
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What Readers Are Saying About
Metaprogramming Ruby 2

This is the one book about Ruby that makes you go “So that’s how it works” over
and over again, as concepts such as the object model, DSLs, and blocks fall into
place with that satisfying “Click!” sound. It’s a great guide to what happens under
the hood of a language that seems to involve a kind of magic deep inside. I highly
recommend it.

➤ Peter Bakhirev
Lead software engineer, Gilt City

The previous edition of Metaprogramming Ruby changed my life and my code, and
helped me get my first programming job. You would think there would be no way
to improve on a book that good, but Paolo Perrotta has done it. Learn to unlock
the hidden potential of this beautiful language, and fall in love with Ruby again.

➤ Richard Schneeman
Programmer, Heroku

For gem authors and application developers alike, this book lays down the foun-
dation everyone needs to harness the full power of Ruby. Paolo describes
metaprogramming in a fun and approachable way for all skill levels. The knowledge
garnered from reading this book will help you write cleaner code and work more
effectively with legacy codebases.

➤ Paul Elliott
Rocketeer, Hashrocket

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to follow the path of Ruby metaprogramming mastery, then this book
is the best companion you can think of, no matter what your level is. I had
struggled with Ruby metaprogramming for years until I read this book; now it all
makes sense.

➤ Fabien Catteau
Software developer, Tech-Angels

This is a book that everyone who wants to have a deeper understanding of the
inner workings of Ruby and Ruby on Rails should read. The “spells” described in
this book are invaluable tools to understand and use Ruby to its full extent. This
is not only about metaprogramming, but also about taking your Ruby programming
to a different level.

➤ Kosmas Chatzimichalis
Software engineer

I’m a huge Python fan, so I was supposed to disregard Ruby. Paolo made me ap-
preciate it. Not only is Metaprogramming Ruby the book that allowed me to wrap
my head around this esoteric and fascinating topic, but it also made me rethink
the way I write code in other languages.

➤ Arialdo Martini
Programmer, JobRapido.com

www.it-ebooks.info

http://www.it-ebooks.info/

This book uncovers all the ins and outs of the art of metaprogramming in Ruby,
with a no-nonsense approach and an irony that transpires from vibrant prose,
never boring, without compromising any of its insightfulness. Metaprogramming
Ruby is one of those books that any serious Rubyist (and even the pros) will want
to revisit from time to time.

➤ Piergiuliano Bossi
Principal engineer lead, Points

Metaprogramming Ruby has been a hugely influential book for me, especially
during a time when I wanted to learn about the inner workings of Ruby. Paolo
“Nusco” Perrotta made what is normally a complex topic fun, enjoyable, and very
approachable.

➤ Josh Kalderimis
CEO, Travis CI

www.it-ebooks.info

http://www.it-ebooks.info/

Metaprogramming Ruby 2
Program Like the Ruby Pros

Paolo Perrotta

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Lynn Beighley (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-212-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2014

www.it-ebooks.info

http://pragprog.com
rights@pragprog.com
http://www.it-ebooks.info/

I was thirteen, and I was tired of hanging
out at the local toy shop to play Intellivision

games. I wanted my own videogame console.
I’d been bugging my parents for a while,

with no success.

Then I found an alternative: I could play
games on a computer as well. So I asked my

parents to buy me one of those new 8-bit
computers—you know, to learn useful stuff.
My dad agreed, and my mom took me to the
shop and bought me a Sinclair ZX Spectrum.

Mom, Dad… Here is something that I should’ve
told you more often in my life: thank you. This
book is dedicated to the two of you. I’m hoping
it will make you proud, just like your once-kid
is proud of you. And while I’m here, I have

something to confess about that life-changing
day thirty years ago: I didn’t really want to

learn stuff. I just wanted to play.

In fact, that’s what I’ve been doing
all these years.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Foreword xiii

Acknowledgments xv

Introduction xvii

Part I — Metaprogramming Ruby

1. The M Word 3
Ghost Towns and Marketplaces 3
The Story of Bob, Metaprogrammer 4
Metaprogramming and Ruby 7

2. Monday: The Object Model 11
Open Classes 11
Inside the Object Model 16
Quiz: Missing Lines 26
What Happens When You Call a Method? 27
Quiz: Tangle of Modules 39
Wrap-Up 42

3. Tuesday: Methods 45
A Duplication Problem 46
Dynamic Methods 48
method_missing 55
Quiz: Bug Hunt 64
Blank Slates 66
Wrap-Up 69

4. Wednesday: Blocks 73
The Day of the Blocks 73
Quiz: Ruby# 75

www.it-ebooks.info

http://www.it-ebooks.info/

Blocks Are Closures 77
instance_eval() 85
Callable Objects 88
Writing a Domain-Specific Language 96
Quiz: A Better DSL 98
Wrap-Up 103

5. Thursday: Class Definitions 105
Class Definitions Demystified 106
Quiz: Class Taboo 112
Singleton Methods 113
Singleton Classes 118
Quiz: Module Trouble 129
Method Wrappers 131
Quiz: Broken Math 136
Wrap-Up 137

6. Friday: Code That Writes Code 139
Coding Your Way to the Weekend 139
Kernel#eval 141
Quiz: Checked Attributes (Step 1) 150
Quiz: Checked Attributes (Step 2) 153
Quiz: Checked Attributes (Step 3) 154
Quiz: Checked Attributes (Step 4) 156
Hook Methods 157
Quiz: Checked Attributes (Step 5) 160
Wrap-Up 162

7. Epilogue 163

Part II — Metaprogramming in Rails

8. Preparing for a Rails Tour 167
Ruby on Rails 168
Installing Rails 168
The Rails Source Code 168

9. The Design of Active Record 171
A Short Active Record Example 171
How Active Record Is Put Together 172
A Lesson Learned 176

Contents • x

www.it-ebooks.info

http://www.it-ebooks.info/

10. Active Support’s Concern Module 179
Rails Before Concern 179
ActiveSupport::Concern 183
A Lesson Learned 188

11. The Rise and Fall of alias_method_chain 189
The Rise of alias_method_chain 189
The Fall of alias_method_chain 193
A Lesson Learned 196

12. The Evolution of Attribute Methods 199
Attribute Methods in Action 199
A History of Complexity 200
A Lesson Learned 210

13. One Final Lesson 213
Metaprogramming Is Just Programming 213

Part III — Appendixes

A1. Common Idioms 217
Mimic Methods 217
Nil Guards 219
Self Yield 222
Symbol#to_proc() 224

A2. Domain-Specific Languages 227
The Case for Domain-Specific Languages 227
Internal and External DSLs 229
DSLs and Metaprogramming 230

A3. Spell Book 231
The Spells 231

Index 243

Contents • xi

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword
Ruby inherits characteristics from various languages—Lisp, Smalltalk, C,
and Perl, to name a few. Metaprogramming comes from Lisp (and Smalltalk).
It’s a bit like magic, which makes something astonishing possible. There are
two kinds of magic: white magic, which does good things, and black magic,
which can do nasty things. Likewise, there are two aspects to metaprogram-
ming. If you discipline yourself, you can do good things, such as enhancing
the language without tweaking its syntax by macros or enabling internal
domain-specific languages. But you can fall into the dark side of metapro-
gramming. Metaprogramming can confuse easily.

Ruby trusts you. Ruby treats you as a grown-up programmer. It gives you
great power, such as metaprogramming. But you need to remember that with
great power comes great responsibility.

Enjoy programming in Ruby.

matz

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Acknowledgments
Thank you, Joe Armstrong, Satoshi Asakawa, Peter Bakhirev, Paul Barry,
Juanjo Bazán, Emmanuel Bernard, Roberto Bettazzoni, Ola Bini, Piergiuliano
Bossi, Simone Busoli, Alessandro Campeis, Kosmas Chatzimichalis, Andrea
Cisternino, Davide D’Alto, Pietro Di Bello, Mauro Di Nuzzo, Marco Di Timoteo,
Paul Elliott, Eric Farkas, Mauricio Fernandez, Francisco Fernández Castaño,
Jay Fields, Michele Finelli, Neal Ford, Florian Frank, Sanne Grinovero, Fed-
erico Gobbo, Florian Groß, Sebastian Hennebrüder, Doug Hudson, Jurek
Husakowski, Lyle Johnson, Lisa Maria Jones, Josh Kalderimis, Murtuza
Kutub, Marc Lainez, Daniele Manni, Luca Marchetti, Arialdo Martini, Kado
Masanori, MenTaLguY, Nicola Moretto, Sandro Paganotti, Alessandro Patriarca,
Carlo Pecchia, Susanna Perrotta, John Pignata, Andrea Provaglio, Mike
Roberts, Martin Rodgers, 琳琳的小狗, Richard Schneeman, Joe Sims, Jeremy
Sydik, Andrea Tomasini, Mauro Tortonesi, Marco Trincardi, Ivan Vaghi,
Giancarlo Valente, Davide Varvello, Elzie Vergine.

Thank you, readers who gave feedback and reported errata. Thank you, con-
tributors to the open-source code I show in this book.

Thank you, Jim Weirich. We owe you a lot.

Thank you, Pragmatic people: Ellie Callahan, Janet Furlow, Andy Hunt, David
Kelly, Susannah Pfalzer, Cathleen Small, Dave Thomas, Devon Thomas. Thank
you, Lynn Beighley, for smoothing out my prose and calling me back to duty
when I drifted astray, like Jill Steinberg had done for the first edition.

It takes a long time to update a book. You turn back once the job is done,
and you’re surprised by how many things have changed in your life. On the
other hand, some things haven’t. Thank you, Ivana Gancheva, my precious
friend.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Will write code that writes code that writes code for food.

 ➤ Martin Rodgers

Introduction
Metaprogramming…it sounds cool! It sounds like a design technique for high-
level enterprise architects or a faddish buzzword that has found its way into
press releases.

In fact, far from being an abstract concept or a bit of marketing-speak,
metaprogramming is a collection of down-to-earth, pragmatic coding tech-
niques. It doesn’t just sound cool; it is cool. Here are some things you can do
with metaprogramming in the Ruby language:

• Say you want to write a Ruby program that connects to an external system
—maybe a web service or a Java program. With metaprogramming, you
can write a wrapper that takes any method call and routes it to the
external system. If somebody adds methods to the external system later,
you don’t have to change your Ruby wrapper; the wrapper will support
the new methods right away. That’s magic.

• Maybe you have a problem that would best be solved with a programming
language that’s specific to that problem. You could go to the trouble of
writing your own language, custom parser and all. Or you could just use
Ruby, bending its syntax until it looks like a specific language for your
problem. You can even write your own little interpreter that reads code
written in your Ruby-based language from a file.

• You can aggressively remove duplication from your Ruby code while
keeping it elegant and clean. Imagine twenty methods in a class that all
look the same. How about defining all those methods at once, with just
a few lines of code? Or maybe you want to call a sequence of similarly
named methods. How would you like a single short line of code that calls
all the methods whose names match a pattern—like, say, all methods
that begin with test?

• You can stretch and twist Ruby to meet your needs, rather than adapt to
the language as it is. For example, you can enhance any class (even a
core class like Array) with that method you miss so dearly, you can wrap

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

logging functionality around a method that you want to monitor, you can
execute custom code whenever a client inherits from your favorite
class…the list goes on. You are limited only by your own, undoubtedly
fertile, imagination.

Metaprogramming gives you the power to do all these things. Let’s see how
this book will help you learn about it.

About This Book
Part I, Metaprogramming Ruby, is the core of the book. Chapter 1, The M Word,
on page 3, walks you through the basic idea behind metaprogramming. The
following chapters tell the story of a week in the life of a newly hired Ruby
programmer and his or her more experienced colleague:

• Ruby’s object model is the land in which metaprogramming lives. Chapter
2, Monday: The Object Model, on page 11, provides a map to this land.
This chapter introduces you to the most basic metaprogramming tech-
niques. It also reveals the secrets behind Ruby classes and method lookup,
the process by which Ruby finds and executes methods.

• Once you understand method lookup, you can do some fancy things with
methods: you can create methods at runtime, intercept method calls,
route calls to another object, or even accept calls to methods that don’t
exist. All these techniques are explained in Chapter 3, Tuesday: Methods,
on page 45.

• Methods are members of a larger family also including entities such as
blocks and lambdas. Chapter 4, Wednesday: Blocks, on page 73, is your
field manual for everything related to these entities. It also presents an
example of writing a domain-specific language, a powerful conceptual tool
that Ruby coders tend to love. This chapter also comes with its own share
of tricks, explaining how you can package code and execute it later or
how you can carry variables across scopes.

• Speaking of scopes, Ruby has a special scope that deserves a close look:
the scope of class definitions. Chapter 5, Thursday: Class Definitions, on
page 105, talks about this scope and introduces you to some of the most
powerful weapons in a metaprogrammer’s arsenal. It also introduces
singleton classes, the last concept you need to make sense of Ruby’s most
perplexing features.

• Finally, Chapter 6, Friday: Code That Writes Code, on page 139, puts it all
together through an extended example that uses techniques from all the

Introduction • xviii

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

previous chapters. The chapter also rounds out your metaprogramming
training with two new topics: the somewhat controversial eval method and
the callback methods that you can use to intercept events in the object
model.

Part II of the book, Metaprogramming in Rails, is a case study in metaprogram-
ming. It contains short chapters that focus on different areas of Rails, the
flagship Ruby framework. By looking at Rails’ source code, you’ll see how
master Ruby coders use metaprogramming in the real world to develop great
software, and you’ll also understand how some metaprogramming techniques
evolved in the last few years.

Three appendixes close the book. Appendix 1, Common Idioms, on page 217,
is a grab-bag of common techniques that are not explained anywhere else in
the book. Appendix 2, Domain-Specific Languages, on page 227, is a quick look
at a programming approach that is common among Ruby developers. Appendix
3, Spell Book, on page 231, is a catalog of all the spells in the book, complete
with code examples.

“Wait a minute,” I can hear you saying. “What the heck are spells?” Oh, right,
sorry. Let me explain.

Spells
This book contains a number of metaprogramming techniques that you can
use in your own code. Some people might call these patterns or maybe idioms.
Neither of these terms is very popular among Rubyists, so I’ll call them spells
instead. Even if there’s nothing magical about them, they do look like magic
spells to Ruby newcomers.

You’ll find references to spells everywhere in the book. I reference a spell with
the convention Class Macro (117) or String of Code (141), for example. The
number in parentheses is the page where the spell receives a name. If you
need a quick reference to a spell, you’ll find it in Appendix 3, Spell Book, on
page 231.

Quizzes
Every now and then, this book also throws a quiz at you. You can skip these
quizzes and just read the solution, but you’ll probably want to solve them on
your own just because they’re fun.

Some quizzes are traditional coding exercises; others require you to get off
your keyboard and think. All include a solution, but most quizzes have more
than one possible answer. Please, feel free to go wild and experiment.

report erratum • discuss

About This Book • xix

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Notation Conventions
This book is chock full of code examples. To show you that a line of code
results in a value, I print that value as a comment on the same line:

-1.abs # => 1

If a code example is supposed to print a result rather than return it, I show
that result after the code:

puts 'Testing... testing...'

Testing... testing...❮

In most cases, the text uses the same code syntax that Ruby uses: My-
Class.my_method is a class method, MyClass::MY_CONSTANT is a constant defined
within a class, and so on. There are a couple of exceptions to this rule. First,
I identify instance methods with the hash notation, like the Ruby documen-
tation does (MyClass#my_method). This is useful to distinguish class methods
and instance methods. Second, I use a hash prefix to identify singleton
classes (#MySingletonClass).

Ruby has a flexible syntax, so few universal rules exist for things like inden-
tation and the use of parentheses. Programmers tend to adopt the syntax
that they find most readable in each specific case. In this book, I try to follow
the most common conventions. For example, I skip parentheses when I call
a method without parameters (as in my_string.reverse), but I tend to use paren-
theses when I pass parameters (as in my_string.gsub("x", "y")).

Some of the code in this book comes straight from existing open-source
libraries. Some of these are standard Ruby libraries, so you should already
have them. You can install the others with the gem command. For example,
if I show you a piece of code from Builder 3.2.2, and you want to install the
entire library to explore its source by yourself, then you can use gem install
builder -v 3.2.2. Be aware of the version, because the code might have changed
in more recent versions of Builder.

To avoid clutter (and make the code easier to understand in isolation), I’ll
sometimes take the liberty of editing the original code slightly. However, I’ll
do my best to keep the spirit of the original source intact.

Unit Tests
This book follows two developers as they go about their day-to-day work. As
the story unfolds, you may notice that these two characters rarely write tests.
Does this book condone untested code?

Introduction • xx

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Please rest assured that it doesn’t. In fact, the original draft of this book
included unit tests for all code examples. In the end, I found that those tests
distracted from the metaprogramming techniques that are the meat of the
book, so the tests fell on the cutting-room floor. This doesn’t mean you
shouldn’t write tests for your own metaprogramming endeavors.

On those occasions where I did show test code in this book, I used the test-
unit library. Until Ruby 2.1, test-unit was a standard library. From Ruby 2.2
onward, you need to install it as a gem, with the command gem install test-unit.

Ruby Versions
Ruby is continuously changing and improving. However, this very fluidity
can be problematic when you try a piece of code on the latest version of the
language, only to find that it doesn’t work anymore. This is not overly common,
but it can happen with metaprogramming, which pushes Ruby to its limits.

This book is written for Ruby 2. As I write, Ruby 2.1 is the most recent stable
version of the language, and it’s mostly compatible with Ruby 2.0. Some
people still run older versions of Ruby, which miss a few important features
from 2.x—notably, Refinements and Module#prepend. In the text, I’ll refer to
Ruby 2.x, and I’ll tell you which features were introduced either in Ruby 2.1
or in Ruby 2.0.

When I talk about Ruby versions, I’m talking about the “official” interpreter
(sometimes called MRI for Matz’s Ruby Interpreter1). There are many alternate
Ruby implementations. Two of the most popular ones are JRuby, which runs
on the Java Virtual Machine,2 and Rubinius.3 Alternate implementations
usually take a few versions to catch up with MRI — so if you use one of them,
be aware that some of the examples in this book might not yet work on your
interpreter.

Book Editions
The first edition of this book focused on Ruby 1.8, which has since been
deprecated. I updated the text to reflect the new features in Ruby, especially
the ones that have been introduced by Ruby 2.x.

The chapters in Part II use the Rails source code as a source of examples.
Rails has changed a lot since the first edition, so these chapters are almost
a complete rewrite of the first edition’s content.

1. http://www.ruby-lang.org
2. http://jruby.codehaus.org
3. http://rubini.us/

report erratum • discuss

About This Book • xxi

www.it-ebooks.info

http://www.ruby-lang.org
http://jruby.codehaus.org
http://rubini.us/
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Apart from the changes in the language and the libraries, some of my personal
opinions also changed since the first edition of this book. I learned to be wary
of some techniques, such as Ghost Methods (57), and fonder of others, such
as Dynamic Methods (51). Parts of the new text reflect these changes of heart.

Finally, this second edition is a general cleanup of the first edition’s text. I
updated many examples that were using gems and source code that have
been forgotten or changed since the previous book; I added a few spells and
removed a few others that don’t seem very relevant anymore; I toned down
the “story” in the text when it was adding too many words to long technical
explanations; and I went through every sentence again, fixing things that
needed fixing and addressing errata and suggestions from the readers.
Whether you’re a new reader or a fan of the first edition, I hope you like the
result.

About You
Most people consider metaprogramming an advanced topic. To play with the
constructs of a Ruby program, you have to know how these constructs work
in the first place. How do you know whether you’re enough of an “advanced”
Rubyist to deal with metaprogramming? Well, if you can understand the code
in the very first chapter without much trouble, then you are well equipped to
move forward.

If you’re not confident about your skills, you can take a simple self-test. Which
kind of code would you write to iterate over an array? If you thought about
the each method, then you know enough Ruby to follow the ensuing text. If
you thought about the for keyword, then you’re probably new to Ruby. In the
second case, you can still embark on this metaprogramming adventure—just
take an introductory Ruby text along with you, or take the excellent interactive
tutorial at the Try Ruby! site.4

Are you on board, then? Great! Let’s start.

4. http://tryruby.org

Introduction • xxii

report erratum • discusswww.it-ebooks.info

http://tryruby.org
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Part I

Metaprogramming Ruby

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

The M Word
Metaprogramming is writing code that writes code.

We’ll get to a more precise definition soon, but this one will do for now. What
do I mean by “code that writes code,” and how is that useful in your daily
work? Before I answer those questions, let’s take a step back and look at
programming languages themselves.

Ghost Towns and Marketplaces
Think of your source code as a world teeming with vibrant citizens: variables,
classes, methods, and so on. If you want to get technical, you can call these
citizens language constructs.

In many programming languages, language constructs behave more like
ghosts than fleshed-out citizens: you can see them in your source code, but
they disappear before the program runs. Take C++, for example. Once the
compiler has finished its job, things like variables and methods have lost their
concreteness; they are just locations in memory. You can’t ask a class for its
instance methods, because by the time you ask the question, the class has
faded away. In languages such as C++, runtime is an eerily quiet place—a
ghost town.

In other languages, such as Ruby, runtime is more like a busy marketplace.
Most language constructs are still there, buzzing all around. You can even
walk up to a language construct and ask it questions about itself. This is
called introspection.

Let’s watch introspection in action. Take a look at the following code.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

the_m_word/introspection.rb
class Greeting
def initialize(text)
@text = text

end

def welcome
@text

end
end

my_object = Greeting.new("Hello")

I defined a Greeting class and created a Greeting object. I can now turn to the
language constructs and ask them questions.

my_object.class # => Greeting

I asked my_object about its class, and it replied in no uncertain terms: “I’m a
Greeting.” Now I can ask the class for a list of its instance methods.

my_object.class.instance_methods(false) # => [:welcome]

The class answered with an array containing a single method name: welcome.
(The false argument means, “List only instance methods you defined yourself,
not those ones you inherited.”) Let’s peek into the object itself, asking for its
instance variables.

my_object.instance_variables # => [:@text]

Again, the object’s reply was loud and clear. Because objects and classes are
first-class citizens in Ruby, you can get a lot of information from running
code.

However, this is only half of the picture. Sure, you can read language con-
structs at runtime, but what about writing them? What if you want to add
new instance methods to Greeting, alongside welcome, while the program is
running? You might be wondering why on earth anyone would want to do
that. Allow me to explain by telling a story.

The Story of Bob, Metaprogrammer
Bob, a newcomer to Ruby, has a grand plan: he’ll write the biggest Internet
social network ever for movie buffs. To do that, he needs a database of movies
and movie reviews. Bob makes it a practice to write reusable code, so he
decides to build a simple library to persist objects in the database.

Chapter 1. The M Word • 4

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/the_m_word/introspection.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Bob’s First Attempt
Bob’s library maps each class to a database table and each object to a record.
When Bob creates an object or accesses its attributes, the object generates
a string of SQL and sends it to the database. All this functionality is wrapped
in a class:

the_m_word/orm.rb
class Entity
attr_reader :table, :ident

def initialize(table, ident)
@table = table
@ident = ident
Database.sql "INSERT INTO #{@table} (id) VALUES (#{@ident})"

end

def set(col, val)
Database.sql "UPDATE #{@table} SET #{col}='#{val}' WHERE id=#{@ident}"

end

def get(col)
Database.sql ("SELECT #{col} FROM #{@table} WHERE id=#{@ident}")[0][0]

end
end

In Bob’s database, each table has an id column. Each Entity stores the content
of this column and the name of the table to which it refers. When Bob creates
an Entity, the Entity saves itself to the database. Entity#set generates SQL that
updates the value of a column, and Entity#get generates SQL that returns the
value of a column. (In case you care, Bob’s Database class returns recordsets
as arrays of arrays.)

Bob can now subclass Entity to map to a specific table. For example, class Movie
maps to a database table named movies:

class Movie < Entity
def initialize(ident)
super "movies", ident

end

def title
get "title"

end

def title=(value)
set "title", value

end

report erratum • discuss

The Story of Bob, Metaprogrammer • 5

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/the_m_word/orm.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def director
get "director"

end

def director=(value)
set "director", value

end
end

A Movie has two methods for each attribute: a reader, such as Movie#title, and
a writer, such as Movie#title=. Bob can now load a new movie into the database
by firing up the Ruby interactive interpreter and typing the following:

movie = Movie.new(1)
movie.title = "Doctor Strangelove"
movie.director = "Stanley Kubrick"

This code creates a new record in movies, which has values 1, Doctor Strangelove,
and Stanley Kubrick for the columns id, title, and director, respectively. (Remember
that in Ruby, movie.title = "Doctor Strangelove" is actually a disguised call to the
method title=—the same as movie.title=("Doctor Strangelove").)

Proud of himself, Bob shows the code to his older, more experienced colleague,
Bill. Bill stares at the screen for a few seconds and proceeds to shatter Bob’s
pride into tiny little pieces. “There’s a lot of duplication in this code,” Bill says.
“You have a movies table with a title column in the database, and you have a
Movie class with an @title field in the code. You also have a title method, a title=
method, and two "title" string constants. You can solve this problem with way
less code if you sprinkle some metaprogramming over it.”

Enter Metaprogramming
At the suggestion of his expert-coder friend, Bob looks for a metaprogramming-
based solution. He finds that very thing in the Active Record library, a popular
Ruby library that maps objects to database tables. After a short tutorial, Bob
is able to write the Active Record version of the Movie class:

class Movie < ActiveRecord::Base
end

Yes, it’s as simple as that. Bob just subclassed the ActiveRecord::Base class. He
didn’t have to specify a table to map Movies to. Even better, he didn’t have to
write boring, almost identical methods such as title and director. It all just
works:

movie = Movie.create
movie.title = "Doctor Strangelove"
movie.title # => "Doctor Strangelove"

Chapter 1. The M Word • 6

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The previous code creates a Movie object that wraps a record in the movies table,
then accesses the record’s title column by calling Movie#title and Movie#title=.
But these methods are nowhere to be found in the source code. How can title
and title= exist if they’re not defined anywhere? You can find out by looking
at how Active Record works.

The table name part is straightforward: Active Record looks at the name of
the class through introspection and then applies some simple conventions.
Since the class is named Movie, Active Record maps it to a table named movies.
(This library knows how to find plurals for English words.)

What about methods such as title= and title, which access object attributes
(accessor methods for short)? This is where metaprogramming comes in: Bob
doesn’t have to write those methods. Active Record defines them automatically,
after inferring their names from the database schema. ActiveRecord::Base reads
the schema at runtime, discovers that the movies table has two columns named
title and director, and defines accessor methods for two attributes of the same
name. This means that Active Record defines methods such as Movie#title and
Movie#director= out of thin air while the program runs.

This is the “yang” to the introspection “yin”: rather than just reading from
the language constructs, you’re writing into them. If you think this is an
extremely powerful feature, you are right.

The “M” Word Again
Now you have a more formal definition of metaprogramming:

Metaprogramming is writing code that manipulates language constructs at
runtime.

The authors of Active Record applied this concept. Instead of writing accessor
methods for each class’s attributes, they wrote code that defines those
methods at runtime for any class that inherits from ActiveRecord::Base. This is
what I meant when I talked about “writing code that writes code.”

You might think that this is exotic, seldom-used stuff—but if you look at
Ruby, as we’re about to do, you’ll see that it’s used frequently.

Metaprogramming and Ruby
Remember our earlier talk about ghost towns and marketplaces? If you want
to manipulate language constructs, those constructs must exist at runtime.
In this respect, some languages are better than others. Take a quick glance
at a few languages and how much control they give you at runtime.

report erratum • discuss

Metaprogramming and Ruby • 7

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Code Generators and Compilers

In metaprogramming, you write code that writes code. But isn’t that what code gen-
erators and compilers do? For example, you can write annotated Java code and then
use a code generator to output XML configuration files. In a broad sense, this XML
generation is an example of metaprogramming. In fact, many people think about code
generation when the “M” word comes up.

This particular brand of metaprogramming implies that you use a program to generate
or otherwise manipulate a second, distinct program—and then you run the second
program. After you run the code generator, you can actually read the generated code
and (if you want to test your tolerance for pain) even modify it by hand before you
finally run it. This is also what happens under the hood with C++ templates: the
compiler turns your templates into a regular C++ program before compiling them,
and then you run the compiled program.

In this book, I’ll stick to a different meaning of metaprogramming, focusing on code
that manipulates itself at runtime. You can think of this as dynamic metaprogramming
to distinguish it from the static metaprogramming of code generators and compilers.
While you can do some amount of dynamic metaprogramming in many languages
(for example, by using bytecode manipulation in Java), only a few languages allow
you do to it seamlessly and elegantly—and Ruby is one of them.

A program written in C spans two different worlds: compile time, where you
have language constructs such as variables and functions, and runtime,
where you just have a bunch of machine code. Because most information
from compile time is lost at runtime, C doesn’t support metaprogramming or
introspection. In C++, some language constructs do survive compilation, and
that’s why you can ask a C++ object for its class. In Java, the distinction
between compile time and runtime is even fuzzier. You have enough introspec-
tion at your disposal to list the methods of a class or climb up a chain of
superclasses.

Ruby is a very metaprogramming-friendly language. It has no compile time
at all, and most constructs in a Ruby program are available at runtime. You
don’t come up against a brick wall dividing the code that you’re writing from
the code that your computer executes when you run the program. There is
just one world.

In this one world, metaprogramming is everywhere. Ruby metaprogramming
isn’t an obscure art reserved for gurus, and it’s not a bolt-on power feature
that’s useful only for building something as sophisticated as Active Record.
If you want to take the path to advanced Ruby coding, you’ll find metapro-
gramming at every step. Even if you’re happy with the amount of Ruby you
already know and use, you’re still likely to stumble on metaprogramming in

Chapter 1. The M Word • 8

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

the source of popular frameworks, in your favorite library, and even in small
examples from random blogs.

In fact, metaprogramming is so deeply entrenched in the Ruby language that
it’s not even sharply separated from “regular” programming. You can’t look
at a Ruby program and say, “This part here is metaprogramming, while this
other part is not.” In a sense, metaprogramming is a routine part of every
Ruby programmer’s job. Once you master it, you’ll be able to tap into the full
power of the language.

There is also another less obvious reason why you might want to learn
metaprogramming. As simple as Ruby looks at first, you can quickly become
overwhelmed by its subtleties. Sooner or later, you’ll be asking yourself
questions such as “Can an object call a private method on another object of
the same class?” or “How can you define class methods by importing a mod-
ule?” Ultimately, all of Ruby’s seemingly complicated behaviors derive from
a few simple rules. Through metaprogramming, you can get an intimate look
at the language, learn those rules, and get answers to your nagging questions.

Now that you know what metaprogramming is about, you’re ready to dive in.

report erratum • discuss

Metaprogramming and Ruby • 9

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 2

Monday: The Object Model
Glance at any Ruby program, and you’ll see objects everywhere. Do a double
take, and you’ll see that objects are citizens of a larger world that also includes
other language constructs, such as classes, modules, and instance variables.
Metaprogramming manipulates these language constructs, so you need to
know a few things about them right off the bat.

You are about to dig into the first concept: all these constructs live together
in a system called the object model. The object model is where you’ll find
answers to questions such as “Which class does this method come from?”
and “What happens when I include this module?” Delving into the object
model, at the very heart of Ruby, you’ll learn some powerful techniques, and
you’ll also learn how to steer clear of a few pitfalls.

Monday promises to be a full day, so silence your messaging app, grab a
donut, and get ready to start.

Open Classes
Where you refactor some legacy code and learn a trick or two along the way.

Welcome to your new job as a Ruby programmer. After you’ve settled yourself
at your new desk with a shiny, latest-generation computer and a cup of coffee,
you can meet Bill, your mentor. Yes, you have your first assignment at your
new company, a new language to work with, and a new pair-programming
buddy.

You’ve only been using Ruby for a few weeks, but Bill is there to help you.
He has plenty of Ruby experience, and he looks like a nice guy. You’re going
to have a good time working with him—at least until your first petty fight over
coding conventions.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The boss wants you and Bill to review the source of a small application called
Bookworm. The company developed Bookworm to manage its large internal
library of books. The program has slowly grown out of control as many different
developers have added their pet features to the mix, from text previews to
magazine management and the tracking of borrowed books. As a result, the
Bookworm source code is a bit of a mess. You and Bill have been selected to
go through the code and clean it up. The boss called it “just an easy refactoring
job.”

You and Bill have been browsing through the Bookworm source code for a
few minutes when you spot your first refactoring opportunity. Bookworm has
a function that formats book titles for printing on old-fashioned tape labels.
It strips all punctuation and special characters out of a string, leaving only
alphanumeric characters and spaces:

object_model/alphanumeric.rb
def to_alphanumeric(s)
s.gsub(/[^\w\s]/, '')

end

This method also comes with its own unit test (remember to gem install test-unit
before you try to run it on Ruby 2.2 and later):

require 'test/unit'

class ToAlphanumericTest < Test::Unit::TestCase
def test_strip_non_alphanumeric_characters
assert_equal '3 the Magic Number', to_alphanumeric('#3, the *Magic, Number*?')

end
end

“This to_alphanumeric method is not very object oriented, is it?” Bill says. “This
is generic functionality that makes sense for all strings. It’d be better if we
could ask a String to convert itself, rather than pass it through an external
method.”

Even though you’re the new guy on the block, you can’t help but interrupt.
“But this is just a regular String. To add methods to it, we’d have to write a
whole new AlphanumericString class. I’m not sure it would be worth it.”

“I think I have a simpler solution to this problem,” Bill replies. He opens the
String class and plants the to_alphanumeric method there:

class String
def to_alphanumeric
gsub(/[^\w\s]/, '')

end
end

Chapter 2. Monday: The Object Model • 12

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/alphanumeric.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Bill also changes the callers to use String#to_alphanumeric. For example, the test
becomes as follows:

require 'test/unit'

class StringExtensionsTest < Test::Unit::TestCase
def test_strip_non_alphanumeric_characters
assert_equal '3 the Magic Number', '#3, the *Magic, Number*?'.to_alphanumeric

end
end

To understand the previous trick, you need to know a thing or two about
Ruby classes. Bill is only too happy to teach you….

Inside Class Definitions
In Ruby, there is no real distinction between code that defines a class and
code of any other kind. You can put any code you want in a class definition:

3.times do
class C

puts "Hello"
end

end

Hello❮
Hello
Hello

Ruby executed the code within the class just as it would execute any other
code. Does that mean you defined three classes with the same name? The
answer is no, as you can quickly find out yourself:

class D
def x; 'x'; end

end

class D
def y; 'y'; end

end

obj = D.new
obj.x # => "x"
obj.y # => "y"

When the previous code mentions class D for the first time, no class by that
name exists yet. So, Ruby steps in and defines the class—and the x method.
At the second mention, class D already exists, so Ruby doesn’t need to define
it. Instead, it reopens the existing class and defines a method named y there.

report erratum • discuss

Open Classes • 13

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

In a sense, the class keyword in Ruby is more like a scope operator than a
class declaration. Yes, it creates classes that don’t yet exist, but you might
argue that it does this as a pleasant side effect. For class, the core job is to
move you in the context of the class, where you can define methods.

This distinction about the class keyword is not an academic detail. It has an
important practical consequence: you can always reopen existing classes—
even standard library classes such as String or Array—and modify them on the

Spell: Open Class fly. You can call this technique Open Class.

To see how people use Open Classes in practice, let’s look at a quick example
from a real-life library.

The Money Example

You can find an example of Open Classes in the money gem, a set of utility
classes for managing money and currencies. Here’s how you create a Money
object:

object_model/money_example.rb
require "money"

bargain_price = Money.from_numeric(99, "USD")
bargain_price.format # => "$99.00"

As a shortcut, you can also convert any number to a Money object by calling
Numeric#to_money:

object_model/money_example.rb
require "money"

standard_price = 100.to_money("USD")
standard_price.format # => "$100.00"

Since Numeric is a standard Ruby class, you might wonder where the method
Numeric#to_money comes from. Look through the source of the Money gem, and
you’ll find code that reopens Numeric and defines that method:

class Numeric
def to_money(currency = nil)
Money.from_numeric(self, currency || Money.default_currency)

end
end

It’s quite common for libraries to use Open Classes this way.

As cool as they are, however, Open Classes have a dark side—one that you’re
about to experience.

Chapter 2. Monday: The Object Model • 14

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/money_example.rb
http://media.pragprog.com/titles/ppmetr2/code/object_model/money_example.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The Problem with Open Classes
You and Bill don’t have to look much further before you stumble upon another
opportunity to use Open Classes. The Bookworm source contains a method
that replaces elements in an array:

object_model/replace.rb
def replace(array, original, replacement)
array.map {|e| e == original ? replacement : e }

end

Instead of focusing on the internal workings of replace, you can look at Book-
worm’s unit tests to see how that method is supposed to be used:

def test_replace
original = ['one', 'two', 'one', 'three']
replaced = replace(original, 'one', 'zero')
assert_equal ['zero', 'two', 'zero', 'three'], replaced

end

This time, you know what to do. You grab the keyboard (taking advantage of
Bill’s slower reflexes) and move the method to the Array class:

class Array
def replace(original, replacement)
self.map {|e| e == original ? replacement : e }

end
end

Then you change all calls to replace into calls to Array#replace. For example, the
test becomes as follows:

def test_replace
original = ['one', 'two', 'one', 'three']
replaced = original.replace('one', 'zero')➤

assert_equal ['zero', 'two', 'zero', 'three'], replaced
end

You save the test, you run Bookworm’s unit tests suite, and...whoops! While
test_replace does pass, other tests unexpectedly fail. To make things more per-
plexing, the failing tests seem to have nothing to do with the code you just
edited. What gives?

“I think I know what happened,” Bill says. He fires up irb, the interactive
Ruby interpreter, and gets a list of all methods in Ruby’s standard Array that
begin with re:

[].methods.grep /^re/ # => [:reverse_each, :reverse, ..., :replace, ...]

report erratum • discuss

Open Classes • 15

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/replace.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

In looking at the irb output, you spot the problem. Class Array already has a
method named replace. When you defined your own replace method, you inad-
vertently overwrote the original replace, a method that some other part of
Bookworm was relying on.

This is the dark side to Open Classes: if you casually add bits and pieces of
functionality to classes, you can end up with bugs like the one you just en-
countered. Some people would frown upon this kind of reckless patching of
classes, and they would refer to the previous code with a derogatory name:

Spell: Monkeypatch they’d call it a Monkeypatch.

Now that you know what the problem is, you and Bill rename your own version
of Array#replace to Array#substitute and fix both the tests and the calling code. You
learned a lesson the hard way, but that didn’t spoil your attitude. If anything,
this incident piqued your curiosity about Ruby classes. It’s time for you to
learn the truth about them.

Inside the Object Model
Where you learn surprising facts about objects, classes, and constants.

Your recent experience with Open Classes (14) hints that there is more to
Ruby classes than meets the eye. Much more, actually. Some of the truths
about Ruby classes and the object model in general might even come as a bit
of a shock when you first uncover them.

There is a lot to learn about the object model, but don’t let all this theory put
you off. If you understand the truth about classes and objects, you’ll be well
on your way to being a master of metaprogramming. Let’s start with the
basics: objects.

What’s in an Object
Imagine running this code:

class MyClass
def my_method
@v = 1

end
end

obj = MyClass.new
obj.class # => MyClass

Look at the obj object. If you could open the Ruby interpreter and look into
obj, what would you see?

Chapter 2. Monday: The Object Model • 16

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Is Monkeypatching Evil?

In the previous section, you learned that Monkeypatch is a derogatory term. However,
the same term is sometimes used in a positive sense, to refer to Open Classes (14) in
general. You might argue that there are two types of Monkeypatches (16). Some happen
by mistake, like the one that you and Bill experienced, and they’re invariably evil.
Others are applied on purpose, and they’re quite useful—especially when you want
to bend an existing library to your needs.

Even when you think you’re in control, you should still Monkeypatch with care. Like
any other global modification, Monkeypatches can be difficult to track in a large code
base. To minimize the dangers of Monkeypatches, carefully check the existing methods
in a class before you define your own methods. Also, be aware that some changes
are riskier than others. For example, adding a new method is usually safer than
modifying an existing one.

You’ll see alternatives to Monkeypatching throughout the book. In particular, we will
see soon that you can make Monkeypatches safer by using Refinements (36). Unfor-
tunately, Refinements are still a new feature, and there is no guarantee that they’ll
ever completely replace traditional Monkeypatches.

Instance Variables

Most importantly, objects contain instance variables. Even though you’re not
really supposed to peek at them, you can do that anyway by calling Object#in-
stance_variables. The object from the previous example has just a single instance
variable:

obj.my_method
obj.instance_variables # => [:@v]

Unlike in Java or other static languages, in Ruby there is no connection be-
tween an object’s class and its instance variables. Instance variables just
spring into existence when you assign them a value, so you can have objects
of the same class that carry different instance variables. For example, if you
hadn’t called obj.my_method, then obj would have no instance variable at all.
You can think of the names and values of instance variables as keys and
values in a hash. Both the keys and the values can be different for each object.

That’s all there is to know about instance variables. Let’s move on to methods.

Methods

Besides having instance variables, objects also have methods. You can get a
list of an object’s methods by calling Object#methods. Most objects (including
obj in the previous example) inherit a number of methods from Object, so this

report erratum • discuss

Inside the Object Model • 17

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

list of methods is usually quite long. You can use Array#grep to check that
my_method is in obj’s list:

obj.methods.grep(/my/) # => [:my_method]

If you could pry open the Ruby interpreter and look into obj, you’d notice that
this object doesn’t really carry a list of methods. An object contains its instance
variables and a reference to a class (because every object belongs to a class,
or—in OO speak—is an instance of a class)…but no methods. Where are the
methods?

Your pair-programming buddy Bill walks over to the nearest whiteboard and
starts scribbling all over it. “Think about it for a minute,” he says, drawing
the following diagram. “Objects that share the same class also share the same
methods, so the methods must be stored in the class, not the object.”

Figure 1—Instance variables live in objects; methods live in classes.

Before going on, you should be aware of one important distinction about
methods. You can rightly say that “obj has a method called my_method,” meaning
that you’re able to call obj.my_method(). By contrast, you shouldn’t say that
“MyClass has a method named my_method.” That would be confusing, because
it would imply that you’re able to call MyClass.my_method() as if it were a class
method.

To remove the ambiguity, you should say that my_method is an instance method
(not just “a method”) of MyClass, meaning that it’s defined in MyClass, and you
actually need an object (or instance) of MyClass to call it. It’s the same method,
but when you talk about the class, you call it an instance method, and when
you talk about the object, you simply call it a method. Remember this distinc-
tion, and you won’t get confused when writing introspective code like this:

String.instance_methods == "abc".methods # => true
String.methods == "abc".methods # => false

Chapter 2. Monday: The Object Model • 18

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Let’s wrap it all up: an object’s instance variables live in the object itself, and
an object’s methods live in the object’s class. That’s why objects of the same
class share methods but don’t share instance variables.

That’s all you really have to know about objects, instance variables, and
methods. But since we brought classes into the picture, we can also take a
closer look at them.

The Truth About Classes
Here is possibly the most important thing you’ll ever learn about the Ruby
object model: classes themselves are nothing but objects.

Because a class is an object, everything that applies to objects also applies
to classes. Classes, like any object, have their own class, called—you guessed
it—Class:

"hello".class # => String
String.class # => Class

You might be familiar with Class from other object-oriented languages. In lan-
guages such as Java, however, an instance of Class is just a read-only
description of the class. By contrast, a Class in Ruby is quite literally the class
itself, and you can manipulate it like you would manipulate any other object.
For example, in Chapter 5, Thursday: Class Definitions, on page 105, you’ll see
that you can call Class.new to create new classes while your program is running.
This flexibility is typical of Ruby’s metaprogramming: while other languages
allow you to read class-related information, Ruby allows you to write that
information at runtime.

Like any object, classes also have methods. Remember what you learned in
What's in an Object, on page 16? The methods of an object are also the instance
methods of its class. In turn, this means that the methods of a class are the
instance methods of Class:

The "false" argument here means: ignore inherited methods
Class.instance_methods(false) # => [:allocate, :new, :superclass]

You already know about new because you use it all the time to create objects.
The allocate method plays a supporting role to new. Chances are, you’ll never
need to care about it.

On the other hand, you’ll use the superclass method a lot. This method is
related to a concept that you’re probably familiar with: inheritance. A Ruby
class inherits from its superclass. Have a look at the following code:

report erratum • discuss

Inside the Object Model • 19

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Array.superclass # => Object
Object.superclass # => BasicObject
BasicObject.superclass # => nil

The Array class inherits from Object, which is the same as saying “an array is
an object.” Object contains methods that are generally useful for any object—
such as to_s, which converts an object to a string. In turn, Object inherits from
BasicObject, the root of the Ruby class hierarchy, which contains only a few
essential methods. (You will learn more about BasicObject later in the book.)

While talking about superclasses, we can ask ourselves one more question:
what is the superclass of Class?

Modules

Take a deep breath and check out the superclass of the Class class itself:

Class.superclass # => Module

The superclass of Class is Module—which is to say, every class is also a module.
To be precise, a class is a module with three additional instance methods
(new, allocate, and superclass) that allow you to create objects or arrange classes
into hierarchies.

Indeed, classes and modules are so closely related that Ruby could easily get
away with a single “thing” that plays both roles. The main reason for having
a distinction between modules and classes is clarity: by carefully picking
either a class or a module, you can make your code more explicit. Usually,
you pick a module when you mean it to be included somewhere, and you pick
a class when you mean it to be instantiated or inherited. So, although you
can use classes and modules interchangeably in many situations, you’ll
probably want to make your intentions clear by using them for different
purposes.

Putting It All Together

Bill concludes his lecture with a piece of code and a whiteboard diagram:

class MyClass; end
obj1 = MyClass.new
obj2 = MyClass.new

Chapter 2. Monday: The Object Model • 20

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Figure 2—Classes are just objects.

“See?” Bill asks, pointing at the previous diagram. “Classes and regular objects
live together happily.”

There’s one more interesting detail in the “Classes are objects” theme: like
you do with any other object, you hold onto a class with a reference. A variable
can reference a class just like any other object:

my_class = MyClass

MyClass and my_class are both references to the same instance of Class—the only
difference being that my_class is a variable, while MyClass is a constant. To put
this differently, just as classes are nothing but objects, class names are
nothing but constants. So let’s look more closely at constants.

Constants
Any reference that begins with an uppercase letter, including the names of
classes and modules, is a constant. You might be surprised to learn that a
Ruby constant is actually very similar to a variable—to the extent that you
can change the value of a constant, although you will get a warning from the
interpreter. (If you’re in a destructive mood, you can even break Ruby beyond
repair by changing the value of the String class name.)

