Vesa Kaihlavirta

VENEdale

RuUst

Write safe, concurrent and reliable programs without
compromising on performance

L Packt

Title Page

Mastering Rust
Write safe, concurrent and reliable programs without compromising on performance

Vesa Kaihlavirta

Packt

BIRMINGHAM - MUMBAI

Copyright

Mastering Rust
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher, except
in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: May 2017

Production reference: 1290517

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78588-530-3

www.packtpub.com

http://www.packtpub.com

Credits

Author Copy Editor

Vesa Kaihlavirta Safis Editing
Reviewer Project Coordinator
Antonin Carette Ulhas Kambali
Commissioning Editor Proofreader

Kunal Parikh

Safis Editing

Acquisition Editor

Indexer

Denim Pinto

Aishwarya Gangawane

Content Development Editor Graphics
Nikhil Borkar Abhinash Sahu
Technical Editor Production Coordinator

Madhunikita Sunil Chindarkar

Aparna Bhagat

About the Author

Vesa Kaihlavirta has been programming since he was five, beginning with C64 Basic. His main
professional goal in life is to increase awareness of programming languages and software quality in
all industries that use software. He's an Arch Linux Developer Fellow, and has been working in the
telecom and financial industry for a decade. Vesa lives in Jyviskyld, central Finland.

1'd like to thank my brother, Lasse, for helping with the chapters of the book, and for raising my
wisdom over the years. Also my wife, the love of my life and my greatest support, Johanna.

About the Reviewer

Antonin Carette is a PhD student at the Interdisciplinary Centre for Security, Reliability and Trust
(SnT) of Luxembourg, working on automated ways to classify documents using machine learning.

He believes in Mozilla philosophy and tries to contribute to the Mozilla community, promoting the
Rust programming language.

Antonin lives in Thionville, France.

1'd like to thank my love, Alice, for supporting me (and my absent-mindedness) during these nights
of reviews.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at serviceepacktpub.com for more
details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

. Mapt

https//www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as industry-leading tools to help you plan your personal development and
advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e Ondemand and accessible via a web browser

Table of Contents

Preface
What this book covers
What you need for this book
Who this book is for
Conventions

Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions
1. Getting Your Feet Wet

What is Rust and why should you care?
Installing Rust compiler and Cargo

Using rustup.rs
A tour of the language and trying it out

Constants and variables
Loops
Compound data

Enums and pattern matching
Struct methods

Using other pieces of code in your module
Sequences
Exercise - fix the word counter
Summary
2. Using Cargo to Build Your First Program
Cargo and crates
Founding a project - cargo init
Dependencies, building, and running
Running tests - cargo test
Cargo.toml - project metadata
Editor integrations
Final exercise - starting our project
Summary

3. Unit Testing and Benchmarking
Motivation and high-level view

Annotations

Assert macros

Integration or black box tests
Documentation tests
Benchmarks

Integrating with Travis
Founding a city-builder game

Final exercise - fixing the tests
Summary

4, Types

String types
String slices

The String type
Byte strings

Takeaways and tasks
Arrays and slices

Takeaways and tasks
Generic types

Takeaways and tasks
Traits and implementations

Takeaways and tasks
Constants and statics
Summary
5. Error Handling
Option and Result
Unwrapping

Mapping of the Option/Result values
Early returns and the try! macro

The ? operator
Panicking
Custom errors and the Error trait
Exercise
Summary
6. Memory, Lifetimes, and Borrowing
LLVM
Function variables and the stack
The heap

Memory safety
Ownership

Copy trait
Function parameters and patterns
Borrowing
Lifetimes
Globals
References as function parameters
Structs and struct fields
Impl signatures

The Drop trait
Collector types

Box<T>
Interior mutability for Copy types - Cell<T>
Interior mutability for move types - RefCell<T>

Practical uses of interior mutability
Reference collected memory: Re<T> and Arc<T>
Inspecting memory usage with std::mem
Final exercises
Summary
7. Concurrency

Problems with concurrency
Closures

Exercises
Threads

Exercises

Sharing the Copy types
Channels

Exercises
Locks and mutexes

Exercises
Atomic Rc

Exercises
The final exercise
Summary
8. Macros

Introduction to metaprogramming
Dissecting printin!

