
ffi rs.indd 04/15/2016 Page i

Linux® Server Security
Hack and Defend

Chris Binnie

ffi rs.indd 04/15/2016 Page ii

Linux® Server Security: Hack and Defend

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-27765-1
ISBN: 978-1-119-27767-5 (ebk)
ISBN: 978-1-119-27764-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services of
a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/
or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or website may provide or recommendations it may make. Further, readers should
be aware that Internet websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016937233

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Linux is
a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

ffi rs.indd 04/15/2016 Page iii

I was terrible at school. I failed maths so many times, I can’t even count.

—Stewart Francis

ffi rs.indd 04/15/2016 Page v

About the Author
Chris Binnie is a technical consultant who has worked online with Linux systems for
almost two decades. During his career, he has deployed many servers in the cloud and on
banking and government server estates. As well as building an autonomous system network
in 2005 and serving HD video to 77 countries via a media streaming platform that he archi-
tected and built, he has written for Linux Magazine and ADMIN Magazine for a number of
years. Outside of work, Chris enjoys the outdoors, watching Liverpool FC, and extolling the
virtues of the unerring Ockham’s razor.

About the Technical Editor
Rob Shimonski (www.shimonski.com) is an experienced entrepreneur and an active par-
ticipant in the business community. Rob is a best-selling author and editor with over
20 years’ experience developing, producing, and distributing print media in the form of
books, magazines, and periodicals. To date, Rob has successfully helped create over 100
books that are currently in circulation. Rob has worked for countless clients, including
Wiley Publishing, Pearson Education, CompTIA, Entrepreneur magazine, Microsoft, McGraw-
Hill Education, Cisco, and the National Security Agency. Rob is also an expert-level archi-
tect with deep technical experience in protocol capture and analysis, and the engineering
of Windows and Unix systems.

ffi rs.indd 04/15/2016 Page vii

Project Editor
Adaobi Obi Tulton

Technical Editor
Rob Shimonski

Production Editor
Dassi Zeidel

Copy Editor
Marylouise Wiack

Production Manager
Katie Wisor

Manager of Content Development and
Assembly
Mary Beth Wakefield

Marketing Managers
Lorna Mein
Carrie Sherrill

Professional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Kathy Pope, Word One New York

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image
© TCmake/Getty Images, Inc.

Credits

ix

ftoc.indd 04/15/2016 Page ix

Contents

Preface . xiii

Introduction . xv

Chapter 1: Invisibility Cloak . 1

Background .. 1
Probing Ports ... 1
Confusing a Port Scanner .. 2

Installing knockd ... 2
Packages .. 3
Changing Default Settings ... 3
Altering Filesystem Locations .. 4

Some Confi g Options .. 5
Starting the Service ... 5
Changing the Default Network Interface ... 5
Packet Types and Timing ... 5

Testing Your Install ... 6
Port Knocking Clients ... 7

Making Your Server Invisible ... 7
Testing Your iptables .. 8
Saving iptables Rules .. 9

Further Considerations .. 10
Smartphone Client .. 10
Troubleshooting ... 10
Security Considerations .. 10
Ephemeral Sequences ...11

Summary .. 12

Chapter 2: Digitally Fingerprint Your Files . 13

Filesystem Integrity .. 13
Whole Filesystem .. 16
Rootkits ... 17
Confi guration ... 19
False Positives .. 21
Well Designed ... 22
Summary .. 23

x

Contents

ftoc.indd 04/15/2016 Page x

Chapter 3: Twenty-First-Century Netcat . 25

History .. 25
Installation Packages .. 27

Getting Started .. 27
Transferring Files.. 29

Chatting Example ... 30
Chaining Commands Together .. 30
Secure Communications ... 31
Executables .. 33
Access Control Lists .. 34
Miscellaneous Options ... 34
Summary .. 35

Chapter 4: Denying Service . 37

NTP Infrastructure .. 37
NTP Refl ection Attacks .. 38
Attack Reporting .. 40
Preventing SNMP Refl ection ..41
DNS Resolvers ... 42
Complicity .. 43
Bringing a Nation to Its Knees ... 44
Mapping Attacks ... 45
Summary .. 46

Chapter 5: Nping . 49

Functionality ... 49
TCP .. 50
Interpreter ..51
UDP ... 52
ICMP .. 52
ARP ... 53
Payload Options .. 53
Echo Mode .. 54
Other Nping Options .. 57
Summary .. 58

Chapter 6: Logging Reconnoiters . 59

ICMP Misconceptions ... 59
tcpdump ... 60
Iptables ...61
Multipart Rules ... 64
Log Everything for Forensic Analysis .. 64
Hardening .. 65
Summary .. 67

xi

Contents

ftoc.indd 04/15/2016 Page xi

Chapter 7: Nmap’s Prodigious NSE . 69

Basic Port Scanning .. 69
The Nmap Scripting Engine .. 71
Timing Templates .. 73
Categorizing Scripts ...74
Contributing Factors .. 75
Security Holes .. 75
Authentication Checks .. 77
Discovery ... 78
Updating Scripts ... 79
Script Type ... 80
Regular Expressions .. 80
Graphical User Interfaces ... 81
Zenmap .. 81
Summary .. 82

Chapter 8: Malware Detection . 85

Getting Started ... 85
Defi nition Update Frequency ... 85
Malware Hash Registry ... 86
Prevalent Threats ... 86
LMD Features ... 86
Monitoring Filesystems ... 88
Installation .. 88
Monitoring Modes ... 90

Confi guration ... 91
Exclusions .. 91
Running from the CLI ... 92
Reporting .. 92
Quarantining and Cleaning ... 93
Updating LMD .. 94
Scanning and Stopping Scans .. 94
Cron Job .. 96
Reporting Malware ... 96
Apache Integration ... 96

Summary .. 97

Chapter 9: Password Cracking with Hashcat . 99

History .. 99
Understanding Passwords .. 99

Keyspace ..100
Hashes..101

Using Hashcat ..103
Hashcat Capabilities ..103

xii

Contents

ftoc.indd 04/15/2016 Page xii

Installation ...103
Hash Identifi cation..104
Choosing Attack Mode ...106
Downloading a Wordlist ...106
Rainbow Tables ...107

Running Hashcat ...107
oclHashcat ..110
Hashcat-Utils ... 111
Summary ... 111

Chapter 10: SQL Injection Attacks . 113

History ...113
Basic SQLi ...114
Mitigating SQLi in PHP ...115
Exploiting SQL Flaws .. 117
Launching an Attack ..118
Trying SQLi Legally ..120
Summary ...121

Index . 123

xiii

fl ast.indd 04/15/2016 Page xiii

T
here’s little question that the knowledge required to secure systems and networks
in an effective manner needs to be continually kept up to date. However, not all tech-
nical professionals want to become full-fl edged security professionals; instead, they

prefer to focus on other areas, despite their role demanding many of the required skills.

It seems like every other day the news reports another sensational attack and makes those
working in the fi eld count themselves lucky that their clients weren’t the target. As our
reliance on responsive connectivity and well-written software grows, so do the rewards for
successfully compromising an online service.

The intention of this book is to offer a broad overview of both system and network threats.
Rather than focus on one specifi c facet of online security, my aim is to examine a number
of diverse areas, providing you, the reader, with enough knowledge so that you may pursue,
in greater detail, those that interest you. Each of the chapters in this book explores aspects
of security that I have found interesting on my journey as an Internet user, which, some-
what worryingly, now spans almost two decades.

The diversity of the subjects within this book will hopefully help you to secure your
online services and also provide you the opportunity to experiment with common tools
that hackers use. This is intended to benefi t everyone, helping technical professionals
to gain a better understanding of how attackers will identify and then try to exploit the
vulnerabilities of a system or network. Elements of the knowledge contained in this book
can be wielded to devastate online services, steal data, and reveal encrypted passwords.
With great power ...

Preface

xv

fl ast.indd 04/15/2016 Page xv

Introduction

C
onsider for a moment that even highly publicized online attacks might be simple
to carry out. The steps involved in launching an attack on a system or network can
range from highly complex to frighteningly simple. This can be the case if a system is

left unsecured with some well-known buggy software.

The modus operandi of a less experienced attacker may simply be the automation of seem-
ingly endless port scans, opening a connection and promptly closing it, or tirelessly search-
ing for a banner that reveals the version number of the service listening behind the port.
If any versions match those listed in their vulnerability database, then a fresh target is
identifi ed by the attacker. Up to this point in an attack, as it is an almost fully automated
approach, you might even say that it’s nothing more than computers attacking computers.

Conversely, sophisticated attackers use a wide variety of approaches to disrupt or gain
access to a system or network. They are not only experienced and intelligent, but also
innovative, patient, and cunning. They employ social engineering, build customized hard-
ware, and practice sleight of hand. During an attack, they adapt their methodology as
the defender reveals their cards, and the attack evolves, sometimes rapidly. Much of the
attack’s impact comes from being well prepared; the sheer number of attack vectors that
might be tested during initial reconnaissance is high.

Securing online services is a little like pushing water uphill, and I take no pleasure in say-
ing that however well secured a service or system is, there will always be a way to breach
or disrupt it. As bold a statement as that may be, keep in mind that even if a system or
network isn’t vulnerable today, there’s an exceptionally high chance that it will be at some
point in the future.

Sadly, this means that, barring the destruction of the power source for a server or net-
worked device, the very act of switching on any electronic device effectively represents
an attack vector for someone to exploit. This is a reality that technical professionals have
long faced. The resulting approach to online security is one of weighing up how valuable
the successful exploit of your online systems and networks might be to attackers versus the
budget you have available to secure your infrastructure. You might also try to reduce the
value of a single prize, for example, by separating your mail servers from your web servers.
If one cluster of machines is compromised, then hopefully the other cluster will not be sus-
ceptible if it’s behind a different fi rewall and using an alternative operating system.

Putting night terrors aside, thankfully, very few highly sophisticated attackers actually
exist, against which your defenses will fail to one degree or another (sometimes within a
matter of minutes). However, as the Internet matures, there are an increasing number of

xvi

Introduction

fl ast.indd 04/15/2016 Page xvi

profi cient attackers who can wield the power of other compromised systems and services,
causing serious headaches for unsuspecting victims.

Furthermore, the motives for attempting attacks are varied and sometimes unpredictable.
They might include receiving kudos from the hacking community, one-upmanship on a vic-
tim, a training exercise for wannabe novices, or simply fi nancial gain. And, considering the
most common demographic involved, let’s not forget thrill seekers.

If your service is prone to certain types of unwanted attention, such as your web applica-
tion being continually peppered with probes looking for security holes, then common sense
dictates that you focus primarily on getting your developers to fi x your application’s fl aws.
Conversely, if you are running an e-mail service, then you need to be absolutely sure that
the software that you opted to roll out across all of the mail servers in your cluster is kept
up to date, and patched frequently and promptly. By focusing on the most obvious weak-
nesses, it’s possible to limit the attack surface that you are likely to present to medium-
skilled attackers, and to reduce the chances of them gaining a foothold on the rest of your
infrastructure. Once you’re content that your primary attack vector is mostly secured, you
can concentrate on plugging the less obvious security holes.

It may help to focus your thoughts about security with a few simple questions. First, what
are you trying to protect? For example, is there sensitive, secret information hidden deep
inside a database, fronted by multiple fi rewalls and bastion hosts, or are you protecting an
online service that absolutely must stay available to its users around the clock, every day
of the year? This question is important because it affects how you bolster your defenses
and potentially changes the defensive choices that you will make. You might, for example,
pay top dollar every month for a network-traffi c-cleaning service to help protect you
against Denial-of-Service attacks, as opposed to buying several expensive, high-end hard-
ware fi rewalls to secure your assets.

Second, how would you contain a security breach? If one server or device on your net-
work is breached, then will that automatically mean other hosts will suffer the same fate?
If that’s the case, then clearly your security policy has serious issues that need to be
addressed.

Third, how will you recover from a security breach? You might also be concerned about
what happens if an attacker has discovered how your redundancy works and at what stage
your failover services will be activated. There may be little point in simply rebuilding a
primary server or blindly restoring network service if you don’t know how an attacker man-
aged to breach the security in the fi rst place. Are you able to quickly restore services using
an alternative vendor’s equipment or software? If so, then you might reduce the likelihood
of the same attack penetrating your security again, allowing you to restore some, if not all,
services while investigating how the attackers got in.

xvii

Introduction

fl ast.indd 04/15/2016 Page xvii

How This Book Is Organized
The chapters contained within this book can be read in any order and are a collection of secu-
rity topics that have interested the author on his journey as an Internet user over the years.

The topics vary from the theory of past, current, and future attacks, to the mitigation and
defense from a variety of online attacks, all the way to empowering readers to perform mali-
cious attacks themselves (in the hope they will learn how to defend against such attacks).

By separating the various topics into chapters, the subjects can be referenced and returned
to in the future to allow the reader to recount the content in greater detail. The content of
each chapters is as follows:

Chapter 1: Invisibility Cloak: If an attacker can’t see your server and isn’t aware of its exis-
tence, then there isn’t any attack vector to exploit in the fi rst place. We discuss and demon-
strate how to continue using services in production but without the unwelcome attention of
attackers.

Chapter 2: Digitally Fingerprint Your Files: There are a number ways of keeping an eye on
the integrity of your server’s fi lesystems to ensure attackers haven’t gained access. In this
chapter we look at both a manual method and an automated tool that checks for rootkits.

Chapter 3: Twenty-First-Century Netcat: Steeped in history, the modern-day version of
Netcat, thanks to its multitude of advanced features, has become a hacker’s tool of choice.
Learn how to spot if such a tool is being used against your servers and additionally how to
utilize its industry-leading functionality.

Chapter 4: Denying Service: Only a handful of the world’s largest Internet infrastructure
providers can withstand the devastating effects of a full-fl edged, high-capacity Distributed
Denial of Service attack. In this chapter we discuss the topic in detail and even comment
on an entire country losing Internet connectivity for three weeks due to such an attack.

Chapter 5: Nping: Knowing which services a host is running is only half the battle. This
extension of the powerful Nmap security tool allows you to check just that on any host and
also craft custom packets with unique payloads.

Chapter 6: Logging Reconnoiters: Although certain probes executed against your server
might seem harmless enough, there is little doubt that being aware of how they work helps
you secure your server further. We examine several facets of an attacker reconnoitering
your server’s vulnerable points.

Chapter 7: Nmap’s Prodigious NSE: Many users will have used Nmap for simple port scans,
but few know that the security tool includes the ability to exploit remote machines too. We
explore just some of the many possibilities starting with the plethora of scripts that Nmap
ships with by default.

xviii

Introduction

fl ast.indd 04/15/2016 Page xviii

Chapter 8: Malware Detection: A sometimes entirely silent threat that has plagued
Windows systems for years comes in the form of illegitimately installed software. The dam-
age that can be done to a system by malware ranges from annoying pop-up windows to
full-fl edged online banking compromises. In this chapter we learn how to deploy a sophisti-
cated, frequently updated anti-malware solution on Linux.

Chapter 9: Password Cracking with Hashcat: Technical professionals might be alarmed
to discover that one password-cracking tool all but guarantees that it can crack a hashed
password. This means that if access to your hashed password is gained illegitimately, then
it’s just a matter of time before an attacker can see your password in plain text. This chap-
ter walks you through the process, step by step.

Chapter 10: SQL Injection Attacks: In one prominent survey, SQL injection attacks were
listed as the most prevalent online attack. Despite the fact that this type of attack dates
back to the late 1990s, even today a frighteningly large number of such attacks successfully
exploit websites belonging to enterprises and key online services through poor program-
ming practices. This chapter offers some useful historical information along with step-by-
step instructions on how to identify and exploit vulnerable online services.

Who Should Read This Book
This book was written for mid-level admins, software hackers, and other IT professionals.
It is however, hopefully, written in such a way that anyone who is curious will be able to
quickly discern which sections are suitable for those interested in security but don’t neces-
sarily have a strong understanding of the Linux command line. The aim is that some read-
ers will go on to research a specifi c chapter’s subject matter in greater detail to help bolster
their knowledge on that subject further, while other areas will be of less interest to their
needs and potentially used for referencing at a later date.

In other words there is no difference in the levels of experience required on a per-chapter
basis, although those chapters that focus more heavily on the command line may require
greater effort for a novice.

Summary
 Let’s hope that by increasing your understanding of a hacker’s tools and mind-set, and
staying on top of the latest security developments, you are not subjected to an all-too-
common realization these days: that you no longer have control of your own systems or
networks, but somebody else does.

1

c01.indd 04/15/2016 Page 1

CHAP T ER

1
Invisibility Cloak

I
magine that you could hide a server from the Internet but still have access to your ISP’s superior
bandwidth. Without making any changes, you would be able to securely use it as a fi le reposi-
tory, among many other things.

You’d also have full access to the command line so that you could start and stop or even install
any services that you wanted to use. The choice would be yours, whether you ran those services
briefl y and then closed them down, or left them running and visible to the outside world for a
period of time.

This is possible to achieve using a technique called port knocking. You can disguise your server by
closing all network ports to the outside world, genuinely making it invisible. The single port that
you might choose to open up at will, by using a prearranged “door-knock,” could be for your SSH
server or for some other service. In this chapter, you’ll see how you can create an invisible server
along with some options that you might want to consider.

Background
By disguising the very existence of a server on the Internet, at best you can run a machine in
private, and at worst, even if its existence is known, you will reduce the attack surface that an
attacker can target by limiting the time ports are open and even partially visible.

Probing Ports
Before beginning, let’s take a closer look at network ports on a server, so you’ll have a frame of ref-
erence. If you’ve ever used security tools such as Nmap, then you may be familiar with the initially
confusing premise that some ports appear to be closed when in fact they are not. Nmap makes the
distinction between whether a nonopen port has a service (a daemon) listening behind it or not.

Nmap refers to closed ports as those that don’t have a daemon listening behind them but do appear
to be open or at least potentially available. If Nmap refers to fi ltered ports, it means that a fi rewall
of some kind is preventing access to the IP address that is scanning the system in question. This is
partly to do with TCP RST packets, and there are also three other states that Nmap reports back on:
unfi ltered, open|fi ltered, and closed|fi ltered. If you want more information on how these states are
different, go to https://nmap.org/book/man-port-scanning-basics.html.

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

2

Chapter 1: Invisibility Cloak

c01.indd 04/15/2016 Page 2

Confusing a Port Scanner
Now that you know how ports may present themselves to port scanners, let’s look at how to
obfuscate the response you give back in order to confuse sophisticated port scanning tech-
niques. The most obvious tool of choice, thanks to its powerful feature set, would be the
kernel-based fi rewall Netfi lter, more commonly known as iptables.

Here’s how it works. For TCP packets, you want to manipulate how you respond to port
probes by using iptables to generate a REJECT request. For other protocols you want to sim-
ply DROP the packets. This way, you get closed, not fi ltered, responses from Nmap. Based
on what I’ve gathered from most online opinions (and it seems that this argument is both
contentious and changeable), a closed port is the best response that you can hope for. This
is because you’re not openly admitting to blocking any ports with a fi rewall, nor is the port
simply open because a daemon is running behind it.

To explain a little further, under normal circumstances, an unreachable port would usually
generate an ICMP Port Unreachable response. You don’t want these errors to be generated,
however, because that would mean a server was listening on that port in the fi rst place and
you would give your server’s presence away. The tweaked REJECT response that you want
to generate instead is applied as follows:—reject-with tcp-reset. This helps you to
respond as if the port were unused and closed, and also not fi ltered.

You simply append this snippet to the end of each of your iptables rules:

-j REJECT—reject-with tcp-reset

By using this technique, you’re simply making sure you’re not giving away unnecessary
information about your system.

Note that in the port knocking example that you’re about to look at, you won’t be using
that iptables option. This is because you won’t be running additional services to your SSH
server. However, this background information will help you understand how an attacker
might approach a machine’s ports and how you can apply a—reject-with tcp-reset
option to other services.

There is some debate about using iptables DROP versus REJECT responses in your rules. If
you’re interested, you’ll fi nd some insightful information on the subject at

www.chiark.greenend.org.uk/~peterb/network/drop-vs-reject.

Installing knockd
Now that you are armed with some useful background information, I’ll walk you through
how to install a port knocker on your server. As we continue you might consider which

3

Chapter 1: Invisibility Cloak

c01.indd 04/15/2016 Page 3

1

services you may wish to run hidden from the Internet at large. There might be an occasion
to run a web server or a mail server on an unusual port for a few hours, for example.

Packages
Let’s look at installing the package that will give your system port knocking functionality.
Called knockd, this package is installed in different ways depending on your system.

On Debian derivatives you install the package as follows:

apt-get install knockd

On Red Hat derivatives you install it as follows:

yum install knockd

A main confi g fi le controls most of the confi g required for knockd. On a Debian Jessie
server, this fi le resides at /etc/knockd.conf. Take a look at Listing 1.1, which shows my
main confi g fi le, to see how knockd works.

LISTING 1.1 The main config file. The port sequences and (importantly) -I INPUT
have been altered from the defaults.

[options]
 UseSyslog
[openSSH]
 sequence = 6,1450,8156,22045,23501,24691
 seq_timeout = 5
 command = /sbin/iptables -I INPUT -s %IP% -p tcp—dport 22 -j

ACCEPT
 tcpflags = syn

[closeSSH]
 sequence = 3011,6145,7298
 seq_timeout = 5
 command = /sbin/iptables -D INPUT -s %IP% -p tcp—dport 22 -j

ACCEPT
 tcpflags = syn

Changing Default Settings
In Listing 1.1, you can see a section for setting up your options at the top. The other two
sections are the actions that you want to perform when knockd opens up SSH access or
when you shut down your port access. Both sections also include the default port knocking

4

Chapter 1: Invisibility Cloak

c01.indd 04/15/2016 Page 4

sequence to trigger those actions under the sequence option. After installing knockd,
I immediately changed those ports from the defaults to avoid reducing the effectiveness of
my server security. The defaults are ports 7000, 8000, and 9000 to open up SSH access and
ports 9000, 8000, 7000 to close access. As you can see, I’ve added more ports to open up the
access so someone will be less likely to stumble across their combination with an arbitrary
port scan.

After changing any settings, you can simply restart knockd as follows on systemd-based
operating systems:

systemctl restart knockd.service

After installing knockd, if you want more background information on the package, then
Debian Jessie has a brief README fi le that you can fi nd at /usr/share/doc/knockd/
README.

This helpful README fi le discusses how knockd works, among other things. It uses a library
called libpcap, which is also used by several other packages such as tcpdump, ngrep,
and iftop (which capture packets for inspection). Thanks to its clever design, knockd
doesn’t even need to bind to the ports, which it’s covertly listening on, in order to monitor
raw traffi c.

Altering Filesystem Locations
Events such as connections, disconnections, or errors are logged directly to your system’s
syslog, and may be written to the /var/log/messages or /var/log/syslog fi le. If
you don’t want this information to be buried among other system log activities, or go to
the bother of parsing an unwieldy log fi le, then you can create your own custom log fi le. I
prefer to do this so that debugging is much clearer, and I might use an automated tool or a
custom shell script to e-mail logs to myself daily so that I can monitor suspicious events.
Because I’m keeping all knockd logs in one place, the information is easier to parse for
scripts and other tools.

[options]
 LogFile = /var/log/portknocking.log

Changing the logfi le’s location is a common solution, but you can also alter where the
Process ID fi le is written when the knockd service is launched. You can change the location
under the [options] section of the confi g fi le, as follows:

[options]
 PidFile = /var/tmp/run/file

5

Chapter 1: Invisibility Cloak

1

c01.indd 04/15/2016 Page 5

Some Confi g Options
Now that you've got a better understanding of how the main confi g fi le is set up, you can
examine how to confi gure it for your needs. Among a number of other tasks, you will con-
sider how the timeouts of certain options play a part in setting up your server.

Starting the Service
Don’t be alarmed if you see an error message saying that knockd is disabled. This is a pre-
caution so that until you have fi nished setting it up, knockd won’t introduce unwelcome
changes to iptables.

On Debian Jessie the error message asks you to change the following parameter to 1 in the
fi le /etc/default/knockd:

START_KNOCKD=1

Clearly, you should only do this after double-checking your confi guration or making sure
that your out-of-band access is working as expected.

Changing the Default Network Interface
Once you have confi gured your preferred port sequence, you might want to tweak other
parameters. In the confi g fi le (/etc/default/knockd), you have the opportunity to alter
the KNOCKD_OPTS settings. The example within that fi le is commented out and means that
you can alter the network interface that knockd is listening on, as follows:

KNOCKD_OPTS="-i eth1"

These options will be appended to the knockd service, and you will need to restart your
service to make the changes live, as follows (on systemd machines):

systemctl restart knockd

Packet Types and Timing
In the /etc/knockd.conf fi le, you can alter a few settings to fi nely tune how clients can
connect to you. Referring back to Listing 1.1, under the [openSSH] section, you will add
more options as follows:

[openSSH]
 tcpflags = syn

6

Chapter 1: Invisibility Cloak

c01.indd 04/15/2016 Page 6

 seq_timeout = 10
 cmd_timeout = 15

The tcpflags option means that you can expect a specifi c type of TCP packet to be sent
for knockd to accept it. That’s a TCP “SYN” in this case. The TCP fl ags that you can use are
fin, syn, rst, psh, ack, and urg. If the specifi ed type of TCP packet isn’t received, then
knockd will simply ignore those packets. Be aware that this isn’t how knockd usually works.
Normally an incorrect packet would stop the entire knocking sequence from working, which
would mean that the client would have to start again in order to connect. You can separate
multiple TCP packet types by using commas, and it appears that newer versions (from ver-
sion 0.5 according to the changelog) of knockd can use exclamation marks to negate the
packet type, such as !ack.

Back to the other options in the example. You may have noticed that seq_timeout is
already present in Listing 1.1 by default. However, because you have increased the
number of ports within your sequence setting, you have upped the seq_timeout value
to 10 rather than 5. This is needed because on a slow connection, such as via your smart-
phone, timeouts may occur.

The fi nal option in the example is cmd_timeout. This option applies to what happens after
knockd has received a successful knock. The sequence of events is as follows. First, once
the port knocking has been confi rmed as valid, knockd will run the start_command (refer
to Listing 1.1 if you need a reminder). If this setting is present, then after knockd has
executed the start_command option, it will only wait for the time specifi ed in cmd_
timeout before running the stop_command action.

This is the preferred way to open up your SSH server for access, and then promptly close
it down once your connection is established. You shouldn’t have any problems continu-
ing with your session, but new connections will need to run through the port-knocking
sequence again in order to connect. Think of this action as closing the door behind you
once you’ve entered. Your server will become invisible again, and only your associated traf-
fi c will be visible.

Testing Your Install
Because you are dealing with the security of a server, you should run a few tests to see
that knockd is working as expected. Ideally you will have access to another client machine
to run some tests from. To be completely sure that knockd is opening and closing ports
correctly, I like to test by connecting from a completely different IP address. If you don’t
have access to a connection with a different IP address, then you might be able to drop
your Internet connection periodically so that your ISP will allocate you a new dynamic IP
address to test from. Some broadband providers will do this after a reboot or your mobile
provider might too in addition.

7

Chapter 1: Invisibility Cloak

1

c01.indd 04/15/2016 Page 7

Port Knocking Clients
You can use different clients to create a knocking sequence in order to initialize a connec-
tion and open up your SSH port. You can even manually use tools such as Nmap, netcat, or
Telnet to manually probe the required ports in sequence. The documentation also mentions
that you can use the hping, sendip, and packit packages if they are available. Let’s look at
an example of the knock command that comes with the knockd package.

If you used the openSSH section shown in Listing 1.1, then you would set up your simple
knock command with the following syntax:

knock [options] <host> <port[:proto]> <port[:proto]> <port[:proto]>

I have confi gured TCP ports in Listing 1.1, so you can run the knock command as follows:

knock 11.11.11.11 6:tcp 1450:tcp 8156:tcp 22045:tcp 23501:tcp
24691:tcp

The target host has the IP address 11.11.11.11 in this example. If you want, you can also
put a combination of UDP and TCP ports in Listing 1.1; your client-side knocking sequence
might look like this:

knock 11.11.11.11 6:tcp 1450:udp 8156:udp 22045:tcp 23501:udp
24691:tcp

One nice shortcut is that if you only want to use UDP ports, then you can simply add -u to
the start of the command rather than specifying them explicitly. You can run a command
for UDP ports like this:

knock -u 11 22 33 44 55

Let’s return to your server’s confi g fi le to see how TCP and UDP can be interchanged within
your valid knocking sequence. In order to mix protocols, you would simply alter the
sequence line under the openSSH section as follows:

[openSSH]
 sequence = 6:tcp 1450:udp 8156:udp 22045:tcp 23501:udp
24691:tcp

Making Your Server Invisible
Once you are confi dent that your installation is working as you’d like, you can lock
your server down to hide it from attackers. An attacker may be aware of the IP address
bound to your server or may somehow be able to view traffi c sent and received from that
IP address (for example, they might work for the ISP that the server was hosted with).