If you can change the value of a constant, how is a constant different from a
variable? The one important difference has to do with their scope. The scope
of constants follows its own special rules, as you can see in the example that
follows.

report erratum • discuss

Inside the Object Model • 21

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

module MyModule
MyConstant = 'Outer constant'

class MyClass
MyConstant = 'Inner constant'

end
end

Bill pulls a napkin from his shirt pocket and sketches out the constants in
this code. You can see the result in the following figure.

All the constants in a program are arranged in a tree similar to a file system,
where modules (and classes) are directories and regular constants are files.
Like in a file system, you can have multiple files with the same name, as long
as they live in different directories. You can even refer to a constant by its
path, as you’d do with a file. Let’s see how.

The Paths of Constants

You just learned that constants are nested like directories and files. Also like
directories and files, constants are uniquely identified by their paths. Con-
stants’ paths use a double colon as a separator (this is akin to the scope
operator in C++):

module M
class C

X = 'a constant'
end
C::X # => "a constant"

end

M::C::X # => "a constant"

If you’re sitting deep inside the tree of constants, you can provide the absolute
path to an outer constant by using a leading double colon as root:

Chapter 2. Monday: The Object Model • 22

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Y = 'a root-level constant'

module M
Y = 'a constant in M'
Y # => "a constant in M"
::Y # => "a root-level constant"

end

The Module class also provides an instance method and a class method that,
confusingly, are both called constants. Module#constants returns all constants in
the current scope, like your file system’s ls command (or dir command, if you’re
running Windows). Module.constants returns all the top-level constants in the
current program, including class names:

M.constants # => [:C, :Y]
Module.constants.include? :Object # => true
Module.constants.include? :Module # => true

Finally, if you need the current path, check out Module.nesting:

module M
class C

module M2
Module.nesting # => [M::C::M2, M::C, M]

end
end

end

The similarities between Ruby constants and files go even further: you can
use modules to organize your constants, the same way that you use directories
to organize your files. Let’s look at an example.

The Rake Example

The earliest versions of Rake, the popular Ruby build system, defined classes
with obvious names, such as Task and FileTask. These names had a good chance
of clashing with other class names from different libraries. To prevent clashes,
Rake switched to defining those classes inside a Rake module:

gems/rake-0.9.2.2/lib/rake/task.rb
module Rake

class Task
...

Now the full name of the Task class is Rake::Task, which is unlikely to clash with
someone else’s name. A module such as Rake, which only exists to be a con-

Spell: Namespacetainer of constants, is called a Namespace.

report erratum • discuss

Inside the Object Model • 23

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/rake-0.9.2.2/lib/rake/task.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

This switch to Namespaces had a problem: if someone had an old Rake build
file lying around—one that still referenced the earlier, non-Namespaced class
names—that file wouldn’t work with an upgraded version of Rake. For this
reason, Rake maintained compatibility with older build files for a while. It did
so by providing a command-line option named classic-namespace that loaded an
additional source file. This source file assigned the new, safer constant names
to the old, unsafe ones:

gems/rake-0.9.2.2/lib/rake/classic_namespace.rb
Task = Rake::Task
FileTask = Rake::FileTask
FileCreationTask = Rake::FileCreationTask
...

When this file was loaded, both Task and Rake::Task ended up referencing the
same instance of Class, so a build file could use either constant to refer to the
class. A few versions afterwards, Rake assumed that all users had migrated
their build file, and it removed the option.

Enough digression on constants. Let’s go back to objects and classes, and
wrap up what you’ve just learned.

Objects and Classes Wrap-Up
What’s an object? It’s a bunch of instance variables, plus a link to a class.
The object’s methods don’t live in the object—they live in the object’s class,
where they’re called the instance methods of the class.

What’s a class? It’s an object (an instance of Class), plus a list of instance
methods and a link to a superclass. Class is a subclass of Module, so a class is
also a module. If this is confusing, look back at Figure 2, Classes are just
objects, on page 21.

These are instance methods of the Class class. Like any object, a class has its
own methods, such as new. Also like any object, classes must be accessed
through references. You already have a constant reference to each class: the
class’s name.

“That’s pretty much all there is to know about objects and classes,” Bill says.
“If you can understand this, you’re well on your way to understanding
metaprogramming. Now, let’s turn back to the code.”

Chapter 2. Monday: The Object Model • 24

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/rake-0.9.2.2/lib/rake/classic_namespace.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Using Namespaces
It takes only a short while for you to get a chance to apply your newfound
knowledge about classes. Sifting through the Bookworm source code, you
stumble upon a class that represents a snippet of text out of a book:

class TEXT
...

Ruby class names are conventionally Pascal cased: words are concatenated
with the first letter of each capitalized: ThisTextIsPascalCased, so you rename
the class Text:

class Text

You change the name of the class everywhere it’s used, you run the unit tests,
and—surprise!—the tests fail with a cryptic error message:

TypeError: Text is not a class❮

“D’oh! Of course it is,” you exclaim. Bill is as puzzled as you are, so it takes
the two of you some time to find the cause of the problem. As it turns out,
the Bookworm application requires an old version of the popular Action
Mailer library. Action Mailer, in turn, uses a text-formatting library that
defines a module named—you guessed it—Text:

module Text

That’s where the problem lies: because Text is already the name of a module,
Ruby complains that it can’t also be the name of a class at the same time.

In a sense, you were lucky that this name clash was readily apparent. If Action
Mailer’s Text had been a class, you might have never noticed that this name
already existed. Instead, you’d have inadvertently Monkeypatched (16) the
existing Text class. At that point, only your unit tests would have protected
you from potential bugs.

Fixing the clash between your Text class and Action Mailer’s Text module is as
easy as wrapping your class in a Namespace (23):

module Bookworm
class Text

You and Bill also change all references to Text into references to Bookworm::Text.
It’s unlikely that an external library defines a class named Bookworm::Text, so
you should be safe from clashes now.

That was a lot of learning in a single sitting. You deserve a break and a cup
of coffee—and a little quiz.

report erratum • discuss

Inside the Object Model • 25

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Loading and Requiring

Speaking of Namespaces (23), there is one interesting detail that involves Namespaces,
constants, and Ruby’s load and require methods. Imagine finding a motd.rb file on the
web that displays a “message of the day” on the console. You want to add this code
to your latest program, so you load the file to execute it and display the message:

load('motd.rb')

Using load, however, has a side effect. The motd.rb file probably defines variables and
classes. Although variables fall out of scope when the file has finished loading, con-
stants don’t. As a result, motd.rb can pollute your program with the names of its own
constants—in particular, class names.

You can force motd.rb to keep its constants to itself by passing a second, optional
argument to load:

load('motd.rb', true)

If you load a file this way, Ruby creates an anonymous module, uses that module as
a Namespace to contain all the constants from motd.rb, and then destroys the module.

The require method is quite similar to load, but it’s meant for a different purpose. You
use load to execute code, and you use require to import libraries. That’s why require has
no second argument: those leftover class names are probably the reason why you
imported the file in the first place. Also, that’s why require tries only once to load each
file, while load executes the file again every time you call it.

Quiz: Missing Lines
Where you find your way around the Ruby object model.

Back in The Truth About Classes, on page 19, Bill showed you how objects
and classes are related. As an example, he used a snippet of code and this
whiteboard diagram:

Chapter 2. Monday: The Object Model • 26

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

class MyClass; end
obj1 = MyClass.new
obj2 = MyClass.new

The diagram shows some of the connections between the program entities.
Now it’s your turn to add more lines and boxes to the diagram and answer
these questions:

• What’s the class of Object?
• What’s the superclass of Module?
• What’s the class of Class?
• Imagine that you execute this code:

obj3 = MyClass.new
obj3.instance_variable_set("@x", 10)

Can you add obj3 to the diagram?

You can use irb and the Ruby documentation to find out the answers.

Quiz Solution
Your enhanced version of the original diagram is in Figure 3, Bill's diagram,
enhanced by you, on page 28.

As you can easily check in irb, the superclass of Module is Object. You don’t
even need irb to know what the class of Object is: because Object is a class, its
class must be Class. This is true of all classes, meaning that the class of Class
must be Class itself. Don’t you love self-referential logic?

Finally, calling instance_variable_set blesses obj3 with its own instance variable
@x. If you find this concept surprising, remember that in a dynamic language
such as Ruby, every object has its own list of instance variables, independent
of other objects—even other objects of the same class.

What Happens When You Call a Method?
Where you learn that a humble method call requires a lot of work on Ruby’s
part and you shed light on a twisted piece of code.

After some hours working on Bookworm, you and Bill already feel confident
enough to fix some minor bugs here and there—but now, as your working
day is drawing to a close, you find yourself stuck. Attempting to fix a long-
standing bug, you’ve stumbled upon a tangle of classes, modules, and
methods that you can’t make heads or tails of.

report erratum • discuss

What Happens When You Call a Method? • 27

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Figure 3—Bill’s diagram, enhanced by you

“Stop!” Bill shouts, startling you. “This code is too complicated. To understand
it, you have to learn in detail what happens when you call a method.” And
before you can react, he dives into yet another lecture.

When you call a method, Ruby does two things:

1. It finds the method. This is a process called method lookup.
2. It executes the method. To do that, Ruby needs something called self.

This process—find a method and then execute it—happens in every object-
oriented language. In Ruby, however, you should understand the process in
depth, because this knowledge will open the door to some powerful tricks.
We’ll talk about method lookup first, and we’ll come around to self later.

Method Lookup
You already know about the simplest case of method lookup. Look back at
Figure 1, Instance variables live in objects; methods live in classes, on page
18. When you call a method, Ruby looks into the object’s class and finds the
method there. Before you look at a more complicated example, though, you
need to know about two new concepts: the receiver and the ancestors chain.

Chapter 2. Monday: The Object Model • 28

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The receiver is the object that you call a method on. For example, if you write
my_string.reverse(), then my_string is the receiver.

To understand the concept of an ancestors chain, look at any Ruby class.
Then imagine moving from the class into its superclass, then into the super-
class’s superclass, and so on, until you reach BasicObject, the root of the Ruby
class hierarchy. The path of classes you just traversed is the ancestors chain
of the class. (The ancestors chain also includes modules, but forget about
them for now. We’ll get around to modules in a bit.)

Now that you know what a receiver is and what an ancestors chain is, you
can sum up the process of method lookup in a single sentence: to find a
method, Ruby goes in the receiver’s class, and from there it climbs the
ancestors chain until it finds the method. Here’s an example:

object_model/lookup.rb
class MyClass
def my_method; 'my_method()'; end

end

class MySubclass < MyClass
end

obj = MySubclass.new
obj.my_method() # => "my_method()"

Bill draws this diagram:

If you’re used to traditional class diagrams, this picture might look confusing
to you. Why is obj, a humble object, hanging around in the same diagram with

report erratum • discuss

What Happens When You Call a Method? • 29

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/lookup.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

a class hierarchy? Don’t get confused—this is not a class diagram. Every box
in the diagram is an object. It’s just that some of these objects happen to be
classes, and classes are linked together through the superclass method.

When you call my_method, Ruby goes right from obj, the receiver, into MySubclass.
Because it can’t find my_method there, Ruby continues its search by going up
into MyClass, where it finally finds the method.

MyClass doesn’t specify a superclass, so it implicitly inherits from the default
superclass: Object. If it hadn’t found the method in MyClass, Ruby would look
for the method by climbing up the chain into Object and finally BasicObject.

Because of the way most people draw diagrams, this behavior is also called
the “one step to the right, then up” rule: go one step to the right into the
receiver’s class, and then go up the ancestors chain until you find the method.
You can ask a class for its ancestors chain with the ancestors method:

MySubclass.ancestors # => [MySubclass, MyClass, Object, Kernel, BasicObject]

“Hey, what’s Kernel doing there in the ancestors chain?” you ask. “You told me
about a chain of superclasses, but I’m pretty sure that Kernel is a module, not
a class.”

“You’re right.” Bill admits. “I forgot to tell you about modules. They’re easy….”

Modules and Lookup

You learned that the ancestors chain goes from class to superclass. Actually,
the ancestors chain also includes modules. When you include a module in a
class (or even in another module), Ruby inserts the module in the ancestors
chain, right above the including class itself:

object_model/modules_include.rb
module M1

def my_method
'M1#my_method()'

end
end

class C
include M1

end

class D < C; end

D.ancestors # => [D, C, M1, Object, Kernel, BasicObject]

Starting from Ruby 2.0, you also have a second way to insert a module in a
class’s chain of ancestors: the prepend method. It works like include, but it inserts

Chapter 2. Monday: The Object Model • 30

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/modules_include.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

the module below the including class (sometimes called the includer), rather
than above it:

class C2
prepend M2

end

class D2 < C2; end

D2.ancestors # => [D2, M2, C2, Object, Kernel, BasicObject]

Bill draws the following flowchart to show how include and prepend work.

Figure 4—Method lookup with modules

Later in this book, you’ll see how to use prepend to your advantage. For now,
it’s enough that you understand the previous diagram. There is one last corner
case about include and prepend, however—one that is worth mentioning right
away.

report erratum • discuss

What Happens When You Call a Method? • 31

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Multiple Inclusions

What happens if you try to include a module in the same chain of ancestors
multiple times? Here is an example:

object_model/modules_multiple.rb
module M1; end

module M2
include M1

end

module M3
prepend M1
include M2

end

M3.ancestors # => [M1, M3, M2]

In the previous code, M3 prepends M1 and then includes M2. When M2 also
includes M1, that include has no effect, because M1 is already in the chain of
ancestors. This is true every time you include or prepend a module: if that module
is already in the chain, Ruby silently ignores the second inclusion. As a result,
a module can appear only once in the same chain of ancestors. This behavior
might change in future Rubies—but don’t hold your breath.

While we’re talking about modules, it’s worth taking a look at that Kernel
module that keeps popping up everywhere.

The Kernel

Ruby includes some methods, such as print, that you can call from anywhere
in your code. It looks like each and every object has the print method. Methods
such as print are actually private instance methods of module Kernel:

Kernel.private_instance_methods.grep(/^pr/) # => [:printf, :print, :proc]

The trick here is that class Object includes Kernel, so Kernel gets into every object’s
ancestors chain. Every line of Ruby is always executed inside an object, so
you can call the instance methods in Kernel from anywhere. This gives you the
illusion that print is a language keyword, when it’s actually a method. Neat,
isn’t it?

You can take advantage of this mechanism yourself: if you add a method to
Spell: Kernel Method Kernel, this Kernel Method will be available to all objects. To prove that Kernel

Methods are actually useful, you can look at the way some Ruby libraries use
them.

Chapter 2. Monday: The Object Model • 32

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/modules_multiple.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The Awesome Print Example

The awesome_print gem prints Ruby objects on the screen with indentation,
color, and other niceties:

object_model/awesome_print_example.rb
require "awesome_print"

local_time = {:city => "Rome", :now => Time.now }
ap local_time, :indent => 2

This produces:

{❮
:city => "Rome",
:now => 2013-11-30 12:51:03 +0100

}

You can call ap from anywhere because it’s a Kernel Method (32), which you
can verify by peeking into Awesome Print’s source code:

gems/awesome_print-1.1.0/lib/awesome_print/core_ext/kernel.rb
module Kernel

def ap(object, options = {})
...

end
end

After this foray into Ruby modules and the Kernel, you can finally learn how
Ruby executes methods after finding them.

Method Execution
When you call a method, Ruby does two things: first, it finds the method, and
second, it executes the method. Up to now, you focused on the finding part.
Now you can finally look at the execution part.

Imagine being the Ruby interpreter. Somebody called a method named, say,
my_method. You found the method by going one step to the right, then up, and
it looks like this:

def my_method
temp = @x + 1
my_other_method(temp)

end

To execute this method, you need to answer two questions. First, what object
does the instance variable @x belong to? And second, what object should you
call my_other_method on?

report erratum • discuss

What Happens When You Call a Method? • 33

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/awesome_print_example.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/awesome_print-1.1.0/lib/awesome_print/core_ext/kernel.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Being a smart human being (as opposed to a dumb computer program), you
can probably answer both questions intuitively: both @x and my_other_method
belong to the receiver—the object that my_method was originally called upon.
However, Ruby doesn’t have the luxury of intuition. When you call a method,
it needs to tuck away a reference to the receiver. Thanks to this reference, it
can remember who the receiver is as it executes the method.

That reference to the receiver can be useful for you as well—so it is worth
exploring further.

The self Keyword

Every line of Ruby code is executed inside an object—the so-called current
object. The current object is also known as self, because you can access it
with the self keyword.

Only one object can take the role of self at a given time, but no object holds
that role for a long time. In particular, when you call a method, the receiver
becomes self. From that moment on, all instance variables are instance vari-
ables of self, and all methods called without an explicit receiver are called on
self. As soon as your code explicitly calls a method on some other object, that
other object becomes self.

Here is an artfully complicated example to show you self in action:

object_model/self.rb
class MyClass
def testing_self
@var = 10 # An instance variable of self
my_method() # Same as self.my_method()
self

end

def my_method
@var = @var + 1

end
end

obj = MyClass.new
obj.testing_self # => #<MyClass:0x007f93ab08a728 @var=11>

As soon as you call testing_self, the receiver obj becomes self. Because of that,
the instance variable @var is an instance variable of obj, and the method
my_method is called on obj. As my_method is executed, obj is still self, so @var is
still an instance variable of obj. Finally, testing_self returns a reference to self.
(You can also check the output to verify that @var is now 11.)

Chapter 2. Monday: The Object Model • 34

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/self.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

What private Really Means

Now that you know about self, you can cast a new light on Ruby’s private keyword.
Private methods are governed by a single simple rule: you cannot call a private method
with an explicit receiver. In other words, every time you call a private method, it must
be on the implicit receiver—self. Let’s see a corner case:

class C
def public_method

self.private_method
end

private

def private_method; end
end

C.new.public_method

NoMethodError: private method ‘private_method’ called [...]❮

You can make this code work by removing the self keyword.

This contrived example shows that private methods come from two rules working
together: first, you need an explicit receiver to call a method on an object that is not
yourself, and second, private methods can be called only with an implicit receiver. Put
these two rules together, and you’ll see that you can only call a private method on
yourself. You can call this the “private rule.”

You could find Ruby’s private methods perplexing—especially if you come from Java
or C#, where private behaves differently. When you’re in doubt, go back to the private
rule, and everything will make sense. Can object x call a private method on object y
if the two objects share the same class? The answer is no, because no matter which
class you belong to, you still need an explicit receiver to call another object’s method.
Can you call a private method that you inherited from a superclass? The answer is
yes, because you don’t need an explicit receiver to call inherited methods on yourself.

If you want to become a master of Ruby, you should always know which object
has the role self at any given moment. In most cases, that’s easy: just track
which object was the last method receiver. However, there are two important
special cases that you should be aware of. Let’s look at them.

The Top Level

You just learned that every time you call a method on an object, that object
becomes self. But then, who’s self if you haven’t called any method yet? You
can run irb and ask Ruby itself for an answer:

self # => main
self.class # => Object

report erratum • discuss

What Happens When You Call a Method? • 35

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

As soon as you start a Ruby program, you’re sitting within an object named
main that the Ruby interpreter created for you. This object is sometimes called
the top-level context, because it’s the object you’re in when you’re at the top
level of the call stack: either you haven’t called any method yet or all the
methods that you called have returned. (Oh, and in case you’re wondering,
Ruby’s main has nothing to do with the main() functions in C and Java.)

Class Definitions and self

In a class or module definition (and outside of any method), the role of self is
taken by the class or module itself.

class MyClass
self # => MyClass

end

This last detail is not going to be useful right now, but it will become a central
concept later in this book. For now, we can set it aside and go back to the
main topic.

Everything that you’ve learned so far about method execution can be summed
up in a few short sentences. When you call a method, Ruby looks up the
method by following the “one step to the right, then up” rule and then executes
the method with the receiver as self. There are some special cases in this
procedure (for example, when you include a module), but there are no
exceptions…except for one.

Refinements
Remember the first refactoring you coded today, in Open Classes, on page
11? You and Bill used an Open Class (14) to add a method to Strings:

object_model/alphanumeric.rb
class String
def to_alphanumeric
gsub(/[^\w\s]/, '')

end
end

The problem with modifying classes this way is that the changes are global:
from the moment the previous code is executed, every String in the system gets
the changes. If the change is an incompatible Monkeypatch (16), you might
break some unrelated code—as happened to you and Bill when you inadver-
tently redefined Array#replace.

Spell: Refinement Starting with Ruby 2.0, you can deal with this problem using a Refinement.
Begin by writing a module and calling refine inside the module definition:

Chapter 2. Monday: The Object Model • 36

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/alphanumeric.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

object_model/refinements_in_file.rb
module StringExtensions

refine String do
def to_alphanumeric
gsub(/[^\w\s]/, '')

end
end

end

This code refines the String class with a new to_alphanumeric method. Differently
from a regular Open Class, however, a Refinement is not active by default. If
you try to call String#to_alphanumeric, you’ll get an error:

"my *1st* refinement!".to_alphanumeric

NoMethodError: undefined method `to_alphanumeric' [...]❮

To activate the changes, you have to do so explicitly, with the using method:

using StringExtensions

From the moment you call using, all the code in that Ruby source file will see
the changes:

"my *1st* refinement!".to_alphanumeric # => "my 1st refinement"

Starting from Ruby 2.1, you can even call using inside a module definition.
The Refinement will be active until the end of the module definition. The code
below patches the String#reverse method—but only for the code inside the defi-
nition of StringStuff:

object_model/refinements_in_module.rb
module StringExtensions

refine String do
def reverse
"esrever"

end
end

end

module StringStuff
using StringExtensions
"my_string".reverse # => "esrever"

end

"my_string".reverse # => "gnirts_ym"

Refinements are similar to Monkeypatches, but they’re not global. A Refine-
ment is active in only two places: the refine block itself and the code starting

report erratum • discuss

What Happens When You Call a Method? • 37

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/refinements_in_file.rb
http://media.pragprog.com/titles/ppmetr2/code/object_model/refinements_in_module.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

from the place where you call using until the end of the module (if you’re in a
module definition) or the end of the file (if you’re at the top level)

In the limited scope where it’s active, a Refinement is just as good as an Open
Class or a Monkeypatch. It can define new methods, redefine existing methods,
include or prepend modules, and generally do anything that a regular Open Class
can do. Code in an active Refinement takes precedence over code in the refined
class, and also over code in modules that are included or prepended by the
class. Refining a class is like slapping a patch right onto the original code of
the class.

On the other hand, because they’re not global, Refinements don’t have the
issues that you experienced in The Problem with Open Classes, on page 15.
You can apply a Refinement to a few selected areas of your code, and the rest
of your code will stick with the original unrefined class—so there aren’t many
chances that you’ll break your system by inadvertently impacting unrelated
code. However, this local quality of Refinements has the potential to surprise
you, as you’re about to find out.

Refinement Gotchas

Look at this code:

object_model/refinements_gotcha.rb
class MyClass
def my_method
"original my_method()"

end

def another_method
my_method

end
end

module MyClassRefinement
refine MyClass do

def my_method
"refined my_method()"

end
end

end

using MyClassRefinement
MyClass.new.my_method # => "refined my_method()"
MyClass.new.another_method # => "original my_method()"

The call to my_method happens after the call to using, so you get the refined
version of the method, just like you expect. However, the call to another_method

Chapter 2. Monday: The Object Model • 38

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/refinements_gotcha.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

could catch you off guard: even if you call another_method after using, the call to
my_method itself happens before using—so it calls the original, unrefined version
of the method.

Some people find the result above counterintuitive. The lesson here is to
double-check your method calls when you use Refinements (36). Also keep
in mind that Refinements are still an evolving feature—so much so that Ruby
2.0 issues a scary warning when your program uses Refinements for the first
time:

warning: Refinements are experimental, and the❮
behavior may change in future versions of Ruby!

This warning has been removed in Ruby 2.1, but there are still a few corner
cases where Refinements might not behave as you expect—and some of those
corner cases might change in future Rubies. For example, you can call refine
in a regular module, but you cannot call it in a class, even if a class is itself
a module. Also, metaprogramming methods such as methods and ancestors ignore
Refinements altogether. Behaviors such as these have sound technical justi-
fications, but they could trip you up nonetheless. Refinements have the
potential to eliminate dangerous Monkeypatches, but it will take some time
for the Ruby community to understand how to use them best.

You’re still considering the power and responsibility of using Refinements
when Bill decides to throw a quiz at you.

Quiz: Tangle of Modules
Where you untangle a twisted yarn of modules, classes, and objects.

You can finally go back to the problem that prompted Bill to launch into his
discussion on method lookup, self, and Refinements. You’ve had trouble
making sense of a complicated arrangement of classes and modules. Here’s
the confusing part:

object_model/tangle.rb
module Printable

def print
...

end

def prepare_cover
...

end
end

report erratum • discuss

Quiz: Tangle of Modules • 39

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/tangle.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

module Document
def print_to_screen

prepare_cover
format_for_screen
print

end

def format_for_screen
...

end

def print
...

end
end

class Book
include Document
include Printable
...

end

Another source file creates a Book and calls print_to_screen:

b = Book.new
b.print_to_screen

According to the company’s bug management application, there is a problem
with this code: print_to_screen is not calling the right print method. The bug report
doesn’t provide anymore details.

Can you guess which version of print gets called—the one in Printable or the one
in Document? Try drawing the chain of ancestors on paper. How can you
quickly fix the code so print_to_screen calls the other version of print instead?

Quiz Solution
You can ask Ruby itself for the ancestors chain of Book:

Book.ancestors # => [Book, Printable, Document, Object, Kernel, BasicObject]

If you draw this ancestors chain on your whiteboard, it will look like Figure
5, The ancestors chain of the Book class, on page 41.

Let’s see how Ruby builds the chain. Because Book doesn’t have an explicit
superclass, it implicitly inherits from Object, which in turn includes Kernel and
inherits from BasicObject. When Book includes Document, Ruby adds Document to
Book’s ancestors chain right above Book itself. Immediately after that, Book

Chapter 2. Monday: The Object Model • 40

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Figure 5—The ancestors chain of the Book class

includes Printable. Again, Ruby slips Printable in the chain right above Book,
pushing up the rest of the chain—from Document upward.

When you call b.print_to_screen, the object referenced by b becomes self, and
method lookup begins. Ruby finds the print_to_screen method in Document, and
that method then calls other methods—including print. All methods called
without an explicit receiver are called on self, so method lookup starts once
again from Book (self’s class) and goes up until it finds a method named print.
The lowest print in the chain is Printable#print, so that’s the one that gets called.

The bug report hints that the original author of the code intended to call
Document#print instead. In real production code, you’d probably want to get rid
of this confusion and rename one of the clashing print methods. However, if
you just want to solve this quiz, the cheapest way to do it is to swap the order
of inclusion of the modules in Book so that Document gets lower than Printable in
the ancestors chain:

object_model/tangle_untwisted.rb
module Printable

...
end

report erratum • discuss

Quiz: Tangle of Modules • 41

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/object_model/tangle_untwisted.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

module Document
...

end

class Book
include Printable➤

include Document➤

ancestors # => [Book, Document, Printable, Object, Kernel, BasicObject]
end

The implicit receiver of ancestors in the previous code is Book, because in a class
definition the role of self is taken by the class. The ancestors chain of Book also
contains a third method named print—but Bill is not telling you where it is. If
you’re curious, you’ll have to find it yourself, maybe with some help from your
friend irb.

It’s almost time to go home after an exhausting but very satisfying day of
work. But before you call it a day, Bill does a complete wrap-up of what you
learned.

Wrap-Up
Here’s a checklist of what you learned today:

• An object is composed of a bunch of instance variables and a link to a
class.

• The methods of an object live in the object’s class. (From the point of view
of the class, they’re called instance methods.)

• The class itself is just an object of class Class. The name of the class is
just a constant.

• Class is a subclass of Module. A module is basically a package of methods.
In addition to that, a class can also be instantiated (with new) or arranged
in a hierarchy (through its superclass).

• Constants are arranged in a tree similar to a file system, where the names
of modules and classes play the part of directories and regular constants
play the part of files.

• Each class has an ancestors chain, beginning with the class itself and
going up to BasicObject.

Chapter 2. Monday: The Object Model • 42

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

• When you call a method, Ruby goes right into the class of the receiver
and then up the ancestors chain, until it either finds the method or
reaches the end of the chain.

• When you include a module in a class, the module is inserted in the
ancestors chain right above the class itself. When you prepend the module,
it is inserted in the ancestors chain right below the class.

• When you call a method, the receiver takes the role of self.

• When you’re defining a module (or a class), the module takes the role of
self.

• Instance variables are always assumed to be instance variables of self.

• Any method called without an explicit receiver is assumed to be a method
of self.

• Refinements are like pieces of code patched right over a class, and they
override normal method lookup. On the other hand, a Refinement works
in a limited area of the program: the lines of code between the call to using
and the end of the file, or the end of the module definition.

Checked…checked…done! Now it’s time to go home before your brain explodes
with all the information you crammed into it today.

report erratum • discuss

Wrap-Up • 43

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 3

Tuesday: Methods
Yesterday you learned about the Ruby object model and how to make Ruby
classes sing and dance for you. Today you’re holding all calls to focus on
methods.

The objects in your code talk to each other all the time. Some languages—
such as Java and C—feature a compiler that presides over this chatting. For
every method call, the compiler checks to see that the receiving object has a
matching method. This is called static type checking, and the languages that
adopt it are called static languages. For example, if you call talk_simple on a
Lawyer object that has no such method, the compiler protests loudly.

Dynamic languages—such as Python and Ruby—don’t have a compiler
policing method calls. As a consequence, you can start a program that calls
talk_simple on a Lawyer, and everything works just fine—that is, until that spe-
cific line of code is executed. Only then does the Lawyer complain that it doesn’t
understand that call.

That’s an important advantage of static type checking: the compiler can spot
some of your mistakes before the code runs. This protectiveness, however,
comes at a price. Static languages often require you to write lots of tedious,
repetitive methods—the so-called boilerplate methods—just to make the
compiler happy. (For example, get and set methods to access an object’s
properties, or scores of methods that do nothing but delegate to some other
object.)

In Ruby, boilerplate methods aren’t a problem, because you can easily avoid
them with techniques that would be impractical or just plain impossible in
a static language. In this chapter, we’ll focus on those techniques.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

A Duplication Problem
Where you and Bill face a problem with duplicated code.

Today, your boss asked you to work on a program for the accounting
department. They want a system that flags expenses greater than $99 for
computer gear, so they can crack down on developers splurging with company
money. (You read that right: $99. The purchasing department isn’t fooling
around.)

Some other developers already took a stab at the project, coding a report that
lists all the components of each computer in the company and how much
each component costs. To date, they haven’t plugged in any real data. Here’s
where you and Bill come in.

The Legacy System
Right from the start, you have a challenge on your hands: the data you need
to load into the already established program is stored in a legacy system stuck
behind an awkwardly coded class named DS (for “data source”):

methods/computer/data_source.rb
class DS
def initialize # connect to data source...
def get_cpu_info(workstation_id) # ...
def get_cpu_price(workstation_id) # ...
def get_mouse_info(workstation_id) # ...
def get_mouse_price(workstation_id) # ...
def get_keyboard_info(workstation_id) # ...
def get_keyboard_price(workstation_id) # ...
def get_display_info(workstation_id) # ...
def get_display_price(workstation_id) # ...
...and so on

DS#initialize connects to the data system when you create a new DS object. The
other methods—and there are dozens of them—take a workstation identifier
and return descriptions and prices for the computer’s components. With Bill
standing by to offer moral support, you quickly try the class in irb:

ds = DS.new
ds.get_cpu_info(42) # => "2.9 Ghz quad-core"
ds.get_cpu_price(42) # => 120
ds.get_mouse_info(42) # => "Wireless Touch"
ds.get_mouse_price(42) # => 60

It looks like workstation number 42 has a 2.9GHz CPU and a luxurious $60
mouse. This is enough data to get you started.

Chapter 3. Tuesday: Methods • 46

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/data_source.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Double, Treble… Trouble
You have to wrap DS into an object that fits the reporting application. This
means each Computer must be an object. This object has a single method for
each component, returning a string that describes both the component and
its price. Remember that price limit set by the purchasing department?
Keeping this requirement in mind, you know that if the component costs $100
or more, the string must begin with an asterisk to draw people’s attention.

You kick off development by writing the first three methods in the Computer
class:

methods/computer/duplicated.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source

end

def mouse
info = @data_source.get_mouse_info(@id)
price = @data_source.get_mouse_price(@id)
result = "Mouse: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

def cpu
info = @data_source.get_cpu_info(@id)
price = @data_source.get_cpu_price(@id)
result = "Cpu: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

def keyboard
info = @data_source.get_keyboard_info(@id)
price = @data_source.get_keyboard_price(@id)
result = "Keyboard: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

...
end

At this point in the development of Computer, you find yourself bogged down
in a swampland of repetitive copy and paste. You have a long list of methods

report erratum • discuss

A Duplication Problem • 47

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/duplicated.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

left to deal with, and you should also write tests for each and every method,
because it’s easy to make mistakes in duplicated code.

“I can think of two different ways to remove this duplication,” Bill says. “One
is a spell called Dynamic Methods. The other is a special method called
method_missing. We can try both solutions and decide which one we like better.”
You agree to start with Dynamic Methods and get to method_missing after that.

Dynamic Methods
Where you learn how to call and define methods dynamically, and you remove
the duplicated code.

“When I was a young developer learning C++,” Bill says, “my mentors told me
that when you call a method, you’re actually sending a message to an object.
It took me a while to get used to that concept. If I’d been using Ruby back
then, that notion of sending messages would have come more naturally to
me.”

Calling Methods Dynamically
When you call a method, you usually do so using the standard dot notation:

methods/dynamic_call.rb
class MyClass
def my_method(my_arg)
my_arg * 2

end
end

obj = MyClass.new
obj.my_method(3) # => 6

You also have an alternative: call MyClass#my_method using Object#send in place
of the dot notation:

obj.send(:my_method, 3) # => 6

The previous code still calls my_method, but it does so through send. The first
argument to send is the message that you’re sending to the object—that is, a
symbol or a string representing the name of a method. (See Method Names
and Symbols, on page 49.) Any remaining arguments (and the block, if one
exists) are simply passed on to the method.

Why would you use send instead of the plain old dot notation? Because with
send, the name of the method that you want to call becomes just a regular
argument. You can wait literally until the very last moment to decide which

Chapter 3. Tuesday: Methods • 48

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/dynamic_call.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

method to call, while the code is running. This technique is called Dynamic
Spell: Dynamic
Dispatch

Dispatch, and you’ll find it wildly useful. To help reveal its magic, let’s look
at a couple of real-life examples.

Method Names and Symbols

People who are new to the language are sometimes confused by Ruby’s symbols.
Symbols and strings belong to two separate and unrelated classes:

:x.class # => Symbol
"x".class # => String

Nevertheless, symbols are similar enough to strings that you might wonder what’s
the point of having symbols at all. Can’t you just use regular strings everywhere?

There are a few different reasons to use symbols in place of regular strings, but in
the end the choice boils down to conventions. In most cases, symbols are used as
names of things—in particular, names of metaprogramming-related things such as
methods. Symbols are a good fit for such names because they are immutable: you
can change the characters inside a string, but you can’t do that for symbols. You
wouldn’t expect the name of a method to change, so it makes sense to use a symbol
when you refer to a method name.

For example, when you call Object#send, you need to pass it the name of a method as
a first argument. Although send accepts this name as either a symbol or a string,
symbols are usually considered more kosher:

rather than: 1.send("+", 2)
1.send(:+, 2) # => 3

Regardless, you can easily convert from string to symbol and back:

"abc".to_sym #=> :abc
:abc.to_s #=> "abc"

The Pry Example

One example of Dynamic Dispatch comes from Pry. Pry is a popular alternative
to irb, Ruby’s command-line interpreter. A Pry object stores the interpreter’s
configuration into its own attributes, such as memory_size and quiet:

methods/pry_example.rb
require "pry"

pry = Pry.new
pry.memory_size = 101
pry.memory_size # => 101
pry.quiet = true

report erratum • discuss

Dynamic Methods • 49

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/pry_example.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

For each instance method like Pry#memory_size, there is a corresponding class
method (Pry.memory_size) that returns the default value of the attribute:

Pry.memory_size # => 100

Let’s look a little deeper inside the Pry source code. To configure a Pry instance,
you can call a method named Pry#refresh. This method takes a hash that maps
attribute names to their new values:

pry.refresh(:memory_size => 99, :quiet => false)
pry.memory_size # => 99
pry.quiet # => false

Pry#refresh has a lot of work to do: it needs to go through each attribute (such
as self.memory_size); initialize the attribute with its default value (such as
Pry.memory_size); and finally check whether the hash argument contains a new
value for the same attribute, and if it does, set the new value. Pry#refresh could
do all of those steps with code like this:

def refresh(options={})
defaults[:memory_size] = Pry.memory_size
self.memory_size = options[:memory_size] if options[:memory_size]

defaults[:quiet] = Pry.quiet
self.quiet = options[:quiet] if options[:quiet]
same for all the other attributes...

end

Those two lines of code would have to be repeated for each and every attribute.
That’s a lot of duplicated code. Pry#refresh manages to avoid that duplication,
and instead uses Dynamic Dispatch (49) to set all the attributes with just a
few lines of code:

gems/pry-0.9.12.2/lib/pry/pry_instance.rb
def refresh(options={})
defaults = {}
attributes = [:input, :output, :commands, :print, :quiet,

:exception_handler, :hooks, :custom_completions,
:prompt, :memory_size, :extra_sticky_locals]

attributes.each do |attribute|
defaults[attribute] = Pry.send attribute

end
...
defaults.merge!(options).each do |key, value|

send("#{key}=", value) if respond_to?("#{key}=")
end

true
end

Chapter 3. Tuesday: Methods • 50

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/pry-0.9.12.2/lib/pry/pry_instance.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The code above uses send to read the default attribute values into a hash,
merges this hash with the options hash, and finally uses send again to call
attribute accessors such as memory_size=. The Kernel#respond_to? method returns
true if methods such as Pry#memory_size= actually exist, so that any key in options
that doesn’t match an existing attribute will be ignored. Neat, huh?

Privacy Matters

Remember what Spiderman’s uncle used to say? “With great power comes
great responsibility.” The Object#send method is very powerful—perhaps too
powerful. In particular, you can call any method with send, including private
methods.

If that kind of breaching of encapsulation makes you uneasy, you can use
public_send instead. It’s like send, but it makes a point of respecting the receiver’s
privacy. Be prepared, however, for the fact that Ruby code in the wild rarely
bothers with this concern. If anything, a lot of Ruby programmers use send
exactly because it allows calling private methods, not in spite of that.

Now you know about send and Dynamic Dispatch—but there is more to
Dynamic Methods than that. You’re not limited to calling methods dynamically.
You can also define methods dynamically. It’s time to see how.

Defining Methods Dynamically
You can define a method on the spot with Module#define_method. You just need
to provide a method name and a block, which becomes the method body:

methods/dynamic_definition.rb
class MyClass
define_method :my_method do |my_arg|

my_arg * 3
end

end

obj = MyClass.new
obj.my_method(2) # => 6

require_relative '../test/assertions'
assert_equals 6, obj.my_method(2)

define_method is executed within MyClass, so my_method is defined as an instance
method of MyClass. This technique of defining a method at runtime is called a

Spell: Dynamic
Method

Dynamic Method.

There is one important reason to use define_method over the more familiar def
keyword: define_method allows you to decide the name of the defined method

report erratum • discuss

Dynamic Methods • 51

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/dynamic_definition.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

at runtime. To see an example of this technique, look back at your original
refactoring problem.

Refactoring the Computer Class
Recall the code that pulled you and Bill into this dynamic discussion:

methods/computer/duplicated.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source

end

def mouse
info = @data_source.get_mouse_info(@id)
price = @data_source.get_mouse_price(@id)
result = "Mouse: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

def cpu
info = @data_source.get_cpu_info(@id)
price = @data_source.get_cpu_price(@id)
result = "Cpu: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

def keyboard
info = @data_source.get_keyboard_info(@id)
price = @data_source.get_keyboard_price(@id)
result = "Keyboard: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

...
end

In the previous pages you learned how to use Module#define_method in place of
the def keyword to define a method, and how to use send in place of the dot
notation to call a method. Now you can use these spells to refactor the Computer
class. It’s time to remove some duplication.

Step 1: Adding Dynamic Dispatches

You and Bill start by extracting the duplicated code into its own message-
sending method:

Chapter 3. Tuesday: Methods • 52

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/duplicated.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

methods/computer/dynamic_dispatch.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source

end

def mouse➤

component :mouse➤

end➤
➤

def cpu➤

component :cpu➤

end➤
➤

def keyboard➤

component :keyboard➤

end➤
➤

def component(name)➤

info = @data_source.send "get_#{name}_info", @id➤

price = @data_source.send "get_#{name}_price", @id➤

result = "#{name.capitalize}: #{info} ($#{price})"➤

return "* #{result}" if price >= 100➤

result➤

end➤

end

A call to mouse is delegated to component, which in turn calls DS#get_mouse_info
and DS#get_mouse_price. The call also writes the capitalized name of the compo-
nent in the resulting string. You open an irb session and smoke-test the new
Computer:

my_computer = Computer.new(42, DS.new)
my_computer.cpu # => * Cpu: 2.16 Ghz ($220)

This new version of Computer is a step forward because it contains far fewer
duplicated lines—but you still have to write dozens of similar methods. To
avoid writing all those methods, you can turn to define_method.

Step 2: Generating Methods Dynamically

You and Bill refactor Computer to use Dynamic Methods (51), as shown in the
following code.

report erratum • discuss

Dynamic Methods • 53

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/dynamic_dispatch.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

methods/computer/dynamic_methods.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source

end

def self.define_component(name)➤

define_method(name) do➤

info = @data_source.send "get_#{name}_info", @id➤

price = @data_source.send "get_#{name}_price", @id➤

result = "#{name.capitalize}: #{info} ($#{price})"➤

return "* #{result}" if price >= 100➤

result➤

end➤

end➤
➤

define_component :mouse➤

define_component :cpu➤

define_component :keyboard➤

end

Note that the three calls to define_component are executed inside the definition
of Computer, where Computer is the implicit self. Because you’re calling define_com-
ponent on Computer, you have to make it a class method.

You quickly test the slimmed-down Computer class in irb and discover that it
still works. It’s time to move on to the next step.

Step 3: Sprinkling the Code with Introspection

The latest Computer contains minimal duplication, but you can push it even
further and remove the duplication altogether. How? By getting rid of all those
calls to define_component. You can do that by introspecting the data_source argu-
ment and extracting the names of all components:

methods/computer/more_dynamic_methods.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source
data_source.methods.grep(/^get_(.*)_info$/) { Computer.define_component $1 }➤

end

def self.define_component(name)
define_method(name) do

...
end

end
end

Chapter 3. Tuesday: Methods • 54

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/dynamic_methods.rb
http://media.pragprog.com/titles/ppmetr2/code/methods/computer/more_dynamic_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The new line in initialize is where the magic happens. To understand it, you
need to know a couple of things.

First, if you pass a block to Array#grep, the block is evaluated for each element
that matches the regular expression. Second, the string matching the
parenthesized part of the regular expression is stored in the global variable
$1. So, if data_source has methods named get_cpu_info and get_mouse_info, this code
ultimately calls Computer.define_component twice, with the strings "cpu" and "mouse".
Note that define_method works equally well with a string or a symbol.

The duplicated code is finally gone for good. As a bonus, you don’t even have
to write or maintain the list of components. If someone adds a new component
to DS, the Computer class will support it automatically. Isn’t that wonderful?

Let’s Try That Again

Your refactoring was a resounding success, but Bill is not willing to stop here.
“We said that we were going to try two different solutions to this problem,
remember? We’ve only found one, involving Dynamic Dispatch (49) and
Dynamic Methods (51). It did serve us well—but to be fair, we need to give the
other solution a chance.”

For this second solution, you need to know about some strange methods that
are not really methods and a very special method named method_missing.

method_missing
Where you listen to spooky stories about Ghost Methods and dynamic proxies
and you try a second way to remove duplicated code.

With Ruby, there’s no compiler to enforce method calls. This means you can
call a method that doesn’t exist. For example:

methods/method_missing.rb
class Lawyer; end
nick = Lawyer.new
nick.talk_simple

NoMethodError: undefined method `talk_simple' for #<Lawyer:0x007f801aa81938>❮

Do you remember how method lookup works? When you call talk_simple, Ruby
goes into nick’s class and browses its instance methods. If it can’t find
talk_simple there, it searches up the ancestors chain into Object and eventually
into BasicObject.

Because Ruby can’t find talk_simple anywhere, it admits defeat by calling a
method named method_missing on nick, the original receiver. Ruby knows that

report erratum • discuss

method_missing • 55

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/method_missing.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

method_missing is there, because it’s a private instance method of BasicObject that
every object inherits.

You can experiment by calling method_missing yourself. It’s a private method,
but you can get to it through send:

nick.send :method_missing, :my_method

NoMethodError: undefined method `my_method' for #<Lawyer:0x007f801b0f4978>❮

You have just done exactly what Ruby does. You told the object, “I tried to
call a method named my_method on you, and you did not understand.”
BasicObject#method_missing responded by raising a NoMethodError. In fact, this is
what method_missing does for a living. It’s like an object’s dead-letter office, the
place where unknown messages eventually end up (and the place where
NoMethodErrors come from).

Overriding method_missing
Most likely, you will never need to call method_missing yourself. Instead, you
can override it to intercept unknown messages. Each message landing on
method_missing’s desk includes the name of the method that was called, plus
any arguments and blocks associated with the call.

methods/more_method_missing.rb
class Lawyer
def method_missing(method, *args)
puts "You called: #{method}(#{args.join(', ')})"
puts "(You also passed it a block)" if block_given?

end
end

bob = Lawyer.new
bob.talk_simple('a', 'b') do
a block

end

You called: talk_simple(a, b)❮
(You also passed it a block)

Overriding method_missing allows you to call methods that don’t really exist.
Let’s take a closer look at these weird creatures.

Ghost Methods
When you need to define many similar methods, you can spare yourself the
definitions and just respond to calls through method_missing. This is like saying
to the object, “If they ask you something and you don’t understand, do this.”

Chapter 3. Tuesday: Methods • 56

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/more_method_missing.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

From the caller’s side, a message that’s processed by method_missing looks like
a regular call—but on the receiver’s side, it has no corresponding method.

Spell: Ghost MethodThis trick is called a Ghost Method. Let’s look at some Ghost Method examples.