Exercises

Debugging macros
Macro keywords

block
expr
ident
item
meta
pat
path
stmt
tt
ty
Repeating constructs
Example - an HTTP tester
Exercises
Summary
9. Compiler Plugins
Basics of compiler plugins
The minimal compiler plugin
Building a compiler plugin via Cargo

Code generation as a workaround

Aster
Linter plugins
Macros 1.1 - custom derives
Exercises
Summary
10. Unsafety and Interfacing with Other Languages
Unsafety
Calling C code from Rust
Connecting external libraries to Rust code
Creating Ruby extensions with Ruru
JavaScript/Node.js and Neon
Exercises
Summary

11. Parsing and Serialization
Parsing fundamentals

nom

Chomp
Other parser libraries

Serde
Exercises
Summary
12. Web Programming
Introduction to Rust and web programming
Hyper as a client
Hyper as a server
Rocket
Other web frameworks
Exercises
Summary
13. Data Storage
SQLite
PostgreSQL
Connection pooling with r2d2
Diesel
Summary

14. Debugging
Introduction to debugging

GDB - basics
GDB - threads
LLDB - quick overview
Editor integration with Visual Studio Code
Exercises
Summary
15. Solutions and Final Words

Chapter 1 - Getting Your Feet Wet

Exercise - fix the word counter
Chapter 2 - Using Cargo to Build Your First Program

Exercise - starting our project
Chapter 3 - Unit Testing and Benchmarking

Exercise - fixing the tests
Chapter 4 - Types

Exercise - various throughout the chapter
Chapter 5 - Error Handling

Exercise solutions
Chapter 6 - Memory, Lifetimes, and Borrowing

Exercises
Chapter 7 - Concurrency

Exercises
Chapter 8 - Macros

Exercises
Chapter 9 - Compiler Plugins

Exercises
Chapter 10 - Unsafety and Interfacing with Other Languages

Exercises
Chapter 11 - Parsing and Serialization

Exercises
Chapter 12 - Web Programming

Exercises

Chapter 13 - Data Storage
Chapter 14 - Debugging

Exercises

Preface

Rust is a new programming language. It offers performance and safety that reaches or even surpasses
modern C++, while being a modern language with a relatively low barrier of entry. Rust’s momentum,
combined with its active and friendly community, promise a great future for the language.

While modern and fluent, Rust is not an entirely easy language. The memory management system
keeps track of the life of every entity that is used in your program, and is designed in such a way that
this tracking can typically happen entirely at compile time. The Rust programmer’s burden is to help
the compiler when it cannot decide for itself what should happen. Since modern programming is
possible to do without ever facing such responsibilities, a modern programmer may not immediately
feel comfortable with it.

However, like all expertise and skills, the more difficult it is to attain, the more valuable it is, and this
book is here to help you. We cover the basics of Rust briefly, then move to more advanced parts such
as the aforementioned memory management, concurrency, and metaprogramming. After working
through this book, you’ll have a very decent foundation for building highly performant and safe
software.

What this book covers

Chapter 1, Getting Your Feet Wet, deals with installing the Rust toolset and runs through basic language
features in a speedy fashion.

Chapter 2, Using Cargo to Build Your First Program, focuses on the standard build tool, Cargo, and
also other development tools and their editor integration.

Chapter 3, Unit Testing and Benchmarking, covers the standard testing tools and practices.

Chapter 4, Types, runs through details and practices related to Rust’s type system. We touch the different
string types in Rust, arrays and slices, traits, implementations, and generics.

Chapter 5, Error Handling, covers how Rust handles error conditions in a rather unique way. Rust does
error handling through its generic type system, instead of relying on exceptions.

Chapter 6, Memory, Lifetimes, and Borrowing, is possibly the most important chapter of the whole
book. We see how Rust manages memory and resources, in general, in a safe way without relying on
garbage collection.