8

Chapter 1: Invisibility Cloak

c01.indd 04/15/2016 Page 8

Otherwise, it should be invisible to Internet users. I would experiment with your fi re-
wall if this is not the case. To achieve Nmap’s closed port status, however, the following
approach works for me.

Testing Your iptables
As mentioned earlier, I will use the trusted iptables. Ideally you should have physical
access to the server before locking it down, in case you make a mistake. Failing that, you
should have out-of-band access of some type, such as access via a virtual machine’s console,
a secondary network interface that you can log in through, or a dial-up modem attached
to the machine. Be warned that unless you’ve tested your confi guration on a develop-
ment box fi rst, there’s a very high chance of making a mistake and causing problems. Even
though I’ve used port knocking before, I still get caught out and lock myself out of a server
occasionally.

With that warning in mind, let’s begin by looking at your iptables commands. Be careful
when integrating these rules with any rules you already have. It might be easier to over-
write your existing rules after backing them up. First, you need to make sure that your
server can speak to itself over the localhost interface, as follows:

iptables -A INPUT -s 127.0.0.0/8 -j ACCEPT

You must now ensure that any existing connections are acknowledged and responded to, as
follows:

iptables -A INPUT -m conntrack—ctstate ESTABLISHED,RELATED -j
ACCEPT

You’re using conntrack to keep track of associated connections. Your connections can
continue to operate once they have been initiated successfully. Now, assuming that you’re
only going to open up TCP port 22 for your SSH server and no other services, you can con-
tinue. As a reminder of how to do this, referring to Listing 1.1, add the following command
to open up TCP port 22:

command = /sbin/iptables -I INPUT -s %IP% -p tcp—dport 22 -j ACCEPT

Pay attention to this line. If you left an “append” by using -A INPUT in the command, you
would be locked out by iptables. It must be an -I for “insert” so that the rule is entered as
the fi rst rule and takes precedence over the others.

You might be wondering what the %IP% variable is. Port knocking is clever enough to sub-
stitute the connecting IP address in the -s fi eld, in place of the %IP% value.

Now here’s where you have to be careful. There’s no going back if this doesn’t work the way
you’d expect, so make sure that you have tested the rules on a virtual machine or that you

9

Chapter 1: Invisibility Cloak

1

c01.indd 04/15/2016 Page 9

have out-of-band access to the server just in case. You block all inbound traffi c to your
server as follows:

iptables -A INPUT -j DROP

If you run the following command to check your iptables rules, then you won’t see any
mention of TCP port 22 and your SSH port:

iptables -nvL

You will, however, see such a rule (very briefl y if you’ve set up a low value for the cmd_
timeout setting) in iptables once you have successfully logged in.

If you are having problems at this stage, then keep reading for some ways to troubleshoot
your confi guration and increase your levels of logging. Otherwise, you should now have a
server whose ports all report as nonexistent, thus making the server invisible, as shown in
Figure 1.1.

FIGURE 1.1

Nmap seems to think there’s no machine on that IP address.

Saving iptables Rules
To ensure that your iptables rules survive a reboot, you should install a package called
iptables-persistent on Debian derivatives, as follows:

apt-get install iptables-persistent

You can then save your rules with a command like this one:

/etc/init.d/iptables-persistent save

Or, you can revert to the saved confi g by running this command:

/etc/init.d/iptables-persistent reload

On Red Hat derivatives (on presystemd machines), you can use this command:

/sbin/service iptables save

And to restore rules, you run this command:

/sbin/service iptables reload

10

Chapter 1: Invisibility Cloak

c01.indd 04/15/2016 Page 10

For the above to work on systemd Red Hat derivatives, you could try installing this pack-
age fi rst:

yum install iptables-services

Further Considerations
There are a few other aspects to port knocking that might be helpful to you. Let’s have a
look at them now.

Smartphone Client
On my Android smartphone, my preferred SSH app is called JuiceSSH (https://juic-
essh.com). It has a third-party plug-in that allows you to confi gure a knocking sequence
as part of your SSH handshake. This means that there’s no excuse for you not to employ
port knocking, even when you’re on the road and without a laptop.

Troubleshooting
If you run the command tail -f logfile.log on your port knocking log fi le, you
will see various stages being written to the log. This will include whether a valid port is
knocked, and importantly, if it was knocked in the correct sequence or not.

A debugging option also gives you the opportunity to increase the levels of logging pro-
duced by knockd. If you carefully open the fi le /etc/init.d/knockd and look for the
OPTIONS line, then you can add an uppercase D character (Shift+d) to any existing values
on this line as follows:

OPTIONS="-d -D"

The additional logging should be switched off once you have diagnosed and solved your
issue to prevent disk space from fi lling up unnecessarily. The -d simply means run knockd
as a daemon in case you’re wondering. This should remain as it is for normal operation.

Back to the client for a moment. You can also add verbosity to the output, which the
“knock” client generates by adding a -v option. Tied in with the debugging option, this
should give you helpful feedback from both the client and server sides of your connections.

Security Considerations
When it comes to the public information associated with your server, a reminder that your
ISP should not be publishing forward or reverse DNS information about the IP address that
you are using for your server. Your IP address should appear to be unused and unallocated
in order for it to be invisible.

11

Chapter 1: Invisibility Cloak

1

c01.indd 04/15/2016 Page 11

Even on your public services such as HTTP, you need to remember to obfuscate the versions
of the daemons that are in use. The common way to do this with the world’s most popular
web server, Apache, is to change the “ServerTokens” to “Prod” and set “ServerSignature” to
“Off”. These are hardly cutting-edge confi guration changes, but might mean an automated
attack ignores your server when a new zero-day exploit is discovered because your Apache
version number wasn’t in its attack database.

Another aspect to consider is discussed in the knockd documentation. It mentions that if
you use -l or --lookup service launch options to resolve hostnames for your log entries,
then it might be a security risk. There’s a chance of some information being leaked to an
attacker if you do. The attacker may be able to determine the fi rst port of a sequence if it’s
possible to capture DNS traffi c from your server.

Ephemeral Sequences
What about using a different approach to knocking sequences? It’s also possible to use port
knocking with a predefi ned list of port sequences that expire after they are used just once.
Referring back to Listing 1.1 and your main confi g fi le, you can add this option to your
open and close sections to enable one-time sequences if you want:

[openSSH]
 One_Time_Sequences = /usr/local/etc/portknocking_codes

If you remove the sequence line in Listing 1.1 and replace it with this code, then knockd
will take its sequences from the fi le specifi ed in the path instead.

The way that knockd deals with one-time sequences is unusual. It reads in the next avail-
able sequence from that fi le and then comments out that line following a successful con-
nection with a valid knock. It simply adds a hash or pound character to the start of the
line that has the sequence present. The next connection triggers the same sequence.

The documentation states that you should leave space at the start of each line. Otherwise,
when the # character is added to the start of the line, you might fi nd it has been overwrit-
ten unintentionally, meaning that you’re locked out.

Inside your sequences fi le, you can add one sequence per line. That fi le follows the same
format as the sequences option within the main confi g fi le.

The documentation also points out that you can put comments in by preceding them with a
character but bad things will happen (such as being locked out of your server) if you edit
the sequences fi le when knockd is already running.

Once you understand the basic features of knockd, it is an excellent addition to experiment
with. During testing, you could enter telephone numbers that you are able to memorize or
some other sequence of numbers so that you’re not continually looking up an insecure list.

12

Chapter 1: Invisibility Cloak

c01.indd 04/15/2016 Page 12

For example, you might consider rotating through fi ve telephone numbers, split up into
valid port numbers.

Summary
 In addition to making your server invisible, I’ve covered how your server appears to the
Internet before launching an attack. In order to fully obfuscate your server using port
knocking, you should think carefully about public information such as reverse DNS entry,
which might give away an IP address as being in use. You might also consider using NAT
to hide a server and dynamically change its IP address periodically, only letting adminis-
trators know which IP address is in use at a given time via a secret hostname, published
covertly in DNS on an unusual Domain Name.

There are many other facets to protecting a server; still, I’ve hopefully covered enough
ground to make you consider what information is leaked to the public and may potentially
be used in future exploits, as well as hiding a server if you need to do so.

13

c02.indd 04/15/2016 Page 13

CHAP T ER

2
Digitally Fingerprint Your Files

T
here are a number of good reasons to keep an eye on your server security. Few sysadmin types
absorb the necessary security knowledge required to keep their infrastructure safe without
enthusiasm and effort. If you’re anything like me, there have been a few bumps along the way,

such as when I had a server compromised around the turn of the millennium thanks to a nasty PHP
bug, or when I was faced with and repelled two relatively signifi cant DDoS attacks.

This chapter will cover another attack vector, rootkits, and a fantastic piece of software called
Rootkit Hunter (you may know it as rkhunter). You will start off, however, by exploring how to
monitor your fi lesystem’s important fi les, such as its executables.

Filesystem Integrity
Many years ago I used Tripwire (http://sourceforge.net/projects/tripwire). It’s now
referred to as Open Source Tripwire, thanks to the availability of other products. Tripwire ran peri-
odically (overnight using cron) and used cryptographic hashing to monitor any fi le changes on
your system.

By generating and recording the hashes of any fi les visible on the fi lesystem initially, during
its fi rst run, Tripwire was able to alert the administrator if any hashes didn’t match those it
had recorded on each subsequent run. If the fi le had been altered in any way the hash would be
changed. It’s a clever approach, despite being I/O resource intensive on older hardware, and has
since given birth to great grandchildren. One example is the popular AIDE (Advanced Intrusion
Detection Environment), which is described as “a fi le and directory integrity checker” at http://
aide.sourceforge.net. I would certainly recommend trying AIDE or Tripwire on a development
virtual machine if you get the chance. Be warned, however, that if you are lax with the initial con-
fi guration, then you will be bombarded with false positives.

This type of security often appears under the umbrella of host-based intrusion detection systems,
or HIDS, and it was reportedly one of the fi rst types of software-based security because mainframes
had few externally risky interactions over networks.

If you don’t want to run nightly fi lesystem checks or you aren’t in a position to receive daily system
reports, then that’s not a problem. You can opt to go for an older approach where you only scan
your fi lesystem once, after you have built your server, in order to collect information about what
fi les are installed on the fi lesystem. I will explain why this is useful in a moment.

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

14

Chapter 2: Digitally Fingerprint Your Files

c02.indd 04/15/2016 Page 14

You might be surprised that a tool you’ve almost certainly used for another purpose can be
easily used as a security assistant.

Step forward the md5sum command. When downloading Unix-type fi les in the past, you
have probably been offered the option to check the integrity of your potential download by
verifying the MD5sums for those fi les. For example, the MD5sums are usually present on the
website that you get your Linux installation ISO fi le image from.

As you can see in Figure 2.1, this is what you’re faced with when downloading Debian Jessie
from this Dutch mirror: http://ftp.nl.debian.org/debian/dists/jessie/main/
installer-amd64/current/images/.

FIGURE 2.1

You can download Debian Jessie from the website and also check your MD5sums for security.

If you open up the fi le MD5SUMS, then you can see the contents of Figure 2.1, which con-
tains hashes for each fi le.

LISTING 2.1 An abbreviated sample of the MD5SUMS file

bf0228f479571bfa8758ac9afa1a067f ./hd-media/boot.img.gz
ee6afac0f4b10764483cf8845cacdb1d ./hd-media/gtk/initrd.gz
19fdf4efebb5c5144941b1826d1b3171 ./hd-media/gtk/vmlinuz
4dc2f49e4bb4fe7aee83553c2c77c9da ./hd-media/initrd.gz
19fdf4efebb5c5144941b1826d1b3171 ./hd-media/vmlinuz
2750aec5f0d8d0655839dc81cc3e379f ./netboot/debian-installer/amd64/boot-

screens/adtxt.cfg
aca8674ab5a2176b51d36fa0286a40bb ./netboot/debian-installer/amd64/boot-

screens/exithelp.cfg
2e88361d47a14ead576ea1b13460e101 ./netboot/debian-installer/amd64/boot-

screens/f1.txt
e62b25d4b5c3d05f0c44af3bda503646 ./netboot/debian-installer/amd64/boot-

screens/f10.txt

15

Chapter 2: Digitally Fingerprint Your Files

c02.indd 04/15/2016 Page 15

2

Within Listing 2.1, in the left column, you can see the MD5sum of each fi le and the relevant
fi lename to the right. This is to prevent someone else from sneaking a fi le into the place of
a legitimate one, which could infect your clean operating system (OS) installation.

MD5sums fi rst compute and then check against MD5 digests. You might think (in a rela-
tively sophisticated way) that by checking MD5sums you are effectively creating a digital
fi ngerprint for each fi le, which can be queried later.

You can easily try using MD5sums yourself (the MD5sum command is bundled within the
package coreutils on my machine and should be readily available to almost all distribu-
tions). Try a command like this one:

md5sum /home/chrisbinnie/debbie-and-ian.pdf

The response you receive might be something like this:

3f19f37d00f838c8ad16775293e73e76 debbie-and-ian.pdf

Now back to the fi les listed next to your Linux distribution. Download the MD5SUMS fi le
into the same directory as the main ISO fi le (ISO is named after the ISO 9660 fi le system
if you’re wondering). By doing so, you can save yourself the trouble of manually checking
each fi le on the installation media that you’re using. This is because that fi le includes all
MD5sums for the fi les in that directory. Now that you have the MD5sums for all the fi les,
you can check them for validity with the following command (-c also stands for --check):

md5sum -c MD5SUMS

Listing 2.2 shows the results from running the -c option. You might say that MD5sums are
binary: results are either OK or not OK.

LISTING 2.2 A sample of the output from checking against my MD5SUMS file using the
-c option

compare.png: OK
config2.png: OK
config3.png: OK
config4.png: OK
works_1.tar: OK
package_inst.jpg: OK

What should you look out for if a fi le didn’t match its original MD5sum? In Listing 2.3
you can see that an alarm bell is ringing (with a FAILED warning) and that you are also
informed of a problem at the end of the results.

16

Chapter 2: Digitally Fingerprint Your Files

c02.indd 04/15/2016 Page 16

LISTING 2.3 An MD5sum that does NOT match and shows as “FAILED”

test.sh: FAILED
bootstrap_AWS.pp: OK
hiatus.png: OK
md5sum: WARNING: 1 of 111 computed checksums did NOT match

It should go without saying that, without making these checks when you’re installing your
OS from a downloaded ISO or from a magazine’s DVD, you are gambling with the integrity of
your fi les and therefore risking your system’s integrity.

Now that you’ve been reminded of how you can check if there’s been any tampering with
your freshly downloaded fi les, let’s look at how to use the powers of cryptographic hashes
to help you tell if an installed system has been compromised.

Whole Filesystem
Once you’re happy with your OS installation and have run through the requisite postinstall
fi ne-tuning, you should consider recording the MD5sums of your key system fi les. You do
this in order to have a reliable record to compare against during a suspected compromise.

Of course, doing this with the md5sum command probably isn’t going to be very easy with-
out writing a shell script; this is because it’s diffi cult to get full directory trees of fi les
working with the md5sum command.

Fear not, though: someone clever has addressed this problem with an effi cient piece of soft-
ware called md5deep (http://md5deep.sourceforge.net). According to its website, in
addition to the functionality you can expect from MD5sum, you can also enjoy the follow-
ing features:

You can

 ■ Ignore certain fi le types (which is very useful when you want to ignore temporary
fi les and so on).

 ■ If you’re inspecting a massive number of fi les (which you would on a fresh
OS installation), then md5deep offers a very helpful ETD (Estimated Time of
Delivery)—in other words, how long a command will take to complete.

 ■ You can run md5deep in recursive mode to effortlessly pick up the numerous
hidden subdirectories on your fi lesystem, which would otherwise be arduous (if not
impossible to do accurately) to record manually.

 ■ With compatibility in mind, you also import different types of hashes (for example,
from EnCase, the National Software Reference Library, ILook Investigator, and
HashKeeper).

17

Chapter 2: Digitally Fingerprint Your Files

2

c02.indd 04/15/2016 Page 17

I’m sure you’ll agree that’s exactly what you’re looking for. Having completed your new
machine’s build, you can simply install md5deep and run it across your entire fi lesystem
(or at least parts of it). One serious caveat is to keep the resulting hash list somewhere else
than on the server. This is for obvious reasons. If your server is compromised, then it’s very
easy for an attacker to overwrite your MD5sum list with new, illegitimate MD5sums and
deceive you.

If for some reason you can’t get hold of md5deep (because you’re working in a closed envi-
ronment, for example), then it would be worth running the md5sum command over directo-
ries containing key binaries, such as this (nonexhaustive) list:

/bin, /sbin, /usr/bin, /usr/sbin, /etc

Rootkits
Let’s now move onto a different approach to fi le fi ngerprinting.

If you’re interested in protecting your fi les against rootkits (which contain code that allows
someone else to access or control one of your machines), then you should consider an excellent
tool called RootKit Hunter (also called rkhunter; http://rkhunter.sourceforge.net).

At install time, the RootKit Hunter manual warns that if you’re trying to run the soft-
ware on a presumably compromised system and the following standard commands or
utilities aren’t present, then you probably won’t be able to run it successfully: cat, sed,
head, or tail.

I’m pointing this out for good reason: these commands might be corrupt or missing on a
compromised machine. If you’ve installed RootKit Hunter to hunt down evil fi les and you
discover that your system has been compromised, then you really need to rebuild your
machine. Don’t assume that the remedial work you do from that point onward will make
your machine secure enough for ongoing use. It’s simply not worth it due to the time you
will spend repairing the machine again in the future.

In other words, use software to identify successful attacks for exactly that purpose: identi-
fi cation. Also, always assume that you’re going to need to run through a full rebuild after-
ward. I know from experience that these insidious rootkits are like fi lesystem limpets. You
might fi nd (as I have in the past) that you spend more time chasing your tail attempting to
clean the system than a rebuild would actually take.

Lectures aside, let’s look at using Rootkit Hunter. Once you have installed this sophis-
ticated software, using the following commands, you can continue easily without any
problem.

18

Chapter 2: Digitally Fingerprint Your Files

c02.indd 04/15/2016 Page 18

On Debian derivatives:

apt-get install rkhunter

On Red Hat derivatives:

yum install rkhunter

Assuming that your installation didn’t throw up any errors, you can run a few simple com-
mands to get started. The following command populates the fi le properties database with
data about the fi les on your machine:

rkhunter—propupd

Next, in order to scan any new software being installed and to trigger after software
updates have occurred, you should enable the APT_AUTOGEN option to yes in the fi le
/etc/default/rkhunter. I have only verifi ed this on Debian derivatives with Apt
Package Manager; there might be a different option on Red Hat derivatives.

Having made that change, you’re now ready to make your fi rst run of RootKit Hunter, as
follows:

rkhunter—check

Note that there are subtle differences between versions or distributions, so try adding -c
or --checkall if errors appear.

Periodically you can also update your rkhunter threat list with the following command (you
could create a specifi c cron job if you like) to keep track of the latest threats:

/usr/local/bin/rkhunter—update

Figure 2.2 shows an abbreviated output that is generated after running this command. The
output details the initial checks that the software makes.

As you can see, Rootkit Hunter is paying attention to the key directories that contain
executable fi les (/usr/sbin in this example). These are exactly the types of binary fi les
(among many others) that become infected by a rootkit.

Think for a moment of the Greeks and the Trojan horse allegory. In addition to those root-
kits that immediately infect binaries, a piece of code can remain dormant for any period of
time until executed by a legitimate user or on a schedule. Following that, a system compro-
mise takes place.

19

Chapter 2: Digitally Fingerprint Your Files

2

c02.indd 04/15/2016 Page 19

FIGURE 2.2

An abbreviated display of the output from running rkhunter--checkall

Confi guration
To confi gure Rootkit Hunter, you can edit its long confi g fi le, which can be found at /etc/
rkhunter.conf.

To receive overnight reports on the integrity of your machine, you just need to edit two
confi g parameters, one defi ning the e-mail address of the recipient and the latter of which
is adjustable if the standard mail command won’t work on your system by default.

Once inside the confi g fi le, look for these salient lines, uncomment them, and adjust them
to your needs:

#MAIL-ON-WARNING=me@mydomain root@mydomain
#MAIL_CMD=mail -s "[rkhunter] Warnings found for ${HOST_NAME}"

The fi rst line, once uncommented, specifi es where to send the reports (multiple addresses
can be separated by a space). The second line deals with the mail command and the sub-
ject line for the e-mail reports sent to those addresses.

20

Chapter 2: Digitally Fingerprint Your Files

c02.indd 04/15/2016 Page 20

Simply re-run the software with rkhunter—check to test if these changes work correctly
and check your e-mail inbox.

To inspect the cron job that helps schedule when these reports will be generated, you can
look in the fi le /etc/cron.daily/rkhunter. By default, cron.daily will generally run
between 0100 hours and 0500 hours each morning on many distributions.

If you want to change how the e-mails look, then you can search for the following lines in
the cron.daily fi le:

if [-s "$OUTFILE" -a -n "$REPORT_EMAIL"]; then
 (
 echo "Subject: [rkhunter] $(hostname -f)—Daily report"
 echo "To: $REPORT_EMAIL"

As ever, it might be prudent to create a copy of this fi le before altering it.

Back to the results that I generated from running Rootkit Hunter. In Figure 2.3 you can see
some of the rootkits that Rootkit Hunter searched for.

FIGURE 2.3

A partial list of some of the rootkits that Rootkit Hunter searches for

As you can see in Figures 2.3 and 2.4, there are a number of facets that Rootkit Hunter
looks for; the checks are very comprehensive.

21

Chapter 2: Digitally Fingerprint Your Files

2

c02.indd 04/15/2016 Page 21

FIGURE 2.4

Another example of a comprehensive Rootkit Hunter search

False Positives
If you receive any false positives, then you can whitelist them within the confi g fi le /etc/
rkhunter.conf.

If the volume of false alarms is a problem, then you can do this by uncommenting a confi g
line that matches an entire directory within that main confi g fi le like this:

ALLOWHIDDENDIR=/dev/.initramfs

If Rootkit Hunter incorrectly suspects that one of your binaries has been replaced by a
script, then you can remove the warning with this option:

SCRIPTWHITELIST="/usr/sbin/lsof"

For individual fi les you can also use this confi g setting:

ALLOWDEVFILE="/dev/.udev/rules.d/99-root.rules"

Keep in mind that any hidden fi les or directories (those with names beginning with a dot)
are almost always suspicious to fi lesystem scanners. In Figure 2.5 you can see another part
of the Rootkit Hunter scan results that refers to checking for any malicious hidden fi les.

It’s clear that the comprehensive checks made by Rootkit Hunter are well considered. Along
with the fi lesystem and the process table, it also checks for networking anomalies, as you
can see in Figure 2.6.

22

Chapter 2: Digitally Fingerprint Your Files

c02.indd 04/15/2016 Page 22

FIGURE 2.5

Part of the Rootkit Hunter scan involves the /dev partition and hidden fi les and directories.

FIGURE 2.6

The trusty Rootkit Hunter also makes a number of network checks.

Well Designed
The Rootkit Hunter developers describe it as a “host-based, passive, post-incident, path-
based tool.” If you’re wondering, the “passive” reference means that you need to schedule
the software or run it manually. The “path-based” description means it just deals with fi les
and doesn’t operate heuristically like a virus checker might.

There is a section at the bottom of the documentation included with rkhunter that
I enjoyed reading. It’s a well-written primer for anyone who is new to online security or any
experienced users who just need a refresher.

23

Chapter 2: Digitally Fingerprint Your Files

2

c02.indd 04/15/2016 Page 23

It fi rst notes that before an attack is attempted, there is always some form of reconnoiter-
ing, so you should pay close attention to your log fi les. I remember having a script that
watched out for traceroutes and ICMP traffi c on one of my servers.

Again, repeating my earlier point, the manual goes on to say that this tool isn’t a substi-
tute for increasing the security of your machine. Don’t treat it as one, but instead as a tool
that helps to identify issues.

Interestingly, the Rootkit Hunter documentation also points you to one of their competi-
tors, the excellent chkrootkit tool, which is an older incarnation. The manual suggests that
only using one tool within a class of tools is sometimes not enough to gain all the informa-
tion you need. Therefore, for the sake of completeness, you should benefi t from the overlap
that running both chkrootkit and rkhunter offers. That’s a good point that should apply
across all security facets.

Finally, the manual discusses what to do if you discover a compromise and you don’t have
the required skills to deal with a successful exploit. Along with going to www.cert.org,
you may want to go to www.linuxsecurity.com.br/info/IDS/intruder_detec-
tion_checklist.html, which offers a list of steps for how to react to an online attack.

You are told by those with experience of such attacks that you should consider which
authorities you can report the exploit to, and submit a report as soon as possible—instead
of waiting weeks or months—in case something can be done to prevent other compromises.
As ever, common sense applies.

Summary
You’re now armed with the ability to digitally fi ngerprint the fi les on your fi lesystem. As a
result, you can quickly compare former MD5sums to see if your fi les have been altered, and
also run Rootkit Hunter, either every night or periodically. The nice thing about rootkit
checkers is that they also offer peace of mind by having a scheduled scan point out a confi g
mistake that you’ve made. You can then hopefully remedy the mistake before it causes you
further security issues.

From what I have covered, there are two rules that you should keep in mind:

 ■ Always keep your recorded MD5sums (or any other hashes) somewhere safe
(encrypted and password protected) and far away from the server.

 ■ Don’t rely on rootkit tools to reduce your efforts postevent; just use them to iden-
tify the issue. From there, fi gure out how a compromise was possible before you set

24

Chapter 2: Digitally Fingerprint Your Files

c02.indd 04/15/2016 Page 24

about rebuilding your machine. There’s no point in spending a lot of time rebuild-
ing a machine only to have the same security hole exploited again later. You might
be shocked to hear how often this occurs.

When running less critical services, with a little forethought, the securing of a machine
connected to the Internet usually doesn’t involve too much work. And that’s even when,
inevitably, some time-consuming overheads are introduced, such as when overnight report-
ing is added on changes to your system. By taking precautions initially with your machine
builds, hackers on the Internet can be held at bay so that you can get on with your work
in peac e.

25

c03.indd 04/09/2016 Page 25

 CHAP T ER

3
Twenty-First-Century Netcat

O
ne of the fi rst Linux packages that caused me to marvel at its capabilities was the powerful
netcat (https://nmap.org/ncat). There have been a few versions over the years, each
with a subtly different feature set. If you haven’t used it, then you’re in for a treat. It’s been

described as the only tool that a sysadmin will ever need, which may be a little optimistic, but
netcat is genuinely exceptional.

For a start, it’s incredibly lightweight, and its fi lesystem footprint is miniscule. In addition, a ver-
sion of netcat is included in many distributions by default. After you’ve explored some of its back-
ground, you’ll look at how you can use it to your benefi t.

History
Over the years there have been a number of implementations of netcat. The original Unix/Linux
version was written in 1995, and in 1998 a Windows version appeared due to its popularity. I once
read that a poll conducted by the Nmap Project (https://nmap.org) discovered that after their
own security tool, Nmap, their users opted for netcat as their second tool of choice.

Netcat’s functionality also helped boost its popularity in nefarious circles. It’s therefore commonly
used in attack reconnaissance (and attacks themselves) in addition to well-intentioned white hat
activities. As a result, you may not fi nd full-fl edged (modern) versions of netcat on enterprise
infrastructure, due to security fears and its packages being blacklisted as a threat.

I’ll try to succinctly explain some of netcat’s parentage. Confusion is easy because the original net-
cat (whose binary executable is called nc) was revamped by the Nmap Project, which refers to it as
“Netcat for the 21st Century.” The result of the revamp was a binary called ncat. The man page for
ncat dutifully acknowledges the original version with the following closing comment:

The original Netcat was written by *Hobbit* hobbit@avian.org. While Ncat isn’t built on
any code from the “traditional” Netcat (or any other implementation), Ncat is most defi -
nitely based on Netcat in spirit and functionality.

This version of netcat (ncat) bills itself (modestly) as being able to “[c]oncatenate and redirect
sockets,” but that’s a gross understatement of its feature set.

There’s a version of ncat available in Red Hat Enterprise Linux (RHEL) 7, for example, and I sus-
pect, along with the original netcat (nc), it has been available in other releases in various incar-
nations over the years. There’s also an original netcat version (bundled by default with Debian
Jessie builds, and whose binary is also called nc), and it headlines its abilities as being the

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

26

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 26

“TCP/IP Swiss army knife.” The following RHEL 7 web page points out a few of the differ-
ences between these two incarnations: https://access.redhat.com/documenta-
tion/en-US/Red_Hat_Enterprise_Linux/7/html/Migration_Planning_Guide/
sect-Red_Hat_Enterprise_Linux-Migration_Planning_Guide-Networking
.html#sect-Red_Hat_Enterprise_Linux-Migration_Planning_Guide-
Networking-New_network_configuration_utility_ncat.

If you visit that web page, you’ll see that a number of command line options have changed.
Either they no longer apply or the newer ncat might have simply changed their meaning.

