NINJA

A

ANGULAR

Become a ninja with Angular

Ninja Squad

Table of Contents

1. Introduction
2. A gentle introduction to ECMASCRIPT 6

2.1. Transpilers

2.2.let

2.3. Constants

2.4. Creating objects

2.5. Destructuring assignment
2.6. Default parameters and values
2.7. Rest operator

2.8. Classes

2.9. Promises

2.10. Arrow functions

2.11. Sets and Maps

2.12. Template literals

2.13. Modules

2.14. Conclusion

3. Going further than ES6

3.1. Dynamic, static and optional types
3.2. Enters TypeScript
3.3. A practical example with DI

4. Diving into TypeScript

4.1. Types as in TypeScript

4.2. Enums

4.3. Return types

4.4. Interfaces

4.5. Optional arguments

4.6. Functions as property

4.7. Classes

4.8. Working with other libraries
4.9. Decorators

5. The wonderful land of Web Components

5.1. A brave new world
5.2. Custom elements
5.3. Shadow DOM

5.4. Template

5.5. HTML imports

5.6. Polymer and X-tag

6. Grasping Angular’s philosophy

© 9 o o Ul b R

R R W W W W W W W W W W WNNDNDNDNDNDDNDNDDNDDNDNDDN R
W O O O 00 N N N9 bk W kR e O O W W 000 U Ul ok W R, O N RN e

7. From zero to something 47

7.1. Developing and building a TypeScript app 47
7.2. Our first component 49
7.3. Our first Angular Module 51
7.4. Bootstrapping the app 53
7.5. From zero to something better with Angular CLI 56
8. The templating syntax 58
8.1. Interpolation 58
8.2. Using other components in our templates 62
8.3. Property binding 63
8.4. Events 67
8.5. Expressions vs statements 70
8.6. Local variables 70
8.7. Structural directives 71
8.8. Other template directives 75
8.9. Canonical syntax 76
8.10. Summary 76
9. Dependency injection 80
9.1. DI yourself 80
9.2. Easy to develop 80
9.3. Easy to configure 83
9.4. Other types of provider 88
9.5. Hierarchical injectors 89
9.6. DI without types 91
10. Services 93
10.1. Title service 93
10.2. Meta service 93
10.3. Making your own service 94
11. Pipes 96
11.1. Pied piper 96
11.2. json 96
11.3. slice 97
11.4. uppercase 99
11.5. lowercase 100
11.6. titlecase 100
11.7. number 100
11.8. percent 101
11.9. currency 101
11.10. date 102
11.11. async 102

11.12. Creating your own pipes 103

12. Reactive Programming
12.1. Call me maybe
12.2. General principles
12.3. RXJS
12.4. Reactive programming in Angular
13. Building components and directives
13.1. Introduction
13.2. Directives
13.3. Components
14. Styling components and encapsulation
14.1. Native strategy
14.2. Emulated strategy
14.3. None strategy
14.4. Styling the host
15. Testing your app
15.1. The problem with troubleshooting is that trouble shoots back
15.2. Unit test
15.3. Fake dependencies
15.4. Testing components
15.5. Testing with fake templates, providers...
15.6. End-to-end tests (e2e)
16. Send and receive data through HTTP
16.1. Getting data
16.2. Transforming data
16.3. Advanced options
16.4. Jsonp
16.5. Interceptors
16.6. Tests
17. Router
17.1. En route
17.2. Navigation
17.3. Redirects
17.4. Matching strategy
17.5. Hierarchical and empty-path routes
17.6. Guards
17.7. Resolvers
17.8. Router events
17.9. Parameters and data
17.10. Lazy loading
18. Forms

18.1. Forms, dear forms

106
106
106
107
109
111
111
111
122
125
126
126
127
127
128
128
128
134
136
139
141
143
143
145
146
147
147
149
151
151
153
157
157
157
159
161
164
164
166
169
169

18.2. Template-driven
18.3. Code-driven
18.4. Adding some validation
18.5. Errors and submission
18.6. Add some style
18.7. Creating a custom validator
18.8. Grouping fields
18.9. Reacting on changes
18.10. Updating on blur or on submit only
18.11. Summary
19. Zones and the Angular magic
19.1. Angular]S 1.x and the digest cycle
19.2. Angular and zones
20. Angular compilation: Just in Time vs Ahead of Time
20.1. Code generation
20.2. Ahead of Time compilation
21. Advanced observables
21.1. Subscribe, unsubscribe and async pipe
21.2. Leveraging operators
21.3. Building your own Observable
22. Advanced components and directives
22.1. View queries
22.2. Content
22.3. Content queries
22.4. Host listener
22.5. Host binding
23. Internationalization
23.1. The locale
23.2. Translating text
23.3. Process and tooling
23.4. Translating messages in the code
23.5. Pluralization
23.6. Best practices
24. This is the end
Appendix A: Changelog
A.1.v1.9-2017-11-02
A.2.v1.8-2017-07-16
A.3.v1.7 - 2017-06-09
A4.v1.6-2017-03-24
A.5.v1.5-2017-01-25
A6.v1.4-2016-11-18

171
176
179
181
184
185
189
191
193
194
196
196
199
205
205
207
209
209
214
218
220
220
223
225
228
229
232
232
234
235
240
240
242
244
247
247
248
248
249
250
250

A.7.v1.3-2016-09-15
A.8.v1.2-2016-08-25
A9.v1.1-2016-05-11

Chapter 1. Introduction

So you want to be a ninja, huh? Well, you're in good hands!
But we have a long road, you and me, with lots of things to learn :).

We’re living exciting times in Web development. There is a new Angular. A complete rewrite of the
good old Angular]S. Why a complete rewrite? Was Angular]S 1.x not enough?

I like the old Angular]S very much. In our small company, we have built several projects with it,
contributed code to the core framework, trained hundreds of developers (yes, really), and even
written a book about it (in French, but that still counts).

Angular]S is incredibly productive once you have mastered it. Despite all of this, it doesn’t prevent
us from seeing its weaknesses. Angular]S is not perfect, with some very difficult concepts to grasp,
and traps hard to avoid.

Most of all, the Web has changed since Angular]S was conceived. JavaScript has changed. New
frameworks have emerged, with great ideas, or better implementation. We are not the kind of
developers to tell you that you should use this tool instead of that one. We just happen to know
some tools very well, and know what fits the project. Angular]S was one of those tools, allowing us
to build well-tested web applications, and to build them fast. We also tried to bend it where it didn’t
fit. Don’t blame us, it happens to the best of us.

Will Angular be the tool we will use without hesitation in our future projects? It’s hard to say right
now, because the framework is really young and the ecosystem only just blooming.

But Angular has a lot of interesting points, and a vision that few other frameworks have. It has been
designed for the Web of tomorrow, with ECMAScript 6, Web Components and Mobile in mind.
When it was first announced, I was, like many, sad at first that the 2.0 version would not be a
simple update (I’'m sorry if you’re just learning about it).

But I was also eager to see what solution the talented Google team would come up with.

So I started to write this ebook, pretty much after the first commits, reading the design docs,
watching the conference videos, reviewing every commit since the beginning. When I wrote my
first ebook, about Angular]S 1.x, it was already a stable and known beast. This one is very different,
it started when Angular was not even clear in the minds of its designers. Because I knew I would
learn a lot, not only about Angular but also about the concepts that would shape the future of Web
development, some of which have nothing to do with Angular. And I did. I had to dig a lot about
some of these concepts, and I hope that you will enjoy the journey of learning about them, and how
they relate to Angular, as much as I did.

The ambition of this ebook is to evolve with Angular. If it turns out that Angular is the great
framework we hope, you will receive updates with the best practices and some new features as
they emerge (and with fewer typos, because, despite our countless reviews, there are probably
some left...). And I would love to hear back from you - if some chapters aren’t clear enough, if you
spot a mistake or if you have a better way for some parts.

I’'m fairly confident about the code samples, though, as they are all in a real project, with several

hundred unit tests. It was the only way to write an ebook with a newborn framework, and to be
able to catch all the problems that inevitably arose with each release.

Even if you are not convinced by Angular in the end, I’'m pretty sure you will have learnt a thing or
two along your read.

If you have bought the "Pro package" (thank you!), you’ll build a small application piece by piece
along the book. This application is called PonyRacer, and it is a website where you can bet on pony
races. You can even test the application here! Go on, I'll wait for you.

Fun, isn’t it?

But it’s not just a fun application, it’s a complete one. Yow’ll have to write components, forms, tests,
use the router, call an HTTP API (that we have already built) and even do Web Sockets. It has all the
pieces youwll need for writing a real app. Each exercise will come with a skeleton, a set of
instructions and a few tests. Once you have all the tests in success, you have completed the
exercise!

The first 6 exercises of the Pro Pack are free. The other ones are only accessible if you buy our
online training. At the end of every chapter, we will link to the exercises of the Pro Pack that are
related to the features explained in the chapter, mark the free ones with the following label: &,
and mark the other ones with the following label: <?».

If you did not buy the "Pro package" (but really you should), don’t worry: youw’ll learn everything
that’s needed. But you will not build this awesome application with beautiful ponies in pixel art.
Your loss :)!

You will quickly see that, beyond Angular itself, we have tried to explain the core concepts the
framework uses. The first chapters don’t even talk about Angular: they are what I call the "Concept
Chapters", here to help you level up with the new and exciting things happening in our field.

Then we will slowly build our knowledge of the framework, with components, templates, pipes,
forms, http, routing, tests...

And finally we will learn about the advanced topics. But that’s another story.

Enough with the introduction, let’s start with one of the things that will definitely change the way
we code: ECMAScript 6.

NOTE The ebook is using Angular version 5.0.0 for the examples.

http://ponyracer.ninja-squad.com

NOTE

Angular and versioning

This book used to be named "Become a Ninja with Angular 2". Because, originally,
Google named its framework Angular 2. But in October 2016, they reviewed their
versioning and release policy.

We’ll have a major release every six months, according to the plan. And now the
framework should be called just “Angular”.

Don’t worry, these releases are not a complete rewrite with no backward
compatibility like Angular 2 was to Angular]S 1.x.

As this ebook will be updated (for free) with all these following major releases, it is
now named "Become a Ninja with Angular" (without any number).

http://angularjs.blogspot.fr/2016/10/versioning-and-releasing-angular.html

Chapter 2. A gentle introduction to
ECMASCRIPT 6

If you're reading this, we can be pretty sure you have heard of JavaScript. What we call JS is one
implementation of a standard specification, called ECMAScript. The spec version you know the
most about is the version 5, that has been used these last years.

But recently, a new version of the spec has been in the works, called ECMASCRIPT 6, ES6, or
ECMASCRIPT 2015. From now on, I'll mainly say ES6, as it is the most popular way to reference it. It
adds A LOT of things to JavaScript, like classes, constants, arrow functions, generators... It has so
much stuff that we can’t go through all of it, as it would take the whole book. But Angular has been
designed to take advantage of the brand new version of JavaScript. And, even if you can still use
your old JavaScript, things will be more awesome if you use ES6. So we’re going to spend some time
in this chapter to get a grip on what ES6 is, and what will be useful to us when building an Angular

app.

That means we’re going to leave a lot of stuff aside, and we won’t be exhaustive on the rest, but it
will be a great starting point. If you already know ES6, you can skip these pages. And if you don’t,
you will learn some pretty amazing things that will be useful to you even if you end up not using
Angular in the future!

2.1. Transpilers

ES6 has just reached its final state, so it’s not yet fully supported by every browser. And, of course,
some browsers will always be late to this game (even if, for once, Microsoft is doing a good job with
Edge). You might be thinking: what’s the use of all this, if I need to be careful on what I can use?
And you’d be right, because there aren’t that many apps that can afford to ignore older browsers.
But, since virtually every JS developer who has tried ES6 wants to write ES6 apps, the community
has found a solution: a transpiler.

A transpiler takes ES6 source code and generates ES5 code that can run in every browser. It even
generates the source map files, which allows to debug directly the ES6 source code from the
browser. At the time of writing, there are two main alternatives to transpile ES6 code:

* Traceur, a Google project

* Babeljs, a project started by a young developer, Sebastian McKenzie (17 years old at the time,
yeah, that hurts me too), with a lot of diverse contributions.

Each has its own pros and cons. For example, Babeljs produces a more readable source code than
Traceur. But Traceur is a Google project, so, of course, Angular and Traceur play well together. The
source code of Angular itself was at first transpiled with Traceur, before switching to TypeScript.
TypeScript is an open source language developed by Microsoft. It’s a typed superset of JavaScript
that compiles to plain JavaScript, but we’ll dive into it very soon.

Let’s be honest Babel has waaaay more steam than Traceur, so I would advice you to use it. It is
quickly becoming the de-facto standard in this area.

https://github.com/google/traceur-compiler
https://babeljs.io/

So if you want to play with ES6, or set it up in one of your projects, take a look at these transpilers,
and add a build step to your process. It will take your ES6 source files and generate the equivalent
ES5 code. It works very well but, of course, some of the new features are quite hard or impossible to
transform in ES5, as they just did not exist. However, the current state is largely good enough for us
to use without worrying, so let’s have a look at all these shiny new things we can do in JavaScript!

2.2. let

If you have been writing JS for some time, you know that the var declaration is tricky. In pretty
much any other languages, a variable is declared where the declaration is done. But in JS, there is a
concept, called "hoisting", which actually declares a variable at the top of the function, even if you
declared it later.

So declaring a variable like name in the if block:

function getPonyFullName(pony) {
if (pony.isChampion) {
var name = 'Champion ' + pony.name;
return name;
}

return pony.name;

}

is equivalent to declaring it at the top of the function:

function getPonyFullName(pony) {
var name;
if (pony.isChampion) {
name = 'Champion ' + pony.name;
return name;
}
// name is still accessible here
return pony.name;

}

ES6 introduces a new keyword for variable declaration, let, behaving much more like what you
would expect:

function getPonyFullName(pony) {
if (pony.isChampion) {
let name = 'Champion
return name;
}
// name 1is not accessible here
return pony.name;

}

+ pony.name;

The variable name is now restricted to its block. let has been introduced to replace var in the long
run, so you can pretty much drop the good old var keyword and start using let instead. The cool
thing is, it should be painless to use let, and if you can’t, you have probably spotted something
wrong with your code!

2.3. Constants

Since we are on the topic of new keywords and variables, there is another one that can be of
interest. ES6 introduces const to declare... constants! When you declare a variable with const, it has
to be initialized and you can’t assign another value later.

const poniesInRace = 6;

poniesInRace = 7; // SyntaxError

As for variables declared with let, constants are not hoisted and are only declared at the block
level.

One small thing might surprise you: you can initialize a constant with an object and later modify
the object content.

const PONY
PONY.color

s
'blue'; // works

But you can’t assign another object:

const PONY = {};

PONY = {color: 'blue'}; // SyntaxError
Same thing with arrays:

const PONIES = [];
PONIES.push({ color: 'blue' }); // works

PONIES = [1; // SyntaxError

2.4. Creating objects

Not a new keyword, but it can also catch your attention when reading ES6 code. There is now a

shortcut for creating objects, when the object property you want to create has the same name as the
variable used as the value.

Example:

function createPony() {
const name = 'Rainbow Dash';
const color = 'blue';
return { name: name, color: color };

}

can be simplified to

function createPony() {
const name = 'Rainbow Dash';
const color = 'blue';
return { name, color };

}

2.5. Destructuring assignment

This new feature can also catch your attention when reading ES6 code. There is now a shortcut for
assigning variables from objects or arrays.

In ES5:

{ timeout: 2000, isCache: true };

var httpOptions
// later

var httpTimeout = httpOptions.timeout;
var httpCache = httpOptions.isCache;

Now, in ES6, you can do:

const httpOptions = { timeout: 2000, isCache: true };
// later
const { timeout: httpTimeout, isCache: httpCache } = httpOptions;

And you will have the same result. It can be a little disturbing, as the key is the property to look for
into the object and the value is the variable to assign. But it works great! Even better: if the variable
you want to assign has the same name as the property, you can simply write:

const httpOptions = { timeout: 2000, isCache: true };
// later

const { timeout, isCache } = httpOptions;

// you now have a variable named 'timeout’

// and one named 'isCache' with correct values

The cool thing is that it also works with nested objects:

const httpOptions = { timeout: 2000, cache: { age: 2 } };
// later

const { cache: { age } } = httpOptions;

// you now have a variable named 'age' with value 2

And the same is possible with arrays:

const timeouts = [1000, 2000, 3000];

// later

const [shortTimeout, mediumTimeout] = timeouts;

// you now have a variable named 'shortTimeout' with value 1000
// and a variable named 'mediumTimeout' with value 2000

Of course it also works for arrays in arrays, or arrays in objects, etc.

One interesting use of this can be for multiple return values. Imagine a function randomPonyInRace
that returns a pony and its position in a race.

function randomPonyInRace() {
const pony = { name: 'Rainbow Dash' };
const position = 2;
/] ...
return { pony, position };

}

const { position, pony } = randomPonyInRace();

The new destructuring feature is assigning the position returned by the method to the position
variable, and the pony to the pony variable! And if you don’t care about the position, you can write:

function randomPonyInRace() {
const pony = { name: 'Rainbow Dash' };
const position = 2;
/] ...
return { pony, position };

}

const { pony } = randomPonyInRace();

And you will only have the pony!

2.6. Default parameters and values

One of the characteristics of JavaScript is that it allows developers to call a function with any
number of arguments:

* if you pass more arguments than the number of the parameters, the extra arguments are
ignored (well, you can still use them with the special arguments variable, to be accurate).

* if you pass fewer arguments than the number of the parameters, the missing parameter will be
set to undefined.

The last case is the one that is the most relevant to us. Usually, we pass fewer arguments when the
parameters are optional, like in the following example:

function getPonies(size, page) {

size = size || 10;

page = page || 1;

/] ...

server.get(size, page);

}

The optional parameters usually have a default value. The OR operator will return the right
operand if the left one is undefined, as will be the case if the parameter was not provided (to be
completely accurate, if it is falsy, i.e 0, false, "", etc.). Using this trick, the function getPonies can
then be called

getPonies(20, 2);
getPonies(); // same as getPonies(10, 1);
getPonies(15); // same as getPonies(15, 1);

This worked alright, but it was not really obvious that the parameters were optional ones with
default values, without reading the function body. ES6 introduces a more precise way to have
default parameters, directly in the function definition:

function getPonies(size = 10, page = 1) {
/] ...
server.get(size, page);

}

Now it is perfectly clear that the size parameter will be 10 and the page parameter will be 1 if not
provided.

There is a small difference though, as now 0 or "" are valid values and will not be
NOTE replaced by the default one, as size = size || 10 would have done. It will be more
like size = size === undefined ? 10: size;.

The default value can also be a function call:

function getPonies(size = defaultSize(), page = 1) {
// the defaultSize method will be called if size is not provided
/] ...
server.get(size, page);

}
or even other variables, either global variables, or other parameters of the function:

function getPonies(size = defaultSize(), page = size - 1) {
// 1f page is not provided, it will be set to the value
// of the size parameter minus one.
/] ...
server.get(size, page);

¥
Note that if you try to access parameters on the right, their value is always undefined:

function getPonies(size = page, page = 1) {
// size will always be undefined, as the page parameter is on its right.
server.get(size, page);

}

This mechanism for parameters can also be applied to values, for example when using a
destructuring assignment:

const { timeout = 1000 } = httpOptions;

// you now have a variable named 'timeout’,

// with the value of 'httpOptions.timeout' if it exists
// or 1000 if not

10

2.7. Rest operator

ES6 introduces a new syntax to define variable parameters in functions. As said in the previous
part, you could always pass extra arguments to a function and get them with the special arguments
variable. So you could have done something like that:

function addPonies(ponies) {
for (var i = @; i < arguments.length; i++) {
poniesInRace.push(arguments[i]);

}
}

addPonies('Rainbow Dash', 'Pinkie Pie');

But I think we can agree that it’s neither pretty nor obvious: since the ponies parameter is never
used, how do we know that we can pass several ponies?

ES6 gives us a way better syntax, using the rest operator ':

function addPonies(...ponies) {
for (let pony of ponies) {
poniesInRace.push(pony);

}
}

ponies is now a true array on which we can iterate. The for -+ of loop used for iteration is also a
new feature in ES6. It allows to be sure to iterate over the collection values, and not also on its
properties as for +-» in would do. Don’t you think our code is prettier and more obvious now?

The rest operator can also work when destructuring data:

const [winner, ...losers] = poniesInRace;

// assuming 'poniesInRace' is an array containing several ponies
// 'winner' will have the first pony,

// and 'losers' will be an array of the other ones

The rest operator is not to be confused with the spread operator which, I'll give you that, looks
awfully similar! But the spread operator is the opposite: it takes an array and spreads it in variable
arguments. The only examples I have in mind are functions like min or max, that receive variable
arguments, and that you might want to call on an array:

const ponyPrices = [12, 3, 4];
const minPrice = Math.min(...ponyPrices);

11

2.8. Classes

One of the most emblematic new features, and one that we will vastly use when writing an Angular
app: ES6 introduces classes to JavaScript! You can now easily use classes and inheritance in
JavaScript. You always could, using prototypal inheritance, but that it was not an easy task,
especially for beginners.

Now it’s very easy, take a look:

class Pony {
constructor(color) {
this.color = color;

}

toString() {
return ‘${this.color} pony";
// see that? It is another cool feature of ES6, called template literals
// we'll talk about these quickly!
}
}

const bluePony = new Pony('blue');
console.log(bluePony.toString()); // blue pony

Class declarations, unlike function declarations, are not hoisted, so you need to declare a class
before using it. You may have noticed the special function constructor. It is the function being
called when we create a new pony, with the new operator. Here it needs a color, and we create a
new Pony instance with the color set to "blue". A class can also have methods, callable on an
instance, as the method toString() here.

It can also have static attributes and methods:

class Pony {
static defaultSpeed() {
return 10;

}
}

Static methods can be called only on the class directly:
const speed = Pony.defaultSpeed();

A class can have getters and setters, if you want to hook on these operations:

12

class Pony {
get color() {
console.log('get color');
return this. color;

}

set color(newColor) {
console.log(set color ${newColor}");
this._color = newColor;

}
}
const pony = new Pony();
pony.color = 'red’;

// 'set color red'
console.log(pony.color);
// 'get color'

// 'red'

And, of course, if you have classes, you also have inheritance out of the box in ES6.

class Animal {

speed() {
return 10;

}
}

class Pony extends Animal {

}

const pony = new Pony();
console.log(pony.speed()); // 10, as Pony inherits the parent method

Animal is called the base class, and Pony the derived class. As you can see, the derived class has the
methods of the base class. It can also override them:

class Animal {
speed() {
return 10;
}
}
class Pony extends Animal {
speed() {
return super.speed() + 10;
}
}
const pony = new Pony();
console.log(pony.speed()); // 20, as Pony overrides the parent method

13

As you can see, the keyword super allows calling the method of the base class, with super.speed()
for example.

The super keyword can also be used in constructors, to call the base class constructor:

class Animal {
constructor(speed) {
this.speed = speed;
}
+
class Pony extends Animal {
constructor(speed, color) {
super(speed);
this.color = color;
}

}
const pony = new Pony(20, 'blue');

console.log(pony.speed); // 20

2.9. Promises

Promises are not so new, and you might know them or use them already, as they were a big part of
Angular]S 1.x. But since you will use them a lot in Angular, and even if you’re just using JS, I think
it’s important to make a stop.

Promises aim to simplify asynchronous programming. Our JS code is full of async stuff, like AJAX
requests, and usually we use callbacks to handle the result and the error. But it can get messy, with
callbacks inside callbacks, and it makes the code hard to read and to maintain. Promises are much
nicer than callbacks, as they flatten the code, and thus make it easier to understand. Let’s consider
a simple use case, where we need to fetch a user, then their rights, then update a menu when we
have these.

With callbacks:
getUser(login, function (user) {

getRights(user, function (rights) {
updateMenu(rights);

b
b

Now, let’s compare it with promises:

14

getUser(login)
.then(function (user) {
return getRights(user);

3]
.then(function (rights) {
updateMenu(rights);

1))

I like this version, because it executes as you read it: I want to fetch a user, then get their rights,
then update the menu.

As you can see, a promise is a 'thenable’ object, which simply means it has a then method. This
method takes two arguments: one success callback and one reject callback. The promise has three
states:

» pending: while the promise is not done, for example, our server call is not completed yet.

« fulfilled: when the promise is completed with success, for example, the server call returns an
OK HTTP status.

* rejected: when the promise has failed, for example, the server returns a 404 status.

When the promise is fulfilled, then the success callback is called, with the result as an argument. If
the promise is rejected, then the reject callback is called, with a rejected value or an error as the
argument.

So, how do you create a promise? Pretty simple, there is a new class called Promise, whose
constructor expects a function with two parameters, resolve and reject.

const getUser = function (login) {
return new Promise(function (resolve, reject) {
// async stuff, like fetching users from server, returning a response
if (response.status === 200) {
resolve(response.data);
} else {
reject('No user');
}
3
ks

Once you have created the promise, you can register callbacks, using the then method. This method
can receive two parameters, the two callbacks you want to call in case of success or in case of
failure. Here we only pass a success callback, ignoring the potential error:

getUser(login)
.then(function (user) {
console.log(user);

1))

15

Once the promise is resolved, the success callback (here simply logging the user on the console) will
be called.

The cool part is that it flattens the code. For example, if your resolve callback is also returning a
promise, you can write:

getUser(login)
.then(function (user) {
return getRights(user) // getRights is returning a promise
.then(function (rights) {
return updateMenu(rights);
1
b

but more beautifully:

getUser(login)
.then(function (user) {
return getRights(user); // getRights is returning a promise
b
.then(function (rights) {
return updateMenu(rights);

1))

Another interesting thing is the error handling, as you can use one handler per promise, or one for
all the chain.

One per promise:

getUser(login)

.then(function (user) {
return getRights(user);

}, function (error) {
console.log(error); // will be called if getUser fails
return Promise.reject(error);

b

.then(function (rights) {
return updateMenu(rights);

}, function (error) {
console.log(error); // will be called if getRights fails
return Promise.reject(error);

1))

One for the chain:

16

getUser(login)
.then(function (user) {
return getRights(user);

3]
.then(function (rights) {
return updateMenu(rights);

1))

.catch(function (error) {
console.log(error); // will be called if getUser or getRights fails
})

You should seriously look into Promises, because they are going to be the new way to write APIs,
and every library will use them. Even the standard ones: the new Fetch API does for example.

2.10. Arrow functions

One thing I like a lot in ES6 is the new arrow function syntax, using the 'fat arrow' operator (=). It is
SO useful for callbacks and anonymous functions!

Let’s take our previous example with promises:

getUser(login)
.then(function (user) {
return getRights(user); // getRights is returning a promise

1)

.then(function (rights) {
return updateMenu(rights);

b

can be written with arrow functions like this:

getUser(login)
.then(user => getRights(user))
.then(rights => updateMenu(rights))

How cool is it? THAT cool!

Note that the return is also implicit if there is no block: no need to write user = return
getRights(user). But if we did have a block, we would need the explicit return:

17

https://fetch.spec.whatwg.org/

getUser(login)
.then(user => {
console.log(user);
return getRights(user);
b
.then(rights => updateMenu(rights))

And it has a special trick, a great power over normal functions: the this stays lexically bounded,
which means that these functions don’t have a new this as other functions do. Let’s take an
example, where you are iterating over an array with the map function to find the max.

In ES5:

var maxFinder = {
max: 0,
find: function (numbers) {
// let's iterate
numbers. forEach(
function (element) {
// if the element is greater, set it as the max
if (element > this.max) {
this.max = element;
}
i
b
bif

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

You would expect this to work, but it doesn’t. If you have a good eye, you may have noticed that the
forEach in the find function uses this, but the this is not bound to an object. So this.max is not the
max of the maxFinder object... Of course you can fix it easily, using an alias:

18

var maxFinder = {
max: 0,
find: function (numbers) {
var self = this;
numbers.forEach(
function (element) {
if (element > self.max) {
self.max = element;
}
D
}
7

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

or binding the this:

var maxFinder = {
max: 0,
find: function (numbers) {
numbers.forEach(
function (element) {
if (element > this.max) {
this.max = element;
}
}.bind(this));
}
bt

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

or even passing it as a second parameter of the forEach function (as it was designed for):

19

var maxFinder = {
max: 0,
find: function (numbers) {
numbers.forEach(
function (element) {
if (element > this.max) {
this.max = element;
}
}, this);
}
bf

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

But there is now an even more elegant solution with the arrow function syntax:

const maxFinder = {
max: @,
find: function (numbers) {
numbers.forEach(element => {
if (element > this.max) {
this.max = element;
}
1
}
I

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

That makes the arrow functions the perfect candidates for anonymous functions in callbacks!

2.11. Sets and Maps

This is a short one: you now have proper collections in ES6. Yay \o/! We used to have dictionaries
filling the role of a map, but we can now use the class Map:

const cedric = { id: 1, name: 'Cedric' };
const users = new Map();
users.set(cedric.id, cedric); // adds a user
console.log(users.has(cedric.id)); // true
console.log(users.size); // 1
users.delete(cedric.id); // removes the user

20

We also have a class Set:

const cedric = { id: 1, name: 'Cedric' };
const users = new Set();
users.add(cedric); // adds a user
console.log(users.has(cedric)); // true
console.log(users.size); // 1
users.delete(cedric); // removes the user

You can iterate over a collection, with the new syntax for -+ of:

for (let user of users) {
console.log(user.name);

}

You’ll see that the for -+ of syntax is the one the Angular team chose to iterate over a collection in
a template.

2.12. Template literals

Composing strings has always been painful in JavaScript, as we usually have to use concatenation:
const fullname = 'Miss ' + firstname + ' ' + lastname;

Template literals are a new small feature, where you have to use backticks (‘) instead of quotes or
simple quotes, and you have a basic templating system, with multiline support:

const fullname = ‘Miss ${firstname} ${lastname}";

The multiline support is especially great when your are writing HTML strings, as we will do for our
Angular components:

const template = ‘<div>
<h1>Hello</h1>
</div>";

2.13. Modules

A standard way to organize functions in namespaces and to dynamically load code in JS has always
been lacking. NodeJS has been one of the leaders in this, with a thriving ecosystem of modules
using the Common]S convention. On the browser side, there is also the AMD (Asynchronous Module
Definition) API, used by Require]S. But none of these were a real standard, thus leading to endless
discussions on what’s best.

21

https://github.com/amdjs/amdjs-api/blob/master/AMD.md
http://requirejs.org/

ES6 aims to create a syntax using the best from both worlds, without caring about the actual
implementation. The Ecma TC39 committee (which is responsible for evolving ES6 and authoring
the specification of the language) wanted to have a nice and easy syntax (that’s arguably
Common]S’s strong suit), but to support asynchronous loading (like AMD), and a few goodies like
the possibility to statically analyze the code by tools and support cyclic dependencies nicely. The
new syntax handles how you export and import things to and from modules.

This module thing is really important in Angular, as pretty much everything is defined in modules,
that you have to import when you want to use them. Let’s say I want to expose a function to bet on
a specific pony in a race and a function to start the race.

In races_service.js:

export function bet(race, pony) {
/] ...
}

export function start(race) {
/] ...
}

As you can see, this is fairly easy: the new keyword export does a straightforward job and exports
the two functions.

Now, let’s say one of our application components needs to call these functions.

In another file:

import { bet, start } from './races_service';

// later
bet(race, pony1);
start(race);

That’s what is called a named export. Here we are importing the two functions, and we have to
specify the filename containing these functions - here 'races_service'. Of course, you can import
only one method if you need, you can even give it an alias:

import { start as startRace } from './races_service';

// later
startRace(race);

And if you need to import all the methods from the module, you can use a wildcard "™

As you would do with other languages, use the wildcard with care, only when you really want all

22

http://www.ecma-international.org/memento/TC39.htm

the functions, or most of them. As this will be analyzed by our IDEs, we will see auto-import soon
and that will free us from the bother to import the right things.

With a wildcard, you have to use an alias, and I kind of like it, because it makes the rest of the code

clearer:

import * as racesService from './races_service';

// later
racesService.bet(race, ponyl);
racesService.start(race);

If your module exposes only one function or value or class, you don’t have to use named export,
and you can leverage the default keyword. It works great for classes for example:

// pony.js
export default class Pony {
}

// races_service.js
import Pony from './pony';

Notice the lack of curly braces to import a default. You can import it with the alias you want, but to
be consistent, it’s better to call the import with the module name (except if you have multiple
modules with the same name of course, then you can chose an alias that allows to distinguish
them). And of course, you can mix default export with named ones, but obviously with only one
default per module.

In Angular, you're going to use a lot of these imports in your app. Each component and service will
be a class, generally isolated in their own file and exported, and then imported when needed in
other components.

2.14. Conclusion

That ends our gentle introduction to ES6. We skipped some other parts, but if you’re comfortable
with this chapter, you will have no problem writing your apps in ES6. If you want to have a deeper
understanding of this, I highly recommend Exploring |JS by Axel Rauschmayer or Understanding
ES6 from Nicholas C. Zakas ... Both ebooks can be read online for free, but don’t forget to buy it to
support their authors, they have done a great work! Actually I’'ve re-read Speaking JS, Axel’s
previous book, and I again learned a few things, so if you want to refresh your JS skills, I definitely
recommend it!

23

http://exploringjs.com/
https://twitter.com/rauschma
https://leanpub.com/understandinges6
https://leanpub.com/understandinges6
https://twitter.com/slicknet
http://speakingjs.com

Chapter 3. Going further than ES6

3.1. Dynamic, static and optional types

You may have heard that Angular apps can be written in ES5, ES6 or TypeScript. And you may be
wondering what TypeScript is, or what it brings to the table.

JavaScript is dynamically typed. That means you can do things like:

let pony = 'Rainbow Dash';
pony = 2;

And it works. That’s great for all sort of things, as you can pass pretty much any object to a function
and it works, as long as the object has the properties the function needs:

const pony = { name: 'Rainbow Dash', color: 'blue' };
const horse = { speed: 40, color: 'black' };

const printColor = animal => console.log(animal.color);
// works as long as the object has a ‘color' property

This dynamic nature allows wonderful things but it is also a pain for a few others compared to
more statically-typed languages. The most obvious might be when you call an unknown function in
JS from another API, you pretty much have to read the doc (or, worse, the function code) to know
what the parameter should look like. Take a look at our previous example: the method printColor
needs a parameter with a color property. That can be hard to guess, and of course it is much worse
in day-to-day work, where we use various libraries and services developed by fellow developers.
One of Ninja Squad’s co-founders is often complaining about the lack of types in JS, and finds it
regrettable he can’t be as productive and write as good code as he would in a more statically-typed
environment. And he is not entirely wrong, even if he is sometimes ranting for the sake of it too!
Without type information, IDEs have no real clue if you’re doing something wrong, and tools can’t
help you find bugs in your code. Of course, we have tests in our apps, and Angular has always been
keen on making testing easy, but it’s nearly impossible to have a perfect test coverage.

That leads to the maintainability topic. JS code can become hard to maintain, despite tests and
documentation. Refactoring a huge JS app is no easy task, compared to what could be done in other
statically-typed languages. Maintainability is a very important topic, and types help humans and
tools to avoid mistakes when writing and maintaining code. Google has always been keen to push
new solutions in that direction: it’s easy to understand as they have some of the biggest web apps of
the world, with GMail, Google apps, Maps... So they have tried several approaches to front-end
maintainability: GWT, Google Closure, Dart... All trying to help writing big webapps.

For Angular, the Google team wanted to help us writing better JS, by adding some type information
to our code. It’s not a very new concept in JS, it was even the subject of the ECMASCRIPT 4
specification, which was later abandoned. At first they announced AtScript, as a superset of ES6
with annotations (types annotations and another kind I'll discuss later). They also announced the
support of TypeScript, the Microsoft language, with additional type annotations. And then, a few

24

months later, the TypeScript team announced that they had worked closely with the Google team,
and the new version of the language (1.5) would have all the shiny new things AtScript had. And the
Google team announced that AtScript was officially dropped, and that TypeScript was the new top-
notch way to write Angular apps!

3.2. Enters TypeScript

I think this was a smart move for several reasons. For one, no one really wants to learn another
language extension. And TypeScript was already there, with an active community and ecosystem. I
never really used it before Angular, but I heard good things on it, from various people. TypeScript is
a Microsoft project. But it’s not the Microsoft you have in mind, from the Ballmer and Gates years.
It’s the Microsoft of the Nadella era, the one opening to its community, and, well, open-source.
Google knows this, and it’s far better for them to contribute to an existing project, rather than to
have to bear the burden to maintain their own. And the TypeScript framework will gain a huge
popularity boost: win-win, as your manager would say.

But the main reason to bet on TypeScript is the type system it offers. It’s an optional type system
that helps without getting in the way. In fact, after coding some time with it, I forgot about it: you
can do Angular apps using TypeScript just for the parts where it really helps (more on that in a
second) and simply ignore it everywhere else and write plain JS (ES6 in my case). But I do like what
they have done, and we will have a look at what TypeScript offers in the next section. At the end,
you’ll have enough understanding to read any Angular code, and you’ll be able to choose whether
you want to use it or not (or just a little), in your apps.

You may be wondering: why use typed code in Angular apps? Let’s take an example. Angular 1 and
2 have been built around a powerful concept named "dependency injection". You might already be
familiar with it, as it is a common design pattern used in several frameworks for different
languages and, as I said, already used in Angular]JS 1.x.

3.3. A practical example with DI

To sum up what dependency injection is, think about a component of the app, let’s say Racelist,
needing to access the races list that the service RaceService can give. You would write Racelist like
this:

class Racelist {
constructor() {
this.raceService = new RaceService();
// let's say that list() returns a promise
this.raceService.list()
// we store the races returned into a member of ‘Racelist'
.then(races => this.races = races);
// arrow functions, FTW!
}
}

But it has several flaws. One of them is the testability: it is now very hard to replace the raceService

25

by a fake (mock) one, to test our component.

If we use the Dependency Injection (DI) pattern, we delegate the creation of the RaceService to the
framework, and we simply ask for an instance. The framework is now in charge of the creation of
the dependency, and, well, injects it:

class Racelist {
constructor(raceService) {
this.raceService = raceService;
this.raceService.list()
.then(races => this.races = races);

Now, when we test this class, we can easily pass a fake service to the constructor:

// in a test
const fakeService = {
list: () => {
// returns a fake promise
}
1

const racelist = new Racelist(fakeService);
// now we are sure that the race list
// is the one we want for the test

But how does the framework know what to inject in the constructor? Good question! Angular]JS 1.x
relied on the parameter’s names, but it had a severe limitation, because minification of your code
would have changed the param name... You could use the array syntax to fix this, or add a
metadata to the class:

Racelist.$inject = ['RaceService'];

We had to add some metadata for the framework to understand what classes needed to be injected
with. And that’s exactly what type annotations give: a metadata giving the framework a hint it
needs to do the right injection. In Angular, using TypeScript, we can write our RacelList component
like:

26

class Racelist {
raceService: RaceService;
races: Array<string>;

constructor(raceService: RaceService) {
// the interesting part is ‘: RaceService'
this.raceService = raceService;
this.raceService.list()
.then(races => this.races = races);

Now the injection can be done! You don’t have to use TypeScript in Angular, but clearly part of your
code will be more elegant if you do. You can always do the same thing in plain ES6 or ES5, but you
will have to manually add the metadata in another way (we’ll come back on this in more details).

That’s why we’re going to spend some time learning TypeScript (TS). Angular is clearly built to
leverage ES6 and TS 1.5+, so we will have the easiest time writing our apps using it. And the
Angular team really hopes to submit the type system to the standard committee, so maybe one day
we’ll have types in JS, and all this will be usual.

Let’s dive in!

27

Chapter 4. Diving into TypeScript

TypeScript has been around since 2012. It’s a superset of JavaScript, adding a few things to ES5. The
most important one is the type system, giving TypeScript its name. From version 1.5, released in
2015, the library is trying to be a superset of ES6, including all the shiny features we saw in the
previous chapter, and a few new things as well, like decorators. Writing TypeScript feels very much
like writing JavaScript. By convention, TypeScript files are named with a .ts extension, and they
will need to be compiled to standard JavaScript, usually at build time, using the TypeScript
compiler. The generated code is very readable.

npm install -g typescript
tsc test.ts

But let’s start with the beginning.

4.1. Types as in TypeScript

The general syntax to add type info in TypeScript is rather straightforward:
let variable: type;
The types are easy to remember:

const poneyNumber: number = 0;
const poneyName: string = 'Rainbow Dash';

In such cases, the types are optional because the TS compiler can guess them (it’s called "type
inference") from the values.

The type can also be coming from your app, as with the following class Pony:
const pony: Pony = new Pony();

TypeScript also supports what some languages call "generics", for example for an array:
const ponies: Array<Pony> = [new Pony()];

The array can only contain ponies, and the generic notation, using <>, indicates this. You may be
wondering what the point of doing this is. Adding types information will help the compiler catch
possible mistakes:

28

ponies.push('hello"); // error TS2345
// Argument of type 'string' is not assignable to parameter of type 'Pony’.

So, if you need a variable to have multiple types, does it mean you’re screwed? No, because TS has a
special type, called any.

let changing: any = 2;
changing = true; // no problem

It’s really useful when you don’t know the type of a value, either because it’s from a dynamic
content or from a library you’re using.

If your variable can only be of type number or boolean, you can use a union type:

let changing: number|boolean = 2;
changing = true; // no problem

4.2. Enums

TypeScript also offers enum. For example, a race in our app can be either ready, started or done.

enum RaceStatus {Ready, Started, Done}
const race = new Race();
race.status = RaceStatus.Ready;

The enum is in fact a numeric value, starting at 0. You can set the value you want, though:

enum Medal {Gold = 1, Silver, Bronze}

4.3. Return types

You can also set the return type of a function:

function startRace(race: Race): Race {
race.status = RaceStatus.Started;
return race;

}

If the function returns nothing, you can show it using void:

29

function startRace(race: Race): void {
race.status = RaceStatus.Started;

}

4.4. Interfaces

That’s a good first step. But as I said earlier, JavaScript is great for its dynamic nature. A function
will work if it receives an object with the correct property:

function addPointsToScore(player, points) {
player.score += points;

}

This function can be applied to any object with a score property. How do you translate this in
TypeScript? It’s easy: you define an interface, like the "shape" of the object.

function addPointsToScore(player: { score: number; }, points: number): void {
player.score += points;

}

It means that the parameter must have a property called score of the type number. You can name
these interfaces, of course:

interface HasScore {
score: number;

+
function addPointsToScore(player: HasScore, points: number): void {
player.score += points;

}

4.5. Optional arguments

Another treat of JavaScript is that arguments are optional. You can omit them, and they will become
undefined. But if you define a function with typed parameter in TypeScript, the compiler will shout
at you if you forget them:

addPointsToScore(player); // error TS2346
// Supplied parameters do not match any signature of call target.

