.org/?_ga=1.84149595.332593114.1442594242.

 Neo Technology provides this Debian repository to make it easy to install Neo4j.
It includes three repositories:

■ Stable—All Neo4j releases, except as noted below. You should choose this by
default.

■ Testing—Pre-release versions (milestones and release candidates).
■ Oldstable—No longer actively used, this repository contains patch releases for

old minor versions. If you can’t find what you need in Stable, then look here.

To use the new Stable packages, you need to run the commands below as root
(note that we use sudo below):

sudo -s
wget -O - https://debian.neo4j.org/neotechnology.gpg.key| apt-key add - # 

Import our signing key
echo 'deb http://debian.neo4j.org/repo stable/' > /etc/apt/sources.list.d/

neo4j.list # Create an Apt sources.list file
aptitude update -y # Find out about the files in our repository
aptitude install neo4j -y # Install Neo4j, community edition

You could replace Stable with Testing if you want a newer (but unsupported) build
of Neo4j. If you’d like a different edition, you can run:

apt-get install neo4j-advanced
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or

apt-get install neo4j-enterprise

B.2 Windows installation
To install the Neo4j community edition on Windows:

1 Go to http://neo4j.com/download/ and download the community edition. The
following screen will appear.

2 Save this file and run it. 
3 After installation, you’ll get a new pop up that gives you the option to choose

the default database location or alternatively browse to find another location to
use as the database location. 

4 After making your choice, press Start and you’re ready to go. 
In a few seconds, the database will be ready to use. If you want to stop the

server you can just press the Stop button.

http://neo4j.com/download/
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5 Open your browser of choice and put localhost:7474 in the address bar. 
You have arrived at the Neo4j browser. 

6 When the database access asks for authentication, use the username and pass-
word “neo4j”, then press Connect. 

In the following window you can set your own password.

Now you can input your Cypher queries and consult your nodes, relationships,
and results.
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Installing MySQL server

In this appendix, we’ll cover installing and setting up the MySQL database. Instruc-
tions for Windows and Linux installations are included.

C.1 Windows installation
The most convenient and recommended method is to download MySQL installer
(for Windows) and let it set up all of the MySQL components on your system. The
following steps explain how to do it:

1 Download MySQL Installer from http://dev.mysql.com/downloads/installer/
and open it. Please notice that, unlike the standard MySQL installer, the
smaller “web-group” version does automatically include any MySQL compo-
nents, but will only download the ones you choose to install. Feel free to pick
either installer. See figure C.1. 

Figure C.1 Download 
options of MySQL 
installers for Windows
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2 Select the suitable Setup Type you prefer. The option Developer Default will
install MySQL server and other MySQL components related to MySQL advance-
ment, together with supportive functions such as MySQL Workbench. You can
also choose Custom Setup if you want to select the MySQL items that will be
installed on your system. And you can always have different versions of MySQL
operate on a single system, if you wish. The MySQL notifier is useful for moni-
toring the running instances, stopping them, and restarting them. You can also
add this later using the MySQL installer. 

3 Then the MySQL installation wizard’s instructions will guide you through the
setup process. It’s mostly accepting what’s to come. A development machine
will do as the server configuration type. Make sure to set a MySQL root password
and don’t forget what it is, because you need it later. You can run it as a Windows
service; that way, you don’t need to launch it manually.

4 The installation completes. If you opted for a full install, by default MySQL
server, MySQL workbench, and MySQL notifier will start automatically at com-
puter startup. MySQL installer can be used to upgrade or change settings of
installed components.

5 The instance should be up and running, and you can connect to it using the
MySQL workbench. See figure C.2.

Figure C.2 MySQL workbench interface
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C.2 Linux installation
The official installation instructions for MySQL on Linux can be found at https://
dev.mysql.com/doc/refman/5.7/en/linux-installation.html.

 However, certain Linux distributions give specific installation guides for it. For
example, the instructions for installing Linux on Ubuntu 14.04 can be found at
https://www.linode.com/docs/databases/mysql/how-to-install-mysql-on-ubuntu-14-04.
The following instructions are based on the official instructions.