It’s also worth noting that without access to root user privileges, your success between
versions may vary, so don’t get too frustrated if it takes a couple of attempts to get netcat
working the way you’d like. Here’s an excellent article that shows you what to do when
your version of netcat doesn’t support the ?e or ?c options to run a shell: https://pen-
testing.sans.org/blog/2013/05/06/netcat-without-e-no-problem.

Back to the RHEL 7 web page that I mentioned earlier. It states, with some confi dence, that
the newer ncat does not include certain functionality that its parent, netcat, did include.
It may be that these features simply weren’t as useful on the modern Internet. The NMAP
Project website includes the following statement:

Ncat adds many capabilities not found in Hobbit’s original nc, including SSL sup-
port, proxy connections, IPv6, and connection brokering. The original nc con-
tained a simple port scanner, but we omitted that from Ncat because we have a
preferred tool for that function.

They are, of course, referring to their famous nmap port scanning tool, which they suggest
should accompany ncat. In my opinion, they are a formidable force when coupled together,
and I would suggest exploring the massive feature set that Nmap includes.

Back to netcat. Now that you’re suitably confused, I’ll further confuse things by mention-
ing that there were also two versions of the original netcat (I mean nc and not ncat in this
case). The truly original netcat was written by Avian Research programmers in 1995, and
the last version was released as version 1.10 in 1996. A GNU version of netcat was then
released (http://netcat.sourceforge.net), whose most recent version, 0.7.1, was
released in January 2004. The two “nc” netcats are worth mentioning because you may
have diffi culty using the same command line options between the two different versions.
I’ve fallen into this trap in the past, and it caused a lot of head scratching when the docu-
mentation didn’t match what the software was doing.

The Nmap Project’s own netcat page (http://sectools.org/tool/netcat) also
reveals that there were even more derivatives, including socat (www.dest-unreach.
org/socat), Cryptcat (http://cryptcat.sourceforge.net), pnetcat (http://
stromberg.dnsalias.org/~strombrg/pnetcat.html), and sbd (you will fi nd
an unoffi cial information site at www.question-defense.com/2012/04/09/
sbd-backtrack-5-maintaining-access-os-backdoors-sbd).

27

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 27

3

Installation Packages
For clarity, Debian Linux and therefore Ubuntu Linux use the package names shown in
Table 3.1. On Red Hat derivatives, you might try this package name for a version of nc:

yum install netcat

And for the Nmap Project’s ncat, you might try this package:

yum install nmap-ncat

I suspect that installing a package and then making sure you are reading the correct main
page for that package (in case two versions of netcat are installed on the same machine)
will prove successful.

TABLE 3.1 Debian and Ubuntu Package Names

Package Name Description

netcat A “dummy” package for compatibility, which can safely be removed

netcat-openbsd The OpenBSD package version with support for IPv6, proxies, and Unix
sockets

netcat-traditional The original package by Hobbit, which lacks many features found in
netcat-openbsd

netcat6 A rewrite of the original netcat with IPv6 support and enhanced support
for UDP

nmap This is the package that you need if you want to use Nmap’s ncat on
Debian/Ubuntu.

To avoid confusion, I will be focusing on ncat (and the ncat command) as opposed to net-
cat (and therefore the nc command). I’ll refer to ncat and netcat interchangeably from now
on — or, of course, just ncat if further clarity is needed.

Getting Started
Let’s see what the twenty-fi rst century’s equivalent of netcat (by that I mean ncat, of course)
can do for you, starting with some basics. Netcat boldly states that it contains powerful fea-
tures that can manipulate data (both the reading and writing of data) from a network via the
command line. It’s highly reliable and can work with both TCP and UDP (it will also work well
with IPv6). It can do impressive things with SSL (Secure Sockets Layer) connections and can
also work well with proxies — both the SOCKS4 and HTTP “CONNECT” varieties.

Judging by the excellent programming practices involved in making the Nmap secu-
rity tool, the quality of the ncat programming will also be very high. The Nmap netcat

28

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 28

documentation makes a point of stating that it not only uses completely rewritten code
(and doesn’t borrow from the original version), but that it also employs Nmap’s thoroughly
battle-tested networking libraries.

Having mentioned HTTP proxies, I’ll start by using netcat as a web browser. If you type this
command, along with an arbitrary website you want to visit, then you’ll be able to connect
to TCP port 80:

ncat -C www.chrisbinnie.tld 80

As soon as you’ve typed this command and hit the Enter key, you need to type the follow-
ing text, and then hit Enter a couple of times:

GET / HTTP/1.0

Be warned that if you’re not really quick, the command will timeout and you’ll have to
try again. If you’ve ever queried HTML from the command line before, then you probably
won’t be surprised at the excess of information that scrolls up your screen after doing so.
If you’re interested, the -C option throws a Carriage Return and Line Feed (CRLF) into the
mix to allow for compatibility with some network protocols.

You can also use netcat as a daemon that listens. There are numerous ways of breaking into
servers, and one way of leaving access open for a return visit is by leaving netcat listening
on an obscure port that a sysadmin might not be aware of.

You’ll think about that in a moment, but focus on HTTP for now. The ncat documentation
provides an excellent example of how to turn your simple netcat binary into a basic web
server. First, you will create a simple fi le. You won’t use the .html extension, however,
because your fi le won’t be plain HTML; instead, it’ll be one half of an HTTP conversation.
You’ll call the fi le index.http with the content shown in Listing 3.1.

LISTING 3.1 One half of an HTTP conversation, saved in the file index.http

HTTP/1.0 200 OK

<HTML>
<BODY>
Nothing to see here, move along.
</BODY>
</HTML>

As Listing 3.1 shows, it’s mostly HTML, but the top line acknowledges the visiting web cli-
ent’s request fi rst. Next you make netcat listen for connections, and present your fi le if it’s
asked to do so by running this command:

ncat -l 127.0.0.1 80 < index.http

29

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 29

3

By the way, if you’ve just thought about serving all sorts of other content using netcat,
then you’re correct. If you’ve ever manually typed an SMTP conversation in via the com-
mand line, then you probably won’t be surprised to discover that the <CR><LF> option —
the -C option, that is — works just as well with e-mail conversations.

Transferring Files
Think for a moment about moving a fi le from one host to another just using netcat at either
end. You don’t need complex SFTP daemons or resource-demanding applications for this.

You’ll call your two example machines Lionel and Luis, and you’ll watch Lionel passing a fi le
to Luis. On Luis, you will run this command:

Luis> # ncat -l 1234 > bootstrap.pp

You can see that the -l switch simply asks netcat to “listen” for inbound traffi c. You’re
listening for traffi c on TCP port 1234, and you’re outputting the inbound data to a fi le
called bootstrap.pp; this fi le is a puppet manifest that you don’t want to copy and paste
between hosts because it’s long and complex. Now that Luis is expecting to be passed some
data, this is what you enter on Lionel to send it:

Lionel> # ncat --send-only Luis 1234 < bootstrap.orig

Having run this command on Lionel, the netcat instance on Luis will automatically quit.
Before Luis has quit, it will output the contents of the fi le bootstrap.orig on Lionel to
the fi le bootstrap.pp on Luis — a simple, clever action. The only things that might trip
you up are, fi rst, the versions (just use ncat for simplicity) and second, the fi rewall. Open
your fi rewall carefully if you have fi rewall issues.

The ncat documentation also shows you how to use the tar command for moving multiple
fi les. Consider this example:

Luis> # ncat -l | tar xzv
Lionel> # tar czv <list of files> | ncat --send-only Luis

As you can see, you’re sending data from Lionel to Luis again, this time piping through
the tar command at both ends. My favorite example is using compression to speed up the
transfer (you can easily move massive fi les too) and, of course, transfer less data. Look at
this method using compression:

Luis> # ncat -l | bzip2 -d > massive.file.bz
Lionel> # cat massive.file.orig | bzip2 | ncat --send-only Luis

In this example, you’re using the trusty bzip2 command for the compression and then
duplicating massive.file.orig on Lionel to a fi le called massive.file.bz on Luis.
Note that you’re using the cat command to read massive.file.orig and to pipe it into
bzip2; that is not a typing mistake.

30

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 30

Chatting Example
Let’s have some fun chatting with a user on another computer. You may have seen the
wall command in the past, which broadcasts to all logged-in users. You can use netcat for
two-way chatting. Pick a port on the recipient machine (Luis again) and politely ask netcat
to listen, as follows:

Luis> # ncat -l 1234

Next, run the following command. Having run that command, anything you type on Lionel
(hitting the Enter key afterward to send each line of chat content) will be mirrored on
Lionel’s console, and vice versa.

Lionel> # ncat Luis 1234

In the following snippet, you can see how a conversation looks from Lionel’s perspective.

ncat 127.0.0.1 1234
Want to hear my two rules for success?
Ok!
Rule #1: Never tell anyone everything that you know.
Ok, and...
Hello, are you there?

This example shows one of many unexpected features that are included with netcat. I’ll
leave that functionality for you to explore and continue to examine some of the other
options that are available. Netcat almost suffers from an embarrassment of riches in rela-
tion to its feature set, and there are simply far too many to cover here.

Chaining Commands Together
One of the nice features included with ncat (but not nc) is the ability to chain multiple
instances into a single command. This makes ncat very versatile; you can simply pipe the
output of one netcat command into another, Unix style. Let’s look at an example from the
netcat documentation. For the following task, I’ll introduce the machine “Neymar” as your
third host. Lionel is still your sender, and in this scenario Luis is the man in the middle.
Take a moment to look at these commands:

Neymar> # ncat -l 1234 > my_new_big_file.txt
Luis> # ncat -l 1234 | ncat Neymar 1234
Lionel> # ncat --send-only Luis 1234 < lengthy_file.txt

As you can see, in reverse, Lionel is passing his lengthy fi le onto Luis before he then chains
the two netcat commands together in order to forward the fi le onto Neymar. This trium-
virate works well, especially if Luis can’t talk directly to Neymar because of a fi rewall or
routing.

31

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 31

3

However, the documentation does point out a problem with this scenario. The issue is that
Neymar can’t talk back to Lionel. As you’d expect from the powerful netcat, there’s a work-
around. When I look at this example, I immediately think of exploits deployed for nefarious
gain. (I’m sure you’ll see why in a moment.) Now look at the following set of commands:

Neymar> # ncat -l 1234 > newlog.log
Luis> # ncat -l 1234 --sh-exec "ncat Neymar 1234"
Lionel> # ncat --send-only Luis 1234 < logfile.log

To my mind, the scary addition in this example is the -sh-exec option, which executes
a new shell command when Luis receives data. Imagine the damage that you can cause
with such an option, being able to launch any shell command. In this example, when Luis
receives a connection, he spawns a new netcat instance and handles both the inputs and
outputs of Lionel and Neymar’s communications. It’s very sophisticated.

Here is a port-forwarding example from the documentation, dealing with HTTP again, where
you execute a shell command to forward traffi c:

ncat -l locahost 80 --sh-exec "ncat www.chrisbinnie.tld 8100"

You simply forward data destined for TCP port 80 on your local machine to another host on
TCP port 8100.

Secure Communications
I mentioned SSL earlier and how netcat can even interact with encrypted traffi c, even
though it’s a worrying possibility to consider. I’ll start this section with an example of how
netcat can encrypt its own traffi c. You use the -C switch again (sometimes called connect
mode):

ncat -C --ssl ssl.chrisbinnie.tld 443

Here you’re assuming that your trusted machine, ssl.chrisbinnie.tld, is running an
SSL server on TCP port 443 and you can therefore connect to it. Surprisingly, even for SSL
servers that use certifi cates for authentication, the mighty netcat can be very useful.

You simply point netcat at the location of your PEM certifi cate and private key fi les, using
the --ssl-cert and --ssl-key options respectively within the command. You can point
both options at the same fi le if you like.

One important factor when exchanging certifi cates, along with encrypting communications,
is the act of confi rming (via a third-party service’s stamp of approval) that the SSL server’s
identity is valid. Netcat is able to service such a request by using this command:

ncat -C --ssl-verify ssl.chrisbinnie.tld 443

32

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 32

According to the documentation, netcat is able to check against SSL certifi cates as follows:

Verifi cation is done using the ca-bundle.crt certifi cate bundle shipped with Ncat,
plus whatever trusted certifi cates the operating system may provide. If you want
to verify a connection to a server whose certifi cate isn’t signed by one of the
default certifi cation authorities, use the --ssl-trustfi le to name a fi le containing
certifi cates you trust. The fi le must be in PEM format.

https://nmap.org/ncat/guide/ncat-ssl.html

The docs continue and offer the correct syntax for an SSL command as follows:

ncat -C --ssl-verify --ssl-trustfile <custom-certs.pem> <server>
443

Now that you can confi rm which machine you are connecting to, let’s look at another
SSL function that is available to netcat. It has many applications, as you’ll see when you
explore it further.

This function is referred to as having the ability to “unwrap” SSL. The documentation sug-
gests that if you’re trying to collect e-mail from an SSL-enabled mail server but you don’t
have SSL capabilities available in your mail client, then netcat can assist.

You begin by pointing the aforementioned mail client at your localhost, your local machine,
or IP address 127.0.0.1. With netcat listening locally on TCP port 143 (the port commonly
used for unencrypted IMAP communications), you can then forward your traffi c to the
encrypted port on your mail server, TCP port 993, as follows:

ncat -l localhost 143 --sh-exec "ncat --ssl mail.chrisbinnie.tld
993"

You can use this method for any protocol that uses two hosts, but HTTP, for example, won’t
necessarily work well when multiple hosts are involved.

Netcat can even act as an SSL server. You need to supply a certifi cate that, in a reversal to
the previous example, might be verifi ed by visiting clients.

Without specifying a certifi cate fi le and a private key — and using the same options as
before (--ssl-cert and --ssl-key) — netcat will automatically generate them for you.
You can start netcat by using the -l option (or its --listen equivalent) as follows:

ncat -v --listen –ssl

As you can see in Figure 3.1, the accommodating netcat generates a temporary key to make
things easier for you to get started.

33

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 33

3

FIGURE 3.1

Netcat automatically generates a temporary SSL certifi cate.

Executables
Along with dealing with encryption, you can also execute a command on the shell upon
receiving a connection. Needless to say, you must always consider the potentially disas-
trous security implications of running the following commands. Don’t try anything on
production machines without being very sure of what is going on behind the scenes. In
other words, test these commands on development boxes fi rst and become familiar with the
considerable damage that they can do.

The fi rst (worrying) executable example you’ll look at is the Bash shell itself. It’s not dif-
fi cult to launch, which is very concerning. I have already mentioned that breaking into a
server and leaving an alternative way of accessing it later is possible with netcat. With ncat
you don’t even need to be root to open up a shell. Try it yourself.

On your listening machine (Luis), whose shell you will open up to the world, you run this
command:

Luis> # ncat --exec "/bin/bash" -l 1234 --keep-open

And in your familiar connect-to style (from Lionel), you simply run this command:

Lionel> # ncat Luis 1234

The fi rst time you connect to TCP port 1234, you might suspect that the Bash shell hasn’t
been spawned correctly. However, try typing any valid Bash command, such as requesting a
directory listing:

ls

You will see Luis’s current directory, but on Lionel’s console, which should concern you.
Type commands very carefully, as you won’t get all the usual Bash feedback that you’re
used to, and fi le deletion and command execution is easy.

The highly popular and powerful security tool called Metasploit takes this functional-
ity one step further, making the backdoor persistent. Even if you don’t install Metasploit
and further your knowledge, it’s well worth reading this web page about using netcat

34

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 34

on a Windows machine: https://www.offensive-security.com/metasploit-
unleashed/persistent-netcat-backdoor/. You can see from reading this web page
that it’s relatively easy to write changes to the Windows registry and the fi rewall rules by
following the included instructions.

Whichever operating system you are using, multiple options are available with netcat. Be
warned that during your testing, you can pass many environment variables and cause all
sorts of problems if you’re not careful.

Access Control Lists
With netcat the features keep on coming. You can even add ACLs (Access Control Lists) to
your netcat instances. On a listening netcat daemon, you might add ACLs such as those in
the following examples. You’ll expand on the Bash command you just looked at by dutifully
locking down your port, using an example from the documentation, as shown here:

ncat --exec "/bin/bash" --max-conns 3 --allow 192.168.0.0/24 -l
8081 --keep-open

You can see that you’re only allowing the 254 hosts from the CIDR /24 IP address range
192.168.0.0, and machines are only allowed to open up a maximum of three connections.
The combination of these options adds very welcome versatility.

The opposite of that command might be, using IPv6, a --deny example like the following:

ncat -l --deny 1222:cb88::3b

Here you are allowing all other machines access and only denying this one. This applies
equally to IPv4 as you’d expect.

Alternately, the following method is much more effi cient when enabling or disabling access
for multiple hosts. You simply populate a fi le with your entries. Use both --denyfile and
--allowfile options as follows:

ncat -l --allowfile trusted-hosts.txt

Miscellaneous Options
Incidentally, you can easily jump from the default TCP by using the -u or --udp switches.
You’ll see why that’s useful in a moment.

Similarly, to start using SCTP (Stream Control Transmission Protocol), you can provide net-
cat with the --sctp option.

35

Chapter 3: Twenty-First-Century Netcat

c03.indd 04/09/2016 Page 35

3

Another handy tip is that you can also add up to three instances of the letter v, with -vvv
offering the most verbosity when your commands output results.

In the same way that you used netcat to speak SMTP commands earlier, the powerful netcat
is also capable of speaking Telnet commands. As a result, if you ever fi nd yourself without
access to a Telnet client, then netcat can also help out. There are a few obvious benefi ts to
using netcat instead of Telnet. For a start, netcat is quieter and won’t output data unless
it is sent by the machine that you’ve connected to. There are also a few reserved control
characters, which means that certain binary data will break if you’re using Telnet. Also,
you may have noticed that Telnet quits on quiet (idle) connections and stops running,
which could mean that you won’t receive the entire session’s data. The Telnet command also
doesn’t work well with UDP but, as you know, netcat certainly does.

Summary
 I have only covered a tiny fraction of netcat’s potential in this chapter; there’s simply too
broad a scope to cover.

Hopefully you understand that it’s critically important to know about some of this sophis-
ticated tool’s features, if for no other reason than to reveal more about how an attacker
might deploy them against you.

The next time I need to move fi les around inside a LAN, I’ll be certain to use netcat; it’s
too easy to rely on more cumbersome data transfer tools such as SFTP tools for such simple
tasks. You should avoid using the Telnet command for debugging open ports and connec-
tions and always use netcat instead.

In my case, I’ll also have to remember not to show certain colleagues how to do any of the
above, as there’s a good chance that they will cause horrible damage and leave gaping secu-
rity holes open.

37

c04.indd 03/30/2016 Page 37

CHAP T ER

4
Denying Service

T
here is no denying that without certain critical services working, the Internet would grind to
a halt. Many users would suffer from degraded performance while others might simply experi-
ence a complete outage. Along with the DNS (Domain Name System), the NTP (Network Time

Protocol) is key to the successful operation of the Internet. In this chapter, I’ll spend some time
describing how attackers might try to prevent critical services from working correctly.

Unfortunately for those who are responsible for keeping the Internet working, it’s possible to attack
large sections of the Internet’s DNS and NTP infrastructure using a variety of methods. For exam-
ple, DDoS (Distributed Denial of Service) attacks of the past were primarily designed to take an
online service down or at least disrupt its users in a highly frustrating manner, possibly in order to
gain a competitive advantage or receive payment of a ransom. Current thinking is that such attacks
are now used as smoke screens to disguise other malicious security exploits.

One report, published in 2014 by Kaspersky Lab, estimated that small- to medium-sized busi-
nesses would spend around US$52,000 dollars on a DDoS attack. That fi gure would rise to around
US$444,000 for enterprises that experienced such attacks. When you factor in loss of reputation,
customer ill will at having to use slow online services (if they were available at all), and payment
transactions failing (which might require manual involvement to be resolved postevent), guarding
against such infrastructure challenges is a worthwhile activity. Most worrying is that out of 3,900
organizations across 27 countries that took part in the survey the report was based on, “[m]ore
than one-third (38%) of businesses which provide fi nancial services or operate public-facing online
services have experienced a DDoS attack from April 2013 – May 2014.”

The methods used to cause the denial of access to critical online services come in many forms.
Having seen an increase in refl ection attacks (amplifi cation attacks included) over the past couple
of years, on both NTP and SNMP services, I’ll describe some of the history behind them, what is
involved, and how to mitigate their potentially disastrous effects.

NTP Infrastructure
I have touched upon the fact that critical infrastructure services are common targets for attacks
because they present a high-value prize to an attacker. As DNS and NTP protocols have evolved over
the years, security has, of course, been factored into their design. Consider NTP for a moment.

As you’d expect, there are built-in security mechanisms to assist with the toughening of NTP as a
service. For example, some top-level NTP stratum-1 servers adopt a “Closed Account” option, and
these servers can’t be used without prior consent. Conversely, as you’d expect, as long as you adhere
to their usage policies, OpenAccess servers are readily available for polling. Those RestrictedAccess

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

38

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 38

servers can sometimes be limited for access due to a maximum number of clients or a
minimum poll interval and are occasionally only available to certain types of organizations,
such as academic institutions.

Another NTP security component is that the client software is written in a way to adhere to
the instructions that are generated by those servers that they request the time from. If a
recipient NTP server prefers to, then it can simply block a request. In a similar way to certain
routing and fi rewall techniques, those packets are discarded or black-holed without interven-
tion. In other words, the recipient server of these unwanted packets doesn’t take on extra
system load and simply drops the traffi c that it doesn’t think it should serve a response to.

However, such a response isn’t always helpful, and it’s occasionally better to politely ask
the client to cease and desist, rather than ignore the requests unilaterally. For this reason,
there’s a specifi c type of packet called the Kiss-o’-Death (KoD) packet. If a client is sent an
unwelcome KoD packet, then it will remember that server with an access-denied marker and
look elsewhere for its timekeeping updates, or at least desist for a predefi ned period of time
within rate-limiting thresholds.

There are other good reasons to watch the overall security of NTP. In addition to the
demands on IP addressing and the impact on bank balances from bandwidth usage, you also
need to include the Internet’s NTP infrastructure on the list of services that are about to be
affected by the potentially explosive, exponential growth of the Internet of Things (IoT).
By all accounts, billions of additional devices will soon need to be synchronized, so that
your refrigerator can order some more milk before you run out, among other things.

NTP Refl ection Attacks
Around the start of 2014, a nasty NTP attack surfaced, overwhelming Internet Service
Providers (ISPs) and forcing the Internet community to act swiftly and effectively in order
to contain it. For a short while, at least among victims of the attack, it caused signifi cant
confusion. The frighteningly simple but innovative exploit affected almost all NTP imple-
mentations. This attack was referred to as a refl ection attack, which by its very nature
generates otherwise unwanted traffi c and points that traffi c at a victim. This usually
causes the victim to suffer load or bandwidth capacity problems unless they are supported
by signifi cant underlying infrastructure. In the past, these attacks have been referred to
as challenge-response attacks; however, in my opinion that description isn’t very helpful
because not all refl ection attacks involve authentication, and challenge-response is most
commonly associated with authentication mechanisms.

The 2014 NTP attack followed similar DNS refl ection attacks that had been witnessed fre-
quently in the past. When such a critical service is discovered to have a previously unseen
exploitable attack vector, there’s a scramble by technicians wanting to protect their infra-
structure. Decisions that they are faced with include whether that single service needs to
be immediately disabled in order to keep other services running in the meantime, prior to a

39

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 39

4

patch or confi guration fi x being made available. After all, it is possible to manually set the
time on computers or in many cases allow for a slight inaccuracy of the system clock. Many
services will survive missing 24 hours of synchronized NTP updates before any unwelcome
effects are experienced.

Within these types of attacks, there are two terms that appear frequently. The fi rst is
reflection, which cognates to mirror-like redirection of attack traffi c. Here, many third-
party services usually respond by sending traffi c to a victim (the main target), not the
attacker. This is achieved by forging or spoofi ng the attacker’s IP addresses and thus fool-
ing the third party about who originally requested the traffi c.

Amplifi cation, on the other hand, might best be illustrated as sending one packet of data
as a question and receiving one hundred packets in return as an answer. In the case of a
refl ection attack, this refers to the unsuspecting victim receiving the payload, or a sizeable
answer to a question that they didn’t ask.

Think of three machines in a triangle. Machine A asks machine C a lot of questions on
behalf of machine B. Machine C then sends all of the answers incorrectly to B. Machine B
is overwhelmed by the volume of answers. Machine A is invisible to B, and B doesn’t even
know that A is involved in the attack. For those protecting their infrastructure, this makes
for a challenging diagnosis.

Reportedly the amplifi cation ratio of the DDoS traffi c generated by a standard DNS refl ec-
tion attack is roughly 70:1. In other words, if you have one gigabit of bandwidth available
to you, then you can forward 70 gigabits. The aforementioned refl ection ratios made pos-
sible by the NTP exploit were reportedly from 20:1 to 200:1. You simply needed to look up
a freely available list of public NTP servers to create a frightening amount of NTP traffi c to
fuel your DDoS attack.

The NTP attack was, as is often the case, horrifyingly simple. It was based around a built-
in function that allowed anyone to query the last few hundred servers to connect an NTP
server. The function that was exploited was called monlist; you may also see it appear as
MON_GETLIST. An attacker spoofs the IP address asking the question so that the NTP server
being queried replies to the victim instead of the machine submitting the query. By repeat-
ing that command again and again, the victim soon becomes overwhelmed if thousands of
servers are responding simultaneously. The “amplifi cation” of this “refl ection” attack, where
the amount of data involved in the answers is so much larger than the original question, is
what makes it so devastating. This is because only a relatively small number of originating
servers that are used to make such queries can topple vast sections of infrastructure.

The essence of mitigating such an attack, on an IPv4 system (the fi rst line showing -4) and
an IPv6 system (the second line with -6), comprises the following lines within your NTP
confi g fi le:

restrict -4 default nomodify nopeer noquery notrap
restrict -6 default nomodify nopeer noquery notrap

40

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 40

A very welcome NTP server template, among others, that you can use to help your
public-facing server to avoid being part of these attacks is available at www.team-cymru
.org/templates.html. If you visit that page and click the Secure NTP Template link,
you’re presented with a collection of templates for various platforms including Cisco iOS,
Juniper Junos, and Unix.

Also included is a useful reminder of how to confi gure IPtables to help lock down NTP, as
follows:

iptables -A INPUT -s 0/0 -d 0/0 -p udp --source-port 123:123 -m
state --state ESTABLISHED -j ACCEPT
iptables -A OUTPUT -s 0/0 -d 0/0 -p udp --destination-port 123:123
-m state --state NEW,ESTABLISHED -j ACCEPT

In addition, there’s an interesting note about the potentially damaging implications if you
panic and decide to prevent NTP traffi c into your network by blocking it at the router level.
You should only fi lter UDP port 123 for NTP traffi c if you know exactly what you are doing
because, otherwise, key services will inevitably fail.

Attack Reporting
When that fi rst NTP attack took place, cloud service provider, CloudFlare, announced the
largest DDoS attack ever recorded of its kind. According to CloudFlare, the attack was a
little short of 400 Gbps of traffi c and alarmingly only 4,529 servers were required to gener-
ate that much bandwidth-saturating traffi c across 1,298 different networks. In contrast, a
widely publicized attack that hit Spamhaus (the antispam service provider) reportedly used
30,956 open DNS resolvers to generate a 300 Gbps DDoS. As you can see, that’s a signifi cant
difference in impact on a per-machine basis.

Another protocol that is being used increasingly in DDoS attacks was created in 1988 by
PSINet, which was then one of the world’s largest ISPs (if not the largest) before eventually
becoming subsumed by various mergers and acquisitions.

The Simple Network Management Protocol (SNMP) is present on the vast majority of net-
working devices, such as switches and routers. This useful protocol helps feed statistical
information, such as bandwidth use, back to any software capable of receiving it. Most
important, enabled by default, is an attack vector based on a community string named
“public”. Even if passwords are confi gured by default, they tend to be simple, such as
“private”. This means that even your broadband router poses a potential risk and could par-
ticipate in a DDoS attack. Also consider SNMP-enabled devices belonging to enterprises or
ISPs; there might be dozens of powerful switches and routers on a single network segment
with access to high-capacity bandwidth. As an aside, even printers in offi ces commonly
employ SNMP implementations along with workstations and IP video cameras.

41

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 41

4

Attackers have been witnessed experimenting with SNMP for sizeable refl ection/amplifi ca-
tion attacks. The alarming traffi c ratios are reportedly as much as 1700:1. How accurate
that estimate is remains to be seen, of course, and whether a degree of scaremongering is
present.

In May 2014, Akamai’s DDoS division reported that they had spotted 14 SNMP attacks. Just
under half were in the U.S., and around 18 percent in China.