Chapter 7, Concurrency, covers concurrent and parallel programming in Rust, and a few of the standard
primitives (threads, channels, mutexes, and atomic reference counting) that can be used to implement
safe concurrency.

Chapter 8, Macros, 1s where we start looking at the compile-time metaprogramming features of Rust.
The so-called macros-by-example is the oldest and most stable form of metaprogramming in Rust.

Chapter 9, Compiler Plugins, goes through more advanced and newer metaprogramming features, such
as linter plugins, custom derives, and code generation. Much of the content here relies on the nightly
compiler.

Chapter 10, Unsafety and Interfacing with Other Languages, covers what kind of safety checks Rust
has and how to circumvent them if needed. Interfacing with other languages is one place where we
must instruct the compiler to relax some of its stricter checks.

Chapter 11, Parsing and Serialization, is where we look at a few ways of writing parsers. This chapter
also touches on the standard Serde serialization framework.

Chapter 12, Web Programming, takes a look at basic backend web programming in Rust. We cover the
low-level Hyper library for both client and server usage and check on the web framework situation
by building a simple server-side game in Rocket.

Chapter 13, Data Storage, covers a few data storage options. We see how to build software with
SQLite and PostgreSQL as data backends. We’ll cover connection pooling via the r2d2 library, and

lastly, we go through the Diesel ORM, followed by the summary of this chapter.

Chapter 14, Debugging, investigates using external debuggers for finding errors in Rust programs at
runtime. We cover GDB and LLDB, and also GDB integration into the Visual Studio Code editor.

Chapter 15, Solutions and Final Words, contains short summaries for all the previous chapters for
review purposes, followed by solutions to all the exercises in the book.

What you need for this book

To really dive into the content of this book, you should write out the example code and solve the
exercises. For that, you’ll need a fairly recent computer: 1 GB of RAM should be enough for the
purposes of this book, but the more you have the faster the builds will be.

Linux is the best-supported operating system here, but Rust itself is also a first-class citizen on
macOS and recent versions of Windows, so all the examples should adapt well there.

Who this book is for

The book will appeal to application developers who would like to build concurrent applications with
Rust. Basic knowledge of Rust is assumed but not absolutely required.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "If the commands are not in your
rati, add the default Cargo installation location suove/ . cargo/vin/ to your path and try again."

A block of code 1s set as follows:

fn main() {
println! ("Are you writing this or reading it?");

}

Any command-line input or output is written as follows:

cargo install rustfmt
cargo install racer

New terms and important words are shown in bold. Words that you see on the screen, for example,
in menus or dialog boxes, appear in the text like this: "To configure Rusty Code, select File |
Preferences | Settings, and you'll get a two-pane view."

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really
get the most out of.

To send us general feedback, simply e-mail feeavackepacktpun.com, and mention the book's title in the
subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to
a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at https//www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NN W=

Once the file 1s downloaded, please make sure that you unzip or extract the folder using the latest
version of:

e WinRAR / 7-Zip for Windows
e Zipeg/1Zip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https/github.com/PacktPublishing/Mastering-Rust. We
also have other code bundles from our rich catalog of books and videos available at https:/github.com/Pac
ktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Rust
https://github.com/PacktPublishing/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you
could report this to us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by visiting https//www.packtpub
.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata section of that
title.

To view the previously submitted errata, go to httpsv/www.packtpub.com/books/content/support and enter the
name of the book in the search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we
take the protection of our copyright and licenses very seriously. If you come across any illegal copies
of our works 1n any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyrigntepacktpub.con With a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questionsepacktpun.com, and we
will do our best to address the problem.

Getting Your Feet Wet

Since you're already an accomplished programmer, this chapter will go through the design philosophy
of Rust and the basics of the language in a rather speedy fashion. Each subsection will contain
example code and runs of the compiler, the output given by it (if any), and there will be more than a
dozen code examples.

Programming is a unique combination of knowledge and craft, both being equally important. To get on
the path of mastering a craft, you need practice, which is why I recommend that you write, not
copy/paste, every piece of code you see here manually.

