
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133760811
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133760811
https://plusone.google.com/share?url=http://www.informit.com/title/9780133760811
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133760811
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133760811/Free-Sample-Chapter

Praise for Ellie Quigley’s Books

“I picked up a copy of JavaScript by Example over the weekend and wanted to thank you
for putting out a book that makes JavaScript easy to understand. I’ve been a developer for
several years now and JS has always been the ‘monster under the bed,’ so to speak. Your
book has answered a lot of questions I’ve had about the inner workings of JS but was afraid
to ask. Now all I need is a book that covers Ajax and Coldfusion. Thanks again for putting
together an outstanding book.”

—Chris Gomez, Web services manager,
Zunch Worldwide, Inc.

“I have been reading your UNIX® Shells by Example book, and I must say, it is brilliant.
Most other books do not cover all the shells, and when you have to constantly work in
an organization that uses tcsh, bash, and korn, it can become very difficult. However,
your book has been indispensable to me in learning the various shells and the differences
between them…so I thought I’d email you, just to let you know what a great job you have
done!”

—Farogh-Ahmed Usmani, B.Sc. (Honors), M.Sc., DIC,
project consultant (Billing Solutions), Comverse

“I have been learning Perl for about two months now; I have a little shell scripting experience
but that is it. I first started with Learning Perl by O’Reilly. Good book but lacking on the
examples. I then went to Programming Perl by Larry Wall, a great book for intermediate
to advanced, didn’t help me much beginning Perl. I then picked up Perl by Example,
Third Edition—this book is a superb, well-written programming book. I have read many
computer books and this definitely ranks in the top two, in my opinion. The examples are
excellent. The author shows you the code, the output of each line, and then explains each
line in every example.”

—Dan Patterson, software engineer,
GuideWorks, LLC

“Ellie Quigley has written an outstanding introduction to Perl, which I used to learn the
language from scratch. All one has to do is work through her examples, putz around with
them, and before long, you’re relatively proficient at using the language. Even though I’ve
graduated to using Programming Perl by Wall et al., I still find Quigley’s book a most useful
reference.”

—Casey Machula, support systems analyst,
Northern Arizona University, College of Health and Human Services

“When I look at my bookshelf, I see eleven books on Perl programming. Perl by Example,
Third Edition, isn’t on the shelf; it sits on my desk, where I use it almost daily. When I
bought my copy I had not programmed in several years and my programming was mostly
in COBOL so I was a rank beginner at Perl. I had at that time purchased several popular
books on Perl but nothing that really put it together for me. I am still no pro, but my
book has many dog-eared pages and each one is a lesson I have learned and will certainly
remember.
 “I still think it is the best Perl book on the market for anyone from a beginner to a
seasoned programmer using Perl almost daily.”

—Bill Maples, network design tools and automations analyst,
Fidelity National Information Services

“We are rewriting our intro to OS scripting course and selected your text for the course.
[UNIX® Shells by Example is] an exceptional book. The last time we considered it was a few
years ago (second edition). The debugging and system administrator chapters at the end
nailed it for us.”

—Jim Leone, Ph.D., professor and chair, Information Technology,
Rochester Institute of Technology

“Quigley’s [PHP and MySQL by Example] acknowledges a major usage of PHP. To write some
kind of front end user interface program that hooks to a back end MySQL database. Both
are free and open source, and the combination has proved popular. Especially where the
front end involves making an HTML web page with embedded PHP commands.
 “Not every example involves both PHP and MySQL. Though all examples have PHP. Many
demonstrate how to use PHP inside an HTML file. Like writing user-defined functions, or
nesting functions. Or making or using function libraries. The functions are a key idea in
PHP, that take you beyond the elementary syntax. Functions also let you gainfully use code
by other PHP programmers. Important if you are part of a coding group that has to divide
up the programming effort in some manner.”

—Dr. Wes Boudville, CTO,
Metaswarm Inc.

Perl by Example
Fif th Edition

This page intentionally left blank

Perl by Example
Fif th Edition

Ellie Quigley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Quigley, Ellie.
 Perl by example / Ellie Quigley.—Fifth edition.
 pages cm
 Includes index.
 ISBN 978-0-13-376081-1 (pbk. : alk. paper)
 1. Perl (Computer program language) I. Title.
 QA76.73.P22Q53 2015
 005.13'3—dc23
 2014036613

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-376081-1
ISBN-10: 0-13-376081-2

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann
Arbor, Michigan.
First printing, December 2014

Editor-in-Chief
Mark L. Taub

Development Editors
Michael Thurston
Chris Zahn

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Project Manager
Moore Media, Inc.

Copy Editor
Moore Media, Inc.

Indexer
Larry Sweazy

Proofreader
Pam Palmer

Cover Designer
Chuti Prasertsith

Composition
Moore Media, Inc.

vii

Contents

Preface xxv

1 The Practical Extraction and Report Language 1
1.1 What Is Perl? 1

1.2 What Is an Interpreted Language? 2

1.3 Who Uses Perl? 3

1.3.1 Which Perl? 4
1.3.2 What Are Perl 6, Rakudo Perl, and Parrot? 4

1.4 Where to Get Perl 6

1.4.1 CPAN (cpan.org) 6
1.4.2 Downloads and Other Resources for Perl (perl.org) 7
1.4.3 ActivePerl (activestate.com) 8
1.4.4 What Version Do I Have? 9

1.5 Perl Documentation 9

1.5.1 Where to Find the Most Complete Documentation from Perl 9
1.5.2 Perl man Pages 10
1.5.3 Online Documentation 12

1.6 What You Should Know 13

1.7 What’s Next? 13

2 Perl Quick Start 15
2.1 Quick Start, Quick Reference 15

2.1.1 A Note to Programmers 15
2.1.2 A Note to Non-Programmers 15
2.1.3 Perl Syntax and Constructs 15

Regular Expressions 28
Passing Arguments at the Command Line 29

viii Contents

References and Pointers 29
Objects 30
Libraries and Modules 31
Diagnostics 31

2.2 Chapter Summary 32

2.3 What’s Next? 32

3 Perl Scripts 33
3.1 Getting Started 33

3.1.1 Finding a Text Editor 34
3.1.2 Naming Perl Scripts 35
3.1.3 Statements, Whitespace, and Linebreaks 35
3.1.4 Strings and Numbers 36

3.2 Filehandles 37

3.3 Variables (Where to Put Data) 37

3.3.1 What Is Context? 38
3.3.2 Comments 38
3.3.3 Perl Statements 39
3.3.4 Using Perl Built-in Functions 39
3.3.5 Script Execution 40

3.4 Summing It Up 42

3.4.1 What Kinds of Errors to Expect 43

3.5 Perl Switches 44

3.5.1 The -e Switch (Quick Test at the Command Line) 45
3.5.2 The -c Switch (Check Syntax) 46
3.5.3 The -w Switch (Warnings) 46

3.6 What You Should Know 47

3.7 What’s Next? 47

 EXERCISE 3 Getting with It Syntactically 48

4 Getting a Handle on Printing 49
4.1 The Special Filehandles STDOUT, STDIN, STDERR 49

4.2 Words 51

4.3 The print Function 51

4.3.1 Quotes Matter! 52

Double Quotes 53
Single Quotes 54
Backquotes 54
Perl’s Alternative Quotes 55

Contents ix

4.3.2 Literals (Numeric, String, and Special) 59

Numeric Literals 60
String Literals 61
Special Literals 63

4.3.3 Printing Without Quotes—The here document 66

here documents and CGI 67

4.4 Fancy Formatting with the printf Function 69

4.4.1 Saving Formatting with the sprintf Function 73
4.4.2 The No Newline say Function 73

4.5 What Are Pragmas? 74

4.5.1 The feature Pragma 74
4.5.2 The warnings Pragma 75
4.5.3 The diagnostics Pragma 76
4.5.4 The strict Pragma and Words 77

4.6 What You Should Know 78

4.7 What’s Next? 79

 EXERCISE 4 A String of Perls 79

5 What’s In a Name? 81
5.1 More About Data Types 81

5.1.1 Basic Data Types (Scalar, Array, Hash) 81
5.1.2 Package, Scope, Privacy, and Strictness 82

Package and Scope 82

5.1.3 Naming Conventions 85
5.1.4 Assignment Statements 86

5.2 Scalars, Arrays, and Hashes 87

5.2.1 Scalar Variables 88

Assignment 88
The defined Function 89
The undef Function 89
The $_ Scalar Variable 90

5.2.2 Arrays 91

Assignment 92
Output and Input Special Variables ($, and $") 93
Array Size 94
The Range Operator and Array Assignment 95
Accessing Elements 95
Looping Through an Array with the foreach Loop 97
Array Copy and Slices 98
Multidimensional Arrays—Lists of Lists 99

x Contents

5.2.3 Hashes—Unordered Lists 99

Assignment 100
Accessing Hash Values 101
Hash Slices 102
Removing Duplicates from a List Using a Hash 103

5.2.4 Complex Data Structures 104

5.3 Array Functions 105

5.3.1 Adding Elements to an Array 105

The push Function 105
The unshift Function 106

5.3.2 Removing and Replacing Elements 106

The delete Function 106
The splice Function 107
The pop Function 109
The shift Function 110

5.3.3 Deleting Newlines 111

The chop and chomp Functions (with Lists) 111

5.3.4 Searching for Elements and Index Values 112

The grep Function 112

5.3.5 Creating a List from a Scalar 114

The split Function 114

5.3.6 Creating a Scalar from a List 118

The join Function 118

5.3.7 Transforming an Array 119

The map Function 119

5.3.8 Sorting an Array 121

The sort Function 121

5.3.9 Checking the Existence of an Array Index Value 124

The exists Function 124

5.3.10 Reversing an Array 125

The reverse Function 125

5.4 Hash (Associative Array) Functions 125

5.4.1 The keys Function 125
5.4.2 The values Function 126
5.4.3 The each Function 128
5.4.4 Removing Duplicates from a List with a Hash 129
5.4.5 Sorting a Hash by Keys and Values 130

Sort Hash by Keys in Ascending Order 130
Sort Hash by Keys in Reverse Order 131
Sort Hash by Keys Numerically 132
Numerically Sort a Hash by Values in Ascending Order 133

Contents xi

Numerically Sort a Hash by Values in Descending Order 134

5.4.6 The delete Function 135
5.4.7 The exists Function 136
5.4.8 Special Hashes 137

The %ENV Hash 137
The %SIG Hash 138
The %INC Hash 139

5.4.9 Context Revisited 139

5.5 What You Should Know 140

5.6 What’s Next? 141

 EXERCISE 5 The Funny Characters 141

6 Where’s the Operator? 145
6.1 About Perl Operators—More Context 145

6.1.1 Evaluating an Expression 147

6.2 Mixing Types 148

6.3 Precedence and Associativity 149

6.3.1 Assignment Operators 151
6.3.2 Boolean 153
6.3.3 Relational Operators 154

Numeric 154
String 155

6.3.4 Conditional Operators 156
6.3.5 Equality Operators 157

Numeric 157
String 159

6.3.6 The Smartmatch Operator 160
6.3.7 Logical Operators (Short-Circuit Operators) 162
6.3.8 Logical Word Operators 164
6.3.9 Arithmetic Operators and Functions 166

Arithmetic Operators 166
Arithmetic Functions 167

6.3.10 Autoincrement and Autodecrement Operators 172
6.3.11 Bitwise Logical Operators 173

A Little Bit About Bits 173
Bitwise Operators 174

6.3.12 Range Operator 175
6.3.13 Special String Operators and Functions 176

6.4 What You Should Know 178

6.5 What’s Next? 179

 EXERCISE 6 Operator, Operator 179

xii Contents

7 If Only, Unconditionally, Forever 181
7.1 Control Structures, Blocks, and Compound Statements 182

7.1.1 Decision Making—Conditional Constructs 183

if and unless Statements 183
The if Construct 183
The if/else Construct 184
The if/elsif/else Construct 185
The unless Construct 186

7.2 Statement Modifiers and Simple Statements 188

7.2.1 The if Modifier 188
7.2.2 The unless Modifier 189

7.3 Repetition with Loops 190

7.3.1 The while Loop 190
7.3.2 The until Loop 192
7.3.3 The do/while and do/until Loops 194
7.3.4 The for Loop (The Three-Part Loop) 196
7.3.5 The foreach (for) Loop 198

7.4 Looping Modifiers 202

7.4.1 The while Modifier 202
7.4.2 The foreach Modifier 203
7.4.3 Loop Control 204

Labels 204
The redo and goto Statements 205
Nested Loops and Labels 208
The continue Statement 210

7.4.4 The switch Statement (given/when) 212

The switch Feature (given/when/say) 214

7.5 What You Should Know 217

7.6 What’s Next? 217

 EXERCISE 7 What Are Your Conditions? 218

8 Regular Expressions—Pattern Matching 219
8.1 What Is a Regular Expression? 219

8.1.1 Why Do We Need Regular Expressions? 220

8.2 Modifiers and Simple Statements with Regular Expressions 221

8.2.1 Pattern Binding Operators 222
8.2.2 The DATA Filehandle 223

8.3 Regular Expression Operators 225

8.3.1 The m Operator and Pattern Matching 225

The g Modifier—Global Match 229
The i Modifier—Case Insensitivity 230

Contents xiii

Special Scalars for Saving Patterns 230
The x Modifier—The Expressive Modifier 231

8.3.2 The s Operator and Substitution 232
8.3.3 The Pattern Binding Operators with Substitution 232

Changing the Substitution Delimiters 234
Substitution Modifiers 235
Using the Special $& Variable in a Substitution 240
Pattern Matching with a Real File 241

8.4 What You Should Know 243

8.5 What’s Next? 243

 EXERCISE 8 A Match Made in Heaven 244

9 Getting Control—Regular Expression Metacharacters 245
9.1 The RegExLib.com Library 245

9.2 Regular Expression Metacharacters 247

9.2.1 Metacharacters for Single Characters 251

The Dot Metacharacter 251
The s Modifier—The Dot Metacharacter and the Newline 252
The Character Class 253
The POSIX Bracket Expressions 257

9.2.2 Whitespace Metacharacters 258
9.2.3 Metacharacters to Repeat Pattern Matches 261

The Greed Factor 261
Metacharacters That Turn off Greediness 267
Anchoring Metacharacters 269
The m Modifier 271
Alternation 273
Grouping or Clustering 273
Remembering or Capturing 276
Turning off Greed 280
Turning off Capturing 281
Metacharacters That Look Ahead and Behind 282

9.2.4 The tr or y Operators 285

The d Delete Option 288
The c Complement Option 289
The s Squeeze Option 290

9.3 Unicode 290

9.3.1 Perl and Unicode 291

9.4 What You Should Know 294

9.5 What’s Next? 295

 EXERCISE 9 And the Search Goes On . . . 295

xiv Contents

10 Getting a Handle on Files 297
10.1 The User-Defined Filehandle 297

10.1.1 Opening Files—The open Function 297
10.1.2 Opening for Reading 298

Closing the Filehandle 299
The die Function 299

10.1.3 Reading from a File and Scalar Assignment 300

The Filehandle and $_ 300
The Filehandle and a User-Defined Scalar Variable 301
“Slurping” a File into an Array 302
Using map to Create Fields from a File 303
Slurping a File into a String with the read Function 304