The Hashie Example

The Hashie gem contains a little bit of magic called Hashie::Mash. A Mash is a
more powerful version of Ruby’s standard OpenStruct class: a hash-like object
whose attributes work like Ruby variables. If you want a new attribute, just
assign a value to the attribute, and it will spring into existence:

require 'hashie'

icecream = Hashie::Mash.new
icecream.flavor = "strawberry"
icecream.flavor # => "strawberry"

This works because Hashie::Mash is a subclass of Ruby’s Hash, and its attributes
are actually Ghost Methods, as a quick look at Hashie::Mash.method_missing will
confirm:

gems/hashie-1.2.0/lib/hashie/mash.rb
module Hashie

class Mash < Hashie::Hash
def method_missing(method_name, *args, &blk)
return self.[](method_name, &blk) if key?(method_name)
match = method_name.to_s.match(/(.*?)([?=!]?)$/)
case match[2]
when "="

self[match[1]] = args.first
...

else
default(method_name, *args, &blk)

end
end

...
end

end

If the name of the called method is the name of a key in the hash (such as
flavor), then Hashie::Mash#method_missing simply calls the [] method to return the
corresponding value. If the name ends with a "=", then method_missing chops
off the "=" at the end to get the attribute name and then stores its value. If
the name of the called method doesn’t match any of these cases, then
method_missing just returns a default value. (Hashie::Mash also supports a few
other special cases, such as methods ending in "?", that were scrapped from
the code above.)

report erratum • discuss

method_missing • 57

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/hashie-1.2.0/lib/hashie/mash.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Dynamic Proxies
Ghost Methods (57) are usually icing on the cake, but some objects actually
rely almost exclusively on them. These objects are often wrappers for some-
thing else—maybe another object, a web service, or code written in a different
language. They collect method calls through method_missing and forward them
to the wrapped object. Let’s look at a complex real-life example.

The Ghee Example

You probably know GitHub,1 the wildly popular social coding service. A
number of libraries give you easy access to GitHub’s HTTP APIs, including a
Ruby gem called Ghee. Here is how you use Ghee to access a user’s “gist”—
a snippet of code that can be published on GitHub:

methods/ghee_example.rb
require "ghee"

gh = Ghee.basic_auth("usr", "pwd") # Your GitHub username and password
all_gists = gh.users("nusco").gists
a_gist = all_gists[20]

a_gist.url # => "https://api.github.com/gists/535077"
a_gist.description # => "Spell: Dynamic Proxy"

a_gist.star

The code above connects to GitHub, looks up a specific user ("nusco"), and
accesses that user’s list of gists. Then it selects one specific gist and reads
that gist’s url and description. Finally, it “stars” the gist, to be notified of any
future changes.

The GitHub APIs expose tens of types of objects besides gists, and Ghee has
to support all of those objects. However, Ghee’s source code is surprisingly
concise, thanks to a smart use of Ghost Methods (57). Most of the magic
happens in the Ghee::ResourceProxy class:

gems/ghee-0.9.8/lib/ghee/resource_proxy.rb
class Ghee
class ResourceProxy
...

def method_missing(message, *args, &block)
subject.send(message, *args, &block)

end

1. http://www.github.com

Chapter 3. Tuesday: Methods • 58

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/ghee_example.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/ghee-0.9.8/lib/ghee/resource_proxy.rb
http://www.github.com
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def subject
@subject ||= connection.get(path_prefix){|req| req.params.merge!params }.body

end
end

end

Before you understand this class, you need to see how Ghee uses it. For each
type of GitHub object, such as gists or users, Ghee defines one subclass of
Ghee::ResourceProxy. Here is the class for gists (the class for users is quite similar):

gems/ghee-0.9.8/lib/ghee/api/gists.rb
class Ghee
module API

module Gists
class Proxy < ::Ghee::ResourceProxy

def star
connection.put("#{path_prefix}/star").status == 204

end

...

end
end

end

When you call a method that changes the state of an object, such as
Ghee::API::Gists#star, Ghee places an HTTP call to the corresponding GitHub URL.
However, when you call a method that just reads from an attribute, such as
url or description, that call ends into Ghee::ResourceProxy#method_missing. In turn,
method_missing forwards the call to the object returned by Ghee::ResourceProxy#sub-
ject. What kind of object is that?

If you dig into the implementation of ResourceProxy#subject, you’ll find that this
method also makes an HTTP call to the GitHub API. The specific call depends
on which subclass of Ghee::ResourceProxy we’re using. For example,
Ghee::API::Gists::Proxy calls https://api.github.com/users/nusco/gists. ResourceProxy#subject
receives the GitHub object in JSON format—in our example, all the gists of
user nusco—and converts it to a hash-like object.

Dig a little deeper, and you’ll find that this hash-like object is actually a
Hashie::Mash, the magic hash class that we talked about in The Hashie Example,
on page 57. This means that a method call such as my_gist.url is forwarded to
Ghee::ResourceProxy#method_missing, and from there to Hashie::Mash#method_missing,
which finally returns the value of the url attribute. Yes, that’s two calls to
method_missing in a row.

report erratum • discuss

method_missing • 59

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/ghee-0.9.8/lib/ghee/api/gists.rb
https://api.github.com/users/nusco/gists
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Ghee’s design is elegant, but it uses so much metaprogramming that it might
confuse you at first. Let’s wrap it up in just two points:

• Ghee stores GitHub objects as dynamic hashes. You can access the
attributes of these hashes by calling their Ghost Methods (57), such as url
and description.

• Ghee also wraps these hashes inside proxy objects that enrich them with
additional methods. A proxy does two things. First, it implements methods
that require specific code, such as star. Second, it forwards methods that
just read data, such as url, to the wrapped hash.

Thanks to this two-level design, Ghee manages to keep its code very compact.
It doesn’t need to define methods that just read data, because those methods
are Ghost Methods. Instead, it can just define the methods that need specific
code, like star.

This dynamic approach also has another advantage: Ghee can adapt automat-
ically to some changes in the GitHub APIs. For example, if GitHub added a
new field to gists (say, lines_count), Ghee would support calls to
Ghee::API::Gists#lines_count without any changes to its source code, because
lines_count is just a Ghost Method—actually a chain of two Ghost Methods.

An object such as Ghee::ResourceProxy, which catches Ghost Methods and for-
Spell: Dynamic Proxy wards them to another object, is called a Dynamic Proxy.

Refactoring the Computer Class (Again)
“Okay, you now know about method_missing,” Bill says. “Let’s go back to the
Computer class and remove the duplication.”

Once again, here’s the original Computer class:

methods/computer/duplicated.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source

end

def mouse
info = @data_source.get_mouse_info(@id)
price = @data_source.get_mouse_price(@id)
result = "Mouse: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

Chapter 3. Tuesday: Methods • 60

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/duplicated.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def cpu
info = @data_source.get_cpu_info(@id)
price = @data_source.get_cpu_price(@id)
result = "Cpu: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

def keyboard
info = @data_source.get_keyboard_info(@id)
price = @data_source.get_keyboard_price(@id)
result = "Keyboard: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end

...
end

Computer is just a wrapper that collects calls, tweaks them a bit, and routes
them to a data source. To remove all those duplicated methods, you can turn
Computer into a Dynamic Proxy. It only takes an override of method_missing to
remove all the duplication from the Computer class.

methods/computer/method_missing.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source

end

def method_missing(name)➤

super if !@data_source.respond_to?("get_#{name}_info")➤

info = @data_source.send("get_#{name}_info", @id)➤

price = @data_source.send("get_#{name}_price", @id)➤

result = "#{name.capitalize}: #{info} ($#{price})"➤

return "* #{result}" if price >= 100➤

result➤

end➤

end

What happens when you call a method such as Computer#mouse? The call gets
routed to method_missing, which checks whether the wrapped data source has
a get_mouse_info method. If it doesn’t have one, the call falls back to BasicOb-
ject#method_missing, which throws a NoMethodError. If the data source knows about
the component, the original call is converted into two calls to DS#get_mouse_info
and DS#get_mouse_price. The values returned from these calls are used to build
the final result. You try the new class in irb:

report erratum • discuss

method_missing • 61

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/method_missing.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

my_computer = Computer.new(42, DS.new)
my_computer.cpu # => * Cpu: 2.9 Ghz quad-core ($120)

It worked. Bill, however, is concerned about one last detail.

respond_to_missing?

If you specifically ask a Computer whether it responds to a Ghost Method, it
will flat-out lie:

cmp = Computer.new(0, DS.new)
cmp.respond_to?(:mouse) # => false

This behavior can be problematic, because respond_to? is a commonly used
method. (If you need convincing, just note that the Computer itself is calling
respond_to? on the data source.) Fortunately, Ruby provides a clean mechanism
to make respond_to? aware of Ghost Methods.

respond_to? calls a method named respond_to_missing? that is supposed to return
true if a method is a Ghost Method. (In your mind, you could rename re-
spond_to_missing? to something like ghost_method?.) To prevent respond_to? from lying,
override respond_to_missing? every time you override method_missing:

class Computer
...

def respond_to_missing?(method, include_private = false)➤

@data_source.respond_to?("get_#{method}_info") || super➤

end➤

end

The code in this respond_to_missing? is similar to the first line of method_missing: it
finds out whether a method is a Ghost Method. If it is, it returns true. If it
isn’t, it calls super. In this case, super is the default Object#respond_to_missing?,
which always returns false.

Now respond_to? will learn about your Ghost Methods from respond_to_missing?
and return the right result:

cmp.respond_to?(:mouse) # => true

Back in the day, Ruby coders used to override respond_to? directly. Now that
respond_to_missing? is available, overriding respond_to? is considered somewhat
dirty. Instead, the rule is now this: remember to override respond_to_missing?
every time you override method_missing.

If you like BasicObject#method_missing, you should also take a look at Module#con-
st_missing. Let’s check it out.

Chapter 3. Tuesday: Methods • 62

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

const_missing

Remember our discussion of Rake in The Rake Example, on page 23? In that
section we said that at one point in its history, Rake renamed classes like
Task to names that are less likely to clash, such as Rake::Task. After renaming
the classes, Rake went through an upgrade path: for a few versions, you could
use either the new class names or the old, non-Namespaced names. Rake
allowed you to do that by Monkepatching (16) the Module#const_missing method:

gems/rake-0.9.2.2/lib/rake/ext/module.rb
class Module
def const_missing(const_name)
case const_name
when :Task

Rake.application.const_warning(const_name)
Rake::Task

when :FileTask
Rake.application.const_warning(const_name)
Rake::FileTask

when :FileCreationTask
...

end
end

end

When you reference a constant that doesn’t exist, Ruby passes the name of
the constant to const_missing as a symbol. Class names are just constants, so
a reference to an unknown Rake class such as Task was routed to Module#con-
st_missing. In turn, const_missing warned you that you were using an obsolete
class name:

methods/const_missing.rb
require 'rake'
task_class = Task

WARNING: Deprecated reference to top-level constant 'Task' found [...]❮
Use --classic-namespace on rake command
or 'require "rake/classic_namespace"' in Rakefile

After the warning, you automatically got the new, Namespaced class name
in place of the old one:

task_class # => Rake::Task

Enough talking about magic methods. Let’s recap what you and Bill did today.

Refactoring Wrap-Up

Today you solved the same problem in two different ways. The first version
of Computer introspects DS to get a list of methods to wrap and uses Dynamic

report erratum • discuss

method_missing • 63

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/rake-0.9.2.2/lib/rake/ext/module.rb
http://media.pragprog.com/titles/ppmetr2/code/methods/const_missing.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Methods (51) and Dynamic Dispatches (49), which delegate to the legacy system.
The second version of Computer does the same with Ghost Methods (57). Having
to pick one of the two versions, you and Bill randomly select the method_miss-
ing-based one, send it to the folks in purchasing, and head out for a well-
deserved lunch break…and an unexpected quiz.

Quiz: Bug Hunt
Where you discover that bugs in a method_missing can be difficult to squash.

Over lunch, Bill has a quiz for you. “My previous team followed a cruel office
ritual,” he says. “Every morning, each team member picked a random number.
Whoever got the smallest number had to take a trip to the nearby Starbucks
and buy coffee for the whole team.”

Bill explains that the team even wrote a class that was supposed to provide
a random number (and some Wheel of Fortune–style suspense) when you
called the name of a team member. Here’s the class:

methods/roulette_failure.rb
class Roulette
def method_missing(name, *args)

person = name.to_s.capitalize
3.times do

number = rand(10) + 1
puts "#{number}..."

end
"#{person} got a #{number}"

end
end

You can use the Roulette like this:

number_of = Roulette.new
puts number_of.bob
puts number_of.frank

And here’s what the result is supposed to look like:

5...❮
6...
10...
Bob got a 3
7...
4...
3...
Frank got a 10

Chapter 3. Tuesday: Methods • 64

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/roulette_failure.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

“This code was clearly overdesigned,” Bill admits. “We could have just defined
a regular method that took the person’s name as a string—but we’d just dis-
covered method_missing, so we used Ghost Methods (57) instead. That wasn’t a
good idea; the code didn’t work as expected.”

Can you spot the problem with the Roulette class? If you can’t, try running it
on your computer. Now can you explain what is happening?

Quiz Solution
The Roulette contains a bug that causes an infinite loop. It prints a long list of
numbers and finally crashes.

2...❮
7...
1...
5...
(...more numbers here...)
roulette_failure.rb:7:in `method_missing': stack level too deep (SystemStackError)

This bug is nasty and difficult to spot. The variable number is defined within
a block (the block that gets passed to times) and falls out of scope by the last
line of method_missing. When Ruby executes that line, it can’t know that the
number there is supposed to be a variable. As a default, it assumes that number
must be a parentheses-less method call on self.

In normal circumstances, you would get an explicit NoMethodError that makes
the problem obvious. But in this case you have a method_missing, and that’s
where the call to number ends. The same chain of events happens again—and
again and again—until the call stack overflows.

This is a common problem with Ghost Methods: because unknown calls
become calls to method_missing, your object might accept a call that’s just plain
wrong. Finding a bug like this one in a large program can be pretty painful.

To avoid this kind of trouble, take care not to introduce too many Ghost
Methods. For example, Roulette might be better off if it simply accepted the
names of people on Frank’s team. Also, remember to fall back on BasicOb-
ject#method_missing when you get a call you don’t know how to handle. Here’s
a better Roulette that still uses method_missing:

methods/roulette_solution.rb
class Roulette
def method_missing(name, *args)

person = name.to_s.capitalize
super unless %w[Bob Frank Bill].include? person➤

number = 0➤

report erratum • discuss

Quiz: Bug Hunt • 65

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/roulette_solution.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

3.times do
number = rand(10) + 1
puts "#{number}..."

end
"#{person} got a #{number}"

end
end

You can also develop this code in bite-sized steps. Start by writing regular
methods; then, when you’re confident that your code is working, refactor the
methods to a method_missing. This way, you won’t inadvertently hide a bug
behind a Ghost Method.

Blank Slates
Where you and Bill learn to avoid another common method_missing trap.

Once you get back from lunch, you find an unexpected problem waiting for
you at the office. The developer who wrote the reporting application stumbled
upon what he thinks is “the strangest bug ever”: the Computer class can’t
retrieve information about the workstations’ displays. All the other methods
work fine, but Computer#display doesn’t.

You try the display method in irb, and sure enough it fails:

my_computer = Computer.new(42, DS.new)
my_computer.display # => nil

Why does Computer#display return nil? You triple-check the code and the back-
end data source, but everything seems to be fine. Bill has a sudden insight,
and he lists the instance methods of Object that begin with a d:

Object.instance_methods.grep /^d/ # => [:dup, :display, :define_singleton_method]

It seems that Object defines a method named display (a seldom-used method
that prints an object on a port and always returns nil). Computer inherits from
Object, so it gets the display method. The call to Computer#display finds a real
method by that name, so it never lands on method_missing. You’re calling a real,
live method instead of a Ghost Method (57).

This problem crops up with Dynamic Proxies (60). When the name of a Ghost
Method clashes with the name of a real, inherited method, the latter wins.

If you don’t need the inherited method, you can fix the problem by removing
it. While you’re at it, you might want to remove most methods from the class,
preventing such name clashes from ever happening again. A skinny class

Spell: Blank Slate with a minimal number of methods is called a Blank Slate. As it turns out,
Ruby has a ready-made Blank Slate for you to use.

Chapter 3. Tuesday: Methods • 66

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

BasicObject
The root of Ruby’s class hierarchy, BasicObject, has only a handful of instance
methods:

methods/basic_object.rb
im = BasicObject.instance_methods
im # => [:==, :equal?, :!, :!=, :instance_eval, :instance_exec, :__send__, :__id__]

If you don’t specify a superclass, your classes inherit by default from Object,
which is itself a subclass of BasicObject. If you want a Blank Slate (66), you can
inherit directly from BasicObject instead. For example, if Computer inherited
directly from BasicObject, then it wouldn’t have a problematic display method.

Inheriting from BasicObject is the quicker way to define a Blank Slate in Ruby.
In some cases, however, you might want to control exactly which methods to
keep and which methods to remove from your class. Let’s see how you can
remove a specific method from a class.

Removing Methods
You can remove a method from a class by using either Module#undef_method or
Module#remove_method. The drastic undef_method removes any method, including
the inherited ones. The kinder remove_method removes the method from the
receiver, but it leaves inherited methods alone. Let’s look at a real-life library
that uses undef_method to create a Blank Slate.

The Builder Example

The Builder gem is an XML generator with a twist. You can generate XML
tags by calling methods on Builder::XmlMarkup:

methods/builder_example_1.rb
require 'builder'
xml = Builder::XmlMarkup.new(:target=>STDOUT, :indent=>2)

xml.coder {
xml.name 'Matsumoto', :nickname => 'Matz'
xml.language 'Ruby'

}

This code produces the following snippet of XML:

<coder>❮
<name nickname="Matz">Matsumoto</name>
<language>Ruby</language>

</coder>

report erratum • discuss

Blank Slates • 67

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/basic_object.rb
http://media.pragprog.com/titles/ppmetr2/code/methods/builder_example_1.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Builder cleverly bends the syntax of Ruby to support nested tags, attributes,
and other niceties. The core idea of Builder is simple: calls such as name and
language are processed by XmlMarkup#method_missing, which generates an XML tag
for every call.

Now pretend you have to generate a piece of XML describing a university
course. It might look like this:

<semester>❮
<class>Egyptology</class>
<class>Ornithology</class>

</semester>

So, you’d have to write code like this:

methods/builder_example_2.rb
xml.semester {
xml.class 'Egyptology'
xml.class 'Ornithology'

}

If XmlMarkup were a subclass of Object, then the calls to class would clash with
Object’s class. To avoid that clash, XmlMarkup inherits from a Blank Slate (66) that
removes class and most other methods from Object. When Builder was written,
BasicObject didn’t exist yet. (It was introduced in Ruby 1.9.) So Builder defines
its own Blank Slate class:

gems/builder-3.2.2/lib/blankslate.rb
class BlankSlate
Hide the method named +name+ in the BlankSlate class. Don't
hide +instance_eval+ or any method beginning with "__".
def self.hide(name)
...
if instance_methods.include?(name._blankslate_as_name) &&

name !~ /^(__|instance_eval$)/
undef_method name

end
end
...

instance_methods.each { |m| hide(m) }
end

Builder doesn’t go as far as removing each and every method from BlankSlate.
It keeps instance_eval (a method that you’ll get to know in the next chapter) and
all the “reserved methods”—methods that are used internally by Ruby, whose
names conventionally begin with a double underscore. One example of a
reserved method is BasicObject#__send__, which behaves the same as send but
gives you a scary warning when you try to remove it. The case of instance_eval

Chapter 3. Tuesday: Methods • 68

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/builder_example_2.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/builder-3.2.2/lib/blankslate.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

is more of a judgement call: you could choose to remove it, but Builder
decided not to.

Now that you know about Blank Slates, you can finally fix the bug in the
Computer class.

Fixing the Computer Class
To turn Computer into a Blank Slate (66) and fix the display method bug, you
and Bill make it a subclass of BasicObject:

class Computer < BasicObject➤

...

There is one last improvement you can make to this class. BasicObject doesn’t
have a respond_to? method. (respond_to? is a method of BasicObject’s subclass Object.)
Because you don’t have respond_to?, you can delete the now pointless re-
spond_to_missing? method that you and Bill added back in respond_to_missing?,
on page 62. Once you do that, you’re finally done with the method_missing-based
implementation of Computer.

Wrap-Up
Let’s review today’s work. You and Bill started with a Computer class that con-
tained lots of duplication. (The original class is in Double, Treble… Trouble,
on page 47.) You removed the duplication in two different ways.

Your first attempt relied on Dynamic Methods (51) and Dynamic Dispatch (49):

methods/computer/more_dynamic_methods.rb
class Computer
def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source
data_source.methods.grep(/^get_(.*)_info$/) { Computer.define_component $1 }

end

def self.define_component(name)
define_method(name) do

info = @data_source.send "get_#{name}_info", @id
price = @data_source.send "get_#{name}_price", @id
result = "#{name.capitalize}: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end
end

end

report erratum • discuss

Wrap-Up • 69

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/more_dynamic_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Your second attempt centered around Ghost Methods (57) (to be more precise,
it used a Dynamic Proxy (60) that is also a Blank Slate (66)):

methods/computer/blank_slate.rb
class Computer < BasicObject

def initialize(computer_id, data_source)
@id = computer_id
@data_source = data_source

end

def method_missing(name, *args)
super if !@data_source.respond_to?("get_#{name}_info")
info = @data_source.send("get_#{name}_info", @id)
price = @data_source.send("get_#{name}_price", @id)
result = "#{name.capitalize}: #{info} ($#{price})"
return "* #{result}" if price >= 100
result

end
end

Neither solution would be practical without Ruby’s dynamic capabilities. If
you come from a static language, you’re probably accustomed to spotting and
removing duplication inside your methods. In Ruby, you might want to look
for duplication among methods as well. Then you can remove that duplication
with some of the spells you’ve learned today.

You and Bill can consider the two solutions. It’s time to make a choice. Which
one do you like best?

Dynamic Methods vs. Ghost Methods
As you experienced yourself, Ghost Methods (57) can be dangerous. You can
avoid most of their problems by following a few basic recommendations (always
call super, always redefine respond_to_missing?)—but even then, Ghost Methods
can sometimes cause puzzling bugs.2

The problems with Ghost Methods boil down to the fact that they are not
really methods; instead, they’re just a way to intercept method calls. Because
of this, they behave differently from actual methods. For example, they don’t
appear in the list of names returned by Object#methods. In contrast, Dynamic
Methods are just regular methods that happened to be defined with de-
fine_method instead of def, and they behave the same as any other method.

2. A presentation on the perils of method_missing is at http://www.everytalk.tv/talks/1881-Madison-
Ruby-The-Revenge-of-method-missing.

Chapter 3. Tuesday: Methods • 70

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/methods/computer/blank_slate.rb
http://www.everytalk.tv/talks/1881-Madison-Ruby-The-Revenge-of-method-missing
http://www.everytalk.tv/talks/1881-Madison-Ruby-The-Revenge-of-method-missing
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

There are times when Ghost Methods are your only viable option. This usually
happens when you have a large number of method calls, or when you don’t
know what method calls you might need at runtime. For an example, look
back at the Builder library in The Builder Example, on page 67. Builder
couldn’t define a Dynamic Method for each of the potentially infinite XML
tags that you might want to generate, so it uses method_missing to intercept
method calls instead.

All things considered, the choice between Dynamic and Ghost Methods
depends on your experience and coding style, but you can follow a simple
rule of thumb when in doubt: use Dynamic Methods if you can and Ghost
Methods if you have to.

You and Bill decide to follow this rule, and you commit the define_method-based
version of Computer to the project repository. Tomorrow is sure to be another
day of coding challenges, so it’s time to head home and rest up.

report erratum • discuss

Wrap-Up • 71

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 4

Wednesday: Blocks
Yesterday you learned a lot about methods and method calls. Today you will
deal with blocks.

You’re probably already familiar with blocks—you can’t write much Ruby
code without them. But what you might not know is that blocks are a powerful
tool for controlling scope, meaning which variables and methods can be seen
by which lines of code. In this chapter, you’ll discover how this control of
scope makes blocks a cornerstone of Ruby metaprogramming.

Blocks are just one member of a larger family of “callable objects,” which
include objects such as procs and lambdas. This chapter shows how you can
use these and other callable objects to their greatest advantage—for example,
to store a block and execute it later.

Just a short public service announcement before getting started: the previous
chapters never strayed far from the usual object-oriented concepts, such as
classes, objects, and methods. Blocks have a different heritage that can be
traced back to functional programming languages, such as LISP. If you think
in objects and classes, expect to deal with some novel concepts in this chapter.
You’re likely to find these concepts strange and, at the same time, fascinating.

With that sneak peek into what this chapter is all about, it’s now time to step
into the office.

The Day of the Blocks
Where you and Bill agree to put off today’s job, make a roadmap, and review
the basics of blocks.

You’ve barely had time to check your mail, and Bill is already making his way
to your desk, eager to get to work. “I talked with the boss about today’s job,”
he says. “I won’t go into the details now, but I can tell you that we’re going

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

to need blocks for today’s project.” Before the two of you jump into the fray,
you need to understand the nuances of blocks. You agree to spend the
morning talking about blocks, putting off today’s project until after lunch.

Today’s Roadmap
On a sheet of paper, Bill lists the things he wants to cover:

• A review of the basics of blocks

• An overview of scopes and how you can carry variables through scopes
by using blocks as closures

• How you can further manipulate scopes by passing a block to instance_eval

• How you can convert blocks into callable objects that you can set aside
and call later, such as Procs and lambdas

You start with the first point—a quick review of the basics. (If you already
know the basics of Ruby blocks, you can skip straight to Blocks Are Closures,
on page 77.)

The Basics of Blocks
Do you remember how blocks work? Here is a simple example to refresh your
memory:

blocks/basics_failure.rb
def a_method(a, b)

a + yield(a, b)
end

a_method(1, 2) {|x, y| (x + y) * 3 } # => 10

You can define a block with either curly braces or the do…end keywords. A
common convention is to use curly braces for single-line blocks and do…end
for multiline blocks.

You can define a block only when you call a method. The block is passed
straight into the method, and the method can call back to the block with the
yield keyword.

Optionally, a block can have arguments, like x and y in the previous example.
When you yield to the block, you can provide values for its arguments, just
like you do when you call a method. Also, like a method, a block returns the
result of the last line of code it evaluates.

Within a method, you can ask Ruby whether the current call includes a block.
You can do that with the Kernel#block_given? method:

Chapter 4. Wednesday: Blocks • 74

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/basics_failure.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def a_method
return yield if block_given?
'no block'

end

a_method # => "no block"
a_method { "here's a block!" } # => "here's a block!"

If you use yield when block_given? is false, you’ll get a runtime error.

Now you can apply what you know about blocks to a real-life scenario.

Quiz: Ruby#
Where you’re challenged to do something useful with blocks.

Bill shares a little secret: “You know, a few years ago I was making a living
out of writing C# code. I must admit that C# did have a few nice features. Let
me show you one of those.”

The using Keyword
Imagine that you’re writing a C# program that connects to a remote server
and you have an object that represents the connection:

RemoteConnection conn = new RemoteConnection("my_server");
String stuff = conn.ReadStuff();
conn.Dispose(); // close the connection to avoid a leak

This code correctly disposes of the connection after using it. However, it
doesn’t deal with exceptions. If ReadStuff throws an exception, then the last
line is never executed, and conn is never disposed of. What the code should
do is manage exceptions, disposing of the connection regardless of whether
an exception is thrown. C# provides a keyword named using that goes through
the whole process for you:

RemoteConnection conn = new RemoteConnection("some_remote_server");
using (conn)
{

conn.ReadData();
DoMoreStuff();

}

The using keyword expects that conn has a method named Dispose. This method
is called automatically after the code in the curly braces, regardless of whether
an exception is thrown.

report erratum • discuss

Quiz: Ruby# • 75

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The Challenge
To refresh the basics of blocks, Bill throws a challenge at you: write a Ruby
version of using. Make sure it passes this test:

blocks/using_test.rb
require 'test/unit'
require_relative 'using'

class TestUsing < Test::Unit::TestCase
class Resource
def dispose
@disposed = true

end

def disposed?
@disposed

end
end

def test_disposes_of_resources
r = Resource.new
using(r) {}
assert r.disposed?

end

def test_disposes_of_resources_in_case_of_exception
r = Resource.new
assert_raises(Exception) {

using(r) {
raise Exception

}
}
assert r.disposed?

end
end

Quiz Solution
Take a look at this solution to the quiz:

blocks/using.rb
module Kernel

def using(resource)
begin
yield

ensure
resource.dispose

end
end

end

Chapter 4. Wednesday: Blocks • 76

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/using_test.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/using.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

You can’t define a new keyword, but you can fake it with a Kernel Method
(32). Kernel#using takes the managed resource as an argument. It also takes a
block, which it executes. Regardless of whether the block completes normally,
the ensure clause calls dispose on the resource to release it cleanly. There is no
rescue clause, so any exception is still propagated to the code that calls Ker-
nel#using.

Now that you’ve reviewed block basics, you can move to the second item on
the list from Today's Roadmap, on page 74: closures.

Blocks Are Closures
Where you find there is more to blocks than meets the eye and you learn how
to smuggle variables across scopes.

As Bill notes on a piece of scratch paper, a block is not just a floating piece
of code. You can’t run code in a vacuum. When code runs, it needs an envi-
ronment: local variables, instance variables, self….

Figure 6—Code that runs is actually made up of two things: the code itself and a set of
bindings.

Because these entities are basically names bound to objects, you can call
them the bindings for short. The main point about blocks is that they are all
inclusive and come ready to run. They contain both the code and a set of
bindings.

You’re probably wondering where the block picks up its bindings. When you
define the block, it simply grabs the bindings that are there at that moment,
and then it carries those bindings along when you pass the block into a
method:

report erratum • discuss

Blocks Are Closures • 77

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

blocks/blocks_and_bindings.rb
def my_method
x = "Goodbye"
yield("cruel")

end

x = "Hello"
my_method {|y| "#{x}, #{y} world" } # => "Hello, cruel world"

When you create the block, you capture the local bindings, such as x. Then
you pass the block to a method that has its own separate set of bindings. In
the previous example, those bindings also include a variable named x. Still,
the code in the block sees the x that was around when the block was defined,
not the method’s x, which is not visible at all in the block.

You can also define additional bindings inside the block, but they disappear
after the block ends:

blocks/block_local_vars_failure.rb
def just_yield
yield

end

top_level_variable = 1

just_yield do
top_level_variable += 1
local_to_block = 1

end

top_level_variable # => 2
local_to_block # => Error!

Because of the properties above, a computer scientist would say that a block
is a closure. For the rest of us, this means a block captures the local bindings
and carries them along with it.

So, how do you use closures in practice? To understand that, take a closer
look at the place where all the bindings reside—the scope. Here you’ll learn
to identify the spots where a program changes scope, and you’ll encounter a
particular problem with changing scopes that can be solved with closures.

Scope
Imagine being a little debugger making your way through a Ruby program.
You jump from statement to statement until you finally hit a breakpoint. Now
catch your breath and look around. See the scenery around you? That’s your
scope.

Chapter 4. Wednesday: Blocks • 78

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/blocks_and_bindings.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/block_local_vars_failure.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

You can see bindings all over the scope. Look down at your feet, and you see
a bunch of local variables. Raise your head, and you see that you’re standing
within an object, with its own methods and instance variables; that’s the
current object, also known as self. Farther away, you see the tree of constants
so clear that you could mark your current position on a map. Squint your
eyes, and you can even see a bunch of global variables off in the distance.

But what happens when you get tired of the scenery and decide to move on?

Changing Scope

This example shows how scope changes as your program runs, tracking the
names of bindings with the Kernel#local_variables method:

blocks/scopes.rb
v1 = 1
class MyClass
v2 = 2
local_variables # => [:v2]
def my_method

v3 = 3
local_variables

end
local_variables # => [:v2]

end

obj = MyClass.new
obj.my_method # => [:v3]
obj.my_method # => [:v3]
local_variables # => [:v1, :obj]

Track the program as it moves through scopes. It starts within the top-level
scope that you read about in The Top Level, on page 35. After defining v1 in
the top-level scope, the program enters the scope of MyClass’s definition. What
happens then?

Some languages, such as Java and C#, allow “inner scopes” to see variables
from “outer scopes.” That kind of nested visibility doesn’t happen in Ruby,
where scopes are sharply separated: as soon as you enter a new scope, the
previous bindings are replaced by a new set of bindings. This means that
when the program enters MyClass, v1 “falls out of scope” and is no longer visible.

In the scope of the definition of MyClass, the program defines v2 and a method.
The code in the method isn’t executed yet, so the program never opens a new
scope until the end of the class definition. There, the scope opened with the
class keyword is closed, and the program gets back to the top-level scope.

report erratum • discuss

Blocks Are Closures • 79

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/scopes.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Global Variables and Top-Level Instance Variables

Global variables can be accessed by any scope:

def a_scope
$var = "some value"

end

def another_scope
$var

end

a_scope
another_scope # => "some value"

The problem with global variables is that every part of the system can change them,
so in no time you’ll find it difficult to track who is changing what. For this reason,
the general rule is this: when it comes to global variables, use them sparingly, if ever.

You can sometimes use a top-level instance variable in place of a global variable.
These are the instance variables of the top-level main object, described in The Top
Level, on page 35:

@var = "The top-level @var"

def my_method
@var

end

my_method # => "The top-level @var"

You can access a top-level instance variable whenever main takes the role of self, as
in the previous example. When any other object is self, the top-level instance variable
is out of scope.

class MyClass
def my_method

@var = "This is not the top-level @var!"
end

end

Being less universally accessible, top-level instance variables are generally considered
safer than global variables—but not by a wide margin.

What happens when the program creates a MyClass object and calls my_method
twice? The first time the program enters my_method, it opens a new scope and
defines a local variable, v3. Then the program exits the method, falling back
to the top-level scope. At this point, the method’s scope is lost. When the
program calls my_method a second time, it opens yet another new scope, and
it defines a new v3 variable (unrelated to the previous v3, which is now lost).
Finally, the program returns to the top-level scope, where you can see v1 and
obj again. Phew!

Chapter 4. Wednesday: Blocks • 80

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Here is the example’s important point: “Whenever the program changes scope,
some bindings are replaced by a new set of bindings.” Granted, this doesn’t
happen to all the bindings each and every time. For example, if a method
calls another method on the same object, instance variables stay in scope
through the call. In general, though, bindings tend to fall out of scope when
the scope changes. In particular, local variables change at every new scope.
(That’s why they’re “local.”)

As you can see, keeping track of scopes can be a tricky task. You can spot
scopes more quickly if you learn about Scope Gates.

Scope Gates
There are exactly three places where a program leaves the previous scope
behind and opens a new one:

• Class definitions
• Module definitions
• Methods

Scope changes whenever the program enters (or exits) a class or module def-
inition or a method. These three borders are marked by the keywords class,

Spell: Scope Gatemodule, and def, respectively. Each of these keywords acts like a Scope Gate.

For example, here is the previous example program again, with Scope Gates
clearly marked by comments:

v1 = 1
class MyClass # SCOPE GATE: entering class
v2 = 2
local_variables # => ["v2"]
def my_method # SCOPE GATE: entering def
v3 = 3
local_variables

end # SCOPE GATE: leaving def
local_variables # => ["v2"]

end # SCOPE GATE: leaving class

obj = MyClass.new
obj.my_method # => [:v3]
local_variables # => [:v1, :obj]

Now it’s easy to see that this program opens three separate scopes: the top-
level scope, one new scope when it enters MyClass, and one new scope when
it calls my_method.

There is a subtle difference between class and module on one side and def on
the other. The code in a class or module definition is executed immediately.

report erratum • discuss

Blocks Are Closures • 81

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Conversely, the code in a method definition is executed later, when you
eventually call the method. However, as you write your program, you usually
don’t care when it changes scope—you only care that it does.

Now you can pinpoint the places where your program changes scope—the
spots marked by class, module, and def. But what if you want to pass a variable
through one of these spots? This question takes you back to blocks.

Flattening the Scope
The more you become proficient in Ruby, the more you get into difficult situ-
ations where you want to pass bindings through a Scope Gate (81):

blocks/flat_scope_1.rb
my_var = "Success"

class MyClass
We want to print my_var here...
def my_method
..and here

end
end

Scope Gates are quite a formidable barrier. As soon as you walk through one
of them, local variables fall out of scope. So, how can you carry my_var across
not one but two Scope Gates?

Look at the class Scope Gate first. You can’t pass my_var through it, but you
can replace class with something else that is not a Scope Gate: a method call.
If you could call a method instead of using the class keyword, you could capture
my_var in a closure and pass that closure to the method. Can you think of a
method that does the same thing that class does?

If you look at Ruby’s documentation, you’ll find the answer: Class.new is a
perfect replacement for class. You can also define instance methods in the
class if you pass a block to Class.new:

blocks/flat_scope_2.rb
my_var = "Success"

MyClass = Class.new do➤

Now we can print my_var here...➤

puts "#{my_var} in the class definition!"➤

def my_method
...but how can we print it here?

end
end

Chapter 4. Wednesday: Blocks • 82

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/flat_scope_1.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/flat_scope_2.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Now, how can you pass my_var through the def Scope Gate? Once again, you
have to replace the keyword with a method call. Think of the discussion about
Dynamic Methods (51): instead of def, you can use Module#define_method:

blocks/flat_scope_3.rb
my_var = "Success"

MyClass = Class.new do
"#{my_var} in the class definition"

define_method :my_method do➤

"#{my_var} in the method"➤

end➤

end

MyClass.new.my_method➤

require_relative "../test/assertions"
assert_equals "Success in the method", MyClass.new.my_method

Success in the class definition❮
Success in the method

If you replace Scope Gates with method calls, you allow one scope to see
variables from another scope. Technically, this trick should be called nested
lexical scopes, but many Ruby coders refer to it simply as “flattening the
scope,” meaning that the two scopes share variables as if the scopes were

Spell: Flat Scopesqueezed together. For short, you can call this spell a Flat Scope.

Sharing the Scope

Once you know about Flat Scopes (83), you can do pretty much whatever you
want with scopes. For example, assume that you want to share a variable
among a few methods, and you don’t want anybody else to see that variable.
You can do that by defining all the methods in the same Flat Scope as the
variable:

blocks/shared_scope.rb
def define_methods
shared = 0

Kernel.send :define_method, :counter do
shared

end

Kernel.send :define_method, :inc do |x|
shared += x

end
end

report erratum • discuss

Blocks Are Closures • 83

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/flat_scope_3.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/shared_scope.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

define_methods

counter # => 0
inc(4)
counter # => 4

This example defines two Kernel Methods (32). (It also uses Dynamic Dispatch
(49) to access the private class method define_method on Kernel.) Both Kernel#counter
and Kernel#inc can see the shared variable. No other method can see shared,
because it’s protected by a Scope Gate (81)—that’s what the define_methods
method is for. This smart way to control the sharing of variables is called a

Spell: Shared Scope Shared Scope.

Shared Scopes are not used much in practice, but they’re a powerful trick
and a good example of the power of scopes. With a combination of Scope
Gates, Flat Scopes, and Shared Scopes, you can twist and bend your scopes
to see exactly the variables you need, from the place you want. Now that you
wield this power, it’s time for a wrap-up of Ruby closures.

Closures Wrap-Up
Each Ruby scope contains a bunch of bindings, and the scopes are separated
by Scope Gates (81): class, module, and def.

If you want to sneak a binding or two through a Scope Gate, you can use
blocks. A block is a closure: when you define a block, it captures the bindings
in the current environment and carries them around. So you can replace the
Scope Gate with a method call, capture the current bindings in a closure,
and pass the closure to the method.

You can replace class with Class.new, module with Module.new, and def with Module#de-
fine_method. This is a Flat Scope (83), the basic closure-related spell.

If you define multiple methods in the same Flat Scope, maybe protected by
a Scope Gate, all those methods can share bindings. That’s called a Shared
Scope (84).

Bill glances at the road map he created. (See Today's Roadmap, on page 74.)
“Now that you’ve gotten a taste of Flat Scopes, we should move on to something
more advanced: instance_eval.”

Chapter 4. Wednesday: Blocks • 84

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

instance_eval()
Where you learn another way to mix code and bindings at will.

The following program demonstrates BasicObject#instance_eval, which evaluates
a block in the context of an object:

blocks/instance_eval.rb
class MyClass
def initialize
@v = 1

end
end

obj = MyClass.new

obj.instance_eval do
self # => #<MyClass:0x3340dc @v=1>
@v # => 1

end

The block is evaluated with the receiver as self, so it can access the receiver’s
private methods and instance variables, such as @v. Even if instance_eval changes
self, the block that you pass to instance_eval can still see the bindings from the
place where it’s defined, like any other block:

v = 2
obj.instance_eval { @v = v }
obj.instance_eval { @v } # => 2

The three lines in the previous example are evaluated in the same Flat Scope
(83), so they can all access the local variable v—but the blocks are evaluated
with the object as self, so they can also access obj’s instance variable @v. In
all these cases, you can call the block that you pass to instance_eval a Context

Spell: Context ProbeProbe, because it’s like a snippet of code that you dip inside an object to do
something in there.

Breaking Encapsulation
At this point, you might be horrified. With a Context Probe (85), you can wreak
havoc on encapsulation! No data is private data anymore. Isn’t that a Very
Bad Thing?

Pragmatically, there are some situations where encapsulation just gets in
your way. For one, you might want to take a quick peek inside an object from
an irb command line. In a case like this, breaking into the object with in-
stance_eval is often the shortest route.

report erratum • discuss

instance_eval() • 85

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/instance_eval.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

instance_exec()

instance_eval has a slightly more flexible twin brother named instance_exec that allows
you to pass arguments to the block. This feature is useful in a few rare cases, such
as the one in this artfully complicated example:

blocks/instance_exec.rb
class C

def initialize
@x = 1

end
end

class D
def twisted_method

@y = 2
C.new.instance_eval { "@x: #{@x}, @y: #{@y}" }

end
end

D.new.twisted_method # => "@x: 1, @y: "

You might assume that the block in D#twisted_method can access both the @x instance
variable from C and the @y instance variable from D in the same Flat Scope (83).
However, instance variables depend on self, so when instance_eval switches self to the
receiver, all the instance variables in the caller fall out of scope. The code inside the
block interprets @y as an instance variable of C that hasn’t been initialized, and as
such is nil (and prints out as an empty string).

To merge @x and @y in the same scope, you can use instance_exec to pass @y’s value to
the block:

class D
def twisted_method

@y = 2
C.new.instance_exec(@y) {|y| "@x: #{@x}, @y: #{y}" }➤

end
end

D.new.twisted_method # => "@x: 1, @y: 2"

Another acceptable reason to break encapsulation is arguably testing. Here’s
an example.

The Padrino Example

The Padrino web framework defines a Logger class that manages all the logging
that a web application must deal with. The Logger stores its own configuration
into instance variables. For example, @log_static is true if the application must
log access to static files.

Chapter 4. Wednesday: Blocks • 86

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/instance_exec.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Padrino’s unit tests need to change the configuration of the application’s
logger. Instead of going through the trouble of creating and configuring a new
logger, the following tests (written with the RSpec test gem) just pry open the
existing application logger and change its configuration with a Context Probe:

gems/padrino-core-0.11.3/test/test_logger.rb
describe "PadrinoLogger" do

context 'for logger functionality' do
context "static asset logging" do
should 'not log static assets by default' do

...
get "/images/something.png"
assert_equal "Foo", body
assert_match "", Padrino.logger.log.string

end

should 'allow turning on static assets logging' do
Padrino.logger.instance_eval{ @log_static = true }
...
get "/images/something.png"
assert_equal "Foo", body
assert_match /GET/, Padrino.logger.log.string
Padrino.logger.instance_eval{ @log_static = false }

end
end

...

The first test accesses a static file and checks that the logger doesn’t log
anything. This is Padrino’s default behavior. The second test uses instance_eval
to change the logger’s configuration and enable static file logging. Then it
accesses the same URL as the first test and checks that the logger actually
logged something. Before exiting, the second test resets static file logging to
the default false state.

You can easily criticize these tests for being fragile: if the implementation of
Logger changes and the @log_static instance variable disappears, then the test
will break. Like many other things in Ruby, encapsulation is a flexible tool
that you can choose to ignore, and it’s up to you to decide if and when to
accept that risk. The authors of Padrino decided that a quick hack inside the
logger object was an acceptable workaround in this case.

Clean Rooms
Sometimes you create an object just to evaluate blocks inside it. An object

Spell: Clean Roomlike that can be called a Clean Room:

report erratum • discuss

instance_eval() • 87

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/padrino-core-0.11.3/test/test_logger.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

blocks/clean_room.rb
class CleanRoom
def current_temperature
...

end
end

clean_room = CleanRoom.new
clean_room.instance_eval do

if current_temperature < 20
TODO: wear jacket

end
end

A Clean Room is just an environment where you can evaluate your blocks. It
can expose a few useful methods that the block can call, such as current_tem-
perature in the example above. However, the ideal Clean Room doesn’t have
many methods or instance variables, because the names of those methods
and instance variables could clash with the names in the environment that
the block comes from. For this reason, instances of BasicObject usually make
for good Clean Rooms, because they’re Blank Slates (66)—so they barely have
any method at all.

(Interestingly, BasicObject is even cleaner than that: in a BasicObject, standard
Ruby constants such as String are out of scope. If you want to reference a
constant from a BasicObject, you have to use its absolute path, such as ::String.)

You’ll find a practical example of a Clean Room in Quiz: A Better DSL, on page
98.

That’s all you have to know about instance_eval. Now you can move on to the
last topic in today’s roadmap: callable objects.

Callable Objects
Where you learn how blocks are just part of a larger family, and Bill shows
you how to set code aside and execute it later.

If you get to the bottom of it, using a block is a two-step process. First, you
set some code aside, and second, you call the block (with yield) to execute the
code. This “package code first, call it later” mechanism is not exclusive to
blocks. There are at least three other places in Ruby where you can package
code:

• In a proc, which is basically a block turned object
• In a lambda, which is a slight variation on a proc
• In a method

Chapter 4. Wednesday: Blocks • 88

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/clean_room.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Procs and lambdas are the big ones to talk about here. We’ll start with them
and bring methods back into the picture later.

Proc Objects
Although most things in Ruby are objects, blocks are not. But why would you
care about that? Imagine that you want to store a block and execute it later.
To do that, you need an object.

To solve this problem, Ruby provides the standard library class Proc. A Proc is
a block that has been turned into an object. You can create a Proc by passing
the block to Proc.new. Later, you can evaluate the block-turned-object with
Proc#call:

inc = Proc.new {|x| x + 1 }
more code...
inc.call(2) # => 3

Spell: Deferred
Evaluation

This technique is called a Deferred Evaluation.

There are a few more ways to create Procs in Ruby. Ruby provides two Kernel
Methods (32) that convert a block to a Proc: lambda and proc. In a short while,
you’ll see that there are subtle differences between creating Procs with lambda
and creating them in any other way, but in most cases you can just use
whichever one you like best:

dec = lambda {|x| x - 1 }
dec.class # => Proc
dec.call(2) # => 1

Also, you can create a lambda with the so-called “stabby lambda” operator:

p = ->(x) { x + 1 }

Notice the little arrow. The previous code is the same as the following:

p = lambda {|x| x + 1 }

So far, you have seen not one, but four different ways to convert a block to a
Proc. There is also a fifth way, which deserves its own section.