1 First check your hostname:

hostname
hostname -f

The first command should show your short hostname, and the second should
show your fully qualified domain name (FQDN).

2 Update your system:

sudo apt-get update
sudo apt-get upgrade

3 Install MySQL:

Sudo apt-get install msql-server

During the installation process, you’ll get a message to choose a password for
the MySQL root user, as shown in figure C.3. 

MySQL will bind to localhost (127.0.0.1) by default. 

Figure C.3 Select a password for your MySQL root user.

https://dev.mysql.com/doc/refman/5.7/en/linux-installation.html
https://dev.mysql.com/doc/refman/5.7/en/linux-installation.html
https://www.linode.com/docs/databases/mysql/how-to-install-mysql-on-ubuntu-14-04
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4 Log into MySQL:

mysql –u root –p

Enter the password you chose and you should see the MySQL console shown in
figure C.4.

5 Finally, create a schema so you have something to refer to in the case study of
chapter 4. 

Create database test;

Figure C.4 MySQL console on Linux
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Setting up Anaconda with

a virtual environment

Anaconda is a Python code package that’s especially useful for data science. The
default installation will have many tools a data scientist might use. In our book we’ll
use the 32-bit version because it often remains more stable with many Python pack-
ages (especially the SQL ones). 

 While we recommend using Anaconda, this is in no way required. In this appen-
dix, we’ll cover installing and setting up Anaconda. Instructions for Linux and Win-
dows installations are included, followed by environment setup instructions. If you
know a thing or two about using Python packages, feel free to do it your own way.
For instance, you could use virtualenv and pip libraries. 

D.1 Linux installation
To install Anaconda on Linux: 

1 Go to https://www.continuum.io/downloads and download the Linux installer
for the 32-bit version of Anaconda based on Python 2.7.

2 When the download is done use the following command to install Anaconda:

bash Anaconda2-2.4.0-Linux-x86_64.sh

3 We need to get the conda command working in the Linux command
prompt. Anaconda will ask you whether it needs to do that, so answer “yes”.
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D.2 Windows installation 
To install Anaconda on Windows:

1 Go to https://www.continuum.io/downloads and download the Windows installer
for the 32-bit version of Anaconda based on Python 2.7.

2 Run the installer.

D.3 Setting up the environment
Once the installation is done, it’s time to set up an environment. An interesting
schema on conda vs pip commands can be found at http://conda.pydata.org/docs/
_downloads/conda-pip-virtualenv-translator.html.

1 Use the following command in your operating system command line. Replace
“nameoftheenv” with the actual name you want your environment to have.

conda create –n nameoftheenv anaconda 

2 Make sure you agree to proceed with the setup by typing “y” at the end of this
list, as shown in figure D.1, and after awhile you should be ready to go. 

Figure D.1 Anaconda virtual environment setup in the Windows command prompt

https://www.continuum.io/downloads
http://conda.pydata.org/docs/_downloads/conda-pip-virtualenv-translator.html
http://conda.pydata.org/docs/_downloads/conda-pip-virtualenv-translator.html
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Anaconda will create the environment on its default location, but options are
available if you want to change the location.

3 Now that you have an environment, you can activate it in the command line:
– In Windows, type activate nameoftheenv
– In Linux, type source activate nameoftheenv

Or you can point to it with your Python IDE (integrated development environment).

4 If you activate it in the command line you can start up the Jupiter (or IPython)
IDE with the following command:

Ipython notebook

Jupiter (formerly known as IPython) is an interactive Python development
interface that runs in the browser. It’s useful for adding structure to your code. 

5 For every package mentioned in the book that isn’t installed in the default Ana-
conda environment:
a Activate your environment in the command line.
b Either use conda install libraryname or pip install libraryname in

the command line. 

For more information on the pip install, visit http://python-packaging-user-
guide.readthedocs.org/en/latest/installing/.

For more information on the Anaconda conda install, visit http://conda.pydata
.org/docs/intro.html.

http://python-packaging-user-guide.readthedocs.org/en/latest/installing/
http://python-packaging-user-guide.readthedocs.org/en/latest/installing/
http://conda.pydata.org/docs/intro.html
http://conda.pydata.org/docs/intro.html
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