10.1.4 Loading a Hash from a File 306

10.2 Reading from STDIN 307

10.2.1 Assigning Input to a Scalar Variable 307
10.2.2 The chop and chomp Functions 308
10.2.3 The read Function 309
10.2.4 The getc Function 310
10.2.5 Assigning Input to an Array 311
10.2.6 Assigning Input to a Hash 312
10.2.7 Opening for Writing 313
10.2.8 Win32 Binary Files 315
10.2.9 Opening for Appending 316
10.2.10 The select Function 317
10.2.11 File Locking with flock 317
10.2.12 The seek and tell Functions 319

The seek Function 319
The tell Function 322

10.2.13 Opening for Reading and Writing 324
10.2.14 Opening for Anonymous Pipes 326

The Output Filter 327
Sending the Output of a Filter to a File 329
Input Filter 330

10.3 Passing Arguments 333

10.3.1 The @ARGV Array 333
10.3.2 ARGV and the Null Filehandle 334
10.3.3 The eof Function 338
10.3.4 The -i Switch—Editing Files in Place 340

10.4 File Testing 342

10.5 What You Should Know 344

10.6 What’s Next? 344

 EXERCISE 10 Getting a Handle on Things 345

Contents xv

11 How Do Subroutines Function? 347
11.1 Subroutines/Functions 348

11.1.1 Defining and Calling a Subroutine 349

Forward Declaration 351
Scope of Variables 351

11.2 Passing Arguments and the @_ Array 352

11.2.1 Call-by-Reference and the @_ Array 353
11.2.2 Assigning Values from @_ 353

Passing a Hash to a Subroutine 355

11.2.3 Returning a Value 356
11.2.4 Scoping Operators: local, my, our, and state 357

The local Operator 358
The my Operator 358

11.2.5 Using the strict Pragma (my and our) 361

The state Feature 363

11.2.6 Putting It All Together 364
11.2.7 Prototypes 365
11.2.8 Context and Subroutines 366

The wantarray Function and User-Defined Subroutines 367

11.2.9 Autoloading 369
11.2.10 BEGIN and END Blocks (Startup and Finish) 371
11.2.11 The subs Function 371

11.3 What You Should Know 373

11.4 What’s Next? 373

 EXERCISE 11 I Can’t Seem to Function Without Subroutines 374

12 Does This Job Require a Reference? 377
12.1 What Is a Reference? 377

12.1.1 Hard References 378

The Backslash Operator 379
Dereferencing the Pointer 379

12.1.2 References and Anonymous Variables 382

Anonymous Arrays 382
Anonymous Hashes 383

12.1.3 Nested Data Structures 383

Using Data::Dumper 384
Array of Lists 385
Array of Hashes 387
Hash of Hashes 389

12.1.4 More Nested Structures 391

xvi Contents

12.1.5 References and Subroutines 393

Anonymous Subroutines 393
Subroutines and Passing by Reference 394

12.1.6 The ref Function 396
12.1.7 Symbolic References 398

The strict Pragma 400

12.1.8 Typeglobs (Aliases) 400

Filehandle References and Typeglobs 402

12.2 What You Should Know 404

12.3 What’s Next? 404

 EXERCISE 12 It’s Not Polite to Point! 405

13 Modularize It, Package It, and Send It to the Library! 407
13.1 Before Getting Started 407

13.1.1 An Analogy 408
13.1.2 What Is a Package? 408

Referencing Package Variables and Subroutines from Another Package 409

13.1.3 What Is a Module? 411
13.1.4 The Symbol Table 412

13.2 The Standard Perl Library 417

13.2.1 The @INC Array 418

Setting the PERL5LIB Environment Variable 419
The lib Pragma 420

13.2.2 Packages and .pm Files 420

The require Function 421
The use Function (Modules and Pragmas) 421
Using Perl to Include Your Own Library 422

13.2.3 Exporting and Importing 424

The Exporter.pm Module 424

13.2.4 Finding Modules and Documentation from the Standard Perl Library 427

Viewing the Contents of the Carp.pm Module 428

13.2.5 How to “Use” a Module from the Standard Perl Library 431
13.2.6 Using Perl to Create Your Own Module 432

Creating an Import Method Without Exporter 435

13.3 Modules from CPAN 436

13.3.1 The CPAN.pm Module 437

Retrieving a Module from CPAN with the cpan Shell 438

13.3.2 Using Perl Program Manager 439

13.4 Using Perlbrew and CPAN Minus 441

13.5 What You Should Know 444

Contents xvii

13.6 What’s Next? 445

 EXERCISE 13 I Hid All My Perls in a Package 445

14 Bless Those Things! (Object-Oriented Perl) 447
14.1 The OOP Paradigm 447

14.1.1 What Are Objects? 447
14.1.2 What Is a Class? 448
14.1.3 Some Object-Oriented Lingo 449

14.2 Perl Classes, Objects, and Methods—Relating to the Real World 450

14.2.1 The Steps 451
14.2.2 A Complete Object-Oriented Perl Program 451

A Perl Package Is a Class 453
A Perl Class 453

14.2.3 Perl Objects 454

References 454
The Blessing 454

14.2.4 Methods Are Perl Subroutines 456

Definition 456
Types of Methods 457
Invoking Methods 457
Creating the Object with a Constructor 458
Creating the Instance Methods 460
Invoking the Methods (User Interaction) 462

14.2.5 Creating an Object-Oriented Module 464

Passing Arguments to Methods 466
Passing Parameters to Instance Methods 467
Named Parameters and Data Checking 470

14.2.6 Polymorphism and Runtime Binding 472
14.2.7 Destructors and Garbage Collection 476

14.3 Anonymous Subroutines, Closures, and Privacy 478

14.3.1 What Is a Closure? 478
14.3.2 Closures and Objects 481

14.4 Inheritance 484

14.4.1 The @ISA Array and Calling Methods 484
14.4.2 $AUTOLOAD, sub AUTOLOAD, and UNIVERSAL 486
14.4.3 Derived Classes 489
14.4.4 Multiple Inheritance and Roles with Moose 496
14.4.5 Overriding a Parent Method and the SUPER Pseudo Class 499

14.5 Plain Old Documentation—Documenting a Module 501

14.5.1 pod Files 502
14.5.2 pod Commands 504

Checking Your pod Commands 504

xviii Contents

14.5.3 How to Use the pod Interpreters 506
14.5.4 Translating pod Documentation into Text 506
14.5.5 Translating pod Documentation into HTML 507

14.6 Using Objects from the Perl Library 508

14.6.1 An Object-Oriented Module from the Standard Perl Library 509
14.6.2 Using a Module with Objects from the Standard Perl Library 511

14.7 What You Should Know 512

14.8 What’s Next? 513

 EXERCISE 14 What’s the Object of This Lesson? 513

15 Perl Connects with MySQL 519
15.1 Introduction 519

15.2 What Is a Relational Database? 520

15.2.1 Client/Server Databases 521
15.2.2 Components of a Relational Database 522

The Database Server 523
The Database 523
Tables 523
Records and Fields 524
The Database Schema 527

15.2.3 Talking to the Database with SQL 528

English-like Grammar 528
Semicolons Terminate SQL Statements 529
Naming Conventions 529
Reserved Words 529
Case Sensitivity 529
The Result Set 530

15.3 Getting Started with MySQL 530

15.3.1 Installing MySQL 531
15.3.2 Connecting to MySQL 532

Editing Keys at the MySQL Console 533
Setting a Password 533

15.3.3 Graphical User Tools 534

The MySQL Query Browser 534
The MySQL Privilege System 536

15.3.4 Finding the Databases 537

Creating and Dropping a Database 538

15.3.5 Getting Started with Basic Commands 539

Creating a Database with MySQL 539
Selecting a Database with MySQL 541
Creating a Table in the Database 541
Data Types 541

Contents xix

Adding Another Table with a Primary Key 543
Inserting Data into Tables 544
Selecting Data from Tables—The SELECT Command 546
Selecting by Columns 546
Selecting All Columns 547
The WHERE Clause 548
Sorting Tables 550
Joining Tables 551
Deleting Rows 552
Updating Data in a Table 553
Altering a Table 554
Dropping a Table 555
Dropping a Database 555

15.4 What Is the Perl DBI? 556

15.4.1 Installing the DBD Driver 556

Without the DBD-MySQL with PPM 556
Using PPM with Linux 558
Installing the DBD::mysql Driver from CPAN 558

15.4.2 The DBI Class Methods 558
15.4.3 How to Use DBI 560
15.4.4 Connecting to and Disconnecting from the Database 561

The connect() Method 561
The disconnect() Method 563

15.4.5 Preparing a Statement Handle and Fetching Results 563

Select, Execute, and Dump the Results 563
Select, Execute, and Fetch a Row As an Array 564
Select, Execute, and Fetch a Row As a Hash 566

15.4.6 Getting Error Messages 567

Automatic Error Handling 567
Manual Error Handling 567
Binding Columns and Fetching Values 569

15.4.7 The ? Placeholder and Parameter Binding 571

Binding Parameters in the execute Statement 571
Binding Parameters and the bind_param() Method 574

15.4.8 Handling Quotes 576
15.4.9 Cached Queries 577

15.5 Statements That Don’t Return Anything 579

15.5.1 The do() Method 579

Adding Entries 579
Deleting Entries 580
Updating Entries 581

15.6 Transactions 583

15.6.1 Commit and Rollback 583

xx Contents

15.6.2 Perl DBI, the Web, and the Dancer Framework 585

15.7 What’s Left? 590

15.8 What You Should Know 591

15.9 What’s Next? 591

 EXERCISE 15 Practicing Queries and Using DBI 592

16 Interfacing with the System 595
16.1 System Calls 595

16.1.1 Directories and Files 597

Backslash Issues 597
The File::Spec Module 598

16.1.2 Directory and File Attributes 599

UNIX 599
Windows 600

16.1.3 Finding Directories and Files 603
16.1.4 Creating a Directory—The mkdir Function 605

UNIX 605
Windows 605

16.1.5 Removing a Directory—The rmdir Function 607
16.1.6 Changing Directories—The chdir Function 607
16.1.7 Accessing a Directory via the Directory Filehandle 608

The opendir Function 609
The readdir Function 609
The closedir Function 610
The telldir Function 611
The rewinddir Function 611
The seekdir Function 611

16.1.8 Permissions and Ownership 612

UNIX 612
Windows 612
The chmod Function (UNIX) 614
The chmod Function (Windows) 614
The chown Function (UNIX) 615
The umask Function (UNIX) 616

16.1.9 Hard and Soft Links 616

UNIX 616
Windows 617
The link and unlink Functions (UNIX) 618
The symlink and readlink Functions (UNIX) 619

16.1.10 Renaming Files 620

The rename Function (UNIX and Windows) 620

16.1.11 Changing Access and Modification Times 620

Contents xxi

The utime Function 620

16.1.12 File Statistics 621

The stat and lstat Functions 621

16.1.13 Packing and Unpacking Data 624

16.2 Processes 629

16.2.1 UNIX Processes 629
16.2.2 Win32 Processes 631
16.2.3 The Environment (UNIX and Windows) 632
16.2.4 Processes and Filehandles 634

Login Information—The getlogin Function 635
Special Process Variables (pid, uid, euid, gid, egid) 635
The Parent Process ID—The getppid Function and the $$ Variable 635
The Process Group ID—The pgrp Function 636

16.2.5 Process Priorities and Niceness 637

The getpriority Function 637
The setpriority Function (nice) 637

16.2.6 Password Information 638

UNIX 638
Windows 639
Getting a Password Entry (UNIX)—The getpwent Function 641
Getting a Password Entry by Username—The getpwnam Function 642
Getting a Password Entry by uid—The getpwuid Function 643

16.2.7 Time and Processes 643

The Time::Piece Module 644
The times Function 645
The time Function (UNIX and Windows) 646
The gmtime Function 646
The localtime Function 648

16.2.8 Process Creation UNIX 649

The fork Function 649
The exec Funtion 652
The wait and waitpid Functions 653
The exit Function 654

16.2.9 Process Creation Win32 654

The start Command 654
The Win32::Spawn Function 655
The Win32::Process Module 656

16.3 Other Ways to Interface with the Operating System 658

16.3.1 The syscall Function and the h2ph Script 658
16.3.2 Command Substitution—The Backquotes 659
16.3.3 The Shell.pm Module 660
16.3.4 The system Function 661
16.3.5 Globbing (Filename Expansion and Wildcards) 663

xxii Contents

16.4 Error Handling 664

16.4.1 The Carp Module 665

The die Function 665
The warn Function 666

16.4.2 The eval Function 666

16.5 Signals and the %SIG Hash 669

16.5.1 Catching Signals 669
16.5.2 Sending Signals to Processes 670

The kill Function 670
The alarm Function 671
The sleep Function 672

16.5.3 Attention, Windows Users! 672

16.6 What You Should Know 673

 EXERCISE 16 Interfacing with the System 674

A Perl Built-ins, Pragmas, Modules, and the Debugger 675
A.1 Perl Functions 675

A.2 Special Variables 705

A.3 Perl Pragmas 708

A.4 Perl Modules 710

A.5 Command-Line Switches 716

A.6 Debugger 718

A.6.1 Getting Information About the Debugger 718
A.6.2 The Perl Debugger 718
A.6.3 Entering and Exiting the Debugger 719
A.6.4 Debugger Commands 720

B SQL Language Tutorial 723
B.1 What Is SQL? 723

B.1.1 Standarizing SQL 724
B.1.2 Executing SQL Statements 724

The MySQL Query Browser 725

B.1.3 About SQL Commands/Queries 725

English-like Grammar 725
Semicolons Terminate SQL Statements 726
Naming Conventions 727
Reserved Words 727
Case Senstivity 727
The Result Set 728

B.1.4 SQL and the Database 728

The show databases Command 728

Contents xxiii

The USE Command 729

B.1.5 SQL Database Tables 729

The SHOW and DESCRIBE Commands 730

B.2 SQL Data Manipulation Language (DML) 731

B.2.1 The SELECT Command 731

Select Specified Columns 732
Select All Columns 732
The SELECT DISTINCT Statement 733
Limiting the Number of Lines in the Result Set with LIMIT 734
The WHERE Clause 736
Using Quotes 737
Using the = and <> Operators 737
What Is NULL? 737
The > and < Operators 739
The AND and OR Operators 740
The LIKE and NOT LIKE Conditions 741
Pattern Matching and the % Wildcard 741
The _ Wildcard 743
The BETWEEN Statement 743
Sorting Results with ORDER BY 744

B.2.2 The INSERT Command 745
B.2.3 The UPDATE Command 746
B.2.4 The DELETE Statement 747

B.3 SQL Data Definition Language 748

B.3.1 Creating the Database 748
B.3.2 SQL Data Types 749
B.3.3 Creating a Table 751
B.3.4 Creating a Key 753

Primary Keys 753
Foreign Keys 755

B.3.5 Relations 756

Two Tables with a Common Key 756
Using a Fully Qualified Name and a Dot to Join the Tables 757
Aliases 758

B.3.6 Altering a Table 759
B.3.7 Dropping a Table 761
B.3.8 Dropping a Database 761

B.4 SQL Functions 761

B.4.1 Numeric Functions 762

Using GROUP BY 763

B.4.2 String Functions 765
B.4.3 Date and Time Functions 766

Formatting the Date and Time 767
The MySQL EXTRACT Command 769

xxiv Contents

B.5 Appendix Summary 770

B.6 What You Should Know 770

 EXERCISE B Do You Speak My Language? 771

C Introduction to Moose (A Postmodern Object System for Perl 5) 775
C.1 Getting Started 775

C.2 The Constructor 776

C.3 The Attributes 776

C.3.1 The has Function 777
C.3.2 Before and After Moose Examples 778
C.3.3 Moose Types 781
C.3.4 Example Using Moose and Extensions 785
C.3.5 Example Using Inheritance with Moose 791

C.4 What About Moo? 795

C.5 Appendix Summary 796

C.6 References 796

D Perlbrew, CPAN, and cpanm 797
D.1 CPAN and @INC 797

D.1.1 Finding Modules 798
D.1.2 Using Modules 798

I Already Have It! 799

D.1.3 Package Manager 800
D.1.4 Manually: CPAN 801

local::lib 801

D.2 cpanm 802

D.3 Perlbrew 803

D.4 Caveats: C Dependencies 805

D.5 Windows 806

E Dancing with Perl 807
E.1 A New Dancer App 808

E.1.1 Verbs 811
E.1.2 Templating 814
E.1.3 Parameters 818
E.1.4 POST 826

 EXERCISE E May I Have This Dance? 829

Index 831

xxv

Preface

“You may wonder, why a new edition of Perl by Example?” That’s how the preface for the
fourth edition (2007) opened. So here we are again with a fifth edition and the twentieth
anniversary since the first edition of Perl by Example, published in 1994. Same question:
Why another edition? Perl 5 is still Perl 5.