Preventing SNMP Refl ection
Following a quick check of your /etc/services fi le, you can see the following details for
the default ports used by SNMP:

snmp 161/tcp # Simple Net Mgmt Proto
snmp 161/udp # Simple Net Mgmt Proto
snmptrap 162/tcp # SNMPTRAP
snmptrap 162/udp snmp-trap # Traps for SNMP

To prevent the refl ection of SNMP traffi c originating from your network, you can follow a
deny-by-default practice, making sure that your perimeter fi rewalls don’t let any of this
traffi c out of your LAN and onto the Internet. Of course, this also applies to traffi c com-
ing into your LAN. So often, however, default settings are left unchanged when equipment
is set up in a hurry, upgraded, or confi gured by unskilled personnel, resulting in these
preventative measures being missed. What is most worrying about such an attack is that,
thanks to the sheer number of broadband routers around the planet, it can take a long time
to manually patch some of them (although responsible ISPs can add helpful ingress and
egress fi lters to their networks). Meanwhile, large sections of infrastructure can start to
suffer from performance issues.

The SNMP attack as described by Akamai was attributed to a specifi cally crafted attack
tool. The tool automated SNMP “GetBulk” requests and spoofed the IP address, in the
same way as NTP and DNS refl ection attacks, in order to make sure the victim’s IP address
received the barrages of responses sent in reply to the spurious requests. Thankfully,
this particular attack only applies to an older version of SNMP, version 2. Version 3 offers
greater security and doesn’t open itself up to as much abuse by default.

Worryingly, the key design of this attack was to generate signifi cant amounts of traffi c by
only a few requests and possibly even from a single machine. Criminals can disrupt large
sections of online infrastructure without needing to invest time and resources (and some-
times money to meet the purchase price of a botnet).

42

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 42

DNS Resolvers
Near the end of 2014, another interesting attack came to light. It’s still somewhat
debatable if this was actually intended to be a refl ection attack, but I’ll discuss it here to
add to your knowledge on the subject. As part of their services, Google offers two promi-
nent DNS resolvers with memorable IP addresses:

8.8.8.8
8.8.4.4

These resolvers allow recursive DNS lookups for any individual or device that doesn’t have
a full-fl edged DNS server available. These DNS resolvers will respond with any lookups you
request, either from their cache or via a fresh lookup if a suitable answer doesn’t exist in
their cache. OpenDNS offers similar services but openly discusses the benefi ts of fi ltering
your DNS queries, for the purposes of alerting you, for example, if you attempt to visit a
previously reported phishing site. Their IP addresses are also easy to remember, resilient,
and reliable:

208.67.222.222
208.67.220.220

These (mostly) free services are widely adopted, probably because they offer the conve-
nience of not having the overhead of running DNS servers locally. However, thanks to
their memorable IP addresses and outstanding reliability, sadly as with many popular ser-
vices, these well-meaning providers present another high-value target that is attractive to
attackers.

Clearly there are very good reasons to pay close attention to where you use such services
within your production infrastructure, thanks to your lack of control should they be
compromised. The most obvious attack, in terms of DNS lookup, might be DNS cache poi-
soning where the querying machine is given a false answer and sent to an illegitimate IP
address, which could potentially infect the requestor or attack it in some other way. One
of the many DNS cache poisoning attacks are so-called Kaminsky-style attacks (http://
dankaminsky.com), which don’t just poison individual DNS records but rather take con-
trol of the authority records for a domain name themselves. There’s some well-written
information about security researcher Dan Kaminsky’s fi ndings at http://unixwiz.
net/techtips/iguide-kaminsky-dns-vuln.html.

Because of their impact, the signifi cance of DNS attacks should not be underestimated.
Google’s DNS resolvers reportedly serve in the region of 150 billion queries every day.

The 2014 attack, which on the surface included Google’s DNS resolver IP addresses in the
last quarter of that year, was picked up by popular online security channels. For example,
the Internet Storm Center (https://isc.sans.edu) offered advice on spotting attacks

43

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 43

4

purporting to come from Google’s DNS resolvers as they arrived on your network. With some
simple packet sniffi ng, it’s possible to monitor this type of attack and log its frequency.

Here, using the tcpdump sniffi ng tool, you’re simply dumping any pertinent traffi c that you
spot into a fi le called /tmp/suspect_traffic. You’re categorizing that traffi c as any-
thing arriving from the IP address 8.8.8.8 (which is just one of Google’s DNS resolvers) and
destined for port 161.

tcpdump -s0 -w /tmp/suspect_traffic dst port 161 and src host
8.8.8.8

By capturing this traffi c, you can monitor its volume and whether the DNS queries are
likely to be legitimate. If unwelcome traffi c is discovered, you might want to restrict how
those devices that are affected communicate outside of your network by introducing fi re-
wall rules. Firewalling offers access to the outside world for the devices in question.

Discussions between white hats and other security professionals suggested that these
attacks, apparently sourcing traffi c from Google’s IP addresses, were actually designed
(using the IP addresses that were preconfi gured as the devices’ DNS servers) to exploit and
defeat poorly confi gured devices with other nefarious intentions, rather than being used
to refl ect traffi c elsewhere. In other words, attackers could potentially reconfi gure these
devices for their own nefarious uses rather than deny their service.

For further reading, consider a separate attack vector and an attempt to circumvent legiti-
mate BGP announcements (the Border Gateway Protocol is the sophisticated routing proto-
col that knits the Internet’s many networks together) for Google’s DNS resolvers; you can
read more about it at http://thehackernews.com/2014/03/google-public-dns-
server-traffic.html.

Complicity
There is a set of recommendations that look at limiting spoofed traffi c that leaves your
network. Unfortunately, experience tells us that, whether it’s through incompetence or lack
of resources, there will always be a percentage of network administrators who fail to realize
the importance of following such guidelines or who simply aren’t equipped to pay attention
to them. Not forgetting, of course, the small percentage of those administrators who pur-
posefully leave holes open for criminal activities.

An older document was written in the year 2000 to stimulate debate and assist those
with an interest in keeping the Internet running. Called Best Current Practice 38 (BPC 38;
https://tools.ietf.org/html/bcp38), this document offers welcome advice to net-
work administrators. Among other organizations, it encourages enterprises and academic

44

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 44

institutions to toughen up varying aspects of their networking infrastructure, on both
their hosts and networking equipment, to prevent cascading effects around the Internet.

Specifi cally, it takes some time to discuss the importance of ingress fi ltering to protect
external networks from your own network if it is used as an attack tool. Citing that, by
employing simple preventative measures, the diagnosis and mitigation of an attack from a
“valid” source is far more effective than guessing where the originating traffi c comes from,
as you saw in the earlier section, “NTP Refl ection Attacks.”

Varying levels of ingress fi ltering should achieve that goal in many circumstances. One
of the observations presented is that by reducing the number and frequency of attacks
on the Internet, ultimately more resources will be available when attacks do occur. As a
result, responses will be more effective. Much of the content contributed to these seminal
guidelines is attributed to the venerable NANOG (North American Network Operators’ Group;
https://www.nanog.org) who vociferously discuss networking issues in detail on a
popular mailing list.

Bringing a Nation to Its Knees
The threat of multiple, geographically diverse systems being aimed at a single system —
such as a networked or autonomous system, regardless of how large it may be — and tak-
ing it offl ine has long been a concern for enterprises, ISPs, and even entire nations. DDoS
attacks may even have existed since the mid-1980s.

It was widely reported in 2007 that the Baltic state of Estonia suffered repeated DDoS
attacks that, coupled with street rioting, almost brought the government to its knees.
Apparently the population objected to the removal of a famous war memorial by the
Estonian parliament. Coupled with a high level of social unrest, this was the fi nal tipping
point. The steadily increasing levels of attack traffi c from the DDoS were received in a sus-
tained manner over a prolonged period of time. News agencies were frustrated about the
lack of connectivity, as this meant that the rest of the world could not be kept up-to-date
with events as they unfolded within the country.

The Estonian DDoS evolved, and at one point reportedly involved four million packets
per second of attack traffi c. This was partly aimed at, and according to some reports was
ultimately successful in, taking the nation’s largest bank off the Internet. According to
national statistics, around 97 percent of the population banked online, which meant this
was a critical failure in the country’s banking systems. And if the impact wasn’t damaging
enough already, the lack of Internet connectivity meant that the main bank couldn’t com-
municate with, or dispense cash from, automated teller machines (ATMs).

45

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 45

4

Worryingly, it has been said that the only arrest relating to this hugely destructive inci-
dent, which lasted around three weeks, resulted in a fi ne worth less than US$2,000. NATO’s
involvement in furthering the effectiveness of international responses to these attacks was
bolstered, however, by the stark lessons learned in Estonia.

Mapping Attacks
As the excellent book, Firewalls and Internet Security: Repelling the Wily Hacker, by William
Cheswick, et al. succinctly states in the Introduction:

The Internet is a large city, not a series of small towns. Anyone can use it, and
use it nearly anonymously.

The Internet is a bad neighborhood.

The validity of this quote can be confi rmed by using Digital Attack Map, an online tool
that provides an excellent global overview of DDoS attacks and that is updated hourly, at
www.digitalattackmap.com.

This fully graphical Digital Attack Map tool is run by Arbor Networks and Google Ideas,
which populate the tool with data from over 270 global ISPs. These ISPs have agreed to
share data with Arbor Networks’ global threat intelligence system, ATLAS. The data
is also available via Arbor’s ATLAS threat portal and is worth a closer look at www
.arbornetworks.com/threats.

In addition, there’s a useful gallery that highlights key historical attacks for reference, at
www.digitalattackmap.com/gallery. You can interact by hovering your mouse over
the attack fl ows and revealing the eye-watering gigabits per second of bandwidth that were
abused during the attack. There are also approximate sources of the attacks (for example, if
an attack was generated by a botnet, then it might be from dozens of different countries),
the presumed intended victim, and the attack’s duration. Of additional interest are the
source and destination ports used during the attack; lo and behold, the NTP port, UDP port
123, was present in one of the fi rst few attacks that I queried. Interestingly, though, ports
80 and 53, HTTP and DNS respectively, still seem to be the most popular DDoS services,
judging by the available data.

Figure 4.1 shows a sample of attacks from the Digital Attack Map website, along with the
types of attacks and their color-coding on the left side of the global map. This is merely the
splash page of this highly functional site. You could spend hours drilling down into both
current and historical information that the site presents in an easily digestible format.

46

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 46

FIGURE 4.1

The comprehensive Digital Attack Map website from Arbor Networks, and powered by
Google Ideas

Copyri ght ©2013, Arbor Networks, Inc.

Summary
In this chapter, we looked at a number of security issues that affect critical infrastructure
services. These services, mostly affected using the more vulnerable UDP, genuinely help to
bring the Internet together and clearly need to be protected. Some of these attacks are of an
older design, but it is interesting to note how categories of attacks surge and diminish over
different periods of time. For example, an attack that has not been seen for many years might
resurface in a slightly more evolved state. As you saw more recently, the SNMP attack tools
made available by the hacking community, most likely encouraged by the success of the NTP
refl ection attacks, have generated the most interest.

Even if it’s not possible to follow the detailed intricacies of more sophisticated attacks, the
premise is simple. Services relying on UDP are currently most at risk. UDP does not always
expect a response (TCP enjoys a three-way handshake) and is therefore more likely to be
exploited for refl ection and amplifi cation attacks.

47

Chapter 4: Denying Service

c04.indd 03/30/2016 Page 47

4

You may previously have thought that following the initial lockdown of network services
as they were being built (only partially opening up necessary services by using ACLs), these
types of attacks would rarely impact a network or system’s day-to-day operations. However,
if you want your infrastructure to succeed in today’s ever-changing attack landscape, it’s
imperative that you continuously monitor how your networks and systems interact with
the outside world, revising ACLs and policies frequently.

That is an impossible feat to accomplish without diligently watching security lists and vigi-
lantly following technical press announcements. Doing so, however, should mean that your
Internet services don’t become part of the problem and the global community can keep the
Internet functioning.

49

c05.indd 04/15/2016 Page 49

CHAP T ER

5
Nping

J
ust as the U.S. military’s DARPA (the Department of Defense’s Defense Advanced Research
Projects Agency) contributed so greatly and helped to shape the Internet that you know and
love today, a similar military-to-civilian transition also resulted in the most common network-

discovery tool used on the Internet today: the ping command. The ping command’s ancestry
stems from naval vessels sending sonar pings to detect if other vessels or geophysical features were
in the vicinity.

As part of the network discovery functionality that the powerful security tool Nmap (https://
nmap.org) provides, it also includes access to a powerful improvement to the standard ping com-
mand, called Nping (https://nmap.org/nping/). If you have used Nmap, then you’ll know that
you’re in safe hands with any tool created by the Nmap Project in terms of reliability and well-
considered functionality.

Let’s look at how the Nping tool can help you gain more insight into what your systems and
networks are doing, digging into both remote and local connections.

Functionality
On the surface, you might expect Nping’s functionality to be relatively limited. After all, when you
fi re off a ping, you send a question and then simply wait for an answer. Although Nping is still not
a fi nished piece of software, it’s safe to say that it’s a highly comprehensive and sophisticated net-
working tool.

You will begin by getting used to the syntax. You’ll need to be logged in as root, the superuser, to
execute some Nping commands, and in this case, you’ll look at TCP mode. Your fi rst exercise will be
to fi re off TCP “pings” (you read correctly; they’re not ICMP pings) toward your local machine. From
the standard ping’s man page, you can see that the normal operation of ping “uses the ICMP pro-
tocol’s mandatory ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or gate-
way.” In other words, there’s a question and answer involved.

In case you’re wondering, I’ll be using my local machine for these examples to avoid upsetting any
other machines and populating fi rewall logs with suspicious activities. As with all white hat tools,
you should use them with great care.

Not only concerned with ICMP, the impressive Nping is a well-designed extension of the standard
ping command, which can also talk to many different protocols. It also gives you easy-to-under-
stand results.

If you don’t have it installed already, you can install Nping as follows.

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

50

Chapter 5: Nping

c05.indd 04/15/2016 Page 50

On Debian derivatives, simply use the following command to install the Nmap package:

apt-get install nmap

On Red Hat derivatives, install Nmap using this command:

yum install nmap

TCP
Back to the TCP (Transmission Control Protocol) example. You’ll run the following command
against your local machine so that there will be no fi rewall issues to be concerned with and
you won’t upset other sysadmins:

nping -c1 --tcp -p 80,443 localhost

Here you’re sending one ping packet (with -c1 count option) over TCP, to TCP ports 80 and
443, to your local machine. The output from this command might look like Listing 5.1.

LISTING 5.1 Having sent your first TCP pings with Nping, you are welcomed with
a good level of detail.

Starting Nping 0.5.51 (http://nmap.org/nping) at 2016-11-16 11:16 GMT
SENT (0.0145s) TCP 127.0.0.1:16463 > 127.0.0.1:80 S ttl=64 id=58041

iplen=40 seq=2781160014 win=1480
RCVD (0.0148s) TCP 127.0.0.1:80 > 127.0.0.1:16463 SA ttl=64 id=0 iplen=44

seq=2400211610 win=65495 <mss 65495>
SENT (1.0148s) TCP 127.0.0.1:16463 > 127.0.0.1:433 S ttl=64 id=58041

iplen=40 seq=2781160014 win=1480
RCVD (1.0150s) TCP 127.0.0.1:433 > 127.0.0.1:16463 RA ttl=64 id=0

iplen=40 seq=0 win=0
Max rtt: 0.079ms | Min rtt: 0.055ms | Avg rtt: 0.067ms
Raw packets sent: 2 (80B) | Rcvd: 2 (84B) | Lost: 0 (0.00%)
Tx time: 1.00054s | Tx bytes/s: 79.96 | Tx pkts/s: 2.00
Rx time: 2.00171s | Rx bytes/s: 41.96 | Rx pkts/s: 1.00
Nping done: 1 IP address pinged in 2.03 seconds

You can see in Listing 5.1 that you have received a reply from both TCP port 80 and TCP
port 443. The pings stop themselves after each port has been sent data once (and data
has been returned) as per the --c option. If there’s no obviously valid response, then you
might see something like this:

nping_event_handler(): READ-PCAP killed: Resource temporarily unavailable
nping_event_handler(): TIMER killed: Resource temporarily unavailable

51

Chapter 5: Nping

c05.indd 04/15/2016 Page 51

55

Now that you have some idea of how Nping looks and reacts to your input, it should come as no
surprise that you can use Classless Inter-Domain Routing (CIDR) network notation whenever
you want (for example, 10.10.10.0/24). You’ll stick with the basics for now and look at how to
specify a range of ports to ping, rather than specifying them in a list as you’ve just done.

Consider the “privileged ports” on a Unix-type machine. These ports have been given a
few names in the past (such as superuser ports or raw ports), but in essence, only the root
user has permission to open them. This was an original security feature that meant if you
remotely connected to one of these port numbers, you could be reasonably assured that the
service running on it was genuine. In other words, it was spawned by the root user, not a
standard user. Here is how to check all of the privileged TCP ports with Nping:

nping -c1 --tcp -p 0-1024 localhost

Using a method that almost certainly differs from other networking tools, Nmap deals with
multiple hosts and port numbers in an unusual way. For effi ciency, if more than one tar-
get machine is specifi ed, Nping won’t simply send off a query to the fi rst machine in the
list and patiently wait for a response. Instead, it employs a simple but clever round-robin
approach, where machines are contacted alternately in a rotation, so that no delay is intro-
duced to the user when waiting for responses. With multiple hosts, this also applies with
multiple ports to give the target a chance to recover before responding to the next port
that Nping probes.

Interpreter
Nping can act as an interpreter with a number of protocols. If you use the --tcp-connect
option, then you are engaging Nping’s TCP connect mode. Here you don’t need to use root
privileges to fi re off what would otherwise be raw packets; instead, Nping asks the operat-
ing system to dutifully create the connections on your behalf. You can’t see the contents
of either inbound or outbound packets in this mode, but you can at least see the status of
their transmissions.

As you would hope, the --tcp option, when run as the root user, enables you to achieve
outstanding results with TCP packets. For example, you can attempt to manipulate the
results of a connection by only partially completing a TCP handshake with TCP SYN mes-
sages. The documentation discusses the fact that there’s a real possibility to do damage
(actually, they use the word “evil”) with customized TCP RST packets, spoofi ng IP addresses
and closing down active TCP sessions, so be warned.

Here’s how manipulating TCP handshakes might look if used as three separate commands:

nping --tcp -p 80 --flags rst -c1 localhost
nping --tcp -p 80 --flags syn -c1 localhost
nping --tcp -p 80 --flags ack -c1 localhost

52

Chapter 5: Nping

c05.indd 04/15/2016 Page 52

UDP
You can also opt to employ the User Datagram Protocol (UDP) packets by using the --udp
option. Normally TCP and UDP packets are embedded inside IP packets, but as I’ve said,
without root permissions, as long as the default protocol headers haven’t been changed,
you can’t see the content of the packets, just their transceiving status. The same applies
to UDP packets.

A UDP ping can sometimes discover machines where other protocols fail. It’s possible that
a UDP ping might circumvent a fi rewall and report back if a device is listening behind that
fi rewall. This is a very useful addition to your toolkit. A simple example command might
look like this:

nping --udp localhost

When I attempt to run this command against my local machine without being the root user,
I see the following feedback:

SENT (0.0069s) UDP packet with 4 bytes to localhost:40125 (127.0.0.1:40125)
ERR: (0.0070s) READ to 127.0.0.1:40125 failed: Connection refused

However, as the superuser, root, I can complete the transaction as follows:

SENT (0.0161s) UDP 127.0.0.1:53 > 127.0.0.1:40125 ttl=64 id=64074 iplen=28
RCVD (0.0163s) ICMP 127.0.0.1 > 127.0.0.1 Port unreachable (type=3/
code=3) ttl=64 id=18756 iplen=56

As you can see, the UDP ping traffi c is aimed at UDP port 40125 in both examples.

ICMP
Just like the standard ping command, Nping defaults to using ICMP if executed as the root
user when no other protocols are selected. The documentation boldly states that “[a]ny
kind of ICMP message can be created.” For example, you might query a time stamp, generate
fake “destination unreachable” messages, or cause problems for another system or network
by redirecting packets.

Try the following command logged in as both the root user and a standard user:

nping localhost

53

Chapter 5: Nping

c05.indd 04/15/2016 Page 53

55

You can clearly see the difference in detail. Here is the standard user, without much detail:

SENT (0.0027s) Starting TCP Handshake > localhost:80 (127.0.0.1:80)
RECV (0.0028s) Handshake with localhost:80 (127.0.0.1:80) completed

In the next example, as the root user, you can see that you are given more information
about what was in the ICMP packet. The type=8 entry stands for “8 Echo” according to its
RFC (https://tools.ietf.org/html/rfc792), which is what you’d expect.

SENT (0.0152s) ICMP 127.0.0.1 > 127.0.0.1 Echo request (type=8/
code=0) ttl=64 id=31032 iplen=28
RCVD (0.0154s) ICMP 127.0.0.1 > 127.0.0.1 Echo reply (type=0/code=0)
ttl=64 id=18763 iplen=28

ARP
You also have the --arp option, which allows you to experiment with the Address
Resolution Protocol (ARP). In addition to deploying unwelcome ARP cache poisoning
attacks, you can craft various types of ARP packets. The now obsolete RARP (Reverse ARP)
lookups were used to translate a MAC address into an IP address. RARP has been succeeded
by the BOOTP and DHCP protocols, but RARP still sometimes has its uses. There was also an
evolved version of RARP called Dynamic RARP (DRARP), which is supported. It was mostly
used by Sun Microsystems near the end of the last millennium, and is used very little these
days. There’s also support for “InARP” requests; this is similar to RARP but applies mainly
to frame relay and ATM networks.

Finally, to complement these protocols, you can add --traceroute to the output to help
determine which path traffi c took by looking at the source address of “destination unreach-
able” packets sent in reply.

Payload Options
Now that you’re familiar with the main protocol options, let’s see if you can take your new-
found knowledge and put it to good use. Another reminder that Nmap was designed for
white hat activities and should be used as such, not for illegitimate gain. It is possible to
cause mayhem with tools of this nature.

If you wanted to add a payload to your probe packets, then there are three varieties, as
shown in Table 5.1.

54

Chapter 5: Nping

c05.indd 04/15/2016 Page 54

TABLE 5.1 Payload Options and Their Descriptions

Option Description

--data Here you can append some hexadecimal data. The documentation offers exam-
ples such as --data 0xdeadbeef and --data \xCA\xFE\x09.

--data-
string

You would append a string such as --data-string "Per Ardua ad Astra".

--data-
length

Using this option, you can fi ll a packet with random data from 0 to 65,400 bytes,
such as --data-length 999. Be aware that anything over 1,400 bytes may
overwhelm some network MTUs.

Echo Mode
Among the sophisticated features included with Nping is Echo mode. This mode is designed
to show in detail what happens to packets as they traverse a network. By enabling Echo
mode on two hosts, you can set up a server-and-client relationship to monitor exactly what
takes place on the wire.

Let’s have a look at this feature. The server component captures packets and then forwards
details back to the client via a TCP communication “channel.” It’s the client’s job to gener-
ate the aforementioned packets in the fi rst place.

This technique is a great way to spot any packet-mangling should it occur. And, for
example, if Network Address Translation (NAT) becomes involved, then a number of packet
details are also changed. By using this technique if a device on the wire changes any other
TCP options or if traffi c shaping takes place, for example, then these otherwise diffi cult-
to-diagnose details become apparent. You might also be able to determine where in transit
packets become mysteriously blocked, which will assist in diagnosing issues.

Let’s try a little experiment using Echo mode. Incidentally, you can add -vvv for verbosity
if you want more output and a higher level of detail from Nping. To get started, you need
to be the root user to spawn the server side of the connection. You will use the password
“please_connect” and add verbosity to the output received on your eth0 network interface
with the following command:

nping -e eth0 -vvv --echo-server "please_connect"

The results of this command are as follows:

Starting Nping 0.5.51 (http://nmap.org/nping) at 2016-11-16 11:16 GMT
Packet capture will be performed using network interface eth0.

55

Chapter 5: Nping

c05.indd 04/15/2016 Page 55

55

Waiting for connections...
Server bound to 0.0.0.0:9929

As you can see, your server is now listening for a client to connect on TCP port 9929.

Next, you’ll generate some traffi c by launching the client. Note, again, that here you’re only
using localhost, your local machine, for both the server and client elements of this test.
Although it’s not the best way of following traffi c through a fi rewall or a NAT gateway, it
should offer you enough information to understand how the process works.

You will also need to be the superuser to run this command. You will add the appropriate
password and make sure that you connect to your localhost. Clearly you replace this option
with the IP address of the remote machine you want to connect to, as follows:

nping -vvv --echo-client "please_connect" localhost --tcp -p1001-
1003 --flags ack

As you can see, you’re going to connect to three TCP ports (1001, 1002, and 1003) and then
fi re TCP ACK packets at them. If you have diffi culties with the connection and you receive
a “Handshake failed” error message, then you have probably entered your passwords incor-
rectly at one end.

Let’s look at what happens on either side of the connection, starting with the client. As
the root user, by adding the -vvv option, you’re going to see inside the packets as they
traverse the network; otherwise, the output would be much quieter. Listing 5.2 shows an
abbreviated sample of what you see.

LISTING 5.2 An abbreviated sample output from your client showing just one sent
and one received packet rather than many packets

Starting Nping 0.5.51 (http://nmap.org/nping) at 2016-11-16 11:16 GMT
SENT (0.4256s) TCP [127.0.0.1:20869 > 127.0.0.1:1000 A seq=33133644

ack=4112791867 off=5 res=0 win=1480 csum=0x91F7 urp=0] IP [ver=4
ihl=5 tos=0x00 iplen=40 id=4058 foff=0 ttl=64 proto=6 csum=0x6cf4]

0000 45 00 00 28 0f da 00 00 40 06 6c f4 7f 00 00 01 E..(....@.l.....
0010 7f 00 00 01 51 85 03 e8 01 f9 94 4c f5 24 39 3b Q......L.$9;
0020 50 10 05 c8 91 f7 00 00 P.......
RCVD (0.4258s) TCP [127.0.0.1:1000 > 127.0.0.1:20869 R seq=4112791867

ack=0 off=5 res=0 win=0 csum=0x2E11 urp=0] IP [ver=4 ihl=5 tos=0x00
iplen=40 id=0 flg=D foff=0 ttl=64 proto=6 csum=0x3cce]

0000 45 00 00 28 00 00 40 00 40 06 3c ce 7f 00 00 01 E..(..@.@.<.....
0010 7f 00 00 01 03 e8 51 85 f5 24 39 3b 00 00 00 00 Q..$9;....
0020 50 04 00 00 2e 11 00 00 P.......
^C
Max rtt: 0.085ms | Min rtt: 0.083ms | Avg rtt: 0.083ms
Raw packets sent: 4 (160B) | Rcvd: 4 (160B) | Lost: 0 (0.00%)| Echoed: 0

(0B)

Continues

56

Chapter 5: Nping

c05.indd 04/15/2016 Page 56

Tx time: 3.23067s | Tx bytes/s: 49.53 | Tx pkts/s: 1.24
Rx time: 3.23067s | Rx bytes/s: 49.53 | Rx pkts/s: 1.24
Nping done: 1 IP address pinged in 3.66 seconds

In Listing 5.2, you have abbreviated the output to only see one packet “SENT” outbound
from the client to TCP port 1000. Next, the client receives a reply from the server (inbound,
which is marked as “RCVD”) from TCP port 1000 to TCP port 20869, one of the higher
ephemeral ports.

The additional noise, thanks to the -vvv option, includes the checksum line (starting
csum) and the three lines of content below. The ^C signifi es that I’ve stopped the output
just after it begins, for brevity. And, in the same way that the standard ping command
behaves, you receive (rtt) Round Trip Times and transceiving statistics below, followed by
an overall completion time.

On the server (also your local machine, which in reality is of little consequence), Nping is
listening on TCP port 9929. Listing 5.3 shows the output that the server side produces.

LISTING 5.3 The server’s perspective of the packets that were sent by your client

Starting Nping 0.5.51 (http://nmap.org/nping) at 2016-11-16 11:16 GMT
Packet capture will be performed using network interface eth0.
Waiting for connections...
Server bound to 0.0.0.0:9929
[1479294971] Connection received from 127.0.0.1:51099
[1479294971] Good packet specification received from client #0

(Specs=8,IP=4,Proto=6,Cnt=5)
[1479294971] NEP handshake with client #0 (127.0.0.1:51099) was performed

successfully
[1479294971] Client #0 (127.0.0.1:51099) disconnected

In Listing 5.3, your server has reported “Good packet specifi cation received from client #0”
and that a handshake was completed without any issue, followed by an Epoch time stamp
of the disconnection from the client. There’s not much more to glean from the server side,
so you only need to be logged into the client if the server is always available for testing.

The Nmap Project helpfully provides some test machines that you can use. The password is
“public” for the hostname “echo.nmap.org.” For Nmap scans (not Nping), you can try this
host: http://scanme.nmap.org.