The & Operator

A block is like an additional, anonymous argument to a method. In most
cases, you execute the block right there in the method, using yield. In two
cases, yield is not enough:

• You want to pass the block to another method (or even another block).
• You want to convert the block to a Proc.

report erratum • discuss

Callable Objects • 89

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

In both cases, you need to point at the block and say, “I want to use this
block”—to do that, you need a name. To attach a binding to the block, you
can add one special argument to the method. This argument must be the last
in the list of arguments and prefixed by an & sign. Here’s a method that
passes the block to another method:

blocks/ampersand.rb
def math(a, b)
yield(a, b)

end

def do_math(a, b, &operation)
math(a, b, &operation)

end

do_math(2, 3) {|x, y| x * y} # => 6

If you call do_math without a block, the &operation argument is bound to nil, and
the yield operation in math fails.

What if you want to convert the block to a Proc? As it turns out, if you refer-
enced operation in the previous code, you’d already have a Proc object. The real
meaning of the & is this: “I want to take the block that is passed to this method
and turn it into a Proc.” Just drop the &, and you’ll be left with a Proc again:

def my_method(&the_proc)
the_proc

end

p = my_method {|name| "Hello, #{name}!" }
p.class # => Proc
p.call("Bill") # => "Hello, Bill!"

You now know a bunch of different ways to convert a block to a Proc. But what
if you want to convert it back? Again, you can use the & operator to convert
the Proc to a block:

blocks/proc_to_block.rb
def my_method(greeting)
"#{greeting}, #{yield}!"

end

my_proc = proc { "Bill" }
my_method("Hello", &my_proc)

When you call my_method, the & converts my_proc to a block and passes that
block to the method.

Chapter 4. Wednesday: Blocks • 90

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/ampersand.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/proc_to_block.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Now you know how to convert a block to a Proc and back again. Let’s look at
a real-life example of a callable object that starts its life as a lambda and is
then converted to a regular block.

The HighLine Example

The HighLine gem helps you automate console input and output. For example,
you can tell HighLine to collect comma-separated user input and split it into
an array, all in a single call. Here’s a Ruby program that lets you input a
comma-separated list of friends:

blocks/highline_example.rb
require 'highline'

hl = HighLine.new
friends = hl.ask("Friends?", lambda {|s| s.split(',') })
puts "You're friends with: #{friends.inspect}"

Friends?❮
Ivana, Roberto, Olaf➾
You're friends with: ["Ivana", " Roberto", " Olaf"]❮

You call HighLine#ask with a string (the question for the user) and a Proc that
contains the post-processing code. (You might wonder why HighLine requires
a Proc argument rather than a simple block. Actually, you can pass a block
to ask, but that mechanism is reserved for a different HighLine feature.)

If you read the code of HighLine#ask, you’ll see that it passes the Proc to an object
of class Question, which stores the Proc as an instance variable. Later, after
collecting the user’s input, the Question passes the input to the stored Proc.

If you want to do something else to the user’s input—say, change it to
uppercase—you just create a different Proc:

name = hl.ask("Name?", lambda {|s| s.capitalize })
puts "Hello, #{name}"

Name?❮
bill➾
Hello, Bill❮

This is an example of Deferred Evaluation (89).

Procs vs. Lambdas
You’ve learned a bunch of different ways to turn a block into a Proc: Proc.new,
lambda, the & operator…. In all cases, the resulting object is a Proc.

report erratum • discuss

Callable Objects • 91

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/highline_example.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Confusingly, though, Procs created with lambda actually differ in some respects
from Procs created any other way. The differences are subtle but important
enough that people refer to the two kinds of Procs by distinct names: Procs
created with lambda are called lambdas, while the others are simply called
procs. (You can use the Proc#lambda? method to check whether the Proc is a
lambda.)

One word of warning before you dive into this section: the difference between
procs and lambdas is probably the most confusing feature of Ruby, with lots
of special cases and arbitrary distinctions. There’s no need to go into all the
gory details, but you need to know, at least roughly, the important differences.

There are two differences between procs and lambdas. One has to do with
the return keyword, and the other concerns the checking of arguments. Let’s
start with return.

Procs, Lambdas, and return

The first difference between lambdas and procs is that the return keyword
means different things. In a lambda, return just returns from the lambda:

blocks/proc_vs_lambda.rb
def double(callable_object)
callable_object.call * 2

end

l = lambda { return 10 }
double(l) # => 20

In a proc, return behaves differently. Rather than return from the proc, it
returns from the scope where the proc itself was defined:

def another_double
p = Proc.new { return 10 }
result = p.call
return result * 2 # unreachable code!

end

another_double # => 10

If you’re aware of this behavior, you can steer clear of buggy code like this:

def double(callable_object)
callable_object.call * 2

end

p = Proc.new { return 10 }
double(p) # => LocalJumpError

Chapter 4. Wednesday: Blocks • 92

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/proc_vs_lambda.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The previous program tries to return from the scope where p is defined.
Because you can’t return from the top-level scope, the program fails. You can
avoid this kind of mistake if you avoid using explicit returns:

p = Proc.new { 10 }
double(p) # => 20

Now on to the second important difference between procs and lambdas.

Procs, Lambdas, and Arity

The second difference between procs and lambdas concerns the way they
check their arguments. For example, a particular proc or lambda might have
an arity of two, meaning that it accepts two arguments:

p = Proc.new {|a, b| [a, b]}
p.arity # => 2

What happens if you call this callable object with three arguments, or one
single argument? The long answer to this question is complicated and littered
with special cases.1 The short answer is that, in general, lambdas tend to be
less tolerant than procs (and regular blocks) when it comes to arguments.
Call a lambda with the wrong arity, and it fails with an ArgumentError. On the
other hand, a proc fits the argument list to its own expectations:

p = Proc.new {|a, b| [a, b]}
p.call(1, 2, 3) # => [1, 2]
p.call(1) # => [1, nil]

If there are too many arguments, a proc drops the excess arguments. If there
are too few arguments, it assigns nil to the missing arguments.

Procs vs. Lambdas: The Verdict

You now know the differences between procs and lambdas. But you’re won-
dering which kind of Proc you should use in your own code.

Generally speaking, lambdas are more intuitive than procs because they’re
more similar to methods. They’re pretty strict about arity, and they simply
exit when you call return. For this reason, many Rubyists use lambdas as a
first choice, unless they need the specific features of procs.

1. A program to explore those special cases, written by Paul Cantrell, is at http://innig.net/
software/ruby/closures-in-ruby.rb.

report erratum • discuss

Callable Objects • 93

www.it-ebooks.info

http://innig.net/software/ruby/closures-in-ruby.rb
http://innig.net/software/ruby/closures-in-ruby.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Method Objects
For the sake of completeness, you might want to take one more look at the
last member of the callable objects’ family: methods. If you’re not convinced
that methods, like lambdas, are just callable objects, look at this code:

blocks/methods.rb
class MyClass
def initialize(value)
@x = value

end
def my_method
@x

end
end

object = MyClass.new(1)
m = object.method :my_method
m.call # => 1

By calling Kernel#method, you get the method itself as a Method object, which
you can later execute with Method#call. In Ruby 2.1, you also have Kernel#single-
ton_method, which converts the name of a Singleton Method (114) to a Method
object. (What are you saying? You don’t know what a Singleton Method is
yet? Oh, you will, you will…)

A Method object is similar to a block or a lambda. Indeed, you can convert a
Method to a Proc by calling Method#to_proc, and you can convert a block to a
method with define_method. However, an important difference exists between
lambdas and methods: a lambda is evaluated in the scope it’s defined in (it’s
a closure, remember?), while a Method is evaluated in the scope of its object.

Ruby has a second class that represents methods—one you might find per-
plexing. Let’s have a look at it first, and then we’ll see how it can be used.

Unbound Methods

UnboundMethods are like Methods that have been detached from their original
class or module. You can turn a Method into an UnboundMethod by calling
Method#unbind. You can also get an UnboundMethod directly by calling Module#in-
stance_method, as in the following example:

blocks/unbound_methods.rb
module MyModule

def my_method
42

end
end

Chapter 4. Wednesday: Blocks • 94

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/methods.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/unbound_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

unbound = MyModule.instance_method(:my_method)
unbound.class # => UnboundMethod

You can’t call an UnboundMethod, but you can use it to generate a normal method
that you can call. You do that by binding the UnboundMethod to an object with
UnboundMethod#bind. UnboundMethods that come from a class can only be bound
to objects of the same class (or a subclass), while UnboundMethods that come
from a module have no such limitation from Ruby 2.0 onward. You can also
bind an UnboundMethod by passing it to Module#define_method, as in the next
example:

String.class_eval do
define_method :another_method, unbound

end

"abc".another_method # => 42

UnboundMethods are used only in very special cases. Let’s look at one of those.

The Active Support Example

The Active Support gem contains, among other utilities, a set of classes and
modules that automatically load a Ruby file when you use a constant defined
in that file. This “autoloading” system includes a module named Loadable that
redefines the standard Kernel#load method. If a class includes Loadable, then
Loadable#load gets lower than Kernel#load on its chain of ancestors—so a call to
load will end up in Loadable#load.

In some cases, you might want to remove autoloading from a class that has
already included Loadable. In other words, you want to stop using Loadable#load
and go back to the plain vanilla Kernel#load. Ruby has no uninclude method, so
you cannot remove Loadable from your ancestors once you have included it.
Active Support works around this problem with a single line of code:

gems/activesupport-4.1.0/lib/active_support/dependencies.rb
module Loadable

def self.exclude_from(base)
base.class_eval { define_method(:load, Kernel.instance_method(:load)) }

end

...

Imagine that you have a MyClass class that includes Loadable. When you call
Loadable.exclude_from(MyClass), the code above calls instance_method to get the original
Kernel#load as an UnboundMethod. Then it uses that UnboundMethod to define a brand-
new load method directly on MyClass. As a result, MyClass#load is actually the

report erratum • discuss

Callable Objects • 95

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/dependencies.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

same method as Kernel#load, and it overrides the load method in Loadable. (If that
sounds confusing, try drawing a picture of MyClass’s ancestors chain, and
everything will be clear.)

This trick is an example of the power of UnboundMethods, but it’s also a contrived
solution to a very specific problem—a solution that leaves you with a confusing
chain of ancestors that contains three load methods, two of which are identical
to each other (Kernel#load and MyClass#load), and two of which are never called
(Kernel#load and Loadable#load). It’s probably good policy not to try this kind of
class hacking at home.

Callable Objects Wrap-Up
Callable objects are snippets of code that you can evaluate, and they carry
their own scope along with them. They can be the following:

• Blocks (they aren’t really “objects,” but they are still “callable”): Evaluated
in the scope in which they’re defined.

• Procs: Objects of class Proc. Like blocks, they are evaluated in the scope
where they’re defined.

• Lambdas: Also objects of class Proc but subtly different from regular procs.
They’re closures like blocks and procs, and as such they’re evaluated in
the scope where they’re defined.

• Methods: Bound to an object, they are evaluated in that object’s scope.
They can also be unbound from their scope and rebound to another object
or class.

Different callable objects exhibit subtly different behaviors. In methods and
lambdas, return returns from the callable object, while in procs and blocks,
return returns from the callable object’s original context. Different callable
objects also react differently to calls with the wrong arity. Methods are stricter,
lambdas are almost as strict (save for some corner cases), and procs and
blocks are more tolerant.

These differences notwithstanding, you can still convert from one callable
object to another, such as by using Proc.new, Method#to_proc, or the & operator.

Writing a Domain-Specific Language
Where you and Bill, at long last, write some code.

“Enough talking about blocks,” Bill says. “It’s time to focus on today’s job.
Let’s call it the RedFlag project.”

Chapter 4. Wednesday: Blocks • 96

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

RedFlag is a monitor utility for the people in the sales department. It should
send the sales folks a message when an order is late, when total sales are too
low…basically, whenever one of many different things happens. Sales wants
to monitor dozens of different events, and the list is bound to change every
week or so.

Luckily for you and Bill, sales has full-time programmers, so you don’t have
to write the events yourselves. You can just write a simple Domain-Specific
Language. (You can read about DSLs in Appendix 2, Domain-Specific Lan-
guages, on page 227.) The sales guys can then use this DSL to define events,
like this:

event "we're earning wads of money" do
recent_orders = ... # (read from database)
recent_orders > 1000

end

To define an event, you give it a description and a block of code. If the block
returns true, then you get an alert via mail. If it returns false, then nothing
happens. The system should check all the events every few minutes.

It’s time to write RedFlag 0.1.

Your First DSL
You and Bill put together a working RedFlag DSL in no time:

blocks/redflag_1/redflag.rb
def event(description)
puts "ALERT: #{description}" if yield

end
load 'events.rb'

The entire DSL is just one method and a line that executes a file named
events.rb. The code in events.rb is supposed to call back into RedFlag’s event
method. To test the DSL, you create a quick events file:

blocks/redflag_1/events.rb
event "an event that always happens" do

true
end
event "an event that never happens" do
false

end

You save both redflag.rb and events.rb in the same folder and run redflag.rb:

ALERT: an event that always happens❮

report erratum • discuss

Writing a Domain-Specific Language • 97

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/redflag_1/redflag.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/redflag_1/events.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

“Success!” Bill exclaims. “If we schedule this program to run every few minutes,
we have a functional first version of RedFlag. Let’s show it to the boss.”

Sharing Among Events

Your boss is amused by the simplicity of the RedFlag DSL, but she’s not
completely convinced. “The people who write the events will want to share
data among events,” she observes. “Can I do this with your DSL? For example,
can two separate events access the same variable?” she asks the two of you.

“Of course they can,” Bill replies. “We have a Flat Scope (83).” To prove that,
he whips up a new events file:

blocks/redflag_2/events.rb
def monthly_sales
110 # TODO: read the real number from the database

end

target_sales = 100

event "monthly sales are suspiciously high" do
monthly_sales > target_sales

end

event "monthly sales are abysmally low" do
monthly_sales < target_sales

end

The two events in this file share a method and a local variable. You run red-
flag.rb, and it prints what you expected:

ALERT: monthly sales are suspiciously high❮

“Okay, this works,” the boss concedes. “But I don’t like the idea of variables
and methods like monthly_sales and target_sales cluttering the top-level scope. Let
me show you what I’d like the DSL to look like instead,” she says. Without
further ado, the boss grabs the keyboard and starts churning out code like
nobody’s business.

Quiz: A Better DSL
Where you’re unexpectedly left alone to develop a new version of the RedFlag
DSL.

Your boss wants you to add a setup instruction to the RedFlag DSL, as shown
in the following code.

Chapter 4. Wednesday: Blocks • 98

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/redflag_2/events.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

blocks/redflag_3/events.rb
setup do
puts "Setting up sky"
@sky_height = 100

end

setup do
puts "Setting up mountains"
@mountains_height = 200

end

event "the sky is falling" do
@sky_height < 300

end

event "it's getting closer" do
@sky_height < @mountains_height

end

event "whoops... too late" do
@sky_height < 0

end

In this new version of the DSL, you’re free to mix events and setup blocks
(setups for short). The DSL still checks events, and it also executes all the
setups before each event. If you run redflag.rb on the previous test file, you
expect this output:

Setting up sky❮
Setting up mountains
ALERT: the sky is falling
Setting up sky
Setting up mountains
ALERT: it's getting closer
Setting up sky
Setting up mountains

RedFlag executes all the setups before each of the three events. The first two
events generate an alert; the third doesn’t.

A setup can set variables by using variable names that begin with an @ sign,
such as @sky_height and @mountains_height. Events can then read these variables.
Your boss thinks that this feature will encourage programmers to write clean
code: all shared variables are initialized together in a setup and then used in
events, so it’s easy to keep track of variables.

Still impressed by your boss’ technical prowess, you and Bill get down to
business.

report erratum • discuss

Quiz: A Better DSL • 99

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/redflag_3/events.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Runaway Bill
You and Bill compare the current RedFlag DSL to the new version your boss
has suggested. The current RedFlag executes blocks immediately. The new
RedFlag should execute the setups and the events in a specific order. You
start by rewriting the event method:

def event(description, &block)
@events << {:description => description, :condition => block}

end

@events = []
load 'events.rb'

The new event method converts the event condition from a block to a Proc. Then
it wraps the event’s description and the Proc-ified condition in a hash and
stores the hash in an array of events. The array is a top-level instance variable
(like the ones you read about in Global Variables and Top-Level Instance
Variables, on page 80), so it can be initialized outside the event method.
Finally, the last line loads the file that defines the events. Your plan is to write
a setup method similar to the event method, and then write the code that exe-
cutes events and setups in the correct sequence.

As you ponder your next step, Bill slaps his forehead, mutters something
about his wife’s birthday party, and runs out the door. Now it’s up to you
alone. Can you complete the new RedFlag DSL and get the expected output
from the test file?

Quiz Solution
You can find many different solutions to this quiz. Here is one:

blocks/redflag_3/redflag.rb
def setup(&block)
@setups << block

end

def event(description, &block)
@events << {:description => description, :condition => block}

end

@setups = []
@events = []
load 'events.rb'

@events.each do |event|
@setups.each do |setup|
setup.call

Chapter 4. Wednesday: Blocks • 100

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/redflag_3/redflag.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

end
puts "ALERT: #{event[:description]}" if event[:condition].call

end

Both setup and event convert the block to a proc and store away the proc, in
@setups and @events, respectively. These two top-level instance variables are
shared by setup, event, and the main code.

The main code initializes @setups and @events, then it loads events.rb. The code
in the events file calls back into setup and event, adding elements to @setups
and @events.

With all the events and setups loaded, your program iterates through the
events. For each event, it calls all the setup blocks, and then it calls the event.

You can almost hear the voice of Bill in your head, sounding a bit like Obi-
Wan Kenobi: “Those top-level instance variables, @events and @setups, are like
global variables in disguise. Why don’t you get rid of them?”

Removing the “Global” Variables

To get rid of the global variables (and Bill’s voice in your head), you can use
a Shared Scope (84):

blocks/redflag_4/redflag.rb
lambda {

setups = []
events = []

Kernel.send :define_method, :setup do |&block|
setups << block

end

Kernel.send :define_method, :event do |description, &block|
events << {:description => description, :condition => block}

end

Kernel.send :define_method, :each_setup do |&block|
setups.each do |setup|
block.call setup

end
end

Kernel.send :define_method, :each_event do |&block|
events.each do |event|
block.call event

end
end

}.call

report erratum • discuss

Quiz: A Better DSL • 101

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/redflag_4/redflag.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

load 'events.rb'

each_event do |event|
each_setup do |setup|
setup.call

end
puts "ALERT: #{event[:description]}" if event[:condition].call

end

The Shared Scope is contained in a lambda that is called immediately. The
code in the lambda defines the RedFlag methods as Kernel Methods (32) that
share two variables: setups and events. Nobody else can see these two variables,
because they’re local to the lambda. (Indeed, the only reason why we have a
lambda here is that we want to make these variables invisible to anyone except
the four Kernel Methods.) And yes, each call to Kernel.send is passing a block
as an argument to another block.

Now those ugly global variables are gone, but the RedFlag code is not as
pleasantly simple as it used to be. It’s up to you to decide whether this change
is an improvement or just an unwelcome obfuscation. While you decide that,
there is one last change that is worth considering.

Adding a Clean Room

In the current version of RedFlag, events can change each other’s shared top-
level instance variables:

event "define a shared variable" do
@x = 1

end
event "change the variable" do

@x = @x + 1
end

You want events to share variables with setups, but you don’t necessarily
want events to share variables with each other. Once again, it’s up to you to
decide whether this is a feature or a potential bug. If you decide that events
should be as independent from each other as possible (like tests in a test
suite), then you might want to execute events in a Clean Room (87):

blocks/redflag_5/redflag.rb
each_event do |event|
env = Object.new
each_setup do |setup|
env.instance_eval &setup

end
puts "ALERT: #{event[:description]}" if env.instance_eval &(event[:condition])

end

Chapter 4. Wednesday: Blocks • 102

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/blocks/redflag_5/redflag.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Now an event and its setups are evaluated in the context of an Object that acts
as a Clean Room. The instance variables in the setups and events are instance
variables of the Clean Room rather than top-level instance variables. Because
each event runs in its own Clean Room, events cannot share instance vari-
ables.

You might think of using a BasicObject instead of an Object for your Clean Room.
However, remember that BasicObject is also a Blank Slate (66), and as such it
lacks some common methods, such as puts. So you should only use a BasicObject
if you know that the code in the RedFlag events isn’t going to call puts or other
Object methods. You grin and add a comment to the code, leaving this difficult
decision to Bill.

Wrap-Up
Here are a few spells and other interesting things that you learned today:

• What Scope Gates (81) are and how Ruby manages scope in general

• How to make bindings visible through scopes with Flat Scopes (83) and
Shared Scopes (84)

• How to execute code in an object’s scope (usually with instance_eval or in-
stance_exec), or even in a Clean Room (87)

• How to turn a block into an object (a Proc) and back

• How to turn a method into an object (a Method or an UnboundMethod) and
back

• What the differences are between the different types of callable objects:
blocks, Procs, lambdas, and plain old methods

• How to write your own little DSL

That was a lot of new stuff in a single day. As you sneak out of the office,
however, you can’t shake the nagging feeling that you’ll learn some of Ruby’s
best-kept secrets tomorrow.

report erratum • discuss

Wrap-Up • 103

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 5

Thursday: Class Definitions
As you know, writing object-oriented programs means spending a good chunk
of your time defining classes. In Java and C#, defining a class is like making
a deal between you and the compiler. You say, “Here’s how my objects are
supposed to behave,” and the compiler replies, “Okay, they will.” Nothing
really happens until you create an object of that class and then call that
object’s methods.

In Ruby, class definitions are different. When you use the class keyword, you
aren’t just dictating how objects will behave in the future. On the contrary,
you’re actually running code.

If you buy into this notion—that a Ruby class definition is actually regular
code that runs—you’ll be able to cast some powerful spells. Two such spells
that you’ll learn about in this chapter are Class Macros (117) (methods that
modify classes) and Around Aliases (134) (methods that wrap additional code
around other methods). To help you make the most of these spells, this
chapter also describes singleton classes, one of Ruby’s most elegant features.
Singleton classes are an advanced topic, so understanding them will win you
bragging rights among Ruby experts.

This chapter also comes with a couple of public service announcements. First,
keep in mind that a class is just a souped-up module, so anything you learn
about classes also applies to modules. Although I won’t repeat this PSA in
every section of this chapter, remember that whenever you read about a “class
definition,” you can also think to yourself “module definition.” Second, be
prepared: this is probably the most advanced chapter in the entire book. Read
through it, and you will be able to walk the darkest corners of the Ruby object
model.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Class Definitions Demystified
Where you and Bill tread familiar ground: the Bookworm application and the
Ruby object model.

You stumble sleepily into the office, craving your Thursday morning coffee,
only to be ambushed by an excited Bill. “Hey!” he says. “Everyone likes the
refactorings of Bookworm we did Monday, and the boss wants more. But
before we start, let’s go over some theory about class definitions. We’ll begin
where we left off Monday: in the Ruby object model.”

Inside Class Definitions
You probably think of a class definition as the place where you define methods.
In fact, you can put any code you want in a class definition:

class MyClass
puts 'Hello'

end

Hello❮

Class definitions also return the value of the last statement, just like methods
and blocks do:

result = class MyClass
self

end

result # => MyClass

This last example emphasizes a compelling point that you might remember
from The self Keyword, on page 34: in a class (or module) definition, the class
itself takes the role of the current object self. Classes and modules are just
objects, so why couldn’t a class be self? Keep this point about class definitions
and self in mind, because the concept will become useful a bit later.

While we’re on the topic of self, you can learn about a related concept: that of
the current class.

The Current Class
As you know, wherever you are in a Ruby program, you always have a current
object: self. Likewise, you always have a current class (or module). When you
define a method, that method becomes an instance method of the current
class.

Chapter 5. Thursday: Class Definitions • 106

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Although you can get a reference to the current object through self, there’s no
equivalent keyword to get a reference to the current class. However, in most
situations it’s easy to keep track of the current class just by looking at the
code. Here’s how:

• At the top level of your program, the current class is Object, the class of
main. (That’s why, if you define a method at the top level, that method
becomes an instance method of Object.)

• In a method, the current class is the class of the current object. (Try
defining a method inside another method with def, and you’ll see that the
new method is defined on the class of self. This information is probably
going to win you some Ruby trivia contest.)

• When you open a class with the class keyword (or a module with the module
keyword), that class becomes the current class.

This last case is probably the only one that you care about in practice. Indeed,
you use it all the time when you open a class with the class keyword, and
define methods in the class with def. However, the class keyword has a limita-
tion: it needs the name of a class. Unfortunately, in some situations you may
not know the name of the class that you want to open. For example, think of
a method that takes a class and adds a new instance method to it:

def add_method_to(a_class)
TODO: define method m() on a_class

end

How can you open the class if you don’t know its name? You need some way
other than the class keyword to change the current class. Enter the class_eval
method.

class_eval()

Module#class_eval (also known by its alternate name, module_eval) evaluates a
block in the context of an existing class:

class_definitions/class_eval.rb
def add_method_to(a_class)
a_class.class_eval do

def m; 'Hello!'; end
end

end

add_method_to String
"abc".m # => "Hello!"

report erratum • discuss

Class Definitions Demystified • 107

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/class_eval.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Module#class_eval is very different from BasicObject#instance_eval, which you learned
about earlier in instance_eval(), on page 85. instance_eval only changes self,
while class_eval changes both self and the current class.

(This is not the whole truth: instance_eval also changes the current class, but
you’ll have to wait for Singleton Classes and instance_eval(), on page 127, to
learn how exactly. For now, you can safely ignore the problem and assume
that instance_eval only changes self.)

By changing the current class, class_eval effectively reopens the class, just like
the class keyword does.

Module#class_eval is actually more flexible than class. You can use class_eval on
any variable that references the class, while class requires a constant. Also,
class opens a new scope, losing sight of the current bindings, while class_eval
has a Flat Scope (83). As you learned in Scope Gates, on page 81, this means
you can reference variables from the outer scope in a class_eval block.

Finally, just like instance_eval has a twin method called instance_exec, mod-
ule_eval/class_eval also has an equivalent module_exec/class_exec method that can
pass extra parameters to the block.

Now that you know about both instance_eval and class_eval, you might wonder
which of the two you should use. In most cases the answer is easy: you use
instance_eval to open an object that is not a class, and class_eval to open a class
definition and define methods with def. But what if you want to open an object
that happens to be a class (or module) to do something other than using def?
Should you use instance_eval or class_eval then?

If all you want is to change self, then both instance_eval and class_eval will do the
job nicely. However, you should pick the method that best communicates
your intentions. If you’re thinking, “I want to open this object, and I don’t
particularly care that it’s a class,” then instance_eval is fine. If you’re thinking,
“I want an Open Class (14) here,” then class_eval is almost certainly a better
match.

That was a lot of information about the current class and how to deal with
it. Let’s recap the important points that we just went through.

Current Class Wrap-up

You learned a few things about class definitions:

• The Ruby interpreter always keeps a reference to the current class (or
module). All methods defined with def become instance methods of the
current class.

Chapter 5. Thursday: Class Definitions • 108

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

• In a class definition, the current object self and the current class are the
same—the class being defined.

• If you have a reference to the class, you can open the class with class_eval
(or module_eval).

How can this stuff ever be useful in real life? To show you how you can apply
this theory about the current class, let’s look at a trick called Class Instance
Variables.

Class Instance Variables
The Ruby interpreter assumes that all instance variables belong to the current
object self. This is also true in a class definition:

class_definitions/class_instance_variables.rb
class MyClass
@my_var = 1

end

In a class definition, the role of self belongs to the class itself, so the instance
variable @my_var belongs to the class. Don’t get confused. Instance variables
of the class are different from instance variables of that class’s objects, as
you can see in the following example:

class MyClass
@my_var = 1
def self.read; @my_var; end
def write; @my_var = 2; end
def read; @my_var; end

end

obj = MyClass.new
obj.read # => nil
obj.write
obj.read # => 2
MyClass.read # => 1

The previous code defines two instance variables. Both happen to be named
@my_var, but they’re defined in different scopes, and they belong to different
objects. To see how this works, you have to remember that classes are just
objects, and you have to track self through the program. One @my_var is defined
with obj as self, so it’s an instance variable of the obj object. The other @my_var
is defined with MyClass as self, so it’s an instance variable of the MyClass object

Spell: Class Instance
Variable

—a Class Instance Variable.

If you come from Java, you may be tempted to think that Class Instance
Variables are similar to Java’s “static fields.” Instead, they’re just regular

report erratum • discuss

Class Definitions Demystified • 109

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/class_instance_variables.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

instance variables that happen to belong to an object of class Class. Because
of that, a Class Instance Variable can be accessed only by the class itself—
not by an instance or by a subclass.

We’ve touched on many things: the current class, class definitions, self,
class_eval, Class Instance Variables.… Now you can go back to Bookworm and
put these features together.

Class Variables

If you want to store a variable in a class, you have more options than just using a
Class Instance Variable (109). You can also use a class variable, identified by an @@
prefix:

class C
@@v = 1

end

Class variables are different from Class Instance Variables because they can be
accessed by subclasses and by regular instance methods. (In that respect, they’re
more similar to Java’s static fields.)

class D < C
def my_method; @@v; end

end

D.new.my_method # => 1

Unfortunately, class variables have a nasty habit of surprising you. Here’s an example:

@@v = 1

class MyClass
@@v = 2

end

@@v # => 2

You get this result because class variables don’t really belong to classes—they belong
to class hierarchies. Because @@v is defined in the context of main, it belongs to main’s
class Object…and to all the descendants of Object. MyClass inherits from Object, so it ends
up sharing the same class variable. As technically sound as this behavior is, it’s still
likely to trip you.

Because of unwelcome surprises like the one shown earlier, most Rubyists nowadays
shun class variables in favor of Class Instance Variables. Also, Ruby 2.x issues a
stern warning whenever you access a class variable from the top level.

Chapter 5. Thursday: Class Definitions • 110

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Working on Bookworm Again
The Bookworm source contains very few unit tests, so it’s up to you and Bill
to write tests as you refactor. Sometimes this proves to be difficult, as is the
case with this class:

class_definitions/bookworm_classvars.rb
class Loan
def initialize(book)
@book = book
@time = Time.now

end

def to_s
"#{@book.upcase} loaned on #{@time}"

end
end

Loan stores the title of a book and the time when it was loaned—that is, the
time when the object was created. You’d like to write a unit test for the to_s
method, but to write that test, you’d have to know the exact time when the
object was created. This is a common problem with code that relies on Time
or Date: such code returns a different result every time it runs, so you don’t
know what result to test for.

“I think I have a solution to this problem,” Bill announces. “It’s a bit involved,
so it will require some attention on your part. Here it is.”

class Loan
def initialize(book)
@book = book
@time = Loan.time_class.now➤

end

def self.time_class➤

@time_class || Time➤

end➤

def to_s
...

Loan.time_class returns a class, and Loan#initialize uses that class to get the current
time. The class is stored in a Class Instance Variable (109) named @time_class.
If @time_class is nil, the Nil Guard (219) in time_class returns the Time class as a
default.

In production, Loan always uses the Time class, because @time_class is always
nil. By contrast, the unit tests can rely on a fake time class that always returns

report erratum • discuss

Class Definitions Demystified • 111

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/bookworm_classvars.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

the same value. The tests can assign a value to the private @time_class variable
by using either class_eval or instance_eval. Either of the two methods will do here,
because they both change self:

class FakeTime
def self.now; 'Mon Apr 06 12:15:50'; end

end

require 'test/unit'

class TestLoan < Test::Unit::TestCase
def test_conversion_to_string

Loan.instance_eval { @time_class = FakeTime }
loan = Loan.new('War and Peace')
assert_equal 'WAR AND PEACE loaned on Mon Apr 06 12:15:50', loan.to_s

end
end

Bill is quite proud of his own coding prowess. He says, “I think we deserve a
break—after I give you a quiz.”

Quiz: Class Taboo
Where you write an entire program without ever using a certain popular
keyword.

Did you ever play Taboo?1 The rules are simple: you’re given a secret word
and a list of words that you cannot use. (They are “taboo.”) You must help a
teammate guess the secret word. You can give your teammate as many sug-
gestions as you want, but you must never say a taboo word. If you do that,
you lose immediately.

Your challenge: play Taboo with Ruby code. You have only one taboo word,
the class keyword. Your “secret word” is actually a Ruby class:

class MyClass < Array
def my_method
'Hello!'

end
end

You have to write a piece of code that has exactly the same effect as the pre-
vious one, without ever using the class keyword. Are you up to the challenge?
(Just one hint: look at the documentation for Class.new.)

1. http://en.wikipedia.org/wiki/Taboo_(game).

Chapter 5. Thursday: Class Definitions • 112

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Taboo_(game)
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Quiz Solution
Because a class is just an instance of Class, you can create it by calling Class.new.
Class.new also accepts an argument (the superclass of the new class) and a
block that is evaluated in the context of the newborn class:

c = Class.new(Array) do
def my_method
'Hello!'

end
end

Now you have a variable that references a class, but the class is still anony-
mous. Do you remember the discussion about class names in Constants, on
page 21? The name of a class is just a constant, so you can assign it yourself:

MyClass = c

Interestingly, Ruby is cheating a little here. When you assign an anonymous
class to a constant, Ruby understands that you’re trying to give a name to
the class, and it does something special: it turns around to the class and
says, “Here’s your new name.” Now the constant references the Class, and the
Class also references the constant. If it weren’t for this trick, a class wouldn’t
be able to know its own name, and you couldn’t write this:

c.name # => "MyClass"

You turn to Bill to show him your solution to the quiz—but he’s already busy
browsing the Bookworm source. It’s time to get back to the task at hand.

Singleton Methods
Where it’s your turn to teach Bill a few tricks.

It’s late morning, and you and Bill are deep in the flow. You’re zipping through
the Bookworm source, deleting a useless line here, changing a confusing
name there, and generally polishing the code…until you bump into a partic-
ularly troublesome bit of refactoring.

The Paragraph class wraps a string and then delegates all calls to the wrapped
string—all of them, that is, except for one method, Paragraph#title?, which returns
true if a Paragraph is all uppercase.

class_definitions/paragraph.rb
class Paragraph
def initialize(text)
@text = text

end

report erratum • discuss

Singleton Methods • 113

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/paragraph.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def title?; @text.upcase == @text; end
def reverse; @text.reverse; end
def upcase; @text.upcase; end
...

Paragraph objects are created in a single place in the Bookworm source code.
Also, Paragraph#title? is called only once in the whole application, from a method
named index:

def index(paragraph)
add_to_index(paragraph) if paragraph.title?

end

Bill frowns. “The stupid Paragraph class really doesn’t hold its own weight. We
could scrap it entirely and just use regular Strings, if it weren’t for the title?
method.”

“Why don’t we Monkeypatch (16) the String class and add the title? method right
there?” you offer. “I’m not convinced,” Bill says. “A method with that name
would make sense only on strings that represent a paragraph, not on each
and every string.”

While Bill is pondering the idea of patching the String class with a Refinement
(36), you decide to Google for a solution.

Introducing Singleton Methods
As it turns out, Ruby allows you to add a method to a single object. For
example, here’s how you can add title? to a specific string:

class_definitions/singleton_methods.rb
str = "just a regular string"

def str.title?
self.upcase == self

end

str.title? # => false
str.methods.grep(/title?/) # => [:title?]
str.singleton_methods # => [:title?]

The previous code adds a method named title? to str. No other object gets the
method—not even other Strings. A method like this one, which is specific to a

Spell: Singleton
Method

single object, is called a Singleton Method. You can define a Singleton Method
with either the syntax above or the Object#define_singleton_method method.

Thanks to Singleton Methods, you can now fix your problem with the Book-
worm source. You can send any old String to index if you enhance that String
with a title? Singleton Method:

Chapter 5. Thursday: Class Definitions • 114

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/singleton_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

class_definitions/paragraph.rb
paragraph = "any string can be a paragraph"

def paragraph.title?
self.upcase == self

end

index(paragraph)

Now you can use plain strings in Bookworm and delete the Paragraph class.

Bill is awestruck by your solution. “I knew about Singleton Methods, but I
never realized you could use them this way.”

“Wait a minute,” you reply. “You knew about them? What did you think they
were useful for?”

“Singleton Methods aren’t just useful for enhancing a specific object, like you
just did.” Bill replies. “They’re also the basis for one of Ruby’s most common
features. What if I told you that you’ve been using Singleton Methods all along,
without ever knowing it?”

Duck Typing

Some people are horrified by Singleton Methods (114), thinking that if each object can
have its own methods, no matter which class it belongs to, then your code is going
to become a twisted tangle of spaghetti.

If you reacted that way yourself, then you’re probably used to static languages. In a
static language such as Java, you say that an object has type T because it belongs
to class T (or because it implements interface T). In a dynamic language such as Ruby,
the “type” of an object is not strictly related to its class. Instead, the “type” is simply
the set of methods to which an object can respond.

People refer to this second, more fluid notion of a type as duck typing, referring to
the saying: “if it walks like a duck and quacks like a duck, then it must be a duck.”
In other words, you don’t care that an object is an instance of class Duck. You just
care that it responds to walk and quack, whether they’re regular methods, Singleton
Methods (114), or even Ghost Methods (57).

If you hang around Ruby for a while, you will get used to duck typing—and after
learning a few cool dynamic tricks, you might even wonder how you could have lived
without it in the first place.

The Truth About Class Methods
Remember what you learned in Inside the Object Model, on page 16? Classes
are just objects, and class names are just constants. If you remember this

report erratum • discuss

Singleton Methods • 115

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/paragraph.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

concept, then you’ll see that calling a method on a class is the same as calling
a method on an object:

an_object.a_method
AClass.a_class_method

See? The first line calls a method on an object referenced by a variable, and
the second line calls a method on an object (that also happens to be a class)
referenced by a constant. It’s the same syntax.

But, wait—there’s more. Remember how Bill told you that you’ve been using
Singleton Methods (114) all along? That’s really what class methods are: they’re
Singleton Methods of a class. In fact, if you compare the definition of a Single-
ton Method and the definition of a class method, you’ll see that they’re the
same:

def obj.a_singleton_method; end
def MyClass.another_class_method; end

So, the syntax for defining a Singleton Method with def is always the same:

def object.method
Method body here

end

In the definition shown previously, object can be an object reference, a constant
class name, or self. The syntax might look different in the three cases, but in
truth the underlying mechanism is always the same. Nice design, don’t you
think?

You’re not quite finished with class methods yet. There’s a very useful and
common spell that relies on class methods exclusively, and it deserves its
own discussion.

Class Macros
Look at this example, coming straight from the core of Ruby.

The attr_accessor() Example

Ruby objects don’t have attributes. If you want something that looks like an
attribute, you have to define two Mimic Methods (218), a reader and a writer:

class_definitions/attr.rb
class MyClass
def my_attribute=(value)
@my_attribute = value

end

Chapter 5. Thursday: Class Definitions • 116

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/attr.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def my_attribute
@my_attribute

end
end

obj = MyClass.new
obj.my_attribute = 'x'
obj.my_attribute # => "x"

Writing methods like these (also called accessors) gets boring quickly. As an
alternative, you can generate accessors by using one of the methods in the
Module#attr_* family. Module#attr_reader generates the reader, Module#attr_writer
generates the writer, and Module#attr_accessor generates both:

class MyClass
attr_accessor :my_attribute

end

All the attr_* methods are defined on class Module, so you can use them when-
ever self is a module or a class. A method such as attr_accessor is called a Class

Spell: Class MacroMacro. Class Macros look like keywords, but they’re just regular class methods
that are meant to be used in a class definition.

“Now that you know about Class Macros,” Bill says, “I think I know a place
in Bookworm’s source code where we can make good use of them.”

Class Macros Applied

The Book class in the Bookworm source code has methods named GetTitle, title2,
and LEND_TO_USER. By Ruby’s conventions, these methods should be named title,
subtitle, and lend_to, respectively. However, there are other projects that use the
Book class, and you have no control over these projects. If you just rename
the methods, you will break the callers.

Bill has an idea to fix this situation: you can rename the methods if you invent
a Class Macro (117) that deprecates the old names:

class_definitions/deprecated.rb
class Book
def title # ...

def subtitle # ...

def lend_to(user)
puts "Lending to #{user}"
...

end

report erratum • discuss

Singleton Methods • 117

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/deprecated.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def self.deprecate(old_method, new_method)
define_method(old_method) do |*args, &block|

warn "Warning: #{old_method}() is deprecated. Use #{new_method}()."
send(new_method, *args, &block)

end
end

deprecate :GetTitle, :title
deprecate :LEND_TO_USER, :lend_to
deprecate :title2, :subtitle

end

The deprecate method takes the old name and the new name of a method and
defines a Dynamic Method (51) that catches calls to the old name. The
Dynamic Method forwards the calls to the renamed method—but first it prints
a warning on the console to notify the callers that the old name has been
deprecated:

b = Book.new
b.LEND_TO_USER("Bill")

Warning: LEND_TO_USER() is deprecated. Use lend_to().❮
Lending to Bill

That was an ingenious way to use a Class Macro. However, if you really want
to understand Class Macros, as well as Singleton Methods in general, you
have to fit one last missing piece in the Ruby object model.

Singleton Classes
Where you place the final piece in the object model puzzle.

Singleton classes are the UFOs of the Ruby world: even if you never see one
in person, you can find scattered hints of their existence all over the place.
Let’s start our investigation into this difficult subject by collecting some evi-
dence. (Be aware that the next few pages contain advanced material that
might take a while for you to digest. If you want, you can skip straight to
Method Wrappers, on page 131, on your first read through and come back to
this section later.)

The Mystery of Singleton Methods
In Method Lookup, on page 28, you learned how Ruby finds methods by going
right into the receiver’s class and then up the class hierarchy. For example:

class MyClass
def my_method; end

end

Chapter 5. Thursday: Class Definitions • 118

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

obj = MyClass.new
obj.my_method

Bill draws the following flowchart and says, “When you call my_method, Ruby
goes right into MyClass and finds the method there.” So far, so good.

Now, what happens if you define a Singleton Method (114) on obj?

def obj.my_singleton_method; end

If you look at the previous flowchart, you’ll notice that there’s no obvious
home for my_singleton_method there.

The Singleton Method can’t live in obj, because obj is not a class. It can’t live
in MyClass, because if it did, all instances of MyClass would share it. And it cannot
be an instance method of MyClass’s superclass, Object. So then, where do Sin-
gleton Methods live?

Class methods are a special kind of Singleton Method—and just as baffling:

def MyClass.my_class_method; end

If you look at the following figure, you’ll find that, again, my_class_method doesn’t
seem to live anywhere in Bill’s diagram.

The explanation of this mystery could surprise you.

report erratum • discuss

Singleton Classes • 119

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Singleton Classes Revealed
When you ask an object for its class, Ruby doesn’t always tell you the whole
truth. Instead of the class that you see, an object can have its own special,
hidden class. That’s called the singleton class of the object. (You can also hear
it called the metaclass or the eigenclass. However, “singleton class” is the
official name.)

Methods like Object#class keep the singleton class carefully hidden, but you
can work around them. Ruby has a special syntax, based on the class keyword,
that places you in the scope of the singleton class:

class << an_object
your code here

end

If you want to get a reference to the singleton class, you can return self out
of the scope:

obj = Object.new

singleton_class = class << obj
self

end

singleton_class.class # => Class

That sneaky singleton class was trying to hide, but we managed to find it.

Back in Ruby’s old days, you had to return self like we just did to get a refer-
ence to the singleton class. These days you can also get a reference to the
singleton class with the handy Object#singleton_class method:

"abc".singleton_class # => #<Class:#<String:0x331df0>>

The previous example also shows that a singleton class is a class—but a very
special one. For starters, it’s invisible until you resort to either Object#single-
ton_class, or the exotic class << syntax. Also, singleton classes have only a single
instance (that’s where their name comes from), and they can’t be inherited.
More important, a singleton class is where an object’s Singleton Methods live:

def obj.my_singleton_method; end
singleton_class.instance_methods.grep(/my_/) # => [:my_singleton_method]

To fully understand the consequences of this last point, you have to look
deeper into Ruby’s object model.

Chapter 5. Thursday: Class Definitions • 120

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Method Lookup Revisited
In What Happens When You Call a Method?, on page 27, you learned about
the Ruby object model and method lookup. Back then, we had to leave some
parts of the object model unexplored. Singleton classes are the missing link
we needed. Once you understand singleton classes, all the bits and pieces in
the object model finally fall into place.

Method Lookup Review

To look into the object model, you need a practical example to focus on. Let’s
write a “lab rat” program:

class C
def a_method
'C#a_method()'

end
end

class D < C; end

obj = D.new
obj.a_method # => "C#a_method()"

If you draw a picture of obj and its ancestors chain, it will probably look like
the following figure. (For now, you don’t have to bother with singleton classes
or modules.)

You know that method lookup goes one step to the right, then up. When you
call obj.a_method(), Ruby goes right into obj’s class D. From there, it climbs up
the ancestors chain until it finds a_method in class C. Now, let’s add singleton
classes to the mix.

report erratum • discuss

Singleton Classes • 121

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Singleton Classes and Method Lookup

As you explore singleton classes, you may notice that their names are not
meant to be uttered by humans. When you print it on the screen, a singleton
class looks something like this:

obj = Object.new
obj.singleton_class # => #<Class:#<Object:0x007fd96909b588>>

The diagrams in the rest of this chapter identify singleton classes with a
simple # prefix. By this convention, #obj is the singleton class of obj, #C is the
singleton class of C, and so on.

Armed with the singleton_class method and your new naming convention, you
can now proceed with your fearless exploration of the object model. Let’s go
back to the “lab rat” program and define a Singleton Method (114).

class << obj
def a_singleton_method
'obj#a_singleton_method()'

end
end

Now for an experiment. You know that a singleton class is a class, so it must
have a superclass. Which is the superclass of the singleton class?

obj.singleton_class.superclass # => D

The superclass of obj’s singleton class is D. Try adding this newfound knowledge
to the diagram of the “lab rat” object model. The result is shown in Figure 7,
Method lookup with singleton classes, on page 123.

You can see how Singleton Methods fit into the normal process of method
lookup. If an object has a singleton class, Ruby starts looking for methods in
the singleton class rather than the conventional class, and that’s why you
can call Singleton Methods such as obj#a_singleton_method. If Ruby can’t find the
method in the singleton class, then it goes up the ancestors chain, ending in
the superclass of the singleton class—which is the object’s class. From there,
everything is business as usual.