Here are the topics covered in this chapter:

e Installing the Rust compiler and the Cargo build tool

e Language features: variables, conditionals, loops, primitive types, compound types, and
sequences

e A final exercise for honing your skills with the compiler

What is Rust and why should you care?

Rust 1s a programming language originally started by Graydon Hoare in 2006. It's currently an open
source project, developed mainly by a team in Mozilla and other developers. The first stable version,
1.0, was released in 2015.

While being a general purpose language, it is aiming for the space where C and C++ have dominated.
Its defining principles that underline many of its design decisions are zero-cost abstractions and
compiler-assisted resource safety.

One example of zero-cost abstractions is seen in Rust's iterators. They are an abstraction over loops
that go through sequences, in roughly the same level that a markedly higher-level language such as
Ruby has. However, their runtime cost is zero; they compile down to the same (or better) assembler
code as you would have gotten by writing the same loop by hand.

Resource safety means that in Rust code and your resources (memory, file handles, and database
references) can be analyzed by the compiler as safe to use. A most typical error in a C program is the
memory-access error, where memory is used after being freed or is forgotten to be freed. In other
languages, you might be spared from memory bugs by automatic garbage collection, but that may or
may not help you with other types of resources such as file pointers. It gets even worse if you
introduce concurrency and shared memory.

Rust has a system of borrows and lifetimes; plus, it replaces the concept of a null pointer with error
types. These decisions raise the complexity of the language by a fair bit but make many errors
impossible to make.

Last but not least, Rust's community is quite unusually active and friendly. Stack Overflow's
Developer Survey in 2016 selected it as the most-loved programming language, so it can be said that
the overall programming community is very interested in it.

To summarize, you should care about Rust because you can write high performing software with less
bugs in it while enjoying many modern language features and an awesome community!

Installing Rust compiler and Cargo

The Rust toolset has two major components: the compiler (rustc) and a combined build tool
or dependency manager (Cargo). This toolset comes in three frequently released versions:

e Nightly: This is the daily successful build of the master development branch. This contains all
the features, some of which are unstable.

e Beta: This is released every six weeks; a new beta branch is taken from nightly. It contains only
features that are flagged as stable.

e Stable: This is released every six weeks; the previous beta branch becomes the new stable.

Developers are encouraged to mainly use stable. However, the nightly version enables many useful
features, which is why some libraries and programs require it.

Using rustup.rs

To make it easier for people in various platforms to download and install the standard tools, the Rust
team developed rustup. The rustup tool provides a way to install prebuilt binaries of the Rust toolset
(rustc and Cargo) easily for your local user. It also allows installing various other components, such
as Rust source code and documentation.

The officially supported way to install Rust is to use rustup.rs:

|curl https://sh.rustup.rs -sSf | sh

This command will download the installer and run it. The installer will, by default, install the stable
version of the Rust compiler, the Cargo build tool, and the API documentation. They are installed by
default for the current user under the .cargo directory, and rustup will also update your earn
environment variable to point there.

Here's how running the command should look:

n “ » curl https://sh.rustup.rs -sSf | sh
oading installer

Welcome to Rust!

This will download and install the official compiler for the Rust programming
language, and its package manager, Cargo.

It will add the cargo, rustc, rustup and other commands to Cargo's bin
directory, located at:

/home/vegai/.cargo/bin

This path will then be added to your PATH environment variable by modifying the
profile files located at:

/home/vegai/.profile
/home/vegai/.zprofile

You can uninstall at any time with rustup self uninstall and these changes will
be reverted.