First of all, a lot has been happening since the release of Perl 5.10. Many of the ideas
from Perl 6 have been backported to Perl 5 as we await the official release of Perl 6. And
as new features are added, there have been a number of incremental version changes, the
latest version number being Perl 5.21. In fact, version 5.10 was what has been called the
beginning of “modern Perl.” CPAN has added a number of new modules that have spiked
interest in Perl, among them Moose, Mojolicious, Dancer, DBIx::Class, and more; and Core
Perl has gained many new modules as well, such as List::Util, Time::Piece, autodie, and
so on. Those incremental changes to Perl 5 continue to enhance Core Perl and all the
many new modules that deal with modern projects and technology. Perl 6 is still a work
in progress. To see the roadmap for Perl 6 development, you can go to github.com or you
can participate in the development process by going to perl6.org. But the fact is, we’re still
entrenched in Perl 5 while we wait. This book addresses new features that have been added
since the last edition, revitalizes and updates some of the older examples, and trims some
of those topics that are not applicable in modern Perl.

As you read this, I am still teaching Perl University of California, Santa Clara (UCSC)
extension in Sunnyvale, California, to groups of professionals coming from all around
Silicon Valley. I always ask at the beginning of a class, “So why do you want to learn
Perl?” The predominate response today: for automation and testing, not CGI or biotech,
not even for completing a resume now that the Valley is on an upswing, but primarily for
automation and testing. The legacy code remains for those companies that started with
Perl, and it continues to grow. No matter what anyone tells you, Perl is still in demand. I
know. I teach it, not only at UCSC, but to those major companies that use Perl and require
their employees to learn it as part of their training path.

xxvi Preface

Perl by Example is not just a beginner’s guide but a complete guide to Perl. It covers
many aspects of what Perl can do, from basic syntax to regular expression handling, files,
references, objects, working with databases, and much more. Perl also has a rich variety of
functions for handling strings, arrays, hashes, and the like. This book will teach you Perl
by using complete, working, numbered examples and output with explanations for each
line, and avoids veering off into other areas or using complicated explanations that send
you off to your favorite search engine in order to figure out what’s going on. It helps if you
have some programming background, but it is not assumed that you are an experienced
programmer or a guru. Anyone reading, writing, or just maintaining Perl programs can
greatly profit from this text.

The appendices contain a complete list of functions and definitions, command-
line switches, special variables, popular modules, and the Perl debugger; a tutorial to
introduce Moose for object-oriented programming; a tutorial covering the Web application
framework, Dancer, to replace the need for the Common Gateway Interface; and a guide
for using PerlBrew and CPAN (“the gateway to all things Perl”) and how to effectively
download modules.

I was fortunate to have been introduced to Alastair McGowan-Douglas as the technical
expert for reviewing and critiquing this edition. He went well beyond the line of duty
and has contributed greatly to not only transforming this book, but to adding his own
writing for the tutorials in the appendices, correcting errors, and introducing modern Perl
practices. His extensive knowledge and dedication have been invaluable. When we started
the project, Alastair wrote to me:

“. . . I should note that ‘modern Perl’ refers to the era since 5.10, where practices
and conventions got a massive overhaul within the community, as Perl itself had a
resurgence in development on it (the language and binary themselves). The previous
edition, of course, predates this sea-change, which it seems like the rug has somewhat
been swept out from under us.

No matter! We shall prevail, as they say.”

And that is precisely what this edition has attempted to do!

—Ellie Quigley
September 2014

Preface xxvii

Acknowledgments

I’d like to acknowledge the following people for their contributions to the fifth edition.
Thank you, Mark Taub, an editor-in-chief to be praised for being very cool in every

step of the process from the signing of the contract to the final book that you have now
in your hand. Mark has a way of making such an arduous task seem possible; he soft-
talks impossible deadlines, keeps up a steady pressure, and doesn’t get crazy over missed
deadlines, quietly achieving his goal and always with a subtle sense of humor. Thank you,
Mark, for being the driving force behind this new edition!

Of course, none of this would have been possible without the contributions of the
Perl pioneers—Larry Wall, Randal Schwartz, and Tom Christiansen. Their books are must
reading and include Learning Perl by Randal Schwartz and Programming Perl by Larry Wall,
Tom Christiansen, and Jon Orwant.

Thank you, Vanessa Moore, the project manager and compositor who has been working
with me for the past 20 years on making the by Example books look beautiful. She excels in
her ability to do editing, layout, and artwork, and also in her ability to find errors that most
programmers wouldn’t see, not to mention an abundance of patience and sense of humor.
Without her, this book would be like a painting without color. She’s the best!

Also a big thanks to Daniel Holmes from NetApp (RTP) who contributed to the sections
on Moose and wrote the final example; and Alastair McGowan-Douglas whose technical
expertise was invaluable.

And last, but certainly not least, a huge thanks to all the students, worldwide, who have
done all the real troubleshooting and kept the subject alive.

This page intentionally left blank

This page intentionally left blank

chapter

5

81

What’s in a Name?

5.1 More About Data Types

By the end of this chapter, you will be able to read the following Perl code:

use strict;
use warnings;
my @l = qw/a b c d d a e b a b d e f/;
my %hash=();

foreach my $key (@l){
 $hash{$key} = $key;
}
print join(" ",sort keys %hash),"\n";

Again, please take note that each line of code, in most of the examples throughout this
book, is numbered. The output and explanations are also numbered to match the numbers
in the code. When copying examples into your text editor, don’t include these numbers, or
you will generate errors.

5.1.1 Basic Data Types (Scalar, Array, Hash)

In Chapter 3, “Perl Scripts,” we briefly discussed scalars. In this chapter, we will cover
scalars in more depth, as well as arrays and hashes. It should be noted that Perl does not
provide the traditional data types, such as int, float, double, char, and so on. It bundles all
these types into one type, the scalar. A scalar can represent an integer, float, string, and so
on, and can also be used to create aggregate or composite types, such as arrays and hashes.

Unlike C or Java, Perl variables don’t have to be declared before being used, and you
do not have to specify what kind data will be stored there. Variables spring to life just by

5.1 More About Data Types

82 Chapter 5 • What’s in a Name?

the mere mention of them. You can assign strings, numbers, or a combination of these to
Perl variables and Perl will figure out what the type is. You may store a number or a list
of numbers in a variable and then later change your mind and store a string there. Perl
doesn’t care.

A scalar variable contains a single value (for example, one string or one number),
an array variable contains an ordered list of values indexed by a positive number, and
a hash contains an unordered set of key/value pairs indexed by a string (the key) that is
associated with a corresponding value (see Figure 5.1). (See Section 5.2, “Scalars, Arrays,
and Hashes.”)

package main

scalar
namespace

array
namespace

hash
namespace

%department
$department{Ed}

@course
$course[0]

$friend

Figure 5.1 Namespaces for scalars, arrays, and hashes in package main.

5.1.2 Package, Scope, Privacy, and Strictness

Package and Scope. The Perl sample programs you have seen in the previous
chapters are compiled internally into what is called a package, which provides a namespace
for variables.

An analogy often used to describe a package is the naming of a person. In the Johnson
family, there is a boy named James. James is known to his family and does not have to
qualify his name with a last name every time he is being called to dinner. “James, sit down
at the table” is enough. However, in the school he attends there are several boys named
James. The correct James is identified by his last name, for example, “James Johnson, go to
the principal’s office.”

In a Perl program, “James” represents a variable and his family name, “Johnson,” a
package. The default package is called main. If you create a variable, $name, for example,
$name belongs to the main package and could be identified as $main::name, but qualifying
the variable at this point is unnecessary as long as we are working in a single file and using
the default package, main. Later when working with modules, we will step outside of the
package main. This would be like James going to school. Then we could have a conflict if
two variables from different packages had the same name and would have to qualify which
package they belong to. For now, we will stay in the main package. When you see the word
main in a warning or error message, just be aware that it is a reference to something going
on in your main package.

The scope of a variable determines where it is visible in the program. In the Perl scripts
you have seen so far, the variables live in the package main and are visible to the entire
script file (that is, global in scope). Global variables, also called package variables, can be

5.1 More About Data Types 83

changed anywhere within the current package (and other packages), and the change will
permanently affect the variable. To keep variables totally hidden within their file, block, or
subroutine programs, we can define lexical variables. One way Perl does this is with the
my operator. An entire file can be thought of as a block, but we normally think of a block
as a set of statements enclosed within curly braces. If a variable is declared as a my variable
within a block, it is visible (that is, accessible within that block and any nested blocks). It
is not visible outside the block. If a variable is declared with my at the file level, then the
variable is visible throughout the file. See Example 5.1.

e x a m p l e 5 . 1

 # We are in package main
1 no warnings; # warnings turned off so that output is
 # not clouded with warning messages

2 my $family="Johnson"; # file scope
3 { my $mother="Mama"; # block scope
 my $father="Papa";
 my ($cousin, $sister, $brother);
4 my $family="McDonald"; # new variable
5 print "The $family family is visible here.\n";
 }
6 print "$mother and $father are not visible here.\n";
7 print "The $family family is back.\n";

(Output)
5 The McDonald family is visible here.
6 and are not visible here.
7 The Johnson family is back.

e x p l a n at i o n
1 warnings are turned off so that you can see what’s going on without being interrupted

with warning messages. If warnings had been turned on, you would have seen the
following:

Name "main::father" used only once: possible typo at my.plx line 10.
Name "main::mother" used only once: possible typo at my.plx line 10.
The McDonald family is visible here.
Use of uninitialized value $mother in concatenation (.) or string at
 my.plx line 10.
Use of uninitialized value $father in concatenation (.) or string at
 my.plx line 10.
And are not visible here.
The Johnson family is back.

The messages are telling you that for package main, the $mother and $father variables
were used only once. That is because they are not visible outside of the block where
they were defined, and by being mentioned outside the block, they are new uninitial-
ized variables.

84 Chapter 5 • What’s in a Name?

e x p l a n at i o n (c o n t i n u e d)

2 The $family variable is declared as a lexical my variable at the beginning of the pro-
gram. The file is considered a block for this variable giving it file scope; that is, visible
for the entire file, even within blocks. If changed within a block, it will be changed for
the rest of the file.

3 We enter a block. The my variables within this block are private to this block, visible
here and in any nested blocks, and will go out of scope (become invisible) when the
block exits.

4 This is a brand new lexical $family variable (McDonald). It has nothing to do with the
one created on line 2. The first one (Johnson) will be visible again after we exit this
block.

6 The my variables defined within the block are not visible here; that is, they have gone
out of scope. These are brand new variables, created on the fly, and have no value.

7 The Johnson family is back. It is visible in the outer scope.

The purpose in mentioning packages and scope now is to let you know that the default
scope of variables in the default main package, your script, is global; that is, accessible
throughout the script. To help avoid the future problems caused by global variables, it
is a good habit (and often a required practice) to keep variables private by using the my
operator. This is where the strict pragma comes in.

The strict pragma (a pragma is a compiler directive) is a special Perl module that directs
the compiler to abort the program if certain conditions are not met. It targets barewords,
symbolic references, and global variables. For small practice scripts within a single file,
using strict isn’t necessary, but it is a good, and often required, practice to use it (a topic you
can expect to come up in a Perl job interview!).

In the following examples, we will use strict primarily to target global variables, causing
your program to abort if you don’t use the my operator when declaring them.

e x a m p l e 5 . 2

1 use strict;
2 use warnings;
3 $family="Johnson"; # Whoops! global scope
4 $mother="Mama";
5 $father="Papa";
6 print "$mother and $father are here.\n"; # global
7 print "The $family family is here.\n";

(Output)
Global symbol "$family" requires explicit package name at strictex.plx
line 3.
Global symbol "$mother" requires explicit package name at strictex.plx
line 4.
Global symbol "$father" requires explicit package name at strictex.plx
line 5.

5.1 More About Data Types 85

e x a m p l e 5 . 2 (c o n t i n u e d)

Global symbol "$mother" requires explicit package name at strictex.plx
line 6.
Global symbol "$father" requires explicit package name at strictex.plx
line 6.
Global symbol "$family" requires explicit package name at strictex.plx
line 7.
Execution of strictex.plx aborted due to compilation errors.

e x p l a n at i o n
1 The strict pragma is being used to restrict all “unsafe constructs.” To see all the restric-

tions, type the following at your command-line:

perldoc strict

If you just want to target global variables, you would use strict with an argument in
your program, such as:

use strict 'vars'

2 The warnings pragma is turned on, but will not issue warnings because strict will su-
persede it, causing the program to abort first.

3 This is a global variable in the program, but it sets off a plethora of complaints from
strict everywhere it is used. By preceding $family and the variables $mother and
$father with the my operator, all will go well. (You can also explicitly name the pack-
age and the variable, as $main::family to satisfy strict. But then, the warnings pragma
will start complaining about other things, as discussed in the previous example.)

6, 7 Global variables again! strict complains, and the program is aborted.