Now you understand how Singleton Methods work. But what about class
methods? Yes, they’re just a special case of Singleton Methods, but they
deserve a closer look.

Chapter 5. Thursday: Class Definitions • 122

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Figure 7—Method lookup with singleton classes

Singleton Classes and Inheritance

In this section, we’re going to look at the connections between classes, single-
ton classes, and superclasses. This area of the object model can be a real
brain-twister. Once it clicks in your mind, however, it will feel elegant and
beautiful. If you’re stuck, just look at the pictures or fire up irb and experiment
on your own.

Try adding a class method to the “lab rat” program.

class C
class << self
def a_class_method
'C.a_class_method()'

end
end

end

Now you can explore the resulting object model. (As you do that, keep in mind
that singleton classes became slightly more visible in Ruby 2.1. Starting from
that version, if you ask a singleton class for its ancestors, the result will

report erratum • discuss

Singleton Classes • 123

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

include ancestors that are themselves singleton classes. Until Ruby 2.0, ances-
tors always shows regular classes only.)

C.singleton_class # => #<Class:C>
D.singleton_class # => #<Class:D>
D.singleton_class.superclass # => #<Class:C>
C.singleton_class.superclass # => #<Class:Object>

Bill grabs a scrap of paper and draws the following diagram.

Figure 8—Singleton classes and inheritance

This is a somewhat complicated diagram. The arrows marked with S link
classes to their superclasses, and the arrows marked with C link objects
(including classes) to their classes, which in this case are all singleton classes.
The arrows marked with a C do not point at the same classes that the class

Chapter 5. Thursday: Class Definitions • 124

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

method would return, because the class method doesn’t know about singleton
classes. For example, obj.class would return D, even if the class of obj is actually
its singleton class, #obj.

This diagram doesn’t include modules. If you’re a completist, you can draw
the Kernel module between Object and BasicObject. On the other hand, you prob-
ably don’t want to include #Kernel in this diagram. Although modules can have
singleton classes like any other object, the singleton class of Kernel is not part
of obj’s or #D’s ancestor chains.

Apparently, Ruby organizes classes, singleton classes, and superclasses in a
very purposeful pattern. The superclass of #D is #C, which is also the singleton
class of C. By the same rule, the superclass of #C is #Object. Bill tries to sum
it all up, making things even more confusing: “The superclass of the singleton
class is the singleton class of the superclass. It’s easy.”

This complicated arrangement of classes, superclasses, and singleton classes
can be baffling. Why does Ruby go to such lengths to organize the object
model this way? The reason is that thanks to this arrangement, you can call
a class method on a subclass:

D.a_class_method # => "C.a_class_method()"

Even if a_class_method is defined on C, you can also call it on D. This is probably
what you expect, but it’s only possible because method lookup starts in #D
and goes up to #D’s superclass #C, where it finds the method.

Ingenious, isn’t it? Now you can finally grasp the entire object model.

The Great Unified Theory

“The Ruby object model is a beautiful place,” Bill notes, with a dreamy expres-
sion on his face. “There are classes, singleton classes, and modules. There
are instance methods, class methods, and Singleton Methods.”

At first glance, it all looks very complex. Look closer, and the complexity fades
away. If you put singleton classes together with regular classes and modules,
you end up with the seven rules of the Ruby object model:

1. There is only one kind of object—be it a regular object or a module.

2. There is only one kind of module—be it a regular module, a class, or a
singleton class.

3. There is only one kind of method, and it lives in a module—most often in
a class.

report erratum • discuss

Singleton Classes • 125

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Meta Squared

Singleton classes are classes, and classes are objects, and objects have singleton
classes…. Can you see where this train of thought is going? Like any other object, a
singleton class must have its own singleton class:

class << "abc"
class << self

self # => #<Class:#<Class:#<String:0x33552c>>>
end

end

If you ever find a practical use for singleton classes of singleton classes, let the world
know.

4. Every object, classes included, has its own “real class,” be it a regular
class or a singleton class.

5. Every class, with the exception of BasicObject, has exactly one ancestor—
either a superclass or a module. This means you have a single chain of
ancestors from any class up to BasicObject.

6. The superclass of the singleton class of an object is the object’s class. The
superclass of the singleton class of a class is the singleton class of the
class’s superclass. (Try repeating that three times, fast. Then look back
at Figure 8, Singleton classes and inheritance, on page 124, and it will all
make sense.)

7. When you call a method, Ruby goes “right” in the receiver’s real class and
then “up” the ancestors chain. That’s all there is to know about the way
Ruby finds methods.

Any Ruby programmer can stumble on a difficult question about the object
model. “Which method in this complicated hierarchy gets called first?” Or
maybe, “Can I call this method from that object?” When this happens to you,
review the seven rules listed earlier, maybe draw a quick diagram of the object
model, and you’ll find the answer in no time at all.

Congratulations—you now understand the entire Ruby object model.

Class Methods Syntaxes

Because class methods are just Singleton Methods that live in the class’s
singleton class, now you have three different ways to define a class method.
They’re shown in the following code.

Chapter 5. Thursday: Class Definitions • 126

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def MyClass.a_class_method; end

class MyClass
def self.another_class_method; end

end

class MyClass
class << self
def yet_another_class_method; end

end
end

The first syntax is usually frowned upon by expert Rubyists because it
duplicates the class name, making it more difficult to refactor. The second
syntax takes advantage of the fact that self in the class definition is the class
itself. The third syntax is the trickiest one: the code opens the singleton class
and defines the method in there. This last syntax acknowledges the singleton
class explicitly, so it will win you some street cred in Ruby circles.

Singleton Classes and instance_eval()

Now that you know about singleton classes, you can also fill in one missing
snippet of knowledge about the instance_eval method. In class_eval(), on page
107, you learned that instance_eval changes self, and class_eval changes both self
and the current class. However, instance_eval also changes the current class;
it changes it to the singleton class of the receiver. This example uses instance_eval
to define a Singleton Method (114):

class_definitions/instance_eval.rb
s1, s2 = "abc", "def"

s1.instance_eval do
def swoosh!; reverse; end

end

s1.swoosh! # => "cba"
s2.respond_to?(:swoosh!) # => false

You’ll rarely, if ever, see instance_eval used purposefully to change the current
class, as in the example above. The standard meaning of instance_eval is this:
“I want to change self.”

Class Attributes

Bill’s detailed explanations have left you a bit perplexed. “Okay,” you say, “I
can see how singleton classes are useful to understanding the object model.
But how do I use them in practice?”

report erratum • discuss

Singleton Classes • 127

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/instance_eval.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Let’s look at an example involving Class Macros (117). Do you remember the
attr_accessor method from The attr_accessor() Example, on page 116? It generates
attributes for any object:

class_definitions/class_attr.rb
class MyClass
attr_accessor :a

end

obj = MyClass.new
obj.a = 2
obj.a # => 2

But what if you want to define an attribute on a class instead? You might be
tempted to reopen Class and define the attribute there:

class MyClass; end

class Class
attr_accessor :b

end

MyClass.b = 42
MyClass.b # => 42

This works, but it adds the attribute to all classes. If you want an attribute
that’s specific to MyClass, you need a different technique. Define the attribute
in the singleton class:

class MyClass
class << self
attr_accessor :c

end
end

MyClass.c = 'It works!'
MyClass.c # => "It works!"

To understand how this works, remember that an attribute is actually a pair
of methods. If you define those methods in the singleton class, they become
class methods, as if you’d written this:

def MyClass.c=(value)
@c = value

end

def MyClass.c
@c

end

Chapter 5. Thursday: Class Definitions • 128

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/class_attr.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

As usual, Bill grabs the nearest available scrap of paper and scribbles the
following diagram on it. “That’s how you define an attribute on a class,” he
says.

Figure 9—Class attributes live in the class’s singleton class.

You can also see another interesting detail in this diagram. The superclass
of #BasicObject is none other than good old Class. This fact explains why you
can call MyClass.b and MyClass.b=.

Clearly happy with his own explanation, Bill leans back in his comfy chair.
“Cool stuff, huh? Now, let’s try a little quiz.”

Quiz: Module Trouble
Where you learn that singleton classes and modules mix well with each other.

Bill decides it’s time for a story: “Every single day, somewhere in the world,
a Ruby programmer tries to define a class method by including a module. I
tried it myself, but it didn’t work.”

class_definitions/module_trouble_failure.rb
module MyModule

def self.my_method; 'hello'; end
end

class MyClass
include MyModule

end

MyClass.my_method # NoMethodError!

report erratum • discuss

Quiz: Module Trouble • 129

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/module_trouble_failure.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

“You see,” Bill continues, “when a class includes a module, it gets the module’s
instance methods—not the class methods. Class methods stay out of reach,
in the module’s singleton class.”

“So, how did you find a solution?” you ask. “Oh, I didn’t,” Bill replies, blushing.
“I just asked for the solution on a mailing list, like everybody else does. But
maybe you can find a solution.” Think about the object model and singleton
classes. How would you modify the code that you just looked at so that it
works as expected?

Quiz Solution
The solution to this quiz is simple and subtle at the same time. First, define
my_method as a regular instance method of MyModule. Then include the module
in the singleton class of MyClass.

class_definitions/module_trouble_solution.rb
module MyModule

def my_method; 'hello'; end➤

end

class MyClass
class << self➤

include MyModule➤

end➤

end

MyClass.my_method # => "hello"

my_method is an instance method of the singleton class of MyClass. As such,
my_method is also a class method of MyClass. This technique is called a Class

Spell: Class
Extension

Extension.

“That’s brilliant,” Bill says. “What about trying the same trick on a regular
object instead of a class?”

Class Methods and include()

Reviewing Class Extensions, you can define class methods by mixing them
into the class’s singleton class. Class methods are just a special case of Sin-
gleton Methods, so you can generalize this trick to any object. In the general

Spell: Object
Extension

case, this is called an Object Extension. In the following example, obj is
extended with the instance methods of MyModule:

class_definitions/module_trouble_object.rb
module MyModule

def my_method; 'hello'; end
end

Chapter 5. Thursday: Class Definitions • 130

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/module_trouble_solution.rb
http://media.pragprog.com/titles/ppmetr2/code/class_definitions/module_trouble_object.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

obj = Object.new

class << obj
include MyModule

end

obj.my_method # => "hello"
obj.singleton_methods # => [:my_method]

In case you think that opening the singleton class is a clumsy way to extend
a class or an object, let’s also look at an alternative technique.

Object#extend

Class Extensions (130) and Object Extensions (130) are common enough that
Ruby provides a method just for them, named Object#extend:

class_definitions/module_trouble_extend.rb
module MyModule

def my_method; 'hello'; end
end

obj = Object.new
obj.extend MyModule
obj.my_method # => "hello"

class MyClass
extend MyModule

end

MyClass.my_method # => "hello"

Object#extend is simply a shortcut that includes a module in the receiver’s sin-
gleton class. You can always do that yourself, if you so choose.

“Enough talking about singleton classes today,” Bill announces. “I don’t want
to get a meta-headache. For now, let’s go back to refactoring Bookworm.”

Method Wrappers
Where you learn how to wrap a method inside another method—three different
ways.

As the day draws to a close, you and Bill find yourselves stuck. Many methods
in Bookworm rely on an open source library that retrieves a book’s reviews
from Amazon’s website. The following code shows one example:

report erratum • discuss

Method Wrappers • 131

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/module_trouble_extend.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def deserves_a_look?(book)
amazon = Amazon.new
amazon.reviews_of(book).size > 20

end

This code works in most cases, but it doesn’t manage exceptions. If a remote
call to Amazon fails, Bookworm itself should log this problem and proceed.
You could easily add exception management to each line in Bookworm that
calls deserves_a_look?—but there are tens of such lines, and you don’t want to
change all of them.

To sum up the problem: you have a method that you don’t want to modify
directly because it’s in a library. You want to wrap additional functionality
around this method so that all clients get the additional functionality auto-
matically. You can do this in a few ways, but to get to the first of them you
need to know about aliases.

Around Aliases
You can give an alternate name to a Ruby method by using Module#alias_method:

class_definitions/alias.rb
class MyClass
def my_method; 'my_method()'; end
alias_method :m, :my_method

end

obj = MyClass.new
obj.my_method # => "my_method()"
obj.m # => "my_method()"

In alias_method, the new name for the method comes first, and the original name
comes second. You can provide the names either as symbols or as strings.

(Ruby also has an alias keyword, which is an alternative to Module#alias_method.
It can be useful if you want to alias a method at the top level, where Mod-
ule#alias_method is not available.)

Continuing with the previous example:

class MyClass
alias_method :m2, :m

end

obj.m2 # => "my_method()"

Aliases are common everywhere in Ruby, including the core libraries. For
example, String#size is an alias of String#length, and the Integer class has a method
with no fewer than five different names. (Can you spot it?)

Chapter 5. Thursday: Class Definitions • 132

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/alias.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

What happens if you alias a method and then redefine it? You can try this
with a simple program:

class_definitions/wrapper_around_alias.rb
class String
alias_method :real_length, :length

def length
real_length > 5 ? 'long' : 'short'

end
end

"War and Peace".length # => "long"
"War and Peace".real_length # => 13

The previous code redefines String#length, but the alias still refers to the original
method. This gives you insight into how method redefinition works. When
you redefine a method, you don’t really change the method. Instead, you
define a new method and attach an existing name to that new method. You
can still call the old version of the method as long as you have another name
that’s still attached to it.

This idea of aliasing a method and then redefining it is the basis of an inter-
esting trick—one that deserves its own example.

The Thor Example

Thor is a Ruby gem for building command-line utilities. Some versions of
Thor include a program named rake2thor that converts Rake build files to Thor
scripts. As part of doing that, rake2thor must load a Rakefile and store away the
names of all the files that are in turn required from that Rakefile. Here is the
code where the magic happens:

gems/thor-0.17.0/bin/rake2thor
input = ARGV[0] || 'Rakefile'
$requires = []

module Kernel
def require_with_record(file)

$requires << file if caller[1] =~ /rake2thor:/
require_without_record file

end
alias_method :require_without_record, :require
alias_method :require, :require_with_record

end

load input

report erratum • discuss

Method Wrappers • 133

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/wrapper_around_alias.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/thor-0.17.0/bin/rake2thor
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The code above prepares a global array to store the names of the required
files; then it opens the Kernel module and plays a few tricks with method
aliases; and finally, it loads the Rakefile. Focus on the middle part—the code
dealing with Kernel. To understand what is going on there, look at this slightly
simplified version of the original code:

module Kernel
alias_method :require_without_record, :require

def require(file)
$requires << file if caller[1] =~ /rake2thor:/
require_without_record file

end
end

The Open Class (14) above does three things. First, it aliases the standard
Kernel#require method to another name (require_without_record). Second, it Monkey-
patches (16) require to store the names of files that are required by the Rakefile.
(It does that by getting the stack of callers with the Kernel#callers method. If the
second caller in the stack is rake2thor itself, this means that the Rakefile must
be the first caller in the stack—the one that actually called require.) Finally,
the new require falls back to the original require, now called require_without_record.

Compared to this simplified version, the original rake2thor code goes one step
further: it also creates an alias for the new require called require_with_record. While
this latest alias makes the methods more explicit, the important result is
pretty much the same in both versions of the code: Kernel#require has changed,
and the new require is “wrapped around” the old require. That’s why this trick

Spell: Around Alias is called an Around Alias.

You can write an Around Alias in three simple steps:

1. You alias a method.
2. You redefine it.
3. You call the old method from the new method.

One downside of Around Aliases is that they pollute your classes with one
additional method name. You can fix this small problem somehow by making
the old version of the method private after you alias it. (In Ruby it’s the method’s
name, not the method itself, that is either public or private.)

Another potential problem of Around Aliases has to do with loading. You
should never load an Around Alias twice, unless you want to end up with an
exception when you call the method. Can you see why?

Chapter 5. Thursday: Class Definitions • 134

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The main issue with Around Aliases, however, is that they are a form of
Monkeypatching. Like all Monkeypatches, they can break existing code that
wasn’t expecting the method to change. For this reason, Ruby 2.0 introduced
not one, but two additional ways to wrap additional functionality around an
existing method.

More Method Wrappers
In Refinements, on page 36, you learned that a Refinement (36) works like a
patch of code that has been slapped directly over a class. However, Refine-
ments have one additional feature that enables you to use them in place of
Around Aliases (134): if you call super from a refined method, you will call the
original, unrefined method. Here comes an example:

class_definitions/wrapper_refinement.rb
module StringRefinement

refine String do
def length
super > 5 ? 'long' : 'short'

end
end

end

using StringRefinement

"War and Peace".length # => "long"

The code above refines the String class to wrap additional functionality around
Spell: Refinement
Wrapper

its length method. Like other Refinements, this Refinement Wrapper applies
only until the end of the file (or, in Ruby 2.1, the module definition). This
makes it generally safer than the equivalent Around Alias, which applies
everywhere.

Finally, you have a third way of wrapping a method: you can use Module#prepend,
which you might remember from Modules and Lookup, on page 30. Mod-
ule#prepend works a bit like include, but it inserts the module below the includer
in the chain of ancestors, rather than above it. This means that a method in
a prepended module can override a method in the includer and call the non-
overridden version with super:

class_definitions/wrapper_prepend.rb
module ExplicitString

def length
super > 5 ? 'long' : 'short'

end
end

report erratum • discuss

Method Wrappers • 135

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/wrapper_refinement.rb
http://media.pragprog.com/titles/ppmetr2/code/class_definitions/wrapper_prepend.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

String.class_eval do
prepend ExplicitString

end

"War and Peace".length # => "long"

Spell: Prepended
Wrapper

You can call this a Prepended Wrapper. It’s not local like a Refinement
Wrapper, but it’s generally considered cleaner and more explicit than both a
Refinement Wrapper and an Around Alias.

Now you know more than enough to get back to the Bookworm source code.

Solving the Amazon Problem
Remember where this discussion of method wrappers originated? You and
Bill wanted to wrap logging and exception handling around the Amazon#reviews_of
method. Now you can finally do that with an Around Alias (134), a Refinement
Wrapper (135), or a Prepended Wrapper (136). The third option looks cleaner,
as it doesn’t dabble in Monkeypatching or weird Refinement rules:

class_definitions/bookworm_wrapper.rb
module AmazonWrapper

def reviews_of(book)
start = Time.now
result = super
time_taken = Time.now - start
puts "reviews_of() took more than #{time_taken} seconds" if time_taken > 2
result

rescue
puts "reviews_of() failed"
[]

end
end

Amazon.class_eval do
prepend AmazonWrapper

end

As you admire this smart piece of code, Bill hits you with an unexpected quiz.

Quiz: Broken Math
Where you find that one plus one doesn’t always equal two.

Most Ruby operators are actually methods. For example, the + operator on
integers is syntactic sugar for a method named Fixnum#+. When you write 1 +
1, the parser internally converts it to 1.+(1).

Chapter 5. Thursday: Class Definitions • 136

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/bookworm_wrapper.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The cool thing about methods is that you can redefine them. So, here’s your
challenge: break the rules of math by redefining Fixnum#+ so that it always
returns the correct result plus one. For example:

1 + 1 # => 3

Quiz Solution
You can solve this quiz with an Open Class (14). Just reopen Fixnum and
redefine + so that (x + y) becomes (x + y + 1). This is not as easy as it seems,
however. The new version of + relies on the old version of +, so you need to
wrap your old version with the new version. You can do that with an Around
Alias (134):

class_definitions/broken_math.rb
class Fixnum
alias_method :old_plus, :+

def +(value)
self.old_plus(value).old_plus(1)

end
end

Now you have the power to wreak havoc on Ruby’s basic arithmetic. Enjoy
this code responsibly.

Wrap-Up
You covered a lot of ground today. Let’s sum it all up:

• You looked at the effects of class definitions on self (the default receiver
of the methods you call) and on the current class (the default home of the
methods you define).

• You made acquaintance with Singleton Methods (114) and singleton classes,
gaining new insights into the object model and method lookup.

• You added a few new tricks to your bag, including Class Instance Variables
(109), Class Macros (117), and Prepended Wrappers (136).

Also remember that today you used the word “class” as a shortcut to “class
or module,” and everything you learned about classes can also be applied to
modules: the “current class” might actually be a module, a “class instance
variable” could well be a “module instance variable,” and so on.

That was quite a deep dive into Ruby’s object model. As the two of you prepare
to leave the office, Bill makes a promise that tomorrow will be less talking
and more coding. “I’m really looking forward to that,” he says.

report erratum • discuss

Wrap-Up • 137

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/class_definitions/broken_math.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 6

Friday: Code That Writes Code
So far you’ve seen many wonderful metaprogramming spells—but it’s possible
that the meaning of the “m” word has only become fuzzier for you. The fact
is, the original definition of metaprogramming as “writing code that writes
code” doesn’t fit every technique described in this book.

Rather than look for an updated, Wikipedia-worthy definition, we can accept
that metaprogramming is not a single approach that you can define in a short
sentence. It’s more like a heterogeneous bag of tricks that all happen to revolve
around the Ruby object model. And like any other bag of tricks, metaprogram-
ming really comes into its own when you start blending many of those tricks
together.

Today you’ll learn a few new tricks you can add to that bag, including one
that quite literally “writes code.” But even better, you’ll see how you can
seamlessly mix and match many tricks to solve a difficult coding challenge.

Coding Your Way to the Weekend
Where your boss challenges you and Bill to write better code than she can.

After such an eventful week, you’re looking forward to a relaxing Friday. But
as soon as you sit down with Bill and your cup of coffee, your boss appears.

“You guys did a good job this week,” she says. “Looking over your code, I got
so excited about metaprogramming that I decided to learn it myself. But last
night I got stuck on a difficult coding problem. Can you help me?”

Having a boss who used to be a programmer and still likes to get her hands
dirty can sometimes make your life harder. But you’re new at this job, and
you can’t say no when your boss is asking for your help.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The Boss’ Challenge
A few days ago, your boss learned about the attr_accessor method that you read
about in The attr_accessor() Example, on page 116. Now she’s using attr_accessor
all the time to generate her objects’ attributes. While she was at it, your boss
also came up with the idea of writing her own Class Macro (117), similar to at-
tr_accessor, which generates a validated attribute. “I call it attr_checked,” she says.

Your boss explains how this attr_checked method should work, pointing out
that it should take the name of the attribute, as well as a block. The block is
used for validation. If you assign a value to the attribute and the block doesn’t
return true for that value, then you get a runtime exception.

Your boss’ first requirement is an attr_checked Class Macro, and she explains
her secondary requirement: “I don’t want this attr_checked method to be available
to each and every class, because I don’t like the idea of cluttering standard
classes with my own methods. Instead, a class should gain access to attr_checked
only when it includes a CheckedAttributes module.” She provides this example:

class Person
include CheckedAttributes➤

attr_checked :age do |v|
v >= 18

end
end

me = Person.new
me.age = 39 # OK
me.age = 12 # Exception

Your task today is to write CheckedAttributes and attr_checked for your boss.

A Development Plan
The boss’ challenge is a bit too much to handle in a single burst of coding.
You’ll get to a solution in small steps.

Instead of engaging in pair programming, Bill proposes sharing roles: he’ll
manage the development, and you’ll write the code. While you wonder what
“managing the development” actually means, Bill quickly lists the steps you’ll
take:

1. Write a Kernel Method (32) named add_checked_attribute using eval to add a
super-simple validated attribute to a class.

2. Refactor add_checked_attribute to remove eval.

Chapter 6. Friday: Code That Writes Code • 140

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

3. Validate attributes through a block.

4. Change add_checked_attribute to a Class Macro (117) named attr_checked that’s
available to all classes.

5. Write a module adding attr_checked to selected classes through a hook.

“Aren’t we supposed to work as a pair?” you ask. “I don’t even understand
these steps.”

“Don’t worry,” Bill says. “You really only need to learn two things before you
start developing: one is a method named eval, and the other is the concept of
a Hook Method.” He vows to tell you everything you need to know about eval,
because eval is necessary for the first development step. You will deal with
Hook Methods later.

Kernel#eval
Where you learn that, when it comes right down to it, code is just text.

You already learned about instance_eval and class_eval (in instance_eval(), on page
85, and class_eval(), on page 107, respectively). Now you can get acquainted
with the third member of the *eval family—a Kernel Method (32) that’s simply
named eval. Kernel#eval is the most straightforward of the three *eval methods.

Spell: String of CodeInstead of a block, it takes a string that contains Ruby code—a String of Code
for short. Kernel#eval executes the code in the string and returns the result:

ctwc/simple_eval.rb
array = [10, 20]
element = 30
eval("array << element") # => [10, 20, 30]

Executing a literal string of Ruby code is a pretty pointless exercise, but the
power of eval becomes apparent when you compute your Strings of Code on
the fly. Here’s an example.

The REST Client Example
REST Client (installed with gem install rest-client) is a simple HTTP client library.
It includes an interpreter where you can issue regular Ruby commands
together with HTTP methods such as get:

restclient http://www.twitter.com➾

> html_first_chars = get("/")[0..14]
=> "<!DOCTYPE html>"

report erratum • discuss

Kernel#eval • 141

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/simple_eval.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

If you look in the gem’s source, you will see that get and the three other basic
HTTP methods are defined on the Resource class:

gems/rest-client-1.6.7/lib/restclient/resource.rb
module RestClient

class Resource
def get(additional_headers={}, &block) # ...
def post(payload, additional_headers={}, &block) # ...
def put(payload, additional_headers={}, &block) # ...
def delete(additional_headers={}, &block) # ...

To make get and its siblings available in the interpreter, REST Client defines
four top-level methods that delegate to the methods of a Resource at a specific
URL. For example, here is how the top-level get delegates to a Resource (returned
by the r method):

def get(path, *args, &b)
r[path].get(*args, &b)

end

You might expect to find this definition of get in the source code, together with
similar definitions for put, post, and delete. However, here comes a twist. Instead
of defining the four methods separately, REST Client defines all of them in
one shot by creating and evaluating four Strings of Code (141) in a loop:

gems/rest-client-1.6.7/bin/restclient
POSSIBLE_VERBS = ['get', 'put', 'post', 'delete']

POSSIBLE_VERBS.each do |m|
eval <<-end_eval

def #{m}(path, *args, &b)
r[path].#{m}(*args, &b)

end
end_eval

end

The code above uses an exotic syntax known as a here document, or heredoc
for short. What you’re seeing after the eval is just a regular Ruby string,
although it’s not delimited by the usual quotes. Instead, it starts with a <<-
sequence followed by an arbitrary termination sequence—in this case, end_eval.
The string ends on the first line that contains only the termination sequence,
so this particular string spans the lines from the def to the first end included.
The code uses regular string substitution to generate and eval four Strings of
Code, one each for the definitions of get, put, post, and delete.

Most Strings of Code feature some kind of string substitution, as in the
example above. For an alternate way to use eval, you can evaluate arbitrary

Chapter 6. Friday: Code That Writes Code • 142

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/rest-client-1.6.7/lib/restclient/resource.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/rest-client-1.6.7/bin/restclient
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Strings of Code from an external source, effectively building your own simple
Ruby interpreter.

If you want to use Kernel#eval to its fullest potential, you should also learn
about the Binding class.

Binding Objects
A Binding is a whole scope packaged as an object. The idea is that you can
create a Binding to capture the local scope and carry it around. Later, you can
execute code in that scope by using the Binding object in conjunction with eval.

You can create a Binding with the Kernel#binding method:

ctwc/bindings.rb
class MyClass
def my_method
@x = 1
binding

end
end

b = MyClass.new.my_method

You can think of Binding objects as “purer” forms of closures than blocks
because these objects contain a scope but don’t contain code. You can evaluate
code in the captured scope by passing the Binding as an additional argument
to eval:

eval "@x", b # => 1

Ruby also provides a predefined constant named TOPLEVEL_BINDING, which is
just a Binding of the top-level scope. You can use it to access the top-level scope
from anywhere in your program:

class AnotherClass
def my_method
eval "self", TOPLEVEL_BINDING

end
end

AnotherClass.new.my_method # => main

One gem that makes good use of bindings is Pry, which you met in The Pry
Example, on page 49. Pry defines an Object#pry method that opens an interactive
session inside the object’s scope, similar to what irb does with nested sessions.
You can use this function as a debugger of sorts: instead of setting a break-
point, you add a line to your code that calls pry on the current bindings, as
shown in the following code.

report erratum • discuss

Kernel#eval • 143

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/bindings.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

code...
require "pry"; binding.pry
more code...

The call to binding.pry opens a Ruby interpreter in the current bindings, right
inside the running process. From there, you can read and change your vari-
ables at will. When you want to exit the interpreter, just type exit to continue
running the program. Thanks to this feature, Pry is a great alternative to
traditional debuggers.

Pry is not the only command-line interpreter that uses bindings. Let’s also
look at irb, the default Ruby command-line utility.

The irb Example
At its core, irb is just a simple program that parses the standard input or a
file and passes each line to eval. (This type of program is sometimes called a

Spell: Code Processor Code Processor.) Here’s the line that calls eval, deep within irb’s source code,
in a file named workspace.rb:

eval(statements, @binding, file, line)

The statements argument is just a line of Ruby code. But what about those
three additional arguments to eval? Let’s go through them.

The first optional argument to eval is a Binding, and irb can change this argu-
ment to evaluate code in different contexts. This happens, for example, when
you open a nested irb session on a specific object, by typing irb followed by
the name of an object in an existing irb session. As a result, your next com-
mands will be evaluated in the context of the object, similar to what instance_eval
does.

What about file and line, the remaining two optional arguments to eval? These
arguments are used to tweak the stack trace in case of exceptions. You can
see how they work by writing a Ruby program that raises an exception:

ctwc/exception.rb
this file raises an Exception on the second line
x = 1 / 0

You can process this program with irb by typing irb exception.rb at the prompt.
If you do that, you’ll get an exception on line 2 of exception.rb:

ZeroDivisionError: divided by 0❮
from exception.rb:2:in `/'

When irb calls eval, it calls it with the filename and line number it’s currently
processing. That’s why you get the right information in the exception’s stack

Chapter 6. Friday: Code That Writes Code • 144

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/exception.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

trace. Just for fun, you can hack irb’s source and remove the last two argu-
ments from the call to eval (remember to undo the change afterward):

eval(statements, @binding) # , file, line)

Run irb exception.rb now, and the exception reports the file and line where eval
is called:

ZeroDivisionError: divided by 0❮
from /Users/nusco/.rvm/rubies/ruby-2.0.0/lib/ruby/2.0.0/irb/workspace.rb:54:in `/'

This kind of hacking of the stack trace is especially useful when you write
Code Processors—but consider using it everywhere you evaluate a String of
Code (141) so you can get a better stack trace in case of an exception.

Strings of Code vs. Blocks
In Kernel#eval, on page 141, you learned that eval is a special case in the eval*
family: it evaluates a String of Code (141) instead of a block, like both class_eval
and instance_eval do. However, this is not the whole truth. Although it’s true
that eval always requires a string, instance_eval and class_eval can take either a
String of Code or a block.

This shouldn’t come as a big surprise. After all, code in a string is not that
different from code in a block. Strings of Code can even access local variables
like blocks do:

array = ['a', 'b', 'c']
x = 'd'
array.instance_eval "self[1] = x"

array # => ["a", "d", "c"]

Because a block and a String of Code are so similar, in many cases you have
the option of using either one. Which one should you choose? The short
answer is that you should probably avoid Strings of Code whenever you have
an alternative. Let’s see why.

The Trouble with eval()
Strings of Code are powerful, no doubt about that. But with great power comes
great responsibility—and danger.

To start with, Strings of Code don’t always play well with your editor’s syntax
coloring and autocompletion. Even when they do get along with everyone,
Strings of Code tend to be difficult to read and modify. Also, Ruby won’t report
a syntax error in a String of Code until that string is evaluated, potentially
resulting in brittle programs that fail unexpectedly at runtime.

report erratum • discuss

Kernel#eval • 145

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Thankfully, these annoyances are minor compared to the biggest issue with
eval: security. This particular problem calls for a more detailed explanation.

Code Injection

Assume that, like most people, you have trouble remembering what each of
the umpteen methods of Array does. As a speedy way to refresh your memory,
you can write an eval-based utility that allows you to call a method on a
sample array and view the result (call it the array explorer):

ctwc/array_explorer.rb
def explore_array(method)
code = "['a', 'b', 'c'].#{method}"
puts "Evaluating: #{code}"
eval code

end

loop { p explore_array(gets()) }

The infinite loop on the last line collects strings from the standard input and
feeds these strings to explore_array. In turn, explore_array turns the strings into
method calls on a sample array. For example, if you feed the string "revert()"
to explore_array, the method will evaluate the string "[’a’, ’b’, ’c’].revert()". It’s
time to try out this utility:

find_index("b")➾
Evaluating: ['a', 'b', 'c'].find_index("b")❮
1
map! {|e| e.next }➾
Evaluating: ['a', 'b', 'c'].map! {|e| e.next }❮
["b", "c", "d"]

Now imagine that, being a sharing kind of person, you decide to make this
program widely available on the web. You hack together a quick web page,
and—presto!—you have a site where people can call array methods and see
the results. (To sound like a proper startup, you might call this site “Arry” or
maybe “MeThood.”) Your wonderful site takes the Internet by storm, until a
sneaky user feeds it a string like this:

object_id; Dir.glob("*")➾
['a', 'b', 'c'].object_id; Dir.glob("*") => [your own private information here]❮

The input is an inconsequential call to the array, followed by a command that
lists all the files in your program’s directory. Oh, the horror! Your malicious
user can now execute arbitrary code on your computer—code that does
something terrible like wipe your hard disk clean or post your love letters to
your entire address book. This kind of exploit is called a code injection attack.

Chapter 6. Friday: Code That Writes Code • 146

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/array_explorer.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Defending Yourself from Code Injection

How can you protect your code from code injection? You might parse all
Strings of Code (141) to identify operations that are potentially dangerous. This
approach may prove ineffective, though, because there are so many possible
ways to write malicious code. Trying to outsmart a determined hacker can
be dangerous to both your computer and your ego.

When it comes to code injection, some strings are safer than others. Only
strings that derive from an external source can contain malicious code, so
you might simply limit your use of eval to those strings that you wrote yourself.
This is the case in The REST Client Example, on page 141. In more complicated
cases, however, it can be surprisingly difficult to track which strings come
from where.

With all these challenges, some programmers advocate banning eval altogether.
Programmers tend to be paranoid about anything that might possibly go
wrong, so this eval ban turns out to be a pretty popular choice. (Actually, we’re
not paranoid. It’s the government putting something in the tap water that
makes us feel that way.)

If you do away with eval, you’ll have to look for alternative techniques on a
case-by-case basis. For an example, look back at the eval in The REST Client
Example, on page 141. You could replace it with a Dynamic Method (51) and
Dynamic Dispatch (49):

ctwc/rest_client_without_eval.rb
POSSIBLE_VERBS.each do |m|

define_method m do |path, *args, &b|
r[path].send(m, *args, &b)

end
end

In the same way, you could rewrite the Array Explorer utility from Code
Injection, on page 146, by using a Dynamic Dispatch in place of eval:

ctwc/array_explorer_without_eval.rb
def explore_array(method, *arguments)

['a', 'b', 'c'].send(method, *arguments)
end

Still, there are times when you might just miss eval. For example, this latest,
safer version of the Array Explorer wouldn’t allow your web user to call a
method that takes a block. If you want to describe a Ruby block in a web
interface, you need to allow the user to insert arbitrary Strings of Code.

report erratum • discuss

Kernel#eval • 147

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/rest_client_without_eval.rb
http://media.pragprog.com/titles/ppmetr2/code/ctwc/array_explorer_without_eval.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

It’s not easy to hit the sweet spot between too much eval and no eval at all. If
you don’t want to abstain from eval completely, Ruby does provide some fea-
tures that make it somewhat safer. Let’s take a look at them.

Tainted Objects and Safe Levels

Ruby automatically marks potentially unsafe objects—in particular, objects
that come from external sources—as tainted. Tainted objects include strings
that your program reads from web forms, files, the command line, or even a
system variable. Every time you create a new string by manipulating tainted
strings, the result is itself tainted. Here’s an example program that checks
whether an object is tainted by calling its tainted? method:

ctwc/tainted_objects.rb
read user input
user_input = "User input: #{gets()}"
puts user_input.tainted?

x = 1➾
true❮

If you had to check every string for taintedness, then you wouldn’t be in a
much better position than if you had simply tracked unsafe strings on your
own. But Ruby also provides the notion of safe levels, which complement
tainted objects nicely. When you set a safe level (which you can do by
assigning a value to the $SAFE global variable), you disallow certain potentially
dangerous operations.

You can choose from four safe levels, from the default 0 (“hippie commune,”
where you can hug trees and format hard disks) to 3 (“military dictatorship,”
where every object you create is tainted by default). A safe level of 2, for
example, disallows most file-related operations. Any safe level greater than 0
also causes Ruby to flat-out refuse to evaluate tainted strings:

$SAFE = 1
user_input = "User input: #{gets()}"
eval user_input

x = 1➾
SecurityError: Insecure operation - eval❮

Ruby 2.0 and earlier also had a safe level of 4 that didn’t even allow you to
exit the program freely. For various reasons, this extreme safe level turned
out to be not as secure as people assumed it would be, so it has been removed
in Ruby 2.1.

Chapter 6. Friday: Code That Writes Code • 148

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/tainted_objects.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

To fine-tune safety, you can explicitly remove the taintedness on Strings of
Code before you evaluate them (you can do that by calling Object#untaint) and
then rely on safe levels to disallow dangerous operations such as disk access.

By using safe levels carefully, you can write a controlled environment for eval.
Spell: SandboxSuch an environment is called a Sandbox. Let’s take a look at a Sandbox

taken from a real-life library.

The ERB Example

The ERB standard library is the default Ruby template system. This library
is a Code Processor (144) that you can use to embed Ruby into any file, such
as this template containing a snippet of HTML:

ctwc/template.rhtml
<p>Wake up! It's a nice sunny <%= Time.new.strftime("%A") %>.</p>

The special <%= ... > tag contains embedded Ruby code. When you pass this
template through ERB, the code is evaluated:

ctwc/erb_example.rb
require 'erb'
erb = ERB.new(File.read('template.rhtml'))
erb.run

<p>Wake up! It's a nice sunny Friday.</p>❮

Somewhere in ERB’s source, there must be a method that takes a snippet of
Ruby code extracted from the template and passes it to eval. Sure enough,
here it is:

class ERB
def result(b=new_toplevel)
if @safe_level
proc {
$SAFE = @safe_level
eval(@src, b, (@filename || '(erb)'), 0)

}.call
else
eval(@src, b, (@filename || '(erb)'), 0)

end
end
#...

new_toplevel is a method that returns a copy of TOPLEVEL_BINDING. The @src instance
variable carries the content of a code tag, and the @safe_level instance variable
contains the safe level required by the user. If no safe level is set, the content
of the tag is simply evaluated. Otherwise, ERB builds a quick Sandbox (149):
it makes sure that the global safe level is exactly what the user asked for and

report erratum • discuss

Kernel#eval • 149

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/template.rhtml
http://media.pragprog.com/titles/ppmetr2/code/ctwc/erb_example.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

also uses a Proc as a Clean Room (87) to execute the code in a separate scope.
(Note that the new value of $SAFE applies only inside the Proc. Contrary to what
happens with other global variables, the Ruby interpreter takes care to reset
$SAFE to its former value after the call.)

“Now,” Bill says, finally wrapping up his long explanation, “you know about
eval and how dangerous it can be. But eval is great to get code up and running
quickly. That’s why you can use this method as a first step to solve your
original problem: writing the attribute generator for the boss.”

Kernel#eval() and Kernel#load()

Ruby has methods like Kernel#load and Kernel#require that take the name of a source file
and execute code from that file. If you think about it, evaluating a file is not that dif-
ferent from evaluating a string. This means load and require are somewhat similar to
eval. Although these methods are not really part of the *eval family, you can think of
them as first cousins.

You can usually control the content of your files, so you don’t have as many security
concerns with load and require as you do with eval. Still, safe levels higher than 1 do
put some limitations on importing files. For example, a safe level of 2 or higher pre-
vents you from using load with a tainted filename.

Quiz: Checked Attributes (Step 1)
Where you take your first step toward solving the boss’ challenge, with Bill
looking over your shoulder.

You and Bill look back at the first two steps of your development plan:

1. Write a Kernel Method (32) named add_checked_attribute using eval to add a
super-simple validated attribute to a class.

2. Refactor add_checked_attribute to remove eval.

Focus on the first step. The add_checked_attribute method should generate a
reader method and a writer method, pretty much like attr_accessor does. How-
ever, add_checked_attribute should differ from attr_accessor in three ways. First,
while attr_accessor is a Class Macro (117), add_checked_attribute is supposed to be a
simple Kernel Method (32). Second, attr_accessor is written in C, while
add_checked_attribute should use plain Ruby (and a String of Code (141)). Finally,
add_checked_attribute should add one basic example of validation to the attribute:
the attribute will raise a runtime exception if you assign it either nil or false.
(You’ll deal with flexible validation down the road.)

These requirements are expressed more clearly in a test suite:

Chapter 6. Friday: Code That Writes Code • 150

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

ctwc/checked_attributes/eval.rb
require 'test/unit'

class Person; end

class TestCheckedAttribute < Test::Unit::TestCase
def setup
add_checked_attribute(Person, :age)
@bob = Person.new

end

def test_accepts_valid_values
@bob.age = 20
assert_equal 20, @bob.age

end

def test_refuses_nil_values
assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = nil
end

end

def test_refuses_false_values
assert_raises RuntimeError, 'Invalid attribute' do
@bob.age = false

end
end

end

Here is the method that you should implement.
def add_checked_attribute(klass, attribute)

...
end

(The reference to the class in add_checked_attribute is called klass because class is
a reserved word in Ruby.)

Can you implement add_checked_attribute and pass the test?

Before You Solve This Quiz…
You need to generate an attribute like attr_accessor does. You might appreciate
a short review of attr_accessor, which we talked about first in The attr_accessor()
Example, on page 116. When you tell attr_accessor that you want an attribute
named, say, :my_attr, it generates two Mimic Methods (218) like the following:

report erratum • discuss

Quiz: Checked Attributes (Step 1) • 151

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/checked_attributes/eval.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def my_attr
@my_attr

end

def my_attr=(value)
@my_attr = value

end

Quiz Solution
Here’s a solution:

def add_checked_attribute(klass, attribute)
eval "➤

class #{klass}➤

def #{attribute}=(value)➤

raise 'Invalid attribute' unless value➤

@#{attribute} = value➤

end➤
➤

def #{attribute}()➤

@#{attribute}➤

end➤

end➤

"➤

end

Here’s the String of Code (141) that gets evaluated when you call
add_checked_attribute(String, :my_attr):

class String
def my_attr=(value)
raise 'Invalid attribute' unless value
@my_attr = value

end

def my_attr()
@my_attr

end
end

The String class is treated as an Open Class (14), and it gets two new methods.
These methods are almost identical to those that would be generated by
attr_accessor, with an additional check that raises an exception if you call
my_attr= with either nil or false.

“That was a good start,” Bill says. “But remember our plan. We only used eval
to pass the unit tests quickly; we don’t want to stick with eval for the real
solution. This takes us to step 2.”

Chapter 6. Friday: Code That Writes Code • 152

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Quiz: Checked Attributes (Step 2)
Where you make your code eval-free.

You glance at the development plan. Your next step is refactoring
add_checked_attribute and replacing eval with regular Ruby methods.

You may be wondering why the obsession with removing eval. How can
add_checked_attribute be a target for a code injection attack if it’s meant to be
used only by you and your teammates? The problem is, you never know
whether this method might be exposed to the world some time in the future.
Besides, if you rewrite the same method without using Strings of Code (141),
it will only get clearer and more elegant for human readers, and less confusing
for tools like syntax higlighters. These considerations are reason enough to
go forward and drop eval altogether.

Can you refactor add_checked_attribute with the same method signature and the
same unit tests but using standard Ruby methods in place of eval? Be fore-
warned that to solve this quiz, you’ll have to do some research. You’ll probably
need to dig through the Ruby standard libraries for methods that can replace
the operations in the current String of Code. You’ll also need to manage scope
carefully so that the attribute is defined in the context of the right class. (Hint:
remember Flat Scopes (83)?)

Quiz Solution
To define methods in a class, you need to get into that class’s scope. The
previous version of add_checked_attribute did that by using an Open Class (14)
inside a String of Code. If you remove eval, you cannot use the class keyword
anymore, because class won’t accept a variable for the class name. Instead,
you can get into the class’s scope with class_eval.

ctwc/checked_attributes/no_eval.rb
def add_checked_attribute(klass, attribute)

klass.class_eval do➤

...➤

end➤

end

You’re in the class now, and you can define the reader and writer methods.
Previously, you did that by using the def keyword in the String of Code. Again,
you can no longer use def, because you won’t know the names of the methods
until runtime. In place of def, you can use Dynamic Methods (51):

def add_checked_attribute(klass, attribute)
klass.class_eval do

report erratum • discuss

Quiz: Checked Attributes (Step 2) • 153

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/checked_attributes/no_eval.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

define_method "#{attribute}=" do |value|➤

...➤

end➤
➤

define_method attribute do➤

...➤

end➤

end
end

The previous code defines two Mimic Methods (218) that are supposed to read
and write an instance variable. How can the code do this without evaluating
a String of Code? If you browse through Ruby’s documentation, you’ll find a
few methods that manipulate instance variables, including Object#instance_vari-
able_get and Object#instance_variable_set. Let’s use them:

def add_checked_attribute(klass, attribute)
klass.class_eval do

define_method "#{attribute}=" do |value|
raise 'Invalid attribute' unless value➤

instance_variable_set("@#{attribute}", value)➤

end

define_method attribute do
instance_variable_get "@#{attribute}"➤

end
end

end

“That’s it,” Bill says. “We now have a method that enters a class scope and
defines instance methods that manipulate instance variables, and there’s no
string-based eval to speak of. Now that our code is both working and eval-free,
we can move on to the third step in our development plan.”

Quiz: Checked Attributes (Step 3)
Where you sprinkle some flexibility over today’s project.

To solve the boss’ challenge, you and Bill still need to implement a few
important features. One of these features is described in the third step of
your development plan: “validate attributes through a block.” Right now, your
generated attribute raises an exception if you assign it nil or false. But it’s
supposed to support flexible validation through a block.

Because this step changes the interface of add_checked_attribute, it also calls for
an update of the test suite. Bill replaces the two test cases that checked for
nil or false attributes with a single new test case:

Chapter 6. Friday: Code That Writes Code • 154

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

ctwc/checked_attributes/block.rb
require 'test/unit'

class Person; end

class TestCheckedAttribute < Test::Unit::TestCase
def setup
add_checked_attribute(Person, :age) {|v| v >= 18 }➤

@bob = Person.new
end

def test_accepts_valid_values
@bob.age = 20
assert_equal 20, @bob.age

end

def test_refuses_invalid_values➤

assert_raises RuntimeError, 'Invalid attribute' do➤

@bob.age = 17➤

end➤

end➤

end

def add_checked_attribute(klass, attribute, &validation)➤

... (The code here doesn't pass the test. Modify it.)
end

Can you modify add_checked_attribute so that it passes the new tests?