To show that a parameter is optional in a function (or a property in an interface), you can add ?
after the parameter. Here, the points parameter could be optional:

30

function addPointsToScore(player: HasScore, points?: number): void {
points = points || O;
player.score += points;

}

4.6. Functions as property

You may also be interested in describing a parameter that must have a specific function instead of a
property:

function startRunning(pony) {
pony.run(10);
}

The interface definition will be:

interface CanRun {
run(meters: number): void;

}

function startRunning(pony: CanRun): void {
pony.run(10);
}

const pony = {

run: (meters) => logger.log('pony runs ${meters}m’)
Iy
startRunning(pony);

4.7. Classes

A class can implement an interface. For us, the Pony class should be able to run, so we can write:

class Pony implements CanRun {
run(meters) {
logger.log(‘pony runs ${metersim‘);
}
}

The compiler will force us to implement a run method in the class. If we implement it badly, by
expecting a string instead of a number for example, the compiler will yell:

31

class I1llegalPony implements CanRun {
run(meters: string) {
console.log(‘pony runs ${metersim");

}

}
// error TS2420: Class 'IllegalPony' incorrectly implements interface 'CanRun'.

// Types of property 'run' are incompatible.

You can also implement several interfaces if you want:

class HungryPony implements CanRun, CanEat {
run(meters) {
logger.log(‘pony runs ${metersim');
}

eat() {
logger.log(pony eats');

}
}

And an interface can extend one or several others:

interface Animal extends CanRun, CanEat {}

class Pony implements Animal {
/] ...
}

When you’re defining a class in TypeScript, you can have properties and methods in your class. You
may realize that properties in classes are not a standard ES6 feature, it is only possible in
TypeScript.

class SpeedyPony {

speed = 10;
run() {

logger.log(‘pony runs at ${this.speed}m/s");
}

}

Everything is public by default, but you can use the private keyword to hide a property or a
method. If you add private or public to a constructor parameter, it is a shortcut to create and
initialize a private or public member:

32

class NamedPony {
constructor(public name: string, private speed: number) {

}

run() {
logger.log(pony runs at ${this.speed}m/s");
}
}
const pony = new NamedPony('Rainbow Dash', 10);
// defines a public property name with 'Rainbow Dash'
// and a private one speed with 10

Which is the same as the more verbose:

class NamedPonyWithoutShortcut {
public name: string;
private speed: number;

constructor(name: string, speed: number) {
this.name = name;
this.speed = speed;

}

run() {
logger.log(‘pony runs at ${this.speed}m/s");

}
}

These shortcuts are really useful and we’ll rely on them a lot in Angular!

4.8. Working with other libraries

When working with external libraries written in JS, you may think we are doomed because we
don’t know what types of parameter the function in that library will expect. That’s one of the cool
things with the TypeScript community: its members have defined interfaces for the types and
functions exposed by the popular JavaScript libraries!

The files containing these interfaces have a special .d.ts extension. They contain a list of the
library’s public functions. A good place to look for these files is DefinitelyTyped. For example, if you
want to use TS in your Angular]S 1.x apps, you can download the proper file from the repo directly
with NPM:

npm install --save-dev @types/angular

or download it manually. Then include the file at the top of your code, and enjoy the compilation
checks:

33

https://github.com/borisyankov/DefinitelyTyped

/// <reference path="angular.d.ts" />

angular.module(10, []); // the module name should be a string

// so when I compile, I get:

// Argument of type 'number' is not assignable to parameter of type 'string'.

/// <reference path="angular.d.ts" /> is a special comment recognized by TS, telling the compiler
to look for the interface angular.d.ts. Now, if you misuse an Angular]S method, the compiler will
complain, and you can fix it on the spot, without having to manually run your app!

Even cooler, since TypeScript 1.6, the compiler will auto-discover the interfaces if they are
packaged in your node_modules directory in the dependency. More and more projects are adopting
this approach, and so is Angular. So you don’t even have to worry about including the interfaces in
your Angular project: the TS compiler will figure it out by itself if you are using NPM to manage
your dependencies!

4.9. Decorators

This is a fairly new feature, added only in TypeScript 1.5, to help supporting Angular. Indeed, as we
will shortly see, Angular components can be described using decorators. You may not have heard
about decorators, as not every language has them. A decorator is a way to do some meta-
programming. They are fairly similar to annotations which are mainly used in Java, C# and Python,
and maybe other languages I don’t know. Depending on the language, you add an annotation to a
method, an attribute, or a class. Generally, annotations are not really used by the language itself,
but mainly by frameworks and libraries.

Decorators are really powerful: they can modify their target (method, classes, etc.), and for example
alter the parameters of the call, tamper with the result, call other methods when the target is called
or add metadata for a framework (which is what Angular decorators do). Until now, it was not
something possible in JavaScript. But the language is evolving and there is now an official proposal
for decorators, which may be standardized one day in the future (possibly in ES7/ES2016). Note that
the TypeScript implementation goes slightly further than the proposed standard.

In Angular, we will use the decorators provided by the framework. Their role is fairly basic: they
add some metadata to our classes, attributes or parameters to say things like "this class is a
component"”, "this is an optional dependency", "this is a custom property", etc. It’s not required to
use them, as you can add the metadata manually (if you want to stick to ES5 for example), but the

code will definitely be more elegant using decorators, as provided by TypeScript.

In TypeScript, decorators start with an @ and can be applied to a class, a class property, a function
or a function parameter. They can’t be applied to a constructor, but can be applied to its
parameters.

To have a better grasp on this, let’s try to build a simple decorator, @Log(), that will log something
every time a method is called.

It will be used like this:

34

class RaceService {

@Log()
getRaces() {
// call API

}

@Log()
getRace(raceld) {
// call API

}
}

To define it, we have to write a method returning a function like this:

const Log = function () {
return (target: any, name: string, descriptor: any) => {
logger.log(‘call to ${name}");
return descriptor;

+
+

Depending on what you want to apply your decorator to, the function will not have exactly the
same arguments. Here we have a method decorator that takes 3 parameters:

* target: the method targeted by our decorator

* name: the name of the targeted method

» descriptor: a descriptor of the targeted method (is the method enumerable, writable, etc.)

Here we simply log the method name, but you could do pretty much whatever you want: interfere
with the parameters, the result, calling another function, etc.

So, in our simple example, every time the getRace() or getRaces() methods are called, we’ll see a
trace in the browser logs:

raceService.getRaces();
// logs: call to getRaces
raceService.getRace(1);
// logs: call to getRace

As a user, let’s look at what a decorator in Angular looks like:

35

@Component({ selector: 'ns-home' })
class HomeComponent {

constructor(@ptional() hello: HelloService) {
logger.log(hello);

}

The @Component decorator is added to the class Home. When Angular loads our app, it will find the
class Home and will understand that it is a component, based on the metadata the decorator will add.
Cool, huh? As you can see, a decorator can also receive parameters, here a configuration object.

I just wanted to introduce the raw concept of decorators; we’ll look into every decorator available
in Angular all along the book.

I have to point out that you can use decorators with Babel as a transpiler instead of TypeScript.
There is even a plugin to support all the Angular decorators: angular2-annotations. Babel also
supports class properties, but not the type system offered by TypeScript. You can use Babel, and
write "ES6+" code, but you will not be able to use the types, and they are very useful for the
dependency injection for example. It’s completely possible, but you’ll have to add more decorators
to replace the types.

So my advice would be to give TypeScript a try! All my examples from here will use it. It’s not very
intrusive, as you can use it just where it’s useful and forget about it for the rest. If you really don’t
like it, it will not be very difficult to switch to ES6 with Babel or Traceur, or even ES5, if you are
slightly crazy (but honestly, an Angular app in ES5 has pretty ugly code).

36

https://www.npmjs.com/package/babel-plugin-angular2-annotations

Chapter 5. The wonderful land of Web
Components

Before going further, I'd like to make a brief stop to talk about Web Components. You don’t have to
know about Web Components to write Angular code. But I think it’s a good thing to have an
overview of what they are, because some choices in Angular have been made to facilitate the
integration with Web Components, or to make the components we will build similar to Web
Components. Feel free to skip this part if you have no interest in this topic; however, I do believe
yowll learn a thing or two that will be useful for the rest of the road.

5.1. A brave new world

Components are an old fantasy in development. Something you can grab off the shelves and drop
into your app, something that would work right away and bring a needed functionality to your
users.

My friends, this time has come.
Well, maybe. At least, there is the start of something.

That’s not completely new. We have had components in web development for quite some time, but
they usually require some kind of dependency, like jQuery, Dojo, Prototype, Angular]S, etc. Not
necessarily libraries you wanted to add to your app.

Web Components attempt to solve this problem: let’s have reusable and encapsulated components.

They rely on a set of emerging standards that browsers don’t perfectly support yet. But, still, it’s an
interesting topic, even if there’s a chance that we’ll have to wait a few years to use them fully, or
even that the concept never takes off.

This emerging standard is defined in 4 specifications:

e Custom elements

Shadow DOM
* Template

* HTML imports

Note that the samples are most likely to work in a recent Chrome or Firefox browser.

5.2. Custom elements

Custom elements are a new standard allowing developers to create their own DOM elements,
making something like <ns-pony></ns-pony> a perfectly valid HTML element. The specification
defines how to declare such elements, how to make them extend existing elements, how to define
your API, etc.

37

Declaring a custom element is done with a simple document.registerElement('ns-pony"):

// new element

var PonyComponent = document.registerElement('ns-pony');
// insert in current body

document.body.appendChild(new PonyComponent());

Note that the name must contain a dash, so that the browser knows it is a custom element. Of
course, your custom element can have properties and methods, and it also has lifecycle callbacks, to
be able to execute code when the component is inserted or removed, or when one of its attributes
changes. It can also have a template of its own. Maybe the ns-pony displays an image of the pony or
just its name:

// let's extend HTMLElement

var PonyComponentProto = Object.create(HTMLElement.prototype);

// and add some template using a lifecycle

PonyComponentProto.createdCallback = function() {
this.innerHTML = '<h1>General Soda</h1>';

+

// new element

var PonyComponent = document.registerElement('ns-pony', {prototype:
PonyComponentProto});

// insert in current body

document.body.appendChild(new PonyComponent());

If you try to look at the DOM, you’ll see <ns-pony><h1>General Soda</h1></ns-pony>. But that means
the CSS and JavaScript logic of your app can have undesired effects on your component. So, usually,
the template is hidden and encapsulated in something called Shadow DOM, and you’ll only see <ns-
pony></ns-pony> if you inspect the DOM, despite the fact that the browser displays the pony’s name.

5.3. Shadow DOM

With a mysterious name like this, you expect something with great powers. And surely it is. The
Shadow DOM is a way to encapsulate the DOM of our component. This encapsulation means that
the stylesheet and JavaScript logic of your app will not apply on the component and ruin it
inadvertently. It gives us the perfect tool to hide the internals of a component, and be sure that
nothing leaks from the component to the app, or vice-versa.

Going back to our previous example:

38

var PonyComponentProto = Object.create(HTMLElement.prototype);

// add some template in the Shadow DOM
PonyComponentProto.createdCallback = function() {
var shadow = this.createShadowRoot();
shadow. innerHTML = '<h1>General Soda</h1>';

+

var PonyComponent = document.registerElement('ns-pony', {prototype:
PonyComponentProto});
document.body.appendChild(new PonyComponent());

If you try to inspect it now you should see:

<ns-pony>
#ishadow-root (open)
<h1>General Soda</h1>
</ns-pony>

Now, even if you try to add some style to the h1 elements, the visual aspect of the component won’t
change at all: that’s because the Shadow DOM acts like a barrier.

Until now, we just used a string as a template of our web component. But that’s usually not the way
you do that. Instead, the best practice is to use the <template> element.

5.4. Template

A template specified in a <template> element is not displayed in your browser. Its main goal is to be
cloned in an element at some point. What you declare inside will be inert: scripts don’t run, images
don’t load, etc. Its content can’t be queried by the rest of the page using usual method like
getElementById() and it can be safely placed anywhere in your page.

To use a template, it needs to be cloned:

39

<template id="pony-tpl">

<style>
h1 { color: orange; }
</style>
<h1>General Soda</h1>
</template>

var PonyComponentProto = Object.create(HTMLElement.prototype);

// add some template using the template tag
PonyComponentProto.createdCallback = function() {
var template = document.querySelector('#pony-tpl');
var clone = document.importNode(template.content, true);
this.createShadowRoot().appendChild(clone);
ks

var PonyComponent = document.registerElement('ns-pony', {prototype:
PonyComponentProto});
document.body.appendChild(new PonyComponent());

Maybe we could declare this in a single file, and we would have a perfectly encapsulated
component... Let’s do this with HTML imports!

5.5. HTML imports

This is the last specification. HTML imports allow to import HTML into HTML. Something like <1ink
rel="import" href="ns-pony.html">. This file, ns-pony.html, would contain everything needed: the
template, the scripts, the styles, etc.

If someone wants to use our wonderful component, they just have to use an HTML import and they
are good to go!

5.6. Polymer and X-tag

All these things put together make the Web Components. ’'m far from being an expert on this topic,
and there are all sorts of twisted traps on this road.

As Web Components are not fully supported by every browser, there is a polyfill you can include in
your app to make sure it will work. The polyfill is called web-component.js, and it’s worth noting
that it is a joint effort from Google, Mozilla and Microsoft among others.

On top of this polyfill, a few libraries have seen the light. All aim to facilitate working with Web
Components, and often come with some ready-to-use Web Components.

Among the most notable initiatives, you find:

* Polymer from Google

» X-tag from Mozilla and Microsoft

40

https://github.com/WebComponents/webcomponentsjs
https://www.polymer-project.org/
http://x-tag.github.io/

I won’t go into the details, but you can easily use an already existing Polymer Component. Let’s say
you want a Google Map in your app:

<!-- Polyfill Web Components support for older browsers -->
<script src="webcomponents.js"></script>

<!-- Import element -->
<link rel="import" href="google-map.html">

<!-- Use element -->
<body>

<google-map latitude="45.780" longitude="4.842"></google-map>
</body>

There are a LOT of components out there. You can have an overview on https://customelements.io/.

Polymer also helps you build your own components:

<dom-module id="ns-pony">
<template>
<h1>[[name]]</h1>
</template>
<script>
Polymer ({
is: 'ns-pony’,
properties: {
name: String
}
};
</seript>
</dom-module>

and use them:

<!-- Polyfill Web Components support for older browsers -->
<script src="webcomponents.js"></script>

<!-- Polymer -->
<link rel="import" href="polymer.html">

<!-- Import element -->
<link rel="import" href="ns-pony.html">

<!-- Use element -->
<body>

<ns-pony name="General Soda"></ns-pony>
</body>

41

https://customelements.io/

You can do a lot of cool things with Polymer, like two-way data binding, default values for
attributes, emit custom events, react on attribute changes, repeat elements if we give a collection to
a component, etc.

That’s obviously far too short a chapter to tell you everything there is to say on Web Components,
but you’ll see that some of the concepts are going to pop out along your read. And yow’ll definitely
see that the Google team designed Angular to make it easy to use Web Components along our
Angular components.

42

Chapter 6. Grasping Angular’s philosophy
To write an Angular application, you have to grasp a few things on the framework’s philosophy.

First and foremost, Angular is component-oriented. You will write tiny components and, together,
they will constitute a whole application. A component is a group of HTML elements in a template,
dedicated to a particular task. For this, you will usually also need to have some logic linked to that
template, to populate data, and react to events for example. For the veterans of Angular]JS 1.x, it’s a
bit like a 'template/controller' duo, or a directive.

It has to be said that a standard has been established around this component thing: the Web
Component standard. Even if it’s not completely supported by browsers yet, you can build small
and isolated components, reusable in different applications - an old dream of computer
programming. This component orientation is something that is becoming widely shared across
front-end frameworks: React]S, the latest cool kid from Facebook, has been doing it that way from
the beginning; Ember]S and Angular]S have their way of doing something similar; and newcomers
like Aurelia or Vue.js are betting on building small components too.

43

https://facebook.github.io/react/
http://emberjs.com/
http://angularjs.org
http://aurelia.io/
http://vuejs.org/

Angular is not alone in this, but it is among the first (it might actually be the first?) to really care
about the integration of Web Components (the standard ones). But let’s forget about this for now, as
it is a more advanced topic.

Your components will be arranged in a hierarchical way, like the DOM is. A root component will
have child components, each of them will also have children, etc. If you want to display a pony race
(who wouldn’t?), yow’ll have something like an app (Ponyracer), with a child view (Race), displaying
a menu (Menu), the logged in user (User), and, of course, the ponies (Pony) in the races:

Ponyracer
Race
vy oYy
Menu User Pony Pony Pony

Writing components will be your everyday work, so let’s see what it looks like. The Angular team
wanted to harness another goodness of today’s web development: ES6 (or ES2015, whatever you
like to call it). So you can write your components in ES5 (but that’s not very cool) or in ES6 (way
cooler!). But that was not enough for them, they wanted to use a feature that is not a standard (yet):
decorators. So they worked closely with the transpiler teams (Traceur and Babel) and the
TypeScript team at Microsoft, to enable us to use decorators in our Angular apps. A few decorators
are available, allowing to easily declare a component for example. I hope you already know all of
that, as I just spent two chapters on these things!

For example, if we simplify, the Race component could look like this:

44

import { Component } from '@angular/core’;
import { RacesService } from './services';

@Component ({
selector: 'ns-race',
templateUrl: 'race/race.html’

1))

export class RaceComponent {
race: any;

constructor(racesService: RacesService) {
racesService.get()
.then(race => this.race = race);

And the template looks like this:

<div>
<h2>{{ race.name }}</h2>
<div>{{ race.status }}</div>
<div *ngFor="let pony of race.ponies">
<ns-pony [pony]="pony"></ns-pony>
</div>
</div>

If you already know Angular]S 1.x, the template should look familiar, with the same expression in
curly braces {{ }}, that will be evaluated and replaced by the according value. Some things have
changed though: no more ng-repeat for example. I don’t want to go too deep for now, merely just
give you a feel of what the code looks like.

A component is a very isolated piece of your app. Your app is a component like the others.

You will group components in one or several coherent entities, called modules (Angular Modules,
not ES6 Modules).

In a perfect world, you will also take available modules from the community and just put them in
your app, and be able to enjoy their features.

Such modules can offer UI components, or drag and drop capability, or validation for your forms,
or whatever you can think of.

In the next chapters, we are going to explore how to get started, how to build a small component,
your first module and the templating syntax.

There is another concept that is at the core, and that is Dependency injection (often called by its
little name, DI). It is a very powerful pattern, and you will quickly get used to it after reading the

45

dedicated chapter. It is especially useful to test your application, and I love doing tests, watching the
progress bar go all green in my IDE. It makes me feel I'm doing a good job. So there will be an entire
chapter on testing everything: your components, your services, your UL...

Angular still has the magic feeling it had in v1, where changes were automatically detected by the
framework and applied to the model and the views. But it is done in a very different way than it
was then: the change detection now uses a concept called zones. We will look into this, of course.

Angular is also a complete framework which provides a lot of help for performing common tasks in
web development. Writing forms, calling an HTTP backend, routing, interacting with other
libraries, animations, you name it: you’re covered.

Well, that’s a lot of things to learn! We should start with the beginning: bootstrap an app and write
our first component.

46

Chapter 7. From zero to something

7.1. Developing and building a TypeScript app

Let’s start by creating our first Angular app and our first component, with a minimum of tooling.
You’ll have to install Node.js and NPM on your system. The best way to do that depends on your
operating system - you can find more information on the official website. Make sure you have a
recent enough version of Node.js (by executing node --version), something like 4.4+. We’ll write our
app in TypeScript, so yow’ll have to install it via npm:

npm install -g typescript

Then, create a new, empty folder for our experiment, and use tsc from that new empty folder to
initialize a project. tsc stands for TypeScript Compiler. It’s provided by the typescript NPM
module we just installed globally:

tsc --init --target es5 --sourceMap --experimentalDecorators --emitDecoratorMetadata
--1ib es6,dom

This will create a file, tsconfig.json, which stores the TypeScript compilation options. As we saw in
the previous chapters, we are using TypeScript with decorators (hence the last two flags), and we
want our code to transpile to ECMASCRIPT 5, allowing it to run in every browser. The sourceMap
option allows generating source maps, i.e. files that contain a mapping between the generated ES5
code and the original TypeScript code. Those source maps are used by the browser to let you debug
the ES5 code it executes by stepping through the original TypeScript code that you have written.

We now want to start using our preferred IDE. You can use pretty much anything you want, but you
should activate the TypeScript support for maximum comfort (and make sure you are using
TypeScript 1.5+). Pick your favorite IDE: Webstorm, Atom, VisualStudio Code... All of them have
great support for TypeScript.

The TypeScript compiler (and usually the IDE) relies on the tsconfig.json file to know what options
it should use. The file should look like the following:

{

"compilerOptions": {
"target": "es5",
"module": "commonjs",
"1ib": ["es6","dom"],
"sourceMap": true,
"strict": true,
"experimentalDecorators”: true,
"emitDecoratorMetadata”: true

47

https://nodejs.org/

You can see that a few options have been added by default. An interesting one is the module option,
telling us that our code will be packaged in Common]JS modules. It will be important in a moment.

We now need to add the Angular library and our code. For the Angular library, we are going to
download it using NPM, a great tool to manage dependencies.

To avoid a few problems, we’ll use NPM version 3. Check which version you have with:

npm -v

If you don’t have NPM version 3, you can easily update NPM:

npm install -g npm

Now that’s done, let’s start by creating the package.json file, containing all the information that
NPM needs. You can answer Enter to every question.

npm init

Then, let’s install Angular and its dependencies.

The ebook is using Angular version 5.0.0 for the examples. The following command
will install the most recent version, which might not be the same. If you want to use
the same version as us, add @5.0.0 to each Angular package, like
@angular/core@5.0.0. That might save you a few headaches! Angular is really
modular, so we have to install a few packages for the framework itself, and for its
dependencies.

NOTE

npm install --save @angular/core@"$NG" @angular/compiler@"$NG" @angular/common@"$NG"
@angular/platform-browser@"$NG" @angular/platform-browser-dynamic@"$NG" rxjs reflect-
metadata zone.js

You can have a look at your package. json file, it should now contain the following dependencies:

* the different @angular packages.
» reflect-metadata, as we are using decorators.

* rxjs, a really cool library called Rx]JS for reactive programming. We have a dedicated chapter on
this topic.

* and finally, the zone.js module, doing the heavy lifting of running our code in isolated zones for
detecting the changes (we’ll dive into this later also).

Last thing to make the compiler happy, you have to install the typings for the things related to ES6.
The easiest way is to install the typings for core-js:

48

https://github.com/ReactiveX/RxJS

npm install --save-dev @types/core-js

The tooling is now in place, let’s create our first component!

7.2. Our first component

Create a new file, called app.component.ts.

Now we are ready to launch the TypeScript compiler, using the watch mode to compile the files
when we save. Sometimes your IDE will do that for you.

tsc --watch
You should see something like:
Compilation complete. Watching for file changes.

You can let this run in the background and open a new terminal for what comes next.

When you save your file, you should see a new file app.component.js popping in the directory: it’s
the TypeScript compiler doing its job. You should see the source map file as well. If not, you
probably killed your TypeScript compiler watching for changes, so you might run it again with tsc
--watch, and leave it running in the background.

As we saw in the previous section, a component is a combination of a view (the template) and some
logic (our TS class). Let’s create a class:

export class PonyRacerAppComponent {

}

Our application itself is a simple component. To tell Angular that it is a component, we use the
@Component decorator. To be able to use it, we have to import it:

import { Component } from '@angular/core’;

@Component ()
export class PonyRacerAppComponent {

}

If your IDE supports it, code completion should work as the Angular dependency has its own d.ts
files in the node_modules directory, and TypeScript is able to detect it. You can even navigate to the
type definitions if you want to.

49

TypeScript will bring its type-checking to the table, so you’ll see what mistakes you make as you
type. But the errors are not necessarily blocking: if you forget to add the type information to your
variable, the code will still compile to JavaScript and run properly.

I try to keep the TypeScript errors count to 0, but you can do as you want. As we are using source
maps, you can see the TS code directly from your browser, and even debug your app by setting
breakpoints in the TypeScript code.

The @Component decorator is expecting a configuration object. We’ll see later in details what you can
configure here, but for now only one property is expected: the selector one. It will tell Angular
what to look for in our HTML pages. Every time the selector we have defined is found in our HTML,
Angular is going to replace the element selected by our component:

import { Component } from '@angular/core’;

@Component ({
selector: 'ponyracer-app'

1))

export class PonyRacerAppComponent {

}

So, here, every time our HTML will contain an element like <ponyracer-app></ponyracer-app>,
Angular will instantiate a new instance of our PonyRacerAppComponent class.

There is not a clear naming convention established yet. I tend to suffix my
component classes with Component. A component’s selector should have a dash, like
ns-pony, even if that’s not mandatory. But, if you want to let other developers use
your component and avoid potential name clashes, you should adopt a convention
like "namespace-component”. The namespace should be a short one, like "ns" for
Ninja Squad for example. That would give a reusable component with a selector ns-
pony. Finally, you can add a suffix to your filenames to see their role at first glance,
pony.component.ts or race.service.ts for example.

NOTE

A component must also have a template. We could externalize the template in another file, but for
our first time, let’s keep it simple, and inline it:

import { Component } from '@angular/core’;

@Component ({
selector: 'ponyracer-app',
template: '<h1>PonyRacer</h1>'
})

export class PonyRacerAppComponent {

}

50

Don’t forget to import the Component decorator. You may forget to do so at the beginning, but it won’t
last, as the compiler will yell at you! ;)

You’ll see that most of the things we need are in the @angular/core module, but that’s not always the
case. For example, when dealing with HTTP, we’ll use imports from @angular/http; or, if we use the
router, we’ll import from @angular/router, etc.

7.3. Our first Angular Module

Like we briefly said in the previous chapter, we are going to group our components and other
pieces we’ll see later in coherent entities: Angular Modules.

An Angular Module is different from the ES6 Modules we crossed earlier: here we are talking about
application modules.

Your application will always have at least one module, the root module. Maybe, later, when your
application grows, you’ll add other modules, by feature. For example, you could add a module
dedicated to the Admin part of your application, containing all the components and the logic for
this part. But we’ll come back to this later. We’ll also see that third party libraries and Angular itself
expose modules, that we can use in our app.

To define an Angular Module for our little app, we have to create a class. Usually, this is done in a
separate file, called app.module.ts for the root module.

The class has to be decorated with @NgModule.

import { NgModule } from '@angular/core';
import { BrowserModule } from '@anqular/platform-browser";
@NgModule({

imports: [BrowserModule],

})
export class AppModule {

}

Like the @Component decorator, it takes a configuration object.

As we are building an app for the browser, the root module should import BrowserModule. This is not
the only target possible for Angular, you could choose to render the app on the server for example,
and therefore import another module. BrowserModule contains all kinds of useful stuff we will use
later. A module can choose to export components, directives and pipes. When you import a module,
you will make all the directives, components and pipes exported by the imported module usable in
your module. Our root module won’t be imported in another module, so we don’t have exports, but
we will have several imports in the end.

The terminology is not beginner friendly here. We were talking about ES6 and TS modules in the
first chapters, which define imports and exports. And now we are talking about Angular modules,
which also have imports and exports... 'm not a fan of having the same terms for different things,
so let me explain a little bit more.

51

You can see an ES6 or TS import purely as a language feature, like an import statement in Java: it
allows using the imported classes/functions in your source code. It also declares a dependency for
the bundler or module loader (Webpack or System]S, for example), which knows that if a.ts is
loaded, then b.ts must also be loaded since a imports b. You have to use imports and exports with
ES6 and TypeScript, whether or not you’re using Angular or any other framework.

On the other hand, importing an Angular module (for example BrowserModule) in your own Angular
module (AppModule), has a functional meaning. It tells Angular: all the components, directives and
pipes that are exported by BrowserModule should be made available to my Angular
components/templates. It has no special meaning for the TypeScript compiler.

Back to NgModule: in its configuration object, we must declare the components that belong to our
root module, with the declarations field. Let’s add the component we have carefully crafted:
PonyracerAppComponent.

import { NgModule } from '@angular/core’;
import { BrowserModule } from '@angular/platform-browser’;
import { PonyRacerAppComponent } from './app.component’;

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent],

})
export class AppModule {

}

Since this is the root module, we need to tell Angular which component is the root component, i.e.
the component that will be started when we bootstrap the app. That’s what the bootstrap field of
the configuration object is for:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser";
import { PonyRacerAppComponent } from './app.component’;

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent],
bootstrap: [PonyRacerAppComponent]

b
export class AppModule {

}

Module ready, let’s bootstrap the app!

52

7.4. Bootstrapping the app

Finally, we need to start our app, using the bootstrapModule method. This method is exposed on an
object returned by a method called platformBrowserDynamic. You have to import it too, from
@angular/platform-browser-dynamic. Now, that’s a strange module! Why is it not @angular/core? Good
question: it’s because you might want to run your app somewhere else than in a browser, as
Angular supports server-side rendering or running in a Web Worker for example. And in these
cases, the bootstrap logic would be a bit different. But we’ll see this later, as we are just focusing on
the browser right now.

Let’s create another file, for example main.ts, to separate the bootstrap logic:

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

Yay! But wait a second. We don’t have any HTML file, do we? You’re right about that!

Create another file named index.html and add the following content:

<html>
<head></head>

<body>
<ponyracer-app>
You will see me while Angular starts the app!
</ponyracer-app>
</body>

</html>

We now need to add scripts to our HTML files. In Angular]S 1.x, it was simple: you just needed to
add a script for angular.js, and a script for every JS file you wrote, and you were ready to go. There
was a downside though: everything had to be loaded statically, at startup, which could lead to long
startup times for big applications.

With Angular, things are more complicated, but complexity comes with additional power. Angular
is now bundled in modules (ES6 modules), and these modules can be loaded dynamically. Our app
is also bundled in modules, as we saw earlier.

There are a few problems though:

* modules don’t exist in ES5, and browsers only support ES5 at the moment;

» the ES6 designers have decided to specify how modules are defined, imported, etc. But they
have not yet specified how they’re supposed to be packaged and loaded by the browsers.

53

To load our modules, we will thus need to rely on a tool: System]S. System]S is a small module
loader: you add it (statically) into your HTML page, you tell it where modules are located on your
server, and you load one of them. It automatically figures out the dependencies between modules,
and downloads the ones used by your application.

This will lead to a bazillion of JS file downloads. That is fine during development, but it is a problem
for production. Fortunately, System]S also comes with a tool that can pack several small modules
into bigger bundles. When a module is needed, the bundle containing that module (and several
other ones) will then be downloaded.

Note that this is not the only tool that can do this job, you could use another one like Webpack if
you wanted to.

Let’s install System]S:

npm install --save systemjs

We need to load System]S statically, and to tell it where our bootstrap module is (in main). We also
need to tell it where to find the dependencies of our application, like @anqular. But first, we need to
include reflect-metadata and zone.js:

54

https://github.com/systemjs/systemjs
https://webpack.github.io/

<html>

<head>
<script src="node_modules/zone.js/dist/zone.js"></script>
<sceript src="node_modules/reflect-metadata/Reflect.js"></script>
<script src="node_modules/systemjs/dist/system.js"></script>
<script>
System.config({
// the app will need the following dependencies
map: {
'@anqular/core': 'node_modules/@angular/core/bundles/core.umd.js",
'@angular/common': 'node_modules/@angular/common/bundles/common.umd.js",
'@anqular/compiler': 'node_modules/@angular/compiler/bundles/compiler.umd.js",
'@anqular/platform-browser': 'node_modules/@angular/platform-
browser/bundles/platform-browser.umd.js",
'@angular/platform-browser-dynamic': 'node_modules/@angular/platform-browser-
dynamic/bundles/platform-browser-dynamic.umd.js"',
'rxjs': "node_modules/rxjs’
b
packages: {
// we want to import our modules without writing '.js' at the end
// we declare them as packages and System]S will add the extension for us
R
}

};
// and to finish, let's boot the app!

System.import('main');
</script>
</head>

<body>
<ponyracer-app>
You will see me while Angular starts the app!
</ponyracer-app>
</body>

</html>

OK! Let’s start an HTTP server to serve this mini app. I'm going to use http-server, a node tool that
does pretty much what its name says. But you may of course use whatever web server you prefer:
Apache, Nginx, Tomcat, etc. To install it, use npm:

npm install -g http-server

To start it, go to your directory, and enter:

http-server

55

Now it’s time for the show! Open your browser to http://localhost:8080.

You should now briefly see "You will see this while Angular start the app!", and then "PonyRacer"
should appear! Your first component is a success!

It’s not really a dynamic app, and we could have done the same in one second in a static HTML
page, I'll give you that. So let’s jump to the next sections, and learn all about dependency injection
and templating.

7.5. From zero to something better with Angular CLI

In a real project, you’ll probably have to set up several other things like:

* some tests to check if we’re not breaking things

* a build tool, to orchestrate the various tasks (compile, test, package, etc.)

And it’s a bit cumbersome to setup everything yourself, even if I think it’s necessary to do it once to
understand what’s going on.

These past few years, a lot of small project generators have seen the light, pretty much all using the
great Yeoman. It used to be the case for Angular]S 1.x, and there are already a few attempts for
Angular.

But this time, the Google team has been working on this issue, and they have come up with
something: Angular CLI.

Angular CLI is a command line utility to easily quick start a project, already configured with
Webpack as a build tool, tests, packaging, etc.

The idea is not new, and is in fact borrowed from another popular framework: Ember]S and its
popularly acclaimed ember-cli.

The tool is still under development, but I think it will be the de facto standard to create Angular
apps in the future, so you can give it a try.

In fact I think you should give it a try: you will have the equivalent of what we just did manually,
plus a ton of cool stuff.

npm i -g @angular/cli
ng new ponyracer

This will create a project skeleton. You can start your app with:
ng serve

This will start a small HTTP server locally, with a hot reload configuration. That means every time
you are going to modify and save a file, the app will refresh in your browser.

56

http://localhost:8080
http://yeoman.io/
https://github.com/angular/angular-cli
http://ember-cli.com/

A few other possibilities are available, like creating a component skeleton:

ng generate component pony

This will create a component file, with its associated template, stylesheet and test file.

The tool is not only here to help us develop the application, it also comes with a plugin system that
will simplify a few tasks like deployment. For example, you can quickly deploy on Github Pages,
using the github-pages plugin:

ng github-pages:deploy

In the long term, this is going to be great! We’ll have the same code organization across projects, a
common way to build and deploy apps, and probably a huge eco-system of plugins for simplifying
some tasks.

So go have a look at Angular CLI!
Try our exercise Getting Started &! It’s free and part of our Pro Pack, where

PRACTICE you’ll learn how to build a complete application step by step. The first exercise
is about getting everything up and running with Angular CLI!

57

https://angular-exercises.ninja-squad.com/exercises/0/getting-started

Chapter 8. The templating syntax

We’ve seen that a component needs to have a view. To define a view, you can define a template
inline or in a separate file. You’re probably familiar with a templating syntax, maybe even the one
from Angular]S 1.x. To simplify things, a template helps us to render HTML with some dynamic
parts depending on our data.

Angular has its own templating syntax that we need to learn before going further.

Let’s take a simple example. Our first component looked like:

import { Component } from '@angular/core’;

@Component ({
selector: 'ponyracer-app',
template: '<h1>PonyRacer</h1>'

1))

export class PonyRacerAppComponent {

}

Now we want to display some dynamic data on this first page, maybe the number of users
registered into our app. Later we’ll see how to get data from a server, but for now we’ll say that this
number of users is directly hard-coded in our class:

@Component ({
selector: 'ponyracer-app',
template: '<h1>PonyRacer</h1>'

1))

export class PonyRacerAppComponent {

numberOfUsers = 146;

Now, how do we change our template to display this variable? The answer is interpolation.

8.1. Interpolation
Interpolation is a big word for a simple concept.

Quick example:

58

@Component ({
selector: 'ponyracer-app',
template: *
<h1>PonyRacer</h1>
<h2>{{ numberOfUsers }} users</h2>

\

1))

export class PonyRacerAppComponent {

numberOfUsers = 146;

We have a PonyRacerAppComponent component that will be activated every time Angular finds a
<ponyracer-app> tag. The PonyRacerAppComponent class has a property, numberOfUsers. And the
template has been augmented with an <h2> tag, using the famous double curly braces (a.k.a.
"mustaches") to indicate that an expression has to be evaluated. This kind of templating is called
interpolation.

We should now see in the browser:

<ponyracer-app>
<h1>PonyRacer</h1>
<h2>146 users</h2>

</ponyracer-app>

as {{ numberOfUsers }} will be replaced by its value. When Angular detects a <ponyracer-app>
element in the page, it creates an instance of the PonyRacerAppComponent class, and this instance is
the evaluation context of the template’s expressions. Here the PonyRacerAppComponent instance sets
the numberOfUsers property to '146', so we have '146' displayed on screen.

The magic is that, whenever the value of numberOfUsers changes in our object, the template will be
automatically updated! That’s called 'change detection’, and it’s one of the great features of Angular.

One important fact to remember, though: if we try to display a variable that does not exist, then,
instead of displaying undefined, Angular is going to display an empty string. The same will happen
for a null variable.

Let’s say that, instead of a simple value, our first component has a more complex user object,
reflecting the current user.

59

@Component ({
selector: 'ponyracer-app',
template: *
<h1>PonyRacer</h1>
<h2>Welcome {{ user.name }}</h2>

\

1))

export class PonyRacerAppComponent {

user: any = { name: 'Cédric' };

As you can see, we can interpolate more complex expressions, like accessing the property of an
object.

<ponyracer-app>
<h1>PonyRacer</h1>
<h2>Welcome Cédric</h2>

</ponyracer-app>

What happens if we have a typo in our template, with a property that does not exist in the class?

@Component ({
selector: 'ponyracer-app',
// typo: users is not user!
template: °
<h1>PonyRacer</h1>
<h2>Welcome {{ users.name }}</h2>

\

1))

export class PonyRacerAppComponent {

user: any = { name: 'Cédric' };

When loading the app, you will have an error, telling you that this property does not exist:

Cannot read property 'name' of undefined in [{{ users.name }} in
PonyRacerAppComponent]

That’s great, because now you are quite sure that your templates are correct. One of the most often
encountered problem in Angular]S 1.x was that this type of error could not be detected, and you
could lose quite some time trying to figure out what was going on (usually a typo, like {{ users.name
+} instead of {{ user.name }}). We have given quite a few training sessions, and I can assure you

60

that 30% of beginners were having this problem on the first day. I got a bit tired of it, and I even
submitted a pull-request to display a warning when the parser would find an unknown variable,
which was refused for valid reasons and with a comment from the core team saying they had an
idea on how to solve this in Angular. And they did!

One last little but handy feature. What happens if my user object is in fact fetched from the server,
and thus initialized to undefined before being valued with the result of the server call? Is there a
way to avoid the errors when the template is compiled?

Yes, there is: instead of writing user.name, you write user?.name:

@Component ({
selector: 'ponyracer-app',
// user is undefined
// but the ?. will avoid the error
template: °
<h1>PonyRacer</h1>
<h2>Welcome {{ user?.name }}</h2>

\

1))

export class PonyRacerAppComponent {

user: any,

And you don’t have errors anymore! The 7. is sometimes called the "Safe Navigation Operator".
So we can write our templates more safely, and be assured that they will behave properly.

Let’s go back to our example. We are now displaying a greeting message. Maybe we can go a step
further and display the upcoming pony races.

That should lead us to write our second component. For now, we’ll just make it simple:

// in another file, races.component.ts
import { Component } from '@angular/core’;

@Component ({
selector: 'ns-races',
template: ‘<h2>Races</h2>*
3]

class RacesComponent {

}

Nothing fancy: a simple class, decorated with @Component to give it a selector to match and an inline
template.

61

https://github.com/angular/angular.js/pull/6414

Now we want to include this component in our PonyRacerAppComponent template. What do we need
to do?

8.2. Using other components in our templates

We have our app component, PonyRacerAppComponent, where we want to display the pony races
component, RacesComponent.

// in ponyracer_app.ts
import { Component } from '@angular/core’;

@Component ({
selector: 'ponyracer-app',
// added the RacesComponent component
template: °
<h1>PonyRacer</h1>
<ns-races></ns-races>

\

1))

export class PonyRacerAppComponent {

}

As you can see, we added the RacesComponent component in the template, by including a tag whose
name matches the selector we defined for the component.

Buuuuuut, that will not work: your browser will not display the races component.
Why is that? The reason is simple: Angular doesn’t know about this RacesComponent yet.

But the fix is simple. Do you remember that we had to add PonyRacerAppComponent in the
declarations of the @NgModule decorator? Now, since we have a second component, it must be
declared, too.

RacesComponent is not the root component of our application, so it must be in the declarations, but
not in the bootstrap.

62

import { NgModule } from '@angular/core’;
import { BrowserModule } from '@angular/platform-browser’;

import { PonyRacerAppComponent } from './app.component’;
// do not forget to import the component
import { RacesComponent } from './races.component’;

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent, RacesComponent],
bootstrap: [PonyRacerAppComponent]

})
export class AppModule {

}

Note that you will pass the class directly, so you’ll have to import it. And in order to be able import
it, you need to export the class RacesComponent in its source file races.component.ts (read the section
about ES6 modules again if that’s not clear for you). So RacesComponent will look like:

// in another file, races.component.ts
import { Component } from '@angular/core’;

@Component ({
selector: 'ns-races',
template: ‘<h2>Races</h2>*

1))

export class RacesComponent {

}

Now, our races component will proudly be displayed in our browser:

<ponyracer-app>
<h1>PonyRacer</h1>
<ns-races>
<h2>Races</h2>
</ns-races>
</ponyracer-app>

8.3. Property binding
Interpolation is only one of the ways to have dynamic parts in your template.

In fact, the interpolation we just saw is just an easy way to use what is the core of Angular
templating system: property binding.

63

In Angular, every DOM property can be written to via special attributes on HTML elements
surrounded with square brackets []. It looks weird at first, but in fact it is valid HTML (it surprised
me too). An HTML attribute can start with pretty much anything you want except a few characters
like quotes, apostrophes, slashes, equals, spaces...

I’'m talking about DOM properties, but maybe this is not clear for you. We usually write to HTML
attributes, right? Right, usually we do. Let’s take this simple HTML:

<input type="text" value="hello">

The input tag above has two attributes: a type attribute and a value attribute. When the browser
parses this tag, it creates a corresponding DOM node (an HTMLInputElement if we want to be
accurate), which has the matching properties type and value. Each standard HTML attribute has a
corresponding property in the DOM node. But the DOM node also has additional properties, which
don’t have a corresponding attribute. For example: childElementCount, innerHTML or textContent.

The interpolation we had above to display the user’s name:

<p>{{ user.name }}</p>

is just sugar syntax for the following:

<p [textContent]="user.name"></p>

The square bracket syntax allows to modify the DOM property textContent, and we give it the value
user.name which will be evaluated in the context of the current component instance, as it was for
the interpolation.

Note that the parser is case-sensitive, so you have to write the property name with the correct case:
textcontent or TEXTCONTENT will not work, it has to be textContent.

DOM properties have a great advantage over HTML attributes: they have up-to-date values. In my
input example, the value attribute will always contain 'hello', whereas the value property of the
DOM node is dynamically modified by the browser, and thus contains whatever the user has
entered in the text field.

Finally, properties can have boolean values, whereas some attributes can only reflect it by being
present or absent on the start tag. For example, you have the selected attribute on the <option> tag:
no matter what value you give it, it will select the option, as long as it is present.

<option selected>Rainbow Dash</option>
<option selected="false">Rainbow Dash</option> <!-- still selected -->

With properties access like Angular gives us, you can write:

64

<option [selected]="isPonySelected" value="Rainbow Dash">Rainbow Dash</option>

And the pony will be selected if isPonySelected is true, and not be selected if it is false. And
whenever the value of isPoneySelected changes, the selected property will be updated.

You can do a lot of cool things with this, things that were cumbersome in Angular]S 1.x. For
example, having a dynamic source URL for an image.

This syntax has a major problem: the browser will try to fetch the image as soon as it reads the src
attribute. You can see that it will fail: it will make an HTTP request to {{ pony.avatar.url }} which
is not a valid URL...

In Angular]S 1.x, there was a special directive to take care of that: ng-src.

Having ng-src instead of src did solve the problem, as it tricked the browser into ignoring it. Once
Angular]S had compiled the app, it added the src attribute with a correct URL, hence triggering the
image download. Cool! But it had two downsides:

* first, you had to know, as a developer, what value to give to ng-src. Was it 'https://gravatar.com'?
"https://gravatar.com™? 'pony.avatar.url'? '{{ pony.avatar.url }}'? No way to know, except by
reading the documentation.

» second, the Angular team had to create a directive for each standard attribute. They did, and we
had to learn them. But we are now in a world where your HTML can also contain external Web
Component, looking like:

<ns-pony name="Rainbow Dash"></ns-pony>

If this a Web Component that you want to use, you have no easy way to pass a dynamic value with
most JS frameworks, except if the developer of the Web Component had taken extra care to make it
possible. Read the chapter on Web Components for more information.

A Web component should act like a browser element. They have a DOM API based on properties,
events and methods. With Angular, you can do:

<ns-pony [name]="pony.name"></ns-pony>

And it works!

Angular will maintain the properties and attributes in sync.

65

No more directives to learn! If you wish to hide an element, you can use the standard hidden
property:

<div [hidden]="1isHidden">Hidden or not</div>

And the div will be hidden only when isHidden is true, as Angular will work directly with the hidden
property. No more ng-hide, and this is just one of the dozens of directives that were used in Angular
1.

You can also access nested properties like the color attribute of the style property.

<p [style.color]="foreground">Friendship is Magic</p>

If the foreground attribute is changing to 'green’, then the text will update its color to 'green’ too!

So Angular is using properties. Which values can we pass? We already saw the interpolation
property="{{ expression }}":

<ns-pony name="{{ pony.name }}"></ns-pony>

is the same as [property]="expression" (which you will usually prefer):

<ns-pony [name]="pony.name"></ns-pony>

If you want to write 'Pony' followed by the pony’s name, you have two options:

<ns-pony name="Pony {{ pony.name }}"></ns-pony>
<ns-pony [name]=""Pony ' + pony.name"></ns-pony>

If your value is not a dynamic one, you can simply write property="value":

<ns-pony name="Rainbow Dash"></ns-pony>

All of these are equivalent, and the syntax doesn’t depend on how the developer chose to design
their component, as it was the case in Angular]S 1.x where you had to know if the component was
expecting a value or a reference for example.

Of course, the expression can also contain function calls:

<ns-pony name="{{ pony.fullName() }}"></ns-pony>
<ns-pony [name]="pony.fullName()"></ns-pony>

66

8.4. Events

If you're developing a webapp, you know that displaying things is just one part of the job: you also
have to deal with user interactions. To allow this, the browser fires events, which you can listen to:
click, keyup, mousemove, etc. Angular]JS 1.x had one directive per event: ng-click, ng-keyup, ng-
mousemove, etc. In Angular, this is simpler, no more directives to remember.

Going back to our RacesComponent, we now want to have a button that will display the races when
clicked.

Reacting on an event can be done as follow:
<button (click)="onButtonClick()">Click me!</button>

A click on the button of the example above will trigger a call to the component method
onButtonClick().

Let’s add this to our component:

@Component ({
selector: 'ns-races',
template: *
<h2>Races</h2>
<button (click)="refreshRaces()">Refresh the races list</button>
<p>{{ races.length }} races</p>

\

1))

export class RacesComponent {
races: any = [];

refreshRaces() {
this.races = [{ name: 'London' }, { name: 'Lyon' }];
}
}

If you try this in your browser, you should initially see:

<ponyracer-app>
<h1>PonyRacer</h1>
<ns-races>
<h2>Races</h2>
<button (click)="refreshRaces()">Refresh the races list</button>
<p>0 races</p>
</ns-races>
</ponyracer-app>

And after your click, '0 races' should become '2 races'. Yay \o/

67

The statement can be a function call, but it can be any executable statement, or even a sequence of
executable statements, like:

<button (click)="firstName = 'Cédric'; lastName = 'Exbrayat'">
Click to change name to Cédric Exbrayat
</button>

However I would not advise you to do this. Using methods is a better way of encapsulating the
behavior: it makes your code easier to maintain and test, and it makes the view simpler.

The cool thing is that it works with standard DOM events, but also with custom events that might
fire from your Angular components or from web components. We’ll see later how to fire custom
events.

For the moment, let’s say the RacesComponent component emits a custom event to notify the app that
a new race is available.

Our template in the PonyRacerAppComponent component would then look like:

@Component ({
selector: 'ponyracer-app',
template: °
<h1>PonyRacer</h1>
<ns-races (newRaceAvailable)="onNewRace()"></ns-races>

\

b
export class PonyRacerAppComponent {
onNewRace() {
// add a flashy message for the user.
}
}

We can easily figure that the <ns-races> component has a custom event newRaceAvailable and that,
when this event is fired, the method onNewRace() of our PonyRacerAppComponent is called.

Angular will listen for the event on the element and on its children, so it will react to events that
bubble. Consider the template:

<div (click)="onButtonClick()">
<button>Click me!</button>
</div>

Even though the user clicks on the button embedded inside the div, the onButtonClick() method will
be called, because the event bubbles up.

Oh, and you can access the event in the method called! You just have to pass $event to your method:

68

<div (click)="onButtonClick($event)">
<button>Click me!</button>
</div>

Then you can handle the event in your component class:

onButtonClick(event) {
console.log(event);

}

By default, the event will continue to bubble up, eventually triggering other event listeners up in
the hierarchy.

You can use the event to prevent the default behavior and/or cancel propagation if you want:

onButtonClick(event) {
event.preventDefault();
event.stopPropagation();

}

One cool feature is that you can also easily handle keyboard events with:

<textarea (keydown.space)="onSpacePress()">Press space!</textarea>

Every time you will press the space key, the onSpacePress() method will be called. And you can do
crazy combo, like (keydown.alt.space), etc.

To conclude this part, I want to point that there is a big difference between something like:

<component [property]="doSomething()"></component>

and

<component (event)="doSomething()"></component>

In the first case, with property binding, the doSomething() value is called an expression, and will be
evaluated at each change detection cycle to see if the property needs to be updated.

In the second case, however, with event binding, the doSomething() value is called a statement, and
will be evaluated only when the event is triggered.

By definition they have completely different goals and, as you can suspect, they have different
restrictions.

69

8.5. Expressions vs statements

Expressions and statements differ in several ways.

An expression will be executed many times, as part of the change detection. It should thus be as fast
as possible. Basically, an Angular expression is a simplified version of an expression you could
write in JavaScript.

If you are using user.name as an expression, user should be defined, otherwise Angular will throw
an error.

An expression must be single: you can’t chain several ones separated with a semi-colon.

An expression should not have any side effect. That means it can’t be an assignment, for example.

<!-- forbidden, as the expression is an assignment -->
<!-- this will throw an error -->
<component [property]="user = 'Cédric

></component>

It can not contains keywords, like if, var, etc.

A statement, on the other hand, is triggered on the matching event. If you try to use a statement like
race.show() where race is undefined, you will have an error. You can chain several statements,
separated with a semi-colon. A statement can, and generally should, have side effects. That’s the
point of reacting to an event: to make something happen. A statement can be a variable assignment,
and can contain keywords.

8.6. Local variables

When [say that Angular will look in the component instance to find a variable, it is not technically
correct. In fact, it will check the component instance and the local variables. Local variables are
variables that you can dynamically declare in your template using the # syntax.

Let’s say you want to display the value of an input:

<input type="text" #name>
{{ name.value }}

Using the # syntax, we are creating a local variable name referencing the DOM object
HTMLInputElement. This local variable can be used anywhere in the template. As it has a value
property, we can display this property in an interpolated expression. I'll come back to this example
later.

Another useful usage of local variables is when you want to execute some kind of action on another
element.

For example, you may want to give the focus on an element when you click on a button. This was a

70

bit cumbersome in Angular]S 1.x, as you had to create a custom directive and so on.

The focus() method is a standard part of the DOM API, and we can leverage this. Using a local
variable, it’s a no-brainer in Angular:

<input type="text" #name>
<button (click)="name.focus()">Focus the input</button>

It can also be used with a custom component - one we created in our app, imported from another
project, or even with a real Web Component:

<google-youtube #player></google-youtube>

<button (click)="player.play()">Play!</button>

Here, the button can start playing the video of the <google-youtube> component. This is actually a
real Web Component written with Polymer! This component has a play() method that Angular will
call when you click on the button, which is pretty cool!

Local variables have a few use cases, and we will gradually see them. One of them is described in
the very next section.

8.7. Structural directives

Now, our RacesComponent is still not displaying the races :) The "proper way" in Angular would imply
to create another component RaceComponent to display each race. We are going to do something
slightly simpler, and just write a simple <11i> list.

Property and event binding is great, but it does not let us change the DOM structure, like iterating
over a collection and adding an element per item. To do so, we need to use structural directives. A
directive in Angular is really close to a component, but does not have a template. It is used to add
behavior to an element.

The structural directives provided by Angular rely on using a ng-template element, inspired from
the template standard tag of the HTML specification. It even used to called template before version
4.0, but it’s now deprecated, and you should use ng-template:

<ng-template>
<div>Races list</div>
</ng-template>

Here we have defined a template, displaying a simple div. Alone, it does not have much use, as the
browser will not display it. But if we add one 'template’ element in a view, then Angular can use its
content. The structural directives have the ability to do simple actions with this content, like
displaying it or not, repeating it, etc.

71

http://googlewebcomponents.github.io/google-youtube/components/google-youtube/
https://www.polymer-project.org/1.0/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template

Let’s see which directives are available!

8.7.1. NgIf

We might want this template instantiated only if a condition is matched. For this, we will use the
directive ngIf:

<ng-template [ngIf]="races.length > 0">
<div><h2>Races</h2></div>
</ng-template>

The framework provides a few directives, like ngIf. They come from the module we imported
earlier: BrowserModule. You can also define your own directives if needed: we’ll come back to custom
directives later.

Here, the template will be instantiated only if races has at least one element, that is to say if there
are races. As this syntax is a bit long, there is a shorter version:

<div *ngIf="races.length > 0"><h2>Races</h2></div>

And you will virtually always use this shorter version.

The syntax uses * to show it is a structural directive. The ngIf will or will not display the div
whenever the value of races changes: if there are no more races, the div will disappear.

The directives provided by the framework are already pre-loaded for us so we don’t need to import
and declare NgIf in the directives attribute of the @Component decorator.

import { Component } from '@angular/core’;

@Component ({

selector: 'ns-races',

template: ‘<div *ngIf="races.length > 0"><h2>Races</h2></div>"
})
export class RacesComponent {

races: Array<any> = [];

}

It’s also possible to use a else syntax since the version 4.0:

72

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-races’,
template: *
<div *ngIf="races.length > 0; else empty"><h2>Races</h2></div>
<ng-template #empty><h2>No races.</h2></ng-template>

\

1))

export class RacesComponent {
races: Array<any> = [];

}

8.7.2. NgFor

Working with real data will inevitably lead you to display a list of something. That’s when NgFor
proves very useful: it allows to instantiate one template per item in a collection. Our RacesComponent
component contains a field races which, as you can probably guess, is an array of races to display.

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-races',
template: ‘<div *ngIf="races.length > 0">
<h2>Races</h2>

<li *ngFor="let race of races">{{ race.name }}</1i>

</div>"
1))
export class RacesComponent {
races: Array<any> = [{ name: 'London' }, { name: 'Lyon' }];

}

And now we have a beautiful list, with one 11 tag per item in our collection!

London</1i>
Lyon</1i>

Note that NgFor is using a particular syntax, called a microsyntax.

73

<li *ngFor="let race of races">{{ race.name }}</1i>

It is the equivalent of the more wordy (that we’ll never use):

<ng-template ngFor let-race [ngForOf]="races">
{{ race.name }}</1i>
</ng-template>

Here you can recognize:

* the template element to declare an inline template,

* the NgFor directive applied to it

* the NgForOf property where we feed the collection to display

* the variable race allowing us to use it in the interpolation expression, and reflecting the current

element.

Instead of remembering all these parts, it is easier to use the shorter form:

<li *ngFor="1et race of races">{{ race.name }}</1i>

It is possible to declare another local variable bound to the index of the current element:

<li *ngFor="1let race of races; index as i">{{ i }} - {{ race.name }}</1i>

The local variable i will receive the index of the current element, starting at zero. index is an
exported variable. Some directives export variables that you can then assign to a local variable to
be able to use them in your template:

<1li>0 - London</1i>
1 - Lyon</1i>

There are also other exported variables that can be useful:

e even, a boolean that is true if the element has an even index

74

* odd, a boolean that is true if the element has an odd index
e first, a boolean that is true if the element is the first of the collection

e last, a boolean that is true if the element is the last of the collection

8.7.3. NgSwitch

As you can guess from its name, this directive allows to switch between different templates based
on a condition.

<div [ngSwitch]="messageCount">
<p *ngSwitchCase="0">You have no message</p>
<p *ngSwitchCase="1">You have a message</p>
<p *ngSwitchDefault>You have some messages</p>
</div>

As you can see, ngSwitch takes a condition and the *ngSwitchCase take the possible values. You can
also have *ngSwitchDefault that will be displayed if none of the values matched.

8.8. Other template directives

Two other directives can be useful when writing a template, but they are not structural directives
like the ones we just saw. These directives are standard directives.

8.8.1. NgStyle

The first one is ngStyle. We already saw that we can act on the style of an element using:
<p [style.color]="foreground">Friendship is Magic</p>

If you need to set several styles at the same time, you can use the ngStyle directive:
<div [ngStyle]="{fontWeight: fontWeight, color: color}">I've got style</div>

Note that the directive expects an object whose keys are the styles to set. The keys can either be in
camelCase (fontWeight) or in dash-case (' font-weight").

8.8.2. NgClass
In the same spirit, the ngClass directive allows to add or remove classes dynamically on an element.

As for the style, you can either set one class using property binding:

<div [class.awesome-div]="1sAnAwesomeDiv()">I've got style</div>

75

Or, if you want to set several at the same time, you can use ngClass:

<div [ngClass]="{"awesome-div': isAnAwesomeDiv(), 'colored-div': isAColoredDiv()}"
>I've got style</div>

8.9. Canonical syntax

Every syntax we have seen has a longer equivalent called the canonical syntax. This is mainly
useful if your server side templating system is having trouble with the [] or () syntax, or if you
really can’t bear to use [], (), *...

If you want to declare a property binding, you can do:
<ns-pony [name]="pony.name"></ns-pony>
or, using the canonical syntax:
<ns-pony bind-name="pony.name"></ns-pony>
For event binding, you can do:
<button (click)="onButtonClick()">Click me!</button>
or, using the canonical syntax:
<button on-click="onButtonClick()">Click me!</button>
And for local variables, you can use ref-:

<input type="text" ref-name>
<button on-click="name.focus()">Focus the input</button>

instead of the shorter form:

<input type="text" #name>
<button (click)="name.focus()">Focus the input</button>

8.10. Summary

The Angular templating system gives us a powerful syntax to express the dynamic part of our
HTML. It allows to express data and property binding, event binding and templating concerns, in a

76

clear way, each with their own symbols:

{{}} for interpolation

[] for property binding
* () for event binding
* # for variable declaration
» * for structural directives
It provides a way to interact with standard Web Components like no other framework does. As

there is no ambiguity between the various meanings, we will see our tools and IDEs gradually
improve to give us meaningful warnings on what we are writing in our templates.

All these symbols are shorter versions of their canonical counterparts, which you can also use if
you wish.

It takes some time to be fluent in this syntax, but you will soon be up to speed, and then it’s easy to
read and write.

Let’s go through a complete example before moving on.

I want to write a PoniesComponent component, displaying a list of ponies. Each pony should be
represented by a PonyComponent component, but we haven’t seen yet how to pass parameters to a
component. So, for now, we are going to display a simple list. The list should be displayed only if it’s
not empty, and I’d like to have some color for the even lines of my list. Finally, I want to be able to
refresh the list with a button click.

Ready?

We start to write our component, in its own file:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies’,
template: **

b

export class PoniesComponent {

You can add it to the PonyRacerAppComponent component we wrote in the previous chapter to test it.
You will have to import it, add it to the directives and insert the tag <ns-ponies></ns-ponies> in the
template.

Our new component has a list of ponies:

77

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies’,
template: **
})
export class PoniesComponent {
ponies: Array<any> = [{ name: 'Rainbow Dash' }, { name: 'Pinkie Pie' }];

}
We are going to display this list, using NgFor:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies’,
template: ‘
<li *ngFor="1et pony of ponies">{{ pony.name }}</1i>
'
b
export class PoniesComponent {
ponies: Array<any> = [{ name: 'Rainbow Dash' }, { name: 'Pinkie Pie' }];

}

One thing is missing, the refresh button:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies’,
template: ‘<button (click)="refreshPonies()">Refresh</button>

<li *ngFor="1let pony of ponies">{{ pony.name }}</1i>
?
1)
export class PoniesComponent {
ponies: Array<any> = [{ name: 'Rainbow Dash' }, { name: 'Pinkie Pie' }];

refreshPonies() {
this.ponies = [{ name: 'Fluttershy' }, { name: 'Rarity' }];

}
}

And of course, a touch of color to finish, with the use of [style.color] and the isEven exported
variable:

78

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies’,
template: ‘<button (click)="refreshPonies()">Refresh</button>

<li *ngFor="1let pony of ponies; even as isEven"
[style.color]="isEven ? 'green' : 'black'">
{{ pony.name }}
</1i>
?
b

export class PoniesComponent {
ponies: Array<any> = [{ name: 'Rainbow Dash' }, { name: 'Pinkie Pie' }];

refreshPonies() {
this.ponies = [{ name: 'Fluttershy' }, { name: 'Rarity' }];
}
}

As you can see, we have used all the range of the templating syntax, and we have a perfectly
working component. Our data are still hard-coded though: soon, we are going to see how to use a
service to fetch them! This implies to learn about dependency injection first, so that we can use the
HTTP service!

Try our two exercises Templates &y and List of races &! They are free and
part of our Pro Pack, where you’ll learn how to build a complete application

PRACTICE step by step. The first one is all about building a small component, a responsive
menu, and play with its template. The second guides you to build another
component: the list of races.

79

https://angular-exercises.ninja-squad.com/exercises/1/templates
https://angular-exercises.ninja-squad.com/exercises/2/races-list

Chapter 9. Dependency injection

9.1. DI yourself

Dependency injection is a well-known design pattern. Let’s take a component of our application.
This component may need some features offered by other parts of our app (let’s say a service).
That’s what we call a dependency. Instead of letting the component create its dependencies, the
idea is to let the framework create them, and provide them to the component. That is known as
"inversion of control".

It has several interesting features:

* it allows easy development, by just saying what we want and where we want it.
* it allows easy testing, by replacing dependencies with mock ones.
* it allows easy configuration, by swapping implementation.

It’s a concept vastly used on the server side, but Angular]S 1.x was one of the first to use it on the
frontend side.

9.2. Easy to develop
To be able to use dependency injection, we need a few things:

* a way to register a dependency, to make it available to injection in another component/service.

* a way to declare what dependencies are needed in the current component/service.

The framework does the rest of the job. When we declare a dependency in a component, it will look
into the registry if it can find it, will get the instance of the dependency or create one, and actually
inject it in our component.

A dependency can be a service provided by Angular, or a service we have written ourselves.

Let’s take an example with an ApiService service, already written by one of your colleague. Since
he’s the lazy guy of the team, he just wrote a class with a method named get returning an empty
array, but you can already guess that the service will be used to communicate with a backend API.

export class ApiService {

get(path) {
// todo: call the backend API

}
}

Using TypeScript, it’s easy to declare a dependency for our component or service, we just have to
use the type system.

Let’s say we want to write a RaceService that would use the ApiService:

80

import { ApiService } from './api.service';
export class RaceService {

constructor(private apiService: ApiService) {

}

Angular will fetch the ApiService service for us and inject it into our constructor. When RaceService
is needed, the constructor will be called, and we will have an apiService field referencing the
ApiService service.

Now, we can add a method 1list() to our service, which will call our backend using the ApiService
service:

import { ApiService } from './api.service';
export class RaceService {

constructor(private apiService: ApiService) {

}

list() {
return this.apiService.get('/races');

}

To inform Angular that this service has some dependencies itself, we need to add a class decorator:
@Injectable():

import { Injectable } from '@angular/core’;
import { ApiService } from './api.service';

@Injectable()
export class RaceService {

constructor(private apiService: ApiService) {

}

list() {
return this.apiService.get('/races');

}

81

As we are using the ApiService, we need to "register" it, so as to make it available for injection.

An easy way to do this is to use the providers attribute of the @gNgModule decorator we saw earlier:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser’;
import { PonyRacerAppComponent } from './app.component’;
import { ApiService } from './services/api.service';

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent],
providers: [
ApiService
1],
bootstrap: [PonyRacerAppComponent]

}
export class AppModule {

}

Now, if we want to make our RaceService available for injection in other services or components,
we have to register it too:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser’;
import { PonyRacerAppComponent } from './app.component’;
import { RaceService } from './services/race.service';
import { ApiService } from './services/api.service';

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent],
providers: [
RaceService,
ApiService
1,
bootstrap: [PonyRacerAppComponent]

})
export class AppModule {

}

And we’re done!

We can use our new service wherever we want. Let’s test it in the PonyRacerAppComponent
component:

82

import { Component } from '@angular/core’;
import { RaceService } from './services/race.service';

@Component ({
selector: 'ponyracer-app',
template: ‘<h1>PonyRacer</h1>
<p>{{ list() }}</p>"
b

export class PonyRacerAppComponent {

// add a constructor with RaceService
constructor(private raceService: RaceService) {

}

list() {
return this.raceService.list();

}

As our lazy colleague returned an empty array in the get method of ApiService, you should get
nothing if you try to call the 1ist() method.

Maybe we can do something about it...

9.3. Easy to configure

I'll come back to the testability advantages brought by dependency injection in a following chapter,
but we can have a look at the configuration problem. Here we are calling a backend that does not
exist. Maybe the backend team is not ready yet, or you want to do it later. In any case, we would
like to use some fake data.

DI provides a nice way to do this. Let’s go back to the registration part:

83

import { NgModule } from '@angular/core’;

import { BrowserModule } from '@angular/platform-browser’;
import { PonyRacerAppComponent } from './app.component’;
import { RaceService } from './services/race.service';
import { ApiService } from './services/api.service';

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent],
providers: [
RaceService,
ApiService
1,
bootstrap: [PonyRacerAppComponent]

b
export class AppModule {

}

We can represent the relations between component and services like this, where the arrows mean
depends on:

PonyRacerAppComponent

v

RaceService

'

ApiService

In fact, what we wrote was the short form of:

84

import { NgModule } from '@angular/core’;

import { BrowserModule } from '@angular/platform-browser’;
import { PonyRacerAppComponent } from './app.component’;
import { RaceService } from './services/race.service';
import { ApiService } from './services/api.service';

@NgModule({

imports: [BrowserModule],

declarations: [PonyRacerAppComponent],

bootstrap: [PonyRacerAppComponent],

providers: [
{ provide: RaceService, useClass: RaceService },
{ provide: ApiService, use(Class: ApiService }

]

b
export class AppModule {

}

We are telling the Injector that we want to create a link between a token (the type RaceService) and
the class RaceService. The Injector is a service which keeps track of the injectable components by
maintaining a registry and is actually injecting them when needed. The registry is a map that
associates keys, called tokens, with classes. The tokens are not necessarily strings, unlike in many
dependency injection frameworks. They can be anything, like Type references, for example. And
that will usually be the case.

Since, in our example, the token and the class to inject are the same, you can write the same thing
in the shorter form:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser’;
import { PonyRacerAppComponent } from './app.component';
import { RaceService } from './services/race.service';
import { ApiService } from './services/api.service';

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent],
providers: [
RaceService,
ApiService
1,
bootstrap: [PonyRacerAppComponent]

})
export class AppModule {

}

85

The token has to uniquely identify the dependency.

This injector is returned by the bootstrapModule promise, so we can play with it:

// in our module
providers: [
ApiService,
{ provide: RaceService, useClass: RaceService },
// let's add another provider to the same class
// with another token
{ provide: 'RaceServiceToken', use(Class: RaceService }

]

// let's bootstrap the module

platformBrowserDynamic().bootstrapModule (AppModule)
.then(

// and play with the returned injector

appRef => playWithInjector(appRef.injector)

)i

The interesting part is in the playWithInjector function.

function playWithInjector(inj) {
console.log(inj.get(RaceService));
// logs "RaceService {apiService: ApiService}"
console.log(inj.get('RaceServiceToken'));
// logs "RaceService {apiService: ApiService}" again

console.log(inj.get(RaceService) === inj.get(RaceService));
// logs "true", as the same instance is returned every time for a token
console.log(inj.get(RaceService) === inj.get('RaceServiceToken'));

// logs "false", as the providers are different,
// so there are two distinct instances

As you can see, we can ask the injector for a dependency with the get method and a token. As I have
declared the RaceService twice, with two different tokens, we have two providers. The injector will
create an instance of RaceService the first time it is asked to for a specific token, and then returns
the same instance for this token every time. It will do the same for each provider, so here we will
actually have two instances of RaceService in our app, one for each token.

However, you will not use the token very often, or even at all. In TypeScript, you rely on the types
to get the job done, so the token is a Type reference, usually bound to the corresponding class. If
you want to use another token, you have to use the decorator @Inject(): see the last part of this
chapter for more information about this.

This whole example was just to point out a few things:

* a provider links a token to a service.

86

* the injector returns the same instance every time it is asked the same token.

e we can have a token name different than the class name

The fact that the instance returned is created on the first call and then always the same is also a
well-known design pattern: it’s called a singleton. This is really useful, as you can share information
between components using a service, and you will be sure they share the same service instance.

Now, back to our fake RaceService problem. I can write a new class, doing the same job as
RaceService but returning hardcoded data:

class FakeRaceService {
list() {
return [{ name: 'London' }];
}
+

We can use the provider declaration to replace RaceService with our FakeRaceService:

// in our module
providers: [
// we provide a fake service
{ provide: RaceService, use(Class: FakeRaceService }

]

If you restart your app, you will see that there we have one race this time, because our app is using
the fake service instead of the first one!

Now we have a relation like this:

PonyRacerAppComponent

v

RaceService FakeRaceService

v

ApiService

That can be really useful when you test your app manually or, as we will soon see, when you are
writing automated tests.

87

9.4. Other types of provider

In our example, we might want to use FakeRaceService when we are developing our app, and use
the real RaceService when we are in production. You can change it manually of course, but you can
also use another type of provider: useFactory.

// we just have to change this constant when going to prod
const IS PROD = false;

// in our module
providers: [
// we provide a factory

{
provide: RaceService,
useFactory: () => IS_PROD ? new RaceService(null) : new FakeRaceService()

}
]

In this example, we are using useFactory instead of use(Class. A factory is a function with one job,
creating an instance. Our example tests a constant and returns the fake service or the real service.

But wait, if we switch back to the real service, as we are using new to create the RaceService, it will
not have its ApiService dependency instantiated! Right, if we want to make this example work, we
have to pass an ApiService instance to the constructor call. Good news: useFactory can be used with
another property named deps, where you can specify an array of dependencies:

// we just have to change this constant when going to prod
const IS PROD = true;

// in our module
providers: [
ApiService,
// we provide a factory
{
provide: RaceService,
// the apiService instance will be injected in the factory
// so we can pass it to RaceService
useFactory: apiService => IS_PROD ? new RaceService(apiService) : new
FakeRaceService(),
deps: [ApiService]
}
]

Hooray!

Be careful, the order of the parameters should be the same as the order in the array

NOTE
if you have several dependencies!

88

Of course, this example is just to demonstrate the use of useFactory and its dependencies. You could,
and should, write:

// in our module
providers: [
ApiService,
{ provide: RaceService, useClass: IS_PROD ? RaceService : FakeRaceService }

]

Declaring a constant for IS_PROD is really bothering: maybe we can use dependency injection too?
I’'m pushing things a bit as you can see :) You don’t necessarily need to force all things in DI, but this
is just to show you another provider type: useValue.

// in our module
providers: [
ApiService,
// we provide a factory
{ provide: 'IS_PROD', useValue: true },
{

provide: RaceService,
useFactory: (IS_PROD, apiService) => IS_PROD ? new RaceService(apiService) : new

FakeRaceService(),
deps: ['IS_PROD', ApiService]
}
]

9.5. Hierarchical injectors

One last crucial thing to understand in Angular: there are several injectors in your app. In fact,
there is one injector per component, and this injector inherits from the injector of its parent.

Let’s say we have an app looking like:

AppModule

'

PonyRacerAppComponent

'

RacesComponent

We have a module ApplModule with a root component PonyRacerAppComponent, with a child component

RacesComponent.

89

When we bootstrap the app, we create the root injector for the module. Then, every component will
create its own injector, inheriting its parent one.

root Injector| (ApiService, RaceService)

*

Injector

*

Injector

It means that when we are declaring a dependency in a component, Angular will begin its search in
the current injector. If it finds the dependency, perfect, it returns it. If not, it will do the same in the
parent injector, and again, until it finds the dependency. If it doesn’t, it will throw an exception.

From this, we can deduce two things:

* the dependencies declared in the root injector are available for every component in the app. For
example, ApiService and RaceService can be used everywhere.

» we can declare dependencies at another level than the module. How do we do this?

The @Component decorator can take another configuration option, called providers. This providers
attribute can take an array with a list of dependencies, as we did for the providers attribute of
@NgModule.

We can imagine a RacesComponent that would declare its own RaceService provider:

@Component ({
selector: 'ns-races',
providers: [{ provide: RaceService, use(Class: FakeRaceService }],
template: ‘Races list: {{ list() }}'

1))

export class RacesComponent {

constructor(private raceService: RaceService) {

}

list() {
return this.raceService.list();
}
+

In this component, the provider with the token RaceService will always give an instance of
FakeRaceService, whatever was defined in the root injector. It’s really useful if you want to have a

90

different instance of a service for a given component, or if you want to have perfectly encapsulated
components that declare everything they need.

If you declare a dependency in the module of your app and in the providers
WARNING attribute of your component, there will be two distinct instances of this

dependency created and used!

Here we have:

root Injector| (ApiService, RaceService)

*

Injector

#

Injector (RaceService —p FakeRaceService)

The injection will then be resolved as:

AppModule | ---------- ¥ | RaceService

* A

I

I

PonyRacerAppComponent S
RacesComponent | ------ p |FakeRaceService

As a rule of thumb, if only one component needs to have access to a service, it’s a good idea to only
provide this service in the component’s injector, using the providers attribute. If the dependency
can be used by the whole app, declare it in the root module.

9.6. DI without types

If you want to use a token and not rely on TypeScript types, you will have to add a decorator for
each dependency you want to inject. The decorator is @Inject() and receives the token of the
dependency you want to inject. The same RaceService can be written as follow to use an ApiService
service:

91

import { Injectable, Inject } from '@angular/core’;
import { ApiService } from './api.service';

@Injectable()
export class RaceService {

constructor(@Inject(ApiService) apiService) {
this.apiService = apiService;

}

list() {
return this.apiService.qget('/races');

}
}

To make the decorators work in this example without TypeScript, you’ll have to use babel with the
preset es2015 and the plugins angular2-annotations and syntax-decorators.

92

Chapter 10. Services

Angular contains the concept of services: classes you can inject in an other.

A few services are provided by the framework, some by the common modules, and others can be
built by you. We will see the ones provided by the common modules in dedicated chapters; right
now, let’s have a look at the core ones, and discover how we can build ours.

10.1. Title service

The core framework provides very few services, and those you will use in your apps are even
scarcer: actually there are just two for now :).

One question that pops up frequently is how can I change the title of my page? Easy! There is a
Title service you can inject and it offers a getter and a setter method:

import { Component } from '@angular/core’;
import { Title } from '@angular/platform-browser"';

@Component ({
selector: 'ponyracer-app',
template: ‘<h1>PonyRacer</h1>*
}

export class PonyRacerAppComponent {

constructor(title: Title) {
title.setTitle('PonyRacer - Bet on ponies');

}

The service will automatically create the title element in the head if needed and correctly set the
value for you!

10.2. Meta service

The other service is slightly similar: it allows to get or update the "meta" values of the page.

93

import { Component } from '@angular/core’;
import { Meta } from '@angular/platform-browser';

@Component ({
selector: 'ponyracer-app',
template: ‘<h1>PonyRacer</h1>*
})

export class PonyRacerAppComponent {

constructor(meta: Meta) {
meta.addTag({ name: 'author', content: 'Ninja Squad' });
}

10.3. Making your own service

That’s really simple. Just build a class, and you’re done!

export class RacesService {

list() {
return [{ name: 'London' }];

}

Just like in Angular]S 1.x, a service is a singleton, so the same, unique instance of the class will be
injected everywhere. It thus makes a service a great candidate to share state between several
unrelated components!

If your service has some dependencies itself, then you need to add the @Injectable() decorator on
it. Without this decorator, the framework won’t do the dependency injection.

Our RacesService probably fetches the races from a REST API instead of returning the same list
every time. To perform an HTTP request, the framework provides the Http service. Don’t worry,
we’ll soon see how it works.

Our service has a dependency on Http to fetch the races, so we need to add a constructor with the
Http service as an argument, and add the @Injectable() decorator on the class.

94

import { Injectable } from '@angular/core’;
import { HttpClient } from '@angular/common/http';

@Injectable()
export class RacesServiceWithHttp {

constructor(private http: HttpClient) {
}

list() {
return this.http.get('/api/races');

}

Then you have to add it to the providers attribute of a component, or, more realistically, to the
providers of your root module:

@NgModule({
imports: [BrowserModule],
providers: [RacesServiceWithHttp],
declarations: [PonyRacerAppComponent],
bootstrap: [PonyRacerAppComponent]

})
export class AppModule {

}

Try our exercise Race service &! It’s free and part of our Pro Pack, where
PRACTICE you’ll learn how to build a complete application step by step. This exercise lets
you build your first service!

95

https://angular-exercises.ninja-squad.com/exercises/3/race-service

Chapter 11. Pipes

11.1. Pied piper

Sometimes the raw data is not what we want to display in the view. We often want to transform
them, filter them, limit their number, etc. Angular]S 1.x had a very handy feature to do this, very
badly named 'filters'. Lessons have been learned and now these data transformers have a
meaningful name! Nah, I'm just kidding, they are called 'pipes’ :).

A pipe can be used either in HTML or in your applicative code. Let’s take an example and see how
we can use it.

11.2. json

A pipe that is not really useful in a production app, but very handy when you are debugging your
app, is JsonPipe. Basically, this pipe applies JSON.stringify() to your data. If you have some data in
your component, an array of ponies called ponies, for example, and you want to quickly see what’s
inside, you may want to try something like:

<p>{{ ponies }}</p>

Tough luck, it’s going to display [object Object]...

But JsonPipe is here to rescue us. You can use it in your HTML, in any expression:
<p>{{ ponies | json }}</p>

And it will display the JSON representation of your object:
<p>[{ "name": "Rainbow Dash" }, { "name": "Pinkie Pie" }]</p>

You can see where the name 'pipe' is coming from. To use a pipe, you have to add a pipe (])
character after your data, and then the name of the pipe you want to use. The expression is
evaluated and the result goes through the pipe. It’s possible to chain several pipes, one after
another, like:

<p>{{ ponies | slice:0:2 | json }}</p>

We’ll come back to the slice pipe, but you can see that we are chaining the slice pipe and then the
json one.

You can use it in an interpolation expression or in a property expression, but not in an event
statement.

96

<p [textContent]="ponies | json"></p>
You can also use it in your code, via dependency injection:

import { Component } from '@angular/core’;
// you need to import the pipe you want to use
import { JsonPipe } from '@angular/common’;

@Component ({

selector: 'ns-ponies’,

template: ‘<p>{{ poniesAsJson }}</p>*
1)

export class PoniesComponent {
ponies: Array<any> = [{ name: 'Rainbow Dash' }, { name: 'Pinkie Pie' }];

poniesAsJson: string;
// inject the Pipe you want
constructor(jsonPipe: JsonPipe) {

// and then call the transform method on it
this.poniesAsJson = jsonPipe.transform(this.ponies);

}
}

But beware: the pipe must be added to the providers of your @NgModule (or @Component) in order to
use it that way.

As this will be the same for every pipe, I will now just show you the HTML examples using
interpolation.

11.3. slice

If you want to display just a part of a list, slice is your friend. It works like the slice method in
JavaScript, and takes two arguments: a start index and, optionally, an end index.

To pass an argument to a pipe, you have to add a colon :, then the first argument, then possibly,
another colon and the second argument etc.

<p>{{ ponies | slice:0:2 | json }}</p>

This example will display the first two elements of my list of ponies.

slice works with arrays and strings, so you can also truncate a string:

<p>{{ 'Ninja Squad' | slice:0:5 }}</p>

97

and that will display only 'Ninja'.

You can give the slice pipe only one index n, and it will take the elements from n to the end.

<p>{{ 'Ninja Squad' | slice:3 }}</p>
<!-- will display 'ja Squad' -->

If you give it a negative integer, it will take the n last elements.

<p>{{ 'Ninja Squad' | slice:-5 }}</p>
<!-- will display 'Squad' -->

As we saw, you can also give the pipe an end index: it will take the elements until this index. If this
index is negative, it will take the elements until the index, but starting from the end.

<p>{{ 'Ninja Squad' | slice:2:-2 }}</p>
<!-- will display 'nja Squ' -->

As you can use slice in any expression, you can use it even with NgFor:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies',
template: ‘<div *ngFor="1let pony of ponies | slice:0:2">{{ pony.name }}</div>"
})
export class PoniesComponent {
ponies: Array<any> = [
{ name: 'Rainbow Dash' },
{ name: 'Pinkie Pie' },
{ name: 'Fluttershy' }
I;
¥

The component will create only two div elements here, for the first two ponies, as we have applied
the slice pipe to the collection.

The pipe argument can of course be a dynamic value:

98

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies’,
template: ‘<div *ngFor="let pony of ponies | slice:0:size">{{ pony.name }}</div>"

b
export class PoniesComponent {
size = 2;
ponies = [
{ name: 'Rainbow Dash' },
{ name: 'Pinkie Pie' },
{ name: 'Fluttershy' }
1;
}

You can use this to create a dynamic display where your user chooses how many elements she/he
wants to see.

Note that it’s also possible to store the result of the slice in a variable, using the as syntax
introduced in 4.0:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-ponies’,
template: ‘<div *ngFor="1let pony of ponies | slice:0:2 as total; index as i">
{{ i+1 }}/{{ total.length }}: {{ pony.name }}
</div>*
b
export class PoniesComponent {
ponies: Array<any> = [
{ name: 'Rainbow Dash' },
{ name: 'Pinkie Pie' },
{ name: 'Fluttershy' }
1;
}

11.4. uppercase

As its name makes it clear enough, this pipe transforms a string into its uppercase version:

<p>{{ 'Ninja Squad' | uppercase }}</p>
<!-- will display "NINJA SQUAD" -->

99

11.5. lowercase

The counterpart of the previous one, this pipe transforms a string into its lowercase version:

<p>{{ 'Ninja Squad' | lowercase }}</p>
<!-- will display 'ninja squad' -->

11.6. titlecase

Angular 4 introduced a new titlecase pipe. It capitalizes the first letter of all words:

<p>{{ 'ninja squad' | titlecase }}</p>
<!-- will display 'Ninja Squad' -->

11.7. number

The following pipes (number, percent, currency, date) can help for
internationalization. They have been completely overhauled in Angular 5.0,
and don’t use the Intl API of the browsers anymore (it caused numerous bugs).
The Angular team has now implemented the internationalization logic
themselves. The following examples use the new implementation of the pipes,
which comes with Angular 5, without diving into the internationalization
details, as they are covered in a chapter at the end of the book. The examples
also use the default locale of Angular, en-US.

WARNING

This pipe allows to format a number.

It takes one parameter, a string, formatted as {integerDigits}.{minFractionDigits}-
{maxFractionDigits}, but every part is optional. Each part indicates:

* how many numbers you want in the integer part
* how many numbers you want at least in the decimal part

* how many numbers you want at most in the decimal part

A few examples, starting with what we have with no pipe:

<p>{{ 12345 }}</p>
<!I-- will display '12345' -->
<p>{{ 12345 }}</p>
<!-- will display '12345' -->

Using the number pipe will group the integer part, even with no digits required:

100

<p>{{ 12345 | number }}</p>
<!-- will display '12,345" -->

The integerDigits parameter will left-pad the integer part with zeros if needed:

<p>{{ 12345 | number:'6."' }}</p>
<!-- will display '012,345" -->

The minFractionDigits is the minimum size of the decimal part, so it will pad zeros on the right until
reached:

<p>{{ 12345 | number:'.2' }}</p>
<!-- will display '12,345.00"' -->

The maxFractionDigits is the maximum size of the decimal part. You have to specify a
minFractionDigits, even at 0, if you want to use it. If the number has more decimals than that, then
it is rounded:

<p>{{ 12345.13 | number:'.1-1" }}</p>
<!-- will display '12,345.1" -->

<p>{{ 12345.16 | number:'.1-1" }}</p>
<!-- will display '12,345.2" -->

11.8. percent

Based on the same principle as number, percent allows to display... a percentage!

<p>{{ 0.8 | percent }}</p>
<!-- will display '80%"' -->

<p>{{ 0.8 | percent:'.3" }}</p>
<!-- will display '80.000%' -->

11.9. currency

As you can imagine, this pipe allows to format an amount of money in the currency you want. You
have to give it at least one parameter:
* the ISO string representing the currency (‘EUR', 'USD'...)

* optionally, an option to say if you want to use the symbol ('€, '$', CA$') with 'symbol" or the ISO
code with 'code', or even the narrow symbol with 'symbol-narrow'. The narrow symbol is for
example §, when the symbol is CA$ for canadian dollars. The default value of this option is

101

"symbol".

* optionally also, a string to format the amount, using the same syntax as number.
<p>{{ 10.6 | currency:'CAD" }}</p>

<I-- will display 'CA$10.60"' -->

<p>{{ 10.6 | currency:'CAD": "symbol-narrow' }}</p>
<I-- will display '$10.60"' -->

<p>{{ 10.6 | currency:'EUR":'code"':"'.3" }}</p>
<1-- will display 'EUR10.600' -->

11.10. date

The date pipe formats a date value to a string of the desired format. The date can be a Date object or
a number of milliseconds. The format specified can be either a pattern like 'dd/MM/yyyy', ' MM-yy'
or one of the predefined symbolic names available like 'short’, longDate’, etc.:

<p>{{ birthday | date:'dd/MM/yyyy' }}</p>
<!-- will display '16/07/1986' -->

<p>{{ birthday | date:'longDate' }}</p>
<!-- will display 'July 16, 1986"' -->

Of course, you can also display the time portion of the date:
<p>{{ birthday | date:'HH:mm' }}</p>
<!-- will display '15:30' -->
<p>{{ birthday | date:'shortTime' }}</p>

<!-- will display '3:30 PM' -->

To learn more about internationalization in general, and, in particular, about the
NOTE way you can set the language used to format numbers and dates, you can refer to
the Internationalization chapter .

11.11. async

The async pipe allows data obtained asynchronously to be displayed. Under the hood, it uses
PromisePipe or ObservablePipe depending if your async data comes from a Promise or an
Observable. I hope you now know what a Promise is (otherwise go back to the ES6 chapter), and
we’ll come back to Observable quickly.

The async pipe returns an empty string until the data is finally available (i.e. until the promise is
resolved, in case of a promise). Once resolved, the resolved value is returned. More importantly, it

102

triggers a change detection check once the data is available.

The following example uses a Promise:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-greeting',
template: ‘<div>{{ asyncGreeting | async }}</div>"

1))

export class GreetingComponent {
asyncGreeting = new Promise(resolve => {
// after 1 second, the promise will resolve
window.setTimeout(() => resolve('hello'), 1000);
};
}

You can see the async pipe is applied to the variable asyncGreeting. This one is a promise, resolved
after 1 second. Once the promise is resolved, our browser will display:

<div>hello</div>

Even more interesting, if the source is an Observable, then the pipe will do the unsubscribe part
itself when the component is destroyed (for example when the user navigates to another
component).

And to avoid multiple subscriptions to your Observable or calling your promise multiple times, you
can store the result of the call with as (since 4.0):

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-user',
template: ‘<div *ngIf="asyncUser | async as user">{{ user.name }}</div>"
b
export class UserComponent {
asyncUser = new Promise(resolve => {
// after 1 second, the promise will resolve
window.setTimeout(() => resolve({ name: 'Cédric' }), 1000);
});
}

11.12. Creating your own pipes

Of course, you can also create your own pipes. That’s sometimes very useful. In Angular]S 1.x, we
often used custom filters. For example, we built one to display how much time elapsed since an

103

action the user did (like 12 seconds ago or 3 days ago) in several of our apps. Let’s see how we
would do this in Angular!

First we need to create a new class. It should implement the PipeTransform interface, which forces
us to have a transform() method, the one doing the heavy lifting.

Does not sound too hard, let’s give it a try!

import { PipeTransform, Pipe } from '@angular/core';

export class FromNowPipe implements PipeTransform {
transform(value, args) {
// do something here

}
}

We are going to use Moment.js fromNow function to display how much time has elapsed since the
date.

You can install Moment.js using NPM if you want:

npm install moment

The types for Moment are already included in the NPM dependency, so the TypeScript compiler
should be happy without us doing anything.

import { PipeTransform, Pipe } from '@angular/core’;
import * as moment from 'moment’;

export class FromNowPipe implements PipeTransform {
transform(value, args) {
return moment(value).fromNow();
}
}

Now, we need to register the pipe in our app. For this, there is a special decorator we can use: @Pipe.

import { PipeTransform, Pipe } from '@angular/core';
import * as moment from 'moment’;

@Pipe({ name: 'fromNow' })
export class FromNowPipe implements PipeTransform {
transform(value, args) {
return moment(value).fromNow();
}
}

104

http://momentjs.com/docs/#/displaying/fromnow/

The chosen name will be the one allowing to use the pipe in the template.

To use the pipe in a template, the last thing you need to do is to add the pipe to the declarations of
your @NgModule.

@NgModule({
imports: [BrowserModule],
declarations: [PonyRacerAppComponent, RacesComponent, FromNowPipe],
bootstrap: [PonyRacerAppComponent]

})
export class AppModule {
¥
Try our exercise Pipes &! It’s free and part of our Pro Pack, where youw’ll learn
PRACTICE how to build a complete application step by step. This exercise lets you use

your first pipe. Later, exercise Custom pipe with Moment.js ¢ will make you
build an awesome custom pipe!

105

https://angular-exercises.ninja-squad.com/exercises/4/pipes
https://angular-exercises.ninja-squad.com/exercises/9/custom-pipe

Chapter 12. Reactive Programming

12.1. Call me maybe

You may have heard of reactive or functional reactive programming lately. It has become quite
popular in several languages platforms, like in .Net with the Reactive Extensions library, which is
now available in pretty much every language (RxJava, RXJS, etc.).

Reactive programming is not really new. It is a way to build an app using events and reacting to
them (hence the name). The events can be composed, filtered, grouped, etc. using functions like map,
filter, etc. That’s why you sometimes find the terms "functional reactive programming". But, to be
accurate, reactive programming is not really functional programming, as it does not necessarily
include the concepts of immutability, the lack of side-effects etc. Reacting on events is something
you may have done:

* in the browser, when setting listeners to user events;

» on the backend side, reacting to events coming from a message bus.

In reactive programming, all data coming in will be in a stream. These streams can be listened to,
modified of course (filtered, merged...), and can even become a new stream that can be listened to.
This technique allows for fairly decoupled programs: you don’t have to worry much about the
consequences of your method call, you just raise an event, and every part of your app interested in
this business will react accordingly. And maybe one of these parts will raise an event also, etc.

Now, why am I telling you about that? What does it have to do with Angular?

Well, Angular is built using reactive programming, and we will use this technique for some parts as
well. Reacting on a HTTP request? Reactive programming. Spawning a custom event for our
component? Reactive programming. Dealing with value changes in our forms? Reactive
programming.

So let’s focus on this topic for a few minutes. Nothing hard to handle, but it’s better to have a clear
mind on this.

12.2. General principles

In reactive programming, everything is a stream. A stream is an ordered sequence of events. These
events represent values (look, another value!), errors (that went bad) or completion events (ok, I'm
done). All these are pushed from the data producer to the consumer. As a developer, your job will
be to subscribe to these streams, i.e. defining a listener capable of handling the three possibilities.
Such a listener is called an observer, and the stream, an observable. These terms were coined a long
time ago, as it is a well-known design pattern: the observer pattern.

They are different from promises, even if they look a bit similar, as they both handle asynchronous
values. But an observer is not a one-time thing like a promise: it will continue to listen until it
receives a 'completion' event.

For now, observables aren’t part of the official ECMAScript specification, but they might be part of a

106

future version, as there is an effort done to standardize it.

Observables are very close to arrays. An array is a collection of values, like an observable. An
observable only adds the concept of values over time: in an array, you have all the values at once,
while the values will come over time in an observable, maybe every few minutes.

The most popular reactive programming library in the JavaScript ecosystem is Rx]JS. And that’s the
one that Angular relies on and lets us use.

So let’s have a look.

12.3. RxJS

Every observable, just like every array, can be transformed using functions you may have already
encountered:

 take(n) will pick the first n events (e.g. the first five).

* map(fn) will apply fn to each event and return the result.

» filter(predicate) will only let through the events that fulfill the predicate.

* reduce(fn) will apply fn to every event to reduce the stream to a single value.

» merge(s1, s2) will merge the streams.

* subscribe(fn) will apply fn to each event it receives.

* and much more...

So, if you take an array of numbers and want to multiply each by 2, filter those under 5, and print
them, you can do:

[1, 2, 3, 4, 5]
.map(x => x * 2)
filter(x => x > 5)
.forEach(x => console.log(x)); // 6, 8, 10

Rx]JS let us build an observable from an array. And, as you can see, we can do the exact same thing:

Observable.from([1, 2, 3, 4, 5])
.map(x => x * 2)
filter(x => x > 5)
.subscribe(x => console.log(x)); // 6, 8, 10

But an observable is more than a collection. It is an asynchronous collection, where the events
arrive over time. A good example is browser events. They will happen over time, so they are a good
candidate to use an observable. Here is an example using jQuery:

107

https://github.com/Reactive-Extensions/RxJS

const input = $('input');

Observable.fromEvent(input, 'keyup')
.subscribe(() => console.log('keyup!'));

input.trigger('keyup'); // logs "keyup!"
input.trigger('keyup'); // logs "keyup!"

You can build observables from AJAX requests, browser events, Web sockets responses, a promise,
whatever you can think of. And from a function of course:

const observable = Observable.create((observer) => observer.next('hello'));

observable.subscribe((value) => console.log(value));
// logs "hello"

Observable.create takes a function that will emit events on the observer given as parameter. Here it
simply emits one event for the demonstration.

You can also handle errors, because your observable may go wrong. The subscribe method can take
another callback, one designed to handle errors.

Here the map method throws an exception, so the second handler of the subscribe method will log it.

Observable.range(1, 5)
.map(x => {
if (x%2===1){
throw new Error('something went wrong');
} else {
return x;
}
b
filter(x => x > 5)
.subscribe(x => console.log(x), error => console.log(error)); // something went
wrong

Once the observable is done, it will emit a completion event that you can catch with a third handler.
Here, the range method we are using to create the events will iterate from 1 to 5 and then emit the
'‘completed’ signal:

Observable.range(1, 5)

.map(x => x * 2)

filter(x => x > 5)

.subscribe(x => console.log(x), error => console.log(error), () => console.log
('done'));
// 6, 8, 10, done

108

And you can do many, many things with an observable:

 transformation (delaying, debouncing...)
* combination (merge, zip, combineLatest...)
« filtering (distinct, filter, last...)
* maths (min, max, average, reduce...)
e conditions (amb, includes...)
We would need a whole book to go through it all! If you want to go further, have a look at the Rx

Book. It contains the best introduction I’ve found on the subject. And if you want to have a good
visual representation of what each function does, go to rxmarbles.com.

Now let’s have a look at how we will use observables in Angular.

12.4. Reactive programming in Angular

Angular uses RxJS, and it allows us to use it too. The framework provides an adapter around the
Observable object: EventEmitter. The EventEmitter has a method subscribe() to react to events and
this method can receive three parameters:

* amethod to react on events.

e a method to react on errors.

* a method to react on completion

The EventEmitter can emit an event by calling the emit() method.

const emitter = new EventEmitter();

emitter.subscribe(

value => console.log(value),
error => console.log(error),
() => console.log('done")

);
emitter.emit('hello");
emitter.emit('there');

emitter.complete();

// 1logs "hello", then "there", then "done"

Note that the subscribe method returns a subscription object, with a method unsubscribe to...
unsubscribe.

109

https://xgrommx.github.io/rx-book/index.html
https://xgrommx.github.io/rx-book/index.html
http://rxmarbles.com/

const emitter = new EventEmitter();

const subscription = emitter.subscribe(
value => console.log(value),

error => console.log(error),

() => console.log('done")

)i
emitter.emit('hello");
subscription.unsubscribe(); // unsubscribe

emitter.emit('there');

// logs "hello" only

Now that we know a little bit more about reactive programming, and the EventEmitter, let’s see how
Angular uses it.

Try our exercise Observables &! It’s free and part of our Pro Pack, where

PRACTICE yowll learn how to build a complete application step by step. In this exercise,
you will transform the RaceService to make it reactive!

110

https://angular-exercises.ninja-squad.com/exercises/5/observables

Chapter 13. Building components and
directives

13.1. Introduction

So far, we have seen some small components. And of course, you can feel that, as they are the
backbone of our apps, they can be more complex than what we have seen. How do we pass data?
How do we manage the lifecycle of our component? What are the good practices to build these
things?

Directives: What do they do? Do they do things? Let’s find out!

13.2. Directives

A directive is very much like a component, except it does not have a template. In fact, the Component
class inherits from the Directive class in the framework.

So it makes sense to start by studying directives, as everything we will see regarding directives also
applies to components. We will look into the configuration options you are most likely to use. The
more advanced ones are in a later chapter, ready for you when you master the basics.

As for a component, your directive will be annotated with a decorator, but instead of @Component, it
will be @Directive.

Directives are very small pieces. You can think of them as decorators for your HTML: they will
attach a behavior to elements in the DOM. You can have multiple directives on the same element.

A directive must have a CSS selector, which indicates to the framework where to activate it in our
template.

13.2.1. Selectors
Selectors can be of various types:

* an element, as it’s usually the case for components: footer.
* aclass, not so frequent: .alert.

* an attribute, the most frequent for directives: [color].

* an attribute with a specific value: [color=red].

* a combination of the above: footer[color=red] matches an element named footer having an
attribute color whose value is red. [color],footer.alert matches any element having an
attribute color or (,) any element named footer with the CSS class alert. footer:not(.alert)
matches any element named footer that does not (:not()) have the CSS class alert.

For example, this is a very simple directive that does nothing but gets activated if the attribute
doNothing is on an element:

111

@Directive({
selector: '[doNothing]'

)

export class DoNothingDirective {

constructor() {
console.log('Do nothing directive');
}
}

Such a directive will be activated in a component like this TestComponent:

@Component ({
selector: 'ns-test',
template: '<div doNothing>Click me</div>'

1))

export class TestComponent {

}

A more complex selector could be:

@Directive({
selector: 'div.loggable[logText]:not([notLoggable=true])'

})
export class ComplexSelectorDirective {
constructor() {

console.log('Complex selector directive');

}
}

Here it will match all div elements with a loggable class and a logText attribute that don’t have an
attribute notlLoggable with a true value.

So this template will trigger the directive:

<div class="loggable" logText="text">Hello</div>

But this one will not:

<div class="loggable" logText="text" notLoggable="true">Hello</div>

Let’s be honest, though: if you are writing something like this, there is something wrong! :)

112

CSS selector like descendants, siblings, ids, wildcards and pseudos (other than :not)

NOTE
are not supported.

NOTE Don’t start your attribute selectors with bind-, on-, let- or ref-: they have other
meanings for the parser, as they are part of the canonical templating syntax.

Great, we know how to declare a directive. Let’s make one that actually does something.

13.2.2. Inputs

Data binding is usually a big part of the job of creating a component or a directive. Every time you
want a top component to pass data to one of its children, you will use a property binding.

To do this, we will define all the properties that accept data binding, using the inputs attribute of
the @Directive decorator. This attribute accepts an array of strings, each one of the form property:
binding. property represents the directive instance property and binding is the DOM property that
will contain the expression.

For example, this directive is binding the DOM property logText to the directive instance property
text:

@Directive({
selector: '[loggable]’,
inputs: ['text: logText']
3]

export class SimpleTextDirective {

}

If the property does not exist in your directive, it is created for you. Then, every time the input
changes, the property is updated automatically.

<div loggable logText="Some text">Hello</div>

If you want to be notified when the property changes, you can add a setter to your directive. The
setter will be called every time the logText property changes.

@Directive({
selector: '[loggable]’,
inputs: ['text: logText']
})
export class SimpleTextWithSetterDirective {

set text(value) {
console.log(value);
}
}

113

So if we use it:

<div loggable logText="Some text">Hello</div>
// our directive will log "Some text"

There is also another way we’ll see in a few minutes.

Here the text is static, but of course it could easily be a dynamic value, with an interpolation:

<div loggable logText="{{ expression }}">Hello</div>
// our directive will log the value of 'expression' in the component

or the square bracket syntax:

<div loggable [logText]="expression">Hello</div>
// our directive will log the value of 'expression' in the component

That’s one of the greatest features of the new template syntax: as a component developer, you don’t
care how your component is used, you just define which properties are bound (if you wrote some
Angular]S 1.x, you know it was slightly different with all the '@’ and '=' syntax).

You can also use pipes in your bindings:

<div loggable [logText]="expression | uppercase">Hello</div>
// our directive will log the value of 'expression' in the component in uppercase

If you want to bind a DOM property to an attribute of your directive that has the same name, you
can simply write property instead of property: binding:

@Directive({
selector: '[loggable]’,
inputs: ['logText']

1))

export class SameNameInputDirective {

set logText(value) {
console.log(value);
}
}

<div loggable logText="Hello">Hello</div>
// our directive will log "Hello"

There is another way to declare an input in your directive: with the @Input decorator. I like it very

114

much, and the official guide style also recommends to use it, so a lot of examples will use it from
Nnow on.

The examples above can be rewritten as:

@Directive({
selector: '[loggable]’

1))

export class InputDecoratorDirective {

@Input('logText') text: string;
}

or, if the property and the binding have the same name:

@Directive({
selector: '[loggable]’
3]

export class SameNameInputDecoratorDirective {

@Input() logText: string;
+

This will work but having a field and a setter with the same name will make the TypeScript

compiler unhappy. One way to fix it if you need a setter (you don’t always need it) is to add the
@Input decorator directly on the setter.

@Directive({
selector: '[loggable]’

1))

export class InputDecoratorOnSetterDirective {

@Input('logText")
set text(value) {
console.log(value);
by
}

or, if the setter and the binding have the same name:

115

@Directive({
selector: '[loggable]’
1)

export class SameNameInputDecoratorOnSetterDirective {

@Input()
set logText(value) {
console.log(value);
}
}

Inputs are great to pass data from a top element to a bottom element. For example, if you want to
have a component displaying a list of ponies, it is very likely that you will have a top component
containing the list, and another component to display a pony:

@Component ({
selector: 'ns-pony',
template: ‘<div>{{ pony.name }}</div>"
b
export class PonyComponent {
@Input() pony: Pony;
}

@Component ({
selector: 'ns-ponies’,
template: ‘<div>
<h2>Ponies</h2>
// the pony is handed to PonyComponent via [pony]="currentPony"
<ns-pony *ngFor="1let currentPony of ponies" [pony]="currentPony"></ns-pony>
</div>"
})
export class PoniesComponent {
ponies: Array<Pony> = [
{ id: 1, name: 'Rainbow Dash' },
{ id: 2, name: 'Pinkie Pie' }
I;
}

Ok, now what about passing data up? We can’t use property to pass data from PonyComponent to
PoniesComponent. But we can use events!

13.2.3. Outputs

Let’s go back to our latest example, and say we want to be able to select a pony by clicking on it, and
inform the parent component. For this, we will use a custom event.

This is important. In Angular, data flows into a component via properties, and flows out of a
component via events.

116

PonyRacer

¢ [ponies]

Ponies

i [pony]

Pony

PonyRacer

i

Ponies

T (selected)

Pony

You remember the previous chapter on reactive programming? Cool, that’s going to be useful!
Custom events are emitted using an EventEmitter, and must be declared in the decorator, using the
outputs attribute. Like the inputs attribute, it accepts an array with the list of events you want your
directive/component to emit. And, like the inputs, it’s better to use the @0utput() decorator.

Let’s say we want to emit an event called ponySelected. We have three things to do:

* declare the output in the decorator
 create an EventEmitter

* emit an event when the pony is selected

117

@Component ({
selector: 'ns-pony',
// the method ‘selectPony()"' will be called on click
template: ‘<div (click)="selectPony()">{{ pony.name }}</div>"
3]

export class SelectablePonyComponent {
@Input() pony: Pony;

// we declare the custom event as an output,
// the EventEmitter is used to emit the event
@0utput() ponySelected = new EventEmitter<Pony>();

/**

* Selects a pony when the component is clicked.
* Emits a custom event.
*/
selectPony() {
this.ponySelected.emit(this.pony);
}
}

To use it in the template:

<ns-pony [pony]="pony" (ponySelected)="betOnPony($event)"></ns-pony>

In the above example, every time the user clicks on the pony name, it emits an event ponySelected,
with the pony as a value (the parameter of the emit() method). The parent component is listening to
this event, as you can see in the template, and will call its betOnPony method with the value of the
event $event. $event is the syntax you have to use to access the event emitted: here, it will be the
emitted pony.

The parent component must then have a method betOnPony (), which will be called with the selected

pony:

betOnPony(pony) {
// do something with the pony

}

If you wish, you can specify an event name different than the event emitter name, with the syntax
emitter: event:

118

@Component ({

selector: 'ns-pony',

template: ‘<div (click)="selectPony()">{{ pony.name }}</div>"
3]

export class OtherSelectablePonyComponent {

@Input() pony: Pony;

// the emitter is called ‘emitter’

// and the event ‘ponySelected"

@Output('ponySelected') emitter = new EventEmitter<Pony>();

selectPony() {
this.emitter.emit(this.pony);
}
}

13.2.4. Lifecycle
You may want your directive to react on a specific moment of its life.
This is quite advanced stuff, and you won’t need it every day, so I'll go fast.

One thing is really important to understand though, and you’ll save quite some time if you do: the
inputs of a component are not evaluated yet in its constructor.

That means that the following component will not work:

@Directive({
selector: '[undefinedInputs]’

1))

export class UndefinedInputsDirective {
@Input() pony: string;
constructor() {
console.log(inputs are ${this.pony}‘);

// will log "inputs are undefined", always

}

If you want to access the value of an input, to load additional data from the server for example, you
have to use a lifecycle phase.

Several phases are available, and have their own specificity:

* ngOnChanges will be the first to be called when the value of a bound property changes. It will
receive a changes map, containing the current and previous values of the binding, wrapped in a

119

SimpleChange. It will not be called if there is no change.

* ngOnInit will be called only once after the first change (whereas ngOnChanges is called on every
change). It makes this phase perfect for initialization work, as the name suggests.

* ngOnDestroy is called when the component is removed. Really useful to do some cleanup.
Other phases are available, but are for more advanced use cases:

* ngDoCheck is slightly different. If present it will be called at each change detection cycle,
overriding the default change detection algorithm, which looks for difference between every
bound property value. That means that if at least one input has changed, by default the
component is considered changed by the framework, and its children will be checked and
rendered. But you can override it if you know that some inputs have no effect even if they have
changed. That can be useful if you want to accelerate the change detection by just checking the
bare minimum and not using the default algorithm, but usually you will not use this.

» ngAfterContentInit is called when all the bindings of the component have been checked for the
first time.

* ngAfterContentChecked is called when all the bindings of the component have been checked,
even if they haven’t changed.

* ngAfterViewInit is called when all the bindings of the children directives have been checked for
the first time.

* ngAfterViewChecked is called when all the bindings of the children directives have been checked,
even if they haven’t changed. It can be useful if your component is waiting for something
coming from its child components. Like ngAfterViewInit, it only makes sense if we are in a
component (a directive has no view).

Our previous sample will work better using ngOnInit. Angular invokes the method ngOnInit() if it’s
present, so you just have to implement it in your directive. If you are using TypeScript for your app,
you can leverage the available interface OnInit that forces you to implement the method:

@Directive({
selector: '[initDirective]’

1))

export class OnInitDirective implements OnInit {
@Input() pony: string;
ngOnInit() {
console.log(inputs are ${this.pony}");

// inputs are not undefined \o/

}

Now we have access to our inputs!

If you want to do something every time a property changes, use ngOnChanges:

120

@Directive({
selector: '[changeDirective]’

)

export class OnChangesDirective implements OnChanges {
@Input() pony: string;

ngOnChanges(changes: SimpleChanges) {
const ponyValue = changes['pony'];
console.log(‘changed from ${ponyValue.previousValue} to ${ponyValue.currentValue}
“);
console.log(‘is it the first change? ${ponyValue.isFirstChange()}");
}

The changes parameter is a map, with the binding names as keys, and a SimpleChange object with
two attributes (the previous and the current value) as value, as well as a method isFirstChange() to
know if it is... the first change!

You can also use a setter if you want to react only on the change of one of your bindings. The
following example will produce the same output as the previous one.

@Directive({
selector: '[setterDirective]'

1))

export class SetterDirective {
private ponyModel: string;

@Input()

set pony(newPony) {
console.log(‘changed from ${this.ponyModel} to ${newPony}‘);
this.ponyModel = newPony;

}

ngOnChanges is more useful if you need to watch several bindings at the same time. It will only be
invoked if at least one binding has changed and will contain only the properties that have changed.

The ngOnDestroy phase is perfect to clean the component - for example, to cancel background tasks.
Here, the OnDestroyDirective is logging "hello" every second when it is created. When the
component is removed from the page, you want to stop the setInterval to avoid a memory leak:

121

@Directive({
selector: '[destroyDirective]’

)

export class OnDestroyDirective implements OnDestroy {
sayHello: number;

constructor() {
this.sayHello = window.setInterval(() => console.log('hello"), 1000);

}

ngOnDestroy() {
window.clearInterval(this.sayHello);

}

If you don’t do this, you will have the thread logging "hello" until the end or the crash...

13.2.5. Providers

We already talked about providers in the Dependency Injection chapter . This attribute allows to
declare services that will be injectable in the current directive and its children.

@Directive({
selector: '[providersDirective]’,
providers: [PoniesService]

1))

export class ProvidersDirective {

constructor(poniesService: PoniesService) {
const ponies = poniesService.list();
console.log(‘ponies are: ${ponies}‘);

}
}

13.3. Components

A component is not really different from a directive: it just has two more optional attributes and
must have an associated view. It does not bring a lot of new attributes compared to the directive.

13.3.1. View providers

We saw that you can specify injectables using providers. viewProviders is slightly similar but the
providers will only be available for the current component, not for its children.

122

13.3.2. Template / Template URL

The main feature of a @Component is to have a template, whereas a directive does not have one. You
can either declare your template inline, using template or use a URL to put it in a separate file with
templateURL (but you can’t do both at the same time).

As a rule of thumb, if your template is small (1-2 lines), it’s perfectly fine to keep it inline. When it
starts to grow, move it to its own file to avoid cluttering your component.

You can use an absolute path for your URL, a relative one or even a complete HTTP URL.

When the component is loaded, Angular resolves the URL and tries fetching the template. If it
succeeds, the template is the Shadow Root of the component, and its expressions are evaluated.

If I have a big component, I usually put the template in a separate file of the same folder, and use a
relative URL to load it.

@Component ({
selector: 'ns-templated-pony',
templateUrl: 'components/pony/templated-pony.html’

1))

export class TemplatedPonyComponent {
@Input() pony: any;
}

If you use a relative URL, the URL will be resolved using the base URL of your app. The URL can be
cumbersome, because if your component is in a directory components/pony, your template URL will
be components/pony/pony.html.

But you can do slightly better if you package your application using Common]JS modules, by using
the property moduleld. Its value must be module.id, a value that Common]JS will set at runtime.
Angular can then use this value and build the correct relative URL. Your template URL can now
look like:

@Component ({
selector: 'ns-templated-pony',
templateUrl: 'templated-pony.html',
moduleId: module.id

})
export class ModuleIdPonyComponent {

@Input() pony: any;
}

And you can locate your template in the same directory as your component!

Even better: if you are using Webpack, with a bit of configuration (already done for you if you are
using Angular CLI), you can even remove the module.id and use a relative path directly. Webpack
will be able to figure out the complete URL for you!

123

13.3.3. Styles / Styles URL

You can also specify the styles of your component. It is particularly useful if you plan to have really
isolated components. You can specify this using styles or styleUrls.

As you can see below, the styles attribute takes an array of CSS rules as a string. You can imagine it
grows pretty quickly, so using a separate file and styleUrls is a good idea. As the name of the latter
suggests, you can specify an array of URLs.

@Component ({
selector: 'ns-styled-pony',
template: '<div class="pony">{{ pony.name }}</div>",
styles: ['.pony{ color: red; }']
b
export class StyledPonyComponent {
@Input() pony: any;
}

13.3.4. Declarations

Remember that you have to declare every directive and component you are using in the
declarations of your @NgModule. If you don’t, your component will not be picked up in the template,
and you will waste a lot of time figuring out why.

The two most common mistakes are forgetting to declare the directive and using the wrong
selector. If you don’t understand why nothing happens, look out for these!

We have left a few things out for now, like the queries, change detection, exports, encapsulation
options, etc. As they are more advanced options, you won’t need them immediately; but don’t
worry, we’ll see them soon in an advanced chapter!

Try our exercises Race detail ¢ and Pony component ¢! These exercises will

PRACTICE
guide you to build two more advanced components, with inputs and outputs.

124

https://angular-exercises.ninja-squad.com/exercises/6/race-detail
https://angular-exercises.ninja-squad.com/exercises/7/pony-component

Chapter 14. Styling components and
encapsulation

Let’s stop to talk about styles and CSS for a minute. I know right? Why talking about freaking CSS?
Well because Angular is doing a lot of things for us behind the scenes.

As a Web developer, you often add CSS classes to elements. And the essence of CSS is that it will
cascade. That’s sometimes what you want (to change the font everywhere in your app for example),
or sometimes not. Imagine you want to add a style on a selected element in a list: you will usually
use a very narrow CSS selector in your CSS, like 1i.selected. Or an even narrower one, using
conventions like BEM, because you just want to style the selected element in a specific part of your

app.

That’s where Angular can be useful. The styles you define in a component (either with the styles
attribute, or in a dedicated CSS file for the component with styleUrls), are scoped by Angular to this
component and only this one. That’s called style encapsulation. How does it achieve this?

It starts with you writing some style. Then it depends on the strategy you select for the attribute
encapsulation of the component decorator. This attribute can have three different values:

e ViewEncapsulation.Emulated, which is the default one
e ViewEncapsulation.Native, which relies on Shadow DOM

* ViewEncapsulation.None, which means you don’t want encapsulation

Each value will induce a different behavior of course, so let’s have a look. We’ll take a component
you’re starting to know well, i.e. our PonyComponent. This is a really simple version of the component,
only displaying the pony’s name in a div. For the purpose of the example, we add a CSS class red to
this div:

import { Component, ViewEncapsulation } from '@angular/core';

@Component ({
selector: 'ns-pony',
template: ‘<div class="red">{{ name }}</div>",
styles: [‘.red {color: red;}'],
// that's the same as the default mode
encapsulation: ViewEncapsulation.Emulated

1))

export class PonyComponent {

name = 'Rainbow Dash';

This class is then used in the styles of the component:

125

http://getbem.com/introduction/

.red {
color: red;

}

As you can see, we want to display the pony’s name in a red font.

14.1. Native strategy

If you use the Native option, you're telling Angular to use the Shadow DOM of your browser to take
care of the encapsulation. The Shadow DOM is a part of the rather new Web Component
specification. This specification allows to create elements in a special DOM, which is perfectly
encapsulated. With this strategy, if we look at the generated DOM with our browser’s inspector,
we’ll see:

<ns-pony>
#ishadow-root (open)
<style>.red {color: red}</style>
<div class="red">Rainbow Dash</div>
</ns-pony>

You can spot the #shadow-root (open) that Chrome will display in the inspector: that’s because our
component has been included in a Shadow DOM element! And we can also see that the style was
added at the top of our component’s content.

With the Native strategy, you are sure that your component’s styles are not "bleeding" into your
child components. If we have another component inside the PonyComponent, it can also define its
own red CSS class with a different style: you are sure that the correct one will be used, with no
interaction between each others!

But remember, Shadow DOM is a rather new specification, so it’s not available in every browser.
You can check the availability on the awesome website caniuse.com. So be careful when you use it
in your apps!

14.2. Emulated strategy

As said earlier, this is the default strategy. And the reason is really simple: it emulates (hence the
name) the Native strategy, but without using the Shadow DOM. So it’s safe to use everywhere, and
will have the same behavior.

To achieve that, Angular will take the CSS defined for the component, and inline it inside the <head>
element of the page (and not in each component as we saw for the Native strategy). But before
inlining it, it’s going to rewrite the CSS selector, to append a unique attribute identifier. This unique
attribute is then added to all the elements of our component’s template! That way the style will only
apply to our component. The same example, would now give:

126

http://caniuse.com/#feat=shadowdom

<html>
<head>
<style>.red[_ngcontent-dvb-3] {color: red}</style>
</head>
<body>

<ns-pony _ngcontent-dvb-2="" _nghost-dvb-3="">
<div _ngcontent-dvb-3="" class="red">Rainbow Dash</div>
</ns-pony>
</body>
</html>

The red class selector has been rewritten to .red[_ngcontent-dvb-3], so it will only apply on
elements that have both the class red and the attribute _ngcontent-dvb-3. You can see that this
attribute has also been added to our div automatically, so that works perfectly. The <ns-pony>
element also has a few attributes: _ngcontent-dvb-2 which is the unique identifier generated for its
parent, and _nghost-dvb-3 which is a unique identifier for the host element itself. Yes, we can also
add styles that apply on the host element, as we’ll see shortly.

14.3. None strategy

This strategy is not doing any encapsulation. The styles will be inlined at the top of the page (as for
the Emulated strategy), but not rewritten. They then behave like "normal" styles, cascading into
children.

14.4. Styling the host

A special CSS selector exists to style only the host element. It is called :host, and it comes from the
Web Component specification:

thost {
display: block;
}

It will be kept as is for the Native strategy and rewritten into [_nghost-xxx] if you use Emulated.

To conclude, you don’t have to do much to have perfectly encapsulated styles, because the Emulated
strategy takes care of this business for us. You can switch the strategy to use the Native one if you
target only specific browsers, or None if you don’t want to encapsulate styles. This strategy can be
tweaked per component, or globally for your whole app in the root module.

127

Chapter 15. Testing your app

15.1. The problem with troubleshooting is that trouble
shoots back

I love automated testing. My professional life revolves around the test progress bar going green in
my IDE, patting me in the back for doing my job properly. And I hope you do care about tests too, as
they are the only safety net we have when we write code. Nothing is more tedious than manually
testing code.

Angular does a great job to let us easily write tests. So did Angular]S 1.x, and that’s partly why I
loved using it. As in Angular]S 1.X, we can write two types of tests:

* unit tests

* end-to-end tests
The first ones are there to assert a small unit of code (a component, a service, a pipe...) works
correctly in isolation, i.e. without considering its dependencies. Writing such a unit test requires to
execute each of the component/service/pipe methods, and check that the outputs are what we

expected regarding the inputs we fed it. We can also check that the dependencies used by this unit
are correctly called, for example we can check that a service will do the correct HTTP request.

We can also write end-to-end tests. Their purpose is to emulate a real user interacting with your
app, by starting a real instance and then driving the browser to enter values in inputs, click on
buttons, etc. We’ll then check that the rendered page is in the state we expect, that the URL is
correct, whatever you can think of.

We’re going to cover all this, but let’s begin with the unit test part.

15.2. Unit test

As we saw earlier, unit tests are there to check a small unit of code in isolation. These tests can only
assert a small part of your app works as intended, but they have several advantages:

* they are really fast, you can run several hundreds in a few seconds.

 they are very efficient to test (nearly) all your code, especially the tricky cases, that can be hard

to manually test in the real app.

One of the core concept of unit testing is isolation: we don’t want our test to be biased by its
dependencies. So we usually use "mock" objects as dependencies. These are fake objects that we
create just for testing purpose.

To do this, we are going to rely on a few tools. First we need a library to write tests. One of the most
popular (if not the most popular) is Jasmine, so we are going to use it!

128

http://jasmine.github.io/

15.2.1. Jasmine and Karma
Jasmine gives us a few methods to declare our tests:

* describe() declares a test suite (a group of tests)
e it() declares a test

e expect() declares an assertion

A basic JavaScript test using Jasmine looks like:

class Pony {
constructor(public name: string, public speed: number) {

}

isFasterThan(speed) {
return this.speed > speed;

}
}

describe('My first test suite', () => {
it('should construct a Pony', () => {
const pony = new Pony('Rainbow Dash', 10);
expect(pony.name).toBe('Rainbow Dash');
expect(pony.speed).not.toBe(1);
expect(pony.isFasterThan(8)).toBe(true);
1
3

The expect() call can be chained with a lot of methods like toBe(), toBeLessThan(), toBeUndefined(),
etc. Every method can be negated with the not attribute of the object returned by expect().

The test file is a separate file from the code you want to test, usually with an extension like .spec.ts.
The test for a Pony class written in a pony. ts file will likely be in a file named pony.spec.ts. You can
either put your test right next to the file you’re testing, or in a dedicated directory with all your
tests. I tend to put the code and test in the same directory, but both approaches are perfectly valid:
pick your team.

One cool trick is that if you use fdescribe() instead of describe() then only this test
suite will run (f stands for focus). Same thing if you want to run only one test: use
fit() instead of it(). If you want to exclude a test, use xit(), or xdescribe() for a
suite.

NOTE

You can also use the beforeEach() method to set up a context before each test: the fixture. If I have
several tests on the same pony, it makes sense to use beforeEach() to initialize the pony, instead of
copy/pasting the same thing in every tests.

129

describe('Pony', () => {
let pony: Pony;

beforeEach(() => {
pony = new Pony('Rainbow Dash', 10);
});

it('should have a name', () => {
expect(pony.name).toBe('Rainbow Dash');

1

it('should have a speed', () => {
expect(pony.speed).not.toBe(1);
expect(pony.speed).toBeGreaterThan(9);
3
3

There is also an afterEach method, but I basically never use it...

One last trick: Jasmine lets us create fake objects (mocks or spies, as you want), or even spy on a
method of a real object. We can then do some assertions on these methods, like with
toHaveBeenCalled() that checks if the method has been called, or with toHaveBeenCalledWith() that
checks the exact parameters of the call to the spied method. You can also check how many times the
method has been called, or check if it has ever been called, etc.

describe('My first test suite with spyOn', () => {
let pony: Pony;

beforeEach(() => {
pony = new Pony('Rainbow Dash', 10);
// define a spied method
spyOn(pony, 'isFasterThan').and.returnValue(true);

1)

it('should test if the Pony is fast', () => {
const runPonyRun = pony.isFasterThan(60);
expect(runPonyRun).toBe(true); // as the spied method always returns
expect(pony.isFasterThan).toHaveBeenCalled();
expect(pony.isFasterThan).toHaveBeenCalledWith(60);
3
3

When you write unit tests, keep in mind that they should be small and readable. And don’t forget to
make them fail at first, to be sure you’re testing the right thing.

The next step is to run our tests. For this, the Angular team has developed Karma, whose sole
purpose is to run the tests in one or several browsers. It can also watch your files to re-run the tests
on every save. As running the tests is really fast, it’s actually really nice to do this and have (almost)

130

http://karma-runner.github.io

instant feedback on your code.

I won’t dive into the details on how to setup Karma, but it’s a very interesting project with a lot of
plugins you can use, to make it work with your favorite tools, to have a coverage report, etc. If
you’re writing your code in TypeScript like me, the strategy you can adopt is to let the TypeScript
compiler watch your code and tests, produce the compiled files in a separate output directory, and
have Karma watch this directory.

So we now know how to write a unit test in JavaScript. Let’s add Angular to the mix.

15.2.2. Using dependency injection

Let’s say I have an Angular application with a simple service like RaceService, containing a method
returning a hard-coded races list.

export class RaceService {
list() {
const racel = new Race('London');
const race2 = new Race('Lyon');
return [racel, racel];
}
+

Let’s write a test for this.

describe('RaceService', () => {
it('should return races when 1list() is called', () => {
const raceService = new RaceService();
expect(raceService.list().length).toBe(2);

b
1

That works great. But we can also rely on the dependency injection offered by Angular to grab the
RaceService and inject it in our test. It’s especially useful if our RaceService has some dependencies
itself: instead of having to instantiate these dependencies ourselves, we could just rely on the
injector to do it for us by saying: "hey, we want the RaceService, go figure out what you need to
create it and give it to me".

To use the dependency injection system in our test, the framework has a utility method in TestBed
called get.

This method allows to get a specific dependency from the injector inside a test function.

Let’s go back to our example, using TestBed.get this time:

131

import { TestBed } from '@angular/core/testing’;

describe('RaceService', () => {
it('should return races when list() is called', () => {
const raceService = TestBed.get(RaceService);
expect(raceService.list().length).toBe(2);
3
19K

That won’t work exactly like this, because we also need to tell the test what is available for
injection, as we do in the root module when we start the app.

The TestBed class is here to help. Its configureTestingModule method allows to declare what can be
injected in the test, by creating a test module containing only what we need. Try to inject only
what’s necessary in your test, to make them as loosely coupled to the rest of the app as possible. The
method is called in the beforeEach Jasmine method, and takes a module configuration, really close
to what you can pass to the @NgModule decorator. The providers attribute takes an array of
dependencies that will become available to injection.

import { TestBed } from '@angular/core/testing’;
describe('RaceService', () => {

beforeEach(() => TestBed.configureTestingModule({
providers: [RaceService]

)i

it('should return races when list() is called', () => {
const raceService = TestBed.get(RaceService);
expect(raceService.list().length).toBe(2);
3
Ik

Now that’s working, great! Note that if our RaceService had some dependencies itself, we would
have to declare them in the providers attribute, to make them available for injection.

As we did in the simple Jasmine example, we can maybe move the RaceService initialization in a
beforeEach method. We can also use TestBed.get in a beforeEach, so let’s do it:

132

import { TestBed } from '@angular/core/testing’;

describe('RaceService', () => {
let service: RaceService;

beforeEach(() => TestBed.configureTestingModule({
providers: [RaceService]

)i
beforeEach(() => service = TestBed.get(RaceService));

it('should return races when 1list() is called', () => {
expect(service.list().length).toBe(2);
3
19K

We moved the TestBed.get logic in a beforeEach and now our test is pretty clean. Be careful to
always call TestBed.configureTestingModule (which sets up the injector), before actually using the
injector with TestBed.get or your test will fail.

Of course, a real RaceService will not have a hard-coded list of races, and there is a big chance that
the response will be an asynchronous one. Let’s say that the list returns a promise. What does that
change in our test? Well, now we have to set up the expect in the then callback:

import { async, TestBed } from '@angular/core/testing’;

describe('RaceService', () => {
let service: RaceService;

beforeEach(() => TestBed.configureTestingModule({
providers: [RaceService]

)i
beforeEach(() => service = TestBed.get(RaceService));

it('should return a promise of 2 races', async(() => {
service.list().then(races => {
expect(races.length).toBe(2);
1
1)
3

You may be thinking that this will not work, as the test will end before the promise is resolved, and

our expectation will never run.

But here we wrap the test with the async() function. And this method is really smart: it keeps track

of the asynchronous calls made in the test and waits for them to resolve.

133

Angular uses a new concept called zones. These zones are execution contexts, and, to simplify, they
keep track of all the stuff going on within them (timeouts, event listeners, callbacks...). They also
provide hooks that can be called when we enter or leave the zone. An Angular application runs in a
zone, and that’s how the framework knows it has to refresh the DOM when an asynchronous action
is done.

This concept is also used in the tests if your test uses async(): the test runs in a zone, so the
framework knows when all the asynchronous actions are done, and won’t complete until then.

So our asynchronous expectation will be executed. Great!

There is another way to deal with async tests in Angular, using fakeAsync() and tick() but that’s for
a more advanced chapter.

15.3. Fake dependencies

Being able to declare the dependencies with the test module has another use. We can without too
much trouble declare a fake service as a dependency instead of a real one.

For the sake of the example, let’s say that my RaceService uses the local storage to store the races,
with a key 'races’'. Your colleagues have developed a service called LocalStorageService that deals
with the JSON serialization, etc. that our RaceService uses. The list() method looks like:

@Injectable()
export class RaceService {
constructor(private localStorage: LocalStorageService) {

}

list() {
return this.localStorage.get('races’');

}
}

Now, we don’t really want to test the LocalStorageService service, we just want to test our
RaceService. That can easily be done by leveraging the dependency injection system to give a fake
LocalStorageService:

class FakelocalStorage {

get(key) {
return [{ name: 'Lyon' }, { name: 'London' }];

}
}

to RaceService in our test, using provide:

134

https://github.com/angular/zone.js

import { TestBed } from '@angular/core/testing’;
describe('RaceService', () => {

beforeEach(() => TestBed.configureTestingModule({
providers: [
{ provide: LocalStorageService, useClass: FakelLocalStorage },
RaceService
]
1)

it('should return 2 races from localStorage', () => {
const service = TestBed.get(RaceService);
const races = service.list();
expect(races.length).toBe(2);

b
1

Great! But I'm not completely satisfied with this test. Creating a fake service by hand is tedious, and
Jasmine can help us spy on the service and replace its implementation by a fake one. It also allows
to verify that the get() method has been called with the proper key 'races'.

import { TestBed } from '@angular/core/testing’;
describe('RaceService', () => {
const localStorage = jasmine.createSpyObj('LocalStorageService', ['get']);

beforeEach(() => TestBed.configureTestingModule({
providers: [
{ provide: LocalStorageService, useValue: localStorage },
RaceService
]
1)

it('should return 2 races from localStorage', () => {
localStorage.get.and.returnValue([{ name: 'Lyon' }, { name: 'London' }1);

const service = TestBed.get(RaceService);
const races = service.list();

expect(races.length).toBe(2);
expect(localStorage.get).toHaveBeenCalledWith('races');
};
})

"
I

135

15.4. Testing components

The next step after testing a simple service is to test a component. A component test is slightly
different because we have to create the component. We can’t rely on the dependency injection
system to give us an instance of the component to test (you may have noticed by now that
components are not injectable in other components :)).

Let’s start by writing a component to test. Why not our PonyComponent component? It takes a pony as
an input and emits an event ponyClicked when the component is clicked.

@Component ({

selector: 'ns-pony',

template: ‘<img [src]="'/images/pony-' + pony.color.tolLowerCase() + '.png'"
(click)="clickOnPony()">"
b

export class PonyComponent {

@Input() pony: PonyModel;
@0utput() ponyClicked = new EventEmitter<PonyModel>();

clickOnPony() {
this.ponyClicked.emit(this.pony);
}

It comes with a fairly simple template: an image with a dynamic source depending on the pony
color, and a click handler.

To test such a component, you first need to create an instance. To do this, we can also use TestBed.
This class comes with a utility method, named createComponent, to create a component. The method
returns a ComponentFixture, a representation of our component. Note that to create a component, it
must be known from the test module, so we need to add it to the declarations attribute:

136

import { TestBed } from '@angular/core/testing’;
import { PonyComponent } from './pony_cmp';
describe('PonyComponent', () => {

it('should have an image', () => {
TestBed.configureTestingModule({
declarations: [PonyComponent]

1);

const fixture = TestBed.createComponent(PonyComponent);

// given a component instance with a pony input initialized
const ponyComponent = fixture.componentInstance;
ponyComponent.pony = { name: 'Rainbow Dash', color: 'BLUE' };

// when we trigger the change detection
fixture.detectChanges();

// then we should have an image with the correct source attribute
// depending of the pony color
const element = fixture.nativeElement;
expect(element.querySelector('img').getAttribute('src')).toBe("'/images/pony-
blue.png');
};
};

Here, we follow the "Given/When/Then" pattern to write the unit test. You’ll find a whole literature
on the subject, but it boils down to:

* a "Given" phase, where we setup the test context. We get the component instance created and
provide a pony. It emulates an input that would come from a parent component in the real app.

* a "When" phase, where we manually trigger the change detection, using the detectChanges()
method. In a test, the change detection is our responsibility: it’s not automatic as it is in an app.

* and a "Then" phase, containing the expectations. We can get the native element and query the
DOM as you would do with the browser (using querySelector() for example). Here we test if the
image source is the correct one.

We can also test if the component really emits an event:

137

it('should emit an event on click', () => {
TestBed.configureTestingModule({
declarations: [PonyComponent]

b

const fixture = TestBed.createComponent(PonyComponent);

// given a pony
const ponyComponent = fixture.componentInstance;
ponyComponent.pony = { name: 'Rainbow Dash', color: 'BLUE' };

// we fake the event emitter with a spy
spyOn(ponyComponent.ponyClicked, 'emit');

// when we click on the pony

const element = fixture.nativeElement;
const image = element.querySelector('img");
image.dispatchEvent(new Event('click'));

// and we trigger the change detection
fixture.detectChanges();

// then the event emitter should have fired an event
expect(ponyComponent.ponyClicked.emit).toHaveBeenCalled();
});

Let’s have a look at another component:

@Component ({
selector: 'ns-race',
template: ‘<div>
<h1>{{ race.name }}</h1>
<ns-pony *ngFor="let currentPony of race.ponies" [pony]="currentPony"></ns-pony>
</div>"
b

export class RaceComponent {

@Input() race: any;

and its test:

138

describe('RaceComponent', () => {
let fixture: ComponentFixture<RaceComponent>;

beforeEach(() => {
TestBed.configureTestingModule({
declarations: [RaceComponent, PonyComponent]

1)

fixture = TestBed.createComponent(RaceComponent);

1

it('should have a name and a list of ponies', () => {
// given a component instance with a race input initialized
const raceComponent = fixture.componentInstance;
raceComponent.race = { name: 'London', ponies: [{ name: 'Rainbow Dash', color:
'BLUE" }1 };

// when we trigger the change detection
fixture.detectChanges();

// then we should have a title with the race name
const element = fixture.nativeElement;
expect(element.querySelector('h1").textContent).toBe('London");

// and a list of ponies

const ponies = fixture.debugElement.queryAll(By.directive(PonyComponent));
expect(ponies.length).toBe(1);

// we can check if the pony is correctly initialized

const rainbowDash = ponies[@].componentInstance.pony;
expect(rainbowDash.name).toBe('Rainbow Dash');

1
1

Here we query all the directives of type PonyComponent and test if the first pony is correctly
initialized.

You can get the components inside your component with children or query them with query() and
queryAll(). These methods take a predicate as argument that can be either By.css or By.directive.
That’s what we do to get the ponies displayed, as they are instances of PonyComponent. Keep in mind
that this is different from a DOM query using querySelector(): it will only find the elements
handled by Angular, and will return a ComponentFixture, not a DOM element (so you’ll have access
to the componentInstance of the result, for example).

15.5. Testing with fake templates, providers...

When testing a component, we sometimes want to create a parent component that uses it. And if
there are several use cases, we’ll have to create several parent components just to try different
inputs for example.

139

Hopefully, when we are in a test, we can modify any component to reuse it in different tests, by

overriding its template.

To do this, the TestBed gives an overrideComponent() method, to call before the createComponent()

one:

describe('RaceComponent', () => {
let fixture: ComponentFixture<RaceComponent>;

beforeEach(() => {
TestBed.configureTestingModule({
declarations: [RaceComponent, PonyComponent]

1)

TestBed.overrideComponent(RaceComponent, { set: { template: '<h2>{{ race.name

/A>T 1)

fixture = TestBed.createComponent(RaceComponent);

1

it('should have a name', () => {
// given a component instance with a race input initialized
const raceComponent = fixture.componentInstance;
raceComponent.race = { name: 'London' };

// when we trigger the change detection
fixture.detectChanges();

// then we should have a name
const element = fixture.nativeElement;
expect(element.querySelector('h2").textContent).toBe('London");
3
3

As you can see, the method takes two arguments:

* the component you want to override

» the metadata you want to set, add or remove (for example here we set the template)

That means you can modify the template of the component you are testing, or one of its children (to

replace a component with a big template by a dumb one).
template is not the only metadata available, you can also use:

» providers to replace the dependencies of a component
* styles to replace the styles used in the template of a component

* or any property you can set in the @Component decorator...

As replacing the template is the most common use-case, Angular 4
overrideTemplate() method:

140

introduced an

describe('RaceComponent', () => {
let fixture: ComponentFixture<RaceComponent>;

beforeEach(() => {
TestBed.configureTestingModule({
declarations: [RaceComponent, PonyComponent]

1)

TestBed.overrideTemplate(RaceComponent, '<h2>{{ race.name }}</h2>");
fixture = TestBed.createComponent(RaceComponent);

b

it('should have a name', () => {
// given a component instance with a race input initialized
const raceComponent = fixture.componentInstance;
raceComponent.race = { name: 'London' };

// when we trigger the change detection
fixture.detectChanges();

// then we should have a name
const element = fixture.nativeElement;
expect(element.querySelector('h2").textContent).toBe('London");

1
D

Now you’re ready to test your app!

15.6. End-to-end tests (e2e)

End-to-end tests are the other type of tests we can run. An end-to-end test consists in really
launching your app in a browser and emulating a user interacting with it (clicking on buttons,
filling forms, etc.). They have the advantage of really testing the application as a whole, but:

* they are slower (several seconds per test)

* it’s hard to test the edge cases.

As you may guess, you don’t have to choose between unit tests and e2e tests: you will combine both
to have a great coverage and some warranties that your complete application runs as intended.

E2e tests rely on a tool called Protractor. It’s identical to the tool we used in Angular]S 1.x for the
same purpose. And the great news is that it works both with Angular]S 1.x and Angular!

You will write your test suite using Jasmine like in the unit tests, but you will use the Protractor API
to interact with your app.

A simple test would look like this:

141

https://angular.github.io/protractor/#/

describe('Home', () => {

it('should display title, tagline and logo', () => {
browser.get('/");
expect(element.all(by.css('img')).count()).toEqual(1);
expect($('h1").qgetText()).toContain('PonyRacer");
expect($('small').getText()).toBe('Always a pleasure to bet on ponies');
3

1

Protractor gives us a browser object, with a few utility methods like get() to go to a page. Then you
have element.all() to select all the elements matching a predicate. This predicate often relies on by
and its various methods (by.css() to do a CSS query, by.id() to retrieve an element by id, etc.).
element.all() will return a promise, with a special method count() used in the test above.

$('h1") is a shortcut, equivalent of writing element(by.css('h1")). It will fetch the first element
matching the CSS query. You can use several methods on the promise returned by $(), like getText()
and getAttribute() to retrieve information, or methods like click() and sendKeys() to act on this
element.

These tests can be quite long to write and debug (much more than unit tests), but they are really
useful. You can do all sorts of great things with them, like testing several browsers, do a screenshot
every time a test fails, etc.

With unit tests and eZe tests, you have the keys to build a robust and maintainable application!

All our Pro Pack exercises come with unit tests! If you want to learn more, we
strongly encourage you to take a look at them: we tested every possible part of
the application (100% code coverage)! In the end youw’ll have dozens of test
examples, which you can use in your own projects.

PRACTICE

142

Chapter 16. Send and receive data through
HTTP

This chapter uses the new HttpClientModule introduced in Angular 4.3 in the
@angular/common/http package, which is a complete rewrite of the HttpModule
that existed before. This chapter does not talk about the old HttpModule that
was used previously from the @angular/http package.

WARNING

That won’t come as a surprise, but a lot of our job consists in asking a backend server to send data
to our webapp, and then sending data back.

Usually this is done over HTTP, even though you have other alternatives nowadays, like
WebSockets. Angular provides an http module, but doesn’t force you to use it. If you prefer, you can
use your favorite HTTP library to send asynchronous requests.

One of the newcomers is the fetch APIL, which is currently available as a polyfill, but should become
a standard in browsers. You can perfectly build your app using fetch or another library. In fact,
that’s what I used before the Http part was done in Angular. It works great, with no need of special
calls to make the framework aware that we have received data and that it needs to run the change
detection (unlike in Angular]S 1.x, where you would have to call $scope.apply() if you were using
an external library: that’s the magic of Angular and its zones!).

But if you feel comfortable with the framework, you will use a small module called
HttpClientModule, provided by the core team. It is an independent module, so, really, do as you like.
Note that it mirrors closely enough the Fetch API proposal.

If you want to use it, you have to use the classes from the @angular/common/http package.

Why prefer this module over, say, fetch? The answer is simple: testing. As we will show, the Http
module allows to mock your backend server and return fake responses. That’s really, really useful.

Last thing before we dive into the API: the Http module heavily uses the reactive programming
paradigm. So if you skipped the Reactive Programming chapter , now might be a good time to go
back and read it ;).

16.1. Getting data

The Http module offers a service called HttpClient that you can inject in any constructor. As the
service is coming from another module, you have to manually make it available to your component
or service. To do so, import the HttpModule into the root module:

143

https://github.com/github/fetch

import { NgModule } from '@angular/core’;
import { BrowserModule } from '@angular/platform-browser’;
import { HttpClientModule } from '@angular/common/http";

@NgModule({
imports: [BrowserModule, HttpClientModule],
declarations: [PonyRacerAppComponent],
bootstrap: [PonyRacerAppComponent]

}
export class AppModule {

}

Once this is done, you can inject the HttpClient service wherever you need it:

@Component ({
selector: 'ns-races',
template: ‘<h1>Races</h1>*

1))

export class RacesComponent {

constructor(private http: HttpClient) {
}

By default, the Http(Client service will do AJAX request using XMLHttpRequest.

It offers several methods, matching the most common HTTP verbs:

o get

o post

o put

o delete
« patch
« head

« jsonp

If you used the $http service in Angular]S 1.x, you might remember that it heavily relied on
Promises. In Angular, however, all these methods return an Observable object.

A few advantages come with the use of Observables for HttpClient like the ability to cancel
requests, to retry, to easily compose them, etc.

Let’s start by fetching the races registered in PonyRacer. We’ll assume that a backend is already up
and running, providing a RESTful API. To fetch the races, we’ll send a GET request to a URL like
'http://backend.url/api/races'.

Usually, the base URL of your HTTP calls will be stored in a variable or a service, that you can easily

144

configure depending on your environment. Or, if the REST API is served by the same server as the
Angular application, you can simply use a relative URL: '/api/races'.

Using the HttpClient service, such a request is straightforward:
http.get(${baseUr1}/api/races")

This returns an Observable, to which you can subscribe to receive the response.

The response body is the most interesting part, and it is directly emitted by the Observable:

http.get('${baselr1}/api/races")
.subscribe((response: Array<RaceModel>) => {
console.log(response);
// logs the array of races

H;

Of course, you can also have access to the full HTTP response. The object returned is then an
HttpResponse object, with a few fields like the status code, headers, etc.

http.get('${baseUr1}/api/races’, { observe: 'response' })
.subscribe((response: HttpResponse<Array<RaceModel>>) => {
console.log(response.status); // logs 200
console.log(response.headers.keys()); // logs []
3

The observable will throw an error if the response status is different from 2xx or 3xx, and the error
is then of type HttpErrorResponse.

Sending data is fairly easy too. Just call the post() method, with the URL and the object to post:

// you currently need to stringify the object you send
http.post(${baseUr1}/api/races", newRace)

I won’t show you the other methods, I'm sure you get the idea.

16.2. Transforming data

This kind of work will usually be done in a dedicated service. I tend to create a service, like
RaceService, where all the job is done. Then, my component just needs to subscribe to my service
method, without knowing what’s going on under the hood.

145

raceService.list()
.subscribe(races => {
// store the array of the races in the component
this.races = races;

1

You can also leverage the power of RX]JS to retry a failed request a few times, for example.

raceService.list()
// if the request fails, retry 3 times
.retry(3)
.subscribe(races => {
// store the array of the races in the component
this.races = races;

i

16.3. Advanced options

Of course, you can tune your requests more finely. Every method takes an options object as an
optional parameter, where you can configure your request. A few options are really useful and you
can override everything in the request.

params represents the URL search parameters (also known as the query string) to add to the URL.

const params = {
'sort': 'ascending',
‘page': '1'

Ire

http.get('${baseUr1}/api/races*, { params })
// will call the URL ${baseUrl}/api/races?sort=ascending&page=1
.subscribe(response => {
// will return the races sorted
this.races = response;

b

The headers option is often useful to add a few custom headers to your request. It happens to be
necessary for some authentication techniques like JSON Web Token for example:

146

const headers = { 'Authorization': ‘Bearer ${token}‘' };

http.get('${baseUr1}/api/races*, { headers })
.subscribe(response => {
// will return the races visible for the authenticated user
this.races = response;

1

16.4. Jsonp

To let you access their API without being blocked by the Same Origin Policy enforced by web
browsers, some web services don’t use CORS, but use JSONP (JSON with Padding).

The server will not return the JSON data directly, but wrap them in the function passed as a
callback. The response comes back as a script, and scripts are not subject to the Same Origin Policy.
Once loaded, you can access the JSON value contained in the response.

In addition to the classic HTTP methods, the HttpClient offers a jsonp method. All you have to do is
specify the URL of the service you want to call, and add the name of the callback you want.

In the following example, we are fetching all the public repos from our Github organization using
JSONP.

http.jsonp('https://api.qgithub.com/orgs/Ninja-Squad/repos', 'callback')
// extract data
.map((res: { data: Array<any> }) => res.data)
.subscribe(response => {
// will return the public repos of Ninja-Squad
this.repos = response;

1)

16.5. Interceptors

One of the reasons of the Http module rewrite was the introduction of interceptors. Interceptors
are interesting when you want to... intercept requests or responses in your application.

For example, if you want to intercept every request to add a specific header to some of them, you
can now write an interceptor like this one:

147

@Injectable()
export class GithubAPIInterceptor implements HttpInterceptor {

intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {

// 1f it is a Github API request
if (req.url.includes('api.github.com')) {
// we need to add an OAUTH token as a header to access the Github API
const clone = req.clone({ setHeaders: { 'Authorization': ‘token ${OAUTH_TOKEN}"

Ik

return next.handle(clone);

}
// if it's not a Github API request, we just handle it to the next handler

return next.handle(req);

}

Note that you have to clone the request to update it (requests are immutable).

Then add your interceptor to the HTTP_INTERCEPTORS array via dependency injection:

providers: [
{ provide: HTTP_INTERCEPTORS, useClass: GithubAPIInterceptor, multi: true }

]

Now every request will go through the interceptor, and receive the custom header if needed (here
the requests to the Github API).

You can also intercept the response, which can be handy to handle errors in a generic way:

148

@Injectable()
export class ErrorHandlerInterceptor implements HttpInterceptor {

constructor(private router: Router, private errorHandler: ErrorHandler) {}

intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
return next.handle(req)
// we catch the error
.catch((errorResponse: HttpErrorResponse) => {
// if the status is Unauthorized
if (errorResponse.status === 401) {
// we redirect to login
this.router.navigateByUr1('/login');
} else {
// else we notify the user
this.errorHandler.handle(errorResponse);

}

return Observable.throw(errorResponse);

;i

16.6. Tests

We now have a service calling an HTTP endpoint to fetch the races. How do we test it?

@Injectable()
export class RaceService {
constructor(private http: HttpClient) {

}

list(): Observable<Array<RaceModel>> {
return this.http.get<Array<RaceModel>>("'/api/races"');

}
}

In a unit test, you don’t want to really call the HTTP server: that’s not what we are testing. We want
to "fake" the HTTP call to return fake data. To do this, we can replace the dependency to the
HttpClient service with a fake implementation by importing the HttpClientTestingModule. We can
then use a class provided by the framework called HttpTestingController to fake the HTTP
responses.

And you can also add a few assertions on the underlying HTTP request:

149

import { async, TestBed } from '@angular/core/testing’;

import { HttpClientTestingModule, HttpTestingController } from
'‘@angular/common/http/testing’;

describe('RaceService', () => {

let raceService: RaceService;
let http: HttpTestingController;

beforeEach(() => TestBed.configureTestingModule({
imports: [HttpClientTestingModule],
providers: [RaceService]

1)
beforeEach(() => {
raceService = TestBed.get(RaceService);

http = TestBed.get(HttpTestingController);
1

it('should return an Observable of 2 races', async(() => {
// fake response
const hardcodedRaces = [{ name: 'London' }, { name: 'Lyon' }];

// call the service
let actualRaces = [];
raceService.list().subscribe(races => actualRaces = races);

// check that the underlying HTTP request was correct

http.expectOne('/api/races’)

// return the fake response when we receive a request
.flush(hardcodedRaces);

// check that the returned array is deserialized as expected
expect(actualRaces.length).toBe(2);

1);

};

And we’re done!

Try our exercise HTTP ¢! We prepared a full REST API, ready for you to use.
Let’s fetch some races using the HttpClient service. Later you’ll learn how to

PRACTICE call a secured API with an authentication mechanism and interceptors in

150

exercises HTTP with authentication &, Bet on a pony & and Cancel a bet &&.
Slightly related, we’ll also use WebSockets &M.

https://angular-exercises.ninja-squad.com/exercises/8/http
https://angular-exercises.ninja-squad.com/exercises/18/http-auth
https://angular-exercises.ninja-squad.com/exercises/19/bet
https://angular-exercises.ninja-squad.com/exercises/20/cancel-bet
https://angular-exercises.ninja-squad.com/exercises/22/websockets

Chapter 17. Router

It is fairly common to want to map a URL to a state of the application. That makes sense: you want
your user to be able to bookmark a page and come back, and it provides a better experience
overall.

The piece in charge of doing this job is called a router, and every framework has its own (or several
ones).

The router in Angular has a simple goal: allowing to have meaningful URLs reflecting the state of
our app, and for each URL to know which component should be initialized and inserted in the page.
It will execute all this without refreshing the page and without triggering a new request to our
backend server: this is the whole point of having a Single Page Application.

You probably know there was already a router in Angular]S 1., maintained by the core team, in a
module called ngRoute. You may also know that it was a very simplistic one: OK for simple
applications, but it was only allowing a single view per URL and no nesting was possible. It was a
bit limited to work on bigger apps, where you often have views inside views. There was a very
popular community module, called ui-router, that a lot of people were using and which was doing
a really great job.

The team behind Angular decided to bridge the gap and wrote a new module called RouterModule.
This module will hopefully fulfill all our needs!

Some new features are really interesting. So let’s go!

17.1. En route

Lets’s start using the router. It is an optional module, that is thus not included in the core
framework.

As we saw for the other modules, you have to include it in your root module if you want to use it.
But for that, we need a configuration to define the mapping between URLs and components. We can
do this with a dedicated file, generally named like app.routes.ts, and containing an array
representing the configuration:

import { Routes } from '@angular/router';
import { HomeComponent } from './home/home.component’;
import { RacesComponent } from './races/races.component’;

export const ROUTES: Routes = [
{ path: "', component: HomeComponent },
{ path: 'races', component: RacesComponent }

]I

Then we need to import the router module in our root module, initialized with the proper
configuration:

151

import { NgModule } from '@angular/core’;

import { BrowserModule } from '@angular/platform-browser’;
import { RouterModule } from '@angular/router’;

import { ROUTES } from './app.routes’;

import { HomeComponent } from './home/home.component’;
import { RacesComponent } from './races/races.component’;

@NgModule({
imports: [BrowserModule, RouterModule.forRoot(ROUTES)],
declarations: [PonyRacerAppComponent, HomeComponent, RacesComponent],
bootstrap: [PonyRacerAppComponent]

}

export class AppModule {

}

NOTE You also need to declare all the components used by the router module in the

declarations attribute of your root module.

As you can see, the Routes is an array of objects, each one being a... route. A route configuration is
usually a pair of properties:

 path: what URL will trigger the navigation

* component: which component will be initialized and inserted

You may be wondering where the component will be inserted in the page, and that’s a good
question. For a component to be included in our app, like the RacesComponent in the example above,
we must use a special tag in the template of the primary component: <router-outlet>.

152

PonyRacerAppComponent

Header

RouterOutlet
—» where our component goes

Footer

This is, of course, an Angular directive, whose only job is to act as a placeholder for the template of
the component of the current route. Our app template would look like:

<header>
<nav>...</nav>
</header>
<main>
<router-outlet></router-outlet>
<!-- the component's template will be inserted here-->
</main>
<footer>made with &1t;3 by Ninja Squad</footer>

When we navigate, everything will stay (the header, main and footer here) and the component
matching the current route will be inserted just after the RouterOutlet directive.

17.2. Navigation

How can we navigate between the different components? Well, you can manually type the URL and
reload the page, but that’s not very convenient. And we don’t want to use "classic" links, with ". Indeed, clicking on that link makes the browser load the page at that URL, and
restart the whole Angular application. But the goal of Angular is to avoid such page reloads: we
want to create a Single Page Application. Of course, there is a solution built-in.

In a template, you can insert a link with the directive RouterLink pointing to the path you want to go
to. We can use this directive because our root module imports the RouterModule, making all the
exported directives of RouterModule available to the root module. The RouterLink directive can
receive a constant representing the path you want to go to or an array of strings, representing the

153

path and its params. For example in our RacesComponent template, if we want to navigate to the
HomeComponent, we can imagine something like:

Home
<l-- same as -->
Home

At runtime, the link href will be computed by the router and will point to /.

The leading slash in the path is necessary. If not included, RouterLink build the URL
relatively to the current path (that can be useful with nested components, as we’ll
see later). Adding a slash indicates that the URL must be computed from the
application base URL.

NOTE

The RouterLink directive can be used with the RouterLinkActive directive which can set a CSS class
automatically if the link points to the current route. This allows, for example, to style a menu item
as selected when it points to the current page.

Home

We can even get a reference on this directive, to know if the route is active, and use it in the
template:

Home {{
route.isActive ? '(here)' : '' }I

It’s also possible to navigate from the code, by using the Router service and its method navigate().
It’s often handy when you want to redirect your user after an action:

export class RacesComponent {
constructor(private router: Router) {

}

saveAndMoveBackToHome() {
// ... save logic ...
this.router.navigate(['']);
}
}

The method takes an array of parameters, with the path you want to navigate to as the first
element.

It is also possible to have parameters in the URL, and it’s really useful to define dynamic URLs. For
example, we want to display a detail page for a pony, with a meaningful URL for this page, like
ponies/id-of-the-pony-/name-of-the-pony.

154

To do so, let’s define a route in the configuration with one (or several) dynamic parameter.

export const routes: Routes = [
{ path: "', component: HomeComponent },
{ path: 'races', component: RacesComponent },
{ path: 'races/:raceld/ponies/:ponyId', component: PonyComponent }

1

We can then define dynamic links with routerLink:

See pony

Of course, the target component needs to access those parameters to be able to load and display the
pony with the given identifier. To get the value of the parameters, the router provides a service,
that you can of course inject in the component, named ActivatedRoute. This object can be used
inside ngOnInit, and has a very useful field: snapshot. This field has all the parameters of the URL in
paramMap!

export class PonyComponent implements OnInit {
pony: any;

constructor(private ponyService: PonyService, private route: ActivatedRoute) {

}

ngOnInit() {
const id = this.route.snapshot.paramMap.get('ponyId');
this.ponyService.get(id).subscribe(pony => this.pony = pony);
}
}

This hook is also a good place to do the initialization work of the component as you can see.

As you may have spotted, we are using snapshot. Is there a non snapshot version? Yes there is. And
it provides a way to subscribe to parameter changes, with, you guessed it, an observable. This
observable is called paramMap.

This is very important: the router will reuse your component if it can! Let’s say
our app has a "Next" button to see the next pony. The URL will change from
/ponies/1 to /ponies/2 for example when the user clicks. The router will then
reuse our component instance: that means the ngOnInit will not be called
again! If you want your component to update for this kind of navigation, you
have no other way than using the paramMap observable!

WARNING

155

export class PonyReusableComponent implements OnInit {
pony: any;

constructor(private ponyService: PonyService, private route: ActivatedRoute) {

}

ngOnInit() {
this.route.paramMap.subscribe((params: ParamMap) => {
const id = params.get('ponyId');
this.ponyService.get(id).subscribe(pony => this.pony = pony);
});
}
}

Here we subscribe to the observable offered by ActivatedRoute. Now, every time the URL will
change from /ponies/1 to /ponies/2 for example, the paramMap observable will emit an event, and
we’ll fetch the correct pony to display on screen.

Note that instead of subscribing to the result of the PonyService inside the subscribe of the params
update, we can use the more elegant switchMap operator:

export class PonySwitchMapComponent implements OnInit {
pony: any;

constructor(private ponyService: PonyService, private route: ActivatedRoute) {

}

ngOnInit() {
this.route.paramMap
.map((params: ParamMap) => params.get('ponyId'))
.switchMap(id => this.ponyService.get(id))
.subscribe(pony => this.pony = pony);

PRACTICE Try our exercise Router &M to learn how to configure the router, navigate
between components, and test all this.

What you just learnt should cover your basic routing needs. But the router goes well beyond this

and offers many additional features. Covering them all in details is quite a big task, and you can

feel overwhelmed when trying to learn them all.

This section will try to present most of the additional features as concisely as possible, by
explaining what they’re useful for. But it will not try covering every detail. If you really need an
extensive coverage of the router features, there’s a whole book available for that, written by the
main contributor to the Angular router, Victor Savkin.

156

https://angular-exercises.ninja-squad.com/exercises/10/router
https://leanpub.com/router

17.3. Redirects

A common use-case is to have a URL simply redirect to another URL in the application. This can
happen because you want, for example, the root URL of your news app to redirect to the /breaking
news category, or an old URL to redirect to a new one after a refactoring. This is possible using

{ path: "', pathMatch: 'full', redirectTo: '/breaking' },

17.4. Matching strategy

In the above example illustrating a redirect, I applied a strategy for matching the route: 'full'. The
default strategy is 'prefix’, which matches a route with a URL when the URL starts with the path of
the route. If we used this default strategy here, all URLs would redirect to /breaking, since all URLs
start with an empty string.

The matching strategy consists in finding the first route that matches the complete URL. So, for
example, if you define routes like

{ path: 'races/:id", component: RaceComponent },
{ path: 'races/new', component: RaceCreationComponent }

and the URL is races/new, the component that the router will activate is in fact the RaceComponent.
Indeed, races/:id matches with races/new and comes first in the list of routes. To solve this problem,
change the order of the routes:

{ path: 'races/new', component: RaceCreationComponent },
{ path: 'races/:id', component: RaceComponent }

17.5. Hierarchical and empty-path routes

Routes can have children. This can be useful for several reasons:

» applying guards to several routes at once (see later);
 applying resolvers to several routes at once (see later);
* sharing a a common template between several routes.

As we have seen before, when the router activates a route, the component of the route is inserted in
the page at the location marked by the router-outlet directive.

This mechanism can in fact be used in nested components, too. Suppose you have a complex page
to display the profile of a pony. This page would display its name and portrait at the top, and would
have several tabs at the bottom: one to display its birth certificate, one to display its track record,
and one to display journalist reviews about this pony. You want to have a URL for each tab, in order
to be able to directly link to them. But you don’t want to reload the pony and repeat its name and

157

portrait on every on these three tab components.

The solution is to use a nested router-outlet in the tempate of the PonyComponent, and to define a
parent pony route, this way:

{
path: 'ponies/:ponyId',
component: PonyComponent,
children: [
{ path: 'birth-certificate', component: BirthCertificateComponent },
{ path: "track-record', component: TrackRecordComponent },
{ path: 'reviews', component: ReviewsComponent }

]
}

When going to the URL ponies/42/reviews, for example, the router will insert the PonyComponent at
the location indicated by the main router-outlet, in the root component. The template of

PonyComponent, besides the name and the portrait of the pony, contains a second router-outlet.
This is where the child ReviewsComponent will be inserted.

app.component.html

router outlet

pony.component.html

router outlet

reviews.component.html

When going to the URL ponies/42, the pony component will be displayed, but none of the three
children component will. You might want to display the birth certificate tab by default. That can be
achieved using an empty-path route, redirecting to the birth-certificate route:

158

{

path: 'ponies/:ponyId’,

component: PonyComponent,

children: [
{ path: "', pathMatch: 'full', redirectTo: 'birth-certificate' },
{ path: 'birth-certificate', component: BirthCertificateComponent },
{ path: '"track-record', component: TrackRecordComponent },
{ path: 'reviews', component: ReviewsComponent }

]

Note that, in the above example, the redirect is relative to the ponies/:ponyId route, because it
doesn’t start with a /.

Instead of redirecting, you might want to display the birth certificate at the URL ponies/42. This can
also be achieved using a child empty-path route:

{
path: 'ponies/:ponyld',
component: PonyComponent,
children: [
{ path: "', component: BirthCertificateComponent },
{ path: '"track-record', component: TrackRecordComponent },
{ path: 'reviews', component: ReviewsComponent }
]
}

17.6. Guards

Some routes of the application should not be accessible to all users, depending on their
permissions. Of course, you should hide or disable links pointing to these routes if the user may not
access them. You should also make sure that the backend doesn’t allow accessing or modifying
resources that the user isn’t authorized to. But that still won’t prevent users to access routes that
they’re not allowed to, simply by entering their URL in the address bar.

That’s where guards come into play. There are 4 kinds of guards:

* CanActivate: when set on a route, the guard can disable the activation of this route. Note that the
guard can also have a side effect, like navigating elsewhere. This can be useful to show an error
page, or to navigate to the login page when an unauthenticated user tries accessing a route that
requires authentication;

* CanActivateChild: when set on a route, the guard can disable the activation of children of that
route. This can be useful to disable access to many child routes at once, based on their URL;

 CanlLoad: this guard is used on a route with a loadChildren attributes. This attribute allows lazy
loading a whole feature bundle, containing child routes (we’ll talk about lazy loading a bit
later). It goes further than the CanActivate guard by preventing to even load the feature bundle;

159

* (CanDeactivate: this guard is different from the three other ones. It’s used to prevent navigation
from outside of the currently activated route. This can be useful to ask for confirmation before
leaving a route containing a large form, for example.

Here’s how you would add a CanActivate guard on a route. The three other guards are added in a
similar way:

{ path: 'races', component: RacesComponent, canActivate: [LoggedInGuard] }

In the above example, LoggedInGuard is an Angular service. As any other service, it must be
provided, typically by adding it to the providers of the Angular module.

This service must implement the CanActivate interface. It consists in deciding whether the route can
be activated or not (by checking if the user is logged in or not), and in returning a boolean, a
Promise<boolean>, or an Observable<boolean>.

The router will navigate to the route if the returned value is true, or if the returned promise is
resolved as true, or if the returned observable emits true.

Here’s what the LoggedInGuard might look like:

@Injectable()
export class LoggedInGuard implements CanActivate {

constructor(private router: Router, private userService: UserService) { }

canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot): Observable
<boolean>|Promise<boolean>|boolean {
const loggedIn = this.userService.isLoggedIn();
if (!loggedIn) {
this.router.navigate(['/login']);

}
return loggedIn;
}
}
Instead of defining a service and passing its class in the route configuration, a
NOTE function with the same signature as the service method can also be passed. I

wouldn’t advise it in the general case though, as it is less type-safe and doesn’t allow
injecting a service in the guard.

Hierarchical routes combined with empty-path routes can be very handy to apply a guard on

several routes at once. For example, if you want both the races and the ponies routes to be
accessible only to logged in users, instead of

160

{ path: 'ponies/:ponyId', component: PonyComponent, canActivate: [LoggedInGuard] },
{ path: 'races', component: RacesComponent, canActivate: [LoggedInGuard] }

you can introduce an empty-path, componentless route as a parent. This route won’t consume any
URL segment, and won’t activate any component, but its guards will be called when navigating to
any of its children:

{
path: '',
canActivate: [LoggedInGuard],
children: [
{ path: 'ponies/:ponyId', component: PonyComponent },
{ path: 'races', component: RacesComponent }
]
}

17.7. Resolvers

In a good old multi-page application where the pages are generated server-side, when clicking on a
link, here’s what happens: a request is sent to the server, the browser typically shows a spinning
icon on the tab, and when the response finally comes back from the server, the URL in the address
bar changes and the content of the new page is displayed.

In an Angular single-page application, it doesn’t exactly work that way. The user clicks on a link to
display a pony race (for example). The router creates an instance of the RaceComponent, and the
component sends an AJAX request to load the race. The router immediately inserts the component
template at the router-outlet location and changes the URL in the address bar. At this time,
immediately after the click, the user sees the new page, but without any race. When the response to
the AJAX request comes back, the race is stored in the component and the DOM is updated.

This has advantages and drawbacks:

 the navigation to the new page feels faster;

* the user can be confused if loading the race is too long, because the page appears blank, which
looks like a bug;

* the template must be coded carefully, in order to work fine during the small period of time
when the race is null or undefined;

* the template can however provide an immediate feedback by displaying a message or a
spinning animation indicating that the race is being loaded;

« if loading the race fails (because the connectivity is lost, for example), then the navigation has
been made and the URL has changed, although the page can’t display any race, instead of
staying on the previous page.

A resolver allows making the application behave almost like a traditional multi-page application.
Instead of letting the race component load the race, you apply a resolver on the route, and the

161

resolver loads the race on behalf of the component.

Like a guard, a resolver can return data synchronously (by returning a race) or asynchronously (by
returning a promise or observable of race). The router only navigates to the route once the promise
has been resolved, or once the observable has completed with at least an emitted race. Here’s what
a resolver for a race would look like:

@Injectable()
export class RaceResolver implements Resolve<RaceModel> {

constructor(private raceService: RaceService) { }

resolve(route: ActivatedRouteSnapshot, state: RouterStateSnapshot): Observable
<RaceModel> | Promise<RaceModel> | RaceModel {
return this.raceService.get(+route.paramMap.get('raceld'));

}
}

As you can see, it’s a simple service, which uses the activated route snapshot passed by the router to
get the value of the raceld parameter, and returns an Observable<RaceModel>.

you might wonder why we use +route.paramMap.get('raceld') and not simply
route.paramMap.get('raceld'). That’s because the parameter is of type string (it’s a
segment of a URL), and the service expects the race ID to be a number. + is the
simplest way to convert a string into a number.

NOTE

Here’s how the resolver would be applied to the route:

path: 'races/:raceld’,
component: RaceComponent,
resolve: {

race: RaceResolver

As you can see, the RaceResolver is associated with an object key that I chose to name race. This is
the key that the router will use to store the loaded race into the data of the activated route snapshot.
So the race component can simply obtain the race the following way:

162

export class RaceComponent implements OnInit {
race: RaceModel;
constructor(private route: ActivatedRoute) { }

ngOnInit() {
this.race = this.route.snapshot.data['race'];

}
}

Note that, if you navigate from a route to the same route, but with different parameters (for
example, if you have a Next race link on the page), then the guards and the resolvers applied to the
route are called again. The component, in that case, will still be reused, and should still subscribe to
an observable to get the race (or just store the observable in the component and use the async pipe
in the template):

export class RaceComponent implements OnInit {
race: RaceModel;
constructor(private route: ActivatedRoute) { }

ngOnInit() {
this.route.data.subscribe(data => this.race = data['race']);
}
}

Resolvers have many advantages over loading data from the activated component:

* they make the navigation more traditional;
» they can be shared and reused by several routes;

* they make the code of the component and its template simpler: no need to load data, no need to
care about the temporary undefined or null model, no need to apply somewhat complex Rx]JS
operators to get the data from the parameters;

« if the navigation fails, the current page is preserved and the user can just click on the link again
to retry it.

The only drawback I can find is that, when you know that loading the data is slow (because it
requires substantial computations or external service calls by the server), then the application can
feel a bit unresponsive: you click on a link, and nothing happens until the data has been loaded.
This is where loading the data from the activated component and displaying a loading message or
animation can be more user-friendly. Another workaround would be to rely on router events to
display this loading message.

163

17.8. Router events

The router emits several events when navigating to a route. You can be notified of these events by
injecting the Router service and subscribing to its events observable. The emitted events have
several types that you can filter using event instanceof NavigationStart (for example). Here are the
various types of router events:

* NavigationStart: emitted when a navigation is requested (when clicking on a link, for example).
It can be used, for example, to start displaying a spinner;

* NavigationEnd: emitted when a navigation ends successfully. It can be used to stop displaying the
spinner. Another use-case is to send a hit to an analytics service (like Google Analytics for
example), which allows analyzing the browsing habits and popular pages in your application;

* NavigationError: emitted when a navigation fails due to an unexpected error (like a resolver
returning an empty or error observable). It can be used to stop displaying a spinner, or to try
sending an error log to the server;

* NavigationCancel: emitted when a navigation is cancelled, because a guard prevented the
navigation for example. If a spinner has been shown when the navigation started, it should be
hidden when this event is emitted.

There are other kinds of events for the route configuration loading (RouteConfigloadStart,
RouteConfigloadEnd, RoutesRecognized) and, since version 4.3, for the resolvers (ResolveStart,
ResolveEnd) and guards (GuardsCheckStart, GuardsCheckEnd). Version 5.0 added more fine-grained
navigation events (ChildActivationStart, ChildActivationEnd).

17.9. Parameters and data

We’ve seen before that routes can have parameters. For example, the route races/:raceld has one
parameter named raceld, and the value of this parameter, when navigating to /races/42 is the
string '42'. But this route can actually have additional parameters named matrix parameters.
Matrix parameters are not an angular-specific feature. Although rarely used and
NOTE thus lesser-known than query parameters, they’re a standard part of URIs, that are

supported by many server-side frameworks, too.

If you navigate to the URL
/races/42;foo=bar;baz=wiz

then the params and paramMap properties of the activated route will contain two additional
parameters 'foo' and 'baz' having the values 'bar' and 'wiz'.

Those matrix parameters are specific to the route. So, for example, if the URL is

/races/42;foo=bar;baz=wiz/ponies

164

then the component associated to the ponies segment won’t have foo nor bar in the parameters of
its activated route. Only the component associated with the races/42 segment will.

To navigate to such a URL, you would use the following code:

router.navigate(['/races', 42, {foo: 'bar', baz: 'wiz'}, 'ponies']);

or an equivalent router link:

<a [routerLink]="["/races"', 42, {foo: 'bar', baz: 'wiz'}, "ponies']">Link

Query parameters, on the other hand, are shared by all the route segments. They look like this in
the URL:

/races/42/ponies?foo=bar&baz=wiz

These query parameters are accessible from any route, using the queryParams or queryParamMap
property.

To navigate to such a URL, you would use the following code

router.navigate(['/races', 42, 'ponies'], { queryParams: {foo: 'bar', 'baz': 'wiz'}

b

or the equivalent router link:

<a [routerLink]="["/races"', 42, 'ponies']" [queryParams]="{foo: 'bar', baz: 'wiz'}"
>Link

Finally, we’ve seen that resolvers allowed adding properties to the data property of the activated
route, before the route is activated. It’s also possible to add additional data to a route directly from
its configuration. This can be useful when the same component can be used in two different
contexts for example:

path: 'races',
component: RacesComponent,
data: {

allowDeletion: false

}

165

17.10. Lazy loading

This section will conclude this long chapter about the Angular router.

When the application grows in size and features, loading the whole application at once can become
a problem: the application bundle is too large and takes too much time to load and parse.
Moreover, some parts of the application are only used by some users of the application, or are used
rarely, and loading them eagerly is a waste of time and bandwidth. This is where lazy-loading is
useful.

Lazy loading consists in splitting the application into multiple Angular modules, and into several
JavaScript bundles. A lazy-loaded module defines its own routes, components and services, bundled
into a separate JavaScript file. The main module only defines a route allowing to access the lazy-
loaded module. As the name implies, the Angular router waits for the user to navigate to this route
before loading the JavaScript module, and adding the child routes, module, component and services
to the application.

main.bundle.js — 160KB
AppModule
app.routes.ts —Pp| 6.chunk.js — 50KB
AdminModule

admin.routes.ts

it’s actually possible to load the lazy-loading modules in the background, after the
NOTE root module has been loaded and the application has started, without waiting for
the user to navigate to the module, thanks to an alternative preloadingStrategy.

To illustrate how we can configure lazy loading, we will assume that you want to define an admin
section in your application, that should be lazy loaded. We will also assume that you’re using
Angular CLI to build your application.

The first step is to define a child Angular module. The admin.module. ts file would look like this:

@NgModule({
imports: [
CommonModule

]I

declarations: []

1)
export class AdminModule { }

There is an important difference with the root module: this child module doesn’t import
BrowserModule. Instead, it imports CommonModule.

166

The second step is to define an admin component, and at least one route for this component in a file
named admin.routes.ts:

export const ADMIN_ROUTES: Routes = [
{ path: "', component: AdminComponent }

]I

This routing configuration must be imported in the admin module, but once again, there is a subtle
but important difference with the way it’s done in the root module:

@NgModule({
imports: [
CommonModule,
RouterModule.forChild(ADMIN_ROUTES)

]I

declarations: [AdminComponent]

3]
export class AdminModule { }

Instead of using RouterModule.forRoot() we must use RouterModule.forChild(), because this is a
child module. Since the router is a stateful singleton service, we must not provide it a second time
from this child module.

These differences between a child and a root module are not specific to lazy-loaded
NOTE modules. We will explain the rationale for these differences and the subtleties of
root and child modules in a future chapter.

The AdminComponent is declared in this child admin module, and not in the root module. Declaring it
in the root module would ruin the goal we have: only loading this component when needed, lazily.

The final step is to add a route in the main app.routes.ts file, and tell the router to lazy-load the
admin module when navigating to that route (or any child route it might have):

{ path: 'admin', loadChildren: './admin/admin.module#AdminModule’ }

As you can see, this is achieved using the 1oadChildren property of the route definition.

The value of this property is a string containing the relative path of the
admin module to load lazily, followed by the name of the class decorated
with NgModule. It must not be a reference to the AdminModule class: that
would prevent the AdminModule to be loaded lazily, since the eagerly
loaded root module would have to import the admin module, which itself
imports all its declared components.

IMPORTANT

When building this application, Angular CLI parses the route configurations and detects that the
admin child module is lazy-loaded. Without any more work on your part, it generates an additional

167

JavaScript bundle for the admin module (named 0.chunk.js), and generates the necessary
JavaScript to load this bundle when the router requires './admin/admin.module .

168

Chapter 18. Forms

This chapter uses the new form API (from the package @angular/forms which
WARNING appeared in rc.2). If you're still using the old, deprecated forms, it’s time to
update. This chapter will hopefully help you migrate!

18.1. Forms, dear forms

Forms have always been extra polished in Angular. That’s one of the features that was the most
demoed in 1.%, and, as pretty much every app has forms, that won the hearts of a lot of developers.

Forms are hard: you have to validate the inputs of your user, display errors, you can have fields
required or not, or depending on another field, you want to react on some field changes, etc. We
also need to test these forms, and that was impossible to achieve with a unit-test in Angular]JS 1.x. It
was only feasible with an end-to-end test, which can be slow.

In Angular, the same care has been applied to forms, and the framework gives us a nice way to
write our forms. In fact, it gives us several ways!

You can either write your form using only directives in your template: that’s the "template-driven"
way. From our experience, it shines when you have a simple form, with not much validation.

The other way is the "code-driven" way, where you will write a description of the form in your
component, then use directives to bind this form to the inputs/textareas/selects in your template.
It’s more verbose, but also more powerful, especially if you want to do add custom validation, or to
generate dynamic forms.

Let’s go through the same use case twice, using each way, and see the differences.

We are going to write a simple form, to be able to register new users in our awesome PonyRacer
app.- We need a base component for each use case, let’s begin with this:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-register’,
template: *
<h2>Sign up</h2>
<form></form>

\

1))

export class RegisterFormComponent {

}

Nothing fancy: a component with a simple template containing a form. In the next minutes, we will
build a form allowing to register a user with a username and a password.

169

For both methods, Angular will create a representation of our form.

In the "template-driven" way, it’s pretty much automatic: we just need to add the proper directives
in the template and the framework takes care of the form representation creation.

In the "code-driven" way, we create this form representation manually, and then bind the form
representation to the inputs using directives.

Behind the scenes, a form field, like an input or a select, is represented by a FormControl in Angular.
It is the smallest part of a form, and it encapsulates the state of the field and its value.

A FormControl has several attributes:

valid: if the field is valid, regarding the requirements and validations applied on it.

* invalid: if the field is invalid, regarding the requirements and validations applied on it.
* errors: an object containing the field errors

 dirty: false until the user has modified its value.

 pristine: the opposite of dirty.

* touched: false until the user has entered it.

* untouched: the opposite of touched.

* value: the value of the field.

 valueChanges: an Observable emitting every time there is a change on the field
It also offers some methods like hasError() to check if the control has a specific error.

So you can do something like this:

const password = new FormControl();

console.log(password.dirty); // false until the user enters a value
console.log(password.value); // null until the user enters a value
console.log(password.hasError('required')); // false

Note that you can pass an argument to the constructor, and that this argument will be the value.

const password = new FormControl('Cédric');
console.log(password.value); // logs "Cédric"

These controls can be grouped in a FormGroup to represent a part of the form and have dedicated
validation rules. The form itself is a group.

A FormGroup has the same properties as a FormControl, with a few differences:

* valid: if all fields are valid, then the group is valid.
* invalid: if one of the fields is invalid, then the group is invalid.

* errors: an object containing the group errors or null if the group is valid. Each error is a key,

170

whose value is an array containing every control affected by this error.
 dirty: false until one of the controls gets dirty.
* pristine: the opposite of dirty.
* touched: false until one of the controls gets touched.
* untouched: the opposite of touched.

* value: the value of the group. To be more accurate, it’s an object with key/values representing
the controls and their values.

 valueChanges: an Observable emitting every time there is a change on the group

It offers the same methods as FormControl like hasError(). It also has a method get() to retrieve a
control in the group.

You can create one like this:

const form = new FormGroup({
username: new FormControl('Cédric'),
password: new FormControl()

b

console.log(form.dirty); // logs false until the user enters a value
console.log(form.value); // logs Object {username: "Cédric", password: null}
console.log(form.get('username')); // logs the Control

Let’s begin with a "template-driven" form!

18.2. Template-driven

With this method, we are going to use a bunch of directives in our form, and let the framework
build the necessary FormControl and FormGroup instances. For example, the NgForm directive
transforms the form element into its powerful Angular version - think of it as the difference
between Bruce Wayne and Batman.

All the directives we need are included in the FormsModule module, so we need to import it in our
root module.

import { NgModule } from '@angular/core’;
import { BrowserModule } from '@angular/platform-browser’;
import { FormsModule } from '@angular/forms’;

@NgModule({
imports: [BrowserModule, FormsModule],
declarations: [PonyRacerAppComponent],
bootstrap: [PonyRacerAppComponent]

})
export class AppModule {

}

171

FormsModule contains the directives for the "template-driven" way. We’ll see later that there exists
another module, ReactiveFormsModule, in the same package @angular/forms, which is needed for the
"code-driven" way.

Let’s add the submit button:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-register’,
template: *
<h2>Sign up</h2>
<form (ngSubmit)="register()">
<button type="submit">Register</button>
</form>

\

1))

export class RegisterFormComponent {
register() {
// we will have to handle the submission

}
}

I added a button, and defined an event handler for ngSubmit on the form tag. The ngSubmit event is
emitted by the NgForm directive when submit is triggered. It calls the register() method of our
controller, which will be implemented later.

Last thing: our template will quickly grow, so let’s extract it to a dedicated file, using templateUr1:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-register’,
templateUrl: 'register-form.component.html’

1))

export class RegisterFormComponent {
register() {
// we will have to handle the submission

}
}

In the "template-driven" way, you write your forms pretty much like in Angular]S 1.x, with a lot of
things in your template and not many in your component.

In its simplest form, you just add ngModel directives to your form template and that’s all. The NgModel
directive creates the FormControl for you, and the form automatically creates the FormGroup. Note
that you have to give a name to the input, that will be used by the framework to create the
FormGroup.

172

<h2>Sign up</h2>
<form (ngSubmit)="register()">
<div>
<label>Username</label><input name="username" ngModel>
</div>
<div>
<label>Password</label><input type="password" name="password" ngModel>
</div>
<button type="submit">Register</button>
</form>

Now of course we need to do something for the submission, and to get hold of the user name and
password. To achieve that, we can define a local variable and assign it with the NgForm object
created by Angular for the form. Remember these from the Template chapter? Here, we are going
to define a variable, userForm, referencing the form. We can do that because the form directive
exports the NgForm directive instance, which has the same methods as the FormGroup class. We’ll see
the exporting part in more details when we study how to build advanced directives.

<h2>Sign up</h2>
<!-- we use a local variable #userForm -->
<!-- and give its value to the register method -->
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
<div>
<label>Username</label><input name="username" ngModel>
</div>
<div>
<label>Password</label><input type="password" name="password" ngModel>
</div>
<button type="submit">Register</button>
</form>

Our register method is now called with the form value as the argument:

import { Component } from '@angular/core’;

@Component ({
selector: 'ns-register’,
templateUrl: 'register.component.html’
1)
export class RegisterFormComponent {
register(user) {
console.log(user);
}
+

This is only one-way data-binding though. If you update the field, the model will be updated, but
updating the model will not update your field value. But ngModel is more powerful than you think!

173

18.2.1. Two-way data-binding

If you have been using Angular]S 1.x, or even just read an article about it, you must have seen the
famous example with an input and an expression displaying the input value, updated every time
the user modified the input, and the field automatically updated when the model changed. The
famous "Two-Way Data-Binding", something like:

<!-- Angularl]S 1.x code example -->
<input type="text" ng-model="username">
<p>{{ username }}</p>

We can do a similar thing with Angular.

You start by defining a model of what will be filled in the form. We’ll do this in a User class:

class User {
username: string;
password: string;

}

Our RegisterFormComponent should have a field user of type User:

import { Component } from '@angular/core’;

class User {
username: string;
password: string;

}

@Component ({
selector: 'ns-register’',
templateUrl: 'register-form.component.html',

1))

export class RegisterFormComponent {
user = new User();

register() {
console.log(this.user);

}
}

As you can see this time, the register () method is now directly logging the user object.

We are ready to add the inputs of our form. We need to bind our inputs to the model we have
defined. For this, we’ll use the ngModel directive:

174

<h2>Sign up</h2>
<form (ngSubmit)="register()">
<div>
<label>Username</label><input name="username" [(ngModel)]="user.username">
</div>
<div>
<label>Password</label><input type="password" name="password" [(ngModel)]="user
.password">
</div>
<button type="submit">Register</button>
</form>

Wow! [(ngModel)]? What is this syntax? It’s a syntactic sugar that has been introduced to express
the same thing as:

<input name="username" [ngModel]="user.username” (ngModelChange)="user.username =
$event">

The NgModel directive updates the input value every time the related model user.username changes,
hence the [ngModel]="user.username" part. And it emits an event from an output named
nghModelChange every time the input is updated by the user, where the event is the new value, hence
the (ngModelChange)="user.username = $event" part, which will update the model user.username with
this new value.

Instead of writing the long form, we can use the new syntax [()]. If, like me, you have trouble to
remember if it is [()] or ([]), there is a cool mnemonic tip: it’s a banana-box! Yes, look: the [] is a
box, and, inside, there are two bananas facing each other ()!

Now, every time we type something in our input, the model is updated. And if the model is updated
in our component, our field will automatically display the correct value:

<h2>Sign up</h2>
<form (ngSubmit)="register()">
<div>
<label>Username</label><input name="username" [(ngModel)]="user.username">
<small>{{ user.username }} is an awesome username!</small>
</div>
<div>
<label>Password</label><input type="password" name="password" [(ngModel)]="user
.password">
</div>
<button type="submit">Register</button>
</form>

If you try the example above, you will see that the two-way data-binding works. And so does our
form: we can submit it, and the component will log our user object!

175

18.3. Code-driven

In Angular]S 1.x you had to build your forms mostly in your templates. Angular introduces an
imperative way, which allows to construct the form programmatically rather than through a
template.

Now we can handle forms directly in our code. It’s more verbose but more powerful.

To build a form in our component code, we’ll use the abstractions we talked about: FormControl and
FormGroup.

With these basic elements we can build a form in our component. But instead of writing new
FormControl() or new FormGroup(), we will use a helper class, FormBuilder, that we can inject:

import { Component } from '@angular/core’;
import { FormBuilder } from '@angular/forms’;

@Component ({
selector: 'ns-register’,
templateUrl: 'register-form.component.html

1))

export class RegisterFormComponent {

constructor(fb: FormBuilder) {
// we will have to build the form

}

register() {
// we will have to handle the submission

}
}

The FormBuilder is a helper class, with a handful of methods to create controls and groups. Let’s
start simple, and create a small form with two controls, a username and a password.

176

import { Component } from '@angular/core’;
import { FormBuilder, FormGroup } from '@angular/forms’;

@Component ({
selector: 'ns-register’,
templateUrl: 'register-form.component.html’

})
export class RegisterFormComponent {
userForm: FormGroup;

constructor(fb: FormBuilder) {
this.userForm = fb.group({
username: '',
password: "'

1)
}

register() {
// we will have to handle the submission
}
}

We created a form with two controls. You can see that each control is created with the value
That’s the same as using the helper method control() of the FormBuilder with this string as
parameter, and the same as calling the new FormControl('') constructor: the string represents the
initial value you want to display in your form. Here it is empty, so the inputs will be empty. But you
can have a value here, of course, if you want to edit an existing entity for example. The helper
method can also have other specific attributes, as we will see later.

We need to implement the register method. As we saw, the FormGroup object has a value attribute, so
we can simply log its content with:

177

import { Component } from '@angular/core’;
import { FormBuilder, FormGroup } from '@angular/forms’;

@Component ({
selector: 'ns-register’,
templateUrl: 'register-form.component.html’
})
export class RegisterFormComponent {
userForm: FormGroup;

constructor(fb: FormBuilder) {
this.userForm = fb.group({
username: fb.control(''),
password: fb.control('")
3
}

register() {
console.log(this.userForm.value);
}
}

We now need to do some work in the template. We are going to use other directives than those we
saw for the "template-driven" forms. These directives are in the ReactiveFormshModule that you have
to import in your root module. Their names begin with form instead of ng as it was the case for the
"template-driven" forms.

The form needs to be bound to our userForm object, thanks to the formGroup directive. Each input
field is bound to a control, thanks to the formControlName directive:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
</div>
<div>
<label>Password</label><input type="password" formControlName="password">
</div>
<button type="submit">Register</button>
</form>

We want to bind our component’s attribute userForm object to formGroup, so we use the bracket
notation [formGroup]="userForm". Each input receives the formControlName directive with a string
literal representing the control it is bound to. If you specify a name that does not exist, you will
have an error. As we pass a value (and not an expression), we don’t put the [] around
formControlName

And we’re done: clicking on the submit button will log an object containing the username and the

178

chosen password!

If you need to, you can update the value of a FormControl from your component, using setValue():

import { Component } from '@angular/core’;
import { FormBuilder, FormGroup, FormControl } from '@angular/forms’;

@Component ({
selector: 'ns-register’,
templateUrl: 'register-form.component.html',

)

export class RegisterFormComponent {
usernameCtrl: FormControl;
passwordCtrl: FormControl;
userForm: FormGroup;

constructor(fb: FormBuilder) {
this.usernameCtrl = fb.control('');
this.passwordCtrl = fb.control('");
this.userForm = fb.group({
username: this.usernameCtrl,
password: this.passwordCtrl
3
}

reset() {
this.usernameCtrl.setValue('');
this.passwordCtrl.setValue('");

}

register() {
console.log(this.userForm.value);

}
}

18.4. Adding some validation

Validation is usually a big part of the form-building. Some fields are required, some depend on one
another, some should be in a specific format, some should not have a value greater or lower than X,
for example.

Let’s start by adding basic validation rules: all our fields are required.

18.4.1. In a code-driven form

To specify that every field is required, we will use a Validator. A validator returns a map of errors
or null if it detects no error.

A few validators are provided by the framework:

179

* Validators.required to ensure that a control is not empty

» Validators.minLength(n) to ensure that the value entered has at least n characters

Validators.maxLength(n) to ensure that the value entered has at most n characters

* Validators.email() (available since version 4.0) to ensure that the value entered is a valid email
address (good luck to find the correct regular expression by yourself for this one...).

Validators.pattern(p) to ensure that the value matches the regular expression p

You can apply several validators at once, by using an array, on a FormControl or on a FormGroup. Here
we want every field to be mandatory, so we can add the required validator to each control, and
make sure that the username is 3 characters at least.

import { Component } from '@angular/core’;
import { FormBuilder, FormGroup, Validators } from '@angular/forms’;

@Component ({

selector: 'ns-register’',

templateUrl: 'register-form.component.html',
})
export class RegisterFormComponent {

userForm: FormGroup;

constructor(fb: FormBuilder) {
this.userForm = fb.group({
username: fb.control('', [Validators.required, Validators.minLength(3)]),
password: fb.control('', Validators.required)

1
}

register() {
console.log(this.userForm.value);

}
}

18.4.2. In a template-driven form

Adding a required field in a template-driven form is also really straightforward: you just have to
add the required attribute to the inputs. required is a provided directive, and will automatically add
the validator to this field. Same thing with minlength, maxlength and email.

Starting from the two-way data-binding example:

180

<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
<div>
<label>Username</label><input name="username" ngModel required minlength="3">
</div>
<div>
<label>Password</label><input type="password" name="password" ngModel required>
</div>
<button type="submit">Register</button>
</form>

Note that this can be done in a "code-driven" form too.

18.5. Errors and submission

Of course, our user should not be able to submit the form while there are still errors left, and these
errors should be perfectly displayed.

If you try the examples, you will see that even if the fields are required, we can still submit our
form. Maybe we can do something about that?

We know that we can easily disable a button using the disabled property, but we need to give it an
expression reflecting the state of the current form.

18.5.1. Errors and submission in a code-driven form

We added a field userForm, of type FormGroup, to our component. This field gives us a complete view
of the form and field states and errors.

For example, we can disable the form submission if the form is not valid:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
</div>
<div>
<label>Password</label><input type="password" formControlName="password">
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

As you can see on the last line, we just need to link disabled to the invalid property of userForm.

Now we can only submit when all controls are valid. To help our user understand why the form
can’t be submitted, we should display error messages.

Still using the userForm, we can do:

181

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
<div *nglf="userForm.get('username').hasError('required')">Username is
required</div>
<div *ngIf="userForm.get('username"').hasError('minlength')">Username should be 3
characters min</div>
</div>
<div>
<label>Password</label><input type="password" formControlName="password">
<div *ngIlf="userForm.get('password').hasError('required')">Password is
required</div>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Cool! The errors are now displayed if the fields are empty, and they disappear when there is a
value. But they are displayed right away when the form is shown. Maybe we can hide them until
the user changes the value?

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
<div *ngIf="userForm.get('username"').dirty &&
userForm.get('username').hasError('required')">
Username is required
</div>
<div *ngIf="userForm.get('username').dirty &&
userForm.get('username').hasError('minlength')">
Username should be 3 characters min
</div>
</div>
<div>
<label>Password</label><input type="password" formControlName="password">
<div *ngIf="userForm.get('password').dirty &&
userForm.get('password').hasError('required')">
Password is required
</div>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

It’s a bit verbose, but you can create a reference for each control in your component:

182

@Component ({
selector: 'ns-register’',
templateUrl: 'register-form.component.html’
})
export class RegisterFormComponent {
userForm: FormGroup;
usernameCtrl: FormControl;
passwordCtrl: FormControl;

constructor(fb: FormBuilder) {
this.usernameCtrl = fb.control('', Validators.required);
this.passwordCtrl = fb.control('', Validators.required);

this.userForm = fb.group({
username: this.usernameCtrl,
password: this.passwordCtrl
1
}

register() {
console.log(this.userForm.value);
b
}

And then use the references in your template:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
<div *ngIlf="usernameCtrl.dirty && usernameCtrl.hasError('required')">Username is
required</div>
<div *ngIlf="usernameCtrl.dirty && usernameCtrl.hasError('minlength')">Username
should be 3 characters min</div>
</div>
<div>
<label>Password</label><input type="password" formControlName="password">
<div *ngIf="passwordCtrl.dirty && passwordCtrl.hasError('required')">Password is
required</div>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

18.5.2. Errors and submission in a template-driven form

In a template-driven form, we don’t have any field in our component referring to the FormGroup, but
we already declared a local variable in the template, referring to the NgForm object exported by the
form directive. Once again, this variable allows knowing the state of the form and accessing its

183

controls.

<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
<div>
<label>Username</label><input name="username" ngModel required>
</div>
<div>
<label>Password</label><input type="password" name="password" ngModel required>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Now we need to display the errors of each field.

Like the form directive, each control exports its FormControl object, so we can create a local variable
to access the errors:

<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
<div>
<label>Username</label><input name="username" ngModel required #username=
"ngModel">
<div *ngIlf="username.dirty &% username.hasError('required"')">Username is
required</div>
</div>
<div>
<label>Password</label><input type="password" name="password" ngModel required
#ipassword="ngModel">
<div *ngIf="password.dirty && password.hasError('required"')">Password is
required</div>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Yay!

18.6. Add some style

Whatever way you choose to create your forms, Angular does another awesome job for us: it
automatically adds and removes CSS classes on each field (and on the form) to allow us to add some
visual style.

For example, a field will have the class ng-invalid if one of its validators fails, or ng-valid if all the
validators succeed. That means you can easily add some style, like a nice red border around the
fields failing the validation:

184

<style>
input.ng-invalid {
border: 3px red solid;
}
</style>
<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
<div>
<label>Username</label><input name="username" ngModel required>
</div>
<div>
<label>Password</label><input type="password" name="password" ngModel required>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Another useful CSS class is ng-dirty which will be present if the user has changed the value. Its
opposite is ng-pristine, present if the user never changed the value. I usually display the red border
only when the user has changed the value at least once:

<style>
input.ng-invalid.ng-dirty {
border: 3px red solid;
}
</style>
<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
<div>
<label>Username</label><input name="username" ngModel required>
</div>
<div>
<label>Password</label><input type="password" name="password" ngModel required>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Finally, there is a last CSS class: ng-touched. It will be present if the user enters and leaves the field
at least once (even if she/he did not changed the value). Its opposite is ng-untouched.

When you display a form for the first time, a field will usually have the CSS classes ng-pristine ng-
untouched ng-invalid. Then, when the user enters and leaves the field, it switches to ng-pristine ng-
touched ng-invalid. When the user changes the value, still for an invalid one, we’ll have ng-dirty
ng-touched ng-invalid. And finally, when the value is valid: ng-dirty ng-touched ng-valid.

18.7. Creating a custom validator

Pony races are an addictive game so it’s only allowed to register if you are over 18. And we want

185

the user to enter the password twice, to be sure she/he hasn’t made a mistake.
How do we do this? We create a custom validator.
To do so, we just have to create a method that takes a FormControl, tests its value and returns an

object with the errors or null, if the validation passes.

const is0ldEnough = (control: FormControl) => {

// control is a date input, so we can build the Date from the value
const birthDatePlus18 = new Date(control.value);
birthDatePlus18.setFullYear(birthDatePlus18.getFullYear() + 18);
return birthDatePlus18 < new Date() ? null : { tooYoung: true };

}I

Our validation method is pretty easy: we take the value of the control, we build the date, check if
the 18th birthday is before now and return an error with the key 'tooYoung' if not.

Now we need to include this validator.

18.7.1. Using a validator in a code-driven form

We need to add a new control in our form with this validator, using the FormBuilder:

186

import { Component } from '@angular/core’;
import { FormBuilder, FormControl, FormGroup, Validators } from '@angular/forms';

@Component ({
selector: 'ns-register’,
templateUrl: 'register-form.component.html’
b
export class RegisterFormComponent {
usernameCtrl: FormControl;
passwordCtrl: FormControl;
birthdateCtrl: FormControl;
userForm: FormGroup;

static isOldEnough(control: FormControl) {
// control is a date input, so we can build the Date from the value
const birthDatePlus18 = new Date(control.value);
birthDatePlus18.setFullYear(birthDatePlus18.getFullYear() + 18);
return birthDatePlus18 < new Date() ? null : { tooYoung: true };

}

constructor(fb: FormBuilder) {
this.usernameCtrl = fb.control('', Validators.required);
this.passwordCtrl = fb.control('', Validators.required);
this.birthdateCtrl = fb.control('', [Validators.required, RegisterFormComponent
.1s01dEnough]);
this.userForm = fb.group({
username: this.usernameCtrl,
password: this.passwordCtrl,
birthdate: this.birthdateCtrl
3
by

register() {
console.log(this.userForm.value);

}
}

As you can see, we have added a new control birthdate, with two validators composed. The first
validator is required and the other is a static method of our class is01dEnough. Of course this method
could be in another class if you wanted (required is a static method for example).

Don’t forget to add the field and display the errors in the form:

187

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
<div *ngIlf="usernameCtrl.dirty && usernameCtrl.hasError('required')">Username is
required</div>
</div>
<div>
<label>Password</label><input type="password" formControlName="password">
<div *ngIf="passwordCtrl.dirty && passwordCtrl.hasError('required')">Password is
required</div>
</div>
<div>
<label>Birth date</label><input type="date" formControlName="birthdate">
<div *ngIf="birthdateCtrl.dirty">
<div *ngIlf="birthdateCtrl.hasError('required')">Birth date is required</div>
<div *ngIf="birthdateCtrl.hasError('tooYoung')">You're way too young to be
betting on pony races</div>
</div>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Pretty easy, no?

Note that it’s also possible to create and add asynchronous validators (for example to check with
the backend if a username is available).

188

@Component ({
selector: 'ns-register’',
templateUrl: 'register-form.component.html’

b

export class RegisterFormComponent {
usernameCtrl: FormControl;
userForm: FormGroup;

constructor(fb: FormBuilder, private userService: UserService) {
this.usernameCtrl = fb.control('', Validators.required, control => this
.isUsernameAvailable(control));
this.userForm = fb.group({
username: this.usernameCtrl

)
}

isUsernameAvailable(control: AbstractControl) {
const username = control.value;
return this.userService.isUsernameAvailable(username)
.map(available => available ? null : { alreadyUsed: true });

}

register() {
console.log(this.userForm.value);

}
}

This asynchronous validator is not a static method this time because it needs to access the service.

The method from the service returns an Observable that emits either null if there is no error (the
username is available), or an object to represent the error (the key will be the error, as with
synchronous validators).

Interesting feature, the class ng-pending is dynamically added to the field while the asynchronous
validator is still completing its job. It allows to display a spinner for example to show that the
validation is still ongoing.

18.7.2. Using a validator in a template-driven form

To add a custom validator in a template-driven form, we need to add it in... the template!

To do this, you need to build a custom directive that we will apply on the input, but honestly this is
way easier by using a "code-driven" form...

Or you can combine the best of both world!

18.8. Grouping fields

Until now, we just had one group: the complete form. But we can declare groups inside a group.

189

That’s very useful if you want to validate a group of fields together like an address, or, like in our
example, if you want to check if the password and its confirmation match.

The solution is to use a code-driven form (that you can combine with a template-driven form if you
want to, as we saw above).

First, create a new group, passwordForm with the two fields and add it in the group userForm:

import { Component } from '@angular/core’;
import { FormBuilder, FormControl, FormGroup, Validators } from '@angular/forms";

@Component ({
selector: 'ns-register’,
templateUrl: 'register-form.component.html’
}
export class RegisterFormComponent {
passwordForm: FormGroup;
userForm: FormGroup;
usernameCtrl: FormControl;
passwordCtrl: FormControl;
confirmCtrl: FormControl;

static passwordMatch(group: FormGroup) {
const password = group.get('password').value;
const confirm = group.get('confirm').value;
return password === confirm ? null : { matchingError: true };

}

constructor(fb: FormBuilder) {
this.usernameCtrl = fb.control('', Validators.required);
this.passwordCtrl = fb.control('', Validators.required);
this.confirmCtr1l = fb.control('', Validators.required);

this.passwordForm = fb.group(
{ password: this.passwordCtrl, confirm: this.confirmCtrl },
{ validator: RegisterFormComponent.passwordMatch }

)I

this.userForm = fb.group({ username: this.usernameCtrl, passwordForm: this
.passwordForm });

}

register() {
console.log(this.userForm.value);

}
}

As you can see, we have added a validator on the group, passwordMatch, that will be called every
time one of the fields changes.

190

Let’s update the template to reflect the new form, using the formGroupName directive:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
<div *ngIlf="usernameCtrl.dirty && usernameCtrl.hasError('required')">Username is
required</div>
</div>
<div formGroupName="passwordForm">
<div>
<label>Password</label><input type="password" formControlName="password">
<div *nglf="passwordCtrl.dirty && passwordCtrl.hasError('required')">Password is
required</div>
</div>
<div>
<label>Confirm password</label><input type="password" formControlName="confirm">
<div *ngIlf="confirmCtrl.dirty && confirmCtrl.hasError('required')">Confirm your
password</div>
</div>
<div *ngIf="passwordForm.dirty && passwordForm.hasError('matchingError')">Your
password does not match</div>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Voila!

18.9. Reacting on changes

Last cool feature when using a code-driven form: you can easily react on value changes, using the
observable valueChanges. Reactive programming FTW! For example, let’s say we want our password
field to display a strength indicator. We want to compute the strength at every change of the
password value:

191

import { Component } from '@angular/core’;

import { FormBuilder, FormControl, FormGroup, Validators } from '@angular/forms';
import 'rxjs/add/operator/debounceTime’;

import 'rxjs/add/operator/distinctUntilChanged’;

@Component ({
selector: 'ns-register’',
templateUrl: 'register-form.component.html'
})
export class RegisterFormComponent {
userForm: FormGroup;
usernameCtrl: FormControl;
passwordCtrl: FormControl;
passwordStrength = 0;

constructor(fb: FormBuilder) {
this.usernameCtrl = fb.control('', Validators.required);
this.passwordCtrl = fb.control('', Validators.required);

this.userForm = fb.group({
username: this.usernameCtrl,
password: this.passwordCtrl

;i

// we subscribe to every password change
this.passwordCtrl.valueChanges
// only recompute when the user stops typing for 400ms
.debounceTime (400)
// only recompute if the new value is different than the last
.distinctUntilChanged()
.subscribe(newValue => this.passwordStrength = newValue.length);

}

register() {
console.log(this.userForm.value);

}
}

Now we have a passwordStrength field in our component instance, that we can display to our user:

192

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
<div>
<label>Username</label><input formControlName="username">
<div *ngIlf="usernameCtrl.dirty && usernameCtrl.hasError('required')">Username is
required</div>
</div>
<div>
<label>Password</label><input type="password" formControlName="password">
<div>Strength: {{ passwordStrength }}</div>
<div *ngIf="passwordCtrl.dirty && passwordCtrl.hasError('required')">Password is
required</div>
</div>
<button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

We are leveraging Rx]JS operators to add a few cool features:

* debounceTime(400) will only emit values if the user stops typing for 400ms. That avoids to
compute the password strength on every value the user enters. That’s really interesting if the
computing takes a long time, or launches an HTTP request.

» distinctUntilChanged() will only emit values if the new value entered is different than the last
one. Again that’s really interesting: imagine that the user enters 'password' then stops typing.
We compute the strength. Then she enters a new character and removes it quickly (before
400ms). The next event out of debounceTime will again be 'password'. It makes no sense to
recompute the password strength again! This operator will not even emit the value, and saves
us the recomputing.

Rx]JS can do tons of work for you: imagine coding yourself what we just did in two lines. It can also
easily combine with HTTP work, as the Http service uses observables too.

18.10. Updating on blur or on submit only

Angular 5.0 introduced the possibility to wait for the blur or the submit event to update the field’s
value and validity. To do so, the FormControl constructor accepts an options object as the second
parameter, to define the synchronous and asynchronous validators, and also the updateOn option.
Its value can be:

* change, it’s the default: the value and validity are updated on every change;

* blur, the value and validity are then updated only when the field loses the focus.

* submit, the value and validity are then updated only when the parent form is submitted.

193

this.usernameCtr1l = new FormControl('', Validators.required);
this.passwordCtrl = new FormControl('", {

validators: Validators.required,

updateOn: 'blur’
Ik

It’s also possible to configure this option on a group of fields all at once:

this.userForm = new FormGroup({
username: this.usernameCtrl,
password: this.passwordCtrl

oA
updateOn: 'blur'’

1

The same feature is available in template-driven forms, with the ngMode10ptions input of the NgModel
directive:

<label>Username</label>
<input name="username" #usernameCtrl="ngModel"

[(ngModel)]="user.username" [ngModelOptions]="{ updateOn: 'blur' }" required>
<div *ngIf="usernameCtrl.dirty && usernameCtrl.hasError('required"')">Username is
required</div>

or globally on a form with the NgFormOptions input (which appeared with Angular 5.0) of the
directive NgForm:

<form (ngSubmit)="register()" [ngFormOptions]="{ updateOn: 'blur' }">
<div>
<label>Username</1label>
<input name="username" #usernameCtrl="ngModel"
[(ngModel)]="user.username" required>
<div *ngIf="usernameCtrl.dirty && usernameCtrl.hasError('required')">Username is
required</div>

18.11. Summary

Angular offers two ways to build a form:

* one by setting up everything in the template. But, as you have seen, it forces us to have custom
directives for the validation and is harder to test. This way of doing things is useful for simple
forms, with just one or a few fields for example, and it gives us two-way data-binding.

* one by setting up almost everything in the component. This way allows an easier setup for
validation and testing, with several levels of groups if you need them. It is your weapon of

194

choice for building complex forms. You can even react on changes on a group, or on a field.

* combining both of them for the reduced verbosity of "template-driven" forms, and the power of
"code-driven" forms for validation.

This is maybe the most pragmatic approach: go with template-based and bidirectional binding if
you like it, and as soon as you need access to form groups or form controls, for example to add
custom validation or reactive behavior, then declare the ones you need in the component, and bind
the inputs and divs to them using the appropriate directives.

Try our exercises Register form &, Custom validators in forms ¢ and Login
form &». Youw’ll learn how to build a simple form using the code-driven way
and another one with the template-driven way. You’ll also learn how to write
custom validators, how to test forms, and how to authenticate your users!

PRACTICE

195

https://angular-exercises.ninja-squad.com/exercises/11/register
https://angular-exercises.ninja-squad.com/exercises/12/validation
https://angular-exercises.ninja-squad.com/exercises/13/login
https://angular-exercises.ninja-squad.com/exercises/13/login

Chapter 19. Zones and the Angular magic

Developing with Angular]S 1.X gave a "magic" feeling, and Angular still still gives that same effect:
you type some value in an input and everything is magically updating all over the place.

I love magic, but I prefer to understand what’s going on with the tools I use. If you are like me, I
think this part will be interesting for you too: we are going to see how Angular works under the
hood!

But first, let’s start with how Angular]S 1.x works, which should be interesting, even you’ve never
used it.

All JavaScript frameworks work roughly the same way: they help the developer to react to
application events, to update the application state, and to refresh the DOM accordingly. But they
don’t all use the same way to achieve that goal.

Ember]S, for example, asks the developers to use setters to change the state of the objects, in order
for the framework to be able to intercept the calls to these setters. That’s what allows it to know
which changes have been applied to the model, and thus to update the DOM accordingly.

React, on the other hand, chose to recompute the DOM after each change. But since modifying the
whole DOM is a costly operation, it starts by applying the changes to a virtual DOM, and then only
applies the changes between the virtual DOM and the actual DOM.

Angular doesn’t use any setter, and doesn’t use any virtual DOM either. So, how does it know what
to change in the DOM?

19.1. Angular]S 1.x and the digest cycle

The first step is to detect changes in the model. A change is always triggered by an event, coming
either from the user directly (for example, a button click or an input in a form), or from a "system"
event (an HTTP response, an asynchronous method execution after a timeout, etc.).

So, how does Angular]S 1.x know that an event has happened? That part is actually pretty simple: it
forces us to use its directives, for example ng-click to react to a click event, or ng-model to observe
changes to an input. It also forces us to use its services, for example $http for HTTP requests or
$timeout to execute tasks asynchronously.

Using these directives and services allows the framework to be well informed about any event that
has happened. That’s the first part of the magic! And that’s this first part which triggers the second
one: the framework now has to analyze the changes made to the model, in order to decide which
part of the DOM must be updated (and how).

To do that, in version 1.x, the framework maintains a list of watchers, all observing and reacting to
changes in a specific part of the model. To simplify, a watcher is created for every dynamic
expression used in the HTML templates. This can lead to several hundreds of watchers in a page.

These watchers are central to Angular]S 1.x: they are the memory of the framework, and are here
to remember the state of the app.

196

Every time the framework detects an event (a user typing something in an input with an ng-model,
an HTTP response, a timeout execution, etc.), it triggers what is called the digest cycle.

This digest cycle evaluates all the expressions stored in the watchers and compares their new value
with their old value. If there is a change, then the framework knows that it has to update the DOM,
so that the UI displays the new value instead of the old one. This technique is called dirty checking.

event | —p| digest cycle | —p | DOM update

wait for a change

During this digest cycle, Angular is going over the whole list of watchers, and evaluates every
watched expression. But there is a catch: it will execute this whole cycle again until the results are
stable, i.e. until all the new values are equal to the old values.

Why does it do that? Because each time a change is detected in the value of a watched expression, a
callback function is called. And this callback function can, in turn, modify the model, and thus
change the value of one or several other watched expressions!

Let’s take a minimalistic example: a page with two fields that the user must fill: name and
password. Let’s also say that the page displays a password strength indicator. A watcher is used to
watch the value of the password, and recomputes its strength every time it changes.

After the first iteration of the digest cycle, once the user has entered the first letter of his/her
password, we thus have this list of watchers:

$$watchers (expression -> value)
- "user.name" -> "Cédric"

- "user.password" -> "h"

- "passwordStrength" -> 0

The callback function of the watcher observing the user.password expression is then called, and it
computes the new password strength: 3.

Angular doesn’t know anything about the changes that might have been done on the model, so it
starts a second digest iteration to know if the model is stable.

$$watchers

- "user.name" -> "Cédric"
- "user.password" -> "h"
- "passwordStrength" -> 3

The model isn’t stable: the value of passwordStrength has changed since the first iteration. So it starts
another digest iteration.

197

$$watchers

- "user.name" -> "Cédric"
- "user.password" -> "h"
- "passwordStrength" -> 3

This time, the model is stable. That’s only at that time that Angular]S 1.x is flushing the result to the
DOM. So the digest cycle happens at least 2 times for every change in your application. The digest
can iterate up to 10 times, but no more: after 10 iterations, if the results are not stable, the
framework considers there is an infinite loop and throws an exception.

So my little drawing earlier is much more like:

event | —p| digest cycle | —p | DOM update

L |

2X — 10x

wait for a change

And to insist: this is going on after each event. That means that if your user is entering 5 characters
in the password field, the digest cycle will run 5 times, with 3 iterations every time, which leads to a
total of 15 iterations.

In a real application, you can have several hundred watchers, and thus thousands of expression
evaluations after every event!

Even if that sounds crazy, it works fine, because modern browsers are very fast, and there are ways
to optimize a few things if necessary.

So let’s recap the two important points about Angular]S 1.x:
* you must use the services and directives of the framework for everything that can make a

change to the model;

* modifying the model after an event that is not handled by Angular is possible, but you have to
trigger the detection change mechanism explicitly (by using the famous $scope.$apply()
method, which starts the digest cycle). For example, if you want to send an HTTP request
without using the $http service, you need to call $scope.$apply() in the response callback to tell
the framework: "Hey, I have stored new values in the model, would you please start the digest
cycle?".

The magic in the framework can be split in two parts:

* the triggering of the change detection after each event;

* the change detection itself, thanks to the watchers and the digest cycles.

Now let’s see how Angular is working, and how it differs from Angular]s.

198

19.2. Angular and zones

Angular is based on the same principles, but implements them in a different way. And we might
even say, in a smarter way.

For the first part of the problem — triggering the change detection —the Angular team has built a
small side-project named Zone.js. This project is not tied to Angular, because zones are a tool that
can be useful in other projects. Zones are not a brand new concept either: they already exist in the
Dart language (another Google project), for quite some time. They also have similarities with
Domains in Node.js (now abandoned) or the ThreadLocals in Java.

But it’s probably the first time that zones are being used in JavaScript. No worries, we’ll discover
them together.

19.2.1. Zones

A zone is an execution context. This context received code to execute, and this code can be
synchronous or asynchronous. A zone brings some benefits:

* hooks that can be executed before and after the code to execute

* a way to intercept potential errors of the code to execute

* a way to store variables bound to this context

Let’s take an example. Suppose I have the following code in my application:
// score computation -> synchronous
const score = computeScore();

// player score update -> synchronous
updatePlayer(player, score);

When we execute that code, we obtain:

computeScore: new score: 1000
udpatePlayer: player 1 has 1000 points

Now suppose I want to measure how much time is spent executing that code. I can do something
like this:

startTimer();
const score = computeScore();
updatePlayer(player, score);
stopTimer();

And that would produce:

199

https://github.com/angular/zone.js

start

computeScore: new score: 1000
udpatePlayer: player 1 has 1000 points
stop: 12ms

Easy. Now what happens if updatePlayer is an asynchronous function? JavaScript works in a quite
special way: asynchronous operations are put at the end of the execution queue, and will thus be
executed after the synchronous operations.

So, my previous code:

startTimer();

const score = computeScore();
updatePlayer(player, score); // asynchronous
stopTimer();

will in fact produce :

start

computeScore: new score: 1000

stop: 5ms

udpatePlayer: player 1 has 1000 points

My execution time is not correct anymore: it only measures the time taken by the synchronous
operations in my code, and not the time elapsed from the start until the end of the score update!
That’s where zones can be useful. We will execute the code in a dedicated execution context: a
zone:

const scoreZone = Zone.current.fork({ name: 'scoreZone' });
scoreZone.run(() => {

const score = computeScore();

updatePlayer(player, score); // asynchronous

H;

Why does this help? Well, if the zone.js library is loaded by the browser, it starts by patching all the
asynchronous functions in the JavaScript runtime. So, every time we use setTimeout() or
setInterval(), or we use an asynchronous API like Promises, XMLHttpRequest, WebSocket,
FileReader, GeoLocation, etc., we will in fact call the patched version of zone.js. Thus, Zone.js knows
when asynchronous operations are done and allows us, developers, to execute some hooks at that
time.

A zone offers several hooks:

» onlInvoke is called before executing the code wrapped in the zone;

» onHasTask is called after the code wrapped in the zone has finished executing;

200

* onHandleError is called when the code wrapped in the zone throws an exception;

» onFork is called when the zone is created.

We can thus use a zone and its hooks to measure the whole time spent from the start to the end of
my asynchronous operation:

const scoreZone = Zone.current.fork({
name: 'scoreZone',
onInvoke(delegate, current, target, task, applyThis, applyArgs, source) {
// start the timer
startTimer();
return delegate.invoke(target, task, applyThis, applyArgs, source);
I
onHasTask(delegate, current, target, hasTaskState) {
delegate.hasTask(target, hasTaskState);
if (!'hasTaskState.macroTask) {
// if the zone run is done, stop the timer
stopTimer();
}
}
3
scoreZone.run(() => {
const score = computeScore();
updatePlayer(player, score);
Ik

And this time, the result is correct!

start

computeScore: new score: 1000
udpatePlayer: player 1 has 1000 points
stop: 12ms

Now you can guess how Angular can benefit from this mechanism. Indeed, the first problem of the
framework is to know when change detection must be triggered. By using zones, and by running
the code we write in a zone, the framework has a good view of what is happening. It can handle
errors in a better way. But more importantly, it can trigger change detection every time an
asynchronous operation is done!

To simplify, Angular does something like this :

201

const anqularZone = Zone.current.fork({
name: 'angular’',
onHasTask: triggerChangeDetection

};
angularZone.run(() => {
// your application code

H;

And the first problem is thus solved! That’s why, in Angular, unlike Angular]S 1.x, it’s not necessary
to use special services to benefit from automatic change detection. You can use whatever you want,
and zones will deal with it.

Note that zones are in a standardization process, and could thus become part of the official
ECMAScript specification in a close future. Other interesting piece of information, the current
implementation of zone.js also provides information for WTF (which does not mean What The Fuck
in this context, but Web Tracing Framework). This library allows to profile your application while
in development mode, and to know exactly how much time was spent in every part of the
application and framework code. In short, plenty of information to analyze and troubleshoot
performance if needed!

19.2.2. Change detection in Angular

The second part of the problem is change detection itself. It’s one thing to know when and how it’s
started, but it’s another to know how it works.

First of all, we have to remember that an Angular application is a tree of components. When
change detection starts, the frameworks goes through all the components in the tree to know if
their state has changed and if the new state affects their view. If it’s the case, the DOM part of the
component which is affected by the change is updated.

The tree traversal goes from the root to the leaves and, unlike Angular]S 1.x, is done only once.
Because there is now a big difference: the change detection does not change the application model
in Angular, whereas a watcher in Angular]S 1.x could change the model during that phase.

Another big difference is that a component may modify its state and the state of its children, but it
must not modify the state of its ancestors. So cascading changes are now over!

Change detection is therefore only used for checking changes in the model and modify the DOM
accordingly. It can’t have side-effects on the model as it could in version 1.x, and thus doesn’t need
more than one pass through the tree, since the model can’t be modified by the traversal!

To be accurate, the traversal, in development mode, is made twice precisely to assert that such
indesirable side effects are inexistent (for example, a child component modifying the model of its
parent). If the second pass detects such a change, an exception is thrown to warn the developer
about the problem.

This strategy has many advantages:

* it’s easier to reason about our applications, because state changes are made in one way, from

202

https://google.github.io/tracing-framework/getting-started.html

the parent to the child, instead of being made in both ways;
* the change detection can’t have infinite loops anymore;

* the change detection is significantly faster.

About this last point, it’s relatively easy to visualize: Angular]S 1.x did (M watchers) * (N cycles)
verifications, whereas Angular only does M verifications.

But there is another parameter to take into account in the performance improvements of Angular:
the time spent by the framework to make these verifications. Once again, the Google team has
employed all the knowledge it has about computer science and virtual machines.

To understand how the performance has been improved, we have to examine how expressions are
evaluated and values compared in both versions of the framework.

In version 1.x, the mechanism is very generic. A single generic method is called for every watcher,
capable of comparing the old and the new values. The problem is that virtual machines that
execute the JavaScript code in our browsers (V8 if you’re using Google Chrome, for example), don’t
really like generic code.

If you don’t mind, I'll digress a little to talk about the behavior of virtual machines. You didn’t
expect that in a book about a JavaScript framework, did you? Virtual machines are quite
extraordinary programs: you give them a piece of code, and they transform it to machine code and
execute it. Very few among us (and certainly not me), are able to produce efficient machine code,
but we don’t really care: we use a high-level language, and let the virtual machine deal with it. Not
only do they translate the code, but they optimize it. And they’re quite good at that. Some even
produce code that runs faster than manually optimized code, because they benefit from runtime
information that is impossible to know in advance.

To improve performance, virtual machines like the ones executing dynamic JavaScript code, use a
strategy named inline caching. It’s a very old technique, invented for SmallTalk, 40 years ago (an
eternity in IT), relying on a relatively simple principle: if a program calls a function frequently, with
the objects having the same shape, the VM should recall how it evaluates the properties of the
object. This technique thus uses a cache, hence the name inline caching. When receiving an object,
it looks in the cache to see if it recognizes the shape of the object. And if it does, it uses the cached
optimized way of accessing the properties of the object.

This kind of cache is really beneficial if the arguments of the function have the same shape. For
example, {name: 'Cédric'} and {name: 'Cyril'} have the same shape. But {name: 'JB', skills: []}
doesn’t have the same shape as the two other ones.

When the arguments always have the same shape, the cache is monomorphic, and thus produces
very fast results. If the cache only has a few entries, it is polymorphic. That means that the method
is called with some different kinds of objects which makes the code a bit slower. Finally, if there are
too many different object shapes, the VM drops the cache completely, because it is megamorphic.
That, of course, is the worst case in terms of performance.

Now let’s come back to our change detection in Angular]S 1.x. We can understand now that this
unique generic function called for all the watchers is not optimizable using inline caching. We’re in
a megamorphic state, where the code is the slowest. And even if that isn’t a problem in most

203

situations, some pages with many watchers make us reach a limit where the performance is not
sufficient anymore.

In order to benefit from the inline caching optimizations of the VM, Angular has adopted a different
strategy. Instead of using a single method able to compare all kinds of objects, the Google team
decided to dynamically generate a comparator for every type. At the startup of the application, the
framework goes through the tree of components, and generates a set of change detection functions,
specific to each component.

For example, given a component PonyComponent with an attribute name displayed in the view, the
framework will generate a change detection function for the whole component, pretty much like
this one (this is a dumbed down version):

(view) => {
var component = view.component;
const currVal = component.name;
if (currVal !== view.oldValue) {
view.oldValue = currVal;
updateView(view, 'p', currVal);
¥
1)

This code is similar to code that you would have written by hand, and that the VM can optimize
because it’s monomorphic. The result is a significantly faster code, allowing for more complex

pages.

To recap, Angular needs to evaluate fewer expressions and compare fewer values than
Angular]S 1.x (a single pass is enough), and those evaluations and comparisons are faster!

From the beginning, the Google team has been monitoring the performance with benchmarks
comparing Angular]S 1.x, Angular and even Polymer and React on various use cases, in order to
check if the new version keeps being faster.

If really needed, it’s even possible to go further than those automatic optimizations provided by the
framework: the ChangeDetection strategy can be changed from its default value, and thus be
adapted and tuned to specific use-cases. But that’s for another chapter.

204

https://github.com/angular/angular/tree/master/modules/benchmarks_external

Chapter 20. Angular compilation: Just in
Time vs Ahead of Time

20.1. Code generation

In the previous chapter, we talked briefly about how the framework was generating a change
detection function for each component.

This is a very interesting and particular point in Angular, which you don’t see in other frameworks:
Angular, at the start of your application, will compile your templates and generate dynamic code for
each component.

The HTML you write in your templates is never read by the browser directly. Instead, Angular
generates a class for each component that represents exactly what you wrote in your template. This
class is generated in a file with the ngfactory. js extension, and you can see it in your browser if you
open the Sources tab in the console.

Let’s take an example, with our well-known PonyComponent. The template is mainly an image with a
bound source property, and a figcaption with an interpolation.

<fiqure>

<figcaption>{{ ponyModel.name }}</figcaption>
</figure>

When Angular compiles this, it first starts by parsing the template to generate what is called an
Abstract Syntax Tree (AST). An AST is a tree representing the structure of the template, commonly
used by compilers to represent such things. It is the result of the syntax analysis step of the
compilation. This AST will then be used to generate the dynamic JavaScript code, a "view definition"
per component (in our case View_PonyComponent). A view definition contains the nodes of the
templates. Nodes can have various types, for example an element (elementDef), with its name and
attributes, or a simple text node (textDef).

function View_PonyComponent() {
return viewDef ([
elementDef('fiqure', [
elementDef('img', ['src']),
elementDef('figcaption', [
textDef()
1)
D
1);
+

In fact, instead of generating the structure as a tree, the compiler generates a flat array (depth-first,

205

with each node indicating how many children it has), for performance reasons:

function View_PonyComponent() {
return viewDef ([
elementDef(2, 'figure'),
elementDef(@, 'img',['src']),
elementDef(1, 'figcaption'),
textDef ()
1);
}

With this representation, Angular is able to generate the DOM corresponding to our PonyComponent:
it basically appends the corresponding HTMLE1ement to the DOM, for every element of the array.

But how does it handle the change detection? The view definition has in fact a last parameter: a
change detection function.

function View_PonyComponent() {
return viewDef([
elementDef(2, 'figure'),
elementDef(@, "img', ['src']),
elementDef(1, 'figcaption'),
textDef ()
1, (checkBinding, view) => {
var component = view.component;
const currVal_0 = component.getPonyImageUrl();
checkBinding(view, 1, currVal_0);
const currVal_1 = component.ponyModel.name;
checkBinding(view, 4, currVal_1);
3
}

This change detection function does basically what you would write by hand. It is called by the
framework every time it needs to check if there is a change (see the previous chapter). It basically
gets the values of the dynamic bits (the src attribute and the interpolation), and then calls a
function of the framework with the view data, the index of the element to update and the new
value. The checkBinding function has only one job: it compares the previous value stored for this
element and if it changed, updates it, and replaces it with the new value.

This generated code is very fast and can be optimized by JS engines (see the part on
monomorphism and inline caching in the previous chapter). On the other end, it takes some time to
generate this code when the application starts. This is called the Just in Time (JiT) compilation.

To sum up, when you are using the JiT compilation: you write TypeScript code and HTML
templates, you compile your TypeScript to JavaScript and send the JS and HTML to your users. At
runtime, the HTML is then compiled to JS code too.

206

20.2. Ahead of Time compilation

But could we generate this code before starting the application? And indeed we can, using a
compiler that the Angular team wrote: the Ahead of Time (AoT) compiler. You can call it manually in
your project (ngc), or if you are using the CLI (as you should), it is a simple flag to add when you
build or serve the app:

ng build --aot

The build will now use the Angular compiler to compile the templates to TypeScript files. To
TypeScript? Yes, because it then allows to check that we didn’t make a mistake in our templates!
The generated TypeScript code and our application code will then be compiled by TypeScript (ngc
will call the TypeScript compiler immediatly), and if you made a mistake in a template, you’ll see an
error:

<figure>

<!-- wrong method name -->

<figcaption>{{ ponyModel.name }}</figcaption>
</figure>

The Angular compiler then generates this TypeScript code:

(checkBinding, view) => {
var component: PonyComponent = view.component;
const currVal_0 = component.getPonyImageUr();
checkBinding(view, 1, currVal_0);
const currVal_1 = component.ponyModel.name;
checkBinding(view, 4, currVal_1);

1)

which raises an error in the TypeScript compilation:
Property 'getPonyImageUr' does not exist on type 'PonyComponent’.

This is great, because it means you can check all your templates before even running the
application. Your future refactoring will be painless: if you rename a method or a property in a
component, you’ll know straight away that the template must be updated, too, because it breaks the
build.

It also means that this compilation may throw an error whereas your code can be fine in the Just in
Time mode. For example, if you have a private property in your component used in your template,
it will be fine in JiT mode (because JavaScript has no notion of private property), but will break in
AoT mode (as the TypeScript code of the ngfactory generated needs to access the property). Right
now, there is no really good source of documentation on the additional rules you must respect to be

207

AoT-compliant, except this repository from Rangle.

Compiling your application before shipping to your users will also greatly speed up the start of the
application, as the compilation will already be done!

To sum up, in AoT mode: you still write TypeScript and HTML, you compile the HTML to TypeScript
and then all TypeScript code to JavaScript, and send this JS code to your users.

The downside will be the size of the JavaScript bundle you will ship to your users: the generated
code is larger than the uncompiled templates. This is somewhat compensated by the fact that you
don’t need to ship the Angular compiler to your users, as the templates are already compiled. And
the compiler is a big piece of code, so this is a nice win. On a medium or large application, this
generally doesn’t compensate the increase in size from the generated factories though. If you want
to have all the perks of the AoT compilation AND a small bundle, you’ll need to dig into the lazy-
loading feature we explained in the Router chapter.

If you want to dig this topic deeper, there is a great talk on the compiler at ng-conf 2017

208

https://github.com/rangle/angular-2-aot-sandbox
https://www.youtube.com/watch?v=RXYjPYkFwy4

Chapter 21. Advanced observables

I must confess that I made a mistake: I under-estimated the value of RxJS and Observables. And
that’s a bit sad because I did the same with Angular]S 1.x and Promises. Promises were extremely
useful in Angular]S 1.x, once you get them, you can handle any asynchronous part of your
application elegantly. But it took some time to get there, and there were traps to avoid (check the
blog post we wrote about Traps, anti-patterns and tips about Angular]S promises, if you want to
learn more about that).

Angular relies on RxJS, and exposes Observables in a few APIs (Http, Forms, Router...). After coding
for a while with Rx]JS, I think this ebook deserves a more "advanced" chapter about Observables,
their creation, subscription, operators, possible uses with Angular, etc. I hope this will give you a
few hints or spark the curiosity to dive deeper into it, because Rx]JS will play a big role into how you
orchestrate your app, and it can do a wonderful job to simplify your life.

21.1. Subscribe, unsubscribe and async pipe

To sum up what we learned in the chapter about Reactive Programming, an Observable represents
a sequence of events to which we can subscribe.

This stream of events can happen at any time, and there can be only one event or ten thousands of
them. But there is a distinction to understand between two kinds of Observables: cold ones and hot
ones.

Cold observables will only emit events when they are subscribed to. You can think of it as watching
a Youtube video: the video will only stream when you hit the "Play” button. For example, the
observables returned by the Http class are cold observables: they will only trigger the request when
you subscribe.

Hot observables are slightly different: they emit events from the moment they are created. You can
think of them as live television: you turn on the TV and you land in the middle of a show, that can
have started minutes or hours ago. The observable representing the valueChanges in a FormControl is
also a hot observable. You will not receive the values emitted before the moment you subscribed,
only the value from the moment you subscribe.

When you subscribe to an observable, you can pass three possible parameters:

* a function to handle the next event
e a function to handle an error
* a function to handle the completion

The first one is pretty obvious. The observable is a stream of events and you define what to do if an
event occurs.

The second one allows to handle a potential error. It’s not always necessary to pass this function. If
the stream of events represents a stream of clicks, there are no possible errors that can occur, even
if your user broke his finger (this joke is not mine, it’s from a great presentation from André Staltz
on RxJS at NgEurope 2016). But in most cases, it is very useful to define an error handler. It allows

209

http://blog.ninja-squad.com/2015/05/28/angularjs-promises/
https://www.youtube.com/watch?v=uQ1zhJHclvs

to define what to do if you get an error response from the HTTP backend, for example.

One thing to understand about this: an error is a terminal event, the observable will not emit new
events after it. So if it is important for you to continue to listen, you probably want to handle this
properly (we’ll come back to this in a minute).

The third function you can pass allows to handle the completion: that’s because an observable can
finish (your Youtube video is over for example). And sometimes you want to do something if the
observable is over, like warning your user, or computing a value...

In our Ponyracer app, a race is represented by an observable, emitting the positions of the ponies.
When the race is over, the observable stops emitting events. Then we want to compute which pony
won the race, change the UI to reflect that, etc.

But maybe the user won’t stay around until the end of the race. What happens then? The
component will be destroyed. But, if we subscribed to an observable in that component before the
destruction, then the next function will continue to do its job every time an event occurs. Even if the
component is no longer displayed! That can lead to memory leaks and all sorts of trouble...

So the best practice is to store the subscription returned by the subscribe function, and on the
destruction of the component, call unsubscribe on this subscription (typically in the ngOnDestroy
method). Wrap the unsubscribe in a check to test if the subscription is present (maybe the
subscription is not initialize yet, and then you’ll have an error because the object will be undefined
when you’ll call unsubscribe).

This general rule has a few exceptions. You don’t necessarily need to do this for observables that
will only emit an event then complete, like an HTTP request. And you definitely don’t need to do
this if you subscribe to one of the router observables, like the params observable: the router will
clean up for you, yay!

Last, but not least, the async pipe. Angular provides a special pipe, called async. You can use it in
your templates to directly subscribe to an observable.

It has a few advantages:

* you can directly store the observable in your component and don’t have to subscribe manually,
then store the value emitted in a component’s field;

* the async pipe will handle the unsubscription for you on the component’s destruction;

* it can be used to do some performance magic (more on that later).
It also have a downside: you have to be careful when using this syntax multiple times in a template.

Let me illustrate the last point, in a RaceComponent, displaying the race properties:

210

@Component ({
selector: 'ns-race',
template: ‘<div>
<h2>{{ (race | async)?.name }}</h2>
<small>{{ (race | async)?.date }}</small>
</div>"

1))

export class RaceComponent implements OnInit {

race: Observable<RaceModel>;
error: boolean;

constructor(private raceService: RaceService) {

}

ngOnInit() {
this.race = this.raceService.get()
// the ‘catch® operator allows to handle a potential error
// it must return an observable (here an empty one).
.catch(error => {
this.error = true;
console.error(error);
return Observable.empty<RaceModel>();

i

This code sample assumes that the method raceService.get() returns an Observable emitting a
RaceModel. We store this observable in a field named race (you’ll sometimes see the name race$ in
blog posts, because other frameworks use that naming convention for variables of type
Observable). Then we use the race observable in the template with the async pipe twice: once to
display the name and once to display the date. The component’s code is quite elegant: you don’t
have to manually subscribe to the observable.

But maybe you can spot the problem. We call twice the async pipe, which means that we subscribe
twice to the observable. If the raceService.get() method performs an HTTP request to fetch the
race details, this request will be performed twice!

A first solution would be to modify the observable to share it between the different subscribers.
This can be achieved with the publishReplay operator for example:

211

import { Component, OnInit } from '@angular/core’;
import { Observable } from 'rxjs/Observable’;

import 'rxjs/add/observable/empty";

import 'rxjs/add/operator/catch’;

import 'rxjs/add/operator/publishReplay’;

import { RaceService, RaceModel } from './race.service';

@Component ({
selector: 'ns-race',
template: ‘<div>
<h2>{{ (race | async)?.name }}</h2>
<small>{{ (race | async)?.date }}</small>
</div>*
1)

export class RaceComponent implements OnInit {

race: Observable<RaceModel>;
error: boolean;

constructor(private raceService: RaceService) {

}

ngOnInit() {
this.race = this.raceService.get()
// the ‘catch' operator allows to handle a potential error
// it must return an observable (here an empty one).
.catch(error => {
this.error = true;
console.error(error);
return Observable.empty<RaceModel>();

1))

// will share the subscription between the subscribers
.publishReplay().refCount();

But, even if that’s now correct and does not produce two different HTTP requests, I still don’t really
like the template. Quite often, the component needs to access the race anyway for some
presentation logic, and not only the template. And it has to handle errors, too. A subscription, or a
do() and/or catch() operator in the component is often necessary anyway. So storing the race in a
field is not a big burden, and makes the template code simpler.

Note that the 4.0 release introduced an as syntax that can solve the problem by subscribing only
once and storing the result in a variable of the template:

212

import { Component, OnInit } from '@angular/core’;
import { Observable } from 'rxjs/Observable’;

import 'rxjs/add/observable/empty";

import 'rxjs/add/operator/catch’;

import { RaceService, RaceModel } from './race.service';

@Component ({
selector: 'ns-race',
template: ‘<div *ngIf="race | async as raceModel">
<h2>{{ raceModel.name }}</h2>
<small>{{ raceModel.date }}</small>
</div>"
})

export class RaceComponent implements OnInit {

race: Observable<RaceModel>;
error: boolean;

constructor(private raceService: RaceService) {

}

ngOnInit() {
this.race = this.raceService.get()
// the ‘catch' operator allows to handle a potential error
// it must return an observable (here an empty one).
.catch(error => {
this.error = true;
console.error(error);
return Observable.empty<RaceModel>();

i

This is quite elegant.

Another possible solution is to split our component in two: a smart one (responsible for the race
fetching) and a dumb one (that just displays the race received in input).

That would look like:

213

@Component ({
selector: 'ns-racecontainer',
template: ‘<div>
<div *ngIf="error">An error occurred while fetching the race</div>
<ns-race *ngIf="race | async as r" [raceModel]="r"></ns-race>
</div>"
})

export class RaceContainerComponent implements OnInit {

race: Observable<RaceModel>;
error: boolean;

constructor(private raceService: RaceService) {

}

ngOnInit() {
this.race = this.raceService.get()
// the ‘catch® operator allows to handle a potential error
// it must return an observable (here an empty one).
.catch(error => {
this.error = true;
console.error(error);
return Observable.empty<RaceModel>();
1
}
}

@Component ({
selector: 'ns-race',
template: ‘<div>
<h2>{{ raceModel.name }}</h2>
<small>{{ raceModel.date }}</small>
</div>*
1)

export class RaceComponent {

@Input() raceModel: RaceModel;

This pattern can be useful in some parts of your application, but, like every pattern, you don’t have
to use it everywhere. It’s sometimes not a big deal to have only one component that does both.
Other times, youw’ll want to extract a dumb component to reuse it in another part of your
application for example, so two components will make sense.

21.2. Leveraging operators

We saw a few operators until then, but I’d like to take a moment to describe a few others in a step
by step example. We are going to code a typeahead input. A typeahead allows your users to enter a

214

text in an input, and then the application displays a few suggestions based on this text (like a Google
search box).

A good typeahead has quite a few features:

it displays the results matching the request (obviously)
« it allows to only display results if the input text is at least a few characters long

it won’t fetch the results for every keystroke from our user, but will wait for some time to make
sure the user is done typing

it won’t trigger the same request twice if the user enters the same value

All this can be done by hand, but it’s far from being trivial. But we’re in luck, Angular and Rx]JS
combine nicely to solve this kind of problem!

First let’s see what a component like this would look like:

import { Component, OnInit } from '@angular/core’;
import { FormControl } from '@angular/forms’;
import { PonyService, PonyModel } from './pony.service';

@Component ({
selector: 'ns-typeahead',
template: ‘<div>
<input [formControl]="1input">

<li *ngFor="1et pony of ponies">{{ pony.name }}</1i>

</div>"
})
export class PonyTypeAheadComponent implements OnInit {
input = new FormControl();
ponies: Array<PonyModel> = [];

constructor(private ponyService: PonyService) {}
ngOnInit() {
// todo: do something with the input

}
}

In the ngOnInit method, we can start by subscribing to the valueChanges observable exposed by the
FormControl (check the chapter on forms if you need to refresh your memory).

this.input.valueChanges
.subscribe(value => console.log(value));

Next we want to use this value to fetch the ponies matching the given input. Our PonyService has a

215

method search that does exactly that! We can suppose that this method does an HTTP request
behind the scenes to fetch the results from the server, so it returns an
Observable<Array<PonyModel>>, an observable that emits arrays of ponies.

Let’s subscribe to this method to update the ponies field of our component:

this.input.valueChanges
.subscribe(value => {
this.ponyService.search(value)
.subscribe(results => this.ponies = results);

1

OK, that works. But when I see something like this, it reminds me of Promises and nested then calls,
that can be flattened. And indeed you can do the same with Observables, with the concatMap
operator for example:

this.input.valueChanges
.concatMap(value => this.ponyService.search(value))
.subscribe(results => this.ponies = results);

Wow, much more elegant! concatMap "flattens" our code. It replaces every event emitted by the
source observable (i.e. the entered pony name) by the events emitted by the observable of ponies.
But it’s not the perfect operator for this situation. As our search method performs an HTTP request
per search, we can run into some troubles if a request is too slow. Our user might query n then ni,
but the result might come back really slowly for n, and fast for ni. That means our code above will
display the second results only after the first displayed, even if we don’t care about the first ones
anymore! This could be tracked by hand, but that would be really cumbersome.

Rx]JS provides a super useful operator for this use-case: switchMap. Unlike concatMap, switchMap will
only care about the last value emitted, and will discard the earlier values, so we’re sure that the
results corresponding to an old input won’t be displayed.

this.input.valueChanges
.switchMap(value => this.ponyService.search(value))
.subscribe(results => this.ponies = results);

OK, now let’s discard the queries that are less than three characters. Easy: we just have to use a
filter operator!

this.input.valueChanges
.filter(query => query.length >= 3)
.switchMap(value => this.ponyService.search(value))
.subscribe(results => this.ponies = results);

We also don’t want to search immediately after a keystroke: we’d like to search only after the user

216

stops typing for 400ms for example. Yep, you guessed it: there’s an operator for that, and it’s called
debounceTime:

this.input.valueChanges
.filter(query => query.length >= 3)
.debounceTime(400)
.switchMap(value => this.ponyService.search(value))
.subscribe(results => this.ponies = results);

So now a user can enter a value, delete some character, add others and the query will only fire
when 400ms have passed since the last keystroke. But what if the user enters "Rainbow", waits for
400ms (which will thus send a request), then enters "Rainbow Dash" and immediately removed the
"Dash" to get back to "Rainbow"? That would send two subsequent requests for "Rainbow"! Maybe
we can only trigger a request if the query is different than the last one? Of course we can, with
distinctUntilChanged:

this.input.valueChanges
.filter(query => query.length >= 3)
.debounceTime(400)
.distinctUntilChanged()
.switchMap(value => this.ponyService.search(value))
.subscribe(results => this.ponies = results);

Last thing: we need to properly handle the errors. We know that the valueChanges will not emit any
error, but our ponyService.search() observable might throw as it is dependent on the network. And
the problem with observables is that an error will completely break the stream: so if one request
blows, the whole typeahead will be down... We don’t want that, so let’s catch potential errors:

this.input.valueChanges
.filter(query => query.length >= 3)
.debounceTime(400)
.distinctUntilChanged()
.switchMap(value => this.ponyService.search(value).catch(error => Observable.

of ([1)))

.subscribe(results => this.ponies = results);

Quite nice, don’t you think? We now only trigger a search when the user enters a text with more
then 3 characters and waits at least 400ms. We guarantee that we don’t trigger the same request
twice, and that the results are always in sync with the request! All that in 5 lines of code. Good luck
doing the same by hand without adding any issue...

This is of course a really good use-case for RxJS, but the point is that it provides a lot of operators,
with some gems hidden in it. It takes time to understand it, but it’s worth the trouble as it can be
tremendously useful in your application.

217

21.3. Building your own Observable

Sometimes, sadly, you need to use libraries that produce events but not using an Observable. All
hope is not lost, because you can of course create your own Observables, using, for example, the
Observable.create(observer = {}) method.

The method passed as a parameter is called the subscribe function: it will be responsible for
emitting events and errors, and to complete when done.

For example, if you want to create an Observable which emits 1, then 2, then completes, you could
do:

const numbers = Observable.create(observer => {
observer.next(1);
observer.next(2);
observer.complete();

H;

Now we could subscribe to such an observable:

numbers.subscribe(
number => console.log(number),
error => console.log(error),
() => console.log('Complete!")

)i

// Will log:

// 1

// 2

// Complete!

Now, let’s say I want to emit 'hello’ every 2 seconds, and never complete. We could easily do this
with some built-in operators, but we can try by hand, as a small example:

import { Observable } from 'rxjs/Observable’;
import 'rxjs/add/observable/create’;

export class HelloService {
get(): Observable<string> {
return Observable.create(observer => {
const interval = setInterval(() => observer.next('hello'), 2000);
3
}
+

The callback function passed to Observable.create() can also return a function that will be called on
the unsubscription. That’s really useful if you have some cleanup to do. Like us with our

218

HelloService, because we’ll need to stop the setInterval when the observable will be unsubscribed.

import { Observable } from 'rxjs/Observable’;
import 'rxjs/add/observable/create’;

export class HelloService {
get(): Observable<string> {
return Observable.create(observer => {
const interval = setInterval(() => observer.next('hello'), 2000);
return () => clearInterval(interval);
2
}
}

The interval will not be created until the subscription, so we just created a cold observable.

I hope you enjoyed this small chapter on observables. They can also be use to sequence your HTTP
requests, or to communicate between components (more on this soon). But you have now a good
overview of what’s possible!

We have several exercises that leverage RxJS and let you discover a lot of
operators:
* Display the user &
 Logged home &
PRACTICE ;
« Remember me &
» Logout &
* Observable tips and tricks &

* Boost a pony &%

219

https://angular-exercises.ninja-squad.com/exercises/14/display-user
https://angular-exercises.ninja-squad.com/exercises/15/logged-home
https://angular-exercises.ninja-squad.com/exercises/16/remember-me
https://angular-exercises.ninja-squad.com/exercises/17/logout
https://angular-exercises.ninja-squad.com/exercises/23/advanced-observables
https://angular-exercises.ninja-squad.com/exercises/24/boost-pony

Chapter 22. Advanced components and
directives

22.1. View queries

In the Template chapter, we talked about a nice feature called "local variables", allowing to get a
reference to a DOM element in the template. For example, you can give the focus to an input with a
button easily

<input #myInput>
<button (click)="myInput.focus()">Focus</button>

We also saw this same feature in the Forms chapter for example, when we wanted to grab a
reference to a specific directive:

<input name="login" [(ngModel)]="user.login" required #loginCtr1="ngModel">
<div *ngIf="loginCtrl.dirty && loginCtrl.hasError('required')">

The login field is required
</div>

What if we need to have these references in our component code, and not only in the template?
That where "view queries" enter the scene and can save the day!

For example, you may want to focus an input as soon as your component is displayed. To do so, we
need to grab a reference to the input, using the ViewChild decorator.

@Component ({
selector: 'ns-login',
template: *
<input #loginInput name="login" [(ngModel)]="credentials.login" required>

\

9]

export class LoginComponent implements AfterViewInit {
credentials = { login: "' };
@ViewChild('loginInput') private loginInput: ElementRef;
ngAfterViewInit() {

this.loginInput.nativeElement.focus();

}

We declare a field called loginInput, and we decorate it with ViewChild. This decorator needs a

220

selector as parameter: here we use the local variable declared in our template. The decorator
indicates to the framework that it needs to query the template to find an element with this local
variable name. The field will be initialized with this element, of type ElementRef. This type has only
one field, nativeElement, which is a reference on the underlying DOM element.

The example also showcases a nice use of the lifecycle method ngAfterViewInit. This method is
called as soon as the view is created, so you are sure that the element you are waiting for is indeed
present. If you try to do the same in ngOnInit, it won’t work. There is also another method called
ngAfterViewChecked, which is called every time the view is checked (after each change detection).

If you wanted to have this feature in a lot of different components, you could create a directive for

this, instead of duplicating the code in each component.

@Directive({
selector: '[nsFocus]'

1))

export class FocusDirective implements AfterViewInit {

ngAfterViewInit(): void {
}

This directive does nothing yet, but it would be used like this in a template:

<input nsFocus>

The directive needs to access its host element to give it the focus. That’s where ElementRef is
interesting, as it can be injected in our directive:

@Directive({
selector: '[nsFocus]'

}
export class FocusDirective implements AfterViewInit {

constructor(private element: ElementRef) { }

ngAfterViewInit(): void {
this.element.nativeElement.focus();

}

And we’re done: using this directive will give the focus to its host element!

221

Accessing directly the nativeElement like in these examples won’t work if you decide
NOTE to run your application in another platform than the browser, like in Web Workers
or on the server.

Let’s go back to our ViewChild decorator: it can also accept a type as a selector.

For example, in the Forms chapter, we saw that to submit a form in the template-driven way, you
can use two-way binding, or you can grab a reference to the form and pass its value to the submit
method:

<form (ngSubmit)="authenticate(form.value)" #form="ngForm">
<l-- .0 -
</form>

But we can also use a ViewChild for this:

@Component ({
selector: 'ns-login’,
template: *
<form (ngSubmit)="authenticate()">
l-- ... -
</form>
b

export class LoginFormComponent {
@ViewChild(NgForm) credentialsForm: NgForm;

authenticate() {
console.log(this.credentialsForm.value);

}

The cool thing with ViewChild is that it is a dynamic query: it will always be up to date with the
template. If the element queried is destroyed, the field will be undefined.

This decorator also has a twin called ViewChildren. Unlike ViewChild which will get a reference to
one field matching the selector (the first if there are several ones), ViewChildren will get a reference
to all the fields. It returns a QuerylList, a type with a few useful attributes:

o first returns the first element matching the query

* last returns the last element matching the query

* length returns how many elements are matching the query

* changes returns an observable that will emit the new QuerylList every time an element matching
the query is added, removed or moved.

222

Let’s say we have a RaceComponent displaying a list of PonyComponent, we can easily be notified every
time a PonyComponent is added or removed:

@Component ({
selector: 'ns-race',
templateUrl: './race.component.html’

1))

export class RaceComponent implements AfterViewInit {
@Input() raceModel: RaceModel;
@ViewChildren(PonyComponent) ponies: QuerylList<PonyComponent>;

ngAfterViewInit() {
this.ponies.changes
// this will log how many ponies are displayed in the component
.subscribe(newList => console.log(newList.length));

QueryList has also a lot of methods available like toArray(), map(), filter(), find()...

22.2. Content

Another common thing that we usually need as developers is the ability to build Ul components
whose content will be dynamic.

For example, let’s say you want to build a "card" component using the Bootstrap 4 CSS framework.
The template of such a card looks like this:

<div class="card">
<div class="card-block">
<h4 class="card-title">Card title</h4>
<p class="card-text">Some quick example text</p>
</div>
</div>

You can of course duplicate this HTML every time you need it in your application. But at this point
of your read, you are probably thinking about building a component. Two parts are dynamic in the
card (the title and the content), so this is probably what you will come up with:

223

https://v4-alpha.getbootstrap.com/components/card/

@Component ({
selector: 'ns-card',
template: ‘<div class="card">
<div class="card-block">

<h4 class="card-title">{{ title }}</h4>

<p class="card-text">{{ text }}</p>
</div>
</div>*
1))

export class CardComponent {

@Input() title: string;
@Input() text: string;

And then use it like this:

<ns-card title="Card title" text="Some quick example text"></ns-card>

This works perfectly. But looking more closely to your need, you realize that the content of the card
can also be complex HTML, and not just text, which is supported by Bootstrap!

Of course, Angular has your back, and it’s easy to "pass" HTML to a child component, thanks to <ng-
content>. That’s what we used to call "transclusion” in Angular]S 1.x.

ng-content is a special tag you can use in your templates to include HTML provided by the parent

component:

<div class="card">
<div class="card-block">
<h4 class="card-title">{{ title }}</h4>
<p class="card-text">
<ng-content></ng-content>
</p>
</div>
</div>

And you can now use the component like this:

<ns-card title="Card title">
Some quick example text
</ns-card>

Later, you realize that the title can also be some complex HTML. Of course, there is a way to pass
multiple contents to the card component, using multiple ng-content with a selector.

224

<div class="card">
<div class="card-block">
<h4 class="card-title">
<ng-content select=".title"></ng-content>
</h4>
<p class="card-text">
<ng-content select=".content"></ng-content>
</p>
</div>
</div>

and use it like this:

<ns-card>

<p class="title">Card title</p>

<p class="content">Some quick example text</p>
</ns-card>

This will produce the following result:

<div class="card">
<div class="card-block">
<h4 class="card-title">
<p class="title">Card title</p>
</h4>
<p class="card-text">
<p class="content">Some quick example text</p>
</p>
</div>
</div>

22.3. Content queries

When you are using these ng-content tags, the projected content will not be queried by ViewChild or
ViewChildren. For these contents, you have to use two other decorators: ContentChild and
ContentChildren.

Let’s say you are building another Ul component based on Bootstrap 4, this time a "tabs"
component. The HTML must look like this according to the docs:

225

https://v4-alpha.getbootstrap.com/components/navs/#tabs
https://v4-alpha.getbootstrap.com/components/navs/#tabs

<ul class="nav nav-tabs">
<11 class="nav-item">
Races
</1i>
<11 class="nav-item">
About
</1i>

But we would like to offer a nice component to our team, something like:

<ns-tabs>
<ns-tab title="Races"></ns-tab>
<ns-tab title="About"></ns-tab>
<ns-tabs>

We need an outer Tabs component, which must find out how many ns-tab directives are embedded
inside the component template, iterate through each of them and generate the appropriate markup.

To do so, let’s start by creating a directive TabDirective:

@Directive({
selector: 'ns-tab'

b

export class TabDirective {
@Input() title: string;

}

The directive doesn’t do much: it only has an input to get the tab title. Note that we are using an
element as the selector, ns-tab.

Now we need to build the TabsComponent:

@Component ({
selector: 'ns-tabs',
template: *
<ul class="nav nav-tabs">
<1li class="nav-item" *ngFor="1et tab of tabs">
{{ tab.title }}
</1li>
'
b
export class TabsComponent {
@ContentChildren(TabDirective) tabs: QuerylList<TabDirective>;
}

226

As you can see, the template iterates through an array of tabs to generate an 1i element for each of
them. But where does this tabs array come from? How can the component know about the two ns-
tab directives embedded inside the ns-tabs component? That’s what the ContentChildren directive
allows doing.

To grab the list of the tabs, we need to use ContentChildren, here with TabDirective. This gives us an
iterable list of tabs, that you can use in an NgFor. As each element of this list is a TabDirective, we
can then access the public property title, and display the tab’s title!

Note that if, for whatever reason, you had a template like this one:

<ns-tabs>
<div>
<ns-tab title="Races"></ns-tab>
</div>
<ns-tabgroup>
<ns-tab title="About"></ns-tab>
</ns-tabgroup>
<ns-tabs>

Then the QuerylList in TabComponent will only contain the first TabDirective. ContentChild and
ContentChildren are indeed only looking for direct descendants, and will stop at the ns-tabgroup
component.

If we want our component to still work with this, there is an option you can add to your decorator:

@Component ({

selector: 'ns-tabs',

template: *

<ul class="nav nav-tabs">
<li class="nav-item" *ngFor="let tab of tabs">

{{ tab.title }}

</1i>

'

1))

export class TabsWithDescendantsComponent {

@ContentChildren(TabDirective, { descendants: true })
tabs: Querylist<TabDirective>;

Now it finds all the TabDirective again!

The tabs field is a QueryList, so you can also subscribe to the changes, like we saw for ViewChildren.
Once again, the QuerylList is not accessible in the component constructor or even in ngOnInit. To be
sure that the content can be queried (i.e. that the QuerylList is properly populated), use the
ngAfterContentInit lifecycle hook. You can also use the ngAfterContentChecked hook, which is called

227

every time the content is checked.

22.4. Host listener

When writing a directive, it can be fairly common to interact with the host element.

Let’s take a simple example: our customer wants to easily clear the content of some text inputs by
double-clicking on them. This is the kind of behavior that you can encapsulate in a custom
directive, let’s say InputClearDirective. Its selector will be an attribute, let’s say nsInputClear. When
this attribute is added to an element, we want to listen for a double-click on this host element.

This example is simple, but not very realistic. More realistic (but also more
NOTE complex) applications of this feature would be, for example, to display a tooltip or a
popover when an element is being hovered or clicked

Let’s create the directive:

@Directive({
selector: '[nsInputClear]’
3]

export class InputClearDirective {

constructor(private element: ElementRef) {}

And use our directive like this:
<input nsInputClear>

We now need to react on a 'dblclick’ event on our host element (here, the input) to clear the value.

That’s where we can use the HostListener decorator! This decorator can be added to a method of a
directive, to indicate to the framework that this method needs to be called if the event given as
parameter to the decorator is triggered on the host element.

In our case, we can write:

228

@Directive({
selector: '[nsInputClear]’

)

export class InputClearDirective {
constructor(private element: ElementRef) {}

@HostListener('dblclick")
clearContent() {
this.element.nativeElement.value = '';

}

Now, every time a 'dblclick’ event is triggered on the host element, the directive will clear the input
value.

Note that it is also possible to listen to global events, like window:resize for example:

@Directive({
selector: '[nsWindowResize]'

1))

export class WindowResizeDirective {

@HostListener('window:resize', ['$event'])
resize(event) {
console.log('The screen is being resized to ${event.target.innerWidth}");

}

Also note that you can access the event in the method, by specifying ['$event’'] as a second
parameter of the decorator.

22.5. Host binding

Another decorator available to create advanced directives and components is HostBinding. Whereas
HostListener allows to interact with the events on the host element, HostBinding allows to interact
with the properties of the host element.

Let’s say we want to add a specific CSS class (is-required) to an input if this input has a specific
validation error (required). Maybe this class adds a nice border around the input, or a small
asterisk, that’s not really important. This will not validate the field in any way, it will simply grab
the result of the built-in Angular form validation, and use this result to style the input.

This is, again, a task that perfectly fits a directive:

229

@Directive({
selector: '[nsAddClassIfRequired]’

1)
export class AddClassIfRequiredDirective {

}

We will use it in a code-driven Angular form:

<input formControlName="firstName" nsAddClassIfRequired>

or in a template driven one:

<input [(ngModel)]="user.name" required nsAddClassIfRequired>

We then need to grab a reference to the status of the input in our directive. Angular does
automatically validate the fields, and will add the required error if the field is required and not
filled. That’'s where the powerful dependency injection system can help us! You can indeed ask
Angular to inject into a directive another directive applied to the same host, or to one of its
ancestors.

As we want our directive to work with FormControlName or NgModel, we could ask Angular to inject
these two. But it would break as only one of the two will be available (as you generally either use
one or the other on a given input), and Angular breaks if a dependency can’t be provided. There is a
trick that allows Angular to continue even if a dependency can’t be provided: the Optional
decorator.

So something like this could work:

constructor(
@0ptional() private formControl: FormControlName,
@0ptional() private ngModel: NgModel

) {}

But that’s not the best we can do. Indeed, both directives inherits the same base class: NgControl. So
instead of injecting one or the other, we can simply ask Angular to provide us the common
NgControl!

230

@Directive({
selector: '[nsAddClassIfRequired]’

1)
export class AddClassIfRequiredDirective {

constructor(private control: NgControl) {}

Now that we have a reference to the NgControl, it’s easy to know if the field has the required error,
by using its hasError() method. The last step requires us to add the class is-required to our host
element if that’s the case. That’s where the HostBinding decorator enters the scene! This decorator
allows to bind a property of the host element to a field of our directive. So it is generally used like
this:

@HostBinding('value') innerValue;

And that would automatically update the host’s value, every time the innerValue property of the
directive would change.

In our case, we don’t have a field to bind to. But we can define a getter that returns true or false,
depending on the field’s error, and decorate this getter with HostBinding to automatically add or
remove the class is-required:

@Directive({
selector: '[nsAddClassIfRequired]’

})
export class AddClassIfRequiredDirective {

constructor(private control: NgControl) {}

@HostBinding('class.is-required")
get isRequired() {
return this.control.hasError('required');

}

These few lines of code are really powerful: every time the directive is used in a form, Angular will
automatically add or remove our custom class depending on the new value entered by the user!

It can be used to bind other kinds of properties, not just CSS classes. For example, some component
libraries use it to add accessibility attributes (aria.xxx) to a host element.

Note that the directive we built has a custom selector, but if you decide that you want to apply these
directives to every input, you can change their selector to input, and they will automatically be
applied on every input of your application.

231

Chapter 23. Internationalization

Alors comme ¢a, tu veux internationaliser ton application?

OK, don’t worry if you didn’t understand anything to this French introduction. Your role as a
developer, fortunately, is not to translate your application in French, Spanish, or whatever other
language. What you can do, though, is to allow this to happen. This chapter explains how to achieve
that.

23.1. The locale

We already mentioned internationalization before, in the chapter about pipes. Four of the built-in
Angular pipes deal with internationalization. Those are the pipes number, percent, currency and
date. Until Angular 5, they used to rely on the standard JavaScript Internationalization API, which is
supposed to be provided by the browser. But as it was not always the case, and source of numerous
bugs and inconsistencies between browsers, the pipes have been completely overhauled in
Angular 5.0.

What we don’t know yet is how these three pipes decide how to format the numbers and dates.
Should they use a dot or a comma as decimal separator? Should they use January or Janvier for the
first month of the year? You might think that this is decided based on the preferred language
configured in the browser, but actually, it’s not. This depends on an injectable value named
LOCALE _ID. And the default value of LOCALE IDis 'en-US".

Here is an example showing how to get the value of LOCALE_ID. As you can see, it’s a simple string
value. To inject it into your components or services, you can’t just rely on its type. You need to tell
Angular which token identifies the value, using @Inject(LOCALE_ID). This can be useful if your logic
needs to know which locale the application is using.

@Component ({
selector: 'ns-locale’,
template: °
<p>The locale is {{ locale }}</p>
<!-- will display 'en-US' -->

<p>{{ 1234.56 | number }}</p>
<!-- will display '1,234.56' -->

\

1))

class DefaultlLocaleComponent {
constructor(@Inject(LOCALE_ID) public locale: string) { }

}

This is good. But how can we change the locale? Actually, you can’t. The locale is a constant, that
you can’t change once the application has started. But that doesn’t mean you can’t set it to another
value before the application starts. This is possible, simply by providing another value for the
LOCALE_ID token in your root Angular module. Beware though: this changes the locale, but another

232

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

step is required to bundle the locale-specific data (month translations, number formatting rules,
etc.) with your application. Angular only bundles the en-US data by default.

import { registerLocaleData } from '@angular/common’;
import localeFr from '@angular/common/locales/fr';

registerLocaleData(localefr);

Here’s an example showing its effect on our component:

@NgModule({
imports: [BrowserModule],
declarations: [CustomLocaleComponent], // and other components
providers: [
{ provide: LOCALE_ID, useValue: 'fr-FR'}
]
/] ...
})
export class AppModule { }

@Component ({
selector: 'ns-locale',
template: °
<p>The locale is {{ locale }}</p>
<!-- will display 'fr-FR' -->

<p>{{ 1234.56 | number }}</p>
<!-- will display '1 234,56' -->

1))

class CustomLocaleComponent {

constructor(@Inject(LOCALE_ID) public locale: string) { }
}

All the pipes that handle internationalization can also take a locale as their last parameter. You can
then change it dynamically if needed:

233

@Component ({
selector: 'ns-locale',
template: *
<p>The locale is {{ locale }}</p>
<!-- will display 'en-US' -->

<p>{{ 1234.56 | number:'1.0-3":'fr-FR' }}</p>
<!I-- will display '1 234,56" -->

\

1))

class DefaultLocaleComponentOverridden {
constructor(@Inject(LOCALE_ID) public locale: string) { }
}

If you want to create an application that uses only one locale, but different from 'en-US', then
setting the locale as explained above is all you need to do. But often, this is not enough, and you
want to really internationalize your application.

23.2. Translating text

If you have used Angular]S 1.x before, and have internationalized your Angular]S application, you
probably know that there is nothing built-in to display translated text based on the preferred
language of the user.

One of the popular libraries to achieve that with Angular]S is angular-translate. The strategy it uses
is fairly common: you use a directive or a pipe to translate a key (for example 'home.welcome"). This
key identifies a message, and you provide the translations for all the languages you want to support
(for example: 'Welcome' and 'Bienvenue'). At runtime, the directive or pipe uses the preferred
language to get the appropriate translation, and updates the DOM with the translated message. You
can change the preferred language at runtime, and all the messages on the page are immediately
translated to the new language.

Internationalization is now provided by Angular directly (although it was hardly usable before
version 4.0). No need for an external dependency anymore. And it uses basically the same strategy
based on keys, but with a big difference: this happens at compile-time rather than happening at
runtime. When the application starts, or, if you use the Angular AOT compiler, when you build your
app, Angular parses all the HTML templates of your components, and transforms them to
JavaScript code that, basically, analyses the changes in the model and modifies the DOM
accordingly. This is when the translation happens. That has important consequences:

* you can’t change the locale and the translated messages at runtime. The whole application
needs to be reloaded and restarted to do that;

* once started, the application is faster, since it doesn’t have to dynamically translate the keys
again and again;

* if you use the AOT compiler (and you should, at least in production), you must build and serve
as many applications as locales that you want to support.

234

https://angular-translate.github.io/

23.3. Process and tooling

In the remaining parts of this chapter, we will assume that you use Angular CLI to build your
application. The tools are actually available and usable outside of Angular CLI, because they’re part
of the Angular ngc compiler. But since they’re well integrated and simple to use in Angular CLI, and
since it’s the recommended way to build your applications anyway, we will use that.

We will also use the AOT compiler to build and serve internationalized versions of our application.
This is indeed the simplest way to do that. If you want to test the internationalization in JIT mode
(i.e. without precompiling the templates at build time), it requires a substantial modification of the
code used to bootstrap the application. Please refer to the internationalization cookbook in the
official documentation if you really want to do that.

That said, how do we proceed? You already know how to create components and write their
templates. Will you have to rewrite everything to internationalize them? Thankfully, no. The
process is the following one:

1. you mark the parts of the templates that need to be translated using the i18n attribute;

2. You run a tool to extract all those marked parts into a file, for example messages.x1f. Two file
formats, both xml-based and industry-standard, are supported;

3. You ask a competent translator to create a translated version of this file, for example
messages.fr.xLf

4. You build your application by providing the locale ID (' fr' for example) and the file containing
the translations (messages.fr.x1f). The angular compiler and the CLI replace all the i18n-marked
parts of the templates by the translations found in the file, and configures your application to
use the provided locale ID.

Let’s examine each of those steps in more details.

23.3.1. Marking text with i18n and extracting

Let’s start with an example template:

<h1>Welcome to Ponyracer</h1>

<p>Welcome to Ponyracer {{ user.firstName }} {{ user.lastName }}!</p>

Let's start playing.

There are 5 text snippets that need to be translated in this template. Of course, you could imagine
translating everything at once, but in a more realistic example, that would expose a lot of HTML
boilerplate to the translators, and you don’t want them to translate everything again when the
HTML structure changes. So you should translate the 5 snippets separately.

One of them, the body of the h1 element, is purely static text. One of them is a text containing two
interpolated expressions. Two are attributes of an HTML element. The last one is static text that is
not embedded in any element.

235

https://angular.io/docs/ts/latest/cookbook/i18n.html

Here’s how you would mark them. Let’s start with the first, simplest one:

<h1 118n>Welcome to Ponyracer</h1>

Now let’s extract our very first messages file, using the xi18n command provided by Angular CLI:

ng xi18n --output-path src/locale

This will create the file messages.x1f in the src/locale directory. Here’s what it contains:

<?xml version="1.0" encoding="UTF-8" 7>
<xliff version="1.2" xmlns="urn:oasis:names:tc:x1iff:document:1.2">
<file source-language="en" datatype="plaintext" original="ng2.template">
<body>
<trans-unit id="5e3335d7f1a430ef14a91507531838c57138b7f2" datatype="html">
<source>Welcome to Ponyracer</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">2</context>
</context-group>
</trans-unit>
</body>
</file>
</xLiff>

As you can see, it generates a trans-unit containing, as the source, our static text. The role of the
French translator will be to provide a messages.fr.x1f file looking like the following:

<?xml version="1.0" encoding="UTF-8" 7>
<xliff version="1.2" xmlns="urn:oasis:names:tc:x1iff:document:1.2">
<file source-language="en" datatype="plaintext" original="ng2.template" target-
language="fr">
<body>
<trans-unit id="5e3335d7f1a430ef14a91507531838c57138b7f2" datatype="html">
<source>Welcome to Ponyracer</source>
<target>Bienvenue dans Ponyracer</target>
</trans-unit>
</body>
</file>
</xLiff>

This is easy enough, because the source message is easy to understand. You don’t need too much
context to know what it is about, and how to translate it. But this way of doing things has a big
disadvantage. If you change the source code of the template and introduce meaningless white
spaces for example, or a dot at the end of the title, here’s what happens when extracting the file
again:

236

<h1 118n>
Welcome to Ponyracer.
</h1>

<trans-unit id="6e37e34598c734b3649ba478cac5f2d29e67c331" datatype="html">
<source>
Welcome to Ponyracer.
</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">5</context>
</context-group>
</trans-unit>

Not only does the source change, which is expected, but the id also does. That really makes
maintaining the translated messages files more difficult than it should. Fortunately, there’s a better

way. You can provide a unique ID by yourself:
<h1 i18n="@@home.title">Welcome to Ponyracer</h1>

Which generates:

<trans-unit id="home.title" datatype="html">
<source>Welcome to Ponyracer</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">10</context>
</context-group>
</trans-unit>

And in fact, in order to provide more context to your translators, you can provide a meaning and a
description in addition to the message ID:

<h1 i18n="welcome title|the title of the home page@@home.fullTitle">Welcome to
Ponyracer</h1>

237

<trans-unit id="home.fullTitle" datatype="html">
<source>Welcome to Ponyracer</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">13</context>
</context-group>
<note priority="1" from="description">the title of the home page</note>
<note priority="1" from="meaning">welcome title</note>
</trans-unit>

Let’s move to the second snippet now:

<p i118n="@@home.welcome">Welcome to Ponyracer {{ user.firstName }} {{ user.lastName
HHi</p>

Here is what it generates:

<trans-unit id="home.welcome" datatype="html">
<source>Welcome to Ponyracer <x id="INTERPOLATION" equiv-text="{{ user.firstName
}}"/> <x id="INTERPOLATION_1" equiv-text="{{ user.lastName }}"/>!</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">16</context>
</context-group>
</trans-unit>

As you can see, this format has several interesting features:
* there is no way a translator could mess up with the content of the angular expressions, since
they are clearly indicated in the message;

* it’s clear what these two interpolations are for the developers but it might also be a good idea to
explain that in the description of the message for the translators;

« if, in some language, the last name should come before the first name, the translator is free to
reorder the interpolations;

« if the developer chooses to rename the attributes of the component or of the user, nothing will

have to be re-translated.

Let’s proceed with the two attributes in the img element. The syntax to translate attributes is the
following:

<img src="/img/pony.gif"
alt="running pony" i18n-alt="@@home.ponyImage.alt"
title="Ponies are cool, aren't they?" 118n-title="@@home.ponyImage.title"/>

238

That generates the following translation units:

<trans-unit id="home.ponyImage.alt" datatype="html">
<source>running pony</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">20</context>
</context-group>
</trans-unit>
<trans-unit id="home.ponyImage.title" datatype="html">
<source>Ponies are cool, aren't they?</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">21</context>
</context-group>
</trans-unit>

Finally, how to translate the last snippet? There is no element where we could place an i18n
attribute. There is a way to solve the problem: use an ng-container element, which won’t be
rendered in the DOM at runtime:

<ng-container i18n="@@home.startMessage">Let's start playing.</ng-container>

23.3.2. Translating, building and deploying the application

Now that you generated a complete messages.x1f file, someone needs to translate it.

a common mistake is to just replace the original source text (in English in our
case) by its translation. That won’t work. The translation must be written inside

CAUTION the <target> element of each translation unit. The <source> element should be
kept untouched: it provides the original message that must be translated. For
example:

<trans-unit id="home.welcome" datatype="html">
<source>Welcome to Ponyracer <x id="INTERPOLATION" equiv-text="{{ user.firstName
}}"/> <x id="INTERPOLATION_1" equiv-text="{{ user.lastName }}"/>!</source>
<target>Bienvenue dans Ponyracer <x id="INTERPOLATION" equiv-text="{{ user.firstName
}}"/> <x id="INTERPOLATION_1" equiv-text="{{ user.lastName }}"/> !</target>
</trans-unit>

To run or build the application in French, you need to specify the locale, and the location of the
messages file, to ng serve or ng build:

239

to run:
ng serve --aot --locale fr --i18n-file src/locale/messages.fr.x1f

#to build:
ng build --aot --locale fr --i118n-file src/locale/messages.fr.x1f

The AOT compiler will locate all the i18n-marked snippets in the templates, find the corresponding
translations in the XLF file, and transform the snippets in the template using the translations. It will
then proceed as usual to generate JavaScript code from the templates and bundle your application.

If you want to support English, French and Spanish, for example, yow’ll have to build your app
three times (once for each locale), and deploy the 3 built applications to your production web
server. You will also need to decide which application to serve to which user. This can be done at
server-side, by detecting the preferred locale from the request header and serving the appropriate
index.html page. Or by getting the preferred locale of the authenticated user from the database and
serving the appropriate index.html page. You could also do it at client-side, by serving your three
applications on three different URLs (ponyracer.com, ponyracer.fr and ponyracer.es, or
ponyracer.com/en, ponyracer.com/fr and ponyracer.com/es), and by redirecting from ponyracer.com to
the correct URL based on the browser locale.

23.4. Translating messages in the code

Sometimes, the text you need to translate is not in the templates, but is in the TypeScript code itself.
For example, the three states of a pony race PENDING, RUNNING and FINISHED should be
translated somehow. The current plan is to be able to do something like the following.

const RaceStatus = {
PENDING: __('pending'),
RUNNING: __('running'),
FINISHED: __('finished")
}

Unfortunately, this is not implemented yet. A temporary solution can be, for example, to load JSON
translation files from the server based on the LOCALE_ID.

23.5. Pluralization

Sometimes, the message you want to display depends on the number of elements in a collection, or
on a count of elements.

For example, let’s say our home page displayed the number of planned races for the day. You could
simply show "Number of planned race(s): 4". But a friendlier message would be "No race is planned"
if there is none, or "Only one race is planned” if there is just one, or "N races are planned" in the
other cases.

Angular actually has a special template syntax to do that. It’s hard to read, except maybe for LISP

240

programmers, but it does the job and is fairly easy to understand with the following example.
Suppose our component has a property racesPlanned, containing the number of races that are
planned for today. You can display it as:

<p>Hello, {racesPlanned, plural, =0 {no race is planned}
=1 {only one race is planned}
other {{{ racesPlanned }} races are planned}}.</p>

To internationalize this message, you would just use the i18n attribute as usual:

<p 118n="@@home.racesPlanned">
Hello, {racesPlanned, plural, =0 {no race is planned}
=1 {only one race is planned}
other {{{ racesPlanned }} races are planned}}.
</p>

Extracting this generates two translation units, one for the message itself, and one for the
expression bundled in the message:

<trans-unit id="home.racesPlanned" datatype="html">
<source>
Hello, <x id="ICU" equiv-text="{racesPlanned, plural, =0 {...} =1 {...} other
{...}}"/>.
</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">27</context>
</context-group>
</trans-unit>
<trans-unit 1d="963d1c0d7d9c63f9e7babc048709604b484b79ac" datatype="html">
<source>{VAR_PLURAL, plural, =0 {no race is planned} =1 {only one race is
planned} other {<x id="INTERPOLATION" equiv-text="{{ racesPlanned }}"/> races are
planned} }</source>
<context-group purpose="location">
<context context-type="sourcefile">src/app.component.ts</context>
<context context-type="linenumber">28</context>
</context-group>
</trans-unit>

Unfortunately, the second translation unit has an auto-generated ID, and the pluralization syntax
must be understood and respected by the translator. It’s possible to translate those two translation
units, though, and the translation works as expected:

241

<trans-unit id="home.racesPlanned" datatype="html">
<source>
Hello, <x id="ICU" equiv-text="{racesPlanned, plural, =0 {...} =1 {...} other
{...}}"/>..

</source>
<target>Bonjour, <x id="ICU" equiv-text="{racesPlanned, plural, =0 {...} =1
{...} other {...}}"/>.</target>
</trans-unit>
<trans-unit 1d="963d1c0d7d9c63f9e7babc048709604b484b79ac" datatype="html">
<source>{VAR_PLURAL, plural, =0 {no race is planned} =1 {only one race is
planned} other {<x id="INTERPOLATION" equiv-text="{{ racesPlanned }}"/> races are
planned} }</source>
<target>{VAR_PLURAL, plural, =0 {aucune course n'est planifiée} =1 {seule une
course est planifiée} other {<x id="INTERPOLATION" equiv-text="{{ racesPlanned }}"/>
courses sont planifiées} }</target>
</trans-unit>

23.6. Best practices

These best practices, acquired in years of development of i18ned applications, are not necessarily
related to Angular, but to i18n in general.

Always specify an explicit unique ID for your messages. If you choose a meaningful ID, you often
don’t need to specify a meaning and a description for your message, because the ID is sufficient.
Prefixing the IDs with the name of the component where they are used (like I did in all the example
with the home. prefix) allows knowing where they are used, and finding them in the code easily.
Relying on auto-generated IDs doesn’t allow having different translations for two identical
messages in your source language. It also makes it very hard to figure out what needs to be changed
between two releases of your application.

Even if the translators are not always developers, store your messages files in your version control
system. This makes sure a branch can have its own additions, that can be merged to the main
branch when ready. It makes it easy to spot differences between branches and releases.

Duplication isn’t necessarily bad. You might think that two pages sharing a label "Save" or "OK"
should use the same key, but maybe you will want to label them "OK, I’ll do it" and "OK, I accept”
later. Or maybe they need to be differentiated in some foreign language. It’s even more important
to use two separate keys for words that are identical in English, but not in other languages, like
"free"”, which can mean "free as in beer" or "free as in speech". Other languages use different words
for these two concepts.

Don’t confuse languages with countries. Don’t use country flags to represent languages. Some
languages (like English) are spoken in several countries. And some countries use several languages
(like Belgium, which uses French, Dutch and German).

Avoid concatenation to translate text with parameters. For example, to translate "Hello, my name is
X and I'm Y years old", don’t use a first key for "Hello, my name is ", a second key for " and I'm " and
a third key for " years old". Use a single key, containing interpolated expressions.

242

You should now be ready to conquer the world with your shiny i18ned Angular application.

243

Chapter 24. This is the end

Thanks for reading!

There are some other chapters that will be added in the following releases, like the router (which
was not completely done for this first release), the advanced stuff and some other goodies. They all
need a little more polish, but 'm sure youw’ll enjoy them. And of course, we’ll keep up with the
framework releases, so you won’t miss the new shiny features that will come out. All these future
updates of the book will be available for free, of course!

If you liked what you read, tell your friends about it!

And if you don’t already own it, you should know that there is also a pro package of this ebook. This
package gives access to a whole set of exercises to build a real application, step by step, starting
from scratch. For each step we provide a full unit tests suite covering 100% of your code, detailed
instructions (which are not a basic copy-paste, but will push you to understand what you are
doing), and a solution if you need (which might be the most beautiful one, or at least one consistent
with the latest best practices) A home-brewed tool analyzes your code and computes a score for
each exercise, and your progression is visible on a dashboard. If you’re looking for actual code
samples, always up-to-date, which might save you hours of work, our Pro Pack is waiting for you!
You can even try the first exercises for free. And as you are already the proud owner of this ebook,
we want to thank you for your historic support with a generous discount that you can grab here!

We have tried to give you all the keys, but Web Development looks an awful lot like:

244

https://angular-exercises.ninja-squad.com
https://books.ninja-squad.com/discount

HOW TO:

PRAW A HORSE

BY VAN okTob

OO %%

(D vww 2 wpees (@Doeaw THe LesS

W

() verw G Tace @ rpw THE WAR

&0

SMALE L5
gt

How to draw a horse. Credit to Van Oktop.

So we also provide training, mainly in France and Europe, but all over the world really. We can also
do some consulting work to help your team, or work with you to help you build your product. Just
shoot us an email at hello@ninja-squad.com and we’ll discuss it!

Overall, I would love hearing from you and find out what you liked, loved and hated in this ebook -
whether you are writing to signal a small typo, a big mistake, or just to tell us that this book helped
you find your dream job (well, you never know...).

I can’t finish without thanking a few people. My girlfriend, first, who has been an incredible
support, even when I was rewriting something for the tenth time, in a dreadful mood on a Sunday.
My colleagues, for their tireless work and feedback, their kindness for encouraging me and giving
me the time to do this crazy thing. And my friends and family, for the little words that kept me

245

http://oktop.tumblr.com/post/15352780846
http://ninja-squad.com/training/angular
mailto:hello@ninja-squad.com

going.
And you, for buying this and reading it to the last sentence.

Stay tuned.

246

Appendix A: Changelog

Here are all the major changes since the first version. It should help you to see what changed since
your last read!

By buying this ebook, youw’ll get all the following updates for free. Go to https://books.ninja-
squad.com/claim to obtain the latest version of this ebook.

A.1.v1.9-2017-11-02

Global

« Bump to ng 5.0.0 (2017-11-02)

* Bump tong 5.0.0-rc.5(2017-11-02)
* Bumptong5.0.0-rc.3(2017-11-02)
e Bumptong5.0.0-rc.2(2017-11-02)
« Bump tong 5.0.0-rc.0 (2017-11-02)
* Bump tong 5.0.0-beta.5 (2017-11-02)
* Bump tong 5.0.0-beta.4 (2017-11-02)

.0-beta.1(2017-11-02)

0
0
0
0
0
* Bump tong 5.0.0-beta.6 (2017-11-02)
0
0
* Bumptongh5.0
4

* Bump tong 4.4.1(2017-09-16)
Pipes
* Use the new i18n pipes introduced in ng 5.0.0 (2017-11-02)

Forms

* Add a section on the updateOn: 'blur' option for controls and groups introduced in 5.0 (2017-11-
02)

* Remove the section about combining template-based and code-based approaches (2017-09-01)
Send and receive data with Http

* Use object literals for headers and params for the new http client, introduced in 5.0.0 (2017-11-
02)

Router
* Adds ng 5.0 ChildActivationStart/ChildActivationEnd to the router events (2017-11-02)
Internationalization

* Remove deprecated i18n comment with ng 5.0.0 (2017-11-02)

247

https://books.ninja-squad.com/claim
https://books.ninja-squad.com/claim

* Show how to load the locale data as required in ng 5.0.0 and uses the new i18n pipes (2017-11-
02)

* Placeholders now displays the interpolation in translation files to help translators (2017-11-02)

A.2.v1.8-2017-07-16

Global

* Bump tong 4.3.0 (2017-07-16)
* Bump tong4.2.3(2017-06-17)

Forms

* Remove min/max validators mention, as they have been removed temporarily in ng 4.2.3 (2017-
06-17)

Send and receive data with Http

» Updates the chapter to use the new HttpClientModule introduced in ng 4.3.0. (2017-07-16)
Router

* List the new router events introduced in 4.3.0 (2017-07-16)
Advanced components and directives

* Add a section about HostBinding (2017-06-29)
e Add a section about HostListener (2017-06-29)

* New chapter on advanced components, with ViewChild, ContentChild and ng-content! (2017-06-
29)

A.3.v1.7 - 2017-06-09

Global

* Bump tong 4.2.0 (2017-06-09)
* Bump tong 4.1.0 (2017-04-28)

Forms
¢ Introduce the min and max validators from version 4.2.0 (2017-06-09)
Router

* New chapter on advanced router usage: protected routes with guards, nested routes, resolvers
and lazy-loading! (2017-04-28)

Angular compiler

248

* Adds a chapter about the Angular compiler and the differences between JiT and AoT. (2017-05-
02)

A.4.v1.6 - 2017-03-24

Global

+ % Bump to stable release 4.0.0 £ (2017-03-24)

* Bump t04.0.0-rc.6(2017-03-23)

* Bumpto4.0.0-rc.5(2017-03-23)

* Bump to 4.0.0-rc.4(2017-03-23)

* Bump to04.0.0-rc.3(2017-03-23)

* Bump t04.0.0-rc.1(2017-03-23)

* Bump to 4.0.0-beta.8 (2017-03-23)

* Bump tong 4.0.0-beta.7 and TS 2.1+ is now required (2017-03-23)

* Bump to 4.0.0-beta.5 (2017-03-23)

* Bump to 4.0.0-beta.0 (2017-03-23)

» Each chapter now has a link to the corresponding exercise of our Pro Pack Chapters are slightly
re-ordered to match the exercises order. (2017-03-22)

The templating syntax

» Use as, introduced in 4.0.0, instead of let for variables in templates (2017-03-23)
* The template tag is now deprecated in favor of ng-template in 4.0 (2017-03-23)

 Introduces the else syntax from version 4.0.0 (2017-03-23)
Dependency Injection

 Fix the Babel 6 config for dependency injection without TypeScript (2017-02-17)
Pipes

* Introduce the as syntax to store a NgIf or NgFor result, which can be useful with some pipes like
slice or async. (2017-03-23)

* Adds titlecase pipe introduced in 4.0.0 (2017-03-23)
Services

* New Meta service in 4.0.0 to get/set meta tags (2017-03-23)
Testing your app

* overrideTemplate has been added in 4.0.0 (2017-03-23)

Forms

249

https://angular-exercises.ninja-squad.com

* Introduce the email validator from version 4.0.0 (2017-03-23)
Send and receive data with Http

» Use params instead of the deprecated search in 4.0.0 (2017-03-23)
Router

e Use paramMap introduced in 4.0 instead of params (2017-03-23)
Advanced observables

* Shows the as syntax introduced in 4.0.0 as an alternative for the mulitple async pipe
subscriptions problem (2017-03-23)

Internationalization

* Add a new chapter on internationalization (i18n) (2017-03-23)

A.5.v1.5-2017-01-25

Global

* Bump to 2.4.4 (2017-01-25)
* The big rename: "Angular 2" is now known as "Angular" (2017-01-13)

* Bump to 2.4.0 (2016-12-21)
Forms

* Fix the NgModel explanation (2017-01-09)

 Validators.compose() is no longer necessary, we can apply several validators by just passing an
array. (2016-12-01)

A.6.v1.4-2016-11-18

Global

* Bump to 2.2.0(2016-11-18)

* Bumpto 2.1.0(2016-10-17)

* Remove typings and use npm install @types/::- (2016-10-17)

» Use const instead of let and TypeScript type inference whenever possible (2016-10-01)
* Bump to 2.0.1 (2016-09-24)

Testing your app
» Use TestBed.get instead of inject in tests (2016-09-30)

Forms

250

* Add an async validator example (2016-11-18)

* Remove the useless (2.2+) .control in templates like username.control.hasError('required").
(2016-11-18)

Router

* routerLinkActive can be exported (2.2+). (2016-11-18)

* We don’t need to unsubscribe from the router params in the ngOnDestroy method. (2016-10-07)
Advanced observables

* New chapter on Advanced Observables! (2016-11-03)

A.7.v1.3 -2016-09-15

Global

* 4% Bump to stable release 2.0.0 £ (2016-09-15)
* Bump to rc.7 (2016-09-14)
* Bump to rc.6 (2016-09-05)

From zero to something
» Update the System]S config for rc.6 and bump the Rx]JS version (2016-09-05)
Pipes

* Remove the section about the replace pipe, removed in rc.6 (2016-09-05)

A.8.v1.2 -2016-08-25

Global

* Bump to rc.5 (2016-08-23)
* Bump to rc.4 (2016-07-08)
* Bump to rc.3 (2016-06-28)
* Bump to rc.2 (2016-06-16)
* Bump to rc.1(2016-06-08)

* Code examples now follow the official style guide (2016-06-08)
From zero to something

* Small introduction to NgModule when you start your app from scratch (2016-08-12)
The templating syntax

» Replace the deprecated ngSwitchWhen with ngSwitchCase (2016-06-16)

251

Dependency Injection

* Introduce modules and their role in DI. Changed the example to use a custom service instead of
Http. (2016-08-15)

» Remove deprecated provide() method and use {provide: -} instead (2016-06-09)
Pipes
* Date pipe is now fixed in rc.2, no more problem with Intl API (2016-06-16)
Styling components and encapsulation
» New chapter on styling components and the different encapsulation strategies! (2016-06-08)
Services
* Add the service to the module’s providers (2016-08-21)
Testing your app

* Tests now use the TestBed API instead of the deprecated TestComponentBuilder one. (2016-08-
15)

* Angular 2 does not provide Jasmine wrappers and custom matchers for unit tests in rc.4
anymore (2016-07-08)

Forms

e Forms now use the new form API (FormsModule and ReactiveFormsModule). (2016-08-22)

* Warn about forms module being rewritten (and deprecated) (2016-06-16)
Send and receive data with Http

* Add the HttpModule import (2016-08-21)

* http.post() now autodetects the body type, removing the need of using JSON.stringify and
setting the ContentType (2016-06-16)

Router

* Introduce RouterModule (2016-08-21)
* Update the router to the API v3! (2016-07-08)

* Warn about router module being rewritten (and deprecated) (2016-06-16)
Changelog

* Mention free updates and web page for obtaining latest version (2016-07-25)

A.9.v1.1-2016-05-11

Global

252

* Bump to rc.0. All packages have changed! (2016-05-03)
e Bump to beta.17 (2016-05-03)

* Bump to beta.15 (2016-04-16)

e Bump to beta.14 (2016-04-11)

e Bump to beta.11(2016-03-19)

e Bump to beta.9 (2016-03-11)

* Bump to beta.8 (2016-03-10)

* Bump to beta.7 (2016-03-04)

* Display the Angular 2 version used in the intro and in the chapter "Zero to something". (2016-03-
04)

* Bump to beta.6 (beta.4 and beta.5 were broken) (2016-03-04)
* Bump to beta.3 (2016-03-04)
* Bump to beta.2 (2016-03-04)

Diving into TypeScript
» Use typings instead of tsd. (2016-03-04)
The templating syntax

* *ngFor now uses let instead of to declare a variable *ngFor="1et pony of ponies" [small](2016-
05-03)#

* *ngFor now also exports a first variable (2016-04-16)
Dependency Injection

* Better explanation of hierarchical injectors (2016-03-04)
Pipes

* A replace pipe has been introduced (2016-04-16)
Reactive Programming

* Observables are not scheduled for ES7 anymore (2016-03-04)
Building components and directives

* Explain how to remove the compilation warning when using @Input and a setter at the same
time (2016-03-04)

* Add an explanation on isFirstChange for ngOnChanges (2016-03-04)
Testing your app

* injectAsync is now deprecated and replaced by async (2016-05-03)

* Add an example on how to test an event emitter (2016-03-04)

253

Forms

* A pattern validator has been introduced to make sure that the input matches a regexp (2016-04-
16)

* Add a mnemonic tip to rememeber the [()] syntax: the banana box! (2016-03-04)
* Examples use module.id to have a relative templatelUr1 (2016-03-04)

» Fix error ng-no-form - ngNoForm (2016-03-04)

» Fix errors (nghodel) — (ngModelChange), is-old-enough — is01dEnough (2016-03-04)

Send and receive data with Http

» Use JSON.stringify before sending data with a POST (2016-03-04)
e Add a mention to JSONP_PROVIDERS (2016-03-04)

Router

* Introduce the new router (previous one is deprecated), and how to use parameters in URLSs!
(2016-05-06)

* RouterQutlet inserts the template of the component just after itself and not inside itself (2016-03-
04)

Zones and the Angular magic

* New chapter! Let’s talk about how Angular 2 works under the hood! First part is about how
Angular]S 1.x used to work, and then we’ll see how Angular 2 differs, and uses a new concept
called zones. (2016-05-03)

254

	Become a ninja with Angular
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. A gentle introduction to ECMASCRIPT 6
	2.1. Transpilers
	2.2. let
	2.3. Constants
	2.4. Creating objects
	2.5. Destructuring assignment
	2.6. Default parameters and values
	2.7. Rest operator
	2.8. Classes
	2.9. Promises
	2.10. Arrow functions
	2.11. Sets and Maps
	2.12. Template literals
	2.13. Modules
	2.14. Conclusion

	Chapter 3. Going further than ES6
	3.1. Dynamic, static and optional types
	3.2. Enters TypeScript
	3.3. A practical example with DI

	Chapter 4. Diving into TypeScript
	4.1. Types as in TypeScript
	4.2. Enums
	4.3. Return types
	4.4. Interfaces
	4.5. Optional arguments
	4.6. Functions as property
	4.7. Classes
	4.8. Working with other libraries
	4.9. Decorators

	Chapter 5. The wonderful land of Web Components
	5.1. A brave new world
	5.2. Custom elements
	5.3. Shadow DOM
	5.4. Template
	5.5. HTML imports
	5.6. Polymer and X-tag

	Chapter 6. Grasping Angular’s philosophy
	Chapter 7. From zero to something
	7.1. Developing and building a TypeScript app
	7.2. Our first component
	7.3. Our first Angular Module
	7.4. Bootstrapping the app
	7.5. From zero to something better with Angular CLI

	Chapter 8. The templating syntax
	8.1. Interpolation
	8.2. Using other components in our templates
	8.3. Property binding
	8.4. Events
	8.5. Expressions vs statements
	8.6. Local variables
	8.7. Structural directives
	8.8. Other template directives
	8.9. Canonical syntax
	8.10. Summary

	Chapter 9. Dependency injection
	9.1. DI yourself
	9.2. Easy to develop
	9.3. Easy to configure
	9.4. Other types of provider
	9.5. Hierarchical injectors
	9.6. DI without types

	Chapter 10. Services
	10.1. Title service
	10.2. Meta service
	10.3. Making your own service

	Chapter 11. Pipes
	11.1. Pied piper
	11.2. json
	11.3. slice
	11.4. uppercase
	11.5. lowercase
	11.6. titlecase
	11.7. number
	11.8. percent
	11.9. currency
	11.10. date
	11.11. async
	11.12. Creating your own pipes

	Chapter 12. Reactive Programming
	12.1. Call me maybe
	12.2. General principles
	12.3. RxJS
	12.4. Reactive programming in Angular

	Chapter 13. Building components and directives
	13.1. Introduction
	13.2. Directives
	13.3. Components

	Chapter 14. Styling components and encapsulation
	14.1. Native strategy
	14.2. Emulated strategy
	14.3. None strategy
	14.4. Styling the host

	Chapter 15. Testing your app
	15.1. The problem with troubleshooting is that trouble shoots back
	15.2. Unit test
	15.3. Fake dependencies
	15.4. Testing components
	15.5. Testing with fake templates, providers…
	15.6. End-to-end tests (e2e)

	Chapter 16. Send and receive data through HTTP
	16.1. Getting data
	16.2. Transforming data
	16.3. Advanced options
	16.4. Jsonp
	16.5. Interceptors
	16.6. Tests

	Chapter 17. Router
	17.1. En route
	17.2. Navigation
	17.3. Redirects
	17.4. Matching strategy
	17.5. Hierarchical and empty-path routes
	17.6. Guards
	17.7. Resolvers
	17.8. Router events
	17.9. Parameters and data
	17.10. Lazy loading

	Chapter 18. Forms
	18.1. Forms, dear forms
	18.2. Template-driven
	18.3. Code-driven
	18.4. Adding some validation
	18.5. Errors and submission
	18.6. Add some style
	18.7. Creating a custom validator
	18.8. Grouping fields
	18.9. Reacting on changes
	18.10. Updating on blur or on submit only
	18.11. Summary

	Chapter 19. Zones and the Angular magic
	19.1. AngularJS 1.x and the digest cycle
	19.2. Angular and zones

	Chapter 20. Angular compilation: Just in Time vs Ahead of Time
	20.1. Code generation
	20.2. Ahead of Time compilation

	Chapter 21. Advanced observables
	21.1. Subscribe, unsubscribe and async pipe
	21.2. Leveraging operators
	21.3. Building your own Observable

	Chapter 22. Advanced components and directives
	22.1. View queries
	22.2. Content
	22.3. Content queries
	22.4. Host listener
	22.5. Host binding

	Chapter 23. Internationalization
	23.1. The locale
	23.2. Translating text
	23.3. Process and tooling
	23.4. Translating messages in the code
	23.5. Pluralization
	23.6. Best practices

	Chapter 24. This is the end
	Appendix A: Changelog
	A.1. v1.9 - 2017-11-02
	A.2. v1.8 - 2017-07-16
	A.3. v1.7 - 2017-06-09
	A.4. v1.6 - 2017-03-24
	A.5. v1.5 - 2017-01-25
	A.6. v1.4 - 2016-11-18
	A.7. v1.3 - 2016-09-15
	A.8. v1.2 - 2016-08-25
	A.9. v1.1 - 2016-05-11