The warnings and strict pragmas together are used to help you find typos, spelling errors,
and global variables. Although using warnings will not cause your program to die, with
strict turned on, it will, if you disobey its restrictions. With the small examples in this book,
the warnings are always turned on, but we will not turn on strict until later.

5.1.3 Naming Conventions

Variables are identified by the “funny characters” that precede them. Scalar variables are
preceded by a $ sign, array variables are preceded by an @ sign, and hash variables are
preceded by a % sign. Since the “funny characters” (properly called sigils) indicate what
type of variable you are using, you can use the same name for a scalar, array, or hash (or
a function, filehandle, and so on) and not worry about a naming conflict. For example,
$name, @name, and %name are all different variables; the first is a scalar, the second is an
array, and the last is a hash.1

1. Using the same name is perfectly legal, but not recommended; it makes reading the program too confusing.

86 Chapter 5 • What’s in a Name?

Since reserved words and filehandles are not preceded by a special character, variable
names will not conflict with them. Names are case sensitive. The variables named $Num,
$num, and $NUM are all different. If a variable starts with a letter, it may consist of any
number of letters (an underscore counts as a letter) and/or digits. If the variable does not
start with a letter, it must consist of only one character. Perl has a set of special variables (for
example, $_, $^, $., $1, $2) that fall into this category. (See Section A.2, “Special Variables,”
in Appendix A.) In special cases, variables may also be preceded with a single quote, but
only when packages are used. An uninitialized variable will get a value of zero or undef,
depending on whether its context is numeric or string.

5.1.4 Assignment Statements

The assignment operator, the equal sign (=), is used to assign the value on its right-hand
side to a variable on its left-hand side. Any value that can be “assigned to” represents a
named region of storage and is called an lvalue.2 Perl reports an error if the operand on the
left-hand side of the assignment operator does not represent an lvalue.

When assigning a value or values to a variable, if the variable on the left-hand side of
the equal sign is a scalar, Perl evaluates the expression on the right-hand side in a scalar
context. If the variable on the left of the equal sign is an array, then Perl evaluates the
expression on the right in an array or list context (see Section 5.2, “Scalars, Arrays, and
Hashes”).

e x a m p l e 5 . 3

(The Script)
 use warnings;
 # Scalar, array, and hash assignment
1 my $salary=50000; # Scalar assignment
2 my @months=('Mar', 'Apr', 'May'); # Array assignment
3 my %states= (# Hash assignment
 CA => 'California',
 ME => 'Maine',
 MT => 'Montana',
 NM => 'New Mexico',
);
4 print "$salary\n";
5 print "@months\n";
6 print "$months[0], $months[1], $months[2]\n";
7 print "$states{'CA'}, $states{'NM'}\n";
8 print $x + 3, "\n"; # $x just came to life!
9 print "***$name***\n"; # $name is born!

2. The value on the left-hand side of the equal sign is called an lvalue, and the value on the right-hand side is
called an rvalue.

5.2 Scalars, Arrays, and Hashes 87

e x a m p l e 5 . 3 (c o n t i n u e d)

(Output)
4 50000
5 Mar Apr May
6 Mar, Apr, May
7 California, New Mexico
8 3
9 ******

e x p l a n at i o n
1 The scalar variable $salary is assigned the numeric literal 50000.*
2 The array @months is assigned the comma-separated list, 'Mar ', ' Apr ', May '. The list

is enclosed in parentheses and each list item is quoted.
3 The hash, %states, is assigned a list consisting of a set of strings separated by either a

digraph symbol (=>) or a comma. The string on the left is called the key and it is not
required that you quote the key, unless it starts with a number. The string to the right
is called the value. The key is associated with its value.

5 The @months array is printed. The double quotes preserve spaces between each
element.

6 The individual elements of the array, @months, are scalars and are thus preceded by a
dollar sign ($). The array index starts at zero.

7 The key elements of the hash, %states, are enclosed in curly braces ({}). The associated
value is printed. Each value is a single value, a scalar. The value is preceded by a dollar
sign ($).

8 The scalar variable, $x, is referenced for the first time with an initial value of undef.
Because the number 3 is added to $x, the context is numeric. $x then gets an initial
value of 0 in order to perform arithmetic. Initially $x is null.

9 The scalar variable, $name, is referenced for the first time with an undefined value.
The context is string.

* The comma can be used in both Perl 4 and Perl 5. The => symbol was introduced in Perl 5.

5.2 Scalars, Arrays, and Hashes

Now that we have discussed the basics of Perl variables (types, visibility, funny characters,
and so forth), we can look at them in more depth. Perhaps a review of the quoting rules
detailed in Chapter 4, “Getting a Handle on Printing,” would be helpful at this time.

5.2 Scalars, Arrays, and Hashes

88 Chapter 5 • What’s in a Name?

5.2.1 Scalar Variables

Scalar variables hold a single number or string3 and are preceded by a dollar sign ($). Perl
scalars need a preceding dollar sign whenever the variable is referenced, even when the
scalar is being assigned a value.

Assignment. When making an assignment, the value on the right-hand side of the
equal sign is evaluated as a single value (that is, its context is scalar). A quoted string, then,
is considered a single value even if it contains many words.

e x a m p l e 5 . 4

1 $number = 150; # Number
2 $name = "Jody Savage"; # String
3 $today = localtime(); # Function

e x p l a n at i o n
1 The numeric literal, 150, is assigned to the scalar variable $number.
2 The string literal Jody Savage is assigned to the scalar $name as a single string.
3 The output of Perl’s localtime function will be assigned as a string to $today. (The re-

turn value of localtime is string context here and if assigned to an array its return value
is an array of numbers. See perldoc -f localtime.)

e x a m p l e 5 . 5

(The Script)
 use warnings;
 # Initializing scalars and printing their values
1 my $num = 5;
2 my $friend = "John Smith";
3 my $money = 125.75;
4 my $now = localtime; # localtime is a Perl function
5 my $month="Jan";
6 print "$num\n";
7 print "$friend\n";
8 print "I need \$$money.\n"; # Protecting our money
9 print qq/$friend gave me \$$money.\n/;
10 print qq/The time is $now\n/;
11 print "The month is ${month}uary.\n"; # Curly braces shield
 # the variable
12 print "The month is $month" . "uary.\n"; # Concatenate

3. References are also stored as string variables.

5.2 Scalars, Arrays, and Hashes 89

e x a m p l e 5 . 5 (c o n t i n u e d)

(Output)
6 5
7 John Smith
8 I need $125.75.
9 John Smith gave me $125.75.
10 The time is Sat Jan 24 16:12:49 2014.
11 The month is January.
12 The month is January.

e x p l a n at i o n
1 The scalar $num is assigned the numeric literal, 5.
2 The scalar $friend is assigned the string literal, John Smith.
3 The scalar $money is assigned the numeric floating point literal, 125.75.
4 The scalar $now is assigned the output of Perl’s built-in localtime function.
5 The scalar $month is assigned Jan.
8 The quoted string is printed. The backslash allows the first dollar sign ($) to be print-

ed literally; the value of $money is interpolated within double quotes, and its value
printed.

9 The Perl qq construct replaces double quotes. The string to be quoted is enclosed in
forward slashes. The value of the scalar $friend is interpolated; a literal dollar sign
precedes the value of the scalar interpolated variable, $money.

10 The quoted string is printed as if in double quotes. The $now variable is interpolated.
11 Curly braces can be used to shield the variable from characters that are appended to

it. January will be printed.
12 Normally, two strings or expressions are joined together with the dot operator (see

Chapter 6, “Where’s the Operator?”), called the concatenation operator.

The defined Function. If a scalar has neither a valid string nor a valid numeric value,
it is undefined. The defined function allows you to check for the validity of a variable’s
value. It returns 1 if the variable has a value (other than undef) and nothing if it does not.

e x a m p l e 5 . 6

.
$name="Tommy";
print "OK \n" if defined $name;

The undef Function. When you define a variable without giving it a value, such as

my $name;

the initial value is undef.

90 Chapter 5 • What’s in a Name?

You can use the undef function to undefine an already defined variable. It releases
whatever memory that was allocated for the variable. The function returns the undefined
value. This function also releases storage associated with arrays and subroutines.

e x a m p l e 5 . 7

undef $name;

The $_ Scalar Variable. The $_ (called a topic variable4) is a ubiquitous little
character. Although it is very useful in Perl scripts, it is often not seen, somewhat like your
shadow—sometimes you see it; sometimes you don’t. It is used as the default pattern space
for searches, for functions that require a scalar argument, and to hold the current line when
looping through a file. Once a value is assigned to $_, functions such as chomp, split, and
print will use $_ as an argument. You will learn more about functions and their arguments
later, but for now, consider the following example.

e x a m p l e 5 . 8

1 $_ = "Donald Duck\n";
2 chomp; # The newline is removed from $_
3 print; # The value of $_ is printed

(Output)
Donald Duck

e x p l a n at i o n
1 The $_ scalar variable is assigned the string "Donald Duck\n". Now you see it!
2 The chomp function removes the newline from $_, the default scalar. Now you don’t!
3 The print function has been given nothing to print, so it will print $_, the default

scalar, without a trailing newline.

The $_ Scalar and Reading Input from Files
When looping through a file, the $_ is often used as a holding place for each line as it is
read. In the following example, a text file called datebook.txt is opened for reading. The
filehandle is $fh, a user-defined variable to represent the real file, datebook.txt. Each time
the loop is entered, a line is read from the file. But where does the line go? It is implicitly
assigned to the $_ variable. The next time the loop is entered, a new line is read from the
file and assigned to $_, overwriting the previous line stored there. The loop ends when the
end of file is reached. The print function, although it appears to be printing nothing, will
print the value of $_ each time the loop block is entered.

4. A topic variable is a special variable with a very short name, which in many cases can be omitted.

5.2 Scalars, Arrays, and Hashes 91

e x a m p l e 5 . 9

(The Script)
 use warnings;
 # Reading input from a file
1 open(my $fh, "<", "datebook.txt") or die $!;
2 while(<$fh>){ # loops through the file a line at a time storing
 # each line in $_
3 print; # prints the value stored in $_
4 }
5 close $fh;

(Output)
Jon DeLoach:408-253-3122:123 Park St., San Jose, CA 04086:7/25/53:85100
Karen Evich:284-758-2857:23 Edgecliff Place, Lincoln, NB
92086:7/25/53:85100
Karen Evich:284-758-2867:23 Edgecliff Place, Lincoln, NB
92743:11/3/35:58200
Karen Evich:284-758-2867:23 Edgecliff Place, Lincoln, NB
92743:11/3/35:58200
Fred Fardbarkle:674-843-1385:20 Parak Lane, DeLuth, MN
23850:4/12/23:780900

e x p l a n at i o n
1 A user-defined filehandle is a Perl way of associating a real file with an internal Perl

structure by a name. In this example, $fh is a lexically scoped filehandle used to rep-
resent the real file, datebook.txt, which is opened for reading. If the file doesn’t exist or
is unreadable, the program will “die” (exit) with the reason it died ($!).

2 The while loop is entered. Perl will read the first line from the file and implicitly assign
its value to $_, and if successful enter the body of the loop. The angle brackets (<>)
are used for reading, as we saw when reading from STDIN.

3 Every time the loop is entered, a new line from the file is stored in $_, overwriting the
previous line that was stored there, and each time the current value of $_ is printed.

4 This is the closing brace for the block of the loop. When the file has no more lines,
the read will fail, and the loop will end.

5 Once finished with the file, it is closed via the filehandle. (See Chapter 10, “Getting a
Handle on Files,” for a complete discussion on filehandles.)

5.2.2 Arrays

Let’s say when you moved into town, you made one friend. That friend can be stored in
a scalar as $friend="John". Now let’s say a few months have gone by since you moved, and
now you have a whole bunch of new friends. In that case, you could create a list of friends,
give the list one name, and store your friends in a Perl array; for example, @pals=("John",
"Mary", "Sanjay", "Archie").

92 Chapter 5 • What’s in a Name?

When you have a collection of similar data elements, it is easier to use an array than to
create a separate variable for each of the elements. The array name allows you to associate
a single variable name with a list of data elements. Each of the elements in the list is
referenced by its name and a subscript (also called an index).

Perl, unlike C-like languages, doesn’t care whether the elements of an array are of the
same data type. They can be a mix of numbers and strings. To Perl, an array is a list
containing an ordered set of scalars. The name of the array starts with an @ sign and the
list is enclosed in parentheses, each element assigned an index value starting at zero (see
Figure 5.2).

Assignment. If the array is initialized, the elements are enclosed in parentheses,
and each element is separated by a comma. The list is parenthesized due to the lower
precedence of the comma operator over the assignment operator. Elements in an array are
simply scalars.

The qw construct can also be used to quote words in a list (similar to qq, q, and qx). The
items in the list are treated as singly quoted words and the comma is also provided.

$pal = "John"; # Scalar holds one value
@pals = ("John", "Sam", "Nicky", "Jake"); # Array holds a list of values
@pals = qw(John Sam Nicky Jake); # qw means quote word and include comma

scalar array

@pals

"John" "Sam" "Nicky" "Jake"

0 1 2 3

John

$pal

Figure 5.2 A scalar variable and an array variable.

e x a m p l e 5 . 1 0

1 @name=("Guy", "Tom", "Dan", "Roy");
2 @list=(2..10);
3 @grades=(100, 90, 65, 96, 40, 75);
4 @items=($a, $b, $c);
5 @empty=();
6 $size=@items;
7 @mammals = qw/dogs cats cows/;
8 @fruit = qw(apples pears peaches);

e x p l a n at i o n
1 The array @name is initialized with a list of four string literals.
2 The array @list is assigned numbers ranging from 2 through 10.
3 The array @grades is initialized with a list of six numeric literals.

5.2 Scalars, Arrays, and Hashes 93

e x p l a n at i o n (c o n t i n u e d)

4 The array @items is initialized with the values of three scalar variables.
5 The array @empty is assigned an empty list.
6 The array @items is assigned to the scalar variable $size. The value of the scalar is the

number of elements in the array (in this example, 3).
7 The qw (quote word) construct is followed by a delimiter of your choice and a string.

qw() extracts words out of your string using embedded whitespace as the delimiter
and returns the words as a list. Variables are not interpolated. Each word in the list is
treated as a singly quoted word. The list is terminated with a closing delimiter. This
example could be written like so:

@mammals = ('cats', 'dogs', 'cows');

8 The qw construct accepts paired characters (), { },< >, and [], as optional delimiters.

Output and Input Special Variables ($, and $"). The $, is a special default
global variable, called the output field separator. When used by the print function to
print a list or an array (not enclosed in quotes), this variable separates the elements and is
initially set to undef. For example, print 1,2,3 would ouput 123. Although you can assign
a different value to the $, it’s not a good idea, as once changed, it will affect your whole
program. (The join function would provide a better solution.)

e x a m p l e 5 . 1 1

1 use warnings;
2 my @pets=("Smokey", "Fido", "Gills", "Skiddy");
3 print @pets, "\n"; # Output separator is undef
4 $,="****"; # Changes the output field separator
5 print @pets,"\n"; # no quotes; ***** replaces undef
6 print 1,2,3, "\n";

(Output)
SmokeyFidoGillsSKiddy
Smokey****Fido****Gills****Skiddy****
 1****2****3****

e x p l a n at i o n
3 The array of pets is printed. The value of of $, is used to separate elements of an un-

quoted list for the print function and is initially set to undef .
4 The $, variable is reset to "****".
5 Now, when the print function displays an unquoted list, the list items are separated by

that string.
6 The comma evaluates to "****" in the print function.