Quiz Solution
You can pass the tests and solve the quiz by changing a couple of lines in
add_checked_attribute:

def add_checked_attribute(klass, attribute, &validation)➤

klass.class_eval do
define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless validation.call(value)➤

instance_variable_set("@#{attribute}", value)
end

define_method attribute do
instance_variable_get "@#{attribute}"

end
end

end

“Step 3 was quick,” Bill notes. “Let’s move on to step 4.”

report erratum • discuss

Quiz: Checked Attributes (Step 3) • 155

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/checked_attributes/block.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Quiz: Checked Attributes (Step 4)
Where you pull a Class Macro (117) from your bag of tricks.

The fourth step in your development plan asks you to change the Kernel
Method to a Class Macro (117) that’s available to all classes.

What this means is that instead of an add_checked_attribute method, you want
an attr_checked method that the boss can use in a class definition. Also, instead
of taking a class and an attribute name, this new method should take only
the attribute name, because the class is already available as self.

Bill updates the test case:

ctwc/checked_attributes/macro.rb
require 'test/unit'

class Person
attr_checked :age do |v|➤

v >= 18➤

end➤

end

class TestCheckedAttributes < Test::Unit::TestCase
def setup
@bob = Person.new➤

end

def test_accepts_valid_values
@bob.age = 20
assert_equal 20, @bob.age

end

def test_refuses_invalid_values
assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = 17
end

end
end

Can you write the attr_checked method and pass the tests?

Quiz Solution
Think back to the discussion of class definitions in Class Definitions Demys-
tified, on page 106. If you want to make attr_checked available to any class defi-
nition, you can simply make it an instance method of either Class or Module.
Let’s go for the first option:

Chapter 6. Friday: Code That Writes Code • 156

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/checked_attributes/macro.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

ctwc/checked_attributes/macro.rb
class Class➤

def attr_checked(attribute, &validation)➤

define_method "#{attribute}=" do |value|
raise 'Invalid attribute' unless validation.call(value)
instance_variable_set("@#{attribute}", value)

end
define_method attribute do
instance_variable_get "@#{attribute}"

end
end➤

end➤

This code doesn’t even need to call to class_eval, because when the method
executes, the class is already taking the role of self.

“That’s great,” Bill says. “One more step, and we’ll be done.” For this last step,
however, you need to learn about a feature that we haven’t talked about yet:
Hook Methods.

Hook Methods
Where you get one of Bill’s thorough lessons in advanced coding.

The object model is an eventful place. Lots of things happen there as your
code runs: classes are inherited, modules are mixed into classes, and methods
are defined, undefined, and removed. Imagine if you could “catch” these events
like you catch GUI mouse-click events. You’d be able to execute code when-
ever a class is inherited or whenever a class gains a new method.

Well, it turns out you can do all these things. This program prints a notifica-
tion on the screen when a class inherits from String:

ctwc/hooks.rb
class String
def self.inherited(subclass)
puts "#{self} was inherited by #{subclass}"

end
end

class MyString < String; end

String was inherited by MyString❮

The inherited method is an instance method of Class, and Ruby calls it when a
class is inherited. By default, Class#inherited does nothing, but you can override
it with your own code as in the earlier example. A method such as Class#inher-

Spell: Hook Methodited is called a Hook Method because you can use it to hook into a particular
event.

report erratum • discuss

Hook Methods • 157

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/checked_attributes/macro.rb
http://media.pragprog.com/titles/ppmetr2/code/ctwc/hooks.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

More Hooks
Ruby provides a motley bunch of hooks that cover the most newsworthy
events in the object model. Just as you override Class#inherited to plug into the
lifecycle of classes, you can plug into the lifecycle of modules by overriding
Module#included and (in Ruby 2.0) Module#prepended:

module M1
def self.included(othermod)

puts "M1 was included into #{othermod}"
end

end

module M2
def self.prepended(othermod)

puts "M2 was prepended to #{othermod}"
end

end

class C
include M1
prepend M2

end

M1 was included into C❮
M2 was prepended to C

You can also execute code when a module extends an object by overriding
Module#extended. Finally, you can execute method-related events by overriding
Module#method_added, method_removed, or method_undefined.

module M
def self.method_added(method)

puts "New method: M##{method}"
end

def my_method; end
end

New method: M#my_method❮

These hooks only work for regular instance methods, which live in the object’s
class. They don’t work for Singleton Methods (114), which live in the object’s
singleton class. To catch Singleton Method events, you can use BasicObject#sin-
gleton_method_added, singleton_method_removed, and singleton_method_undefined.

Module#included is probably the most widely used hook, thanks to a common
metaprogramming spell that’s worthy of an example of its own.

Chapter 6. Friday: Code That Writes Code • 158

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Plugging into Standard Methods

The notion of hooks extends beyond specialized methods like Class#inherited or
Module#method_added. Because most operations in Ruby are just regular methods, you
can easily twist them into improvised Hook Methods.

For example, in Hook Methods, on page 157, you learned how to override Module#included
to execute code when a module is included. But you can also plug into the same
event, so to speak, from the other side: because you include a module with the include
method, instead of overriding Module#included, you can override Module#include itself.

For example:

module M; end

class C
def self.include(*modules)

puts "Called: C.include(#{modules})"
super

end

include M
end

Called: C.include(M)❮

There is an important difference between overriding Module#included and overriding
Module#include. Module#included exists solely to be used as a Hook Method, and its default
implementation is empty. But Module#include has some real work to do: it must actually
include the module. That’s why our hook’s code also should call the base implemen-
tation of Module#include through super. If you forget super, you’ll still catch the event, but
you won’t include the module anymore.

As an alternative to overriding, you can turn a regular method into a Hook Method
by using an Around Alias (134). You can find an example of this technique in The Thor
Example, on page 133.

The VCR Example
VCR is a gem that records and replays HTTP calls. The Request class in VCR
includes a Normalizers::Body module:

module VCR
class Request #...

include Normalizers::Body
#...

The Body module defines methods that deal with an HTTP message body, such
as body_from. After the include, those methods become class methods on Request.
Yes, you read that right: Request is gaining new class methods by including

report erratum • discuss

Hook Methods • 159

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Normalizers::Body. But a class usually gets instance methods by including a
module—not class methods. How can a mixin like Normalizers::Body bend the
rules and define class methods on its includer?

Look for the answer in the definition of the Body module itself:

gems/vcr-2.5.0/lib/vcr/structs.rb
module VCR

module Normalizers
module Body
def self.included(klass)

klass.extend ClassMethods
end

module ClassMethods
def body_from(hash_or_string)

...

The code above pulls off a convoluted trick. Body has an inner module named
ClassMethods that defines body_from and other methods as regular instance
methods. Body also has an included Hook Method (157). When Request includes
Body, it triggers a chain of events:

• Ruby calls the included hook on Body.

• The hook turns back to Request and extends it with the ClassMethods module.

• The extend method includes the methods from ClassMethods in the Request’s
singleton class. (You might remember this last part of the trick from Quiz:
Module Trouble, on page 129.)

As a result, body_from and other instance methods get mixed into the singleton
class of Request, effectively becoming class methods of Request. How’s that for
a complicated code concoction?

This ClassMethods-plus-hook idiom used to be quite common, and it was used
extensively by the Rails source code. As you’ll see in Chapter 10, Active Sup-
port's Concern Module, on page 179, Rails has since moved to an alternate
mechanism—but you can still find examples of the idiom in VCR and other
gems.

Quiz: Checked Attributes (Step 5)
Where you finally earn Bill’s respect and the title of Master of Metaprogramming.

The following is the code that we wrote in the previous development step:

Chapter 6. Friday: Code That Writes Code • 160

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/vcr-2.5.0/lib/vcr/structs.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

class Class
def attr_checked(attribute, &validation)
define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless validation.call(value)
instance_variable_set("@#{attribute}", value)

end

define_method attribute do
instance_variable_get "@#{attribute}"

end
end

end

This code defines a Class Macro (117) named attr_checked. This Class Macro is
an instance method of Class, so it’s available to all classes. The final step in
your development plan asks you to restrict access to attr_checked: it should be
available only to those classes that include a module named CheckedAttributes.
The test suite for this step is pretty much the same one you used in step 4,
with a single additional line:

ctwc/checked_attributes/module.rb
require 'test/unit'

class Person
include CheckedAttributes➤

attr_checked :age do |v|
v >= 18

end
end

class TestCheckedAttributes < Test::Unit::TestCase
def setup
@bob = Person.new

end

def test_accepts_valid_values
@bob.age = 18
assert_equal 18, @bob.age

end

def test_refuses_invalid_values
assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = 17
end

end
end

report erratum • discuss

Quiz: Checked Attributes (Step 5) • 161

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/ctwc/checked_attributes/module.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Can you remove attr_checked from Class, write the CheckedAttributes module, and
solve the boss’ challenge?

Quiz Solution
You can copy the trick that you learned in The VCR Example, on page 159.
CheckedAttributes defines attr_checked as a class method on its includers:

module CheckedAttributes➤

def self.included(base)➤

base.extend ClassMethods➤

end➤
➤

module ClassMethods➤

def attr_checked(attribute, &validation)
define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless validation.call(value)
instance_variable_set("@#{attribute}", value)

end

define_method attribute do
instance_variable_get "@#{attribute}"

end
end

end➤

end➤

Your boss will be delighted. These are the same Class Macro and module that
she challenged you to write this morning. If you can write code like this, you’re
on your way to mastering the art of metaprogramming.

Wrap-Up
Today you solved a difficult metaprogramming problem, writing your own
useful Class Macro (117). Along the way, you also learned about the powerful
eval method, its issues, and how to work around them. Finally, you got intro-
duced to Ruby’s Hook Methods (157), and you used them to your advantage.

“You learned a lot this week, my friend,” Bill says, smiling for what seems
like the first time this week. “Now you know enough to walk the metaprogram-
ming path on your own. Before we take off for the weekend, let me tell you
one last story.”

“A master developer,” Bill begins, “sits on top of a mountain, meditating…”

Chapter 6. Friday: Code That Writes Code • 162

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 7

Epilogue
A master developer was meditating on top of a steep mountain. So deep was
his meditation, so profoundly interwoven his code and his soul, that he began
to snore gently.

A disciple climbed the mountain and interrupted the master’s concentration.
“I am struggling terribly, Master,” he said. “I’ve studied many advanced
techniques, but I still don’t know how to apply them correctly. Tell me, what’s
the essence of metaprogramming?”

“Look at this small tree by my side,” the master replied, languidly waving his
hand. “See how delicately it bends toward the ground, as if feeding on its own
roots? Thus must your code be: simple and plain, and closing in on itself like
a circle.”

“I am still confused, Master,” said the disciple, even more worried than before.
“They always taught me that self-modifying code is bad. How will I know that
I am wielding this art properly?”

“Look over your code with a pure heart and a clean mind,” the master coached
the disciple. “You will know when the code gets obscure. Exercise your
knowledge to shed light, not to obfuscate and confuse.”

“But Master,” the disciple argued, “I lack experience. I need simple rules to
know right from wrong.”

The master began to get annoyed. “You’re smart enough to learn,” he said,
“but are you smart enough to forget what you have learned? There’s no such
thing as metaprogramming. It’s just programming all the way through. Now
get lost, and let me meditate in peace.”

At those words, the disciple was enlightened.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Part II

Metaprogramming in Rails

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Good artists copy, great artists steal.

 ➤ Pablo Picasso

Preparing for a Rails Tour
In the first part of this book, you spent a week brushing elbows with another
coder and making your way through the internals of Ruby. You also filled
your toolbox with magic metaprogramming tricks, such as Dynamic Methods
(51) and Class Macros (117).

So, you’ve got the know-how and the tools. But now you’re wondering how
to combine them into real-life code. How can you keep your Open Classes
(14) under control? When should you use a Ghost Method (57) rather than a
Dynamic Method (51)? How do you test your Class Macros (117)? To answer
these kinds of questions, you need more than knowledge and tools. You need
experience.

You can’t get experience simply by reading a book, but you can get a lot of
value out of looking at the work of experienced coders. The short chapters in
this second part of the book take you on a tour through the source code of
Ruby on Rails (or just “Rails,” for short), the quintessential Ruby project.
Rails’ code uses metaprogramming at every step and is often more complex
than any code you’ve seen so far in this book. Because of that complexity,
it’s a great example of both the power of metaprogramming and its potential
dangers.

Rather than an exhaustive exploration of Rails, this tour is like a sightseeing
excursion on one of those open-air, double-decker buses. I’ll trace a few scenic
routes through the Rails source code, and in the process show you how some
of the best Ruby programmers apply metaprogramming spells to solve real-
life problems. But first, let’s talk about Rails itself.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Ruby on Rails
Chances are, you already know that Rails is a framework for developing
database-backed web applications in Ruby. Rails is so popular that many
people get into Ruby just so that they can use Rails.

Even if you don’t know much about Rails and its features, you can still follow
along on this tour. We’ll focus on the Rails source code, not on the features.
Whenever features are important to understand the source code, I’ll take the
time to demonstrate them. Although you don’t have to, you might want to get
a quick introduction to Rails on its official site1 if you’re completely new to it.

While touring the Rails source code, I’ll show you the snippets of code I want
to focus on. However, you might also want to keep the source code handy to
explore it on your own. To do that, you need to install Rails.

Installing Rails
Because Rails is always evolving, it’s quite possible that the source code will
have changed significantly by the time you read this chapter. Luckily, you
can easily install the same version of Rails that I used to write this book, by
typing gem install rails -v 4.1.0.

Some of the next few chapters also discuss code from a much older version
of Rails, to show you how Rails’ source code has evolved over time. If you
wish, you can install this older version alongside the more recent one, by
typing gem install rails -v 2.3.2.

Running the commands above installs all the gems that make up Rails 4.1.0
and 2.3.2. The rails gem just contains helpers, such as code generators and
Rake tasks, as well as the glue code that binds together the other gems. Those
other gems are the ones that do the real work. Three of the most important
ones are activerecord (which maps application objects to database tables),
actionpack (which deals with the “web” part of the web framework), and
activesupport (which contains utilities for generic problems, such as time calcu-
lations and logging).

The Rails Source Code
When referring to a specific source file, I’ll give you the file’s path inside the
system’s gems directory, such as gems/activerecord-4.1.0/lib/active_record.rb. If you
want to explore on your own, you can use RubyGem’s unpack command to

1. http://rubyonrails.org

Chapter 8. Preparing for a Rails Tour • 168

report erratum • discusswww.it-ebooks.info

http://rubyonrails.org
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

access Rails’ entire source code with a minimum of fuss. For example, gem
unpack activerecord -v=4.1.0 will copy the entire distribution of Active Record 4.1.0
to the current directory.

As of version 4, Rails and its core libraries contain almost 170,000 lines of
code (including white lines and comments). You can cram a lot of information
into just a few lines of Ruby code—let alone hundreds of thousands. Also,
you can barely find a Rails source file that doesn’t make heavy use of
metaprogramming spells and other sophisticated idioms and techniques. All
things considered, the Rails source code contains enough information to be
intimidating.

These challenges shouldn’t stop you from browsing through this wonderful
code. The Rails source code can be daunting, but it’s also chock full of inter-
esting metaprogramming tricks. Start slowly, don’t get discouraged as you
piece together the basics, and soon you might enter the growing list of Rails
contributors.

Also, don’t forget the unit tests. When you’re confronted with a confusing
piece of code, reach for its tests and find out how it’s supposed to be used.
Once you understand their intention, most perplexing lines of code will sud-
denly make sense.

Now you have the Rails source code and the tools you need to explore it. In
the next chapter, we’ll dive into the first stop on our tour: a quick look at
Active Record, the most iconic of the Rails components.

report erratum • discuss

The Rails Source Code • 169

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 9

The Design of Active Record
Active Record is the library in Rails that maps Ruby objects to database
records. This functionality is called object-relational mapping, and it allows
you to get the best of both the relational database (used for persistence) and
object-oriented programming (used for business logic).

In this chapter, as well as the next two, we’ll take a look at the high-level
design of Active Record’s source code and how its pieces fit together. We are
less interested in what Active Record does than how it does it. All we need is
a very short example of mapping a class to a database—just enough to kick-
start our exploration of Active Record’s internals.

A Short Active Record Example
Assume that you already have a file-based SQLite database that follows Active
Record’s conventions: this database contains a table called ducks, which has
a field called name. You want to map the records in the ducks table to objects
of class Duck in your code.

Let’s start by requiring Active Record and opening a connection to the
database. (If you want to run this code on your system, you also need to
install the SQLite database and the sqlite3 gem. But you can probably follow
along fine by just reading the example, without running it.)

part2/ar_example.rb
require 'active_record'
ActiveRecord::Base.establish_connection :adapter => "sqlite3",

:database => "dbfile"

Note that in a Rails application, you don’t need to worry about opening the
connection; the application reads the names of the adapter and the database
from a configuration file, and it calls establish_connection for you. We’re using
Active Record on its own here, so we have to open the connection ourselves.

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/ar_example.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

ActiveRecord::Base is the most important class in Active Record. Not only does it
contain class methods that do important things, such as opening database
connections, it’s also the superclass of all mapped classes, such as Duck:

class Duck < ActiveRecord::Base
validate do

errors.add(:base, "Illegal duck name.") unless name[0] == 'D'
end

end

The validate method is a Class Macro (117) that takes a block. You don’t have
to worry about the details of the code in the block—just know that in this
example, it ensures that a Duck’s name begins with a D. (Our company’s duck-
naming policies demand that.) If you try to save a Duck with an illegal name
to the database, the save! method will raise an exception, while the more dis-
creet save will fail silently.

By convention, Active Record automatically maps Duck objects to the ducks
table. By looking at the database schema, Active Record also finds out that
Ducks have a name, and it defines a Ghost Method (57) to access that field.
Thanks to these conventions, you can use the Duck class right away:

my_duck = Duck.new
my_duck.name = "Donald"
my_duck.valid? # => true
my_duck.save!

I’ve checked that my_duck is valid (it begins with a D) and saved it to the
database. Reading it back, you get this:

duck_from_database = Duck.first
duck_from_database.name # => "Donald"
duck_from_database.delete

That’s enough code for now to give you a sense of how Active Record is meant
to be used. Now let’s see what’s happening under the hood.

How Active Record Is Put Together
The code in the previous example looks simple, but ActiveRecord::Base is capable
of much more than that. Indeed, the more you use Active Record, the more
the methods in Base seem to multiply. You might assume that Base is a huge
class with thousands of lines of code that define methods such as save or vali-
date.

Surprisingly, the source code of ActiveRecord::Base contains no trace of those
methods. This is a common problem for newcomers to Rails: it’s often difficult

Chapter 9. The Design of Active Record • 172

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

to understand where a specific method comes from and how it gets into a
class such as Base. The rest of this short chapter will look at how ActiveRe-
cord::Base’s functionality is assembled.

Let’s start by taking a step back to the first line in our example: require
'active_record'.

The Autoloading Mechanism
Here’s the code in active_record.rb, the only Active Record file that you’re likely
to require:

gems/activerecord-4.1.0/lib/active_record.rb
require 'active_support'
require 'active_model'
...

module ActiveRecord
extend ActiveSupport::Autoload

autoload :Base
autoload :NoTouching
autoload :Persistence
autoload :QueryCache
autoload :Querying
autoload :Validations
...

Active Record relies heavily on two other libraries that it loads straight away:
Active Support and Active Model. We’ll get to Active Model soon, but one piece
of Active Support is already used in this code: the ActiveSupport::Autoload module,
which defines an autoload method. This method uses a naming convention to
automatically find and require the source code of a module (or class) the first
time you use the module’s name. Active Record extends ActiveSupport::Autoload,
so autoload becomes a class method on the ActiveRecord module itself. (If you’re
confused by this mechanism, look back at the Class Extension (130) spell.)

Active Record then uses autoload as a Class Macro (117) to register dozens of
modules, a few of which you can see in the code above. As a result, Active
Record acts like a smart Namespace (23) that automatically loads all the bits
and pieces that make up the library. For example, when you use ActiveRe-
cord::Base for the first time, autoload automatically requires the file
active_record/base.rb, which in turn defines the class. Let’s take a look at this
definition.

report erratum • discuss

How Active Record Is Put Together • 173

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

ActiveRecord::Base
Here is the entire definition of ActiveRecord::Base:

gems/activerecord-4.1.0/lib/active_record/base.rb
module ActiveRecord

class Base
extend ActiveModel::Naming
extend ActiveSupport::Benchmarkable
extend ActiveSupport::DescendantsTracker
extend ConnectionHandling
extend QueryCache::ClassMethods
extend Querying
extend Translation
extend DynamicMatchers
extend Explain
extend Enum
extend Delegation::DelegateCache

include Core
include Persistence
include NoTouching
include ReadonlyAttributes
include ModelSchema
include Inheritance
include Scoping
include Sanitization
include AttributeAssignment
include ActiveModel::Conversion
include Integration
include Validations
include CounterCache
include Locking::Optimistic
include Locking::Pessimistic
include AttributeMethods
include Callbacks
include Timestamp
include Associations
include ActiveModel::SecurePassword
include AutosaveAssociation
include NestedAttributes
include Aggregations
include Transactions
include Reflection
include Serialization
include Store
include Core

end

ActiveSupport.run_load_hooks(:active_record, Base)
end

Chapter 9. The Design of Active Record • 174

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record/base.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

It’s not uncommon to see a class that assembles its functionality out of
modules, but ActiveRecord::Base does this on a large scale. The code above does
nothing but extend or include tens of modules. (Plus one additional line, the call
to run_load_hooks, that allows some of those modules to run their own configu-
ration code after they’ve been autoloaded.) As it turns out, many of the mod-
ules included by Base also include even more modules.

This is where the autoloading mechanism pays off. ActiveRecord::Base doesn’t
need to require a module’s source code and then include the module. Instead, it
just includes the module. Thanks to autoloading, classes such as Base can do
lots of module inclusions with minimal code.

In some cases, it’s not too hard to find which module a specific method in
Base comes from. For example, persistence methods such as save come from
ActiveRecord::Persistence:

gems/activerecord-4.1.0/lib/active_record/persistence.rb
module ActiveRecord

module Persistence
def save(*) # ...
def save!(*) # ...
def delete # ...

Other method definitions are harder to find. In A Short Active Record Example,
on page 171, you looked at validation methods such as valid? and validate. Let’s
go hunting for them.

The Validations Modules
Among the other modules, ActiveRecord::Base includes a module named ActiveRe-
cord::Validations. This module looks like a good candidate to define methods such
as valid? and validate. Indeed, if you look in ActiveRecord::Validations, you’ll find the
definition of valid?—but no validate:

gems/activerecord-4.1.0/lib/active_record/validations.rb
module ActiveRecord

module Validations
include ActiveModel::Validations
...
def valid?(context = nil) # ...

Where is validate? We can look for the answer in ActiveModel::Validations, a module
that ActiveRecord::Validation includes. This module comes from Active Model, a
library that Active Record depends on. Sure enough, if you look into its source,
you’ll find that validate is defined in ActiveModel::Validation.

report erratum • discuss

How Active Record Is Put Together • 175

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record/persistence.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record/validations.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

A couple of puzzling details exist in this sequence of module inclusions. The
first one is this: normally, a class gains instance methods by including a
module. But validate is a class method on ActiveRecord::Base. How can Base gain
class methods by including modules? This is the topic of the next chapter,
Active Support's Concern Module, where we’ll also look at the metaprogramming
treasure trove that hides behind this assembly of modules. For now, notice
that the modules in Active Record are special. You gain both instance and
class methods by including them.

You might also have this question: why does ActiveRecord::Base need both
ActiveRecord::Validations and ActiveModel::Validations? There is a story behind these
two similarly named modules: in earlier versions of Rails there was no Active
Model library, and validate was indeed defined in ActiveRecord::Validations. As Active
Record kept growing, its authors realized that it was doing two separate jobs.
The first job was dealing with the database operations, such as saving and
loading. The second job was dealing with the object model: maintaining an
object’s attributes, or tracking which of those attributes were valid.

At this point, the authors of Active Record decided to split the library in two
separate libraries, and thus was Active Model born. While the database-
related operations stayed in Active Record, the model-related ones moved to
Active Model. In particular, the valid? method has its own reasons to dabble
with the database (it cares whether an object has ever been saved to the
database already)—so it stayed in ActiveRecord::Validations. On the contrary, validate
has no relationship to the database, and it only cares about the object’s
attributes. So it moved to ActiveModel::Validations.

We could hunt for more method definitions, but by now you can see what
Active Record’s high-level design boils down to: the most important class,
ActiveRecord::Base, is an assembly of modules. Each module adds instance
methods (and even class methods) to the Base mix. Some modules, such as
Validations, in turn include more modules, sometimes from different libraries,
bringing even more methods into Base.

Before looking deeper into Active Record’s structure, let’s see what this
unusual design can teach us.

A Lesson Learned
By including so many modules, ActiveRecord::Base ends up being a very large
class. In a plain-vanilla Rails installation, Base has more than 300 instance
methods and a staggering 550 class methods. ActiveRecord::Base is the ultimate
Open Class (14).

Chapter 9. The Design of Active Record • 176

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

When I looked at Active Record for the first time, I’d been a Java programmer
for years. Active Record’s source code left me shocked. No sane Java coder
would ever write a library that consists almost exclusively of a single huge
class with many hundreds of methods. Such a library would be madness—
impossible to understand and maintain!

And yet, that’s exactly what Active Record’s design is like: most methods in
the library ultimately get rolled inside one class. But wait, it gets worse. As
we’ll discuss later, some of the modules that comprise Active Record don’t
think twice about using metaprogramming to define even more methods on
their includer. To add insult to injury, even additional libraries that work
with Active Record often take the liberty of extending ActiveRecord::Base with
modules and methods of their own. You might think that the result of this
relentless piling up of methods would be a tangled mass of spaghetti. But it
isn’t.

Consider the evidence: not only does Active Record get away with that design,
it also proves easy to read and change. Many users modify and Monkeypatch
(16) Active Record for their own purposes, and hundreds of contributors have
worked on the original source code. Still, the source code evolves so quickly
that the poor authors of books such as this one need to rewrite most of their
content with every new edition. Active Record manages to stay stable and
reliable even as it changes, and most coders are happy using the latest version
of the library in their production systems.

Here is the most important guideline I learned from Active Record’s design:
design techniques are relative, and they depend on the language you’re using.
In Ruby, you use idioms that are different from those of other languages you
might be used to. It’s not that the good design rules of old suddenly grew
obsolete. On the contrary, the basic tenets of design (decoupling, simplicity,
no duplication) hold true in Ruby as much as they do in any other language.
In Ruby, though, the techniques you wield to achieve those design goals can
be surprisingly different.

Look at ActiveRecord::Base again. It’s a huge class, but this complex class doesn’t
exist in the source code. Instead, it is composed at runtime by assembling
loosely coupled, easy-to-test, easy-to-reuse modules. If you only need the
validation features, you can include ActiveModel::Validations in your own class
and happily ignore ActiveRecord::Base and all the other modules, as in the follow-
ing code:

report erratum • discuss

A Lesson Learned • 177

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

part2/validations.rb
require 'active_model'

class User
include ActiveModel::Validations

attr_accessor :password

validate do
errors.add(:base, "Don't let dad choose the password.") if password == '1234'

end
end

user = User.new
user.password = '12345'
user.valid? # => true

user.password = '1234'
user.valid? # => false

Look at how well-decoupled the code above is. ActiveModel::Validations doesn’t
force you to meddle with inheritance, to worry about database-related con-
cerns, or to manage any other complicated dependency. Just by including it,
you get a complete set of validation methods without adding complexity.

Speaking of ActiveModel::Validations, I promised that I’d show you how this module
adds class methods such as validate to its includer. I’ll keep that promise in
the next chapter.

Chapter 9. The Design of Active Record • 178

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/validations.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 10

Active Support’s Concern Module
In the previous chapter, you saw that the modules in Rails are special: when
you include them, you gain both instance and class methods. How does that
happen?

The answer comes from yet another module: Concern, in the Active Support
library. ActiveSupport::Concern twists and bends the Ruby object model. It
encapsulates the “add class methods to your includer” functionality, and it
makes it easy to roll that functionality into other modules.

ActiveSupport::Concern is easier to understand if you know how it came to exist
in the first place. We’ll start by looking back at Rails’ older versions, before
Concern entered the scene.

Rails Before Concern
The Rails source code has changed a lot through the years, but some basic
ideas haven’t changed much. One of these is the concept behind ActiveRe-
cord::Base. As you’ve seen in ActiveRecord::Base, this class is an assembly of
dozens of modules that define both instance methods and class methods. For
example, Base includes ActiveRecord::Validations, and in the process it gets instance
and class methods.

The mechanism that rolls those methods into Base, however, has changed.
Let’s see how it worked in the beginning.

The Include-and-Extend Trick
Around the times of Rails 2, all validation methods were defined in ActiveRe-
cord::Validations. (Back then, there was no Active Model library.) However, Valida-
tions pulled a peculiar trick:

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

gems/activerecord-2.3.2/lib/active_record/validations.rb
module ActiveRecord

module Validations
...

def self.included(base)
base.extend ClassMethods
...

end

module ClassMethods
def validates_length_of(*attrs) # ...
...

end

def valid?
...

end

...
end

end

Does the code above look familiar? You’ve already seen this technique in The
VCR Example, on page 159. Here’s a quick recap. When ActiveRecord::Base includes
Validations, three things happen:

1. The instance methods of Validations, such as valid?, become instance methods
of Base. This is just regular module inclusion.

2. Ruby calls the included Hook Method (157) on Validations, passing ActiveRe-
cord::Base as an argument. (The argument of included is also called base, but
that name has nothing to do with the Base class—instead, it comes from
the fact that a module’s includer is sometimes called “the base class.”)

3. The hook extends Base with the ActiveRecord::Validations::ClassMethods module.
This is a Class Extensions (130), so the methods in ClassMethods become class
methods on Base.

As a result, Base gets both instance methods like valid? and class methods like
validates_length_of.

This idiom is so specific that I hesitate to call it a spell. I’ll refer to it as the
include-and-extend trick. VCR borrowed it from Rails, as did many other Ruby
projects throughout the years. Include-and-extend gives you a powerful way
to structure a library: each module contains a well-isolated piece of function-
ality that you can roll into your classes with a simple include. That functional-
ity can be implemented with instance methods, class methods, or both.

Chapter 10. Active Support’s Concern Module • 180

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/validations.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

As clever as it is, include-and-extend has its own share of problems. For one,
each and every module that defines class methods must also define a similar
included hook that extends its includer. In a large codebase such as Rails’, that
hook was replicated over dozens of modules. As a result, people often ques-
tioned whether include-and-extend was worth the effort. After all, they
observed, you can get the same result by adding one line of code to the
includer:

class Base
include Validations
extend Validations::ClassMethods
...

Include-and-extend allows you to skip the extend line and just write the include
line. You might argue that removing this line from Base isn’t worth the addi-
tional complexity in Validations.

However, complexity is not include-and-extend’s only shortcoming. The trick
also has a deeper issue—one that deserves a close look.

The Problem of Chained Inclusions
Imagine that you include a module that includes another module. You’ve seen
an example of this in The Validations Modules: ActiveRecord::Base includes
ActiveRecord::Validations, which includes ActiveModel::Validations. What would happen
if both modules used the include-and-extend trick? You can find an answer
by looking at this minimal example:

part2/chained_inclusions_broken.rb
module SecondLevelModule

def self.included(base)
base.extend ClassMethods

end

def second_level_instance_method; 'ok'; end

module ClassMethods
def second_level_class_method; 'ok'; end

end
end

module FirstLevelModule
def self.included(base)

base.extend ClassMethods
end

def first_level_instance_method; 'ok'; end

report erratum • discuss

Rails Before Concern • 181

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/chained_inclusions_broken.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

module ClassMethods
def first_level_class_method; 'ok'; end

end

include SecondLevelModule
end

class BaseClass
include FirstLevelModule

end

BaseClass includes FirstLevelModule, which in turn includes SecondLevelModule. Both
modules get in BaseClass’s chain of ancestors, so you can call both modules’
instance methods on an instance of BaseClass:

BaseClass.new.first_level_instance_method # => "ok"
BaseClass.new.second_level_instance_method # => "ok"

Thanks to include-and-extend, methods in FirstLevelModule::ClassMethods also
become class methods on BaseClass:

BaseClass.first_level_class_method # => "ok"

SecondLevelModule also uses include-and-extend, so you might expect methods
in SecondLevelModule::ClassMethods to become class methods on BaseClass. However,
the trick doesn’t work in this case:

BaseClass.second_level_class_method # => NoMethodError

Go through the code step by step, and you’ll see where the problem is. When
Ruby calls SecondLevelModule.included, the base parameter is not BaseClass, but
FirstLevelModule. As a result, the methods in SecondLevelModule::ClassMethods become
class methods on FirstLevelModule—which is not what we wanted.

Rails 2 did include a fix to this problem, but the fix wasn’t pretty: instead of
using include-and-extend in both the FirstLevelModule and the SecondLevelModule,
Rails used it only in the FirstLevelModule. Then FirstLevelModule#included forced the
includer to also include the SecondLevelModule, like this:

part2/chained_inclusions_fixed.rb
module FirstLevelModule

def self.included(base)
base.extend ClassMethods
base.send :include, SecondLevelModule➤

end

...

Distressingly, the code above made the entire system less flexible; it forced
Rails to distinguish first-level modules from other modules, and each module

Chapter 10. Active Support’s Concern Module • 182

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/chained_inclusions_fixed.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

had to know whether it was supposed to be first-level. (To make things
clumsier, Rails couldn’t call Module#include directly, because it was a private
method—so it had to use a Dynamic Dispatch (49) instead. Recent rubies
made include public, but we’re talking ancient history here.)

At this point in our story, you’d be forgiven for thinking that include-and-
extend created more problems than it solved in the first place. This trick
forced multiple modules to contain the same boilerplate code, and it failed if
you had more than one level of module inclusions. To address these issues,
the authors of Rails crafted ActiveSupport::Concern.

ActiveSupport::Concern
ActiveSupport::Concern encapsulates the include-and-extend trick and fixes the
problem of chained inclusions. A module can get this functionality by extending
Concern and defining its own ClassMethods module:

part2/using_concern.rb
require 'active_support'

module MyConcern
extend ActiveSupport::Concern

def an_instance_method; "an instance method"; end

module ClassMethods
def a_class_method; "a class method"; end

end
end

class MyClass
include MyConcern

end

MyClass.new.an_instance_method # => "an instance method"
MyClass.a_class_method # => "a class method"

In the rest of this chapter I’ll use the word “concern” with a lowercase C to
mean “a module that extends ActiveSupport::Concern,” like MyConcern does in the
example above. In modern Rails, most modules are concerns, including
ActiveRecord::Validations and ActiveModel::Validations.

Let’s see how Concern works its magic.

A Look at Concern’s Source Code
The source code of Concern is quite short but also fairly complicated. It defines
just two important methods: extended and append_features. Here is extended:

report erratum • discuss

ActiveSupport::Concern • 183

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/using_concern.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

gems/activesupport-4.1.0/lib/active_support/concern.rb
module ActiveSupport

module Concern
class MultipleIncludedBlocks < StandardError #:nodoc:

def initialize
super "Cannot define multiple 'included' blocks for a Concern"

end
end

def self.extended(base)
base.instance_variable_set(:@_dependencies, [])

end

...

When a module extends Concern, Ruby calls the extended Hook Method (157), and
extended defines an @_dependencies Class Instance Variable (109) on the includer.
I’ll show you what happens to this variable in a few pages. For now, just
remember that all concerns have it, and it’s initially an empty array.

To introduce Concern#append_features, the other important method in Concern, let
me take you on a very short side-trip into Ruby’s standard libraries.

Module#append_features

Module#append_features is a core Ruby method. It’s similar to Module#included, in
that Ruby will call it whenever you include a module. However, there is an
important difference between append_features and included: included is a Hook
Method that is normally empty, and it exists only in case you want to override
it. By contrast, append_features is where the real inclusion happens. append_features
checks whether the included module is already in the includer’s chain of
ancestors, and if it’s not, it adds the module to the chain.

There is a reason why you didn’t read about append_features in the first part of
this book: in your normal coding, you’re supposed to override included, not ap-
pend_features. If you override append_features, you can get some surprising results,
as in the following example:

part2/append_features.rb
module M

def self.append_features(base); end
end

class C
include M

end

C.ancestors # => [C, Object, Kernel, BasicObject]

Chapter 10. Active Support’s Concern Module • 184

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/concern.rb
http://media.pragprog.com/titles/ppmetr2/code/part2/append_features.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

As the code above shows, by overriding append_features you can prevent a
module from being included at all. Interestingly, that’s exactly what Concern
wants to do, as we’ll see soon.

Concern#append_features

Concern defines its own version of append_features.

gems/activesupport-4.1.0/lib/active_support/concern.rb
module ActiveSupport

module Concern
def append_features(base)

...

Remember the Class Extension (130) spell? append_features is an instance method
on Concern, so it becomes a class method on modules that extend Concern. For
example, if a module named Validations extends Concern, then it gains a Valida-
tion.append_features class method. If this sounds confusing, look at this picture
showing the relationships between Module, Concern, Validations, and Validation’s
singleton class:

Figure 10—ActiveSupport::Concern overrides Module#append_features.

Let’s recap what we’ve learned so far. First, modules that extend Concern get
an @_dependencies Class Variable. Second, they get an override of append_features.
With those two concepts in place, we can look at the code that makes Concern
tick.

report erratum • discuss

ActiveSupport::Concern • 185

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/concern.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Inside Concern#append_features

Here is the code in Concern#append_features:

gems/activesupport-4.1.0/lib/active_support/concern.rb
module ActiveSupport

module Concern
def append_features(base)

if base.instance_variable_defined?(:@_dependencies)
base.instance_variable_get(:@_dependencies) << self
return false

else
return false if base < self
@_dependencies.each { |dep| base.send(:include, dep) }
super
base.extend const_get(:ClassMethods) \
if const_defined?(:ClassMethods)

...
end

end

...

This is a hard piece of code to wrap your brain around, but its basic idea is
simple: never include a concern in another concern. Instead, when concerns
try to include each other, just link them in a graph of dependencies. When a
concern is finally included by a module that is not itself a concern, roll all of
its dependencies into the includer in one fell swoop.

Let’s look at the code step by step. To understand it, remember that it is
executed as a class method of the concern. In this scope, self is the concern,
and base is the module that is including it, which might or might not be a
concern itself.

When you enter append_features, you want to check whether your includer is
itself a concern. If it has an @_dependencies Class Variable, then you know it is
a concern. In this case, instead of adding yourself to your includer’s chain of
ancestors, you just add yourself to its list of dependencies, and you return
false to signal that no inclusion actually happened. For example, this happens
if you are ActiveModel::Validations, and you get included by ActiveRecord::Validations.

What happens if your includer is not itself a concern—for example, when you
are ActiveRecord::Validations, and you get included by ActiveRecord::Base? In this case,
you check whether you’re already an ancestor of this includer, maybe because
you were included via another chain of concerns. (That’s the meaning of base
< self.) If you are not, you come to the crucial point of the entire exercise: you
recursively include your dependencies in your includer. This minimalistic

Chapter 10. Active Support’s Concern Module • 186

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/concern.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

dependency management system solves the issue that you’ve read about in
The Problem of Chained Inclusions, on page 181.

After rolling all your dependent concerns into your includer’s chain of
ancestors, you still have a couple of things to do. First, you must add yourself
to that chain of ancestors, by calling the standard Module.append_features with
super. Finally, don’t forget what this entire machinery is for: you have to extend
the includer with your own ClassMethods module, like the include-and-extend
trick does. You need Kernel#const_get to get a reference to ClassMethods, because
you must read the constant from the scope of self, not the scope of the Concern
module, where this code is physically located.

Concern also contains some more functionality, but you’ve seen enough to
grasp the idea behind this module.

Concern Wrap-Up
ActiveSupport::Concern is a minimalistic dependency management system, wrapped
into a single module with just a few lines of code. That code is complicated,
but using Concern is easy, as you can see by looking into Active Model’s source:

gems/activemodel-4.1.0/lib/active_model/validations.rb
module ActiveModel

module Validations
extend ActiveSupport::Concern
...

module ClassMethods
def validate(*args, &block)

...

Just by doing the above, ActiveModel::Validation adds a validate class method to
ActiveRecord::Base, without worrying about the fact that ActiveRecord::Validation
happens to be in the middle. Concern will work behind to scenes to sort out
the dependencies between concerns.

Is ActiveSupport::Concern too clever for its own good? That’s up to you to decide.
Some programmers think that Concern hides too much magic behind a seem-
ingly innocuous call to include, and this hidden complexity carries hidden
costs.1 Other programmers praise Concern for helping to keep Rails’ modules
as slim and simple as they can be.

Whatever your take on ActiveSupport::Concern, you can learn a lot by exploring
its insides. Here is one lesson I personally took away from this exploration.

1. http://blog.coreyhaines.com/2012/12/why-i-dont-use-activesupportconcern.html

report erratum • discuss

ActiveSupport::Concern • 187

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activemodel-4.1.0/lib/active_model/validations.rb
http://blog.coreyhaines.com/2012/12/why-i-dont-use-activesupportconcern.html
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

A Lesson Learned
In most languages, there aren’t many ways to bind components together.
Maybe you inherit from a class or you delegate to an object. If you want to
get fancy, then you can use a library that specializes in managing dependen-
cies—or even an entire framework.

Now, see how the authors of Rails bound their framework’s parts together.
In the very beginning, they probably just included and extended modules. Later,
they sprinkled their code with metaprogramming fairy dust, introducing the
include-and-extend idiom. Still later, as Rails kept growing, that idiom started
creaking around the edges—so they replaced include-and-extend with the
metaprogramming-heavy ActiveSupport::Concern. They evolved their own depen-
dencies management system, one step at a time.

Over the years, we’ve learned that software design is not a “get it right the
first time” affair. This is especially true in a malleable language such as Ruby,
where you can use metaprogramming to change something as fundamental
as the way that modules interact. So here is the main lesson I gained from
the story of Concern: metaprogramming is not about being clever—it’s about
being flexible.

When I write my code, I don’t strive for a perfect design at the beginning, and
I don’t use complex metaprogramming spells before I need them. Instead, I
try to keep my code simple, using the most obvious techniques that do the
job. Maybe at some point my code gets tangled, or I spot some stubborn
duplication. That’s when I reach for sharper tools, such as metaprogramming.

This book is full of metaprogramming success stories, and ActiveSupport::Concern
is yet another one of them. However, Concern’s complex code and mildly con-
troversial nature hint at a darker side of metaprogramming. This will be the
subject of the next chapter, where we’ll look at the story of Rails’ most infa-
mous methods.

Chapter 10. Active Support’s Concern Module • 188

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 11

The Rise and Fall of alias_method_chain
In the previous two chapters, we looked at the modular design of Rails and
how that design changed over time. Now I’ll tell you of a more dramatic change
in Rails’ history: how a method named alias_method_chain rose to fame, fell in
disgrace, and was eventually scrapped almost entirely from the Rails codebase.

The Rise of alias_method_chain
In The Include-and-Extend Trick, on page 179, I showed you a snippet of code
from an old version of Rails…minus a few interesting lines. Here is the same
code again, with those lines now visible and marked with arrows:

gems/activerecord-2.3.2/lib/active_record/validations.rb
module ActiveRecord

module Validations

def self.included(base)
base.extend ClassMethods
base.class_eval do➤

alias_method_chain :save, :validation➤

alias_method_chain :save!, :validation➤

end➤

...

end

When ActiveRecord::Base includes the Validations module, the marked lines reopen
Base and call a method named alias_method_chain. Let me show you a quick
example to explain what alias_method_chain does.

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/validations.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The Reason for alias_method_chain
Suppose you have a module that defines a greet method. It might look like the
following code.

part2/greet_with_aliases.rb
module Greetings

def greet
"hello"

end
end

class MyClass
include Greetings

end

MyClass.new.greet # => "hello"

Now suppose you want to wrap optional functionality around greet—for
example, you want your greetings to be a bit more enthusiastic. You can do
that with a couple of Around Aliases (134):

class MyClass
include Greetings

def greet_with_enthusiasm
"Hey, #{greet_without_enthusiasm}!"

end

alias_method :greet_without_enthusiasm, :greet
alias_method :greet, :greet_with_enthusiasm

end

MyClass.new.greet # => "Hey, hello!"

I defined two new methods: greet_without_enthusiasm and greet_with_enthusiasm. The
first method is just an alias of the original greet. The second method calls the
first method and also wraps some happiness around it. I also aliased greet to
the new enthusiastic method—so the callers of greet will get the enthusiastic
behavior by default, unless they explicitly avoid it by calling greet_without_enthu-
siasm instead:

MyClass.new.greet_without_enthusiasm # => "hello"

To sum it all up, the original greet is now called greet_without_enthusiasm. If you
want the enthusiastic behavior, you can call either greet_with_enthusiasm or greet,
which are actually aliases of the same method.

Chapter 11. The Rise and Fall of alias_method_chain • 190

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/greet_with_aliases.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

This idea of wrapping a new feature around an existing method is common
in Rails. In all cases, you end up with three methods that follow the naming
conventions I just showed you: method, method_with_feature, and method_without_fea-
ture. The only the first two methods include the new feature.

Instead of duplicating these aliases all over the place, Rails provided a
metaprogramming method that did it all for you. It was named Mod-
ule#alias_method_chain, and it was part of the Active Support library. I’m saying
“it was” rather than “it is” for reasons that will be clear soon—but if you look
inside Active Support, you’ll find alias_method_chain is still there. Let’s look at it.

Inside alias_method_chain
Here is the code of alias_method_chain:

gems/activesupport-4.1.0/lib/active_support/core_ext/module/aliasing.rb
class Module
def alias_method_chain(target, feature)
Strip out punctuation on predicates or bang methods since
e.g. target?_without_feature is not a valid method name.
aliased_target, punctuation = target.to_s.sub(/([?!=])$/, ''), $1
yield(aliased_target, punctuation) if block_given?

with_method = "#{aliased_target}_with_#{feature}#{punctuation}"
without_method = "#{aliased_target}_without_#{feature}#{punctuation}"

alias_method without_method, target
alias_method target, with_method

case
when public_method_defined?(without_method)

public target
when protected_method_defined?(without_method)

protected target
when private_method_defined?(without_method)

private target
end

end
end

alias_method_chain takes the name of a target method and the name of an addi-
tional feature. From those two, it calculates the name of two new methods:
target_without_feature and target_with_feature. Then it stores away the original target
as target_without_feature, and it aliases target_with_feature to target (assuming that a
method called target_with_feature is defined somewhere in the same module).
Finally, the case switch sets the visibility of target_without_feature so that it’s the
same visibility as the original target.

report erratum • discuss

The Rise of alias_method_chain • 191

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/core_ext/module/aliasing.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

alias_method_chain also has a few more features, such as yielding to a block so
that the caller can override the default naming, and dealing with methods
that end with an exclamation or a question mark—but essentially, it just
builds an Around Alias (134). Let’s see how this mechanism was used in
ActiveRecord::Validations.

