

Learning	Microsoft	Azure	Storage

	

	

	

	

	

	

	

	

	

	

Build	large-scale,	real-world	apps	by	effectively	planning,	deploying,
and	implementing	Azure	Storage	solutions

	

	

	

	

	

	

	

	

	

	

Mohamed	Waly

	

	

	

	

BIRMINGHAM	-	MUMBAI

Learning	Microsoft	Azure	Storage
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

	

First	published:	November	2017

	

Production	reference:	1131117

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78588-491-7

	

www.packtpub.com

http://www.packtpub.com

Credits
Author

Mohamed	Waly

Copy	Editor

Safis	Editing

Reviewers

Stefano	Demiliani	Bert	Wolters	Sjoukje	Zaal

Project	Coordinator

Virginia	Dias

Commissioning	Editor

Vijin	Boricha

Proofreader

Safis	Editing

Acquisition	Editor

Rahul	Nair

Indexer

Pratik	Shirodkar

Content	Development	Editors

Sweeny	Dias

Nithin	Varghese

Graphics

Tania	Dutta

Technical	Editor

Komal	Karne

Production	Coordinator

Melwyn	Dsa

	

	

About	the	Author
Mohamed	Waly	has	shown	interest	in	IT	since	he	was	a	student.	The	journey
began	in	2011	when	he	joined	the	college	of	computer	science	where	he	started
learning	how	to	work	with	Windows	Server	2008	and	was	the	youngest	among
his	colleagues	at	the	college	to	achieve	certification.	In	2012,	he	joined	one	of
the	greatest	and	most	well-known	student	programs	in	the	world,	the	Microsoft
Student	Partner	program.	During	the	time	he	spent	on	the	program,	he	took
many	communication	and	presentation	skills	sessions	that	helped	him	to	deliver
many	sessions	since	his	second	year	at	college	and	the	journey	continues	until
now.	In	the	meantime,	Waly	learned	some	other	topics	such	as	Exchange	Server
System	Center,	VMware	vSphere,	and	Microsoft	Azure,	formerly	known	as
Windows	Azure.

He	has	worked	in	multiple	communities,	such	as	the	Azure	Community	in
Egypt,	and	the	Open	Source	on	Azure.	Also,	he	served	multiple	internships
during	his	time	in	the	university	to	improve	his	experience.	That's	why,	in	July
2014,	Microsoft	recognized	Mohamed	Waly	as	the	youngest	MVP	in	the	world.
After	finishing	college,	he	worked	for	two	of	the	biggest	Microsoft	Partners	in
Egypt—Global	Knowledge	and	Blue	Cloud	Technologies—as	a	system	engineer
and	an	associate	infrastructure	consultant,	respectively,	serving	Microsoft
Customers	in	the	EMEA	region	by	designing	and	implementing	virtualization
and	Cloud	solutions.

	

This	book	would	not	have	seen	the	light	without	the	help	of	many	people.	First,
I'd	like	to	thank	the	team	at	Packt,	which	includes	Rahul	Nair,	Sweeny	Dias,
Komal	Karne,	Nithin	George,	and	every	member	of	staff	from	Packt	who	has
helped	in	producing	the	book	in	that	manner.

Of	course,	the	technical	reviews	Bert	Wolters,	Sjoukje	Zaal,	and	Demiliani
Stefano	have	added	great	value	to	the	book.	I'd	like	to	thank	them	for	their
endless	support.

Last	but	not	least,	I'd	like	to	thank	my	teammates	at	Blue	Cloud	Technologies	for
sharing	their	experience	with	me	all	the	time	and	their	guidance	along	the	way:
Moataz	Shaaban,	Karim	Hamdy,	Mohamed	Saeed,	and	Emad	Samir.	I	really
consider	them	as	a	blessing	and	my	second	family.

About	the	Reviewers
Stefano	Demiliani	is	a	Microsoft	Certified	Solution	Developer	(MCSD),
MCSA,	MCAD,	MCTS	on	Microsoft	Dynamics	NAV,	MCTS	on	SharePoint,
MCTS	on	SQL	Server	and	a	longtime	expert	on	other	Microsoft-related
technologies.	He	has	a	master's	degree	in	computer	engineering	from	Politecnico
of	Turin.

Currently,	he	works	as	a	senior	project	manager	and	solution	architect	for	EID,	a
company	of	Navlab	group,	one	of	the	biggest	Microsoft	Dynamics	groups	in
Italy	(where	he's	also	the	chief	technical	officer).	His	main	task	is	architecting
and	developing	enterprise	solutions	based	on	the	entire	stack	of	Microsoft
technologies	(Microsoft	Dynamics	NAV,	Microsoft	SharePoint,	Azure,	cloud
apps	and	.NET	applications	in	general,	data	analysis,	and	BI	solutions)	and	he's
often	focused	on	engineering	distributed	service-based	applications.	He	works	as
a	full-time	NAV	consultant	(with	more	than	15	years	of	international	NAV
projects)	and	solution	developer	and	he	is	available	for	architecting	solutions
based	on	the	Microsoft's	ERP,	for	NAV	database	tuning	and	optimization
(performance	and	locking	management)	and	for	architecting	cloud	solutions	and
apps.	He's	the	author	of	different	Microsoft	Certified	for	NAV	add-ons.

Stefano	writes	many	articles	and	blogs	on	different	Microsoft-related	topics	and
he's	frequently	involved	in	consulting	and	teaching.	He	has	worked	with	Packt	in
the	past	on	many	technical	Microsoft-related	books	and	he's	recently	the	author
of	Building	ERP	Solutions	with	Microsoft	Dynamics	NAV,	a	book	about
enterprise	solution	development	with	the	NAV	ERP,	Azure	Cloud	services,	and
Microsoft	technologies.	In	its	free	time,	Stefano	is	a	runner	and	a	cyclist.

Bert	Wolters	is	currently	a	lead	consultant	in	hybrid	datacenter	at	the	Dutch
company	Inspark.	Bert	started	his	professional	life	in	the	Dutch	Military,	but
around	1999	found	his	talents	to	be	in	IT,	helping	out	the	platoon	and	unit
leaders	with	small	IT	issues	in	the	field.	By	the	time	he	started	on	his	first
Microsoft	certification	in	2005,	he	had	found	his	new	vocation	in	life.	His	ability
to	look	at	all	sides	of	a	story	(issues/problems,	solutions,	and	implementation),
was	formed	by	the	wide	variety	of	jobs	he	took.	Having	a	background	in	the

business	side	of	IT	as	well	as	Incident	and	Change	Manager,	and	in	the	field	as
engineer	and	consultant,	helps	him	deliver	the	most	comprehensive	solutions	for
businesses	whether	technology	or	business-case	driven.

Since	2010,	he	further	specialized	in	Microsoft	infrastructure	technology,
focusing	on	system	and	platform	management	and	is	still	riding	Microsoft’s
wave	of	innovation,	looking	forward	to,	and	experimenting	with,	every	single
new	infrastructure	feature	of	Microsoft	Azure.	Because	of	this	focus,	he	decided
to	resign	from	the	Dutch	PowerShell	User	Group	(DuPSUg),	and	the	System
Center	User	Group	in	The	Netherlands	(SCUG_NL),	and	chair	the	Experts	Live
Foundation.

He	currently	advises	companies	on	how	to	get	the	most	out	of	their	Azure
platform	implementation	or	System	Center	Suite	and	provides	knowledge	on
Microsoft’s	hybrid	cloud,	Hyper-V,	Azure	Stack,	Microsoft	OMS,	and
StorSimple.

I	would	like	to	thank	my	girlfriend	and	daughters	for	putting	up	with	all	of	my
efforts	to	gain	and	share	knowledge.	I	also	give	thanks	to	Mohamed	Waly	for
accepting	me	in	his	team	of	reviewers.

	

	

	

Sjoukje	Zaal	is	a	Microsoft	Azure	MVP,	a	Principal	Architect	and	Lead
Productivity	and	with	over	15	years	of	experience	providing	architecture,
development,	consultancy,	and	design	expertise.	She	works	at	Ordina,	a	system
integrator	based	in	the	Netherlands.	She	is	very	active	in	the	Microsoft
community	as	co-founder	of	SP&C	NL	and	MixUG,	writer,	public	speaker	and
on	MSDN/TechNet.

	

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.co
m.	Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt
Pub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
	

Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book's	Amazon	page	at	https://www.amazon.com/dp/1785884913.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	email	us	at
customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks	and
videos	in	exchange	for	their	valuable	feedback.	Help	us	be	relentless	in
improving	our	products!

	

	

	

https://www.amazon.com/dp/1785884913

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	 Understanding	Azure	Storage	101
An	introduction	to	Microsoft	Azure	Storage

Why	Azure	Storage?

Terminologies

ASM	versus	ARM	model
Azure	classic	portal	(ASM	model)

Azure	portal	(ARM	model)

Deployment	model	tricks

Azure	Storage	types
Durability

Replication	types
Locally	redundant	storage

Zone	Redundant	Storage

Geo-redundant	storage

Read-access	geo-redundant	storage

Performance
Standard	Storage

Premium	Storage

Persistency
Persistent	storage

Non-persistent	storage

Azure	Storage	accounts
General-purpose	storage	accounts

Blob	storage	accounts
Hot	access	tier

Cool	access	tier

Azure	Storage	Account	tips

Creating	an	Azure	Storage	account

Automating	your	tasks
Azure	PowerShell

Installing	the	Azure	PowerShell	module
Installing	the	Azure	PowerShell	module	from	the	PowerShell	Gallery

Creating	a	storage	account	in	the	Azure	portal	using	PowerShell

Azure	command-line	interface
Installing	the	Azure	CLI	2.0

Creating	a	Storage	account	using	the	Azure	CLI	2.0

Summary

2.	 Delving	into	Azure	Storage
Azure	Storage	services

Blob	storage
Creating	Blob	storage

Blob	storage	key	points

Table	storage

PartitionKey

RowKey

Timestamp

Creating	Table	storage

Table	storage	key	points

Queue	storage
Creating	Queue	storage

Queue	storage	key	points

File	storage
File	storage	advantages

Creating	File	storage

File	storage	key	points

Understanding	the	Azure	Storage	architecture
Front-End	layer

Partition	layer

Stream	layer

Sparse	storage	and	TRIM	in	Azure

Securing	Azure	Storage
RBAC

Granting	the	reader	role	to	a	user	using	RBAC

Access	keys

SAS

Storage	design	for	highly	available	applications
RA-GRS

Azure	Backup

Azure	Site	Recovery

Premium	Storage

Understanding	client	libraries

Automating	tasks
Creating	Blob	storage	using	PowerShell

Creating	Blob	storage	using	the	Azure	CLI	2.0

Creating	Table	storage	using	PowerShell

Creating	Table	storage	using	the	Azure	CLI	2.0

Creating	Queue	storage	using	PowerShell

Creating	Queue	storage	using	the	Azure	CLI	2.0

Creating	a	file	share	using	PowerShell

Granting	the	reader	role	to	a	user	with	RBAC	using	PowerShell

Granting	the	reader	role	for	a	user	with	RBAC	using	the	Azure	CLI	2.0

Regenerating	storage	account	access	keys	using	PowerShell

Regenerating	storage	account	access	keys	using	the	Azure	CLI	2.0

Summary

3.	 Azure	Storage	for	VMs
An	introduction	to	Azure	VMs

Azure	VMs	series

Creating	an	Azure	VM
VM	settings

Storage	considerations	for	Azure	VMs
Managed	versus	unmanaged	disks

Managed	disks	key	points

VM	disks
Adding	a	data	disk	to	Azure	VM

Data	disks	key	points

Resizing	disks

Host	caching
Read-only

Read/write

None

Host	caching	key	points

Changing	the	host	caching	type

Capturing	VMs
Sysprepping	the	VM

Capturing	the	VM	with	managed	storage

Capturing	the	VM	with	unmanaged	storage

Automating	the	tasks
Creating	an	Azure	VM	using	PowerShell

Network	resources

VM	configuration

Creating	the	VM

Creating	an	Azure	VM	using	the	Azure	CLI	2.0

Adding	data	disks	to	an	Azure	VM	using	PowerShell

Adding	data	disks	to	an	Azure	VM	using	the	Azure	CLI	2.0

Resizing	Azure	VM	disks	using	PowerShell

Resizing	Azure	VM	disks	using	the	Azure	CLI	2.0

Changing	the	host	caching	using	PowerShell

Changing	the	host	caching	using	the	Azure	CLI	2.0

Capturing	the	VM	using	PowerShell

Capturing	the	VM	using	the	Azure	CLI	2.0

Further	information

Summary

4.	 Implementing	Azure	SQL	Databases
An	introduction	to	Azure	SQL	Database

Why	Azure	SQL	Database?

Service	tiers
Elastic	database	pools

Single	databases

Service	tier	types

Creating	an	Azure	SQL	Database

Connecting	to	Azure	SQL	Database
Server-level	firewall	rule

Connecting	to	Azure	SQL	Database	using	SQL	SSMS

Azure	SQL	Database	business	continuity
How	business	continuity	works	for	Azure	SQL	Database

Hardware	failure

Point-in-time	restore
Restoring	Azure	SQL	Database	key	points

Restoring	a	deleted	database

Geo-restore

Automating	the	tasks
Creating	an	Azure	SQL	Database	using	PowerShell

Creating	an	Azure	SQL	Database	using	the	Azure	CLI	2.0

Creating	an	SQL	Server-level	firewall	rule	using	PowerShell

Creating	an	SQL	Server-level	firewall	rule	using	Azure	CLI	2.0

Point-in-time	restore	using	PowerShell

Point-in-time	restore	using	the	Azure	CLI	2.0

Restoring	a	deleted	database	using	PowerShell

Restoring	a	deleted	database	using	PowerShell

Summary

5.	 Beyond	Azure	SQL	Database	Management

SQL	Database	(IaaS/PaaS)
Azure	SQL	Database	(PaaS)

Scenarios	that	would	fit	in	Azure	SQL	Database

SQL	on	Azure	VMs	(IaaS)
Scenarios	that	would	suit	SQL	on	Azure	VMs

Azure	SQL	elastic	database	pools
Creating	an	elastic	database	pool

Adding	a	database	to	the	elastic	database	pool

Setting	Azure	AD	authentication	to	Azure	SQL	Database

Active	geo-replication
Implementing	active	geo-replication

Adding	the	databases	to	a	failover	group

Active	geo-replication	key	points

Automating	the	tasks
Creating	an	elastic	database	pool	using	PowerShell

Creating	an	elastic	database	pool	using	Azure	CLI	2.0

Adding	database	to	the	elastic	database	pool	using	PowerShell

Adding	an	additional	database	to	the	elastic	database	pool	using	Azure	CLI	2.0

Setting	Azure	AD	authentication	to	Azure	SQL	Database	using	PowerShell

Setting	Azure	AD	authentication	to	Azure	SQL	Database	using	the	Azure	CLI	2.0

Implementing	active	geo-replication	using	PowerShell

Implementing	active	geo-replication	using	Azure	CLI	2.0

Adding	databases	to	a	failover	group	using	PowerShell

Adding	databases	to	a	failover	group	using	the	Azure	CLI	2.0

Further	information

Summary

6.	 Azure	Backup

An	introduction	to	Azure	Backup

Why	Azure	Backup?

The	process	of	backing	up	data
Building	a	Recovery	Services	vault

Backing	up	an	Azure	VM

Restoring	Azure	VM	files
Restoring	Azure	VM	files	key	points

Restoring	an	Azure	VM
Restoring	an	Azure	VM	key	points

Further	information

Automating	tasks
Building	a	Recovery	Services	vault	using	Azure	PowerShell

Building	a	Recovery	Services	vault	using	the	Azure	CLI	2.0

Backing	up	an	Azure	VM	using	Azure	PowerShell

Backing	up	an	Azure	VM	using	the	Azure	CLI	2.0

Restoring	Azure	VM	files	using	Azure	PowerShell

Restoring	Azure	VM	files	using	the	Azure	CLI	2.0

Restoring	an	Azure	VM	using	Azure	PowerShell

Restoring	an	Azure	VM	using	the	Azure	CLI	2.0

Summary

7.	 Azure	Site	Recovery
Introduction	to	ASR

ASR	supportability
Hyper-V	servers

VMware	vSphere	and	physical	servers

Preparing	your	environment	for	ASR
Building	a	site-to-site	VPN	connection

Preparing	an	infrastructure	for	replication

Kicking	off	replication	from	on-premises	to	ASR

ASR	recovery	plans

Testing	ASR

Further	information

Summary

8.	 Extending	Your	Azure	Storage	Management
Azure	StorSimple

StorSimple	Virtual	Array

StorSimple	8000	series

AzCopy
Uploading	a	folder	to	Azure	Blob

Downloading	an	Azure	Blob	service	container

Azure	Storage	Explorer
Connecting	to	Azure	Storage	using	Azure	Storage	Explorer

Managing	Azure	Storage	accounts	using	Azure	Storage	Explorer
Creating	an	Azure	Storage	service

Azure	Storage's	three	musketeers

Summary

Preface
First	off,	I'd	like	to	thank	you	for	purchasing	Learning	Microsoft	Azure	Storage.
Throughout	the	book,	I've	shared	my	entire	experience	with	Azure	Storage,
which	started	in	2012	and	has	witnessed	many	changes	in	the	storage	services.

Microsoft	Azure	Storage	is	the	bedrock	of	Microsoft's	core	storage	solution
offering	in	Azure.	No	matter	what	solution	you	are	building	for	the	cloud,	you'll
find	a	compelling	use	for	Azure	Storage.	This	book	will	help	you	get	up-to-
speed	quickly	with	Microsoft	Azure	Storage	by	teaching	you	how	to	use	the
different	storage	services.	You	will	be	able	to	leverage	secure	design	patterns
based	on	real-world	scenarios	and	develop	a	strong	storage	foundation	for	Azure
Virtual	Machines,	and	even	your	on-premises	environment.
The	aim	of	this	book	is	to	provide	accurate	and	easy-to-follow	instructions	when
working	with	Azure	Storage.

I	hope	that	this	book	will	be	a	great	asset	to	you.	Also,	if	you	have	any	questions,
comments,	or	suggestions,	you	can	post	it	in	the	author	online	forum.

What	this	book	covers
Chapter	1,	Understanding	Azure	Storage	101,	introduces	Azure	Storage	and	its
types.	It	helps	you	understand	the	difference	between	Azure	Service
Management	(ASM),	Azure	Resource	Management	(ARM)	model,	and	Azure
Storage	types	in	addition	to	working	with	Azure	Storage	accounts	and	using
PowerShell	to	automate	some,	such	as	creating	a	storage	account.

Chapter	2,	Delving	into	Azure	Storage,	introduces	Azure	Storage	services	and
explains	how	to	work	with	them.	It	will	also	cover	the	architecture	of	Azure
Storage	and	how	to	secure	Azure	Storage	services,	and	the	best	practices	that
need	to	be	followed	to	design	highly	available	applications	and	the	role	of	client
libraries	with	storage	services.

Chapter	3,	Azure	Storage	for	VMs,	covers	the	process	of	creating	Azure	VMs	and
how	it	relates	to	and	depend	on	Azure	Storage,	followed	by	the	best	practices
you	need	to	know	to	create	a	better	and	more	cost-effective	design	for	Azure
VMs.

Chapter	4,	Implementing	Azure	SQL	Databases,	introduces	Azure	SQL	Databases
and	why	to	use	them.	The	services	tier	and	performance	levels	will	also	be
covered	followed	by	how	to	create,	and	restore	Azure	SQL	Databases.

Chapter	5,	Beyond	Azure	SQL	Database	Management,	covers	how	the	SQL
database	works	in	the	(IaaS/PaaS)	service	model,	how	to	work	with	elastic
database	pools,	integrate	Azure	AD	with	Azure	SQL	Database,	and	how	to	make
sure	that	your	databases	will	be	up	and	running	even	in	the	event	that	disasters
occur.

Chapter	6,	Azure	Backup,	introduces	Azure	Backup	and	why	it	is	so	important	to
use,	how	to	configure	it	and	how	to	go	through	the	restoration	process.

Chapter	7,	Azure	Site	Recovery,	introduces	Azure	Site	Recovery	and	why	to	work
with	it.	Then	we	move	on	to	how	to	prepare	your	environment	for	Azure	Site
Recovery,	how	to	implement	it,	and	even	test	whether	it	works	or	not.

Chapter	8,	Extending	Your	Azure	Storage	Management,	covers	StorSimple	which	is
used	to	spread	your	storage	across	on-premises	and	Azure	Storage,	and	some
other	cool	tools,	such	as	AzCopy	and	Azure	Storage	Explorer.	Finally,	you	will
be	introduced	to	Azure	Storage's	three	musketeers:	monitoring,	diagnosing,	and
troubleshooting.

What	you	need	for	this	book
To	follow	along	with	what	is	covered	in	the	book,	you	do	not	need	a	lot	of
resources.	You	only	need	a	Windows	8	or	above/Windows	Server	2008	R2	or
above	for	most	of	the	topics	with	Azure	PowerShell	module	installed	on	it,	a
SQL	Server	Management	Studio	17.3	to	connect	to	Azure	SQL	Database,	as	well
as	a	quad-core,	8	GB	memory,	and	500	GB	Disk	VM	to	be	used	while	working
with	Azure	Site	Recovery	and	StorSimple.	Finally,	some	simple	tools,	such	as
AzCopy	and	Azure	Storage	Explorer	would	need	to	be	downloaded.

	

Who	this	book	is	for
This	book	is	intended	at	anyone	interested	in	Azure	generally,	and	Azure	Storage
specifically.	Some	basic	knowledge	about	Azure,	Hyper-V,	and	SQL	Server
would	be	very	beneficial,	but	it	is	not	mandatory.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.	Code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and
Twitter	handles	are	shown	as	follows:	"Click	on	More	services	and	a	new	blade
will	open.	In	the	search	bar,	write	storage	account."	A	block	of	code	is	set	as
follows:

$Subnet	=	New-AzureRmVirtualNetworkSubnetConfig	-Name	PacktPubSubnet	-AddressPrefix	

10.0.0.0/24

$VirtualNetwork	=	New-AzureRmVirtualNetwork	-ResourceGroupName	PacktPub	-Location	

WestEurope	-Name	PacktPubvNet	-AddressPrefix	10.0.0.0/8	-Subnet	$Subnet

Any	command-line	input	or	output	is	written	as	follows:

az	storage	container	create	--name	packtpubbs	--public-access	container	--account-name	

packtpubsacli

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"To
upload	files	to	it,	click	on	Upload	and	browse	for	the	desired	file."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.	To	send	us
general	feedback,	simply	email	feedback@packtpub.com,	and	mention	the	book's	title
in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and
you	are	interested	in	either	writing	or	contributing	to	a	book,	see	our	author
guide	at	www.packtpub.com/authors.

	

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this
book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you	better
understand	the	changes	in	the	output.	You	can	download	this	file	from	https://www.
packtpub.com/sites/default/files/downloads/LearningMicrosoftAzureStorage_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/LearningMicrosoftAzureStorage_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake
in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.	To	view	the	previously	submitted	errata,	go	to	https://www.packtp
ub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search	field.	The
required	information	will	appear	under	the	Errata	section.

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.	We	appreciate
your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

	

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Understanding	Azure	Storage	101
	

This	chapter	introduces	Microsoft	Azure	Storage,	its	types,	and	the	differences
between	Azure's	different	models.	It	also	introduces	Azure	Storage	accounts	and
how	to	work	with	them.	Moreover,	you	will	have	learned	how	to	automate	all	of
these	tasks	by	the	end	of	the	chapter.

The	following	topics	will	be	covered:

An	introduction	to	Microsoft	Azure	Storage
Why	Azure	Storage?
Azure	terminologies
Azure	Service	Management	(ASM)	versus	the	Azure	Resource	Manager
(ARM)	model
Azure	Storage	types
Azure	Storage	accounts
Automating	Azure	tasks

	

	

An	introduction	to	Microsoft	Azure
Storage
Storage	has	always	been	one	of	the	most	important	cornerstones	of	every
system.	You	cannot	imagine	a	virtual	machine	(VM),	web	application,	or
mobile	application	running	without	any	sort	of	dependency	on	storage,	and	that
is	what	we	will	cover	throughout	this	book,	but	from	the	perspective	of	the	cloud
generally,	and	Azure	specifically.

Microsoft	Azure	Storage	is	the	bedrock	of	Microsoft's	core	storage	solution
offering	in	Azure.	No	matter	what	solution	you	are	building	for	the	cloud,	you'll
find	a	compelling	use	for	Azure	Storage.

Microsoft	Azure	Storage	is	not	just	a	traditional	storage	system;	it's	scalable	and
can	store	up	to	hundreds	of	terabytes	of	data,	meaning	that	it	fits	almost	every
scenario	you	can	ever	imagine	in	many	fields,	such	as	IT,	science,	medical	fields,
and	so	on.

At	the	time	of	writing,	Microsoft	Azure	is	generally	available	in	36	regions,	with
plans	announced	for	six	additional	regions,	as	shown	in	the	following	figure:

Figure	1.1:	Azure	regions

This	global	presence	means	you	can	host	your	storage	in	the	nearest	region	and
access	it	from	anywhere	in	the	world.	Considering	that	Microsoft	continues	to
build	new	data	centers	in	new	regions,	the	latency	between	you	and	your
services	in	Azure	will	decrease.

You	can	find	out	the	nearest	region	to	you	with	the	lowest	latency
via	the	following	website	http://www.azurespeed.com/.

Azure	services	are	available	in	140	countries	around	the	globe	and
supports	17	languages	and	24	currencies.

http://www.azurespeed.com/
http://www.azurespeed.com/

Why	Azure	Storage?
	

There	are	many	reasons	for	using	Azure	Storage	which	will	be	covered
throughout	this	book.	Below	is	a	sneak	peak	of	a	couple	of	them:

Global	presence:	You	can	host	your	storage	wherever	you	want	in	the
available	Azure	regions,	allowing	you	to	provide	applications	close	to	your
user	base.
Redundancy	and	recovery:	As	mentioned	earlier	in	this	chapter,	Azure
has	a	global	presence	which	can	be	leveraged	to	maintain	storage
availability	using	data	replication	even	if	a	disaster	occurs	in	a	region,
which	will	be	covered	later	in	this	chapter.
Many	flavors:	Azure	Storage	has	many	flavors,	based	on	resiliency,
durability,	connectivity,	performance,	and	so	on,	which	can	be	used
according	to	your	needs	in	different	scenarios.	This	will	be	covered	later	in
this	chapter.
Pay	as	you	go:	Pay	as	you	go	has	always	been	one	of	the	distinguished
reasons	for	using	the	cloud	generally.	It	is	no	surprise	that	Azure	Storage
supports	this	model	as	well.

	

	

Terminologies
Due	to	an	overlap	of	terms	and	some	misperceptions	about	the	ways	that	Azure
Services	are	delivered,	terminology	is	a	sticking	point	even	for	people	who	have
been	working	with	the	technology	for	some	time.	The	following	table	provides
accurate	but	short	definitions	for	terms	related	to	Azure	services.	These
definitions	will	be	expanded	upon	in	detail	throughout	the	book,	so	don't	worry
if	they	are	confused	at	first:

Term Definition

On-premises Means	that	your	data	center	is	hosted	and	managed	from	within
your	company.

Off-premises Means	that	your	data	center	is	hosted	and	managed	in	a	remote
place	(for	example,	hosted	and	managed	outside	your	company).

Azure	VM The	feature	of	providing	VMs	to	Azure	subscribers.

Blade The	window	that	pops	up	when	you	click	on	one	of	the	Azure
services	in	the	Azure	portal,	such	as	Virtual	machines.

Journey
A	set	of	blades	or	chain	of	selections.	For	instance,	when	you	select
Virtual	Machines	inside	the	Azure	Portal,	click	on	an	existing
virtual	machine	and	then	select	its	settings.

Resource	group Provides	a	logical	container	for	Azure	resources	(to	help	manage
resources	that	are	often	used	together).

Images The	VMs	you've	created	in	Azure	and	then	captured	to	be	used	as
templates	for	later	use,	or	the	VMs	you've	imported	to	Azure.

Disks Virtual	Hard	Disks	(VHDs)	that	you	attach	to	the	VMs	you	create
in	Azure.

Virtual	network

Allows	VMs	and	services	that	are	part	of	the	same	virtual	network
to	access	each	other.	However,	services	outside	the	virtual	network
have	no	way	of	connecting	to	services	hosted	within	virtual
networks	unless	you	decide	to	do	so.

Fault	domain A	group	of	resources	that	could	fail	at	the	same	time.	For	example,
they	are	in	the	same	rack.

Upgrade/update
domain

A	group	of	resources	that	can	be	updated	simultaneously	during
system	upgrades.

Storage
container

The	place	where	storage	Blobs	are	stored,	it	is	also	used	to	assign
security	policies	to	the	Blobs	stored	inside	it.

Network
Security
Group	(NSG)

Determines	the	protocols,	ports,	who	and	what	can	access	Azure
VMs	remotely.

VM	agent
/extensions

Software	components	that	extend	the	VM	functionality	and	simplify
various	management	operations.

Scale	set A	set	of	identical	VMs,	that	auto	scale	without	pre-provisioning	the
VMs	based	on	metrics	such	as	CPU,	memory,	and	so	on.

Availability	set

When	VMs	are	placed	in	an	availability	set,	the	VMs	are	spread
over	different	fault	domains	and	update	domains,	which	ensures
that,	in	the	event	of	a	rack	failure,	not	all	instances	are	brought
down	at	the	same	time.	If	any	updates	are	applied	to	a	host	on
which	there	is	one	of	your	VMs	and	a	restart	is	required,	it	will	not
be	applied	to	the	other	VM	within	the	same	availability	set.

System
Preparation
(SysPrep)

A	Windows	preparation	tool	that's	used	when	you	have	captured	a
VM	and	want	to	use	it	as	a	template,	which	ensures	that	there's	no
more	than	one	VM	with	the	same	properties,	which	would	lead	to	a
conflict	between	the	VMs.

ASM	versus	ARM	model
At	the	time	of	writing,	Azure	services	are	being	provided	via	two	portals,	which
follow	two	different	models.	The	Azure	classic	portal	follows	the	ASM	model
and	the	Azure	portal	follows	the	ARM	model.

Azure	classic	portal	(ASM	model)
Historically,	Azure	services	were	provided	via	one	portal	prior	to	2014,	the
classic	portal,	which	can	be	accessed	via	the	following	URL	https://manage.windowsaz
ure.com/.

The	model	that	was	used	for	that	portal	is	called	the	ASM	model,	within	which
each	resource	existed	independently.	You	could	not	manage	your	resources
together;	you	had	to	build	up	and	track	each	resource.	For	example,	you	would
have	to	manage	storage	from	the	storage	blade,	and	the	same	goes	for	the	virtual
networks,	VMs,	and	so	on.	So,	when	your	environment	got	bigger,	there	would
be	chaos	in	the	management	scheme.	You	would	have	to	know	which	VMs	were
stored	in	which	storage	account,	and	that	could	lead	to	some	critical	situations,
such	as	reaching	the	IOPs	limits	of	the	storage	account.	In	turn,	this	could	result
in	you	accidentally	creating	a	new	VM	and	assigning	it	to	that	storage	account.
As	a	result,	the	VM	would	run	with	terrible	performance.	This	would	not	be	your
only	concern	when	working	with	the	ASM	model;	you	might	want	to	delete	a
solution	with	multiple	resources,	which	you	would	have	to	do	manually	for	each
resource.

When	you	open	the	Azure	classic	portal,	it	will	look	like	the	following
screenshot:

https://manage.windowsazure.com/

Figure	1.2:	Azure	classic	portal

Azure	portal	(ARM	model)
In	2014,	Microsoft	launched	a	new	portal	which	follows	a	new	model,	called	the
ARM	model.	This	portal	can	be	accessed	via	the	following	URL	https://portal.azure.c
om/.

This	model	depends	on	the	concept	of	resource	groups,	which	means	you	can
group	all	your	resources	within	a	container,	resulting	in	resources	being
deployed	in	parallel.	As	a	result,	you	will	not	face	the	same	problems	as	you	did
with	the	classic	portal.

The	following	diagram	describes	the	deployed	resources	through	the	ARM
model:	

Figure	1.3:	Resource	Manager	management	model	at	a	high	level	Here	are	the	benefits	you	will	gain	using
this	portal:

Ability	to	manage	your	resources	as	a	group	instead	of	managing	them	separately.
Use	Role	Based	Access	Control	(RBAC)	to	control	access	to	resources,	so	that	you	can	assign	permissions	to	a	user	on	a

resource	or	some	resources	but	not	to	other	resources	(as	it	was	in	the	classic	portal).
Use	tags	to	organize	and	classify	your	resources,	which	can	help	you	with	billing.	For	example,	you	might	want	to	monitor	the
billing	of	some	resources	that	make	up	a	solution,	for	example,	a	web	server.	By	assigning	a	tag	to	the	resources	that	make	up

https://portal.azure.com/

that	solution,	you	would	be	able	to	monitor	its	billing,	and	so	on.
Support	the	usability	of	JSON	to	deploy	resources	instead	of	using	the	portal.

Deploy	resources	in	parallel	instead	of	deploying	them	sequentially	and	waiting	until	every	resource	deployment
finishes	to	deploy	another	one.

Specify	dependencies	during	the	deployment	of	resources.	For	example,	a	VM	will	not	be	created	until	a	storage
account	and	a	virtual	network	are	deployed	because	the	VM	VHD	would	need	a	place	to	be	stored	in	and	an	IP

Address	from	a	virtual	network./li>
Reuse	the	JSON	template	to	deploy	a	solution	with	the	same	specifications.

Resources	with	the	same	life	cycle	should	be	gathered	in	the	same	resource	group.
Resources	in	different	regions	can	be	in	the	same	resource	group.

The	resource	cannot	exist	in	multiple	resource	groups.
A	resource	group	supports	RBAC,	wherein	a	user	can	have	access	to	some	specific	resources,	but	no	access	to	others.

Some	resources	can	be	shared	across	resource	groups,	such	as	storage	accounts.
ARM	VMs	can	only	be	placed	in	ARM	storage	accounts.

When	you	open	the	Azure	portal,	it	will	look	like	the	following	screenshot:	

Figure	1.4:	Azure	portal

You	can	change	the	background	of	the	portal	by	double-
clicking	on	any	unused	area	of	the	dashboard.	You	can
navigate	between	four	colors	(blue,	dark	blue,	white,	and
black).
For	further	information	about	the	difference	between	the	ARM
and	ASM	models,	check	out	the	following	article:	https://blogs.tec
hnet.microsoft.com/meamcs/2016/12/22/difference-between-azure-service-manager
-and-azure-resource-manager/.

https://blogs.technet.microsoft.com/meamcs/2016/12/22/difference-between-azure-service-manager-and-azure-resource-manager/

Deployment	model	tricks
	

Here	are	some	things	you	need	to	consider:

You	cannot	create	a	VM	using	the	ARM	model	and	assign	it	to	a	virtual
network	built	using	the	ASM	model
You	cannot	use	a	prebuilt	image	that	was	created	using	ASM	APIs	to	build
a	VM	using	the	ARM	model,	but	as	a	workaround,	you	can	copy	the	VHD
files	from	the	storage	account	in	the	classic	portal	to	a	storage	account
created	in	the	ARM	model
You	can	migrate	assets	from	the	ASM	model	to	the	ARM	model
Every	resource	must	be	assigned	to	a	resource	group,	so	whenever	you
want	to	move	a	resource	between	resource	groups	you	must	remove	it	from
its	current	resource	group,	then	add	it	to	the	new	resource	group.