Current installation options:

default host triple: x86_b4—unknown-1inux—-gnu
default toolchain: stable
modify PATH variable: uyes

1) Proceed with installation (default)
2) Customize installation
3) Cancel installation

If you need to make any changes to your installation, choose 2. But these defaults are fine for us, so
we'll go ahead and choose /. This is what the output should look like afterwards:

1) Proceed with installation (default)
2) Customize installation

3) Cancel installation

1

info: suncing channel updates for 'stable-x86_64-unknown-1inux-gnu’
info: downloading component 'rustc’

37.2 MiB » 37.2 MiB (188 %) 2.2 MiB/s ETA:
info: downloading component 'rust-std’

61.6 MiB 7 61.6 MiB (188 %) 2.8 MiB/s ETA:
info: downloading component 'cargo’

4.8 MiB 7/ 4.8 MiB (188 %) 1.6 MiB/s ETA:
info: downloading component 'rust-docs'

18.1 MiB / 18.1 MiB (188 %) 1.9 MiB/s ETA:
info: installing component 'rustc’
info: installing component 'rust-std'
info: installing component 'cargo'
info: installing component 'rust-docs'
info: default toolchain set to 'stable'

- rustc 1.17.8 (56124baal9 2817-84-24)

Rust is installed now. Great!

To get started you need Cargo's bin directory in your PATH environment
variable. Next time you log in this will be done automatically.

To configure uour current shell run source $HOME/.cargo/env
n "~

Now, you should have everything you need to compile and run programs written in Rust. Let's try it!

A tour of the language and trying it out

For the fundamental language features, Rust does not stray far from what you are used to. Programs
are defined in modules; they contain functions, variables, and compound data structures. Here's how a
minimal program looks:

fn main() {

println! ("Are you writing this or reading it?");

}

Try compiling and running this. Write it to a file called main.rs and then run the Rust compiler:

> rustc -o main main.rs
> ./main
Are you writing this or reading it?

Running rustc manually is not how you will do it for real programs, but it will do for these small
programs. A fine alternative to running small pieces of code is to use the Rust Playground service in ht
tp://play.rust-lang.org:

® Rust Flayground = |+
17 @ htps/folayrustlangorg [e + # @ © =
-

Mode Channe
Rurn » i | L IR | MIR [F 1 DEBUG Feloase [SEBEN Beta | Nighthy -]
"

@ you writing this or reading it?

The program itself is fairly simple: the s keyword is used to define functions, followed by the
function name, its arguments inside parentheses, and the function body inside curly braces. Nothing
new (except some syntax) there. The exclamation mark after the print-line call means that it's actually
not a function, but a macro. This just means that it performs some expansions at compile time rather
than doing all the work at runtime. If you are familiar with macros from other languages such as C or
LISP, Rust macros will be familiar as well. Macros will be covered more in Chapter 9, Compiler
Plugins.

http://play.rust-lang.org

Variables are defined with the 1.+ keyword. Rust has a local type inference, which means that the
types of function variables are figured out by the compiler, and the coder can almost always omit
them. It can easily lead to improved readability of the source code, especially in the case of
frequently used static strings:

// first-program.rs

fn main() {
let target inferred = "inferred world";
// these two variables
let target: &'static str = "non-inferred world"; // have identical types

println! ("Hi there, {}", target inferred);
println! ("Hi there, {}", target);

The strings in this program are string literals or, more specifically, string slices with a static lifetime.
Strings will be covered in Chapter 4, Types, and lifetimes in Chapter 6, Memory, Lifetimes, and
Borrowing.

Comments in code are written like in C, // for single line comments, and /+ =, blocks for multiline
comments.

Constants and variables

Rust deviates from the mainstream here by making constants the default variable type. If you need a
variable that can be mutated, you use the 1t mut keyword:

// variables.rs
fn main() {
let mut target = "world";
println! ("Howdy, {}", target);
target = "mate";
println! ("Howdy, {}", target);
}

Conditionals should also look familiar; they follow the C-like it....1se pattern. Since Rust is strongly-
typed, the condition must be a Boolean type:

// conditionals.rs
fn main() {
let condition = true;
if condition {
println! ("Condition was true");
} else {
println! ("Condition was false");
}
t

In Rust, i 1s not a statement but an expression. This distinction means that i always returns a value.
The value may be an empty type that you don't have to use, or it may be an actual value. This means
that you can use the ir expression as tertiary expressions are used in some languages:

// if-expression.rs

fn main() {
let result = 1f 1 == 2 {
"Nothing makes sense"

} else {

"Sanity reigns"

}i

println! ("Result of computation: {}", result);

}

Take a closer look at the preceding program; it highlights an important detail regarding the semicolon
and blocks. The semicolon is not optional in Rust, but it has a specific meaning. The last expression
of a block is the one whose value is returned out of a block, and the absence of the semicolon in the
last line is important; if we were to add a semicolon after the strings in the i+ blocks, Rust would

interpret it as you wanting to throw the value away:

// semicolon.rs

fn main() {
let result = if 1 == 2 {
"Nothing makes sense";

} else {

"Sanity reigns";

}i

println! ("Result of computation: {:?}", result);

}

In this case, the result will be empty, which is why we had to change the princin: expression slightly;
this type cannot be printed out in the regular way. More about that in Chapter 4, Types, where we talk
about types.

Loops

Simple loops are programmed with either the «ni1e loop (if a condition for the looping is wanted) or
with 100p (1f N0 condition is wanted). The vreax keyword gets you out of the loop. Here's an example of
using the 100p keyword:

// loop.rs
fn main() {
let mut x = 1000;
loop {
if x < 0 {
break;
}
println! ("{} more runs to go", x);
x -=1;

An example of wni1e loop 1s as follows:

// while.rs
fn main() {
let mut x = 1000;
while x > 0 {
println! ("{} more runs to go", x);
x -=1;

Compound data

For defining custom data types, there are structs. The simpler form is called a tuple struct, where
the individual fields are not named but are referred to by their position. This should mostly be used
when your data consists of only one or a few fields to achieve better levels of type safety, such as
here:

// tuplestruct.rs
#[derive (PartialEq)]
struct Fahrenheit (io64);

#[derive (PartialEq)]
struct Celsius(i64);

fn main() {
let temperaturel Fahrenheit (10);

let temperature2 = Celsius(10);

println! ("Is temperature 1 the same as temperature 2? Answer: {}",

temperaturel == temperature?2);
println! ("Temperature 1 is {} fahrenheit", temperaturel.O);
println! ("Temperature 2 is {} celsius", temperature2.0);

}

What is inside the tuple struct can be accessed by the .<numcer> Operation, where the number refers to
the position of the field in the struct.

This is the first piece of code in this book that fails to compile, and the reason is that while the two
temperatures get the equals methods derived for them, they will only be defined for comparing the
same types. Since comparing Fahrenheit with Celsius without any sort of conversion does not make
sense, you can fix this piece of code by either removing the last print1n: invocation or by

comparing temperature1 against itself. The derive line before the structs generated code that allows --
operation to work against the same type.

Here's how the compiler tells you this:

1 “/reviews-from-packt/1/code » rustc tuplestruct.rs
i1: mismatched types
——> tuplestruct.rs:12:30

12 temperaturel == temperature2);

note: expected type :Fahrenhgit‘
found tupe Celsius

r: aborting due to previous error

on ~/reviews-from-packt/1/code » D

The other form of structs has named fields:

|// struct.rs

struct Character {
strength: u8,
dexterity: u8,

charisma:

}

name: String

constitution: u8,
wisdom: u8,
intelligence:

u8g,

fn main() {
let char Character { strength: 9, dexterity: 9, constitution: 9,
wisdom: 9, intelligence: 9, charisma: 9,
name: "Generic AD&D Hero".to string() };
println! ("Character's name is {}, and his/her strength is {}", char.name, char.strength);

In the preceding struct, you can see the usage of a primitive type, the unsigned 8-bit integer (u8).
Primitive types by convention start with a lowercase character, whereas other types start with a
capital letter (such as String up there). For reference, here's a full table of all primitive types:

Type Description Possible values

bool Booleans true, false

ug/ul6/u32/u64 | Fixed size unsigned integers Unsigned range determined by bit size

i8/i16/132/164 | Fixed size signed integers Signed range determined by bit size

£32/£64 Fixed size floats Float range determined by bit size (IEEE-754)

usize ;Arngiléi[tlzc(:jtuirrj:gl:fendant Depending on target machine, usually 32 or 64 bit value

isize Architecture-dependant signed Depending on target machine, usually 32 or 64 bit value
mteger

char Single unicode character 4 bytes describing a unicode character

str String slice Unicode string

[T N Fixed-size arrays N number of type r values

&1T] Slices References to values of type r

(T1, T2 Tuples Elements of types 1, T2, ...

fn(T1, T2, Functions Functions that take types 71, 2, ... as parameters,

returns value of type =

Enums and pattern matching

Whenever you need to model something that can be of several different types, enums may be a good
choice. The enum variants in Rust can be defined with or without data inside them, and the data fields
can be either named or anonymous:

enum Direction {

NE,

}

enum PlayerAction {
Move (direction: Direction, speed: u8),
Wait,
Attack (Direction)

}

This defines tWo enun types: pirection and riayeraction. For each of these enum types, this also defines a
number of namespaced enum variants: pirection::N, pirection::xe, and so on for the pirection type,

and PlayerAction: :Move, PlayerAction::Wait, and PlayerAction: :Attack for the PlayerActiont}ﬂQe.

The most typical way of working with enuns 1s pattern matching with the matcn expression:

#[derive (Debug)]
enum Direction {
N,
NE,
E,
SE,
S,
SW,
W,
NW,
}

enum PlayerAction ({

Move {
direction: Direction,
speed: u8,

b

Wait,

Attack (Direction),
}

fn main() {
let simulated player action = PlayerAction::Move {
direction: Direction::NE,
speed: 2,
i

match simulated player action {
PlayerAction::Wait => println! ("Player wants to wait"),
PlayerAction: :Move { direction, speed } => {
println! ("Player wants to move in direction {:?} with speed {}",
direction, speed)
}
PlayerAction: :Attack (direction) => {
println! ("Player wants to attack direction {:?}", direction)

Like i+, natcn 18 also an expression, which means that it returns a value, and that value has to be of the
same type in every branch. In the preceding example, it's what printin: () returns, that is, the empty
type.

The derive line above the first enun tells the compiler to generate code for a peoug trait. Traits will be
covered more in Chapter 4, Types, but for now, we can just note that it makes the printin: macro's ¢:2)

syntax work properly. The compiler tells us if the penug trait is missing and gives suggestions about
how to fix it:

11-2-use.rs
11-2-use-without-use.rs
11-structmethods.rs ru -fi ne
1 “/fossil/rustbook/1l » rustc enums—-and-match-without-debug-trait.rs
I [I: the trait bound "Direction: std::fmt::Debug is not satisfied
—=> enums-and-match-without-debug-trait.rs:31:22
|
31 1 direction,
| = g %

1
= note: "Direction cannot be formatted using :?; if it is defined in your
crate, add #[derive(Debug)] or manually implement it

= note: required by std::fmt::Debug::fmt

/1: the trait bound Direction: std::fmt::Debug is not satisfied

--> enums-and-match-without-debug-trait.rs:35:63

35 println!("Player wants to attack direction {:?}", direction)

= note: \Direction\ cannot be formatted using T?7; if it is defined in your
crate, add #[derive(Debug)] or manually implement it

= note: required by std::fmt::Debug::fmt
. aborting due to 2 previous errors

on ~/fassil/rustbook/1 » ||

Struct methods

It's often the case that you wish to write functions that operate on a specific struct or return the values
of a specific struct. That's when you write implementation blocks with the imp1 keyword.

For instance, we could extend the previously defined character struct with two methods: a constructor
that takes a name and sets default values for all the character attributes and a getter method for
character strength:

// structmethods.rs

struct Character {
strength: u8,
dexterity: u8,
constitution: u8,
wisdom: u8,
intelligence: u8,
charisma: us8,
name: String,

}

impl Character {
fn new named(name: String) -> Character ({
Character {
strength: 9,
constitution: 9,
dexterity: 9,
wisdom: 9,
intelligence: 9,
charisma: 9,
name: name,
}
}

fn get strength(&self) -> u8 {
self.strength
}
}

The new namea method 1s called an associated function because it does not take se1r as the first
parameter. It is not far from what many other languages would call a static method. It is also a
constructor method since it follows the convention of starting with the word, new, and because it
returns a struct of the same type (cnaracter) for which we're defining an implementation. Since new namea
is an associated function, it can be called by prefixing the struct name and double colon:

|Character::new_named("Dave")

The se1£ parameter in get_strengtn 18 special in that its type is inferred to be the same as the inp1 block's
type, and because it is the thing that makes get strengen @ callable method on the struct. In other words,
get_strength can be called on an already created instance of the struct:

let character = Character::new named ("Dave");
character.get strength();

The ampersand before se1r means that se1= is borrowed for the duration of the method, which is
exactly what we want here. Without the ampersand, the ownership would be moved to the method,
which means that the value would be deallocated after leaving get strengen. Ownerships are a

distinguishing feature of Rust, and will be dealt in depth in Chapter 6, Memory, Lifetimes, and
Borrowing.

Using other pieces of code in your module

A quick word about how to include code from other places into the module you are writing. Rust's
module system has its own pecularities, but it's enough to note now that the use statement brings code
from another module into the current namespace. It does not load external pieces of code, it merely
changes the visibility of things:

// use.rs
use std::ascii::AsciiExt;

fn main() {
let lower case a = 'a';
let upper case a = lower case a.to ascii uppercase();

println! ("{} upper cased is {}", lower case a, upper case a);

}

In this example, the asciirxt module contains an implementation of the to ascii uppercase for the char
type, so including that in this module makes it possible to use the method here. The compiler manages
again to be quite helpful if you miss a particular use statement, like what happens here if we remove
the first line and try to compile:

dcarbon “/rustbook/1 » rustc use-without-use.rs
: no method named to_ascii_uppercase found for type char in the curren
t scope
-—> use-without-use.rs:3:37
I

3 let upper_case_a =

help: items from traits can only be used if the trait is in scope; the foll
owing trait is implemented but not in scope, perhaps add a use for it:

= help: candidate #1: wuse std::ascii::AsciiExt;
: aborting due to previous error

n ~/rustbook/1 » []

Sequences

One more thing to cover and then we can wrap up the basics. Rust has a few built-in ways to
construct sequences of data: arrays and tupies. Then, it has a way to take a view to a piece of that data:
s1ices. Thirdly, it has several data structures as libraries, of which we will cover Vectors (for
dynamically growable sequences) and HashMaps (for key/value data).

Arrays are C-like: they have a fixed length that you need to specify along with the type of the
elements of the array when declaring it. The notation for array types 1S [<type>, <size>]:

// arrays.rs

fn main() {
let numbers: [u8; 10] = [1, 2, 3, 4, 5, 7, 8, 9, 10, 111;
let floats = [0.1, 0.2, 0.3];
println! ("The first number is {}", numbers[0]);

for number in &numbers {
println! ("Number is {}", number);

}

for float number in &floats {
println! ("Float is {}", float number);
}
}

As said before, Rust is able to infer the types of local variables, so writing them out is optional.

Slices offer a way to safely point to a continuous range in an existing data structure. The type of slices
is s (1. Its syntax looks similar to arrays:

// slices.rs
fn main() {

let numbers: [u8; 4] = [1, 2, 4, 51;

let all numbers slice: &[u8] = &numbers[..];

let first two numbers: &[u8] = &numbers[0..2];

println! ("All numbers: {:?}", all numbers slice);

println! ("The second of the first two numbers: {}", first two numbers[1]);

Tuples differ from arrays in the way that arrays are sequences of the same type, while tuple elements
have varying types:

// tuples.rs

fn main() {
let number and string: (u8, &str) = (40, "a static string");
println! ("Number and string in a tuple: {:?}", number and string);

}

They are useful for simple, type-safe compounding of data, generally used when returning multiple
values from a function.

Vectors are like arrays except that their contents or length don't have to be known in advance. They
are created with either calling the constructor vec: :new Or by using the vec: macro:

// vec.rs

fn main() {
let mut numbers vec: Vec<u8> = Vec::new();
numbers vec.push (1) ;
number