One Last Look at Validations
Here is the code from the old version of ActiveRecord::Validations again:

def self.included(base)
base.extend ClassMethods
...
base.class_eval do

alias_method_chain :save, :validation
alias_method_chain :save!, :validation

end
...

end

These lines reopen the ActiveRecord::Base class and hack its save and save!
methods to add validation. This aliasing ensures that you will get automatic
validation whenever you save an object to the database. If you want to save
without validating, you can call the aliased versions of the original method,
now called save_without_validation.

For the entire scheme to work, the Validations module still needs to define two
methods named save_with_validation and save_with_validation!:

gems/activerecord-2.3.2/lib/active_record/validations.rb
module ActiveRecord

module Validations
def save_with_validation(perform_validation = true)
if perform_validation && valid? || !perform_validation

save_without_validation
else

false
end

end
def save_with_validation!
if valid?

save_without_validation!
else

raise RecordInvalid.new(self)
end

end
def valid?
...

Chapter 11. The Rise and Fall of alias_method_chain • 192

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/validations.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

The actual validation happens in the valid? method. Validation#save_with_validation
returns false if the validation fails, or if the caller explicitly disables validation.
Otherwise, it just calls the original save_without_validation. Validation#save_with_valida-
tion! raises an exception if the validation fails, and otherwise falls back to the
original save_with_validation!.

This is how alias_method_chain was used around the times of Rails 2. Things
have changed since then, as I will explain next.

The Fall of alias_method_chain
In the previous two chapters, you’ve seen that the libraries in Rails are
mostly built by assembling modules. Back in Rails 2, many of those modules
used alias_method_chain to wrap functionality around the methods of their
includers. The authors of libraries that extended Rails adopted the same
mechanism to wrap their own functionality around the Rails methods. As a
result, alias_method_chain was used all over the place, both in Rails and in dozens
of third-party libraries.

alias_method_chain was good at removing duplicated aliases, but it also came
with a few problems of its own. For a start, alias_method_chain is just an encap-
sulation of an Around Alias (134), and Around Aliases have the subtle problems
that you might remember from The Thor Example, on page 133. To make things
worse, alias_method_chain turned out to be too clever for its own good: with all
the method renaming and shuffling that was going on in Rails, it could become
hard to track which version of a method you were actually calling.

However, the most damning issue of alias_method_chain was that it was simply
unnecessary in most cases. Ruby is an object-oriented language, so it provides
a more elegant, built-in way of wrapping functionality around an existing
method. Think back to our example of adding enthusiasm to the greet method:

part2/greet_with_super.rb
module Greetings

def greet
"hello"

end
end

class MyClass
include Greetings

end

MyClass.new.greet # => "hello"

report erratum • discuss

The Fall of alias_method_chain • 193

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/greet_with_super.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Instead of using aliases to wrap additional functionality around greet, you can
just redefine greet in a separate module and include that module instead:

part2/greet_with_super.rb
module EnthusiasticGreetings

include Greetings

def greet
"Hey, #{super}!"

end
end

class MyClass
include EnthusiasticGreetings

end

MyClass.ancestors[0..2] # => [MyClass, EnthusiasticGreetings, Greetings]
MyClass.new.greet # => "Hey, hello!"

The chain of ancestors of MyClass includes EnthusiasticGreetings and then Greetings,
in that order. That’s why by calling greet, you end up calling EnthusiasticGreet-
ings#greet, and EnthusiasticGreetings#greet can in turn call into Greetings#greet with
super. This solution is not as glamorous as alias_method_chain, but it’s simpler
and all the better for it. Recent versions of ActiveRecord::Validations acknowledge
that simplicity by using a regular override instead of alias_method_chain:

gems/activerecord-4.1.0/lib/active_record/validations.rb
module ActiveRecord

module Validations
The validation process on save can be skipped by passing
<tt>validate: false</tt>.
The regular Base#save method is replaced with this when the
validations module is mixed in, which it is by default.
def save(options={})
perform_validations(options) ? super : false

end

Attempts to save the record just like Base#save but will raise
a +RecordInvalid+ exception instead of returning +false+ if
the record is not valid.
def save!(options={})

perform_validations(options) ? super : raise(RecordInvalid.new(self))
end

def perform_validations(options={})
...

Validation#save performs the actual validation (by calling the private method
perform_validations). If the validation succeeds, then it proceeds with the normal

Chapter 11. The Rise and Fall of alias_method_chain • 194

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/greet_with_super.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record/validations.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

save code in ActiveRecord::Base by calling super. If the validation fails, then it
returns false. Validation#save! follows the same steps, except that it raises an
exception if the validation fails.

These days, Rails barely ever uses alias_method_chain. You can still find this
method called inside Active Support and some third-party libraries, but there
is no trace of it in libraries such as Active Record. The once-popular
alias_method_chain has nearly disappeared from the Rails environment.

However, there is still one case where you might argue that alias_method_chain
works better than its object-oriented alternative. Let’s look at it.

The Birth of Module#prepend
Let’s add a twist to our ongoing greet method example: instead of defining greet
in a module, let’s assume it’s defined directly in the class.

part2/greet_with_prepend.rb
class MyClass
def greet
"hello"

end
end

MyClass.new.greet # => "hello"

In this case, you cannot wrap functionality around greet by simply including
a module that overrides it:

part2/greet_with_prepend_broken.rb
module EnthusiasticGreetings

def greet
"Hey, #{super}!"

end
end

class MyClass
include EnthusiasticGreetings

end

MyClass.ancestors[0..2] # => [MyClass, EnthusiasticGreetings, Object]
MyClass.new.greet # => "hello"

The code above shows that when you include EnthusiasticGreetings, that module
gets higher than the class in the class’s chain of ancestors. As a result, the
greet method in the class overrides the greet method in the module, instead of
the other way around.

report erratum • discuss

The Fall of alias_method_chain • 195

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/greet_with_prepend.rb
http://media.pragprog.com/titles/ppmetr2/code/part2/greet_with_prepend_broken.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

You could solve this problem by extracting greet from MyClass into its own
module, like the Greetings module in the previous section. If you do that, you’ll
be able to insert an intermediary module like EnthusiasticGreetings in the chain
and use the override-and-call-super technique, just as we did back then.
However, you might be unable to do that—for example, because MyClass is part
of a library such as Rails, and you’re extending that library rather than
working directly on its source code. This limitation is the main reason why
many Rubyists still use alias_method_chain when they extend Rails.

However, Ruby 2.0 came with an elegant solution for this problem in the form
of Module#prepend:

module EnthusiasticGreetings
def greet

"Hey, #{super}!"
end

end

class MyClass
prepend EnthusiasticGreetings

end

MyClass.ancestors[0..2] # => [EnthusiasticGreetings, MyClass, Object]
MyClass.new.greet # => "Hey, hello!"

This is a Prepended Wrapper (136), a modern alternative to Around Aliases (134).
Because we used prepend, the EnthusiasticGreetings#greet got lower than MyClass#greet
in MyClass’s chain of ancestors, so we went back to the usual trick of overriding
greet and calling super.

As I write, Rails is not using Module#prepend yet, because it’s still aiming to be
compatible with Ruby 1.9. When Rails eventually drops this constraint, I
expect that prepend will make its appearance in Rails and its extensions. At
that point, there will be no urgent reason to call alias_method_chain anymore.

A Lesson Learned
Throughout this book I showed you how convenient, elegant, and cool
metaprogramming can be. The story of alias_method_chain, however, is a caution-
ary tale: metaprogramming code can sometimes get complicated, and it can
even cause you to overlook more traditional, simpler techniques. In particular,
sometimes you can avoid metaprogramming and use plain, old-fashioned
object-oriented programming instead.

The lesson I personally learned from this story is: resist the temptation to be
too clever in your code. Ask yourself whether there is a simpler way to reach

Chapter 11. The Rise and Fall of alias_method_chain • 196

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

your goal than metaprogramming. If the answer is no, then go forth and
metaprogram the heck out of your problem. In many cases, however, you’ll
find that a more straightforward OOP approach does the job just as well.

In this chapter, I showed you that metaprogramming can be overused and
sometimes replaced with simpler techniques. To be fair, however, metapro-
gramming is still one of the tastier ingredients in the Rails pie. In the next
chapter, I’ll show you how one of Rails’ defining features owes its very existence
to a clever mix of metaprogramming tricks.

report erratum • discuss

A Lesson Learned • 197

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 12

The Evolution of Attribute Methods
By this point in your reading, you’ve seen plenty of metaprogramming snippets
and examples. However, you might still wonder what happens when you use
metaprogramming in a real, large system. How do these sophisticated tech-
niques fare in the messy world out there, where code often grows in complex-
ity and evolves in unexpected directions?

To answer this question, we will close our tour with a look at attribute
methods, one of Rails’ most popular features. Their source code contains a
lot of metaprogramming, and it has been changing constantly since the first
version of Rails. If we track the history of attribute methods, we’ll see what
happened as their code became more complicated and nuanced.

One word of warning before we begin: there is plenty of complex code in this
chapter, and it would be pointless to explain it in too much detail. Instead,
I’ll just try to make a point by giving you a high-level idea of what’s going on.
Don’t feel as if you have to understand each and every line of code as you
read through the next few pages.

Let’s start with a quick example of attribute methods.

Attribute Methods in Action
Assume that you’ve created a database table that contains tasks.

part2/ar_attribute_methods.rb
require 'active_record'
ActiveRecord::Base.establish_connection :adapter => "sqlite3",

:database => "dbfile"

ActiveRecord::Base.connection.create_table :tasks do |t|
t.string :description
t.boolean :completed

end

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/ar_attribute_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Now you can define an empty Task class that inherits from ActiveRecord::Base,
and you can use objects of that class to interact with the database:

class Task < ActiveRecord::Base; end

task = Task.new
task.description = 'Clean up garage'
task.completed = true
task.save

task.description # => "Clean up garage"
task.completed? # => true

The previous code calls four accessor methods to read and write the object’s
attributes: two write accessors (description= and completed=), one read accessor
(description), and one query accessor (completed?). None of these Mimic Methods
(218) comes from the definition of Task. Instead, Active Record generated them
by looking at the columns of the tasks table. These automatically generated
accessors are called attribute methods.

You probably expect that attribute methods such as description= are either
Ghost Methods (57) implemented through method_missing or Dynamic Methods
(51) defined with define_method. Things are actually more complicated than that,
as you’ll find out soon.

A History of Complexity
Instead of looking at the current implementation of attribute methods, let me
go all the way back to 2004—the year that Rails 1.0.0 was unleashed on an
unsuspecting world.

Rails 1: Simple Beginnings
In the very first version of Rails, the implementation of attribute methods was
just a few lines of code:

gems/activerecord-1.0.0/lib/active_record/base.rb
module ActiveRecord

class Base
def initialize(attributes = nil)
@attributes = attributes_from_column_definition
...

end

def attribute_names
@attributes.keys.sort

end

Chapter 12. The Evolution of Attribute Methods • 200

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-1.0.0/lib/active_record/base.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

alias_method :respond_to_without_attributes?, :respond_to?

def respond_to?(method)
@@dynamic_methods ||= attribute_names +

attribute_names.collect { |attr| attr + "=" } +
attribute_names.collect { |attr| attr + "?" }

@@dynamic_methods.include?(method.to_s) ?
true :
respond_to_without_attributes?(method)

end

def method_missing(method_id, *arguments)
method_name = method_id.id2name

if method_name =~ read_method? && @attributes.include?($1)
return read_attribute($1)

elsif method_name =~ write_method?
write_attribute($1, arguments[0])

elsif method_name =~ query_method?
return query_attribute($1)

else
super

end
end

def read_method?() /^([a-zA-Z][-_\w]*)[^=?]*$/ end
def write_method?() /^([a-zA-Z][-_\w]*)=.*$/ end
def query_method?() /^([a-zA-Z][-_\w]*)\?$/ end

def read_attribute(attr_name) # ...
def write_attribute(attr_name, value) #...
def query_attribute(attr_name) # ...

Take a look at the initialize method: when you create an ActiveRecord::Base object,
its @attributes instance variable is populated with the name of the attributes
from the database. For example, if the relevant table in the database has a
column named description, then @attributes will contain the string "description",
among others.

Now skip down to method_missing, where those attribute names become the
names of Ghost Methods (57). When you call a method such as description=,
method_missing notices two things: first, description is the name of an attribute;
and second, the name of description= matches the regular expression for write
accessors. As a result, method_missing calls write_attribute("description"), which writes
the value of the description in the database. A similar process happens for
query accessors (that end in a question mark) and read accessors (that are
just the same as attribute names).

report erratum • discuss

A History of Complexity • 201

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

In Chapter 3, Tuesday: Methods, on page 45, you also learned that it’s gener-
ally a good idea to redefine respond_to? (or respond_to_missing?) together with
method_missing. For example, if I can call my_task.description, then I expect that
my_task.respond_to?(:description) returns true. The ActiveRecord::Base#respond_to? method
is an Around Alias (134) of the original respond_to?, and it also checks whether
a method name matches the rules for attribute readers, writers, or queries.
The overridden respond_to? uses a Nil Guard (219) to calculate those names only
once, and store them in an @@dynamic_methods class variable.

I stopped short of showing you the code that accesses the database, such as
read_attribute, write_attribute, and query_attribute. Apart from that, you’ve just looked
at the entire implementation of attribute methods in Rails 1. By the time Rails
2 came out, however, this code had become more complex.

Rails 2: Focus on Performance
Do you remember the explanation of method_missing in Chapter 3, Tuesday:
Methods, on page 45? When you call a method that doesn’t exist, Ruby walks
up the chain of ancestors looking for the method. If it reaches BasicObject
without finding the method, then it starts back at the bottom and calls
method_missing. This means that, in general, calling a Ghost Method (57) is
slower than calling a normal method, because Ruby has to walk up the entire
chain of ancestors at least once.

In most concrete cases, this difference in performance between Ghost Methods
and regular methods is negligible. In Rails, however, attribute methods are
called very frequently. In Rails 1, each of those calls also had to walk up
ActiveRecord::Base’s extremely long chain of ancestors. As a result, performance
suffered.

The authors of Rails could solve this performance problem by replacing Ghost
Methods with Dynamic Methods (51)—using define_method to create read, write,
and query accessors for all attributes, and getting rid of method_missing altogeth-
er. Interestingly, however, they went for a mixed solution, including both
Ghost Methods and Dynamic Methods. Let’s look at the result.

Ghosts Incarnated

If you check the source code of Rails 2, you’ll see that the code for attribute
methods moved from ActiveRecord::Base itself to a separate ActiveRecord::AttributeMeth-
ods module, which is then included by Base. The original method_missing has also
become complicated, so we will discuss it in two separate parts. Here is the
first part:

Chapter 12. The Evolution of Attribute Methods • 202

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
module ActiveRecord

module AttributeMethods
def method_missing(method_id, *args, &block)
method_name = method_id.to_s

if self.class.private_method_defined?(method_name)
raise NoMethodError.new("Attempt to call private method", method_name, args)

end

If we haven't generated any methods yet, generate them, then
see if we've created the method we're looking for.
if !self.class.generated_methods?

self.class.define_attribute_methods
if self.class.generated_methods.include?(method_name)

return self.send(method_id, *args, &block)
end

end

...
end

def read_attribute(attr_name) # ...
def write_attribute(attr_name, value) # ...
def query_attribute(attr_name) # ...

When you call a method such as Task#description= for the first time, the call is
delivered to method_missing. Before it does its job, method_missing ensures that
you’re not inadvertently bypassing encapsulation and calling a private method.
Then it calls an intriguing-sounding define_attribute_methods method.

We’ll look at define_attribute_methods in a minute. For now, all you need to know
is that it defines read, write, and query Dynamic Methods (51) for all the
columns in the database. The next time you call description= or any other
accessor that maps to a database column, your call isn’t handled by
method_missing. Instead, you call a real, non-ghost method.

When you entered method_missing, description= was a Ghost Method (57). Now de-
scription= is a regular flesh-and-blood method, and method_missing can call it
with a Dynamic Dispatch (49) and return the result. This process takes place
only once for each class that inherits from ActiveRecord::Base. If you enter
method_missing a second time for any reason, the class method generated_methods?
returns true, and this code is skipped.

The following code shows how define_attribute_methods defines non-ghostly
accessors.

report erratum • discuss

A History of Complexity • 203

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
Generates all the attribute related methods for columns in the database
accessors, mutators and query methods.
def define_attribute_methods
return if generated_methods?
columns_hash.each do |name, column|
unless instance_method_already_implemented?(name)

if self.serialized_attributes[name]
define_read_method_for_serialized_attribute(name)

elsif create_time_zone_conversion_attribute?(name, column)
define_read_method_for_time_zone_conversion(name)

else
define_read_method(name.to_sym, name, column)

end
end

unless instance_method_already_implemented?("#{name}=")
if create_time_zone_conversion_attribute?(name, column)

define_write_method_for_time_zone_conversion(name)
else

define_write_method(name.to_sym)
end

end

unless instance_method_already_implemented?("#{name}?")
define_question_method(name)

end
end

end

The instance_method_already_implemented? method is there to prevent involuntary
Monkeypatches (16): if a method by the name of the attribute already exists,
then this code skips to the next attribute. Apart from that, the previous code
does little but delegate to other methods that do the real work, such as de-
fine_read_method or define_write_method.

As an example, take a look at define_write_method. I’ve marked the most important
lines with arrows:

gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
def define_write_method(attr_name)➤

evaluate_attribute_method attr_name,➤

"def #{attr_name}=(new_value);write_attribute('#{attr_name}', new_value);end",➤

"#{attr_name}="➤

end➤

def evaluate_attribute_method(attr_name, method_definition, method_name=attr_name)➤

unless method_name.to_s == primary_key.to_s
generated_methods << method_name

end

Chapter 12. The Evolution of Attribute Methods • 204

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

begin
class_eval(method_definition, __FILE__, __LINE__)➤

rescue SyntaxError => err
generated_methods.delete(attr_name)
if logger
logger.warn "Exception occurred during reader method compilation."
logger.warn "Maybe #{attr_name} is not a valid Ruby identifier?"
logger.warn err.message

end
end

end

The define_write_method method builds a String of Code (141) that is evaluated by
class_eval. For example, if you call description=, then evaluate_attribute_method evalu-
ates this String of Code:

def description=(new_value);write_attribute('description', new_value);end

Thus the description= method is born. A similar process happens for description,
description?, and the accessors for all the other database columns.

Here’s a recap of what we’ve covered so far. When you access an attribute for
the first time, that attribute is a Ghost Method (57). ActiveRecord::Base#method_miss-
ing takes this chance to turn the Ghost Method into a real method. While it’s
there, method_missing also dynamically defines read, write, and query accessors
for all the other database columns. The next time you call that attribute or
another database-backed attribute, you find a real accessor method waiting
for you, and you don’t have to enter method_missing anymore.

However, this logic doesn’t apply to each and every attribute accessor, as
you’ll discover by looking at the second half of method_missing.

Attributes That Stay Dynamic

As it turns out, there are cases where Active Record doesn’t want to define
attribute accessors. For example, think of attributes that are not backed by
a database column, such as calculated fields:

part2/ar_attribute_methods.rb
my_query = "tasks.*, (description like '%garage%') as heavy_job"
task = Task.find(:first, :select => my_query)
task.heavy_job? # => true

Attributes like heavy_job can be different for each object, so there’s no point in
generating Dynamic Methods (51) to access them. The second half of
method_missing deals with these attributes:

report erratum • discuss

A History of Complexity • 205

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/part2/ar_attribute_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
module ActiveRecord

module AttributeMethods
def method_missing(method_id, *args, &block)
...

if self.class.primary_key.to_s == method_name
id

elsif md = self.class.match_attribute_method?(method_name)
attribute_name, method_type = md.pre_match, md.to_s
if @attributes.include?(attribute_name)
__send__("attribute#{method_type}", attribute_name, *args, &block)

else
super

end
elsif @attributes.include?(method_name)
read_attribute(method_name)

else
super

end
end

private
Handle *? for method_missing.
def attribute?(attribute_name)

query_attribute(attribute_name)
end

Handle *= for method_missing.
def attribute=(attribute_name, value)

write_attribute(attribute_name, value)
end

Look at the code in method_missing above. If you’re accessing the object’s identi-
fier, then it returns its value. If you’re calling an attribute accessor, then it
calls the accessor with either a Dynamic Dispatch (49) (for write or query
accessors) or a direct call to read_attribute (for read accessors). Otherwise,
method_missing sends the call up the chain of ancestors with super.

I don’t want to waste your time with unnecessary details, so I only showed
you part of the code for attribute methods in Rails 2. What you’ve seen,
however, shows that both the feature and its code became more complicated
in the second major version of Rails. Let’s see how this trend continued in
the following versions.

Chapter 12. The Evolution of Attribute Methods • 206

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Rails 3 and 4: More Special Cases
In Rails 1, attribute methods were implemented with a few dozen lines of
code. In Rails 2, they had their own file and hundreds of lines of code. In Rails
3, they spanned nine files of source code, not including tests.

As Rails applications became larger and more sophisticated, the authors of
the framework kept uncovering small twists, performance optimizations, and
corner cases related to attribute methods. The code and the number of
metaprogramming tricks it used grew with the number of corner cases. I’ll
show you only one of those corner cases, but even this single example is too
long to fit in this chapter, so I will just show you a few snippets of code as
quickly as I can. Brace yourself.

The example I picked is one of the most extreme optimizations in modern
Rails. We’ve seen that Rails 2 improved performance by turning Ghost Methods
(57) into Dynamic Methods (51). Rails 4 goes one step further: when it defines
an attribute accessor, it also turns it into an UnboundMethod and stores it in a
method cache. If a second class has an attribute by the same name, and
hence needs the same accessor, Rails 4 just retrieves the previously defined
accessor from the cache and binds it to the second class. This way, if different
attributes in separate classes happen to have the same name, then Rails
defines only a single set of accessor methods and reuses those methods for
all attributes. (I’m as surprised as you are that this optimization has a visible
effect on performance—but in the case of Rails, it does.)

I’ll start with code from deep inside the attribute methods implementation:

gems/activerecord-4.1.0/lib/active_record/attribute_methods/read.rb
module ActiveRecord

module AttributeMethods
module Read
extend ActiveSupport::Concern

module ClassMethods
if Module.methods_transplantable?

def define_method_attribute(name)
method = ReaderMethodCache[name]
generated_attribute_methods.module_eval { define_method name, method }

end
else

def define_method_attribute(name)
...

end
end

report erratum • discuss

A History of Complexity • 207

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record/attribute_methods/read.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

This code defines a method named define_method_attribute. This method will
ultimately become a class method of ActiveRecord::Base, thanks to the mechanism
we discussed in Chapter 10, Active Support's Concern Module, on page 179.
Here, however, comes a twist: define_method_attribute is defined differently
depending on the result of the Module.methods_transplantable? method.

Module.methods_transplantable? comes from the Active Support library, and it
answers one very specific question: can I bind an UnboundMethod to an object
of a different class? In Unbound Methods, on page 94, I mentioned that you
can only do that from Ruby 2.0 onward, so this code defines define_method_at-
tribute in two different ways depending on whether you’re running Rails on
Ruby 1.9 or 2.x.

Assume that you’re running Ruby 2.0 or later. In this case, define_method_attribute
retrieves an UnboundMethod from a cache of methods, and it binds the method
to the current module with define_method. The cache of methods is stored in a
constant named ReaderMethodCache.

(The call to generated_attribute_methods might look confusing—it returns a Clean
Room (87) that serializes method definitions happening in different threads.)

Let’s go see how ReaderMethodCache is initialized. The long comment gives an
idea of how tricky it must have been to write this code:

gems/activerecord-4.1.0/lib/active_record/attribute_methods/read.rb
module ActiveRecord

module AttributeMethods
module Read
ReaderMethodCache = Class.new(AttributeMethodCache) {

private
We want to generate the methods via module_eval rather than
define_method, because define_method is slower on dispatch.
Evaluating many similar methods may use more memory as the instruction
sequences are duplicated and cached (in MRI). define_method may
be slower on dispatch, but if you're careful about the closure
created, then define_method will consume much less memory.
#
But sometimes the database might return columns with
characters that are not allowed in normal method names (like
'my_column(omg)'. So to work around this we first define with
the __temp__ identifier, and then use alias method to rename
it to what we want.
#
We are also defining a constant to hold the frozen string of
the attribute name. Using a constant means that we do not have
to allocate an object on each call to the attribute method.
Making it frozen means that it doesn't get duped when used to
key the @attributes_cache in read_attribute.

Chapter 12. The Evolution of Attribute Methods • 208

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record/attribute_methods/read.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

def method_body(method_name, const_name)
<<-EOMETHOD
def #{method_name}
name = ::ActiveRecord::AttributeMethods::AttrNames::ATTR_#{const_name}
read_attribute(name) { |n| missing_attribute(n, caller) }

end
EOMETHOD

end
}.new

ReaderMethodCache is an instance of an anonymous class—a subclass of
AttributeMethodCache. This class defines a single method that returns a String of
Code (141). (If you’re perplexed by the call to Class.new, take a look back at Quiz:
Class Taboo, on page 112. If you don’t understand the EOMETHOD lines, read
about “here documents” in The REST Client Example, on page 141.)

Let’s leave ReaderMethodCache for a moment and move to the definition of its
superclass AttributeMethodCache:

gems/activerecord-4.1.0/lib/active_record/attribute_methods.rb
module ActiveRecord

module AttributeMethods
AttrNames = Module.new {
def self.set_name_cache(name, value)

const_name = "ATTR_#{name}"
unless const_defined? const_name

const_set const_name, value.dup.freeze
end

end
}

class AttributeMethodCache
def initialize
@module = Module.new
@method_cache = ThreadSafe::Cache.new

end
def [](name)
@method_cache.compute_if_absent(name) do

safe_name = name.unpack('h*').first
temp_method = "__temp__#{safe_name}"
ActiveRecord::AttributeMethods::AttrNames.set_name_cache safe_name, name
@module.module_eval method_body(temp_method, safe_name),

__FILE__, __LINE__
@module.instance_method temp_method

end
end

private
def method_body; raise NotImplementedError; end

end

report erratum • discuss

A History of Complexity • 209

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-4.1.0/lib/active_record/attribute_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

First, look at AttrNames: it’s a module with one single method, set_name_cache.
Given a name and a value, set_name_cache defines a conventionally named
constant with that value. For example, if you pass it the string "description",
then it defines a constant named ATTR_description. AttrNames is somewhat similar
to a Clean Room (87); it only exists to store constants that represent the names
of attributes.

Now move down to AttributeMethodCache. Its [] method takes the name of an
attribute, and it returns an accessor to that attribute as an UnboundMethod. It
also takes care of at least one important special case: attribute accessors are
Ruby methods, but not all attributes names are valid Ruby method names.
(You can read one counterexample in the comment to ReaderMethod-
Cache#method_body above.) This code solves that problem by decoding the
attribute name to an hexadecimal sequence and creating a conventional safe
method name from it.

Once it has a safe name for the accessor, AttributeMethodCache#[] calls method_body
to get a String of Code that defines the accessor’s body, and it defines the
accessor inside a Clean Room named simply @module. (We discussed additional
arguments to method_eval, such as __FILE__ and __LINE__, in The irb Example, on
page 144.) Finally, AttributeMethodCache#[] gets the newly created accessor method
from the Clean Room and returns it as an UnboundMethod.

On subsequent calls, AttributeMethodCache#[] won’t need to define the method
anymore. Instead, @method_cache.compute_if_absent will store the result and return
it automatically. This policy shaves some time off in cases where the same
accessor is defined on multiple classes.

To close the loop, look back at the code of ReaderMethodCache. By overriding
method_body and returning the String of Code for a read accessor, ReaderMethod-
Cache turns the generic AttributeMethodCache into a cache for read accessors. As
you might expect, there is also a WriterMethodCache class that takes care of write
accessors.

Is your head spinning a little after this long explanation? Mine is. This
example shows how deep and complex attribute methods have become, how
many special cases they have covered, and how much they’ve changed since
their simple beginnings. Now we can draw some general conclusions.

A Lesson Learned
Here is one question that developers often ask themselves: How many special
cases should I cover in my code? On one extreme, you could always strive for
code that is perfect right from the start and leaves no stones unturned. Let’s

Chapter 12. The Evolution of Attribute Methods • 210

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

call this approach Do It Right the First Time. On the other extreme, you might
put together some simple code that just solves your obvious problem today,
and maybe make it more comprehensive later, as you uncover more special
cases. Let’s call this approach Evolutionary Design. The act of designing code
largely consists of striking the right balance between these two approaches.

What do Rails’ attribute methods teach us about design? In Rails 1, the code
for accessor methods was so simple, you might consider it simplistic. While
it was correct and good enough for simple cases, it ignored many nonobvious
use cases, and its performance turned out to be problematic in large applica-
tions. As the needs of Rails users evolved, the authors of the framework kept
working to make it more flexible. This is a great example of Evolutionary
Design.

Think back to the optimization in Rails 2: Focus on Performance, on page 202.
Most attribute accessors, in particular those that are backed by database
tables, start their lives as Ghost Methods (57). When you access an attribute
for the first time, Active Record takes the opportunity to turn most of those
ghosts into Dynamic Methods (51). Some other accessors, such as accessors
to calculated fields, never become real methods, and they remain ghosts for-
ever.

This is one of a number of different possible designs. The authors of Active
Record had no shortage of alternatives, including the following:

• Never define accessors dynamically, relying on Ghost Methods exclusively.

• Define accessors when you create the object, in the initialize method.

• Define accessors only for the attribute that is being accessed, not for the
other attributes.

• Always define all accessors for each object, including accessors for calcu-
lated fields.

• Define accessors with define_method instead of a String of Code.

I don’t know about you, but I wouldn’t have been able to pick among all of
these options just by guessing which ones are faster. How did the authors of
Active Record settle on the current design? You can easily imagine them trying
a few alternative designs, then profiling their code in a real-life system to
discover where the performance bottlenecks were…and then optimizing.

The previous example focused on optimizations, but the same principles apply
to all aspects of Rails’ design. Think about the code in Rails 2 that prevents
you from using method_missing to call a private method—or the code in Rails 4

report erratum • discuss

A Lesson Learned • 211

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

that maps column names in the database to safe Ruby method names. You
could certainly foresee special cases such as these, but catching them all
could prove very hard. It’s arguably easier to cover a reasonable number of
special cases like Rails 1 did, and then change your code as more special
cases become visible.

Rails’ approach seems to be very much biased toward Evolutionary Design
rather than Do It Right the First Time. There are two obvious reasons for that.
First, Ruby is a flexible, pliable language, especially when you use metapro-
gramming, so it’s generally easy to evolve your code as you go. And second,
writing perfect metaprogramming code up front can be hard, because it can
be difficult to uncover every possible corner case.

To sum it all up in a single sentence: keep your code as simple as possible,
and add complexity as you need it. When you start, strive to make your code
correct in the general cases, and simple enough that you can add more special
cases later. This is a good rule of thumb for most code, but it seems to be
especially relevant when metaprogramming is involved.

This last consideration also leads us to a final, deeper lesson—one that has
to do with the meaning of metaprogramming itself.

Chapter 12. The Evolution of Attribute Methods • 212

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

CHAPTER 13

One Final Lesson
We’ve been together on a daring adventure, starting with the very basics of
metaprogramming and closing with a tour of the Rails source code. Before
we part, there is one last insight that I will share—possibly the most important
of them all.

Metaprogramming Is Just Programming
When I started learning metaprogramming, it looked like magic. I felt like
leaving my usual programming behind to enter a new world—a world that
was surprising, exciting, and sometimes a bit scary.

As I finish revising this book, the feeling of magic is still there. However, I
realize now that in practice there is no hard line separating metaprogramming
from plain old vanilla programming. Metaprogramming is just another powerful
set of coding tools that you can wield to write code that’s simple, clean, and
well tested.

I’ll go out on a limb to make a bolder assertion: with Ruby, the distinction
between metaprogramming and regular code is fuzzy—and ultimately pointless.
Once you have an in-depth understanding of the language, you’ll have a hard
time deciding which techniques and idioms are “meta” and which ones are
plain old programming.

In fact, metaprogramming is so deeply ingrained in Ruby that you can barely
write an idiomatic Ruby program without using a few metaprogramming
spells. The language actually expects that you’ll tweak the object model,
reopen classes, define methods dynamically, and manage scopes with blocks.
As Bill might say in a Zen moment, “There is no such thing as metaprogram-
ming. It’s just programming all the way down.”

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Part III

Appendixes

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1

Common Idioms
This appendix is a mixed bag of popular Ruby idioms. They aren’t really
“meta,” so they don’t fit into the main story of this book. However, they’re so
common and they’re the foundation of so many metaprogramming spells that
you’ll probably want to get familiar with them.

Mimic Methods
Much of Ruby’s appeal comes from its flexible syntax. You can find an
example of this flexiblity even in the most basic program:

puts 'Hello, world'

Newcomers to Ruby often mistake puts for a language keyword, when it’s
actually a method. People usually leave out the parentheses when calling puts,
so it doesn’t look like a method. Reinsert the parentheses, and the nature of
puts becomes obvious:

puts('Hello, world')

Thanks to disguised method calls such as this one, Ruby manages to provide
many useful function-like methods while keeping the core of the language
relatively small and uncluttered.

This simple idea of dropping parentheses from method calls is used quite
often by expert coders. Sometimes you’ll want to keep the parentheses because
they make a method’s nature obvious—or maybe because the parser requires
the parentheses to make sense of a complex line of code. Other times, you’ll
want to drop the parentheses to make the code cleaner or to make a method
look like a keyword, as is the case with puts.

For another example of flexible syntax, think of object attributes, which are
actually methods in disguise:

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

common_idioms/mimic_methods.rb
class C
def my_attribute=(value)
@p = value

end

def my_attribute
@p

end
end

obj = C.new
obj.my_attribute = 'some value'
obj.my_attribute # => "some value"

Writing obj.my_attribute = 'some value' is the same as writing obj.my_attribute=('some
value'), but it looks cleaner.

What should we call disguised methods such as my_attribute and my_attribute=?
Let’s take a cue from zoology: an animal that disguises itself as another species
is said to employ “mimicry.” Following that pattern, a method call that dis-
guises itself as something else, such as puts or obj.my_attribute=, can be called

Spell: Mimic Method a Mimic Method.

Mimic Methods are a very simple concept, but the more you look into Ruby,
the more you find creative uses for them. For example, access modifiers such
as private and protected are Mimic Methods, as are Class Macros (117) such as
attr_reader. Popular libraries provide further examples. Here is one such
example.

The Camping Example
The following snippet of code comes from an application written with the
Camping web framework. It binds the /help URL to a specific controller action:

class Help < R '/help'
def get
rendering for HTTP GET...

Class Help seems to inherit from a class named R. But what’s that quirky little
string right after R? You might assume that Ruby would simply refuse this
syntax, until you realize that R is actually a Mimic Method that takes a string
and returns an instance of Class. That is the class that Help actually inherits
from. (If the notion of a method returning a class sounds strange to you,
consider that Ruby classes are just objects, as you can read in Chapter 2,
Monday: The Object Model, on page 11.)

Appendix 1. Common Idioms • 218

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/common_idioms/mimic_methods.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Thanks to creative tricks such as this one, Camping feels less like a Ruby
web framework and more like a domain-specific language for web development.
In general, this is a good thing, as I argue in Appendix 2, Domain-Specific
Languages, on page 227.

Nil Guards
Most Ruby beginners looking through someone else’s code are perplexed by
this exotic idiom:

common_idioms/nil_guards.rb
a ||= []

In this example, the value to the right happens to be an empty array, but it
could be any assignable value. The ||= is actually a syntax shortcut for the
following:

a || (a = [])

To understand this code, you need to understand the details of the “or”
operator (||). Superficially, the || operator simply returns true if either of the
two operands is true—but there is some subtlety to this. Here’s the way that
|| actually works.

Remember that in a Boolean operation, any value is considered true with the
exception of nil and false. If the first operand is true, then || simply returns the
first operand, and the second operand is never evaluated. If the first operand
is not true, then || evaluates and returns the second operand instead. This
means the result will be true unless both operands are false, which is consis-
tent with the intuitive notion of an or operator.

Now you can see that the previous code has the same effect as this:

if defined?(a) && a
a

else
a = []

end

You can translate this code as this: “If a is nil, or false, or hasn’t even been
defined yet, then make it an empty array and give me its value; if it’s anything
else, just give me its value.” In such cases, experienced Ruby coders generally
consider the ||= operator more elegant and readable than an if. You’re not
limited to arrays, so you can use the same idiom to initialize just about any-

Spell: Nil Guardthing. This idiom is sometimes called a Nil Guard, because it’s used to make
sure that a variable is not nil.

report erratum • discuss

Nil Guards • 219

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/common_idioms/nil_guards.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Attribute Trouble

Object attributes (which I describe in Mimic Methods, on page 217) contain a hidden
trap for the unsuspecting programmer:

common_idioms/attribute_trouble.rb
class MyClass

attr_accessor :my_attribute

def set_attribute(n)
my_attribute = n

end
end

obj = MyClass.new
obj.set_attribute 10
obj.my_attribute # => nil

This result is probably not what you expected. The problem is that the code in set_at-
tribute is ambiguous. Ruby has no way of knowing whether this code is an assignment
to a local variable called my_attribute or a call to a Mimic Method (218) called my_attribute=.
When in doubt, Ruby defaults to the first option. It defines a variable called my_attribute,
which immediately falls out of scope.

To steer clear of this problem, use self explicitly when you assign to an attribute of
the current object. Continuing from the previous example:

class MyClass
def set_attribute(n)

self.my_attribute = n➤

end
end

obj.set_attribute 10
obj.my_attribute # => 10

If you’re a jaded Ruby expert, you might ask yourself a subtle question that completely
escaped me while writing the first edition of this book. What if MyClass#my_attribute=
happens to be private? In What private Really Means, on page 35, I said that you cannot
call a private method with an explicit self receiver—so it seems that you’re out of luck
in this (exceedingly rare) case. The answer to this conundrum is one of Ruby’s few
ad-hoc exceptions. Attribute setters such as my_attribute= can be called with self even
if they’re private:

class MyClass
private :my_attribute

end

obj.set_attribute 11 # No error!
obj.send :my_attribute # => 11

Appendix 1. Common Idioms • 220

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/common_idioms/attribute_trouble.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Nil Guards are also used quite often to initialize instance variables. Look at
this class:

class C
def initialize
@a = []

end

def elements
@a

end
end

By using a Nil Guard, you can rewrite the same code more succinctly:

class C
def elements
@a ||= []

end
end

The previous code initializes the instance variable at the latest possible
moment, when it’s actually accessed. This idiom is called a Lazy Instance

Spell: Lazy Instance
Variable

Variable. Sometimes, as in the earlier example, you manage to replace the
whole initialize method with one or more Lazy Instance Variables.

Nil Guards and Boolean Values
Nil Guards have one quirk that is worth mentioning: they don’t work well
with Boolean values. Here is an example:

def calculate_initial_value
puts "called: calculate_initial_value"
false

end

b = nil
2.times do

b ||= calculate_initial_value
end

called: calculate_initial_value❮
called: calculate_initial_value

The Nil Guard in the code above doesn’t seem to work—calculate_initial_value is
called twice, instead of once as you might expect. To see where the problem
is, let’s write the if equivalent of that Nil Guard.

report erratum • discuss

Nil Guards • 221

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

if defined?(b) && b
if b is already defined and neither nil nor false:
b

else
if b is undefined, nil or false:
b = calculate_initial_value

end

If you look at this if-based translation of a Nil Guard, you will see that Nil
Guards are unable to distinguish false from nil. In our previous example, b is
false, so the Nil Guard reinitializes it every time.

This little wrinkle of Nil Guards usually goes unnoticed, but it can also cause
the occasional hard-to-spot bug. For this reason, you shouldn’t use Nil Guards
to initialize variables that can have false (or nil, for that matter) as a legitimate
value.

Self Yield
When you pass a block to a method, you expect the method to call back to
the block with yield. A twist on callbacks is that an object can also pass itself
to the block. Let’s see how this can be useful.

The Faraday Example
In the Faraday HTTP library, you typically initialize an HTTP connection with
a URL and a block:

common_idioms/faraday_example.rb
require 'faraday'

conn = Faraday.new("https://twitter.com/search") do |faraday|
faraday.response :logger
faraday.adapter Faraday.default_adapter
faraday.params["q"] = "ruby"
faraday.params["src"] = "typd"

end

response = conn.get
response.status # => 200

This code sets the parameters for the connection. If you wish, you can get
the same results by passing a hash of parameters to Faraday.new—but the
block-based style has the advantage of making it clear that all the statements
in the block are focusing on the same object. If you like this style, you might
want to peek inside Faraday’s source code and see how it is implemented.
Faraday.new actually creates and returns a Faraday::Connection object:

Appendix 1. Common Idioms • 222

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/common_idioms/faraday_example.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

gems/faraday-0.8.8/lib/faraday.rb
module Faraday

class << self
def new(url = nil, options = {})

...
Faraday::Connection.new(url, options, &block)

end

...

The interesting stuff happens in Faraday::Connection#initialize. This method accepts
an optional block and yields the newly created Connection object to the block:

gems/faraday-0.8.8/lib/faraday/connection.rb
module Faraday

class Connection
def initialize(url = nil, options = {})
...
yield self if block_given?
...

end

...

Spell: Self YieldThis simple idiom is known as a Self Yield. Self Yields are pretty common in
Ruby—even instance_eval and class_eval optionally yield self to the block, although
this feature is rarely used in practice:

common_idioms/self_yield_in_eval.rb
String.class_eval do |klass|
klass # => String

end

For a more creative example of a Self Yield, you can check out the tap method.

The tap() Example
In Ruby, it’s common to find long chains of method calls such as this:

common_idioms/tap.rb
['a', 'b', 'c'].push('d').shift.upcase.next # => "B"

Chains of calls are frowned upon in most languages (and sometimes referred
to as “train wrecks”). Ruby’s terse syntax makes call chains generally more
readable, but they still present a problem: if you have an error somewhere
along the chain, it can be difficult to track down the error.

For example, maybe you’re worried that the call to shift is not returning what
you expect. To confirm your suspicions, you break the chain and print out
the result of shift (or set a breakpoint in your debugger):

report erratum • discuss

Self Yield • 223

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/gems/faraday-0.8.8/lib/faraday.rb
http://media.pragprog.com/titles/ppmetr2/code/gems/faraday-0.8.8/lib/faraday/connection.rb
http://media.pragprog.com/titles/ppmetr2/code/common_idioms/self_yield_in_eval.rb
http://media.pragprog.com/titles/ppmetr2/code/common_idioms/tap.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

temp = ['a', 'b', 'c'].push('d').shift
puts temp
x = temp.upcase.next

a❮

This is a clumsy way to debug your code. If you don’t want to split the call
chain, you can use the tap method to slip intermediate operations into the
middle of a call chain:

['a', 'b', 'c'].push('d').shift.tap {|x| puts x }.upcase.next

a❮

The tap method already exists on Kernel. However, it’s a good exercise to
imagine how you would write it yourself if it weren’t already provided by Ruby:

class Object
def tap
yield self
self

end
end

Symbol#to_proc()
This exotic spell is popular among black-belt Ruby programmers. When I
stumbled upon this spell for the first time, I had trouble understanding the
reasoning behind it. It’s easier to get there by taking one small step at a time.

Look at this code:

common_idioms/symbol_to_proc.rb
names = ['bob', 'bill', 'heather']
names.map {|name| name.capitalize } # => ["Bob", "Bill", "Heather"]

Focus on the block—a simple “one-call block” that takes a single argument
and calls a single method on that argument. One-call blocks are very common
in Ruby, especially (but not exclusively) when you’re dealing with arrays.

In a language such as Ruby, which prides itself on being succinct and to the
point, even a one-call block looks verbose. Why do you have to go through
the trouble of creating a block, with curly braces and all, just to ask Ruby to
call a method? The idea of Symbol#to_proc is that you can replace a one-call
block with a shorter construct. Let’s start with the smallest piece of informa-
tion you need, which is the name of the method that you want to call, as a
symbol:

:capitalize

Appendix 1. Common Idioms • 224

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/common_idioms/symbol_to_proc.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

You want to convert the symbol to a one-call block like this:

{|x| x.capitalize }

As a first step, you can add a method to the Symbol class, which converts the
symbol to a Proc object:

class Symbol
def to_proc➤

Proc.new {|x| x.send(self) }➤

end➤

end

See how this method works? If you call it on, say, the :capitalize symbol, it
returns a proc that takes an argument and calls capitalize on the argument.
Now you can use to_proc and the & operator to convert a symbol to a Proc and
then to a block:

names = ['bob', 'bill', 'heather']
names.map(&:capitalize.to_proc) # => ["Bob", "Bill", "Heather"]➤

You can make this code even shorter. As it turns out, you can apply the &
operator to any object, and it will take care of converting that object to a Proc
by calling to_proc. (You didn’t think we picked the name of the to_proc method
randomly, did you?) So, you can simply write the following:

names = ['bob', 'bill', 'heather']
names.map(&:capitalize) # => ["Bob", "Bill", "Heather"]➤

Spell: Symbol To
Proc

That’s the trick known as Symbol To Proc. Neat, huh?

The good news is that you don’t have to write Symbol#to_proc, because it’s already
provided by Ruby. In fact, Ruby’s implementation of Symbol#to_proc also supports
blocks with more than one argument, which are required by methods such
as inject:

without Symbol#to_proc:
[1, 2, 5].inject(0) {|memo, obj| memo + obj } # => 8

with Symbol#to_proc:
[1, 2, 5].inject(0, &:+) # => 8

cool!

report erratum • discuss

Symbol#to_proc() • 225

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

APPENDIX 2

Domain-Specific Languages
Domain-specific languages are a popular topic these days. They overlap
somewhat with metaprogramming, so you’ll probably want to know a thing
or two about them.

The Case for Domain-Specific Languages
Are you old enough to remember Zork? It was one of the first “text adventures”:
text-based computer games that were popular in the early 1980s. Here are
the first few lines from a game of Zork:

West of house❮
You are standing in an open field west of a
white house, with a boarded front door.
You see a small mailbox here.
open mailbox➾
Opening the small mailbox reveals a leaflet.❮
take leaflet➾
Taken.❮

Suppose you have to write a text adventure as your next job. What language
would you write it in?