	

	

Azure	Storage	types
Azure	Storage	has	many	types	and	even	subtypes	of	those	types	in	order	to
satisfy	Azure	services'	consumer	needs	and	to	fit	most	scenarios.

The	most	common	types	can	be	classified	based	on	the	following	factors:

Durability	(replication)
Performance	(Standard	versus	Premium)
Persistency	(persistent	versus	non-persistent)

Durability
One	of	the	most	buzzing	questions	about	the	cloud	generally	is:	What	if,	for
some	reason,	the	SAN/servers	that	store	my	data	are	completely	damaged?	How
can	I	restore	my	data?

The	answer	is	very	simple	because	Microsoft	Azure	Storage	is	durable	and
supports	data	replication,	therefore	you	can	make	sure	your	storage	is	highly
available.

Replication	ensures	that	your	data	is	copied	somewhere	else,	whether	in	the
same	data	center,	another	data	center,	or	even	another	region.

For	more	info	about	the	SLA	of	Azure	Storage,	you	can	access	it
via	the	following	link:	https://azure.microsoft.com/en-us/support/legal/sla/storage/
v1_2/.

https://azure.microsoft.com/en-us/support/legal/sla/storage/v1_2/

Replication	types
	

Microsoft	Azure	supports	multiple	options	for	data	replication.	You	can	use
whatever	you	feel	suits	your	business,	especially	as	every	type	has	its	own	price.

In	order	to	calculate	your	solution's	cost,	you	can	use	the	Azure	Pricing
Calculator,	which	can	be	reached	via	the	following	URL:	https://azure.microsoft.com/e
n-us/pricing/calculator/.

	

	

	

https://azure.microsoft.com/en-us/pricing/calculator/

Locally	redundant	storage
	

Locally	redundant	storage	(LRS)	replicates	three	copies	of	your	data	within
the	same	data	center	you	have	your	data	in.	The	write	requests	you	do	with	your
storage	are	not	committed	until	they	are	replicated	to	all	three	copies,	which
means	it	replicates	synchronously.	Not	only	this,	it	also	makes	sure	that	these
three	copies	exist	in	different	update	domains	and	fault	domains.	You	can	revise
the	terms	guide	at	the	beginning	of	the	chapter	to	understand	what	the	update
domain	and	the	fault	domain	are.

Drawbacks:

The	least	durable	option,	as	it	replicates	only	within	the	same	data	center
Your	data	will	be	lost	if	a	catastrophic	event,	such	as	a	volcanic	eruption	or
flood,	affects	the	data	center

Advantages:

It	is	the	cheapest	type	compared	to	the	other	types
It	is	the	fastest	type	of	data	replication,	offering	the	highest	throughput
since	it	replicates	within	the	same	data	center,	mitigating	the	risk	of	data
loss	that	would	occur	during	data	replication	caused	by	a	failure	having
occurred	on	the	original	data	host
It	is	the	only	available	replication	type	that	can	be	used	with	Premium
Storage	at	the	time	of	writing

	

	

Zone	Redundant	Storage
	

Zone	Redundant	Storage	(ZRS)	replicates	three	copies	of	data	across	two	or
three	data	centers	within	one	of	two	regions	asynchronously,	plus	the	three
copies	of	data	stored	within	the	same	data	center	of	the	original	source	of	the
data.

Drawbacks:

This	type	can	only	be	used	for	Block	Blobs	(one	of	the	Azure	services
covered	in	the	next	chapter),	and	a	Standard	Storage	account	(general
purpose	Standard	Storage	accounts	will	be	covered	later	in	this	chapter)
Does	not	support	metrics	or	logging
Does	not	support	conversion	for	other	replication	types,	such	as	LRS,	GRS,
and	vice	versa
If	a	disaster	occurs,	some	data	might	be	lost,	because	the	data	replicates	to
the	other	data	center	asynchronously
If	a	disaster	occurs,	there	will	be	some	delay	in	accessing	your	data	until
Microsoft	failover	to	the	secondary	zone

Advantage:	It	provides	higher	durability	and	availability	for	data	than	LRS,	as	it
not	only	replicates	in	the	same	data	center	but	also	in	other	data	centers.

	

	

	

Geo-redundant	storage
	

Geo-redundant	storage	(GRS)	replicates	data	not	only	within	the	same	region
but	also	to	another	region.	Firstly,	it	replicates	three	copies	of	data	within	the
same	region	synchronously,	then	it	replicates	another	three	copies	of	data	to
other	regions	asynchronously.

Drawbacks:

If	a	disaster	occurs,	some	data	might	be	lost,	because	the	data	replicates	to
the	other	regions	asynchronously
If	a	disaster	occurs,	there	will	be	some	delay	in	accessing	your	data	until
Microsoft	initiates	failover	to	the	secondary	region

Advantages:

It	provides	the	highest	durability	and	availability,	even	if	a	disaster	occurs
in	an	entire	region
Unlike	ZRS,	if	the	original	source	of	data	faces	an	outage,	there	will	be	no
possibility	of	data	loss	if	the	other	three	copies	that	exist	within	the	same
region	don't	face	an	outage	too,	as	it	replicates	synchronously	within	the
same	region.

	

	

Read-access	geo-redundant	storage
Read-access	geo-redundant	storage	(RA-GRS)	follows	the	same	replication
mechanism	of	GRS,	in	addition,	to	read	access	on	your	replicated	data	in	the
other	regions.

Drawback:	If	a	disaster	occurs,	some	data	might	be	lost,	because	the	data
replicates	to	the	other	region	asynchronously.

Advantages:

It	provides	the	highest	durability	and	availability,	even	if	a	disaster	occurs
in	a	whole	region
If	a	disaster	occurs,	you	still	only	have	read	access	to	the	storage,	but	no
write	access	until	Microsoft	initiates	failover	to	the	secondary	region
The	region	with	the	read	access	can	be	used	for	data	retrieval	by	the	nearest
offices	to	it	without	the	need	to	go	to	another	region	to	access	the	data;	as	a
result,	the	data	latency	will	decrease

Regarding	replication	between	different	regions,	it	will	not	work
with	just	any	two	regions;	the	regions	must	be	paired.
For	example	the	West	Europe	region	can	replicate	with	North
Europe,	and	not	any	other	region.
For	more	information	about	paired	regions,	check	the	following
article:	https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regio
ns.

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions

Performance
As	mentioned	earlier,	Azure	provides	services	for	all	business	types	and	needs.
There	are	two	types	based	on	Azure	Storage	performance--Standard	and
Premium.

Standard	Storage
Standard	Storage	is	the	most	common	type	for	all	the	VMs	sizes	available	in
Azure.	The	Standard	Storage	type	stores	its	data	on	non-SSD	disks.	It	is
commonly	used	with	workloads	within	which	the	latency	is	not	critical.	Plus,	it
is	low	cost	and	has	support	for	all	Azure	Storage	services	(which	will	be	covered
in	the	next	chapter).	It	is	also	available	in	all	regions.

	

Premium	Storage
Premium	Storage	is	designed	for	low	latency	applications,	such	as	SQL	server,
which	needs	intensive	IOPs.	Premium	Storage	is	stored	on	SSD	disks,	that	is
why	it	costs	more	than	Standard	Storage.	Microsoft	recommends	using	Premium
Storage	for	better	performance	and	higher	availability.

More	details	about	Standard	and	Premium	Storage	will	be	covered
throughout	the	book.

	

Persistency
Another	type	of	Azure	Storage	depends	on	data	persistence,	which	means
whether	data	will	be	there	or	not	after	stopping	and	starting	the	VM	within
which	your	data	exists.

Persistent	storage
Persistent	storage	means	that	the	data	will	be	there	after	stopping	and	restarting
the	VM	within	which	your	data	exists.

Non-persistent	storage
Non-persistent	storage	means	that	the	data	will	be	gone	after	restarting	the	VM
within	which	your	data	exists.

Further	details	about	storage	persistency	will	be	covered	in	Chapter	
3,	Azure	Storage	for	VMs.

Azure	Storage	accounts
	

An	Azure	Storage	account	is	a	secure	account	that	provides	access	to	Azure
Storage	services	(which	will	be	covered	in	the	next	chapter),	and	a	unique
namespace	for	storage	resources.

During	the	creation	of	a	new	Azure	Storage	account,	you	will	have	the	option	to
choose	one	of	two	kinds	of	storage	accounts:

General-purpose	storage	account
Blob	storage	account

	

	

General-purpose	storage	accounts
	

A	general-purpose	storage	account	gives	you	access	to	all	Azure	Storage
services,	such	as	Blobs,	Tables,	Files,	and	Queues	(these	will	be	covered	in	the
next	chapter),	and	has	two	performance	tiers:

Standard	Storage	tier
Premium	Storage	tier

Both	were	covered	within	the	Performance	type	topic	earlier	in	this	chapter.

	

	

	

Blob	storage	accounts
	

Unlike	a	general-purpose	storage	account,	not	all	Azure	Storage	services	are
meant	to	be	stored	in	a	Blob	storage	account	because	they	are	dedicated	to
storing	unstructured	data.	Therefore,	a	Blob	storage	service	is	the	only	type
allowed	to	be	accessed	by	a	Blob	storage	account.	However,	it	only	supports
block	and	appends	Blobs.

A	Blob	storage	account	has	a	usage	pattern	called	access	tiers,	which	determines
how	frequently	you	access	your	data	and	based	on	that	you	will	get	billed.

Currently,	there	are	two	types:

Hot	access	tier
Cool	access	tier

	

	

Hot	access	tier
With	the	hot	access	tier,	objects	will	be	accessed	more	frequently,	so	you	will
pay	less	for	data	access,	but	pay	more	for	data	size.

Cool	access	tier
With	the	cool	access	tier,	objects	will	be	accessed	less	frequently,	so	you	will	pay
more	for	data	access,	but	less	for	data	size.

Azure	Storage	Account	tips
	

The	following	tips	will	increase	your	knowledge	about	Azure	Storage,	and	will
definitely	help	you	when	you	want	to	design	a	storage	solution	on	Azure:

You	cannot	switch	between	an	Azure	general-purpose	storage	account	and
an	Azure	Blob	storage	account
You	can	switch	between	access	tiers	with	a	Blob	storage	account,	but	with
the	possibility	of	additional	charges	being	incurred
A	Blob	storage	account	does	not	support	ZRS	replication	type	at	the	time	of
writing
Premium	Storage	only	supports	Locally	Redundant	Storage	as	a	replication
type	at	the	time	of	writing
Premium	Storage	is	not	supported	for	a	Blob	storage	account	at	the	time	of
writing
Azure	supports	up	to	200	storage	accounts	per	subscription	by	default
A	storage	account	can	store	data	up	to	500	TB
Azure	Storage	supports	encryption	for	only	two	storage	services	at	the	time
of	writing	(Blobs	and	Files),	and	you	can	enable	it	during	the	storage
account	creation
If	you	are	using	REST	APIs	to	connect	to	Azure	Storage,	you	can	secure
the	transfer	by	enabling	that	option	during	the	creation	of	a	storage	account
Only	lowercase	letters	and	numbers	are	supported	for	the	name	of	the
storage	account

	

	

Creating	an	Azure	Storage	account
Let's	get	our	hands	dirty	with	creating	a	storage	account	with	the	following
parameters:

Name:	packtpubsa
Deployment	model:	Resource	Manager
Account	kind:	General	purpose
Performance:	Standard
Replication:	Locally-redundant	storage	(LRS)
Storage	service	encryption	(blobs	and	files):	Disabled
Secure	transfer	required:	Disabled
Subscription:	Select	the	right	subscription	for	this	task
Resource	group:	Create	a	new	or	select	an	existing	resource	group,	as	per
your	needs
Location:	Select	the	nearest	location	to	you

Without	further	ado,	let’s	get	started:

1.	 Open	the	Azure	portal	from	here:	https://portal.azure.com/.

2.	 Click	on	More	services	and	a	new	blade	will	open.	In	the	search	bar,	write
storage	account,	as	shown	in	the	following	screenshot:

https://portal.azure.com/

Figure	1.5:	Searching	for	a	storage	accounts	service

3.	 Click	on	Storage	accounts	and	a	new	blade	will	open.	Click	on	Add,	as
shown	in	the	following	screenshot:

Figure	1.6:	Adding	a	new	storage	account

4.	 A	new	blade	will	open,	wherein	you	need	to	fill	in	the	fields	and	determine
the	types	as	per	your	needs:

Figure	1.7:	Creating	a	new	storage	account	blade

5.	 Fill	in	the	fields	as	before,	and	click	on	Create:

Figure	1.8:	Filling	in	the	fields	of	the	blade

6.	 Once	done,	you	can	find	your	storage	account	in	the	Storage	accounts
blade:

Figure	1.9:	Storage	accounts	blade

Something	to	keep	in	mind:

When	using	Storage	service	encryption	(blobs	and	files),	your
data	is	encrypted	once	it	is	written	in	Azure	and	gets
decrypted	once	you	try	to	access	it.
When	you	enable	Secure	transfer	required,	the	storage
account	will	only	be	accessed	using	HTTPS	if	you	are	using
REST	APIs,	and	since	Azure	file	service	uses	Server	Message
Block	(SMB),	the	connection	will	fail	if	you	are	using	SMB
2.1	and	SMB	3.0	without	encryption,	and	the	same	goes	for
the	Linux	SMB	client	in	some	flavors.
When	you	enable	Secure	transfer	required,	you	will	not	be
able	to	use	a	custom	domain,	because	Azure	Storage	does	not
currently	support	that.	As	a	result,	you	can	only	use	the
default	.core.windows.net	domain.

Automating	your	tasks
It	is	no	surprise	that	we	commonly	face	repetitive	and	time-consuming	tasks.	For
example,	you	might	want	to	create	multiple	storage	accounts.	You	would	have	to
follow	the	previous	guide	multiple	times	to	get	your	job	done.	This	is	why
Microsoft	supports	its	Azure	services	with	multiple	ways	of	automating	most	of
the	tasks	that	can	be	implemented	in	Azure.	Throughout	this	book,	two	of	the
automation	methods	that	Azure	supports	will	be	used.

	

Azure	PowerShell
PowerShell	is	commonly	used	with	most	Microsoft	products,	and	Azure	is	no
less	important	than	these	products.

Mainly,	you	can	use	Azure	PowerShell	cmdlets	to	manage	your	Azure	Storage,
however,	you	should	be	aware	that	Microsoft	Azure	has	two	types	of	cmdlets:
one	for	the	classic	portal,	and	another	for	the	portal	we	are	using.

The	main	difference	between	the	cmdlets	of	the	classic	portal	and	the	current
portal	is	there	will	be	an	RM	added	to	the	cmdlet	of	the	current	portal.

For	example,	if	you	want	to	create	a	storage	account	in	the	classic	portal,	you
would	use	the	following	cmdlet:	New-AzureStorageAccount

But	for	the	current	portal,	you	would	use:

New-AzureRMStorageAccount

By	default,	you	can	use	Azure	PowerShell	cmdlets	in	Windows	PowerShell;	you
will	have	to	install	its	module	first.

Installing	the	Azure	PowerShell
module
There	are	two	ways	to	install	the	Azure	PowerShell	module:

Download	and	install	the	module	from	the	following	link:	https://www.microsoft.
com/web/downloads/platform.aspx
Install	the	module	from	the	PowerShell	Gallery

https://www.microsoft.com/web/downloads/platform.aspx

Installing	the	Azure	PowerShell
module	from	the	PowerShell	Gallery
	

1.	 Open	PowerShell	in	elevated	mode.
2.	 To	install	the	Azure	PowerShell	module	for	the	current	portal,	run	the

Install-Module	AzureRM	cmdlet.	If	your	PowerShell	requires	the	NuGet
provider,	you	will	be	asked	to	agree	to	install	it	and	you	will	have	to	agree
to	the	installation	policy	modification,	as	the	repository	is	not	available	on
your	environment,	as	shown	in	the	following	screenshot:

Figure	1.10:	Installing	the	AzureRM	PowerShell	module

	

	

	

Creating	a	storage	account	in	the
Azure	portal	using	PowerShell
1.	 Log	in	to	your	Azure	account	using	the	Login-AzureRmAccount	cmdlet.	You	will

be	prompted	to	enter	your	account	credentials:

Figure	1.11:	Log	in	to	Azure	via	PowerShell

2.	 Create	another	storage	account	with	the	same	properties	as	we	used	for	the
portal,	but	with	a	different	name:

Figure	1.12:	Creating	a	new	storage	account	using	PowerShell

3.	 Congratulations!	You	have	created	a	storage	account	using	PowerShell.

Azure	command-line	interface
	

The	Azure	command-line	interface	(CLI)	is	open	source,	cross-platform,	and
supports	implementing	all	the	tasks	you	can	do	in	the	Azure	portal	with
commands.

Azure	CLI	comes	in	two	flavors:

Azure	CLI	2.0,	which	only	supports	the	current	Azure	portal
Azure	CLI	1.0,	which	supports	both	portals

Throughout	the	book,	we	will	be	using	Azure	CLI	2.0.	So,	let’s	get	started	with
its	installation.

	

	

	

Installing	the	Azure	CLI	2.0
To	understand	what	the	Azure	CLI	2.0	is	capable	of,	we	need	to	install	it.	Let's
do	so	by	following	these	steps:

1.	 Download	Azure	CLI	2.0	from	the	following	link:	https://azurecliprod.blob.core.win
dows.net/msi/azure-cli-2.0.12.msi.

2.	 Once	downloaded,	you	can	start	the	installation	by	following	the
screenshots	shown	here:
1.	 Run	the	executable	files	as	administrator,	and	once	the	wizard	opens,

click	on	Install:

Figure	1.13:	Installing	the	Azure	CLI	2.0

2.	 Once	you	click	on	Install,	it	will	start	to	validate	your	environment	to
check	whether	it	is	compatible	with	it	or	not,	then	it	starts	the
installation:

https://azurecliprod.blob.core.windows.net/msi/azure-cli-2.0.12.msi

Figure	1.14:	Installing	Azure	CLI	2.0

3.	 Once	the	installation	completes,	you	can	click	on	Finish,	and	you	are
good	to	go:

Figure	1.15:	Installing	Azure	CLI	2.0

3.	 Once	done,	you	can	open	the	cmd	and	type	az	to	access	Azure	CLI
commands,	as	shown	in	the	following	diagram:

Figure	1.16:	Opening	the	Azure	CLI	using	CMD

Creating	a	Storage	account	using	the
Azure	CLI	2.0
Let's	get	our	hands	dirty	with	the	Azure	CLI	2.0	to	create	an	Azure	Storage
account:

1.	 Log	in	to	your	Azure	account	using	the	az	login	command.	You	have	to	open
the	URL	that	pops	up	on	the	CLI	and	enter	the	code,	as	shown	in	the
following	screenshot:

Figure	1.17:	Logging	in	to	Azure	via	the	Azure	CLI	2.0

2.	 Create	another	storage	account	with	the	same	properties	as	we	used	for	the
portal,	but	with	a	different	name,	as	shown	in	the	following	screenshot:

Figure	1.18:	Creating	an	Azure	storage	account	using	the	Azure	CLI	2.0

Summary
	

So	far,	we	have	covered	some	preliminary	subject	matters	regarding	Azure
generally,	and	Azure	Storage	specifically.	Some	things	were	not	covered	in
detail,	but	detailed	discussions	will	be	raised	in	the	coming	chapters.

Next,	Azure	Storage	architecture	and	Azure	services	will	be	covered	in	detail.
Therefore,	the	knowledge	gained	in	this	chapter	is	required	for	a	better
understanding	of	the	coming	chapter.

	

	

	

Delving	into	Azure	Storage
	

This	chapter	covers	Microsoft	Azure	Storage	services	and	how	to	work	with
them.	For	a	better	understanding	of	what	is	going	on	behind	the	scenes,	the
Azure	Storage	architecture	and	how	to	secure	your	Azure	Storage	will	be
covered	too.	The	best	practices	that	need	to	be	followed	to	have	a	highly
available	application	are	also	covered.	Then,	we	will	go	through	client	libraries,
which	can	be	used	as	a	way	of	managing	Azure	Storage.	Finally,	all	manually
created	tasks	will	be	automated	using	PowerShell	and	the	Azure	CLI	2.0.

The	following	topics	will	be	covered	in	this	chapter:

Azure	Storage	services
Understanding	the	Azure	Storage	architecture
Securing	Azure	Storage
Storage	design	for	highly	available	applications
Understanding	client	libraries
Automating	tasks

	

	

Azure	Storage	services
	

Azure	Storage	has	multiple	services	that	would	fit	most	scenarios.	At	the
moment,	there	are	four	types	of	Azure	Storage	services,	which	are	as	follows:

Blob	storage
Table	storage
Queue	storage
File	storage

Each	of	these	services	can	be	used	for	different	scenarios,	which	we	will	cover	in
detail	shortly.

	

	

	

Blob	storage
	

Blob	stands	for	binary	large	object.	This	type	of	service	can	store	almost
everything	since	it	stores	unstructured	data,	such	as	documents,	files,	images,
VHDs,	and	so	on.

Using	the	Azure	Blob	storage	service	makes	you	capable	of	storing	everything
we	have	just	mentioned,	and	able	to	access	them	from	anywhere	using	different
access	methods,	such	as	URLs,	REST	APIs,	or	even	one	of	the	Azure	SDK
Storage	Client	Libraries,	which	will	be	covered	later	in	this	chapter.

There	are	three	types	of	Blob	storage:

Block	blobs:	They	are	an	excellent	choice	to	store	media	files,	documents,
backups,	and	so	on.	They	are	good	for	files	that	are	read	from	A-Z
(sequential	reading).
Page	blobs:	They	support	random	access	for	files	stored	on	them,	that	is
why,	they	are	commonly	used	for	storing	VHDs	of	Azure	Virtual	Machines.
Append	blobs:	They	are	similar	to	block	blobs,	but	are	commonly	used	for
append	operations.	For	example,	each	time	a	new	block	is	created,	it	will	be
added	to	the	end	of	the	blob.	One	of	the	most	common	use	cases	within
which	append	blobs	can	be	used	is	logging,	where	you	have	multiple
threads	that	need	to	be	written	to	the	same	blob.	This	is	an	excellent
solution	that	would	help	you	to	dump	the	logs	in	a	fast	and	safe	way.

	

	

Creating	Blob	storage
Let’s	see	how	we	can	create	Blob	storage	that	everyone	has	read/write	access	to
in	the	storage	account	we	created	in	the	last	chapter.

1.	 Navigate	to	the	storage	we	created	in	the	last	chapter	using	the	portal,	as
shown	in	the	following	screenshot:

Figure	2.1:	Azure	Storage	services	overview

2.	 You	can	see	all	the	storage	services	in	the	previous	screenshot.	To	manage
blobs,	you	have	to	click	on	Blobs,	and	a	new	blade	will	appear,	as	shown	in
the	following	screenshot:

Figure	2.2:	Azure	Blob	service	overview

3.	 In	order	to	create	a	blob	service,	you	have	to	create	a	container	in	which	the
blob	service	will	be	stored.	To	do	this,	you	click	on	Container	to	create	a
new	one.	However,	it	is	not	a	straightforward	creation	process,	as	you	will
be	asked	to	specify	a	name	and	an	access	type,	as	shown	in	the	following
screenshot:

Figure	2.3:	Creating	a	blob	service

Here	is	a	short	description	for	the	access	types:

Private:	This	option	means	that	only	the	storage	account	owner	has
access	to	the	blobs	created	within	this	container	using	the	access	key,
therefore	you	can	grant	access	privileges	to	any	other	users
Blob:	This	option	means	that	the	blobs	created	within	this	container
will	be	accessed	from	outside	by	read	permissions	only

Container:	This	option	means	that	the	blobs	created	within	the
container	will	be	publicly	available	with	read	and	write	access

4.	 Since	we	want	to	create	a	blob	service	that	everyone	has	read/write	access
to,	we	will	choose	Access	type	as	Container	and	name	it	packtpubbs,	as
shown	in	the	following	screenshot:

Figure	2.4:	Creating	a	blob	service

The	access	type	of	storage	containers	can	be	changed	even	after	creation.

5.	 Once	created,	you	can	open	the	blob	and	start	uploading	your	data	to	it,	as
shown	in	the	following	screenshot:

Figure	2.5:	Uploading	a	.txt	file	to	the	blob

6.	 For	further	customization	of	the	uploaded	blob,	click	on	Advanced	and	you
will	see	options	such	as	specifying	the	Blob	type,	Block	size,	to	which
folder	it	will	upload	the	blob,	and	so	on:

Figure	2.6:	Advanced	customization	to	the	uploaded	blob

Blob	storage	key	points
	

The	following	tips	should	be	considered,	as	they	will	help	you	when	designing
your	storage	solution	using	blob	services:

Blob	storage	supports	both	standards,	but	only	page	blobs	support	Premium
Storage.
Block	blobs	are	named	as	such	because	files	larger	than	64	MB	are
uploaded	as	smaller	blocks,	then	get	combined	into	one	final	blob.
You	cannot	change	the	type	of	blob	once	it	has	been	created.
Block	blobs	are	named	as	such	because	they	provide	random	read/write
access	to	512-byte	pages.
Page	blobs	can	store	up	to	8	TB.
Storage	containers	built	for	Blob	storage	may	only	contain	lowercase
letters,	hyphens,	and	numbers,	and	must	begin	with	a	letter	or	a	number,
however,	the	name	cannot	contain	two	consecutive	hyphens.	The	name
length	can	vary	between	3	to	63	characters.
The	maximum	number	of	blocks	in	a	block	blob	or	append	blob	is	50,000.
The	maximum	size	of	the	block	in	a	block	blob	is	100	MB.	As	a	result,	a
block	blob	can	store	data	of	up	to	4.75	TB.
The	maximum	size	of	the	block	in	an	append	blob	is	4	MB.	As	a	result,	an
append	blob	can	store	data	of	up	to	195	TB.

	

	

Table	storage
High	availability	and	scalability	are	key	factors	when	you	want	to	work	with
your	storage,	and	that	is	exactly	what	is	offered	by	Table	storage.	Table	storage
is	a	Microsoft	NoSQL	data	store	that	can	be	used	for	the	massive	amount	of
semi-structured,	non-relational	data.

Data	is	stored	in	tables	as	a	collection	of	entities,	where	entities	are	like	rows,
and	each	entity	has	a	primary	key	and	a	set	of	properties,	considering	that	a
property	is	like	a	column.

The	Table	storage	service	is	schema-less,	therefore	multiple	entities	in	the	same
table	may	have	different	properties.

An	entity	has	three	properties:

PartitionKey

RowKey

Timestamp

PartitionKey
	

The	PartitionKey	is	a	sequential	range	of	entities	that	have	the	same	key	value.
The	way	that	tables	are	partitioned	is	to	support	load	balancing	across	storage
nodes,	where	tables	entities	are	organized	by	partition.	It	is	considered	the	first
part	of	an	entity's	primary	key.

It	may	be	a	string	value	with	a	size	of	up	to	1	KB,	and	every	insert,	update,	or
delete	operation	must	be	included	in	the	partition	key	property.

	

	

	

RowKey
	

RowKey	is	the	second	part	of	the	entity's	primary	key.	It	is	a	unique	identifier	for
the	entity,	and	every	entity	within	the	table	is	uniquely	identified	by	the
combination	of	PartitionKey	and	RowKey.

Like	PartitionKey,	it	is	a	string	value	that	may	be	up	to	1	KB,	and	every	insert,
update,	or	delete	operation	must	be	included	in	the	RowKey	property.

	

	

	

Timestamp
	

Timestamp	is	a	datetime	value,	and	it	is	kept	on	the	server	side	to	record	when	the
last	modification	of	the	entity	occurred.

Every	time	there	is	a	modification	for	the	entity,	the	Timestamp	value	is	increased.
Considering	that	this	value	should	not	be	set	on	insert	or	update	operations.

	

	

	

Creating	Table	storage
Let’s	see	how	we	can	create	Table	storage	in	the	storage	account	we	created	in
the	last	chapter:

1.	 Navigate	to	the	storage	we	created	in	the	last	chapter	using	the	portal,	as
shown	in	the	following	screenshot:

Figure	2.7:	Azure	Storage	services	overview

2.	 You	can	see	all	the	storage	services	in	the	previous	screenshot.	To	manage
tables,	you	have	to	click	on	Tables,	and	a	new	blade	will	appear,	as	shown
in	the	following	screenshot:

Figure	2.8:	Azure	Table	service	overview

3.	 In	order	to	create	a	table	service,	just	click	on	Table,	and	specify	the	Table
name,	as	shown	in	the	following	screenshot:

Figure	2.9:	Azure	Table	service	creation

4.	 Once	done,	you	will	see	that	the	table	has	been	created,	as	shown	in	the
following	screenshot:

Figure	2.10:	The	created	table

For	database	developers	and	administrators	who	are	interested	in
learning	how	to	access	a	created	table	and	start	working	with	it,
you	can	check	the	following	link:	https://docs.microsoft.com/en-us/azure/stora
ge/storage-dotnet-how-to-use-tables.

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables

Table	storage	key	points
	

The	following	tips	should	be	considered,	as	they	will	help	you	when	designing
your	storage	solution	using	the	Table	storage	service:

Table	storage	supports	Standard	Storage,	but	its	support	for	Premium
Storage	is	in	preview	at	the	time	of	writing
Table	storage	is	significantly	lower	in	cost	than	traditional	SQL
The	entity	can	have	up	to	252	custom	properties,	and	3	system	properties
(PartitionKey,	RowKey,	and	Timestamp)
The	entity's	properties	data	cannot	exceed	1	MB
Table	names	must	follow	the	following	rules:

They	are	case	sensitive
They	contain	only	alphanumeric	characters,	considering	that	they
cannot	begin	with	a	numeric	character
They	cannot	be	redundant	within	the	same	storage	account
You	can	name	a	table	with	another	table	name	written	in	reverse
Their	length	varies	between	3	and	63	characters

	

	

Queue	storage
Queue	storage	is	a	storage	service	that	is	used	to	provide	persistent	and	reliable
messaging	for	application	components.

Generally,	it	creates	a	list	of	messages	that	process	asynchronously,	following
the	First-In,	First-Out	(FIFO)	model.	Not	only	this,	asynchronous	tasks	and
building	process	workflows	can	be	managed	with	Queue	storage	too.

One	of	the	most	common	scenarios	is	passing	messages	from	an	Azure	Web
Role	to	an	Azure	Worker	Role.

Queue	storage	is	not	the	only	messaging	solution	available	at	Azure;	there	are
also	Service	Bus	queues,	which	can	be	used	for	more	advanced	scenarios.

More	information	about	the	differences	between	Azure	Queues
storage	and	Azure	Service	Bus	queues,	can	be	found	via	the
following	URL:	https://docs.microsoft.com/en-us/azure/service-bus-messaging/servic
e-bus-azure-and-service-bus-queues-compared-contrasted.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

Creating	Queue	storage
Let’s	see	how	we	can	create	Queue	storage	in	the	storage	account	we	created	in
the	last	chapter.

1.	 Navigate	to	the	storage	we	created	in	the	last	chapter	using	the	portal,	as
shown	in	the	following	screenshot:

Figure	2.11:	Azure	Storage	services

2.	 You	can	see	all	the	storage	services	in	the	previous	screenshot.	To	manage
queues,	you	have	to	click	on	Queue,	and	a	new	blade	will	appear,	as	shown
in	the	following	screenshot:

Figure	2.12:	Azure	Queue	service	overview

3.	 In	order	to	create	a	Queue	service,	just	click	on	Queue	and	specify	the
Queue	name,	as	shown	in	the	following	screenshot:

Figure	2.13:	Azure	Queue	service	creation

4.	 Once	done,	you	will	see	that	the	Queue	has	been	created,	as	shown	in	the
following	screenshot:

Figure	2.14:	The	created	queue

For	developers	who	are	interested	in	learning	how	to	access	a
created	Queue	and	start	working	with	it,	you	can	check	the
following	link:	https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to
-use-queues.

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-queues

Queue	storage	key	points
	

The	following	tips	should	be	considered,	as	they	will	help	you	when	designing
your	storage	solution	using	the	Queues	service:

Queue	messages	can	be	up	to	64	KB	in	size,	however,	a	Queue	can	contain
messages	up	to	the	limiting	size	of	the	storage	account.
The	maximum	lifetime	of	a	message	in	a	queue	is	7	days.
As	mentioned	previously,	messages	follow	the	FIFO	order,	however,	they
can	be	out	of	order	if	an	application	crash	occurs,	which	is	why	it	would	be
better	to	use	Azure	Service	Bus	queues	for	a	scenario	where	the	FIFO	order
is	highly	important.
Messages	can	be	scheduled	for	delivery	later.
A	Queue	name	may	only	contain	lowercase	letters,	hyphens,	and	numbers,
and	must	begin	with	a	letter	or	number.	It	cannot	contain	two	consecutive
hyphens.	Name	length	varies	from	between	3	and	63	characters.

	

	

File	storage
The	File	storage	service	is	the	easiest	and	coolest	service	to	work	with.	You	can
use	it	to	create	network	file	shares	on	Azure,	and	access	them	from	anywhere	in
the	world.

Server	Message	Block	(SMB)	and	Common	Internet	File	System	(CIFS)	are
the	only	protocols	that	can	be	used	to	access	these	file	shares.

As	a	result,	multiple	Azure	VMs	and	on-premises	machines	can	access	the	same
file	share	and	have	read	and	write	privileges	on	it.	Azure	File	shares	can	be
mounted	to	different	operating	systems,	such	as,	Windows,	Linux,	and	even
macOS	concurrently.

File	storage	advantages
	

The	File	storage	service	has	some	good	reasons	to	use	it,	which	are:

Software	as	a	service	(SaaS)	service:	The	Azure	File	storage	service	is
considered	a	SaaS	service	because	you	do	not	have	to	manage	the
hardware,	operating	system,	patches,	and	so	on.	It	is	simply	fully	managed.
Shareability:	It	can	be	shared	across	multiple	machines	providing	read	and
write	privileges	for	all	of	those	machines.
Automation:	It	supports	working	with	PowerShell	and	the	Azure	CLI,
which	can	be	used	to	create	scripts	to	automate	repetitive	tasks	with
minimal	administration.
Flexibility	and	high	availability:	Using	the	Azure	File	storage	service
eliminates	concerns	regarding	administration	and	outage	issues	that	you
face	with	traditional	file	servers.