The $" is a special scalar variable, called the list separator, used to separate the elements
of a list in an array, and is by default a single space. For example, when you print an array
enclosed in double quotes, the value of $" will be preserved, and you will have a space
between the elements.

94 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 1 2

1 @grocery_list=qw(meat potatoes rice beans spinach milk);
2 print "@grocery_list\n"; # The list separator is a space
3 $" = "---"; # Change the list separator
4 print "@grocery_list\n"; # The list separator has been changed
5 $, = "||"; # change print's separator
6 print @grocery_list, "\n"; # no quotes

(Ouput)
2 meat potatoes rice beans spinach milk
4 meat---potatoes---rice---beans---spinach---milk
5 meat||potatotes||rice||beans||spinach||milk

e x p l a n at i o n
2 The $" variable is called the list separator and is initially set to a space. Unless the ar-

ray is enclosed in double quotes, the space is lost.
3 You can change the $" variable by assigning it a string.
4 Now you can see when we print the quoted array, the array separator between the

elements has been changed.
5 Now the print separator is changed to "||". If the quotes are removed, the print func-

tion will display the list with the new separator.

Array Size. $#arrayname returns the largest index value in the array; that is, the index
value of its last element. Since the array indices start at zero, this value is one less than the array
size. The $#arrayname variable can also be used to shorten or truncate the size of the array.

To get the size of an array, you can assign it to a scalar or use the built-in scalar function
which used with an array, forces scalar context. It returns the size of the array, one value.
(This is defined as a unary operator. See perlop for more details.)

e x a m p l e 5 . 1 3

 use warnings;
1 my @grades = (90,89,78,100,87);
2 print "The original array is: @grades\n";
3 print "The number of the last index is $#grades\n";
4 print "The value of the last element in the array is
 $grades[$#grades]\n";

5 print "The size of the array is ", scalar @grades, "\n";
 # my $size = @grades; # Get the size of the array
6 @grades=();
 print "The array is completely truncated: @grades\n";

(Output)
2 The original array is: 90 89 78 100 87
3 The number of the last index is 4
4 The value of the last element of the array is 87
5 The size of the array is 5
6 The array is completely truncated:

5.2 Scalars, Arrays, and Hashes 95

e x p l a n at i o n
1 The array @grades is assigned a list of five numbers.
2 The $# construct gets the index value of the last element in the array.
3 By using $#grades as an index value, the expression would evaluate to $grades[4].
4 The built-in scalar function forces the array to be in scalar context and returns the

number of elements in the array. You could also assign the array to a scalar variable,
as in $size = @grades, to produce the same result as shown in line 6.

6 Using an empty list causes the array to be completely truncated to an empty list.

The Range Operator and Array Assignment. The .. operator, called the range
operator, when used in a list context, returns a list of values starting from the left value to
the right value, counting by ones.

e x a m p l e 5 . 1 4

 use warnings;
1 my @digits=(0 .. 10);
2 my @letters=('A' .. 'Z');
3 my @alpha=('A' .. 'Z', 'a' .. 'z');
4 my @n=(-5 .. 20);

e x p l a n at i o n
1 The array @digits is assigned a list of numbers, 0 incremented by 1 until 10 is reached.
2 The array @letters is assigned a list of capital letters, A through Z (ASCII values of A

through Z).
3 The array @alpha is assigned a list of uppercase and lowercase letters.
4 The array @n is assigned a list of numbers, -5 through 20.

Accessing Elements. An array is an ordered list of scalars. To reference the individual
elements in an array, each element (a scalar) is preceded by a dollar sign. The index starts at
0, followed by positive whole numbers. For example, in the array @colors, the first element
in the array is $colors[0], the next element is $colors[1], and so forth. You can also access
elements starting at the end of an array with the index value of -1 and continue downward;
for example, -2, -3, and so forth.

1. To assign a list of values to an array:

@colors = qw(green red blue yellow);

2. To print the whole array, use the @:

print "@colors\n";

3. To print single elements of the array:

print "$colors[0] $colors[1]\n";

96 Chapter 5 • What’s in a Name?

4. To print more than one element (meaning, a list):

print "@colors[1,3]\n"; # Now the index values are in a list,
 # requiring the @ rather than the $ sign.

@colors

"green" "red" "blue" "yellow"

0 1 2 3

Figure 5.3 Array elements.

e x a m p l e 5 . 1 5

(The Script)
 use warnings;

 # Populating an array and printing its values
1 my @names=('John', 'Joe', 'Jake'); # @names=qw/John Joe Jake/;
2 print @names, "\n"; # prints without the separator
3 print "Hi $names[0], $names[1], and $names[2]!\n";
4 my $number=@names; # The scalar is assigned the number
 # of elements in the array
5 print "There are $number elements in the \@names array.\n";
6 print "The last element of the array is $names[$number -1].\n";
7 print "The last element of the array is $names[$#names].\n";
 # Remember, the array index starts at zero!
8 my @fruit = qw(apples pears peaches plums);
9 print "The first element of the \@fruit array is $fruit[0];
 the second element is $fruit[1].\n";
10 print "Starting at the end of the array; @fruit[-1, -3]\n";

(Output)
2 JohnJoeJake
3 Hi John, Joe, and Jake!
5 There are 3 elements in the @names array.
6 The last element of the array is Jake.
7 The last element of the array is Jake.
9 The first element of the @fruit array is apples; the second element is
 pears.
10 Starting at the end of the array: plums pears

5.2 Scalars, Arrays, and Hashes 97

e x p l a n at i o n
1 The @names array is initialized with three strings: John, Joe, and Jake.
2 The entire array is displayed without a space between the individual elements. The in-

put field separator, a space, is preserved when the array is enclosed in double quotes:
"@names".

3 Each element of the array is printed, starting with subscript number zero.
4 The scalar variable $number is assigned the array @names. The value assigned is the

number of elements in the array @names. You can also use the built-in scalar function
to get the size of an array; for example: $size = scalar @names;

5 The last element of the array is printed. Since index values start at zero, the number
of elements in the array decremented by one evaluates to the number of the last sub-
script.

6 The last element of the array is printed. The $#names value evaluates to the number
of the last subscript in the array. This value used as a subscript will retrieve the last
element in the @names array.

8 The qw construct creates an array of singly quoted words from the string provided
to it, using space as the word separator. (You don’t enclose the words in quotes or
separate the words with commas.) The qw delimiter is any pair of nonalphanumeric
characters.

9 The first two elements of the @fruit array are printed.
10 With a negative offset as an index value, the elements of the array are selected from

the end of the array. The last element ($fruit[-1]) is plums, and the third element from
the end ($fruit[-3]) is pears. Note that when both index values are within the same set
of brackets, as in @fruit[-1,-3], the reference is to a list, not a scalar; that is why the @
symbol precedes the name of the array, rather than the $.

Looping Through an Array with the foreach Loop. One of the best ways
to traverse the elements of an array is with Perl’s foreach loop. (See Chapter 7, “If Only,
Unconditionally, Forever,” for a thorough discussion.)

This control structure steps through each element of a list (enclosed in parentheses)
using a scalar variable as a loop variable. The loop variable references, one at a time, each
element in the list, and for each element, the block of statements following the list is
executed. When all of the list items have been processed, the loop ends. If the loop variable
is missing, $_, the default scalar, is used. You can use a named array or create a list within
parentheses.

You may also see code where the word for is used instead of foreach. This is because for
and foreach are synonyms. In these examples, foreach is used simply to make it clear that
we are going through a list, one element at a time; that is, “for each” element in the list.

98 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 1 6

(The Script)
 use warnings;
 # Array slices
1 my @names=('Tom', 'Dick', 'Harry', 'Pete');
2 foreach $pal (@names){
3 print "$pal\n";
 }

4 foreach ("red", "green", "yellow", "blue"){
5 print "$_ \n";
 }

(Output)
3 Tom
 Dick
 Harry
 Pete

5 red
 green
 Yellow
 blue

e x p l a n at i o n
1 The array @names is assigned a list: 'Tom', 'Dick', 'Harry', 'Pete'.
2 The foreach loop is used to walk through the list, one word at a time.
3 The $pal scalar is used as a loop variable, called an iterator; that is, it points to each

successive element of the list for each iteration of the loop. If you don’t provide the
iterator variable, Perl uses the topic variable $_ instead. For each iteration of the loop,
the block of statements enclosed in curly braces is executed.

4 In this example, the foreach loop is not given an iterator variable, so Perl uses the $_
variable instead, even though you can’t see it.

5 The value of $_ is printed each time through the loop. (This time we have to explicitly
use $_ because we have added the \n to the string.)

Array Copy and Slices. When you assign one array to another array, a copy is made.
It’s that simple. Unlike many languages, you are not responsible for the type of data the new
array will hold or how many elements it will need. Perl handles the memory allocation and
the type of data that will be stored in each element of the new array.

A slice accesses several elements of a list, an array, or a hash simultaneously using a list
of index values. You can use a slice to copy some elements of an array into another and
also assign values to a slice. If the array on the right-hand side of the assignment operator
is larger than the array on the left-hand side, the unused values are discarded. If it is

5.2 Scalars, Arrays, and Hashes 99

smaller, the values assigned are undefined. As indicated in the following example, the array
indices in the slice do not have to be consecutively numbered; each element is assigned
the corresponding value from the array on the right-hand side of the assignment operator.

e x a m p l e 5 . 1 7

(The Script)
 use warnings;
 # Array copy and slice
1 my @names=('Tom', 'Dick', 'Harry', 'Pete');
2 @newnames = @names; # Array copy
3 print "@newnames\n";
4 @pal=@names[1,2,3]; # Array slice -- @names[1..3] also okay
5 print "@pal\n\n";

6 @friend[0,1,2], not $friend[0,1,2]; # Assign to an array slice
7 print "@friend\n";

(Output)
3 Tom Dick Harry Pete
5 Dick Harry Pete
7 Tom Dick Harry

e x p l a n at i o n
1 The array @names is assigned the elements 'Tom', 'Dick', 'Harry', and 'Pete'.
4 The array @pal is assigned the elements 1, 2, and 3 of the @names array. The elements

of the @names array are selected and copied in the @pal array.
6 The @friend array is created by copying all the values from the @names array and

assigning them to @friend elements 0, 1, and 2.

Multidimensional Arrays—Lists of Lists. Multidimensional arrays are sometimes
called tables or matrices. They consist of rows and columns and can be represented with
multiple subscripts. In a two-dimensional array, the first subscript represents the row, and
the second subscript represents the column.

Perl allows this type of array, but it requires an understanding of references. We will
cover this in detail in Chapter 12, “Does This Job Require a Reference?”

5.2.3 Hashes—Unordered Lists

A hash (in some languages called an associative array, map, table, or dictionary) is a
variable consisting of one or more pairs of scalars—either strings or numbers. Hashes are
often used to create tables, complex data structures, find duplicate entries in a file or array,
or to create Perl objects. We will cover objects in detail in Chapter 14, “Bless Those Things!
(Object-Oriented Perl).”

100 Chapter 5 • What’s in a Name?

Hashes are defined as an unordered list of key/value pairs, similar to a table where
the keys are on the left-hand side and the values associated with those keys are on the
right-hand side. The name of the hash is preceded by the % and the keys and values are
separated by a => , called the fat comma or digraph operator.

Whereas arrays are ordered lists with numeric indices starting at 0, hashes are unordered
lists with string indices, called keys, stored randomly. (When you print out the hash, don’t
expect to see the output ordered just as you typed it!)

To summarize, the keys in a hash must be unique. The keys need not be quoted unless
they begin with a number or contain hyphens, spaces, or special characters. Since the
keys are really just strings, to be safe, quoting the keys (either single or double quotes)
can prevent unwanted side effects. It’s up to you. The values associated with the key can
be much more complex that what we are showing here, and require an understanding of
Perl references. These complex types are discussed in Chapter 12, “Does This Job Require
a Reference?”

my %pet = ("Name" => "Sneaky",
 "Type" => "cat",
 "Owner" => "Carol",
 "Color" => "yellow",
);

So for this example, the keys and values for the hash called %pet, are as follows:

Keys Values

"Name" "Sneaky"

"Type" "cat"

"Owner" "Carol"

"Color" "yellow"

Assignment. As in scalars and arrays, a hash variable must be defined before its
elements can be referenced. Since a hash consists of pairs of values, indexed by the first
element of each pair, if one of the elements in a pair is missing, the association of the keys
and their respective values will be affected. When assigning keys and values, make sure you
have a key associated with its corresponding value. When indexing a hash, curly braces are
used instead of square brackets.

e x a m p l e 5 . 1 8

1 my %seasons=("Sp" => "Spring",
 "Su" => "Summer",
 "F" => "Fall",
 "W" => "Winter",
);

5.2 Scalars, Arrays, and Hashes 101

e x a m p l e 5 . 1 8 (c o n t i n u e d)

2 my %days=("Mon" => "Monday",
 "Tue" => "Tuesday",
 "Wed" => undef,
);
3 $days{"Wed"}="Wednesday";

e x p l a n at i o n
1 The hash %seasons is assigned keys and values. Each key and value is separated by

the fat comma, =>. The string "Sp" is the key with a corresponding value of "Spring",
the string "Su" is the key for its corresponding value "Summer", and so on. It is not
necessary to quote the key if it is a single word and does not begin with a number or
contain spaces.

2 The hash %days is assigned keys and values. The third key, "Wed", is assigned undef.
The undef function evaluates to an undefined value; in this example, it serves as a
placeholder with an empty value to be filled in later.

3 Individual elements of a hash are scalars. The key "Wed" is assigned the string value
"Wednesday". The index is enclosed in curly braces. Note: the keys do not have any
consecutive numbering order and the pairs can consist of numbers and/or strings.

Accessing Hash Values. When accessing the values of a hash, the subscript or
index consists of the key enclosed in curly braces. Perl provides a set of functions to list the
keys, values, and each of the elements of the hash.