LISTING 5.2 An abbreviated sample output from your client showing just one sent
and one received packet rather than many packets (continued)

57

Chapter 5: Nping

c05.indd 04/15/2016 Page 57

55

Because NAT is so popular (and your connection is likely to be NATed), there’s a good chance
that you would see CAPT entries under the SENT lines and before the next RCVD line if you
query that machine. This command works for me:

nping --echo-client "public" echo.nmap.org --tcp

If you look carefully at the captured packet entries (CAPT), then you should be able to
tell if NAT has altered your outbound source address. You would see a private IP address,
such as 10.10.10.10, as per RFC 1918 (https://tools.ietf.org/html/rfc1918),
being changed to show a publicly routed IP address such as 123.123.123.123 if NAT has
been involved. It’s relatively easy to detect NAT getting in the way of your connection.
Remember that where there is NAT, there are sometimes also other devices altering MTUs
(Maximum Transmission Units), packet-mangling for traffi c shaping, unexpected fi rewalls,
and invisible switches that might cause subtle changes to your connection.

There are a number of other scenarios within which Nping can assist, such as (after some
learning) being able to spot if transparent proxies might be employed en route. I will leave
you to advance your skills further, but in the meantime, the following section describes a
few other options that you might fi nd useful.

Other Nping Options
Using the --delay 10 option, you can opt to limit the frequency of your packets. The
default is to usually send pings at one second apart, but increasing this value can reduce
the noise on your screen if you’re watching diligently for a particular event.

Along the same lines is the --rate 3 option, where you can fl ood a target machine by
sending three packets per second in the example just given. Don’t get tripped up bat-
tling with the settings for the rate and delay options, however. According to the
documentation:

[t]his [rate] option and --delay are inverses; --rate 20 is the same as
--delay 0.05. If both options are used, only the last one in the parameter list
counts.

You can utilize the -H or --hide-sent option where outbound packets aren’t shown. For
example, if you’re fl ooding a connection, then this will help.

In addition, if you’re fl ooding a network and testing how it responds to a signifi cant load,
then you probably don’t want to process each packet that is received. The -N or --no-cap-
ture option doesn’t capture any packets that are received.

58

Chapter 5: Nping

c05.indd 04/15/2016 Page 58

Many other command line options are available for Nping. For example, you can add
--debug to assist you with more detail. You can alter TTLs (Time To Live settings). If
you’re scanning many hosts, you might also want to add a timeout option so that you’re
never asking Nping to wait around for a response with --host-timeout 10, where the
10 is a measure in seconds.

I briefl y mentioned spoofi ng IP addresses in order to forge the sending IP address; Nping
can go one step further and even populate the sender fi eld with random values, by using
a command like this to attack the host whitehat.chrisbinnie.tld:

nping --arp --sender-ip random --ttl random whitehat.chrisbinnie.tld

Alarm bells rang when I fi rst read about this feature. Being able to spoof an IP address with
random values (successfully) should cause any sysadmin to be concerned. All it takes is
poorly confi gured upstream routers to allow this type of traffi c to arrive on an organiza-
tion’s network.

Finally, if you wanted to adjust the way the channel is used for Echo mode, then --chan-
nel-tcp or --channel-udp will do just that:

ping -vvv --client --channel-tcp 1234 --tcp -p 8100 localhost

As you might imagine, having the ability to adjust Echo mode to send its “channel” data
back to the client via both TCP and UDP might be a lifesaver if a strict fi rewall gets in the
way.

Summary
 If you experiment with Nping over time, you should come to appreciate that the report-
ing it offers is truly extensive. I’d encourage you to reach for Nmap whenever you have the
opportunity, in order to gain more exposure.

With its packet-crafting possibilities, the powerful Nping can outdo many of its rivals. The
addition of the sophisticated Echo mode means that if you have access to both ends of a
connection, there’s less chance of a device escaping detection. As a result, troubleshooting
should be much swifter and less diffi cult.

Nmap’s powerful Nping might be considered as just one tool inside a white hat’s toolkit. By
using tools such as these legally, you will excel at your intended tasks, and as a welcome
afterthought, you’ll learn how to keep your own servers up and running.

59

c06.indd 04/05/2016 Page 59

CHAP T ER

6
Logging Reconnoiters
At times, you need to pay extra attention to who is connecting to your servers. For example, a
series of attacks may have recently taken place, which you want to keep a close eye on, or you
might just be super paranoid in general, thanks to the sensitivity of your data or the critical nature
of your service.

One relatively unsophisticated approach to monitoring those machines that are making a recon-
naissance of your servers would be to log the IP addresses that run pings and traceroutes against
them. You may think that the information you manage to glean isn’t going to be of much use, but
it can actually be really important in building a picture of who connects to your servers, how often,
and when. Akin to studying Closed Circuit Television (CCTV) video footage of people visiting an
offi ce, after a while, you get to know who stands out as unusual or who might not be expected on
a given day. Log fi les are fantastic because you can forget about them only to return for analysis
months later.

If you need to keep a vigilant eye on your servers, for whatever reason, then the trick to monitor-
ing your system properly depends, in my opinion, on two things. First, you need a reliable daemon
running in the background, listening like a sentry; it should be reliable so it doesn’t introduce a
race condition and cause your server to fail. Second, you need minimal logging so that you can go
back to check your log fi le in a year’s time and fi nd the necessary information without worrying
that the logs will overfi ll precious disk space and cause you further problems. Clearly you also don’t
want an attack to fi ll your disks with attack logs. That is unless of course you want to provision a
high-capacity storage system and additionally are a fan of verbose logging.

In this chapter, you will explore how to log any nefarious reconnoiters of your machines and also
how to counter potential Internet Control Message Protocol (ICMP) issues. You’ll also learn how
some attackers in the past took advantage of the good-natured protocol that is ICMP, and gain an
overview of what common attacks looked like before ICMP gained a reputation for being insecure.

ICMP Misconceptions
The traffi c generated by pings and traceroutes uses the much-maligned ICMP, with UDP to a lesser
extent for DNS lookups if required.

However, it’s worth mentioning that ICMP was created for very good reasons and is still used for
very important tasks in the day-to-day operation of the Internet. For example, it’s needed to tell
devices the size to set their Maximum Transmission Unit (MTU) in order to allow packets to tra-
verse smoothly across heterogeneous network links. As a result, after reading what follows, you
should avoid committing one of the most common junior sysadmin mistakes: blocking all ICMP traf-
fi c to your servers.

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

60

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 60

tcpdump
Let’s have a cursory look at your options for monitoring pings and traceroutes around the
clock. Straight from the sysadmin’s tool kit of reliable utilities, you might consider the
powerful packet-sniffi ng tool, tcpdump. This tool has long been trusted to split traffi c into
smaller pieces in order to offer an insight into what is travelling across a network.

For example, if you want to pick up pings, then the following command works when I ping
my paranoid server from another machine:

/usr/sbin/tcpdump -i eth0 icmp and icmp[icmptype]=icmp-echo

This next example, showing tcpdump’s ICMP packet-sniffi ng abilities, also picks up
traceroutes:

/usr/sbin/tcpdump ip proto \\icmp

As you can see in the following code, pings rely on both replies and requests; however,
because my paranoid server’s fi rewall is blocking certain ICMP traffi c, an admin prohib-
ited error is logged when traceroutes appear.

listening on eth0, link-type EN10MB (Ethernet), capture size 65535
bytes
17:06:47.925923 IP recce.chrisbinnie.tld > noid.chrisbinnie.tld: ICMP
echo request, id 21266, seq 1, length 64
17:06:47.925979 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
echo reply, id 21266, seq 1, length 64
17:06:48.927871 IP recce.chrisbinnie.tld > noid.chrisbinnie.tld: ICMP
echo request, id 21266, seq 2, length 64
17:06:48.927921 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
echo reply, id 21266, seq 2, length 64
17:06:49.928069 IP recce.chrisbinnie.tld > noid.chrisbinnie.tld: ICMP
echo request, id 21266, seq 3, length 64
17:06:49.928136 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
echo reply, id 21266, seq 3, length 64
17:06:52.215139 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
host noid.chrisbinnie.tld unreachable - admin prohibited, length 68
17:06:52.215179 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
host noid.chrisbinnie.tld unreachable - admin prohibited, length 68
17:06:52.215194 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
host noid.chrisbinnie.tld unreachable - admin prohibited, length 68
17:06:52.215210 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
host noid.chrisbinnie.tld unreachable - admin prohibited, length 68
17:06:52.215220 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
host noid.chrisbinnie.tld unreachable - admin prohibited, length 68
17:06:52.215231 IP noid.chrisbinnie.tld > recce.chrisbinnie.tld: ICMP
host noid.chrisbinnie.tld unreachable - admin prohibited, length 68

61

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 61

66

In the code snippet, a server called noid experiences probes from a host called recce. Recce
is reconnoitering to see if the server is online.

Iptables
You can also run the iptables command, which uses Netfi lter’s kernel-based fi rewall:

iptables -I INPUT -p icmp --icmp-type 8 -m state --state
NEW,ESTABLISHED,RELATED -j LOG --log-level=1 --log-prefix "Pings
Logged "

If you’re paying attention, you may have spotted the number 8 being used as the --icmp-
type value. In Table 6.1, you can see the codes that are used by ICMP. You can fi nd more
information at its Request for Comments (RFC) page, at https://tools.ietf.org/
html/rfc792. According to this page, ICMP has been around since 1981 or thereabouts,
when the Internet was a very different animal.

TABLE 6.1 The ICMP Codes from the Kernel Source File, include/linux/
icmp.h

Type Code

0 Echo Reply

3 Destination Unreachable *

4 Source Quench *

5 Redirect

8 Echo Request

B Time Exceeded *

C Parameter Problem *

D Time stamp Request

E Time stamp Reply

F Info Request

G Info Reply

H Address Mask Request

I Address Mask Reply

As a reaction to the attacks that used ICMP, changes were made to the Linux kernel over
time. Thanks to the abuse of ICMP, the functions marked with an asterisk in Table 6.1 are
rate limited by default in modern implementations of the kernel (since Linux 2.4.10).

62

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 62

In the following code snippet, you see the source and destination IP addresses
(SRC=10.10.10.200 and DST=10.10.10.10) involved in the ping traffi c exchange
logged to the /var/log/messages fi le.

Feb 31 17:19:34 noid.chrisbinnie.tld kernel: Pings Logged IN=eth0
OUT= MAC=00:61:24:3e:1c:ef:00:30:16:3c:14:3b:02:10 SRC=10.10.10.200
DST=10.10.10.10 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=40978 SEQ=1
Feb 31 17:19:35 noid.chrisbinnie.tld kernel: Pings Logged IN=eth0
OUT= MAC=00:61:24:3e:1c:ef:00:30:16:3c:14:3b:02:10 SRC=10.10.10.200
DST=10.10.10.10 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=40978 SEQ=2
Feb 31 17:19:36 noid.chrisbinnie.tld kernel: Pings Logged IN=eth0
OUT= MAC=00:61:24:3e:1c:ef:00:30:16:3c:14:3b:02:10 SRC=10.10.10.200
DST=10.10.10.10 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=40978 SEQ=3

If I used either tcpdump or iptables to log traffi c, I would be keen to reduce the log fi les.
The fi rst reason for this would be to stop an attacker (knowingly or otherwise) from caus-
ing disk space problems by creating massive log fi les, after inundating a server with ICMP
traffi c. The second reason would be to keep the signifi cant logging noise levels to a mini-
mum so that I could quickly reference the log and spot what I was looking for.

Assuming that you wisely felt uncomfortable having tcpdump running in the background
all year round, for reasons of system stability, let’s use the iptables example to strip out the
information that you need.

Let’s look at a high-level overview of how you might go about stripping the noise out of a
log. For clarity, you would probably want your reconnoiter logs to be dumped to a fi le sepa-
rate from syslog.

I’m going to use the excellent, “rocket-fast” syslog server, rsyslog, as an example (you can
fi nd more information at www.rsyslog.com). This is because Red Hat and Debian (and
their many derivatives) currently use rsyslog by default, so there’s a good chance you will
have access to it.

Let’s take another look at the iptables pings example from a moment ago:

iptables -I INPUT -p icmp --icmp-type 8 -m state --state
NEW,ESTABLISHED,RELATED -j LOG --log-level=1 --log-prefix "Pings
Logged "

You’re now paying closer attention to the --log-prefix option, as shown here:

--log-prefix "Pings Logged "

63

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 63

66

If you want to save all kernel warnings to a new log fi le, then it is relatively easy to set
up. Open the fi le /etc/rsyslog.conf and add the following line to the RULES section or
close to it (assuming there’s not already an entry for kern.warning that you might dis-
rupt; otherwise, decide if you can overwrite or append to it):

kern.warning /var/log/iptables.log

Of course, when it comes to manipulating text fi les, you can achieve a lot of different
results with a quick shell script (or by using some grep, awk, or sed command-line tools).
However, for the sake of avoiding even temporary disk space issues, let’s try not to log
every warning from the kernel in case a piece of hardware starts misbehaving and logs
thousands of warnings in a short period of time.

You’re going to create a new syslog confi g fi le and call it /etc/rsyslog.d/iptables-
pings-logging.conf. Incidentally, you can probably name this fi le whatever you like if
your main confi g fi le (that’s the /etc/rsyslog.conf fi le) picks up all confi g fi les that it
fi nds in that directory. By default, there’s an entry in that fi le that looks like this to read
all the confi g fi les at once:

$IncludeConfig /etc/rsyslog.d/*.conf

I should say, however, that I had trouble getting the fi lters to work from a new fi le in that
directory. That was despite checking permissions and having remote-syslog-logging work-
ing fi ne from within one of those fi les (and trying startswith and regex instead of the
contains operator that you will see next).

If you run into the same trouble, then instead of adding the following two lines to your
new confi g fi le, simply navigate to the line mentioning kern.* under RULES again in the
main confi g fi le (/etc/rsyslog.conf) to avoid using a separate confi g fi le altogether,
and add these two lines:

:msg, contains, "Pings" /var/log/iptables-pings.log
& ~

The fi rst line catches entries that include the string “Pings” and then asks syslog to write
them to the fi le /var/log/iptables-pings.log. The second line is a little unusual and
tells the syslog software to ignore any entries caught by the previous line so that you’re
not doubling up with your logs by writing the same content to another fi le. You can, of
course, leave that second line out if you’d like to log elsewhere too.

Now that you’re able to drop content to a log fi le and fi lter out specifi c iptables events
 (adding your own labels as you prefer), let’s look at other examples.

64

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 64

Multipart Rules
If you want to allow pings to reach your servers and also allow outbound pings from your
server, then each operation involves slightly different iptables confi guration.

The following web page explains how to allow pings into a certain IP address on your
server (assuming you have more than one bound to your server) along with the different
outbound pings confi g: www.cyberciti.biz/tips/linux-iptables-9-allow-icmp-
ping.html.

Note that the -d for destination on the inbound ping rules means a specifi c IP address.

Log Everything for Forensic Analysis
If you were concerned that you were experiencing an attack and you wanted to log all
inbound connections to your machine, then you could (briefl y) enable this command:

iptables -I INPUT -m state --state NEW -j LOG --log-prefix "Logged
Traffic: "

Be warned that your /var/log/messages fi le would soon be very large, so you would
have to disable the logging by fl ushing the rule as soon as you could. (You can check out
the example later in this section to fi nd out how to do this.) You might expect the output
to look something like this from the iptables command:

Nov 11 01:11:01 ChrisLinuxHost kernel: New Connection: IN=eth0
OUT= MAC=ff:ff:ff:ff:ff:ff:00:41:23:4f:4d:1f:08:00 SRC=10.10.10.10
DST=10.10.10.255 LEN=78 TOS=0x00 PREC=0x00 TTL=128 ID=28621 PROTO=UDP
SPT=137 DPT=137 LEN=58

This extract is taken from my now sizeable /var/log/messages fi le. The traffi c appears
to have been generated by a Netbios packet. Simply swap INPUT with OUTPUT if you would
prefer to track egested traffi c.

On that note, what if you want to log traffi c but also rate-limit what hits your server logs?
Here’s an example:

iptables -I INPUT -p icmp -m limit --limit 5/min -j LOG --log-
prefix "Blocked ICMP Traffic: " --log-level 7

It’s simple enough to change -p icmp to -p tcp or -p udp and pick up TCP and UDP
packets, respectively. This example means that you are only logging fi ve packets per min-
ute of this type of traffi c. This can be useful because, generally, the fi rst few probes are
informative before repetition starts.

65

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 65

66

Incidentally, if you fi nd that your logs are fi lling up too quickly, then you can just fl ush
every iptables rule like this:

iptables -F
iptables -X
iptables -t nat -F
iptables -t nat -X
iptables -t mangle -F
iptables -t mangle -X
iptables -t raw -F
iptables -t raw -X
iptables -t security -F
iptables -t security -X
iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT

My preference is to put this string of commands into a script (or very long Bash alias, with
the commands separated by semicolons), and as the root user, I can type fl ush whenever I
need a quick, fail-safe removal of all the fi rewall rules in use.

Hardening
If you’re worried about your system being overloaded with ICMP traffi c, then there are a
couple of relatively simple things you can check. This is thanks to the power of Unix-type
operating systems. First (and your build may already have this set as default), you can
ignore ICMP broadcasts by adding the following line to the bottom of the fi le /etc/sys-
ctl.conf:

net.ipv4.icmp_echo_ignore_broadcasts = 1

This sysctl.conf example will persist a reboot, whereas the following command will set
it live immediately:

echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

The following command will also set it live immediately if you have followed the sysctl.
conf example (it reloads all the confi g settings found inside the fi le sysctl.conf):

sysctl -p

The icmp_echo_ignore_broadcasts setting stops ICMP broadcasts from bringing down
your network with unwanted broadcast traffi c.

In reality, this is a deprecated attack (you saw that modern kernels use rate-limiting as
standard), and the kernel setting is really only useful for ping attacks to the broadcast

66

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 66

address that force every device in the local network’s broadcast domain to respond. If every
device responds at the same time and then responds to others’ responses, then a denial of
service is caused by too much traffi c on the network. As with all kernel settings, though,
it’s useful to know the background to help you understand how networking works.

Another attack (harking from 1996) was called the Ping of Death, and crafted massive ICMP
packets with the hope of crashing the remote machine. It affected many of the popular net-
working stacks (at release 18 operating systems were found to be vulnerable). Simply know-
ing an IP address and fi ring ICMP packets greater than 65,536 bytes at that IP address caused
the machine to which it was bound to crash. There’s more information from the excellent
Insecure.org website, at http://insecure.org/sploits/ping-o-death.html.

Another commonly discussed attack from yesteryear involved a man-in-the-middle (MITM),
and was called a smurf attack. Smurf attacks are a good illustration of how spoofi ng can
work, and belong to a type of attack that has recently become more frequent, called an
amplifi cation attack.

The middleman is put to good use so that the original source of the attack can’t be identi-
fi ed, and the attack’s aim is to saturate bandwidth, ultimately causing a denial of service.
Worryingly, the barrage of ICMP traffi c actually appears to come from the victims them-
selves. The middleman (also sometimes called the amplifi er) receives these spoofed packets
and sends a normal echo-response reply to the victim, who didn’t even ask for a response.
They also have little way of stopping the packets from arriving. Back in the earlier days of
the Internet, your ISP could only disable all ICMP traffi c to stop the massive fl ood of data.
Because the packets were spoofed, even the logs were of little help in tracking down where
they originated.

One solution to this problem is to rate-limit the packets yourself. This leaves ICMP traf-
fi c free to arrive, and your network running relatively normally, although possibly a little
slower.

This can be achieved on proprietary router hardware, such as Cisco or Juniper, but also on
individual hosts by using iptables with a set of rules similar to these:

iptables -I INPUT -p icmp -m limit --limit 30/minute --limit-burst
60 -j ACCEPT
iptables -I INPUT -p icmp -m limit --limit 6/minute --limit-burst
10 -j LOG
iptables -I INPUT -p icmp -j DROP

From the confi g shown on the fi rst line, the --limit-burst option allows up to 60 packets
to arrive initially before the rate limit of one packet every other second is enabled (the
30/minute value). The second line then says that you will log (though much more strictly)
how much traffi c is accepted before being logged to syslog: six entries per minute after a
burst of ten packets. Finally, you’ll discard those packets in order to mitigate any effect.

67

Chapter 6: Logging Reconnoiters

c06.indd 04/05/2016 Page 67

66

If I’m reading the documentation correctly, the --limit-burst value refers back to the
specifi ed period used by --limit. When that limit is not reached, --limit-burst ben-
efi ts by an increment — in other words, by the value of one — every time the limit isn’t
reached, up to the number confi gured.

Summary
 Some of the changes you have explored can be damaging to both systems and networks.
You should know what you’re doing (and ideally, experiment on a test machine) before try-
ing any of these settings in production. As mentioned, the classic mistake of becoming
panicked by the bad reputation that ICMP has and simply banning all mentions of the pro-
tocol on your network is ill-advised.

You have looked at attacks and how to prevent them from affecting the normal operations
of your network and servers. You also looked at rate-limiting inbound ICMP traffi c.

In addition, you looked at the logging of pings and traceroutes to pick up any recces taking
place with nefarious intent on your server, and more importantly, how to safely log these
unwanted probes to a fi le so that an attack won’t fi ll your disks with sizable log fi les.

It’s safe to say that some of this knowledge may only be needed rarely, but the next time
someone mentions that they’re blocking all ICMP traffi c on their server, you can give them
a knowing look and say that you’re confi dent that ICMP issues will no longer cause you
problems.

69

c07.indd 04/21/2016 Page 69

CHAP T ER

7
Nmap’s Prodigious NSE
Even novice sysadmins have probably heard of and run port scans against local and remote hosts.
They may also have heard of one famous port scanner on the market, created by the Nmap Project,
called Nmap. Nmap stands for “Network Mapper,” and along with being superfast, sophisticated,
and effi cient, it’s brimming with features.

Among its many features, you can test for which operating system a remote server is running, audit
the security of both local and remote machines, and create an inventory of the machines and their
active services on a network.

You may have used Nmap for port scanning in the past, but there’s a good chance that you didn’t
realize what a powerful penetration-testing tool it is. This is partly thanks to its sophisticated
built-in scripting engine. Before you look at that, however, you will fi rst review Nmap’s basic port
scanning functionality. Then you will learn how Nmap can be used for more advanced white hat
activities.

Basic Port Scanning
Even the basic (port scanning) features bundled with Nmap include advanced options such as spoof-
ing your source IP address (using the -S option). A magnifi cent selection of features is available.
But fi rst, let’s start with installing the package.

To install Nmap on Red Hat derivatives, you can use this command:

yum install nmap

On Debian and its derivative distributions, you can use this command:

apt-get install nmap

If you want to use RPM Package Managers on Red Hat’s derivatives rather than running these com-
mands, then you can fi nd more information at https://nmap.org/book/inst-linux.html.

If you’re familiar with the fi le /etc/services on Unix-type machines, then the inclusion of the
/usr/share/nmap/nmap-services fi le with Nmap should make sense. Be aware that your fi le’s
location may change slightly. Within this fi le, you tie port numbers to humanly readable service
names — a little like localized DNS, I suppose (like the /etc/hosts fi le where there’s usually a
key:value format). One line in the Nmap version of that fi le would look something like this:

Service name Portnum/protocol Open-frequency Optional comments
ftp 21/sctp 0.000000 # File
Transfer [Control]

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

70

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 70

ftp 21/tcp 0.197667
File Transfer [Control]
ftp 21/udp 0.004844 #
File Transfer [Control]
ssh 22/sctp 0.000000 #
Secure Shell Login
ssh 22/tcp 0.182286 #
Secure Shell Login
ssh 22/udp 0.003905 #
Secure Shell Login
telnet 23/tcp 0.221265
telnet 23/udp 0.006211

This fi le is useful because you can edit it to suit your Nmap activities without accidentally
misconfi guring your local machine’s /etc/services fi le. The custom version that Nmap
includes also adds a little more detail to the usual two fi elds in your local fi le. As you can
see in this example, there are four columns with fi eld descriptions at the top.

Some people call this port mapping, which isn’t a bad description. If you’re curious, the
open-frequency fi eld has been populated following extensive research online (by running a
large number of Nmap scans) and tells you how often the study found that port to be open.
This more comprehensive confi guration fi le can also be a useful reference when you’re try-
ing to troubleshoot an issue.

What about asking Nmap to run a simple scan on a machine? Let’s perform a basic port scan
on a remote IPv4 IP address. In this example you use the “-PN” option in order to miss out a
ping test, assuming you know that the machine is online (note that older versions of Nmap
used “-P0” and “-PN”, in case it causes confusion, and stands for “host discovery”):

nmap -PN 123.123.123.123

The results might look something like this:

Starting Nmap 5.51 (http://nmap.org) at 2016-11-16 11:16 GMT
Nmap scan report for www.chrisbinnie.tld (123.123.123.123)
Host is up (0.00051s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh
Nmap done: 1 IP address (1 host up) scanned in 0.09 seconds

You can see that 999 ports were scanned by default, without you asking Nmap to look at
any others, and only the SSH port was listening on your remote host.

As you might expect, you can scan a whole network as follows:

nmap -PN 123.123.123.0/24

71

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 71

77

By including -n in the options, you can disable DNS lookups to potentially speed up your
results and avoid detection by DNS servers, which would otherwise serve the answers to
your queries.

If it’s TCP that you’re interested in, then Nmap can connect to TCP ports as follows:

nmap -sT www.chrisbinnie.tld

Simply swap -sT to -sU for UDP ports if they’re of interest.

As I’ve mentioned, there are simply too many options to cover, but before you get to the
really good stuff, here are a couple of other options that I fi nd useful.

First, if you’re scanning your local network but don’t want to include certain hosts, then
you can use an exclude file option like this:

nmap 10.10.10.0/24 --excludefile /home/chrisbinnie/exclusions.txt

If there are just a few servers that you need to ignore, then you can opt to use the follow-
ing syntax:

nmap 10.10.10.0/24 --exclude 10.10.10.1,10.10.10.10, 10.10.10.100

For scanning specifi c port numbers, you prepend U for UDP and T for TCP as follows:

nmap -p U:53,T:0-1024,8080 10.10.10.111

Finally, if you want to see which hosts are up and running on your local network, then this
is the command to choose (it’s using a “discovery” or ping scan, hence the P):

nmap -sP 10.10.10.0/24

You would expect an output similar to this:

Nmap scan report for mail.chrisbinnie.tld (10.10.10.10)
Host is up (0.028s latency).
Nmap scan report for smtp.chrisbinnie.tld (10.10.10.11)
Host is up (0.029s latency).

In other words, one line per host.

The Nmap Scripting Engine
Nmap has a highly sophisticated set of technological innards. It refers to its scripting
engine as NSE (Nmap Scripting Engine). I’ll run through some of the subjects covered in its
extensive documentation and indicate when you may want to use some of its functionality.

72

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 72

The extraordinary NSE was designed with a few key functions in mind. These functions
include network discovery mostly through port scanning, advanced service detection using
a variety of predefi ned signatures, vulnerability checking (and exploitation), and fi nally
backdoor detection.

NSE’s strength is in its versatility, and it extends this functionality by offering the addi-
tion, as its name would suggest, of scripts that can be written by anyone using the Lua pro-
gramming language. In order to fi re up NSE from the command line, you simply launch the
nmap binary with the --script= option or, alternatively, the -sC option.

Following are two examples of port scanning with Nmap. The fi rst is without enabling NSE
and the second engages it. This should be useful so that you can familiarize yourself with
the difference in output. In Listing 7.1 you see the results of the fi rst command. Note that
both these commands are run, not as the root user, but as a standard user.

LISTING 7.1 Nmap performing network discovery but without NSE being engaged

nmap -p0-1024 -T4 localhost
Starting Nmap 5.51 (http://nmap.org) at 2016-11-16 11:16 GMT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00049s latency).
Not shown: 1021 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open http
111/tcp open rpcbind
Nmap done: 1 IP address (1 host up) scanned in 0.11 seconds

In Listing 7.2, however, you see that NSE has been engaged, and here it adds invaluable
insight into the mix.

LISTING 7.2 The richer output provided by network discovery with NSE being
engaged

nmap -sC -p0-1024 -T4 localhost
Starting Nmap 5.51 (http://nmap.org) at 2016-11-16 11:16 GMT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00054s latency).
Not shown: 1021 closed ports
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey: 1024 d7:46:46:2d:fc:ad:9e:c7:25:d3:a1:96:45:4f:59:d9 (DSA)
|_2048 80:f2:29:c0:ee:a1:80:99:2e:7f:26:c3:b1:2d:c4:37 (RSA)

73

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 73

77

25/tcp open smtp
80/tcp open http
| http-methods: Potentially risky methods: TRACE
|_See http://nmap.org/nsedoc/scripts/http-methods.html
|_http-title: Site doesn't have a title (text/html; charset=UTF-8).
111/tcp open rpcbind
Nmap done: 1 IP address (1 host up) scanned in 0.16 seconds

In Listing 7.2 you can see the additional input from NSE. In contrast to Listing 7.1, you also
receive URLs to further research your fi ndings, more host detail (such as the SSH host key
in this case), and even comments about the HTML that Nmap doesn’t think is valid HTML.

Timing Templates
In Listings 7.1 and 7.2, you asked for information about ports in the 0-to-1,024 range (the
privileged, raw, or superuser ports on Unix-type systems) by using the -p0-1024 option.
The -T4 option isn’t actually a timeout value of four seconds but instead offers a way of
pulling up a specifi c timing template used by NSE. The higher the setting, the faster Nmap
runs, and the values that are available range from 0 to 5.

The timing template values are important and can make a difference to your emotional
well-being. These values, from 0 to 5, stand for paranoid, sneaky, polite, normal, aggressive,
and insane. The words can also be used in place of the numbers if you fi nd them easier to
remember.

Because so many settings were bundled with NSE, the main programmer realized that users
might get lost in their complexity, and so introduced templates that might be helpful.

The main reason that the templates are so important to using Nmap is that when you run
NSE against a lot of hosts, or a large network or networks, the process can take a very long
time to complete. You may also discover very little interesting information (because of
well-confi gured fi rewalls), and your task can still take what seems like forever to complete.

What’s the difference in the templates, you may ask? Both the paranoid and sneaky tem-
plates offer some degree of avoiding detection by an intrusion detection system (IDS).
The polite template slows down the scanning process in order to limit the bandwidth used
at both ends of the connection and also the target machine’s resources. The -T3 switch
actually does nothing whatsoever; that’s because the normal template is the default and
is switched on anyway. The aggressive template, which you used with the -T4 switch in
the earlier example, will speed up the scanning process and test a relatively high-capacity
network’s limits more rigorously. The last template, insane, assumes that you are happy to
trade off some accuracy in the results that NSE provides against the time it takes to exe-
cute. You should have a high-capacity and reliable network if you want to use this setting.

74

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 74

Categorizing Scripts
Despite employing a highly sophisticated underlying engine, NSE was so thoughtfully
designed that even a new user can understand how to operate it with relative ease. It’s
therefore possible to deploy NSE promptly and without requiring too much reading in
advance.

However, to avoid getting ahead of yourself, it’s useful to know how NSE refers to the dif-
ferent scripts that it uses. When you run a script through NSE, a port scan will usually be
performed prior to or during its execution in order to check the current state of a target
machine’s network availability. There are also other similarities among the many NSE
scripts, such as DNS lookups and traceroutes.

In Table 7.1 you can see how NSE categorizes its scripts; there are a number of different
 categories to consider.

TABLE 7.1 The Script Categories That Come with NSE

Category Description

auth These scripts look at authentication methods and circumventing them — for
example, x11-access, ftp-anon, and oracle-enum-users. The brute category
is for brute forcing and not authentication.

broadcast If you need to broadcast on the local network, employ this bundle of scripts.

brute For brute forcing the authentication credentials of a remote host, use this collec-
tion of scripts. There are many available for different protocols.

default The default scripts are executed if you use the -sC or -A options. To use specifi c
scripts, override the default with --script=.

discovery To track who and what is connected to a network, these scripts are all about
examining, for example, public registries, SNMP-enabled devices, and directory
services.

dos If you want to test a vulnerability or (carefully) run scripts that have the possibility
of crashing services, then this set is suitable for your denial-of-service needs.

exploit In order to try out an exploit to see if it succeeds, these scripts will do exactly
that.

external Be warned that by executing these scripts, your actions may be logged by other
parties. That’s because this set of scripts might perform a third-party query, such
as a WHOIS lookup, and you would be visible to that WHOIS service.

fuzzer These scripts will search for software bugs and security holes by injecting ran-
domized fi elds into their queries while you perform your search. They take much
longer than other techniques to knock a server offl ine or fi nd anything of
interest.

75

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 75

77

Category Description

intrusive Ostracized to this unpleasant category, these scripts are very risky to run and
won’t make it to the safe category. Some of the risks include crashes, bandwidth
saturation, and being spotted by sysadmins on target machines.

malware Known malware leaves certain system traces, such as backdoors or signs of infec-
tion. Unusual port numbers and service oddities are searched for with malware
scripts.

safe This set of scripts is less likely to offend the sysadmins of target systems. Still, you
shouldn’t completely rely on these scripts not to cause problems.

version You can’t select these scripts directly because they are an extension to NSE’s
version detection functionality. They execute if the version detection option
(-sV) is used.

vuln If vulnerabilities are discovered, then this set will alert you about them; other-
wise, little noise will be made. Examples are realvnc-auth-bypass and
afp-path-vuln.

Contributing Factors
When the default set of scripts is used, you might be surprised at how the mighty NSE
reaches its decisions. There are no set thresholds; rather, it reaches a kind of score after
running through the following criteria.

 ■ Speed — default scans must be completed swiftly, for example, so no brute forcing
is employed.

 ■ Usefulness — if a script doesn’t produce useful results, then you can forget its
inclusion in default scripts.

 ■ Verbosity — the resulting output of running a script needs to be succinct. Equally,
when there’s nothing to report, silence is a virtue.

 ■ Reliability — inevitably, assumptions and guesses are made during the operation of
some scripts. However, if there are frequently errors, then it shouldn’t be run in the
default category.

 ■ Intrusiveness — if a script causes armed guards to suddenly appear, then it’s prob-
ably too intrusive for the default set of scripts.

 ■ Privacy — along the same line as the external set of scripts, the default scripts
need to respect your privacy and not reveal your presence.

Security Holes
Now that you’ve looked at the multitude of NSE’s script categories and you also appreciate
what running the default set of scripts means, let’s look at performing some penetration

76

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 76

testing using your new-found knowledge and the abundance of bundled scripts that come
with Nmap as standard.

Let’s fi rst run a vulnerability check on your local machine as follows:

nmap --script vuln localhost

In Listing 7.3 you can see the output from that command, noting that you only engaged
the vulnerability scripts using the vuln option.

LISTING 7.3 The direct vulnerability scan made worrisome reading.

Starting Nmap 5.51 (http://nmap.org) at 2016-11-16 11:16 GMT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00090s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open http
| http-enum:
|_ /icons/: Potentially interesting folder w/ directory listing
111/tcp open rpcbind
Nmap done: 1 IP address (1 host up) scanned in 1.18 seconds

The results in Listing 7.3 immediately caught my interest when I saw “Potentially interest-
ing folder” for the RPC service. Of course, it’s possible that only my local machine can query
the /icons/ folder to which it is referring, but there’s also a chance that this needs to be
looked into (and relatively urgently). You might fi rewall off TCP port 111 entirely or shut
down the service to remedy such a fi nd unless you’re aware of confi g rules limiting access
to RPC.

Rather than hunting for confi g fi les, my fi rst test to remedy this issue would be to use
netcat to query TCP port 111 from another machine to see if it responds. (The more modern
ncat, also written by the Nmap Project, is my preferred version, or if that’s unavailable, the
telnet command.)

Incidentally, if NSE identifi es a known vulnerability, then you would hopefully receive a
patch ID for Windows servers or some other relevant URL so that you could research it fur-
ther. This can save time researching exploits via online searching. There’s a good chance
that if NSE fl ags a positive, then a few different tests have been satisfi ed to reach that

77

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 77

77

conclusion, and unlike some other tools, you shouldn’t dismiss its fi ndings without checking
them fi rst.

Authentication Checks
Let’s consider what the results would be if someone else ran Nmap’s NSE against my local
machine, looking for authentication issues. Clearly my local machine has looser permissions
(when speaking to itself and not a remote host), but this way of testing still has educa-
tional merit. The following command does exactly that and looks for auth script hits:

nmap --script auth localhost

The results of this command reveal some of the tests that NSE has run, as you can see in
Listing 7.4.

LISTING 7.4 My auth scripts have been put to work, again on my local machine.

Starting Nmap 5.51 (http://nmap.org) at 2016-11-16 11:16 GMT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00062s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open http
| http-brute:
|_ ERROR: No path was specified (see http-brute.path)
|_citrix-brute-xml: FAILED: No domain specified (use ntdomain argument)
| http-form-brute:
|_ ERROR: No uservar was specified (see http-form-brute.uservar)
| http-domino-enum-passwords:
|_ ERROR: No valid credentials were found (see domino-enum-passwords.

username and domino-enum-passwords.password)
111/tcp open rpcbind
Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

Looking at the results displayed underneath the port numbers in Listing 7.4, you can see
that Nmap clearly wants some more information (from varying inputs) and has generated
three ERROR messages in the meantime. You might see some user accounts that NSE has

78

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 78

discovered, displayed under a section such as “Host script results” at the end of such an
output if usernames were gleaned from executing such a request, for example, against a
Windows domain.

Discovery
Consider the following command, to provide you with more information about a host:

nmap --script discovery localhost

LISTING 7.5 You have discovered a lot of useful information about your localhost.

Starting Nmap 5.51 (http://nmap.org) at 2016-11-16 11:16 GMT
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00070s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
22/tcp open ssh
|_banner: SSH-2.0-OpenSSH_5.3
| ssh-hostkey: 1024 d7:46:46:2d:fc:ad:9e:c7:25:d3:a1:96:45:4f:59:d9 (DSA)
|_2048 80:f2:29:c0:ee:a1:80:99:2e:7f:26:c3:b1:2d:c4:37 (RSA)
25/tcp open smtp
|_banner: 220 mail.chrisbinnie.tld ESMTP Postfix
| smtp-enum-users:
| root
| admin
|_ Method RCPT returned a unhandled status code.
|_smtp-open-relay: Server is an open relay (16/16 tests)
80/tcp open http
| http-headers:
| Date: Mon, 16 Nov 2015 11:37:52 GMT
| Server: Apache/2.2.15 (Red Hat)
| Last-Modified: Mon, 15 Jun 2015 13:57:09 GMT
| ETag: "4bc-61-5188ed5743e6a"
| Accept-Ranges: bytes
| Content-Length: 97
| Connection: close
| Content-Type: text/html; charset=UTF-8
|
|_ (Request type: HEAD)
|_http-title: Site doesn't have a title (text/html; charset=UTF-8).
|_http-date: Mon, 16 Nov 2015 11:37:52 GMT; 0s from local time.
| http-vhosts:
|_393 names had status 200
| http-enum:
|_ /icons/: Potentially interesting folder w/ directory listing

79

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 79

77

111/tcp open rpcbind
| rpcinfo:
| 100000 2,3,4 111/tcp rpcbind
|_ 100000 2,3,4 111/udp rpcbind
Nmap done: 1 IP address (1 host up) scanned in 11.51 seconds

In Listing 7.5 you are blessed with the ability to retrieve HTTP headers, SMTP banners, and
RPC issues, among other things, via the discovery scripts. Although the SMTP error “Server
is an open relay (16/16 tests)” is present, it’s likely a false positive but defi nitely worth
checking so that you’re certain.

With all of these included features, this mode is highly useful and represents a key part of
NSE’s functionality. After all, you can’t exploit services without knowing they exist. From
the results generated by NSE, it is safe to say that, when it comes to discovering machines
and services, information is power. The sophisticated NSE doesn’t bombard you with too
much detail, however, just enough to be useful.

The negative impact of running scripts by category is that it can slightly reduce perfor-
mance if you include all the scripts in a category. However, it does mean that you’re not
relying on the scoring system used by the default set of scripts or executing all the scripts
available to a template type. You can be much more focused if you’re just looking for a spe-
cifi c type of information, however.

Updating Scripts
As you might imagine, the custom scripts written for NSE using the Lua language are fre-
quently improved and augmented. If you want to update your NSE scripts, you can do so
selectively by downloading and copying them into a directory, similar to this path, on
Unix-type systems:

/usr/share/nmap/scripts

If you add or remove scripts from the scripts directory or if you have changed a script’s
category, then you need to run the following command (as the root user) afterwards:

nmap --script-updatedb

The output will hopefully be something like this:

Starting Nmap 5.51 (http://nmap.org) at 2016-11-16 11:16 GMT
NSE: Updating rule database.
NSE: Script Database updated successfully.
Nmap done: 0 IP addresses (0 hosts up) scanned in 0.14 seconds

80

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 80

To download scripts from the Nmap website, you can click the Scripts link in the Categories
panel at https://nmap.org/nsedoc/lib/nmap.html.

At the time of writing, there are over 500 eye-watering scripts to consider, each with
 information relating to their functionality.

Script Type
It is worth mentioning that within the underlying infrastructure of NSE, there are four
supported script types:

 ■ Prerule scripts - as you’d guess, these are run at the start and before any scanning
begins. For example, you might want to perform reverse DNS lookups on a list of IP
addresses before examining them.

 ■ Host scripts - during standard scanning processes (that is, after discovery, port
scanning, version detection, and operating system detection), these scripts are run
on the target.

 ■ Service scripts - if NSE identifi es a service, it can then execute these scripts against
it. For example, there are more than 15 HTTP scripts to run against web servers.

 ■ Postrule scripts - these are run once NSE has fi nished its scanning tasks, and they
tend to concentrate on how results are output. As I’ve said, brevity is important, as
verbosity can cause confusion.

The comprehensive Nmap documentation (found at https://nmap.org) makes the point
of explaining that “[m]any scripts could potentially run as either a prerule or postrule
script. In those cases, we recommend using a prerule for consistency.”

Regular Expressions
The clever command line with which NSE is familiar can also cope with regular expressions
(regex). For example, I mentioned the 15 HTTP scripts; to trigger all of these scripts in one
run, you might run a command against a target web server such as this:

nmap --script "http-*"

You can also make Boolean decisions as follows (just as you’d expect with regex):

nmap --script "default or safe"

81

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 81

77

Hopefully this command is easy enough to understand. The documentation also presents
this more complex example:

nmap --script "(default or safe or intrusive) and not http-*"

Here you can see that you want to enable the default, safe, and intrusive script categories,
but not those that deal with web servers.

Graphical User Interfaces
As an aside, you can also save the output (which if it’s lengthy would usually scroll rapidly
up your console) to fi le in the usual way, as you can in this example, Unix-style:

nmap -sC -p0-1024 -T4 localhost > /home/chrisbinnie/output.txt

However, the NSE way to save the output is as follows, outputting to plain text:

nmap -T5 localhost -o outputfile.txt

You can also output information to XML as follows:

nmap -T5 localhost -oX outputfile.xml

Zenmap
There are times, especially if you’re dealing with many target machines across differ-
ent networks, that you need some help with your results. Imagine being able to add your
results to a database so that you can search for common patterns with ease across historical
scans.

Step forward, Zenmap (https://nmap.org/zenmap/). The offi cial GUI scanner for Nmap,
the well-designed Zenmap is also free and appropriate for users of all levels. A command
creator is included to assist in making up complex commands and the ability to perform
historical searching via a database. It’s also possible to create profi les for commonly run
commands so you’re not continually retyping them.

This highly useful graphical cross-platform tool is available for Linux, BSD, Mac OS, and
Windows, among other systems.

Another nice feature is that you can run a diff and then compare the results of two scans
in order to more easily discover what happened between then and now.

82

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 82

For users who frequently perform scans, and indeed any user who is new to security,
Zenmap should be the tool of choice. Users of all experience levels should fi nd the learning
curve considerably less steep by using Zenmap fi rst. Figure 7.1 shows what you can expect
from using the graphical Zenmap on a Desktop Manager in Linux.

FIGURE 7.1

An example of Zenmap at work, as found at the Zenmap homepage (https://nmap.org/
zenmap/)

Copyright 2015 Insecure.Com LLC

Summary
 In this chapter, I’ve touched on just some of Nmap’s basic functionality, introduced and
explained the different script categories of NSE, discussed the types of scripts that Nmap
can use, and explored using a GUI to take the initial complexity away from repetitive tasks.
Of course, I would be remiss not to mention again that the GUI also helps with analysis.

83

Chapter 7: Nmap’s Prodigious NSE

c07.indd 04/21/2016 Page 83

77

There are hundreds of options, as well as white hat and black hat scenarios, that Nmap sup-
ports and encourages you to experiment with. It’s important to learn how attackers might
approach your system, but equally to use these powerful tools with care and respect.

After all, bringing down other people’s servers is no fun. It’s stopping other people from
bringing down your servers that is a bigger challenge, and as a result it’s much more satis-
fying (and completely legal).

85

c08.indd 04/05/2016 Page 85

CHAP T ER

8
Malware Detection
The term malware encompasses a large range of unwelcome software that is designed to damage a
computer. A partial list of malware might, for example, include viruses, spyware, Trojan horses, and
worms. The rapid proliferation of such software is enough to concern users of all levels, from nov-
ices to seasoned administrators. The impact of malware ranges from essentially harmless pranks to
the theft of personal information, such as banking details, or a denial of service.

Although the level of scaremongering in the news ebbs and fl ows, every good sysadmin knows that
there’s no such thing as a completely secure system. Despite the massive number of virus and mal-
ware threats that target Windows machines, all users of Unix-type machines should remember that
these threats also exist for their systems.

One popular, sophisticated software package called Linux Malware Detect (LMD), from R-fx Networks
(https://www.rfxn.com), helps to mitigate malware threats on Linux systems. Let’s look at how
you can effectively protect Linux machines against malware using the LMD package, which only
focuses on malware, unlike other more diluted solutions.

Getting Started
Before we begin with looking at LMD itself, let’s consider some potentially less obvious aspects of
what’s needed to successfully keep your malware software functioning correctly.

Defi nition Update Frequency
It is critical that malware signature updates be performed frequently; in fact, your system may be
vulnerable if you have missed the latest update. The architecture of the detection software itself is
of little value if current threats are not detected. Fortunately, LMD frequently pulls in its updates,
from which it generates signatures, from community data, user submissions, and the fi rewall data
of active malware threats.

The LMD website offers an up-to-date RSS feed of the latest threats, and also provides a commercial
version, which is another incentive for updates to be current and relevant. The feed, which is brim-
ming with LMD’s current malware fi ndings, can be found at https://www.rfxn.com/feed/.

LMD states that signatures receive an update approximately once a day, or more often if a fl urry of
activity is reported.

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

86

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 86

Malware Hash Registry
A well-respected security website called Team Cymru provides a Malware Hash Registry
(www.team-cymru.org/MHR.html), which provides a lookup service to compare malware
infections. According to LMD, over 30 major antivirus companies use this data to populate
their databases. From the LMD website, you can see the current number of reported threats
as follows:

DETECTED KNOWN MALWARE: 1951
% AV DETECT (AVG): 58
% AV DETECT (LOW): 10
% AV DETECT (HIGH): 100
UNKNOWN MALWARE: 6931

The LMD website then continues and explores some of the scoring used to measure success-
ful hits and misses by other malware products, resulting in a worrying conclusion.

Using the Team Cymru malware hash registry, we can see that of the 8,883 mal-
ware hashes shipping with LMD 1.5, … 6,931 or 78% of threats … went unde-
tected by 30 commercial anti-virus and malware products. The 1,951 threats that
were detected had an average detection rate of 58% with a low and high detec-
tion rate of 10% and 100% respectively. There could not be a clearer statement
to the need for an open and community driven malware remediation project that
focuses on the threat landscape of multi-user shared environments.

As you can see from this LMD website excerpt, there are a signifi cant number of failures
among commercial malware products. LMD aims to plug the market gap where possible, but
is an advocate of open discussions and collaboration, sharing known threat details between
vendors.

Prevalent Threats
At the time of writing, LMD claims to hold 10,822 malware signatures within its data-
base. Looking at the contents of Figure 8.1, you can see a list of the top 60 most prevalent
threats within the LMD database. As you might expect, the world’s most popular server-side
scripting language, PHP (https://www.php.net), is a common attack vector. The power-
ful Perl language also features heavily.

LMD Features
The LMD feature set is far from trivial. In Figure 8.2 you can see the features listed in its
documentation.

87

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 87

88

FIGURE 8.1

The top 60 most prevalent attacks according to LMD

FIGURE 8.2

The sizeable list of features that LMD offers

88

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 88

You can tell that in addition to its clever threat detection, LMD manages to combine com-
prehensive reporting and the quarantining of threats, among many other features. The
ability to receive summary reports on a daily basis through e-mail via a cron job is clearly
useful to make sure the detection system is running as expected. In addition, LMD’s abil-
ity to plug into Apache and directly monitor fi le uploads from users is something that I
will touch on later. If this is the only way that a user can get fi les onto a system, then it is
clearly a bulletproof choice.

Monitoring Filesystems
One modern method of watching for changes on fi lesystems is by using inotify. You need
a compatible kernel for this functionality to work correctly. Fear not, because inotify is
reportedly included in kernels from version 2.6.13 and after, so most Linux builds will have
this capability.

The sophisticated inotify can monitor, in real time, both single fi les and entire directories
for changes, alerting confi gured software if any changes are discovered. If a piece of user-
space software is caught making changes, then inotify will consider it an event and report
it immediately.

By creating a watch list, inotify can keep track of unique watch descriptors that it associ-
ates to each item on its watch list. Although inotify won’t pass on details about the user
or process that has changed a fi le or directory, the fact that a change has taken place is
enough to satisfy most applications. If inotify isn’t available, then the older approach of
polling a fi lesystem or manually running scans will usually apply. In the case of checking
for changes on networked fi lesystems, any confi gured software will need to resort to poll-
ing the fi lesystem using a predetermined frequency. This is because remote fi lesystems are
harder to keep track of.

Unfortunately, the pseudo fi lesystems, which include /proc, /sys, and /dev/pts, aren’t
visible to inotify. This shouldn’t be of too much concern, however, because “real” fi les
don’t exist in these paths, but rather the ephemeral workings of a system, which change
frequently.

Installation
Let’s now look at installing LMD on both Debian and Red Hat derivatives. First, you will
check that the wget package is installed with the following command on Red Hat:

yum install wget

The alternative on Debian is the following command:

apt-get install wget

Many distributions include wget by default, so this may not be needed.

89

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 89

88

To get the most out of LMD, you can also install inotify-tools if you want LMD to inter-
face with inotify directly; you can read more and also download inotify-tools from
https://github.com/rvoicilas/inotify-tools/wiki.

However, to install it from your package manager, if you’re lucky and using an offspring of
Red Hat, you can use the following command:

yum install inotify-tools

And, for machines following Debian’s lineage, you should be able to run the following
command:

apt-get install inotify-tools

If that doesn’t work on your Debian fl avor, try the following procedure. I know this works
because I wanted to see how easy LMD would be to install on Ubuntu 14.04 LTS. I needed to
add the Universe repository, in order to successfully install the inotify-tools package
to my /etc/apt/sources.list fi le, as follows:

deb http://us.archive.ubuntu.com/ubuntu trusty main universe

You can swap the word “trusty” with “precise” or another Ubuntu release code name if
you are running other fl avors. You can then update your package lists with the following
command:

apt-get update

Then, the fi nal Ubuntu command would simply be as follows:

apt-get install inotify-tools

I will leave you to experiment with Debian repositories in the same way (replacing “trusty”
with your Debian version name).

Because the LMD package itself is not found in package repositories as of this writing, you
can download and install the package as follows:

cd /usr/local/src/
wget http://www.rfxn.com/downloads/maldetect-current.tar.gz
tar -xzf maldetect-current.tar.gz
cd maldetect-*
sh ./install.sh

Once you’ve run the install.sh script, as shown on the last line of these commands, you
should be presented with output containing content that includes the following:

Linux Malware Detect v1.5
 (C) 2002-2015, R-fx Networks <proj@r-fx.org>
 (C) 2015, Ryan MacDonald <ryan@r-fx.org>

90

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 90

This program may be freely redistributed under the terms of the GNU GPL
installation completed to /usr/local/maldetect
config file: /usr/local/maldetect/conf.maldet
exec file: /usr/local/maldetect/maldet
exec link: /usr/local/sbin/maldet
exec link: /usr/local/sbin/lmd
cron.daily: /etc/cron.daily/maldet
maldet(6617): {sigup} performing signature update check...
maldet(6617): {sigup} local signature set is version 2015112028602
maldet(6617): {sigup} latest signature set already installed

Your chosen installation paths might vary, of course, if you have edited the install.sh
script (the inspath variable in particular). As you can see, you also receive a note of how
up-to-date your LMD signatures are.

Monitoring Modes
Now that you have installed your package, let’s look at what LMD can monitor for you on a
system. A good place to start is if you consider LMD’s monitoring modes.

LMD offers a number of monitoring modes that can be confi gured to check different parts
of the fi lesystem. As you will see, LMD uses the binary executable called Maldet, short for
“malware detect.”

To monitor a system component, you can use the -m option, also written as --monitor.
What LMD can monitor may be broken down into users, fi les, and paths. The website gives
you the following example of how the three modes might look on the command line:

maldet --monitor users
maldet --monitor /root/monitor_paths
maldet --monitor /home/mike,/home/ashton

By using the fi rst option, --monitor users, LMD will monitor any unique identifi ers
(UIDs) on the system that are above a minimum UID setting. (The confi g option that can be
set in the confi g fi le is called notify_minuid.)

The second monitoring example is a fi le, spaced by new lines, that can contain the fi les you
want to monitor. In this case, the list of fi les is located in the fi le /root/monitor_paths.

For the third option, you could potentially create a very long command line by adding a
comma-separated list of fi lesystem paths to keep an eye on.

Figure 8.3 shows the output from running the following command:

maldet -m /home/ubuntu

91

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 91

88

FIGURE 8.3

What you see when you ask LMD to monitor a specifi c path

Confi guration
The main confi g fi le for LMD is /usr/local/maldetect/conf.maldet. It’s well com-
mented and is useful for understanding how LMD prefers to be set up.

One word of warning before you continue, however: the LMD confi g fi le doesn’t use an
asterisk for wildcard characters, but instead, a question mark. Therefore, you should use ?
characters instead of * to replace multiple characters in a confi g option. Other than that
minor caveat, it’s relatively smooth sailing.

Exclusions
Let’s look at how to set up LMD. The documentation starts you off by asking you to consider
the elements of the system that you want to ignore. In the same style as the monitoring
modes that you have just looked at, there are fi les that you can populate to achieve this.
Each entry in the following confi g fi les should be on its own line.

You can add full fi le paths, which you don’t want to be checked by LMD, to this fi le: /usr/
local/maldetect/ignore_paths.

You can also exclude a particular fi le extension globally by putting an entry like .jpg in
this fi le: /usr/local/maldetect/ignore_file_ext.

Certain LMD signatures might lead to unnecessary and unhelpful logging entries and alerts
for one reason or another. You can disable certain signatures by adding a signature, such as
php.mailer.10hack, to this fi le: /usr/local/maldetect/ignore_sigs.

The last exclusion option means that you can use sophisticated regular expressions (regex)
to match multiple fi lesystem paths at once. You simply add a list to this fi le, /usr/local/
maldetect/ignore_inotify, which uses a format like this:

 ^/home/premium-user-$

92

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 92

Clearly, by using regex, the fi le-matching possibilities are endless, and it can be used to
avoid making manual changes to your confi g whenever a new user is allowed to log in to
your server. This regex example hopefully points out that you could name a specifi c set of
users with a username format along the lines of premium-user-123456.

Running from the CLI
The Command Line Interface (CLI) options for LMD are well considered and relatively easy
to follow. I will leave you to explore all of them, but you will look at some of the key
options now.

As I have already mentioned, the executable binary for LMD is called maldet. Let’s begin by
running LMD in the background while it checks a particular fi lesystem path. You can see
from this example in the documentation how to run potentially large scans in the back-
ground as follows, using -b:

maldet -b -r /home/?/public_html 7

In this example, -b is used for background scanning and checking fi les that have been
changed or modifi ed in the last seven days, set by the 7 character being appended. The
syntax and optional way of running this command is --scan-recent PATH DAYS.

Reporting
Let’s have a quick look at how LMD generates its reports. Figure 8.4 shows a produced
report.

FIGURE 8.4

A report of a scan from LMD using the maldet --report command

To query specifi c reports, you need a SCANID. This is a unique reference that can be seen
near the top of Figure 8.4, where this command runs to give you a report on the last LMD
command that was run:

maldet --report

93

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 93

88

Once you have that ID, you can also manually e-mail the report to yourself as follows:

maldet -e, --report SCANID chris@binnie.tld

To query a specifi c SCANID, with a formatted time stamp included within its name (010116
as the date in this example, and the rest of the name being the time), your command might
look like this:

maldet --report 010116-1111.21212

These options might also be helpful if used with the --log or -l option:

maldet --log

You should see LMD logging events by running this command. In my case, despite having
only run a few commands so far, there is a relatively substantial amount of detail on my
log fi le. With that command, you are shown the last fi fty lines from the fi le /usr/local/
maldetect/logs/event_log. You can query that fi le further if you need to discover
information not found in those 50 lines. In my opinion, the level of detail logged by LMD
is another indication of a sophisticated, well-written package.

Quarantining and Cleaning
The documentation makes a point of saying that by default, LMD will not act when it fi nds
evil-looking fi les. It is therefore important to understand that, in most cases, you need to
quarantine your malware manually.

If you’re certain that you want to enable automatic quarantining, then it’s possible to do
so by setting the confi guration option quar_hits=1 within the main confi g fi le, which
resides at /usr/local/maldetect/conf.maldet by default.

If you wanted to quarantine all malware from a specifi c scan, then you would use the -q
option, which is also the same as --quarantine SCANID, as follows:

maldet -q 010116-1111.21212

If you feel that you’ve made a mistake, then you can restore quarantined fi les from a
specifi c SCANID by using the following command, which is the same as the --restore
function:

maldet -s 010116-1111.21212

You will see an error such as this one if there’s nothing to restore:

maldet(18748): {restore} could not find a valid hit list to restore.

If you want LMD to try to fi x malware infections that it discovers, then you can use the
--clean command, which is also written as the -n option. Here is an example command of
cleaning malware that you found in a particular SCANID:

maldet -n 010116-1111.21212

94

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 94

For a cleaning to be considered a success, the resulting scan after cleaning a malware infec-
tion must pass without registering a HIT of a problem fi le.

If you begin to doubt results or you’re not sure that your confi g changes have been picked
up correctly, then you can purge all of your existing session data, logs, and temporary fi les
with the following command:

maldet -p

The result should be similar to this output:

maldet(19219): {glob} logs and quarantine data cleared by user
request (-p)

Updating LMD
As I said from the outset, the updating of LMD’s signatures is of paramount importance.
To manually run an update, you use the -u command option. In case you’re wondering, by
doing so you connect to the rfxn.com website to retrieve the data. Try it manually yourself
with -u, or its equivalent --update, as follows:

maldet -u

The expected output would be similar to this:

maldet(19278): {sigup} performing signature update check...
maldet(19278): {sigup} local signature set is version 2015112028602
maldet(19278): {sigup} latest signature set already installed

There is also a clever mechanism for updating the currently installed version, again from
rfxn.com, as follows:

maldet --update-ver

This can also be abbreviated to -d if you want, and the results of this command might look
like this:

maldet(19357): {update} checking for available updates...
maldet(19357): {update} hashing install files and checking against
server...
maldet(19357): {update} latest version already installed.

Scanning and Stopping Scans
In Figure 8.1 you saw the results of monitoring a particular path with the -m or --monitor
option. Let’s expand on that for a moment.

95

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 95

88

Imagine that you want to monitor two particular fi lesystem partitions, because your users
potentially have the ability to write data there. You would monitor the paths as follows:

maldet -m /usr/local,/home

Note the comma that is separating the paths. The output for running this command is
shown in Figure 8.5. Remember that large scans can use the -b background option, as you
saw earlier.

FIGURE 8.5

What you see when LMD starts monitoring two fi lesystem partitions with inotify enabled

Let’s consider how to manually scan a directory and its subdirectories without using
background mode. Imagine you have users uploading fi les via FTP or SFTP to an upload
directory:

maldet -a /home/?/uploads

In this example, you use LMD to scan the uploads directory for all users with a home
directory (remember that the question mark is the wildcard character in LMD, not the
asterisk).

Having run the scanning command, you are also offered a SCANID for future reference, as
you can see from the data it generates:

maldet(28566): {scan} scan of /home/*/uploads (1 files) in
progress...
maldet(28566): {scan} 1111/1111 files scanned: 0 hits 0 cleaned
maldet(28566): {scan} scan completed on /home/*/uploads: files 1111,
malware hits 0, cleaned hits 0, time 11s
maldet(28566): {scan} scan report saved, to view run: maldet --report
151212-1724.28566

96

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 96

If any of your scans take longer than expected, then LMD can accommodate this scenario
too. The kill switch or -k option (also written as --kill) will stop any inotify instance in
its tracks. If machine load is too high or you think something isn’t behaving as it should,
then this is a useful addition to the available options.

Cron Job
LMD comes with a daily cron job, which is located at /etc/cron.daily/maldet. This will
update signatures and clean up scan data so that it’s kept for up to fourteen days, as well
as run a daily scan using the confi g that you have specifi ed.

Note that session data and temporary fi les are kept between cron job executions. As a
result, you need to run the -p option that I mentioned earlier to purge those fi les if you
think your results aren’t accurate.

You should set up the e-mail confi guration parameters in order to receive daily reports
every morning. The daily update is valuable for e-mail archival reasons and for making sure
that your scans are taking place every day and haven’t failed.

Reporting Malware
You’ve seen how sophisticated and well-constructed LMD is, and it should therefore come as
no surprise that LMD provides a simple mechanism for uploading suspicious fi les for analy-
sis. If they prove to be infected with an unknown variety of malware, then new signatures
may be created and added to LMD’s known threats in order to identify malware for other
users. The method to send fi les back to LMD for checking is as follows, using the --check-
out feature, which is also written as the -c option:

maldet -c suspicious_file.gz

When you execute this command, your fi le will be submitted to rfxn.com and checked in
due course.

Apache Integration
Earlier in the chapter, I briefl y alluded to a clever feature that is included with LMD. This
feature is the ability to integrate LMD with the Apache mod_security2 module. The LMD
documentation explains that it uses the malleable Apache module’s inspectFile hook
functionality to enable you to run a validation script that can determine if an upload is to
pass or fail. So, for example, inside your Apache confi g fi le, you might see this entry, taken
from the documentation:

SecRequestBodyAccess On
SecRule FILES_TMPNAMES "@inspectFile /usr/local/maldetect/hookscan.
sh" \
 "id:'999999',log,auditlog,deny,severity:2,phase:2,t:
none"

97

Chapter 8: Malware Detection

c08.indd 04/05/2016 Page 97

88

By design, each upload of a fi le by a user can be scanned automatically, which should
signifi cantly reduce the number of threats on a system, especially where many users are
uploading fi les frequently.

The documentation includes details of how performance and accuracy have been considered
in the default options. If you’re interested in this feature, then I would encourage you to
check out the bundled README fi le for more information.

Summary
 In addition to looking at LMD, I touched upon the inotify mechanism that it uses to check
for fi lesystem changes in real time. The clever and effi cient inotify allows real-time checks
for malware without signifi cant system load being introduced.

With Android smartphones currently accounting for over 80 percent of the global market,
there is little doubt that the malware written to exploit vulnerabilities in those devices will
appear to a greater extent on Linux user devices as well as servers in the future.

By enabling real-time fi lesystem checks alongside sophisticated tools such as LMD, you
should reduce your risk of a malware infection signifi cantly. LMD was initially designed for
servers offering shared hosting because the author felt the user-account attack vector was
being missed by other products, which usually focused on kernel and rootkit infections.

Having tried installing LMD in a test environment fi rst, however, and having become famil-
iar with how it operates, I believe that LMD is defi nitely worth considering for use on your
production machines.

99

c09.indd 04/05/2016 Page 99

CHAP T ER

9
Password Cracking with Hashcat
Two sophisticated security tools caught my eye recently. They were highlighted in the news
because they’ve been released as open source, apparently causing a frenzy on GitHub as developers
looked for the tools’ source code. The tools in question are called Hashcat and oclHashcat. Hashcat
(https://hashcat.net/hashcat) boldly refers to itself as the “world’s fastest CPU-based pass-
word recovery tool.” Its close relative, oclHashcat, uses your Graphics Processing Unit (GPU) to
number crunch its way through the process of recovering passwords, as opposed to Hashcat’s CPU-
based approach. As a result, the GPU-based oclHashcat is even faster than Hashcat.

While tools like this can be highly useful for legitimately rescuing a lost password, it is also pos-
sible to use them for nefarious purposes. It hopefully goes without saying that these powerful tools
should be used responsibly. They are employed by forensic scientists and penetration testers, but
if you fi nd evidence of similar tools on one of your machines, then you should certainly raise
the alarm.

Let’s look at how these tools work for saving the day if a password becomes lost, as well as how a
hacker will approach attacking your passwords.

History
Another popular, venerable security tool that is used for ripping passwords is called John the
Ripper, and its origins go back many years. Hashcat arrived on the scene in 2009, and took it upon
itself to use multithreaded CPU password cracking. At that time, although other tool developers had
begun looking at using all the available cores of a CPU, none were able to do so fully and without
patching. When the developers were designing Hashcat, it made absolute sense to take advantage
of the capabilities of modern CPUs and speed up the password recovery process signifi cantly.

In case it causes confusion, Hashcat originally went through a few different names in its early
releases, such as atomcrack and Dr. Hash. As of version 0.30, the name that you know (and I’m sure
you will begin to love), Hashcat, was applied to the software.

Understanding Passwords
It might be helpful to look at how password systems work. I’ll use Linux systems as my case in
point before continuing onto Hashcat in detail.

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

100

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 100

Keyspace
It’s important to understand the concept of what keyspace is in cryptography. It loosely
relates to how much effort a password-cracking tool will have to expend.

The keyspace is simply the set of available keys that might be used when generating a par-
ticular key. The National Institute of Standards and Technology (NIST) describes keyspace
as the “total number of possible values that a key, such as a password, can have.”

It continues, “A component of keyspace used in common passwords is the ‘Character Set’
used to make up the key.”

In other words, in a password you can only use the available characters on your keyboard
(or in your current locale’s character set), and they represent a password’s keyspace.

Even a single character can have a keyspace of ten characters if that character is a single
number, ranging from zero to nine.

You can increase the security of your passwords by increasing both the length of the
passwords and the size of your character sets. So, for example, a password with 16 char-
acters that uses a character set sized at 10 characters would reportedly have a keyspace of
10,000,000,000,000,000, making it much harder to attack than the 10-character keyspace
from a single character.

This helpful website might encourage you to increase your password security: https://
howsecureismypassword.net.

This simple yet sophisticated site uses basic terms and discusses possible combinations as
opposed to keyspace. If you click the SHOW DETAILS link under the input box, after you’ve
entered a password, you will see how secure the password is. For example, the following
output appeared after I entered a one-character-long password:

Length 1 characters
Character Combinations 10
Calculations Per Second 4 billion
Possible Combinations 10

Now for the part that should cause you great concern. The powerful password tool on the
“How Secure Is My Password” website reports that the cracking time for my single-digit
password is roughly 0.0000000025 seconds for a standard desktop computer. Imagine how
fast it might be if you combined the processing capacity of many video cards.

Trying to be a little more clever, by contrast, you can see what happens when I enter a
16-character password in the example that follows. Incidentally, I’m using my computer’s
default character set, so here the 10-character-long character set example that you just
looked at won’t apply.

101

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 101

99

The password I entered was a combination of upper and lower alpha characters, numeric,
and special characters, as follows:

Rx951&RTdIp-"2YT

In this case the website responded with a more comforting time to crack, of 412 trillion
years. As you can see in the following output, some new vocabulary is included (for me,
at least). Apparently, the word “nonillion” is a number followed by 30 zeros in the United
States and 54 zeros in the United Kingdom.

Length 16 characters
Character Combinations 96
Calculations Per Second 4 billion
Possible Combinations 52 nonillion

From this example, you can clearly surmise that a standard eight-character-long “compli-
cated” password is preferable to using a simple single-character password.

Hashes
Now that I’ve covered how a complex password can dramatically increase the effort involved
in an attack, I’ll continue my discussion of password cracking. First, though, one fi nal
explanation.

As its name suggests, Hashcat deals with password hashes. Creating a hash in cryptography
involves the conversion of a string of characters, such as a password, into a set number of
characters, resulting in something a little like a fi ngerprint. There’s no way of undoing or
reversing a hash (well, more accurately, it’s just really, really diffi cult to do in reality).

Here are two MD5 examples. First, the hash for the word “hello” is

5d41402abc4b2a76b9719d911017c592

Second, the MD5 hash for a capitalized “Hello” is

8b1a9953c4611296a827abf8c47804d7

As you can see, that single uppercase character change makes quite a difference.

Now, if you use another word, “Hello There,” you get

32b170d923b654360f351267bf440045

The MD5 hash of two words is the same length as the previous examples that contained one
word. By knowing that your hashes are always the same length, you can tell if a string of
seemingly unrelated characters conforms to a standard.

102

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 102

Also, think for a second about why you don’t encrypt passwords on a Linux server and
then decrypt the system’s password fi le when a user logs in. The answer is simply because
the process of encrypting data can be reversed, whereas a one-way function is better than
encrypting a password. Some people are surprised to read that the /etc/shadow fi le
doesn’t actually remember a user’s password at all, just a salted-hash version of it.

Why does an entry in your /etc/shadow password fi le on Linux look like this? It looks
like encryption of some sort at a glance.

chrisbinnie:6TRIYWb5l$ef6Tm54qpV2nYCn6f20b7w/
5nvp8zpsjacFqeTwqx7fCeW3plG2pkKsGgf1CtWzWhHOPWykFGrfPGmCde4HWY/
:12231:3:32:11:32::

The user chrisbinnie has a much longer entry because the Shadow Suite is using a salt to
further bolster the passwords. After a user has entered a password on a Linux system, by
default, a salt will be used.

In Linux’s crypt package for example, this is a two-character string that is chosen from
characters in a character set. They could be any of these characters from my English char-
acter set (a-z, A-Z, 0-9./). Having chosen a salt, the original algorithm used to hash the
user password is then “perturbed” in any of 4,096 different ways. The salt is then saved to
the encoded password.

Let’s think a little more about Linux passwords for a moment. Modern Linux systems
enhance your password security with Shadow passwords. Previously, passwords were stored
in the fi le /etc/passwd, which every user on the system could read. Only root can read
the /etc/shadow fi le, however, and this allows other policies to be enforced properly,
such as password aging.

The user login process works like this. When someone logs into a machine, the salt from the
relevant entry for their user in the /etc/shadow fi le is read. Next, the password that the
user entered is encoded with the salt that has just been read. The results of this process are
checked against the password saved in /etc/shadow. If they are the same, then the user
is allowed access. Clever and simple.

One common way of attacking a list of passwords is by knowing, in advance, the hashes for
a lot of common passwords and combining them with all of the 4,096 available salt values.
This is known as a dictionary attack.

It has been said that today, the bare minimum specifi cation of a secure password system
should include an up-to-date hashing algorithm, as well as the resulting hash being salted.
Popular modern hashing algorithms include SHA256, SHA512, whirlpool, tiger, ripemd, and
SHA3. Each has subtly different attributes.

103

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 103

99

These algorithms shouldn’t be confused with encryption algorithms such as 3DES, Triple
DES, Crypt, Blowfi sh, and Rijndael.

Using Hashcat
The well-designed, accommodating Hashcat is bundled with a large number of example
hashes and wordlists to experiment with. Let’s look at how you can work with them.

Hashcat Capabilities
The general approach of password-cracking tools tends to be one of importing a password
fi le that is full of encrypted data and then generating an output fi le once the input fi le has
been processed. Let’s look at some of the options that are available with the Hashcat tool.
I will touch upon some of the other tools that are available from within its software suite
in a moment.

Hashcat supports many different types of hashing algorithms, such as MD5, SHA1, and
NTLM. In fact, if I’m counting correctly, the number exceeds an incredible 90 varieties.
Hashcat claims it can break the MD5 versions of popular applications such as WordPress and
Cisco-ASA, and also Drupal7 passwords. In addition to its impressive algorithm support, the
many different attack modes that are available include brute forcing passwords, dictionary
attacks, rule-based attacks, and fi ngerprint attacks.

Installation
At the time of writing, the current version of Hashcat is v2.00. To install Hashcat (assum-
ing that you can’t fi nd it in your distribution’s repositories), you can head to the website
and download the latest binaries. The direct link for v2.00 is here: https://hashcat
.net/files/hashcat-2.00.7z.

The version 2.00 link is visible at the top of the web page at https://hashcat.net/
hashcat/. You should check this page to ensure that you are downloading the latest
available version.

Once downloaded, it’s just a case of extracting the .7z fi le, and making sure you have the
correct permissions to write fi les to the directory to which you have extracted the fi les. If
you get stuck extracting on any Debian derivatives, then you can install the 7za package
with the following command:

apt-get install p7zip-full

104

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 104

On Red Hat derivatives, you may need to add a repository. Having done so, the following
command will hopefully work for you:

yum install p7zip p7zip-plugins

Next, to extract the compressed fi les and preserve the directory names with x, run the 7za
fi le as follows:

7za x hashcat-2.00.7z

Note the lack of a minus sign before the x, which is the usual convention. That’s not a
typo.

Having done that, you can now cd into the newly created hashcat-2.00/ directory,
which contains many fi les and subdirectories. Of particular interest are the docs and
examples directories, which you can explore to your heart’s content. Fear not, you’ll look
at how to run the Hashcat executable in a moment.

Incidentally, if you’re interested in the latest development version, there’s a GitHub page at
https://github.com/hashcat/hashcat. It also includes documentation and links to
the wiki, which should be of interest.

If you’re running the sophisticated penetration-testing suite, Kali Linux, then you should
be able to install Hashcat as follows, thanks to the fact that it’s built-in:

apt-get install hashcat

Hash Identifi cation
There are a couple of things to consider before using Hashcat. You fi rst need to know the
type of hash that you are trying to recover the password from.

Let’s think about Linux user passwords for a moment. The default hash algorithm in use has
changed periodically over time and can also be distribution dependent. In the past, com-
mon defaults were MD5 and DES, but SHA512 is now commonplace.

It helps Hashcat if you can identify what hash type you are attacking. You can run the fol-
lowing command to discover which hashing algorithm is in use:

authconfig --test | grep hash

If you are concerned about the security on your machine and want to upgrade the hash-
ing algorithm used by your machine’s Shadow passwords, then you can use the following
command:

authconfig --passalgo=sha512 --update

In this example, you can replace sha512 with sha256 if you want. Note, however, that in
order to make this change effective, you need to get your users to change their passwords

105

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 105

99

so they are converted to the new hash type. You can expire a user’s password, forcing the
user to change it at the next login, with the following command:

chage -d 0 chrisbinnie

The “change age” command in this example pushes the expiration date to January 1, 1970,
which ensures that it’s always earlier than the current setting of the system’s clock.

Let’s look at my example /etc/shadow entry again for the user chrisbinnie:

chrisbinnie:6TRIYWb5l$ef6Tm54qpV2nYCn6f20b7w/
5nvp8zpsjacFqeTwqx7fCeW3plG2pkKsGgf1CtWzWhHOPWykFGrfPGmCde4HWY/
:12231:3:32:11:32::

You don’t need to run the authconfig command to determine that the example entry is
using a SHA512 hash. You can deduce this by referring to the codes in Table 9.1.

TABLE 9.1 How to Identify Hashing Algorithms

Symbol Hashing Algorithm

$0 DES

$1 MD5 Hashing

$2 Blowfi sh

$2A Eksblowfi sh

$5 SHA256

$6 SHA512

In the Shadow password example, sandwiched between two dollar signs directly after
the username, there are these three characters: 6. From Table 9.1 you can tell that
the /etc/shadow passwords are using SHA512. This is good news because it’s a strong
algorithm.

The next section of the password entry, after 6 and all the way up to the next dollar
sign, is the salt. That’s TRIYWb5l in this case.

The password (encoded with the salt) is the next section after the dollar sign and up to
the fi rst colon. After that, the other sections, within the colons, offer the system some
pertinent login information such as when the user’s password will expire, when it was last
changed, and so on.

To gauge how recently the stronger algorithms have been in use, consider this: according to
Fedora, since Fedora 8 the glibc package has supported SHA256 and SHA512 hashes. As a
result, from Fedora 9 it has been possible to use SHA256 and SHA512 for passwords.

106

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 106

If you’re stuck, then check out the website http://verifier.insidepro.com to deter-
mine which hash variety you want to point Hashcat to. I only had limited success with
the example hashes used here, which were generated using a different website’s tool, so be
warned that it may take you some time to identify an unknown type of hash algorithm.

In case it’s useful, try running the following command to generate an MD5 password with a
salt (you need openssl installed):

openssl passwd -1 -salt 123 PASSWORD
$1$123$YPya29UI1XS9hz1d23ltx/

From the results of running that command, note where the 1 and the 123 are in relation
to the encoded password.

I sometimes also run an MD5 hashing test like this (without a salt):

echo PASSWORD | md5sum
8b04b6229e11c290efd5cd8190aa9261 -

Other ways of manually generating passwords can be found at http://unix.stackex-
change.com/questions/81240/manually-generate-password-for-etc-shadow.

Choosing Attack Mode
Now that you understand how hashes work, let’s forge ahead. Even when you know the type
of hash that you’re dealing with, you still need to consider how to attack any encoded pass-
words that you have access to.

I have mentioned a common attack mode referred to as a brute force attack. These attacks
will go after the characters that, using U.S. and U.K. character sets at least, will include
a-z, A-Z, 0-9./, and so on.

Another popular mode of attack is using wordlists. Here Hashcat will run through pre-
defi ned lists of words, testing if they work with the passwords presented to it.

A more complex way of using wordlists is adding programmed rules, in what Hashcat calls
a rule-based attack. You can change and extend words, for example, using custom rules. By
crafting some of the fi ner points of how Hashcat works, your attacks can be more accurate
and ultimately more effi cient.

Downloading a Wordlist
If you wanted to run a wordlist attack, you would fi rst need a list of words to check
against. There are a few sites online that claim to host lists of leaked passwords.

The site that follows is apparently not involved in nefarious practices. It offers a number
of wordlists that you can download. Using an English dictionary as an example, the site

107

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 107

99

will let you download 319,378 words into a list that Hashcat will happily run through. You
can fi nd the wordlists at www.md5this.com/tools/wordlists.html. (The password to
unlock the Zip fi les containing the words is shown as md5this.com.)

If you’re interested, the md5this website also offers a wordlist generator in the form of a
python script, which can be downloaded from www.md5this.com/tools/wordlist-
generator.html. The script works by generating words from website content. In order to
run the script, you simply need to point it at a website from where it will scrape its data.

Rainbow Tables
Instead of leaning on a system’s CPU or GPU capacity, another approach is to lean on its
storage, potentially using hundreds or thousands of gigabytes. During a brute force attack,
rather than calculating a hash on every attempt, it is possible to look up a list of pre-
calculated answers held in a long list. These are known as rainbow tables.

There are ways of defeating this approach, namely by using large salts on one-way hashes.
This is effective because each password is hashed with a unique salt, and therefore every
possible salt’s calculated hash would need an entry in a rainbow table alongside its salt.

Running Hashcat
Now that you know about hashes, attack modes, and where to download a wordlist from
(and once you’ve run through the large number of informative examples, this knowledge
can be very useful), you can fi nally get to running Hashcat itself.

The contents of my installation directory are as follows:

charsets/ hashcat-cli32.exe hashcat-cliXOP.bin tables/ hashcat-
cli64.app hashcat-cliXOP.exe
docs/ hashcat-cli64.bin rules/ hashcat-cli32.bin examples/
hashcat-cli64.exe salts/

You can see from my directory listing that there are a number of different types of
executables.

For your purposes, anything ending in .bin will suffi ce. If for some reason your .bin fi les
aren’t immediately executable, then as usual you can just type chmod +x <executable>
to remedy this. I’ll be using the 64-bit command line interface version called hashcat-
cli64.bin, which matches my machine’s capabilities.

Apparently, the different Hashcat executables shown in that directory suit a variety of fea-
tures that might be made available by your machine’s processors. The other relevant .bin
fi le that you’re interested in, with XOP added to its name, stands for eXtended OPerations
instructions. If you want to get more serious about using Hashcat later on, you can read up

108

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 108

on your processor fl ags and choose which executable can make best use of your particular
system. For example, according to the forums, AMD processor chips suit the XOP version.

Let’s now look at running your Hashcat executable. The syntax for the hashcat command
is as follows:

hashcat [options] hashfile [mask|wordfiles|directories]

Having downloaded (or generated) your wordlist and saved it under the fi lename
wordlist.txt, you can proceed. Consider this example command after you enter the
examples subdirectory with the command cd examples/:

./hashcat-cli64.bin -m0 -a0 A0.M0.hash A0.M0.word

The -m option means that you are specifying an MD5 hash and the -a 0 option means you
want Hashcat to perform a dictionary attack (also known as a straight attack). For refer-
ence, if you had specifi ed -m1800, you would be referring to your preferred modern Unix
hashing algorithm, SHA512.

As you can probably guess, the A0.M0.hash fi le in the examples directory is your list of
hashes. These are stripped down without either the <username>: section prepending the
salt, or the appended password aging information including the colons after it. This is how
you should collect hashes.

The A0.M0.word fi le is your potential passwords dictionary as a wordlist.

Incidentally, you could simply add -o <filename> if you wanted to output your fi ndings
straight to fi le rather than the screen, or add --remove if you wanted to remove a line
from your fi le full of hashes when you had discovered its password.

The results from running the hashcat command are as follows (in a heavily abbreviated
form):

651e96f9b94e1a3a117eade5e226bd1e:y[N"%e?U{<k[`x<TlG U6Z
465133fae5a994afb03c7158260b2e8d:kCQArZz)It

All hashes have been recovered
Input.Mode: Dict (A0.M0.word)
Index.....: 1/1 (segment), 102 (words), 2769 (bytes)
Recovered.: 102/102 hashes, 1/1 salts
Speed/sec.: - plains, 102 words
Progress..: 102/102 (100.00%)
Running...: 00:00:00:01
Estimated.: --:--:--:--

The fi rst two lines contain the hashes up to the colon, followed by the discovered pass-
words after the colon. The rest of the output shows you had success across your whole fi le.

109

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 109

99

Once you’ve mastered the examples, try this on your own /etc/shadow hashes. If you’re
lucky, then after running your adjusted commands, you should be presented with one or
more hashes followed by their corresponding passwords in plain text. If you’re not getting
enough hits, then experiment until you are satisfi ed with the results. It may take some
trial and error to get things working as expected; I would recommend getting comfortable
with the comprehensive examples fi rst. If you struggle, then take some comfort from the
fact that not all passwords can be broken in an instant.

That said, once you understand the theory and tried using its basic functionality, Hashcat
is very simple to operate. From a Linux sysadmin’s perspective, this should concern you and
you should therefore pay attention to the hashing algorithm that your servers use.

There are a number of options that I will leave you to explore. For example, the option for
running rules alongside the sample command is simply -r rules/specific_rule.rule.

I promised that you’d look at some of the corresponding hash values and attack modes. The
number of hashes is simply too great to list, but the Hashcat website provides them, along
with helpful details, at http://hashcat.net/wiki/doku.php?id=example_hashes.

Some of the attack modes that you can use, with 0 being known as “straight” (in other
words, matching against a dictionary or wordlist), are shown in Table 9.2 along with their
corresponding numbers.

TABLE 9.2 Hashcat Attack Modes and Their Corresponding Numbers

Number Attack Mode Description

0 Straight (dictionary and wordlists)

1 Combination

3 Brute force (run as part of a mask attack)

6 Hybrid

Let’s briefl y look at the differences between a brute force attack and the dictionary attack
you looked at previously.

The main difference between the two relates to brute force attacks having to search
through the entire keyspace for a password match. Dictionary attacks, however, only have
a limited remit. As a result, dictionary attacks are much quicker, but, of course, there’s a
good chance they won’t crack the salted hashes put in front of them. However, at least you
are quickly made aware of any failures with this mode.

This is the opposite of a brute force attack, which will keep running (potentially for a very,
very long time) until it succeeds in breaking the password. You are all but assured, if the

110

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 110

confi guration settings are correct, that you will be handed the password at some point,
even if it takes a hundred years for it to happen.

Within its detailed online documentation, Hashcat talks about brute force attacks being
an older, less sophisticated route to discovering passwords. Hashcat now includes the brute
force style of attack (you may have noticed it mentioned in Table 9.2) within its mask
attack mode.

The main premise with a mask attack is to reduce the size of the keyspace and there-
fore speed up the run time. One clever example that the documentation offers is that
with Hashcat’s innovative technique, you can reduce the recovery time of the password
“Julia1984” from approximately four years to a staggering forty minutes.

The documentation boldly states that there are no disadvantages to running a mask attack
over a brute force attack, which is promising. You run a mask attack by appending a mask
to the end of your standard command, as follows:

hashcat -m 1800 -a 0 -o discovered_passwords.txt --remove hashes.
txt wordlist.txt -1 ?dabcdef

The appended -1 ?dabcdef in this case asks Hashcat to run through the characters
0123456789abcdef.

According to the documentation, this mask, -1 ?l?d?s?u, offers a full 7-bit ASCII charac-
ter set, also known as mixalpha-numeric-all-space. There are a number of built-in character
set options with Hashcat, such as ?l (which stands for all lowercase characters from a to z),
and ?u (which stands for all uppercase characters from A to Z).

You can fi nd more details on mask attacks at https://hashcat.net/wiki/doku.
php?id=mask_attack.

oclHashcat
Using oclHashcat and Hashcat requires very similar levels of knowledge, as they operate in
almost the same way. Although they have some differences — for example, the way that
oclHashcat loads up its dictionaries when compared to Hashcat — you can expect a shallow
learning curve if you move over to using oclHashcat.

In addition, the necessary password-cracking computations use an entirely different com-
ponent of your system, as I have already mentioned. Simply put, oclHashcat works with
video cards as opposed to CPUs. There are two important software versions to distinguish
between, and each suits two popular GPUs:

 ■ cudaHashcat, which is for use on Nvidia video cards

 ■ oclHashcat, which works with AMD video cards

111

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 111

99

GPUs are much faster than CPUs (when set up correctly) because they are solely designed
to crunch numbers quickly, usually to process graphics. While obviously designed for speed
themselves, in terms of performance, CPUs can get distracted with their additional, inclu-
sive feature sets, causing a reduction in throughput. As a result, GPUs are a good choice for
computing large amounts of data because they can be optimized much better. It’s also pos-
sible to scale GPU output almost seamlessly by connecting them together in a chain, mak-
ing it easier to harness their combined power. To give you an idea of how fast GPUs can be,
if you were using rainbow tables and divided the keyspace (of the 95 characters available
on a US keyboard), you might hit 10 trillion plain-text tests per second!

In terms of learning Hashcat and oclHashcat, I would recommend getting Hashcat working
fi rst and then reading up on how to get your video card’s GPU drivers working. There’s more
information at http://hashcat.net/oclhashcat/.

If it causes confusion, oclHashcat-plus is no longer in use and is considered deprecated.
As a result, there’s no benefi t in the “plus” version.

Hashcat-Utils
One additional component of the Hashcat suite that is also worth mentioning is a group
of utilities called Hashcat-utils. This collection of useful tools can be downloaded from
http://hashcat.net/wiki/doku.php?id=hashcat_utils.

The tools include combinator, which is a standalone program from which you can run com-
binator attacks. You can fi nd more information at https://hashcat.net/wiki/doku.
php?id=combinator_attack.

You can also trim and cut up a wordlist fi le with the cutb tool, which you can use to clean
up common, unwanted prepended or appended characters in a wordlist fi le.

Another tool in the bundle, rli, is similar to the Unix-type command, and simply removes
duplicate fi les, after comparing a fi le to one or more other fi les.

It’s defi nitely worth exploring these utilities further to increase your knowledge of how
Hashcat works.

Summary
In this chapter, you looked at some of the theory behind password attacks. I also covered
the importance of the number of combinations that a character set includes, the length of
passwords, and how their combination affects keyspace. Finally, I described hashing and
salting, which ensure that the time it takes to crack a password is signifi cantly increased.

112

Chapter 9: Password Cracking with Hashcat

c09.indd 04/05/2016 Page 112

Being able to effi ciently crack a password takes years to master, and it’s certainly an area
with many facets. However, the venerable Hashcat helps you to make light work of the
learning process. It also has a detailed FAQ that can be found at http://hashcat.net/
wiki/doku.php?id=frequently_asked_questions .

Having now seen the methods that an attacker will use to crack your passwords, and the
ways that you can make their work more diffi cult, you should pay close attention if you
discover traces of any of the tools that I’ve discussed on your own machines. With your
new-found power, there’s hopefully no need to remind you to use your skills responsibly.

113

c10.indd 04/09/2016 Page 113

CHAP T ER

10
SQL Injection Attacks
One of the most popular types of online attacks is known as SQL injection, sometimes abbreviated
as SQLi. These attacks involve the insertion of database code using Structured Query Language
(SQL), where attackers can retrieve data from databases or overwrite existing data.

You might be surprised to learn that, according to OWASP (the Open Web Application Security
Project), which is a charitable organization that promotes the securing of software, SQLi was the
number one threat to online services in 2013, and listed as the most common threat at https://
www.owasp.org/index.php/Top_10_2013-Top_10.

This chapter looks at what these attacks involve, how to protect your websites against them, and
fi nally how to launch them yourself for the purposes of penetration testing.

Needless to say, this is a wide and complex area that requires a degree of background knowledge to
carry out more sophisticated attacks. You might be surprised how easy it is, however, having run
only a handful of commands and with only a little database knowledge, to bring a vulnerable online
service to its knees. For that reason alone, it’s imperative that IT professionals be aware of the risks
that SQL injections pose and how to mitigate their effects.

History
Considering its simplicity, the fact that SQLi is so effective makes it a formidable type of attack.

Take note, junior developers, because when it comes to security matters, sysadmins tend not to be
directly responsible for such attacks occurring. This is because much of the time, the exploits are
possible due to code that does not escape special characters properly. In addition to its simplicity,
another cause for concern is that this type of attack has reportedly been known about since 1998.
An issue of Phrack Magazine, published in December of that year, fi rst announced a broad, sweeping
vulnerability against websites. The horror began to unfold over time, and it became obvious that
several automated tools could be used to sweep the web, looking for sites, and then deface or steal
data from them as they saw fi t.

It didn’t stop there, however. As phishing attacks became more popular (where attackers trick users
into revealing information about themselves), cunning attackers went about completely rebranding
a website, by injecting the necessary code to persuade a visitor that they were visiting a bona fi de
website.

For a number of years, I ran a very small co-location server ISP for relatively tech-savvy cus-
tomers. On at least three occasions, our co-located server customers, who had unwittingly been

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

114

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 114

less diligent with their server-side scripting, succumbed to phishing attacks. From
the mid-2000s onwards, over the space of just a few years, the U.S. Federal Bureau of
Investigation was in touch with us, a bank on one occasion, and a white hat security
 service on another, informing us that a customer server had been hacked. So, even in
such a small organization, a bogus copy of a popular auction site and two banking web-
sites had been cloned and used in phishing attacks on our networks within a very short
space of time. It quickly became obvious that SQLi attacks were becoming popular among
those with nefarious intent.

In reaction to the common security threat, sysadmins and developers took note and began
hardening code. I remember diligently escaping special characters with every user input
component on a PHP-based website around that time to avoid SQLi attacks.

Basic SQLi
As I have already alluded to, the main premise behind SQLi is illegitimately retrieving code
from or injecting code into a database.

To avoid these issues, you can no longer expose queries to the outside via server-side lan-
guages, which will make your websites far less fl uid and less useful as a result. Failing that,
you can make sure that all attack vectors are covered. The easiest way to achieve this is to
fi lter all input that you receive from visitors. In other words, at every point on your website
where a user can input data, you need to take relevant precautions within your code. This
involves parsing the input into a friendly format before that data is sent to your database.

A full tutorial on how you might go about securing your code can be left for another day.
However, I will give you a quick refresher using one popular programming language. Before
that, I’ll remind you of some simple ways that SQLi works.

As I’ve said, simply defacing a website is far from the only damage that intercepted SQL can
cause. Consider this SQL statement, for example:

sql-server> DROP TABLE special-offers;

By knowing table names, you can completely delete a table from a database. Aside from
destructive behavior, I haven’t mentioned the extraction of usernames and passwords from
a database. With criminal intent, a successful SQL attack is without question a prize worth
pursuing. Some sizeable brands have fallen victim to poorly programmed code and SQLi.
Reportedly, Yahoo, Adobe, LinkedIn, and Sony Music might all be included on a long list of
victims. Of course, without being one of the attackers, or the staff who had to recover ser-
vices affected by such attacks, I can only conjecture to what extent these attacks involved
SQLi. A SQLi Hall of Shame can be found at http://codecurmudgeon.com/wp/sql-
injection-hall-of-shame/. Although the list may not be completely accurate, I am
sure you will agree that it is a compelling read.

115

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 115

101010

A moment ago, I referred to a programming language. I’ll use what is reportedly the world’s
most popular server-side scripting language, PHP, as an example to quickly demonstrate
how SQLi works. As well as being used directly on millions of websites, the powerful PHP is
used in the world’s most popular Content Management System (CMS), WordPress (https://
wordpress.com), and many other dynamic website applications such as Joomla!
(https://www.joomla.org). In short, PHP is all over the web and is an easy target for
attackers if an exploit is discovered.

Let’s look at another example, but this time in PHP:

$input = $variable[3];
$dbquery = "SELECT id, item, price FROM specialoffers ORDER BY id
LIMIT 15 OFFSET $input;";

Looking at the top line, you can see that you are not fi ltering the variable called $input.
This means that when the variable is used on the second line within the SQL statement, it
could potentially include any code that an attacker wanted to use. With crafted code being
injected, all sorts of havoc can be caused.

Another example would be updating the sysop user’s password. For example, a normal SQL
statement inside PHP code might look like this:

$dbquery = "UPDATE credentials SET passwd='$password' WHERE
userid='$id';";

By appending SQL to this statement, such as or userid like '%sysop%', your SQL
becomes much less strict and you ask the database to quickly search for other privileged
usernames similar to sysop, such as sysops, and then update their passwords too.

Worryingly, it’s also possible to execute shell commands that can be included within SQL.
Certain database servers allow access to operating system commands using this method.

Mitigating SQLi in PHP
As I’ve said, this subject area is too large to cover in detail, but I would be remiss not to
briefl y look at how to fi lter SQL inputs to help mitigate SQLi attacks. There are a variety
of PHP functions that assist you in this endeavor. As of this writing, PHP is making a sig-
nifi cant move to version 7.0.0 from its current version, 5.6.16 (although it will likely be
incremented).

One caveat would be that in older versions (up to 5.3.0), inside your main PHP confi g fi le
(php.ini) it was possible to fi lter (or escape) all input data via PHP by using magic_
quotes_gpc. This was apparently deprecated because it was relied upon too much and didn’t
always escape characters in the way that meant applications were secured. In essence, magic
quotes weren’t designed to be used for security purposes but were employed as such.

116

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 116

To protect the variable used in the fi rst SQL example, you might want to run your user
input through the stripslashes function. The example looked like this:

$input = $variable[3];

With stripslashes being used, it might look something like this:

$input = stripslashes($variable[3]);

As you would guess, this means you are removing slashes to help protect against unwel-
come input. There’s also trim for removing white space from a variable, which can be used
in the same way, as well as strip_tags for removing HTML and other markup tags. These
can all be useful and possibly chained together for ease, like this:

$input = stripslashes((trim($input));

In addition, up to PHP version 5.5.0, you could use the mysql_real_escape_string
function to clean up individual strings as follows:

$input = mysql_real_escape_string($input);

However, as of version 7.0.0 and up, you almost always want to use an improved driver
called MySQLi (which stands for MySQL improved) to counter SQLi. Thanks to this enhance-
ment, you can employ a more advanced way to strip unnecessary and potentially dangerous
characters out of the code being executed. An example using mysqli doesn’t look all that
different from the previous example:

$input= mysqli_real_escape_string($input);

Using MySQLi, you connect to your database using a different method, as follows:

$mysqli = new mysqli("localhost", "userid", "passwd", "DB_name");

Another approach to mitigating SQLi attacks is when you use prepared statements. The
idea behind this security addition is for the database engine to process SQL completely
separately from any parameters being used. In theory, this means an attacker cannot inject
code into the query at all. An example might look like this:

$input = $mysqli->prepare("INSERT INTO table_name (column_name)
VALUES (?)");
$input->bind_param("s", $actual_user_input);
$input->execute();
$input->close();

This newer, preferred approach fi lters out your parameters using the new library. Note the
question mark where the variable’s value would usually have gone previously. The line con-
taining execute pulls together all of the previous parameters. Of additional help is that
such a function only needs to be read once, so if it’s run a number of times on a few pages,
then the PHP engine does less work.

117

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 117

101010

Another approach to be aware of has been available since earlier versions of PHP and makes
use of PHP Data Objects (PDO). There’s a helpful lengthy discussion here: http://stack-
overflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php.

It’s debatable as to which methodology is the best to use, but PDO seems very popular. An
example of PDO would look like this:

$input = $pdo->prepare('SELECT * FROM special_offers_table WHERE
offer = :specialoffer');
$input->execute(array('name' => $specialoffer));

There’s some well-written information about PDO at http://whateverthing.com/
blog/2014/08/28/the-heart-of-darkness/. It’s worth reading, if for no other reason
than to help you choose between methods in the later versions of PHP (version 7.0.0 and
onwards) to combat SQLi threats.

Exploiting SQL Flaws
Now that you’ve looked at a few different ways to secure against SQLi, you will learn how
a hacker might attack your online service. Although there are a number of tools available,
I’ll focus on sqlmap (http://sqlmap.org), which is a popular, open-source tool among
hackers, forensic scientists, and penetration testers. It’s possible to wreak chaos with this
highly sophisticated tool, so make sure that you are fully aware of the damage you can do
when testing it on your own servers, never mind servers that belong to others. I would defi -
nitely recommend using a development server or sandbox virtual machine to be safe.

The widespread compatibility of sqlmap is enough to give most diligent sysadmins cause for
concern. According to its website, sqlmap supports the following database servers: MySQL,
Oracle, PostgreSQL, Microsoft SQL Server, Microsoft Access, IBM DB2, SQLite, Firebird,
Sybase, SAP MaxDB, and HSQLDB.

Let’s look at how you install sqlmap. It’s bundled with some security-based distributions
such as Kali Linux, but if it’s not in your package manager’s repositories, then there are
alternative ways to install it.

You can use GitHub’s sqlmap repository by using the Git clone command:

git clone https://github.com/sqlmapproject/sqlmap.git sqlmap-dev

There’s also a Zip fi le available from https://github.com/sqlmapproject/sqlmap/
zipball/master.

118

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 118

You can also download a tarball from https://github.com/sqlmapproject/sqlmap/
tarball/master.

Once you have followed the installation instructions, you should be able to get to the stage
where the following command will work (after running the previous Git command, this is
all you need to do to get started):

cd sqlmap-dev
python ./sqlmap.py -h

This command will offer you a list of options.

Launching an Attack
Let’s now look at the core of sqlmap’s functionality, namely compromising a remote
machine.

Be warned, however, that a time-consuming aspect of testing your sqlmap skills will
likely either involve setting up your own test server to be vulnerable, or legitimately
identifying websites that are vulnerable to attack. You might be surprised to read that,
because of the way URLs are formed, Google can identify vulnerable sites very eas-
ily. It hopefully goes without saying that I do not advocate attacking any of the sites
that you fi nd using Google or through any other method, for that matter. For the pur-
poses of spotting potentially exploitable URLs, however, you can enter a query such as
inurl:website.php?id= or inurl:product.php?id=. The fi rst search term returns
a very worrying 1.7 million results.

Websites and other online resources that incompetently expose their vulnerabilities via
Google have earned a nickname, Googledorks. There’s a site that lists some of them; it’s
worth a quick look and can be found at www.hackersforcharity.org/ghdb/. The lists
include a number of potentially secret login pages, sensitive directories, and fi les that men-
tion usernames. Use this information responsibly.

Incidentally, you can run sqlmap via Python, which means you will need an implementa-
tion of one type or another installed on your machine.

In Figure 10.1 you can see that the developers are keen to distance themselves from illegal
activity. Such powerful tools are always subject to abuse.

Let’s continue on. Looking at the following example, the syntax that is required to use the
sqlmap command is quite simple:

python sqlmap.py -u "http://www.a-vulnerable-website.com/product
.php?id=1111"

119

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 119

101010

FIGURE 10.1

How sqlmap looks when you launch it, disclaimer included

If you are either using slow connectivity or experiencing slow responses from the remote
database server, then you can append --time-sec 10 to that command to introduce a
more realistic time-out setting. Somewhat counterintuitively, this can actually speed up
the overall process.

Now let’s methodically step through a few simple commands. You may choose to chain these
all together once you become familiar with using sqlmap.

My sqlmap example command includes the -u option, which means that a URL is declared.
That command will simply check for vulnerabilities for the trailing parameter (id=1111)
using a number of SQL injection tests. From there, sqlmap can normally detect the web
server vendor and version, the remote operating system, and the version of the database
server that is in use.

What if you now want to learn the names of the databases in use by the website in ques-
tion? You can do this by adding the --dbs option as follows:

python sqlmap.py -u "http://www.a-vulnerable-website.com/product
.php?id=1111" --dbs

Having retrieved that useful information, your next step would be to discover the table
names that are in use. You can do that as follows, substituting your real database name
with the <database-name> entry:

python sqlmap.py -u "http://www.a-vulnerable-website.com/product
.php?id=1111" --tables -D <database-name>

The next logical step would be to learn the columns used by a database table of interest.
The command is simply as follows, again substituting your database name with the <data-
base-name> entry, and also <table-name> with your table name:

python sqlmap.py -u "http://www.a-vulnerable-website.com/product
.php?id=1111" --columns -D <database-name> -T <table-name>

120

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 120

The fi nal part of the process would be pulling all of the data from your target database.
This might include usernames and passwords, personal customer information, or simply
product information for an online shop. If you are attacking a remote site, how valuable the
information you extract is clearly depends on the site you are interfacing with. To dump
the database data, you introduce the --dump option as shown here:

python sqlmap.py -u "http://www.a-vulnerable-website.com/product.
php?id=1111" --dump --columns -D <database-name> -T <table-name>

If you want to only pull down specifi c columns, then you can specify them directly.
Once you know the column names, you can simply list them with an option such as -C
columnX, columnY and separate them with commas. Having done so, you just remove the
--columns option included in the previous example.

Your last command might produce output something like this:

+-------+----------------+----------+----------+------------+--------------+
| id | title | color | price | category | received-date|
+-------+----------------+----------+----------+------------+--------------+
| 1111 | bars of soap | green | 1.22 | toiletries | 11.11.22 |
+-------+----------------+----------+----------+------------+--------------+

If you are a developer or sysadmin and you’re not concerned with how quickly a database
dump occurs, then you certainly should be. Keep in mind that you could have used Google
to identify a list of potential targets with minimal effort and through only a handful of
commands gotten to the stage of stealing potentially valuable commercial data. In addition
to this data theft, you can also overwrite the existing data and deface the online service in
question using sqlmap, to the detriment of their brand and reputation, with relative ease.

The powerful and sophisticated sqlmap tool provides you with a lengthy list of options
that are simply too great to cover in detail. I would suggest reading the GitHub page, which
gives you more details about using sqlmap. It can be found at https://github.com/
sqlmapproject/sqlmap/wiki/Usage.

Trying SQLi Legally
There are likely a number of useful websites that allow you to run scans in order to confi rm
that you have confi gured your penetration-testing tools correctly. One such site that you
may want to test your new-found SQLi skills on is called Web Scan Test. A SQL injection is
possible via this subdirectory: www.webscantest.com/datastore. However, I would
read the site’s terms before proceeding, just to be sure you’re not committing a crime.

121

Chapter 10: SQL Injection Attacks

c10.indd 04/09/2016 Page 121

101010

An online demo might also be of interest from the Codebashing website. They describe their
clever, interactive website as “[a]pplication security training for programmers, by program-
mers.” The demo runs through how special characters make a massive difference to a login
process, and it walks you through how the underlying database server reacts as you change
your input. You can fi nd the demo at www.codebashing.com/sql_demo.

Summary
 In this chapter, I have covered the basics behind SQL injection and also briefl y looked at
the history of SQL attacks. In addition, you saw how PHP developers have recommended
protecting against MySQL-related SQLi attacks, both in the past for older versions and mov-
ing forward for newer versions, after version 7.0.0 in particular.

It’s easy to see why SQLi attacks are so common — and in fact have been considered the
most popular type of attack in some arenas. Using a few relatively simple sqlmap com-
mands, you wielded the power to potentially breach a website’s security, and then query
and steal its valuable data, only to then go on to further damage its reputation with
vandalism.

It’s important for technical personnel defending against such attacks to be aware of how
simple these attacks are, and to understand the implications of apparently simple mistakes.
Those mistakes can open up websites — which likely took a lot of effort and resources to
build — to devastating attacks that cost a great deal to recover from. Once again, use these
skills responsibly. It’s much more satisfying to protect your own infrastructure properly
than to attack infrastructure that belongs to others.

123

bindex.indd 04/15/2016 Page 123

Index

A
ACLs (Access Control Lists), 34
admin prohibited error, 60
AIDE (Advanced Intrusion Detection

Environment), 13
amplifi cation, 39

MITM attacks, 66
Apache, LMD integration, 96–97
ARP (Address Resolution Protocol),

Nping and, 53
attacks

Digital Attack Map tool, 45–46
Estonian DDoS attacks, 45–46
hardening and, 65–67
mapping, 45–46
MITM (man-in-the-middle), 66
password cracking, 106

wordlists, 106–107
phishing, 113
Ping of Death, 66
refl ection, 38–40

SNMP, 41
reporting, 40–41
smurf, 66
SQLi, 113–114

launching, 118–120
auth category (NSE), 74
authentication, NSE, 77–78

B
BPC 38 (Best Current Practice 38), 43
broadcast category (NSE), 74
brute category (NSE), 74

C
CAPT (captured packet entries), 57
chaining commands in ncat, 30–31
CIDR (Classless Inter-DoIndex1 Routing), 51
--clean command, 93–94
CLI (Command Line Interface), running LMD, 92

clone command, 117–118
cmd_timeout, 6
CMS (Content Management System), 115
commands

chaining, 30–31
--clean, 93–94
clone, 117–118
conntrack, 8
hashcat, 108–109
iptables, 61–63
--kill, 96
knock, 7
md5sum, 14

communications, netcat, 31–33
conntrack command, 8
cron job, LMD, 96
cryptography

hashes, 101–102
keyspace, 100–101

cudaHashcat, 110

D
DDoS (Distributed Denial of Service)

attacks, 37
Estonia, 44–45

Debian Jessie, confi g fi le, 3
default category (NSE), 74
Digital Attack Map tool, 45–46
discovery category (NSE), 74, 78–79
DNS (DoIndex1 Name System), 37

resolvers, 42–43
dos category (NSE), 74
DRARP (Dynamic RARP), 53
DROP response, 2

E
Echo mode, Nping, 54–57
Estonian DDoS attacks, 44–45
executables, netcat, 33–34
exploit category (NSE), 74
external category (NSE), 74

Linux® Server Security: Hack and Defend. Chris Binnie
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

124

Index

bindex.indd 04/15/2016 Page 124

F
fi le transfer, netcat, 29–30
fi lesystems

knockd, 4
LMD monitoring, 88
security, 13

fi lters, Netfi lter, 2
fl ushing iptables rules, 65
fuzzer category (NSE), 74

G
GitHub, clone command, 117–118
GUIs (graphical user interfaces),

NSE, 81

H
hardening, ICMP broadcasts and, 65
Hashcat, 99

attack modes, 109
brute force attacks, 110
capabilities, 103
cudaHashcat, 110
hashes, 101–103

identifying, 104–105
installation, 103–104
oclHashcat, 110–111
running, 107–110
Shadow passwords, 104

hashcat command, 108–109
Hashcat-utils, 111
hashes, 101–103

algorithms, 105
host scripts (NSE), 80
host-based intrusion detection, 13

I
ICMP

codes, 61
iptables and, 61–63
misconceptions, 59
Nping and, 52–53
Ping of Death, 66

ICMP Port Unreachable, 2
icmp_echo_ignore_broadcasts, 65
inbound connections, logging, 64–65
inotify-tools, 89
intrusive category (NSE), 75
invisibility of server, 7–8

iptables, 2
fl ushing rules, 65
iptables command, 61–63
iptables-persistent package, 9
rules, 9–10
testing, 8–9

K
keyspace, 100–101
--kill command, 96
knock command, 7
knockd

confi guration, 5–6
default settings, 3–4
fi lesystems, location, 4
installation, 2–4

testing, 6–7
network interface, default, 5
packages, 3
packets, 5–6
starting, 5

KoD (Kiss-o’-Death) packet, 38

L
--limit-burst option, 66
LMD (Linux Malware Detect), 85

Apache, integration, 96–97
--clean command, 93–94
CLI options, 92
cron job, 96
defi nition updates, 85
exclusions, 91–92
features, 86–88
fi lesystem monitoring, 88
inotify-tools, 89
installation, 88–90
--kill command, 96
maldet, 92
Malware Hash Registry, 86
monitoring, modes, 90–91
quarantining, 93–94
reporting, 92–93, 96
scans, 94

manual, 95
stopping, 94–96

threats, prevalent, 86–87
updates, 94

logging, inbound connections, 64–65
--log-prefix option, 62–63

125

Index

bindex.indd 04/15/2016 Page 125

M
maldet, 92
malware. See also LMD (Linux Malware Detect)
malware category (NSE), 75
Malware Hash Registry, 86
mapping attacks, 45–46
md5deep, 16–17
md5sum command, 14
MD5sums, 14–16
MD5SUMS fi le, 14–15
MITM (man-in-the-middle) attacks, smurf attacks, 66
MTU (Maximum Transmission Unit), 59

N
NAT (Network Address Translation), 54–57
ncat, 26

command chaining, 30–31
installation packages, 27–29

netcat, 25, 27
ACLs (Access Control Lists), 34
communcations, security, 31–33
executables, 33–34
fi le transfer, 29–30
options, 34–35

netcato, 27
netcat-openbsd, 27
netcat-traditional, 27
Netfi lter, 2
Nmap, 1, 27–28

Debian installation, 69
port scanning, 69–71
Red Hat installation, 69

nmap, 27
Nmap Project, 25
Nping, 49–50

ARP and, 53
--debug, 58
--delay 10, 57
Echo mode, 54–57
--hide-sent, 57
ICMP and, 52–53
payload and, 53–54
--rate 3, 57
TCP and, 50–51

interpreting, 51
UDP and, 52

NSE (Nmap Scripting Engine), 71–73
authentication checks, 77–78
criteria, 75
discovery, 78–79

GUIs, 81
regex (regular expressions), 80–81
scripts

categorizing, 74–75
host, 80
postrule, 80
prerule, 80
service, 80
updating, 79–80

security problems, 75–77
timing templates, 73
Zenmap, 81–82

NTP (Network Time Protocol), 37
OpenAccess servers, 37–38
refl ection attacks, 38–40
RestrictedAccess servers, 37–38

O
oclHashcat, 110–111
Open Source Tripwire, 13
OpenAccess servers, 37–38

P
packages

iptables-persistent, 9
knockd, 3

packets, knockd, 5–6
password cracking, 99

attacks
Hashcat numbers, 109
mode, 106
wordlists, 106–107

hashes, 101–103
passwords, 99

keyspace, 100–101
security increase, 100
Shadow passwords, 102–103

payload options, Nping and, 53–54
PDO (PHP Data Objects), 117
phishing attacks, 113
PHP, SQLi mitigation, 115–117
Ping of Death, 66
ping rules

allowing to IP address, 64
inbound, 64
outbound, 64

port knocking, 1
clients, 7
security considerations, 10–11

126

Index

bindex.indd 04/15/2016 Page 126

sequences, 11–12
smartphone clients, 10
troubleshooting, 10

port mapping, 70
port scanners

confusing, 2
Nmap, 69–71

ports
Nmap, 1
probing, 1

postrule scripts (NSE), 80
prerule scripts (NSE), 80
probing ports, 1

Q
quarantine, LMD and, 93–94

R
rainbow tables, 107
RARP (Reverse ARP), 53

DRARP (Dynamic RARP), 53
refl ection attacks

NTP, 38–40
SNMP, preventing, 41

regex (regular expressions), NSE, 80–81
REJECT request, 2
reject-with tcp-reset, 2
reporting

attacks, 40–41
LMD and, 92–93, 96

RestrictedAccess servers, 37–38
Rootkit Hunter, 13, 17

confi guration, 19–21
Debian and, 18
design, 22–23
false positives, 21–22
Red Hat and, 18

rootkits, 13, 17
Round Trip Times, 56
RPM Package Managers, Red Hat and, 69
rsyslog, 62–63
rtt, 56

S
safe category (NSE), 75
SCANID, 92–93

scripting. See also NSE (Nmap Scripting Engine)
SCTP (Stream Control Transmission Protocol), 34–35
security, DDoS attacks, 37
sequences, port knocking, 11–12
servers, invisibility, 7–8

iptable testing, 8–9
iptables rules, 9–10

service scripts (NSE), 80
Shadow passwords, 102

Hashcat, 104
Shadow Suite, 102–103
smartphones, port knocking, 10
smurf attacks, 66
SNMP (Simple Network Management Protocol), 40

refl ection attacks, preventing, 41
SQLi (SQL injection), 113, 114–115

attacks, launching, 118–120
mitigating, in PHP, 115–117
testing, 120–121

sqlmap, installation, 117–118
syslog, confi g fi le, creating, 63
syslog server, rsyslog, 62–63

T
TCP (Transmission Control Protocol), Nping and, 50–51
TCP RST packets, 1
tcpdump, 60–63
tcpflags, 5–6
templates, timing templates, 73
testing, SQLi, 120–121
timing templates, 73
Tripwire. See Open Source Tripwire
troubleshooting, port knocking, 10

U-V
UDP (User Datagram Protocol), Nping and, 52
utilities, Hashcat-utils, 111
version category (NSE), 75
vuln category (NSE), 75

W-Z
Web Scan Test, 120–121
wordlist attacks, 106–107
XOP (eXtended OPerations), 107–108
Zenmap, 81–82

	10.1002@9781119283096.ch0.pdf (p.1-14)
	10.1002@9781119283096.ch1.pdf (p.15-26)
	10.1002@9781119283096.ch2.pdf (p.27-38)
	10.1002@9781119283096.ch3.pdf (p.39-49)
	10.1002@9781119283096.ch4.pdf (p.50-60)
	10.1002@9781119283096.ch5.pdf (p.61-70)
	10.1002@9781119283096.ch6.pdf (p.71-79)
	10.1002@9781119283096.ch7.pdf (p.80-94)
	10.1002@9781119283096.ch8.pdf (p.95-107)
	10.1002@9781119283096.ch9.pdf (p.108-121)
	10.1002@9781119283096.ch10.pdf (p.122-130)
	10.1002@9781119283096.ch11.pdf (p.131-134)