	

	

Creating	File	storage
Let's	see	how	we	can	create	File	storage	in	the	storage	account	we	created	in	the
last	chapter.

1.	 Navigate	to	the	storage	we	created	in	the	last	chapter	using	the	portal,	as
shown	in	the	following	screenshot:

Figure	2.15:	Azure	Storage	services

2.	 You	can	see	all	the	storage	services	in	the	previous	screenshot.	To	manage
files,	you	have	to	click	on	Files	and	a	new	blade	will	appear,	as	shown	in
the	following	screenshot:

Figure	2.16:	Azure	File	service	overview

3.	 In	order	to	create	a	file	share,	just	click	on	File	share,	and	specify	the	file
share	Name	and	its	Quota,	considering	that	the	quota	is	optional,	as	shown
in	the	following	screenshot:

Figure	2.17:	Azure	File	share	creation

4.	 Once	done,	you	will	see	that	the	file	share	has	been	created,	as	shown	in	the
following	screenshot.	Considering	that	we	never	specified	a	quota,	it	used
the	maximum	space	the	storage	account	can	store;	therefore,	you	have	to
design	your	file	share	properly	according	to	your	needs,	and	with	the	proper
quota,	to	avoid	any	future	issues	caused	by	the	space	used.	Also,	you	can
change	the	quota	even	after	file	share	creation:

Figure	2.18:	The	created	file	share

5.	 You	can	map	the	file	share	to	your	Windows	machine	or	Linux	machine,
adding	directories	within	the	file	share,	uploading	data	to	it,	and	so	on,	if
you	opened	it	after	creation,	as	shown	in	the	following	screenshot:

Figure	2.19:	Overview	of	the	created	file	share

6.	 To	map	the	file	share	as	a	drive	on	your	Windows	machine	or	Linux
machine,	click	on	Connect,	which	will	open	a	new	blade,	displaying	the
commands	required	to	map	it	to	your	machine,	as	shown	in	the	following
screenshot:

Figure	2.20:	Connecting	to	your	file	share	from	your	Windows	or	Linux	Machine

7.	 To	upload	files	to	it,	click	on	Upload	and	browse	for	the	desired	file,	as
shown	in	the	following	screenshot:

Figure	2.21:	Uploading	a	file	to	the	file	share

File	storage	key	points
	

The	following	tips	should	be	considered,	as	they	will	help	you	when	designing
your	storage	solution	using	the	File	service:

Since	SMB	2.1	does	not	support	encryption,	then	only	the	VMs	within	the
same	region	as	the	storage	account	will	be	able	to	access	it	if	you	are	using
SMB	2.1.	As	a	result,	you	have	to	consider	that	you	cannot	access	the	read-
only	data	available	in	another	region	if	you	are	using	Read-access	geo-
redundant	storage	(RA-GRS)	as	a	replication	type.
Since	SMB	3.0	S	supports	encryption,	you	will	be	able	to	mount	the	file
share	to	any	VM	around	the	globe,	but	port	445	must	be	opened.
At	the	time	of	writing,	only	2	versions	of	macOS	were	supported	for	Azure
File	shares	(Sierra	10.12,	and	El	Capitan	10.11).
For	better	performance	when	working	with	Azure	File	shares	on	macOS,	I
recommend	disabling	SMB	packet	signing.
The	maximum	size	of	a	file	share	is	5	TB,	considering	that	a	file	in	the	file
share	cannot	exceed	1	TB.
Every	Azure	File	share	supports	up	to	1000	IOPS,	and	60	MB/s	throughput.
File	share	names	can	contain	only	lowercase	letters,	numbers,	and	hyphens,
and	must	begin	and	end	with	a	letter	or	number.	The	name	cannot	contain
two	consecutive	hyphens.

At	the	time	of	writing,	Active	Directory-based	authentication	and
Access	Control	Lists	(ACLs)	are	not	supported.	However,	you	can
assign	specific	users	to	access	specific	file	shares,	but
unfortunately,	you	cannot	customize	them	anymore	because	every
user	has	permission	to	a	specific	file	share,	which	will	be	full
access	to	the	share.

	

	

	

Understanding	the	Azure	Storage
architecture
	

Learning	how	to	work	with	Azure	Storage	and	how	to	design	it	to	fit	your
solution	is	everyone's	purpose,	but	learning	what	is	going	on	behind	the	scenes
and	what	every	piece	means	is	what	makes	you	an	expert.

Azure	Storage	is	a	distributed	storage	software	stack	built	by	Microsoft.	The
storage	access	architecture	consists	of	the	following	three	layers:

Front-End	layer
Partition	layer
Stream	layer

	

	

Front-End	layer
The	Front-End	layer	is	responsible	for	receiving	incoming	requests,	their
authentication,	and	authorization,	and	then	delivers	them	to	a	partition	server	in
the	Partition	layer.

You	may	wonder,	how	does	the	frontend	know	which	partition	server	to	forward
each	request	to?	The	answer	is	pretty	easy,	because	the	frontend	caches	a
partition	map.

And	here,	a	new	question	will	pop	up,	what	is	a	partition	map?	It	is	responsible
for	keeping	track	of	the	partitions	of	the	storage	service	being	accessed,	and
which	partition	server	controls	access	to	each	partition	in	the	system.

Partition	layer
The	Partition	layer	is	responsible	for	partitioning	all	the	data	objects	in	the
system.	Not	only	that,	it	is	also	responsible	for	assigning	the	partitions	to
partition	servers,	plus	load	balancing	the	partitions	across	partition	servers	to
meet	the	traffic	needs	of	the	storage	services,	considering	that	a	single	partition
server	would	handle	multiple	partitions.

	

Stream	layer
The	Stream	layer	or	Distributed	and	replicated	File	System	(DFS)	layer	is	the
layer	responsible	for	storing	bits	on	the	disk	and	the	data	durability	as	it
distributes	and	replicates	data	across	many	servers.	All	data	stored	in	this	layer	is
accessible	from	any	partition	server.

Sparse	storage	and	TRIM	in	Azure
When	you	create	a	VHD	on	Azure	to	store	your	data	on	it,	all	the	space	you	have
chosen	as	a	size	for	your	VHD	is	completely	allocated	because	Azure	uses	fixed-
size	VHDs.	Therefore,	you	may	wonder,	will	I	really	pay	for	the	whole	space
even	if	I’m	not	using	it,	especially	as	it	is	not	a	dynamic	disk	but	a	fixed	one.

Let's	discuss	this	in	more	detail.

When	you	create	a	VHD,	all	the	size	is	allocated,	and	that	might	trick	you	into
using	smaller	VHDs	to	save	costs,	but	actually	that	is	not	what	really	happens
behind	the	scenes.

Azure	uses	sparse	storage,	which	means	no	matter	the	size	of	the	VHD	you	have
created,	you	will	only	pay	for	what	you	have	stored	on	the	VHD.	For	example,
you	have	a	1	TB	VHD,	but	you	have	only	200	MB	of	storage	stored	on	it.	You
will	only	pay	for	the	200	MB	storage,	therefore	as	a	best	practice,	you	should
create	the	VHD	with	the	maximum	storage	to	avoid	any	downtime	later	during
the	resizing	process.

Microsoft	does	its	best	to	charge	you	only	for	what	you	use,	that's	why	Azure
Storage	supports	TRIM,	which	means	whenever	you	delete	data	from	it,	you	no
longer	pay	for	the	deleted	storage.

When	you	add	a	VHD,	you	should	use	quick	format	for	the	disk,	not
the	full	format.	Doing	so	will	write	OS	to	the	entire	disk,	which
means	you	will	have	to	pay	for	the	entire	disk.	You	should	also
consider	not	using	defragmentation	to	avoid	the	movement	of	the
disk	blocks,	which	means	greater	costs	will	have	to	be	paid.	For
further	information	about	the	Azure	Storage	architecture,	you	can
download	the	following	PDF	file:	http://www.sigops.org/sosp/sosp11/current/2
011-Cascais/11-calder-online.pdf.

http://www.sigops.org/sosp/sosp11/current/2011-Cascais/11-calder-online.pdf

Securing	Azure	Storage
	

It's	great	to	know	how	to	manage	Azure	Storage,	and	even	to	follow	best
practices	throughout	the	process.	However,	securing	your	storage	should	be	your
biggest	concern,	especially	because	storage	is	the	base	on	which	all	your
Infrastructure	as	a	service	(IaaS)	services	run.

Throughout	this	topic,	we	will	cover	the	following	methods	to	secure	Azure
Storage:

Role-Based	Access	Control	(RBAC)
Access	keys
Shared	access	signature	(SAS)

	

	

RBAC
Giving	every	user	the	exact	permissions	they	need	should	be	your	first	concern
in	order	to	avoid	a	complete	disaster	if	a	user's	credentials	were	exposed.

RBAC	would	help	you	with	segregating	duties	within	your	team;	specifically,
everyone	would	only	be	granted	the	required	permissions	to	get	their	job	done.

RBAC	role	assignments	would	be	granted	based	on:

Subscription
Resource	group
Resource

For	example,	RBAC	can	be	used	to	grant	permissions	for	a	user	to	manage	the
virtual	machines	within	a	subscription,	or	to	grant	permissions	for	a	user	to
manage	a	complete	resource	group	that	contains	virtual	machines,	network
interfaces	(NICs),	storage	accounts,	availability	sets,	and	so	on,	or	granting
permissions	for	a	user	to	manage	a	specific	resource	such	as	a	specific	virtual
machine.	This	does	not	deny	the	fact	that	the	same	user	can	be	granted
permissions	to	another	resource,	resource	group,	or	even	a	subscription.

Granting	the	reader	role	to	a	user
using	RBAC
Throughout	this	topic,	we	will	cover	how	to	grant	a	user	read	permissions	on	our
previously	created	storage	account,	packtpubsa.	So,	without	further	ado,	let's	get
started.

1.	 First,	you	must	have	a	user	in	the	Azure	Active	Directory.	If	not,	you	can
learn	how	via	the	following	link:	https://docs.microsoft.com/en-us/azure/active-directory/
active-directory-users-create-azure-portal.

2.	 Open	the	Azure	portal	and	navigate	to	Storage	account,	then	select	the
storage	account	you	want	the	user	to	have	read	permissions	on,	as	shown	in
the	following	screenshot:

Figure	2.22:	Azure	Storage	account	on	which	we	will	grant	a	user	read	permissions

3.	 Navigate	to	Access	control	(IAM)	and	click	on	Add,	as	shown	in	the
following	screenshot:

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-users-create-azure-portal

Figure	2.23:	Access	control	blade

4.	 Select	the	Role,	which	in	our	case	is	Reader	role,	and	select	the	user	you	are
willing	to	grant	this	role	to,	as	shown	in	the	following	screenshot:

Figure	2.24:	Selecting	the	role	and	the	user	to	which	the	role	is	being	granted

5.	 Once	done,	you	will	see	it	under	READER	role	in	Access	control	(IAM)
blade,	as	shown	in	the	following	screenshot:

Figure	2.25:	The	users	with	reader	role	access	to	packtpubsa	storage	account

To	learn	more	about	RBAC,	you	can	check	out	the	following	links:

RBAC	built-in	roles:	https://docs.microsoft.com/en-us/azure/active-directory
/role-based-access-built-in-roles
Custom	roles	in	Azure	RBAC:	https://docs.microsoft.com/en-us/azure/acti
ve-directory/role-based-access-control-custom-roles.

https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-built-in-roles
https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-custom-roles

Access	keys
Storage	account	access	keys	are	512-bit	strings,	which	are	generated	once	you
create	a	new	storage	account,	and	get	paired	with	it.	These	keys	are	for
authenticating	storage	services	whenever	you	try	to	access	them.

Fortunately,	Azure	provides	two	access	keys.	So,	if	the	primary	key	is
compromised,	you	can	regenerate	the	key,	and	use	the	secondary	key	in	the
meantime.

To	regenerate	access	keys,	you	have	to	navigate	to	the	storage	account,	then
navigate	to	Access	keys	under	SETTINGS,	as	shown	in	the	following
screenshot:	

Figure	2.26:	Storage	account	access	keys

To	regenerate	the	keys,	you	have	to	click	on	the	regenerate	icon,	as	shown	in	the
following	screenshot:

Figure	2.27:	Regenerating	the	primary	key

Whenever	you	regenerate	the	access	key,	you	have	to	update	all	the
clients	who	were	using	the	old	access	key	to	access	the	storage
account	to	avoid	any	disruption	with	your	storage	services	that	are
based	on	the	storage	account	for	which	the	access	keys	were
changed.

SAS
SAS	will	be	covered	in	Chapter	8,	Extending	Your	Azure	Storage	Management	in
the	Azure	Storage	Explorer	section.

Storage	design	for	highly	available
applications
	

What	we	have	covered	so	far	shows	the	importance	of	Azure	Storage	as	a
cornerstone	for	building	whatever	you	want	to	build	on	Azure.	Therefore,	in	this
topic,	we	will	cover	some	of	the	most	important	features	you	have	to	implement
in	order	to	be	able	to	design	highly	available	storage	for	your	applications.

The	following	points	should	be	our	main	focus	when	designing	a	highly
available	storage	solution:

RA-GRS
Azure	Backup
Azure	Site	Recovery
Premium	Storage

	

	

RA-GRS
RA-GRS	is	the	highest	durable	replication	type,	as	was	covered	in	the	last
chapter.	Not	only	this,	but	it	also	gives	you	read	access	to	your	storage	in	another
region,	which	may	reduce	latency	if	you	have	to	query	your	storage	from	a	place
that	is	nearer	to	the	that	region	than	the	primary	region,	considering	that	you	will
access	the	Last	Sync	Time	value,	as	Azure	uses	asynchronous	replication
between	regions.

But,	you	might	wonder,	what	if	the	primary	region	was	completely	destroyed,
and	your	application	needed	to	make	write	operations	to	the	storage?	The	answer
is	simple,	Microsoft	will	failover	the	other	region,	but	not	immediately,	it	might
take	some	time.	Therefore,	for	a	complete	guide	about	what	to	do	if	a	storage
outage	occurs,	how	to	prepare	for	it,	and	even	how	to	detect	it,	you	can	check
out	the	following	link:	https://docs.microsoft.com/en-us/azure/storage/storage-disaster-recovery-gui
dance.

At	the	time	of	writing,	all	storage	services	can	be	queried	in	the
secondary	regions	when	using	RA-GRS	except	file	services.

https://docs.microsoft.com/en-us/azure/storage/storage-disaster-recovery-guidance

Azure	Backup
	

Lately,	many	enterprises	have	been	exposed	to	piracy,	especially	ransomware.
Without	having	a	backup	of	your	storage,	your	data	might	be	encrypted,	and	you
will	have	to	either	pay	to	get	it	decrypted,	or	you	will	never	see	it	again.	That	is
why	considering	Azure	Backup	as	a	part	of	you	design	will	be	very	beneficial	to
keeping	your	application	highly	available.

Further	details	about	Azure	Backup	will	be	covered	in	Chapter	8,	Extending	Your
Azure	Storage	Management.

	

	

	

Azure	Site	Recovery
If	you	have	your	application	built	on	Azure	VMs,	or	even	on-premises	VMs,	you
have	to	make	sure	that	there's	a	disaster	recovery	site	for	your	environment,	and
to	do	so	you	can	user	Azure	Site	Recovery.

Azure	Site	Recovery	will	replicate	changes	to	the	VMs'	virtual	hard	disks,	so,
whatever	happens,	you	will	be	good	to	go	with	your	disaster	recovery	site,
keeping	your	application	highly	available.

Further	details	about	Azure	Site	Recovery	will	be	covered	in	Chapter	8,	Extending
Your	Azure	Storage	Management.

Premium	Storage
Using	Premium	Storage	will	increase	the	performance	of	your	application;	as	a
result,	it	will	be	highly	available.	Azure	Premium	Storage	has	a	throughput	rate
of	up	to	50	GBps	and	80,000	IOPs.	Using	storage	with	such	specifications	can
make	not	only	a	highly	available	application,	but	also	an	application	with	super-
fast	performance.

	

Understanding	client	libraries
When	we	created	our	storage	account,	the	name	of	the	account	took	the
following	format	storageaccount.core.windows.net.

So,	it	is	no	surprise	that	all	the	storage	service's	endpoints	took	the	following
format:

Blob:	storageaccount.blob.core.windows.net
Table:	storageaccount.table.core.windows.net
Queue:	storageaccount.queue.core.windows.net
File:	storageaccount.file.core.windows.net

These	endpoints	are	exposed	through	REST	APIs	to	be	accessed	by	any	platform
using	HTTP.

That	is	why	Microsoft	provides	several	client	libraries	to	give	developers	a	high
level	of	control	over	Azure	Storage	services.

Azure	Storage	supports	many	client	libraries	for	many	platforms,	such	as:

.NET
Java
Node.js
PHP
Ruby
Python
C++
iOS
Android

Microsoft	keeps	adding	new	client	libraries,	so	don't	be	surprised	if	you	find	that
new	client	libraries	have	been	added	when	you	are	reading	this	book.	That	is
what	Microsoft	does	with	its	cloud	services,	it	keeps	adding	new	features,	and
supports	new	things.

For	further	information	about	how	to	use	client	libraries,	you	can
check	out	the	following	links:

.NET:	https://docs.microsoft.com/en-us/dotnet/api/overview/azure/storage?view=
azure-dotnet
Java:	https://docs.microsoft.com/en-us/java/api/overview/azure/storage
Node.js:	http://azure.github.io/azure-storage-node/
PHP:	http://azure.github.io/azure-storage-php/
Ruby:	http://azure.github.io/azure-storage-ruby/
Python:	https://azure-storage.readthedocs.io/en/latest/index.html
C++:	http://azure.github.io/azure-storage-cpp/
iOS:	https://github.com/Azure/azure-storage-ios
Android:	http://azure.github.io/azure-storage-android/

https://docs.microsoft.com/en-us/dotnet/api/overview/azure/storage?view=azure-dotnet
https://docs.microsoft.com/en-us/java/api/overview/azure/storage
http://azure.github.io/azure-storage-node/
http://azure.github.io/azure-storage-php/
http://azure.github.io/azure-storage-ruby/
https://azure-storage.readthedocs.io/en/latest/index.html
http://azure.github.io/azure-storage-cpp/
https://github.com/Azure/azure-storage-ios
http://azure.github.io/azure-storage-android/

Automating	tasks
As	usual	when	we	reach	the	end	of	a	chapter,	we	will	work	on	automating	the
tasks	that	we	have	done	manually.	So,	let's	get	started.

Creating	Blob	storage	using
PowerShell
In	this	topic,	we	will	cover	how	to	create	Blob	storage	that	everyone	has
read/write	access	to	in	the	storage	account	we	created	in	the	last	chapter:

$ContainerName	=	packtpubbs

$SAK	=	Get-AzureRmStorageAccountKey	-StorageAccountName	"packtpubsaps"	-

ResourceGroupName	packtpub

$SAK	=	$SAK	|	Where	{$_.KeyName	-like	“key1”}

$SC	=	New-AzureStorageContext	-StorageAccountName	packtpubsaps	-StorageAccountKey	

$SAK.Value

New-AzureStorageContainer	-Name	$ContainerName	-Permission	Container	-Context	$SC

Set-AzureStorageBlobContent	-Container	$ContainerName	-File	C:\test.txt	-Context	$SC

Steps	in	detail:

1.	 Create	a	variable	for	the	container	name,	so	you	do	not	have	to	write	it
repeatedly.

2.	 Create	a	variable	for	the	storage	account	key	named	$SAK,	within	which	the
access	keys	will	be	stored.

3.	 Since	you	need	the	primary	key	only,	you	have	to	select	it	and	put	it	into	the
same	variable.

4.	 Then,	you	have	to	create	a	storage	context	which	encapsulates	the	storage
account	credentials,	named	$SC.

5.	 As	the	blob	needs	a	container	to	be	created	within,	you	have	to	create	a	new
one,	considering	that	the	Permission	parameter	refers	to	Access	type	in	the
portal,	in	addition	to	specifying	the	Context	to	know	in	which	storage
account	this	container	will	be	created.

6.	 Once	done,	you	can	start	to	upload	your	storage	to	the	blob.

In	the	beginning,	we	have	got	to	create	a	storage	account	key	variable,	$SAK,
within	which	there	will	be	the	access	key	values.	But,	since	we	only	need	the
primary	key,	we	have	got	to	select	that	key	and	put	it	into	the	$SAK	variable.

The	private	access	type	in	PowerShell	is	changed	to	Off,	so
consider	that	when	you	want	to	create	a	container	with	the	private
access	type	using	PowerShell.

Creating	Blob	storage	using	the
Azure	CLI	2.0
Let's	repeat	the	previous	task,	but	this	time,	we	are	going	to	use	the	Azure	CLI
2.0:

az	storage	container	create	--name	packtpubbs	--public-access	container	--account-name	

packtpubsacli

az	storage	blob	upload	--file	C:\test.txt	--container-name	packtpubbs	--name	blobcli	-

-account-name	packtpubsacli

In	the	preceding	command,	we	have	only	changed	the	storage	account,	which	we
have	created	to	be	used	in	tasks	implemented	by	the	Azure	CLI	2.0,	and	we
named	the	blob	blobcli.

The	private	access	type	in	the	Azure	CLI	is	changed	to	Off,	so
consider	that	when	you	want	to	create	a	container	with	the	private
access	type	using	the	Azure	CLI.

Creating	Table	storage	using
PowerShell
Using	the	same	session	opened	in	PowerShell	in	the	previous	task,	let's	create	a
table.

New-AzureStorageTable	-Name	packtpubtable	-Context	$SC

Creating	Table	storage	using	the
Azure	CLI	2.0
Creating	a	table	using	the	Azure	CLI	2.0	is	very	straightforward;	you	only	have
to	specify	the	name	of	the	table	and	the	storage	account	within	which	the	table
will	be	created:

az	storage	table	create	--name	packtpubtable	--account-name	packtpubsacli

Creating	Queue	storage	using
PowerShell
Using	the	same	PowerShell	session,	let's	create	a	queue:

New-AzureStorageQueue	-Name	packtpubqueue	-Context	$SC

Creating	Queue	storage	using	the
Azure	CLI	2.0
Again,	we	will	just	follow	the	same	format	as	the	storage	services	we	created
previously:

az	storage	queue	create	--name	packtpubqueue	--account-name	packtpubsacli

Creating	a	file	share	using
PowerShell
At	the	moment,	there	are	no	cmdlets	available	to	create	file	shares	on	Azure,	but
they	are	expected	to	be	available	soon.

Granting	the	reader	role	to	a	user
with	RBAC	using	PowerShell
	

Let's	grant	a	user	the	reader	role	using	RBAC	via	PowerShell	to	a	resource
group:

New-AzureRmRoleAssignment	-ResourceGroupName	PacktPub	-SignInName	x@company.com	-

RoleDefinitionName	Reader

Considering	that	the	SignInName	parameter	is	the	SignInName	of	the	user	you	want	to
assign	read	access	to.

	

	

	

Granting	the	reader	role	for	a	user
with	RBAC	using	the	Azure	CLI	2.0
There	is	no	big	difference	between	the	parameters	used	in	this	example,
compared	to	the	ones	used	in	PowerShell.

az	role	assignment	create	--assignee	x@company.com	--role	Reader	--resource-group	

PacktPub

Regenerating	storage	account	access
keys	using	PowerShell
	

In	creating	Blob	storage	using	PowerShell,	you	learned	how	to	retrieve	storage
account	access	keys.	Using	the	same	PowerShell	session,	we	will	regenerate	the
keys.

New-AzureRmStorageAccountKey	-StorageAccountName	packtpubsaps	-KeyName	key1	-

ResourceGroupName	PacktPub

Considering	that	key1	is	the	primary	key	and	key2	is	the	secondary	key.

	

	

	

Regenerating	storage	account	access
keys	using	the	Azure	CLI	2.0
At	the	moment,	there	are	no	commands	to	regenerate	storage	account	access
keys	using	the	Azure	CLI	2.0,	however,	they	are	expected	to	be	available	soon.

Summary
	

So	far,	we	have	gone	through	Azure	Storage	in	detail,	illustrating	Azure	Storage
services,	its	architecture,	and	even	how	to	secure	it.	Then,	we	proposed	some
storage	design	best	practices	to	keep	your	application	highly	available,	and	since
Azure	Storage	is	not	only	managed	through	the	portal,	Azure	PowerShell,	and
Azure	CLI,	we	briefly	talked	about	the	client	libraries	that	are	most	suitable	for
developers.	At	the	end	of	the	chapter,	we	automated	the	tasks	that	have	been
implemented	so	far.

Next,	Azure	Virtual	Machines	and	their	dependency	on	Azure	Storage	will	be
covered	in	detail.	Therefore,	the	knowledge	gained	in	this	chapter	is	required	for
a	better	understanding	of	the	coming	chapter.

	

	

	

Azure	Storage	for	VMs
	

In	this	chapter,	we	will	go	through	the	relationship	between	Azure	Virtual
Machines	(VMs)	and	Azure	Storage.	The	chapter	will	kick	off	by	introducing
Azure	VMs,	moving	forward	to	how	to	create	these	VMs,	then	you	will	learn
about	the	storage	considerations	you	need	to	take	care	of	to	get	a	better	design
for	your	environment,	and	even	how	to	capture	images	from	these	VMs.	Finally,
you	will	learn	how	to	automate	these	tasks.

The	following	topics	will	be	covered:

An	introduction	to	Azure	VMs
Creating	an	Azure	VM
Storage	considerations	for	Azure	VMs
Capturing	VMs
Automating	your	common	tasks	with	Azure	VM	storage

	

	

An	introduction	to	Azure	VMs
Azure	VMs	is	the	most	well-known,	usable,	and	oldest	service	available	in
Azure.	Azure	VMs	provides	the	deployment	of	different	flavors	of	Windows	and
Linux	VMs.

Using	Azure	VMs	provides	you	with	full	control	over	the	configuration	and
management	of	a	VM.	Management	refers	to	installing	software,	patching,	and
even	maintaining	a	VM.

It	is	no	surprise	that,	when	you	create	a	normal	VM,	whether	it	is	on-premises	or
off-premises,	you	need	storage	for	the	VM's	virtual	hard	disk.	That	leads	us	to
understanding	that	Azure	VMs	use	Azure	Storage	as	a	storage	provider,	and	that
is	what	I	am	going	to	cover	in	detail	throughout	this	chapter.

But	before	getting	started	and	getting	our	hands	dirty	with	playing	with	Azure
VMs,	I'm	going	to	illustrate	some	confusing	points	regarding	them.

Fortunately,	Microsoft	bills	VMs	per	minute,	not	per	hour,	therefore,	when	you
use	a	VM	for	30	minutes,	you	will	only	be	charged	for	30	minutes.	Also,	when	a
VM	is	not	running,	you	will	not	be	charged	for	the	computing	resources	(CPU
and	Memory),	however,	you	will	be	charged	for	the	VM	storage,	so	let’s	discuss
VM	states	in	more	detail:

State Description

Running The	VM	is	running	and	you	get	charged	for	usage	as	usual

Stopped
The	VM	is	shut	down	by	Windows/Linux,	but	you	still	get	charged	for
the	VM,	as	it	still	deployed	to	the	same	physical	host	and	resources	are
still	reserved	for	it

Stopped
(deallocated)

The	VM	is	stopped	by	the	stop	button	on	the	VM	blade	via	the	Azure
portal

	

At	the	time	of	writing,	Microsoft	has	two	Service	Level	Agreements	(SLAs)	for
Azure	VMs:

Two	or	more	VMs	within	the	same	availability	set	have	99.95%	availability
to	one	VM	guaranteed
Using	a	single	VM	that	uses	Premium	Storage	will	provide	at	least	99.9%
availability

To	keep	updated	on	Microsoft	SLAs	for	Azure	VMs,	keep	your	eye
on	the	following	link:	https://azure.microsoft.com/en-us/support/legal/sla/virtual-m
achines/v1_6/.

https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_6/

Azure	VMs	series
	

Azure	VMs	have	multiple	series	to	fit	different	cases	and	scenarios:

A	Series:	This	series	is	most	commonly	used	in	development	and	test
scenarios
D	Series:	This	series	has	a	fast	CPU	and	solid-state	drives	(SSD)	disks,
and	is	most	commonly	used	for	general-purpose	computing,	such	as
relational	databases,	and	every	application	that	requires	high	IOPs
F	Series:	This	series	targets	applications	that	require	intensive	compute
power,	such	as	web	servers
G	Series:	This	series	targets	applications	that	require	high	memory	and	fast
storage,	such	as	ERP,	and	SAP	solutions
H	Series:	This	series	has	very	high	compute	capabilities,	and	might	fit	in
scenarios	that	require	high	performance,	such	as	analytics
L	Series:	This	series	is	dedicated	to	applications	that	require	low	latency,
high	throughput,	high	IOPs,	and	large	size	disks,	such	as	NoSQL	databases
N	Series:	This	series	has	high	GPU	capabilities,	and	fits	scenarios	such	as
video	editing,	graphics	rendering,	and	so	on

For	further	information	about	Azure	VMs	series	and	the	new	series
that	will	be	added,	you	can	check	the	following	link:	https://azure.micros
oft.com/en-us/pricing/details/virtual-machines/series/.

	

	

	

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/

Creating	an	Azure	VM
Before	diving	further	into	Azure	VMs	and	their	concerns	with	Azure	Storage,
let's	create	an	Azure	VM:

1.	 Open	the	Azure	portal	and	navigate	to	Virtual	machines,	as	shown	in	the
following	screenshot:

Figure	3.1:	Azure	VMs	blade	overview

2.	 Click	on	Create	Virtual	Machines	to	select	an	OS	image	for	the	VM.
3.	 For	the	sake	of	this	demonstration,	I'll	select	Windows	Server	2016

Datacenter,	as	shown	in	the	following	screenshot:

Figure	3.2:	Selecting	the	image	that	is	going	to	be	used	on	the	VM

4.	 Once	you	click	on	the	image,	you	will	be	asked	to	determine	the
deployment	model,	as	shown	in	the	following	screenshot:

Figure	3.3:	Selecting	the	VM	deployment	model

5.	 Once	you	specify	the	deployment	model,	a	new	blade	will	pop	up,	and	you
will	be	asked	to	fill	in	the	fields,	as	shown	in	the	following	screenshot:

Figure	3.4:	Filling	in	Azure	VM	basic	info	Where:

Name:	The	VM	name
VM	disk	type:	There	are	two	types	of	disks,	HHD	and	SSD,	and	you	can	select	the	type	according	to	your	needs

Username	and	password:	The	credentials	that	will	be	used	to	access	the	VM
Subscription:	If	you	have	multiple	subscriptions,	you	can	select	the	desired	subscription	on	which	the	VM	will	be

billed
Resource	group:	You	have	two	options--to	create	a	new	one	or	select	an	existing	group--and	since	a	resource	group

was	created	in	Chapter	1,	Understanding	Azure	Storage	101,	it	will	be	used	in	this	demonstration
Location:	Select	the	nearest	region	to	you,	so	you	can	reduce	latency

Finally,	you	will	be	asked	if	you	have	a	Windows	Server	license	or	not,	because	if	you	do	have	it,	charges	will	be
reduced	by	40	percent.

6.	 Once	you	are	done	with	the	basic	settings,	you	will	be	asked	to	specify	the	size	of	the	VM,	as	shown	in	the	following
screenshot:

Figure	3.5:	Selecting	the	VM	size

Consider	that	you	can	shortlist	the	result	of	the	size	by	determining	the	disk	type,	minimum	cores,	and	minimum	memory.

7.	 Once	you	select	the	size,	the	Settings	blade	will	pop	up,	as	shown	in	the	following	screenshot.	Consider	that	none	of	the
settings	will	be	changed	here,	as	I’ll	cover	this	in	detail	shortly:

Figure	3.6:	Azure	VM	settings

8.	 Once	your	settings	are	configured,	you	can	go	ahead	and	purchase	the	VM	or	you	can	download	the	template	for	the	VM
configuration	that	has	been	done	so	far	and	reuse	it	later	to	automate	the	process,	as	shown	in	the	following	screenshot:

Figure	3.7:	Purchasing	the	VM

To	learn	how	to	create	and	deploy	a	JSON	template,	you	can	check	the	following	URL	https://docs.microsoft.com/en-us/azure/
azure-resource-manager/resource-manager-create-first-template.

9.	 Once	the	VM	is	deployed,	you	can	navigate	to	it,	as	shown	in	the	following	screenshot:

Figure	3.8:	Overview	of	Azure	VM

10.	 You	can	connect	to	the	VM	by	clicking	on	Connect,	which	will	download	a	preconfigured	RDP	file,	and	once	you	open	it,	you
will	be	asked	to	enter	the	VM	credentials,	as	shown	in	the	following	screenshot:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-create-first-template

Figure	3.9:	Connecting	to	the	VM	via	RDP

To	create	a	Linux	VM,	you	have	to	go	through	the	same	steps	that	have	been	done	so	far;	there	aren't	too	many
differences.

VM	settings
	

During	VM	creation,	you	have	to	specify	some	settings,	such	as	the	disk	type,
the	disk's	manageability,	some	virtual	network	configuration,	extensions,
availability	sets,	and	monitoring.

Therefore,	in	this	topic,	we	will	be	covering	these	settings	in	further	details:

Disk	type:	Selecting	the	type	of	disk,	whether	it	is	hard	disk	drives
(HDD),	which	means	you	will	be	using	Standard	Storage	or	SSD,	which
means	you	will	be	using	Premium	Storage.
Use	managed	disks:	Since	you	might	create	a	storage	account	and	forget
that	it	has	limitations	in	its	IOPs,	throughput,	and	so	on.	That	could	cause
too	many	issues	in	the	performance	of	the	VMs	assigned	to	that	storage
account	because	they	exceed	its	limitations.	But	when	using	managed
storage	accounts,	Microsoft	will	handle	that	for	you.	You	will	not	be
responsible	for	monitoring	whether	the	storage	account	has	exceeded	its
limitations	or	not,	which	would	require	a	tedious	calculation	process	for
every	service	you	are	using	that	uses	this	storage	account.	Further	details
about	managed	and	unmanaged	disks	will	be	covered	in	more	detail	shortly.
Virtual	network:	It	is	common	that,	when	you	create	a	VM,	you	have	to
specify	a	virtual	network	for	it,	from	which	it	will	take	an	IP	address	that
will	allow	the	VM	to	communicate	with	another	VM,	and	even	to	be
communicated	to:

Subnet:	Is	a	part	of	the	virtual	network,	as	you	can	create	multiple
subnets	within	the	same	virtual	network.	For	example,	you	might
create	a	subnet	for	web	servers	and	another	one	for	database	servers,
however,	they	can	communicate	normally	without	the	need	to	do	some
routing	since	they	are	in	the	same	virtual	network.
Public	IP	address:	Since	this	VM	is	built	on	Azure,	you	cannot
connect	to	it	with	its	private	IP	address,	as	you	will	connect	to	it	over
the	internet.	That	is	why	a	public	IP	address	has	to	be	specified.

Network	security	group:	This	is	considered	the	firewall	for	the	whole
virtual	network,	from	which	you	can	specify	who	can	access	the	VMs
and	on	which	port,	and	can	even	control	outbound	traffic,	specifying
which	VM	can	access	the	outside	world	and	from	which	port.

Extensions:	As	mentioned	in	the	terminologies	table	in	Chapter	1,
Understanding	Azure	Storage	101,	extensions	are	software	components	that
extend	VM	functionality	and	simplify	various	management	operations,	such
as	adding	an	anti-malware	solution	to	the	VM	during	its	deployment	to	be
used	later	when	you	start	managing	the	VM.
Availability	set:	As	mentioned	in	the	terminologies	table	in	Chapter	1,
Understanding	Azure	Storage	101,	availability	set	means	that	the	VMs	are
spread	over	different	fault	domains	and	update	domains,	which	ensures	that,
in	the	event	of	a	rack	failure,	not	all	instances	are	brought	down	at	the	same
time.	If	any	updates	are	applied	to	a	host	on	which	there	is	one	of	your	VMs
and	requires	a	restart,	it	will	not	be	applied	to	the	other	VM	within	the	same
availability	set.
Monitoring:	Where	you	will	have	to	determine	whether	you	want	to
monitor	the	VM	booting	and	its	OS	or	not:

Boot	diagnostics:	Your	VM	might	get	stuck	while	booting,	especially
if	you	are	using	your	own	image.	In	this	case,	boot	diagnostics	will	be
a	huge	benefit,	as	it	will	help	you	to	diagnose	and	recover	your	VMs
from	failures.
Guest	OS	diagnostics:	Will	capture	data	from	the	running	OS	and	the
applications	running	on	it,	so	you	can	diagnose	your	issues	and	recover
from	it.
Diagnostics	storage	account:	Since	the	logs	need	a	storage	account	to
be	stored	in,	you	can	create	a	dedicated	account	for	diagnostics	or	even
use	an	existing	account.	Considering	that,	I	highly	recommend	using	a
dedicated	storage	account.

So	far,	I	have	covered	the	settings	in	a	nutshell,	however,	there	is	more	to	be
covered,	but	since	that	is	beyond	the	scope	of	this	book,	it	will	not	be	covered
here.	However,	you	can	check	out	the	following	links	for	further	information
about	settings:

Azure	Virtual	Networks:	https://docs.microsoft.com/en-us/azure/virtual-network/virtual-net

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

works-overview
VM	extensions:	https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-f
eatures
Availability	sets:	https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-av
ailability
Monitoring:	https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-over
view-of-diagnostic-logs

	

	

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-features
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/manage-availability
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-of-diagnostic-logs

Storage	considerations	for	Azure
VMs
As	mentioned	earlier,	Azure	VMs	depend	on	Azure	Storage	to	function	properly.
Therefore,	let's	go	through	some	storage	considerations	for	Azure	VMs	for	a
better	design	for	your	environment.

Managed	versus	unmanaged	disks
As	mentioned	earlier,	managed	disks	save	lots	of	effort	and	even	support
Premium	Storage	and	Standard	Storage.

Managed	disks	key	points
Let's	cover	some	of	the	managed	disks	key	points	that	may	influence	your	design
and	even	your	decision	when	it	comes	to	selecting	whether	to	use	managed	disks
or	not:

Simplicity:	Using	managed	disks	will	eliminate	lots	of	concerns	when	it
comes	to	storage	design	because	you	will	not	have	to	consider	the
limitations	of	the	storage	account,	such	as	IOPs.	For	example,	if	you	have
multiple	VMs	running	and	their	disks	are	assigned	to	the	same	storage
account,	you	might	face	some	performance	issues	because	the	VMs'	disks
have	exceeded	the	IOPs	limitations.
Managed	disks	limits:	Managed	disks	support	up	to	10,000	disks	per
subscription,	which	means	a	massive	number	of	VMs	can	be	created	within
the	same	subscription	using	managed	disks.
Reliability:	Using	managed	disks	ensure	that	the	disks	of	VM	in	an
availability	set	are	completely	isolated	by	assigning	disks	to	different
storage	scale	units,	so	whenever	a	failure	occurs	in	one	of	the	VM	disks,
other	VM	disks	are	working	properly.
Azure	Storage	Replication	Support:	At	the	moment,	managed	disks
support	only	the	Locally	Redundant	Storage	(LRS)	replication	type.
Azure	Backup	support:	Managed	disks	support	Azure	Backup	and	it	is	a
very	important	thing	to	consider	because,	if	the	data	center	in	which	your
storage	exists	get	damaged,	you	must	have	a	backup	of	your	storage	in
another	region.
Snapshot	support:	Managed	disks	support	snapshot,	which	is	a	read-only
copy	of	a	managed	disk,	therefore,	can	be	used	as	a	backup	method.
Consider	that	snapshotted	storage	gets	charged	independently	based	on	its
size.

A	snapshot	can	only	be	taken	from	one	disk	at	a	time,	so	if	you	have
multiple	disks	that	use	one	of	the	RAID	techniques,	you	cannot
restore	the	disks	again	with	the	same	state,	because	snapshots	have
no	awareness	of	that.

Images	support:	When	you	want	to	create	an	image	from	a	Sysprepped
VM,	you	can	capture	an	image	of	all	its	managed	disks	so	it	can	be	used
later	as	a	template	to	create	other	VMs.

Images	and	snapshots	are	completely	different.	An	image	is	a	like	a
VM	template	that	can	be	used	to	recreate	other	VMs	with	the	same
specifications,	and	that	includes	the	disks	attached	to	it.	However,
snapshots	are	a	point	in	time	of	one	disk.	For	example,	a	snapshot
of	a	disk	can	be	considered	as	a	backup	for	a	disk	until	the	moment
the	snapshot	is	taken	and	can	be	reused	for	other	VMs	later.

When	using	Azure,	you	have	to	consider	that	everything	comes	with	a
price.	Most	of	the	time,	it	is	not	expensive;	however,	when	using	managed
disks,	you	must	consider	storage	type,	disk	size,	and	so	on,	because	that
adds	more	credits.

To	calculate	the	expected	credits	for	using	managed	disks
according	to	your	environment	size,	please	go	to	the	pricing
calculator	via	the	following	link:	https://azure.microsoft.com/en-us/pricing/cal
culator/,	and	for	further	information	about	pricing	and	billing	for
Azure	managed	disks,	you	can	check	the	following	link:	https://docs.mi
crosoft.com/en-us/azure/storage/storage-managed-disks-overview#pricing-and-billing.

https://azure.microsoft.com/en-us/pricing/calculator/
https://docs.microsoft.com/en-us/azure/storage/storage-managed-disks-overview#pricing-and-billing

VM	disks
Whenever	you	create	a	VM,	there	will	be	only	one	disk	attached	to	it,	but	there
are	some	other	disks	that	can	be	added	to	Azure	VMs,	so	let's	figure	out	the
types	of	VM	disks:

OS	disk:	The	disk	on	which	the	operating	system	files	exist,	which	is	the	C
drive	by	default	for	Windows,	and	dev/sda	for	Linux.	The	OS	disk	size	can
be	up	to	2	TB.
Temporary	disk:	This	disk	exists	by	default	in	any	VM,	but	as	its	name
suggests,	it	is	temporary,	which	means	it	is	non-persistent.	In	other	words,
whenever	your	VM	is	turned	off,	the	data	will	be	lost.	This	disk	provides
temporary	storage	and	uses	the	drive	letter	D	by	default	in	Windows,	and
/dev/sdb1	in	Linux.	Temporary	storage	exists	in	the	physical	host	of	the	VM,
but	since	the	VM	could	be	moved	to	any	other	host	at	any	time	due	to	a
failure	in	that	physical	host,	your	data	will	be	lost.	Also,	the	temporary	disk
size	varies	based	on	the	VM	size.	In	addition	to	this,	when	using	temporary
storage,	you	will	not	incur	any	charges.	If	you	restart	the	VM	via	Windows,
you	will	not	lose	the	data	that	exists	in	the	temporary	storage	disk;
otherwise,	you	will	lose	it	if	any	downtime	occurs	for	whatever	reason.

One	of	the	most	common	uses	for	the	temporary	disk	is	storing
paging	files.	After	all,	every	time	the	VM	starts	up,	the	paging	file
will	be	created	in	the	temporary	storage.

Data	disk:	This	disk	is	not	added	to	the	VM	by	default,	you	will	have	to
add	it	yourself,	as	you	will	see	shortly.	Data	disks	are	used	to	store
permanent	data,	which	means	it	is	persistent.	For	example,	you	can	save
your	SQL	database	or	any	other	application	data.	At	the	moment,	the	data
disk	maximum	size	is	almost	4	TB,	but	you	can	add	more	than	one	data
disk	to	a	VM,	depending	on	the	VM	size.

All	disks	can	use	the	Standard	or	Premium	Storage,	based	on	your
selection	of	the	storage	type	and	the	VM	size.

Microsoft	has	made	a	good	comparison	of	Azure	Premium	Disks	versus	Azure
Standard	Disks,	as	shown	in	the	following	table:	

Reference:	https://docs.microsoft.com/en-us/azure/storage/storage-about-disks-and-vhds-windows#type
s-of-disks.

https://docs.microsoft.com/en-us/azure/storage/storage-about-disks-and-vhds-windows#types-of-disks

Adding	a	data	disk	to	Azure	VM
Nothing	is	better	than	getting	our	hands	dirty	after	understanding	what	is	going
on,	so	without	further	ado,	let's	get	started:

1.	 Navigate	to	the	VM	we	created	earlier,	as	shown	in	the	following
screenshot:

Figure	3.10:	Overview	of	Azure	VM

2.	 Navigate	to	Disks,	which	exists	under	SETTINGS,	as	shown	in	the
following	screenshot:

Figure	3.11:	Azure	VM	disk	overview

3.	 You	will	notice	that	only	OS	disk	is	added,	and	here	you	may	wonder,
where	is	the	temporary	disk?	The	answer	is	it	is	not	here	because,	as	I
mentioned	earlier,	it	is	a	part	of	the	VM	physical	host,	but	in	order	to	see	it,
you	must	open	the	VM,	and	navigate	to	This	PC,	as	shown	in	the	following
screenshot:

Figure	3.12:	VM	disks

4.	 Let's	get	back	to	our	main	purpose,	which	is	adding	a	data	disk.	You	have	to
click	on	Add	data	disks	and	fill	in	the	fields,	as	shown	in	the	following
screenshot:

Figure	3.13:	Adding	a	data	disk

Where:

Name:	The	name	of	the	disk
Source	type:	Selecting	whether	it	is	a	new	disk	to	be	added	or	you	are
adding	an	existing	disk	from	an	existing	blob
Account	type:	Whether	it	is	Standard	or	Premium
Size:	I	entered	the	maximum	size,	as	Microsoft	supports	sparse	and
trimming
Storage	container:	Browse	for	the	container	on	which	you	are	willing
to	put	that	disk
Storage	blob	name:	The	name	of	the	blob	on	which	the	disk	is	stored

5.	 Once	you	click	on	OK,	you	will	be	navigated	back	to	the	disks	blade	and
you	have	to	save	what	you	have	done,	as	shown	in	the	following
screenshot:

Figure	3.14:	Saving	the	added	data	disk

6.	 Once	you	are	done	with	adding	the	data	disk,	you	have	to	open	the	Disk
Management	in	the	VM,	as	shown	in	the	following	screenshot:

Figure	3.15:	Initializing	the	new	data	disk

7.	 Hover	over	the	unallocated	space	and	start	the	creation	of	a	new	partition.
8.	 Once	you	are	done,	space	will	be	allocated,	and	the	data	disk	will	be	ready

to	use,	as	shown	in	the	following	screenshot:

Figure	3.16:	The	new	data	disk

Data	disks	key	points
	

For	a	better	understanding	about	data	disks,	you	have	to	take	the	following	key
points	into	consideration:

Adding	more	data	disks	increases	the	IOPs,	and	throughput,	especially	if
you	are	using	stripping
Do	not	use	Full	Format	because	that	will	fill	the	disk	clusters	with	OS,
which	means	the	disk	will	appear	to	be	filled	with	data,	and	as	a	result,	you
will	have	to	pay	for	the	whole	disk,	whether	you	use	it	partially,	or
completely
Trimming	is	supported	for	at	least	Windows	Server	2012/	Windows	8	for
Windows-based	VMs
For	further	information	about	attaching	disks	to	Linux	VMs	in	Azure,	check
out	the	following	link:	https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-
manage-disks#create-and-attach-disks

	

	

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-manage-disks#create-and-attach-disks

Resizing	disks
As	I	mentioned	earlier,	I	recommend	using	the	disks	with	their	maximum	size,
however,	if	you	already	have	some	disks	created	and	want	to	resize	them,	or
even	want	to	resize	the	OS	disk	(because	by	default	it	is	127	GB),	you	can
follow	these	steps:

1.	 Navigate	to	the	VM,	stop	it,	and	wait	until	its	status	turns	to	Stopped
(deallocated).

2.	 Navigate	to	Disks,	which	is	located	under	SETTINGS,	as	shown	in	the
following	screenshot:

Figure	3.17:	Azure	VM	disks

3.	 Navigate	to	the	OS	disk.

4.	 Enter	the	size	you	wish	the	disk	to	be,	as	shown	in	the	following
screenshot:

Figure	3.18:	Resizing	the	OS	disk

At	the	time	of	writing,	the	maximum	size	for	the	OS	disk	is	2	TB.
Also,	size	reduction	is	not	supported;	you	can	only	expand	the
disk's	size.

5.	 Once	you	are	done,	click	on	Save.

It	is	a	pretty	straightforward	process,	but	the	main	drawback	is	the
downtime	that	must	take	place	in	order	to	resize	the	disks.

Host	caching
	

I	bet	you	noticed	the	Host	caching	option	when	adding	and	resizing	Azure	VM
disks,	and	that	is	what	we	are	going	to	cover	in	this	topic.

As	you	know,	the	VM	and	its	storage	do	not	exist	on	the	same	server,	so	some
latency	occurs	when	a	VM	tries	to	access	its	storage	that	is	stored	on	OS	disks
and	data	disks.	Therefore,	in	order	to	reduce	this	latency,	Microsoft	came	up
with	host	caching,	which	caches	access	to	the	OS	and	data	disks.

There	are	three	types	of	host	caching:

Read-only
Read/write
None

	

	

Read-only
The	read	option	writes	through	the	cache.

Read/write
This	is	the	default	option	for	the	OS	disk,	and	it	writes	back	to	the	cache.

None
In	the	none	host	caching	mode,	there	will	be	no	data	caching.	This	is	the	default
option	for	data	disks.

Host	caching	key	points
	

The	following	key	points	highlight	some	considerations	for	host	caching:

Use	the	none	caching	mode	for	disks	on	which	logs	are	stored,	because	logs
will	do	intensive	write	operations	Also,	there	is	no	benefit	to	using	the	read-
only	mode	for	logs.	Therefore,	none	is	the	best	fit	in	such	a	situation.
Use	the	read-only	caching	mode	for	disks	on	which	the	SQL	data	needs	to
be	queried	frequently	from	the	SQL	database	because	that	will	help	to	lower
the	latency	and	data	retrieval.
Do	not	use	read/write	just	for	any	applications,	because	the	data	is	cached
in	the	VM	memory,	and	whenever	a	crash	happens	to	the	VM,	the	data	will
be	lost.	So,	you	have	to	read	more	about	the	application	you	are	hosting	in
your	VM	to	know	which	type	would	be	the	best	fit	for	it.	For	example,	SQL
server	has	the	ability	to	handle	writing	cached	data	to	persistent	storage
disks	without	the	intervention	of	anything.
The	OS	disk	has	two	host	caching	options:

Read/Write:	This	is	the	default	choice
Read	Only

The	data	disk	has	the	three	host	caching	options:

Read/Write
Read	Only
None:	This	is	the	default

The	write	cache	is	stored	in	memory	in	the	host	OS.
The	read	cache	is	stored	both	on	disk	and	in	memory	in	the	host	OS.

	

	

Changing	the	host	caching	type
You	might	want	to	change	the	host	caching	type	for	disks	according	to	your
needs,	so	let's	go	through	a	step-by-step	guide	to	get	this	implemented:

1.	 Navigate	to	the	VM	whose	disks	caching	type	you	want	to	change.
2.	 Navigate	to	the	Disks	blade,	which	is	located	under	SETTINGS.

3.	 Navigate	to	the	disk	whose	caching	type	you	want	to	change,	as	shown	in
the	following	screenshot:

Figure	3.19:	Azure	VM	Disk	Properties

4.	 Under	Host	caching,	select	the	type	of	caching	you	want.	For	example,
Read-only,	as	shown	in	the	following	screenshot:

Figure	3.20:	Changing	the	caching	type

5.	 Once	you	are	done,	click	on	Save.

Changing	the	cache	settings	of	an	Azure	disk	detaches	and
reattaches	the	target	disk.	Therefore,	consider	stopping	all
applications	and	services	that	might	be	affected	by	changing	this
setting.

Capturing	VMs
Templates	…	Templates	…	Templates…

That	is	what	we	always	seek	when	we	need	to	create	a	machine	with	the	same
specifications	regularly,	especially	in	dev/test	environments.

So,	what	would	you	do	if	you	wanted	to	have	an	image	of	a	VM	that	you	could
use	later	to	recreate	other	VMs	without	having	to	do	all	the	steps	you	did	to	get
this	VM	up	and	running?

The	answer	is	very	easy	to	say	and	easily	implemented.	You	only	need	to	capture
the	VM,	considering	that	the	image	will	include	all	the	disks	added	to	that	VM.

There	are	two	ways	to	capture	the	VM	from	the	Azure	portal.	The	first	is,	if	you
use	managed	storage,	you	will	directly	capture	the	image	from	the	VM	blade.
But	if	you	use	unmanaged	storage,	you	will	navigate	to	Images	and	start
capturing	the	VM.

But	before	doing	any	of	that,	you	have	to	sysprep	the	VM	first.

Sysprepping	the	VM
Before	you	proceed,	connect	to	the	VM	first	and	follow	these	steps:

1.	 Navigate	to	the	following	path	in	the	VM	C:\Windows\System32\Sysprep,	as
shown	in	the	following	screenshot:

Figure	3.22:	Sysprep	path

2.	 Run	sysprep,	tick	on	the	Generalize	box,	and	select	Shutdown	in	Shutdown
Options,	as	shown	in	the	following	screenshot:

Figure	2.23:	Running	sysprep

3.	 Once	you	click	on	OK,	sysprepping	starts,	as	shown	in	the	following
screenshot:

Figure	2.24:	Syprepping

Now	that	you	are	done	with	sysprepping,	the	next	step	is	to	start	capturing.

Capturing	the	VM	with	managed
storage
This	method	is	easier	and	very	straightforward,	as	you	will	see	in	the	following
steps:

1.	 Navigate	to	the	VM	you	want	to	capture,	as	shown	in	the	following
screenshot:

Figure	3.25:	VM	overview

2.	 Once	you	click	on	Capture,	you	will	be	navigated	to	another	blade,	asking
you	to	specify	the	following	parameters:

Name:	The	image	name
Resource	group:	In	which	resource	group	put	this	image
Whether	you	are	willing	to	remove	the	VM	after	creating	the	image	or
not

Figure	2.26:	Capturing	a	VM	image

3.	 Once	you	click	on	Create,	the	process	of	capturing	an	image	will	start,	and
once	this	is	done,	you	can	find	the	image	in	Images,	as	shown	in	the
following	screenshot:

Figure	2.27:	The	captured	image

Capturing	the	VM	with	unmanaged
storage
This	method	is	straightforward	too,	but	you	have	to	get	the	VM	sysprepped	first,
and	then	follow	these	steps:

1.	 Navigate	to	Images	and	click	on	Add,	and	a	new	blade	will	open,	as	shown
in	the	following	screenshot:

Figure	2.28:	Capturing	a	VM	with	unmanaged	storage

2.	 All	the	fields	to	be	filled	in	are	pretty	straightforward:
Name:	The	name	of	the	image.
Subscription:	The	subscription	that	will	be	charged	for	storing	the
image.
Resource	group:	The	resource	group	that	the	image	will	be	assigned	to.
Location:	Select	the	nearest	location	to	you.

OS	type:	Select	the	OS	type	of	the	VM,	whether	it	is	Windows	or
Linux.
Storage	blob:	You	will	browse	for	the	storage	account	in	which	the
VM	is	stored,	which	will	open	a	new	blade	for	containers.	Select	the
container	in	which	the	VM	VHD	is	stored,	then	select	the	VM	disk.
Account	type:	Select	the	type	of	account,	whether	it	is	Standard
(HDD)	or	Premium.
Host	caching:	It	is	preferable	to	leave	the	host	caching	for	the	OS	disk
Read/write.
Data	disks:	If	you	have	any	data	disks	that	you	want	to	attach	to	the
VM	image,	you	can	click	on	Add	data	disk	and	add	the	disks	you	wish.

Figure	2.29:	Capturing	a	VM	image	with	unmanaged	storage

For	further	information	about	managed	and	unmanaged	disks,	you
can	check	the	frequently	asked	questions	posted	by	Microsoft	via
the	following	link:	https://docs.microsoft.com/en-us/azure/virtual-machines/window
s/faq-for-disks.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/faq-for-disks

Automating	the	tasks
As	usual	at	the	end	of	each	chapter,	we	get	our	hands	dirty	with	automation.

Creating	an	Azure	VM	using
PowerShell
Creating	an	Azure	VM	is	one	of	the	most	common	tasks	on	Azure,	so	let's	get
started.

First	off,	let's	create	the	resources	that	make	up	the	VM,	and	let's	kick	off	with
network	resources.

Network	resources
Every	VM	requires	some	network	resources	to	be	able	to	function	properly,	such
as	a	subnet,	virtual	network,	public	IP	address,	and	network	security	group
(NSG),	as	shown	in	the	following	cmdlets:

$Subnet	=	New-AzureRmVirtualNetworkSubnetConfig	-Name	PacktPubSubnet	-AddressPrefix	

10.0.0.0/24

$VirtualNetwork	=	New-AzureRmVirtualNetwork	-ResourceGroupName	PacktPub	-Location	

WestEurope	-Name	PacktPubvNet	-AddressPrefix	10.0.0.0/8	-Subnet	$Subnet

$PIP	=	New-AzureRmPublicIpAddress	-ResourceGroupName	PacktPub	-Location	WestEurope	-

AllocationMethod	Dynamic	-Name	PacktPubVMPIP

Now	we	are	done	with	the	main	network	components,	but	the	VM	will	require	a
firewall	named	NSG	at	Azure,	so	let's	create	an	NSG	with	an	inbound	rule
allowing	us	to	RDP	the	VM,	as	shown	in	the	following	cmdlets:

$NSGRDPRule	=	New-AzureRmNetworkSecurityRuleConfig	-Name	PacktPubVMRDPRule	-Protocol	

TCP	-Direction	Inbound	-Priority	1000	-SourceAddressPrefix	*	-SourcePortRange	*	-

DestinationAddressPrefix	*	-DestinationPortRange	3389	-Access	Allow

Where	the	priority	number	determines	a	higher	priority	for	the	rules	and	the
lower	the	number	the	higher	the	priority,	and	SourceAddressPrefix	is	the	range	of	IP
address	that	would	be	able	to	connect	to	this	VM.	But,	since	we	are	connecting
from	on-premises,	it	could	be	any	IP	address,	so	in	this	case	I	selected	*,	which
means	any	IP.	However,	you	can	determine	a	set	of	IP	addresses	that	can	access
this	VM.	The	same	goes	for	SourcePortRange,	but	for	ports,	and	the	destination	is
completely	the	opposite	for	the	source.	Don't	forget	to	determine	whether	this
rule	allows	access	or	denies	it:

$NSG	=	New-AzureRmNetworkSecurityGroup	-Name	"PacktPubNSG"	-ResourceGroupName	PacktPub	

-Location	WestEurope	-SecurityRules	$NSGRDPRule

Finally,	let's	create	a	NIC	and	assign	it	to	all	that	we	have	created	so	far,	as	shown
in	the	following	cmdlets:

$NIC	=	New-AzureRmNetworkInterface	-ResourceGroupName	PacktPub	-Location	WestEurope	-

Name	PacktPubVMNIC	-SubnetId	$VirtualNetwork.Subnets[0].Id	-PublicIpAddressId	$PIP.Id	

-NetworkSecurityGroupId	$NSG.Id

VM	configuration
	

Now,	let's	build	up	the	main	configuration	for	the	VM,	such	as	VM	size,	OS,
computer	name,	the	image,	and	so	on,	as	shown	in	the	following	cmdlets:
$VMConfiguration	=	New-AzureRmVMConfig	-VMName	PacktPubVMPS
-VMSize	Standard_D1_v2	|	Set-AzureRmVMOperatingSystem	-Windows	-
Credential	(Get-Credential)	-ComputerName	PackPubVMPS	|	Set-
AzureRmVMSourceImage	-PublisherName	MicrosoftWindowsServer	-
Offer	WindowsServer	-Skus	2016-Datacenter	-Version	latest	|	Add-
AzureRMVMNetworkInterface	-Id	$NIC.ID

You	can	get	all	the	sizes	of	the	VM	Get-AzureRMVMSize	-Location
"specify	the	Location	in	which	you	are	going	to	build	your	VM	on"

You	will	be	prompted	to	enter	the	VM	credentials	when	you
run	the	previous	cmdlet

	

	

	

Creating	the	VM
Now,	let's	create	the	VM	using	the	following	cmdlet:

New-AzureRmVM	-ResourceGroupName	PacktPub	-Location	WestEurope	-VM	$VMConfiguration

Creating	an	Azure	VM	using	the
Azure	CLI	2.0
	

Creating	an	Azure	VM	using	the	Azure	CLI	2.0	is	pretty	easy,	and	is	only	one
command,	shown	as	follows:

az	vm	create	--resource-group	PacktPub	--name	PacktPubVMCLI	--location	westeurope	--

size	Standard_DS2	--image	win2016datacenter	--storage-account	packtpubsacli	--use-

unmanaged-disk	--vnet-name	PacktPubvNet	--vnet-address-prefix	10.0.0.0/8	--subnet	

PacktPubSubnet	--subnet-address-prefix	10.0.1.0/24	--admin-username	pbuser	--admin-

password	P@cktPub@2017

To	get	the	available	sizes	of	Azure	VMs,	run	the	following
command:
az	vm	list-sizes	-l	"the	location	in	which	you	want	to	build	your	VM	on".

	

	

	

Adding	data	disks	to	an	Azure	VM
using	PowerShell
	

Now,	you	have	your	VM	up	and	running	and	want	to	add	data	disks	to	it	using
PowerShell,	so	you	need	to	follow	the	following	steps.	The	disk	I	am	going	to
create	is	a	managed	disk:

1.	 First	off,	you	have	to	specify	the	disk	configuration,	which	will	be	used
during	the	data	disk	creation,	as	shown	in	the	following	cmdlet:

						$DiskConfiguration	=	New-AzureRmDiskConfig	-Location	

						'West	Europe'	-DiskSizeGB	4095	-AccountType	StandardLRS	-OsType	

						Windows	-CreateOption	Empty

2.	 Once	the	configuration	is	created,	you	can	start	the	creation	of	the	data	disk
using	the	disk	configuration	variable	for	the	disk	parameter,	as	shown	in	the
following	cmdlet:

						New-AzureRmDisk	-ResourceGroupName	PacktPub	-DiskName	

						'PacktPub-DataDiskPS'	-Disk	$DiskConfiguration

3.	 Congratulations!	You	have	a	data	disk,	but	it	is	useless,	since	it	is	not
attached	to	any	VMs,	and	that	is	what	we	are	going	to	do	in	the	following
steps:

1.	 Before	attaching	the	disk	to	the	VM,	we	have	to	create	a	PowerShell
variable	that	retrieves	Azure	VM	to	which	the	data	disks	will	be
attached,	as	shown	in	the	following	cmdlet:

												$VM	=	Get-AzureRMVM	-Name	PacktPubVMPS	-ResourceGroupName	

												PacktPub

2.	 Then,	we	can	add	the	data	disk	to	the	VM,	as	shown	in	the	following
cmdlet:

												Add-AzureRmVMDataDisk	-VM	$VM	-Name	'PacktPub-DataDiskPS'	

												-Lun	0	-CreateOption	Empty

You	might	wonder	why	I	didn't	put	the	VM	name	directly,	instead	of
using	a	variable.	Actually,	this	is	because	if	you	entered	the	VM
name,	it	would	be	a	System.String	type	and	this	cmdlet	accepts	the
Microsoft.Azure.Commands.Compute.Models.PSVirtualMachine	type,	which	has
been	accomplished	by	retrieving	the	VM	name	from	a	cmdlet	of	the
same	type.

3.	 Finally,	you	have	to	save	this	configuration	to	the	VM	using	the
following	cmdlet:

												Update-AzureRmVM	-VM	$VM	-ResourceGroupName	PacktPub

You	cannot	add	a	managed	disk	to	a	VM	with	blob-based	disks,	and
vice	versa.

	

	

	

Adding	data	disks	to	an	Azure	VM
using	the	Azure	CLI	2.0
	

The	process	of	adding	data	disks	using	the	Azure	CLI	2.0	is	pretty	easy	and	can
be	done	using	only	one	command,	shown	as	follows.	The	disk	I	am	going	to
create	is	a	managed	disk:	az	vm	disk	attach	--vm-name	PacktPubVMCLI	--
resource-group	PacktPub	--disk	PacktPub-DataDiskCLI	--size-gb	4095	–
new

	

	

Resizing	Azure	VM	disks	using
PowerShell
	

Before	starting	the	resizing	process,	you	have	to	create	a	new	disk	and	attach	it
to	the	VM	we	are	working	with.	Then,	using	the	same	session,	we	will	run	the
following	cmdlets.	The	newly	created	disk	name,	in	this	case,	is	PacktPub-
DataDiskPS1	with	a	small	size,	so	you	can	expand	it:

$ResizeDisk	=	$VM.StorageProfile.DataDisks	|	Where	{$_.Lun	-eq	0	-and	$_.Name	-eq	

"PacktPub-DataDiskPS1"}

$ResizeDisk.DiskSizeGB	=	4095

Update-AzureRmVM	-VM	$VM	-ResourceGroupName	PacktPub

With	the	first	variable,	I	specified	which	data	disk	I	was	going	to	resize	and	to
which	Lun	it	is	assigned,	then	I	resized	it.	Finally,	I	updated	the	VM	to	save	the
new	configuration.

	

	

	

Resizing	Azure	VM	disks	using	the
Azure	CLI	2.0
As	we	did	when	resizing	using	PowerShell,	you	have	to	first	create	a	new	disk
with	a	small	size,	then	run	the	following	command:

az	disk	update	--name	PacktPub-DataDiskCLI1	--resource-group	packtpub	--size-gb	4095

Changing	the	host	caching	using
PowerShell
Changing	the	host	caching	is	not	a	tough	task.	Using	the	same	session,	you	can
run	the	following	cmdlet,	which	changes	the	caching	mode	of	the	disk	from
None	to	ReadOnly.

Set-AzureRmVMDataDisk	-VM	$VM	-Name	"PacktPub-DataDiskPS"	-Caching	ReadOnly	|	Update-

AzureRmVM

Changing	the	host	caching	using	the
Azure	CLI	2.0
At	the	time	of	writing,	you	cannot	change	the	host	caching	of	a	disk	using	the
Azure	CLI	2.0.

Capturing	the	VM	using	PowerShell
Before	doing	any	PowerShell	stuff,	you	have	to	sysprep	the	VM	as	we	did
earlier.	Once	it	is	sysprepped,	run	the	following	cmdlets:

Stop-AzureRmVM	-ResourceGroupName	PacktPub	-Name	PacktPubVMPS

Set-AzureRmVm	-ResourceGroupName	PacktPub	-Name	PacktPubVMPS	-Generalized

Save-AzureRmVMImage	-ResourceGroupName	PacktPub	-Name	PacktPubVMPS	-

DestinationContainerName	vhds	-VHDNamePrefix	PacktPubImagePS

Capturing	the	VM	using	the	Azure
CLI	2.0
Again,	you	have	to	sysprep	the	VM	by	running	the	following	commands:

az	vm	deallocate	--resource-group	PacktPub	--name	PacktPubVMCLI

az	vm	generalize	--resource-group	PacktPub	--name	PacktPubVMCLI

az	image	create	--resource-group	PacktPub	--name	PacktPubCLImage	--source	

PacktPubVMCLI

Further	information
	

Azure	VMs	and	Azure	Storage	could	not	be	covered	entirely	in	this	chapter,
however,	it	has	covered	most	of	the	common	topics	you	will	deal	with.	For
further	information	about	Azure	Storage	for	VMs,	check	out	the	following
URLs:

Migrating	Azure	VMs	with	unmanaged	disks	to	managed	disks:	https://docs.mi
crosoft.com/en-us/azure/virtual-machines/windows/migrate-to-managed-disks
Disk	snapshots:	https://docs.microsoft.com/en-us/azure/virtual-machines/windows/snapshot-co
py-managed-disk
Backup	Azure	unmanaged	VM	disks	with	incremental	snapshots:	https://docs.
microsoft.com/en-us/azure/virtual-machines/windows/incremental-snapshots
Convert	Azure	managed	disks	storage	from	Standard	to	Premium	and	vice
versa:
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/convert-disk-storage
Migrate	from	Amazon	Web	Services	(AWS)	and	other	platforms	to
managed	disks	in	Azure:	https://docs.microsoft.com/en-us/azure/virtual-machines/windows/
on-prem-to-azure

	

	

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migrate-to-managed-disks
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/snapshot-copy-managed-disk
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/incremental-snapshots
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/convert-disk-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/on-prem-to-azure

Summary
	

This	has	been	a	long	and	productive	chapter,	full	of	information	and	details.	I've
covered	the	most	important	topics	about	the	relationship	between	Azure	Storage
and	Azure	VMs,	which	included	what	Azure	VMs	are,	how	to	create	them,	and
the	key	points	to	be	considered	about	Azure	Storage	when	creating	VMs.

In	the	next	chapter,	we	will	cover	a	completely	new	topic--Azure	SQL	databases,
how	to	work	with	them,	and	how	to	design	a	good	solution	in	Azure.

	

	

	

Implementing	Azure	SQL	Databases
	

In	this	chapter,	we	will	go	through	one	of	the	hottest	topics,	especially	for
database	administrators	(DBAs):	Azure	SQL	Database.	This	chapter	will	be
kicked	off	by	an	introduction	to	Azure	SQL	Database	and	why	you	should	use
this	service,	then	the	service	tiers	and	performance	level,	which	will	be	followed
by	some	demonstrations	of	the	Azure	portal	regarding	how	to	create	and	restore
Azure	SQL	Database.	Finally,	all	the	manual	tasks	we	carry	out	in	this	chapter
will	be	automated.

The	following	topics	will	be	covered:

An	introduction	to	Azure	SQL	Database
Why	Azure	SQL	Database?
Service	tiers
Creating	an	Azure	SQL	Database
Connecting	to	Azure	SQL	Database
Azure	SQL	Database	business	continuity
Automating	your	common	tasks	with	Azure	SQL	Database

	

	

An	introduction	to	Azure	SQL
Database
	

A	database	is	the	most	important	component	of	most	modern	applications.
Therefore,	it	is	no	surprise	that	we	have	two	chapters	of	which	I	will	cover	most
of	the	important	key	points	and	best	practices	for	using	Azure	SQL	Database.

Azure	SQL	Database	is	a	relational	database	as	a	service,	which	means	it	follows
the	Platform	as	a	service	(PaaS)	cloud	service	model,	wherein	you	do	not	have
to	manage	the	underlying	infrastructure,	including	networks,	storage,	servers,	the
virtualization	layer,	the	operating	system,	middleware,	or	runtime.	You	only
have	to	manage	your	databases	and	do	not	even	have	to	think	about	patching	and
updating	your	servers.

	

	

	

Why	Azure	SQL	Database?
	

Besides	the	reasons	I've	covered	in	the	previous	chapters	as	to	why	the	cloud	is
always	better	than	a	traditional	infrastructure,	there	are	lots	of	other	reasons	for
using	Azure	SQL	Database,	especially:

Scalability:	Azure	SQL	Database	can	be	scaled	according	to	your	needs
and	usage,	and	more	information	about	that	topic	will	be	covered	later	in
the	chapter.
Online	scaling:	No	downtime	is	needed	to	scale	your	database	size.	For
example,	you	can	start	your	application	with	a	size	that	fits	it	in	the
beginning,	and	Azure	SQL	Database	can	respond	to	the	database's
requirements	by	scaling	whenever	necessary	without	causing	any
downtime.
Hardcore	monitoring:	Azure	SQL	Database	provides	built-in	monitoring
and	alerting	tools	that	can	be	used	to	identify	potential	problems	and	even
recommend	actions	to	be	taken	in	order	to	fix	an	issue.	Alerts	can	also	be
generated	based	on	the	monitoring	metrics,	so	you	can	receive	an	alert	that
something	has	gone	wrong	according	to	your	baseline.
Built-in	intelligence:	One	of	the	coolest	features	of	Azure	SQL	Database	is
built-in	intelligence.	It	helps	to	reduce	the	costs	involved	in	running
databases	and	increases	the	performance	of	the	application	using	Azure
SQL	Database	as	a	backend.
Intelligent	Threat	Detection:	This	feature	utilizes	SQL	Database	auditing
in	order	to	detect	any	harmful	attempts	to	access	data.	It	simply	provides
alerts	for	any	abnormal	behaviors.
High	availability:	Microsoft	provides	many	ways	to	ensure	that	Azure
SQL	Database	is	highly	available:

Automatic	backup:	To	avoid	any	issues	that	might	cause	data	loss,
automatic	backups	are	performed	on	SQL	Databases,	(these	include
full,	differential,	and	transaction	log	backups).
Point-in-time	restores:	Azure	SQL	Database	can	be	recovered	to	any

point-in-time	within	the	automatic	backup	retention	period.
Active	geo-replication:	If	you	have	an	application	that	needs	to	be
accessed	from	across	the	globe,	you	can	use	active	geo-replication	to
avoid	facing	a	high	load	on	the	original	SQL	Database.	Azure	geo-
replication	will	create	four	secondary	databases	for	the	original
database,	with	reading	access.
Failover	groups:	This	feature	is	designed	to	help	customers	to	recover
from	databases	in	secondary	regions	if	a	disaster	occurs	in	the	region
that	the	original	database	is	stored	in.

This	is	a	sneak	peek	of	Azure	SQL	Database's	most	common	features.

	

	

	

Service	tiers
Azure	SQL	Database	is	available	in	two	flavors:

Elastic	database	pools
Single	databases

Elastic	database	pools
Elastic	database	pools	are	a	great	solution	for	managing	multiple	databases,
scaling	their	performance	according	to	the	databases'	needs,	which	means	it	is	a
good	fit	for	databases	with	unpredictable	usage	demands,	and	that	leads	to	a
saving	on	credits.	Elastic	database	pools	share	performance	across	many
databases	since	all	of	these	databases	are	built	on	a	single	Azure	SQL	Database
server.

At	the	time	of	writing,	elastic	database	pools	are	generally
available	in	all	Azure	regions,	except	in	West	India,	as	they	are	in
the	preview	there.	However,	they	will	be	generally	available	there
too	as	soon	as	possible.

Single	databases
Single	databases	are	a	good	fit	for	a	set	of	databases	with	predictable
performance,	where	the	required	resources	for	the	databases	are	predetermined.

Service	tier	types
	

At	the	time	of	writing,	there	are	four	service	tiers	for	Azure	SQL	Database:
Basic,	Standard,	Premium,	and	Premium	RS	(in	preview).	All	of	these	offer
support	for	elastic	database	pools	and	single	databases.	The	performance	of	these
tiers	is	expressed	in	Database	Transaction	Units	(DTUs)	for	single	databases,
and	elastic	Database	Transaction	Units	(eDTUs)	for	elastic	database	pools.

DTUs	specify	the	performance	for	single	databases,	as	they	provide	a	specific
amount	of	resources	to	that	database.

On	the	other	hand,	eDTUs	do	not	provide	a	dedicated	set	of	resources	for	a
database,	as	they	share	resources	within	a	specific	Azure	SQL	Server	to	all	the
databases	which	run	that	server.

For	more	information	about	DTUs	and	eDTUs,	you	can	check	out
the	following	article:	https://docs.microsoft.com/en-us/azure/sql-database/sql-data
base-what-is-a-dtu
.	To	calculate	your	required	DTUs,	especially	when	you	are
migrating	an	on-premises	SQL	Server	database,	you	can	use	the
Azure	SQL	DTU	calculator,	which	can	be	accessed	from	the
following	link:	http://dtucalculator.azurewebsites.net/.

The	following	is	a	table	from	Microsoft	which	illustrates	the	different	tiers'
performance	levels	for	elastic	databases	pools:

Basic Standard Premium Premium
RS

Maximum	storage	size	per
database 2	GB 1	TB 1	TB 1	TB

Maximum	storage	size	per
pool

156
GB 4	TB 4	TB 1	TB

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
http://dtucalculator.azurewebsites.net/

Maximum	eDTUs	per
database

5 3,000 4,000 1,000

Maximum	eDTUs	per	pool 1,600 3,000 4,000 1,000

Maximum	number	of
databases	per	pool 500 500 100 100

	

The	following	is	a	table	that	illustrates	the	different	tiers'	performance	levels	for
single	databases:

Basic Standard Premium Premium	RS

Maximum	storage	size 2	GB 1	TB 4	TB 1	TB

Maximum	DTUs 5 3,000 4,000 1,000

	

Reference:	https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers#choosing-a-s
ervice-tier.

For	a	detailed	comparison	of	performance	levels	for	single
databases,	you	can	check	out	the	following	link:	https://docs.micro
soft.com/en-us/azure/sql-database/sql-database-resource-limits#single-database-st
orage-sizes-and-performance-levels
For	a	detailed	comparison	of	performance	levels	of	elastic
database	pools,	you	can	check	out	the	following	link:	https://docs
.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits#elastic-pool-
storage-sizes-and-performance-levels

	

	

	

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers#choosing-a-service-tier
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits#single-database-storage-sizes-and-performance-levels
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits#elastic-pool-storage-sizes-and-performance-levels

Creating	an	Azure	SQL	Database
To	create	an	Azure	SQL	Database	via	the	Azure	portal,	perform	the	following
steps:

1.	 Navigate	to	the	Azure	portal,	then	to	More	services,	and	search	for	SQL
Databases,	as	shown	in	the	following	screenshot:

Figure	4.1:	Searching	for	Azure	SQL	Database

2.	 When	you	open	SQL	databases,	a	new	blade	pops	up,	and	if	there're	any
SQL	Databases	that	you	created	earlier,	they	will	be	displayed	here.	But
since	no	SQL	Databases	have	been	created	so	far,	it	will	be	blank,	as	shown
in	the	following	screenshot:

Figure	4.2:	Azure	SQL	Database	blade

3.	 To	create	a	new	Azure	SQL	Database,	click	on	Add,	or	Create	SQL
databases.

	

4.	 Once	you	have	done	so,	a	new	blade	will	pop	up,	as	shown	in	the	following
screenshot:

Figure	4.3:	Creating	a	new	SQL	Database

The	fields	in	this	demonstration	will	be	filled	in	as	follows:

Database	name:	PacktPubDB.
Subscription:	Select	the	subscription	you	are	planning	to	assign	this
resource	to.
Resource	group:	PacktPub	resource	group	will	be	used	to	store	this
resource.
Select	source:	There	are	three	options	for	selecting	the	source:

Blank	database:	This	will	create	a	new	database,	which	will	be

built	from	scratch	by	you	(this	is	the	selected	option	for	this
demonstration)
Sample	(AdventureWorksLT):	This	is	a	sample	database,	and	if
chosen,	it	loads	the	AdventureWorks	schema	and	data	into	your
new	database
Backup:	If	you	want	to	restore	any	backed	up	database	on	Azure,
this	option	fits	that	situation

Server:	Specify	the	SQL	Server	on	which	you	are	going	to	build	this
SQL	Database.	If	you	have	no	SQL	Servers	already	built,	you	will
have	to	build	a	new	one,	as	shown	in	the	following	screenshot:

Figure	4.4:	Creating	an	SQL	Server	to	host	SQL	Databases

By	default,	all	Azure	services	have	access	to	this	SQL	Server,	which
means	there	will	be	no	need	to	open	ports	for	communication	with
other	Azure	services.

Want	to	use	an	SQL	elastic	pool?	For	now,	I'll	select	Not	now,	which
means	you	will	be	using	a	single	database	type.
Pricing	tier:	You	can	choose	the	pricing	tier	that	suits	you	from	the
varying	set	of	tiers	that	were	covered	earlier.	Remember	that	you	can
change	the	DTUs	and	storage	allocated	to	the	database	to	the	limits	of
every	tier.	Also,	the	costs	of	the	DTUs	and	storage	will	be	displayed
next	to	it,	as	shown	in	the	following	screenshot:

Figure	4.5:	Selecting	the	desired	service	tier	and	the	desired	performance	configuration

Collation:	Finally,	you	can	specify	the	collation	that	suits	you.
Remember	that	you	have	to	first	check	whether	the	application	that
will	used	will	support	this	collation	for	the	SQL	or	not.

5.	 Once	you	are	done,	you	can	click	on	Create,	as	shown	in	the	following
screenshot:

Figure	4.6:	Creating	an	SQL	Server	Database

6.	 Since	this	database	will	be	built	upon	a	new	SQL	Server,	it	will	take	a	little
while	to	be	created,	but	if	it	is	built	upon	a	pre-created	SQL	Server,	it	will
take	almost	no	time	at	all.	Once	the	database	is	created,	you	can	navigate	to
the	SQL	database	blade	to	check	it,	as	shown	in	the	following	screenshot:

Figure	4.7:	Overview	of	the	created	SQL	Database

7.	 You	can	also	check	that	the	SQL	Server	that	hosts	this	database	has	been
created	by	navigating	to	the	SQL	servers	blade,	as	shown	in	the	following
screenshot:

Figure	4.8:	Overview	of	the	created	SQL	Server

Connecting	to	Azure	SQL	Database
	

As	mentioned	earlier,	when	you	create	an	Azure	Database	via	the	Azure	portal,
all	Azure	services	will	be	allowed	to	access	this	database	with	no	further
configuration.

However,	when	you	want	to	connect	to	the	database	from	anywhere	else,	there	is
some	configuration	that	needs	to	be	done.

	

	

	

Server-level	firewall	rule
To	allow	access	to	an	Azure	SQL	Database	from	somewhere	else,	you	will	have
to	set	a	server-level	firewall	rule,	as	described	in	the	following	steps:

1.	 Navigate	to	the	database	blade,	and	click	on	Set	server	firewall,	as	shown	in
the	following	figure:

Figure	4.9:	PacktPubDB	settings

2.	 Once	you	have	clicked	on	it,	you	will	be	navigated	to	a	new	blade,	where
you	can	create	firewall	rules	for	the	Azure	SQL	Server,	as	shown	in	the
following	screenshot:

Figure	4.10:	Azure	SQL	Server	firewall	settings

3.	 Within	this	blade,	you	can	add	IP	addresses	that	have	access	to	the	database
we	created	earlier.	This	can	be	done	either	as	an	IP	address	range,	where
you	can	specify	START	IP	and	END	IP,	or	as	a	single	IP	address,	written
the	same	as	in	START	IP	and	END	IP.	But,	since	I	need	to	connect	to	this
database	via	my	client	(laptop),	I'll	directly	click	on	Add	client	IP,	which
will	be	automatically	loaded,	and	as	a	rule	with	a	default	name,	as	shown	in
the	following	screenshot:

Figure	4.11:	Creating	a	server	firewall	rule

4.	 Once	you	are	done	with	the	IP	address	that	will	be	allowed	to	access	the
database,	click	on	Save,	and	it	should	take	no	longer	than	two	seconds	for	a
success	message	to	be	displayed,	as	shown	in	the	following	screenshot:

Figure	4.12:	Updating	the	firewall	settings

Now,	you	are	good	to	go.	You	can	connect	to	the	database	via	your	client.

Make	sure	that	port	1433	is	open	in	your	environment,	which	is	used
for	communication	between	the	SQL	Server	and	the	client	(Server
Management	Studio	(SSMS)).

Connecting	to	Azure	SQL	Database
using	SQL	SSMS
To	connect	to	the	created	database	via	SQL	Server	Management	Studio,	you	can
follow	these	steps:

1.	 Navigate	to	the	database	blade	and	copy	Server	name,	as	shown	in	the
following	screenshot:

Figure	4.13:	Overview	of	the	PacktPubDB

2.	 Open	SSMS,	paste	the	name	of	the	server,	change	the	Authentication	to
SQL	Server	Authentication,	and	enter	the	SQL	Server	credentials	that	you

entered	during	the	SQL	Server	creation,	as	shown	in	the	following
screenshot:

Figure	4.14:	Connecting	to	an	Azure	SQL	Database	via	SSMS

3.	 Once	you	click	on	Connect,	you	will	be	connected	to	your	database	on
Azure,	as	shown	in	the	following	screenshot:

Figure	4.15:	The	database	created	on	Azure	displayed	via	SSMS

You	can	create	firewall	rules	at	the	database	level	as	we	have	done
at	the	server	level.	However,	these	rules	can	only	be	created	using
Transact-SQL.	For	further	information	about	how	to	do	so,	you	can
check	the	following	link:	https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-firewall-configure.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-firewall-configure

Azure	SQL	Database	business
continuity
So	far,	you	have	your	database	up	and	running	on	the	cloud,	and	you	can	even
connect	to	it,	create,	delete,	and	update	the	tables	as	you	wish.

I	think	that	should	satisfy	most	of	your	needs,	but	since	a	database	is	something
critical	and	you	need	to	make	sure	that	it	will	not	be	lost	if	corruption	occurs,
you	will	need	to	take	some	backups.

Unfortunately,	when	you	check	the	database	blade,	you	will	notice	that	backup	is

not	mentioned	in	the	blade,	as	shown	in	the	following	screenshot:	

Figure	4.16:	Azure	SQL	Database	blade	settings

How	business	continuity	works	for
Azure	SQL	Database
Microsoft	does	its	best	to	address	any	issues	that	might	occur	with	Azure	SQL
Database,	and	it	provides	the	following	solutions	for	this	purpose.

Hardware	failure
Hardware	failure	is	something	that	is	expected	to	happen,	but	it	will	not	be	the
reason	you	lose	your	databases.

Just	as	there	is	replication	provided	for	storage,	as	mentioned	in	Chapter	1,
Understanding	Azure	Storage	101,	there	is	something	similar	to	it	for	Azure
databases.

If	the	hardware	failure	occurs,	there	are	three	copies	of	your	database	separated
across	three	physical	nodes.	The	three	copies	consist	of	one	primary	replica	and
two	secondary	replicas,	and	in	order	to	avoid	any	data	loss,	write	operations	are
not	committed	in	the	primary	replica	until	they	have	been	committed	in	one	of
the	secondary	replicas.	Therefore,	whenever	a	hardware	failure	occurs,	it	will
failover	to	the	secondary	replica.

Point-in-time	restore
As	mentioned	earlier,	point-in-time	restores	can	recover	Azure	SQL	Database	at
any	point	in	time	within	the	automatic	backup	retention	period.	The	retention
period	varies	from	one	tier	to	another:	7	days	for	the	Basic	tier,	35	days	for	the
Standard	tier,	35	days	for	the	Premium	tier,	and	35	days	for	the	Premium	RS	tier.
This	solution	would	suit	a	scenario	where	your	database	has	been	corrupted	and
you	want	to	restore	it	to	the	last	healthy	point.

To	restore	your	database	to	the	last	healthy	point,	you	have	to	follow	these	steps:

1.	 Navigate	to	the	database	you	want	to	restore	to	the	last	point,	as	shown	in
the	following	screenshot:

Figure	4.17:	Restoring	Azure	SQL	Database

2.	 Once	you	have	clicked	on	Restore,	a	new	blade	will	pop	up,	where	you	can
give	the	restored	database	a	new	database	name,	determine	the	time	that
you	want	to	restore	to,	and	change	the	pricing	tier	for	the	restored	database,
as	shown	in	the	following	screenshot:

Figure	4.18:	Azure	SQL	Database	restore	settings

3.	 Once	you	click	on	OK,	it	starts	restoring	the	database,	as	shown	in	the
following	screenshot:

Figure	4.19:	The	database	is	being	restored

Restoring	Azure	SQL	Database	key
points
	

For	a	better	understanding	of	the	process,	you	should	consider	the	following	key
points	during	implementation:

When	you	restore	a	database,	a	new	database	will	be	created,	which	means
you	will	have	to	pay	for	the	new	database	too
You	cannot	name	the	new	database	with	the	same	name	as	the	original
database	because	the	original	still	exists;	to	do	so	you	would	have	to
remove	the	original	one
You	can	choose	a	restore	point	between	the	earliest	point	and	the	latest
backup	time,	which	is	six	minutes	before	the	current	time
Database	recovery	time	varies	from	one	database	to	another	according	to
many	factors;	here	are	some	of	them:

The	database	size
The	number	of	transaction	logs	involved	in	the	operations
The	database	performance	level
If	you	are	restoring	the	database	from	a	different	region,	the	network
bandwidth	might	cause	a	delay

	

	

Restoring	a	deleted	database
You	can	accidentally	remove	a	database,	or	you	might	have	removed	a	database
and	figured	out	later	that	you	need	it.	This	can	be	a	tough	situation.	However,
Microsoft	Azure	supports	database	recovery	even	in	the	case	of	deletion,	but	the
SQL	Server	on	which	the	database	was	built	cannot	have	been	deleted	because,
at	the	time	of	writing,	there	is	no	support	for	the	recovery	of	deleted	SQL
Servers.

To	restore	a	deleted	database,	follow	these	steps:

1.	 Navigate	to	SQL	Servers	and	select	the	server	on	which	the	deleted
database	was	built.

2.	 Scroll	down	to	Deleted	databases	in	the	SQL	Server	blade,	as	shown	in	the
following	screenshot:

Figure	4.20:	The	deleted	databases

	

3.	 Select	the	database	you	want	to	restore	and	name	it	as	you	wish,
considering	that	you	cannot	give	the	name	of	an	existing	database	that	is
already	running	on	the	same	SQL	Server,	but	you	can	give	it	its	old	name,
as	shown	in	the	following	screenshot:

Figure	4.21:	Restore	the	deleted	database

4.	 Once	you	are	done,	you	can	click	on	OK,	and	it	will	start	the	restoration
process.

Geo-restore
Geo-restore	provides	a	backup	restore	for	the	SQL	Server	in	a	new	region	and
will	be	covered	in	detail	in	the	coming	chapter.

Automating	the	tasks
As	usual,	at	the	end	of	each	chapter,	we	get	our	hands	dirty	with	automation.

Creating	an	Azure	SQL	Database
using	PowerShell
First	off,	you	will	have	to	create	the	SQL	Server	on	which	the	database	will	be
built,	and	since	the	SQL	Server	needs	an	admin	name	and	a	password,	they	will
be	created	and	stored	in	variables:

$SQLAdmin	=	“SQL	Admin	User	Name”

$Password	=	“SQL	Admin	Password”

Then,	you	can	work	on	creating	the	SQL	Server	with	the	following	cmdlets:

New-AzureRmSqlServer	-ResourceGroupName	PacktPub	-ServerName	packtpubsqlps	-Location	

WestEurope	-SqlAdministratorCredentials	$(New-Object	-TypeName	

System.Management.Automation.PSCredential	-ArgumentList	$SQLAdmin,$(ConvertTo-

SecureString	-String	$Password	-AsPlainText	-Force))

Once	you	are	done	with	the	SQL	Server,	you	can	create	the	database	on	it:

New-AzureRmSqlDatabase	-ResourceGroupName	PacktPub	-ServerName	packtpubsqlps	-

DatabaseName	PackPubDBPS	-RequestedServiceObjectiveName	"S3"	-CollationName	

"SQL_Latin1_General_CP1_CI_AS"

Where	RequestedServiceObjectiveName	is	the	performance	level.

When	you	create	an	Azure	SQL	Server	via	PowerShell,	access	from
other	Azure	services	to	that	SQL	Server	is	not	allowed	by	default.

Creating	an	Azure	SQL	Database
using	the	Azure	CLI	2.0
To	create	an	Azure	SQL	Database	using	the	Azure	CLI	2.0,	we	have	to	create	an
Azure	SQL	Server	first,	which	can	be	done	by	running	the	following	command:
az	sql	server	create	--name	packtpubsqlcli	--resource-group	PacktPub	--
location	westeurope	--admin-user	“SQL	Admin	User”	--admin-password
“SQL	Admin	Password”

Then,	the	following	command	will	be	run	to	create	the	database:

az	sql	db	create	--resource-group	PacktPub	--server	packtpubsqlcli	--name	

PacktPubDBCLI	--service-objective	S3	--collation	SQL_Latin1_General_CP1_CI_AS

When	you	create	an	Azure	SQL	Server	via	the	Azure	CLI	2.0,
access	from	other	Azure	services	to	that	SQL	Server	is	not	allowed
by	default.

Creating	an	SQL	Server-level	firewall
rule	using	PowerShell
To	allow	access	to	databases	built	on	the	SQL	Server,	some	firewall	rules	need	to
be	made,	and	to	do	so,	you	have	to	run	the	following	cmdlet:

New-AzureRmSqlServerFirewallRule	-ResourceGroupName	PacktPub	-ServerName	packtpubsqlps	

-FirewallRuleName	"Name	the	Rule"	-StartIpAddress	XXX.XXX.XXX.XXX	-EndIpAddress	

XXX.XXX.XXX.XXX

Creating	an	SQL	Server-level	firewall
rule	using	Azure	CLI	2.0
	

Creating	an	SQL	Server-level	firewall	rule	using	the	Azure	CLI	2.0	is	pretty
straightforward,	as	we	did	in	PowerShell.	To	do	so,	you	have	to	run	the
following	command:	az	sql	server	firewall-rule	create	--resource-group
PacktPub	--server	packtpubsqlcli	--name	PPRule	--start-ip-address
XXX.XXX.XXX.XXX	--end-ip-address	XXX.XXX.XXX.XXX

	

	

Point-in-time	restore	using
PowerShell
	

First	off,	we	have	to	create	two	variables,	one	for	the	database	properties,	and	the
other	for	the	date	to	which	we	want	to	restore	the	database	to:

$Database	=	Get-AzureRmSqlDatabase	-ResourceGroupName	PacktPub	-ServerName	

packtpubsqlps	-DatabaseName	PacktPubDBPS

$	Date	=	Get-Date	–	Date	“The	date	you	want	to	restore	to”

$Date	=	$Date.ToUniversalTime()

Then,	you	can	start	the	restoration	process	by	triggering	the	following	cmdlet:

Restore-AzureRmSqlDatabase	-FromPointInTimeBackup	-PointInTime	$Date	-

ResourceGroupName	PacktPub	-ServerName	packtpubsqlps	-TargetDatabaseName	

"PacktPubRestoredDB"	-ServiceObjectiveName	"S3"	-ResourceId	$Database.ResourceId

	

	

Point-in-time	restore	using	the	Azure
CLI	2.0
At	the	time	of	writing,	you	cannot	do	this	using	the	Azure	CLI	2.0.

Restoring	a	deleted	database	using
PowerShell
	

Using	the	same	method	that	we	used	to	restore	a	point-in-time	database,	a
deleted	database	is	restored	with	only	a	few	minor	changes,	as	shown	in	the
following	cmdlets:

$DeletedDatabase	=	Get-AzureRmSqlDeletedDatabaseBackup	-ResourceGroupName	PacktPub	-

ServerName	packtpubsqlps	-DatabaseName	PacktPubDBPS

$Date	=	Get-Date	–	Date	“The	date	you	want	to	restore	to”

$Date	=	$Date.ToUniversalTime()

Restore-AzureRmSqlDatabase	-FromDeletedDatabaseBackup	-DeletionDate	

$DeletedDatabase.DeletionDate	-ResourceGroupName	$DeletedDatabase.ResourceGroupName	-

ServerName	packtpubsqlps	-TargetDatabaseName	"RestoredDatabase-Deleted"	-ResourceId	

$DeletedDatabase.ResourceID	-ServiceObjectiveName	"S3"	-PointInTime	$Date

Where	the	point-in-time	parameter	is	the	time	you	want	to	restore	your	database
to.

	

	

	

Restoring	a	deleted	database	using
PowerShell
At	the	time	of	writing,	you	cannot	do	this	task	using	the	Azure	CLI	2.0.

Summary
So	far,	we	have	covered	basic	concepts	about	Azure	SQL	Database	and	the
reasons	to	use	them.	In	addition,	we	looked	at	an	overview	of	service	tiers	and
performance	levels,	which	will	help	with	designing	your	database	solution.	Also,
some	demonstrations	were	implemented	in	order	to	have	a	better	understanding
of	what	is	going	on	when	you	deal	with	things	in	Azure.

Next,	some	topics	that	have	been	mentioned	in	this	chapter	and	some	of	the	main
concerns,	such	as	security,	will	be	covered	in	more	detail	in	the	coming	chapter.

	

Beyond	Azure	SQL	Database
Management
	

In	this	chapter,	we	are	continuing	the	journey	of	working	with	Azure	SQL
Databases,	and	since	SQL	Servers	can	be	implemented	using	two	service	models
(Infrastructure	as	a	Service	(IaaS)	and	Platform	as	a	Service	(PaaS)),	we'll
kick	off	the	chapter	by	illustrating	the	difference	between	them,	followed	by
covering	elastic	database	pools,	then	demonstrating	how	to	set	Azure	Active
Directory	(AD)	authentication	on	Azure	SQL	Databases.

Since	the	availability	of	your	databases	is	very	important,	and	you	want	to	avoid
losing	them	even	in	the	event	of	a	disaster,	you	have	to	embrace	active	geo-
replication,	which	will	not	only	play	a	role	in	ensuring	that	doesn't	happen	but
will	also	help	you	to	build	a	globally	distributed	application.	The	concept	of
doing	so	and	how	to	do	so	is	covered	in	detail	later	in	the	chapter.	Finally,	you
will	learn	how	to	automate	all	of	the	manual	tasks	that	are	done	throughout	the
chapter.

The	following	topics	will	be	covered:

SQL	Databases	(IaaS/PaaS)
Azure	SQL	elastic	database	pools
Setting	Azure	AD	authentication	to	Azure	SQL	Database
Active	geo-replication
Automating	manual	tasks

	

	

SQL	Database	(IaaS/PaaS)
	

An	SQL	Database	can	be	implemented	in	Azure	in	two	ways:

Using	Azure	SQL	Database:	It	follows	the	PaaS	model,	and	we	have	been
using	it	so	far
Using	Azure	VMs	and	building	SQL	on	them:	This	follows	an	IaaS
model,	and	will	be	covered	in	more	detail	shortly

	

	

Azure	SQL	Database	(PaaS)
As	mentioned	earlier,	Azure	SQL	Database	is	a	relational	database	as	a	service,
built	and	hosted	on	Azure.

Azure	SQL	Database	minimizes	the	costs	of	managing	and	provisioning
databases.	Using	this	model	will	reduce	the	responsibility	of	managing	the
virtual	machines	that	host	the	SQL	server,	the	operating	system,	and	even	the
SQL	Server	software.

This	model	eliminates	concerns	regarding	upgrades,	backups,	and	even	the	high
availability	of	databases,	because	they	are	not	your	responsibility	anymore,	in
addition	to	being	able	to	add	databases	as	you	wish,	whenever	you	want.	Taking
this	into	account,	you	will	pay	less	credits	because,	in	this	scenario,	you	will	not
pay	for	a	VM	with	SQL	installed	on	it,	plus	the	license	credits;	you	will	only	pay
for	the	database	you	are	using.

Scenarios	that	would	fit	in	Azure
SQL	Database
	

Azure	SQL	Database	would	be	a	best	fit	for	the	following	scenarios:

Cloud	applications	that	need	to	be	developed	quickly
Building	a	highly-available	and	auto-upgradable	database	that	is
recoverable	in	the	event	of	disasters
A	database	with	less	management	needed	for	its	OS	and	configuration
Building	a	Software	as	a	service	(SaaS)	application
If	you	want	complete	management	of	your	SQL	installation,	but	no	worries
about	hardware

	

	

SQL	on	Azure	VMs	(IaaS)
This	type	of	deployment	of	an	SQL	Server	is	much	more	complicated	than	using
Azure	SQL	Database,	as	a	VM	built	on	Azure	and	an	SQL	Server	built	upon	it
requires	more	administration.	Also,	you	can	use	whichever	versions	you	want	to
use	(2008R2,	2012,	2014,	2016,	2017),	and	whichever	edition	you	need
(Developer,	Express,	Web,	Standard,	or	Enterprise).

	

Scenarios	that	would	suit	SQL	on
Azure	VMs
	

The	following	scenarios	would	be	the	best	fit	for	building	SQL	on	Azure	VMs:

Migrating	existing	apps	on-premises	to	Azure	with	minimal	changes
Having	a	SQL	environment	wherein	you	have	full	access	to	it
Needing	databases	of	up	to	64	TB	storage,	since	Azure	SQL	Database	can
support	only	up	to	4	TB
Building	hybrid	applications	with	SQL	Database	as	a	backend

	

	

Azure	SQL	elastic	database	pools
In	the	previous	chapter,	some	interesting	and	important	topics	were	covered
regarding	elastic	database	pools.	In	this	section,	we	will	be	working	on	creating
and	managing	elastic	database	pools.

Creating	an	elastic	database	pool
To	get	your	elastic	database	pool	up	and	running,	you	have	to	follow	these	steps:

1.	 Navigate	to	the	SQL	databases	blade,	and	click	on	Add	or	Create	SQL
databases,	as	shown	in	the	following	screenshot:

Figure	5.1:	SQL	Databases	blade

2.	 Once	you	have	clicked	on	Add	or	Create	SQL	databases,	a	new	blade	will
pop	up,	as	shown	in	the	following	screenshot:

Figure	5.2:	Create	a	new	SQL	Database	blade

3.	 Since	most	of	the	required	fields	were	covered	in	the	previous	chapter,	only
changed	options	will	be	covered:
1.	 Want	to	use	SQL	elastic	pool?:	This	will	be	Yes	this	time.
2.	 Once	Yes	is	selected,	Pricing	tier	option,	which	is	shown	in	the

preceding	screenshot,	will	be	changed	to	Elastic	database	pool,	where
it	will	ask	you	to	configure	the	pool	setting.	Once	you	have	clicked	on
it,	a	new	blade	will	pop	up,	as	shown	in	the	following	screenshot:

Figure	5.3:	Configuring	elastic	database	pool	settings

3.	 Once	you	have	clicked	on	Elastic	database	pool,	a	new	blade	will	pop
up,	as	shown	in	the	following	screenshot:

Figure	5.4:	Creating	an	elastic	database	pool

4.	 You	can	name	the	elastic	pool	as	you	wish.	To	determine	the	pricing
tier	you	are	going	to	select,	click	on	Pricing	tier	and	a	new	blade	will
pop	up	displaying	the	different	tiers,	as	shown	in	the	following
screenshot:

Figure	5.5:	Selecting	the	pricing	tier	for	an	elastic	database	pool

5.	 Once	you	have	selected	your	desired	tier,	you	can	open	the	Configure
pool	blade,	where	you	can	specify	Pool	eDTU,	Pool	GB	(which	are	the
reserved	elastic	Database	Transaction	Units	(eDTUs)),	and	the
maximum	storage	capacity	of	GB	for	the	pool.	Take	into	consideration
that	the	ratio	of	eDTU	to	GB	is	determined	by	the	pricing	tier,	as
shown	in	the	following	screenshot:

Figure	5.6:	Configuring	an	elastic	database	pool

6.	 Once	you	are	done,	click	on	Select	for	the	pool,	and	in	the	Elastic
database	pool	blade	too.

4.	 Finally,	click	on	Create.
5.	 Once	it	is	done	with	deployment,	you	will	find	the	newly	created	database

in	the	SQL	databases	blade,	as	shown	in	the	following	screenshot:

Figure	5.7:	The	created	SQL	Database

Adding	a	database	to	the	elastic
database	pool
Once	you	get	your	elastic	database	pool	up	and	running,	you	can	add	databases
to	it,	and	to	do	so,	you	need	to	follow	these	steps:

1.	 Navigate	to	the	SQL	servers	blade	and	click	on	the	SQL	Server	created
earlier	to	be	able	to	add	new	databases	to	it,	as	shown	in	the	following
screenshot:

Figure	5.8:	The	Azure	SQL	Server	that	hosts	the	elastic	databases	pool

2.	 There	are	two	ways	to	add	databases	to	the	pool	according	to	the	preceding
screenshot:

New	database:	In	this	case,	you	will	go	through	the	same	steps	we	did
earlier
Import	database:	In	this	case,	you	will	import	an	existing	database	to
be	added	to	the	pool

3.	 In	this	demonstration,	adding	a	new	database	will	be	covered.	Therefore,
we	will	click	on	New	database.

4.	 Once	you	have	clicked	on	it,	a	new	blade	will	pop	up	and	you	will	have	to
determine	whether	you	want	to	use	an	elastic	database	pool	or	not.	If	you
do,	you	will	have	to	specify	which	pool	it	should	be	added	to	until	you	have
filled	in	all	the	fields,	as	shown	in	the	following	screenshot:

Figure	5.9:	Adding	an	additional	database	to	the	pool

5.	 Once	you	are	done,	click	OK,	and	the	database	will	be	created	in	seconds.

Setting	Azure	AD	authentication	to
Azure	SQL	Database
So	far,	we	have	been	using	SQL	authentication	to	connect	to	Azure	SQL
Database,	as	we	did	in	the	previous	chapter	via	SQL	Server	Management	Studio.

Using	Azure	AD	will	provide	centralized	administration	for	database	users'
identities.

Doing	so	is	very	straightforward;	you	can	follow	the	following	steps	to	do	so:

1.	 Navigate	to	the	Azure	SQL	Server	and	scroll	down	to	Active	Directory
admin,	as	shown	in	the	following	screenshot:

Figure	5.10:	Azure	AD	admins	for	the	Azure	SQL	Server

2.	 Click	on	Set	admin	and	a	new	blade	will	pop	up,	as	shown	in	the	following
screenshot:

Figure	5.11:	Azure	AD	users	and	groups

3.	 Select	the	desired	user	or	group	to	be	added	as	an	AD	admin	on	the	SQL
Server,	then	save	your	changes	to	be	applied	to	the	SQL	Server,	as	shown	in
the	following	screenshot:

Figure	5.12:	Saving	changes	to	the	SQL	Server

4.	 After	saving	the	changes,	open	SSMS	and	change	Authentication	from	SQL
Server	Authentication	to	Active	Directory	–	Universal	with	MFA	support,
as	shown	in	the	following	screenshot:

Figure	5.13:	Changing	the	authentication	method	to	Azure	SQL	Database	via	SSMS

5.	 Then,	provide	the	username	of	the	Azure	AD	you	have	set	as	admin	and
click	on	Connect.	A	new	wizard	will	pop	up	asking	for	the	user's	password,
as	shown	in	the	following	screenshot:

Figure	5.14:	Signing	in	to	Azure	SQL	Database	using	an	Azure	AD	user

6.	 Once	you	are	signed	in,	you	can	start	getting	your	hands	dirty	with	your
databases,	as	shown	in	the	following	screenshot:

Figure	5.15:	Managing	Azure	SQL	Database	via	SSMS

At	the	time	of	writing,	you	cannot	connect	to	SQL	Database	hosted
on	Azure	VMs	using	Azure	AD.	It	is	only	supported	for	Azure	SQL
Database.	For	more	information	about	Azure	AD,	you	can	check
out	the	following	link:	https://docs.microsoft.com/en-us/azure/active-directory/.

https://docs.microsoft.com/en-us/azure/active-directory/

Active	geo-replication
Active	geo-replication	is	one	of	the	most	important	business	continuity
methodologies.

When	using	active	geo-replication,	you	can	configure	up	to	four	secondary
databases	within	the	same	region	or	in	different	regions	with	reading	access.
This	will	help	to	reduce	latency	for	users	or	applications	that	need	to	query	the
database	from	a	different	region.

If	a	catastrophic	disaster	occurs,	you	can	failover	to	the	other	region	using	a
failover	group.

Failover	groups	are	mainly	designed	to	manage	every	aspect	of	geo-replication
automatically,	such	as	connectivity,	relationships,	and	failover.	Considering	that
it	is	enabled	across	Azure	SQL	Database	Basic	and	Standard	service	tiers.

Implementing	active	geo-replication
To	get	active	geo-replication	implemented,	follow	these	steps:

1.	 Navigate	to	the	desired	database	on	the	Azure	portal	and	click	on	Geo-
Replication	under	SETTINGS,	as	shown	in	the	following	screenshot:

Figure	5.16:	Active	geo-replication

2.	 Click	on	the	region	you	want	to	replicate	to.
3.	 Once	the	region	is	selected,	a	new	blade	will	pop	up	asking	you	to

configure	the	secondary	server	for	which	the	database	will	be	replicated	to,
as	shown	in	the	following	screenshot:

Figure	5.17:	Configuring	the	secondary	server

4.	 When	it	comes	to	specifying	the	Target	server,	you	can	either	create	a	new
Azure	SQL	Server	in	the	new	region	or	select	one	that	already	exists	there.

5.	 Once	you	are	done,	it	starts	deploying	the	new	Azure	SQL	Server	and
migrates	the	database	to	it.

Adding	the	databases	to	a	failover
group
Once	the	deployment	of	active	geo-replication	is	done,	you	can	start	adding
databases	to	a	failover	group	by	following	these	steps:

1.	 Click	on	the	statement	that	tells	you	that	you	can	add	the	database	to	a
failover	group,	as	shown	in	the	following	screenshot:

>

Figure	5.18:	Adding	databases	to	a	failover	group

2.	 Once	you	have	clicked	on	it,	you	will	be	navigated	to	another	blade	asking
you	to	specify	the	following	configurations:

Secondary	server:	Specify	the	secondary	server	that	hosts	the
replicated	database

Failover	group	name:	Specify	a	descriptive	name	for	the	failover	group
Read/Write	failover	policy:	You	can	let	that	process	be	done
automatically,	which	is	the	default	and	is	recommended,	or	manually
do	it	yourself
Read/Write	grace	period	(hours):	Specify	the	time	between	every
automatic	failover

Figure	5.19:	Configuring	failover	group

3.	 Once	you	are	done,	click	on	Create	and	the	failover	group	should	be
deployed

Active	geo-replication	key	points
	

For	a	better	design	for	your	solution	when	using	active	geo-replication,	you	have
to	consider	the	following	key	points:

Replication	between	a	primary	database	and	a	secondary	database	is
asynchronous,	which	means	that	the	data	will	be	committed	to	the	primary
database	before	being	replicated	to	the	secondary	database.
Primary	and	secondary	databases	must	have	the	same	service	tier	(Basic,
Standard,	Premium,	or	Premium	RS).
Although	it	is	technically	valid	to	have	lower	Database	Transaction	Units
(DTUs)	in	the	secondary	database	than	the	primary,	it	is	not	recommended
to	do	so,	because	that	would	increase	the	replication	lag	for	apps	with
intensive	write	operations.
When	replicating	databases	from	within	an	elastic	databases	pool	to	another
region,	they	can	be	replicated	to	another	elastic	databases	pool.
Single	databases	can	be	replicated	to	an	elastic	databases	pool	if	the	service
tiers	are	the	same.
You	are	only	allowed	to	have	four	readable	secondary	databases.	However,
you	can	get	more	than	that,	especially	if	you	have	a	globally	distributed
application,	by	creating	a	secondary	database	from	the	secondary	database,
which	is	known	as	chaining.
When	you	add	a	database	to	a	failover	group,	it	automatically	creates	a
secondary	database	with	the	same	specifications.

	

	

Automating	the	tasks
As	usual,	at	the	end	of	each	chapter,	we	get	our	hands	dirty	with	automation.

Creating	an	elastic	database	pool
using	PowerShell
	

To	create	an	elastic	database	pool,	you	must	have	an	Azure	SQL	Server.	You	can
use	the	one	created	in	the	previous	chapter	using	PowerShell	or	create	a	new	one
yourself.

Then,	you	can	run	the	following	cmdlet	to	build	an	elastic	database	pool:

New-AzureRmSqlElasticPool	-ResourceGroupName	PacktPub	-ServerName	"packtpubsqlps"	-

ElasticPoolName	"EDPPS"	-Dtu	400	-DatabaseDtuMin	10	-DatabaseDtuMax	100

Where:

-Dtu	is	the	maximum	number	of	eDTUs	in	the	pool
-DatabaseDtuMin	is	the	minimum	number	of	eDTUs	assigned	to	a	database
-DatabaseDtuMax	is	the	maximum	number	of	eDTUs	assigned	to	a	database

	

	

Creating	an	elastic	database	pool
using	Azure	CLI	2.0
	

To	create	an	elastic	database	pool,	you	must	have	an	Azure	SQL	Server.	You	can
use	the	one	created	in	the	previous	chapter	using	the	Azure	CLI	2.0	or	create	a
new	one	yourself:	az	sql	elastic-pool	create	--resource-group	PacktPub	--
server	packtpubsqlcli	--name	EDPCLI	--dtu	400	--db-dtu-min	10	--db-dtu-
max	100

	

	

Adding	database	to	the	elastic
database	pool	using	PowerShell
To	add	a	database	to	the	created	elastic	pool,	run	the	following	cmdlet:

New-AzureRmSqlDatabase	-ResourceGroupName	PacktPub	-ServerName	"packtpubsqlps"	-

DatabaseName	"additionaldbps"	-ElasticPoolName	"EDPPS"

Adding	an	additional	database	to	the
elastic	database	pool	using	Azure	CLI
2.0
To	add	a	database	to	the	created	elastic	pool,	run	the	following	command:

az	sql	db	create	--resource-group	PacktPub	--server	packtpubsqlcli	--name	

additionaldbcli	--elastic-pool	edpcli

Setting	Azure	AD	authentication	to
Azure	SQL	Database	using
PowerShell
To	set	authentication	to	Azure	SQL	Database	using	Azure	AD	users,	you	have	to
run	the	following	cmdlet:

Set-AzureRmSqlServerActiveDirectoryAdministrator	–ResourceGroupName	PacktPub	–

ServerName	packtpubsqlps	-DisplayName	“x@x.com”

Setting	Azure	AD	authentication	to
Azure	SQL	Database	using	the	Azure
CLI	2.0
To	set	authentication	to	Azure	SQL	Database	using	Azure	AD	users,	you	have	to
run	the	following	command:

az	sql	server	ad-admin	create	--resource-group	PacktPub	--server-name	packtpubsqlcli	-

-display-name	x@x.com	--object-id	“Enter	the	object	id	of	Azure	AD	Admin”

To	get	the	object	ID	of	a	specific	user,	run	the	following	command:

az	ad	user	show	--upn	x@x.com

Implementing	active	geo-replication
using	PowerShell
	

First	off,	you	have	to	create	a	secondary	server	in	another	region,	and	if	the
database	is	built	on	an	elastic	database	pool,	you	have	to	create	the	elastic
database	pool	on	the	other	server,	then	run	the	following	command	to	establish
active	geo-replication:

Get-AzureRmSqlDatabase	-DatabaseName	additionaldbps	-ResourceGroupName	PacktPub	-

ServerName	packtpubsqlpssec	|	New-AzureRmSqlDatabaseSecondary	-

PartnerResourceGroupName	PacktPub	-PartnerServerName	packtpubsqlpssec	-

AllowConnections	"All"

	

	

Implementing	active	geo-replication
using	Azure	CLI	2.0
At	the	time	of	writing,	implementing	active	geo-replication	is	not	available	via
the	Azure	CLI	2.0.

Adding	databases	to	a	failover	group
using	PowerShell
	

First	off,	you	will	have	to	create	a	failover	group	by	running	the	following
cmdlet:

New-AzureRMSqlDatabaseFailoverGroup	–ResourceGroupName	PacktPub	-ServerName	

packtpubsqlps	-PartnerServerName	packtpubsqlpssec	–FailoverGroupName	psfg	–

FailoverPolicy	Automatic	-GracePeriodWithDataLossHours	1	|	Add-

AzureRmSqlDatabaseToFailoverGroup	-ResourceGroupName	PacktPub	-ServerName	

packtpubsqlps	-FailoverGroupName	psfg

Then,	you	can	add	the	database	to	the	failover	group	by	running	the	following
cmdlet:

Get-AzureRmSqlDatabase	-ResourceGroupName	PacktPub	-ServerName	packtpubsqlps	-

DatabaseName	additionaldbps	|	Add-AzureRmSqlDatabaseToFailoverGroup	-ResourceGroupName	

PacktPub	-ServerName	packtpubsqlps	-FailoverGroupName	psfg

	

	

Adding	databases	to	a	failover	group
using	the	Azure	CLI	2.0
At	the	time	of	writing,	adding	databases	to	a	failover	group	is	not	available	via
the	Azure	CLI	2.0.

Further	information
	

Most	of	the	important	and	commonly	used	features	of	Azure	SQL	Database	have
been	covered	in	the	last	two	chapters.	However,	for	further	information	about
other	topics	related	to	Azure	SQL	Database	that	has	not	been	covered,	you	can
check	out	the	following	links:

Monitoring	and	tuning	performance:	https://docs.microsoft.com/en-us/azure/sql-data
base/sql-database-troubleshoot-performance
Scaling	out	with	Azure	SQL	Database:	https://docs.microsoft.com/en-us/azure/sql-da
tabase/sql-database-elastic-scale-introduction
SQL	Server	Database	migration	to	SQL	Database	in	the	cloud:	https://docs
.microsoft.com/en-us/azure/sql-database/sql-database-cloud-migrate
Securing	Azure	SQL	Database:	https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-security-overview

	

	

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-troubleshoot-performance
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-cloud-migrate
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-security-overview

Summary
	

This	chapter	has	been	an	extension	of	the	previous	one,	and	throughout	the
chapter,	very	important	things	have	been	brought	to	the	table	to	illustrate	the	use
of	Azure	SQL	Database	also	fulfilling	the	need	to	design	globally	distributed
applications.

In	the	next	chapter,	we	will	work	on	one	of	the	most	important	features	of	Azure,
which	is	Azure	Backup.	This	feature	has	become	much	more	important	recently,
especially	since	the	recent	ransomware	attacks.

	

	

	

Azure	Backup
	

In	this	chapter,	you	will	learn	about	Azure	Backup	and	why	it	is	so	important.
Then,	we	will	move	forward	to	cover	the	pre-configurations	for	the	backup
process	and	how	to	do	a	backup	on	Azure.	After	that,	you	will	learn	how	to	store
files	on	Azure	Virtual	Machines.	Finally,	you	will	learn	how	to	automate	the
manual	tasks	that	are	implemented	throughout	the	chapter.

The	following	topics	will	be	covered:

An	introduction	to	Azure	Backup
Why	Azure	Backup?
The	process	of	backing	up	data
Further	information
Automating	tasks

	

	

An	introduction	to	Azure	Backup
Backup	has	always	been	the	X	factor	that	saves	an	environment	from	being
completely	damaged	or	lost.

Backup	is	one	of	the	oldest	terminologies	to	be	heard,	and	it	has	gone	through
many	evolutions.	Nowadays,	there	are	many	vendors	offering	backup	solutions.

In	2014,	Microsoft	announced	that	it	will	support	backup	as	a	service	on	its
cloud	(Azure),	as	a	part	of	Azure	Recovery	Services,	and	since	then,	Azure
Backup	has	undergone	many	enhancements.

Simply	put,	backing	up	your	data	to	the	cloud	is	currently	one	of	the	safest
methods	because	of	the	ransomware	attacks	that	have	affected	many
organizations	around	the	world.

Azure	Backup	has	two	kinds	of	vaults:

Backup	vaults:	The	older	of	the	two,	they	have	been	widely	used	in	the
classic	portal
Recovery	Services	vault:	The	evolution	of	Backup	vaults,	they	are
designed	to	support	Resource	Manager	deployments

Backup	vaults	cannot	be	used	to	protect	Resource	Manager-based
solutions.	On	the	other	hand,	Recovery	Services	vaults	can	be	used
to	protect	classic	deployments.

Azure	Backup	can	protect	data	at	different	levels,	either	from	the	cloud	or	from
your	data	center	using	different	tools,	as	follows:

Azure	Backup	(Microsoft	Azure	Recovery	Services	(MARS))	agent:
This	agent	is	responsible	for	backing	up	files	and	folders	on	Windows-
based	VMs.	Also,	it	exists	by	default	as	an	extension	on	Azure	VMs,	which
are	available	in	the	Marketplace.	However,	that	does	not	deny	the	fact	that
you	can	install	it	on	VMs	uploaded	to	Azure.
Azure	Backup	Server:	Is	a	System	Center	Data	Protection	Manager

(SCDPM)	on	Azure,	and	it	works	with	all	SCDPM	functionalities,	except
disk	to	tape	backup.	However,	Azure	Backup	Server	integration	with
System	Center	Products	is	not	supported	at	the	moment.	It	is	used	to	back
up	application	workloads,	such	as	Hyper-V	VMs,	VMware	VMs,
SharePoint	Server,	Exchange	server,	SQL	Server,	and	even	Bare	Metal
Recovery	(BMR).
Azure	VMs	Backup:	Azure	VMs	Backup	is	designed	for	VM-level
backup,	as	it	backs	up	the	whole	VM	using	a	backup	extension.

Why	Azure	Backup?
	

Azure	Backup	delivers	many	key	benefits	to	many	environments	that	use	it	as	a
backup	solution.	Here	are	some	of	them:

Highly	available	and	scalable	solution:	When	using	Azure	Backup,	you
do	not	have	to	care	about	the	underlying	infrastructure	on	which	the	backup
will	be	stored,	or	the	maintenance	of	that	infrastructure.	Also,	whenever
you	need	to	back	up	and	keep	your	data	on	Azure,	you	do	not	have	to	care
about	the	size	of	the	backed	up	data,	because	no	matter	what	the	size	is,
Azure	will	handle	it.
Self-service:	Azure	Backup	will	allocate	your	backed	up	data	automatically
without	the	need	to	assign	it	to	a	specific	storage	device.
High	level	of	application	consistency:	Azure	Backup	supports	backing	up
Hyper-V,	VMware	VMs,	SQL	Servers,	file	servers,	and	so	on.	Whenever
you	restore	any	of	these	applications,	you	will	not	have	to	do	any
troubleshooting	or	fixing	of	the	restored	data,	therefore,	you	can	have	your
application	up	and	running	shortly	after	restoration.
Multiple	storage	replication	types:	As	covered	in	Chapter	1,	Understanding
Azure	Storage	101,	storage	has	many	replication	types,	which	are	also
supported	for	the	storage	on	which	the	backed	up	data	will	be	stored:

Locally	redundant	storage	(LRS):	This	option	will	replicate	the
backed	up	data	three	times	to	other	storage	devices	within	the	same
data	center
Geo-redundant	storage	(GRS):	This	option	will	replicate	the	backed
up	data	to	another	data	center	in	another	region

Higher	level	of	security:	For	a	higher	level	of	security,	Azure	provides	data
encryption	for	the	transmission	of	data	to	and	from	the	cloud	using	an
encryption	passphrase.	The	encryption	passphrase	is	stored	locally,	not	on
the	cloud,	and	whenever	you	need	to	restore	the	data,	you	can	use	that
passphrase.
Retain	your	data	forever:	Traditionally,	long-term	backups	were	kept	on

tapes,	but	on	Azure,	you	can	keep	your	data	as	long	as	you	wish.

	

	

The	process	of	backing	up	data
Before	backing	up	your	data,	you	have	to	do	some	configuration,	such	as
building	a	Recovery	Services	vault,	which	is	the	place	where	the	backed	up	data
will	be	stored.	Once	you	have	done	that,	you	can	start	backing	the	data	up.

Building	a	Recovery	Services	vault
As	mentioned	earlier,	you	have	to	build	a	Recovery	Services	vault	to	store	your
backed	up	data	in.	To	do	so,	perform	the	following	steps:

1.	 Navigate	to	Recovery	Services	vaults,	as	shown	in	the	following
screenshot:

Figure	6.1:	Searching	for	Recovery	Services	vaults

2.	 Once	the	Recovery	Services	vaults	blade	is	opened,	you	can	create	a	new
Recovery	Services	vault	by	clicking	on	Add,	or	Create	Recovery	Services
vaults,	as	shown	in	the	following	screenshot:

Figure	6.2:	Overview	of	Recovery	Services	vaults

3.	 Once	you	have	clicked	on	Add	or	Create	Recovery	Services	vaults,	a	new
blade	will	pop	up	asking	for	a	name	for	the	vault,	the	subscription	to	which
it	will	be	assigned,	the	resource	group	on	which	it	will	exist,	and	the
location	it	will	be	built	on,	as	shown	in	the	following	screenshot:

Figure	6.3:	Creating	a	new	Recovery	Services	vault

4.	 Click	on	Create	and	it	will	start	the	creation	process	of	the	Recovery
Services	vault,	and	within	a	few	seconds,	it	will	be	built.

Backing	up	an	Azure	VM
Now,	you	have	a	Recovery	Services	vault	to	store	and	secure	your	backed	up
data	in.	The	next	step	is	to	back	something	up,	and	in	this	section,	we	will	back
up	an	Azure	VM:

1.	 Navigate	to	the	Recovery	Services	vault	you	created,	as	shown	in	the
following	screenshot:

Figure	6.4:	PacktPubSRV	Recovery	Services	vault	overview

2.	 To	start	the	backup	process,	you	can	click	on	the	Backup	button	on	the
console,	or	navigate	to	Backup	under	GETTING	STARTED	in	the
navigation	pane,	as	shown	in	the	following	screenshot:

Figure	6.5:	How	to	back	up	from	the	Recovery	Services	vault

3.	 Once	you	have	clicked	on	Backup,	a	new	blade	will	pop	up	asking	about
the	following:

Where	is	your	workload	running?	You	have	only	two	options:	Azure
or	On-Premises
What	do	you	want	to	backup?	This	depends	on	the	answer	to	the
previous	question

If	your	workload	is	running	on	Azure,	you	will	only	have
Virtual	machine	as	a	choice,	as	shown	in	the	following
screenshot:

Figure	6.6:	Backup	options	for	workloads	running	on	Azure

If	your	workload	is	running	On-Premises,	you	can	choose	one
or	more	of	the	following:	Files	and	folders,	Hyper-V	Virtual
Machines,	VMware	Virtual	Machines,	Microsoft	SQL	Server,
Microsoft	SharePoint,	Microsoft	Exchange,	System	State,	and
Bare	Metal	Recovery	as	shown	in	the	following	screenshot:

Figure	6.7:	Backup	options	for	workloads	running	on-premises

4.	 Since	our	workload	is	a	Virtual	machine	running	on	Azure,	I	think	you
know	which	options	we	will	select,	and	once	they	have	been	selected,	we
will	click	on	Backup,	as	shown	in	the	following	screenshot:

Figure	6.8:	Configuring	backup	for	Azure	VM

5.	 Once	you	have	clicked	on	Backup,	a	new	blade	will	pop	up	where	you	can
specify	your	backup	policy,	which	includes:	BACKUP	FREQUENCY	and
RETENTION	RANGE,	as	shown	in	the	following	screenshot:

Figure	6.9:	Backup	default	policy

6.	 The	policy	shown	in	the	previous	screenshot	is	a	default	policy	that	takes	a
backup	daily	at	9:30	a.m.	and	retains	it	for	30	days,	but	we	need	to	create	a
backup	policy	that	takes	a	backup	on	a	weekly	basis	and	retains	the	data	for
two	weeks.	As	such,	a	new	backup	policy	will	be	created,	as	shown	in	the
following	screenshot:

Figure	6.10:	Choose	to	create	a	new	backup	policy

7.	 Once	you	have	clicked	on	Create	New,	you	will	have	to	specify	the	Policy
name,	Backup	frequency,	and	Retention	range,	as	shown	in	the	following
screenshot:

Figure	6.11:	Configuring	the	new	backup	policy

8.	 By	default,	there	will	be	a	monthly	and	yearly	backup	point	created	with	the
specification,	shown	in	the	following	screenshot.	However,	you	can	disable
it	by	unmarking	them:

Figure	6.12:	Monthly	and	yearly	backup

9.	 Once	you	are	done	with	your	configurations,	click	OK.
10.	 Once	you	have	clicked	on	OK,	you	will	be	navigated	to	a	new	blade	in

which	you	have	to	specify	the	virtual	machine	you	need	to	back	up,	as
shown	in	the	following	screenshot:

Figure	6.13:	Specifying	the	virtual	machine	you	want	to	back	up

11.	 Once	again,	click	on	OK,	and	you	will	be	navigated	to	a	new	blade	where
you	have	to	enable	backup,	as	shown	in	the	following	screenshot:

Figure	6.14:	Enabling	backup

12.	 Once	the	backup	is	enabled,	the	deployment	will	be	kicked	off,	as	shown	in
the	following	screenshot:

Figure	6.15:	Deploying	Azure	Backup

13.	 Now,	you	are	good	to	go	and	restore	your	data	in	the	event	of	any	data	loss
or	corruption.

Restoring	Azure	VM	files
A	common	situation	that	you	might	face	is	when	you	accidentally	remove	data
or	suffer	a	ransomware	attack	that	encrypts	your	data.	However,	when	you	have
your	data	backed	up	on	Azure,	you	can	be	sure	that	you	are	on	the	right	side.
You	will	be	able	to	recover	your	files	and	folders	very	easily	just	by	taking	the
following	steps:

1.	 Navigate	to	the	affected	VM	for	which	you	need	to	recover	data.	Under
OPERATIONS,	click	on	Backup,	then	File	Recovery,	as	shown	in	the
following	screenshot:

Figure	6.16:	Recovering	files	for	an	Azure	VM

2.	 Once	you	have	clicked	on	File	Recovery,	a	new	blade	will	pop	up	where
you	have	to	select	the	recovery	point	to	which	you	will	be	reverted	to,	as
shown	in	the	following	screenshot:

Figure	6.17:	Selecting	the	recovery	point	you	need	to	restore	data	from

3.	 Then,	you	have	to	download	the	executable,	which	is	PowerShell-based	and
will	require	a	password,	as	shown	in	the	following	screenshot:

Figure	6.18:	Downloading	the	executable

4.	 Once	the	executable	is	downloaded,	you	have	to	run	it	in	elevated	mode
(Run	as	Administrator),	and	enter	the	password	that	will	run	the	script,	as
shown	in	the	following	screenshot:

Figure	6.19:	Running	the	executable

5.	 Then,	it	initiates	a	connection	between	the	local	machine	and	the	recovery
point.	After	that,	it	mounts	the	disks	of	the	VM	at	that	recovery	point	to	the
local	machine	to	restore	the	files	you	need,	as	shown	in	the	following
screenshot:

Figure	6.20:	Connecting	to	the	recovery	point

6.	 Once	you	are	done	with	restoring	your	lost	and/or	corrupted	data,	you	can
close	the	connection	by	unmounting	disks	from	the	VM,	as	shown	in	the
following	screenshot:

Figure	6.21:	Unmounting	disks	from	the	VM

7.	 By	now,	you	should	have	retrieved	your	lost	data	locally	and	be	working	on
uploading	it	to	Azure	VM,	or	running	the	executable	on	the	affected	Azure
VM	itself	and	copying	the	data	from	the	mounted	disk	to	it--that	would	be	a
better	solution	for	organizations	with	a	slow	internet	connection.

Restoring	Azure	VM	files	key	points
	

The	following	key	points	must	be	considered	before	restoring	the	VM	files	in
order	for	the	recovery	process	to	go	smoothly:

Make	sure	that	your	firewall	allows	access	to	the	following:

Outbound	port	3260
microsoft.com

Azure	endpoints	used	for	Azure	VM	backups
Start	the	Microsoft	iSCSI	Initiator	service.
The	executable	can	only	run	successfully	on	an	equivalent	server	OS	or
compatible	client	OS.	For	example,	if	your	backed	up	VM	is	Windows
Server	2016,	you	can	run	the	executable	on	a	Windows	Server	2016
machine	or	Windows	10	machine.
The	mounted	volume	letter	to	your	local	machine	does	not	have	to	match
the	volume	letter	on	the	Azure	VM.	It	will	assign	the	available	letter	to	the
mounted	disk.
The	executable	cannot	be	run	on	the	affected	VM	in	the	following	cases:

If	the	volumes	are	spanned	and/or	stripped
If	the	disks	are	mirrored	or	in	RAID5

If	you	face	any	issues	during	the	recovery	process	after
implementing	the	previously	mentioned	key	points,	you	can	check
out	the	following	URL:	https://docs.microsoft.com/en-us/azure/backup/backup-azu
re-restore-files-from-vm#troubleshooting.

	

	

	

https://docs.microsoft.com/en-us/azure/backup/backup-azure-restore-files-from-vm#troubleshooting

Restoring	an	Azure	VM
Your	VM	might	have	viruses	or	have	some	applications	that	malfunction.	In
such	cases,	you	might	consider	restoring	the	VM	itself	to	a	previous	recovery
point,	and	to	do	so,	you	have	to	perform	the	following	steps:

1.	 Navigate	to	the	affected	VM	that	needs	to	be	recovered.	Under
OPERATIONS,	click	on	Backup,	then	Restore	VM,	as	shown	in	the
following	screenshot:

Figure	6.22:	Restoring	an	Azure	VM

2.	 Once	you	have	clicked	on	Restore	VM,	a	new	blade	will	be	opened	where
you	have	to	specify	to	which	restore	point	you	want	to	revert,	as	shown	in
the	following	screenshot:

Figure	6.23:	Selecting	the	restore	point

3.	 Once	the	restore	point	is	selected,	you	will	be	navigated	to	another	blade
where	you	will	have	to	specify	the	following	configuration:

Restore	Type:	There	are	two	types	of	restoration:	Create	virtual
machine	and	Restore	disks,	and	as	the	name	implies,	the	first	one	will
create	a	new	virtual	machine	with	the	storage	and	configuration	of	the
VM	at	the	time	the	restore	point	was	taken	in
Virtual	machine	name:	If	Create	virtual	machine	is	selected,	you	will
be	asked	to	specify	its	name
Resource	group:	The	resource	group	in	which	the	VM	will	reside
Virtual	network:	The	virtual	network	to	which	the	VM	will	belong
Subnet:	The	subnet	from	which	the	VM	will	acquire	an	IP
Storage	Account:	This	field	exists	for	both	restore	types,	and	you	have
to	specify	a	storage	account	to	which	the	disks	will	be	restored:

Figure	6.24:	Specify	the	restore	configuration

4.	 Once	you	have	clicked	on	OK,	you	are	good	to	go	by	clicking	on	Restore
point,	as	shown	in	the	following	screenshot:

Figure	6.25:	Restoring	the	VM

5.	 Once	the	restoration	is	done,	you	can	navigate	to	Virtual	machines	and
check	the	restored	VM.

Restoring	an	Azure	VM	key	points
	

The	following	key	points	must	be	considered	before	restoring	a	VM	in	order	for
the	recovery	process	to	go	smoothly:

If	you	are	restoring	a	VM	with	managed	disks,	you	should	disable	Storage
service	encryption	for	the	storage	account	to	which	the	disks	will	be
restored.
It	is	recommended	to	reinstall	the	extensions	that	were	added	to	the	VM
before	the	backup.
If	you	have	set	a	static	public	IP	for	the	VM	before	backup,	the	public	IP	for
the	restored	VM	will	be	dynamic	to	avoid	a	conflict	with	the	original	VM.
If	you	want	to	add	the	restored	VM	to	an	availability	set,	you	have	to
restore	the	disks	first,	then	create	a	VM	and	attach	the	disks	to	it.	You	will
be	able	to	add	the	VM	to	an	availability	set	during	VM	creation,	but	cannot
do	so	during	the	restoration	process.

	

	

Further	information
	

For	further	information	about	Azure	Backup,	you	can	check	out	the	following
links:

Configure	an	offline	backup:	https://docs.microsoft.com/en-us/azure/backup/backup-azur
e-backup-import-export
Prepare	Azure	Backup	Server:	https://docs.microsoft.com/en-us/azure/backup/backup-a
zure-microsoft-azure-backup
Add	storage	to	Azure	Backup	Server:	https://docs.microsoft.com/en-us/azure/backup/
backup-mabs-add-storage
Backup	VMware	Server	using	Azure	Backup:	https://docs.microsoft.com/en-us/az
ure/backup/backup-azure-backup-server-vmware
Backup	Exchange	Server	using	Azure	Backup:	https://docs.microsoft.com/en-us/
azure/backup/backup-azure-exchange-mabs
Backup	SharePoint	Server	using	Azure	Backup:	https://docs.microsoft.com/en-u
s/azure/backup/backup-azure-backup-sharepoint-mabs
Backup	SQL	Server	using	Azure	Backup:	https://docs.microsoft.com/en-us/azure/b
ackup/backup-azure-sql-mabs
Protect	system	state	and	BMR:	https://docs.microsoft.com/en-us/azure/backup/backup-
mabs-system-state-and-bmr
Recover	data	from	Azure	Backup	Server:	https://docs.microsoft.com/en-us/azure/b
ackup/backup-azure-alternate-dpm-server
Application	consistent	backup	of	Azure	Linux	VMs	(preview):	https://docs.
microsoft.com/en-us/azure/backup/backup-azure-linux-app-consistent
Configure	backup	reports:	https://docs.microsoft.com/en-us/azure/backup/backup-azure-c
onfigure-reports

	

	

https://docs.microsoft.com/en-us/azure/backup/backup-azure-backup-import-export
https://docs.microsoft.com/en-us/azure/backup/backup-azure-microsoft-azure-backup
https://docs.microsoft.com/en-us/azure/backup/backup-mabs-add-storage
https://docs.microsoft.com/en-us/azure/backup/backup-azure-backup-server-vmware
https://docs.microsoft.com/en-us/azure/backup/backup-azure-exchange-mabs
https://docs.microsoft.com/en-us/azure/backup/backup-azure-backup-sharepoint-mabs
https://docs.microsoft.com/en-us/azure/backup/backup-azure-sql-mabs
https://docs.microsoft.com/en-us/azure/backup/backup-mabs-system-state-and-bmr
https://docs.microsoft.com/en-us/azure/backup/backup-azure-alternate-dpm-server
https://docs.microsoft.com/en-us/azure/backup/backup-azure-linux-app-consistent
https://docs.microsoft.com/en-us/azure/backup/backup-azure-configure-reports

Automating	tasks
So,	we	have	reached	the	final	destination	of	the	chapter,	where	we	automate	all
of	the	manual	tasks	that	we	have	covered.

Building	a	Recovery	Services	vault
using	Azure	PowerShell
	

To	work	with	Azure	Recovery	Services,	you	have	to	register	the	Recovery
Services	provider	by	running	the	following	cmdlet:

Register-AzureRmResourceProvider	-ProviderNamespace	"Microsoft.RecoveryServices"

Then,	you	can	create	the	Recovery	Services	vault	by	running	the	following
cmdlet:

New-AzureRmRecoveryServicesVault	-Name	PSRS	-ResourceGroupName	"PacktPub"	-Location	

"West	Europe"

	

	

Building	a	Recovery	Services	vault
using	the	Azure	CLI	2.0
	

In	order	to	run	Azure	Backup	commands	using	the	Azure	CLI	2.0,	you	have	to
upgrade	to	the	latest	version	of	the	Azure	CLI	2.0	from	the	following	link:	https://a
zurecliprod.blob.core.windows.net/msi/azure-cli-2.0.18.msi.