Due to the internal hashing techniques used to store the keys, Perl does not guarantee
the order in which an entire hash is printed.

e x a m p l e 5 . 1 9

(The Script)
 use warnings;
 # Assigning keys and values to a hash
 my(%department,$department,$school); # Declare variables
1 %department = (
2 "Eng" => "Engineering", # keys do not require quotes
 "M" => "Math",
 "S" => "Science",
 "CS" => "Computer Science",
 "Ed" => "Education",
3);
4 $department = $department{'M'}; # Either single, double quotes
5 $school = $department{'Ed'};
6 print "I work in the $department section\n" ;
7 print "Funds in the $school department are being cut.\n";
8 print qq/I'm currently enrolled in a $department{'CS'} course.\n/;
9 print qq/The department hash looks like this:\n/;

102 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 1 9 (c o n t i n u e d)

10 print %department, "\n"; # The printout is not in the expected
 # order due to internal hashing

(Output)
6 I work in the Math section

7 Funds in the Education department are being cut.
8 I'm currently enrolled in a Computer Science course.
9 The department hash looks like this:
10 SScienceCSComputer ScienceEdEducationMMathEngEngineering

e x p l a n at i o n
1 The hash is called %department. It is assigned keys and values.
2 The first key is the string Eng, and the value associated with it is Engineering.
3 The closing parenthesis and semicolon end the assignment.
4 The scalar $department is assigned Math, the value associated with the M key. It’s some-

times confusing to name different types of variables by the same name. In this example,
it might be better to change $department to $subject or $course, for example.

5 The scalar $school is assigned Education, the value associated with the Ed key.
6 The quoted string is printed; the scalar $department is interpolated.
7 The quoted string is printed; the scalar $school is interpolated.
8 The quoted string and the value associated with the CS key are printed.

9, 10 The entire hash is printed, with keys and values packed together and not in any spe-
cific order. A key and its value, however, will always remain paired.

Hash Slices. A hash slice is a list of hash keys. The hash name is preceded by the @
symbol and assigned a list of hash keys enclosed in curly braces. The hash slice lets you
access one or more hash elements in one statement, rather than by going through a loop.

e x a m p l e 5 . 2 0

(The Script)
 use warnings;
 # Hash slices
1 my %officer= ("name" => "Tom Savage",
 "rank" => "Colonel",
 "dob" => "05/19/66"
);
2 my @info=@officer{"name","rank","dob"}; # Hash slice
3 print "@info\n";
4 @officer{'phone','base'}=('730-123-4455','Camp Lejeune');
5 print %officer, "\n";

(Output)
2 Tom Savage Colonel 05/19/66
6 baseCamp Lejeunedob05/19/66nameTom Savagephone730-123-4455rankColonel

5.2 Scalars, Arrays, and Hashes 103

e x p l a n at i o n
1 The hash %officer is assigned keys and values.
2 This is an example of a hash slice. The list of hash keys, "name", "rank", and "dob" are

assigned to the @info array. The name of the hash is prepended with an @ because this
is a list of keys. The values corresponding to the list of keys are assigned to @info.

3 The keys and their corresponding values are printed. Using the slice is sometimes
easier than using a loop to do the same thing.

4 Now using a slice in the assignment, we can create two new entries in the hash.

Removing Duplicates from a List Using a Hash. Because all keys in a hash
must be unique, one way to remove duplicates from a list, whether an array or file, is to list
items as keys in a hash. The values can be used to keep track of the number of duplicates or
simply left undefined. The keys of the new hash will contain no duplicates. See the section,
“The map Function,” later in this chapter, for more examples.

e x a m p l e 5 . 2 1

(The Script)
 use warnings;
1 my %dup=(); # Create an empty hash.
2 my @colors=qw(red blue red green yellow green red orange);

3 foreach my $color (@colors){
 $dup{$color}++; # Adds one to the value side of
 # the hash. May be written
 # $dup{$color}=$dup{$color}+1
 }
 printf"Color Number of Occurrences\n";
4 while((my $key, my $value)=each %dup){
 printf"%-12s%-s\n",$key, $value;
 }
5 @colors = sort keys %dup;
 print "Duplicates removed: @colors\n";

(Output)
perl dup.plx
 Color Number of Occurrences
3 green 2
 blue 1
 orange 1
 red 3
 yellow 1
5 Duplicates removed: blue green orange red yellow

104 Chapter 5 • What’s in a Name?

e x p l a n at i o n
1 This is the declaration for an empty hash called %dup().
2 The array of colors contains a number of duplicate entries, as shown in Figure 5.4.
3 For each item in the array of colors, a key and value are assigned to the %dup hash.

The first time the color is seen, it is created as a key in the hash; its value is incre-
mented by 1, starting at 0 (that is, the key is the color and the value is the number of
times the color occurs). Because the key must be unique, if a second color occurs and
is a duplicate, the first occurrence will be overwritten by the duplicate and the value
associated with it will increase by one.

4 The built-in each function is used as an expression in the while loop. It will retrieve
and assign each key and each value from the hash to $key and $value respectively, and
a pair is printed each time through the loop.

5 The keys of %dup hash are a unique list of colors. They are sorted and assigned to the
@colors array.

@colors

 red blue red green yellow green red orange

 %dup

keys values

red 1 2 3
blue 1
green 1 2
yellow 1
orange 1

Figure 5.4 Removing duplicates with a hash.

5.2.4 Complex Data Structures

By combining arrays and hashes, you can make more complex data structures, such as
arrays of hashes, hashes with nested hashes, arrays of arrays, and so on. Here is an example
of an array of arrays requiring references.

my $matrix = [
 [0, 2, 4],
 [4, 1, 32],
 [12, 15, 17]
] ;

To create these structures, you should have an understanding of how Perl references and
complex data structures are used. (See Chapter 12, “Does This Job Require a Reference?”)

5.3 Array Functions 105

5.3 Array Functions

Arrays can grow and shrink. The Perl array functions allow you to insert or delete elements
of the array from the front, middle, or end of the list, to sort arrays, perform calculations
on elements, to search for patterns, and more.

5.3.1 Adding Elements to an Array

The push Function. The push function pushes values onto the end of an array, thereby
increasing the length of the array (see Figure 5.5).

f o r m at

push(ARRAY, LIST)

e x a m p l e 5 . 2 2

(In Script)
 use warnings;
 # Adding elements to the end of a list
1 my @names=("Bob", "Dan", "Tom", "Guy");
2 push(@names, "Jim", "Joseph", "Archie");
3 print "@names \n";

(Output)
2 Bob Dan Tom Guy Jim Joseph Archie

e x p l a n at i o n
1 The array @names is assigned list values.
2 The push function pushes three more elements onto the end of the array.
3 The new array has three more elements appended to it.

@names

"Bob" "Dan" "Tom" "Guy"

@names

"Bob" "Dan" "Tom" "Guy" "Jim" "Joseph" "Archie"

Before push

After push

0 1 2 3

0 1 2 3 4 5 6

Figure 5.5 Adding elements to an array.

5.3 Array Functions

106 Chapter 5 • What’s in a Name?

The unshift Function. The unshift function prepends LIST to the front of the array
(see Figure 5.6).

f o r m at

unshift(ARRAY, LIST)

e x a m p l e 5 . 2 3

(In Script)
 use warnings;
 # Putting new elements at the front of a list
1 my @names=("Jody", "Bert", "Tom") ;
2 unshift(@names, "Liz", "Daniel");
3 print "@names\n";

(Output)
3 Liz Daniel Jody Bert Tom

e x p l a n at i o n
1 The array @names is assigned three values, "Jody", "Bert", and "Tom".
2 The unshift function will prepend "Liz" and "Daniel" to the array.

@names

"Jody" "Burt" "Tom"

@names

"Liz" "Daniel" "Jody" "Burt" "Tom"

Before unshift

After unshift

0 1 2

0 1 2 3 4

Figure 5.6 Using the unshift function to add elements to the beginning of an array.

5.3.2 Removing and Replacing Elements

The delete Function. If you have a row of shoeboxes and take a pair of shoes from
one of the boxes, the number of shoeboxes remains the same, but one of them is now empty.
That is how delete works with arrays. The delete function allows you to remove a value from
an element of an array, but not the element itself. The value deleted is simply undefined.
(See Figure 5.7.) But if you find it in older programs, perldoc.perl.org warns not to use it
for arrays, but rather for deleting elements from a hash. In fact, perldoc.perl.org warns that
calling delete on array values is deprecated and likely to be removed in a future version of Perl.

5.3 Array Functions 107

Instead, use the splice function to delete and replace elements from an array, while at the
same time renumbering the index values.

@colors

"red" "green" "blue" "yellow"

Before delete

After delete
delete $colors[2]

0 1 2 3

@colors

"red" "green" "yellow"

0 1 2 3

Figure 5.7 Using the delete function to remove elements from an array.

The splice Function. For the delete function, we described a row of shoeboxes in
which a pair of shoes was removed from one of the boxes, but the box itself remained in
the row. With splice, the box and its shoes can be removed and the remaining boxes pushed
into place. (See Figure 5.8.) We could even take out a pair of shoes and replace them with a
different pair (see Figure 5.9), or add a new box of shoes anywhere in the row. Put simply,
the splice function removes and replaces elements in an array. The OFFSET is the starting
position where elements are to be removed. The LENGTH is the number of items from the
OFFSET position to be removed. The LIST consists of an optional new elements that are to
replace the old ones. All index values are renumbered for the new array.

f o r m at

splice(ARRAY, OFFSET, LENGTH, LIST)
splice(ARRAY, OFFSET, LENGTH)
splice(ARRAY, OFFSET)

e x a m p l e 5 . 2 4

(The Script)
 use warnings;
 # Splicing out elements of a list
1 my @colors=("red", "green", "purple", "blue", "brown");
2 print "The original array is @colors\n";
3 my @discarded = splice(@colors, 2, 2);
4 print "The elements removed after the splice are: @discarded.\n";
5 print "The spliced array is now @colors.\n";

108 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 2 4 (c o n t i n u e d)

(Output)
2 The original array is red green purple blue brown.
4 The elements removed after the splice are: purple blue.
5 The spliced array is now red green brown.

e x p l a n at i o n
1 An array of five colors is created.
3 The splice function removes elements purple and blue from the array and returns

them to @discarded, starting at index position two, $colors[2], with a length of two
elements.

@colors

"red" "green" "purple" "blue" "brown"

Before splice

After splice

@colors

"red" "green" "brown"

0 1 2 3 4

0 1 2

Figure 5.8 Using the splice function to remove or replace elements in an array.

e x a m p l e 5 . 2 5

(The Script)
 use warnings;
 # Splicing and replacing elements of a list
1 my @colors=("red", "green", "purple", "blue", "brown");
2 print "The original array is @colors\n";
3 my @lostcolors=splice(@colors, 2, 3, "yellow", "orange");
4 print "The removed items are @lostcolors\n";
5 print "The spliced array is now @colors\n";

(Output)
2 The original array is red green purple blue brown
4 The removed items are purple blue brown
5 The spliced array is now red green yellow orange

5.3 Array Functions 109

e x p l a n at i o n
1 An array of five colors is created.
2 The original array is printed.
3 The splice function will delete elements starting at $colors[2] and remove the next

three elements. The removed elements (purple, blue, and brown) are stored in @lostcol-
ors. The colors yellow and orange will replace the ones that were removed.

4 The values that were removed are stored in @lostcolors and printed.
5 The new array, after the splice, is printed.

@colors

"red" "green" "purple" "blue" "brown"

Before splice

@lostcolors

"purple" "blue" "brown"

@colors

"red" "green" "yellow" "orange"

After splice ("yellow" and "orange" added)

0 1 2 3 4

0 1 2

0 1 2 3

Figure 5.9 Splicing and replacing elements in an array.

The pop Function. The pop function pops off the last element of an array and returns
it. The array size is subsequently decreased by one. (See Figure 5.10.)

f o r m at

pop(ARRAY)
pop ARRAY

e x a m p l e 5 . 2 6

(In Script)
 use warnings;
 # Removing an element from the end of a list
1 my @names=("Bob", "Dan", "Tom", "Guy");
2 print "@names\n";
3 my $got = pop @names; # Pops off last element of the array
4 print "$got\n";
5 print "@names\n";

110 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 2 6 (c o n t i n u e d)

(Output)
2 Bob Dan Tom Guy
4 Guy
5 Bob Dan Tom

e x p l a n at i o n
1 The @name array is assigned a list of elements.
2 The array is printed.
3 The pop function removes the last element of the array and returns the popped item.
4 The $got scalar contains the popped item, Guy.
5 The new array is printed.

@names

"Bob" "Dan" "Tom" "Guy"

Before pop

After pop

@names

"Bob" "Dan" "Tom"

0 1 2 3

0 1 2

Figure 5.10 Using the pop function to pop the last element off the array.

The shift Function. The shift function shifts off and returns the first element of an
array, decreasing the size of the array by one element. (See Figure 5.11.) If ARRAY is
omitted, then the @ARGV array is shifted. If in a subroutine, the argument list, stored in
the @_ array is shifted.

f o r m at

shift(ARRAY)
shift ARRAY
shift

5.3 Array Functions 111

e x a m p l e 5 . 2 7

(In Script)
 use warnings;
 # Removing elements from front of a list
1 my @names=("Bob", "Dan", "Tom", "Guy");
2 my $ret = shift @names;
3 print "@names\n";
4 print "The item shifted is $ret.\n";

(Output)
3 Dan Tom Guy
4 The item shifted is Bob.

e x p l a n at i o n
1 The array @names is assigned list values.
2 The shift function removes the first element of the array and returns that element to

the scalar $ret, which is Bob.
3 The new array has been shortened by one element.

@names

"Bob" "Dan" "Tom" "Guy"

Before shift

After shift

@names

"Dan" "Tom" "Guy”

0 1 2 3

0 1 2

Figure 5.11 Using the shift function to return the first element of an array.

5.3.3 Deleting Newlines

The chop and chomp Functions (with Lists). The chop function chops off
the last character of a string and returns the chopped character, usually for removing the
newline after input is assigned to a scalar variable. If a list is chopped, chop will remove the
last letter of each string in the list.

The chomp function removes a newline character at the end of a string or for each
element in a list.

112 Chapter 5 • What’s in a Name?

f o r m at

chop(LIST)
chomp(LIST)

e x a m p l e 5 . 2 8

(In the Script)
 use warnings;
 # Chopping and chomping a list
1 my @line=("red", "green", "orange");
2 chop(@line); # Chops the last character off each
 # string in the list
3 print "@line";
4 @line=("red\n", "green\n", "orange\n");
5 chomp(@line); # Chomps the newline off each string in the list
6 print "@line";

(Output)
3 re gree orang
6 red green orange

e x p l a n at i o n
1 The array @line is assigned a list of elements.
2 The array is chopped. The chop function chops the last character from each element

of the array.
3 The chopped array is printed.
4 The array @line is assigned a list of elements.
5 The chomp function will chop off the newline character from each word in the array.

This is a safer function than chop.
6 If there are no newlines on the end of the words in the array, chomp will not do

anything.

5.3.4 Searching for Elements and Index Values

The grep Function. The grep function is similar to the UNIX grep command in that
it searches for patterns of characters, called regular expressions. However, unlike the
UNIX grep, it is not limited to using regular expressions. Perl’s grep evaluates the expression
(EXPR) for each element of the array (LIST), locally setting $_ to each element. The return
value is another array consisting of those elements for which the expression evaluated as
true. As a scalar value, the return value is the number of times the expression was true (that
is, the number of times the pattern was found).