You’d probably pick a language that’s good at manipulating strings and
supports object-oriented programming. But whatever language you chose,
you’d still have a gap between that language and the problem you’re trying
to solve. This probably happens in your daily programming job as well. For
example, many large Java applications deal with money, but Money is not a
standard Java type. That means each application has to reinvent money,
usually as a class.

In the case of our adventure game, you have to deal with entities such as
rooms and items. No general-purpose language supports these entities

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

directly. How would you like a language that’s specifically targeted to text
adventures? Given such a language, you could write code like this:

me: Actor
location = westOfHouse

;

westOfHouse : Room 'West of house'
"You are standing in an open field west of
a white house, with a boarded front door."

;

+ mailbox : OpenableContainer 'mailbox' 'small mailbox';

++ leaflet : Thing 'leaflet' 'leaflet';

This is not a mocked-up example—it’s real code. It’s written in a language
called TADS, specifically designed for creating “interactive fiction” (today’s
fancier name for text adventures). TADS is an example of a domain-specific
language (DSL), a language that focuses on a specific problem domain.

The opposite of a DSL is a general-purpose language (GPL), such as C++ or
Ruby. You can use a GPL to tackle a wide variety of problems, even if it might
be more suited to some problems than others. Whenever you write a program,
it’s up to you to choose between a flexible GPL and a focused DSL.

Let’s assume that you decide to go down the DSL route. How would you pro-
ceed then?

Using DSLs
If you want a DSL for your own specific problem, you might get lucky. There
are hundreds of DSLs around, focusing on a wide range of domains. The UNIX
shell is a DSL for gluing command-line utilities together. Microsoft’s VBA was
designed to extend Excel and other Microsoft Office applications. The make
language is a DSL focused on building C programs, and Ant is an XML-based
equivalent of make for Java programs. Some of these languages are limited
in scope, while others are flexible enough to cross the line into GPL-dom.

What if you can’t find a ready-made DSL that fits the domain you’re working
in? In that case, you can write your own DSL and then use that DSL to write
your program. You could say that this process—writing a DSL and then using
it—is another take on metaprogramming. It can be a slippery path, though.
You’ll probably need to define a grammar for your language with a system
such as ANTLR or Yacc, which are themselves DSLs for writing language
parsers. As the scope of your problem expands, your humble little language

Appendix 2. Domain-Specific Languages • 228

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

can grow into a GPL before you even realize it. At that point, your leisurely
foray into language writing will have escalated into an exhausting marathon.

To avoid these difficulties, you can pick a different route. Rather than writing
a full-fledged DSL, you can bend a GPL into something resembling a DSL for
your specific problem. The next section shows you how.

Internal and External DSLs
Let’s see an example of a DSL that’s actually a GPL in disguise. Here’s a
snippet of Ruby code that uses the Markaby gem to generate HTML:

dsl/markaby_example.rb
require 'markaby'

html = Markaby::Builder.new do
head { title "My wonderful home page" }
body do

h1 "Welcome to my home page!"
b "My hobbies:"
ul do
li "Juggling"
li "Knitting"
li "Metaprogramming"

end
end

end

This code is plain old Ruby, but it looks like a specific language for HTML
generation. You can call Markaby an internal DSL, because it lives within a
larger, general-purpose language. By contrast, languages that have their own
parser, such as make, are often called external DSLs. One example of an
external DSL is the Ant build language. Even though the Ant interpreter is
written in Java, the Ant language is completely different from Java.

Let’s leave the GPL vs. DSL match behind us and assume that you want to
use a DSL. Which DSL should you prefer? An internal DSL or an external
DSL?

One advantage of an internal DSL is that you can easily fall back on the
underlying GPL whenever you need to do so. However, the syntax of your
internal DSL will be constrained by the syntax of the GPL behind it. This is
a big problem with some languages. For example, you can write an internal
DSL in Java, but the result is probably still going to look pretty much like
Java. But with Ruby, you can write an internal DSL that looks more like an
ad hoc language tailored to the problem at hand. Thanks to Ruby’s flexible,

report erratum • discuss

Internal and External DSLs • 229

www.it-ebooks.info

http://media.pragprog.com/titles/ppmetr2/code/dsl/markaby_example.rb
http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

uncluttered syntax, the Markaby example shown earlier barely looks like
Ruby at all.

That’s why Ruby programmers tend to use Ruby where Java programmers
would use an external language or an XML file. It’s easier to adapt Ruby to
your own needs than it is to adapt Java. As an example, consider build lan-
guages. The standard build languages for Java and C (Ant and make,
respectively) are external DSLs, while the standard build language for Ruby
(Rake) is just a Ruby library—an internal DSL.

DSLs and Metaprogramming
At the beginning of this book, we defined metaprogramming as “writing code
that writes code” (or, if you want to be more precise, “writing code that
manipulates the language constructs at runtime”). Now that you know about
DSLs, you have another definition of metaprogramming: “designing a domain-
specific language and then using that DSL to write your program.”

This is a book about the first definition, not a book about DSLs. To write a
DSL, you have to deal with a number of challenges that are outside the scope
of this book. You have to understand your domain, care about your language’s
user-friendliness, and carefully evaluate the constraints and tradeoffs of your
grammar. While writing this book, I opted to keep this particular can of worms
shut.

Still, metaprogramming and DSLs have a close relationship in the Ruby world.
To build an internal DSL, you must bend the language itself, and doing so
requires many of the techniques described in this book. Put another way,
metaprogramming provides the bricks that you need to build DSLs. If you’re
interested in internal Ruby DSLs, this book contains information that’s
important for you.

Appendix 2. Domain-Specific Languages • 230

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

APPENDIX 3

Whenever someone says they have “a cool trick,” take them outside
and slap them up.

 ➤ Jim Weirich (1956–2014)

Spell Book
This appendix is a “spell book”—a quick reference to all the “spells” in the
book, in alphabetical order. Most of these spells are metaprogramming related
(but the ones from Appendix 1, Common Idioms, on page 217, are arguably not
that “meta”). Each spell comes with a short example and a reference to the
page where it’s introduced. Go to the associated pages for extended examples
and the reasoning behind each spell.

The Spells

Around Alias
Call the previous, aliased version of a method from a redefined method.

class String
alias_method :old_reverse, :reverse

def reverse
"x#{old_reverse}x"

end
end

"abc".reverse # => "xcbax"

For more information, see page 134.

Blank Slate
Remove methods from an object to turn them into Ghost Methods (57).

class C
def method_missing(name, *args)

"a Ghost Method"
end

end

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

obj = C.new
obj.to_s # => "#<C:0x007fbb2a10d2f8>"

class D < BasicObject
def method_missing(name, *args)
"a Ghost Method"

end
end

blank_slate = D.new
blank_slate.to_s # => "a Ghost Method"

For more information, see page 66.

Class Extension
Define class methods by mixing a module into a class’s singleton class (a
special case of Object Extension (130)).

class C; end

module M
def my_method

'a class method'
end

end

class << C
include M

end

C.my_method # => "a class method"

For more information, see page 130.

Class Instance Variable
Store class-level state in an instance variable of the Class object.

class C
@my_class_instance_variable = "some value"

def self.class_attribute
@my_class_instance_variable

end
end

C.class_attribute # => "some value"

For more information, see page 109.

Appendix 3. Spell Book • 232

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Class Macro
Use a class method in a class definition.

class C; end

class << C
def my_macro(arg)
"my_macro(#{arg}) called"

end
end

class C
my_macro :x # => "my_macro(x) called"

end

For more information, see page 117.

Clean Room
Use an object as an environment in which to evaluate a block.

class CleanRoom
def a_useful_method(x); x * 2; end

end

CleanRoom.new.instance_eval { a_useful_method(3) } # => 6

For more information, see page 87.

Code Processor
Process Strings of Code (141) from an external source.

File.readlines("a_file_containing_lines_of_ruby.txt").each do |line|
puts "#{line.chomp} ==> #{eval(line)}"

end

>> 1 + 1 ==> 2
>> 3 * 2 ==> 6
>> Math.log10(100) ==> 2.0

For more information, see page 144.

report erratum • discuss

The Spells • 233

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Context Probe
Execute a block to access information in an object’s context.

class C
def initialize
@x = "a private instance variable"

end
end

obj = C.new
obj.instance_eval { @x } # => "a private instance variable"

For more information, see page 85.

Deferred Evaluation
Store a piece of code and its context in a proc or lambda for evaluation later.

class C
def store(&block)
@my_code_capsule = block

end

def execute
@my_code_capsule.call

end
end

obj = C.new
obj.store { $X = 1 }
$X = 0

obj.execute
$X # => 1

For more information, see page 89.

Dynamic Dispatch
Decide which method to call at runtime.

method_to_call = :reverse
obj = "abc"

obj.send(method_to_call) # => "cba"

For more information, see page 49.

Appendix 3. Spell Book • 234

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Dynamic Method
Decide how to define a method at runtime.

class C
end

C.class_eval do
define_method :my_method do

"a dynamic method"
end

end

obj = C.new
obj.my_method # => "a dynamic method"

For more information, see page 51.

Dynamic Proxy
Dynamically forward method calls to another object.

class MyDynamicProxy
def initialize(target)
@target = target

end

def method_missing(name, *args, &block)
"result: #{@target.send(name, *args, &block)}"

end
end

obj = MyDynamicProxy.new("a string")
obj.reverse # => "result: gnirts a"

For more information, see page 60.

Flat Scope
Use a closure to share variables between two scopes.

class C
def an_attribute
@attr

end
end

obj = C.new
a_variable = 100

report erratum • discuss

The Spells • 235

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

flat scope:
obj.instance_eval do
@attr = a_variable

end

obj.an_attribute # => 100

For more information, see page 83.

Ghost Method
Respond to a message that doesn’t have an associated method.

class C
def method_missing(name, *args)

name.to_s.reverse
end

end

obj = C.new
obj.my_ghost_method # => "dohtem_tsohg_ym"

For more information, see page 57.

Hook Method
Override a method to intercept object model events.

$INHERITORS = []
class C
def self.inherited(subclass)
$INHERITORS << subclass

end
end

class D < C
end

class E < C
end

class F < E
end

$INHERITORS # => [D, E, F]

For more information, see page 157.

Appendix 3. Spell Book • 236

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Kernel Method
Define a method in module Kernel to make the method available to all objects.

module Kernel
def a_method

"a kernel method"
end

end

a_method # => "a kernel method"

For more information, see page 32.

Lazy Instance Variable
Wait until the first access to initialize an instance variable.

class C
def attribute
@attribute = @attribute || "some value"

end
end

obj = C.new
obj.attribute # => "some value"

For more information, see page 221.

Mimic Method
Disguise a method as another language construct.

def BaseClass(name)
name == "string" ? String : Object

end

class C < BaseClass "string" # a method that looks like a class
attr_accessor :an_attribute # a method that looks like a keyword

end

obj = C.new
obj.an_attribute = 1 # a method that looks like an attribute

For more information, see page 218.

report erratum • discuss

The Spells • 237

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Monkeypatch
Change the features of an existing class.

"abc".reverse # => "cba"

class String
def reverse
"override"

end
end

"abc".reverse # => "override"

For more information, see page 16.

Namespace
Define constants within a module to avoid name clashes.

module MyNamespace
class Array

def to_s
"my class"

end
end

end

Array.new # => []
MyNamespace::Array.new # => my class

For more information, see page 23.

Nil Guard
Override a reference to nil with an “or.”

x = nil
y = x || "a value" # => "a value"

For more information, see page 219.

Appendix 3. Spell Book • 238

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Object Extension
Define Singleton Methods by mixing a module into an object’s singleton class.

obj = Object.new

module M
def my_method

'a singleton method'
end

end

class << obj
include M

end

obj.my_method # => "a singleton method"

For more information, see page 130.

Open Class
Modify an existing class.

class String
def my_string_method
"my method"

end
end

"abc".my_string_method # => "my method"

For more information, see page 14.

Prepended Wrapper
Call a method from its prepended override.

module M
def reverse

"x#{super}x"
end

end

String.class_eval do
prepend M

end

"abc".reverse # => "xcbax"

For more information, see page 136.

report erratum • discuss

The Spells • 239

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Refinement
Patch a class until the end of the file, or until the end of the including module.

module MyRefinement
refine String do

def reverse
"my reverse"

end
end

end

"abc".reverse # => "cba"
using MyRefinement
"abc".reverse # => "my reverse"

For more information, see page 36.

Refinement Wrapper
Call an unrefined method from its refinement.

module StringRefinement
refine String do

def reverse
"x#{super}x"

end
end

end

using StringRefinement
"abc".reverse # => "xcbax"

For more information, see page 135.

Sandbox
Execute untrusted code in a safe environment.

def sandbox(&code)
proc {

$SAFE = 2
yield

}.call
end
begin

sandbox { File.delete 'a_file' }
rescue Exception => ex

ex # => #<SecurityError: Insecure operation at level 2>
end

For more information, see page 149.

Appendix 3. Spell Book • 240

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Scope Gate
Isolate a scope with the class, module, or def keyword.

a = 1
defined? a # => "local-variable"

module MyModule
b = 1
defined? a # => nil
defined? b # => "local-variable"

end

defined? a # => "local-variable"
defined? b # => nil

For more information, see page 81.

Self Yield
Pass self to the current block.

class Person
attr_accessor :name, :surname

def initialize
yield self

end
end

joe = Person.new do |p|
p.name = 'Joe'
p.surname = 'Smith'

end

For more information, see page 223.

Shared Scope
Share variables among multiple contexts in the same Flat Scope (83).

lambda {
shared = 10
self.class.class_eval do

define_method :counter do
shared

end
define_method :down do

shared -= 1
end

end
}.call

report erratum • discuss

The Spells • 241

www.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

counter # => 10
3.times { down }
counter # => 7

For more information, see page 84.

Singleton Method
Define a method on a single object.

obj = "abc"

class << obj
def my_singleton_method
"x"

end
end

obj.my_singleton_method # => "x"

For more information, see page 114.

String of Code
Evaluate a string of Ruby code.

my_string_of_code = "1 + 1"
eval(my_string_of_code) # => 2

For more information, see page 141.

Symbol To Proc
Convert a symbol to a block that calls a single method.

[1, 2, 3, 4].map(&:even?) # => [false, true, false, true]

For more information, see page 225.

Appendix 3. Spell Book • 242

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/ppmetr2/errata/add
http://forums.pragprog.com/forums/ppmetr2
http://www.it-ebooks.info/

Index
SYMBOLS
& operator, blocks, 89, 225

:: notation, constant paths,
22

@ character, setups and vari-
ables, 99

@@ prefix, for class variables,
110

|| operator, Nil Guards, 219,
238

-> (stabby lambda) operator,
89

{} characters, blocks, 74

A
accessor methods, 7, 116,

200–212

accounting example, 46–48,
52–55, 60–64, 69

Action Pack library, 168

Active Model library, 173

Active Record library
about, 7, 168
attribute methods, 199–

212
design, 171–178
movie database example,

6
Validations module, 175,

179–197

Active Support library
about, 168
alias_method_chain, 189–197
Autoload module, 173
Concern module, 179, 183–

188

methods_transplantable?
method, 208–210

UnboundMethod example, 95

add_checked_attribute method
development plan, 140
eval method, 141–157
quizzes, 150–157, 160
removing eval method,

153

alias keyword, 132

alias_method method, 132

alias_method_chain method, 189–
197

Aliases, Around, see Around
Aliases

allocate method, 19

alphanumeric label example,
12–16, 36

ancestors chain
attribute methods, 202
includers, 186
method lookup, 29–33,

55, 121
method_missing method, 202
object model rules, 126
prepending, 30–32, 135,

195
print_to_screen example, 40
removing from, 95
singleton classes, 122–

123

ancestors method, 30

and operator, blocks, 89, 225

anonymous classes and con-
stants, 113

Ant language, 228–229

ANTLR, 228

ap method, 33

append_features method, 183–
187

arguments
arity, 93
blocks, 74

arity, 93

Around Aliases
alias_method_chain method,

193
vs. overriding, 159, 190
quiz, 137
respond_to? method, 202
spell book, 231
using, 132–135

Array class
grep method, 17, 55
inheritance, 20

arrays
array explorer, 146–148
grep method, 17, 55
inheritance, 20
replacing elements, 15

attr_accessor method
Class Macros, 116–118
quizzes, 150–157
review, 128–129

attr_checked method
vs. add_checked_attribute,

151, 156
development plan, 140–

141
quizzes, 156, 160
review, 151

attr_reader method, 117

attr_writer method, 117

attribute methods, 199–212

AttributeMethodCache module,
209

AttributeMethods module, 202

www.it-ebooks.info

http://www.it-ebooks.info/

attributes, see also attr_acces-
sor method; attr_checked
method

attribute methods, 199–
212

self and, 220
singleton classes, 127–

129
syntax, 217

@attributes variable, 201

AttrNames module, 210

autoload method, 173

autoloading, 95, 173

awesome_print gem, 33

B
bar operator, Nil Guards,

219, 238

Base class (Active Record)
connections, 172
definition, 174
design, 172–178
respond_to? method, 202
Validations module, 175,

179–197

BasicObject class
Blank Slates, 67, 103
hooks, 158
inheritance, 20
instance_eval method, 68,

85–88, 108, 127, 145,
223

method_missing method, 48,
55–71, 200–206

binding method, 143

Binding objects, 143–145

bindings
attribute methods, 208–

210
Binding objects, 143–145
blocks and, 77, 89
instance_eval method, 85–

88
scope and, 78–84
UnboundMethod objects, 94

Blank Slates
Clean Rooms, 88, 103
method_missing method, 66–

69
spell book, 231

block_given? method, 74

blocks, see also procs
attaching bindings, 89
basics, 73–77
Clean Rooms, 87, 233
closures as, 77–84

converting to procs, 89,
100, 224, 242

instance_eval method, 85–
88

instance_exec method, 86
quizzes, 75–77
Self Yield, 222–224, 241
vs. Strings of Code, 145–

150
validate method, 172
validated attributes, 141,

154–155

boilerplate methods, 45

Bookworm examples
label refactoring, 12–16,

36
loan refactoring, 111
method wrappers, 131–

136
Namespaces, 25
renaming methods, 117
Singleton Methods, 113–

118

Boolean operators and values,
Nil Guards, 219–222

braces, blocks, 74

broken math quiz, 136

Builder, Blank Slate example,
67–69

C
C

attr_accessor method, 150
compile/runtime time, 8
domain-specific lan-

guages, 230

C#, nested visibility, 79

C++
compile/runtime time, 8
templates, 8
using keyword, 75–77

caching, UnboundMethod objects,
207–210

calculate_initial_value method, 221

call method, 94

callable objects, see blocks;
lambdas; procs

callers method, 134

Camping framework example,
218

Cantrell, Paul, 93

chain of ancestors, see ances-
tors chain

chained inclusions, 181–183,
186

chains of calls, 223

checked attributes, see at-
tr_checked method

class << syntax, singleton
classes, 120, 126

Class class
about, 19
inheritance, 20
inherited method, 157
new method, 82

class definitions
about, 13, 105
aliases, 132–135, 137,

190
current class, 106–109
Scope Gates, 81
self and, 36, 106
singleton classes, 118–

122, 126
Singleton Methods, 113–

118
theory, 106–112

Class Extensions, 130, 180,
185, 232

Class Instance Variables,
109, 232

class keyword
about, 14
current class, 107
replacing with Class.new,

82
replacing with Module#de-
fine_method, 83

scope, 81, 108, 241
singleton classes, 120

Class Macros
attr_accessor example, 116–

118
attr_checked method, 140–

141, 156, 161
autoload method, 173
Mimic Methods, 218
spell book, 233
validate method, 172

class methods
Active Record library and,

176
hooks, 159, 180
notation conventions, xx
as Singleton Methods,

115–118
syntax, 126
viewing, 119

class variables
@_dependencies variable,

184
prefix, 110

Index • 244

www.it-ebooks.info

http://www.it-ebooks.info/

class_eval method, 107, 145,
205, 223

class_exec method, 108

classes, see also class defini-
tions; Open Classes; single-
ton classes

anonymous, 113
Class Extensions, 130,

180, 185, 232
current class, 106–109
hierarchies, 110
inheritance and singleton

classes, 123–125
instance methods and,

18–19, 24
instance variables and,

17–18
method wrappers, 131–

136
methods and, 19, 24
modules as, 20, 24
naming, 25
object model rules, 126
objects as, 19–21, 24

classic-namespace option, 24

ClassMethods class plus hooks,
159, 180

Clean Rooms
blocks, 87, 233
events, 102
safe levels, 149
serializing, 208
spell book, 233

closures
Binding objects, 143
blocks as, 77–84, 235

code, see also design
notation conventions, xx
precedence and Refine-

ments, 38
Rails source code, 168

code generators, 8

code injection, 146–150, 153

Code Processors, 144, 149,
233

colon character, constant
paths, 22

compile time, 8

compilers, 8, 45

completed= method, 200

completed? method, 200

Computer class, avoiding dupli-
cation example, 46–48, 52–
55, 60–64, 66, 69

Concern module (Active Sup-
port), 179, 183–188

const_get method, 187

const_missing method, 63

constants
anonymous classes and,

113
attribute methods, 208,

210
class keyword, 108
const_missing method, 63
using, 21–24

constants method, 23

Context Probes, 85–88, 234

converting
blocks to procs, 89, 100,

224, 242
numbers to Money object,

14
strings, 12–16, 36
symbols, 49, 224, 242

counter method, 84

curly braces for blocks, 74

current class or module, 106–
109

current object, 34, 213, see
also self keyword

D
Date class, testing and, 111

debugging
chains of calls, 223
Ghost Methods, 70
method_missing method, 64–

66
Nil Guards, 222
Open Classes, 15
Pry and Binding objects,

143

decoupling, 177

def keyword
compared to class_eval, 108
vs. define_method, 51
vs. Dynamic Methods,

153
Scope Gates, 81, 241
Singleton Methods, 116

Deferred Evaluation, 89–93,
234

define_attribute_methods method,
203

define_method method
attribute methods, 200,

202–206
avoiding duplication, 53

binding UnboundMethods, 95
replacing def with, 83
using, 51

define_method_attribute method,
208

define_singleton_method method,
114

define_write_method method, 204

delete method, 142

dependencies, 184–186, 188

deprecate method, 117

description method, 200, 205

description= method, 200, 203,
205

description? method, 205

design
Active Record library,

171–178
attribute methods, 211
evolutionary, 210
flexibility, 177, 188
simplicity, 196, 212
tenets, 177

directories, modules and
classes as, 22

Dispose method, 75

domain-specific languages
(DSLs), 97–103, 227–230

dot notation, 48

do…end keywords, 74

Duck class example, 171

duck typing, 115

duplication, avoiding
accounting example, 46–

48, 52–55, 60–64, 66,
69

Dynamic Methods, 48–55
method_missing method, 48,

55–71
Ruby advantages, xvii

Dynamic Dispatch, 48–55,
147, 203, 234

dynamic languages
duck typing, 115
lack of type checking, 45

Dynamic Methods
accessor methods, 200
attribute methods, 202–

206
avoiding duplication, 48–

55
vs. def keyword, 153
defining, 51
deprecation, 118

Index • 245

www.it-ebooks.info

http://www.it-ebooks.info/

vs. eval method, 147
vs. Ghost Methods, 70
spell book, 235

Dynamic Proxies, 58–64, 66,
235

@@dynamic_methods, 202

E
eigenclasses, see singleton

classes

encapsulation, 51, 85, 183

end keyword, 74

ERB library example, 149

eval method
add_checked_attribute

method, 141–157
Binding objects, 143–145
disadvantages, 145–150
irb example, 144
removing, 153
Strings of Code, 141–157
tainted objects, 148–150
validated attributes, 140,

150–152

Evaluation, Deferred, 89–93,
234

event method, 100

events
setups and variables, 99
sharing data, 98, 102

evolutionary design, 210

explore_array method, 146–148

extend method, 131, 175, 179–
183

extended method, 158, 183

Extensions, Class, 130, 180,
185, 232

Extensions, Object, 130, 239

external DSLs, 229

F
Faraday example, 222

feature variable, 191

file argument, Binding objects,
144

files
constants as, 22
evaluating and security,

150

Fixnum#+ method, 137

Flat Scopes, 82–84, 98, 108,
235

functional programming lan-
guages, 73

G
gem command, xx

general-purpose languages
(GPLs), 228–230

generated_attribute_methods
method, 208

generated_methods? method, 203

generators, code, 8

get method, REST Client, 141

Ghee example, 58–60

Ghost Methods
about, 56
Active Record library, 172
attribute methods, 200–

206
cautions, 65
vs. Dynamic Methods, 70
Dynamic Proxies, 58–64
name clashes, 66–69
quiz, 64–66
spell book, 231, 236

gists, 58

GitHub, Ghee example, 58–60

global variables, 80, 101

GPLs (general-purpose lan-
guages), 228–230

Great Unified Theory of Ruby,
125

greet method, 190, 194–195

greet_with_enthusiasm method,
190

greet_without_enthusiasm method,
190

grep method, 17, 55

H
hash notation, xx

Hashie, 57, 59

heredocs, 142, 209

hierarchies
class, 110
object model, 125

HighLine example, 91

Hook Methods
spell book, 236
with standard methods,

159
validated attributes, 141,

157–162, 180, 184

HTTP
Faraday example, 222
REST Client, 142
VCR, 159

I
idioms, common, 217–225,

see also spells

if keyword, 219

immutability of symbols, 49

importing
files and safe levels, 150
libraries, 26

inc method, 84

include method
Active Record library, 175
ancestors chain, 30–32
Concern module, 183–188
hooks, 159
include-and-extend trick,

179–183
Object Extensions, 130

include-and-extend trick,
179–183

included method
vs. append_features, 184
hooks, 158–159, 180
include-and-extend trick,

179–183

indentation, xx

inheritance
private methods, 35
singleton classes, 123–

125
superclasses, 19, 27

inherited method, 157

initialize method
attribute methods, 201
Nil Guards, 221
reducing duplication, 55

inner scopes, 79

installing
code with gem command,

xx
Rails, 168

instance methods, see also at-
tr_accessor method

Active Record library and,
176

classes and, 18–20, 24
hooks, 158, 180
instance_method_already_imple-
mented?, 204

methods and, 18, 24
notation conventions, xx
UnboundMethod objects, 94

instance variables
about, 17, 24
attr_accessor method, 154
Class Instance Variables,

109, 232

Index • 246

www.it-ebooks.info

http://www.it-ebooks.info/

diagram, 18
dynamic languages, 27
initializing with Nil

Guards, 221
Lazy Instance Variable,

221, 237
safe levels, 149
self keyword, 34, 80, 86
top-level, 79–80, 100,

102
viewing, 17

instance_eval method
blocks, 85–88
Builder, 68
compared to class_eval, 108
Self Yield, 223
singleton classes, 127
Strings of Code vs.

blocks, 145

instance_exec method, 86

instance_method method, 94

instance_method_already_implement-
ed? method, 204

instance_variable_get method, 154

instance_variable_set method, 27,
154

interactive fiction, 228

internal DSLs, 229

interpreters
about, xxi
Pry, 49
REST Client, 141

introspection, 3, 7, 54

irb
Binding objects, 144
listing methods, 15
nested sessions, 144
viewing self, 35

J
Java

compile/runtime time, 8
domain-specific lan-

guages, 230
nested visibility, 79
static fields, 109–110

Java Virtual Machine, xxi

JRuby, xxi

K
Kernel Methods

ap method, 33
binding method, 143
block_given?, 74
callers method, 134
const_get method, 187

load method, 26, 95, 133,
150

local_variables method, 79
method lookup, 32
Method objects, 94
procs and lambdas, 89–

93, 100, 149, 224,
234, 242

require method, 26, 133,
150

security, 150
Shared Scopes, 84
singleton_method method, 94
spell book, 237
tap method, 223
using keyword, 75–77

klass variable, 151

L
lab rat program example,

121, 123

lambda method, 89, 92

lambda? method, 92

lambdas, 88–89, 91–93, 102,
234

language constructs, 3, 7

languages
bending Ruby, xvii
domain-specific (DSLs),

97–103, 227–230
functional programming,

73
general-purpose (GPLs),

228–230
static, 45, 70
type checking, 45

Lazy Instance Variable, 221,
237

libraries, importing, 26

line argument, Binding objects,
144

listing
comma-separated exam-

ple, 91
constants, 23
methods in irb, 15

load method
aliases, 133
Namespaces and, 26
security, 150
UnboundMethod example, 95

Loadable class, UnboundMethod
example, 95

local_variables method, 79

Logger class example, 86

M
main object, 36, 80

make language, 228, 230

Markaby gem, 229

Mash class, 57, 59

math quiz, 136

Matz’s Ruby Interpreter, xxi

memory_size attribute, 49

message of the day example,
26

meta classes, see singleton
classes

metaprogramming
about, xvii
defined, 3, 7–8, 163
DSLs and, 230
flexibility, 188
programming as, 8, 163,

213

method execution, 28, 33–36

method lookup
direction, 30, 118, 121,

126
object model, 28–33, 55
review, 121
singleton classes, 118–

122

method method, 94

Method objects, 94–96

method_added method, 158

method_body method, 210

@method_cache.compute_if_absent,
210

method_missing method
attribute methods, 200–

206
avoiding duplication, 48,

55–71
Blank Slates, 66–69
Dynamic Proxies, 58–64
overriding, 56–64
quiz, 64–66
resources, 70

method_removed method, 158

method_undefined method, 158

methods, see also Around
Aliases; Class Macros; class
methods; Dynamic Meth-
ods; instance methods;
Kernel Methods; method
lookup; Mimic Methods;
Singleton Methods; wrap-
pers

about, 17

Index • 247

www.it-ebooks.info

http://www.it-ebooks.info/

accessor methods, 7, 116
alias_method_chain, 189–197
attribute methods, 199–

212
boilerplate method, 45
as callable objects, 88,

94–96
classes and, 19, 24
current class, 107
diagram, 18
Hook Methods, 141, 157–

162, 180, 184, 236
HTTP, 141
instance methods and,

18, 24
listing, 15
method execution, 28,

33–36
naming, 49, 57, 117
notation conventions, xx
object model rules, 125
persistence, 175
private methods, 35, 51,

134, 220
redefinition, 133
removing, 67–69, 153
reserved methods, 68
syntax, 126
UnboundMethod objects, 94–

96, 207–210

methods_transplantable? method,
208–210

Microsoft Office, 228

Mimic Methods
attr_accessor method, 116,

151, 154
attribute methods, 200
spell book, 237
using, 217–219

@module Clean Room, 210

Module class
alias_method method, 132
append_features method,

183–187
attr_accessor method, 116–

118, 128, 150–157
constants, 23
define_method method, 51,

53, 83, 95, 200, 202–
206

extend method, 175
extended method, 158, 183
include method, 30–32,

130, 159, 183–188
include-and-extend trick,

179–183
included method, 158–159,

180, 184

inheritance, 20
instance_method method, 94
method_added method, 158
method_removed method,

158
method_undefined method,

158
methods_transplantable?

method, 208–210
prepend method, 30–32,

135, 195
removing methods, 67

module keyword
current class, 107
Scope Gates, 81, 241

Module#constants, 23

Module.constants, 23

module_eval method, 107

module_exec method, 108

modules, see also classes
Active Record library and,

176
classes as, 20, 24
current module, 106–109
defining, 81, 105
Hook Methods, 158–159
inheritance and singleton

classes, 125
method lookup, 30–33
object model rules, 125
Refinements, 37
Scope Gates, 81
self and, 36
singleton classes and,

129–131

Money gem, 14

monitor utility example, 97–
103

Monkeypatching
with Around Aliases, 134
cautions, 15, 17
name clashes, 25
preventing in attribute

methods, 204
spell book, 238

movie database example, 4–7

MRI, xxi

N
name clashes

Ghost Methods, 66–69
Namespaces, 25, 238

Namespaces, 23, 25–26, 63,
173, 238

naming, see also Around
Aliases

Active Record library, 173
anonymous classes, 113
attribute methods

caches, 210
blocks, 89
classes, 25
constants, 21, 63
deprecation, 117
Ghost Methods, 66–69
methods and Class

Macros, 117
methods and symbols, 49
missing methods, 57
singleton classes, 122,

126

nested irb sessions, 144

nested lexical scopes, see Flat
Scopes

nested visibility, 79

nesting method, 23

new method, 19, 82, 113, 209

new_toplevel method, 149

Nil Guards, 111, 202, 219–
222, 238

notation conventions, xx

Numeric#to_money method, 14

O
Object class

define_singleton_method
method, 114

extend method, 131, 175,
179–183

inheritance, 20
instance_eval method, 68,

85–88, 108, 127, 145,
223

instance_variable_get method,
154

instance_variable_set method,
27, 154

pry method, 143
send method, 48–49, 51
singleton_class method, 120
untaint method, 149

Object Extensions, 130, 239

object model
classes as objects, 19–

21, 24
constants, 21–24
contents, 16–19
defined, 11
instance methods and, 24
instance variables and,

17–18

Index • 248

www.it-ebooks.info

http://www.it-ebooks.info/

method execution, 33–36
method lookup, 28–33
methods and, 17–18
quizzes, 26–27, 39–42
Refinements, 36–39
review, 24, 42
rules, 125
singleton classes and in-

heritance, 123–125

object-relational mapping,
171

objects
classes as objects, 19–

21, 24
current object, 34
defined, 24
main object, 36, 80
Object Extensions, 130,

239
object model rules, 125
Self Yield, 222–224, 241
tainted, 148–150

one step to the right, then up
rule, 30, 121, 126

Open Classes
aliases, 134
checked attributes, 152
class keyword, 14
disadvantages, 15
Fixnum#+ method, 137
spell book, 239

or operator, Nil Guards, 219,
238

outer scopes, 79

overriding
append_features method,

184–185
and-call-super technique,

194, 196
Hook Methods, 158–162
method_missing method, 56–

64

P
Padrino example, 86

Paragraph class, 113

parameters and parentheses,
xx

parentheses, xx, 217

Pascal casing, 25

paths of constants, 22

patterns, see spells

perform_validations method, 194

performance
caching accessors, 207
Ghost Methods, 202

persistence methods, 175

post method, 142

precedence and Refinements,
38

prepend method, xxi, 30–32,
135, 195

Prepended Wrappers, 135,
195, 239

print method, 32

print_to_screen example, 40

private keyword, 35

private method, 218

private methods
Around Aliases, 134
self and, 35, 220
send method, 51

proc method, 89

procs
Clean Rooms, 149
Deferred Evaluation, 89–

93, 234
RedFlag example, 100
spell book, 234, 242
Symbol to Proc, 224, 242

protected method, 218

Proxies, Dynamic, 58–64, 66,
235

Pry, 49–51, 143

pry method, 143

put method, 142

puts method, 217

Q
query accessors, 201

quiet attribute, 49

quizzes
about, xix
blocks, 75–77
broken math, 136
checked attributes, 150–

157, 160
domain-specific lan-

guages (DSLs), 98–103
method_missing method, 64–

66
object model, 26–27, 39–

42
singleton classes, 129–

131
Taboo, 112

R
Rails, see also Active Record

library; ActiveSupport li-
brary

Action Pack library, 168
alias_method_chain, 189–197
attribute methods, 199–

212
ClassMethods-plus-hook id-

iom, 160
Concern module, 179, 183–

188
installing, 168
overview, 167–169
resources, 168

rails gem, 168

Rake module example, 23

rake2thor example, 133

read accessors, 117, 200–
201, 210

ReaderMethodCache constant,
208–210

receivers, 29, 34–35

RedFlag example, 97–103

references, 21

refine method, 36–39

Refinement Wrappers, 135,
240

Refinements, xxi, 17, 36–39,
135, 240

refresh method, 50

remove_method method, 67

removing
from ancestors chain, 95
eval method, 153
methods, 67–69, 158
Singleton Methods, 158

replace method, 15

require method
aliases, 133
Namespaces and, 26
security, 150

require_with_record method, 134

require_without_record method,
134

reserved methods, 68

ResourceProxy class, 58

resources
method_missing method, 70
Rails, 168
Ruby, xxii

respond_to? method, 62, 69, 202

respond_to_missing? method, 62,
69

Index • 249

www.it-ebooks.info

http://www.it-ebooks.info/

REST Client example, 141–
143

return keyword, 92

Roulette class example, 64–66

Rubinius, xxi

Ruby
advantages, xvii, 8
compile/runtime time, 8
creating specific lan-

guages, xvii
Great Unified Theory, 125
syntax, xx, 229
tutorial, xxii
versions, xxi

runtime, 8, 234

S
$SAFE global variable, 148

safe levels, 148–150

@safe_level instance variable,
149

Sandboxes, 149, 240

save method, 172, 192, 194

save! method, 172, 192, 194

scope
bindings, 78–84, 143
class keyword, 108
concerns, 186
constants, 21
defined, 73
flattening, 82–84, 98,

108, 235
Method objects, 94
procs and lambdas, 92
removing eval method,

153
Scope Gates, 81–84, 241
Shared Scopes, 83, 101,

241
singleton classes, 120
variables and, 80

Scope Gates, 81–84, 241

security, 146–150, 153

self keyword
class definitions and, 36,

106
concerns, 186
instance variables, 34,

80, 86
method execution, 28, 34
object attributes, 220
private methods, 35, 220
Self Yield, 222–224, 241

singleton classes, 120,
127

using explicitly with as-
signing attributes, 220

Self Yield, 222–224, 241

send method, 48–49, 51

__send__ method, 68

set_attribute method, 220

set_name_cache method, 210

setups, domain-specific lan-
guages (DSLs), 98

Shared Scopes, 83, 101, 241

shared variable, 84

sharing data among events,
98, 102

singleton classes
class attributes, 127–129
hooks, 160
include method, 130
inheritance, 123–125
instance_eval, 127
method lookup, 118–122
names, 122
notation conventions, xx
object model rules, 126
quiz, 129–131
of singleton classes, 126
spell book, 232
superclasses, 122, 126

Singleton Methods
class definitions, 113–

118
converting to Method ob-

jects, 94
hooks, 158
instance_eval, 127
lookup, 118–122
spell book, 242
viewing, 118, 120

singleton_class method, 120

singleton_method method, 94

singleton_method_added method,
158

singleton_method_removed method,
158

singleton_method_undefined
method, 158

spells
about, xix
book, 231–242

@src instance variable, 149

stabby lambda operator, 89

stack trace, eval method, 144

statements argument, Binding
objects, 144

static fields, 109–110

static languages, 45, 70

static type checking, 45

String class
Singleton Methods, 113–

114
to_alphanumeric method,

12, 37

strings
converting example, 12–

16, 36
converting symbols to, 49
Singleton Methods, 113–

114
substitution, 142

Strings of Code
attribute methods, 205,

209
vs. blocks, 145–150
checked attributes, 152
disadvantages, 145–150
eval method, 141–157
spell book, 242

substitution, string, 142

super keyword
append_features method,

187
hooks and, 159
override-and-call-super

technique, 194, 196
Refinements, 135
validations, 194

superclass method, 19

superclasses
Base class (Active Record),

172
inheritance, 19, 27, 123–

125
object model rules, 126
singleton classes, 122–

126

Symbol to Proc, 224, 242

symbols, 49, 224, 242

syntax
attributes, 217
class methods, 126
constants, 21
conventions, xx
domain-specific lan-

guages, 229
flexibility, 217
Singleton Methods, 116

Index • 250

www.it-ebooks.info

http://www.it-ebooks.info/

T
Taboo, 112

TADS language, 228

tainted objects, 148–150

tainted? method, 148

tap method, 223

target method, 191

Task class, attribute methods,
200–212

termination sequence, 142

testing
breaking encapsulation,

85
unit, xx, 111, 169

Thor example, 133

Time class, testing and, 111

title? method, 113

to_alphanumeric method, 12, 37

to_money method, 14

to_proc method, 224, 242

top-level context, 36

top-level instance variables,
79–80, 100, 102

TOPLEVEL_BINDING constant,
143, 149

train wrecks, 223

tree, constants, 22

type checking, 45

U
unbind method, 94

UnboundMethod objects, 94–96,
207–210

undef_method method, 67

unit testing, xx, 111, 169

UNIX, 228

unpack command, 168

untaint method, 149

using keyword, 75–77

using method, 37

V
valid? method, 175, 180, 193

validate method, 172, 175

Validations module (Active
Record)
alias_method_chain, 189–197
finding methods, 175
include-and-extend trick,

179–188

variables, see also instance
variables

class variables, 110, 184
constants and, 21
global variables, 80, 101
object attributes, 220
Scope Gates, 82
self keyword, 80, 86

setups, 99
shared, 84

VBA, 228

VCR example, 159, 180

versions
Rails, 168
Ruby, xxi

visibility, nested, 79

W
wrappers

about, xvii
alias_method_chain, 191–197
method, 131–136
Prepended Wrappers,

135, 195, 239
Refinement Wrappers,

135, 240

write accessors, 117, 200,
210

WriterMethodCache class, 210

Y
Yacc, 228

yield keyword
defining blocks, 74
Self Yield, 222–224, 241

Z
Zork, 227

Index • 251

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Rails and Node the Right Way
What used to be the realm of experts is fast becoming the stuff of day-to-day develop-
ment—jump to the head of the class in Ruby on Rails, and see how to do Node the right
way.

Crafting Rails 4 Applications
Get ready to see Rails as you’ve never seen it before.
Learn how to extend the framework, change its behav-
ior, and replace whole components to bend it to your
will. Eight different test-driven tutorials will help you
understand Rails’ inner workings and prepare you to
tackle complicated projects with solutions that are
well-tested, modular, and easy to maintain.

This second edition of the bestselling Crafting Rails
Applications has been updated to Rails 4 and discusses
new topics such as streaming, mountable engines, and
thread safety.

José Valim
(200 pages) ISBN: 9781937785550. $36
http://pragprog.com/book/jvrails2

Node.js the Right Way
Get to the forefront of server-side JavaScript program-
ming by writing compact, robust, fast, networked Node
applications that scale. Ready to take JavaScript be-
yond the browser, explore dynamic languages features
and embrace evented programming? Explore the fun,
growing repository of Node modules provided by npm.
Work with multiple protocols, load-balanced RESTful
web services, express, ØMQ, Redis, CouchDB, and
more. Develop production-grade Node applications
fast.

Jim R. Wilson
(148 pages) ISBN: 9781937785734. $17
http://pragprog.com/book/jwnode

www.it-ebooks.info

http://pragprog.com/book/jvrails2
http://pragprog.com/book/jwnode
http://www.it-ebooks.info/

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

www.it-ebooks.info

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2
http://www.it-ebooks.info/

What You Need to Know
Each new version of the Web brings its own gold rush. Here are your tools.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords—
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(300 pages) ISBN: 9781937785598. $38
http://pragprog.com/book/bhh52e

Web Development Recipes
Modern web development takes more than just HTML
and CSS with a little JavaScript mixed in. Clients want
more responsive sites with faster interfaces that work
on multiple devices, and you need the latest tools and
techniques to make that happen. This book gives you
more than 40 concise, tried-and-true solutions to to-
day’s web development problems, and introduces new
workflows that will expand your skillset.

Brian P. Hogan, Chris Warren, Mike Weber, Chris
Johnson, Aaron Godin
(344 pages) ISBN: 9781934356838. $35
http://pragprog.com/book/wbdev

www.it-ebooks.info

http://pragprog.com/book/bhh52e
http://pragprog.com/book/wbdev
http://www.it-ebooks.info/

Explore Testing and Cucumber
Explore the uncharted waters of exploratory testing and delve deeper into Cucumber.

Explore It!
Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(160 pages) ISBN: 9781937785024. $29
http://pragprog.com/book/ehxta

The Cucumber Book
Your customers want rock-solid, bug-free software that
does exactly what they expect it to do. Yet they can’t
always articulate their ideas clearly enough for you to
turn them into code. The Cucumber Book dives straight
into the core of the problem: communication between
people. Cucumber saves the day; it’s a testing, commu-
nication, and requirements tool – all rolled into one.

Matt Wynne and Aslak Hellesøy
(336 pages) ISBN: 9781934356807. $30
http://pragprog.com/book/hwcuc

www.it-ebooks.info

http://pragprog.com/book/ehxta
http://pragprog.com/book/hwcuc
http://www.it-ebooks.info/

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/ppmetr2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/ppmetr2

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

www.it-ebooks.info

http://pragprog.com/book/ppmetr2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/ppmetr2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	About This Book
	About You

	Part I—Metaprogramming Ruby
	1. The M Word
	Ghost Towns and Marketplaces
	The Story of Bob, Metaprogrammer
	Metaprogramming and Ruby

	2. Monday: The Object Model
	Open Classes
	Inside the Object Model
	Quiz: Missing Lines
	What Happens When You Call a Method?
	Quiz: Tangle of Modules
	Wrap-Up

	3. Tuesday: Methods
	A Duplication Problem
	Dynamic Methods
	method_missing
	Quiz: Bug Hunt
	Blank Slates
	Wrap-Up

	4. Wednesday: Blocks
	The Day of the Blocks
	Quiz: Ruby#
	Blocks Are Closures
	instance_eval()
	Callable Objects
	Writing a Domain-Specific Language
	Quiz: A Better DSL
	Wrap-Up

	5. Thursday: Class Definitions
	Class Definitions Demystified
	Quiz: Class Taboo
	Singleton Methods
	Singleton Classes
	Quiz: Module Trouble
	Method Wrappers
	Quiz: Broken Math
	Wrap-Up

	6. Friday: Code That Writes Code
	Coding Your Way to the Weekend
	Kernel#eval
	Quiz: Checked Attributes (Step 1)
	Quiz: Checked Attributes (Step 2)
	Quiz: Checked Attributes (Step 3)
	Quiz: Checked Attributes (Step 4)
	Hook Methods
	Quiz: Checked Attributes (Step 5)
	Wrap-Up

	7. Epilogue

	Part II—Metaprogramming in Rails
	8. Preparing for a Rails Tour
	Ruby on Rails
	Installing Rails
	The Rails Source Code

	9. The Design of Active Record
	A Short Active Record Example
	How Active Record Is Put Together
	A Lesson Learned

	10. Active Support's Concern Module
	Rails Before Concern
	ActiveSupport::Concern
	A Lesson Learned

	11. The Rise and Fall of alias_method_chain
	The Rise of alias_method_chain
	The Fall of alias_method_chain
	A Lesson Learned

	12. The Evolution of Attribute Methods
	Attribute Methods in Action
	A History of Complexity
	A Lesson Learned

	13. One Final Lesson
	Metaprogramming Is Just Programming

	Part III—Appendixes
	A1. Common Idioms
	Mimic Methods
	Nil Guards
	Self Yield
	Symbol#to_proc()

	A2. Domain-Specific Languages
	The Case for Domain-Specific Languages
	Internal and External DSLs
	DSLs and Metaprogramming

	A3. Spell Book
	The Spells

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –

