
[1]

www.allitebooks.com

http://www.allitebooks.org

Learning Ionic

Build real-time and hybrid mobile applications with Ionic

Arvind Ravulavaru

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Ionic

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1220715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-260-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Arvind Ravulavaru

Reviewers
Bramus Van Damme

Ian Pridham

Indermohan Singh

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Merwyn D'souza

Technical Editor
Shashank Desai

Copy Editors
Stephen Copestake

Relin Hedly

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

This book is the result of several months of dedicated work by Arvind Ravulavaru,
a dedicated developer and writer, with whom I've had the pleasure of collaborating
on several occasions. This book provides a great way to get started with Ionic and
provides detailed examples from which even experienced developers can learn.

Arvind takes you through the process of installing everything you need to get started
with Ionic. He also shows you how to set up native SDKs. Further, Arvind covers the
basics of Ionic, such as Ionic's components, navigation using the UI-router, custom
styles, and the APIs provided by Ionic. Thus, readers can build two apps: a bookstore
app and a real-time chat application.

For experienced developers, the book explains how to enable native device APIs
through Cordova's plugins. You'll learn how to use ngCordova (another project by
the Ionic team) and Cordova plugins in an AngularJS syntax. In the chat application,
you'll see how to connect to external databases, such as Firebase. You will also see
how to keep your data in sync with all devices.

Prior to joining Ionic as a core team member and a developer advocate, I worked for
another company, where I created many internal hybrid apps. After evaluating other
frameworks, I chose Ionic because it offered the only complete solution for hybrid
mobile development. Everything I needed to get going was provided by Ionic. Instead
of focusing on how to architect my app, I could focus on just building the app.

www.allitebooks.com

http://www.allitebooks.org

Ionic offers a complete ecosystem for hybrid mobile app development, saves costs,
and offers a high-performance, beautiful alternative to native development. We
released the stable version of Ionic in May and then released alpha versions of three
of our platform services this summer. We don't have any plans to slow down; our
support for the open source Ionic SDK will always remain strong. At Ionic, I worked
with experienced and new developers, traveled all over the world to teach newbies,
and researched code with Ionic pros. I'm constantly impressed with how much
people love the product and with what a dynamic and positive community we have.

You'll find this book to be a great introduction to Ionic. It will give you a chance to
learn some more about the SDK. Thank you for being part of the Ionic community.

Enjoy!

Mike Hartington
Core Team Member, Ionic

www.allitebooks.com

http://www.allitebooks.org

About the Author

Arvind Ravulavaru is a full-stack consultant with over 6 years of experience
in software development. For the last 2 years, he has been working extensively on
JavaScript, both on the server side and the client side. Prior to that, Arvind worked
on big data analytics, cloud provisioning, and orchestration. He has good exposure
to various databases and has also developed and architected an application that was
built using Java and ASP.NET.

A year and a half ago, Arvind started a blog titled The Jackal of JavaScript
(http://thejackalofjavascript.com), where he writes about developing
full-stack applications using JavaScript alone as the server-side and client-side
programming language. He has written articles on various topics, such as DNA
analysis, sentiment analysis with JavaScript, programming Raspberry Pi with
JavaScript, and building a node-webkit and a WebRTC-based video chat client,
to name a few.

Apart from this, Arvind provides training, empowering companies with the
latest and greatest technology available in the market. He also conducts start up
workshops, where he teaches rapid prototyping with today's amazing tool stack.
Arvind also provides information on how to take ideas to the market in a very
short span of time.

He always looks for ways to contribute to the open source community, making this
world a better place for developers. As a consultant, Arvind always tries to power
amazing business ideas with awesome technology solutions (language-agnostic),
moving the human race up the evolution chain.

Arvind recently started his own company in Hyderabad, where he is building
products in the Internet of Things space. The aim of the company is to build IoT
products for the world at an affordable price so that everyone can enjoy technology
that powers lives.

You can reach Arvind on his blog at http://thejackalofjavascript.com.

Arvind has also reviewed Data-oriented Development with AngularJS, Manoj Waikar,
Packt Publishing.

www.allitebooks.com

http://thejackalofjavascript.com
http://thejackalofjavascript.com
http://www.allitebooks.org

Acknowledgments

First of all, I would like to thank Steve Jobs for being my inspiration and motivation
throughout. Selling something that a person does not need at a fancy price is not an
easy job. He has done this time and again, right from Mac books to Apple watches.
R.I.P, Mr. Jobs.

I don't think a simple thank you would suffice in appreciating what my family has
done for me, especially my mother. They have always been there for me through
good and bad times, sharing my happiness and encouraging me whenever I was
down. I could not have made it so far without their help and support.

I would like to send out a special thank you to Nicholas Gault and Andrew Nuss for
all the learning, support, and encouragement that they have provided me so far.

I would like to thank Udaykanth Rapeti for preaching me these golden words:
"create a digital presence if you want to really succeed" and for always being there
for me. A special thanks to Karthik Naidu, Pavan Musti, and the gang I worked with
at Deloitte. The times could not have been better!

I would like to thank Ali Baig, the self-proclaimed yoda, for all the advice and ideas
he keeps sharing with me. Keep them coming! A big shout out to the fresher batch
at Accenture and the Cactus gang. I cherish each moment I spent with you guys,
learning, playing, and rocking! Go Cactus, go!

I would like to take a moment to thank my first love. You have taught me a lot of
things and made me a better person. Our breakup was one of the motivations to
keep myself busy in technology, which definitely added to where I am today.
Thank you so much for everything.

www.allitebooks.com

http://www.allitebooks.org

Writing nine chapters and an appendix is a humongous task. Imagine editing and
reviewing the same. My sincere thanks to Merwyn D'souza, the content development
editor of the book, and the reviewers, Bramus Van Damme, Ian Pridham, and
Indermohan Singh. This book is in a lot better shape because of you guys. I am
honored to have worked with Shashank Desai, the technical editor of this book. I
am very happy that this is his last book before he moves on as a project manager.
Congrats! Also, thanks to Nikhil Nair and everyone from the Packt Publishing
team for making this possible.

A special shout out to Hemal Desai for finding me and getting me on board to write
this book. This book wouldn't have happened without her.

A big thumbs up to my blog readers. You guys rock!

Last but not least, my respect to the Robin Hoods of the developer community,
who develop and share free code!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Bramus Van Damme is a web enthusiast from Belgium and has been interested in
"all things web" ever since he, as a kid, discovered the Internet back in 1997.

Professionally, after having worked as a web developer for several years at several
web agencies, he became a lecturer of web technologies at a technical university in
Belgium. Apart from teaching basic HTML, CSS, and JavaScript to students, Bramus
also taught them how to write proper SQL statements. As a lecturer, he was also
responsible for authoring and maintaining the server-side web scripting (PHP) and
web and mobile development specialty courses.

Having worked in the education space for 7 years, he moved on to become a part of
the team at Small Town Heroes (Ghent, Belgium) to build groundbreaking solutions
and make watching TV more interactive than ever.

Bramus also freelances using the 3RDS moniker (https://www.bram.
us/2014/03/26/on-web-development-and-education/). On a regular basis,
he can be found attending and speaking at web meetups and conferences. Seeing
a nice piece of optimized and secure code can put a smile on his face.

In his spare time, he likes to goof around with web-related technologies, keep his
blog (https://www.bram.us/) up to date, and go scuba diving. Being a scout, he
has grown to become quite a mapping aficionado. Combined with his technical
knowledge, this has led to him to review Google Maps JavaScript API Cookbook,
Packt Publishing.

He lives in Vinkt (Belgium) with his son, Finn, and his daughter, Tila. He prefers cats
over dogs.

https://www.bram.us/2014/03/26/on-web-development-and-education/
https://www.bram.us/2014/03/26/on-web-development-and-education/
https://www.bram.us/

Ian Pridham is a freelance full-stack developer with over 15 years of experience.
He is based in London. Ian created the electric vehicle charge point API for the
Department of Transport (a government client) and developed the site for SB.TV,
the UK's leading online youth broadcaster (a consumer client). This site was featured
on Google Chrome's television advertisements. Ian provides consultancy and
development services to start-ups with AngularJS/Ionic to rapidly bring ideas to the
market. He works as a CTO at OpenPlay, an activity marketplace platform.

Indermohan Singh is an Ionic developer and a passionate budding entrepreneur,
running a mobile app development studio in the beautiful city of Ludhiana. He is
the founder of Ragakosh, the Indian classical music learning app. Indermohan blogs
at http://inders.in and hosts the AngularJS Ludhiana meetup. He is also the
developer of Ionic plugins for Sublime Text and Atom Editor. When he is not in front
of his laptop, you can find him singing with his tanpura.

I am thankful to my family—my father, mother, and brother for
giving me full support during the reviewing process. I also want to
thank God for giving me the strength and education that helped me
review this wonderful book.

http://inders.in

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Thanks to Mike Hartington for taking time from his busy schedule, reviewing the
book, and providing valuable insights on Ionic.

Knowing is different and doing is different.

[i]

Table of Contents
Preface	 vii
Chapter 1: Ionic – Powered by AngularJS	 1

Understanding the separation of concerns	 2
AngularJS components	 4
AngularJS directives	 8
AngularJS services	 14
AngularJS resources	 17
Summary	 17

Chapter 2: Welcome to Ionic	 19
Mobile Hybrid Architecture	 19
What is Apache Cordova?	 20
What is Ionic?	 22
Software setup	 23

Install Node.js	 23
Install Git	 24
Install Bower	 24
Install Gulp	 25
Install Sublime Text	 25
Install Cordova and Ionic CLI	 26

The platform guide	 27
Hello Ionic	 28
The browser developer tools setup	 32

Google Chrome	 32
Mozilla Firefox	 34

The Ionic project structure	 35
The config.xml file	 36
The www folder	 37

Scaffolding the tabs template	 39

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Scaffolding the side menu template	 41
generator-ionic	 42

Installing generator-ionic	 42
Summary	 45

Chapter 3: Ionic CSS Components and Navigation	 47
Ionic CSS components	 47

The Ionic grid system	 48
The page structure	 53
Buttons	 57
Lists	 59
Cards	 61
Ionicons	 62
Form elements	 63
Integrating Ionic CSS components with AngularJS	 69

The Ionic router	 74
A simple two-page app	 74

Summary	 91
Chapter 4: Ionic and SCSS	 93

What is Sass?	 93
Setting up SCSS in our Ionic project	 95

The manual setup	 96
The Ionic CLI task	 97

Working with Ionic SCSS	 97
Basic swatch	 97

Understanding the Ionic SCSS setup	 99
Using variables and mixins	 104

The SCSS workflow	 105
Building a swatch	 106
Summary	 114

Chapter 5: Ionic Directives and Services	 115
Ionic directives and services	 115
The Ionic Platform service	 116

registerBackButtonAction	 119
The on method	 121
Headers and footers	 121

Content	 123
ion-content	 123
ion-scroll	 124
ion-refresher	 125

Table of Contents

[iii]

ion-infinite-scroll	 129
$ionicScrollDelegate	 132
Navigation	 134
ion-view	 134
Ionic view events	 136
ion-nav-bar	 138
ion-nav-buttons	 141
$ionicNavBarDelegate	 142
$ionicHistory	 144
Tabs and side menu	 150

Ionic loading	 154
The Action Sheet service	 157
Popover and Popup services	 160
$ionicPopup	 163

The ion-list and ion-item directives	 170
Gesture directives and services	 175

Utilities	 179
Summary	 182

Chapter 6: Building a Bookstore App	 183
An introduction to the Bookstore application	 184
The Bookstore architecture	 185

The server architecture	 186
The server-side API documentation	 186
The client architecture	 187
Code on GitHub	 188
A Bookstore demo	 189

The development flow	 190
Setting up the server	 190
Building the application	 191

Step 1 – Scaffolding the side menu template	 192
Step 2 – Refactoring the template	 192

Refactoring the menu	 193
Refactoring the module name	 195
Adding a run method and modifying routes	 196
Refactoring templates	 198

Step 3 – Building authentication, localStorage, and the
REST API factory	 199

The Ionic loading factory	 200
The localStorage factory	 201
The Authentication factory	 202
The REST API factory	 204

Table of Contents

[iv]

Step 4 – Creating controllers for each route and
integrating with the factory	 207

The application controller	 207
The browse controller	 211
The book controller	 212
The cart controller	 214
The purchase controller	 216

Step 5 – Creating templates and integrating with the controller data	 218
The Login template	 218
The Browse template	 220
The Book template	 223
The Cart template	 224
The Purchase template	 226

Summary	 229
Chapter 7: Cordova and ngCordova	 231

Setting up a platform-specific SDK	 231
The Android setup	 232
The iOS setup	 233

Testing the setup	 234
Testing for Android	 234
Testing for iOS	 238

Getting started with Cordova plugins	 240
The Ionic plugin API	 241

Add a plugin	 241
Remove a plugin	 241
List added plugins	 241
Search plugins	 241

The Cordova whitelist plugin	 246
ngCordova	 248

Setting up ngCordova	 248
Legend	 250
$cordovaToast	 252
$cordovaDialogs	 253
$cordovaFlashlight	 255
$cordovaLocalNotification	 258
$cordovaGeolocation	 260

Summary	 263
Chapter 8: Building a Messaging App	 265

The Ionic Chat app	 265
Firebase	 266

Setting up a Firebase account	 267
AngularFire	 270

Table of Contents

[v]

The application architecture	 273
Authentication	 274
The application flow	 274
Previewing the app	 275
Data structure	 276
Cordova plugins	 278
Code on GitHub	 278

Developing the application	 278
Scaffolding and setting up the app	 278
Installing the required Cordova plugins	 281
Getting the Google API key	 281
Setting up routes and route authentication	 282
Setting up services/factories	 286
Setting up a map directive	 291
Setting up controllers	 292
Setting up templates	 304
Setting up SCSS	 308

Testing the application	 311
Summary	 319

Chapter 9: Releasing the Ionic App	 321
Preparing the app for distribution	 321

Setting up icons and splash screens	 321
Updating the config.xml file	 323

The PhoneGap service	 324
Generating installers using the Cordova CLI	 325

Android installer	 325
iOS installer	 327

The Ionic package	 328
Uploading the project to Ionic cloud	 328
Generating the required keys	 328

Summary	 329
Appendix: Additional Topics and Tips	 331

Ionic CLI	 331
Ionic login	 331
Ionic start task	 332

No Cordova flag	 332
Initialize a project with SCSS support	 333
Listing all Ionic templates	 333
App ID	 333

Ionic link	 334

Table of Contents

[vi]

Ionic info	 334
Ionic templates	 335
Ionic browsers	 335
Ionic lib	 336
Ionic state	 336
Ionic ions	 337
Ionic resources	 338
Ionic server, emulate, and run	 339
Ionic upload and share	 340

Ionic view	 341
Ionic help and docs	 341

Ionic Creator	 341
Ionic.io apps	 343
Ionic Push	 343
Ionic Deploy	 344
Ionic Vagrant box	 345
Ionic Sublime Text plugins	 345
Summary	 345

Index	 347

[vii]

Preface
Build mobile hybrid applications with ease using Ionic. Be it simple apps that
integrate REST API endpoints or complicated apps that involve native features,
Ionic provides a simple API to work with them.

With a basic knowledge of HTML, CSS, and a decent knowledge of AngularJS,
one can easily convert a million-dollar idea into an app with a few lines of code.

In this book, we will explore how you can do this.

What this book covers
Chapter 1, Ionic – Powered by AngularJS, introduces you to the power of AngularJS.
This is why it is considered a good framework for a hybrid framework, such as Ionic.

Chapter 2, Welcome to Ionic, talks about the Mobile Hybrid framework: Cordova.
It shows how Ionic fits into the bigger picture. This chapter also shows you how
to install the required software for the development of the Ionic framework.

Chapter 3, Ionic CSS Components and Navigation, tells you how to use Ionic as a
CSS framework for your mobile web applications. This chapter also talks about
how to integrate Ionic CSS only components with AngularJS, apart from routing
in Ionic apps.

Chapter 4, Ionic and SCSS, explores how to theme Ionic apps with the help of built-in
SCSS support.

Chapter 5, Ionic Directives and Services, provides information on how to use Ionic's
built-in directives and services, which helps to quickly bring your application to life.

Preface

[viii]

Chapter 6, Building a Bookstore App, deals with how you can leverage the knowledge
you have gained so far in building an Ionic client for a secured REST API. This
chapter walks you through the itsy-bitsy pieces that are needed to develop Ionic
apps that will simply consume REST API endpoints.

Chapter 7, Cordova and ngCordova, talks about how you can easily integrate device
features, such as camera and Bluetooth, with the help of Cordova and ngCordova
in your Ionic apps.

Chapter 8, Building a Messaging App, shows you how you can use all the knowledge
that you have gained so far to build a messaging app, where users can register,
log in, and chat with each other and share pictures and locations.

Chapter 9, Releasing the Ionic App, focuses on how to generate installers for the
apps that you have built with Cordova and Ionic using the Ionic CLI and the
PhoneGap build.

Appendix, Additional Topics and Tips, discusses how to efficiently use the Ionic CLI and
Ionic cloud services to build, deploy, and manage your Ionic applications.

What you need for this book
To start building Ionic apps, you need to have a basic knowledge of HTML, CSS,
JavaScript, and AngularJS. A good knowledge of mobile application development,
device native features, and Cordova is preferred.

You will need Node.js, Cordova CLI, and Ionic CLI installed to work with Ionic. If
you are planning to add theming support and other third-party libraries, you will
need Git and Bower. If you want to work with device features, such as camera or
Bluetooth, you need to have their mobile OS set up on your machine.

Who this book is for
This book is intended for those who want to learn how to build hybrid mobile
applications using Ionic. It is also ideal for people who want to work with theming
Ionic apps, integrating with the REST API, and learning more about device features,
such as camera or Bluetooth, using ngCordova.

Prior knowledge of AngularJS is essential to complete this book successfully.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "It
wraps setTimeInterval() and returns a promise when you register this service."

A block of code is set as follows:

myApp.controller('logCtrl', ['$log', function($log) {

 $log.log('Log Ctrl Initialized');

 }]);

Any command-line input or output is written as follows:

ionic server –l -c

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the
popup, you will notice that the Login button uses the positive class for styling."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

Preface

[x]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you. You can access the code, raise
issues, chat with the author, and clear your queries at GitHub (https://github.
com/learning-ionic).

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: http://www.packtpub.
com/sites/default/files/downloads/2603OS_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/learning-ionic
https://github.com/learning-ionic
http://www.packtpub.com/sites/default/files/downloads/2603OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/2603OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

Ionic – Powered by
AngularJS

Ionic is one of the most widely used mobile hybrid frameworks. It has more than
17,000 stars and more than 2,700 forks on GitHub at the time of writing this chapter.
Ionic is built on top of AngularJS, a super heroic framework for building MVW apps.
In this introductory chapter, we will take a look at AngularJS and understand how it
powers Ionic. We will take a look at a couple of key AngularJS components, named
directives, and services that are widely used when working with Ionic.

This book assumes that you have basic to intermediate knowledge
of AngularJS. If not, you can follow the book AngularJS Essentials,
Rodrigo Branas, or the video Learning AngularJS, Jack Herrington,
both by Packt Publishing, to get yourself acquainted with AngularJS.

In this chapter, I will explain only AngularJS directives and services. For other core
AngularJS concepts, refer to the book/video mentioned earlier.

In this chapter, we will cover the following topics:

•	 What is separation of concerns?
•	 How does AngularJS solve this problem?
•	 What are AngularJS built-in directives and custom directives?
•	 What are AngularJS services and how do custom services work?
•	 How are directives and services leveraged in Ionic?

Ionic – Powered by AngularJS

[2]

Understanding the separation of
concerns
Server-side web applications have been around for quite some time now. However,
the Web is evolving at such a fast pace that we are driving applications from the
client-side rather than the server-side. Gone are those days when the server dictates
to the client about what activities to perform and what user interface to display.

With the extensive growth of asynchronous and highly interactive web pages,
the user experience can be made better with client-side driven applications than
server-side driven applications. As you already know, libraries such as jQuery
and Zepto help us in achieving this quite easily.

Let's take a typical use case where a user enters data in a textbox and clicks on a
Submit button. This data is then posted to the server via AJAX, and the response
is rendered in the UI without any page refresh.

If we had to replicate this using jQuery (with a pseudo syntax), it would look
something like this:

// Assuming that jQuery is loaded and we have a textbox, a button and
a container to display the results

var textBox = $('#textbox');
var subBtn = $('#submitBtn');

subBtn.on('click', function(e) {
 e.preventDefault();
 var value = textbox.val().trim();
 if (!value) {
 alert('Please enter a value');
 return;
 }

 // Make an AJAX call to get the data
 var html2Render = '';

 $.post('/getResults', {
 query: value
 })
 .done(function(data) {
 // process the results
 var results = data.results;
 for (var i = 0; i < results.length; i++) {

Chapter 1

[3]

 // Get each result and build a markup
 var res = results[i];
 html2Render += ' < div class = "result" > ';
 html2Render += ' < h2 > ' + res.heading + ' < /h2>';
 html2Render += ' < span > ' + res.summary + ' < /span>';
 html2Render += ' < a href = "' + res.link + '" > ' + res.
linkText + ' < /a>';
 html2Render += ' < /div>'
 }
 // Append the results HTML to the results container
 $('#resultsContainer').html(html2Render);
 });

});

The preceding code is not for execution. It is just an example
for reference.

When you click on the button, the textbox value is posted to the server. Then, an
HTML markup is generated with results (JSON object) from the server and injected
into the results container.

But, how maintainable is the preceding code?

How can you test individual pieces? For example, we want to test whether the
validations work fine or whether the response is coming correctly.

Let's assume that we want to make modifications (such as adding a favicon of the
resultant web page next to each search result as an inline icon) to the results template
that we are building on the fly. How easy would it be to introduce this change in the
preceding code?

This is a concern with separations. These separations are between validations,
making AJAX requests and building markups. The concern is that they are tightly
coupled with each other, and if one breaks, all would break and none of the
preceding code can be reused.

If we were to separate the preceding code into various components, we would
end up with a Model View Controller (MVC) architecture. In a typical MVC
architecture, a model is an entity where you save the data, and a controller is
where you massage the data before you display it on a view.

Unlike the server-side MVC, the client-side MVC has an extra component named the
router. A router is typically a URL of the web page that dictates which model/view/
controller should be loaded.

Ionic – Powered by AngularJS

[4]

This is the basic idea behind AngularJS, and how it achieves separation of concerns
and at the same time provides a single-page application architecture.

Referring to the preceding example, the server interaction layer (AJAX) would be
separated from the main code and will interact with a controller on an on-demand basis.

Knowing this, we will now take a quick look at few key AngularJS components.

AngularJS components
AngularJS is driven from HTML, unlike most client-side JavaScript frameworks.
In a typical web page, AngularJS takes care of wiring key pieces of code for you.
So, if you add a bunch of AngularJS directives to your HTML page and include the
AngularJS source file, you could easily build a simple app without writing a single
line of JavaScript code.

To illustrate the preceding statement, we can build a login form with validations,
without writing a single line of JavaScript.

It would look something like this:

<html ng-app="">
<head>
 <script src="angular.min.js" type="text/JavaScript"></script>
</head>
<body>
 <h1>Login Form</h1>
 <form name="form" method="POST" action="/authenticate">
 <label>Email Address</label>
 <input type="email" name="email" ng-model="email"
required>

 <label>Password</label>
 <input type="password" name="password" ng-
model="password" required>

 <input type="submit" ng-disabled="!email || !password"
value="Login">
 </form>
</body>
</html>

Chapter 1

[5]

In the preceding code snippet, the attributes that start with ng- are called as
AngularJS directives.

Here, the ng-disabled directive takes care of adding the disabled attribute to the
Submit button when the e-mail or password is not valid.

Also, it is safe to say that the scope of the directive is limited to the element and
its children on which the directive is declared. This solves another key issue with
the JavaScript language where, if a variable were not declared properly, it would
end up in the Global Object, that is, the Window Object.

If you are new to scope, I recommend that you go through
https://docs.angularJS.org/guide/scope. Without
proper knowledge of scope and root scope, this book would
be very difficult to follow.

Now, we will go to the next component of AngularJS named Dependency Injection
(DI). DI takes care of injecting units of code where required. It is one of the key
enablers that help us achieve separation of concerns.

You can inject various AngularJS components, as you require. For instance, you can
inject a service in a controller.

DI is another core component of AngularJS that you need to be aware
of. You can find more information at https://docs.angularJS.
org/guide/di.

To understand services and controllers, we need to take a step back. In a typical
client-side MVC framework, we know that the model stores the data, the view
displays the data, and the controller massages the data present in the model
before it gets displayed to the view.

In AngularJS, you can relate with the preceding line as follows:

•	 HTML—Views
•	 AngularJS controllers—Controllers
•	 Scope objects—Model

In AngularJS, HTML acts as the templating medium. An AngularJS controller would
take the data from scope objects or the response from a service and then fuse them
to form the final view that gets displayed on the web page. This is analogous to the
task we did in the search example where we iterated over the results, built the HTML
string, and then injected the HTML into the DOM.

https://docs.angularJS.org/guide/scope
https://docs.angularJS.org/guide/di
https://docs.angularJS.org/guide/di

Ionic – Powered by AngularJS

[6]

Here, as you can see, we are separating the functionality into different components.

To reiterate, the HTML page acts as a template, and the factory component is
responsible for making an AJAX request. Finally, the controller takes care of
passing on the response from factory to the view, where the actual UI is generated.

The AngularJS version of the search engine example would be as shown here.

The index.html or the main page of the app would look like this:

<html ng-app="searchApp">
<head>
 <script src="angular.min.js" type="text/JavaScript">
 <script src="app.js" type="text/JavaScript">
</head>
<body ng-controller="AppCtrl">
 <h1>Search Page</h1>
 <form>
 <label>Search : </label>
 <input type="text" name="query" ng-model="query"
required>
 <input type="button" ng-disabled="!query" value="Search"
ng-click="search()">
 </form>

 <div ng-repeat="res in results">
 <h2>{{res.heading}}</h2>
 {{res.summary}}
 <a ng-href="{{res.link}}">{{res.linkText}}
 </div>

</body>
</html>

The app.js would look like this:

var searchApp = angular.module('searchApp', []);

searchApp.factory('ResultsFactory', ['$http', function($http) {

return {

 getResults : function(query){

Chapter 1

[7]

 return $http.post('/getResults', query);
 }

};

}]);

searchApp.controller('AppCtrl', ['$scope','ResultsFactory',function($s
cope, ResultsFactory) {

 $scope.query = '';
 $scope.results = [];

 $scope.search = function(){
 var q = {
 query : $scope.query
 };
 ResultsFactory.getResults(q)
 .then(function(response){

 $scope.results = response.data.results;

 });
 }

}]);

In AngularJS, the factory component and the service component are
interchangeably used. If you would like to know more about them, refer
to the discussion on stack overflow at http://stackoverflow.com/
questions/15666048/service-vs-provider-vs-factory.

The index.html file consists of the HTML template. This template is hidden by
default when the page is loaded. When the results array is populated with data,
the markup is generated from the template using the ng-repeat directive.

In app.js, we started off by creating a new AngularJS module with the name as
searchApp. Then, we created a factory named ResultsFactory, whose sole purpose
is to make an AJAX call and return a promise. Finally, we created the controller,
named AppCtrl, to coordinate with the factory and update the view.

http://stackoverflow.com/questions/15666048/service-vs-provider-vs-factory
http://stackoverflow.com/questions/15666048/service-vs-provider-vs-factory

Ionic – Powered by AngularJS

[8]

If you are new to promises, refer to http://www.dwmkerr.com/
promises-in-angularJS-the-definitive-guide/.

The search function declared on the button's ng-click directive is set up in the
AppCtrl. This button would only be enabled if valid data is entered in the search
box. When the Search button is clicked, the listener registered in the controller is
invoked. Here, we will build the query object needed for the server to process and
call getResults method in ResultsFactory. The getResults method returns a
promise, which gets resolved when the response from the server is back. Assuming a
success scenario, we will set $scope.results to the search results from the server.

This modification to the $scope object triggers an update on all instances of the
results array. This, in turn, triggers the ng-repeat directive on the HTML template,
which parses the new results array and generates the markup. And voila! The UI
is updated with the search results.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. For this chapter, you can chat with
the author and clear your queries at GitHub (https://github.
com/learning-ionic/Chapter-1).

The preceding example shows how you can structure your code in an orderly
fashion that can be maintainable and testable. Now, adding an extra image next
to each search result is very easy, and any developer with basic knowledge of the
Web can update the application.

AngularJS directives
Quoting from the AngularJS documentation.

"At a high level, directives are markers on a DOM element (such as an attribute,
element name, comment or CSS class) that tell AngularJS's HTML compiler
($compile) to attach a specified behavior to that DOM element or even transform
the DOM element and its children."

http://www.dwmkerr.com/promises-in-angularJS-the-definitive-guide/
http://www.dwmkerr.com/promises-in-angularJS-the-definitive-guide/
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/learning-ionic/Chapter-1
https://github.com/learning-ionic/Chapter-1

Chapter 1

[9]

This is a very useful feature when you want to abstract out the common functionality
on your web page. This is similar to what AngularJS has done with its directives,
such as the following ones:

•	 ng-app: This initializes a new default AngularJS module when no value is
passed to it; otherwise, it initializes the named module

•	 ng-model: This maps the input element's value to the current scope
•	 ng-show: This shows the DOM element when the expression passed to

ng-show is true
•	 ng-hide: This hides the DOM element when the expression passed to

ng-hide is true
•	 ng-repeat: This iterates the current tag and all its children based on the

expression passed to ng-repeat

Referring to the Search App, which we built earlier, imagine that there are multiple
pages in your web application that need this search form. The expected end result
is pretty much the same across all pages.

So, instead of replicating the controller and the HTML template where needed, we
would abstract this functionality into a custom directive.

You can initialize a new directive on a DOM element by referring to it using an
attribute notation, such as <div my-search></div>, or you can create your own
tag/element, such as <my-search></my-search>.

This would enable us to write the search functionality only once but use it many
times. AngularJS takes care of initializing the directive when it comes into view
and destroying the directive when it goes away from the view. Pretty nifty, right?

We will update our Search App by creating a new custom directive called my-search.
The sole functionality of this directive would be to render a textbox and a button.
When the user clicks on the Search button, we will fetch the results and display them
below the search form.

So, let's get started.

As with any AngularJS component, the directives are also bound to a module.
In our case, we already have a searchApp module. We will bind a new directive
to this module:

searchApp.directive('mySearch', [function () {
 return {
 template : 'This is Search template',
 restrict: 'E',

www.allitebooks.com

http://www.allitebooks.org

Ionic – Powered by AngularJS

[10]

 link: function (scope, iElement, iAttrs) {

 }
 };
}]);

The directive is named mySearch in camel case. AngularJS will take care of matching
this directive with my-search when used in HTML. We will set a sample text to the
template property. We will restrict the directive to be used as an element (E).

Other values that you can restrict in an AngularJS directive
are A (attribute), C (class), and M (comment). You can also
allow the directive to use all four (ACEM) formats.

We have created a link method. This method is invoked whenever the directive comes
into view. This method has three arguments injected to it, which are as follows:

•	 scope: This refers to the scope in which this tag prevails in the DOM. For
example, it could be inside AppCtrl or even directly inside rootScope
(ng-app).

•	 iElement: This is the DOM node object of the element on which the directive
is present.

•	 iAttrs: These are the attributes present on the current element.

In our directive, we would not be using iAttrs, as we do not have any attributes on
our my-search tag.

In complex directives, it is a best practice to abstract your directive template to
another file and then refer it in the directive using the templateUrl property.
We will do the same in our directive too.

You can create a new file named directive.html in the same folder as index.html
and add the following content:

<form>
 <label>Search : </label>
 <input type="text" name="query" ng-model="query" required>
 <input type="button" ng-disabled="!query" value="Search" ng-
click="search()">
</form>

<div ng-repeat="res in results">
 <h2>{{res.heading}}</h2>
 {{res.summary}}
 <a ng-href="{{res.link}}">{{res.linkText}}
</div>

Chapter 1

[11]

In simple terms, we have removed all the markup in the index.html related to the
search and placed it here.

Now, we will register a listener for the click event on the button inside the
directive. The updated directive will look like this:

searchApp.directive('mySearch', [function() {
 return {
 templateUrl: './directive.html',
 restrict: 'E',
 link: function postLink(scope, iElement, iAttrs) {
 scope.search = function() {
 var q = {
 query : scope.query
 };

 // Interact with the factory (next step)
 }
 }
 };
 }])

As you can see from the preceding lines of code, the scope.search method is
executed when the click event on the button is fired and scope.query returns
the value of the textbox. This is quite similar to what we did in the controller.

Now, when a user clicks on the Search button after entering some text, we will call
getResults method from ResultsFactory. Then, once the results are back, we will
bind them to the results property on scope.

The completed directive will look like this:

searchApp.directive('mySearch', ['ResultsFactory',
function(ResultsFactory) {
 return {
 templateUrl: './directive.html',
 restrict: 'E',
 link: function postLink(scope, iElement, iAttrs) {
 scope.search = function() {
 var q = {
 query : scope.query
 };

 ResultsFactory.getResults(q).
then(function(response){

Ionic – Powered by AngularJS

[12]

 scope.results = response.data.results;
 });
 }
 }
 };
 }])

With this, we can update our index.html to this:

<html ng-app="searchApp">
<head>
 <script src="angular.min.js" type="text/JavaScript"></script>
 <script src="app.js" type="text/JavaScript"></script>
</head>
<body>
 <my-search></my-search>
</body>
</html>

We can update our app.js to this:

var searchApp = angular.module('searchApp', []);

searchApp.factory('ResultsFactory', ['$http', function($http){

return {

 getResults : function(query){
 return $http.post('/getResults', query);
 }

};

}]);

searchApp.directive('mySearch', ['ResultsFactory',
function(ResultsFactory) {
 return {
 templateUrl: './directive.html',
 restrict: 'E',
 link: function postLink(scope, iElement, iAttrs) {
 scope.search = function() {
 var q = {
 query : scope.query

Chapter 1

[13]

 };

 ResultsFactory.getResults(q).
then(function(response){
 scope.results = response.data.results;
 });
 }
 }
 };
 }]);

Quite simple, yet powerful!

Now, you can start sprinkling the <my-search></my-search> tag wherever you
need a search bar.

You can take this directive to another level, where you can pass in an attribute
named results-target to it. This would essentially be an ID of an element on the
page. So, instead of showing the results below the search bar always, you can show
the results inside the target provided.

AngularJS comes with a lightweight version of jQuery named jqLite.
jqLite does not support selector lookup. You need to add jQuery before
AngularJS for AngularJS to use jQuery instead of jqLite. You can read
more about jqLite at https://docs.angularJS.org/api/ng/
function/angular.element.

This very feature makes AngularJS directives a perfect solution for reusable
components when dealing with DOM.

So, if you want to add a new navigation bar to your Ionic app, all you need to do is
throw in an ion-nav-bar tag, such as the following one, one your page:

<ion-nav-bar class="bar-positive">
 <ion-nav-back-button>
 </ion-nav-back-button>
</ion-nav-bar>

Then, things will fall in place.

We went through the pain of understanding a custom directive so that you could
easily relate to Ionic components that are built using AngularJS directives.

https://docs.angularJS.org/api/ng/function/angular.element
https://docs.angularJS.org/api/ng/function/angular.element

Ionic – Powered by AngularJS

[14]

AngularJS services
AngularJS services are substitutable objects that can be injected into directives
and controllers via Dependency Injection. These objects consist of simple pieces
of business logic that can be used across the app.

AngularJS services are lazily initialized only when a component depends on them.
Also, all services are singletons, that is, they get initialized once per app. This makes
services perfect for sharing data between controllers and keeping them in memory
if needed.

The $interval is another service that is available in AngularJS. The $interval
is the same as setTimeInterval(). It wraps setTimeInterval() and returns a
promise when you register this service. This promise then can be used to destroy
$interval later on.

Another simple service is $log. This service logs messages to the browser console.
A quick example of this would be as follows:

myApp.controller('logCtrl', ['$log', function($log) {

 $log.log('Log Ctrl Initialized');

 }]);

So, you can see the power of services and understand how simple pieces of business
logic can be made reusable across the app.

You can write your own custom services that can be reused across the app. Let's say
that you are building a calculator. Here, methods such as add, subtract, multiply,
divide, square, and so on, can be part of the service.

Coming back to our Search App, we used a factory that is responsible for server-side
communications. Now, we will add our own service.

Service and factory components can be used interchangeably. Refer to
http://stackoverflow.com/questions/15666048/service-
vs-provider-vs-factory for more information.

http://stackoverflow.com/questions/15666048/service-vs-provider-vs-factory
http://stackoverflow.com/questions/15666048/service-vs-provider-vs-factory

Chapter 1

[15]

For instance, when the user searches for a given keyword(s) and posts displaying the
results, we would like to save the results in the local storage. This will ensure that,
next time, if the user searches with the same keyword(s), we will display the same
results rather than making another AJAX call (like in offline mode).

So, this is how we will design our service. Our service will have the following
three methods:

•	 isLocalStorageAvailable(): This method checks whether the current
browser supports any storage API

•	 saveSearchResult(keyword, searchResult): This method saves a
keyword and search result in the local storage

•	 isResultPresent(keyword): This method retrieves the search result for a
given keyword

Our service will look as follows:

searchApp.service('LocalStorageAPI', [function() {
 this.isLocalStorageAvailable = function() {
 return (typeof(localStorage) !== "undefined");
 };

 this.saveSearchResult = function(keyword, searchResult) {
 return localStorage.setItem(keyword,
JSON.stringify(searchResult));
 };

 this.isResultPresent = function(keyword) {
 return JSON.parse(localStorage.getItem(keyword));
 };
}]);

Local storage cannot store an object. Hence, we are stringifying the
object before saving and parsing the object after retrieving it.

Ionic – Powered by AngularJS

[16]

Now, our directive will use this service while processing the search. The updated
mySearch directive will look like this:

searchApp.directive('mySearch', ['ResultsFactory', 'LocalStorageAPI',
function(ResultsFactory, LocalStorageAPI) {
 return {
 templateUrl: './directive.html',
 restrict: 'E',
 link: function postLink(scope, iElement, iAttrs) {

 var lsAvailable =
LocalStorageAPI.isLocalStorageAvailable();
 scope.search = function() {
 if (lsAvailable) {
 var results = LocalStorageAPI.
isResultPresent(scope.query);
 if (results) {
 scope.results = results;
 return;
 }
 }
 var q = {
 query: scope.query
 };

 ResultsFactory.getResults(q).
then(function(response) {
 scope.results = response.data.results;
 if (lsAvailable) {

 LocalStorageAPI.saveSearchResult(scope.query,
data.data.results);
 }
 });
 }
 }
 };
 }]);

As mentioned earlier, we will check whether local storage is available and then save
and fetch the results using the LocalStorageAPI service.

Similarly, Ionic also provides custom services that we are going to consume. We will
take a look at them in detail in Chapter 5, Ionic Directives and Services.

Chapter 1

[17]

An example of an Ionic service would be the loading service. This service shows a
loading bar with the text you have provided. It looks something like this:

$ionicLoading.show({
 template: 'Loading...'
});

Then, you will see an overlay that is generally used to indicate background activity
and block the user from interaction.

AngularJS resources
I would like to point out a few GitHub repositories that consist of valuable AngularJS
resources. You can refer to these repositories to know what is the greatest and latest
in the AngularJS world. Some of the repositories are as follows:

•	 jmcunningham/AngularJS-Learning at https://github.com/
jmcunningham/AngularJS-Learning

•	 gianarb/awesome-angularjs at https://github.com/gianarb/awesome-
angularjs

•	 aruzmeister/awesome-angular at https://github.com/aruzmeister/
awesome-angular

Note that the Ionic 1.0.0 that we will use throughout the book
uses the AngularJS 1.3.13 version.

Summary
In this chapter, we saw what separation of concerns is and how AngularJS
is designed to solve this problem. We quickly went through some of the key
AngularJS components that we would use while working with Ionic. You also
saw how to create custom directives and custom services, and learned about their
usage. The rule of thumb while creating reusable pieces of code when working
with AngularJS is to use directives when dealing with HTML elements (DOM),
and services/factories otherwise.

You also understood that Ionic uses these AngularJS components to expose an
easy-to-use API while building mobile hybrid apps.

In the next chapter, you will be introduced to Ionic. You will learn how to set it up,
scaffold a basic app, and understand the project structure. You will also take a look
at the bigger picture of developing a mobile hybrid application.

https://github.com/jmcunningham/AngularJS-Learning
https://github.com/jmcunningham/AngularJS-Learning
https://github.com/gianarb/awesome-angularjs
https://github.com/gianarb/awesome-angularjs

[19]

Welcome to Ionic
In the previous chapter, we saw a couple of key AngularJS features, namely the
directives and services. In this chapter, we will understand the big picture of mobile
hybrid apps, set up the required software to develop Ionic apps, and finally scaffold
a few apps.

The topics covered in this chapter are as follows:

•	 Mobile Hybrid Architecture
•	 What is Apache Cordova?
•	 What is Ionic?
•	 Setting up the tools needed to develop and run Ionic apps
•	 Working with Ionic templates
•	 The Yeoman Ionic Generator

Mobile Hybrid Architecture
Before we start working with Ionic, we need to understand the bigger picture of the
Mobile Hybrid platform.

The concept is pretty simple. Almost every mobile operating system (also called
Platform when working with Cordova) has an API to develop apps. This API
consists of a component named Web View. A Web View is typically a browser that
runs inside the scope of a mobile application. This browser runs the HTML, CSS, and
JS codes. This means that you can build a web page using the preceding technologies
and then execute it inside your app.

www.allitebooks.com

http://www.allitebooks.org

Welcome to Ionic

[20]

You can use the same knowledge of web development to build native-hybrid mobile
apps (here, native refers to installing the platform-specific format file on the device
after it has been packaged along with the assets), for instance:

•	 Android uses Android Application Package (.apk)
•	 iOS uses iPhone Application Archive (.ipa)
•	 Windows Phone uses Application Package (.xap)

The package/installer consists of a piece of native code that initializes the web page
and a bunch of assets needed to show the web page content.

This setup of showing a web page inside the mobile app container that consists of
your application business logic is called as a Hybrid App.

What is Apache Cordova?
In simple terms, Cordova is the piece of software that stitches the web application
and the native application together. The Apache Cordova website states that:

"Apache Cordova is a platform for building native mobile applications using
HTML, CSS and JavaScript."

Apache Cordova does not just stitch the web app with the native app, but it also
provides a set of APIs written in JavaScript to interact with the native features of the
device. Yes, you can use JavaScript to access your camera, take a picture, and send it
in an e-mail. Sounds exciting, right?

Chapter 2

[21]

To get a better understanding of what is happening, let's take a look at the
following image:

As you can see, we have a web view where the HTML/CSS/JS code gets executed.
This code can be a simple standalone piece of user interface; at best you are making
an AJAX request to get some data from a remote server. Or, this code can do much
more, like talking to the Bluetooth of the device and getting the list of devices in
the vicinity.

For this chapter, you can also access the code, raise issues,
and chat with the author at GitHub (https://github.
com/learning-ionic/Chapter-2).

https://github.com/learning-ionic/Chapter-2
https://github.com/learning-ionic/Chapter-2

Welcome to Ionic

[22]

In the latter case, Cordova has a bunch of APIs that interface with the web view
using JavaScript and then talk to the device in its native language (for example, Java
for Android), thus providing a bridge between them. For instance, if you would like
to know more from the JavaScript about the device in which your app is running, all
you need to do is write the following code inside the JS file:

var platform = device.platform;

After installing the device plugin, you can also access the UUID, model, OS version,
and the Cordova version of the device from inside the web view using JavaScript
as follows:

var uuid = device.uuid;
var model = device.model;
var version = device.version;
var Cordova = device.Cordova;

We will deal more with Cordova plugins in Chapter 7, Cordova and ngCordova.

The preceding explanation was to give you an idea of how Mobile Hybrid apps are
structured and how you can use device features from the web view using JavaScript.

Cordova does not convert the HTML, CSS, and JS code to an
OS-specific binary code. All it does is wrap the HTML, CSS,
and JS code and execute it inside a web view.

So, you must have guessed by now that Ionic is the framework with which we build
the HTML/CSS/JS code that runs in the web view and talks with Cordova to access
device specific APIs.

What is Ionic?
Ionic is a beautiful, open source, front-end SDK for developing hybrid mobile apps
with HTML5. Ionic provides mobile-optimized HTML, CSS, and JS components, as
well as gestures and tools for building highly interactive apps.

Ionic is performance efficient with its minimal DOM manipulation and
hardware-accelerated transitions as compared to other frameworks in this
league. Ionic uses AngularJS as its JavaScript framework.

With the power of AngularJS inside a framework like Ionic, the possibilities are
unlimited (you can use any AngularJS component inside Ionic as long as it makes
sense in a mobile app). Ionic has a very good integration with Cordova's device
API. This means that you can access device APIs using a library like ngCordova and
integrate it with the beautiful user interface components of Ionic.

Chapter 2

[23]

Ionic has its own Command Line Interface (CLI) to scaffold, develop, and deploy
Ionic apps. Before we start working with the Ionic CLI, we need to set up a few
pieces of software.

Software setup
Now we are going to set up all the required software needed to develop and run an
Ionic app smoothly.

Install Node.js
Since Ionic uses Node.js for its CLI as well as for the build tasks, we will first install
the same as follows:

1.	 Navigate to https://nodejs.org/.
2.	 Click on the Install button on the homepage and an installer for your OS will

automatically be downloaded. Or you can navigate to https://nodejs.
org/download/ and download a specific copy.

3.	 Install Node.js by executing the downloaded installer.

To verify that Node.js has been successfully installed, open a new Terminal
(*nix systems) or Prompt (Windows systems) and run the following command:

 node -v

Now you should see the version of Node.js. Now execute the following command:

 npm -v

You should see the npm version:

npm is a Node Package Manager that we will be using to download various
dependencies for our Ionic Project.

You need Node.js only during the development. The version specified
in the preceding image is only for illustration. You may have the same
version or the latest version of the software. This applies to all the
images that show the software version in this chapter.

https://nodejs.org/
https://nodejs.org/download/
https://nodejs.org/download/

Welcome to Ionic

[24]

Install Git
Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. In our case,
we will be using a package manager named Bower, which uses Git to download the
required libraries. Also, the Ionic CLI uses Git to download the project templates.

To install Git, navigate to http://git-scm.com/downloads and download the
installer for your platform. Once you have successfully installed it, you can navigate
to your terminal/prompt and run the following command:

git --version

You should see the following output:

Install Bower
We are going to use Bower (http://bower.io/) to manage our application library
dependencies. Bower is a package manager similar to npm but a linear/flat version
of it. This kind of package manager is more suitable for downloading the assets
needed for web development.

Bower is built on top of Node.js. To install Bower globally from the terminal/prompt
you need to run the following command:

 npm install bower -g

We are installing a node module named Bower globally. Hence, the –g flag. On *nix
systems, you may need to use sudo to run this command:

sudo npm install bower –g

If you need sudo for running the preceding command, please
recheck your npm installation. Refer to http://competa.com/
blog/2014/12/how-to-run-npm-without-sudo/ for more
information on sudo less npm global installs.

http://git-scm.com/downloads
http://bower.io/
http://competa.com/blog/2014/12/how-to-run-npm-without-sudo/
http://competa.com/blog/2014/12/how-to-run-npm-without-sudo/

Chapter 2

[25]

Once Bower is successfully installed, you can verify the same by running the
following command:

bower -v

Install Gulp
Next, we are going to install Gulp (http://gulpjs.com/), which is a build system
that is developed on top of Node.js. Automating a lot of monotonous, tedious tasks
can be taken care of by Gulp.

For instance, when your web project is ready to go live, you would want to minify
the CSS, JS, and HTML, optimize the images for the Web, and push the code to your
production environment; in that case, Gulp would be your go-to tool.

There are a lot of plugins in Gulp that automate most of your monotonous tasks, and
it is heavily driven by the open source community. In Ionic, we will be using Gulp
primarily to convert SCSS code to CSS. We use the SCSS code to customize the Ionic
visual elements. We will talk more about that in Chapter 4, Ionic and SCSS.

To install gulp globally run the following command:

npm install gulp -g

For *nix systems, run this:

sudo npm install gulp -g

Once Gulp is successfully installed, you can verify the same by running this command:

gulp -v

Install Sublime Text
This is a totally optional installation. Everyone has their own preferred text editor.
After running around many text editors, I fell in love with Sublime Text, purely for
its simplicity and the number of Plug and Play packages.

http://gulpjs.com/

Welcome to Ionic

[26]

If you would like to give this editor a try, you can navigate to
http://www.sublimetext.com/3 to download Sublime Text 3.

Install Cordova and Ionic CLI
Finally, to complete the Ionic setup, we will install the Ionic CLI. Ionic CLI is a
wrapper around the Cordova CLI with some additional features.

All the code examples in this book use Cordova version 5.0.0, Ionic
CLI version 1.5.0, and Ionic version 1.0.0 (uranium-unicorn).

To install the Ionic CLI run the following command:

npm install cordova@5.0.0 ionic@1.5.0 -g

To verify the install run the following command:

cordova –v

You can also run this:

ionic –v

To get a feel of what Ionic CLI is packed with, run:

 ionic

http://www.sublimetext.com/3

Chapter 2

[27]

You should see a list of tasks as seen in the following screenshot:

There are a few more tasks apart from the ones seen in the
preceding screenshot.

You can read through the tasks and explanations to get an idea about what they do.
Also, note that some of the tasks are still in beta as of today.

With this, we have completed the installation of all the software needed to develop
apps with Ionic.

The platform guide
By the end of this book, we will be building apps that are ready to be deployed on
to the device. Since Cordova takes HTML, CSS, and JS code as input and generates
a platform-specific installer, you need to have the build environments available on
your machine.

Welcome to Ionic

[28]

Android users can follow the instructions on the Android Platform
Guide at http://cordova.apache.org/docs/en/edge/guide_
platforms_android_index.md.html#Android%20Platform%20
Guide to set up SDK on your local machine.
iOS users can follow the instructions from the iOS Platform Guide
at http://cordova.apache.org/docs/en/edge/guide_
platforms_ios_index.md.html#iOS%20Platform%20Guide to
set up SDK on your local machine.
You would need an OSX environment to develop iOS apps.

As of today, Ionic supports only Android 4.0+ (although, it works on 2.3 as well) and
iOS 6+ mobile platforms. But Cordova supports a few more.

You can check out the other supported platforms here:
http://cordova.apache.org/docs/en/edge/guide_
platforms_index.md.html#Platform%20Guides.

Hello Ionic
Now that we are done with the software setup, we will scaffold a few Ionic apps.

Ionic has three main/go-to templates using which we can quickly start
developing apps:

•	 Blank: This is a blank Ionic project with one page
•	 Tabs: This is a sample app that is built using Ionic tabs
•	 Side menu: This is a sample app that is built to consume side menu

driven navigation

To understand the basics of scaffolding, we will start with the blank template.

To keep our learning process clean, we will create a folder structure to work with
Ionic projects. Create a folder named ionicApps, and then create a folder inside it
called chapter2.

Next, open a new terminal/prompt and change the directory (cd) to the ionicApps
folder and from there to chapter2 folder. Now run the following command:

ionic start -a "Example 1" -i app.example.one example1 blank

http://cordova.apache.org/docs/en/edge/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://cordova.apache.org/docs/en/edge/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://cordova.apache.org/docs/en/edge/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://cordova.apache.org/docs/en/edge/guide_platforms_ios_index.md.html#iOS%20Platform%20Guide
http://cordova.apache.org/docs/en/edge/guide_platforms_ios_index.md.html#iOS%20Platform%20Guide
http://cordova.apache.org/docs/en/edge/guide_platforms_index.md.html#Platform%20Guides
http://cordova.apache.org/docs/en/edge/guide_platforms_index.md.html#Platform%20Guides

Chapter 2

[29]

In the preceding command:

•	 -a "Example 1": This is the human-readable name of the app
•	 –i app.example.one: This is the app ID/reverse domain name
•	 example1: This is the name of the folder
•	 blank: This is the name of the template

Refer to the Appendix, Additional Topics and Tips, to know more about
the Ionic start task.

The Ionic CLI is very verbose when it comes to performing tasks. As you can see
from the terminal/prompt, while the project is getting created a lot of information
is printed.

To start off, a new blank project is downloaded and saved to the example1 folder.
Next, the ionic-app-base is downloaded from the ionic-app-base GitHub repo,
https://github.com/driftyco/ionic-app-base. Post that, ionic-starter-
template is downloaded from the ionic-starter-template GitHub repo at
https://github.com/driftyco/ionic-starter-blank.

After that, the config file is updated with the app name and ID. Next, a script runs
and five Cordova plugins are downloaded:

•	 org.apache.cordova.device (https://gitHub.com/apache/cordova-
plugin-device): This is used to get device information, as we have seen
earlier in this chapter

•	 org.apache.cordova.console (https://gitHub.com/apache/cordova-
plugin-console): This plugin is meant to ensure that console.log() is as
useful as it can be

•	 cordova-plugin-whitelist (https://github.com/apache/cordova-
plugin-whitelist): This plugin implements a whitelist policy for
navigating the application web view on Cordova 4.0

•	 cordova-plugin-splashscreen (https://github.com/apache/cordova-
plugin-splashscreen): This plugin shows and hides a splash screen during
the application launch

•	 com.ionic.keyboard (https://gitHub.com/driftyco/ionic-plugins-
keyboard): This is the keyboard plugin providing functions to make
interaction with the keyboard easier, and fires events to indicate whether
the keyboard will hide/show

www.allitebooks.com

https://github.com/driftyco/ionic-app-base
https://github.com/driftyco/ionic-starter-blank
https://gitHub.com/apache/cordova-plugin-device
https://gitHub.com/apache/cordova-plugin-device
https://gitHub.com/apache/cordova-plugin-console
https://gitHub.com/apache/cordova-plugin-console
https://github.com/apache/cordova-plugin-whitelist
https://github.com/apache/cordova-plugin-whitelist
https://github.com/apache/cordova-plugin-splashscreen
https://github.com/apache/cordova-plugin-splashscreen
https://gitHub.com/driftyco/ionic-plugins-keyboard
https://gitHub.com/driftyco/ionic-plugins-keyboard
http://www.allitebooks.org

Welcome to Ionic

[30]

All this information is then added to the package.json file and a new ionic.project
file is created.

Once the project has been successfully created, you will see a bunch of instructions
on how to proceed further. Your output should look something like the following
screenshot:

To proceed further, we will use the cd command to go to the example1 folder.
We will not follow the instructions provided in the terminal/prompt, as we still
understand the project setup. Once we have a fair idea on the various components
in Ionic, we can start using the commands from the terminal/prompt output after
we scaffold a new Ionic App.

Chapter 2

[31]

Once we have changed directory to example1 folder, we will serve the app by giving
the following command:

ionic serve

This will start a new dev server on port 8100, and then launch the app in your
default browser. I highly recommend setting Google Chrome or Mozilla Firefox
as your default browser while working with Ionic.

When the browser launches, you should see the blank template.

If you run this:

ionic serve

You will see an error as shown here:

This means that some other application on your machine is running on the port
8100. To fix this, you can use any other port like 8200 while running Ionic serve:

ionic serve –p 8200

Welcome to Ionic

[32]

Once the application is successfully launched and we have seen the output in
the browser, we will navigate back to the terminal/prompt and we should see
something like the following screenshot:

As mentioned earlier, Ionic CLI tasks are pretty verbose. They will not leave you
hanging. You can see that while the Ionic server command is running, you can type
R and hit Enter and the application restarts. Similarly, you can press C to enable or
disable printing browser JavaScript logs to the terminal/prompt.

Once you are done running the application, press Q and hit Enter to stop the server.
You can do the same by pressing Ctrl + C from the keyboard.

The browser developer tools setup
Before we proceed further, I would recommend setting up the developer tools in
your browser in the following format.

Google Chrome
Once the Ionic app is launched, open the developer tools by pressing Cmd + Opt + I
on Mac and Ctrl + Shift + I on Windows/Linux. Then click on the last but one icon in
the top row, next to the close button as seen in the following screenshot:

Chapter 2

[33]

This will dock developer tools to the side of the current page. Drag the demarcation
line between the browser and the developer tools till you see the view becoming
similar to a mobile.

If you click on the Elements tab in the developer tools, you can easily inspect the
page and see the output in one go, as shown in the following screenshot:

This view is very helpful for fixing errors and debugging issues.

Welcome to Ionic

[34]

Mozilla Firefox
If you are a Mozilla Firefox fan, you can achieve the same result as above
as well. Once the Ionic app is launched, open developer tools (not Firebug,
Firefox's native development tools) by pressing Cmd + Opt + I on Mac and
Ctrl + Shift + I on Windows/Linux. Then click on the Dock to side of browser
window icon, as shown in the following screenshot:

Now, you can drag the demarcation line to achieve the same result as we have seen
in Chrome:

Chapter 2

[35]

The Ionic project structure
So far, we have scaffolded a blank Ionic app and launched it in a browser. Now, we
will walk through the scaffolded project structure.

To quickly remind you, we know that the Ionic sits inside the Cordova application.
So before we go to the Ionic code, we will talk about the Cordova wrapper.

If you open the chapter2 example1 folder in your text editor, you should see the
following folder structure at the root of the project:

.

├── bower.json

├── config.xml

├── gulpfile.js

├── hooks

├── ionic.project

├── package.json

├── plugins

├── scss

└── www

Here is a quick explanation of each of the items:

•	 bower.json: This consists of the dependencies loaded via Bower. In future,
we will install other Bower packages to be used along with our app. All the
information regarding the same will be available here.

•	 config.xml: This file consists of all the meta information needed by Cordova
while converting your Ionic app to a platform-specific installer. If you open
config.xml, you will see a bunch of XML tags that describes your project. We
will take a look at this file in detail again.

•	 gulpfile.js: This file consists of the build tasks that we would be using
while developing the Ionic app.

•	 ionic.project: This file consists of the information regarding the Ionic app.

Welcome to Ionic

[36]

•	 hooks: This folder consists of scripts that get executed when a particular
Cordova task is performed. A Cordova task can be any of the following:
after_platform_add (after a new platform is added), after_plugin_add
(after a new plugin is added), before_emulate (before emulation begins),
after_run (before the app run), and so on. Each task is placed inside a folder
named after the Cordova task. If you open the hooks folder, you will see
an after_prepare folder and a README.md file. Inside the after_prepare
folder, you will find a script file named 010_add_platform_class.js. This
will get executed after the prepare task of Cordova is executed. All that this
task does is add a class to the <body> tag, which is the same name as the
platform on which the app is running. This would help us in styling the app
better, based on the platform. You can find a list of tasks that you can hook
into from the README.md file present inside the hooks folder.

•	 plugins: This folder consists of all the plugins added to the project. We will
be adding a few more plugins later on, and you can see them reflected here.

•	 scss: This folder consists of the base scss file which we will be overwriting
to customize the styles of the Ionic components. More on this in Chapter 4,
Ionic and SCSS.

•	 www: This folder consists of the Ionic code. Anything you write inside this
folder is intended to land inside the web view. This is where we will be
spending most of our time.

The config.xml file
The config.xml file is a platform agnostic configuration file. As mentioned earlier,
this file consists of all the information needed by Cordova to convert the code in the
www folder to the platform-specific installer.

Setting up of the config.xml file is based on the W3C's Packaged Web Apps
(Widgets) specification (http://www.w3.org/TR/widgets/) and extended to specify
core Cordova API features, plugins, and platform-specific settings. There are two
types of configurations that you can add to this file. One is global, that is, common to
all devices, and the other is specific to the platform.

If you open config.xml in your text editor, the first tag you encounter is the XML
root tag. Next, you can see the widget tag:

<widget id="app.example.one" version="0.0.1" xmlns="http://www.w3.org/ns/
widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0">

http://www.w3.org/TR/widgets/

Chapter 2

[37]

The id specified above is the reverse domain name of your app, which we provided
while scaffolding. Other specifications are defined inside the widget tag as its
children. The children tags include the app name (that gets displayed below the
app icon when installed on the device), app description, and author details.

It also consists of the configuration that needs to be adhered to while converting code
in the www folder to a native installer.

The content tag defines the starting page of the application. The access tag defines
the URLs that are allowed to load in the app. By default, it loads all the URLs.
The preference tag sets the various options as name value pairs. For instance,
DisallowOverscroll describes if there should be any visual feedback when
the user scrolls past the beginning or end of the document.

You can read more about platform-specific configurations at the following links:

•	 Android: http://docs.phonegap.com/en/4.0.0/guide_platforms_
android_config.md.html#Android%20Configuration

•	 iOS: http://docs.phonegap.com/en/4.0.0/guide_platforms_ios_
config.md.html#iOS%20Configuration

The importance for the platform-specific configurations and global
configuration is same. You can read more about global configuration
at http://docs.phonegap.com/en/4.0.0/config_ref_
index.md.html#The%20config.xml%20File

The www folder
As mentioned earlier, this folder consists of our Ionic app, the HTML, CSS, and JS
codes. If you open the www folder, you will find the following file structure:

.

├── css

│ └── style.css

├── img

│ └── ionic.png

├── index.html

├── js

│ └── app.js

└── lib

 └── ionic

http://docs.phonegap.com/en/4.0.0/guide_platforms_android_config.md.html#Android%20Configuration
http://docs.phonegap.com/en/4.0.0/guide_platforms_android_config.md.html#Android%20Configuration
http://docs.phonegap.com/en/4.0.0/guide_platforms_ios_config.md.html#iOS%20Configuration
http://docs.phonegap.com/en/4.0.0/guide_platforms_ios_config.md.html#iOS%20Configuration
http://docs.phonegap.com/en/4.0.0/config_ref_index.md.html#The%20config.xml%20File
http://docs.phonegap.com/en/4.0.0/config_ref_index.md.html#The%20config.xml%20File

Welcome to Ionic

[38]

 ├── css

 ├── fonts

 ├── js

 ├── scss

 └── version.json

Let's look at each of these in detail:

•	 index.html: This is the application startup file. If you remember, in config.
xml, we pointed the src on the content tag to this file. Since we are using
AngularJS as our JavaScript framework, this file would ideally act as the
base/first page for the Single Page Application (SPA). If you open index.
html, you can see that the body tag has the ng-app attribute which points to
the starter module defined inside the js/app.js file.

•	 css: This folder consists of styles that are specific to our app.
•	 img: This folder consists of images that are specific to our app.
•	 js: This folder consists of the JavaScript code specific to our app. This is

where we write the AngularJS code. If you open the app.js file present
inside this folder, you can see that an AngularJS module is set up, passing
in Ionic as a dependency.

•	 lib: This folder is where all the packages would be placed when we run
bower install. When we scaffold the app, this folder comes along with it,
loaded with Ionic files. If you want to download the assets again along with
its dependencies, you can use the cd command to go to the example1 folder
from your terminal/prompt and run the following command:
bower install

You will see that four more folders get downloaded. These are a part of the
dependencies listed in the ionic-bower package, present in bower.json file,
located at the root of the project.
Ideally, we would not be using these libraries explicitly in our app. Rather,
we would use the Ionic bundle which is built on top of these libraries.

This completes our tour of the blank template. Before we scaffold the next template,
let us take a quick peek at the www/js/app.js file.

Chapter 2

[39]

As you can see, we are creating a new AngularJS module with the name starter,
and then we are injecting ionic as a dependency.

The $ionicPlatform service is injected as a dependency to the run method. This
service is used to detect the current platform, as well as handle the hardware buttons
on (Android) devices. In the current context, we are using the $ionicPlatform.
ready method to be notified when the device is ready for us to perform operations
on it.

It is a good practice, or rather a necessity in some cases, to include all your code
inside the $ionicPlatform.ready method. This way, your code executes only when
the entire app is initialized.

So far you must have worked on AngularJS code related to the Web. But when you
are dealing with Ionic, you would be working with scripts related to device features
as well, inside the AngularJS code. Ionic provides us services to make these things
happen in a more organized fashion. Hence, we went through the concept of custom
services in Chapter 1, Ionic – Powered by AngularJS, and we will be going through Ionic
Services in depth in Chapter 5, Ionic Directives and Services.

Scaffolding the tabs template
To get a good feel of the Ionic CLI and the project structure, we will scaffold the
other two starter templates as well. First we will scaffold the tabs template.

Using the cd command go back to the chapter2 folder and run the following
command:

ionic start -a "Example 2" -i app.example.two example2 tabs

As you can see, the tabs project is scaffolded inside the example2 folder. Using the
cd command go to the example2 folder and execute the following command:

ionic serve

www.allitebooks.com

http://www.allitebooks.org

Welcome to Ionic

[40]

You should see the tabbed interface app built using Ionic as seen in the
following screenshot:

The tabs are located at the bottom of the page. We will talk more about customizations
in Chapter 3, Ionic CSS Components and Navigation and Chapter 5, Ionic Directives
and Services.

If you go back to the example2 folder and analyze the project structure, everything
would be the same except for the contents of the www folder.

This time, you will see a new folder named templates. This folder will consist of
partial pages associated with each AngularJS route. And if you open the js folder,
you will find two new files:

•	 controller.js: This consists of the AngularJS controller code
•	 services.js: This consists of the AngularJS service code

Now you can get a good idea of how Ionic is integrated with AngularJS, and how all
the components go hand-in-hand. When we deal with a few more pieces of Ionic, this
structure will make a lot of sense.

Chapter 2

[41]

Scaffolding the side menu template
Now, we will scaffold the final template. Using the cd command go back to the
chapter2 folder and run the following command:

ionic start -a "Example 3" -i app.example.three example3 sidemenu

To execute the scaffolded project, using the cd command go to the example3 folder
and give the following command:

ionic serve

And the output should be similar to the following screenshot:

You can analyze the project structure yourself and see the difference.

You can run Ionic start -l or ionic templates to view
the list of available templates. You can also use the ionic start
task with the template name from the list to scaffold the app.

Welcome to Ionic

[42]

generator-ionic
I feel that the Ionic CLI is pretty good, but it does not have a workflow associated
with it. When I say workflow, I mean a demarcation between the development code
and production code. In the project scaffolded by the Ionic CLI, the www folder hosts
both the development code and production code. This will become an issue very fast
when your app starts growing.

This is where generator-ionic proves to be invaluable. The generator-ionic is a
Yeoman generator that is used to scaffold Ionic projects. If you did not already
know this, Yeoman is a scaffolding tool that uses Grunt, Bower, and Yo to scaffold
apps. Of late, they've started supporting gulp as well.

Why Yeoman?
Unlike the IDEs for other languages, JavaScript or web
development does not have a unified development environment,
where a user would navigate to File | New | AngularJS project or
File | New | HTML5 project. This is where Yeoman fits in.

Ionic has its own CLI to scaffold apps. But for other frameworks, which do not have
a generator, Yeoman provides base generators.

You can know more about Yeoman at http://yeoman.io/
and to search for a Yeoman generator, you can navigate to
http://yeoman.io/generators/.

There are other generators available for Ionic, but I prefer generator-ionic
(https://gitHub.com/diegonetto/generator-ionic) for its workflow
and features.

Installing generator-ionic
Before we install generator-ionic, we need to install yo, grunt, and grunt-cli
globally. To do this, run the following command:

npm install yo grunt grunt-cli -g

Grunt is another build tool similar to Gulp. The main difference between Grunt
and Gulp is that, Grunt is a configuration-over-code build tool, whereas gulp is
a code-over-configuration build tool.

http://yeoman.io/
http://yeoman.io/generators/
https://gitHub.com/diegonetto/generator-ionic

Chapter 2

[43]

You can read more about Grunt at http://gruntjs.com/.
You can find the presentation from my talk on Gulp versus Grunt at
http://arvindr21.github.io/building-n-Scaffolding for
some more insights into them.

Next, we will install generator-ionic globally:

npm install generator-ionic –g

Packages which are installed with a –g flag need to be installed only
once. You need not install them again and again for each usage.

Now, we can scaffold a new Ionic project using generator-ionic. Using the
cd command go back to the chapter2 folder and create a new folder inside
it named example4. Run the following command:

yo ionic example

Unlike the Ionic CLI, you need to answer a few questions on how you would like to
scaffold your app. You can answer the questions as shown below:

? Would you like to use Sass with Compass (requires Ruby)?

 N

? Which Cordova plugins would you like to include?

 org.apache.cordova.device

 org.apache.cordova.console

 com.ionic.keyboard

? Which starter template would you like to use?

 Tabs

Yeoman will go ahead and download all the stuff needed for the project to run. Once
the Yeoman scaffolding is complete, you can navigate to the example4 folder. As you
can see, there are a lot more files and folders present in this folder.

You can read more about the complete project structure
at https://gitHub.com/diegonetto/generator-
ionic#project-structure.

http://gruntjs.com/
http://arvindr21.github.io/building-n-Scaffolding
https://gitHub.com/diegonetto/generator-ionic#project-structure
https://gitHub.com/diegonetto/generator-ionic#project-structure

Welcome to Ionic

[44]

The key differences between the Ionic CLI scaffolded app and the generator-ionic
scaffolded app are as follows:

•	 app: unlike the Ionic CLI scaffolded app, we will carry out the development
not inside the www folder but inside the app folder. This was the code
demarcation that I was referring to. We develop inside the app folder and
run a build script that takes care of cleaning up the files and putting them
inside the www folder, ready for production use.

•	 hooks: If you open the hooks folder, you can find four more scripts.
•	 Gruntfile.js: Unlike the Ionic CLI, generator-ionic uses Grunt to manage

tasks. If you feel that there are too many things to learn, I recommend you
follow the Ionic CLI scaffolded app over generator-ionic and Gulp over Grunt.

If you are using generator-ionic to scaffold your app, do not work
inside the www folder. When you run the build command, the contents
of this folder will be deleted and recreated from the app folder.
You can check out the workflow commands that you can use to run
the app from https://gitHub.com/diegonetto/generator-
ionic#workflow-commands.
All the Ionic CLI methods are wrapped with the grunt command. So,
for instance, when you want to execute Ionic serve, you will run grunt
serve when using generator-ionic.

So, let's serve the scaffolded app by running the following command:

grunt serve

You should see the same output that you have seen for the tabs app when we
scaffolded it with the Ionic CLI.

Three more reasons that made me choose generator-ionic over Ionic CLI is the
out-of-the-box support for:

•	 Code hinting (https://github.com/diegonetto/generator-
ionic#grunt-jshint)

•	 Testing with Karma (testing framework) and code coverage using Istanbul
(https://github.com/diegonetto/generator-ionic#grunt-karma)

•	 Ripple emulator (https://github.com/diegonetto/generator-
ionic#grunt-ripple)

https://gitHub.com/diegonetto/generator-ionic#workflow-commands
https://gitHub.com/diegonetto/generator-ionic#workflow-commands
https://github.com/diegonetto/generator-ionic#grunt-jshint
https://github.com/diegonetto/generator-ionic#grunt-jshint
https://github.com/diegonetto/generator-ionic#grunt-karma
https://github.com/diegonetto/generator-ionic#grunt-ripple
https://github.com/diegonetto/generator-ionic#grunt-ripple

Chapter 2

[45]

The main reason I am demonstrating generator-ionic is to introduce you to the
workflow so that you can adapt to it when your app becomes bigger. Again,
this is a personal preference and you may like to work with the Ionic CLI itself.

You can play around with other Ionic generators as well and see which you are
comfortable with.

Summary
In this chapter, you gained some knowledge on mobile hybrid architecture. You
also learned how a Hybrid app works. We saw how Cordova stitches the HTML,
CSS, and JS code to be executed inside the web view of the app. Then, we installed
the required software to develop Ionic apps locally. We scaffolded a blank template
using the Ionic CLI and analyzed the project structure. Later on, we scaffolded the
other two templates and observed the difference. We also installed generator-ionic
and scaffolded a sample app, and observed the difference between a generator-ionic
and Ionic CLI scaffolded app.

You can also refer to Ionic slides at http://ionicframework.com/
present-ionic/slides for some more information.

In the next chapter, we will understand Ionic CSS components and the router.
This will help us in building interesting user interfaces and multipage applications
using the Ionic API.

http://ionicframework.com/present-ionic/slides
http://ionicframework.com/present-ionic/slides

[47]

Ionic CSS Components
and Navigation

So far we have seen what Ionic is, where it fits in the big picture of mobile hybrid
application development. We have also seen two ways of scaffolding an Ionic app:
one using the Ionic CLI, and the other using generator-ionic. In this chapter, we will
work with Ionic CSS components, the Ionic grid system, and the Ionic state router.
We will look at the various components of Ionic, using which you can build apps
that provide a good user experience.

In this chapter, we will cover the following topics:

•	 Ionic grid system
•	 Various CSS components
•	 Integrating Ionic CSS components with AngularJS
•	 Ionic state router

For this chapter, you can also access the code, raise issues,
and chat with the author at GitHub (https://github.
com/learning-ionic/Chapter-3).

Ionic CSS components
Ionic is a combination of a powerful mobile CSS framework and a bunch of awesome
AngularJS directives and services. With these, the time taken to market any idea is
quite minimal. The Ionic CSS framework consists of most of the components you
need to build an app.

https://github.com/learning-ionic/Chapter-3
https://github.com/learning-ionic/Chapter-3

Ionic CSS Components and Navigation

[48]

To test-drive the available CSS components, we will scaffold a blank starter template
and then add the visual components of Ionic.

Before we start scaffolding, we will create a new folder named chapter3, and
scaffold all the examples from this chapter in that folder.

In this chapter, we will be scaffolding one app per component
to understand it better. If you want, you can use one app for
all the examples.

To scaffold a blank app, run this:

ionic start -a "Example 5" -i app.example.five example5 blank

The Ionic grid system
To get a fine grain control of your layout in terms of positioning the components on
the page or aligning elements next to each other with consistency, you need a grid
system, and Ionic provides one.

The beauty of the Ionic grid system is that it is FlexBox-based. FlexBox—or the
CSS Flexible Box Layout Module—provides a box model for optimized user
interface design.

You can read more about FlexBox at http://www.w3.org/
TR/css3-flexBox/ and you can find an amazing tutorial
about FlexBox at https://css-tricks.com/snippets/
css/a-guide-to-flexbox/.

The advantage of a FlexBox-based grid system is that you need not have a
fixed-column grid system. You can define as many columns as you want inside
a row and they will be automatically assigned with equal width. This way, unlike
any other CSS-based grid systems, you need not worry about the sum of class names
adding up to the total columns in the grid system.

To get a feel for the grid system, open the index.html file present inside the
example5/www folder. Inside the ion-content directive, add the following code:

<div class="row">
 <div class="col">col-20%-auto</div>
 <div class="col">col-20%-auto</div>
 <div class="col">col-20%-auto</div>
 <div class="col">col-20%-auto</div>
 <div class="col">col-20%-auto</div>
</div>

http://www.w3.org/TR/css3-flexBox/
http://www.w3.org/TR/css3-flexBox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

Chapter 3

[49]

And, to visually see the difference, we will add the following style in the <head> tag:

 <style>
 .col {
 border: 1px solid red;
 }
 </style>

The preceding style is not needed to use the grid system; it is merely
to show the visual demarcation of each column in the layout.

Save the index.html file and, using the cd command, go to the example5 folder and
run this:

ionic serve

Then you should see:

To check whether the width varies automatically, we will reduce the number of child
divs to 3, as shown here:

<div class="row">
 <div class="col">col-33%-auto</div>
 <div class="col">col-33%-auto</div>
 <div class="col">col-33%-auto</div>
</div>

Ionic CSS Components and Navigation

[50]

Then you should see:

No hassle, no counting; all you need to do is add the cols that you want to use, and
they are automatically allocated with equal width.

But this does mean that you cannot apply custom widths. You can do that easily with
the classes provided by Ionic.

For instance, let's say that, in the preceding 3 columns, you want the first column to
span 50 percent and the remaining 2 columns to take the remaining width; all you
need to do is add a class named col-50 to the first div, as shown here:

<div class="row">
 <div class="col col-50">col-50%-set</div>
 <div class="col">col-25%-auto</div>
 <div class="col">col-25%-auto</div>
</div>

Then you should see:

Chapter 3

[51]

You can refer to the following table for a list of predefined classes and their
implied width:

Class name Percentage width
.col-10 10 percent
.col-20 20 percent
.col-25 25 percent
.col-33 33.3333 percent
.col-50 50 percent
.col-67 66.6666 percent
.col-75 75 percent
.col-80 80 percent
.col-90 90 percent

Along with the class col, you can add any one of the classes mentioned in the
preceding table to get the specified width.

You can also offset a column by a certain percentage. For instance, append the
following markup to our current example:

<div class="row">
 <div class="col col-offset-33">col-33%-offset</div>
 <div class="col">col-25%-auto</div>
</div>

Then you should see:

Ionic CSS Components and Navigation

[52]

The first div is offset by 33 percent, and the remaining ~66 percent will be split
between the 2 divs. All the offset class does is add a padding of the specified
percentage to the left of the div.

You can refer to the following table for a list of predefined classes and their implied
offset width:

Class name Percentage width
.col-offset-10 10 percent
.col-offset-20 20 percent
.col-offset-25 25 percent
.col-offset-33 33.3333 percent
.col-offset-50 50 percent
.col-offset-67 66.6666 percent
.col-offset-75 75 percent
.col-offset-80 80 percent
.col-offset-90 90 percent

You can also align the columns in the grid vertically. This is another advantage of
using FlexBox for a grid system.

Append the following markup after the "offset" grid row we added earlier:

<div class="row">
 <div class="col col-top">.col-top</div>
 <div class="col col-center">.col-center</div>
 <div class="col col-bottom">.col-bottom</div>
 <div class="col">1

2

3

4
 </div>
</div>

Chapter 3

[53]

Then you should see:

If one of the columns in your row is taller than the others, you can add a class
col-top to position the contents of that column at the top of the row, as shown
above. Or you can add a class named col-center to position the contents of that
column at the center of the row, or col-bottom to position the contents of that
column at the bottom of the row.

With such a simple and powerful grid system, the layout possibilities are unlimited.

We will look at responsive grids and building a dynamic grid using
ng-repeat in Chapter 6, Building a Book Store App.
You can read more about Ionic grid system at http://
ionicframework.com/docs/components/#grid.

The page structure
Next we will understand the page structure needed for working with single-page
Ionic apps. We will scaffold a new blank project to work within the next section.

To scaffold a blank app, run this:

ionic start -a "Example 6" -i app.example.six example6 blank

Using the cd command, go to the example6 folder and run this:

ionic serve

You should see the blank app launch in the default browser.

http://ionicframework.com/docs/components/#grid
http://ionicframework.com/docs/components/#grid

Ionic CSS Components and Navigation

[54]

Open the example6/www/index.html file in your favorite editor. Inside the body tag,
you should see a structure like this:

 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>
 </ion-content>
 </ion-pane>

The entire page is wrapped inside an ion-pane directive.

The ion-pane (http://ionicframework.com/docs/api/directive/ionPane/) is a
simple container that fits content in the viewport.

Next, you can see an ion-header-bar directive (http://ionicframework.com/
docs/api/directive/ionHeaderBar/). This directive adds a fixed header to
the page. Do note the class attribute added to the ion-header-bar directive.

Out-of-the-box, Ionic ships with a color swatch with nine "moods". These are as
shown here:

http://ionicframework.com/docs/api/directive/ionPane/
http://ionicframework.com/docs/api/directive/ionHeaderBar/
http://ionicframework.com/docs/api/directive/ionHeaderBar/

Chapter 3

[55]

You can see the bar-stable class was applied to the ion-header-bar directive. You
can change the header to any of the preceding by simply replacing the stable part of
the class with any of the earlier names.

For instance, if you replace the class from bar-stable to bar-assertive, the header
background will look something like this:

Simple and easy, right? In the next chapter, we will take a look at overwriting the
default color swatch using SCSS.

The next directive on the page after the ion-header-bar is ion-content directive.
The ion-content (http://ionicframework.com/docs/api/directive/
ionContent/) directive enables building content areas, which overflow the
screen real estate and need scrolling. You can also control these view better with
$ionicScrollDelegate. More on that in Chapter 5, Ionic Directives and Services.

To give a complete structure to the page, we will add a footer too. Before the end of
ion-pane directive, add this:

<ion-footer-bar class="bar-assertive">
 <div class="title">Footer</div>
</ion-footer-bar>

Now, save the file; in the browser, you should see the following screenshot:

http://ionicframework.com/docs/api/directive/ionContent/
http://ionicframework.com/docs/api/directive/ionContent/

Ionic CSS Components and Navigation

[56]

So, you can see that, if you are building a single page app with Ionic, you can
structure your app like this:

<body ng-app="starter">
 <ion-pane>
 <ion-header-bar class="bar-assertive">
 ...
 </ion-header-bar>
 <ion-content>
 ...
 </ion-content>
 <ion-footer-bar class="bar-assertive">
 ...
 </ion-footer-bar>
 </ion-pane>
</body>

The non-directive version of the preceding structure would be:

 <div class="pane">
 <div class="bar bar-header bar-assertive">
 ...
 </div>
 <div class="content has-header has-footer padding">
 ...
 </div>
 <div class="bar bar-footer bar-assertive">
 ...
 </div>
 </div>

Also, you can add buttons to either the header or footer easily. The structure for
adding buttons inside the header would look like:

<ion-header-bar class="bar-assertive">
 <div class="buttons">
 <button class="button">Left</button>
 </div>
 <h1 class="title">Ionic Blank Starter</h1>
 <div class="buttons">
 <button class="button">Right</button>
 </div>
</ion-header-bar>

Chapter 3

[57]

The button placed before the h1 tag inside the ion-header-bar directive will
appear on the left and the button placed after the h1 tag will appear to the right
of the header bar:

You can use the same markup inside the footer as well to generate buttons.

The ion-header-bar directive is one way of generating a header. The ion-header-
bar directive is perfect for static headers. But things get complex very fast when we
introduce the Ionic state router. When you are dealing with a multi-page application,
and you want Ionic to take care of showing the back button automatically based on
the navigation, we use the ion-nav-bar directive instead of the ion-header-bar
directive. We will work with ion-nav-bar a bit later when we look at the Ionic
state router.

For more information about the header component, refer to
http://ionicframework.com/docs/components/#header.
For the content component, refer to http://ionicframework.
com/docs/components/#content.
For the footer component, refer to http://ionicframework.com/
docs/components/#footer.

Buttons
Ionic provides different variations on the buttons, by size or style.

Update the ion-content directive inside the www/index.html with the following
code, and you should see different button variations:

<ion-content class="padding">
 <button class="button">

http://ionicframework.com/docs/components/#header
http://ionicframework.com/docs/components/#content
http://ionicframework.com/docs/components/#content
http://ionicframework.com/docs/components/#footer
http://ionicframework.com/docs/components/#footer

Ionic CSS Components and Navigation

[58]

 Default
 </button>
 <button class="button button-full button-positive">
 Full Width Block Button
 </button>
 <button class="button button-small button-assertive">
 Small Button
 </button>
 <button class="button button-large button-calm">
 Large Button
 </button>
 <button class="button button-outline button-dark">
 Outlined Button
 </button>
 <button class="button button-clear button-energized">
 Clear Button
 </button>
 <button class="button icon-left ion-star button-balanced">
Icon Button
 </button>
</ion-content>

Do notice the class on the ion-content directive. This will add 10px padding to the
ion-content directive. If you save the file, you should see this:

Chapter 3

[59]

The preceding screenshot speaks for all your button needs based on the default Ionic
color swatch.

For more information about the buttons component, refer to
http://ionicframework.com/docs/components/#buttons.

Lists
The most essential component for any app that involves displaying a list of
items is a list component. List structure is pretty simple and, as with any Ionic
CSS component, lists are driven by CSS classes and HTML structure. In Ionic, if you
have a parent element with a class-named list and any number of children inside it
with the class-named item, the items align themselves in the form of an Ionic-styled
list. For instance:

<ul class="list">
 <li class="item">
 Item 1

 <li class="item">
 Item 2

 <li class="item">
 Item 3

You can also use this:

<div class="list">
 <div class="item">
 Item 1
 </div>
 <div class="item">
 Item 2
 </div>
 <div class="item">
 Item 3
 </div>
</div>

http://ionicframework.com/docs/components/#buttons

Ionic CSS Components and Navigation

[60]

It leads to the same layout and looks like this:

Based on my experience with Ionic so far, if the list consists of more than 250 items,
is built using ng-repeat with an array of objects, and if each object has around
10 properties, the app becomes less responsive. Having said that, you can work
around this limitation to improve the performance based on your needs.

The versatility of Ionic components lies in its CSS classes. Most layouts you intend to
build are already achievable with the classes provided.

For instance, if you want to add an icon to the left of each list item, all you need to do
is add a class named item-icon-left to the item. This will add enough space on the
left of the list item to add an icon.

An example can be found at http://ionicframework.com/docs/
components/#item-icons.

Similarly, you can add a thumbnail to the left of your list item. All you need is a class
named item-thumbnail-left.

An example can be found at http://ionicframework.com/
docs/components/#item-thumbnails.
You can read more about lists at http://ionicframework.com/
docs/components/#list.

http://ionicframework.com/docs/components/#item-icons
http://ionicframework.com/docs/components/#item-icons
http://ionicframework.com/docs/components/#item-thumbnails
http://ionicframework.com/docs/components/#item-thumbnails
http://ionicframework.com/docs/components/#list
http://ionicframework.com/docs/components/#list

Chapter 3

[61]

Cards
Cards are one of the best design patterns for showcasing content on a mobile device.
For any page or app that displays users' personalized content, cards are the way
to go. The world is moving towards cards to display content on mobiles, and in
some cases, on desktops too. Examples include Twitter (https://dev.twitter.
com/cards/overview) and Google Now (http://www.google.com/landing/
now/#cards).

So, you can simply port that design pattern to your app as well. All you need to do is
design the personalized content that fits into a card and then add a class named card
to the container. If you want to display a series of cards as a list, all you need to do is
add the class card to the list container.

A simple card that shows weather information will be structured as shown here:

<ion-content class="padding">
 <div class="list card">
 <div class="item text-center">
 <h1>Today's Weather</h1>
 </div>
 <div class="item item-body">
 <p>
 <div class="text-center">
 <i class="icon ion-ios-partlysunny"
style="font-size:128px"></i>
 </div>
 <div class="text-center">
 <h2>Partly Sunny</h2>
 </div>
 </p>
 </div>
 <div class="item tabs tabs-secondary tabs-icon-left">

 <i class="icon ion-thumbsup"></i> Like

 <i class="icon ion-chatbox"></i> Comment

 <i class="icon ion-share"></i> Share

 </div>
 </div>
</ion-content>

https://dev.twitter.com/cards/overview
https://dev.twitter.com/cards/overview
http://www.google.com/landing/now/#cards
http://www.google.com/landing/now/#cards

Ionic CSS Components and Navigation

[62]

Your page will look like this:

This design looks elegant at the same time as it displays all the essential information
in one glance. Next time you are designing a layout where you want the users to get
an impression of personalization, do consider the card layout.

You can read more about the Ionic cards component at
http://ionicframework.com/docs/components/#cards.

Ionicons
Ionic comes out of box with a bunch of font icons. The weather icon you
see in the preceding example uses Ionic's font icons. You can navigate to
http://ionicons.com/, and you should be able to find font icons that you
can start to use immediately.

http://ionicframework.com/docs/components/#cards
http://ionicons.com/

Chapter 3

[63]

For your convenience, there is a Search bar, where you can search for a type of icon.
For instance, if you type sunny into the Search bar, you should see the icon shown in
the preceding screenshot.

A very important caveat here is to ensure your Ionicons version on the website
matches the Ionicons version in your Ionic CSS file. The Ionic team keeps adding
more icons and upgrading the version. The sunny icon used here ships with Ionicons
version 2.0.1.

Note you can find more information on Ionicons and their usage at
http://ionicframework.com/docs/components/#icons.

Form elements
Ionic comes with its share of form elements and layouts. Right from a textbox to a
toggle switch, you name it and you got it.

A simple login form would be structured as shown here:

<ion-content class="padding">
<div class="list">
 <label class="item item-input">
 Username
 <input type="text">
 </label>
 <label class="item item-input">
 Password
 <input type="password">
 </label>
</div>
</ion-content>

http://ionicframework.com/docs/components/#icons

Ionic CSS Components and Navigation

[64]

You can also build a fancy form with a floating label. All you need to do is add the
class item-floating-label to the label:

<ion-content class="padding">
<div class="list">
 <label class="item item-input item-floating-label">
 Username
 <input type="text" placeholder="Username">
 </label>
 <label class="item item-input item-floating-label">
 Password
 <input type="password" placeholder="Password">
 </label>
 </div>
</ion-content>

The output looks like this:

Chapter 3

[65]

You can also add icons to these form elements. You need to add an i tag, with a class
named placeholder-icon inside the label for the icon to appear:

<ion-content class="padding">
<div class="list list-inset">
 <label class="item item-input">
 <i class="icon ion-search placeholder-icon"></i>
 <input type="text" placeholder="Search...">
 </label>
</div>
</ion-content>

It should look like this:

You can also add other form elements, such as a text area or a select; they come up
as expected and will be pretty neatly blended with the remaining form elements in
terms of look and feel:

<ion-content class="padding">
<div class="list">
 <label class="item item-input">
 <textarea placeholder="This is a <textarea>
</textarea>"></textarea>
 </label>
 <label class="item item-input item-select">
 <div class="input-label">
 Gender
 </div>
 <select>
 <option>Male</option>
 <option>Female</option>
 </select>

Ionic CSS Components and Navigation

[66]

 </label>
</div>
</ion-content>

There are two ways you can represent a checkbox. You can either show it as a
checkbox, or as a toggle switch.

The following markup shows a list of selectable fruits:

<ion-content class="padding">
 <ul class="list">
 <li class="item item-checkbox">
 <label class="checkbox checkbox-assertive">
 <input type="checkbox">
 </label>
 Apples

 <li class="item item-checkbox">
 <label class="checkbox">
 <input type="checkbox">
 </label>
 Oranges

 <li class="item item-checkbox checkbox-energized">
 <label class="checkbox">
 <input type="checkbox">
 </label>
 Lemons

</ion-content>

Chapter 3

[67]

Ionic themes apps with iOS styles by default; hence you can see the
circled checkbox. We will take a look at modifying this in Chapter 5,
Ionic Directives and Services.

The following markup shows toggle-able switches:

<ion-content class="padding">
<ul class="list">
 <li class="item item-toggle">
 Wifi
 <label class="toggle toggle-assertive">
 <input type="checkbox">
 <div class="track">
 <div class="handle"></div>
 </div>
 </label>

 <li class="item item-toggle">
 Bluetooth
 <label class="toggle toggle-positive">
 <input type="checkbox">
 <div class="track">
 <div class="handle"></div>
 </div>
 </label>

 <li class="item item-toggle">
 Aeroplane Mode
 <label class="toggle toggle-calm">
 <input type="checkbox">

Ionic CSS Components and Navigation

[68]

 <div class="track">
 <div class="handle"></div>
 </div>
 </label>

</ion-content>

Finally, we will wrap up Ionic CSS-based components with a range input. This is a
very handy and powerful component when dealing with variable inputs from the
user. The best use case for this component is a brightness slider, which would look
something like this:

Chapter 3

[69]

The markup you will need is as follows:

<ion-content class="padding">
<div class="list">
 <div class="item range range-positive">
 <i class="icon ion-ios-sunny-outline"></i>
 <input type="range" name="volume" min="0" max="100"
value="33">
 <i class="icon ion-ios-sunny"></i>
 </div>
 </div>
</ion-content>

Integrating Ionic CSS components with
AngularJS
What is the point if you have beautiful-looking pages with cool-looking components,
and none of them do anything in real time? So, in this subtopic, we are going to take
a look at integrating the beautiful looking Ionic components with AngularJS to make
the page more functional.

The first example we are going to deal with is disabling the form submit button till
the form fields are valid. We are going to create a login form with an e-mail address
and password. Till the user enters a valid e-mail and a password with length greater
than 3, we keep the login button disabled.

To build this, we will scaffold a blank app, and run the following command:

 ionic start -a "Example 7" -i app.example.seven example7 blank

Next, we will update the index.html file with a form and add an AngularJS
directive named ng-disabled to the button. The ng-disabled is evaluated to
true if the e-mail model value and password model value are false (or falsy).

To get an idea on truthy and falsy in JavaScript refer to
http://adripofjavascript.com/blog/drips/truthy-
and-falsy-values-in-javascript.html.

The www/index.html will look like this:

<div class="list">
 <label class="item item-input">
 Email
 <input type="email" ng-model="email">

http://adripofjavascript.com/blog/drips/truthy-and-falsy-values-in-javascript.html
http://adripofjavascript.com/blog/drips/truthy-and-falsy-values-in-javascript.html

Ionic CSS Components and Navigation

[70]

 </label>
 <label class="item item-input">

 Password
 <input type="password" ng-model="password"
ng-minlength="3">
 </label>
 <div class="padding">
 <button ng-disabled="!email || !password"
class="button button-block button-positive">Sign In</button>
 </div>
</div>

Save the file, and run the following command:

ionic serve

If nothing or invalid data was entered in the form, the button will be disabled and
will look like this:

Chapter 3

[71]

If the form is valid, the button will be enabled:

This is a simple example that shows how AngularJS and Ionic work together to
create a great experience for the users. The preceding example can be extended
to show the validation message.

In the next example, we will deal with a slightly more complex integration between
Ionic and AngularJS. We will be implementing a simple rating widget. The widget
will consist of five stars shown as outlines. When a user clicks on any of the five stars
to indicate his/her rating, we will fill all the stars from the beginning up to the star
the user has clicked.

To scaffold a blank app, run this:

ionic start -a "Example 8" -i app.example.eight example8 blank

Next, we will update the www/js/app.js by adding the following controller:

.controller('MainCtrl', ['$scope', function($scope) {

 $scope.ratingArr = [{
 value: 1,
 icon: 'ion-ios-star-outline'
 }, {
 value: 2,
 icon: 'ion-ios-star-outline'
 }, {
 value: 3,
 icon: 'ion-ios-star-outline'
 }, {

Ionic CSS Components and Navigation

[72]

 value: 4,
 icon: 'ion-ios-star-outline'
 }, {
 value: 5,
 icon: 'ion-ios-star-outline'
 }];

 $scope.setRating = function(val) {
 var rtgs = $scope.ratingArr;
 for (var i = 0; i < rtgs.length; i++) {
 if (i < val) {
 rtgs[i].icon = 'ion-ios-star';
 } else {
 rtgs[i].icon = 'ion-ios-star-outline';
 }
 };
 }

}])

As you can see from the preceding code, we have created an array named
ratingArr. This array consists of two properties: one, the value of a star, and two,
the class that needs to be applied to the star. And we have created another method
named setRating() that will be invoked when the user clicks on a star. This method
takes the value of the star that was clicked as the argument. Then, we iterate through
all the rating objects and, from the start to the selected star value, we set the icon as a
filled star, and the others as just an outline.

The body section of www/index.html will be:

<body ng-app="starter" ng-controller="MainCtrl">
 <ion-pane>
 <ion-header-bar class="bar-positive">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content class="padding">
 <div class="padding text-center">
 <h3>Rate the App</h3>
 <div>
 <a href="javascript:" ng-repeat="r in
ratingArr" class="padding" style="text-decoration:none;">
 <i class="icon {{r.icon}}"
ng-click="setRating(r.value)"></i>

 </div>

Chapter 3

[73]

 </div>
 </ion-content>
</ion-pane>
</body>

We have added the ng-controller directive to the body tag and, inside the
ion-content directive, we have added the div that will iterate the ratingArr
and render the stars.

If you save all the files and run this:

ionic serve

You should see the following screenshot:

If you select the third star, you should see this:

This is another example of how you can integrate the Ionic CSS components
with AngularJS.

Ionic CSS Components and Navigation

[74]

With this, we wrap up this simple introduction on integrating Ionic components with
AngularJS. In the next topic, we are going to take a look at the AngularUI router.

The Ionic router
As long as the application is small and has only a few pages, it is easy to maintain its
state and manage the data. But as the application becomes more and more complex,
it gets difficult to deal with templates, template data, data associated with a route,
and so on.

So, to make managing complex multi-page Ionic applications easy, we use the Ionic
router. The Ionic router is the same as the AngularUI router. For more information,
refer to https://github.com/angular-ui/ui-router.

From the AngularUI router documentation:

"AngularUI Router is a routing framework for AngularJS, which allows you
to organize the parts of your interface into a state machine. Unlike the $route
service in the Angular ngRoute module, which is organized around URL routes,
UI-Router is organized around states, which may optionally have routes, as well
as other behavior, attached."

You can read more about AngularUI router from https://github.
com/angular-ui/ui-router/wiki.

A simple two-page app
The Ionic source bundles the AngularUI router with it. So, we can directly inject
$stateProvider and $urlRouterProvider in our config method to create routes,
after we add Ionic as one of the dependencies. You will learn about the router via a
few examples.

In the first example, we are going to build a two-page application, and a navigation
button to navigate between them. The aim of this example is to understand the
syntax and setup of the router so that we can apply the same logic in other examples.

We are going to create a blank template and then add routes to it, making it a multi-
page application.

You can scaffold a new blank template with the following command:

ionic start -a "Example 9" -i app.example.nine example9 blank

https://github.com/angular-ui/ui-router
https://github.com/angular-ui/ui-router/wiki
https://github.com/angular-ui/ui-router/wiki

Chapter 3

[75]

Once the app is scaffolded, open www/js/app.js. We are going to create a config
method and add the routes to our app. We will add the following config method
after the run method in www/js/app.js, as shown here:

.config(function ($stateProvider, $urlRouterProvider) {

 $stateProvider
 .state('view1', {
 url: '/view1',
 template: '<div class="padding"><h2>View 1</h2><button
class="button button-positive" ui-sref="view2">To View
2</button></div>'
 })
 .state('view2', {
 url: '/view2',
 template: '<div class="padding"><h2>View 2</h2><button
class="button button-assertive" ui-sref="view1">To View
1</button></div>'
 })

 $urlRouterProvider.otherwise('/view1');

})

As you can see, $stateProvider and $urlRouterProvider are injected as
dependencies to the config method. These services are shipped along with
the Ionic bundle reference on the homepage.

Next, we used the $stateProvider to define states of our application. In this case,
states are the same as views. The state method on $stateProvider is used to
declare the routes. The first argument to this method is the readable name of the
state. The second argument is an object that consists of the route configuration. As
part of the route configuration, we provide a URL and a template that needs to be
rendered when this URL is triggered.

For our preceding config, we have created two states: one named view1,
which will be activated when we navigate to http://localhost:8100/#/view1,
and a second state named view2, which will be activated when we navigate to
http://localhost:8100/#/view2.

If you observe the URL, there is a # (hash) before the view name. This hash tells
the browser not to fire a request to the server to get the resources; rather, these
resources are present on the client side, and the JavaScript framework will take
care of rendering them.

http://localhost:8100/#/view2

Ionic CSS Components and Navigation

[76]

In simple terms, when anything after the hash changes in the URL, a hashchange
event is fired. The router has a listener, which gets activated when this event is fired.
This listener will take care of managing the UI based on the hash value (that is,
view1 or view2) and its state config. (In simple terms, when the hash changes, the
router invokes the corresponding controller and template for the changed hash.)

Do notice that we have written the template that we want to render for this view,
inline. We will look at using external files for this in the next example. Also, the
button has a directive named ui-sref (http://angular-ui.github.io/ui-
router/site/#/api/ui.router.state.directive:ui-sref). The ui-sref is a
directive that binds the link to a state. If the state has a URL associated with it, this
directive will automatically generate and update the href.

So, in our scenario, when we click on the button present in the template for view1,
the app will navigate to view2—and vice versa.

Finally, we complete the config method by providing a default URL:

$urlRouterProvider.otherwise('/view1');

In the preceding line, we specify that, if the current URL does not match any of the
configured state URLs, the user is redirected to the view1 state.