Once	downloaded	and	installed,	you	can	run	the	following	command	to	create	a
Recovery	Services	vault:	az	backup	vault	create	--resource-group	PacktPub	-
-name	CLIRS	--location	westeurope

	

	

https://azurecliprod.blob.core.windows.net/msi/azure-cli-2.0.18.msi

Backing	up	an	Azure	VM	using
Azure	PowerShell
First	off,	you	have	to	set	the	vault	context	to	apply	it	to	all	subsequent	cmdlets
by	running	the	following	cmdlet:

Get-AzureRmRecoveryServicesVault	-Name	PSRS	|	Set-AzureRmRecoveryServicesVaultContext

At	the	time	of	writing,	you	cannot	change	the	backup	frequency	using
PowerShell.	However,	you	can	change	the	retention	using	the	following	cmdlets.
Considering	that,	I	will	put	the	result	in	a	variable,	as	it	will	be	used	later:

$SchedulePolicy	=	Get-AzureRmRecoveryServicesBackupSchedulePolicyObject	-WorkloadType	

"AzureVM"

$RetentionPolicy	=	Get-AzureRmRecoveryServicesBackupRetentionPolicyObject	-

WorkloadType	"AzureVM"

$RetentionPolicy.DailySchedule.DurationCountInDays	=	14

Now,	you	can	build	your	own	backup	policy	by	running	the	following	cmdlet:

New-AzureRmRecoveryServicesBackupProtectionPolicy	-Name	PSBPolicy	-WorkloadType	

"AzureVM"	-RetentionPolicy	$RetentionPolicy	-SchedulePolicy	$SchedulePolicy

Finally,	you	have	a	policy	that	you	can	assign	to	Azure	VMs.	Therefore,	we	will
put	the	policy	in	a	variable,	then	assign	it	to	an	Azure	VM	by	running	the
following	cmdlets:

$Policy=Get-AzureRmRecoveryServicesBackupProtectionPolicy	-Name	PSBPolicy

Enable-AzureRmRecoveryServicesBackupProtection	-Policy	$Policy	-Name	PacktPubVM	-

ResourceGroupName	PacktPub

The	time	zone	of	the	time	shown	in	PowerShell	is	UTC.	Take	into
consideration	that	the	one	shown	in	the	portal	matches	your	local
system	clock.

Backing	up	an	Azure	VM	using	the
Azure	CLI	2.0
First	off,	you	have	to	create	a	backup	policy,	which	can	be	done	by	creating	a
JSON	encoded	policy	definition	and	passing	it	to	the	Azure	CLI,	as	you	will	see
shortly,	or	by	using	the	default	policy.

To	create	a	new	backup	policy,	run	the	following	command:	az	backup	policy
set	–policy	<JSON	encoded	policy	definition>	--	resource-group	PacktPub	–
vault-name	CLIRS

Or,	to	use	the	default	backup	policy,	you	can	run	the	following	command:	az
backup	policy	get-default-for-vm	--resource-group	PacktPub	--vault-name
CLIRS

Then,	you	can	start	the	backup	process	by	running	the	following	command:	az
backup	protection	enable-for-vm	--policy-name	get-default-for-vm	--
resource-group	PacktPub	--vault-name	CLIRS	--vm	PacktPubVM

Restoring	Azure	VM	files	using
Azure	PowerShell
At	the	time	of	writing,	you	cannot	carry	out	the	file	recovery	process	completely
using	PowerShell.	You	have	to	do	one	part	through	the	portal,	and	the	other	part
using	the	executable	PowerShell	script,	as	shown	earlier.

Restoring	Azure	VM	files	using	the
Azure	CLI	2.0
	

To	do	so,	we	will	have	to	specify	the	Recovery	Services	vault	and	the	container
within	which	the	recovery	points	exist,	and	if	you	want	to	retrieve	the	name	of
the	vaults	and	the	container	names,	you	can	run	the	following	commands:

az	backup	vault	list	--resource-group	PacktPub

az	backup	container	list	--resource-group	PacktPub	--vault-name	CLIRS

Then,	you	can	run	the	following	command,	which	will	download	the	executable
PowerShell	script	that	will	be	run	to	mount	the	disks	to	the	local	machine	you
are	running	the	script	from:

az	backup	restore	files	mount-rp	--resource-group	PacktPub	--vault-name	CLIRS	--

container-name	<The	name	of	the	container	within	which	the	recovery	points	are	

stored>--item-name	<The	name	of	the	backedup	item>	--rp-name	<The	name	of	the	recovery	

point>

	

	

Restoring	an	Azure	VM	using	Azure
PowerShell
Unlike	the	recovery	process	to	the	Azure	VM	via	the	portal	we	went	through
earlier,	Azure	PowerShell	can	only	restore	disks.	You	can	then	create	a	new	VM
from	the	restored	disks,	which	means	you	cannot	restore	the	VM	directly,	as	we
did	earlier.

Since	the	backed	up	items	are	stored	in	containers,	we	have	to	retrieve	the
container	name	first	by	running	the	following	cmdlet:

$Container	=	Get-AzureRmRecoveryServicesBackupContainer		-ContainerType	"AzureVM"	–

Status	"Registered"	-FriendlyName	"PacktPub"

Then,	we	have	to	specify	the	backup	item	that	specifies	the	workload	type	by
running	the	following	cmdlet:

$BackupItem	=	Get-AzureRmRecoveryServicesBackupItem	–Container	$Container	–

WorkloadType	"AzureVM"

After	that,	we	have	to	specify	the	period	within	which	we	need	to	restore	data	by
specifying	the	start	and	end	date,	which	will	be	within	the	last	five	days:

$SD	=	(Get-Date).AddDays(-5)

$ED	=	Get-Date

Now,	we	can	retrieve	all	the	recovery	points	within	this	period	by	running	the
following	cmdlet:

$RecoveryPoint	=	Get-AzureRmRecoveryServicesBackupRecoveryPoint	-Item	$BackupItem	-

StartDate	$SD.ToUniversalTime()	-EndDate	$ED.ToUniversalTime()

If	there	are	multiple	recovery	points	within	this	period	and	you	want	to	restore	a
specific	recovery	point,	you	can	retrieve	it	by	its	index,	and	since	there	is	only
one	recovery	point,	we	can	retrieve	it	by	running	the	following	cmdlet:

$RecoveryPoint[0]

Finally,	you	can	restore	the	backed	up	disks	by	running	the	following	cmdlet:

Restore-AzureRmRecoveryServicesBackupItem	-RecoveryPoint	$RecoveryPoint[0]	-

StorageAccountName	"Specify	the	destination	Storage	Account	to	which	the	disks	will	be	

restored	to"	-StorageAccountResourceGroupName	"Speciify	the	resource	group	within	

which	the	storage	account	exists"

Using	what	you	have	learned	throughout	the	previous	chapter,	you	can	create	a
new	VM	with	the	restored	disks	attached	to	it.

Restoring	an	Azure	VM	using	the
Azure	CLI	2.0
	

As	with	the	restoration	process	using	PowerShell,	we	cannot	restore	the	VM	to
being	up	and	running,	therefore	we	will	restore	the	disks	by	running	the
following	command:

az	backup	restore	restore-disks	--container-name	<The	name	of	the	container>	--item-

name	<The	name	of	the	backedup	item>	--resource-group	PacktPub	--rp-name	<The	name	of	

the	recovery	point>	--storage-account	<The	name	or	ID	of	the	storage	account	to	which	

the	disks	will	be	restored>	--vault-name	<The	name	of	the	recovery	services	vault>

Then,	you	can	create	a	VM	with	the	restored	disks	attached	to	it.

	

	

	

Summary
We	are	done	with	the	first	part	of	Azure	Recovery	Services.	Throughout	the
chapter,	we	have	covered	the	importance	of	Azure	Backup,	how	to	use	it	and
even	how	to	use	it	to	back	up	your	data.

The	next	chapter	will	cover	the	other	part	of	Azure	Recovery	Services.	Azure
Site	Recovery	is	one	of	the	most	important	services	that	Azure	provides	for	the
business	continuity,	and	it	will	be	covered	in	detail	in	the	coming	chapter.

	

Azure	Site	Recovery
	

In	this	chapter,	Azure	Site	Recovery	(ASR)	will	be	introduced	as	a	business
continuity	solution.	We'll	look	at	why	it	should	be	used	and	which	environments
it	supports.	Then,	the	prerequisites	for	preparing	an	environment	will	be	covered,
followed	by	how	to	enable	replication	and	create	recovery	plans.	After	that,	you
will	learn	how	to	check	whether	ASR	is	functioning	properly	or	not.	Finally,
links	to	more	information	about	ASR	will	be	provided	for	you	to	gain	more
knowledge	about	it.

The	following	topics	will	be	covered:

Introduction	to	ASR
ASR	supportability
Preparing	your	environment	for	ASR
Kicking	off	replication	from	on-premises	to	ASR
ASR	recovery	plans
Testing	ASR
Further	information

	

	

Introduction	to	ASR
Business	continuity	is	one	of	the	most	important	key	points,	especially	for
enterprises.	Building	a	disaster	recovery	site	is	a	must-do	step	to	take	in	order	to
have	an	optimal	environment.	That	is	why	Microsoft	Azure	provides	ASR
services,	which	can	be	used	to	build	your	disaster	recovery	site.

This	service	helps	to	ensure	that	your	applications	are	up	and	running	all	the
time,	even	if	a	disaster	happens	to	your	data	center.

When	using	ASR,	you	can	build	your	own	disaster	recovery	site	for	your	Azure
VMs,	your	on-premises	VMs	and/or	physical	servers,	or	even	manage
replication	between	a	primary	and	secondary	site.

In	March	2015,	Microsoft	announced	the	launch	of	ASR	and,	since	then,	this
service	has	undergone	many	enhancements	and	added	features	according	to	the
customers'	feedback.

ASR	supportability
At	the	time	of	writing,	ASR	supports	replication	from	the	following	sources:

Hyper-V	Server	2012	R2	and	2016
vSphere	5.5,	6.0,	and	6.5
Physical	servers

Hyper-V	servers
As	mentioned	earlier,	you	can	only	replicate	Hyper-V	VMs	from	Windows
Server	2012	R2	and	Windows	Server	2016.	However,	if	you	are	managing	your
Hyper-V	hosts	with	System	Center	Virtual	Machine	Manager	(SCVMM),
you	can	use	it	to	replicate	VMs	from	Hyper-V	hosts.

At	the	time	of	writing,	SCVMM	2012	R2	and	2016	are	the	supported	versions	to
work	with	ASR.

You	need	to	install	the	latest	updates	for	your	Hyper-V	hosts	and
SCVMM	to	avoid	any	issues	during	replication.	Also,	you	need	to
make	sure	that	your	SCVMM	2016	cloud	does	not	support	the	co-
existence	of	Windows	Server	2016	and	Windows	Server	2012	R2
hosts.	If	there	are	any	configurations	that	include	the	upgrade	from
SCVMM	2012	R2	to	2016,	it	will	not	be	supported.

The	following	table	specifies	the	supported	and	unsupported	configurations	for
Hyper-V	hosts	and	guests	during	replication:

Supported Unsupported

Guest	OSes
You	can	check	the	following	link	to
see	the	supported	OSes:	https://technet.mi
crosoft.com/library/cc794868.aspx

Any	OS	that	is	not
mentioned	on	the
previous	link	is	not
supported

Hyper-V
network
configurations

NIC	Teaming
VLANS
IPv4

IPv6

IPv4 IPv6
NIC	Teaming

https://technet.microsoft.com/library/cc794868.aspx

Guest	network
configurations

Static	IP	address	for	Windows-
based	VMs
Multiple	NICs	for	the	same	VM

Static	IP	addresses
for	Linux-based
VMs

Azure	network
configuration	for
Hyper-V	guests

Express	route
Internal	and	external	load
balancers
Traffic	manager
Multiple	NICs
IPv4
Reserved	IPs
You	can	retain	your	source	IP
addresses

None

Hyper-V	host
storage
configurations

SMB	3.0
SAN	(iSCSI)
Multipath	I/O	(MPIO)

None

Hyper-V	guest
storage
configurations

VHD	and	VHDX
Generation	2	VMs
EFI	and	UEFI
Maximum	disk	space	is	4059
GB
Disk	with	the	4k	sector	is
supported	for	generation	1	VMs
You	can	have	a	volume	with	a
striped	disk	with	a	size	of	more
than	1	TB	for	Windows-based
VMs
LVM	logical	volume
management	is	supported	for
Linux-based	VMs
Storage	spaces
Disk	exclusion
MPIO

SMB	3.0
Shared	cluster	disk
Encrypted	disk
Disks	with	4k	sector
size	are	not
supported	for
generation	2	VMs
Hot	add	and	remove
for	disks

Azure	Storage
configurations
for	Hyper-V
guests

LRS,	GRS,	and	RA-GRS
Premium	Storage
Encryption	at	rest	(Storage
Service	Encryption	(SSE))

Cool	and	hot
storage
Azure	import/export
service

Azure	compute
configurations
for	Hyper-V
guests

Availability	sets	service
Hybrid	User	Benefit	(HUB)
Managed	disks	service

Managed	disks	service	is
not	supported	when
failing	back	to	on-
premises

	

VMware	vSphere	and	physical
servers
	

As	mentioned	earlier,	you	can	use	Azure	as	a	DR	site	for	your	VMware	vSphere
and	physical	servers.	However,	you	have	to	ensure	that	the	versions	of	VMware
vSphere	are	5.5,	6.0,	or	6.5,	and	the	same	goes	for	vCenter	if	you	want	to
replicate	from	it.

Supported Unsupported

VMware	guest
machines	and
physical	server
OSes

The	following	Windows-based	OSes:

Windows	Server	2008	R2	SP1
Windows	Server	2012
Windows	Server	2012	R2

The	following	Linux-based	OSes:

Red	Hat:	5.2	to	5.11,	6.1	to	6.9,	7.0	to
7.3
CentOS:	5.2	to	5.11,	6.1	to	6.9,	7.0	to
7.3
Debian	7,	8
SUSE	Linux	Enterprise	Server	11	SP3,
SP4
Ubuntu	14.04,	16.04	LTS	server	for	the
kernel	version	URLs	that	can	be
checked	from	the	following	link:	https://d
ocs.microsoft.com/en-us/azure/site-recovery/site-recov

ery-support-matrix-to-azure#supported-ubuntu-kernel-

versions-for-vmwarephysical-servers

Oracle	Enterprise	Linux	6.4,	6.5	which
run	either	a	Red	Hat	compatible	kernel

Other	OSes	are	not
supported

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-support-matrix-to-azure#supported-ubuntu-kernel-versions-for-vmwarephysical-servers

or	Unbreakable	Enterprise	Kernel
Release	3

VMware
hosts/physical
server
network
configurations

NIC	Teaming	is	supported	for	VMware
VLANs
IPv4

IPv6
NIC	Teaming
is	not
supported	for
physical
servers

VMware
guests/physical
servers	network
configurations

IPv4
Static	IP	addresses	for	Windows-based
and	Linux-based	VMs
Using	multiple	NICs	for	the	same	VM

IPv6
NIC	Teaming

Azure	network
configurations
for	VMware
guests/physical
servers

Express	route
Internal	and	external	load	balancers
Traffic	manager
Multiple	NICs
IPv4
Reserved	IPs
You	can	retain	your	source	IP	addresses

None

VMware
hosts/physical
servers	storage
configurations

NFS	is	supported	for	VMware	hosts
SAN	(iSCSI)
MPIO

NFS	is	not
supported	for
physical	servers.

VMware
guests/physical
servers	storage
configurations

VMDK
RDM	is	supported	for	VMware	hosts
Maximum	disk	space	is	4059	GB
Disk	with	4k	sector	is	supported
You	can	have	a	volume	with	striped
disk	with	a	size	of	more	than	1	TB	for
Windows-based	VMs

SMB	3.0
Shared	cluster
disk
Encrypted
disk
Hot	add	and
remove	for
disks

Logical	Volume	Management	(LVM)
is	supported	for	Linux	based	VMs
Disk	exclusion

EFI	and	UEFI
NFS
Storage
spaces

Azure	Storage
configurations
for	VMware
guests/physical
servers

LRS,	GRS,	and	RA-GRS
Premium	Storage
Encryption	at	rest	(SSE)

Cool	and	hot
storage
Azure
Import/Export
service

Azure	compute
configurations
for	VMware
guests/physical
servers

Availability	sets	service
HUB
Managed	disks	service

None

If	you	have	a	SUSE	Linux	Enterprise	Server	11	SP3	on-premises,
and	you	have	updated	it	to	SP4,	replication	will	fail,	as	this	is	not	a
supported	scenario	at	the	time	of	writing.	In	order	to	do	so,	you
have	to	disable	replication	until	you	update	it,	then	you	can	enable
replication	again	once	you	are	done	with	the	update.

The	following	Windows-based	OS	is	not	supported:

Windows	Server	2016

So	far,	you	should	be	aware	of	what	is	and	isn't	supported	to	kick
off	replication	to	Azure.	However,	for	more	information,	especially
on	advanced	scenarios,	you	might	be	interested	in	reading	about
the	following	topics:

Failed-over	Azure	VM	requirements:	https://docs.microsoft.com/en-us/
azure/site-recovery/site-recovery-support-matrix-to-azure#failed-over-azure-vm-re
quirements
Support	for	Recovery	Services	vault:	https://docs.microsoft.com/en-us/

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-support-matrix-to-azure#failed-over-azure-vm-requirements
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-support-matrix-to-azure#support-for-recovery-services-vault-actions

azure/site-recovery/site-recovery-support-matrix-to-azure#support-for-recovery-ser
vices-vault-actions

What	workloads	you	can	protect	with	ASR:	https://docs.microsoft.co
m/en-us/azure/site-recovery/site-recovery-workload

	

	

	

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-workload

Preparing	your	environment	for	ASR
Before	starting	the	replication	between	your	on-premises	and	Azure,	the
environment	needs	to	be	prepared	by	building	a	site-to-site	VPN	connection,
then	installing	and	registering	the	ASR	provider.

Building	a	site-to-site	VPN	connection
In	this	topic,	we	will	go	through	the	process	of	building	a	site-to-site	VPN
connection,	considering	Routing	and	Remote	Access	Service	(RRAS)	as	the
local	VPN.

You	can	have	your	local	VPN	device,	such	as	Cisco,	Juniper,
Brocade,	and	so	on.	You	can	check	the	supported	VPN	devices	list
at	the	following	link:	https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gate
way-about-vpn-devices.

Without	further	ado,	let's	get	started	with	the	steps:

1.	 Create	an	on-premises	VM	or	use	a	physical	server	to	act	as	the	local	VPN
gateway	with	two	NICs.	One	for	internal	communication	with	an	internal	IP
address	assigned	to	it,	but	without	a	default	gateway	to	make	sure	the	traffic
will	be	routed	from	the	other	NIC.	The	other	one	will	be	responsible	for
communicating	with	the	Azure	site	with	a	public	IP	assigned	to	it	with	its
default	gateway.

Since	IPv6	is	not	used	in	such	a	scenario,	you	can	disable	IPv6	for
both	NICs.	Also,	you	have	to	uncheck	everything	for	the	external
NIC,	except	TCP/IPv4,	and	disable	NetBIOS	over	TCP.

In	order	to	disable	NetBIOS	over	TCP,	you	have	to	navigate	to
TCP/IPv4	properties	Advanced	|	WINS	|	Disable	NetBIOS	over
TCP/IP.

2.	 Once	the	VM/physical	server	is	up	and	running,	you	can	install	RRAS.	We
will	select	the	Direct	Access	and	VPN	(RAS)	role	service.

3.	 Then,	we	will	navigate	to	the	Azure	portal	to	create	a	virtual	network,	and
to	do	so,	we	will	navigate	to	the	Virtual	networks	blade	and	click	on	Add,
as	shown	in	the	following	screenshot:

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpn-devices

Figure	7.1:	Virtual	networks	blade

4.	 Once	you	have	clicked	on	Add,	a	new	blade	will	pop	up	asking	you	to	fill
in	the	fields	shown	in	the	following	screenshot	and	then	click	on	Create:

Figure	7.2:	Creating	a	virtual	network

5.	 Once	the	virtual	network	is	created,	we	will	need	to	add	a	gateway	subnet,
which	will	be	used	for	the	virtual	network	gateway.	To	do	so,	navigate	to
the	virtual	network	you	created.	You	will	find	Subnets	under	SETTINGS,

as	shown	in	the	following	screenshot:

Figure	7.3:	Azure	virtual	network	subnets

6.	 Click	on	Gateway	subnet	and	fill	in	the	fields,	as	shown	in	the	following
screenshot:

Figure	7.4:	Adding	a	gateway	subnet

7.	 Once	you	are	done	with	adding	the	Gateway	subnet,	you	can	navigate	to
More	services	and	search	for	virtual	network	gateway,	as	shown	in	the
following	screenshot:

Figure	7.5:	Searching	for	virtual	network	gateway	services

8.	 Once	the	Virtual	network	gateways	blade	is	opened,	you	can	click	on	Add
to	add	your	virtual	network	gateway,	as	shown	in	the	following	screenshot:

Figure	7.6:	Virtual	network	gateways	blade

9.	 Once	you	have	clicked	on	Add,	you	have	to	specify	the	following	settings:
Name:	The	name	of	the	virtual	network	gateway
Gateway	type:	In	this	scenario,	VPN	will	be	selected
VPN	type:	In	this	scenario,	it	will	be	Route-based
SKU:	VpnGw1	will	be	selected	for	our	scenario
Virtual	network:	Select	the	virtual	network	within	which	the	gateway
subnet	exists,	and	once	it	is	selected,	you	will	have	to	specify	a	public
IP	address
Subscription:	Specify	the	subscription	that	is	going	to	charge	this
service
Location:	Specify	which	location	the	virtual	network	gateway	will	be
built

For	more	information	about	gateway	SKUs,	you	can	check	out	the
following	link:	https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-ab
out-vpngateways#gwsku.

10.	 Once	you	have	clicked	on	Create,	the	creation	process	will	start	and	will
take	a	while.

11.	 In	the	meanwhile,	we	can	search	for	local	network	gateways,	as	shown	in	the
following	screenshot:

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways#gwsku

Figure	7.7:	Searching	for	local	network	gateways

12.	 Click	on	Local	network	gateways	and	a	new	blade	will	pop	up	where	you
will	have	to	click	on	Add	to	create	a	new	local	network	gateway,	as	shown
in	the	following	screenshot:

Figure	7.8:	Local	network	gateways	blade

13.	 Once	you	have	clicked	on	Add,	the	following	fields	need	to	be	filled	in:
Name:	The	name	of	the	local	network	gateway
IP	address:	The	public	IP	address	of	the	RRAS	server
Address	space:	Add	the	address	space	of	your	local	network
Subscription:	Specify	which	subscription	is	going	to	be	charged	for
this	service
Resource	group:	Specify	which	resource	group	will	host	the	local
network	gateway
Location:	The	location	in	which	this	local	network	gateway	is	going	to
be	built

14.	 Click	on	Create	but	do	not	proceed	until	the	virtual	network	gateway	and
local	network	gateway	are	created.

15.	 Once	the	virtual	network	gateway	and	local	network	gateway	are	created,
you	can	navigate	to	either	of	them	and,	under	SETTINGS,	click	on
Connections.

16.	 Click	on	Add	to	add	a	connection	between	the	local	network	gateway	and

the	virtual	network	gateway.
17.	 Once	you	have	clicked	on	Add,	a	new	blade	will	pop	up,	and	you	will	have

to	fill	in	the	following	fields:
Name:	The	name	of	the	connection
Virtual	network	gateway:	Specify	the	virtual	network	gateway	that	was
created	earlier
Shared	key:	Specify	a	shared	key,	which	will	be	used	to	initiate	the
connections	from	on-premises

18.	 Once	the	connection	is	created,	open	the	Routing	and	Remote	Access
console	on	the	RRAS	Server,	as	shown	in	the	following	screenshot:

Figure	7.9:	Routing	and	Remote	Access	console

19.	 Right-click	on	Network	interfaces	and	select	New	Demand-dial	Interface.
20.	 A	welcome	wizard	will	pop	up.	To	proceed,	click	Next.
21.	 Name	the	interface.
22.	 Select	the	connection	type,	which	will	be	VPN	in	this	scenario.
23.	 Select	the	VPN	type,	which	is	IKEv2	in	this	scenario.
24.	 Then,	enter	the	public	IP	address	of	the	virtual	network	gateway	that	was

created	earlier	on	Azure.
25.	 Select	transports	and	security	options	for	this	connection.	;	will	be	left	as

the	default	Route	IP	packets	on	this	interface.
26.	 In	this	step,	you	have	to	specify	the	static	route	to	the	Azure	virtual	network

that	your	on-premises	VMs	and	physical	servers	will	use	when	they	are
migrated	to	Azure.	So,	you	can	click	on	Add	and	set	your	Azure	virtual
network	information,	as	shown	in	the	following	screenshot:

Figure	7.10:	Setting	the	static	route	to	the	Azure	virtual	network

27.	 For	the	dial-out	credentials,	you	can	enter	the	username:	Azure.
28.	 Once	we	are	done	with	all	steps,	we	can	click	on	Finish.
29.	 The	configurations	are	not	yet	done.	Therefore,	once	the	demand-dial

interface	is	created,	we	will	open	its	properties.
30.	 Navigate	to	the	Security	tab.	Under	Authentication,	User	preshared	key	for

authentication	will	be	selected,	and	the	shared	key	that	was	entered	earlier
when	creating	the	connection	between	the	local	network	gateway	and	the
virtual	network	gateway	will	be	entered,	as	shown	in	the	following
screenshot:

Figure	7.11:	Setting	the	authentication	type

31.	 Now,	we	can	initiate	the	connection	between	on-premises	and	Azure	by
right-clicking	on	the	interface	and	clicking	on	Connect.

Preparing	an	infrastructure	for
replication
Now,	your	on-premises	can	communicate	with	Azure	Cloud.	Therefore,	let's	go
ahead	and	complete	the	preparation:

1.	 Navigate	to	the	Azure	portal	again,	and	open	the	recovery	services	vault.
Select	the	recovery	services	vault	that	was	created	in	the	previous	chapter,
and	navigate	to	Site	Recovery,	as	shown	in	the	following	screenshot:

Figure	7.12:	ASR	blade

2.	 Click	on	Prepare	Infrastructure	and	a	new	blade	will	pop	up	where	you
have	to	specify	the	location	of	the	machines	you	want	to	replicate,	and	to

where	they	will	be	replicated.	But	if	the	machines	are	on-premises,	you
have	to	specify	whether	the	machines	are	virtualized	or	not,	and	if	they	are
virtualized	with	Hyper-V,	you	have	to	specify	whether	they	are	managed
with	SCVMM	or	not,	as	shown	in	the	following	screenshot:

Figure	7.13:	Specify	the	protection	goal

3.	 Then,	you	have	to	prepare	the	source,	where	you	have	to	specify	a	Hyper-V
site	if	one	exists,	or	create	a	new	one,	as	shown	in	the	following	screenshot:

Figure	7.14:	Creating	a	Hyper-V	site

4.	 Once	the	site	is	created,	click	on	Hyper-V	Server,	and	a	new	blade	will	pop
up	to	download	the	installer	of	the	ASR	provider	and	the	vault	registration
key,	as	shown	in	the	following	screenshot:

Figure	7.15:	Download	the	ASR	provider	and	the	vault	registration	key

If	you	have	a	proxy	in	your	environment,	you	can	click	on	Service
URLs	to	check	the	required	ports	you	need	to	open.

5.	 Once	they	are	downloaded,	install	them	on	your	Hyper-V	host.	To	do	so,
run	the	installer,	and	the	installation	wizard	will	pop	up,	where	you	have	to
specify	whether	the	Microsoft	update	will	be	allowed	or	not	for	ASR.

6.	 After	that,	you	have	to	specify	the	installation	location	of	the	provider	and
click	Install.

7.	 Once	the	installation	is	done,	you	can	either	register	the	vault	registration

key	or	finish	the	installation	and	register	it	later,	but	we	will	move	on	and
register	it.

8.	 To	register	the	provider,	you	have	to	browse	for	the	vault	registration	key
downloaded	earlier,	and	it	will	fill	the	other	fields,	as	shown	in	the
following	screenshot:

Figure	7.16:	Importing	the	vault	registration	key

9.	 Then,	you	have	to	specify	whether	you	will	connect	to	ASR	directly	or	via
a	proxy,	as	shown	in	the	following	screenshot:

Figure	7.17:	Specifying	the	proxy	settings	for	the	connection

10.	 Once	it	is	connected	to	ASR,	the	host	will	register	itself	to	the	ASR	vault,

as	shown	in	the	following	screenshot:

Figure	7.18:	The	host	is	successfully	registered

11.	 After	about	30	minutes,	the	host	will	be	added	to	the	site	we	created	earlier
on	Azure,	as	shown	in	the	following	screenshot:

Figure	7.19:	The	Hyper-V	server	has	been	added

You	can	refresh	the	portal	and	try	again	after	a	while	if	the	server
was	not	detected	in	the	blade	shown	in	the	previous	screenshot.

12.	 Then,	you	will	be	navigated	to	a	new	blade	where	you	have	to	specify	the
subscription	and	the	deployment	model.	It	will	also	do	some	checks,	as
shown	in	the	following	screenshot:

Figure	7.20:	Specify	target	settings

13.	 After	that,	you	will	be	navigated	to	a	new	blade	where	you	have	to	specify	a
replication	policy,	and	since	we	have	not	created	any	policies	yet,	we	create
and	associate	a	policy,	as	shown	in	the	following	screenshot:

Figure	7.21:	Create	a	replication	policy

14.	 Once	clicked	on	Create	and	Associate,	you	will	have	to	specify	the
following	settings:

Name:	The	name	of	the	policy
Copy	frequency:	Specify	how	frequently	data	should	be	synchronized
between	source	and	target	locations
Recovery	point	retention	in	hours:	Number	of	hours	up	to	which	the
recovery	points	will	be	retained
App-consistent	snapshot	frequency	in	hours:	Frequency	at	which	an
application	consistent	snapshot	is	taken	for	the	VMs
Initial	replication	start	time:	The	time	at	which	the	initial	replication
will	be	kicked	off

Figure	7.22:	Specify	replication	policy	settings

15.	 Once	you	have	clicked	on	OK,	you	have	to	wait	until	the	replication	policy
is	created	and	associated,	as	shown	in	the	following	screenshot:

Figure	7.23:	Creating	and	associating	the	replication	policy

16.	 The	last	step	in	preparing	your	infrastructure	for	ASR	is	whether	you	are
you	done	with	the	Deployment	planning,	as	shown	in	the	following
screenshot:

Figure	7.24:	Specify	your	readiness	for	deployment

17.	 Now	you	are	done	with	all	the	required	prerequisites	for	ASR	replication.

Kicking	off	replication	from	on-
premises	to	ASR
By	now,	we	are	good	to	go	ahead	and	start	our	replication	by	following	these
steps:

1.	 Since	we	are	done	with	preparing	the	infrastructure,	we	can	go	ahead	to
step	1	of	Azure	replication,	as	shown	in	the	following	screenshot:

Figure	7.25:	Step	1	of	Azure	replication

2.	 Then,	you	have	to	specify	the	source	and	its	location,	as	shown	in	the
following	screenshot:

Figure	7.26:	Specify	the	replication	source

3.	 After	that,	you	have	to	specify	some	settings	for	the	target,	as	shown	in	the
following	screenshot:

Figure	7.27:	Specify	the	target	settings

4.	 Now,	you	can	specify	which	VMs	you	want	to	be	replicated	to	ASR,	as
shown	in	the	following	screenshot:

Figure	7.28:	Select	the	VMs	you	want	to	be	replicated

5.	 Once	the	VM	is	selected,	you	have	to	specify	the	OS	type,	as	shown	in	the
following	screenshot:

Figure	7.29:	The	VM	properties

6.	 Finally,	you	have	to	select	the	replication	policy	you	want	to	assign	to	it,	as
shown	in	the	following	screenshot:

Figure	7.30:	Select	the	replication	policy

7.	 Now,	you	only	have	to	click	on	Enable	replication,	and	the	replication	will
be	kicked	off,	as	shown	in	the	following	screenshot:

Figure	7.31:	Enable	the	replication

ASR	recovery	plans
It	is	not	common	to	have	ASR	without	a	recovery	plan,	especially	for	large
environments	where	you	have	domain	controllers,	web	servers,	SQL	Servers,
SharePoint	Servers,	Exchange	Servers,	and	so	on.

If	there	is	no	recovery	plan	when	failover	of	the	servers	to	Azure	takes	place,
they	will	start	randomly,	and	that	will	affect	many	machines.	For	example,	if	the
SharePoint	Server	starts	first	without	the	domain	controller	and	SQL	Server	up
and	running,	that	will	cause	issues.	Therefore,	you	need	to	make	a	recovery	plan
to	specify	the	dependencies	of	the	machines.

The	recovery	plan	would	do	the	following:

Specify	the	machines	that	would	failover	together	and	failback	together
Specify	the	dependencies	between	machines	so	that	machines	with	higher
priorities,	such	as	domain	controllers,	start	first.

To	create	a	recovery	plan,	you	have	to	follow	these	steps:

1.	 Navigate	to	the	Recovery	Services	vault.	Select	the	vault	you	want	to	assign
the	plan	to,	then	go	to	Site	Recovery	|	Step	2:	Manage	Recovery	Plans,	as
shown	in	the	following	screenshot:

Figure	7.32:	Manage	recovery	plans

2.	 Once	you	have	clicked	on	Step	2:	Manage	Recovery	Plans,	you	will	be
navigated	to	a	new	blade,	where	you	need	to	click	on	Recovery	plan	to
create	a	new	recovery	plan.

3.	 Once	you	have	clicked	on	Recovery	plan,	you	will	be	navigated	to	a	new
blade	where	you	have	to	specify	the	following:

Name:	The	name	of	the	plan
Source:	Specify	the	source	from	which	the	machines	will	failover
Target:	Specify	the	target	to	which	the	machines	will	failover
Allow	item	with	deployment	model:	Specify	whether	the	machines
will	use	the	classic	or	resource	manager	model
Select	items:	Specify	the	VMs	that	you	want	to	associate	with	the	plan

Once	the	recovery	plan	is	created,	you	can	add	the	following	to	it:

New	groups:	Up	to	seven	recovery	plans	can	be	added	to	the
default	plan,	and	they	are	numbered	according	to	the	order
you	added	them	in

Manual	action:	You	can	set	a	manual	action	that	needs	to	be
done	by	you	during	the	recovery	plan	process
Script:	You	add	a	script	to	specify	a	set	of	actions	that	need	to
be	done
Azure	runbooks:	You	can	use	Azure	runbooks	to	automate
tasks	to	operate	actions	during	the	recovery	process

Testing	ASR
	

Before	getting	started	with	testing	the	failover,	it	is	recommended	to	create	a
virtual	network	on	which	the	failover	VM	will	be	located.

To	test	the	failover,	you	have	to	follow	these	steps:

1.	 Navigate	to	the	Recovery	Services	vault,	then	go	to	Replicated	items,	select
the	VM	you	want	to	test	the	failover	for,	and	then	click	on	Test	Failover.

2.	 You	will	be	navigated	to	a	new	blade,	where	you	have	to	specify	which
virtual	network	the	VM	will	be	located	in.

3.	 Once	you	have	clicked	on	OK,	the	failover	process	will	start	performing	the
following	tasks:

1.	 Prerequisites	check	for	test	failover.
2.	 Creating	a	test	environment.
3.	 Creating	a	test	virtual	machine.
4.	 Preparing	the	virtual	machine.
5.	 Starting	the	virtual	machine.
6.	 Complete	testing:	this	task	will	require	user	interaction	by	clicking	on

Complete	testing.
7.	 Cleaning	up	the	test	virtual	machine.
8.	 Cleaning	up	the	test	environment.
9.	 Finalizing	the	test	failover.

After	step	5,	the	process	will	stop,	so	you	can	check	whether	the
VM	is	failover	to	Azure	or	not,	and	check	whether	it	is	running	or
not,	by	visiting	the	Virtual	Machines	blade.	Considering	that	there
will	be	no	public	IP	address	attached	to	the	VM.	Therefore,	to
connect	to	the	VM,	you	have	to	attach	a	public	IP	address	to	it.
Then,	you	can	get	back	to	the	test	process	and	click	on	Complete
testing.

	

	

	

Further	information
	

For	further	information	about	ASR,	you	can	check	out	the	following	links:

Multi-tenant	support	in	ASR	for	replicating	VMware	virtual	machines
to	Azure	through	CSP:	https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-
multi-tenant-support-vmware-using-csp
Set	up	disaster	recovery	to	Azure	for	on-premises	physical	servers:	https:/
/docs.microsoft.com/en-us/azure/site-recovery/tutorial-physical-to-azure
Set	up	disaster	recovery	for	Hyper-V	VMs	to	your	secondary	on-
premises	site:	https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-vmm-to-vmm
Set	up	disaster	recovery	of	on-premises	VMware	virtual	machines	or
physical	servers	to	a	secondary	site:	https://docs.microsoft.com/en-us/azure/site-recov
ery/tutorial-vmware-to-vmware
Run	a	disaster	recovery	drill	to	Azure:	https://docs.microsoft.com/en-us/azure/site-re
covery/tutorial-dr-drill-azure
Run	a	disaster	recovery	drill	for	Hyper-V	VMs	to	your	secondary	on-
premises	site:	https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-dr-drill-secondary
Failover	and	failback	VMware	VMs	and	physical	servers	replicated	to
Azure:	https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-vmware-to-azure-failover-fail
back

	

	

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-multi-tenant-support-vmware-using-csp
https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-physical-to-azure
https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-vmm-to-vmm
https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-vmware-to-vmware
https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-dr-drill-azure
https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-dr-drill-secondary
https://docs.microsoft.com/en-us/azure/site-recovery/tutorial-vmware-to-azure-failover-failback

Summary
	

We	are	done	with	the	second	part	of	Azure	Recovery	Services.	Throughout	the
chapter,	we	have	proved	the	importance	of	ASR	and	how	to	work	with	it.
Therefore,	it	is	very	important	to	check	the	links	that	I've	provided	in	the	Further
information	section	to	find	out	more	about	it	and	how	to	work	with	things	that
have	not	been	mentioned	in	this	chapter,	such	as	VMware	hosts,	and	physical
servers.

Coming	up	in	the	next	chapter,	you	will	learn	about	another	solution	related	to
disaster	recovery	and	business	continuity,	which	is	called	StorSimple.	You	will
also	learn	about	some	tools	that	work	with	Azure,	such	as	AzCopy	and	Azure
Storage	Explorer.

	

	

	

Extending	Your	Azure	Storage
Management
	

Our	journey	is	coming	to	an	end,	and	I	hope	that	it	has	been	a	beneficial	one	for
you.	In	this	chapter,	more	information	related	to	Azure	Storage	management	will
be	covered.	Azure	StorSimple	will	be	introduced,	the	reasons	for	using	it,	and
how	to	work	with	it.	After	that,	two	of	the	cool	tools	for	storage	management
(AzCopy	and	Azure	Storage	Explorer)	will	be	covered,	and	finally,	you	will	be
introduced	to	the	three	musketeers	of	Azure	Storage:	monitoring,	diagnosing,
and	troubleshooting.

In	this	chapter,	the	following	topics	will	be	covered:

Azure	StorSimple
AzCopy
Azure	Storage	Explorer
Azure	Storage's	three	musketeers

	

	

Azure	StorSimple
Nowadays,	we	are	facing	many	storage	challenges.	One	of	them	is	rapid	data
growth	that	exceeds	40%,	which	leads	to	more	expense	for	storage,	its
protection,	and	its	recovery.	StorSimple	would	be	a	good	fit	in	these	scenarios,
especially	since	it	spans	across	on-premises	and	Azure	Cloud,	which	means	you
do	not	have	to	worry	about	a	storage	shortage	anymore.

Azure	StorSimple	is	an	integrated	storage	solution.	This	solution	is	one	of	the
greatest	solutions	for	managing	storage	across	on-premises	devices/hypervisors
and	Azure	Storage.	It	can	manage	your	primary	storage,	archival	storage,	tape
backup,	and	so	on.	Whatever	the	type	of	disk	(HDD	or	SSD),	it	can	manage	it.
Then,	you	can	assign	each	part	of	the	storage	to	the	solution	that	would	need	it.

There	are	many	reasons	for	using	Azure	StorSimple,	as	stated	in	the	following
points:

Cost	reduction:	According	to	the	current	needs,	storage	will	be	provided
whether	from	local	storage	or	cloud	storage.	Moreover,	it	eliminates
redundant	data	and	compresses	it.
Seamless	integration:	StorSimple	supports	iSCSI	and	SMB	to	connect	to
your	data	stored	on	StorSimple,	and	when	connecting,	it	appears	in	one
location	whether	it's	stored	locally	or	in	the	cloud.
Data	mobility:	The	existence	of	the	data	on	Azure	supports	its	accessibility
from	anywhere.	Also,	should	a	disaster	occur	locally,	you	can	recover	your
data	via	another	site,	or	by	building	a	StorSimple	cloud	appliance	on	an
Azure	VM.
Easier	storage	management:	You	can	manage	your	storage	whether	it
exists	locally	or	on	the	cloud,	using	a	single	interface	that	is	easy	and
seamless	to	use.
Simplify	data	protection	and	disaster	recovery:	Data	restoration	occurs
as	needed,	which	means	you	do	not	have	to	wait	too	long	to	get	your	data
recovered.	That	leads	to	less	downtime,	and	minimal	operational	disruption.
Higher	performance:	As	mentioned	in	previous	chapters,	there	is	a
premium	storage	option	supported	by	Microsoft	Azure.	Using	this	solution

will	provide	a	higher	performance	and	reduced	latency.

StorSimple	is	available	in	two	flavors:

StorSimple	Virtual	Array
StorSimple	8000	series

So,	let's	bring	them	to	the	table	and	get	our	hands	dirty.

StorSimple	Virtual	Array
StorSimple	Virtual	Array	manages	the	storage	across	on-premises	hypervisors
and	Azure	Storage,	and	it	supports	Hyper-V	2008	R2	and	above,	and	VMware
5.5	and	above.

To	implement	StorSimple	Virtual	Array,	you	have	to	follow	the	following	steps:

1.	 First	off,	navigate	to	Marketplace	|	Storage,	and	search	for	storsimple	virtual,
as	shown	in	the	following	screenshot:

Figure	8.1:	Search	for	StorSimple	Virtual	Device	Series

2.	 Then,	click	on	Create.
3.	 Once	you've	clicked	on	Create,	a	new	blade	will	pop	up,	asking	to	fill	in	the

following	fields:
Resource	name:	The	name	of	the	resource
Subscription:	The	subscription	that	will	be	charged	for	the	service
usage
Select	a	resource	group:	The	resource	group	in	which	the	resource	will
exist
Location:	The	region	that	will	host	the	service
Create	new	Azure	storage	account:	If	you	want	to	create	a	dedicated
storage	account	for	this	service,	you	can	tick	it,	and	enter	a	name	for
the	storage	account:

Figure	8.2:	Create	StorSimple	Device	Manager

4.	 Now,	you	can	go	back	to	More	Services,	and	search	for	storsimple,	as	shown
in	the	following	screenshot:

Figure	8.3:	Searching	for	StorSimple	Device	Managers

5.	 You	will	find	the	StorSimple	Device	Manager,	which	we	created	earlier,	as
shown	in	the	following	screenshot:

Figure	8.4:	StorSimple	Device	Managers	blade

6.	 Once	you've	clicked	on	the	StorSimple	Device	Manager	we	have	created,	a
new	blade	will	pop	up.	Click	on	Virtual	array,	as	shown	in	the	following
screenshot:

Figure	8.5:	StorSimple	Device	Manager	properties

7.	 A	new	blade	will	pop	up,	where	you	can	download	the	virtual	array	image
according	to	your	hypervisor	type,	as	shown	in	the	following	screenshot:

Figure	8.6:	Download	virtual	array	image

8.	 Once	the	image	is	downloaded,	you	can	extract	it	from	its	ZIP	file.
9.	 Then,	head	to	Hyper-V	manager	and	start	creating	a	generation	2	VM	with

the	virtual	array	image	attached	to	it	as	the	main	disk,	and	8	GB	static
RAM.

10.	 Once	the	VM	is	created,	navigate	to	Settings,	and	assign	4	cores	for	the
VM,	and	a	new	virtual	hard	disk	to	it	with	at	least	500	GB	in	size.

11.	 Now,	you	can	start	the	VM.
12.	 Once	the	VM	is	started	and	finished	with	booting,	you	will	be	asked	to

enter	a	password,	and	the	default	is	Password1.
13.	 Then,	you	will	be	asked	to	enter	a	new	password.
14.	 Once	done,	you	will	be	logged	into	the	VM,	as	shown	in	the	following

screenshot:

Figure	8.7:	The	StorSimple	VM	console

15.	 You	can	retrieve	the	NIC	information	by	running	the	Get-HcsIpAddress	cmdlet,
which	will	display	the	following:

The	name	of	the	NIC:	It	is	Ethernet	by	default,	and	if	you	have
multiple	NICs,	a	number	will	be	added	to	each	additional	NIC.	For
example,	Ethernet1,	Ethernet2,	and	so	on.
Whether	it	uses	DHCP	or	not.
Whether	it	is	up	or	down.
The	IP	address.
The	gateway	address.

16.	 Since	it	is	recommended	to	use	a	static	IP	address	for	this	machine,	the
following	cmdlet	will	be	used:

						Set-HcsIpAddress	-Name	Ethernet	-IpAddress	<The	address	of	the	

						VM>	-Netmask	<The	network	mask>	-Gateway	<The	gateway	address>

17.	 Once	the	IP	address	is	set,	you	can	open	a	web	browser	and	enter	the	IP
address	of	the	StorSimple	VM.

18.	 The	following	page	will	be	opened,	asking	you	to	enter	the	password	of
StorSimpleAdmin,	which	you	changed	earlier	(step	13):

Figure	8.8:	StorSimple	portal

19.	 As	you	can	see	from	the	following	screenshot,	the	device	is	not	configured:

Figure	8.9:	Getting	started	with	StorSimple	Virtual	Array	configuration

20.	 To	do	so,	navigate	to	Network	settings	to	configure	the	device	IP	address
and	DNS,	and	select	whether	it	will	get	the	IP	address	automatically	or	not.
Then	click	on	Apply,	as	shown	in	the	following	screenshot:

Figure	8.10:	Configure	the	StorSimple	network	settings

21.	 After	that,	navigate	to	Device	settings	and	specify	the	following:
Device	type:	Whether	it	is	a	File	server	or	iSCSI	server
Device	name:	The	name	of	the	device
Join	domain:	Select	Yes,	if	you	want	to	be	domain	joined
Domain	name:	If	you	decide	to	join	it	to	the	domain,	you	have	to	enter
the	domain	name

Figure	8.11:	Configure	device	settings

22.	 Once	you've	clicked	on	Apply,	you	will	be	prompted	to	enter	the	domain
admin	credentials	to	be	able	to	join	the	device	to	the	domain,	as	shown	in
the	following	screenshot:

Figure	8.12:	Enter	the	domain	admin	credentials

23.	 The	next	step	is	to	specify	whether	you	have	a	web	proxy	or	not	and	if	so,

you	have	to	enter	the	following:
Web	proxy	URL:	Enter	the	web	proxy	URL
Authentication:	Specify	the	authentication	type,	whether	it	is	None	or
Basic
Username:	A	user	with	administrative	privilege	on	the	proxy,	if
authentication	is	required
Password:	The	password	of	the	user

Figure	8.13:	Configuring	web	proxy	settings

24.	 Once	you've	entered	the	web	proxy	settings,	you	have	to	specify	these
device	Time	settings:

Time	zone:	The	time	zone	in	which	the	device	exists
Primary	NTP	server:	The	time	server	with	which	it	will	sync	time
Secondary	NTP	server	(optional):	Another	NTP	server,	in	case	the	first
one	faced	a	downtime	issue

Figure	8.14:	Time	settings	configurations

25.	 Then	you	have	to	specify	your	Cloud	settings,	which	require	a	service
registration	key	for	the	device	if	this	is	your	first	time,	as	shown	in	the
following	screenshot:

Figure	8.15:	Configure	cloud	settings

26.	 To	get	that	key,	you	have	to	navigate	again	to	the	Azure	portal,	then	go	to
StorSimple	Device	Manager	and	open	the	device	manager	that	was	created
earlier.	Then	click	on	Keys,	as	shown	in	the	following	screenshot:

Figure	8.16:	Retrieving	the	key

27.	 Once	the	key	is	copied,	you	can	paste	it	into	the	Cloud	settings,	and	click
on	Register,	as	shown	in	the	following	screenshot:

Figure	8.17:	Registering	cloud	settings

28.	 Once	done,	a	Service	Data	Encryption	Key	will	pop	up,	as	shown	in	the
following	screenshot:

Figure	8.18:	Service	Data	Encryption	Key

You	have	to	save	a	copy	of	that	key,	as	it	will	be	used	when
registering	additional	devices.

29.	 So	far,	you	are	done	with	the	device	configurations	on	that	portal.
30.	 Navigate	again	to	the	Azure	portal,	then	go	to	StorSimple	Device	Manager

and	open	the	device	manager	that	has	been	created	earlier.	Then	click	on
Devices,	as	shown	in	the	following	screenshot:

Figure	8.19:	Device	management	on	Azure	portal

31.	 By	now,	you	will	have	noted	that	the	STATUS	of	the	device	is	Ready	to	set
up,	so	we	will	click	on	it,	and	a	new	blade	will	pop	up.

32.	 To	configure	it,	click	on	Configure,	and	a	new	blade	will	pop	up,	asking	to
specify	the	following:

Cloud	storage	encryption:	It	is	recommended	to	enable	the	encryption
Encryption	key:	You	have	to	enter	a	32-character	encryption	key
Confirm	encryption	key:	Enter	the	encryption	key	again,	as	shown	in
the	following	screenshot:

Figure	8.20:	Configure	StorSimple	Virtual	Array

33.	 Then,	we	will	click	on	Storage	account	credentials	to	configure	it	too,	and	if
there	are	no	storage	account	credentials	already	added,	add	them	as	shown
in	the	following	screenshot:

Figure	8.21:	Configure	storage	account	credentials

34.	 Once	done,	click	on	ADD,	then	click	on	Configure.

35.	 Once	the	configuration	is	done,	you	can	navigate	to	Shares,	and	click	on
Add	share,	as	shown	in	the	following	screenshot:

Figure	8.22:	Shares	on	the	StorSimple	device

36.	 Once	you've	clicked	on	Add	share,	a	new	blade	will	pop	up,	where	you
have	to	specify	the	following:

Select	device:	If	you	have	multiple	devices,	you	can	select	the	device
on	which	you	want	to	create	this	share
Share	name:	The	name	of	the	share
Description:	Describe	the	share	for	more	illustration
Type:	There	are	two	types:

Locally	pinned:	It	will	create	a	thickly-provisioned	file	share	on
the	StorSimple	file	server	on-premises,	and	does	not	span	to	the
cloud,	and	it	is	commonly	used	for	applications	that	need	low
latency	and	higher	performance
Tiered:	It	creates	a	thin	file	share	that	provisions	10%	of	on-
premises,	and	90%	to	the	cloud

Capacity:	The	size	of	the	file	share
Set	default	full	permission	to:	Specify	the	user	who	will	be	able	to
access	the	file	share

Figure	8.23:	Create	a	file	share

37.	 Once	the	file	share	is	created,	you	can	access	it	from	on-premises,	as	shown
in	the	following	screenshot:

Figure	8.24:	Opening	the	file	share

38.	 You	will	be	prompted	to	enter	the	credentials	of	the	user	with	permissions
to	that	file	share.

39.	 Once	the	credentials	are	entered,	you	can	access	the	file,	as	shown	in	the
following	screenshot:

Figure	8.25:	Accessing	the	file	share

StorSimple	8000	series
Unlike	StorSimple	Virtual	Array,	StorSimple	8000	series	is	a	SAN	solution
with	affordable	cost	and	some	amazing	features.	StorSimple	8000	series	supports
only	iSCSI	to	connect	to	it	and	it	does	not	support	SMB,	which	means	you
cannot	create	file	shares	on	it.

This	device	can	only	span	storage	from	the	data	center	to	Azure,	and	no	other
cloud	providers.	Once	you	purchase	the	appliance,	you	have	to	check	the
following	links	to	implement	it	with	no	issues:

Review	safety:	https://docs.microsoft.com/en-us/azure/storsimple/storsimple-8000-safety
Unpack,	rack,	cable	an	8100:	https://docs.microsoft.com/en-us/azure/storsimple/storsimp
le-8100-hardware-installation
Unpack,	rack,	cable	an	8600:	https://docs.microsoft.com/en-us/azure/storsimple/storsimp
le-8600-hardware-installation
Supported	hardware	for	the	10	GbE	network	interfaces	on	your
StorSimple	device:	https://docs.microsoft.com/en-us/azure/storsimple/storsimple-supported-h
ardware-for-10-gbe-network-interfaces

For	more	information	about	StorSimple	8000	series	administration,
you	can	check	the	following	link:	https://docs.microsoft.com/en-us/azure/storsi
mple/storsimple-8000-manager-service-administration.

https://docs.microsoft.com/en-us/azure/storsimple/storsimple-8000-safety
https://docs.microsoft.com/en-us/azure/storsimple/storsimple-8100-hardware-installation
https://docs.microsoft.com/en-us/azure/storsimple/storsimple-8600-hardware-installation
https://docs.microsoft.com/en-us/azure/storsimple/storsimple-supported-hardware-for-10-gbe-network-interfaces
https://docs.microsoft.com/en-us/azure/storsimple/storsimple-8000-manager-service-administration

AzCopy
AzCopy	is	a	command-line	tool	that	is	used	for	copying	data	to	and	from	Azure
Storage	Blob,	File,	and	Table	services,	or	to	and	from	objects	within	the	same
storage	account,	and	even	between	different	storage	accounts.

AzCopy	is	available	in	two	flavors:

AzCopy	on	Windows
AzCopy	on	Linux

You	can	download	AzCopy	for	Windows	from	the	following
link:	http://az837173.vo.msecnd.net/azcopy-6-3-0/MicrosoftAzureStorageTools.m
si
You	can	download	AzCopy	for	Linux	from	the	following	link:	h
ttps://azcopy.azureedge.net/azcopy-6-0-0-netcorepreview/azcopy_6.0.0_netcorepre
view_all.tar.gz
AzCopy	on	Linux	works	for	macOS	too.

The	installation	of	AzCopy	is	very	straightforward,	and	once	it	is	installed	you
have	to	navigate	to	its	installation	path	to	be	able	to	run	its	commands.	Working
with	AzCopy	is	very	easy	and	the	data	move	process	can	be	executed	smoothly.

http://az837173.vo.msecnd.net/azcopy-6-3-0/MicrosoftAzureStorageTools.msi
https://azcopy.azureedge.net/azcopy-6-0-0-netcorepreview/azcopy_6.0.0_netcorepreview_all.tar.gz

Uploading	a	folder	to	Azure	Blob
To	upload	a	folder	to	Azure	Blob,	you	need	to	run	the	following	command:

AzCopy	/source:C:\FolderX\	/Dest:<BlobServiceEndpoint/The	container	you	want	to	upload	

the	file	to>	/DestKey:/<The	Storage	account	key>

Downloading	an	Azure	Blob	service
container
	

To	download	a	container	from	Azure	Blob	container,	you	need	to	run	the
following	command:

azcopy	/source:<Blob	Service	Container	Endpoint>	/Dest:C:\FolderX	/Sourcekey:/<The	

Storage	account	key>	/S

Where	/S	is	the	recursive	mode	option,	it	will	download	all	the	objects	that	exist
in	the	blob.

For	further	information	about	AzCopy	commands	on
Windows,	you	can	check	the	following	link:	https://docs.microsoft.co
m/en-us/azure/storage/common/storage-use-azcopy
For	further	information	about	AzCopy	commands	on	Linux,
you	can	check	the	following	link:	https://docs.microsoft.com/en-us/azure
/storage/common/storage-use-azcopy-linux

	

	

	

https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-linux

Azure	Storage	Explorer
Azure	Storage	Explorer	is	a	simple	application	for	managing	Azure	Storage.	It
is	easy	to	work	with,	and	is	available	for	Windows,	Linux,	and	macOS.
Currently,	Azure	Storage	Explorer	is	still	in	preview.

You	can	download	Azure	Storage	Explorer	from	the	following	link,
and	you	only	need	to	specify	your	OS	to	download	a	compatible
version:	https://azure.microsoft.com/en-us/features/storage-explorer/.

https://azure.microsoft.com/en-us/features/storage-explorer/

Connecting	to	Azure	Storage	using
Azure	Storage	Explorer
Once	Azure	Storage	Explorer	is	installed,	and	you	have	opened	it,	you	will	be
prompted	to	specify	how	you	want	to	connect	to	your	storage.

There	are	three	ways	to	connect:

Add	an	Azure	account,	specifying	Azure	environment	(Azure,	Azure	China,
Azure	Germany,	Azure	US	Government,	Azure	Stack)
Use	a	connection	string	or	shared	access	signature	URI
Use	the	storage	account	name	and	key

For	more	information	about	connection	strings,	you	can	check
the	following	link:	https://docs.microsoft.com/en-us/azure/storage/common/st
orage-configure-connection-string
For	more	information	about	shared	access	signature,	you	can
check	the	following	link:	https://docs.microsoft.com/en-us/azure/storage/co
mmon/storage-dotnet-shared-access-signature-part-1

To	connect	to	the	storage	in	an	Azure	account	perform	the	following	steps:

1.	 Select	the	first	option,	then	click	on	Sign	in...,	as	demonstrated	in	the
following	screenshot:

https://docs.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string
https://docs.microsoft.com/en-us/azure/storage/common/storage-dotnet-shared-access-signature-part-1

Figure	8.26:	Connect	to	Azure	Storage

2.	 Once	you've	clicked	on	Sign	in...,	you	will	be	prompted	to	enter	your	Azure
account	credentials.

3.	 Then,	navigate	to	Manage	accounts	to	specify	the	subscription/s	you	want
to	manage,	as	shown	in	the	following	screenshot:

Figure	8.27:	Navigate	to	manage	accounts

4.	 Once	navigated,	you	need	to	specify	the	subscriptions,	as	shown	in	the
following	screenshot:

Figure	8.28:	Selecting	the	subscriptions

5.	 Then,	the	storage	accounts	that	exist	in	that	subscription	will	be	displayed,
as	shown	in	the	following	screenshot:

Figure	8.29:	Storage	accounts	that	exist	in	the	subscription	that	has	been	selected

6.	 You	can	also	connect	to	Azure	Cosmos	DB	Accounts	(Preview),	as	shown
in	the	following	screenshot:

Figure	8.30:	Connect	to	Azure	Cosmos	DB

7.	 Next,	you	need	to	select	the	API	(DocumentDB,	Table,	Graph,	MongoDB)
and	enter	its	connection	string,	as	shown	in	the	following	screenshot:

Figure	8.31:	Selecting	the	API

For	more	information	about	Cosmos	DB,	you	can	check	the
following	link:	https://docs.microsoft.com/en-us/azure/cosmos-db/introduction.

https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

Managing	Azure	Storage	accounts
using	Azure	Storage	Explorer
As	mentioned	earlier,	Azure	Storage	Explorer	is	used	for	managing	Azure
Storage.	With	Azure	Storage	Explorer,	you	can	create/remove	Azure	Storage
services,	download/upload	storage,	and	so	on.

Creating	an	Azure	Storage	service
Creating	an	Azure	Storage	service	is	very	straightforward.	Navigate	to	the
storage	account	you	want	to	create	a	storage	service	within,	right-click	on	the
service,	for	example,	Blob	Containers.	Then,	select	Create	Blob	Container	as
shown	in	the	following	screenshot:

Figure	8.32:	Create	an	Azure	Storage	service

To	manage	a	specific	blob	container/file	share,	you	have	to	hover	over	it	and
double-click	on	it,	and	a	new	console	will	open	with	the	tasks	that	can	be	done
with	it,	as	shown	in	the	following	screenshots:

Figure	8.33:	Managing	a	blob	container

	

Figure	8.34:	Managing	a	Queue

The	same	goes	for	the	table	service,	as	shown	in	the	following	screenshot:

Figure	8.35:	Managing	Tables

Azure	Storage's	three	musketeers
Facing	issues	while	working	with	an	application/VM	that	works	on	Azure
because	of	Azure	Storage	would	be	painful.	Therefore,	to	avoid	such	a	scenario,
you	should	monitor	your	environment	properly,	diagnose	the	issue,	and
troubleshoot	it	once	it	occurs.	And	there's	the	three	musketeers	that	will	save
your	day:	monitoring,	diagnosing,	and	troubleshooting.

To	monitor	your	storage	services,	you	have	to	navigate	to	your	storage	account
and	select	its	metrics	to	display	the	monitored	metrics,	as	shown	in	the	following
screenshot:

Figure	8.36:	Display	Blob	storage	service	metrics

You	can	also	add	alerts,	in	case	a	metric	exceeded	a	threshold	set	by	you.	To	do
so,	you	have	to	navigate	to	the	storage	account	that	you	want	to	monitor,	scroll

down	to	Alert	rules,	and	click	on	Add	alert.	A	new	blade	will	pop	up,	where	you
will	need	to	fill	in	the	following	fields:

Resource:	Select	the	resource	the	alert	rule	is	on.	For	example,	Table
service.
Name:	The	name	of	the	alert.
Description:	The	description	of	the	alert.
Metric:	Select	the	metric	that	you	want	this	alert	rule	to	monitor.
Condition:	Specify	whether	it	will	be	greater	than,	less	than,	and	so	on.
Period:	Select	a	time	span	during	which	to	monitor	the	metric	data	specified
by	this	alert	rule.
Email	owners,	contributors,	and	readers:	Tick	it	if	you	want	to	email	the
owners,	contributors,	and	readers	of	this	service.	You	can	also	add
additional	administrators	to	receive	the	alert	in	case	an	error	occurred.

Figure	8.37:	Creating	an	alert

Issues	happen	and	you	will	need	to	diagnose	these	issues	to	avoid	any	downtime
and	huge	impact	on	your	solution.	Therefore,	you	need	to	be	aware	of	the
following:

Adding	baseline	values	to	your	metrics	based	on	which	you	can	specify
what	cause	this	issue
The	errors	generated	from	the	application	itself,	that	would	appear	in	its
logs
The	users'	reports	that	the	application	is	not	functioning	properly
There	are	some	issues	with	Azure	Storage	services

Based	on	your	monitoring	and	diagnosing,	you	have	to	start	troubleshooting.
The	following	URL	covers	how	to	troubleshoot	most	of	the	common	errors:	https:/
/docs.microsoft.com/en-us/azure/storage/common/storage-monitoring-diagnosing-troubleshooting#troubles
hooting-guidance.

https://docs.microsoft.com/en-us/azure/storage/common/storage-monitoring-diagnosing-troubleshooting#troubleshooting-guidance

Summary
This	chapter	has	covered	some	of	the	coolest	tools	that	can	be	used	with	Azure
Storage.	You	can	read	the	articles	by	clicking	on	the	links	provided	for	more
information.

It's	been	a	fruitful	journey	talking	about	Azure	Storage,	why	you	should	use	it,
and	how	to	work	with	it	in	different	scenarios.	I	hope	you	have	gained	the
knowledge	you	need	from	this	book,	and	I'd	like	to	thank	you	for	reading	it.

	

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Understanding Azure Storage 101
	An introduction to Microsoft Azure Storage
	Why Azure Storage?
	Terminologies
	ASM versus ARM model
	Azure classic portal (ASM model)
	Azure portal (ARM model)
	Deployment model tricks

	Azure Storage types
	Durability
	Replication types
	Locally redundant storage
	Zone Redundant Storage
	Geo-redundant storage
	Read-access geo-redundant storage

	Performance
	Standard Storage
	Premium Storage

	Persistency
	Persistent storage
	Non-persistent storage

	Azure Storage accounts
	General-purpose storage accounts
	Blob storage accounts
	Hot access tier
	Cool access tier

	Azure Storage Account tips
	Creating an Azure Storage account

	Automating your tasks
	Azure PowerShell
	Installing the Azure PowerShell module
	Installing the Azure PowerShell module from the PowerShell Gallery
	Creating a storage account in the Azure portal using PowerShell

	Azure command-line interface
	Installing the Azure CLI 2.0
	Creating a Storage account using the Azure CLI 2.0

	Summary

	Delving into Azure Storage
	Azure Storage services
	Blob storage
	Creating Blob storage
	Blob storage key points

	Table storage
	PartitionKey
	RowKey
	Timestamp
	Creating Table storage
	Table storage key points

	Queue storage
	Creating Queue storage
	Queue storage key points

	File storage
	File storage advantages
	Creating File storage
	File storage key points

	Understanding the Azure Storage architecture
	Front-End layer
	Partition layer
	Stream layer
	Sparse storage and TRIM in Azure

	Securing Azure Storage
	RBAC
	Granting the reader role to a user using RBAC

	Access keys
	SAS

	Storage design for highly available applications
	RA-GRS
	Azure Backup
	Azure Site Recovery
	Premium Storage

	Understanding client libraries
	Automating tasks
	Creating Blob storage using PowerShell
	Creating Blob storage using the Azure CLI 2.0
	Creating Table storage using PowerShell
	Creating Table storage using the Azure CLI 2.0
	Creating Queue storage using PowerShell
	Creating Queue storage using the Azure CLI 2.0
	Creating a file share using PowerShell
	Granting the reader role to a user with RBAC using PowerShell
	Granting the reader role for a user with RBAC using the Azure CLI 2.0
	Regenerating storage account access keys using PowerShell
	Regenerating storage account access keys using the Azure CLI 2.0

	Summary

	Azure Storage for VMs
	An introduction to Azure VMs
	Azure VMs series

	Creating an Azure VM
	VM settings

	Storage considerations for Azure VMs
	Managed versus unmanaged disks
	Managed disks key points

	VM disks
	Adding a data disk to Azure VM
	Data disks key points
	Resizing disks
	Host caching
	Read-only
	Read/write
	None

	Host caching key points
	Changing the host caching type

	Capturing VMs
	Sysprepping the VM
	Capturing the VM with managed storage
	Capturing the VM with unmanaged storage

	Automating the tasks
	Creating an Azure VM using PowerShell
	Network resources
	VM configuration
	Creating the VM

	Creating an Azure VM using the Azure CLI 2.0
	Adding data disks to an Azure VM using PowerShell
	Adding data disks to an Azure VM using the Azure CLI 2.0
	Resizing Azure VM disks using PowerShell
	Resizing Azure VM disks using the Azure CLI 2.0
	Changing the host caching using PowerShell
	Changing the host caching using the Azure CLI 2.0
	Capturing the VM using PowerShell
	Capturing the VM using the Azure CLI 2.0

	Further information
	Summary

	Implementing Azure SQL Databases
	An introduction to Azure SQL Database
	Why Azure SQL Database?
	Service tiers
	Elastic database pools
	Single databases
	Service tier types

	Creating an Azure SQL Database
	Connecting to Azure SQL Database
	Server-level firewall rule
	Connecting to Azure SQL Database using SQL SSMS

	Azure SQL Database business continuity
	How business continuity works for Azure SQL Database
	Hardware failure
	Point-in-time restore
	Restoring Azure SQL Database key points

	Restoring a deleted database
	Geo-restore

	Automating the tasks
	Creating an Azure SQL Database using PowerShell
	Creating an Azure SQL Database using the Azure CLI 2.0
	Creating an SQL Server-level firewall rule using PowerShell
	Creating an SQL Server-level firewall rule using Azure CLI 2.0
	Point-in-time restore using PowerShell
	Point-in-time restore using the Azure CLI 2.0
	Restoring a deleted database using PowerShell
	Restoring a deleted database using PowerShell

	Summary

	Beyond Azure SQL Database Management
	SQL Database (IaaS/PaaS)
	Azure SQL Database (PaaS)
	Scenarios that would fit in Azure SQL Database

	SQL on Azure VMs (IaaS)
	Scenarios that would suit SQL on Azure VMs

	Azure SQL elastic database pools
	Creating an elastic database pool
	Adding a database to the elastic database pool

	Setting Azure AD authentication to Azure SQL Database
	Active geo-replication
	Implementing active geo-replication
	Adding the databases to a failover group
	Active geo-replication key points

	Automating the tasks
	Creating an elastic database pool using PowerShell
	Creating an elastic database pool using Azure CLI 2.0
	Adding database to the elastic database pool using PowerShell
	Adding an additional database to the elastic database pool using Azure CLI 2.0
	Setting Azure AD authentication to Azure SQL Database using PowerShell
	Setting Azure AD authentication to Azure SQL Database using the Azure CLI 2.0
	Implementing active geo-replication using PowerShell
	Implementing active geo-replication using Azure CLI 2.0
	Adding databases to a failover group using PowerShell
	Adding databases to a failover group using the Azure CLI 2.0

	Further information
	Summary

	Azure Backup
	An introduction to Azure Backup
	Why Azure Backup?
	The process of backing up data
	Building a Recovery Services vault
	Backing up an Azure VM
	Restoring Azure VM files
	Restoring Azure VM files key points

	Restoring an Azure VM
	Restoring an Azure VM key points

	Further information
	Automating tasks
	Building a Recovery Services vault using Azure PowerShell
	Building a Recovery Services vault using the Azure CLI 2.0
	Backing up an Azure VM using Azure PowerShell
	Backing up an Azure VM using the Azure CLI 2.0
	Restoring Azure VM files using Azure PowerShell
	Restoring Azure VM files using the Azure CLI 2.0
	Restoring an Azure VM using Azure PowerShell
	Restoring an Azure VM using the Azure CLI 2.0

	Summary

	Azure Site Recovery
	Introduction to ASR
	ASR supportability
	Hyper-V servers
	VMware vSphere and physical servers

	Preparing your environment for ASR
	Building a site-to-site VPN connection
	Preparing an infrastructure for replication

	Kicking off replication from on-premises to ASR
	ASR recovery plans
	Testing ASR
	Further information
	Summary

	Extending Your Azure Storage Management
	Azure StorSimple
	StorSimple Virtual Array
	StorSimple 8000 series

	AzCopy
	Uploading a folder to Azure Blob
	Downloading an Azure Blob service container

	Azure Storage Explorer
	Connecting to Azure Storage using Azure Storage Explorer
	Managing Azure Storage accounts using Azure Storage Explorer
	Creating an Azure Storage service

	Azure Storage's three musketeers
	Summary