With this, we have successfully set up the states. But we still are left with one key
part of the setup. We need to tell the router which portion of the page should be
updated with the contents of the state. This is done by adding the ion-nav-view
directive in our index.html.

ion-nav-view is the same as the ui-view of the state router.
The ion-nav-view extends ui-view and adds features such
as animations and history.

In our index.html, replace the ion-content directive with the following code:

<ion-nav-view class="has-header"></ion-nav-view>

The class has-header adds a padding to the top of the container. This will make sure
the contents of the template do not start from behind the header bar.

The complete body of the index.html looks like this:

<body ng-app="starter">
 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Two Page Application</h1>
 </ion-header-bar>

http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.directive:ui-sref
http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.directive:ui-sref

Chapter 3

[77]

 <ion-nav-view class="has-header"></ion-nav-view>
 </ion-pane>
</body>

Save all the files and run the following command:

ionic serve

You will see the following screenshot:

When you click on the To View 2 button, it will take you to View 2, as shown here:

Do observe the URLs, post-navigation.

In the next example, we are going to create templates in separate HTML files and
then configure them in our router. We will also be introducing a new property
named controller to our route config object.

Ionic CSS Components and Navigation

[78]

The app we are going to build is a two-page app; page 1 is a login form, which we
developed earlier, and page 2 is the rating page.

The purpose of this example is to understand external templates and binding
controllers to views. We will start off by scaffolding a blank template:

ionic start -a "Example 10" -i app.example.ten example10 blank

Next, we will set up our routes. Add a config method to www/js/app.js, which will
look like this:

.config(function($stateProvider, $urlRouterProvider) {

 $stateProvider
 .state('login', {
 url: '/login',
 templateUrl: 'templates/login.html',
 controller: 'LoginCtrl'
 })

 .state('app', {
 url: '/app',
 templateUrl: 'templates/app.html',
 controller: 'AppCtrl'
 })

 $urlRouterProvider.otherwise('/login');

})

We have two states: login and app. We used a new property named templateUrl
instead of template. templateUrl takes the location of the template file. A template
file can be a separate file located on the hard disk, or it can be part of the index.html
as a script tag. We will look at both the approaches.

We also added a new property named controller. This property tells the router the
controller to be invoked when navigating to a route. As you can see, we will create
two controllers, one for each view.

Chapter 3

[79]

To get started off with the script tag-based templating, we will be creating two
empty controllers first. Add the following code to your www/js/app.js after the run
method, as shown here:

.controller('LoginCtrl', function ($scope) {

})

.controller('AppCtrl', function ($scope) {

})

Since we declared the controllers on the route config, AngularJS is going to look for
the controller when it navigates to that view. For this reason, we created two dummy
controllers. We will add the functionality a bit later.

Next, in our www/index.html, we will replace the ion-content directive with the
following code:

<ion-nav-view class="has-header"></ion-nav-view>

Anywhere inside the body tag, you can add the templates. The body section of
www/index.html will look like this:

<body ng-app="starter">

<ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">My Awesome App</h1>
 </ion-header-bar>
 <ion-nav-view class="has-header"></ion-nav-view>
</ion-pane>

<script type="text/ng-template" id="templates/login.html">
 <h1>Login Template</h1>
 <button class="button button-calm" ui-sref="app">To App</button>
</script>

<script type="text/ng-template" id="templates/app.html">
 <h1>App Template</h1>
 <button class="button button-royal" ui-sref="login">To
Login</button>
</script>

</body>

Ionic CSS Components and Navigation

[80]

Do observe the id attribute on the script tags. These are exactly same as
the templateUrl. This is the hook, which links a script tag/ng-template
to a route's templateUrl.

Save all the files and run this command:

ionic serve

You will see the contents of following screenshot:

When you click on the To App button, you will see the app view:

The preceding example shows how you can use script tags to write templates
inside HTML files.

Before moving on to our actual example, remove the inline templates we created in
www/index.html.

Chapter 3

[81]

We will create a folder named templates inside the www folder—not at the root of
the project but inside the www folder.

Inside the templates folder, create a file named login.html. The content of
login.html will be the same as we have used in example7. The contents of
the login.html will be:

<div class="list">
 <label class="item item-input">
 Email
 <input type="email" ng-model="email">
 </label>
 <label class="item item-input">
 Password
 <input type="password" ng-model="password"
ng-minlength="3">
 </label>
 <div class="padding">
 <button ui-sref="app" ng-disabled="!email || !password"
class="button button-block button-positive">Sign In</button>
 </div>
</div>

Do notice that we have added ui-sref to the button. As long as the button is
disabled, clicking on the button will not redirect to the app view.

Next, create another file inside the templates folder and name it app.html.
The contents of this file are the same as example8 earlier:

<div class="padding text-center">
 <h3>Rate the App</h3>
 <div>
 <a href="javascript:" ng-repeat="r in ratingArr"
class="padding" style="text-decoration:none;">
 <i class="icon {{r.icon}}"
ng-click="setRating(r.value)"></i>

 </div>
 <button ui-sref="login" class="button button-block
button-clam">Sign Out</button>
</div>

If you save all the files and go back to page, you should see the login page. When
you enter a valid e-mail address and a password greater than three characters, the
sign-in button will be enabled. You can click on the Sign in button and it should take
you to the app view.

Ionic CSS Components and Navigation

[82]

If you do not see the updated UI, it means that you have not deleted
the script-based templates from www/index.html. Templates written
in script tags take preference over the one on the disk, which
needs to be requested by AJAX. You can learn more about AngularJS
template caching from https://docs.angularjs.org/api/ng/
service/$templateCache.

If you checked out the app view, you will see that the stars are not appearing. This is
because our stars are based on a scope variable named ratingArr. We will update
our AppCtrl like we did in example8:

.controller('AppCtrl', function($scope) {
 $scope.ratingArr = [{
 value: 1,
 icon: 'ion-ios-star-outline'
 }, {
 value: 2,
 icon: 'ion-ios-star-outline'
 }, {
 value: 3,
 icon: 'ion-ios-star-outline'
 }, {
 value: 4,
 icon: 'ion-ios-star-outline'
 }, {
 value: 5,
 icon: 'ion-ios-star-outline'
 }];

 $scope.setRating = function(val) {
 var rtgs = $scope.ratingArr;
 for (var i = 0; i < rtgs.length; i++) {
 if (i < val) {
 rtgs[i].icon = 'ion-ios-star';
 } else {
 rtgs[i].icon = 'ion-ios-star-outline';
 }
 };
 }
})

https://docs.angularjs.org/api/ng/service/$templateCache
https://docs.angularjs.org/api/ng/service/$templateCache

Chapter 3

[83]

Now if you go back to the view, you should see the stars and, when you click on
them, they work as expected:

Also, we left our LoginCtrl empty. If you want, you can bind an ng-click to the
Submit button and call a function in the controller to do your validations. You can
remove the ui-sref attribute from the button tag and use the $state service inside
the controller to navigate to the app view. The button tag in www/templates/login.
html can be replaced with the following code:

<button ng-click="validate()" ng-disabled="!email || !password"
class="button button-block button-positive">Sign In</button>

The LoginCtrl in www/js/app.js is shown here:

.controller('LoginCtrl', function($scope, $state) {

 $scope.validate = function() {
 // some other validations...
 $state.go('app');
 }

})

In the next example, we are going to build a slightly more complex UI using the state
router. We are going to build a tabbed component. But first, we are going to take a
look at named views in the AngularUI router.

Ionic CSS Components and Navigation

[84]

Let's say that we have three places on our page that need to be updated when a route
changes. Using the AngularJS ngRoute router, we cannot do this, as the ngRoute
router lets us have only one ng-view per app. But the AngularUI router provides
something called "named views", whereby you can have many ui-views on the page
and name them. So, based on the view state, different templates will be loaded in
each of those.

Consider the following HTML, where we have three partial views in one page:

<body>
 <div ui-view="partialview1"></div>
 <div ui-view="partialview2"></div>
 <div ui-view="partialview3"></div>
</body>

So, while configuring our routes, we will introduce a new property in our route
config object named views. And then we will mention which controllers and
templates need to be invoked when that state is changed. For instance:

$stateProvider
 .state('page1',{
 views: {
 'partialview1': {
 templateUrl: 'page1-partialview1.html',
 controller: 'Page1Partialview1Ctrl'
 },
 'partialview2': {
 templateUrl: 'page1-partialview2.html',
 controller: 'Page1Partialview2Ctrl'
 },
 'partialview3': {
 templateUrl: 'page1-partialview3.html',
 controller: 'Page1Partialview3Ctrl'
 }
 }
 })
 .state('page2',{
 views: {
 'partialview1': {
 templateUrl: 'page2-partialview1.html',
 controller: 'Page2Partialview1Ctrl'
 },
 'partialview2': {
 templateUrl: 'page2-partialview2.html',
 controller: 'Page2Partialview2Ctrl'

Chapter 3

[85]

 },
 'partialview3': {
 templateUrl: 'page2-partialview3.html',
 controller: 'Page2Partialview3Ctrl'
 }
 }
 })

As you can see, if you are in the page1 state, appropriate views and controllers will
be called for each of the three named views—and similarly for page2.

Taking the same concept to Ionic, we are going to work with named views using the
ion-nav-view directive, and adding a name attribute to it. We will be building one
page with two states or rather two tabs.

We will start off by scaffolding a blank template:

ionic start -a "Example 11" -i app.example.eleven example11 blank

Our tabbed interface is going to have two tabs – login and register. We are going to
configure these two states in our www/js/app.js file after the module is instantiated:

.config(function($stateProvider, $urlRouterProvider) {

 $stateProvider
 .state('login', {
 url: '/login',
 views: {
 login: {
 templateUrl: 'templates/login.html'
 }
 }
 })

 .state('register', {
 url: '/register',
 views: {
 register: {
 templateUrl: 'templates/register.html'
 }
 }
 })

 $urlRouterProvider.otherwise('/login');

})

Ionic CSS Components and Navigation

[86]

Do notice the view property and the name of the subproperty (login and register).
This is how we declare the views object.

Next, we are going to work with the Ionic tabs directive (http://ionicframework.
com/docs/api/directive/ionTabs/). This is a pretty simple directive that wraps
the ion-tab directives with the ion-tabs directive to create a tabbed interface.

So, in our www/index.html, we replace the body tag with the following command:

<body ng-app="starter">
 <ion-nav-bar class="bar-royal">
 </ion-nav-bar>
 <ion-tabs class="tabs-royal">
 <ion-tab icon="ion-power" ui-sref="login">
 <ion-nav-view name="login"></ion-nav-view>
 </ion-tab>
 <ion-tab icon="ion-person-add" ui-sref="register">
 <ion-nav-view name="register"></ion-nav-view>
 </ion-tab>
 </ion-tabs>
</body>

As you can see, the ion-tabs directive consists of two ion-tab directives and
ion-tab consists of ion-nav-view as the content for each view. Each ion-nav-view
has a name attribute set to the view that it needs to load.

Now all we need to do is create the two templates. Create a folder named templates
inside the www folder, and create a file named login.html inside the templates
folder. The contents of www/templates/login.html will be:

<ion-view view-title="Login">
 <ion-content class="padding">
 <div class="list">
 <label class="item item-input">
 Email
 <input type="email" ng-model="email">
 </label>
 <label class="item item-input">
 Password
 <input type="password" ng-model="password"
ng-minlength="3">
 </label>
 <div class="padding">
 <button ng-disabled="!email || !password"
class="button button-block button-royal">Sign In</button>
 </div>

http://ionicframework.com/docs/api/directive/ionTabs/
http://ionicframework.com/docs/api/directive/ionTabs/

Chapter 3

[87]

 </div>
 </ion-content>
</ion-view>

Do notice how we have wrapped the template inside an ion-view directive and then
the ion-content directive. Next, create another file named register.html inside
the www/templates folder and update it as shown here:

<ion-view view-title="Register">
 <ion-content class="padding">
 <div class="list">
 <label class="item item-input">
 Email
 <input type="email" ng-model="email">
 </label>
 <label class="item item-input">
 Password
 <input type="password" ng-model="password"
ng-minlength="3">
 </label>
 <label class="item item-input">
 Re-Enter Password
 <input type="password" ng-model="password2"
ng-minlength="3">
 </label>
 <div class="padding">
 <button ng-disabled="(!email || !password) ||
(password != password2)" class="button button-block button-
royal">Sign In</button>
 </div>
 </div>
 </ion-content>
</ion-view>

Save all the files and run the following command:

ionic serve

Ionic CSS Components and Navigation

[88]

You will see the following screenshot:

In the preceding example, we have built a tabbed component from the ground up,
using just the starter template. We need not do this every time. There is a template
available to scaffold tabbed interface apps. We are going to use that to scaffold an
app and quickly walkthrough it.

Scaffold a tabs template as follows:

ionic start -a "Example 12" -i app.example.twelve example12 tabs

Once the scaffolding is done, open www/js/app.js and scroll to the config method.
You should see the routes configured for this app. They should look like this:

.config(function($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('tab', {
 url: "/tab",
 abstract: true,
 templateUrl: "templates/tabs.html"
 })

 .state('tab.dash', {
 url: '/dash',
 views: {
 'tab-dash': {
 templateUrl: 'templates/tab-dash.html',
 controller: 'DashCtrl'

Chapter 3

[89]

 }
 }
 })

 .state('tab.chats', {
 url: '/chats',
 views: {
 'tab-chats': {
 templateUrl: 'templates/tab-chats.html',
 controller: 'ChatsCtrl'
 }
 }
 })
 .state('tab.chat-detail', {
 url: '/chats/:chatId',
 views: {
 'tab-chats': {
 templateUrl: 'templates/chat-detail.html',
 controller: 'ChatDetailCtrl'
 }
 }
 })

 .state('tab.account', {
 url: '/account',
 views: {
 'tab-account': {
 templateUrl: 'templates/tab-account.html',
 controller: 'AccountCtrl'
 }
 }
 });

 $urlRouterProvider.otherwise('/tab/dash');

});

If you notice, the tab state property has a new property called abstract and it is set
to true. An abstract state is simply a state that can't be transitioned to. It is activated
implicitly when one of its descendants is activated.

In our scenario, the tab holder will be an abstract state and, when any of the child
tabs is activated, this tab state will be activated automatically.

Ionic CSS Components and Navigation

[90]

You can read more about abstract states at https://github.com/
angular-ui/ui-router/wiki/Nested-States-%26-Nested-
Views#abstract-states.

If you open templates/tabs.html, you can see the ion-tabs directive set up
in a template file and not in the index.html file like our previous example. This
template will behave like an abstract state for the tabs component. Also, you can
see that tab-dash.html, tab-chats.html, and tab-account.html are structured
in the same way as our last example.

You can test the app by running the following command:

ionic serve

As you may have noticed, the chats tab has a list of chats shown and, when
you click on a chat item, it takes you to another view showing the details of the
selected chat. This kind of setup is called a master detail view, the "master" being
list of chats and the "detail" being chat details. Also, do notice that the URLs for
different chats are different, such as http://localhost:8100/#/tab/chats/0
or http://localhost:8100/#/tab/chats/1 and so on.

If you go back to the state configuration in www/js/app.js for tab.chat-detail,
you should see the following code:

.state('tab.chat-detail', {
 url: '/chats/:chatId',
 views: {
 'tab-chats': {
 templateUrl: 'templates/chat-detail.html',
 controller: 'ChatDetailCtrl'
 }
 }
})

The url property has a value '/chats/:chatId'. Do notice the colon before the
chatId. This tells the router that the value of chatId is a dynamic value; when you
encounter this route, validate the route till the chats part, and then store the value
after the chats part of the URL in a variable named chatId.

https://github.com/angular-ui/ui-router/wiki/Nested-States-%26-Nested-Views#abstract-states
https://github.com/angular-ui/ui-router/wiki/Nested-States-%26-Nested-Views#abstract-states
https://github.com/angular-ui/ui-router/wiki/Nested-States-%26-Nested-Views#abstract-states

Chapter 3

[91]

So, when we are dealing with our application in real-time, this value will be
available on $stateParams. You can check it out in www/js/controllers.js –
ChatDetailCtrl:

.controller('ChatDetailCtrl', function($scope, $stateParams, Chats) {
 $scope.chat = Chats.get($stateParams.chatId);
})

The preceding example shows how you can mix-and-match tabbed views with a
master detail view.

You can also scaffold a sidemenu template and see how the side menu is configured
in the routes.

Summary
In this chapter, we have taken a look at most of the Ionic CSS components. We also
went through the color swatch available out of the box. Next, we integrated the Ionic
CSS components with AngularJS to add in some functionality. We worked with the
Ionic state router from the ground up, building a simple two-page app. Finally, we
explored the tabbed interfaces and master detail views.

In the next chapter, we will be looking at customizing the Ionic CSS with the power
of SCSS.

[93]

Ionic and SCSS
In this chapter, we are going to take a look at the styling aspects of an Ionic app. By
default we have seen that Ionic has 7 shades, or a swatch with predefined colors. In
this chapter, we are going to edit those colors, and modify the look and feel of Ionic
components. This chapter sets out to give you an understanding of how to work with
Ionic SCSS in general, rather than focusing on certain components.

In this chapter, we are going to cover the following topics:

•	 SASS versus SCSS
•	 Setting up SCSS
•	 Working with SCSS variables
•	 Working with SCSS mixins
•	 Theming a side menu app

For this chapter, you can also access the code, raise issues,
and chat with the author at GitHub (https://github.
com/learning-ionic/Chapter-4).

What is Sass?
According to the Sass documentation at http://sass-lang.com/documentation/:

"Sass is an extension of CSS that adds power and elegance to the basic language. It
allows you to use variables, nested rules, mixins, inline imports, and more, all with
a fully CSS-compatible syntax. Sass helps keep large stylesheets well organized,
and get small stylesheets up and running quickly."

https://github.com/learning-ionic/Chapter-4
https://github.com/learning-ionic/Chapter-4
http://sass-lang.com/documentation/

Ionic and SCSS

[94]

In simpler terms, Sass makes CSS programmable. You may wonder why, if the chapter
is called SCSS, we are talking about Saas. Well, Sass and SCSS are pretty much the
same CSS pre-processor, with each having its own way of writing the pre-CSS syntax.

Sass was developed as part of another pre-processor named HAML (http://haml.
info/) by Ruby developers. So, it inherited a lot of syntax style from Ruby, such as
indentation, no braces, no semi-colons, and so on.

A sample Sass file looks like this:

// app.sass

brand-primary= blue

.container
 color= !brand-primary
 margin= 0px auto
 padding= 20px

=border-radius(!radius)
 -webkit-border-radius= !radius
 -moz-border-radius= !radius
 border-radius= !radius

*
 +border-radius(0px)

When you run the preceding Sass code through a Sass compiler, it returns good-old
CSS. The generated CSS looks like this:

.container {
 color: blue;
 margin: 0px auto;
 padding: 20px;
}

* {
 -webkit-border-radius: 0px;
 -moz-border-radius: 0px;
 border-radius: 0px;
}

But did you notice that brand-primary in the Sass code acted as a variable,
substituting its value inside the container class, or that the border-radius acted as
a function (also called a mixin), generating the required CSS rules when called with
an argument? This was missing in CSS.

http://haml.info/
http://haml.info/

Chapter 4

[95]

People who are used to the bracket-based coding languages found this way of
writing code a bit difficult. So, enter SCSS.

Sass stands for Syntactically Awesome Style Sheets and SCSS stands for Sassy CSS.
SCSS is pretty much same as Sass, except for the CSS-like syntax. The preceding Sass
code when written in SCSS looks like this:

// app.scss
$brand-primary: blue;

.container{
 color: !brand-primary;
 margin: 0px auto;
 padding: 20px;
}

@mixin border-radius($radius) {
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 border-radius: $radius;
}

* {
 @include border-radius(5px);
}

This looks a lot closer to CSS itself, right? And it is expressive. The best part, Ionic
uses SCSS to style its components.

If you want to know more about SCSS versus Sass, you can go
through this post at http://thesassway.com/editorial/
sass-vs-scss-which-syntax-is-better.

Now that we have a basic understanding of what SCSS and Sass are, we will leverage
them in our Ionic app to theme our components.

Setting up SCSS in our Ionic project
Now we will see how to set up SCSS in an existing Ionic project. We will start off by
scaffolding a new tabs project. Create a folder named chapter4 and inside that open
a new terminal/prompt and run:

ionic start -a "Example 13" -i app.example.thirteen example13 tabs

http://thesassway.com/editorial/sass-vs-scss-which-syntax-is-better
http://thesassway.com/editorial/sass-vs-scss-which-syntax-is-better

Ionic and SCSS

[96]

We can set up SCSS in our project in two ways:

•	 Manual setup
•	 Ionic CLI task

The manual setup
To set up SCSS manually, we will follow these steps:

1.	 Using the cd command, step into the example13 folder:
cd example13

2.	 Install the required dependencies. The Ionic project that we scaffold
from templates comes with a package.json file. This file already has all
the dependencies needed to set up SCSS. Also, the project ships with a
gulpFile.js, with the SCSS task defined, that watches for the changes in
your SCSS files and builds the CSS file on-the-fly.

3.	 To set up these dependencies, run this:
npm install

4.	 Also, if you did not install Gulp globally earlier, you can do so by running
the following command:
npm install gulp --global

5.	 Next, open www/index.html, and you should find a commented line inside
the head tag that looks like:
<!-- IF using Sass (run gulp sass first), then uncomment below
and remove the CSS includes above

 <link href="css/ionic.app.css" rel="stylesheet">

 -->

Remove the comments and you should be left with only the link tag. Next,
remove the reference to ionic.css from above this reference. We do not
need that any more.

6.	 Back in the terminal/prompt, run this command:
gulp sass

And this generates ionic.app.css and ionic.app.min.css files inside the
www/css folder.

That is all you need to set up SCSS inside your Ionic project. We will take a look at
customizing the SCSS a bit later.

Chapter 4

[97]

The Ionic CLI task
Next, we will take a look at setting up SCSS using Ionic CLI's setup task. Since we
already set up SCSS in example13, we will scaffold another project and implement
using the CLI task.

To scaffold a new project, run this command:

ionic start -a "Example 14" -i app.example.fourteen example14 tabs

Next, change directory inside the example14 folder, and run this command:

ionic setup sass

This will take care of downloading the dependencies, removing the comments in
index.html, and creating the ionic.app.css and ionic.app.min.css files inside
the www/css folder. Pretty sweet, right!

Working with Ionic SCSS
This section covers how you can customize Ionic's SCSS variables and mixins.

The code we are going to write will assume that you have the basics needed to work
with SCSS.

If you are new to SCSS, I recommend following this guide
http://sass-lang.com/guide.

Basic swatch
Earlier, we have seen the basic color swatch provided by Ionic: Positive, Assertive,
Calm, and so on. They are all pre-defined and set up by the Ionic team. What if you
want to change the color for components using the class positive? Let's take a look at
how this is done.

Referring to the example14 folder, open www/index.html and update the class on
the ion-nav-bar directive from bar-stable to bar-positive. Next, open www/
templates/tabs.html and remove the class named tabs-color-active-positive
on the ion-tabs directive, and add tabs-positive.

At the time of writing, the tabs template is shipped with the
stable style for the ion-nav-bar directive.

http://sass-lang.com/guide

Ionic and SCSS

[98]

To see the output, run this command:

ionic serve

The tabbed interface looks like this:

Let's assume that this is our final app. Now we want to build a theme for this layout
and the theme is pretty simple. All the blue needs to be replaced with teal.

To achieve this, we will open the scss/ionic.app.scss file, and copy the following
line from the comments at the top of the file:

$positive: #387ef5 !default;

Then add it after the block comments (after */). Next, we update the value of the
$positive variable to teal:

$positive: teal;

Chapter 4

[99]

Save the file and the Sass task runs in the background, automatically generating the
new ionic.app.css and ionic.app.min.css files. Then the page is automatically
refreshed. You should see the teal-themed page:

Do notice how all the references of the positive class are updated to teal. Isn't this
awesome! Managing themes for your mobile apps isn't rocket science anymore!

Understanding the Ionic SCSS setup
In this section, we will take a look at how Ionic SCSS is set up.

If you look at the scaffolded project structure, you will see an scss folder, which
consists of the ionic.app.scss file. For customizing the default Ionic theme,
you should override the variable here, and here only. If you are planning to have
multiple themes, I recommend using theme1.scss, theme2.scss, and so on files
inside the scss folder.

Ionic and SCSS

[100]

Do remember that any of the theme files should have the following two lines:

// The path for our ionicons font files, relative to the built CSS
in www/css
$ionicons-font-path: "../lib/ionic/fonts" !default;

// Include all of Ionic
@import "www/lib/ionic/scss/ionic";

In a typical theme file, the first section overrides SCSS variables. The second section
loads Ionic core SCSS files; finally we override the generated classes.

The Ionic core SCSS files refer to the following two statements:

$ionicons-font-path: "../lib/ionic/fonts" !default;

@import "www/lib/ionic/scss/ionic";

If you have worked with SCSS before, you will understand that any variable
declared with !default will not be reassigned a new value if a value is already
assigned, just like the preceding example.

To get a better understating of what is happening, we will first navigate to the path
of the $ionicons-font-path variable—that is, www/lib/ionic/fonts. This folder
will contain four font files, dispatched according to browser compatibility.

Next, we will navigate to the path of the Ionic SCSS framework. This will be
www/lib/ionic/scss/ionic. As you may have noticed, there is no folder named
ionic inside the scss folder. This refers to the ionic.scss file inside the www/lib/
ionic/scss/ folder. Also do notice that other SCSS files inside the scss folder start
with an underscore (_).

If you open the ionic.scss file, you will notice that all this file does is import other
SCSS files present inside the current folder:

@charset "UTF-8";

@import
 // Ionicons
 "ionicons/ionicons.scss",

 // Variables
 "mixins",
 "variables",

 // Base
 "reset",

Chapter 4

[101]

 "scaffolding",
 "type",

 // Components
 "action-sheet",
 "backdrop",
 "bar",
 "tabs",
 "menu",
 "modal",
 "popover",
 "popup",
 "loading",
 "items",
 "list",
 "badge",
 "slide-box",
 "refresher",
 "spinner",

 // Forms
 "form",
 "checkbox",
 "toggle",
 "radio",
 "range",
 "select",
 "progress",

 // Buttons
 "button",
 "button-bar",

 // Util
 "grid",
 "util",
 "platform",

 // Animations
 "animations",
 "transitions";

Ionic and SCSS

[102]

If you want to make any changes to Ionicons, you will refer to ionicons/ionicons.
scss; or, if you have to make changes to the modal component, you will refer to
_modal.scss. Also, if you want to make changes to the animations, you will refer to
_animations.scss.

There are two important files that you need to be aware of pretty well if you want to
modify the default look and feel of the Ionic components. They are as follows:

•	 _variables.scss

•	 _mixins.scss

As the names suggest, they store all the variables that can be overridden and mixins
that can be reused, respectively. If you open _variables.scss, you will notice the
variables for colors, fonts, paddings, margins, borders, and so on.

For instance, you can search for the text – button, and you will find an entire
section that has the configuration of how each button is set up. Taking an excerpt
from this section:

$button-positive-bg: $positive !default;

$button-positive-text: #fff !default;

$button-positive-border: darken($positive, 10%) !default;

$button-positive-active-bg: darken($positive, 10%) !default;

$button-positive-active-border: darken($positive, 10%) !default;

You can see how buttons themed with positive class are set up. With one change to
the $positive variable, you can see how the button look and feel update.

Another example is the Grids section, as follows:

// Grids

// -------------------------------

$grid-padding-width: 10px !default;

$grid-responsive-sm-break: 567px !default; // smaller than
landscape phone

$grid-responsive-md-break: 767px !default; // smaller than
portrait tablet

$grid-responsive-lg-break: 1023px !default; // smaller than
landscape tablet

If you want to change the way your grids behave, this is the place to come to. Also,
you can set your media query break points for small, medium, and large devices
looking up variable names from here.

Chapter 4

[103]

You can spend some time with this file and get an idea of what variables you can
override. As of today, there is no official documentation on the SCSS variables and
what they do. But commented sections inside the _variables.scss seem to help
at times.

Next, open up _mixins.scss. This file consists of mixins used by the Ionic
components. For instance, the button-style mixin:

@mixin button-style($bg-color, $border-color, $active-bg-color,
$active-border-color, $color) {

 border-color: $border-color;

 background-color: $bg-color;

 color: $color;

 // Give desktop users something to play with

 &:hover {

 color: $color;

 text-decoration: none;

 }

 &.active,

 &.activated {

 border-color: $active-border-color;

 background-color: $active-bg-color;

 box-shadow: inset 0 1px 4px rgba(0,0,0,0.1);

 }

}

This mixin takes a background color, a border color, and an active state color and
then generates the border-color, background-color, color, .hover, .active,
and .activated rules.

Another commonly used mixin is clearfix:

@mixin clearfix {

 *zoom: 1;

 &:before,

 &:after {

 display: table;

 content: "";

 line-height: 0;

Ionic and SCSS

[104]

 }

 &:after {

 clear: both;

 }

}

All it does is clear the row, and this class is used in multiple places for managing
the layouts.

Again, there is no official documentation and you can spend some time with this file
to understand the mixins that are available.

Using variables and mixins
Now that we have seen the two core parts of the Ionic SCSS framework, we will see
how they are used.

Open _button.scss. If you remember, earlier when we were working with the
button components, for every button style or button type we added the button
class followed by the style or type. For instance:

<button class="button button-positive button-block">Click Me</button>

The button class provides the default styling for the button. The other classes
provide the style or type modifications. Quite a decoupled way of handling
the CSS, isn't it?

Back to our file, and you should see how the button class is set up. Inside the button
class definition, you will find various variables and mixins, whose use we saw earlier.

An excerpt from the button class definition is as follows:

&.button-positive {

 @include button-style($button-positive-bg, $button-positive-border,
$button-positive-active-bg, $button-positive-active-border, $button-
positive-text);

 @include button-clear($button-positive-bg);

 @include button-outline($button-positive-bg);

 }

Here three mixins are used to generate the styles for a button-positive class.
The style will be applied only when both classes are applied to the element.

Another file to check out is _util.scss. All the utility classes such as hide, show,
padding, and so on are generated here.

Chapter 4

[105]

If you want to make any changes to the animations and transitions, you can checkout
_animations.scss and _transitions.scss.

The filename helps a lot while searching for SCSS code for a component.

The SCSS workflow
Now that we are aware of where and how the Ionic SCSS framework is set up,
we will come up with a workflow that we can use while working with SCSS in
an Ionic project.

The steps are as follows:

1.	 Set up Ionic SCSS.
2.	 Open the scss/ionic.app.scss file.
3.	 Add/update the variables you want to override before you import the Ionic

SCSS framework.
4.	 Add the required fonts before you import the Ionic SCSS framework.
5.	 Add/override pre-defined classes or create new classes after the Ionic SCSS

framework is imported.

So, a typical customized ionic.app.scss looks like this:

// Override or add variables

$positive: teal;

$custom: #aaa;

// add custom button variables

$button-custom-bg: $custom !default;

$button-custom-text: #eee !default;

$button-custom-border: darken($custom, 10%) !default;

$button-custom-active-bg: darken($custom, 10%) !default;

$button-custom-active-border: darken($custom, 10%) !default;

// define the ionic fonts path

$ionicons-font-path: "../lib/ionic/fonts" !default;

// import Ionic SCSS Framework

Ionic and SCSS

[106]

@import "www/lib/ionic/scss/ionic";

// build a custom button class that is specific to our app

.button-custom {

 /*

 Usage : <button class="button button-custom">

 Custom Styled Button

 </button>

 */

 @include button-style($button-custom-bg, $button-custom-border,
$button-custom-active-bg, $button-custom-active-border, $button-custom-
text);

 @include button-clear($button-custom-bg);

 @include button-outline($button-custom-bg);

}

If you want to change the complete look and feel of the Ionic app, you can start by
overriding the default swatch:

$light: #fff !default;

$stable: #f8f8f8 !default;

$positive: #387ef5 !default;

$calm: #11c1f3 !default;

$balanced: #33cd5f !default;

$energized: #ffc900 !default;

$assertive: #ef473a !default;

$royal: #886aea !default;

$dark: #444 !default;

Then you can identify what components you are trying to modify. Navigate to the
appropriate SCSS file and look for variables that are affecting the class. Head back
to ionic.app.scss and override them.

Building a swatch
In order to understand the preceding process a bit better, we will build a theme of
our own, overriding variables and classes. We will scaffold a side menu app, and
then change its default look and feel.

Chapter 4

[107]

To scaffold a new side menu app run this:

ionic start -a "Example 15" -i app.example.fifteen example15 sidemenu

Next, using the cd command, go to the example15 folder and run this:

ionic setup sass

This will download and set up the SCSS dependencies for your project. Open
ionic.app.scss. The idea here is not to change any markup or add new classes,
but rather to modify the appropriate variables to reflect our new theme.

This is not the only way in which you can theme your application.
You can modify your markup, add appropriate classes that reflect
your brand (for example, button-mybrand or bar-mybrand), and
then create variables and classes appropriately in SCSS.

We will be theming the side menu app in shades of teal. The first thing we will do is
modify the $stable variable:

$stable: #009688;

If you serve the app after adding the preceding style, you will notice that the header
bar has turned teal, as shown here:

Ionic and SCSS

[108]

The heading text is black. We would like it to be close to white. If you open _bar.scss,
you will find a section like this:

.title {
 color: #fff;
 }

Looking at this, we know that this not a variable. So, in this case, we will override
the class itself. In our ionic.app.scss, after we include the Ionic CSS framework,
we will add this:

.bar.bar-stable .title{
 color:#eee;
}

Once you save the file, you can see the title text color change. But, if you notice,
the hamburger menu remains black. We want to change that as well. If you open
the browser's development tools and inspect the hamburger menu, you will find
a button like this:

<button class="button button-icon button-clear ion-navicon" menu-
toggle="left"></button>

In the styles section of this element in the development tools, you will find a class
bar-stable button button-clear, which is setting the color to #444. Now, we
have to track down this variable and reset it.

Since the first part of the class is .bar-stable, we know that the definition may be
from _bar.scss. Inside _bar.scss, you will find a section like this:

.bar-stable {

 .button {

 @include button-style($bar-stable-bg, $bar-stable-border,
$bar-stable-active-bg, $bar-stable-active-border, $bar-stable-
text);

 @include button-clear($bar-stable-text, $bar-title-font-size);

 }

}

Do notice the mixin button-clear. We will open _mixins.scss and search for this
mixin. The mixin looks something like:

@mixin button-clear($color, $font-size:"") {

 &.button-clear {

 border-color: transparent;

Chapter 4

[109]

 background: none;

 box-shadow: none;

 color: $color;

 @if $font-size != "" {

 font-size: $font-size;

 }

 }

 &.button-icon {

 border-color: transparent;

 background: none;

 }

}

And, as you can see from here, the first argument to the mixin is set as $color.
So, we know which variable to override.

Back in the ionic.app.scss file, we will override $bar-stable-text variable:

$bar-stable-text: #eee;

Before including the Ionic framework SCSS. Save the file and you will see the
following screenshot:

Ionic and SCSS

[110]

Next, we will change the base color of the font to a shade of teal. For this, we will
override the variable $base-color. Now we will add some more padding to the
list items. Again, you can head to _items.scss, and you will find this:

padding: $item-padding;

You can override the $item-padding to 30px.

Next, I want each of the items to have a light green background color. Since this
property does not have a variable, we will override the class itself:

.item-complex .item-content{

 background:#E0F2F1;

 color:#00695C;

}

If you save the file and head to the browser, you will see the following screenshot:

Chapter 4

[111]

If you click on the login link, a modal popup will appear. In the popup, you will
notice that the Login button uses the positive class for styling. Let's override that
too using the following values:

$button-positive-bg: #00BFA5;

$button-positive-border: #00BFA5;

$button-positive-active-bg: #80CBC4;

$button-positive-active-border: #80CBC4;

$button-positive-text: #eee;

You can get the list of variables from the button-style mixin used for the button-
positive class. Here we are taking care of both states of the button class.

The Login modal will look like this:

Everything looks good now, except for the border color of list items and the active
background color when a list item is selected. Let's fix that too. If you open _items.
scss, you should be able to see the item-style mixin, which takes the $item-
default-border as the second argument. This value is applied as the border color.
We will override this:

$item-default-border: #009688;

Ionic and SCSS

[112]

And finally the active background color. Under the link and button active states
section, you will notice a mixin item-active-style. The first argument is $item-
default-active-bg, which is the active background color. We will override
this in our ionic.app.scss:

$item-default-active-bg: #B2DFDB;

The completed ionic.app.scss file looks like this:

// override all $stable themed components

$stable: #009688;

// override the burger menu color

$bar-stable-text: #eee;

// override app base color

$base-color: #00695C;

// increase the item padding

$item-padding : 30px;

// override buttons

$button-positive-bg: #00BFA5;

$button-positive-border: #00BFA5;

$button-positive-active-bg: #80CBC4;

$button-positive-active-border: #80CBC4;

$button-positive-text: #eee;

// border & active bg color

$item-default-border: #009688;

$item-default-active-bg: #B2DFDB;

// The path for our ionicons font files, relative to the built CSS in
www/css

$ionicons-font-path: "../lib/ionic/fonts" !default;

// Include all of Ionic

Chapter 4

[113]

@import "www/lib/ionic/scss/ionic";

// Override title color

.bar.bar-stable .title{

 color:#eee;

}

// Override the item background and color

.item-complex .item-content{

 background:#E0F2F1;

 color:#00695C;

}

Our final app should look like this:

Ionic and SCSS

[114]

This was a quick and basic example of how you theme an Ionic app using SCSS. You
can add a few more components to the app, and try theming them for practice.

I have shown a practical approach to how you can find variables
and mixins in the Ionic SCSS setup. This knowledge can be used
in any Ionic SCSS project to implement theming by overriding
variables and reusing mixins.

Summary
In this chapter, we took a look at theming Ionic apps. We started off by setting
up SCSS and then went through the Ionic SCSS file structure. Then, we overrode
variables to change the theme of the application. Finally, we took a sample app
and modified its look.

In the next chapter, we are going to look at various Ionic directives and services,
which will help us in building Hybrid apps with ease.

[115]

Ionic Directives and Services
Reiterating our journey so far, we have started off by understanding the importance
of AngularJS as a client-side MVW framework. We have gone through Apache
Cordova, where and how it fits in to the entire hybrid application development
stack. Then we introduced Ionic, explaining what it is and how it enables us to build
hybrid applications with ease. In Chapter 3, Ionic CSS Components and Navigation,
we saw how Ionic could be used as a CSS-only framework for your mobile web
development, and in Chapter 4, Ionic and SCSS, we saw how we could theme those
components using the power of SCSS.

In this chapter, we are going to take a look at Ionic directives and services, which
provides reusable components and functionality that help us in developing
applications even faster.

By the end of this chapter, you will be able to:

•	 Understand Ionic directives
•	 Understand Ionic services

Ionic directives and services
Ionic has components that are purely CSS-driven and it has components that need
the magic of JavaScript to make them complete. Since Ionic uses AngularJS as its
JavaScript framework, all reusable user interface components will be written in the
form of directives and all reusable pieces of JavaScript functionality will be written in
the form of services.

Ionic Directives and Services

[116]

A few examples of Ionic directives are as follows:

•	 Navigation (ion-nav-view)
•	 Content (ion-content, ion-pane and ion-refresher)
•	 Headers and Footers (ion-header-bar and ion-footer-bar)
•	 Lists (ion-list and ion-item)
•	 Tabs (ion-tabs and ion-tab)
•	 Side menu (ion-side-menus and ion-side-menu)

A few examples of Ionic services are as follows:

•	 Platform ($ionicPlatform)
•	 Scroll ($ionicScrollDelegate)
•	 Modals ($ionicModal)
•	 Navbar ($ionicNavBarDelegate)
•	 History ($ionicHistory)
•	 Popup ($ionicPopup)

In the next section of the chapter, we will be going through some of the Ionic
directives and services and understanding how to work with them. We will be
working with Ionic core directives and services interchangeably, depending on
the feature.

For this chapter, you can also access the code, raise issues,
and chat with the author at GitHub (https://github.
com/learning-ionic/Chapter-5).

The Ionic Platform service
The first service we are going to deal with is the Ionic Platform service
($ionicPlatform). This service provides device-level hooks that you can
tap into to better control your application's behavior.

We will start off with the very basic ready method. This method is fired once the
device is ready or immediately, if the device is already ready.

https://github.com/learning-ionic/Chapter-5
https://github.com/learning-ionic/Chapter-5

Chapter 5

[117]

To try out Ionic Platform services, we will be scaffolding a blank app and then
working with the services. Before we scaffold the blank app, we will create a
folder named chapter5. Inside that folder, we will run the following command:

ionic start -a "Example 16" -i app.example.sixteen example16 blank

Once the app is scaffolded, if you open www/js/app.js, you should find a section
such as:

.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to show the
accessory bar above the keyboard
 // for form inputs)
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
 StatusBar.styleDefault();
 }
 });
})

All the Cordova-related code needs to be written inside the
$ionicPlatform.ready method, as this is the point in the app
life cycle where all the plugins are initialized and ready to be used.

You can see that the $ionicPlatform service is injected as a dependency to the run
method. It is highly recommended to use $ionicPlatform.ready method inside
other AngularJS components such as controllers and directives, where you are
planning to interact with Cordova plugins.

In the preceding run method, note that we are hiding the keyboard accessory bar
by setting:

cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);

You can override this by setting the value to false. Also, do notice the if condition
before the statement. It is always better to check for variables related to Cordova
before using them.

Ionic Directives and Services

[118]

The $ionicPlatform service comes with a handy method to detect the hardware
back button event. A few (Android) devices have a hardware back button and, if
you want to listen to the back button pressed event, you will need to hook into the
onHardwareBackButton method on the $ionicPlatform service:

var hardwareBackButtonHandler = function() {
 console.log('Hardware back button pressed');
 // do more interesting things here
}
 $ionicPlatform.onHardwareBackButton(hardwareBackButtonHandl
er);

This event needs to be registered inside the $ionicPlatform.ready method,
preferably inside AngularJS's run method. The hardwareBackButtonHandler
callback will be called whenever the user presses the device's back button.

A simple functionally that you can do with this handler is to ask the user if they
want to really quit your app, making sure that they have not accidently hit the
back button.

Sometimes this may be annoying. Thus, you can provide a setting in your app
whereby the user selects if he/she wants to be alerted when they try to quit. Based
on this, you can either defer registering the event or you can unsubscribe to it.

The code for the preceding logic will look something like this:

.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 var alertOnBackPress =
localStorage.getItem('alertOnBackPress');

 var hardwareBackButtonHandler = function() {
 console.log('Hardware back button pressed');
 // do more interesting things here
 }

 function manageBackPressEvent(alertOnBackPress) {
 if (alertOnBackPress) {
 $ionicPlatform.onHardwareBackButton(hardwareBackButto
nHandler);
 } else {
 $ionicPlatform.offHardwareBackButton(hardwareBackButt
onHandler);
 }
 }

 // when the app boots up

Chapter 5

[119]

 manageBackPressEvent(alertOnBackPress);

 // later in the code/controller when you let
 // the user update the setting
 function updateSettings(alertOnBackPressModified) {
 localStorage.setItem('alertOnBackPress',
alertOnBackPressModified);
 manageBackPressEvent(alertOnBackPressModified)
 }

 });
})

In the preceding code snippet, we are looking in localStorage for the value of
alertOnBackPress. Next, we create a handler named hardwareBackButtonHandler,
which will be triggered when the back button is pressed. Finally, a utility method
named manageBackPressEvent() takes in a Boolean value that decides whether to
register or de-register the callback for HardwareBackButton.

With this set up, when the app starts we call the manageBackPressEvent method
with the value from localStorage. If the value is present and is equal to true,
we register the event; otherwise, we do not. Later on, we can have a settings
controller that lets users change this setting. When the user changes the state of
alertOnBackPress, we call the updateSettings method passing in if the user
wants to be alerted or not. The updateSettings method updates localStorage
with this setting and calls the manageBackPressEvent method, which takes care of
registering or de-registering the callback for the hardware back pressed event.

This is one powerful example that showcases the power of AngularJS when
combined with Cordova to provide APIs to manage your application easily.

This example may seem a bit complex at first, but most of the
services that you are going to consume will be quite similar. There
will be events that you need to register and de-register conditionally,
based on preferences. So, I thought this would be a good place to
share an example such as this, assuming that this concept will grow
on you by the time you finish the chapter.

registerBackButtonAction
The $ionicPlatform also provides a method named registerBackButtonAction.
This is another API that lets you control the way your application behaves when the
back button is pressed.

Ionic Directives and Services

[120]

By default, pressing the back button executes one task. For example, if you have a
multi-page application and you are navigating from page one to page two and then
you press the back button, you will be taken back to page one. In another scenario,
when a user navigates from page one to page two and page two displays a pop-up
dialog when it loads, pressing the back button here will only hide the pop-up dialog
but will not navigate to page one.

The registerBackButtonAction method provides a hook to override this behavior.
The registerBackButtonAction method takes the following three arguments:

•	 callback: This is the method to be called when the event is fired
•	 priority: This is the number that indicates the priority of the listener
•	 actionId (optional): This is the ID assigned to the action

By default the priority is as follows:

•	 Previous view = 100
•	 Close side menu = 150
•	 Dismiss modal = 200
•	 Close action sheet = 300
•	 Dismiss popup = 400
•	 Dismiss loading overlay = 500

So, if you want a certain functionality/custom code to override the default behavior
of the back button, you will be writing something like this:

var cancelRegisterBackButtonAction =
$ionicPlatform.registerBackButtonAction(backButtonCustomHandler,
201);

This listener will override (take precedence over) all the default listeners below the
priority value of 201—that is dismiss modal, close side menu, and previous view but
not above the priority value.

When the $ionicPlatform.registerBackButtonAction method executes, it returns
a function. We have assigned that function to the cancelRegisterBackButtonAction
variable. Executing cancelRegisterBackButtonAction de-registers the
registerBackButtonAction listener.

Chapter 5

[121]

The on method
Apart from the preceding handy methods, $ionicPlatform has a generic on method
that can be used to listen to all of Cordova's events (https://cordova.apache.org/
docs/en/edge/cordova_events_events.md.html).

You can set up hooks for application pause, application resume, volumedownbutton,
volumeupbutton, and so on, and execute a custom functionality accordingly.

You can set up these listeners inside the $ionicPlatform.ready method as follows:

var cancelPause = $ionicPlatform.on('pause', function() {
 console.log('App is sent to background');
 // do stuff to save power
 });

var cancelResume = $ionicPlatform.on('resume', function() {
 console.log('App is retrieved from background');
 // re-init the app
 });

 // Supported only in BlackBerry 10 & Android
var cancelVolumeUpButton = $ionicPlatform.on('volumeupbutton',
function() {
 console.log('Volume up button pressed');
 // moving a slider up
 });

var cancelVolumeDownButton = $ionicPlatform.on('volumedownbutton',
function() {
 console.log('Volume down button pressed');
 // moving a slider down
 });

The on method returns a function that, when executed, de-registers the event.

Now you know how to control your app better when dealing with mobile OS events
and hardware keys.

Headers and footers
Using the ion-header-bar and ion-footer-bar directives, you can add a fixed
header and a fixed footer to your app.

https://cordova.apache.org/docs/en/edge/cordova_events_events.md.html
https://cordova.apache.org/docs/en/edge/cordova_events_events.md.html

Ionic Directives and Services

[122]

A sample structure would look like this:

<ion-header-bar align-title="center" class="bar-assertive">
 <div class="buttons">
 <button class="button button-royal" ng-
click="doSomething()">Left Button</button>
 </div>
 <h1 class="title">Fixed Header</h1>
 <div class="buttons">
 <button class="button button-royal">Right
Button</button>
 </div>
 </ion-header-bar>
 <ion-content>
 <div class="padding">
 <h3>Content</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam,
 quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo
 consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse
 cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non
 proident, sunt in culpa qui officia deserunt mollit
anim id est laborum. </p>
 </div>
 </ion-content>
 <ion-footer-bar align-title="left" class="bar-energized">
 <div class="buttons">
 <button class="button button-dark">Left Button</button>
 </div>
 <h1 class="title">Fixed Footer</h1>
 <div class="buttons" ng-click="doSomething()">
 <button class="button button-dark">Right
Button</button>
 </div>
</ion-footer-bar>

Chapter 5

[123]

This result will look like this:

Content
Next, we will take a look at content-related directives. The first is the ion-content
directive.

ion-content
The ion-content directive is used as a content area. This directive has a bunch of
options that let you control the content area better. You can use the ion-content
with Ionic's custom scroll view or with the browser's default overflow scrolling.

At the time of writing, a full-blown ion-content directive consisted of the
following attributes:

 <ion-content
 delegate-handle=""
 direction=""
 locking=""
 padding=""
 scroll=""
 overflow-scroll=""
 scrollbar-x=""
 scrollbar-y=""

Ionic Directives and Services

[124]

 start-x=""
 start-y=""
 on-scroll=""
 on-scroll-complete=""
 has-bouncing=""
 scroll-event-interval="">
 <h1>Heading!</h1>
 </ion-content>

The explanation of the key attributes of the ion-content is as follows:

•	 scroll: This decides whether to allow scrolling (default: true)
•	 overflow-scroll: This is to use browser's overflow scrolling
•	 on-scroll: This is the function/expression to be executed when the content

is scrolled
•	 on-scroll-complete: This is the function/expression to be executed when

the content scrolling is completed
•	 scroll-event-interval: This is the interval before calling on-scroll

(default: 10 milliseconds)
•	 scrollbar-x: This shows a horizontal scrollbar (default: true)
•	 scrollbar-y: This shows a vertical scrollbar (default: true)
•	 locking: This is lock scrolling (default: true)
•	 direction: This indicates which way to scroll (x, y (default), xy)
•	 has-bouncing: This allows you to scroll past the edge of the content

(iOS: true, Android: false)

ion-scroll
You can also control the scrolling of content using the ion-scroll directive. This
directive is used in place of the ion-content directive.

The usage is quite simple:

<ion-view ng-controller="MyAppCtrl" cache-view="false">
 <ion-scroll zooming="true" direction="xy" style="width: 300px;
height: 300px">
 <div style="width: 1000px; height: 1000px; background-
color:teal"></div>
 </ion-scroll>
</ion-view>

Chapter 5

[125]

It is important to set the height of the scroll box as well as the height
of the inner content to enable scrolling.
If you want a center scrolling area, use ion-content.

We will talk about ion-view in the next section.

ion-refresher
Another handy directive for managing content is ion-refresher. This is a simple
pull-to-refresh directive that is added to a scroll view (ion-content or ion-scroll).

To test this example, we will scaffold a new blank project:

ionic start -a "Example 17" -i app.example.seventeen example17
blank

Using the cd command, go to the example17 folder and run this:

 ionic serve

This will launch the blank template.

In this example, we will be implementing a pull-to-refresh. We will create a factory
that will spoof a HTTP call and return an array of objects. The object is a dummy
hash that has two properties for display purposes.

This factory would be invoked from AppCtrl, which is the default controller for
our view. This controller will also implement the doRefresh method, which will
be called when the user pulls to refresh. This method will talk to the factory and
get random data and the response data will be appended to the existing list.

We will define the following data factory in www/js/app.js after the config method:

.factory('DataFactory', function($timeout, $q) {

 var API = {
 getData: function(count) {
 // Spoof a network call using promises
 var deferred = $q.defer();

 var data = [],
 _o = {};
 count = count || 3;

 for (var i = 0; i < count; i++) {

Ionic Directives and Services

[126]

 _o = {
 // http://stackoverflow.com/a/8084248/1015046
 random: (Math.random() +
1).toString(36).substring(7),
 time: (new Date()).toString().substring(15,
24)
 };

 data.push(_o);
 };

 $timeout(function() {
 // success response!
 deferred.resolve(data);
 }, 1000);

 return deferred.promise;
 }
 };

 return API;
})

The preceding example can be implemented with a simple set
timeout, rather than promises. But since AngularJS is heavily
driven by promises, we are implementing the factory with
promises and, personally, I think this is the way to go.

In the preceding factory, we have used AngularJS's $q service, which helps us return
results in an asynchronous fashion, similar to an HTTP request. We are creating an
object with a random alphanumeric string as one property and a substring of the
date that returns time as the second property. This data is used for display purposes
only and does not have any meaning.

Our app controller will be defined as follows in www/js/app.js:

.controller('AppCtrl', function($scope, DataFactory) {
 $scope.items = [];

 $scope.doRefresh = function() {
 DataFactory.getData(3)
 .then(function(data) {
 // extend the $scope.items array with the response
 // array from getData();

Chapter 5

[127]

 // http://stackoverflow.com/a/1374131/1015046
 Array.prototype.push.apply($scope.items, data);
 }).finally(function() {
 // Stop the ion-refresher from spinning
 $scope.$broadcast('scroll.refreshComplete');
 });
 }

 // load data on page load
 DataFactory.getData(3).then(function(data) {
 $scope.items = data;
 });
})

In the preceding controller, we are injecting DataFactory as a dependency to the
controller. We call the getData method when the controller gets initialized. The
getData method will return three records that we will assign to the list.

Next, we define the doRefresh method that gets invoked when the user pulls
to refresh. This method also calls the getData method of DataFactory and
returns the data. We then append the response array from the getData method
to our scope variable.

Do notice that we are appending the data to the existing array. In the case of a
pull-to-refresh, you would prepend the data, as the user would like to see the
updated data on top. Finally, we broadcast the scroll.refreshComplete event,
which hides the refreshing icon/spinner.

Now, we will update our www/index.html body section as follows:

<body ng-app="starter" ng-controller="AppCtrl">
 <ion-header-bar class="bar-stable">
 <h1 class="title">Pull To Refresh</h1>
 </ion-header-bar>
 <ion-content>
 <ion-refresher pulling-text="Pull to refresh..." on-
refresh="doRefresh()">
 </ion-refresher>
 <ion-list>
 <ion-item collection-repeat="item in items">
 <h2>Random Key : {{item.random}}</h2>
 <p>Time : {{item.time}}</p>
 </ion-item>
 </ion-list>
 </ion-content>
</body>

Ionic Directives and Services

[128]

Notice that we have added ion-refresher as the direct child of ion-content. We
have used collection-repeat instead of ng-repeat.

The collection-repeat allows an app to show huge lists of
items of high performance than ng-repeat. You can read more
about collection-repeat at http://ionicframework.com/
docs/api/directive/collectionRepeat/.

Save all the files, head to the browser, and you should see the following screenshot:

Now, using your mouse, you can pull down the page and you should see this:

http://ionicframework.com/docs/api/directive/collectionRepeat/
http://ionicframework.com/docs/api/directive/collectionRepeat/

Chapter 5

[129]

Once the promise is resolved, the data will be sent back to the controller and that
data is appended to the item's arrays. Once that is done, scroll.refreshComplete
is fired and the loading icon/spinner is hidden. The updated page looks like this:

You can set pull-to-refresh text, the pull-down icon, as well as the
spinner using the pulling-text, pulling-icon and spinner attributes
on the ion-refresher directive. You can take a look at other
possible options at http://ionicframework.com/docs/api/
directive/ionRefresher/.

ion-infinite-scroll
Similar to the ion-refresher, Ionic provides another handy directive named
ion-infinite-scroll. When the user reaches the end of a list, this directive
invokes a method similar to doRefresh in the preceding example and updates
the list.

http://ionicframework.com/docs/api/directive/ionRefresher/
http://ionicframework.com/docs/api/directive/ionRefresher/

Ionic Directives and Services

[130]

The difference between ion-refresher and ion-infinite-scroll is that
ion-refresher is used when a user explicitly wants to load a list, whereas
ion-infinite-scroll is used when the list auto-updates as the user scrolls.

To add ion-infinite-scroll to our preceding example, we will update the body
section as follows:

<body ng-app="starter" ng-controller="AppCtrl">
 <ion-header-bar class="bar-stable">
 <h1 class="title">Pull To Refresh</h1>
 </ion-header-bar>
 <ion-content>
 <ion-refresher pulling-text="Pull to refresh..." on-
refresh="doRefresh()">
 </ion-refresher>

 <ion-list>
 <ion-item collection-repeat="item in items">
 <h2>Random Key : {{item.random}}</h2>
 <p>Time : {{item.time}}</p>
 </ion-item>
 </ion-list>

 <ion-infinite-scroll on-infinite="loadMore()"
distance="1%">
 </ion-infinite-scroll>
 </ion-content>
</body>

Notice that ion-infinite-scroll is added after the list and it has an attribute
named on-infinite. The value of this attribute will be evaluated when the distance
is 1 percent. I have also left ion-refresher from the preceding example as it is.
Since this is an example, I wanted to show how you could use both ion-refresher
and ion-infinite-scroll in one example.

In a real-time news feed app, you would want to do something like the following.
When the user pulls down, you would want to show the latest news and, when the
user scrolls down, you would want to show the old news.

Chapter 5

[131]

The updated version of AppCtrl with the loadMore method will be:

.controller('AppCtrl', function($scope, DataFactory) {
 $scope.items = [];

 $scope.doRefresh = function() {
 DataFactory.getData(3)
 .then(function(data) {
 // extend the $scope.items array with the response
 // array from getData();
 // http://stackoverflow.com/a/1374131/1015046
 Array.prototype.push.apply($scope.items, data);
 }).finally(function() {
 // Stop the ion-refresher from spinning
 $scope.$broadcast('scroll.refreshComplete');
 });
 }

 $scope.loadMore = function() {
 DataFactory.getData(3)
 .then(function(data) {
 // extend the $scope.items array with the response
 // array from getData();
 // http://stackoverflow.com/a/1374131/1015046
 Array.prototype.push.apply($scope.items, data);
 }).finally(function() {
 // Stop the ion-refresher from spinning
 $scope.$broadcast('scroll.infiniteScrollComplete');
 });
 }

 // load data on page load
 DataFactory.getData(3).then(function(data) {
 $scope.items = data;
 });
})

Ionic Directives and Services

[132]

We have added the loadMore method to the scope. It has almost the same definition
as doRefresh, except we are broadcasting scroll.infiniteScrollComplete here
to notify that refresh is completed.

If you save all the files and head back to the browser you should see that
ion-infinite-scroll starts making calls till the visible portion of the
screen is filled with data.

When you pull down to refresh, the list will again be updated. But remember that we
are not pre-pending to the list, so the data will be added at the end.

$ionicScrollDelegate
Ionic also provides a service to control scrolling views. It is named
$ionicScrollDelegate. The $ionicScrollDelegate service provides
API methods to scroll, zoom, and get the position of the scroll and so on.

In the earlier example, we can add a button to the header named Scroll to Top.
When the user clicks on it, we will use $ionicScrollDelegate to scroll to the top,
if the user is somewhere down the list.

The updated ion-header-bar looks like this:

<ion-header-bar class="bar-stable">
 <h1 class="title">Pull To Refresh</h1>
 <button class="button" ng-click="scrollToTop()">Scroll to
Top</button>
</ion-header-bar>

Then, we will add the scrollToTop definition in our app controller after injecting
$ionicScrollDelegate as a dependency:

$scope.scrollToTop = function() {
 $ionicScrollDelegate.scrollTop();
 }

Chapter 5

[133]

Now, however far the user goes down the list, he/she can press the scroll to the top
button in the header to come right back up to the top of the list, as shown here:

You can read more about $ionicScrollDelegate
at http://ionicframework.com/docs/api/
service/$ionicScrollDelegate/.

http://ionicframework.com/docs/api/service/$ionicScrollDelegate/
http://ionicframework.com/docs/api/service/$ionicScrollDelegate/

Ionic Directives and Services

[134]

Navigation
The next component we are going to take a look at is the navigation component.
The navigation component has a bunch of directives as well as a couple of services.

The first directive we are going to take a look at is ion-nav-view.

In Chapter 3, Ionic CSS Components and Navigation, we have already seen the Ionic
state router and we have understood how it works. We have also seen that ui-view
in the AngularUI Router is analogous to ion-nav-view in Ionic.

When the app boots up, $stateProvider will look for the default state and then will
try to load the corresponding template inside the ion-nav-view.

ion-view
The next directive we are going to take a look at is the ion-view directive. The
ion-view directive is the child of ion-nav-view. This directive is used as a container
to display content and header bar information. When the application state changes,
the corresponding view enters and exists the parent, ion-nav-view.

Views in Ionic are cached to improve performance. When a view leaves the
ion-nav-view, its elements are left in the DOM and its scope is disconnected
from the $watch cycle. When any previously cached view enters ion-nav-view,
its scope is reconnected and the existing element is reactivated.

To try out an example, we will scaffold a new blank app:

 ionic start -a "Example 18" -i app.example.eighteen example18
 blank

Using the cd command, go to the example18 folder and run this:

 ionic serve

This will launch the blank app.

Next, we will add a router to this app, which has two states. Open www/js/app.js
and add the following config section after the run method:

.config(function($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('page1', {
 url: '/page1',
 templateUrl: 'page1.html'
 })
 .state('page2', {

Chapter 5

[135]

 url: '/page2',
 templateUrl: 'page2.html'
 });

 $urlRouterProvider.otherwise('/page1');
})

We have created two states, one for page1 and another for page2. Next, we will
update our www/index.html body section:

<body ng-app="starter">
 <ion-nav-bar></ion-nav-bar>
 <ion-nav-view></ion-nav-view>

 <!-- Templates -->
 <script type="text/ng-template" id="page1.html">
 <ion-view view-title="Title">
 <ion-content>
 <h3>Page 1</h3>
 <button class="button button-dark" ui-
sref="page2">
 Navigate to Page 2
 </button>
 </ion-content>
 </ion-view>
 </script>
 <script type="text/ng-template" id="page2.html">
 <ion-view view-title="Title">
 <ion-content>
 <h3>Page 2</h3>
 <button class="button button-dark" ui-
sref="page1">
 Navigate to Page 1
 </button>
 </ion-content>
 </ion-view>
 </script>
</body>

We have an ion-nav-view directive, where the ion-view content gets injected.
We are creating our views using the script tag syntax. This approach of loading
templates is efficient, as AngularJS does not need to make an AJAX call to fetch the
template. But this approach is not developer/maintenance-friendly.

Ionic Directives and Services

[136]

The ion-view directive has a child directive named ion-content. Every time
a new template enters into the view, it is cached. You can set attributes on the
ion-view directive to control the look and feel related to that view's state, as well
as the cache behavior.

For instance, in the preceding snippet, we have added an attribute named
view-title to the ion-view tag. This value is set as the page title, as well
as the title for the navigation bar, if the ion-nav-bar tag is present.

To disable the caching of templates, you can set cache-view as false on the
ion-view directive. We can also control whether the nav-bar should be visible
or not by setting hide-nav-bar to true or false.

The ion-view directive with the preceding attributes would look like this:

<ion-view view-title="Title" cache-view="false" hide-nav-
bar="false" hide-back-button="true" can-swipe-back="false">

We can also control whether the back button should be shown in case there is a
back button inside the navigation bar. We will look into this when we work with
the ion-nav-bar directive.

To test example18 so far, you can run this:

ionic server

Ionic view events
Ionic view has a bunch of life cycle methods that you can hook on to perform
custom actions. We will add a new run method, as shown in the following section,
to example18. Inside this run method, we have added listeners to the $ionicview
events. Open www/js/app.js and add the following run method:

.run(function($ionicPlatform, $rootScope) {
 // View Life Cycle
 $rootScope.$on('$ionicView.loaded', function(event, view) {
 console.log('Loaded..', view.stateName);
 });

 $rootScope.$on('$ionicView.beforeEnter', function(event, view)
{
 console.log('Before Enter..', view.stateName);
 });

 $rootScope.$on('$ionicView.afterEnter', function(event, view)
{

Chapter 5

[137]

 console.log('After Enter..', view.stateName);
 });

 $rootScope.$on('$ionicView.enter', function(event, view) {
 console.log('Entered..', view.stateName);
 });

 $rootScope.$on('$ionicView.leave', function(event, view) {
 console.log('Left..', view.stateName);
 });

 $rootScope.$on('$ionicView.beforeLeave', function(event, view)
{
 console.log('Before Leave..', view.stateName);
 });

 $rootScope.$on('$ionicView.afterLeave', function(event, view)
{
 console.log('After Leave..', view.stateName);
 });

 $rootScope.$on('$ionicView.unloaded', function(event, view) {
 console.log('View unloaded..', view.stateName);
 });

})

You can register multiple run methods in a single module.

Ionic Directives and Services

[138]

And when we navigate from page 1 to page 2, you will see the following screenshot:

You can trace the order in which the events are fired and hook on to them,
depending on your requirements.

$ionicView.loaded and $ionicView.unloaded will only work
on $rootScope and not on $scope of the controller. You can hook
on to the remaining events with the controller scope as well.

ion-nav-bar
When working with a multi-page app, the ion-nav-bar directive is your good
friend. This directive takes care of changing the page's title bar as the application's
state changes. In the example18 app we have added a simplified version of
ion-nav-bar.

Now, we will take a look at a slightly more complicated version. Replace the existing
ion-nav-bar directive in www/index.html with the following code:

<ion-nav-bar class="bar-assertive">
 <ion-nav-buttons side="left">
 <button class="button button-energized" ng-
click="leftyClick()">
 Left Button
 </button>
 </ion-nav-buttons>

Chapter 5

[139]

 <ion-nav-back-button class="button-clear">
 <i class="ion-arrow-left-c"></i> Back
 </ion-nav-back-button>
 <ion-nav-buttons side="right">
 <button class="button button-energized" ng-
click="rightyClick()">
 Right Button
 </button>
 </ion-nav-buttons>
</ion-nav-bar>

As you can see from the preceding code snippet, ion-nav-bar can have
ion-nav-buttons as a child directive, as well as ion-nav-back-button.

The ion-nav-buttons is used to place buttons in the header navigation bar.
The updated page should look like this:

You can define leftyClick() and rightyClick() functionally and they will be
fired when the buttons are clicked. You can either add a Header Controller and
define these methods and add the Header Controller to the ion-nav-bar or you can
define the leftyClick() and rightyClick() methods on root scope as well, which
is not ideal. In a real-time scenario, typically in the top right-hand corner, you would
have a Logout button, an Options button, or an Add button, depending on the
nature of the app.

Ionic Directives and Services

[140]

The ion-nav-bar directive also hosts the ion-nav-back-button directive. This
directive takes care of adding the back button automatically when the user navigates
from one page to another. If we navigate from page 1 to page 2, you will see the
following view:

As you can see, the back button automatically appears in the left-top corner of the
page, pushing the left button away from its position.

The ion-nav-bar directive will work correctly only if the content
of the template is wrapped in an ion-view tag.

This takes us back to the attributes on the ion-view tag. You can set the hide-nav-
bar attribute to false on ion-view; this will show the navigation bar for the current
page or you can set back-button to false to disable showing the back button for
that page.

Modify page 2's ion-view as follows:

<ion-view view-title="Page 2" hide-nav-bar="false" hide-back-
button="true">

Then, navigate to page 2 from page 1, you will see that the back button does
not appear:

Chapter 5

[141]

ion-nav-buttons
Ionic also provides you with fine-grained control over the buttons that appear in the
header bar. If you declare ion-nav-buttons inside ion-view, in the template, these
will override the ones from the ion-nav-bar directive.

We will update the page2 template as follows:

<script type="text/ng-template" id="page2.html">
 <ion-view view-title="Page 2" hide-nav-bar="false" hide-
back-button="true">
 <ion-nav-buttons side="left">
 <button class="button button-calm" ng-
click="settingsClick()">
 Settings
 </button>
 </ion-nav-buttons>
 <ion-nav-buttons side="right">
 <button class="button button-calm" ng-
click="optionsClick()">
 Options
 </button>
 </ion-nav-buttons>
 <ion-content>
 <h3>Page 2</h3>
 <button class="button button-dark" ui-
sref="page1">
 Navigate to Page 1
 </button>
 </ion-content>
 </ion-view>
 </script>

Do remember that we are not modifying the ion-nav-buttons directive in the ion-
nav-bar directive:

<ion-nav-bar class="bar-assertive">
 <ion-nav-buttons side="left">
 <button class="button button-energized" ng-
click="leftyClick()">
 Left Button
 </button>
 </ion-nav-buttons>
 <ion-nav-back-button class="button-clear">
 <i class="ion-arrow-left-c"></i> Back
 </ion-nav-back-button>

Ionic Directives and Services

[142]

 <ion-nav-buttons side="right">
 <button class="button button-energized" ng-
click="rightyClick()">
 Right Button
 </button>
 </ion-nav-buttons>
 </ion-nav-bar>

If you save the file and head back to the browser, page 1 will look as before:

However, page 2 will now show the ion-nav-button directive from within
the template:

$ionicNavBarDelegate
The ion-nav-bar can be controlled from within the controller as well using the
$ionicNavBarDelegate service.

To understand this better, we will update our templates by adding two controllers:
PageOneCtrl for page1.html and PageTwoCtrl for page2.html.

Chapter 5

[143]

The updated templates would look like this:

<script type="text/ng-template" id="page1.html">
 <ion-view ng-controller="PageOneCtrl">
 <ion-content>
 <h3>Page 1</h3>
 <button class="button button-dark" ui-
sref="page2">
 Navigate to Page 2
 </button>
 </ion-content>
 </ion-view>
</script>
<script type="text/ng-template" id="page2.html">
 <ion-view ng-controller="PageTwoCtrl">
 <ion-content>
 <h3>Page 2</h3>
 <button class="button button-dark" ui-
sref="page1">
 Navigate to Page 1
 </button>
 </ion-content>
 </ion-view>
</script>

Do notice that we have removed all the attributes/directives on ion-view and then
added ng-controller.

We will update our www/js/app.js and add the two controllers we have declared:

.controller('PageOneCtrl', function($scope, $ionicNavBarDelegate)
{
 $ionicNavBarDelegate.title('Page 1');
})

.controller('PageTwoCtrl', function($scope, $ionicNavBarDelegate)
{
 $ionicNavBarDelegate.title('Page 2');
 $ionicNavBarDelegate.showBackButton(false);
})

We are setting the page title for page1 and page2 and we are setting showBackButton
as false for page2. When you save all the files and go back to the browser, you should
see the expected output.

Ionic Directives and Services

[144]

Other properties that you can control using $ionicNavBarDelegate are as follows:

•	 align: This is used to align the title and buttons in the directions: left, right,
and center (default)

•	 showBar: This is use to set or get if the ion-nav-bar is shown

$ionicHistory
Another very valuable navigation service is $ionicHistory. The $ionicHistory
keeps track of all the views and captures how a user navigates between them.

The beauty of the $ionicHistory service is that it supports parallel history, unlike
browsers, where only the pages visited in a given order are stored. Storing parallel
history is very helpful when you have an interface such as tabs and each tab has its
own set of pages.

The $ionicHistory is capable of capturing tab-level history; that is, when a user
selects tab 2, navigates a few pages deep inside tab 2, selects tab 1 and hits the back
button; the application will not take the user to the last page in tab 2 but rather the
parent of the tabs page or will exit the app if the tabs view is the first page.

Back to the example at hand, we will update PageTwoCtrl as follows:

.controller('PageTwoCtrl', function($scope, $ionicNavBarDelegate,
$ionicHistory) {
 $ionicNavBarDelegate.title('Page 2');
 $ionicNavBarDelegate.showBackButton(false);
 console.log($ionicHistory.viewHistory())
})

We are injecting $ionicHistory as a dependency to PageTwoCtrl and we are
console‑logging the view history.

Chapter 5

[145]

If we save the file and head back to the browser, navigating from page 1 to page 2,
we should see this:

The viewhistory method returns an object that has details of backView (previous
view), currentView, Histories, and all the views in the application.

You can access this object when you want to know how the user has navigated to the
current page; the view history method is very helpful in such scenarios.

You can also use the $ionicHistory service to access individual properties of the
view history method such as:

•	 currentView: This returns the app's current view.
•	 currentHistoryId: This returns the ID of the parent container of the

current view.

Ionic Directives and Services

[146]

•	 currentTitle: This gets or sets the current view's title.
•	 backView: This returns the view before the current view in the history stack.
•	 backTitle: This gets the previous view's title.
•	 forwardView: This returns the forward view in the history stack. Forward

view is valid if a user navigated from page 1 to page 2 and then back to
page 1. Here page 2 is the forwardView.

•	 currentStateName: This returns the current state name.

To quickly test the preceding properties, we will update our PageOneCtrl and
PageTwoCtrl as shown here:

.controller('PageOneCtrl', function($scope, $ionicNavBarDelegate,
$ionicHistory) {

 $ionicNavBarDelegate.title('Page 1');

 console.log('currentView', $ionicHistory.currentView());
 console.log('currentHistoryId', $ionicHistory.currentHistoryId());
 console.log('currentTitle', $ionicHistory.currentTitle());
 console.log('backView', $ionicHistory.backView());
 console.log('backTitle', $ionicHistory.backTitle());
 console.log('forwardView', $ionicHistory.forwardView());
 console.log('currentStateName', $ionicHistory.currentStateName());

})

.controller('PageTwoCtrl', function($scope, $ionicNavBarDelegate,
$ionicHistory) {

 $ionicNavBarDelegate.title('Page 2');
 $ionicNavBarDelegate.showBackButton(false);

 console.log('viewHistory', $ionicHistory.viewHistory());
})

Chapter 5

[147]

Now, when we navigate to page 1, we should see the properties logged:

Then, when you navigate to Page 2, we will see the same values as we have
seen earlier:

Ionic Directives and Services

[148]

Finally, when you navigate back to Page 1, you will see the forwardView
value populated:

I have set cache-view="false" on the ion-view directives
for both page 1 and page 2; hence backView is null in the
preceding screenshot.

The $ionicHistory has three more methods on it:

•	 goBack: By default, the state route goes one view back. But you can specify
how many views you would like to go back by passing in a negative integer
to the goBack method. The default value is -1, hence it navigates back
one view. If you execute goBack(-2), the view that is 2 pages back will
be shown. goBack does not cross history stacks and, if a value greater (for
example, -100) than the available history stack is passed, the view navigates
to the first page.

•	 clearHistory: This clears the history stack except for the current view.
•	 clearCache: This removes all cached views.

Chapter 5

[149]

Using $ionicHistory, you can also control how the next view will behave using the
nextViewOptions method.

You can control the following options:

•	 disableAnimate: This disables the animation on the next view
•	 disableBack: This sets the backView to null for the next view
•	 historyRoot: The next view will be the root of the history stack

If we add the preceding properties to our existing PageOneCtrl:

.controller('PageOneCtrl', function($scope, $ionicNavBarDelegate,
$ionicHistory) {

 $ionicNavBarDelegate.title('Page 1');

 console.log('currentView', $ionicHistory.currentView());
 console.log('currentHistoryId', $ionicHistory.currentHistoryId());
 console.log('currentTitle', $ionicHistory.currentTitle());
 console.log('backView', $ionicHistory.backView());
 console.log('backTitle', $ionicHistory.backTitle());
 console.log('forwardView', $ionicHistory.forwardView());
 console.log('currentStateName', $ionicHistory.currentStateName());

 $ionicHistory.nextViewOptions({
 disableAnimate: true,
 disableBack: true,
 historyRoot: true
 });
})

If we navigate to page 2, the output in the console will be as follows:

Ionic Directives and Services

[150]

You will also notice that, when you click on Navigate to Page 2, the animation/
transition is disabled, the backView here is set to null, and finally the views
property has only one view: page2.

You can use these options to control the behavior of your app history state.

Tabs and side menu
To understand navigation a bit better, we will explore the tabs directive and the
side menu directive.

We will scaffold the tabs template and go through the directives related to tabs;
run this:

ionic start -a "Example 19" -i app.example.nineteen example19 tabs

Using the cd command, go to the example19 folder and run this:

 ionic serve

This will launch the tabs app.

If you open www/index.html file, you will notice that this template uses
ion-nav-bar to manage the header with ion-nav-back-button inside it.

Next open www/js/app.js and you will find the application states configured:

.state('tab.dash', {
 url: '/dash',
 views: {
 'tab-dash': {
 templateUrl: 'templates/tab-dash.html',
 controller: 'DashCtrl'
 }
 }
 })

Do notice that the views object has a named object: tab-dash. This will be used
when we work with the tabs directive. This name will be used to load a given view
when a tab is selected into the ion-nav-view directive with the name tab-dash.

If you open www/templates/tabs.html, you will find a markup for the
tabs component:

<ion-tabs class="tabs-icon-top tabs-color-active-positive">

 <!-- Dashboard Tab -->

Chapter 5

[151]

 <ion-tab title="Status" icon-off="ion-ios-pulse" icon-on="ion-
ios-pulse-strong" href="#/tab/dash">
 <ion-nav-view name="tab-dash"></ion-nav-view>
 </ion-tab>

 <!-- Chats Tab -->
 <ion-tab title="Chats" icon-off="ion-ios-chatboxes-outline"
icon-on="ion-ios-chatboxes" href="#/tab/chats">
 <ion-nav-view name="tab-chats"></ion-nav-view>
 </ion-tab>

 <!-- Account Tab -->
 <ion-tab title="Account" icon-off="ion-ios-gear-outline" icon-
on="ion-ios-gear" href="#/tab/account">
 <ion-nav-view name="tab-account"></ion-nav-view>
 </ion-tab>

</ion-tabs>

The tabs.html will be loaded before any of the child tabs load, since tab state is
defined as an abstract route.

The ion-tab directive is nested inside ion-tabs and every ion-tab directive has
an ion-nav-view directive nested inside it. When a tab is selected, the route with
the same name as the name attribute on the ion-nav-view will be loaded inside the
corresponding tab.

Very neatly structured!

You can read more about tabs directive and its services at
http://ionicframework.com/docs/nightly/api/
directive/ionTabs/.

Next, we are going to scaffold an app using the side menu template and go through
the navigation inside it; run this:

ionic start -a "Example 20" -i app.example.twenty example20 sidemenu

Using the cd command, go to the example20 folder and run this:

 ionic serve

This will launch the side menu app.

http://ionicframework.com/docs/nightly/api/directive/ionTabs/
http://ionicframework.com/docs/nightly/api/directive/ionTabs/

Ionic Directives and Services

[152]

We start off exploring with www/index.html. This file has only the ion-nav-view
directive inside the body. Next, we open www/js/app/js. Here, the routes are
defined as expected. But one thing to notice is the name of the views for search,
browse, and playlists. It is the same—menuContent—for all:

.state('app.search', {
 url: "/search",
 views: {
 'menuContent': {
 templateUrl: "templates/search.html"
 }
 }
})

If we open www/templates/menu.html, you will notice the ion-side-menus
directive. It has two children, ion-side-menu-content and ion-side-menu.
The ion-side-menu-content displays the content for each menu item inside the
ion-nav-view named menuContent. This is why all the menu items in the state
router have the same view name.

The ion-side-menu is displayed on the left-hand side of the page. You can set the
location on the ion-side-menu to the right to show the side menu on the right or
you can have two side menus.

Do notice the menu-toggle directive on the button inside ion-nav-buttons.
This directive is used to toggle the side menu.

If you want to have the menu on both sides, your menu.html will look as follows:

<ion-side-menus enable-menu-with-back-views="false">
 <ion-side-menu-content>
 <ion-nav-bar class="bar-stable">
 <ion-nav-back-button>
 </ion-nav-back-button>

 <ion-nav-buttons side="left">
 <button class="button button-icon button-clear ion-
navicon" menu-toggle="left">
 </button>
 </ion-nav-buttons>
 <ion-nav-buttons side="right">
 <button class="button button-icon button-clear ion-
navicon" menu-toggle="right">
 </button>
 </ion-nav-buttons>
 </ion-nav-bar>
 <ion-nav-view name="menuContent"></ion-nav-view>

Chapter 5

[153]

 </ion-side-menu-content>

 <ion-side-menu side="left">
 <ion-header-bar class="bar-stable">
 <h1 class="title">Left</h1>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item menu-close ng-click="login()">
 Login
 </ion-item>
 <ion-item menu-close href="#/app/search">
 Search
 </ion-item>
 <ion-item menu-close href="#/app/browse">
 Browse
 </ion-item>
 <ion-item menu-close href="#/app/playlists">
 Playlists
 </ion-item>
 </ion-list>
 </ion-content>
 </ion-side-menu>
 <ion-side-menu side="right">
 <ion-header-bar class="bar-stable">
 <h1 class="title">Right</h1>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item menu-close ng-click="login()">
 Login
 </ion-item>
 <ion-item menu-close href="#/app/search">
 Search
 </ion-item>
 <ion-item menu-close href="#/app/browse">
 Browse
 </ion-item>
 <ion-item menu-close href="#/app/playlists">
 Playlists
 </ion-item>
 </ion-list>
 </ion-content>
 </ion-side-menu>
</ion-side-menus>

Ionic Directives and Services

[154]

You can read more about side menu directive and its services
at http://ionicframework.com/docs/nightly/api/
directive/ionSideMenus/.

This concludes our journey through the navigation directives and services. Next, we
will move to Ionic loading.

Ionic loading
The first service we are going to take a look at is $ionicLoading. This service is
highly useful when you want to block a user's interaction from the main page and
indicate to the user that there is some activity going on in the background.

To test this, we will scaffold a new blank template and implement $ionicLoading;
run this:

ionic start -a "Example 21" -i app.example.twentyone example21 blank

Using the cd command, go to the example21 folder and run this:

 ionic serve

This will launch the blank template in the browser.

We will create an app controller and define the show and hide methods inside it.
Open www/js/app.js and add the following code:

.controller('AppCtrl', function($scope, $ionicLoading, $timeout) {

 $scope.showLoadingOverlay = function() {
 $ionicLoading.show({
 template: 'Loading...'
 });
 };
 $scope.hideLoadingOverlay = function() {
 $ionicLoading.hide();
 };

 $scope.toggleOverlay = function() {
 $scope.showLoadingOverlay();

 // wait for 3 seconds and hide the overlay
 $timeout(function() {
 $scope.hideLoadingOverlay();
 }, 3000);

http://ionicframework.com/docs/nightly/api/directive/ionSideMenus/
http://ionicframework.com/docs/nightly/api/directive/ionSideMenus/

Chapter 5

[155]

 };

})

We have a function named showLoadingOverlay, which will call $ionicLoading.
show(), and a function named hideLoadingOverlay(), which will call
$ionicLoading.hide(). We have also created a utility function named
toggleOverlay(), which will call showLoadingOverlay() and after 3 seconds will
call hideLoadingOverlay().

We will update our www/index.html body section as follows:

<body ng-app="starter" ng-controller="AppCtrl">
 <ion-header-bar class="bar-stable">
 <h1 class="title">$ionicLoading service</h1>
 </ion-header-bar>
 <ion-content class="padding">
 <button class="button button-dark" ng-click="toggleOverlay()">
 Toggle Overlay
 </button>
 </ion-content>
</body>

We have a button that calls toggleOverlay().

If you save all the files, head back to the browser, and click on the Toggle Overlay
button, you will see the following screenshot:

As you can see, the overlay is shown till the hide method is called on $ionicLoading.

Ionic Directives and Services

[156]

You can also move the preceding logic inside a service and reuse it across the app.
The service will look like this:

.service('Loading', function($ionicLoading, $timeout) {
 this.show = function() {
 $ionicLoading.show({
 template: 'Loading...'
 });
 };
 this.hide = function() {
 $ionicLoading.hide();
 };

 this.toggle= function() {
 var self = this;
 self.show();

 // wait for 3 seconds and hide the overlay
 $timeout(function() {
 self.hide();
 }, 3000);
 };

})

Now, once you inject the Loading service into your controller or directive, you can
use Loading.show(), Loading.hide(), or Loading.toggle().

If you would like to show only a spinner icon instead of text, you can call the
$ionicLoading.show method without any options:

$scope.showLoadingOverlay = function() {
 $ionicLoading.show();
 };

Chapter 5

[157]

Then, you will see this:

You can configure the show method further. More information is
available at http://ionicframework.com/docs/nightly/api/
service/$ionicLoading/.
You can also use the $ionicBackdrop service to show just a backdrop.
Read more about $ionicBackdrop at http://ionicframework.
com/docs/nightly/api/service/$ionicBackdrop/.
You can also check out the $ionicModal service at http://
ionicframework.com/docs/api/service/$ionicModal/; it is
quite similar to the loading service.

The Action Sheet service
Action Sheet is a slide-up pane that shows a list of options. Generally, an action sheet
is used to show contextual options when you have a list or grid of items. Typically,
the action sheet service will be used when a user long-presses the list/grid item.

To test out the $ionicActionSheet service, we will scaffold a new blank app;
run this:

ionic start -a "Example 22" -i app.example.twentytwo example22 blank

http://ionicframework.com/docs/nightly/api/service/$ionicLoading/
http://ionicframework.com/docs/nightly/api/service/$ionicLoading/
http://ionicframework.com/docs/nightly/api/service/$ionicBackdrop/
http://ionicframework.com/docs/nightly/api/service/$ionicBackdrop/
http://ionicframework.com/docs/api/service/$ionicModal/
http://ionicframework.com/docs/api/service/$ionicModal/

Ionic Directives and Services

[158]

Using the cd command, go to the example22 folder and run this:

 ionic serve

This will launch the blank template in the browser.

Open www/js/app.js and we will add a new controller named AppCtrl:

.controller('AppCtrl', function($scope, $ionicActionSheet,
$timeout) {

 $scope.showOptions = function() {
 var hideSheet = $ionicActionSheet.show({
 buttons: [{
 text: 'Open'
 }, {
 text: 'Get Link'
 }],
 destructiveText: 'Delete',
 titleText: 'Options'

 });

 // hide the sheet after three seconds
 $timeout(function() {
 hideSheet();
 }, 3000);
 };

})

The $ionicActionSheet.show method returns a function that, when executed,
closes the action sheet. The show method takes an object as an argument, which
consists of the following properties:

•	 buttons: This shows a list of options/buttons
•	 destructiveText: This highlights a specific option as a dangerous operation
•	 titleText: This sets the title of the Action Sheet

Then, we will update the body section of our www/index.html as follows:

<body ng-app="starter" ng-controller="AppCtrl">
 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Action Sheet Example</h1>
 </ion-header-bar>

Chapter 5

[159]

 <ion-content class="padding">
 <button class="button button-block button-dark" ng-
click="showOptions()">
 Show Options
 </button>
 </ion-content>
 </ion-pane>
 </body>

When you save all the files and head back to the browser, you will see the Show
Options button. And when you click on it, you will see this:

The action sheet will hide after three seconds.

We will use this Action Sheet component in real time in Chapter 8,
Building a Message App; there we will implement button handlers as well.
You can read more about Action Sheet at http://ionicframework.
com/docs/nightly/api/service/$ionicActionSheet/.

http://ionicframework.com/docs/nightly/api/service/$ionicActionSheet/
http://ionicframework.com/docs/nightly/api/service/$ionicActionSheet/

Ionic Directives and Services

[160]

Popover and Popup services
Popover is a contextual view that generally appears next to the selected item. This
component is used to show contextual information or to show more information
about a component.

To test this service, we will be scaffolding a new blank app:

ionic start -a "Example 23" -i app.example.twentythree example23
blank

Using the cd command, go to the example23 folder and run this:

 ionic serve

This will launch the blank template in the browser.

We will add a new controller to the blank project named AppCtrl. We will be adding
our controller code in www/js/app.js:

.controller('AppCtrl', function($scope, $ionicPopover) {

 // init the popover
 $ionicPopover.fromTemplateUrl('button-options.html', {
 scope: $scope
 }).then(function(popover) {
 $scope.popover = popover;
 });

 $scope.openPopover = function($event, type) {
 $scope.type = type;
 $scope.popover.show($event);
 };

 $scope.closePopover = function() {
 $scope.popover.hide();
 // if you are navigating away from the page once
 // an option is selected, make sure to call
 // $scope.popover.remove();
 };

});

Chapter 5

[161]

We are using the $ionicPopover service and setting up a popover from a template
named button-options.html. We are assigning the current controller scope as the
scope to the popover. We have two methods on the controller scope that will show and
hide the popover. The openPopover method receives two options. One is the event
and the second is the type of the button we are clicking (more on this in a moment).

Next, we update our www/index.html body section as follows:

<body ng-app="starter" ng-controller="AppCtrl">
 <ion-header-bar class="bar-positive">
 <h1 class="title">Popover Service</h1>
 </ion-header-bar>
 <ion-content class="padding">
 <button class="button button-block button-dark" ng-
click="openPopover($event, 'dark')">
 Dark Button
 </button>
 <button class="button button-block button-assertive" ng-
click="openPopover($event, 'assertive')">
 Assertive Button
 </button>
 <button class="button button-block button-calm" ng-
click="openPopover($event, 'calm')">
 Calm Button
 </button>
 </ion-content>
 <script id="button-options.html" type="text/ng-template">
 <ion-popover-view>
 <ion-header-bar>
 <h1 class="title">{{type}} options</h1>
 </ion-header-bar>
 <ion-content>
 <div class="list">

 <i class="icon ion-ionic"></i> Option One

 <i class="icon ion-help-buoy"></i> Option
Two

 <i class="icon ion-hammer"></i> Option
Three

Ionic Directives and Services

[162]

 <a href="#" class="item item-icon-left" ng-
click="closePopover()">
 <i class="icon ion-close"></i> Close

 </div>
 </ion-content>
 </ion-popover-view>
 </script>
</body>

Inside ion-content, we have created three buttons, each themed with a different
mood (dark, assertive, and calm). When a user clicks on the button, we show a
popover that is specific to that button. For this example, all we are doing is passing
in the name of the mood and showing the mood name as the heading in the popover.
But you can definitely do more.

Do notice that we have wrapped our template's content inside ion-popover-view.
This takes care of positioning the modal appropriately.

The template must be wrapped inside the ion-popover-view
for the popover to work correctly.

When we save all the files and head back to the browser, we will see the three
buttons. Depending on the button you click, the heading of the popover changes,
but the options remain the same for all of them:

Chapter 5

[163]

Then, when we click anywhere on the page or the close option, the popover closes.

If you are navigating away from the page when an option is selected,
make sure to call:
$scope.popover.remove();

You can read more about Popover at http://ionicframework.
com/docs/api/controller/ionicPopover/.

$ionicPopup
The next service we are going to take a look at is the $ionicPopup service. This service
allows you to create popups that the user needs to respond in order to continue.

These popups are styled versions of JavaScript's native alert, prompt, and
confirm methods.

To test this service, we will be scaffolding a new blank app; run this:

ionic start -a "Example 24" -i app.example.twentyfour example24 blank

Using the cd command, go to the example24 folder and run this:

 ionic serve

This will launch the blank template in the browser.

We will be implementing the show, confirm, and alert methods in an app style.

We will be using the show method to show a pin dialog, where the user needs
to enter a pin. If the pin is valid, we show the user a secure area of our code.
This secure area will have the buttons to show a confirm box and an alert box.

If the user cancels the pin dialog, we will take the user to an insecure area and ask
the user to try again.

This example introduces a conditional content display approach using AngularJS
and Ionic.

To get started, we will create a controller named AppCtrl. We will add the following
AppCtrl code in our www/js/app.js:

.controller('AppCtrl', function($scope, $ionicPopup) {

 $scope.data = {};
 $scope.state = {};

http://ionicframework.com/docs/api/controller/ionicPopover/
http://ionicframework.com/docs/api/controller/ionicPopover/

Ionic Directives and Services

[164]

 $scope.error = {};

 $scope.prompt = function() {
 // reset app states
 $scope.state.cancel = false;
 $scope.state.success = false;

 // reset error messages
 $scope.error.empty = false;
 $scope.error.invalid = false;

 var prompt = $ionicPopup.show({
 templateUrl: 'pin-template.html',
 title: 'Enter Pin to continue',
 scope: $scope,
 buttons: [{
 text: 'Cancel',
 onTap: function(e) {
 $scope.state.cancel = true;
 }
 }, {
 text: 'Login',
 type: 'button-assertive',
 onTap: function(e) {
 $scope.error.empty = false;
 $scope.error.invalid = false;
 if (!$scope.data.pin) {
 // disable close if the
 // user does not enter
 // a valid pin
 $scope.error.empty = true;
 e.preventDefault();
 } else {
 if ($scope.data.pin === '1234') {
 $scope.state.success = true;
 return $scope.data.pin;
 } else {
 $scope.error.invalid = true;
 e.preventDefault();
 }
 }
 }
 }]
 });

Chapter 5

[165]

 };

 $scope.confirm = function() {
 var confirm = $ionicPopup.confirm({
 title: 'Confirm Popup Heading',
 template: 'Are you sure you want to do that?'
 });
 confirm.then(function(res) {
 if (res) {
 console.log('Yes!');
 } else {
 console.log('Nooooo!!');
 }
 });
 };

 $scope.alert = function() {
 var alert = $ionicPopup.alert({
 title: 'You are secured!',
 template: 'You are inside a secure area!'
 });
 alert.then(function(res) {
 console.log('Yeah!! I know!!');
 });
 };

 // invoke the prompt on controller init.
 $scope.prompt();
})

Quite a lot of code! But it's quite simple.

We have created three objects on the scope named data, state, and error. These
objects will be used to store data, application state, and errors for us.

We have added the prompt method. Here, we call the $ionicPopup.show method
passing in the template and the definition for the tap method on the cancel button
and the Login button. When the user clicks on the Cancel button of the prompt,
we set the state object's cancel property to true. We will be using this property
to toggle views.

When a user taps the Login button, we check if a valid pin is present. If not, we set
the appropriate error message to true. If the user has entered a valid pin and if the
value is equal to 1234, we set the success property on the state object to true. This
will toggle another view, which shows the Confirm and Alert buttons.

Ionic Directives and Services

[166]

The confirm and alert methods are self-explanatory. They are set up using the
$ionicPopup.confirm, and $ionicPopup.alert methods respectively. These
methods return a promise, which is resolved when a button is clicked.

Finally, we invoke the prompt method to show the Pin dialog on controller load.

The updated body section of www/index.html will be as follows:

<body ng-app="starter" ng-controller="AppCtrl">
 <ion-pane ng-cloak>
 <ion-header-bar class="bar-positive">
 <h1 class="title">Super Secure App</h1>
 </ion-header-bar>
 <ion-content class="padding">
 <div class="card" ng-show="state.cancel">
 <div class="item item-divider">
 Oops!! you cancelled!
 </div>
 <div class="item item-text-wrap">
 To see the secure content enter pin
 <button class="button button-assertive button-
block" ng-click="prompt()">
 Try Again!
 </button>
 </div>
 </div>
 <div class="card" ng-show="state.success">
 <div class="item item-divider">
 You are viewing secure content!
 </div>
 <div class="item item-text-wrap">
 <button class="button button-positive button-
block" ng-click="confirm()">
 Show Confirm Dialog
 </button>

 <button class="button button-positive button-
block" ng-click="alert()">
 Show Alert Dialog
 </button>
 </div>
 </div>
 </ion-content>
 </ion-pane>
 <script type="text/ng-template" id="pin-template.html">

Chapter 5

[167]

 <input type="password" ng-model="data.pin">
 <label ng-show="error.empty" class="assertive text-center
block padding">Please enter a valid Pin</label>
 <label ng-show="error.invalid" class="assertive text-
center block padding">Invalid Pin, Try Again!</label>
 </script>
</body>

We have added two card views; one shows when state.cancel is true and the
other when state.success is true. Before the end of body tag, we have added
our pin-template.html template.

Do notice that we have added the ng-cloak attribute to the ion-pane directive.
This is to make sure that we do not show any content till the AngularJS processing
is completed.

You can read more about ng-cloak, visit https://docs.AngularJS.
org/api/ng/directive/ngCloak.

If you save all the files and head back to the browser, you will see this:

https://docs.AngularJS.org/api/ng/directive/ngCloak
https://docs.AngularJS.org/api/ng/directive/ngCloak

Ionic Directives and Services

[168]

If you click on Login without entering valid data, you will see the following screenshot:

If you enter an invalid pin, you will see this:

Chapter 5

[169]

If you cancel the popup, you will be taken to an insecure area where you are given
the option to try again:

Finally, if you enter the correct pin, you will be taken to the secure area, where you
should see the Confirm and Alert buttons. Clicking on them, you will see this:

The preceding example not only discusses the $ionicPopup service, but also helps
you understand how you can structure your application.

Ionic Directives and Services

[170]

The preceding example is a single-page application. If you want,
you can implement the same logic for a multiple application, where
page 1 shows the popup, page 2 has insecure content, and page 3
has secure content. You can switch between pages depending on the
user input.

The ion-list and ion-item directives
Since we are familiarizing ourselves with most of Ionic's directives and services,
I thought it worth mentioning the ion-list and ion-item directives.

Lists are one of the most common display patterns when working with mobile apps.
In Ionic, you can use the CSS version of the lists, as we have seen in Chapter 3, Ionic
CSS Components and Navigation, or you can use the directive version of the lists.

The advantage of using the directive version of the list is that it provides additional
attributes such as ion-delete-button, ion-reorder-button, and ion-option-
button, which help us manage the lists better.

We will be testing these directives by scaffolding a new blank app; run this:

ionic start -a "Example 25" -i app.example.twentyfive example25 blank

Using the cd command, go to the example25 folder and run this:

 ionic serve

This will launch the blank template in the browser.

We will be implementing an example, provided in the Ionic docs, that covers all the
aforementioned directives.

The following example is taken from http://codepen.io/
ionic/pen/JsHjf and modified to add data via a factory.

First, we will create a factory that will dispatch random data for our lists.
The factory is similar to the one we have used in example17, except the
dataset returned is different:

.factory('DataFactory', function($timeout, $q) {

 var API = {
 getData: function(count) {
 // Spoof a network call using promises

http://codepen.io/ionic/pen/JsHjf
http://codepen.io/ionic/pen/JsHjf

Chapter 5

[171]

 var deferred = $q.defer();

 var data = [],
 _o = {};
 count = count || 20;

 for (var i = 0; i < count; i++) {
 _o = {
 // http://stackoverflow.com/a/8084248/1015046
 id: i + 1,
 title: (Math.random() +
1).toString(36).substring(7)
 };

 data.push(_o);
 };

 $timeout(function() {
 // success response!
 deferred.resolve(data);
 }, 1000);

 return deferred.promise;
 }
 };

 return API;
})

Here, we are returning an id and a title as properties of the object.

Next, we are going to create a controller named AppCtrl in www/js/app.js. This
control will fetch data from the data factory and build the list. We will be also be
providing definitions for the Edit, Delete, and Option buttons click inside it:

.controller('AppCtrl', function($scope, DataFactory) {

 $scope.items = [];

 $scope.data = {
 showDelete: false
 };

 $scope.edit = function(item) {
 alert('Edit Item: ' + item.id);

Ionic Directives and Services

[172]

 };
 $scope.share = function(item) {
 alert('Share Item: ' + item.id);
 };

 $scope.moveItem = function(item, fromIndex, toIndex) {
 $scope.items.splice(fromIndex, 1);
 $scope.items.splice(toIndex, 0, item);
 };

 $scope.onItemDelete = function(item) {
 $scope.items.splice($scope.items.indexOf(item), 1);
 };

 // get data on page load
 DataFactory.getData().then(function(data) {
 $scope.items = data;
 });

})

Next, we update the body section of www/index.html:

<body ng-app="starter" ng-controller="AppCtrl">
 <!-- http://codepen.io/ionic/pen/JsHjf -->
 <ion-header-bar class="bar-positive">
 <div class="buttons">
 <button class="button button-icon icon ion-ios-minus-
outline" ng-click="data.showDelete = !data.showDelete;
data.showReorder = false"></button>
 </div>
 <h1 class="title">Ionic Lists</h1>
 <div class="buttons">
 <button class="button" ng-click="data.showDelete =
false; data.showReorder = !data.showReorder">
 Reorder
 </button>
 </div>
 </ion-header-bar>
 <ion-content>
 <ion-list show-delete="data.showDelete" show-
reorder="data.showReorder">
 <ion-item ng-repeat="item in items" item="item"
class="item-remove-animate">
 {{ item.id }}. {{ item.title }}

Chapter 5

[173]

 <ion-delete-button class="ion-minus-circled" ng-
click="onItemDelete(item)">
 </ion-delete-button>
 <ion-option-button class="button-assertive" ng-
click="edit(item)">
 Edit
 </ion-option-button>
 <ion-option-button class="button-calm" ng-
click="share(item)">
 Share
 </ion-option-button>
 <ion-reorder-button class="ion-navicon" on-
reorder="moveItem(item, $fromIndex, $toIndex)"></ion-reorder-
button>
 </ion-item>
 </ion-list>
 </ion-content>
</body>

We have two buttons on the header bar that toggles the delete and reorder
icons on the list. On the ion-list directive, we have used the show-delete
and show-reorder attributes to show and hide the icons on the list item.

Inside each ion-item directive, we have added ion-delete-button, which calls the
onItemDelete function; ion-option-button, which shows a Share or Edit button;
and finally ion-reorder-button, which shows the re-order icon. When re-ordered,
we call the moveItem method.

If you save all the files and head back to the browser, you will see this:

Ionic Directives and Services

[174]

If you click on the delete icon in the header, you will see this:

You can click on the delete icon that is to the left-hand side of the list item to delete it.

If you click on the reorder item in the header, you will see this:

Chapter 5

[175]

You can move the items around using the handle provided on each row. You can
also close the reorder and swipe the items to the left-hand side to see the Share and
Edit options:

Re-order does not work well when you use collection-repeat
instead of ng-repeat. You can read more at https://github.
com/driftyco/ionic/issues/1714.
You can read more about lists at http://ionicframework.com/
docs/api/directive/ionList/.

Gesture directives and services
The next set of directives and services are for gestures. If you did not already know,
gestures are actions that a user performs on the screen when interacting with the
application. An example of a gesture is pinching to zoom-out or pinching-in to
zoom-in (just like on a smartphone).

Ionic supports these gestures and lets you handle them using the $ionicGesture
service inside your controller or directive.

To make things more generic, I will explain one gesture directive and show how you
can work with it. The same logic applies to all the other gestures.

We will be testing the on-drag-up directive by scaffolding a new blank app; run this:

ionic start -a "Example 26" -i app.example.twentysix example26 blank

https://github.com/driftyco/ionic/issues/1714
https://github.com/driftyco/ionic/issues/1714
http://ionicframework.com/docs/api/directive/ionList/
http://ionicframework.com/docs/api/directive/ionList/

Ionic Directives and Services

[176]

Using the cd command, go to the example26 folder and run this:

 ionic serve

This will launch the blank template in the browser.

First, we will create a controller named AppCtrl in www/js/app.js.

.controller('AppCtrl', function($scope, $ionicGesture) {

 $scope.scopeGesture = 'None';
 $scope.delegateGesture = 'None';

 $scope.onDragUp = function() {
 $scope.scopeGesture = 'Drag up fired!'
 };

 // Event listener using event delegation
 // The logic below would be typically written in a directive
 // We have added this to the controller for illustration
purposes
 var $element =
angular.element(document.querySelector('#gestureContainer'));
 $ionicGesture.on('dragup', function() {
 $scope.delegateGesture = 'Drag up fired!';
 }, $element);
})

As mentioned earlier, we are implementing the dragup gesture. We have
implemented the listener in two ways, one using the directive, which we will
see in the HTML template, and the other using the $ionicGesture.on method.

Generally any DOM-related code would be written in a (custom) directive. Here, we
have written this in a controller for illustration purposes. The event type is dragup.
We are fetching the element from the DOM using the document.querySelector API
and wrapping this HTML node in an AngularJS's element object. This is passed as
the third argument to the $ionicGesture.on method.

Next, our www/index.html body section will be updated as follows:

<body ng-app="starter" ng-controller="AppCtrl">
 <ion-header-bar class="bar-dark">
 <h1 class="title">Gestures</h1>
 </ion-header-bar>
 <ion-content>
 <div class="card">

Chapter 5

[177]

 <div id="gestureContainer" class="item text-center"
on-drag-up="onDragUp()">
 Drag me up!!
 </div>
 </div>
 <div class="card">
 <div class="item text-center">
 Scope Gesture : {{scopeGesture}}

 Delegate Gesture : {{delegateGesture}}
 </div>
 </div>
 </ion-content>
</body>

We have created two card containers; the first one contains a div with the ID
gestureContainer and the on-drag-up attribute will execute the onDragUp
method when the event is fired.

The second card container consists of the scopeGesture value, which gets assigned
when the onDragUp method is called. The delegateGesture will be set when the
dragup event is fired from the $ionicGesture.on method.

If you save all the files and head back to the browser, you will see the two-card
section. When you drag the content in the first card up, the second card content
should be updated, as shown in the following screenshot:

Ionic Directives and Services

[178]

Quite a simple way to manage gestures! The following table provides a list of gesture
directives and their event type when used with the $ionicGesture.on method. You
can use the preceding code example to implement any of the following gestures:

Gesture name Directive name Event type (when using with
$ionicGesture.on())

Drag up on-drag-up dragup

Drag down on-drag-down dragdown

Drag right on-drag-right dragright

Drag left on-drag-left dragleft

Drag on-drag drag

Swipe up on-swipe-up swipeup

Swipe down on-swipe-down swipedown

Swipe right on-swipe-right swiperight

Swipe left on-swipe-left swipeleft

Swipe on-swipe Swipe

Hold (touch > 500ms) on-hold hold

Tap (touch < 250ms) on-tap tap

Double tap on-double-tap doubletap

Touch on-touch touch

Release on-release release

You can also implement gesture handling using the ionic.
EventController utility as well. You can read more at
http://ionicframework.com/docs/api/utility/ionic.
EventController/#onGesture.
By default, Ionic removes the 300ms tap delay that is added by the
browser. The tap delay is added in the first place for the browser to
differentiate between a tap and double-tap. If you want to enable the
300ms tap delay on any element, you can use the data-tap-disabled
attribute. You can read more at http://ionicframework.com/
docs/api/page/tap/.

http://ionicframework.com/docs/api/utility/ionic.EventController/#onGesture
http://ionicframework.com/docs/api/utility/ionic.EventController/#onGesture
http://ionicframework.com/docs/api/page/tap/
http://ionicframework.com/docs/api/page/tap/

Chapter 5

[179]

Utilities
The final topic in this chapter explores a few utility services provided by Ionic.
The first service we are going to take a look at is $ionicConfigProvider.

By default, Ionic plugs in the app configuration based on the environment it is
running. And, depending on the environment, properties such as a transition will
be applied. At the time of writing, Ionic officially supports Android and iOS only.
However, Ionic can be used on other platforms as well.

All configurations are based on the environment the app is running in. If the
environment is neither Android nor iOS, the configurations for iOS will be applied.

However, we can control these options using the $ionicConfigProvider service.
You can override the default values as follows:

.config(function ($ionicConfigProvider) {

 $ionicConfigProvider.views.transition('none');
 $ionicConfigProvider.views.maxCache(10);

 $ionicConfigProvider.form.checkbox('circle'); //square or
circle

 $ionicConfigProvider.tabs.style('striped'); // striped or
standard

 $ionicConfigProvider.templates.maxPrefetch(10);

 $ionicConfigProvider.navBar.alignTitle('right');
})

You can also override values specific to a platform using the following approach:

.config(function($ionicConfigProvider) {

 // Checkbox style. Android defaults to square and iOS defaults
to circle.
 $ionicConfigProvider.platform.ios.form.checkbox('square');
 $ionicConfigProvider.platform.android.form.checkbox('circle');

})

You can find the properties that you can override
at http://ionicframework.com/docs/api/
provider/$ionicConfigProvider/.

http://ionicframework.com/docs/api/provider/$ionicConfigProvider/
http://ionicframework.com/docs/api/provider/$ionicConfigProvider/

Ionic Directives and Services

[180]

Ionic provides a set of utility methods on the ionic.Platform object. You can
perform basic checks about the environment using the methods on this object:

.config(function() {
 console.log('ionic.Platform.isWebView()',
ionic.Platform.isWebView());
 console.log('ionic.Platform.isIPad()',
ionic.Platform.isIPad());
 console.log('ionic.Platform.isIOS()', ionic.Platform.isIOS());
 console.log('ionic.Platform.isAndroid()',
ionic.Platform.isAndroid());
 console.log('ionic.Platform.isWindowsPhone()',
ionic.Platform.isWindowsPhone());
})

You can read about other ionic.Platform methods at http://
ionicframework.com/docs/api/utility/ionic.Platform/.

There is a set of utility methods that help you interact with the DOM as well.
These are available inside the ionic.DomUtil object. A few methods on the
ionic.DomUtil object are as follows:

.controller('AppCtrl', function($scope) {
 var $element = angular.element(document.
querySelector('#someElement'));
 console.log(ionic.DomUtil.getParentWithClass($element,
'.card'));
 console.log(ionic.DomUtil.getParentOrSelfWithClass($element,
'.card'));

 // requestAnimationFrame example
 function loop() {
 console.log('Animation Frame Requested');
 ionic.DomUtil.requestAnimationFrame(loop);
 }

 loop();
})

You can read about other ionic.DomUtil methods at http://
ionicframework.com/docs/api/utility/ionic.DomUtil/.

http://ionicframework.com/docs/api/utility/ionic.Platform/
http://ionicframework.com/docs/api/utility/ionic.Platform/
http://ionicframework.com/docs/api/utility/ionic.DomUtil/
http://ionicframework.com/docs/api/utility/ionic.DomUtil/

Chapter 5

[181]

Finally, we will take a look at the Event Controller object in Ionic. This consists
of methods to hook and unhook events and gestures. You can also trigger events
using the ionic.EventController trigger method.

The following section shows a quick example of how to use ionic.EventController
for event/gesture binding, triggering, and unbinding.

Again you will be typically implementing the following logic in a directive and then
applying the directive on the intended element:

.controller('AppCtrl', ['$scope', function($scope) {

 // Binding Events
 var $body = document.querySelector('body');

 var eventListener = function() {
 console.log('Body Tapped!');

 ionic.EventController.off('tap', eventListener, $body);
 };

 ionic.EventController.on('tap', eventListener, $body);

 ionic.EventController.trigger('tap', {
 target: $body
 });

 // Binding gestures
 var cancelSwipeUp;
 var gestureListener = function() {
 console.log('Body Swiped Up!');

 ionic.EventController.offGesture(cancelSwipeUp, 'swipeup',
gestureListener);
 }

 cancelSwipeUp = ionic.EventController.onGesture('swipeup',
gestureListener, $body);

 ionic.EventController.trigger('swipeup', {
 target: $body
 });

}])

Ionic Directives and Services

[182]

Summary
In this chapter, we looked at various Ionic directives and services that help us
develop applications easily. We started with the Ionic Platform service, then moved
on to the Header and Footer directives. Next, we went through content-related
directives and navigation-related directives and services. Next, we looked into
overlays. Then, we quickly went through list directives, gestures, and utility services.

With this, we have finished going through Ionic itself. From the next chapter on, we
will be utilizing these components to build simple and complex applications.

In the next chapter, we will be building a Book Store app, where a user can register
and log in. The user can browse through a catalog of books and add them to the cart.
The user can also check them out and view the shopping history in their profile. This
application shows how to integrate Ionic with a secure RESTful backend service.

[183]

Building a Bookstore App
So far, we have looked at all the key elements of Ionic. In this chapter, we will build
a Bookstore application using that knowledge. The main purpose of this chapter
is to consolidate your understanding of Ionic and, at the same time, get a sense of
integrating an Ionic app with an existing RESTful service.

Do note that we will not be working with any server-side
related code.

The Bookstore app we are going to build is a simple multi-page Ionic client that lets
a user browse through the books without any authentication. Only when the user
wants to add a book to his cart or view his purchase history do we ask the user to
login. This approach provides a better user experience by not forcing the user to
login to see content, but rather allowing him to login only when needed.

Once the user is logged in, he/she can add books to the cart, view the cart, checkout
the cart, and view purchases. A secure REST server will manage all the data for this
application using JSON Web Tokens.

During the development process, we will work on the following topics:

•	 Understanding the end-to-end application architecture
•	 Setting up a server on a local machine or consume a hosted server
•	 Analyzing different views, controllers, and factories needed for the app and

building these components
•	 Visually testing the application

For this chapter, you can also access the code, raise issues,
and chat with the author at GitHub (https://github.
com/learning-ionic/Chapter-6).

https://github.com/learning-ionic/Chapter-6
https://github.com/learning-ionic/Chapter-6

Building a Bookstore App

[184]

An introduction to the Bookstore
application
In this chapter, we are going to build a Bookstore application. As explained earlier,
a user can register and log in to the application. The user can browse through all the
books in the store without any authentication. They can add books to cart, view their
cart, and checkout the cart. Once the user makes a purchase, they can view it in their
purchase history page.

The application features are quite simple but, to take the application to the next level,
we will be integrating the application with a secure REST API server built, on Node.
js, which uses JSON Web Tokens for authentication. Since we already have Node.
js installed on the local machine, setting up a server should not be complicated. Or,
in case you do not want to set up the server locally, you can find a link to the hosted
version of the APIs in the next section.

Some end points such as Checkout and View Purchases are made secure with JSON
Web Tokens (JWT). The server is set up in such a way that, if a REST client (such as
the Ionic app) wants to fetch any application data; it needs to send a valid token with
the request.

The flow of the application is as follows:

1.	 A user launches the app.
2.	 User can browse through the books without any authentication.
3.	 User wants to add an item to the cart or view purchases.
4.	 User attempts to register or login.
5.	 On successful register or login, the server along with the user data will send

a token that is valid for 7 days.
6.	 If the client wants to perform any operations such as adding to the cart

or viewing purchases, it needs to send a request to the appropriate REST
end point with the token. If the token is valid and belongs to the user, we
dispatch the data; otherwise, we forbid the user from accessing/updating
the data.

We will understand the complete architecture of the application in the next section.

Chapter 6

[185]

I have added a few technical features such as pagination and local storage to better
manage the data. But I have not implemented it 100 percent. These pieces are to get
you started on how to integrate these features with your ionic app.

A quick reminder: this is not a production-grade app,
but will help you get started along those lines.

The Bookstore architecture
The following is a high-level view of all the components that are involved in building
the bookstore application:

Building a Bookstore App

[186]

The server architecture
The secure REST server we are using for the application is built using
Node.js/Express. MongoDB is used as the data persistence layer.

The data used in the application is generated via a Faker script
(https://www.npmjs.com/package/faker). None of the
data in the application is real and it is only used to prototype
the app/fill the space. All the images and text are random.

Since the scope of this book is limited to Ionic, I will not be explaining how the server
is built.

You can follow the following blog post to understand the server-side
layer, how it is set up, and how JWTs work.
See Architecting a Secure RESTful Node.js app here: http://
thejackalofjavascript.com/architecting-a-restful-
node-js-app/.

You can find two implementations of a similar application, where I have built a
Bucket list app using Node.js as the server-side and one more where I have built the
same application using Firebase as the server-side. You can find more information in
the following:

•	 Ionic Restify MongoDB: This an end-to-end Hybrid App:
http://thejackalofjavascript.com/an-end-to-end-hybrid-app/

•	 Creating a Firebase Powered end-to-end Ionic application:
http://www.sitepoint.com/creating-firebase-powered-end-end-
ionic-application/

The server-side API documentation
I have provided documentation for the Bookstore REST API, where you can see
all the endpoints, understand what input is expected for each route, and what the
possible responses are, with expected exceptions.

You can find the documentation hosted here: https://ionic-book-
store.herokuapp.com/.

https://www.npmjs.com/package/faker
http://thejackalofjavascript.com/architecting-a-restful-node-js-app/
http://thejackalofjavascript.com/architecting-a-restful-node-js-app/
http://thejackalofjavascript.com/architecting-a-restful-node-js-app/
http://thejackalofjavascript.com/an-end-to-end-hybrid-app/
http://www.sitepoint.com/creating-firebase-powered-end-end-ionic-application/
http://www.sitepoint.com/creating-firebase-powered-end-end-ionic-application/
https://ionic-book-store.herokuapp.com/
https://ionic-book-store.herokuapp.com/

Chapter 6

[187]

This documentation is not extensive but can be used quite easily with the details
given in this chapter.

The client architecture
Coming to the client-side, we will have the following routes:

•	 Home (view all books)
•	 Login (tab component) / Register (tab component)
•	 View one book
•	 Add to cart
•	 View cart
•	 View purchases

Building a Bookstore App

[188]

We will have the following controllers:

•	 AppCtrl: This is an application-level controller (manage authentication)
•	 BrowseCtrl: This is used for viewing all books
•	 BookCtrl: This is used for viewing one book detail
•	 CartCtrl: This is used for viewing cart
•	 PurchasesCtrl: This is used for viewing purchases

We will have four sets of factories: one that manages Ionic loading, one that manages
localStorage, one that manages authentication, and one that manages the data.

•	 Loader: This manages Ionic loading
•	 LSFactory: This manages local storage
•	 AuthFactory: This manages authentication
•	 TokenInterceptor: This manages tokens for every HTTP request
•	 BooksFactory: This is used to get all books
•	 UserFactory: This is the user login/register and cart, purchase API

We are going to use the HTML5 localStorage API to cache all the books locally to
avoid fetching the books again and again. We will go through each of the factories as
we start building the app.

Code on GitHub
I have hosted the client as well as the server code for this example on GitHub. I
would recommend that you visit the repositories and check out the code. I will be
adding updates or fixing any bugs reported by readers here.

I also encourage you to raise any issues you find and I will try my best to address them:

•	 Bookstore Ionic Client Repository
•	 Bookstore Node.js Server Repository

Chapter 6

[189]

A Bookstore demo
The Bookstore app will be built using the side menu template. We will be using tabs,
modals, loading, cards, lists and the grid system to build the application.

Before we proceed, you can take a quick peek at the application we are
about to build at https://ionic-book-store.herokuapp.com/app.

The application will take some time to load, but once done, you will see something
like this.

https://ionic-book-store.herokuapp.com/app

Building a Bookstore App

[190]

This is a live demo of the application we are going to build. You can click on the
menu or the cart icon to view appropriate pages. You will be asked to login/register
if you are trying to add to the cart or access the cart or purchases. You can create an
account and test things out for yourself (it is free!).

Also, you can see a resolution bar on the top of the page to see how the app looks in
different resolutions.

Do note that all the data you see here is random faker data for
prototyping purposes only.

The development flow
In this chapter, we are not going to develop the app feature-by-feature, view the
output, and proceed to the next one. Rather, we will be developing the entire app
at once and viewing the output at the end. If, at any point, you feel confused as to
what the final result is, I highly encourage you check out the live version present at
https://ionic-book-store.herokuapp.com/app.

Setting up the server
Since setting up the server is not a critical part of this book or this example app, you
have two ways to do it:

1.	 Consume an existing REST API, which I have built.
2.	 Fork the server code, set up DB and run the server locally.

For option 1, you can check out the docs (https://ionic-book-store.herokuapp.
com/) on readily available REST API end points and how to consume them.

For option 2, we will carry out the following operations:

Download and unzip the server code from: https://github.com/arvindr21.
If you are familiar with Node.js, this is a typical Express application that has JWT
added to it.

For the database, you can either use your local instance of MongoDB or you can get
a free MongoLab (https://mongolab.com/) account and use it. Or you can use my
MongoLab URL for this. Do note that other people are also using this URL; so kindly
be sensible about it.

https://ionic-book-store.herokuapp.com/app
https://ionic-book-store.herokuapp.com/
https://ionic-book-store.herokuapp.com/
https://github.com/arvindr21
https://mongolab.com/

Chapter 6

[191]

Once you have decided on the connection, you need to open server/db/connection.
js and update the connection string on line 2 as applicable; for example:

var db = mongojs('ionicbookstoreapp', ['users', 'books']);

Next, to generate some test data for the book API, open a terminal/prompt inside the
db folder and run this:

node dbscript.js

This will generate 30 books for us to start working with the application.

If you are using the MongoLab URL, you need not run the earlier
step to add the books. They are already present.

Finally, to start the local server, use the cd command into the root of the server
folder and run this:

node server.js

This will start the server on port 3000 and you can access the application on
http://localhost:3000.

Do not panic if you see an error when you navigate to
http://localhost:3000. This is an API server; hence
I have not added any UI to the home page.

You can open http://localhost:3000/api/v1/books/1/10 and you should see
the JSON data for about 10 books populate your browser. This means that you have
successfully set up the server.

Again, if you are not comfortable with the Do It Yourself (DIY) approach, you can
directly use the hosted REST endpoints. I will show you how easy it is to consume
end points, irrespective of where your REST API is hosted.

Building the application
Now that we have our server set up and have an idea as to what we are going to
build, let's start building it. We are going to perform the following steps, for us to
easily build the app:

1.	 Scaffold the side menu template.
2.	 Refactor the template.

Building a Bookstore App

[192]

3.	 Build the authentication, local storage and REST API Factories.
4.	 Create controllers for each route and integrate them with the

corresponding Factories.
5.	 Create templates and integrate with the Controller data.

Step 1 – Scaffolding the side menu template
The first thing we are going to do is scaffold a side menu template. Create a folder
named chapter6. Open a terminal/prompt inside the chapter6 folder and run this:

ionic start -a "Ionic Book Store" -i app.bookstore.ionic book-store
sidemenu

This will scaffold the side menu application. We will not be using theming in our
Bookstore app, so there will be no SCSS setup.

Step 2 – Refactoring the template
In all the examples we have built so far, we have created components from scratch.
But in this example, we are going to refactor the template.

Before we proceed, let's test whether everything is working fine. Using the cd
command, go to the book-store folder and run this:

ionic serve

This will serve the scaffolded app. As mentioned in Chapter 2, Welcome to Ionic, open
your development tool and set it up at the right hand section of the page. The app
with development tools open will look like this:

Chapter 6

[193]

Refactoring the menu
The first thing we are going to refactor is the menu. We will replace the existing
menu items with the ones we are going to use.

Open www/templates/menu.html and update the left-hand side ion-side-menu
section as follows:

<ion-side-menu side="left">
 <ion-header-bar class="bar-assertive">
 <h1 class="title">Menu</h1>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item menu-close href="#/app/browse">
 Browse Books
 </ion-item>
 <ion-item menu-close href="#/app/cart">
 My Cart
 </ion-item>
 <ion-item menu-close href="#/app/purchases">
 My Purchases
 </ion-item>
 <ion-item menu-close ng-show="isAuthenticated" ng-
click="logout()">
 Logout
 </ion-item>
 <ion-item menu-close ng-hide="isAuthenticated" ng-
click="loginFromMenu()">
 Login
 </ion-item>
 </ion-list>
 </ion-content>
</ion-side-menu>

We have added four menu items:

•	 Browse books: To view all the books
•	 My cart: To view the cart
•	 My purchases: To view all purchases
•	 Login/logout: A conditional menu item that changes based on the user's

authentication status

Building a Bookstore App

[194]

Next, we will be updating the header or the ion-side-menu-content section at the
top of menu.html:

<ion-side-menu-content>
 <ion-nav-bar class="bar-assertive">
 <ion-nav-back-button>
 </ion-nav-back-button>
 <ion-nav-buttons side="left">
 <button class="button button-icon button-clear
ion-navicon" menu-toggle="left">
 </button>
 </ion-nav-buttons>
 <ion-nav-buttons side="right">
 <!-- <button ng-show="isAuthenticated"
class="button button-icon button-clear ion-unlocked" ng-
click="logout()">
 </button> -->
 <a class="button button-icon button-clear ion-
android-cart" href="#/app/cart">

 </ion-nav-buttons>
 </ion-nav-bar>
 <ion-nav-view name="menuContent"></ion-nav-view>
 </ion-side-menu-content>

We have modified the theme of the header to reflect an assertive mood. We have
also added two buttons to the right. One is the logout, which I have commented out,
and the other is the cart. This code shows how you can add icons to the header of
the application.

Also do note that the commented out logout icon is a conditional icon.
Only if the user is authenticated does it show up (if uncommented from
the earlier code). Since I did not want two icons to the right of my title
bar, I commented the logout button.

Also, update the enable-menu-with-back-views attribute value on ion-side-
menus to true. Without this, you would not see the side menu icon when you are
inside a child view.

Chapter 6

[195]

If you save this file and go back to the browser, you will see the updated header and
the menu:

Refactoring the module name
Next, we are going to rename the module of the app. By default the module name set
to the starter template is starter. We will rename it to BookStoreApp. The places to
update are:

•	 Open www/index.html and rename ng-app directive value from starter to
BookStoreApp.

•	 Open www/js/app.js and rename the angular module syntax as follows:
angular.module('BookStoreApp', ['ionic',
'BookStoreApp.controllers'])

•	 Open www/js/controllers.js and update starter.controllers to
BookStoreApp.controllers.

This will take care of renaming the module in our app. From now on, we will be
using BookStoreApp as the module namespace for the app.

Building a Bookstore App

[196]

Adding a run method and modifying routes
Now, we will configure the routes; open www/js/app.js. We will delete the existing
config section here. Next, we will set up the run method to hold a few utility
methods. Add the following run method to www/js/app.js:

.run(['$rootScope', 'AuthFactory',
 function($rootScope, , AuthFactory) {

 $rootScope.isAuthenticated = AuthFactory.isLoggedIn();

 // utility method to convert number to an array of
elements
 $rootScope.getNumber = function(num) {
 return new Array(num);
 }

 }
])

You attach multiple run methods to a module.

If you recall menu.html, we have added the capability to show and hide login/logout
based on the value of isAuthenticated. This property is initialized here.

We also have a utility method named getNumber. We will get to it when we use it.
All this method does is generate an array with the provided number as the length.

Next, we will add the routes. Below the run section, add the config section
as follows:

.config(['$stateProvider', '$urlRouterProvider', '$httpProvider',
 function($stateProvider, $urlRouterProvider, $httpProvider) {

 // setup the token interceptor
 $httpProvider.interceptors.push('TokenInterceptor');

 $stateProvider

 .state('app', {
 url: "/app",
 abstract: true,
 templateUrl: "templates/menu.html",

Chapter 6

[197]

 controller: 'AppCtrl'
 })

 .state('app.browse', {
 url: "/browse",
 views: {
 'menuContent': {
 templateUrl: "templates/browse.html",
 controller: 'BrowseCtrl'
 }
 }
 })

 .state('app.book', {
 url: "/book/:bookId",
 views: {
 'menuContent': {
 templateUrl: "templates/book.html",
 controller: 'BookCtrl'
 }
 }
 })

 .state('app.cart', {
 url: "/cart",
 views: {
 'menuContent': {
 templateUrl: "templates/cart.html",
 controller: 'CartCtrl'
 }
 }
 })

 .state('app.purchases', {
 url: "/purchases",
 views: {
 'menuContent': {
 templateUrl: "templates/purchases.html",
 controller: 'PurchasesCtrl'
 }
 }
 });

Building a Bookstore App

[198]

 // if none of the above states are matched, use this as
the fallback
 $urlRouterProvider.otherwise('/app/browse');
 }
])

Note that we could have edited the routes manually to produce what we
need, but I thought this would be easier to illustrate.
Also note that, if you have kept the Ionic server running, you will see
an error in the browser JavaScript console complaining about missing
dependencies. The app will not function properly until we finish all the
pieces of the code. You might as well kill the server till we are done.

The first thing we have added in the config is the TokenInterceptor. We will
implement the TokenInterceptor when we are dealing with the authentication
factory. I will refer back to here when we are working with TokenInterceptor.

The routes we have added are as follows:

•	 /app: This is an abstract route that manages the main view of the application
•	 /browse: This is the home page of the app, where we will list all the books
•	 /book/:bookId: This is used to view details about one book
•	 /cart: This is used to view the books in cart
•	 /purchases: This is used to view the list of purchases a user has made

The login/register tab interface will be a modal and not a route.

Refactoring templates
We can either go to one template at a time and refactor them as per our routes config
or for the sake of simplicity we can (and will) delete all templates except menu.html
from the www/templates folder and add empty HTML files for now.

After deleting all the templates except menu.html, we will create the
following templates:

•	 browse.html

•	 book.html

•	 cart.html

•	 purchases.html

•	 login.html

Chapter 6

[199]

You can leave all the templates blank for now. We will work with these templates at
the end.

Step 3 – Building authentication, localStorage,
and the REST API factory
Inside the www/js folder, create a file named factory.js. After that add a reference
to this file in www/index.html after the reference to controller.js as follows:

<script src="js/factory.js"></script>

This file will hold all the factories. If you like, you can create one factory file for one
feature. But for our example we will have all the factories in one file.

The first line we are going to add is the base URL for the REST API. You can
either point the app to your local server or you can point it to the REST API
hosted on Heroku.

Add the following to www/js/factory.js:

//var base = 'http://localhost:3000';

var base = 'https://ionic-book-store.herokuapp.com';

You can uncomment and use it as applicable.

Next, we will create a new module named BookStoreApp.factory that will hold all
our factory definitions.

angular.module('BookStoreApp.factory', [])

Next, we will add the new module as a dependency to our main module
BookStoreApp. Open www/js/app.js and update the BookStoreApp module
definition as follows:

angular.module('BookStoreApp', ['ionic', 'BookStoreApp.controllers',
'BookStoreApp.factory'])

Building a Bookstore App

[200]

The Ionic loading factory
The first factory we are going to create is the Ionic loading factory. Below the
AngularJS module definition, add this:

.factory('Loader', ['$ionicLoading', '$timeout',
function($ionicLoading, $timeout) {

 var LOADERAPI = {

 showLoading: function(text) {
 text = text || 'Loading...';
 $ionicLoading.show({
 template: text
 });
 },

 hideLoading: function() {
 $ionicLoading.hide();
 },

 toggleLoadingWithMessage: function(text, timeout) {
 $rootScope.showLoading(text);

 $timeout(function() {
 $rootScope.hideLoading();
 }, timeout || 3000);
 }

 };
 return LOADERAPI;
}])

We have the following three functions that help us in showing, hiding, and toggling
Ionic loading:

•	 showLoading: This shows a blocking modal with the text provided
or Loading.

•	 hideLoading: This hides the modal that was shown using showLoading.
•	 toggleLoadingWithMessage: This will show the modal with the provided

message and hide it after the provided timeout or 3 seconds. This method
will be used to show the blocked messages that get hidden automatically.

Chapter 6

[201]

The localStorage factory
Next, we are going to add the localStorage factory. Below the Loader factory,
add this:

.factory('LSFactory', [function() {

 var LSAPI = {

 clear: function() {
 return localStorage.clear();
 },

 get: function(key) {
 return JSON.parse(localStorage.getItem(key));
 },

 set: function(key, data) {
 return localStorage.setItem(key,
JSON.stringify(data));
 },

 delete: function(key) {
 return localStorage.removeItem(key);
 },

 getAll: function() {
 var books = [];
 var items = Object.keys(localStorage);

 for (var i = 0; i < items.length; i++) {
 if (items[i] !== 'user' || items[i] != 'token') {
 books.push(JSON.parse(localStorage[items[i]]));
 }
 }

 return books;
 }

 };

 return LSAPI;

}])

Building a Bookstore App

[202]

This factory has an API that we can use to interact with the HTML5 localStorage
API. We will be using local storage to save all the books. This way, we do not need
to make calls to the server every time to fetch the books.

Since this is an example, we have not added a background process that checks for
new books and updates the local storage. You can easily add one in your app.

The clear, get, set, and delete methods are wrappers for the localStorage API's
clear, getItem, setItem, and deleteItem methods. Since we will be dealing with
objects that need to be saved in local storage and local storage stores only strings,
we have modified the set and get method such that we stringify the object before
saving and parse the stringified text after fetching. This way, other methods can send
objects to the get method and the data gets massaged here.

The getAll method will be used to fetch all the books we have saved in localStorage.

Do note that we have used the Object.keys method to convert
the localStorage (array-like) object to an array.
You can read more about the Object.keys method at
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Object/keys.

The Authentication factory
The next factory we are going to work with is the Authentication factory. Add the
following code after the LSFactory definition:

.factory('AuthFactory', ['LSFactory', function(LSFactory) {

 var userKey = 'user';
 var tokenKey = 'token';

 var AuthAPI = {

 isLoggedIn: function() {
 return this.getUser() === null ? false : true;
 },

 getUser: function() {
 return LSFactory.get(userKey);
 },

 setUser: function(user) {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys

Chapter 6

[203]

 return LSFactory.set(userKey, user);
 },

 getToken: function() {
 return LSFactory.get(tokenKey);
 },

 setToken: function(token) {
 return LSFactory.set(tokenKey, token);
 },

 deleteAuth: function() {
 LSFactory.delete(userKey);
 LSFactory.delete(tokenKey);
 }

 };

 return AuthAPI;

}])

This factory is dependent on LSFactory and manages the user authentication data.
As mentioned earlier, when the user does a login or register, the server will send an
access token along with a user object. These wrapper methods save the user data and
token data in local storage using the LSFactory API.

Next, we will create the TokenInterceptor factory. If you remember, we have
added a reference to the TokenInterceptor in our www/js/app.js file, the config
section. We are telling AngularJS to call the TokenInterceptor every time it is
making a HTTP request.

What are Interceptors?
When making AJAX calls using the $http service, there will be times
(as with our app) where you would like to intercept the HTTP request
and add some additional data before the request is fired. The piece of
AngularJS code that lets you achieve this is an interceptor.
Interceptors are added to the $httpProvider interceptor using the
following syntax:
$httpProvider.interceptors.push('MyInterceptor');

After setting up a factory/service named MyInterceptor, you
can read more about Interceptors and how they work at http://
www.webdeveasy.com/interceptors-in-angularjs-and-
useful-examples/.

http://www.webdeveasy.com/interceptors-in-angularjs-and-useful-examples/
http://www.webdeveasy.com/interceptors-in-angularjs-and-useful-examples/
http://www.webdeveasy.com/interceptors-in-angularjs-and-useful-examples/

Building a Bookstore App

[204]

When this method is invoked, it will check if a token and a user object are present
in the localStorage. If yes, it will attach them to the header of the request. If you
recall, the add to cart, view cart, checkout, and view purchase routes need the
user to be authenticated. This token is the only way the server knows if the user is
authenticated and if the user is authorized to view the content.

Add the TokenInterceptor factory below the AuthFactory in www/js/factory.js:

.factory('TokenInterceptor', ['$q', 'AuthFactory', function($q,
AuthFactory) {

 return {
 request: function(config) {
 config.headers = config.headers || {};
 var token = AuthFactory.getToken();
 var user = AuthFactory.getUser();

 if (token && user) {
 config.headers['X-Access-Token'] = token.token;
 config.headers['X-Key'] = user.email;
 config.headers['Content-Type'] =
"application/json";
 }
 return config || $q.when(config);
 },

 response: function(response) {
 return response || $q.when(response);
 }
 };

}])

The REST API factory
Next, we will be creating two factories. One factory interacts with the REST API
end points, which do not need authentication to get the data, and the other factory
interacts with the REST API endpoints, which need authentication. This is just a
logical separation. You can have both in one factory as well.

Chapter 6

[205]

The first is BooksFactory. This factory has a get method that talks to the public
api/v1/books endpoint:

.factory('BooksFactory', ['$http', function($http) {

 var perPage = 30;

 var API = {
 get: function(page) {
 return $http.get(base + '/api/v1/books/' + page + '/'
+ perPage);
 }
 };

 return API;
}])

The REST endpoint /api/v1/books has the ability to paginate data. You can send
the perPage and page number; it will return the corresponding records. You can
use this server side API to paginate the book data and load books on demand.

But, in this app, we are going to make only 1 call and fetch 30 records. You can
implement an ion-infinite-scroll and load the books on demand as an exercise.

Next is the UserFactory. This factory consists of login, register REST endpoints,
and four other methods to interact with the cart and purchase API.

Add the following UserFactory factory definition after the BooksFactory:

.factory('UserFactory', ['$http', 'AuthFactory',
 function($http, AuthFactory) {

 var UserAPI = {

 login: function(user) {
 return $http.post(base + '/login', user);
 },

 register: function(user) {
 return $http.post(base + '/register', user);
 },

 logout: function() {
 AuthFactory.deleteAuth();

Building a Bookstore App

[206]

 },

 getCartItems: function() {
 var userId = AuthFactory.getUser()._id;
 return $http.get(base + '/api/v1/users/' + userId
+ '/cart');
 },

 addToCart: function(book) {
 var userId = AuthFactory.getUser()._id;
 return $http.post(base + '/api/v1/users/' + userId
+ '/cart', book);
 },

 getPurchases: function() {
 var userId = AuthFactory.getUser()._id;
 return $http.get(base + '/api/v1/users/' + userId
+ '/purchases');
 },

 addPurchase: function(cart) {
 var userId = AuthFactory.getUser()._id;
 return $http.post(base + '/api/v1/users/' + userId
+ '/purchases', cart);
 }

 };

 return UserAPI;
 }
])

The getCartItems, addToCart, getPurchases, and addPurchase methods first get
the user ID from the localStorage before making the REST call. This is how the
REST endpoint needs the URL to be.

With this we have successfully added the required factory methods that manage the
data, authentication, and REST interaction for us. We will talk about the response of
each REST endpoint when we are dealing with appropriate controllers.

If your server is still running and you have done everything correctly, you should
see an error about BrowserCtrl. That is okay; we will work on controllers next.

Chapter 6

[207]

Step 4 – Creating controllers for each route
and integrating with the factory
Now that we have our factories configured, we will be creating the required
controllers. Again for simplicity sake, we will delete AppCtrl, PlaylistsCtrl,
and PlaylistCtrl from the www/js/controllers.js file leaving only:

angular.module('BookStoreApp.controllers', [])

The application controller
The first controller we are going to add is the application controller or AppCtrl. This
controller manages the login/register functionality. If any child controller such as
the cart controller wants to force the user to login, before proceeding it will broadcast
a showLoginModal on the scope and the showLoginModal listener will take care of
managing the login/registration process. Once the user is successfully logged in, the
cart controller will be notified to proceed.

We will be using the $on and $broadcast methods to trigger custom evens such as
showLoginModal.

We will add the AppCtrl following the module definition in www/js/controller.
js. We will be splitting the AppCtrl code into two pieces for a better explanation.

First, we will add the definition and all the needed dependencies:

.controller('AppCtrl', ['$rootScope', '$ionicModal',
'AuthFactory', '$location', 'UserFactory', '$scope', 'Loader',
 function($rootScope, $ionicModal, AuthFactory, $location,
UserFactory, $scope, Loader) {

}])

Next, we will register the showLoginModal event on the root scope. We will define
the required methods here:

 $rootScope.$on('showLoginModal', function($event, scope,
cancelCallback, callback) {
 $scope.user = {
 email: '',
 password: ''
 };

 $scope = scope || $scope;

 $scope.viewLogin = true;

 $ionicModal.fromTemplateUrl('templates/login.html', {

Building a Bookstore App

[208]

 scope: $scope
 }).then(function(modal) {
 $scope.modal = modal;
 $scope.modal.show();

 $scope.switchTab = function(tab) {
 if (tab === 'login') {
 $scope.viewLogin = true;
 } else {
 $scope.viewLogin = false;
 }
 }

 $scope.hide = function() {
 $scope.modal.hide();
 if (typeof cancelCallback === 'function') {
 cancelCallback();
 }
 }

 $scope.login = function() {
 Loader.showLoading('Authenticating...');

UserFactory.login($scope.user).success(function(data) {

 data = data.data;
 AuthFactory.setUser(data.user);
 AuthFactory.setToken({
 token: data.token,
 expires: data.expires
 });

 $rootScope.isAuthenticated = true;
 $scope.modal.hide();
 Loader.hideLoading();
 if (typeof callback === 'function') {
 callback();
 }
 }).error(function(err, statusCode) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage(err.message);
 });

Chapter 6

[209]

 }

 $scope.register = function() {
 Loader.showLoading('Registering...');

 UserFactory.register($scope.user).
success(function(data) {

 data = data.data;
 AuthFactory.setUser(data.user);
 AuthFactory.setToken({
 token: data.token,
 expires: data.expires
 });

 $rootScope.isAuthenticated = true;
 Loader.hideLoading();
 $scope.modal.hide();
 if (typeof callback === 'function') {
 callback();
 }
 }).error(function(err, statusCode) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage(err.message);
 });
 }
 });
 });

Next, we add two methods on the $rootScope property. These methods will be
invoked from the sidemenu:

 $rootScope.loginFromMenu = function() {
 $rootScope.$broadcast('showLoginModal', $scope, null,
null);
 }

 $rootScope.logout = function() {
 UserFactory.logout();
 $rootScope.isAuthenticated = false;
 $location.path('/app/browse');
 Loader.toggleLoadingWithMessage('Successfully Logged
Out!', 2000);
 }

Building a Bookstore App

[210]

The showLoginModal event takes in three arguments:

•	 scope: The scope in which the modal needs to be created. If no scope is
provided, the AppCtrl scope will be used.

•	 cancelCallback: The callback function to be executed when the user
cancels the login/registration process.

•	 callback: The callback function that needs to be executed when the user is
successfully registered/logged in.

Using the $ionicModal service, we create a modal from the login.html file. We will
work with the templates in the next section.

The login and register methods take care of talking to the UserFactory login or
register method respectively. Once the user is successfully logged in/registered,
the response from the server looks like:

{
 "error": null,
 "data": {
 "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0
MzM1MjIwNzQ4MzYsInVzZXIiOnsiX2lkIjoiNTU2ODU5NjgyN2ZjY2JjMTZkNjA4MzBi
IiwiZW1haWwiOiJhQGEuY29tIiwibmFtZSI6ImEiLCJjYXJ0IjpbeyJpZCI6IjU1NjgzY
2Q4ZmJiMmUxOTI0ZjE4YTRlYSIsInF0eSI6MX1dLCJwdXJjaGFzZXMiOlt7IlB1cmNoYX
NlIG1hZGUgb24gMjktTWF5LTIwMTUgYXQgMTc6NTAiOlt7ImlkIjoiNTU2ODNjZDhmYmI
yZTE5MjRmMThhNGU4IiwicXR5IjoxfV19LHsiUHVyY2hhc2UgbWFkZSBvbiAyOS1NYXkt
MjAxNSBhdCAxNzo1OSI6W3siaWQiOiI1NTY4M2NkOGZiYjJlMTkyNGYxOGE0ZWIiLCJxd
HkiOjF9LHsiaWQiOiI1NTY4M2NkOGZiYjJlMTkyNGYxOGE0ZjYiLCJxdHkiOjF9LHsiaW
QiOiI1NTY4M2NkOGZiYjJlMTkyNGYxOGE0ZjgiLCJxdHkiOjF9XX0seyJQdXJjaGFzZSB
tYWRlIG9uIDI5LU1heS0yMDE1IGF0IDIwOjUxIjpbeyJpZCI6IjU1NjgzY2Q4ZmJiMmUx
OTI0ZjE4YTRlOCIsInF0eSI6MX0seyJpZCI6IjU1NjgzY2Q4ZmJiMmUxOTI0ZjE4YTRlY
SIsInF0eSI6MX0seyJpZCI6IjU1NjgzY2Q4ZmJiMmUxOTI0ZjE4YTRlZSIsInF0eSI6MX
1dfV19fQ.J0U0BZXhP6C1VWEHDT18BMOzkK_dvXP-xdGUiIr7-z8",
 "expires": 1433522074836,
 "user": {
 "_id": "5568596827fccbc16d60830b",
 "email": "a@a.com",
 "name": "a",
 }
 },
 "message": "Success"
}

We extract the token and user object from the response and set it to localStorage
using the AuthFactory setUser and setToken methods. The TokenInterceptor
while making REST calls will pick up this data and add it to the request.

Chapter 6

[211]

The loginFromMenu and logout are called from the Login/logout menu item. All
the loginFromMenu method does is broadcast a showLoginModal that will take care
of user authentication.

The logout method calls the UserFactory logout method that takes care of clearing
the user and token entries in the localStorage. It also resets the isAuthenticated
property and redirects the user to the /app/browse page.

The browse controller
The next controller we are going to work with is the BrowseCtrl. This controller is
responsible for showing all the books when the user launches the application. The
first time the BrowseCtrl contacts the REST API endpoint to get the books (upon
successful fetch) it saves them to localStorage. So, the next time (and henceforth) it
will look in localStorage before making a call, saving battery, and data charges.

As an exercise, you can implement a background process to update
the localStorage with the latest books from time to time.

.controller('BrowseCtrl', ['$scope', 'BooksFactory', 'LSFactory',
'Loader',
 function($scope, BooksFactory, LSFactory, Loader) {

 Loader.showLoading();

 // support for pagination
 var page = 1;
 $scope.books = [];
 var books = LSFactory.getAll();

 // if books exists in localStorage, use that instead of
making a call
 if (books.length > 0) {
 $scope.books = books;
 Loader.hideLoading();
 } else {
 BooksFactory.get(page).success(function(data) {

 // process books and store them
 // in localStorage so we can work with them later
on,
 // when the user is offline

Building a Bookstore App

[212]

 processBooks(data.data.books);

 $scope.books = data.data.books;
 $scope.$broadcast('scroll.infiniteScrollComplete');
 Loader.hideLoading();
 }).error(function(err, statusCode) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage(err.message);
 });
 }

 function processBooks(books) {
 LSFactory.clear();
 // we want to save each book individually
 // this way we can access each book info. by it's _id
 for (var i = 0; i < books.length; i++) {
 LSFactory.set(books[i]._id, books[i]);
 };
 }

 }
])

Since our REST API supports pagination, we need to pass in the page number to get
the data from and the perPage, which we have set in the BooksFactory. I have made
the page number dynamic and set it up, so you can implement pagination and load
books on demand.

But in this example we will be loading all 30 books at once.

The book controller
Once the user browses through all the books and wants to see details about a
particular book, he/she will click on the book. At that point, we redirect the user
to the /book page, which will trigger the BookCtrl. The BookCtrl will search for
a book with the given id in localStorage and displays its details.

Add the BookCtrl after the BrowseCtrl in www/js/controllers.js:

.controller('BookCtrl', ['$scope', '$state', 'LSFactory',
'AuthFactory', '$rootScope', 'UserFactory', 'Loader',

Chapter 6

[213]

 function($scope, $state, LSFactory, AuthFactory, $rootScope,
UserFactory, Loader) {

 var bookId = $state.params.bookId;

 $scope.book = LSFactory.get(bookId);

 $scope.$on('addToCart', function() {
 Loader.showLoading('Adding to Cart..');
 UserFactory.addToCart({
 id: bookId,
 qty: 1
 }).success(function(data) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage('Successfully
added ' + $scope.book.title + ' to your cart', 2000);
 }).error(function(err, statusCode) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage(err.message);
 });

 });

 $scope.addToCart = function() {
 if (!AuthFactory.isLoggedIn()) {
 $rootScope.$broadcast('showLoginModal', $scope,
null, function() {
 // user is now logged in
 $scope.$broadcast('addToCart');
 });
 return;
 }
 $scope.$broadcast('addToCart');
 }
 }
])

Using the LSFactory.get(bookId) we fetch the book from localStorage.

Building a Bookstore App

[214]

If you viewed the demo, you will have noticed that, on the book detail page, there
is an Add to Cart button. The logic for add to cart is quite simple. If the user clicks
on Add to Cart, we check if the user is logged in. If the user is not logged in, we
broadcast a showLoginModal event and, once the user has successfully logged in,
we broadcast the addToCart, which adds the present book to the cart.

If the user is already logged in, we broadcast addToCart.

The addToCart event builds an object taking in the current bookid and quantity
(hardcoded to 1), and then calls the UserFactory addToCart method. This takes
care of adding the book to the cart.

The cart controller
The next controller we are going to look at is the cart controller. This will be invoked
when the user clicks on the cart icon present in the header or when the user clicks on
the cart menu item from the side menu.

When the user clicks on the cart, we will check if the user is logged in. If the user is
logged in, we fetch the user's cart items and show them. Otherwise, we broadcast
showLoginModal, which will take care of the authentication. If the user cancels the
login modal, we take the user back to /app/browse.

Once the user is successfully authenticated/logged in, we will broadcast the getCart
event. The getCart calls the UserFactory getCartItems method and fetches all the
cart items. Once the cart items are fetched, we assign them to the books property
on $scope.

We will add the following CartCtrl after the BookCtrl:

.controller('CartCtrl', ['$scope', 'AuthFactory', '$rootScope',
'$location', '$timeout', 'UserFactory', 'Loader',
 function($scope, AuthFactory, $rootScope, $location, $timeout,
UserFactory, Loader) {

 $scope.$on('getCart', function() {
 Loader.showLoading('Fetching Your Cart..');
 UserFactory.getCartItems().success(function(data) {
 $scope.books = data.data;
 Loader.hideLoading();
 }).error(function(err, statusCode) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage(err.message);
 });

Chapter 6

[215]

 });

 if (!AuthFactory.isLoggedIn()) {
 $rootScope.$broadcast('showLoginModal', $scope, function()
{
 // cancel auth callback
 $timeout(function() {
 $location.path('/app/browse');
 }, 200);
 }, function() {
 // user is now logged in
 $scope.$broadcast('getCart');
 });
 return;
 }

 $scope.$broadcast('getCart');

 $scope.checkout = function() {
 // we need to send only the id and qty
 var _cart = $scope.books;
 var cart = [];
 for (var i = 0; i < _cart.length; i++) {
 cart.push({
 id: _cart[i]._id,
 qty: 1 // hardcoded to 1
 });
 };

 Loader.showLoading('Checking out..');
 UserFactory.addPurchase(cart).success(function(data) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage('Successfully checked
out', 2000);
 $scope.books = [];
 }).error(function(err, statusCode) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage(err.message);
 });
 }
 }
])

Building a Bookstore App

[216]

We have added the checkout method on $scope. Once the user views his/her cart,
they can check out the cart, and this method calls the UserFactory addPurchase
method passing in the cart array. The cart array consists of objects that contain the
book id and the quantity of the book (hardcoded to 1 unit) added to the cart.

The purchase controller
The final controller in our app is the purchase controller. This controller shows a
list of purchases the current logged in user has made. As with the cart controller,
we check if the user is logged to proceed. Once the user is logged in, we broadcast
the getPurchases event. This will take care of contacting the purchases API via the
UserFactory getPurchases method and gets the list of purchases:

.controller('PurchasesCtrl', ['$scope', '$rootScope',
'AuthFactory', 'UserFactory', '$timeout', 'Loader',
 function($scope, $rootScope, AuthFactory, UserFactory,
$timeout, Loader) {
 // http://forum.ionicframework.com/t/expandable-list-in-
ionic/3297/2
 $scope.groups = [];

 $scope.toggleGroup = function(group) {
 if ($scope.isGroupShown(group)) {
 $scope.shownGroup = null;
 } else {
 $scope.shownGroup = group;
 }
 };
 $scope.isGroupShown = function(group) {
 return $scope.shownGroup === group;
 };

 $scope.$on('getPurchases', function() {
 Loader.showLoading('Fetching Your Purchases');
 UserFactory.getPurchases().success(function(data) {
 var purchases = data.data;
 $scope.purchases = [];
 for (var i = 0; i < purchases.length; i++) {
 var key = Object.keys(purchases[i]);
 $scope.purchases.push(key[0]);
 $scope.groups[i] = {
 name: key[0],
 items: purchases[i][key]
 }

Chapter 6

[217]

 var sum = 0;
 for (var j = 0; j < purchases[i][key].length;
j++) {
 sum +=
parseInt(purchases[i][key][j].price);
 };
 $scope.groups[i].total = sum;
 };
 Loader.hideLoading();
 }).error(function(err, statusCode) {
 Loader.hideLoading();
 Loader.toggleLoadingWithMessage(err.message);
 });
 });

 if (!AuthFactory.isLoggedIn()) {
 $rootScope.$broadcast('showLoginModal', $scope,
function() {
 $timeout(function() {
 $location.path('/app/browse');
 }, 200);
 }, function() {
 // user is now logged in
 $scope.$broadcast('getPurchases');
 });
 return;
 }

 $scope.$broadcast('getPurchases');
 }
])

We have added a couple of methods named toggleGroup and isGroupShown. These
methods will be used when we are building the template. Once the response arrives,
we format the data so that it can be organized as a nested list.

I recommend checking out the online version of this app for the
view purchases feature before you proceed. That will give you a
good understanding of what is going on in the code.

Building a Bookstore App

[218]

Step 5 – Creating templates and integrating
with the controller data
Now that we have controllers ready with the data, we will build templates to present
that data.

The Login template
The first template we are going to work with is login.html:

<ion-modal-view>
 <div class="tabs-striped tabs-background-assertive tabs-color-
light">
 <div class="tabs">
 <a class="tab-item" ng-class="{active : viewLogin}"
href="javascript:" ng-click="switchTab('login')">
 <i class="icon ion-locked"></i> Login

 <a class="tab-item" ng-class="{active : !viewLogin}"
href="javascript:" ng-click="switchTab('register')">
 <i class="icon ion-person-add"></i> Register

 </div>
 </div>
 <!-- login pane -->
 <ion-pane ng-show="viewLogin">
 <ion-header-bar>
 <h1 class="title">Login</h1>
 <div class="buttons">
 <button class="button button-assertive" ng-
click="hide()">Close</button>
 </div>
 </ion-header-bar>
 <ion-content>
 <form>
 <div class="list">
 <label class="item item-input">
 Email
 <input type="email" ng-model="user.email">
 </label>
 <label class="item item-input">
 Password
 <input type="password" ng-
model="user.password">
 </label>

Chapter 6

[219]

 <label class="item">
 <button class="button button-block button-
assertive" ng-click="login()" ng-disabled="!user.email ||
!user.password" type="submit">Log in</button>
 </label>
 </div>
 </form>
 </ion-content>
 </ion-pane>
 <!-- register pane -->
 <ion-pane ng-hide="viewLogin">
 <ion-header-bar>
 <h1 class="title">Register</h1>
 <div class="buttons">
 <button class="button button-assertive" ng-
click="hide()">Close</button>
 </div>
 </ion-header-bar>
 <ion-content>
 <form>
 <div class="list">
 <label class="item item-input">
 Name
 <input type="text" ng-model="user.name">
 </label>
 <label class="item item-input">
 Email
Address
 <input type="text" ng-model="user.email">
 </label>
 <label class="item item-input">
 Password
 <input type="password" ng-
model="user.password">
 </label>
 <label class="item">
 <button class="button button-block button-
assertive" ng-click="register()" ng-disabled="!user.name || !user.
email || !user.password" type="submit" type="submit">Register</button>
 </label>
 </div>
 </form>
 </ion-content>
 </ion-pane>
</ion-modal-view>

Building a Bookstore App

[220]

The login template has a tabs component that toggles between the Login and
Register view. This tabs component is not an Ionic tab directive but rather the Tab
CSS components made to look like tabs. On clicking on the tab icon, we will switch
between the Login pane and Register pane by setting the viewLogin property to
true or false using the switchTab method.

The completed login template looks as shown in the following. (You can click on the
Register tab icon to see the register view as well:

The Browse template
The next template we are going to build is the Browse template. This template will
be used to show a list of books. Open www/templates/browse.html and update it
as follows:

<ion-view view-title="Browse Books" hide-back-button="true">
 <ion-content>
 <ion-list>
 <div ng-repeat="book in books track by $index" class="row
responsive-sm" ng-if="$index % 2 == 0">

Chapter 6

[221]

 <ion-item class="col-50" ng-repeat="i in [$index,
$index + 1]" ng-if="books[i] != null" ng-href="#/app/book/
{{::books[i]._id}}">
 <div class="item-thumbnail-left">

 <h2>{{::books[i].title}}</h2>
 <p>{{::books[i].short_description}}</p>
 <p>
 <i class="icon ion-star" ng-repeat="i
in getNumber(books[i].rating) track by $index"></i>
 </p>
 </div>
 </ion-item>
 </div>
 </ion-list>
 </ion-content>
</ion-view>

In the earlier template, I have used {{::property}} instead of
{{property}}. The {{::property}} is how you implement
one-way data binding in AngularJS. One-way data binding is
ideal when the value of the property used in the template does
not change after the initial bind.
Our app is a perfect example for that. Once the value is bound
to the template, we are not updating it. This way, we can save
AngularJS the pain of running digest loops on our variables.
You can get a better understanding of one-way data
binding from http://blog.thoughtram.io/
angularjs/2014/10/14/exploring-angular-1.3-one-
time-bindings.html.

Here, we have used ion-list to display the books in a list. But to show how you can
implement a grid using Ionic's grid system, I have written the template in the way
described earlier.

In the earlier template, we show two columns of books unless the viewport is a
mobile device. We have achieved the grid using two loops. The outer loop will have
a class named row and the items in the inner loop have the class named col-50.

Also, we added the class responsive-sm to the outer loop telling Ionic's grid system
so that, if the device is small, it should render the list in one column.

Quite interesting, right?

http://blog.thoughtram.io/angularjs/2014/10/14/exploring-angular-1.3-one-time-bindings.html
http://blog.thoughtram.io/angularjs/2014/10/14/exploring-angular-1.3-one-time-bindings.html
http://blog.thoughtram.io/angularjs/2014/10/14/exploring-angular-1.3-one-time-bindings.html

Building a Bookstore App

[222]

The rendered page for the mobile viewport looks like this:

The tablet version would look like this:

Chapter 6

[223]

The Book template
When the user clicks on a book in the browse screen to view its details, we redirect
the user to the /book page. Here we show the details of the book with the Add to
Cart button. Add the following code to www/templates/book.html:

<ion-view view-title="{{::book.title}}" hide-back-button="true">
 <ion-content>
 <div class="list card">
 <div class="item item-avatar">

 <h2>{{::book.title}}</h2>
 <p>{{::book.release_date | date:'yyyy-MM-dd'}}</p>
 <p>{{::book.author}}</p>
 </div>
 <div class="item item-body">

 <p>
 {{::book.long_description}}
 </p>
 <p class="row">
 <label class="col">
 Rating : <i class="icon ion-star" ng-
repeat="i in getNumber(book.rating) track by $index"></i>
 </label>
 <label class="col">
 Price :
 <label class="subdued">{{::book.price |
currency}} $</label>
 </label>
 </p>
 <button class="button button-assertive button-
block" ng-click="addToCart()">
 <i class="icon ion-checkmark"></i> Add to
Cart
 </button>
 </div>
 </div>
 </ion-content>
</ion-view>

The new thing to look out for in this template is the Rating section, where we have
used an ng-repeat to print the stars dynamically, based on the rating value. We are
using the getNumber method that we have defined in the run method.

Building a Bookstore App

[224]

The rendered book template looks like this:

The Cart template
The Cart template is quite the same as the Browse template, except that we have
added a checkout button on top and a fall back message when there are no items
in the cart. Update the www/templates/cart.html as follows:

<ion-view view-title="Your Cart" cache-view="false" hide-back-
button="true">
 <ion-content>

Chapter 6

[225]

 <div class="padding">
 <button class="button button-block button-dark" ng-
show="books.length > 0" ng-click="checkout()">
 <i class="icon ion-checkmark"></i> Checkout Cart
 </button>
 </div>
 <ion-list>
 <div ng-repeat="book in books track by $index"
class="row responsive-sm" ng-if="$index % 2 == 0">
 <ion-item class="col-50" ng-repeat="i in [$index,
$index + 1]" ng-if="books[i] != null" ng-href="#/app/book/
{{::books[i]._id}}">
 <div class="item-thumbnail-left">

 <h2>{{::books[i].title}}</h2>
 <p>{{::books[i].short_description}}</p>
 <p>{{::books[i].price}} $</p>
 <p>
 <i class="icon ion-star" ng-repeat="i
in getNumber(books[i].rating) track by $index"></i>
 </p>
 </div>
 </ion-item>
 </div>
 </ion-list>
 <div class="card" ng-show="books.length == 0">
 <div class="item item-text-wrap text-center">
 <h2>No Books in your cart!</h2>

 Add a few
 </div>
 </div>
 </ion-content>
</ion-view>

Building a Bookstore App

[226]

The rendered view looks like this:

The Purchase template
And the final template is the purchase template. To add a variation to the way
things are displayed, I have used a nested list to display a list of purchases instead
of a master detail page. Master detail refers to listing all of the purchases on this
purchases page; when a user clicks on it, we take the user to another page to show
the details of the purchase (like the Browse and Book page).

So, all the purchases are grouped based on the time of purchase and are displayed
as the first level list. When a user clicks on the group head, we show the list of books
that were purchased under this group.

Chapter 6

[227]

This is an accordion component. You can read more about
the component http://forum.ionicframework.com/t/
expandable-list-in-ionic/3297/2.

Open www/templates/purchases.html and update it as follows:

<ion-view view-title="Your Purchases" cache-view="false" hide-
back-button="true">
 <ion-content>
 <ion-list>
 <div ng-repeat="group in groups">
 <ion-item class="item-stable" ng-
click="toggleGroup(group)" ng-class="{active: isGroupShown(group)}">
 <p><i class="icon" ng-
class="isGroupShown(group) ? 'ion-minus' : 'ion-plus'"></i>
 {{::group.name}}
 <span class="badge badge-
positive">{{::group.items.length}}</p>
 <p>You paid : {{::group.total | currency}}</p>
 </ion-item>
 <ion-item class="item-accordion" ng-repeat="item
in group.items" ng-show="isGroupShown(group)" ng-
href="#/app/book/{{::item._id}}">
 <div class="item-thumbnail-left">

 <h2>{{::item.title}}</h2>
 <p>{{::item.short_description}}</p>
 <p>
 <i class="icon ion-star" ng-repeat="i
in getNumber(item.rating) track by $index"></i>
 </p>
 </div>
 </ion-item>
 </div>
 </ion-list>
 </ion-content>
</ion-view>

http://forum.ionicframework.com/t/expandable-list-in-ionic/3297/2
http://forum.ionicframework.com/t/expandable-list-in-ionic/3297/2

Building a Bookstore App

[228]

If you save the file and head back to the browser, you should see:

For the final finishing touches, we will add a couple of custom styles. Update
www/css/styles.css as follows:

.item-thumbnail-left,

.item-thumbnail-left .item-content {
 min-height: 75px;
}

.ion-android-cart:before {
 font-size: 24px !important;
}

.item-thumbnail-left > img:first-child,

.item-thumbnail-left .item-image,

.item-thumbnail-left .item-content > img:first-child,

.item-thumbnail-left .item-content .item-image {
 top: 27px;

Chapter 6

[229]

 left: 16px;
 padding-bottom: 10px;
}

.badge.badge-positive {
 position: absolute;
 right: 5px;
}

Summary
In this chapter, we saw how to build an Ionic application consuming an existing
REST API. We also saw how to consume a token-based server and handle routes
that need authentication as opposed to those that don't. This hands-on example
should consolidate a lot of the Ionic knowledge you have gained.

In the next chapter, we will look at Cordova plugins, as well as how to work
with ngCordova.

[231]

Cordova and ngCordova
In this chapter, we are going to look at integrating device-specific features, such as
network, battery status, cameras, and so on into any Ionic application. We will first
look at Cordova plugins, and then work with ngCordova.

In this chapter, we will take a look at:

•	 Setting up a platform-specific SDK
•	 Working with the Cordova plugin API
•	 Working with ngCordova
•	 Testing a few ngCordova plugins

Setting up a platform-specific SDK
Before we start interacting with the device-specific features, we need to have the
SDK for that device operating system set up on our local machine. Officially, Ionic
supports only iOS, Android, and to a lesser extent Windows phone platforms.
Nevertheless, Ionic can be used on any device.

The following are links on how to set up a mobile SDK on your machine.

Cordova and ngCordova

[232]

Unfortunately, you cannot proceed further in this chapter (and book) without setting
that up. Let's look at the following links:

•	 Android: http://cordova.apache.org/docs/en/5.0.0/guide_
platforms_android_index.md.html#Android%20Platform%20Guide

•	 iOS: http://cordova.apache.org/docs/en/5.0.0/guide_platforms_
ios_index.md.html#iOS%20Platform%20Guide

•	 Windows Phone 8: http://cordova.apache.org/docs/en/5.0.0/guide_
platforms_wp8_index.md.html#Windows%20Phone%208%20Platform%20
Guide

For other supported OS, you can check out http://cordova.
apache.org/docs/en/5.0.0/guide_platforms_index.
md.html#Platform%20Guides; I am referring to the
documentation for Cordova 5.0.0.

In this book, we will work with Android and iOS only. You can follow a similar
approach for other mobile platforms as well.

Before we proceed further, we will make sure the setup is completed, and is working
as expected.

For this chapter, you can also access the code, raise issues,
and chat with the author at GitHub (https://github.
com/learning-ionic/Chapter-7).

The Android setup
Make sure you have the SDK installed and Android tools are in your path.
Then, from anywhere on your machine in a terminal/prompt run:

android

This will launch the Android SDK manager. Make sure that you have the latest
version of Android installed, or any specific version you are targeting.

Next, run the following command:

android avd

http://cordova.apache.org/docs/en/5.0.0/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_ios_index.md.html#iOS%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_ios_index.md.html#iOS%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_wp8_index.md.html#Windows%20Phone%208%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_wp8_index.md.html#Windows%20Phone%208%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_wp8_index.md.html#Windows%20Phone%208%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_index.md.html#Platform%20Guides
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_index.md.html#Platform%20Guides
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_index.md.html#Platform%20Guides
https://github.com/learning-ionic/Chapter-7
https://github.com/learning-ionic/Chapter-7

Chapter 7

[233]

This will launch the Android Virtual Device manager. Make sure you have at least
one AVD setup. If this isn't yet the case, you can easily do so by clicking on the
Create button. You can fill the options as follows:

The iOS setup
Make sure you have Xcode and the required tools installed, and also have ios-sim
and ios-deploy installed globally:

npm install -g ios-sim

npm install -g ios-deploy

iOS setup can be done only on an Apple machine. Windows
developers cannot deploy iOS apps from Windows machines,
as Xcode is required to do so.

Cordova and ngCordova

[234]

Testing the setup
Let's take a look at how we can test the setup for Android and iOS.

Testing for Android
To test the setup, we will scaffold a new Ionic application, and emulate that using the
Android and iOS emulators.

We will first scaffold a tabs application:

ionic start -a "Example 27" -i app.example.twentyseven example27 tabs

To test the tabs application, using the cd command go to the example27 folder and
run this:

ionic serve

This will launch the app in the browser and you should be able to see the
tabs application.

To emulate the app on an Android emulator, first we need to add Android platform
support for this project and then emulate it.

To add the Android platform, run this:

ionic platform add android

Once that is done, run the following command:

ionic emulate android

Chapter 7

[235]

After some time, you will see the emulator launch, and the app will be deployed and
executed inside the emulator:

If you have already worked with native Android apps, you know how slow the
Android emulator is. If you have not, it is quite slow.

An alternative to the Android emulator is Genymotion (https://www.genymotion.
com). Ionic is nicely integrated with Genymotion as well.

Genymotion has two flavors, one free and the other for business. The free version has
minimal features and is supposed to be for personal use only.

https://www.genymotion.com
https://www.genymotion.com

Cordova and ngCordova

[236]

You can download a copy of Genymotion from
https://www.genymotion.com/#!/store.

Once you have installed Genymotion, create a new virtual device with your
preferred Android SDK. My config looks like this:

Next, we launch the emulator and let it run in the background.

Now that we have Genymotion running, we need to tell Ionic to emulate the app
using Genymotion and not the Android emulator. For that we use:

ionic run android

Instead of this:

ionic emulate android

https://www.genymotion.com/#!/store

Chapter 7

[237]

This will deploy the app to the Genymotion emulator and you can see the app
immediately, unlike with the Android emulator.

Make sure Genymotion is running in the background.

If Genymotion seems a bit large for your pocket, you can simply connect your
Android mobile phone to your laptop and run this:

ionic run android

Cordova and ngCordova

[238]

This will deploy the app to the actual device.

To set up Android USB debugging, please refer to http://developer.
android.com/tools/device.html.
The earlier screenshots of Genymotion are taken from a personal edition,
as I do not have a license for it. I generally use the iOS emulator in
tandem with my Android mobile phone during the development phase.
Once the entire development is completed, I purchase device time from
online testing services, and test on the targeted devices.
If you are facing an issue while connecting your Android mobile phone
to your computer, please check if you are able to run adb device in
the terminal/prompt and able to see your device listed here. You can
find more information on Android Debug Bridge (ADB) at http://
developer.android.com/tools/help/adb.html.

The earlier procedures are different ways to test the app for Android.

Testing for iOS
To test for iOS, we will first add iOS platform support as we did for Android,
and then emulate it.

Run this:

ionic platform add ios

Then, run this:

ionic emulate ios

http://developer.android.com/tools/device.html
http://developer.android.com/tools/device.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html

Chapter 7

[239]

You should see the default emulator launch and, finally, the app will appear as follows:

To deploy onto an Apple device, you can run this:

ionic run ios

Make sure you are able to emulate the app before moving further.

Cordova and ngCordova

[240]

Getting started with Cordova plugins
According to the Cordova documentation:

"A plugin is a package of injected code that allows the Cordova web view within
which the app renders to communicate with the native platform on which it runs.
Plugins provide access to device and platform functionality that is ordinarily
unavailable to web-based apps. All the main Cordova API features are implemented
as plugins, and many others are available that enable features such as bar code
scanners, NFC communication, or to tailor calendar interfaces."

In other words, Cordova plugins are the window to your device-specific features.
The Cordova/Phonegap team has already built the needed plugins to work with
almost all device-specific features. There are community-contributed plugins as well
that can provide customization wrappers around device-specific features.

You can search for existing plugins here
http://plugins.cordova.io/.

During the course of this chapter, we will be exploring a few plugins.

Do note that Cordova plugins are moving to NPM. By the time this book
has been published; all the Cordova plugins will have completed the
transition to NPM. For more information, visit https://cordova.
apache.org/announcements/2015/04/21/plugins-release-
and-move-to-npm.html.

To adjust to the earlier changes, as a developer you need not do anything from your
side, except use Cordova CLI (a version greater than or equal to 5.0.0) to add plugins.
This will take care of downloading the plugins from the appropriate registry.

The Ionic team has already merged a pull request to change dot
notation to hyphenated notation. For more information, visit
https://github.com/driftyco/ionic-cli/pull/409.

Since we are focusing on Ionic-specific development, we will add plugins using the
Ionic CLI. Under the hood, Ionic CLI calls the Cordova CLI to do the necessary.

http://plugins.cordova.io/
https://cordova.apache.org/announcements/2015/04/21/plugins-release-and-move-to-npm.html
https://cordova.apache.org/announcements/2015/04/21/plugins-release-and-move-to-npm.html
https://cordova.apache.org/announcements/2015/04/21/plugins-release-and-move-to-npm.html
https://github.com/driftyco/ionic-cli/pull/409

Chapter 7

[241]

The Ionic plugin API
There are four main commands that you will be using while dealing with plugins.

Add a plugin
This CLI command is used to add a new plugin to the project, for example:

ionic plugin add org.apache.cordova.camera

Also, you can use this:

ionic plugin add cordova-plugin-camera

Remove a plugin
This CLI command is used to remove a plugin from the project, for example:

ionic plugin rm org.apache.cordova.camera

Also, you can use this:

ionic plugin rm cordova-plugin-camera

List added plugins
This CLI command is used to list all the plugins in the project, for example:

ionic plugin ls

Search plugins
This CLI command is used to search plugins from the command line, for example:

ionic plugin search scanner barcode

To test the earlier commands, we will scaffold a new project and execute them. Run
the following command:

ionic start -a "Example 28" -i app.example.twentyeight example28
blank

Cordova and ngCordova

[242]

When you download the blank project, the following plugins
will be downloaded and setup:
cordova-plugin-device

cordova-plugin-console

cordova-plugin-whitelist

cordova-plugin-splashscreen

com.ionic.keyboard

To test the blank application, using the cd command go to the example28 folder,
and run this:

ionic serve

Let's search for the battery status plugin and add it to our project. Kill the server and
run this:

ionic plugin search battery status

At the time of writing, one can see the following screenshot:

When you run the command, you may see only the hyphenated versions, or both.

Depending on what plugin name you find, you can add that plugin to the project.
So, in my case, to add the battery status plugin to the project, I would run this:

ionic plugin add org.apache.cordova.battery-status

This will add the battery status plugin (https://github.com/apache/cordova-
plugin-battery-status) to our current project.

https://github.com/apache/cordova-plugin-battery-status
https://github.com/apache/cordova-plugin-battery-status

Chapter 7

[243]

Also, do notice that, as soon as you run the preceding command, you will see the
following screenshot:

The CLI prints out a warning that says that the plugin is renamed, and the
downloaded plugin might not be the latest.

So, let's use the newer version. But, before we add the hyphenated version, we need
to remove the already added plugin. Run this:

ionic plugin rm org.apache.cordova.battery-status

Add the plugin with the hyphenated name:

cordova plugin add cordova-plugin-battery-status

To view all the plugins that were installed, run this:

 ionic plugin ls

Then, you should see the following screenshot:

As mentioned, com.ionic.keyboard is using hyphenated notation and the
remaining are using the dot notation. You may see only hyphenated notation
plugins when you run this command.

Cordova and ngCordova

[244]

Before we go ahead and test the Battery status plugin, we need to use it in some way
in our code. Open www/js/app.js. Inside the run method, towards the end of the
ionicPlatform.ready callback, add the following code:

alert(device.model);

 window.addEventListener("batterystatus", onBatteryStatus,
false);

 function onBatteryStatus(info) {
 // Handle the online event
 alert("Level: " + info.level + " isPlugged: " +
info.isPlugged);
 }

We have added an alert to show the device model (the cordova-plugin-device
plugin will be used) and then we have added an event listener to notify us when the
battery status changes (the cordova-plugin-battery-status plugin will be used).

Now run this:

ionic serve

You should see no alert popup and, if you open the development tools, you will see
an error that says: device is not defined.

This means that we cannot run the plugins directly in the browser; they need an
environment to execute such as Android, iOS, or sometimes a browser itself.

Yes, a browser is another platform, like Android or iOS, where the cordova.js will
work. The cordova.js is the library that bridges the gap between JavaScript API and
the device-specific language. Depending on what type of plugin you are using, you
can perform emulation from your browser as well.

Let's try this with the device and battery features. To add a browser platform,
run this:

ionic platform add browser

Now, to run the app inside the browser environment, execute:

ionic run browser

Chapter 7

[245]

This will launch a new instance of your default browser and run the app. Now you
should see the alert for device.model. And, if you open the development tools, you
should see this:

However, if you run navigator.battery in the console as shown earlier, you
should see the battery object with null values in its properties.

To test the app (and plugin) properly, we need to add either an Android platform or
an iOS platform:

ionic platform add android

You can also use this:

ionic platform add ios

Then execute any one of the following commands:

•	 ionic emulate android

•	 ionic emulate ios

•	 ionic run android

•	 ionic run ios

Cordova and ngCordova

[246]

You should see the appropriate message:

Now you know how to add Cordova plugins to your Ionic project and test them. In
the next section, we will be working with ngCordova and a few more plugins.

The preceding screenshots from Genymotion are from
my personal edition. These images are for illustration
purposes only.

The Cordova whitelist plugin
Before we go ahead and start working with ngCordova, we are going to spend a
moment on one of the key Cordova plugins – the whitelist plugin https://github.
com/apache/cordova-plugin-whitelist.

https://github.com/apache/cordova-plugin-whitelist
https://github.com/apache/cordova-plugin-whitelist

Chapter 7

[247]

From the Cordova documentation on the whitelist plugin:

"Domain whitelisting is a security model that controls access to external domains
over which your application has no control. Cordova provides a configurable
security policy to define which external sites may be accessed."

So, if you want to have more control over how your app should behave when
dealing with content from other sources, you should be working with the whitelist
plugin. As you may have noticed, this plugin is already added to our Ionic project.

If this plugin is not added to the Ionic/Cordova project, you can do so easily
by running:

ionic plugin add cordova-plugin-whitelist

Once the plugin is added, you can update the config.xml file with the navigation
whitelist – the links that your app is allowed to open inside webview.

You will be adding:

<allow-navigation href="http://example.com/*" />

To allow links to example.com and if you want your webview to link to any website,
you add this:

<allow-navigation href="http://*/*" />

<allow-navigation href="https://*/*" />

<allow-navigation href="data:*" />

You can also add an Intent whitelist, where you can specify the list of links that
are allowed to be browsed on the device. For instance, open the SMS app from
our custom app:

<allow-intent href="sms:*" />

Or simple web pages:

<allow-intent href="https://*/*" />

You can also enforce a Content Security Policy (CSP) http://content-security-
policy.com/) on your app as well using this plugin. All you need to do is add a
meta tag to the www/index.html file, as follows:

<!-- Allow XHRs via https only -->

<meta http-equiv="Content-Security-Policy" content="default-src
'self' https:">

http://content-security-policy.com/
http://content-security-policy.com/

Cordova and ngCordova

[248]

This was a quick tour of the Whitelist plugin, and this plugin is applicable to:

•	 Android 4.0.0 or above
•	 iOS 4.0.0 or above

Do remember to add this plugin and configure it, otherwise
external links will not work.
In the Bookstore app, we built in Chapter 6, Building a BookStore
App, make sure that the whitelist plugin is set up; otherwise, when
you try to deploy the app on the device, the app will not work as
expected.

ngCordova
In the earlier example, we have integrated a couple of plugins and used their
JavaScript API methods to interact with them. As you may have noticed, all
the plugins reside in the global namespace. Unlike AngularJS's philosophy of
dependency injection, Cordova's plugins reside in the global namespace and can
be accessed from anywhere. This might be a problem when you are testing your
application, built with the concept of dependency injection.

So, the Ionic team came up with a wrapper around the Cordova plugins, whereby
you can inject the features as services. In the preceding example, instead of using
device.model, we will inject a dependency named $cordovaDevice, and then
access properties using the $cordovaDevice.getModel method.

The ngCordova library is not specific to Ionic; this can be used in conjunction with
any Cordova app built using AngularJS.

The ngCordova library has 71 plugins at the time of writing this chapter.

For now, let's test-drive a few ngCordova plugins.

Setting up ngCordova
Before we start working with ngCordova, we need to download and add it as a
dependency. Let's create a new blank project and test it out. Run this:

ionic start -a "Example 29" -i app.example.twentynone example29 blank

Chapter 7

[249]

Next, we will add ngCordova as a dependency to this project. Using the
cd command go to the example29 folder and run this:

bower install ngCordova --save

To validate if ngCordova was properly added to the project, navigate to the www/lib
folder and you should see a folder named ngCordova; inside the dist folder, you
should find a file named ng-cordova.min.js among others.

Next, we need add a reference to this JavaScript file, and inject ngCordova as a
dependency to our project.

Open www/index.html and add:

<!-- ngCordova -->

<script src="lib/ngCordova/dist/ng-cordova.min.js"></script>

The ngCordova script should be included after the ionic.bundle.js
and before cordova.js. If the order is changed, you will see errors in
the console.

Next, we need to add ngCordova as a dependency to our module. Open www/js/
app.js and update the Angular module declaration:

angular.module('starter', ['ionic', 'ngCordova'])

Since the cordova-plugin-device is pre-installed, we can start using the
$cordovaDevice service.

Update the run method in www/js/app.js as follows:

.run(function($ionicPlatform, $cordovaDevice) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to show
the accessory bar above the keyboard
 // for form inputs)
 if (window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if (window.StatusBar) {
 StatusBar.styleDefault();
 }

 alert('Platform : ' + $cordovaDevice.getPlatform() + '\nModel
: ' + $cordovaDevice.getModel());
 });
})

Cordova and ngCordova

[250]

We are alerting the platform and model of the device.

Any code that deals with plugins should be inside the
$ionicPlatform.ready method.

Legend
From now on, when I say, "add a platform to the Ionic app", it means you
should run:

ionic platform add android

You can also use this:

ionic platform add ios

When I say, "add ngCordova support to the Ionic app", it means you should run:

bower install ngCordova --save

Next, include the ng-cordova.min.js in the www/index.html file as we did earlier.
And finally add ngCordova as a dependency to the AngularJS module.

When I say, "emulate the Ionic app", it means you should run this:

ionic emulate android

You can also use this:

ionic emulate ios

And finally when I say, "run the Ionic app", it means you should run:

ionic run android

You can also use this:

ionic run ios

Chapter 7

[251]

Now, add a platform to the example29 app and emulate the app. You should see:

This was an end-to-end example of adding ngCordova and using it. In the next
sections, we will work with a few Cordova plugins using the ngCordova service.

I am going to create a new project for each plugin, so you can refer to it easily later.
You need not do that if you are planning to practice along with me; you can have all
the plugins in one project.

Cordova and ngCordova

[252]

$cordovaToast
The first plugin we are going to work with is the toast plugin. This plugin shows text
popups that are not blocking the user's interaction with the app.

We will scaffold a new blank app.

ionic start -a "Example 30" -i app.example.thirty example30 blank

Next, add ngCordova support to the project. To work with the toast API, we need to
add the toast plugin to the project. Run this:

ionic plugin add https://github.com/EddyVerbruggen/Toast-PhoneGap-
Plugin.git

Now, instead of working with the run method, we will create a controller for each
plugin we are working with. This way, it will be easy when you refer back.

Open www/index.html and add ng-controller="ToastCtrl" on the body tag.
Then we will add the controller definition in the www/js/app.js file, below the
run method:

 .controller('ToastCtrl', ['$ionicPlatform', '$cordovaToast',
function($ionicPlatform, $cordovaToast) {

 $ionicPlatform.ready(function() {

 $cordovaToast
 .show('This is a long toast!', 'long', 'center')
 .then(function(success) {
 // success
 }, function(error) {
 // error
 });

 });

 }])

Chapter 7

[253]

Next, add a platform to the Ionic App and emulate the app. You should see:

In our examples, we will be working with the bare minimum of API methods. After
each plugin, I will provide the link to their API; you can check out the other methods
that the plugin supports.

For more information, visit http://ngcordova.com/docs/
plugins/toast/.

$cordovaDialogs
The next plugin we are going to work with is the dialogs plugin. This triggers the
alert, confirm, and prompt windows.

Scaffolding a new blank app for dialogs plugin:

ionic start example31 blank

http://ngcordova.com/docs/plugins/toast/
http://ngcordova.com/docs/plugins/toast/

Cordova and ngCordova

[254]

Next, add ngCordova support to the project. To work with the dialogs API, we need
to add the dialogs plugin to the project. Run this:

ionic plugin add cordova-plugin-dialogs

We will create a dialog controller. Open www/index.html and add
ng-controller="DialogsCtrl" to the body tag.

In this example, we are going to show a prompt and let the user enter text. Once the
user enters the text, we will print that on the screen. To do that, we will update our
body section in www/index.html as follows:

 <body ng-app="starter" ng-controller="DialogsCtrl">

 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>
 Hello {{name}}!!
 </ion-content>
 </ion-pane>
 </body>

We will add DialogsCtrl to www/js/app.js:

.controller('DialogsCtrl', ['$ionicPlatform', '$scope',
'$cordovaDialogs', function ($ionicPlatform, $scope,
$cordovaDialogs) {
 $ionicPlatform.ready(function () {

 $cordovaDialogs.prompt('Name please?', 'Identity',
['Cancel', 'OK'], 'Harry Potter')
 .then(function (result) {
 if (result.buttonIndex == 2) {
 $scope.name = result.input1;
 }
 });

 });
}])

Chapter 7

[255]

Next, add a platform to the Ionic App and emulate the app. You should see:

For more information, visit http://ngcordova.com/
docs/plugins/dialogs/.

$cordovaFlashlight
The next plugin we are going to work with is a utility plugin. This plugin will help
users toggle their flashlight on and off. This plugin cannot be tested on an emulator.
So, you need a device to test this plugin.

Scaffolding a new blank app for the flashlight plugin:

ionic start -a "Example 32" -i app.example.thirtytwo example32 blank

Next, add ngCordova support to the project. To work with the flashlight API, we
need to add the flashlight plugin to the project. Run this:

ionic plugin add https://github.com/EddyVerbruggen/Flashlight-
PhoneGap-Plugin.git

http://ngcordova.com/docs/plugins/dialogs/
http://ngcordova.com/docs/plugins/dialogs/

Cordova and ngCordova

[256]

We will create a flashlight controller. Open www/index.html and add
ng-controller="FlashlightCtrl" to the body tag.

In this example, we are going to show a toggle switch to the user using the
ion-toggle directive and then, based on its state, we are going switch the flashlight
on or off. To do that, we will update our body section in www/index.html as follows:

<body ng-app="starter" ng-controller="FlashlightCtrl">
 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>
 <ion-list>
 <ion-item>
 <ion-toggle
 ng-disabled="notSupported"
 ng-model="torch"
 ng-change="toggleTorch()">
 Torch
 </ion-toggle>
 </ion-item>
 </ion-list>
 </ion-content>
 </ion-pane>
</body>

We will add the FlashlightCtrl to www/js/app.js after the run method.

.controller('FlashlightCtrl', ['$scope', '$ionicPlatform',
'$cordovaFlashlight', function($scope, $ionicPlatform,
$cordovaFlashlight) {

 $scope.notSupported = true;

 $ionicPlatform.ready(function() {

 $cordovaFlashlight.available().then(function(availability)
{
 // availability = true || false
 $scope.notSupported = !availability;
 });

 $scope.toggleTorch = function() {

Chapter 7

[257]

 if ($scope.notSupported) return;

 $cordovaFlashlight.toggle()
 .then(function(success) { /* success */ },
 function(error) { /* error */ });
 }

 });

}])

We first check if the plugin is available. If it is, only then do we enable the toggle;
otherwise, we leave the toggle disabled.

And when the user toggles the switch, we call the toggleTorch method, which will
toggle the state of the flashlight.

If you run the app on a device, you should see the following:

If you want to validate if the toggle is really disabled, you can emulate the app.

For more information, visit http://ngcordova.com/
docs/plugins/flashlight/.

http://ngcordova.com/docs/plugins/flashlight/
http://ngcordova.com/docs/plugins/flashlight/

Cordova and ngCordova

[258]

$cordovaLocalNotification
The next plugin we are going to take a look at is the Notification plugin. This
plugin is primarily used to notify or remind users about an activity related to
an App. Sometimes notifications are also shown when a background activity
is going on—for instance, a large file upload.

We will start off by scaffolding a new blank app. Run this:

ionic start -a "Example 33" -i app.example.thirtythree example33
blank

Next, add ngCordova support to the project. To work with the notification API, we
need to add the notification plugin to the project. Run this:

ionic plugin add de.appplant.cordova.plugin.local-notification

In this example, we will trigger a notification on a button press, and display the text
that the user has entered in the textbox we provided. For that we will be adding a
controller named NotifCtrl and a textbox and button.

The updated www/index.html body section with the relevant code would look like:

 <body ng-app="starter" ng-controller="NotifCtrl">

 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>

 <div class="list">
 <label class="item item-input">
 Enter Notification text
 <input type="text" ng-model="notifText">
 </label>
 <label class="item item-input">
 <button class="button button-dark" ng-
click="triggerNotification()">
 Notify
 </button>
 </label>
 </div>

 </ion-content>
 </ion-pane>
 </body>

Chapter 7

[259]

The NotifCtrl in www/js/app.js would look like:

.controller('NotifCtrl', ['$scope', '$ionicPlatform',
'$cordovaLocalNotification', function($scope, $ionicPlatform,
$cordovaLocalNotification) {
 $ionicPlatform.ready(function() {

 $scope.notifText = 'Hello World!';

 $scope.triggerNotification = function() {

 $cordovaLocalNotification.schedule({
 id: 1,
 title: 'Dynamic Notification',
 text: $scope.notifText
 }).then(function(result) {
 console.log(result);
 });
 }
 });
}])

If you emulate the Ionic app, you may be asked for permission to allow notification.
And once that is done, you can dispatch notifications as needed.

Cordova and ngCordova

[260]

For more information, visit http://ngcordova.com/docs/
plugins/localNotification/.

$cordovaGeolocation
The final plugin we are going to take a look at is the Geolocation plugin, which helps
to fetch the coordinates of the device.

We will start off by scaffolding a new blank app. Run this:

ionic start -a "Example 34" -i app.example.thirtyfour example34 blank

Next, add ngCordova support to the project. To work with the Geolocation API,
we need to add the Geolocation plugin to the project. Run this:

ionic plugin add cordova-plugin-geolocation

When the app launches, we are going to fetch the Geolocation of the device. Till we
get the Geolocation, we show a loading content message. Once we get the response
back, we show the latitude, longitude, and accuracy on the page.

First, we will update the www/index.html body section as follows:

 <body ng-app="starter" ng-controller="GeoCtrl">

 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>

 <ul class="list" ng-show="dataReceived">
 <li class="item">
 Latitude : {{latitude}}

 <li class="item">
 Longitude : {{longitude}}

 <li class="item">
 Accuracy : {{accuracy}}

http://ngcordova.com/docs/plugins/localNotification/
http://ngcordova.com/docs/plugins/localNotification/

Chapter 7

[261]

 </ion-content>
 </ion-pane>
 </body>

Next, we will add the GeoCtrl below the run method in www/js/app.js:

.controller('GeoCtrl', ['$scope', '$ionicPlatform',
'$cordovaGeolocation', '$ionicLoading', '$timeout', function($scope,
$ionicPlatform, $cordovaGeolocation, $ionicLoading, $timeout) {
 $ionicPlatform.ready(function() {

 $scope.modal = $ionicLoading.show({
 content: 'Fetching Current Location...',
 showBackdrop: false
 });

 var posOptions = {
 timeout: 10000,
 enableHighAccuracy: false
 };
 $cordovaGeolocation
 .getCurrentPosition(posOptions)
 .then(function(position) {
 $scope.latitude = position.coords.latitude;
 $scope.longitude = position.coords.longitude;
 $scope.accuracy = position.coords.accuracy;
 $scope.dataReceived = true;
 $scope.modal.hide();
 }, function(err) {
 // error
 $scope.modal.hide();
 $scope.modal = $ionicLoading.show({
 content: 'Oops!! ' + err,
 showBackdrop: false
 });

 $timeout(function() {
 $scope.modal.hide();
 }, 3000);
 });
 });
}])

Cordova and ngCordova

[262]

If you emulate the app, you should see a permission request to access Geolocation.
Once that is accepted, you can see the details.

For more information, visit http://ngcordova.com/
docs/plugins/geolocation/.

The preceding examples should have provided a good insight into how you can
use ngCordova.

You can also check out my other post http://
thejackalofjavascript.com/getting-started-with-
ngcordova on ngCordova, where I have explored a few more
plugins. You can find a complete list of plugins here http://
ngcordova.com/docs/plugins/.
When working with ngCordova, you can include only the
plugins you will be working with. To customize ngCordova refer
to http://ngcordova.com/build/. Remember that, after
the customizations, you cannot use bower install to download
ngCordova.

http://ngcordova.com/docs/plugins/geolocation/
http://ngcordova.com/docs/plugins/geolocation/
http://thejackalofjavascript.com/getting-started-with-ngcordova
http://thejackalofjavascript.com/getting-started-with-ngcordova
http://thejackalofjavascript.com/getting-started-with-ngcordova
http://ngcordova.com/docs/plugins/
http://ngcordova.com/docs/plugins/
http://ngcordova.com/build/

Chapter 7

[263]

Summary
In this chapter, we have seen what Cordova plugins are, and how they can be used
in an existing Ionic application. We started off by setting up a local development
environment for Android/iOS, and then we learned how to emulate/run the app.
Next, we explored how to add Cordova plugins to an Ionic project and use them.
Finally, with the aid of ngCordova, we injected plugins as dependencies to our
Ionic/Angular app and worked with them in a more Angular way.

In the next chapter, we are going to build another app that uses Ionic, ngCordova,
and Firebase.

The application we are going to build is a Chat app, where a user logs in into the app
and sees all the users who are online. Once the user selects another user to chat with,
they can exchange texts, photos, and Geolocation details.

The aim of the Chat app is to integrate Ionic with a real-time data store, such as
Firebase and, at the same time, access device features to make communication richer.

[265]

Building a Messaging App
As we have gone through almost all the topics needed to build a mobile hybrid
app, we will be building one in this chapter. The application we are going to build
is a messaging app named Ionic Chat. The app we have developed in Chapter 6,
The Bookstore App, deals with integrating REST API, while the Ionic Chat app we
are going to build in this chapter will be more concerned with integrating device
features such as camera and Geolocation with Ionic as well as talking to a real-time
data store such as Firebase.

We will be going through the following topics:

•	 Getting an idea about Firebase and setting up a Firebase account
•	 Understanding AngularFire
•	 Understanding the application architecture
•	 Scaffolding the Ionic app and building it
•	 Installing the required plugins and integrating them with the Ionic App
•	 Testing the app on the device

For this chapter, you can also access the code, raise issues,
and chat with the author at GitHub (https://github.
com/learning-ionic/Chapter-8).

The Ionic Chat app
The application we are going to build in this chapter is named Ionic Chat. This app
aims to get you familiar with a chat application that is built using AngularFire and
Ionic, at the same time integrating Cordova plugins with Ionic using ngCordova.

https://github.com/learning-ionic/Chapter-8
https://github.com/learning-ionic/Chapter-8

Building a Messaging App

[266]

We will first take a look at Firebase, then talk a bit about AngularFire, and finally see
how we can integrate AngularFire with the Ionic Chat application. We will be using
Firebase as our real-time data store to manage data in our application. Firebase will
take care of syncing data in real-time. We will also be using a combination of the
oAuth Cordova plugin and Firebase Auth to manage user authentication in our app.

Once the user is logged in, he/she will see all the users online in the first of the three
tabs on our home page. The second tab will consist of the chat history, a list of users
the current user has engaged in conversation with. And finally, the third tab will
consist of settings and logout.

When the user clicks on a person's name in the chat list, a chat page will open where
the user can see the past conversation as well as send new messages, photos, and
Geolocation to the other user.

For simplicity in the app, we are showing all the users who are
online. If you want, you can implement an "Add to Friends"
(feature) from the list of online users.

Firebase
Firebase is a Backend As A Service (BAAS) that provides cloud-based backed
services, with a real-time data store, user authentication, and static hosting.

You can know more about Firebase from
https://www.firebase.com/features.html.

To quickly demonstrate how Firebase works, we will take a look at a code snippet:

var ref = new Firebase("https://<YOUR-FIREBASE-
APP>.firebaseio.com");
ref.set({ name: "Arvind Ravulavaru" });
ref.on("value", function(data) {
 var name = data.val().name;
 alert("My name is " + name);
});

On line 1, we refer to our instance of Firebase (that we will be creating in the
next section). Once we have the reference, we will set/save a JSON document in
the default end-point. Firebase, being a real-time data store, has an event-driven
approach to managing and syncing data. That can be seen on line 3, where we
subscribe to a value event that gets invoked when there is a new piece of data
inserted at the default end-point.

https://www.firebase.com/features.html

Chapter 8

[267]

To understand line 3 better, imagine user 1 has already set the value in the data store
and has registered for the value event. Now, when user 2 loads this script in their
browser, he/she will first set the value; this will trigger the callback on line 3 for user
1, alerting the value of user 2 to user 1.

The value callback will be invoked, passing in the snapshot of the newly added data.
And the data.val method will return the newly added record.

You need to include this Firebase code in your page for the earlier code to
execute as expected:

<script
src="https://cdn.firebase.com/js/client/2.2.2/firebase.
js"></script>

Setting up a Firebase account
You can create a new Firebase account by filling the form https://www.firebase.
com/signup/, or you can also use your GitHub account to login to Firebase from
here: https://www.firebase.com/login/.

Once you have registered/logged in, you will be taken to a page (https://www.
firebase.com/account/#/), where you can add a new project. You can enter the
app name and Firebase will let you know if that name is already available. For
instance you can type "ionic-chat-app", and you should see that it is already taken
(by me, for building this app).

You can give a name that you think is appropriate and available and click
on Create New App. This will create a new app, and along with this comes the
Firebase URL. This URL in simple terms is the API KEY for your account. This is
a very elegant solution for letting users add API keys without the fuzz of random
alphanumeric characters.

To test if everything is set up as expected, we will implement the earlier code
snippet. Create a new folder named chapter8, and inside that another folder
named example35. Inside this folder create a new file named index.html.
Update the file as follows:

<!DOCTYPE html>
<html>

<head>
 <title>Firebase Test Page</title>
 <script src="https://cdn.firebase.com/js/client/2.2.2/firebase.
js"></
script>

https://www.firebase.com/signup/
https://www.firebase.com/signup/
https://www.firebase.com/login/
https://www.firebase.com/account/#/
https://www.firebase.com/account/#/

Building a Messaging App

[268]

</head>

<body>
 <input type="button" onclick="addNewName()" value="Add New
Name">

 <ul id="namesList">
 <script type="text/javascript">
 var ref = new Firebase("https://<YOUR-FIREBASE-
APP>.firebaseio.com");

 ref.on('value', function(data) {
 var names = data.val();
 clearList();
 for (var n in names) {
 setName(names[n].name);
 }
 });

 function clearList() {
 document.querySelector('#namesList').innerHTML = '';
 }

 function setName(name) {
 var newName = document.createElement('li');
 newName.innerHTML = 'Name : ' + name + '';
 document.querySelector('#namesList').appendChild(newName);
 }

 function addNewName() {
 var name = prompt('Enter Name');
 if (name) {
 // the below statement will save data to the Firebase
data store and will invoke the ref.on('value') callback. This will
the call the saveName to setdata
 ref.push({
 'name': name
 });
 }
 }
 </script>
</body>

</html>

Chapter 8

[269]

In the earlier example, we referenced the Firebase source file in the head. In the body
section, we have added a button that, when clicked, will show a prompt and the user
can enter his/her name. Once the user enters his/her name, this data is saved to the
Firebase default collection as an array. Once the data is saved, the ref.on('value')
event will be triggered. Once this callback is triggered, we clear the HTML on the
page, and add the list of names again, using the setName method.

You can also open a new tab and then open the same page. By default, the earlier
added values will be populated. You need not do anything from your side. You can
add some more data and see that both the pages are in sync.

The preceding example shows how a real-time data store works. Now you can see
how apt Firebase is for our chat application.

When the user enters the name, we do not show the value directly. We
wait for it to be saved in the data store, and then we wait for Firebase to
invoke the value event. Inside the value callback, we display the value to
the user.
You can navigate to https://<your-firebase-url>.firebaseio.
com to see the data update in real-time.

If you navigate to your app on Firebase, you should see this:

All the names added will be directly under your app name.

Building a Messaging App

[270]

AngularFire
Since Ionic uses AngularJS as its client side JavaScript framework, we will be using a
flavor of Firebase named AngularFire, to interact with Firebase in the Angular way.

We will quickly go through AngularFire using the following code snippet:

var app = angular.module("nameApp", ["firebase"]);
app.controller("NamesCtrl", function($scope, $firebaseArray) {
 var ref = new Firebase("https://<YOUR-FIREBASE-
APP>.firebaseio.com/names");
 // create a synchronized array
 $scope.names = $firebaseArray(ref);

 $scope.addName = function() {
 $scope.names.$add({
 text: $scope.newName
 });
 };
});

First we will create a new AngularJS app, then add firebase as a dependency.
Then we create a controller and inject $firebaseArray as a dependency. Once the
controller is invoked, we will be creating a reference to the Firebase App. This time,
instead of saving the data to the root collection, we will create a subcollection/nested
collection with the name names and then save the data to it.

Assigning the output of $firebaseArray(ref) to $scope.names makes this a
synchronized collection. In simple terms, if the data changes in the data store,
our scope variable gets automatically updated, which will also trigger an update
in the view/template. Sweet, isn't it? This phenomenon is also called Three-Way
Data binding.

You can read more about Three-Way Data binding at https://www.
firebase.com/blog/2013-10-04-firebase-angular-data-
binding.html.
You need to include Firebase, AngularJS, and AngularFire script files
in your page for the earlier code to execute as expected.

https://www.firebase.com/blog/2013-10-04-firebase-angular-data-binding.html
https://www.firebase.com/blog/2013-10-04-firebase-angular-data-binding.html
https://www.firebase.com/blog/2013-10-04-firebase-angular-data-binding.html

Chapter 8

[271]

We will implement a quick example to see how AngularFire works. Create a folder
named example36, and create a file named index.html inside it. Update it as follows:

<!DOCTYPE html>
<html>

<head>
 <title>AngularFire Test Page</title>
 <script src="https://cdn.firebase.com/js/client/2.2.2/firebase.
js">
</script>
 <script src="https://ajax.googleapis.com/ajax/libs/
angularjs/1.3.15/
angular.min.js"></script>
 <script src="https://cdn.firebase.com/libs/angularfire/1.1.1/
angularfire.
min.js"></script>
</head>

<body ng-app="NamesApp" ng-controller="NamesCtrl">
 <input type="button" ng-click="addNewName()" value="Add New
Name">

 <li ng-repeat="n in names">
 Name : {{n.name}}

 <script type="text/javascript">
 var app = angular.module("NamesApp", ["firebase"]);

 app.controller("NamesCtrl", function($scope, $firebaseArray) {
 var ref = new Firebase("https://<YOUR-FIREBASE-APP>.
firebaseio.com/names");
 // create a synchronized array
 $scope.names = $firebaseArray(ref);

 $scope.addNewName = function() {
 var name = prompt('Enter Name');
 if (name) {
 $scope.names.$add({
 name: name
 });
 };
 }

Building a Messaging App

[272]

 });
 </script>
</body>

</html>

In the preceding example, we reference Firebase, AngularJS, and AngularFire
source files.

Do remember to load AngularFire only after Firebase and
AngularJS are loaded.

We create a new module named NamesApp, and add a controller named NamesCtrl.
Our HTML consists of an ng-repeat that repeats over the names array from scope.
The names variable is a synchronized array.

When a user clicks on Add New Name button, we show a prompt where the
user enters a name. Once the name is entered, we will use the $add method on our
name-synchronized array to push the new object to the data store. Then Firebase
takes care of synchronizing the data across.

Now, if you open https://<your-firebase-url>.firebaseio.com you should
see this:

This time, the data is added inside a subobject/nested object named names.

I have deleted the old data before I ran the earlier example.
If you want to build a Create, Read, Update, and Delete
(CRUD) application using Firebase, check out: http://
thejackalofjavascript.com/getting-started-with-
firebase/.

http://thejackalofjavascript.com/getting-started-with-firebase/
http://thejackalofjavascript.com/getting-started-with-firebase/
http://thejackalofjavascript.com/getting-started-with-firebase/

Chapter 8

[273]

The application architecture
Now that we are acquainted with Firebase and AngularFire, we will take a look at
how the app will be designed:

As shown in the preceding diagram, we will be using Firebase as our data store.
We will be using AngularFire in our Ionic application to interact with Firebase. The
Ionic application will also be interacting with Cordova plugins to implement device
features via ngCordova.

In the chat application we are building, the role of Firebase is to manage the chat
data. There are two endpoints we will be creating in our Firebase collection:

•	 Online users: This end point will store all the users who are online
•	 Chats: This end point will store the chat between two users

As part of the chat application, we will allow users to:

•	 Send text messages
•	 Share photos from the gallery
•	 Take a picture and share it
•	 Share the user's location

Building a Messaging App

[274]

We will be saving all this data in Firebase. Are you wondering how we save images
in Firebase? Well, this is the smart part; we will be converting the image to a base64
format and then saving the base64-encoded string to Firebase. Then, to share the
user's location, we will be saving only the coordinates of the user and replicating
these on the other user's interface.

To share the Geolocation, you can also consider the Google
Static Maps API at https://developers.google.com/
maps/documentation/staticmaps/.

Authentication
We will be using Google Open ID authentication to authenticate users. We will
also be using a combination of a Cordova plugin named ng-cordova-oauth
and Firebase oAuth for authentication. The Cordova plugin is used to manage
the pop-up authentication using the in-browser plugin and retrieve the token.
This token will then be passed to the Firebase authentication to establish a session.
This will get clearer as we start developing the app.

The application flow
When the user launches the app, we will show the application home page that will
consist of a slide box and a Login button.

As of now the application supports login with Google only. Once the user clicks on
the Login button, he/she will be redirected to the Google login page. Once logged
in and after the access is provided to the app, the user will be redirected to the first
page, where the token from Google oAuth will be sent to Firebase to establish a
session. Then the user is redirected to the page, which has three tabs.

Tab 1 consists of all the users who are online. Tab 2 consists of a list of users the
current user had conversations with and finally tab 3 consists of a settings screen
and a Logout option.

When the current logged in user taps on a user displayed in either tab 1 to 2, he/she
will be taken to the chat detail page, where a chat history between the users will be
displayed (if any).

I have designed the app in this way to keep things simple as well as to cover a few
topics, which will help you understand the complete ecosystem of mobile hybrid
application development better.

https://developers.google.com/maps/documentation/staticmaps/
https://developers.google.com/maps/documentation/staticmaps/

Chapter 8

[275]

Previewing the app
Before we continue, we will quickly take a look at the final output, since we are not
going to see any output till we finish the code.

The Login screen of the application will be as shown on the left-hand side in
the following image. The Home screen with the three tabs is as shown on the
right-hand side:

Building a Messaging App

[276]

The chat interface will be as shown in the image on the left-hand side and the
maps screen from which the user shares their Geolocation will be as shown on
the right-hand side:

Data structure
By default Firebase notifies all of its clients when a new data set is added to
a collection. If we are building a common chat room, where all users who are
connected to the app will be notified, we need not to do anything extra.

But since we are looking at a one-to-one chat application, we need to have some kind
of logic that will help us manage the communication between the intended users.

Chapter 8

[277]

When the user logs in, we will update the "Online Users" collection with the current
user's details. This will be broadcasted to all the other users who are already logged
in the app. Once any user goes offline, we remove the user object from the "Online
Users" collection.

We are using Firebase Authentication to store the login information.
You will not see the registered user's details in the Forge.

Now that the user is logged in, he/she will appear in the list of users online. If User B
wants to chat with User A, we need to create a new endpoint, where only User A and
User B can communicate.

The logic to create a new dynamic endpoint is a bit complex. The steps are as follows:

1.	 Identify User A's email address and User B's e-mail address.
2.	 Execute a hashing function on User A's e-mail address and User B's e-mail

address. This hashing function will return the same string when we pass in
two e-mail address, in any order.

3.	 Using the preceding-hashed string, we build a new endpoint inside the
chats collection.

4.	 If User B has initiated a chat with User A, the dynamic endpoint will be
created by User B and, upon the first message from User B to User A, a
listener running on the chat collection will be triggered. This listener will
check if the chat message is intended for the current logged in user. If it is, it
will notify User A.

A bit complicated, but it works fine.

I have implemented the same logic in a node-webkit desktop chat
application. You can read more at http://thejackalofjavascript.
com/one-to-one-chat-client/.

Now that we have an idea as to how the data is structured, we will take a look at
what Cordova plugins we are going to use.

http://thejackalofjavascript.com/one-to-one-chat-client/
http://thejackalofjavascript.com/one-to-one-chat-client/

Building a Messaging App

[278]

Cordova plugins
We are going to include the following plugins (apart from the ones that are
downloaded as part of the template):

•	 cordova-plugin-inappbrowser: This is used to manage Google authentication
•	 cordova-plugin-media-capture: This is used to take a picture and share it

with the user
•	 com.synconset.imagepicker: This is used to pick an image from the gallery
•	 cordova-plugin-file: This is used to interact with filesystem while

converting images to base64 strings
•	 cordova-plugin-geolocation: This is used to get the user's Geo coordinates

We will look into each plugin when we work with it.

Code on GitHub
I have hosted the code for this chapter on GitHub as well. You can check out the
repository at https://github.com/learning-ionic. If you are facing any trouble,
you can raise an issue in this repository and I will try my best to answer it. Also I will
be fixing any bugs reported by the readers here.

Developing the application
First, we will scaffold and set up the app.

Scaffolding and setting up the app
We will start off by scaffolding a tabs application. Run this:

ionic start -a "Ionic Chat App" -i app.ionic.chat ionic-chat-app tabs

Using the cd command, go to the ionic-chat-app folder and run this:

ionic server

To view the sample tabs app.

Before we proceed, we are going to install dependencies needed for this application
via Bower. From the root of the project, run this:

bower install ngCordova ng-cordova-oauth firebase angularfire lato --
save

https://github.com/learning-ionic

Chapter 8

[279]

The gist of what these bower components are used for is as follows:

•	 ngCordova: The ngCordova library.
•	 ng-cordova-oauth: At the time of writing, there is an issue with the

ng-cordova-oauth module that is bundled with ngCordova, so we are
installing it separately and using it. The issue I am facing now might have
been fixed by the time you are executing this code.

•	 firebase: This is the firebase source.
•	 angularfire: This is the AngularFire source.
•	 lato: This is the Lato font (https://www.google.com/fonts/specimen/

Lato).

I have installed the Lato font locally, instead of loading it from
Google fonts. This is to make sure that the fonts are available when
the device does not have the network. You can also take a look at
localFont to implement local storage Web font caching in seconds
(https://github.com/jaicab/localFont) to achieve the same.

Next, we will add SCSS support to the project; run this:

ionic setup sass

Now, we will add references to the dependencies we have downloaded. We will
make the following changes in the index.html file.

First, let's turn our attention to ng-cordova and ng-cordova-oauth. The following
two script tags after the Ionic bundle is loaded and before cordova.js:

<script src="lib/ngCordova/dist/ng-cordova.js"></script>
<script src="lib/ng-cordova-oauth/dist/ng-cordova-
oauth.js"></script>

Next, after the cordova.js, we will add reference to Firebase and then AngularFire
in that order:

<script src="lib/firebase/firebase.js"></script>
<script src="lib/angularfire/dist/angularfire.min.js"></script>

We will be adding a directive to manage the maps in our app. So, we will be creating
a directive later, but to complete the index.html we will add the reference now.

Add the following script tag after the services.js file reference:

<script src="js/directives.js"></script>

https://www.google.com/fonts/specimen/Lato
https://www.google.com/fonts/specimen/Lato
https://github.com/jaicab/localFont

Building a Messaging App

[280]

Next, we will also need reference to the maps APIs from Google. Add the following
script just before the closing of the head tag:

<script src="https://maps.googleapis.com/maps/api/
js?key=AIzaSyDgE3k3per7m
f0qjZLWwlbMXQL1OhH-x44&sensor=true"></script>

I will show how to obtain your own Google API key (used in
the preceding script tag) when we are dealing with Google
authentication setup.

Finally, we will add the Lato font. Above the reference to ionic.app.css, add this:

<link href="lib/lato/css/lato.min.css" rel="stylesheet">

As time passes, the afore-referenced assets may not be in the same
path as they are today. So, if you see a "not found (404)" error on
any of the assets, recheck the path inside the lib folder.

We will rename the module from starter to IonicChatApp, present on the body
tag. Next, we will rename the nav bar class from bar-stable to bar-positive.

With this, we wrap up the index.html setup.

Next, open www/js/app.js. Since we have renamed the module on the index page,
we need to rename the module in app.js as well. The updated AngularJS module
declaration is as follows:

angular.module('IonicChatApp', ['ionic', 'chatapp.controllers',
'chatapp.services', 'chatapp.directives', 'ngCordova',
'ngCordovaOauth', 'firebase'])

We have also renamed controllers and services namespace and added reference to
the directives module, ngCordova, ngCordovaOauth, and Firebase.

Do note that we have explicitly added the ngCordovaOauth module as
a dependency to our main module. This is because the bundled version
(ng-cordova.js) has an issue, at the time of writing this chapter. If you
are consuming the Cordova oAuth plugin from the bundled version as it
is; you do not need to include this dependency as well as its source file.

Chapter 8

[281]

Installing the required Cordova plugins
We will install the required Cordova plugins. Run the following commands to set
them up:

ionic plugin add https://github.com/wymsee/cordova-imagePicker.git

ionic plugin add cordova-plugin-file

ionic plugin add cordova-plugin-geolocation

ionic plugin add cordova-plugin-inappbrowser

ionic plugin add cordova-plugin-media-capture

Getting the Google API key
Since our app uses Google's OAuth, we need a Client ID. To acquire a Client ID, you
can follow these steps:

1.	 Navigate to https://console.developers.google.com.
2.	 Click on Create project and enter a project name.
3.	 Once the project is created, click on the project to open it.
4.	 From the left-hand side menu, click on APIs and auth and then click

on Consent screen. Fill in the required details here. The product name
is mandatory.

5.	 From the left-hand side menu, click on APIs and auth and then click
on Credentials.

6.	 Click on Create new Client ID under the OAuth section.
7.	 Select the following:

°° Application type as web application
°° Authorized JavaScript origins as http://localhost
°° Authorized redirect URIs as http://localhost/callback

8.	 Once the preceding information is filled, click on Create Client ID and you
should see the Client ID for the web application.

Once you have the Client ID, we need to update it in our Firebase Forge as well.
Navigate to the Firebase app page (where you see the live data updates). On the left-
hand side of the page, you will find a menu item named Login and Auth; click on
it. When the right-hand side of the page refreshes, click on the Google tab and fill in
your Google Client ID and Secret, which we generated earlier.

https://console.developers.google.com

Building a Messaging App

[282]

The preceding step is important for the authentication to work.

If you want to create an API key for accessing the Google maps API, you can do so
by carrying out the following steps:

1.	 From the left-hand side menu, click on APIs and auth and then
click on Credentials.

2.	 Click on Create new Key under the Public API Access section.
3.	 Select browser key from the popup.
4.	 Leave the Accept requests from these HTTP referrers text area blank.
5.	 Click on Create. This will generate the API key, which you can replace

in index.html.
6.	 From the left-hand side menu, click on APIs and auth and then click on APIs.
7.	 Search for Google Maps JavaScript API v3 from the search box and click on

the link.
8.	 Enable the API by clicking on the Enable API button.

Now that we have the Client ID, we will set up a few constants. Inside www/js/app.
js, after the run method and before the config method, we will add three constants:

.constant('FBURL', 'https://ionic-chat-app.firebaseio.com/')

.constant('GOOGLEKEY', '1002599169952-
4uchnlc7ahm6ng4696p9tgr1adhsiqv5.apps.googleusercontent.com')
.constant('GOOGLEAUTHSCOPE', ['email'])

Replace the FBURL with your Firebase application URL. Replace the Google key
with the Client ID we generated earlier. As part of the OAuth request, we need
to send a scope to Google, so that we get the required information back. For our
application, we need only the basic information of the user; hence we have used
e-mail as a scope.

Setting up routes and route authentication
Since we have scaffolded the tabs application, we almost have all the routes
we need. We will be making a couple of changes to the existing routes and
adding authentication to each route. This way, the view will not be shown
if the authentication fails. We will be using the resolve property on the
route to achieve this.

Chapter 8

[283]

Before proceeding further, I recommend going through the resolve
attribute of the AngularJS state router. This property takes care of
resolving any promises you specify before loading the controller. This
will be helpful for us in validating the user authentication state before
loading the controller.
You can find more information at https://github.com/angular-
ui/ui-router/wiki#resolve.

Firebase has two methods on the $firebaseAuth function. They are as follows:

•	 $waitForAuth: This returns a promise that will be resolved with the current
authentication state. This will be used only on the home route.

•	 $requireAuth: This returns a promise that will be resolved with the current
authentication state; otherwise, it rejects the promise. This will be used on all
the routes that need authentication.

We will be leveraging these two methods to control what an unauthenticated user
can see and cannot see.

We will be adding one more route to the existing routes named main. This route will
be the default route and will act as the home page for our application. On each route,
we will add a resolve property that will be resolved with Firebase Auth. Also, we
will modify the chat-detail route to not to be a child route of chats.

The updated routes section looks like this:

$stateProvider.state('main', {
 url: '/',
 templateUrl: 'templates/main.html',
 controller: 'MainCtrl',
 cache: false,
 resolve: {
 'currentAuth': ['FBFactory', 'Loader',
function(FBFactory, Loader) {
 Loader.show('Checking Auth..');
 return FBFactory.auth().$waitForAuth();
 }]
 }
 })
 .state('tab', {
 url: "/tab",
 abstract: true,
 cache: false,
 templateUrl: "templates/tabs.html"

https://github.com/angular-ui/ui-router/wiki#resolve
https://github.com/angular-ui/ui-router/wiki#resolve

Building a Messaging App

[284]

 })
 .state('tab.dash', {
 url: '/dash',
 cache: false,
 views: {
 'tab-dash': {
 templateUrl: 'templates/tab-dash.html',
 controller: 'DashCtrl'
 }
 },
 resolve: {
 'currentAuth': ['FBFactory', function(FBFactory) {
 return FBFactory.auth().$requireAuth();
 }]
 }
 })
 .state('tab.chats', {
 url: '/chats',
 cache: false,
 views: {
 'tab-chats': {
 templateUrl: 'templates/tab-chats.html',
 controller: 'ChatsCtrl'
 }
 },
 resolve: {
 'currentAuth': ['FBFactory', function(FBFactory) {
 return FBFactory.auth().$requireAuth();
 }]
 }
 })
 .state('tab.account', {
 url: '/account',
 cache: false,
 views: {
 'tab-account': {
 templateUrl: 'templates/tab-account.html',
 controller: 'AccountCtrl'
 }
 },
 resolve: {
 'currentAuth': ['FBFactory', function(FBFactory) {
 return FBFactory.auth().$requireAuth();
 }]

Chapter 8

[285]

 }
 })
 .state('chat-detail', {
 url: '/chats/:otherUser',
 templateUrl: 'templates/chat-detail.html',
 controller: 'ChatDetailCtrl',
 cache: false,
 resolve: {
 'currentAuth': ['FBFactory', 'Loader',
function(FBFactory, Loader) {
 Loader.show('Checking Auth..');
 return FBFactory.auth().$requireAuth();
 }]
 }
 });

 $urlRouterProvider.otherwise('/');

We will set up FBFactory and Loader shown in the preceding snippet while
working with the factory.

Do notice that we have updated the otherwise route to '/'.

Now, if $requireAuth rejects the promise, that means the user is in a page that
needs authentication, and he/she does not have it. So, we need to add a listener
when this happens and redirect the user to the login page. When Firebase Auth
rejects the promise, it fires a stateChangeError event. We will be listening to this
event in our run method and then redirect the user to the home page.

Add the following stateChangeError event to the run method, inside the
$ionicPlatform.ready method:

$rootScope.$on('$stateChangeError', function(event, toState,
toParams, fromState, fromParams, error) {

if (error === 'AUTH_REQUIRED') {

 $state.go('main');

}

});

Do not forget to inject $rootScope and $state as a
dependency to the run method.

Building a Messaging App

[286]

Next, we will use $ionicConfigProvider to set up a few defaults.

Add $ionicConfigProvider as a dependency to the config method. Add the
following snippet inside the config method, before we start initializing the routes:

$ionicConfigProvider.backButton.previousTitleText(false);

$ionicConfigProvider.views.transition('platform');

$ionicConfigProvider.navBar.alignTitle('center');

The preceding configuration is really not necessary. It is just
an example of how you can use $ionicConfigProvider
in a real-time app.

Setting up services/factories
Now that we have the main app set up, we will be working with the factories that
are needed. We will be adding the factories in www/js/services.js file. You can
open that file and clear its contents.

First, we will add the chatapp.services module and a factory to interact with the
localStorage:

angular.module('chatapp.services', [])

.factory('LocalStorage', [function() {
 return {
 set: function(key, value) {
 return localStorage.setItem(key,
JSON.stringify(value));
 },

 get: function(key) {
 return JSON.parse(localStorage.getItem(key));
 },

 remove: function(key) {
 return localStorage.removeItem(key);
 },
 };
}])

Chapter 8

[287]

Next, we will add another factory that manages the Ionic loading service for us:

.factory('Loader', ['$ionicLoading', '$timeout',
 function($ionicLoading, $timeout) {

 return {
 show: function(text) {
 //console.log('show', text);
 $ionicLoading.show({
 content: (text || 'Loading...'),
 noBackdrop: true
 });
 },

 hide: function() {
 //console.log('hide');
 $ionicLoading.hide();
 },

 toggle: function(text, timeout) {
 var that = this;
 that.show(text);

 $timeout(function() {
 that.hide();
 }, timeout || 3000);
 }
 };
 }
])

We will also create a factory to interact with Firebase:

.factory('FBFactory', ['$firebaseAuth', '$firebaseArray', 'FBURL',
'Utils',
 function($firebaseAuth, $firebaseArray, FBURL, Utils) {
 return {
 auth: function() {
 var FBRef = new Firebase(FBURL);
 return $firebaseAuth(FBRef);
 },
 olUsers: function() {
 var olUsersRef = new Firebase(FBURL +
'onlineUsers');
 return $firebaseArray(olUsersRef);

Building a Messaging App

[288]

 },
 chatBase: function() {
 var chatRef = new Firebase(FBURL + 'chats');
 return $firebaseArray(chatRef);
 },
 chatRef: function(loggedInUser, OtherUser) {
 var chatRef = new Firebase(FBURL + 'chats/chat_' +
Utils.getHash(OtherUser, loggedInUser));
 return $firebaseArray(chatRef);
 }
 };
 }
])

In the preceding snippet, olUsers points the Firebase reference to https://ionic-
chat-app.firebaseio.com/onlineUsers, chatBase to https://ionic-chat-
app.firebaseio.com/chats, and chatRef to the dynamically created end points
between two users.

We will also have a user factory that stores the user information, online users, and
a presence ID. Presence ID is the object ID of the entry made in to https://ionic-
chat-app.firebaseio.com/onlineUsers. This presence ID will be used to delete
the object from the onlineUsers collection, when the user goes offline:

.factory('UserFactory', ['LocalStorage', function(LocalStorage) {

 var userKey = 'user',
 presenceKey = 'presence',
 olUsersKey = 'onlineusers';

 return {
 onlineUsers: {},
 setUser: function(user) {
 return LocalStorage.set(userKey, user);
 },
 getUser: function() {
 return LocalStorage.get(userKey);
 },
 cleanUser: function() {
 return LocalStorage.remove(userKey);
 },
 setOLUsers: function(users) {
 // >> we need to store users as pure object.

https://ionic-chat-app.firebaseio.com/onlineUsers
https://ionic-chat-app.firebaseio.com/onlineUsers
https://ionic-chat-app.firebaseio.com/chats
https://ionic-chat-app.firebaseio.com/chats
https://ionic-chat-app.firebaseio.com/onlineUsers
https://ionic-chat-app.firebaseio.com/onlineUsers

Chapter 8

[289]

 // else we lose the $ method of FB.

 // >> sometime, onlineUsers becomes null while
 // navigating between tabs, so we save a copy in LS
 LocalStorage.set(olUsersKey, users);
 return this.onlineUsers = users;
 },
 getOLUsers: function() {
 if (this.onlineUsers && this.onlineUsers.length > 0) {
 return this.onlineUsers
 } else {
 return LocalStorage.get(olUsersKey);
 }
 },
 cleanOLUsers: function() {
 LocalStorage.remove(olUsersKey);
 return onlineUsers = null;
 },
 setPresenceId: function(presenceId) {
 return LocalStorage.set(presenceKey, presenceId);
 },
 getPresenceId: function() {
 return LocalStorage.get(presenceKey);
 },
 cleanPresenceId: function() {
 return LocalStorage.remove(presenceKey);
 },
 };
}])

Finally a few utility methods:

.factory('Utils', [function() {
 return {
 escapeEmailAddress: function(email) {
 if (!email) return false
 // Replace '.' (not allowed in a Firebase key)
with ','
 email = email.toLowerCase();
 email = email.replace(/\./g, ',');
 return email.trim();
 },
 unescapeEmailAddress: function(email) {
 if (!email) return false
 email = email.toLowerCase();

Building a Messaging App

[290]

 email = email.replace(/,/g, '.');
 return email.trim();
 },
 getHash: function(chatToUser, loggedInUser) {
 var hash = '';
 if (chatToUser > loggedInUser) {
 hash = this.escapeEmailAddress(chatToUser) + '_' +
this.escapeEmailAddress(loggedInUser);
 } else {
 hash = this.escapeEmailAddress(loggedInUser) + '_'
+ this.escapeEmailAddress(chatToUser);
 }
 return hash;
 },
 getBase64ImageFromInput: function(input, callback) {
 window.resolveLocalFileSystemURL(input,
function(fileEntry) {
 fileEntry.file(function(file) {
 var reader = new FileReader();
 reader.onloadend = function(evt) {
 callback(null, evt.target.result);
 };
 reader.readAsDataURL(file);
 },
 function() {
 callback('failed', null);
 });
 },
 function() {
 callback('failed', null);
 });
 }
 };
}])

The getHash is the method that takes in two e-mail addresses and returns a hash. This
will be used to construct the dynamic endpoint. The getBase64ImageFromInput is
used to convert an image to a base64-encoded string, to be saved in Firebase.

With this, we complete the setup of our factories.

Chapter 8

[291]

Setting up a map directive
Since we are letting users share their current location, we need a map directive to
display the coordinates in a presentable manner. To do that, I have borrowed the
map directive from the maps template (https://github.com/driftyco/ionic-
starter-maps/blob/master/js/directives.js) and modified it as necessary.

Create a new file named directives.js inside the www/js folder. Update the
www/js/directives as follows:

angular.module('chatapp.directives', [])

.directive('map', function() {
 return {
 restrict: 'E',
 scope: {
 onCreate: '&'
 },
 link: function($scope, $element, $attr) {
 function initialize() {
 var lat = $attr.lat || 43.07493;
 var lon = $attr.lon || -89.381388;

 var myLatlng = new google.maps.LatLng(lat, lon);
 var mapOptions = {
 center: myLatlng,
 zoom: 16,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 if ($attr.inline) {
 mapOptions.disableDefaultUI = true;
 mapOptions.disableDoubleClickZoom = true;
 mapOptions.draggable = true;
 mapOptions.mapMaker = true;
 mapOptions.mapTypeControl = false;
 mapOptions.panControl = false;
 mapOptions.rotateControl = false;
 }

 var map = new google.maps.Map($element[0],
mapOptions);

 // custom function to manage markers
 map.__setMarker = function(map, lat, lon) {

https://github.com/driftyco/ionic-starter-maps/blob/master/js/directives.js
https://github.com/driftyco/ionic-starter-maps/blob/master/js/directives.js

Building a Messaging App

[292]

 var marker = new google.maps.Marker({
 map: map,
 position: new google.maps.LatLng(lat, lon)
 });
 }

 $scope.onCreate({
 map: map
 });

 map.__setMarker(map, lat, lon);
 }

 if (document.readyState === 'complete') {
 initialize();
 } else {
 google.maps.event.addDomListener(window, 'load',
initialize);
 }
 }
 }
});

The modification I have made is to adapt the map directive to work with the inline
display of the map in chat messages using the inline attribute as well as in the modal
popup. I have also added support for displaying a marker.

Setting up controllers
Now, we will work on controllers for each route. Open www/js/controller.js and
clear all the code inside it. We will add a new module named chatapp.controllers:

angular.module('chatapp.controllers', [])

We will set up a run method on the chatapp.controllers module. The run
method will consist of the logic needed for monitoring incoming chats. We make a
connection with the chats base URL and keep listening for changes on it. If there is
a new chat added or chat content is changed, we will identify whether the new chat
message is for the current user. If it is, we broadcast a newChatHistory event that we
will use in the history tab, to show new chats:

.run(['FBFactory', '$rootScope', 'UserFactory', 'Utils',
 function(FBFactory, $rootScope, UserFactory, Utils) {

 $rootScope.chatHistory = [];

Chapter 8

[293]

 var baseChatMonitor = FBFactory.chatBase();
 var unwatch = baseChatMonitor.$watch(function(snapshot) {
 var user = UserFactory.getUser();

 if (!user) return;

 if (snapshot.event == 'child_added' || snapshot.event
== 'child_changed') {
 var key = snapshot.key;
 if (key.indexOf(Utils.escapeEmailAddress(user.email))
>= 0) {
 var otherUser = snapshot.key.replace(/_/g,
'').replace('chat', '').replace(Utils.escapeEmailAddress(user.email),
'');
 if ($rootScope.chatHistory.join('_').
indexOf(otherUser) === -1) {
 $rootScope.chatHistory.push(otherUser);
 }
 $rootScope.$broadcast('newChatHistory');
 /*
 * TODO: PRACTICE
 * Fire a local notification when a new chat
comes in.
 */
 }
 }
 });
 }
])

To get a good idea of all the pieces, I have left the local notification
section un-implemented. Your mission, if you choose to accept it, is
to implement local notification whenever there is an incoming chat to
the current user. The notification should consist of the message and
the user it is from. When tapped on the notification, it will take the
current user to the chat screen between the two users.

Next, we will be working with MainCtrl. The MainCtrl is linked with the main
view of our application. Add the following MainCtrl definition to the www/js/
controllers.js file after the run method:

.controller('MainCtrl', ['$scope', 'Loader', '$ionicPlatform',
'$cordovaOauth', 'FBFactory', 'GOOGLEKEY', 'GOOGLEAUTHSCOPE',
'UserFactory', 'currentAuth', '$state',

Building a Messaging App

[294]

 function($scope, Loader, $ionicPlatform, $cordovaOauth,
FBFactory, GOOGLEKEY, GOOGLEAUTHSCOPE, UserFactory, currentAuth,
$state) {
 $ionicPlatform.ready(function() {
 Loader.hide();
 $scope.$on('showChatInterface', function($event,
authData) {
 if (authData.google) {
 authData = authData.google;
 }
 UserFactory.setUser(authData);
 Loader.toggle('Redirecting..');
 $scope.onlineusers = FBFactory.olUsers();

 $scope.onlineusers.$loaded().then(function() {
 $scope
 .onlineusers
 .$add({
 picture:
authData.cachedUserProfile.picture,
 name: authData.displayName,
 email: authData.email,
 login: Date.now()
 })
 .then(function(ref) {
 UserFactory.setPresenceId(ref.key());
UserFactory.setOLUsers($scope.onlineusers);
 $state.go('tab.dash');
 });
 });
 return;
 });

 if (currentAuth) {
 $scope.$broadcast('showChatInterface',
currentAuth.google);
 }

 $scope.loginWithGoogle = function() {
 Loader.show('Authenticating..');
 $cordovaOauth.google(GOOGLEKEY, GOOGLEAUTHSCOPE).
then(function(result) {
 FBFactory.auth()
 .$authWithOAuthToken('google',
result.access_token)

Chapter 8

[295]

 .then(function(authData) {
 $scope.$broadcast('showChatInterface',
authData);
 }, function(error) {
 Loader.toggle(error);
 });
 }, function(error) {
 Loader.toggle(error);
 });
 }

 });
 }
])

As soon as the promise is resolved in the route's resolve method, MainCtrl will be
invoked, passing currentAuth as one of the dependencies. The currentAuth will be
equal to the auth object, if the user is already logged in; otherwise, it will be null.

We register a showChatInterface event on the $scope. This method is invoked
when the user is already logged in (that is, currentAuth is not null) or when
the user explicitly logs in. When this event is fired, we save the user data to
localStorage using the UserFactory.setUser method. Once that is done, we
make a request to get all the users who are online. Once we get the list, we add
the current user's details to the onlineUsers collection. Once that is also done, we
setPresenceId and setOLUsers in localStorage and redirect the user to the chat
interface page.

The $scope.loginWithGoogle method will be invoked when the user clicks on
the Login with Google button. I have included both Firebase Auth as well as the
cordovaOauth plugin to show how you can work with both of them together. If you
feel this is complicated, you can directly use Firebase Auth to login the user, instead
of fetching the token from cordovaOauth and authenticating the user with the
Firebase $authWithOAuthToken.

Once the authentication is successful, we will broadcast a showChatInterface,
which will take care of saving data and redirecting the user.

As part of this example, I have implemented only Google OAuth.
For practice, you can integrate other oAuth providers.

Once the user is successfully logged in, he/she will be redirected to the tabbed
interface page. The default tab is the dashboard tab, which is linked with DashCtrl.

Building a Messaging App

[296]

The purpose of DashCtrl is to get a list of users who are online and display them.
The required code for DashCtrl will be:

.controller('DashCtrl', ['$scope', 'UserFactory',
'$ionicPlatform', '$state', '$ionicHistory',
 function($scope, UserFactory, $ionicPlatform, $state,
$ionicHistory) {
 $ionicPlatform.ready(function() {
 $ionicHistory.clearHistory();

 $scope.users = UserFactory.getOLUsers();
 $scope.currUser = UserFactory.getUser();
 var presenceId = UserFactory.getPresenceId();

 $scope.redir = function(user) {
 $state.go('chat-detail', {
 otherUser: user
 });
 }

 });
 }
])

I have added the $ionicHistory.clearHistory method in the
preceding controller. This is to make sure that, when the user has
successfully logged in and is on the tabs page, pressing the hardware
back button should not take the user to the login page but rather should
exit the app. So, using the $ionicHistory.clearHistory method we
clear the history and the hardware back button action will close the app.

Next we will work with the middle tab, where the chat history is displayed. Since
this is an example app, we are not explicitly maintaining any profile of the user. We
are picking the values from the auth object and building the UI. We will be using the
same logic to show the user information in the history tab. This user object data is
retrieved from the list of online users.

The code for ChatsCtrl looks as follows. Add the following code after DashCtrl:

.controller('ChatsCtrl', ['$scope', '$rootScope', 'UserFactory',
'Utils', '$ionicPlatform', '$state', function($scope, $rootScope,
UserFactory, Utils, $ionicPlatform, $state) {
 $ionicPlatform.ready(function() {
 $scope.$on('$ionicView.enter', function(scopes, states) {
 var olUsers = UserFactory.getOLUsers();

Chapter 8

[297]

 $scope.chatHistory = [];
 $scope.$on('AddNewChatHistory', function() {
 var ch = $rootScope.chatHistory,
 matchedUser;
 for (var i = 0; i < ch.length; i++) {
 for (var j = 0; j < olUsers.length; j++) {
 if (Utils.escapeEmailAddress(olUsers[j].email)
== ch[i]) {
 matchedUser = olUsers[j];
 }
 };
 if (matchedUser) {
 $scope.chatHistory.push(matchedUser);
 } else {
 $scope.chatHistory.push({
 email: Utils.unescapeEmailAddress(ch[i]),
 name: 'User Offline'
 })
 }
 };

 });
 $scope.redir = function(user) {
 $state.go('chat-detail', {
 otherUser: user
 });
 }
 $rootScope.$on('newChatHistory', function($event) {
 $scope.$broadcast('AddNewChatHistory');
 });
 $scope.$broadcast('AddNewChatHistory');
 })
 });
}])

Do notice the matchedUser object. This will be set to an offline
value when the user is not present in the online users list but the
current user has already had an interaction with the other user,
for the same reasons mentioned earlier.

Here, we keep listening to the newChatHistory event that we are broadcasting in the
run method. Finally, if the current logged in user taps on a username, we redirect the
app to the chat-detail view.

Building a Messaging App

[298]

Next is the most active page of the application, the page where the users interact
with each other. This controller is too big to be shown all at once. Hence, I will
split the controller into logical chunks and explain it.

First, we add the controller definition and its dependencies:

 .controller('ChatDetailCtrl', ['$scope', 'Loader',
'$ionicPlatform', '$stateParams', 'UserFactory', 'FBFactory',
'$ionicScrollDelegate', '$cordovaImagePicker', 'Utils',
'$timeout', '$ionicActionSheet', '$cordovaCapture',
'$cordovaGeolocation', '$ionicModal',
 function($scope, Loader, $ionicPlatform, $stateParams,
UserFactory, FBFactory, $ionicScrollDelegate, $cordovaImagePicker,
Utils, $timeout, $ionicActionSheet, $cordovaCapture,
$cordovaGeolocation, $ionicModal) {
$ionicPlatform.ready(function() {
Loader.show('Establishing Connection...');
 // controller code here..
});
}])

That is quite a lot of dependencies!

Next, we fetch chatToUser and add it to the scope. Once that is done, we connect to
the dynamic Firebase endpoint. The following code (till we end this controller) will
go inside ChatDetailCtrl:

$scope.chatToUser = $stateParams.otherUser;
$scope.chatToUser = JSON.parse($scope.chatToUser);
$scope.user = UserFactory.getUser();

$scope.messages = FBFactory.chatRef($scope.user.email,
$scope.chatToUser.email);
$scope.messages.$loaded().then(function() {
 Loader.hide();
 $ionicScrollDelegate.scrollBottom(true);
});

We use the $ionicScrollDelegate service to scroll the viewing pane to the
bottom/last message. Next, we add a method that will add a new chat message
to Firebase:

function postMessage(msg, type, map) {
 var d = new Date();
 d = d.toLocaleTimeString().replace(/:\d+ /, ' ');
 map = map || null;
 $scope.messages.$add({

Chapter 8

[299]

 content: msg,
 time: d,
 type: type,
 from: $scope.user.email,
 map: map
 });

 $scope.chatMsg = '';
 $ionicScrollDelegate.scrollBottom(true);
 }

When the user enters a text and clicks on Send, we call the sendMessage method:

$scope.sendMessage = function() {
 if (!$scope.chatMsg) return;
 var msg = '<p>' + $scope.user.cachedUserProfile.name
+ ' says :
' + $scope.chatMsg + '</p>';
 var type = 'text';
 postMessage(msg, type);
 }

To show the list of options such as Share Picture, Take Picture, and Share My
Location, we will be using the Action Sheet service:

$scope.showActionSheet = function() {
 var hideSheet = $ionicActionSheet.show({
 buttons: [{
 text: 'Share Picture'
 }, {
 text: 'Take Picture'
 }, {
 text: 'Share My Location'
 }],
 cancelText: 'Cancel',
 cancel: function() {
 // add cancel code..
 Loader.hide();
 },
 buttonClicked: function(index) {
 // Clicked on Share Picture
 if (index === 0) {
 Loader.show('Processing...');
 var options = {
 maximumImagesCount: 1
 };
 $cordovaImagePicker.getPictures(options)

Building a Messaging App

[300]

 .then(function(results) {
 if (results.length > 0) {
 var imageData = results[0];
 Utils.getBase64ImageFromInput(
imageData, function(err, base64Img)
{
 //Process the image
string.
 postMessage('<p>' +
$scope.user.cachedUserProfile.name + ' posted :
<img
class="chat-img" src="' + base64Img + '">', 'img');
 Loader.hide();
 });
 }
 }, function(error) {
 // error getting photos
 console.log('error', error);
 Loader.hide();
 });
 }
// Clicked on Take Picture
else if (index === 1) {
 Loader.show('Processing...');
 var options = {
 limit: 1
 };

$cordovaCapture.captureImage(options).then(function(imageData) {

 Utils.getBase64ImageFromInput(imageDa
ta[0].fullPath, function(err,
base64Img) {
 //Process the image string.
 postMessage('<p>' + $scope.user.
cachedUserProfile.name + ' posted :
<img class="chat-img" src="'
+ base64Img + '">', 'img');
 Loader.hide();
 });
 }, function(err) {
 console.log(err);
 Loader.hide();
 });
 }

Chapter 8

[301]

// clicked on Share my location
else if (index === 2) {
 $ionicModal.fromTemplateUrl('templates/
map-modal.html', {
 scope: $scope,
 animation: 'slide-in-up'
 }).then(function(modal) {
 $scope.modal = modal;
 $scope.modal.show();
 $timeout(function() {
 $scope.centerOnMe();
 }, 2000);
 });
 }
 return true;
 }
 });
 }

When an option is selected from the Action Sheet and if the:

•	 index = 0: We invoke $cordovaImagePicker service and let the
user choose one image. Once the user chooses an image, we invoke the
Utils.getBase64ImageFromInput method passing in the image, to get
the base64 string back. Then we send this message to Firebase using the
postMessage method.

•	 index = 1: We invoke the $cordovaCapture service captureImage method
to take a picture, convert it to a base64 string, and save it to Firebase.

•	 index = 2: We invoke an Ionic Modal that will consist of the map, pointing
to the current location of the user.

To work with the map in the popup, we will need a few methods to be defined on
the scope:

$scope.mapCreated = function(map) {
 $scope.map = map;
 };

 $scope.closeModal = function() {
 $scope.modal.hide();
 };

 $scope.centerOnMe = function() {
 if (!$scope.map) {

Building a Messaging App

[302]

 return;
 }

 Loader.show('Getting current location...');
 var posOptions = {
 timeout: 10000,
 enableHighAccuracy: false
 };
 $cordovaGeolocation.getCurrentPosition(posOptions).
then(function
(pos) {
 $scope.user.pos = {
 lat: pos.coords.latitude,
 lon: pos.coords.longitude
 };
 $scope.map.setCenter(new google.maps.
LatLng($scope.user.pos.lat, $scope.user.pos.lon));
 $scope.map.__setMarker($scope.map,
$scope.user.pos.lat, $scope.user.pos.lon);
 Loader.hide();

 }, function(error) {
 alert('Unable to get location, please enable
GPS to continue');
 Loader.hide();
 $scope.modal.hide();
 });
 };

 $scope.selectLocation = function() {
 var pos = $scope.user.pos;

 var map = {
 lat: pos.lat,
 lon: pos.lon
 };
 var type = 'geo';

 postMessage('<p>' + $scope.user.cachedUserProfile.name
+ ' shared :
', type,
map);
 $scope.modal.hide();
 }

Chapter 8

[303]

The mapCreated method will be called when the map is created. The closeModal
method will be used to close the pop-up modal. The centerOnMe method
will be automatically called once the map is initialized. This method uses the
$cordovaGeolocation.getCurrentPosition method to fetch the user's current
position. Once it gets the position, it will place a marker at that point. If the
$cordovaGeolocation.getCurrentPosition method is not able to get the location,
we ask the user to enable GPS.

When you see the preceding functionality in action, you will get a better idea as to
what is happening.

Finally, AccountCtrl, which is linked with Tab3. This controller has a method to
manage user logout:

.controller('AccountCtrl', ['$scope', 'FBFactory', 'UserFactory',
'$state',
 function($scope, FBFactory, UserFactory, $state) {

 $scope.logout = function() {
 FBFactory.auth().$unauth();
 UserFactory.cleanUser();
 UserFactory.cleanOLUsers();
 // remove presence
 var onlineUsers = UserFactory.getOLUsers();
 if (onlineUsers && onlineUsers.$getRecord) {
 var presenceId = UserFactory.getPresenceId();
 var user = onlineUsers.$getRecord();
 onlineUsers.$remove(user);
 }
 UserFactory.cleanPresenceId();
 $state.go('main');
 }

 }
]);

Here, you can implement preferences such as Show notification
when the app is open, Play sound, and so on.

Building a Messaging App

[304]

Setting up templates
Now that we are done with all the JavaScript code, we will implement the
templates for each view. All the views are very logically implemented, and
quite simple to understand.

First we will create a file named main.html in the www/templates folder.
The contents of www/templates/main.html will be:

<ion-view view-title="IONIC CHAT APP" cache-view="false">
 <ion-content>
 <ion-slide-box does-continue="true" auto-play="true" show-
pager="false">
 <ion-slide>
 <label class="t-r">Share Photos seamlessly between
family & Friends</label>
 <img
src="http://placeimg.com/640/480/tech/grayscale" />
 </ion-slide>
 <ion-slide>
 <label class="c-c">Simple One click login to start
the fun!!</label>
 <img
src="http://placeimg.com/640/480/people/sepia" />
 </ion-slide>
 <ion-slide>
 <label class="b-r">Notify people where you are
with one click location sender</label>
 <img src="http://placeimg.com/640/480/tech/sepia"
/>
 </ion-slide>
 </ion-slide-box>
 <div class="text-center padding">
 <h3>The Super chat app, lets you connect with your
friends, share images, audio, video, geo-location and ofcourse
texts!</h3>
 <button class="button button-dark" ng-
click="loginWithGoogle()">
 Login With Google
 </button>
 </div>
 </ion-content>
</ion-view>

Chapter 8

[305]

Next, the www/templates/tabs.html file. Replace the content inside this file with
the following content:

<ion-tabs class="tabs-striped tabs-top tabs-background-positive
tabs-color-light">
 <!-- Dashboard Tab -->
 <ion-tab title="IONIC CHAT APP" icon-off="ion-ios-pulse" icon-
on="ion-ios-pulse-strong" href="#/tab/dash">
 <ion-nav-view name="tab-dash"></ion-nav-view>
 </ion-tab>

 <!-- Chats Tab -->
 <ion-tab title="IONIC CHAT APP" icon-off="ion-ios-chatboxes-
outline" icon-on="ion-ios-chatboxes" href="#/tab/chats">
 <ion-nav-view name="tab-chats"></ion-nav-view>
 </ion-tab>

 <!-- Account Tab -->
 <ion-tab title="IONIC CHAT APP" icon-off="ion-ios-gear-outline"
icon-on="ion-ios-gear" href="#/tab/account">
 <ion-nav-view name="tab-account"></ion-nav-view>
 </ion-tab>
</ion-tabs>

Next, www/templates/tab-dash.html; replace the content inside this file with the
following content:

<ion-view view-title="IONIC CHAT APP">
 <ion-content>
 <ion-list>
 <ion-item ng-show="users.length == 1">
 <h3 class="text-center padding">Looks like no one
is online</h3>
 </ion-item>
 <ion-item class="item-avatar item-icon-right" ng-
repeat="user in users | filter:search:user" ng-if="user.email !=
currUser.email" ng-click="redir('{{user}}')">

 <h2>{{user.name}}</h2>
 <p>{{user.email}}</p>
 <i class="icon ion-chevron-right icon-
accessory"></i>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Building a Messaging App

[306]

Next, the second tab, www/templates/tab-chats.html; replace the content inside
this file with the following content:

<ion-view view-title="IONIC CHAT APP">
 <ion-content>
 <ion-list>
 <ion-item ng-show="chatHistory.length == 0">
 <h3 class="text-center padding">Looks like there
is no chat history</h3>
 </ion-item>
 <ion-item class="item-icon-right item-icon-left" ng-
class="{'item-avatar' : user.picture}" ng-repeat="user in
chatHistory | filter:search:user" ng-if="user.email !=
currUser.email" ng-click="redir('{{user}}')">
 <img ng-src="{{user.picture}}" ng-
show="user.picture">
 <h2>{{user.name}}</h2>
 <p>{{user.email}}</p>
 <i class="icon ion-chevron-right icon-
accessory"></i>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Now the third tab, www/templates/tab-account.html; replace the content inside
this file with the following content:

<ion-view view-title="IONIC CHAT APP">
 <ion-content has-header="true">
 <ion-list>
 <!-- Uncomment below if you would like to add
preferences to the app -->
 <!-- <ion-item>
 <ion-toggle ng-change="updatePreference()" ng-
model="preference.notification" toggle-class="toggle-positive">Show
Notifications</ion-toggle>
 </ion-item> -->
 <ion-item>
 <button class="button button-dark button-block"
ng-click="logout()">
 Logout
 </button>
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Chapter 8

[307]

The page where all the action happens, www/templates/chat-detail.html:

<ion-view view-title="{{chatToUser.name}}">
 <ion-pane>
 <ion-content class="has-header padding">
 <div class="button-bar">
 <a class="button button-calm" ui-
sref="tab.dash">Online Users
 <a class="button button-calm" ui-
sref="tab.chats">Chat History
 </div>

 <ion-list>
 <ion-item ng-show="messages.length == 0">
 <h3 class="text-center">No messages yet!</h3>
 </ion-item>
 <ion-item class="item-avatar" ng-repeat="message
in messages" ng-class="{left : message.from == user.email, right :
message.from != user.email}">
 <img ng-src="{{user.cachedUserProfile.picture}}"
ng-if="message.from ==
user.email">
 <img ng-src="{{chatToUser.picture}}" ng-
if="message.from != user.email">
 <p ng-bind-html="message.content"></p>
 <map inline="true" class="inline-map"
lat="{{message.map.lat}}" lon="{{message.map.lon}}" ng-
if="message.map.lat && message.map.lon">
 </ion-item>
 <div class="padding-bottom"></div>
 </ion-list>
 </ion-content>
 <ion-footer-bar class="bar-footer">
 <input class="footerInput" type="text"
placeholder="Enter Message" ng-model="chatMsg">
 <button class="button button-dark icon-left ion-
paper-airplane" ng-click="sendMessage();"></button>
 <button class="button button-dark icon-left ion-more"
ng-click="showActionSheet();"></button>
 </ion-footer-bar>
 </ion-pane>
</ion-view>

Building a Messaging App

[308]

Do notice that we have used the map directive here, with the
inline attribute set to true.

When the user selects the share location option from the action sheet, we show a
modal with a map. Now, we will create that modal.

Create a new file named map-modal.html inside the www/templates folder and
update it as follows:

<ion-modal-view>
 <ion-content scroll="false">
 <map on-create="mapCreated(map)"></map>
 </ion-content>
 <ion-footer-bar class="bar-stable">
 <a ng-click="selectLocation()" class="button button-icon
icon ion-checkmark">Share
 <a ng-click="closeModal()" class="button button-icon icon
ion-close">Cancel
 </ion-footer-bar>
</ion-modal-view>

Setting up SCSS
To complete the app, we will update scss/ionic.app.scss as follows with a few
overrides and a few new styles.

First, we override four Ionic SCSS variables and then include the Ionic SCSS framework:

$positive: #1976D2 !default;
$font-family-base: 'Lato',
sans-serif !default;
$tabs-striped-off-opacity: 1 !default;

// The path for our ionicons font files, relative to the built CSS
in www/css
$ionicons-font-path: "../lib/ionic/fonts" !default;

// Include all of Ionic
@import "www/lib/ionic/scss/ionic";

Chapter 8

[309]

Next, we will override styles related to the bar title and the slide box:

.bar .title {
 font-size: 21px;
}

.slider {
 background-color: #eee;
 min-height: 200px;
 max-height: 400px;
}

ion-slide img {
 width: 100%;
 height: 50%;
 margin: 0 auto;
 display: block;
 max-height: 350px;
 max-width: 500px;
}

.t-r {
 position: absolute;
 top: 5px;
 right: 0;
 margin: 20px;
 margin-right: 5px;
 margin-left: 25px;
 text-align: center;
 width: 84%;
}

.b-r {
 position: absolute;
 bottom: 5px;
 margin: 20px;
 right: 0px;
 margin-right: 5px;
 margin-left: 25px;
 text-align: center;
 width: 84%;
}

.c-c {

Building a Messaging App

[310]

 position: absolute;
 top: 25%;
 margin: 20px;
 left: 0px;
 margin-right: 5px;
 margin-left: 25px;
 text-align: center;
 width: 84%;
}

ion-slide label {
 font-size: 21px;
 color: #333;
 padding: 5px;
 border-radius: 5px;
 background: linear-gradient(to right, #e2e2e2 0%, #dbdbdb 50%,
#d1d1d1 51%, #fefefe 100%);
 opacity: 0.8;
}

We add styles for the chat interface:

.footerInput {
 width: 77%;
}

.chat-img {
 width: 50%;
}

.left,

.right {
 width: 75%;
 clear: both;
 margin: 5px;
}

.left {
 float: left;
 text-align: left;
}

.right {
 float: right;
 text-align: right;

Chapter 8

[311]

}

.usr-img {
 width: 48px;
}

map {
 display: block;
 width: 100%;
 height: 100%;
}

.inline-map {
 height: 200px;
 border: 1px solid #787878;
}

.scroll {
 height: 100%;
}

Testing the application
Now that we are done with building the application, we will add the iOS and
Android platforms, to test the application. Run this:

ionic platform add ios

ionic platform add android

Next, we will emulate/run the app. I have a Samsung Galaxy Note 3 mobile as one
device and an iOS emulator as another device.

I have tested the app by running it on the Android device and emulating it on the
iOS emulator. You can do so the same way or you can use an Android emulator
and an iOS emulator for test purposes as well. To launch/emulate the application,
run this:

ionic run android –l –c

You can also use this:

ionic emulate ios –l –c

Building a Messaging App

[312]

The –l flag sets up the live reload option when emulating/running on
an emulator/device and the –c flag enables JavaScript console logs to be
printed in a command prompt/terminal. These are the two of the most
helpful flags while debugging Ionic apps on emulators/devices.

Once the app is launched in both the devices, you should see the main page of
the app:

Chapter 8

[313]

Once you click on Login With Google, you should see the Google authentication page:

Building a Messaging App

[314]

Once you are authenticated, you will be shown the consent screen (in the following
screenshot, the one on the left-hand side) and, if you are a returning user, you will be
asked for offline access (in the following screenshot, the one on the right-hand side):

I have logged in with ionic.testuser1@gmail.com from my Android
device and ionic.testuser2@gmail.com from the iOS emulator.

Chapter 8

[315]

Once you have successfully logged in, you will be shown the dashboard tab with the
list of online users as shown in the left-hand side screenshot in the following image.
When you tap on the user, you will be taken to the chat screen shown in the right of
the two following screenshots:

Building a Messaging App

[316]

Users can chat with each other by typing in the text area and clicking on the
(airplane) icon-button to send the message. Then, by clicking on (more)
icon-button, the user can see an action sheet as shown in the left-hand side of
the two following screenshots. Using the Action Sheet options, a user can share
a picture with the other user, as shown in the right of the two screenshots:

Chapter 8

[317]

Users can also share their location by selecting the Share My Location option
(the left-hand side of the two following screenshots). And the other user can
see the same inline in the chat interface (the right-hand side screenshot):

This is our simple Ionic chat application!

Building a Messaging App

[318]

At any point, you can visit the Firebase forge to see how the data is stored. A quick
snapshot of this looks like this:

Chapter 8

[319]

Summary
In this chapter, we saw how to build a simple chat application using Ionic, Cordova,
and Firebase. We started off by understanding the architecture, learned about
Firebase and AngularFire, and then we integrated these in the Ionic app. We also
saw the implementation of key concepts such as integrating Cordova plugins in an
Ionic app and triggering various features on demand.

In the next chapter, the final one, we will see how to generate device-specific
installers for an app like this and share it with the world.

[321]

Releasing the Ionic App
In this chapter, we will take a look at three ways of generating the installer for your
Ionic app: one using the PhoneGap build service, the second using the Cordova CLI,
and the third using the Ionic package service. We will be generating installers for
both Android as well as iOS operating systems. The topics that we are going to look
at in this chapter are as follows:

•	 Generating icons and splash screens
•	 Validating config.xml
•	 Using the PhoneGap build service to generate the installer
•	 Using Cordova CLI to generate the installer
•	 Using the Ionic package to generate the installer

Preparing the app for distribution
Now that we have successfully built our Ionic application, we want to distribute it.
The best way to reach a wider audience is with the help of App Stores. But before
we start distributing the app, we need our app-specific icons and splash screens
integrated with the app. Splash screens are totally optional and depend on the
product idea.

Setting up icons and splash screens
By default, when you run:

ionic platform add android

You can also run this:

ionic platform add ios

Releasing the Ionic App

[322]

The CLI automatically adds a new folder named resources. You can check this
out in the ionic-chat-app we created in Chapter 8, Building a Messaging App. The
resources folder consists of Ionic, Android, or both subfolders, depending on the
platforms you have added. In each of these folders, you will see two subfolders
named icon and splash.

If your app uses splash screens, you can keep the splash
folder; if not, delete the folder to save a few bytes of your
final app installer.

To generate icons, you can get a copy of your icon in a size greater than 1024 x 1024
and use any service such as:

•	 http://icon.angrymarmot.org/

•	 http://makeappicon.com/

•	 http://www.appiconsizes.com/

This is used to generate icons and splash screens for both Android and iOS.

I have no association with any of the preceding services.
You use these services at your own risk.

Alternatively, the best part is that you can place files named icon.png and splash.
png in the resources folder and run this:

ionic resources

Ionic will take care of uploading your images to the cloud, then resizing them as
required, and saving them back to the resources folder.

If you want to convert only icons, you can use this:

ionic resources --icon

If you just want to convert splash screens, you can use this:

ionic resources --splash

http://icon.angrymarmot.org/
http://makeappicon.com/
http://www.appiconsizes.com/

Chapter 9

[323]

You can use this PSD http://code.ionicframework.
com/resources/icon.psd to design your icon and this PSD
http://code.ionicframework.com/resources/splash.
psd to design your splash screens.
You can place an icon.png image, an icon.psd file, or an
icon.ai file at the root of the resources folder and the ionic
resources task will do its magic!

Updating the config.xml file
As we already know, config.xml is the single source of truth that the Cordova API
trusts while generating the OS-specific installers. So, this file needs to be validated
thoroughly before you start the deployment process. You can carry out the following
checklist to make sure that everything is in place:

•	 Widget ID is defined and valid
•	 The widget version is defined and valid
•	 In the case of an app update, the widget version is updated and valid
•	 The name tag is defined and valid
•	 The description is defined and valid
•	 Author information is defined and valid
•	 Access tag is defined and is limited to the required domains (https://

github.com/apache/cordova-plugin-whitelist#network-request-
whitelist)

•	 Allow navigation is defined and is limited to the required domains
(https://github.com/apache/cordova-plugin-whitelist#navigation-
whitelist)

•	 Allow intent is defined and is limited to the required domains (https://
github.com/apache/cordova-plugin-whitelist#intent-whitelist)

•	 Cross-check preferences
•	 Cross-check icons and the splash image path
•	 Cross-check permissions if any
•	 Update index.html with content security policy meta tag (https://

github.com/apache/cordova-plugin-whitelist#content-security-
policy)

Once the preceding points are verified, we will get started with the installer
generation process.

http://code.ionicframework.com/resources/icon.psd
http://code.ionicframework.com/resources/icon.psd
http://code.ionicframework.com/resources/splash.psd
http://code.ionicframework.com/resources/splash.psd
https://github.com/apache/cordova-plugin-whitelist#network-request-whitelist
https://github.com/apache/cordova-plugin-whitelist#network-request-whitelist
https://github.com/apache/cordova-plugin-whitelist#network-request-whitelist
https://github.com/apache/cordova-plugin-whitelist#navigation-whitelist
https://github.com/apache/cordova-plugin-whitelist#navigation-whitelist
https://github.com/apache/cordova-plugin-whitelist#intent-whitelist
https://github.com/apache/cordova-plugin-whitelist#intent-whitelist
https://github.com/apache/cordova-plugin-whitelist#content-security-policy
https://github.com/apache/cordova-plugin-whitelist#content-security-policy
https://github.com/apache/cordova-plugin-whitelist#content-security-policy

Releasing the Ionic App

[324]

For this chapter, you can chat with the author and clear your queries at
GitHub (https://github.com/learning-ionic/Chapter-9).

The PhoneGap service
The first approach we are going to explore is generating app installers using the
PhoneGap build service. This is perhaps the simplest way to generate installers
for Android and iOS.

The process is quite simple. We upload the entire project to the PhoneGap build
service and it takes care of building the installer.

If you think that uploading the complete project is not practical, you can
upload the www folder only; but, you need to make the following changes:
Firstly, move the config.xml inside the www folder. Next, move the
resources folder inside the www folder and, finally, update the path of the
resources folder in config.xml.
If you find yourself doing this often, I would recommend using a build
script to generate a PhoneGap deployable folder, with the preceding
changes made to the project.

If you are planning to release your app only for Android, you do not need to do
anything more. But if you are planning to generate iOS installers, you need to get an
Apple Developer Account and follow the steps at http://docs.build.phonegap.
com/en_US/signing_signing-ios.md.html to generate the required certificates.

You can also sign your Android app using the steps mentioned
at http://docs.build.phonegap.com/en_US/signing_
signing-android.md.html.

Once you have the required certificates and keys, you are good to start generating
the installer. You can follow these steps to continue:

1.	 Create a PhoneGap account and login (https://build.phonegap.com/
plans).

2.	 Next, navigate to https://build.phonegap.com/people/edit, select the
Signing Keys tab, and upload iOS and Android certificates.

https://github.com/learning-ionic/Chapter-9
http://docs.build.phonegap.com/en_US/signing_signing-ios.md.html
http://docs.build.phonegap.com/en_US/signing_signing-ios.md.html
http://docs.build.phonegap.com/en_US/signing_signing-android.md.html
http://docs.build.phonegap.com/en_US/signing_signing-android.md.html
https://build.phonegap.com/plans
https://build.phonegap.com/plans
https://build.phonegap.com/people/edit

Chapter 9

[325]

3.	 Next, navigate to https://build.phonegap.com/apps and click on New
App. As part of the free plan, you can have as many apps as you want as
long as they are pulled from Public Git repositories. You can also create one
private app from a Private repo or by uploading a ZIP file.

4.	 To test the service, you can create a .zip file (not .rar or .7z) with the
following folder structure:

°° App (root folder)
config.xml

resources (folder)
www (folder)

Then, update the path of resources in config.xml. This is all you
need for the PhoneGap build to work.

5.	 Upload the ZIP file to https://build.phonegap.com/apps and click on
Create app.

This process generally takes up to a minute to do its magic.

Sometimes, you may see unexpected errors from the build service. Wait
for some time and try again. Depending on the load on the build servers,
sometimes the build process may take a bit longer than expected.

Generating installers using the
Cordova CLI
Now we are going to generate installers for Android and iOS using the Cordova CLI.

Android installer
First we are going to take a look at generating an installer for Android using the
Cordova CLI. You can perform the following steps:

1.	 Open a new terminal/prompt at the root of the project.
2.	 Remove unwanted plugins:

ionic plugin rm cordova-plugin-console

3.	 Build the app in release mode:
cordova build --release android

https://build.phonegap.com/apps
https://build.phonegap.com/apps

Releasing the Ionic App

[326]

This will generate an unsigned installer in release mode and place it at
/platforms/android/build/outputs/apk/android-release-unsigned.
apk.

4.	 Next, we need to create a signing key. If you already have a signing key or
you are updating an existing app, you can continue to Step 6.

5.	 The private key is generated using the key tool. We will create a folder
named deploy-keys and then save all these keys there. Once the folder
is created, using the cd command, go to the folder and run this:
keytool -genkey -v -keystore app-name-release-key.keystore -
alias alias_name -keyalg RSA -keysize 2048 -validity 10000

You will be asked the following questions and you can respond as shown here:

If you lose this file or forget the alias or the password,
you cannot submit updates to the app store, ever.

6.	 Optional step: You can copy android-release-unsigned.apk to the
deploy-keys folder and run the following commands from there too.
I am going to leave the files where they are.

7.	 Next, we sign the unsigned APK using the jarsigner tool:
jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -
keystore app-name-release-key.keystore
../platforms/android/build/outputs/apk/android-release-
unsigned.apk my-ionic-app

Chapter 9

[327]

You will be asked for the passphrase, which you entered as the first step
while creating the keystore. Once the signing process is completed, the
existing android-release-unsigned.apk will be replaced with the
signed version with the same name.

We run the preceding command from inside the
deploy-keys folder.

8.	 Finally, we run the zipalign tool to optimize the APK.
zipalign -v 4 ../platforms/android/build/outputs/apk/android-
release-unsigned.apk my-ionic-app.apk

The preceding command will create my-ionic-app.apk in the deploy-keys folder.

Now, you can put this APK in the app store.

iOS installer
Next, we are going to generate an installer for iOS using Xcode. You can perform the
following steps:

1.	 Open a new terminal/prompt at the root of the project.
2.	 Remove unwanted plugins:

ionic plugin rm cordova-plugin-console

3.	 Now, run this:
ionic build –release ios

4.	 Navigate to the platforms/ios folder and launch projectname.xcodeproj
using Xcode.

5.	 Once the project is inside Xcode and you have selected iOS Device option,
from the navigation menu select Product and then Archive.

If you do not see the Archive option enabled, refer to
http://stackoverflow.com/a/18791703.

6.	 Next, from the navigation menu select Window and select Organizer. You
will be shown a list of archives created.

http://stackoverflow.com/a/18791703

Releasing the Ionic App

[328]

7.	 Click on the archive snapshot you have created now, and click on Submit
to App Store. The validation of your account is performed and then the
app will be uploaded to Apple Store.

8.	 Finally, you need to log into the Apple Store to set up screenshots,
description, and so on.

The Ionic package
At the time of writing, the Ionic package task is still in beta. Hence, I have included
it last.

Uploading the project to Ionic cloud
Using Ionic cloud services to generate an installer is quite simple. First we upload
our app to our Ionic account by running:

ionic upload

Log in to your Ionic account before executing the preceding command.
If your project has sensitive information, cross-check with the Ionic
license before uploading the app to the cloud.

Once the app is uploaded, an app ID will be generated for your app. You can find
the app ID in the ionic.project file located at the root of the project.

Generating the required keys
You need to follow Step 5 of the Android Installer section, to get the keystore file.

Next, we use the ionic package command to generate the installer, as shown here:

ionic package <options> [debug | release] [ios | android]

Chapter 9

[329]

Then options will consist of the following:

For instance, if you would like to generate an installer for Android in release mode, it
will be as follows:

ionic package release android -k app-name-release-key.keystore -a my-
ionic-app -w 12345678 -r 12345678 -o ./ -e
arvind.ravulavaru@gmail.com -p 12345678

We are running the preceding command from inside the
deploy-keys folder.

Similarly, the preceding command for iOS will be:

ionic package release ios -c certificate-file -d password -f
profilefile -o ./ -e arvind.ravulavaru@gmail.com -p 12345678

The ionic package command is removed as of Ionic CLI 1.5.2.
You can read about this at https://github.com/driftyco/
ionic-cli/issues/214#issuecomment-109349399.

Summary
With this, we conclude our Ionic journey. To quickly summarize, we started
understanding why we should use AngularJS. Then, we saw how Mobile Hybrid
apps work and where Cordova and Ionic fit in. Next, we looked at various Ionic
templates and went through Ionic CSS components, and Ionic directives and
services. Using this knowledge, we built an Ionic client for a secure REST API. Next,
we went through Cordova and ngCordova and saw how to work with them. We
built a chat application using the best of Ionic and Cordova. Finally, we saw how to
generate installers for the apps we have built and put them in the app store.

https://github.com/driftyco/ionic-cli/issues/214#issuecomment-109349399
https://github.com/driftyco/ionic-cli/issues/214#issuecomment-109349399

[331]

Additional Topics and Tips
The main aim of this book is to get you (the readers) acquainted with as much of
Ionic as possible. So, I have followed an incremental approach from Chapter 1-9,
from the basics of Cordova to building an app with AngularJS, Ionic, and Cordova.
We were pretty much focused on learning Ionic with the bare minimums.

In this appendix, we will explore a few more options of the Ionic CLI: Ionic.io,
ionic-box and Sublime Text plugins that you can explore.

For this appendix, you can chat with the author and clear up your
queries at GitHub (https://github.com/learning-ionic/
Appendix).

Ionic CLI
Ionic CLI is growing more powerful day-by-day. At the time of writing, the latest
version of Ionic CLI is 1.5.5. Since we have been using Ionic CLI 1.5.0 throughout
the book, I will be talking about the options from this.

Ionic login
You can log in to your Ionic cloud account in any one of three ways.

First, using a prompt:

ionic login

Second, without a prompt:

ionic login --email arvind.ravulavaru@gmail.com --password 12345678

https://github.com/learning-ionic/Appendix
https://github.com/learning-ionic/Appendix

Additional Topics and Tips

[332]

Finally, using environment variables. You can set IONIC_EMAIL and IONIC_
PASSWORD as environment variables and Ionic CLI will pick them up, without
prompting. This could be considered a rather unsafe option, as the password
would be stored in plain text.

You need to have an Ionic.io account for the authentication to succeed.

Ionic start task
First we are going to take a look at the No Cordova flag option.

No Cordova flag
The Ionic start task is one of the simplest ways to scaffold a new Ionic application.
In this book, we have used Ionic start to always create a new Cordova/Ionic
project. But we know that Ionic can be used without Cordova as well.

To scaffold an Ionic project without Cordova, you need to run the Ionic start with
a -w flag or —no-cordova flag:

ionic start -a "My Mobile Web App" -i app.web.mymobile -w
myMobileWebApp maps

The generated project would look like this:

.

└── myMobileWebApp

 ├── bower.json

 ├── gulpfile.js

 ├── ionic.project

 ├── package.json

 ├── scss

 │ └── ionic.app.scss

 └── www

 ├── css

 ├── img

 ├── index.html

 ├── js

 ├── lib

 └── templates

Appendix

[333]

Now, as usual, you can use the cd command to go to the myMobileWebApp folder and
run ionic serve.

Initialize a project with SCSS support
To initialize a project with SCSS enabled by default, you can run the ionic start
task with a –s or a —sass flag:

ionic start -a "Example 1" -i app.one.example --sass example1 blank

Listing all Ionic templates
To view the list of all templates up for grabs, run ionic start with a -l or a --list
flag:

ionic start -l

As of today, these are the available templates:

blank A blank starter project for Ionic

complex-list A complex list starter template

maps An Ionic starter project using Google Maps and a
side menu

salesforce A starter project for Ionic and Salesforce

sidemenu A starting project for Ionic using a side menu
with navigation in the content area

tabs A starting project for Ionic using a simple tabbed
interface

tests A test of different kinds of page navigation

At the time of writing this chapter, the complex-list
template is still a blank template and the tests template is
used internally by the core team for testing purposes.

App ID
If you are using the Ionic cloud services, you will be assigned an app ID for every
project you create on the cloud (refer to the Ionic.io apps section further down for
more information). This app id will reside in the ionic.project file, present at the
root of the project.

Additional Topics and Tips

[334]

When you scaffold a new project, the app ID is empty. If you would like to associate
the currently scaffolding project to an existing app in the cloud, you can run the ionic
start task with the --io-app-id flag and pass it the cloud-generated app ID:

ionic start -a "Example 2" -i app.two.example --io-app-id "b82348b5"
example2 blank

Now, the ionic.project looks like this:

{
 "name": "Example 2",
 "app_id": "b82348b5"
}

Ionic link
The locally scaffolded project can be linked to a cloud project (refer to the Ionic.io apps
section for more information) at any time by running this:

ionic link b82348b5

You can also remove the existing app ID by running this:

ionic link --reset

Ionic info
To view the installed libraries and their versions, run this:

ionic info

The information looks like this:

Cordova CLI: 5.0.0

Gulp version: CLI version 3.8.11

Gulp local:

Ionic Version: 1.0.0

Ionic CLI Version: 1.5.0

Ionic App Lib Version: 0.1.0

ios-deploy version: 1.7.0

ios-sim version: 3.1.1

OS: Mac OS X Yosemite

Node Version: v0.12.2

Xcode version: Xcode 6.3.2 Build version 6D2105

Appendix

[335]

Ionic templates
To view the list of available templates, you can either use the start task or the
templates task.

ionic templates

Ionic browsers
By default, Ionic uses the OS-specific browser to render the contents in web view.
You can replace this default browser with Crosswalk (https://crosswalk-
project.org/) or Crosswalk lite (https://github.com/crosswalk-project/
crosswalk-website/wiki/Crosswalk-Project-Lite) to get a better user
experience and support for modern features. As of today, you can only add these
two browsers. You can view the list of supported browsers by running this:

ionic browser list

Then, you should see:

iOS - Browsers Listing:

Not Available Yet - WKWebView

Not Available Yet - UIWebView

Android - Browsers Listing:

Available - Crosswalk - ionic browser add crosswalk

 Version 8.37.189.14

 Version 9.38.208.10

 Version 10.39.235.15

 Version 11.40.277.7

 Version 12.41.296.5

(beta)	 Version 13.42.319.6

(canary) Version 14.42.334.0

Available - Crosswalk-lite - ionic browser add crosswalk-lite

(canary) Version 10.39.234.

(canary) Version 10.39.236.1

Available - Browser (default) - ionic browser revert android

Not Available Yet - GeckoView

https://crosswalk-project.org/
https://crosswalk-project.org/
https://github.com/crosswalk-project/crosswalk-website/wiki/Crosswalk-Project-Lite
https://github.com/crosswalk-project/crosswalk-website/wiki/Crosswalk-Project-Lite

Additional Topics and Tips

[336]

As you can see, there is no support for WKWebView and UIWebView yet. But for
Android-specific apps, you can use Crosswalk. To add Crosswalk to an existing
project (Example 3), run:

ionic browser add crosswalk

Once the browser is successfully added, you can verify it in the ionic.project file.

To revert to the default browser, run this:

ionic browser revert android

Ionic lib
You can upgrade to the latest version of Ionic library by running this:

ionic lib update

You can also pass in a version to which the library needs to be updated:
ionic lib update -v 1.0.0-rc.1

Ionic state
Using the Ionic state task, you can manage the state of your Ionic project. Let's say
that you are adding a couple of plugins and platforms to test something in your Ionic
app; but you would not like to use these if they fail. In that case, you would use the
save and restore task.

You can avoid saving the plugins or platforms to the package.json file by running
them with a --nosave flag:

ionic plugin add cordova-plugin-console --nosave

You have tested your app with a couple of new plugins (adding them using a
--nosave flag) and things seem to work fine. Now, you want to add them to
your package.json. For that, run this:

ionic state save

This task looks up your installed plugins and platforms and then adds the
required information to the package.json file. Optionally, you can save only
plugins or platforms by running the preceding task with a --plugins or
--platforms flag respectively.

Appendix

[337]

If you have added a bunch of plugins and things are not working as expected, you
can reset to the previous state by running this:

ionic state reset

If you would like to restore your application to a list of Cordova plugins and
platforms, you can update these in package.json and run this:

ionic state restore

The reset task deletes the platforms and plugins folders and
installs them again, whereas restore only restores the missing
platforms and plugins in the platforms and plugins folders.

Ionic ions
According to the ions CLI:

"Ionic ions are a curated collection of useful addons, components, and ux
interactions for extending ionic."

As of today, there are four ions. You can view the list of ions by running this:

ionic ions

The options will be:

Header Shrink 'ionic add ionic-ion-header-shrink'

A shrinking header effect like Facebook's

Android Drawer 'ionic add ionic-ion-drawer'

Android-style drawer menu

iOS Rounded Buttons .. 'ionic add ionic-ion-ios-buttons'

iOS "Squircle" style icons

Swipeable Cards 'ionic add ionic-ion-swipe-cards'

Swiping interaction as seen in Jelly

Tinder Cards 'ionic add ionic-ion-tinder-cards'

Tinder style card swiping interaction

Additional Topics and Tips

[338]

You can add an ion using Add task as shown in the response. Once an ion
is added, you can navigate to the www/lib/ folder and into the ion folder
and check out the components.

For instance, if we have scaffolded a blank project (example4), you can add the
Swipe Cards ion by running:

ionic add ionic-ion-swipe-cards

Now, if you navigate to the www/lib/ionic-ion-swipe-cards folder, you will find
the bower component. And in the example4 folder, you can find more information
on how to set it up.

You can remove an added ion by running this:

ionic rm ionic-ion-swipe-cards

The ionic add and ionic rm tasks can be used to add
and remove bower packages as well.

Ionic resources
When you add a new platform, by default the resources folder is created with icons
and splash screens for the given platform. These icons and splash screens are default
images. If you would like to use your logo/icon for the project, all you need to do is
run the Ionic resources task.

This task will look for an image named icon.png inside the resources folder
to create icons for all devices for that OS, and splash.png inside the resources
folder to create splash screens for all the devices for that OS.

You can replace these two images with your brand images and run this:

ionic resources

Appendix

[339]

If you only want to convert icons, you can pass in an -i flag; to only convert splash
screens, use the -s flag.

You can also use .png, .psd (sample template: http://code.
ionicframework.com/resources/icon.psd and http://code.
ionicframework.com/resources/splash.psd), or .ai files as well
to generate icons from. You can find more information at http://blog.
ionic.io/automating-icons-and-splash-screens/.

Ionic server, emulate, and run
Ionic provides an easy way to run your Ionic apps in browsers, emulators,
and devices. Each of these three tasks comes with a bunch of useful options.

If you want live reload to be running on an emulator as well as the actual device,
while debugging, use the -l flag for live reload and -c to enable printing JavaScript
console errors in the prompt. This is by far the best and most used utility in the Ionic
CLI. This task saves a lot of your debugging time:

ionic serve -l –c

ionic emulate -l –c

ionic run -l –c

You can use the following flags while working with ionic serve:

If your app has a different look and feel for Android and iOS, you can test both the
apps at once by running this:

ionic serve -l

http://code.ionicframework.com/resources/icon.psd
http://code.ionicframework.com/resources/icon.psd
http://code.ionicframework.com/resources/splash.psd
http://code.ionicframework.com/resources/splash.psd
http://blog.ionic.io/automating-icons-and-splash-screens/
http://blog.ionic.io/automating-icons-and-splash-screens/

Additional Topics and Tips

[340]

You can explore other options listed earlier according to your requirements. While
working with ionic run and emulate, you can use the following options:

Quite self-explanatory!

Ionic upload and share
You can upload the current Ionic project to your Ionic.io account by running this:

ionic upload

You need to have an Ionic.io account to work with this feature.

Once the app is uploaded, you can head to https://apps.ionic.io/apps to view
the newly updated app. You can share this app with anyone using the share task
and passing in the e-mail address of the intended person; for example:

ionic share arvind.ravulavaru@gmail.com

https://apps.ionic.io/apps

Appendix

[341]

Ionic view
You can use Ionic view to preview your app on a device. Once your app is uploaded
to your Ionic.io account, you can download the Ionic View app for Android or iOS
and you can preview the app on the device.

You can find more information on Ionic view at
http://view.ionic.io/.

Ionic help and docs
At any point in time, you can view the list of all Ionic CLI tasks by running this:

ionic –h

You can open the docs page by running this:

ionic docs

To view the list of available docs, you can run this:

ionic docs ls

Also, to open a specific doc (in this case, ionicBody), you can run this:

ionic docs ionicBody

Ionic Creator
Ionic Creator is another handy tool that you can use to quickly build Ionic UI. You
can head to http://creator.ionic.io/ and start using the tool. You will need an
Ionic.io account to work with this tool.

Using Ionic Creator, you can quickly drag-and-drop Ionic components and start
building a prototype for your app. This app is persisted in the cloud and you can
access this at any time and make modifications.

http://view.ionic.io/
http://creator.ionic.io/

Additional Topics and Tips

[342]

Ionic Creator (in the process of designing an app) will look like this:

Once you are done designing your app, you can download the app using any of
these three ways:

•	 First, using Ionic CLI:
ionic start [appName] creator:c45ac24bd221

•	 Second, downloading the ZIP file of the project
•	 Finally, downloading the pure HTML

You can find these options when you click on the (export) icon, present at the top
left of the page.

You can read more about Ionic Creator at
http://thejackalofjavascript.com/ionic-creator-beta/.

http://thejackalofjavascript.com/ionic-creator-beta/

Appendix

[343]

Ionic.io apps
You can create and manage your Ionic apps at https://apps.ionic.io/apps. In
the preceding tasks, the app ID we were referring to is the app ID that gets generated
when we create a new app using the https://apps.ionic.io/apps interface.

You can create a new app by clicking on the New App button inside the https://
apps.ionic.io/apps page. Once the app is created, you can click on the app name
and then you will be taken to the app details page.

You can update the app settings by clicking on the Settings link on the app
details page.

You can read more about setting up Ionic apps at http://docs.ionic.
io/v1.0/docs/io-quick-start.
As of today, apps created with Ionic Creator do not appear in
https://apps.ionic.io/apps.

Ionic Push
You can add push notifications to your Ionic app by adding the Push plugin
(https://github.com/phonegap-build/PushPlugin) and configuring it.
Or you can use the push template from Ionic to do so:

ionic add ionic-service-core

ionic add ionic-service-push

ionic start myPushApp push

cd myPushApp

ionic plugin add https://github.com/phonegap-build/PushPlugin.git

ionic upload

https://apps.ionic.io/apps
https://apps.ionic.io/apps
https://apps.ionic.io/apps
https://apps.ionic.io/apps
http://docs.ionic.io/v1.0/docs/io-quick-start
http://docs.ionic.io/v1.0/docs/io-quick-start
https://apps.ionic.io/apps
https://github.com/phonegap-build/PushPlugin

Additional Topics and Tips

[344]

Now, you can head back to the app.ionic.io page and click on the setting for the
preceding app. In www/js/app.js, you will find the config section, which you can
update with the values from the app settings page:

.config(['$ionicAppProvider', function($ionicAppProvider) {
 // Identify app
 $ionicAppProvider.identify({
 // The App ID for the server
 app_id: 'YOUR_APP_ID',
 // The API key all services will use for this app
 api_key: 'YOUR_PUBLIC_API_KEY'
 });
}])

Then, you can follow the Android Push setup guide (http://docs.ionic.io/v1.0/
docs/push-android-setup) or the iOS push setup guide (http://docs.ionic.io/
v1.0/docs/push-ios-setup) to implement the Push notifications.

You can find more information about integrating push
notifications to your app at http://docs.ionic.io/v1.0/
docs/push-from-scratch.

Ionic Deploy
Ionic Deploy is one of the Ionic.io services. Ionic Deploy lets you deploy the new
changes to your app without submitting the app to App stores. This saves a lot of
time for the developers to push new changes to their users.

Changes that do not need a binary update can only be pushed—for
example, assets such as HTML, CSS, JavaScript, and images.

As of today, Ionic Deploy is in Alpha.

You can read more about Ionic deploy at http://blog.ionic.
io/announcing-ionic-deploy-alpha-update-your-app-
without-waiting/ and http://docs.ionic.io/v1.0/docs/
deploy-from-scratch.

http://docs.ionic.io/v1.0/docs/push-android-setup
http://docs.ionic.io/v1.0/docs/push-android-setup
http://docs.ionic.io/v1.0/docs/push-ios-setup
http://docs.ionic.io/v1.0/docs/push-ios-setup
http://docs.ionic.io/v1.0/docs/push-from-scratch
http://docs.ionic.io/v1.0/docs/push-from-scratch
http://blog.ionic.io/announcing-ionic-deploy-alpha-update-your-app-without-waiting/
http://blog.ionic.io/announcing-ionic-deploy-alpha-update-your-app-without-waiting/
http://blog.ionic.io/announcing-ionic-deploy-alpha-update-your-app-without-waiting/
http://docs.ionic.io/v1.0/docs/deploy-from-scratch
http://docs.ionic.io/v1.0/docs/deploy-from-scratch

Appendix

[345]

Ionic Vagrant box
If your team has multiple developers and each of them uses a different environment
to develop Ionic apps, you can use Ionic Vagrant box to have a unified development
environment.

If you are new to Vagrant, check out: http://vagrantup.com and
you can find more information on ionic-box at https://github.com/
driftyco/ionic-box.

Ionic Sublime Text plugins
If you are a Sublime Text user and would like to have Ionic autocomplete/snippets,
you can install the following packages:

•	 Ionic snippets: https://packagecontrol.io/packages/Ionic%20
Snippets

•	 Ionic Framework Snippets: https://packagecontrol.io/packages/
Ionic%20Framework%20Snippets

•	 Ionic Framework Extended Autocomplete: https://packagecontrol.io/
packages/Ionic%20Framework%20Extended%20Autocomplete

Summary
With this, we conclude the Learning Ionic book. I hope you enjoyed learning Ionic as
much as I have enjoyed explaining it.

Feel free to follow me on Twitter: https://twitter.com/arvindr21 and on
GitHub: https://github.com/arvindr21 (shameless publicity :D).

Thanks!

http://vagrantup.com
https://github.com/driftyco/ionic-box
https://github.com/driftyco/ionic-box
https://packagecontrol.io/packages/Ionic%20Snippets
https://packagecontrol.io/packages/Ionic%20Snippets
https://packagecontrol.io/packages/Ionic%20Framework%20Snippets
https://packagecontrol.io/packages/Ionic%20Framework%20Snippets
https://packagecontrol.io/packages/Ionic%20Framework%20Extended%20Autocomplete
https://packagecontrol.io/packages/Ionic%20Framework%20Extended%20Autocomplete
https://twitter.com/arvindr21
https://github.com/arvindr21

[347]

Index
Symbols
$cordovaDialogs

about 253-255
URL 255

$cordovaFlashlight
about 255-257
URL 257

$cordovaGeolocation
about 260-262
URL 262

$cordovaLocalNotification
about 258, 259
URL 260

$cordovaToast
about 252, 253
URL 253

$firebaseAuth function, Firebase
$requireAuth 283
$waitForAuth 283

$ionicBackdrop service
URL 157

$ionicConfigProvider service
URL 179
using 179

$ionicHistory service 144-150
$ionicModal service

URL 157
$ionicNavBarDelegate service 142-144
$ionicPopup service 163-170
$ionicScrollDelegate service

about 132, 133
URL 133

A
abstract states

URL 90
Action Sheet service

about 157-159
properties 158
URL 159

Android
SDK, setting up 232, 233
SDK setup, testing 234-238

Android Debug Bridge (ADB)
about 238
URL 238

Android installer
generating, Cordova CLI used 325-327
generating, Xcode used 327, 328

Android Platform Guide
URL 28

Android Push setup guide
URL 344

AngularFire 270-272
AngularJS

components 4-8
CSS components, integrating 69-74
directives 8-13
promises, URL 8
resources 17
scope, URL 5
services 14-17
services, methods 15
URL 5

[348]

AngularJS, directives
ng-app 9
ng-hide 9
ng-model 9
ng-repeat 9
ng-show 9

AngularUI router
about 74
URL 74

Apache Cordova 20-22
app, for distribution

config.xml, updating 323, 324
icons, setting up 321-323
preparing 321
splash screens, setting up 321-323

application architecture, Ionic Chat
about 273
application flow 274
app, previewing 275, 276
authentication 274
code, on GitHub 278
Cordova plugins 278
data structure 276, 277

B
Backend As A Service (BAAS) 266
Bookstore application

about 183, 184
application controller 207-211
authentication, building 199
authentication factory 202-204
book controller 212-214
browser controller 211, 212
browse template 220-224
building 191, 192
cart controller 214-216
cart template 224-226
controllers, creating 207
flow 184, 185
Ionic loading factory 200
localStorage factory 199-202
login template 218-220
menu, refactoring 193-195
module name, refactoring 195
purchase controller 216, 217
purchase template 226-228

REST API factory 199, 204-206
routes, modifying 196-198
run method, adding 196
server, setting up 190, 191
side menu template, scaffolding 192
template, refactoring 192, 198, 199
templates, creating 218

Bookstore application, architecture
about 185
bookstore demo 189, 190
bookstore demo, development flow 190
client architecture 187, 188
GitHub, code on 188
server architecture 186
server-side API documentation 186, 187

Bower
installing 24, 25
URL 24

bower components, Ionic Chat app
angularfire 279
firebase 279
lato 279
ngCordova 279
ng-cordova-oauth 279

buttons
about 57, 58
URL 59

C
cards

about 61, 62
URL 62

collection-repeat
about 128
URL 128

Command Line Interface (CLI) 23
config.xml

checklist 323
updating 323, 324

content component
URL 57

content-related directives
$ionicHistory service 144-150
$ionicNavBarDelegate service 142-144
$ionicScrollDelegate service 132, 133
about 123

[349]

ion-content 123, 124
ionic view events 136-138
ion-infinite-scroll 129-132
ion-nav-bar 138-140
ion-nav-buttons 141, 142
ion-refresher 125-129
ion-scroll 124, 125
ion-view 134-136
navigation component 134
side menu directive 150-154
tabs directive 150-154

Content Security Policy (CSP)
about 247
URL 247

Cordova CLI
installing 26, 27
used, for generating

Android installer 325-327
Cordova plugins

about 240
com.synconset.imagepicker 278
cordova-plugin-file 278
cordova-plugin-geolocation 278
cordova-plugin-inappbrowser 278
cordova-plugin-media-capture 278
URL 240

Cordova whitelist plugin
about 246-248
URL 246

CSS components, Ionic
about 47, 48
buttons 57-59
cards 61, 62
form elements 63-68
integrating, with AngularJS 69-74
Ionic grid system 48-53
Ionicons 62
lists 59, 60
page structure 53-57

D
Dependency Injection (DI) 5
developer tools, setup

about 32
Google Chrome 32, 33
Mozilla Firefox 34

directives
about 115
content-related directives 123
examples 116

E
endpoints, Firebase collection

chats 273
online users 273

F
factory components

URL 14
Firebase

about 266
account, setting up 267, 269
URL 266

FlexBox
URL 48

footers
about 121-123
footer component, URL 57

form elements 63-68

G
generator-ionic

about 42
installing 42-45
over Ionic CLI 44

Genymotion
about 235
URL 235

gesture directives 175-178
gesture services 175-178
Git

installing 24
URL 24

GitHub
URL 21

global configuration
URL 37

Google Chrome 32, 33
Google Static Maps API

URL 274

[350]

grid system
about 48-53
URL 53

Grunt
URL 43

Gulp
installing 25
reference link 43

H
HAML

URL 94
headers

about 121-123
header component, URL 57

Hello Ionic 28-32
Hybrid Architecture 19, 20

I
icons

setting up 321-323
URL 323

installers
generating 325
generating for Android,

Cordova CLI used 325-327
generating for iOS, Xcode used 327, 328

ion-content directive
about 123, 124
key attributes 124
URL 55

ion-header-bar directive
URL 54

Ionic
about 1, 22, 23
CSS components 47, 48
router 74
SCSS, setting up 95

Ionic Chat app
about 265, 266
developing 278
scaffolding 278-280
setting up 278-280
testing 311-317

Ionic Chat app, requisites
controllers, setting up 292-303

factories, setting up 286-290
Google API key, obtaining 281, 282
map directive, setting up 291, 292
required Cordova plugins, installing 281
route authentication, setting up 282-285
routes, setting up 282-285
SCSS, setting up 308, 310
services, setting up 286-290
templates, setting up 304-308

Ionic CLI
about 331
installing 26, 27
Ionic browsers 335, 336
Ionic emulate 339
Ionic info 334
Ionic ions 337, 338
Ionic lib 336
Ionic link 334
Ionic login 331, 332
Ionic resources 338
Ionic run 340
Ionic server 339
Ionic start task 332
Ionic state 336, 337
Ionic templates 335
Ionic upload 340

Ionic Creator
about 341, 342
URL 341

Ionic Deploy
about 344
URL 344

ionic.DomUtil method
URL 180

ionic.EventController utility
URL 178

Ionic Framework Extended Autocomplete
URL 345

Ionic Framework Snippets
URL 345

Ionic.io apps 343
ionic loading service

about 154-157
reference link 157

Ionicons
about 62, 63
URL 63

[351]

Ionic package
about 328
project uploading, to Ionic cloud 328
required keys, generating 328, 329

ionic.Platform methods
URL 180

Ionic Platform service
about 116-119
footers 121-123
headers 121-123
on method 121
registerBackButtonAction method 119, 120

Ionic plugin API
about 241
plugin, adding 241
plugin, removing 241
plugins, listing 241
plugins, searching 241-246

Ionic Project Structure
about 35, 36
config.xml file 36, 37
www folder 37, 38

Ionic Push
about 343, 344
URL 343

Ionic snippets
URL 345

Ionic start task
App ID 333, 334
Ionic templates, listing 333
no Cordova flag 332
project, initializing with SCSS support 333

Ionic Sublime text plugins 345
Ionic upload

Ionic help and docs 341
Ionic view 341
Ionic view, URL 341

Ionic Vagrant box
about 345
URL 345

ionic view events 136-138
ion-infinite-scroll directive 129-132
ion-item directive 170-175
ion-list directive

about 170-175
URL 175

ion-nav-bar directive 138-140

ion-nav-buttons directive 141, 142
ion-pane directive

about 54
URL 54

ion-refresher directive
about 125-129
URL 129

ion-scroll directive 124, 125
ion-view directive 134-136
iOS

SDK, setting up 233
SDK setup, testing 238, 239

iOS Platform Guide
URL 28

item-icons
URL 60

item-thumbnails
URL 60

J
jqLite

about 13
URL 13

L
Lato font

URL 279
lists

about 59, 60
URL 60

localFont
URL 279

M
map directive

URL 291
mixins, SCSS

using 104
Model View Controller (MVC) 3
Mozilla Firefox 34

N
navigation component 134

[352]

ng-cloak attribute
about 167
URL 167

ngCordova
$cordovaDialogs 253-255
$cordovaFlashlight 255-257
$cordovaGeolocation 260-262
$cordovaLocalNotification 258-260
$cordovaToast 252, 253
about 248
adding 250, 251
setting up 248-250

Node.js
installing 23
URL 23

O
one to one chat client

URL 277
on method 121

P
page structure 53-57
PhoneGap service

about 324, 325
URL 324

platform guide 27, 28
platform-specific SDK

setting up 231, 232
setting up, for Android 232, 233
setting up, for iOS 233

popover service
about 160-163
URL 163

popup service 160-163

R
registerBackButtonAction method 119, 120
repositories

URL 17
ripple emulator 44
router

about 74
two-page app 74-91
URL 74

S
Sass

about 93-95
URL 93

SCSS
basic swatch 97-99
Ionic CLI task 97
manual setup 96
mixins, using 104
setting up, in Ionic project 95
setup 99-103
URL 97
variables, using 104
versus Sass, URL 95
workflow 105, 106
working with 97

separation of concerns 2, 3
service components

URL 14
services

$ionicPopup service 163-170
about 115
Action Sheet service 157-159
examples 116
ionic loading service 154-157
Ionic Platform service 116-119
popup service 160-163

side menu directive
about 150-154
URL 154

side menu template
scaffolding 41

Single Page Application (SPA) 38
software, setting up

about 23
Bower, installing 24, 25
Cordova, installing 26
Git, installing 24
Gulp, installing 25
Ionic CLI, installing 26, 27
Node.js, installing 23
Sublime Text, installing 25

splash screens
setting up 321-323

stack overflow
URL 7

[353]

Sublime Text
installing 25
URL 26

sudo
URL 24

swatch
about 97-99
building 106-114

T
tabs directive

about 150-154
URL 151

tabs template
scaffolding 39, 40

Three-Way Data binding
about 270
URL 270

U
ui-sref directive

about 76
URL 76

utility services 179-181

V
variables, SCSS

using 104

W
widgets

URL 36

X
Xcode

used, for generating iOS installer 327, 328

Y
Yeoman

about 42
URL 42

Thank you for buying
Learning Ionic

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Spring Application
Development
ISBN: 978-1-78398-732-0 Paperback: 288 pages

Gain expertise in developing and caching your
applications running on the JVM with Spring

1.	 Build full-featured web applications,
such as Spring MVC applications,
efficiently that will get you up and
running with Spring web development.

2.	 Reuse working code snippets handy for
integration scenarios such as Twitter, e-mail,
FTP, databases, and many others.

3.	 An advanced guide which includes Java
programs to integrate Spring with Thymeleaf.

WordPress Web Application
Development - Second Edition
ISBN: 978-1-78217-439-4 Paperback: 404 pages

Build rapid web applications with cutting-edge
technologies using WordPress

1.	 Develop rapid web applications using the core
features of WordPress.

2.	 Explore various workaround techniques to
prevent maintenance nightmares by identifying
the limitations of WordPress.

3.	 A practical guide filled with real-world
scenarios that will guide you through how
to build modular and scalar applications.

Please check www.PacktPub.com for information on our titles

Xamarin Cross-platform
Application Development
Second Edition
ISBN: 978-1-78439-788-3 Paperback: 298 pages

Develop production-ready applications for iOS and
Android using Xamarin

1.	 Write native iOS and Android
applications with Xamarin.iOS and
Xamarin.Android respectively.

2.	 Learn strategies that allow you to share code
between iOS and Android.

3.	 Design user interfaces that can be shared
across Android, iOS, and Windows Phone
using Xamarin.Forms.

Learning Meteor Application
Development [Video]
ISBN: 978-1-78439-358-8 Duration: 01:52 hours

An informative walkthrough for creating a complete,
multi-tier Meteor application from the ground up

1.	 Master the fundamentals for delivering clean,
concise Meteor applications with this friendly,
informative guide.

2.	 Implement repeatable, effective setup and
configuration processes and maximize your
development efficiency on every project.

3.	 Utilize cutting-edge techniques and templates
to reduce the complexity of your applications
and create concise, reusable components.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Ionic – Powered by AngularJS
	Understanding the separation of concerns
	AngularJS components
	AngularJS directives
	AngularJS services
	AngularJS resources
	Summary

	Chapter 2: Welcome to Ionic
	Mobile Hybrid Architecture
	What is Apache Cordova?
	What is Ionic?
	Software setup
	Install Node.js
	Install Git
	Install Bower
	Install Gulp
	Install Sublime Text
	Install Cordova and Ionic CLI

	The platform guide
	Hello Ionic
	The browser developer tools setup
	Google Chrome
	Mozilla Firefox

	The Ionic project structure
	The config.xml file
	The www folder

	Scaffolding the tabs template
	Scaffolding the side menu template
	generator-ionic
	Installing generator-ionic

	Summary

	Chapter 3: Ionic CSS Components
and Navigation
	Ionic CSS components
	The Ionic grid system
	The page structure
	Buttons
	Lists
	Cards
	Ionicons
	Form elements
	Integrating Ionic CSS components with AngularJS

	The Ionic router
	A simple two-page app

	Summary

	Chapter 4: Ionic and SCSS
	What is Sass?
	Setting up SCSS in our Ionic project
	The manual setup
	The Ionic CLI task

	Working with Ionic SCSS
	Basic swatch

	Understanding the Ionic SCSS setup
	Using variables and mixins

	The SCSS workflow
	Building a swatch
	Summary

	Chapter 5: Ionic Directives and Services
	Ionic directives and services
	The Ionic Platform service
	registerBackButtonAction
	The on method
	Headers and footers

	Content
	ion-content
	ion-scroll
	ion-refresher
	ion-infinite-scroll
	$ionicScrollDelegate
	Navigation
	ion-view
	Ionic view events
	ion-nav-bar
	ion-nav-buttons
	$ionicNavBarDelegate
	$ionicHistory
	Tabs and side menu

	Ionic loading
	The Action Sheet service
	Popover and Popup services
	$ionicPopup

	The ion-list and ion-item directives
	Gesture directives and services
	Utilities

	Summary

	Chapter 6: Building a Bookstore App
	An introduction to the Bookstore application
	The Bookstore architecture
	The server architecture
	The server-side API documentation
	The client architecture
	Code on GitHub
	A Bookstore demo
	The development flow

	Setting up the server
	Building the application
	Step 1 – Scaffolding the side menu template
	Step 2 – Refactoring the template
	Refactoring the menu
	Refactoring the module name
	Adding a run method and modifying routes
	Refactoring templates

	Step 3 – Building authentication, localStorage, and the REST API factory
	The Ionic loading factory
	The localStorage factory
	The Authentication factory
	The REST API factory

	Step 4 – Creating controllers for each route and integrating with the factory
	The application controller
	The browse controller
	The book controller
	The cart controller
	The purchase controller

	Step 5 – Creating templates and integrating with the controller data
	The Login template
	The Browse template
	The Book template
	The Cart template
	The Purchase template

	Summary

	Chapter 7: Cordova and ngCordova
	Setting up a platform-specific SDK
	The Android setup
	The iOS setup

	Testing the setup
	Testing for Android
	Testing for iOS

	Getting started with Cordova plugins
	The Ionic plugin API
	Add a plugin
	Remove a plugin
	List added plugins
	Search plugins

	The Cordova whitelist plugin
	ngCordova
	Setting up ngCordova
	Legend
	$cordovaToast
	$cordovaDialogs
	$cordovaFlashlight
	$cordovaLocalNotification
	$cordovaGeolocation

	Summary

	Chapter 8: Building a Messaging App
	The Ionic Chat app
	Firebase
	Setting up a Firebase account
	AngularFire

	The application architecture
	Authentication
	The application flow
	Previewing the app
	Data structure
	Cordova plugins
	Code on GitHub

	Developing the application
	Scaffolding and setting up the app
	Installing the required Cordova plugins
	Getting the Google API key
	Setting up routes and route authentication
	Setting up services/factories
	Setting up a map directive
	Setting up controllers
	Setting up templates
	Setting up SCSS

	Testing the application
	Summary

	Chapter 9: Releasing the Ionic App
	Preparing the app for distribution
	Setting up icons and splash screens
	Updating the config.xml file

	The PhoneGap service
	Generating installers using the
Cordova CLI
	Android installer
	iOS installer

	The Ionic package
	Uploading the project to Ionic cloud
	Generating the required keys

	Summary

	Appendix: Additional Topics and Tips
	Ionic CLI
	Ionic login
	Ionic start task
	No Cordova flag
	Initialize a project with SCSS support
	Listing all Ionic templates
	App ID

	Ionic link
	Ionic info
	Ionic templates
	Ionic browsers
	Ionic lib
	Ionic state
	Ionic ions
	Ionic resources
	Ionic server, emulate, and run
	Ionic upload and share
	Ionic view
	Ionic help and docs

	Ionic Creator
	Ionic.io apps
	Ionic Push
	Ionic Deploy
	Ionic Vagrant box
	Ionic Sublime Text plugins
	Summary

	Index