5.3 Array Functions 113

f o r m at

grep BLOCK LIST
grep(EXPR,LIST)

e x a m p l e 5 . 2 9

(The Script)
 use warnings;
 # Searching for patterns in a list
1 my @list = ("tomatoes", "tomorrow", "potatoes", "phantom", "Tommy");

2 my $count = grep($_ =~ /tom/i, @list);
 # $count = grep(/tom/i, @list);
3 @items= grep(/tom/i, @list); # Could say: grep {/tom/i} @list;

4 print "Found items: @items\nNumber found: $count\n";

(Output)
4 Found items: tomatoes tomorrow phantom Tommy
 Number found: 4

e x p l a n at i o n
1 The array @list is assigned a list of elements.
2 The grep function searches for the pattern (regular expression) tom. The $_ scalar is

used as a placeholder for each item in the iterator @list. ($_ is also an alias to each of
the list values, so it can modify the list values.) Although omitted in the next example,
it is still being used. The i turns off case sensitivity. When the return value is assigned
to a scalar, the result is the number of times the regular expression was matched.

3 grep again searches for tom. The i turns off case sensitivity. When the return value is
assigned to an array, the result is a list of the matched items.

The next example shows you how to find the index value(s) for specific elements in an
array using the built-in grep function. (If you have version 5.10+, you may want to use the
more efficient List::MoreUtils module from the standard Perl libaray, or from CPAN.)

e x a m p l e 5 . 3 0

(The Script)
 use warnings;
 my(@colors, $index);
 # Searching for the index value where a pattern is found.
1 @colors = qw(red green blue orange blueblack);
2 @index_vals = grep($colors[$_] =~ /blue/, (0..$#colors));
3 print "Found index values: @index_vals where blue was found.\n";

(Output)
3 Found index values: 2 4 where blue was found.

114 Chapter 5 • What’s in a Name?

e x p l a n at i o n
1 The array @colors is assigned a list of elements.
2 The grep function searches for the pattern blue in each element of @colors. (See

Chapter 8, “Regular Expressions—Pattern Matching,” for a detailed discussion on
pattern matching.) The list (0 .. $#colors) represents the index values of @colors. $_
holds one value at a time from the list starting with 0. If, for example, in the first itera-
tion, grep searches for the pattern blue in $colors[0], and finds red, nothing is returned
because it doesn’t match. (=~ is the bind operator.) Then, the next item is checked.
Does the value $colors[1], green, match blue? No. Then, the next item is checked. Does
$colors[2] match blue? Yes it does. 2 is returned and stored in @index_vals. Another
match for blue is true when $colors[4], blueblack, is matched against blue. 4 is added to
@index_vals.

3 When the grep function finishes iterating over the list of index values, the results
stored in @index_vals are printed.

5.3.5 Creating a List from a Scalar

The split Function. The split function splits up a string (EXPR) by some delimiter
(whitespace, by default) and returns a list. (See Figure 5.12.) The first argument is the
delimiter, and the second is the string to be split. The Perl split function can be used to
create fields when processing files, just as you would with the UNIX awk command. If a
string is not supplied as the expression, the $_ string is split.

The DELIMITER statement matches the delimiters that are used to separate the fields. If
DELIMITER is omitted, the delimiter defaults to whitespace (spaces, tabs, or newlines). If
the DELIMITER doesn’t match a delimiter, split returns the original string. You can specify
more than one delimiter, using the regular expression metacharacter []. For example, [+\t:]
represents zero or more spaces or a tab or a colon.

To split on a dot (.), use /\./ to escape the dot from its regular expression metacharacter.
LIMIT specifies the number of fields that can be split. If there are more than LIMIT

fields, the remaining fields will all be part of the last one. If the LIMIT is omitted, the split
function has its own LIMIT, which is one more than the number of fields in EXPR. (See the
-a switch for autosplit mode, in Appendix A, “Perl Built-ins, Pragmas, Modules, and the
Debugger.”)

f o r m at

split("DELIMITER",EXPR,LIMIT)
split(/DELIMITER/,EXPR,LIMIT)
split(/DELIMITER/,EXPR)
split("DELIMITER",EXPR)
split(/DELIMITER/)
split

5.3 Array Functions 115

e x a m p l e 5 . 3 1

(The Script)
 use warnings;
 # Splitting a scalar on whitespace and creating a list
1 my $line="a b c d e";
2 my @letter=split(' ',$line);
3 print "The first letter is $letter[0]\n";
4 print "The second letter is $letter[1]\n";

(Output)
3 The first letter is a
4 The second letter is b

e x p l a n at i o n
1 The scalar variable $line is assigned the string a b c d e.
2 The value in $line (scalar) is a single string of letters. The split function will split

the string, using whitespace as a delimiter. The @letter array will be assigned the
individual elements a, b, c, d, and e. Using single quotes as the delimiter is not the
same as using the regular expression / /. The ' ' resembles awk in splitting lines on
whitespace. Leading whitespace is ignored. The regular expression / / includes lead-
ing whitespace, creating as many null initial fields as there are whitespaces.

3 The first element of the @letter array is printed.
4 The second element of the @letter array is printed.

@letter

"a" "b" "c" "d" "e"

= "a b c d e"

�

cut up string
using whitespace
as the delimeter

Figure 5.12 Using the split function to create an array from a scalar.

116 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 3 2

(The Script)
 use warnings;
 # Splitting up $_
 my @line;
1 while(<DATA>){
2 @line=split(":"); # or split (/:/, $_);
3 print "$line[0]\n";
 }

_ _DATA_ _
Betty Boop:245-836-8357:635 Cutesy Lane, Hollywood, CA 91464:6/23/23:14500
Igor Chevsky:385-375-8395:3567 Populus Place, Caldwell, NJ
23875:6/18/68:23400
Norma Corder:397-857-2735:74 Pine Street, Dearborn, MI
23874:3/28/45:245700
Jennifer Cowan:548-834-2348:583 Laurel Ave., Kingsville, TX
83745:10/1/35:58900
Fred Fardbarkle:674-843-1385:20 Park Lane, Duluth, MN 23850:4/12/23:78900

(Output)
Betty Boop
Igor Chevsky
Norma Corder
Jennifer Cowan
Fred Fardbarkle

e x p l a n at i o n
1 The $_ variable holds each line of the file DATA filehandle; the data being processed

is below the _ _DATA_ _ line. Each line is assigned to $_. $_ is also the default line for
split.

2 The split function splits the line, ($_), using the : as a delimiter and returns the line to
the array, @line.

3 The first element of the @line array, line[0], is printed.

e x a m p l e 5 . 3 3

(The Script)
 use warnings;
 my($name, $phone, $address, $bd, $sal);
 # Splitting up $_ and creating an unnamed list
 while(<DATA>){
1 ($name,$phone,$address,$bd,$sal)=split(":");
2 print "$name\t $phone\n" ;
 }

5.3 Array Functions 117

e x a m p l e 5 . 3 3 (c o n t i n u e d)

_ _DATA_ _
Betty Boop:245-836-8357:635 Cutesy Lane, Hollywood, CA 91464:6/23/23:14500
Igor Chevsky:385-375-8395:3567 Populus Place, Caldwell, NJ
23875:6/18/68:23400
Norma Corder:397-857-2735:74 Pine Street, Dearborn, MI
23874:3/28/45:245700
Jennifer Cowan:548-834-2348:583 Laurel Ave., Kingsville, TX
83745:10/1/35:58900
Fred Fardbarkle:674-843-1385:20 Park Lane, Duluth, MN 23850:4/12/23:78900

(Output)
2 Betty Boop 245-836-8357
 Igor Chevsky 385-375-8395
 Norma Corder 397-857-2735
 Jennifer Cowan 548-834-2348
 Fred Fardbarkle 674-843-1385

e x p l a n at i o n
1 Perl loops through the DATA filehandle one line at a time from _ _DATA_ _, storing

each successive item in the $_ variable, overwriting what was previously stored there.
The split function splits each line in $_, using the colon as a delimiter.

2 The returned list consists of five scalars, $name, $phone, $address, $bd, and $sal. The
values of $name and $phone are printed.

e x a m p l e 5 . 3 4

(The Script)
 use warnings;
 # Many ways to split a scalar to create a list
1 my $string= "Joe Blow:11/12/86:10 Main St.:Boston, MA:02530";
2 my @line=split(":", $string); # The string delimiter is a colon
3 print @line,"\n";
4 print "The guy's name is $line[0].\n";
5 print "The birthday is $line[1].\n\n";

6 @line=split(":", $string, 2);
7 print $line[0],"\n"; # The first element of the array
8 print $line[1],"\n"; # The rest of the array because limit is 2
9 print $line[2],"\n"; # Nothing is printed

10 ($name, $birth, $address)=split(":", $string);

11 print $name,"\n";
12 print $birth,"\n";
13 print $address,"\n";

118 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 3 4 (c o n t i n u e d)

(Output)
3 Joe Blow11/12/8610 Main St.Boston, MA02530
4 The guy's name is Joe Blow.
5 The birthday is 11/12/86.

7 Joe Blow
8 11/12/86:10 Main St.:Boston, MA:02530
9
11 Joe Blow
12 11/12/86
13 10 Main St.

e x p l a n at i o n
1 The scalar $string is split at each colon.
2 The delimiter is a colon. The limit is 2.
6 The string is split by colons and given a limit of two, meaning that the text up to the

first colon will become the first element of the array; in this case, $line[0] and the rest
of the string will be assigned to $line[1]. LIMIT, if not stated, will be one more than
the total number of fields.

10 The string is split by colons and returns a list of scalars. This may make the code
easier to read.

5.3.6 Creating a Scalar from a List

The join Function. The join function joins the elements of an array into a single string
and separates each element of the array with a given delimiter, sometimes called the “glue”
character(s) since it glues together the items in a list (opposite of split). (See Figure 5.13.)
The expression DELIMITER is the value of the string that will join the array elements in LIST.

f o r m at

join(DELIMITER, LIST)

e x a m p l e 5 . 3 5

(The Script)
 use warnings;
 my(@colors, $color_string);
 # Joining each elements of a list with commas
1 @colors = qw(red green blue);

2 $color_string = join(", ",@colors); # Create a string from an array
3 print "The new string is: $color_string\n";

(Output)
3 The new string is: red, green, blue

5.3 Array Functions 119

e x p l a n at i o n
1 An array is assigned three colors.
2 The join function joins the three elements of the @colors array, using a comma and

space as the delimiter returning a string, which is then assigned to $color_string.
3 The new string with commas is printed.

@colors

"red" "green" "blue"
="red, green, blue"

 join(", ", @colors)

Figure 5.13 Using the join function to join elements of an array with a comma.

e x a m p l e 5 . 3 6

(The Script)
 use warnings;
 # Joining each element of a list with a newline
1 my @names= qw(Dan Dee Scotty Liz Tom);
2 @names=join("\n", sort(@names));
3 print @names,"\n";

(Output)
3 Dan
 Dee
 Liz
 Scotty
 Tom

e x p l a n at i o n
1 The array @names is assigned a list of strings.
2 The join function will join each word in the list with a newline (\n) after the list has

been sorted alphabetically.
3 The sorted list is printed with each element of the array on a line of its own.

5.3.7 Transforming an Array

The map Function. If you have an array and want to perform the same action on each
element of the array without using a for loop, the map function may be an option. The map
function maps each of the values in an array to an expression or block, returning another
list with the results of the mapping. It lets you change the values of the original list.

120 Chapter 5 • What’s in a Name?

f o r m at

map EXPR, LIST;
map {BLOCK} LIST;

Using map to Change All Elements of an Array
In the following example, the chr function is applied or mapped to each element of an array
and returns a new array showing the results. (See Figure 5.14.)

e x a m p l e 5 . 3 7

(The Script)
 use warnings;
 my(@list, @words, @n);
 # Mapping a list to an expression
1 @list=(0x53,0x77,0x65,0x64,0x65,0x6e,012);
2 my @letters = map chr $_, @list;
3 print @letters;
4 my @n = (2, 4, 6, 8);
5 @n = map $_ * 2 + 6, @n;
6 print "@n\n";

(Output)

3 Sweden
6 10 14 18 22

e x p l a n at i o n
1 The array @list consists of six hexadecimal numbers and one octal number.
2 The map function maps each item in @list to its corresponding chr (character) value

and returns a new list, assigned to @letters. (According to perldoc.perl.org, the chr
function “returns the character represented by that NUMBER in the character set. For
example, chr(65) is “A” in either ASCII or Unicode, and chr(0x263a) is a Unicode
smiley face.”)

3 The new list is printed. Each numeric value was converted with the chr function to a
character corresponding to its ASCII value; for example, chr(65) returns ASCII value
"A".

4 The array @n consists of a list of integers.
5 The map function evaluates the expression for each element in the @n array and re-

turns the result to the new array @n.
6 The results of the mapping are printed, showing that the original list has been

changed.

5.3 Array Functions 121

@letters

"S" "w" "e" "d" "e" "\n"

=

chr 0x53,chr 0x77,chr 0x65,chr 0x64,chr 0x65,chr 0x6e,chr 012

Figure 5.14 Using the map function to change elements in an array.

Using map to Remove Duplicates from an Array
The map function can be used to create a hash from an array. If you are using the array
elements as keys for the new hash, any duplicates will be eliminated.

e x a m p l e 5 . 3 8

(The Script)
 use warnings;
 my(@courses, %c);
1 @courses=qw(C++ C Perl Python French C C Perl);
2 %c = map { $_ => undef } @courses; # Create a unique list of keys
3 @courses = keys %c;
4 print "@courses\n";

(Output)
Python, French, Perl, C, C++

e x p l a n at i o n
1 The array of courses contains duplicates.
2 The map function is used to create a hash called %c. Each element in the array

@courses is assigned in turn to $_. $_ serves as the key to the new %c hash. The value
is left undefined since the keys are all we need to get a list of unique courses.

3 The keys in the %c hash are assigned to @courses, overwriting what was there. The
new list will have no duplicate entries, although it will be unordered, as are all hashes.

5.3.8 Sorting an Array

The sort Function. The sort function sorts and returns a sorted list. Its default is to
sort alphabetically, but you can define how you want to sort by using different comparison
operators. If SUBROUTINE is specified, the first argument to sort is the name of the
subroutine, followed by a list of values to be sorted. If the string cmp operator is used,
the values in the list will be sorted alphabetically (ASCII sort), and if the <=> operator
(called the space ship operator) is used, the values will be sorted numerically. The values
are passed to the subroutine by reference and are received by the special Perl variables $a

122 Chapter 5 • What’s in a Name?

and $b, not the normal @_ array. (See Chapter 11, “How Do Subroutines Function?” for
further discussion.) Do not try to modify $a or $b, as they represent the values that are
being sorted.

If you want Perl to sort your data according to a particular locale, your program should
include the use locale pragma. For a complete discussion, see perldoc.perl.org/perllocale.

f o r m at

sort(SUBROUTINE LIST)
sort(LIST)
sort SUBROUTINE LIST
sort LIST

e x a m p l e 5 . 3 9

(The Script)
 use warnings;
 # Simple alphabetic sort
1 my @list=("dog","cat","bird","snake");
 print "Original list: @list\n";
2 my @sorted = sort @list;
3 print "ASCII sort: @sorted\n";

 # Reversed alphabetic sort
4 @sorted = reverse sort @list;
 print "Reversed ASCII sort: @sorted\n";

(Output)
Original list: dog cat bird snake
ASCII sort: bird cat dog snake
Reversed ASCII sort: snake dog cat bird

e x p l a n at i o n
1 The @list array will contain a list of items to be sorted.
2 The sort function performs a string (lexographical for current locale) sort on the items.

The sorted values must be assigned to another list or the same list. The sort function
doesn’t change the original list.

3 The sorted string is printed.
4 This list is sorted alphabetically and then reversed.

ASCII and Numeric Sort Using Subroutine
You can either define a subroutine or use an inline function to perform customized sorting,
as shown in the following examples. A note about $a and $b: they are special global Perl
variables used by the sort function for comparing values. If you need more information on
the operators used, see Chapter 6, “Where’s the Operator?”

5.3 Array Functions 123

e x a m p l e 5 . 4 0

(The Script)
 use warnings;
1 my @list=("dog","cat", "bird","snake");
 print "Original list: @list\n";
 # ASCII sort using a subroutine
2 sub asc_sort{
3 $a cmp $b; # Sort ascending order
 }
4 @sorted_list=sort asc_sort(@list);
 print "ASCII sort: @sorted_list\n";

 # Numeric sort using subroutine
5 sub numeric_sort {
 $a <=> $b ;
 } # $a and $b are compared numerically

6 @number_sort=sort numeric_sort 10, 0, 5, 9.5, 10, 1000;
 print "Numeric sort: @number_sort.\n";

(Output)
Original list: dog cat bird snake
ASCII sort: bird cat dog snake
Numeric sort: 0 5 9.5 10 10 1000.

e x p l a n at i o n
1 The @list array will contain a list of items to be sorted.
2 The subroutine asc_sort() is sent a list of strings to be sorted.
3 The special global variables $a and $b are used when comparing the items to be sorted

in ascending order. If $a and $b are reversed (for example, $b cmp $a), then the sort is
done in descending order. The cmp operator is used when comparing strings.

4 The sort function sends a list to the asc_sort(), user-defined subroutine, where the
sorting is done. The sorted list will be returned and stored in @sorted_list.

5 This is a user-defined subroutine, called numeric_sort(). The special variables $a and
$b compare the items to be sorted numerically, in ascending order. If $a and $b are
reversed (for example, $b <=> $a), then the sort is done in numeric descending order.
The <=> operator is used when comparing numbers.

6 The sort function sends a list of numbers to the numeric_sort() function and gets back
a list of sorted numbers, stored in the @number_sort array.

124 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 4 1

(The Script)
 use warnings;
 # Sorting numbers with block
1 my @sorted_numbers = sort {$a <=> $b} (3,4,1,2);
2 print "The sorted numbers are: @sorted_numbers", ".\n";

(Output)
2 The sorted numbers are: 1 2 3 4.

e x p l a n at i o n
1 The sort function is given a block, also called an inline subroutine, to sort a list of

numbers passed as arguments. The <=> operator is used with variables $a and $b to
compare the numbers. The sorted numeric list is returned and stored in the array
@sorted_numbers. (See http://perldoc.perl.org/functions/sort.html for more on the sort
function.)

2 The sorted list is printed.

5.3.9 Checking the Existence of an Array Index Value

The exists Function. The exists function returns true if an array index (or hash key)
has been defined, and false if it has not. It is most commonly used when testing a hash
key’s existence.

f o r m at

exists $ARRAY[index];

e x a m p l e 5 . 4 2

 use warnings;
1 my @names = qw(Tom Raul Steve Jon);
2 print "Hello $names[1]\n", if exists $names[1];
3 print "Out of range!\n", if not exists $names[5];

(Output)
2 Hello Raul
3 Out of range!

e x p l a n at i o n
1 An array of names is assigned to @names.
2 If the index 1 is defined, the exists function returns true and the string is printed.
3 If the index 5 does not exist (and in this example it doesn’t), then the string Out of

range! is printed.

http://perldoc.perl.org/functions/sort.html

5.4 Hash (Associative Array) Functions 125

5.3.10 Reversing an Array

The reverse Function. The reverse function reverses the elements in a list, so that if
the values appeared in descending order, now they are in ascending order, or vice versa. In
scalar context, it concatenates the list elements and returns a string with all the characters
reversed; for example, in scalar context Hello, there! reverses to !ereht ,olleH.

f o r m at

reverse(LIST)
reverse LIST

e x a m p l e 5 . 4 3

(In Script)
 use warnings;
 my(@names, @reversed);
 # Reversing the elements of an array
1 @names=("Bob", "Dan", "Tom", "Guy");
2 print "@names \n";
3 @reversed=reverse @names;
4 print "@reversed\n";

(Output)
2 Bob Dan Tom Guy
4 Guy Tom Dan Bob

e x p l a n at i o n
1 The array @names is assigned list values.
2 The original array is printed.
3 The reverse function reverses the elements in the list and returns the reversed list.

It does not change the original array; that is, the array @names is not changed. The
reversed items are stored in @reversed.

4 The reversed array is printed.

5.4 Hash (Associative Array) Functions

5.4.1 The keys Function

The keys function returns, in random order, an array whose elements are the keys of a hash
(see also Section 5.4.2, “The values Function,” and Section 5.4.3, “The each Function”).
Starting with Perl 5.12, keys also returns the index values of an array. In scalar context, it
returns the number of keys (or indices).

5.4 Hash (Associative Array) Functions

126 Chapter 5 • What’s in a Name?

f o r m at

keys(ASSOC_ARRAY)
keys ASSOC_ARRAY

e x a m p l e 5 . 4 4

(In Script)
 use warnings;
 my(%weekday, @daynumber, $key);
 # The keys function returns the keys of a hash
1 %weekday= (
 '1'=>'Monday',
 '2'=>'Tuesday',
 '3'=>'Wednesday',
 '4'=>'Thursday',
 '5'=>'Friday',
 '6'=>'Saturday',
 '7'=>'Sunday',
);
2 @daynumber = keys(%weekday);
3 print "@daynumber\n";

4 foreach $key (keys(%weekday)){print "$key ";}
 print "\n";

5 foreach $key (sort keys(%weekday)){print "$key ";}
 print "\n";

(Output)
6 4 1 3 7 2 5
6 4 1 3 7 2 5
1 2 3 4 5 6 7

e x p l a n at i o n
1 The hash %weekday is assigned keys and values.
2 The keys function returns a list of all the keys in a hash. In this example, @daynumber

is an unordered list of all the keys in the %weekday hash.
4 The keys function returns a list of keys. The foreach loop will traverse the list of keys,

one at a time, printing the keys.
5 The keys function returns a list of keys in %weekday hash. The list will then be sorted,

and finally the foreach loop will traverse the sorted list of keys, one at a time, printing
each key.

5.4.2 The values Function

The values function returns, in random order, a list consisting of all the values of a named
hash. (After Perl 5.12, it will also return the values of an array.) In scalar context, it returns
the number of values.

5.4 Hash (Associative Array) Functions 127

f o r m at

values(ASSOC_ARRAY)
values ASSOC_ARRAY

e x a m p l e 5 . 4 5

(In Script)
 use warnings;

 # The values function returns the values in a hash
1 my %weekday= (
 '1'=>'Monday',
 '2'=>'Tuesday',
 '3'=>'Wednesday',
 '4'=>'Thursday',
 '5'=>'Friday',
 '6'=>'Saturday',
 '7'=>'Sunday',
);
2 foreach my $val (values(%weekday)){print "$val ";}
 print "\n";

(Output)
2 Saturday Thursday Monday Wednesday Sunday Tuesday Friday

e x p l a n at i o n
1 The hash %weekday is assigned keys and values.
2 The values function returns a list of values from the hash %weekday. The foreach is

used to loop through the list of values, one at a time, using $val as its loop variable.

Since hashes are stored in a random order, to get the hash values in the order in which
they were assigned, you can use a hash slice as shown in the following example.

e x a m p l e 5 . 4 6

(In Script)
 use warnings;

 # Use a hash slice to get the values returned in order.
1 my %weekday= (
 '1'=>'Monday',
 '2'=>'Tuesday',
 '3'=>'Wednesday',
 '4'=>'Thursday',
 '5'=>'Friday',
 '6'=>'Saturday',
 '7'=>'Sunday',
);

128 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 4 6 (c o n t i n u e d)

2 my @days = @weekday{1..7};
 print "@days\n";

(Output)
2 Monday Tuesday Wednesday Thursday Friday Saturday Sunday

e x p l a n at i o n
1 The hash %weekday is assigned keys and values.
2 CA hash slice is a way of referring to one or more elements of the hash in one state-

ment, to get a list of values, or to assign a list of values, and because it is using a list
of keys, the list is preceded by the @ sign and the list is enclosed in curly braces to
indicate that your are indexing a hash.*

* To preserve the insert order of hash keys, see Tie::InsertOrderHash at the Comprehensive Perl Archive
Network—CPAN (http://search.cpan.org).

5.4.3 The each Function

The each function returns, in random order, a two-element list whose elements are the key
and the corresponding value of a hash. It must be called multiple times to get each key/
value pair, as it only returns one set each time it is called, somewhat like reading lines from
a file, one at a time.

f o r m at

each(ASSOC_ARRAY)
each ASSOC_ARRAY

e x a m p l e 5 . 4 7

(In Script)
 use warnings;
 my(%weekday, $key, $value);
 # The each function retrieves both keys and values from a hash
1 %weekday=(
 'Mon' => 'Monday',
 'Tue' => 'Tuesday',
 'Wed' => 'Wednesday',
 'Thu' => 'Thursday',
 'Fri' => 'Friday',
 'Sat' => 'Saturday',
 'Sun' => 'Sunday',
);
2 while(($key,$value)=each(%weekday)){
3 print "$key = $value\n";
 }

http://search.cpan.org

5.4 Hash (Associative Array) Functions 129

e x a m p l e 5 . 4 7 (c o n t i n u e d)

(Output)
3 Sat = Saturday
 Fri = Friday
 Sun = Sunday
 Thu = Thursday
 Wed = Wednesday
 Tue = Tuesday
 Mon = Monday

e x p l a n at i o n
1 The hash %weekday is assigned keys and values.
2 The each function returns a list consisting of each key and its associated value from the

%weekday hash. They are assigned to the scalars $key and $value, respectively.
3 The keys and values are printed, but in an unordered way. You can order them as

shown in Example 5.46 or use a foreach loop with an ordered list of keys:

foreach $key(1..7){
 print $weekday{$key},"\n";
}

5.4.4 Removing Duplicates from a List with a Hash

Earlier, we used a hash to remove duplicate entries in an array. In the following example,
the built-in map function is used to map each element of an array into a hash to create
unique hash keys.

e x a m p l e 5 . 4 8

(The Script)
 use warnings;
 my(@list, @uniq);
 # Using the map function with a hash
 @list = qw/a b c d d a e b a b d e f/;
1 @uniq = keys %{{ map {$_ => 1 } @list }};
2 print "@list\n@uniq\n";

(Output)
a b c d d a e b a b d e f
e c a b d f

e x p l a n at i o n
1 The map function iterates through the values in the @list array to create a hash where

each element in @list becomes a key, $_, to an unnamed hash with each key getting a
corresponding value of 1. After the hash is created, the built-in keys function returns
a list of the unique keys which are assigned to the array @uniq.

2 Both the original list, @list, and the new list, @uniq, are printed, showing that the
duplicate values in the original list have been removed.

130 Chapter 5 • What’s in a Name?

5.4.5 Sorting a Hash by Keys and Values

When sorting a hash, you can sort the keys alphabetically very easily by using the built-in
sort command, as we did with arrays in the preceding section. But you may want to sort
the keys numerically or sort the hash by its values. To do this requires a little more work.

You can define a subroutine to compare the keys or values. (See Chapter 11, “How Do
Subroutines Function?”) The subroutine will be called by the built-in sort function. It will be
sent a list of keys or values to be compared. The comparison is either an ASCII (alphabetic)
or a numeric comparison, depending upon the operator used. The cmp operator is used
for comparing strings, and the <=> operator is used for comparing numbers. The reserved
global scalars $a, and $b are used in the subroutine to hold the values as they are being
compared. The names of these scalars cannot be changed.

Sort Hash by Keys in Ascending Order. To perform an ASCII, or alphabetic, sort
on the keys in a hash is relatively easy. Perl’s sort function is given a list of keys and returns
them sorted in ascending order. A foreach loop is used to loop through the hash keys, one
key at a time.

e x a m p l e 5 . 4 9

(In Script)
 use warnings;
1 my %wins = (
 "Portland Panthers" => 10,
 "Sunnyvale Sluggers" => 12,
 "Chico Wildcats" => 5,
 "Stevensville Tigers" => 6,
 "Lewiston Blazers" => 11,
 "Danville Terriors" => 8,
);
 print "\n\tSort Teams in Ascending Order:\n\n";
2 foreach my $key(sort keys %wins) {
3 printf "\t% -20s%5d\n", $key, $wins{$key};
 }

(Output)

Sort Teams in Ascending Order:

 Chico Wildcats 5
 Danville Terriors 8
 Lewiston Blazers 11
 Portland Panthers 10
 Stevensville Tigers 6
 Sunnyvale Sluggers 12

5.4 Hash (Associative Array) Functions 131

e x p l a n at i o n
1 A hash called %wins is assigned key/value pairs.
2 The foreach loop will be used to iterate through each of an alphabetically sorted list of

keys from a hash called %wins.
3 The printf() function formats and prints the sorted keys and its values.

Sort Hash by Keys in Reverse Order. To sort a hash by keys alphabetically and
in descending order, just add the built-in reverse function to the previous example. The
foreach loop is used to get each key from the hash, one at a time, after the reversed sort.

e x a m p l e 5 . 5 0

(In Script)
 use warnings;
1 my %wins = (
 "Portland Panthers" => 10,
 "Sunnyvale Sluggers" => 12,
 "Chico Wildcats" => 5,
 "Stevensville Tigers" => 6,
 "Lewiston Blazers" => 11,
 "Danville Terriors" => 8,
);
 print "\n\tSort Teams in Descending/Reverse Order:\n\n";
2 foreach my $key (reverse sort keys %wins) {
3 printf "\t% -20s%5d\n", $key, $wins{$key};
 }

(Output)

Sort Teams in Descending/Reverse Order:

 Sunnyvale Sluggers 12
 Stevensville Tigers 6
 Portland Panthers 10
 Lewiston Blazers 11
 Danville Terriors 8
 Chico Wildcats 5

e x p l a n at i o n
1 A hash called %wins is assigned key/value pairs.
2 The foreach loop will be used to iterate through each of the elements in the hash. The

reverse function takes the alphabetically sorted list returned from the sort function and
reverses it.

3 The printf() function formats and prints the keys and sorted values.

132 Chapter 5 • What’s in a Name?

Sort Hash by Keys Numerically. A user-defined subroutine is used to sort a hash
by keys numerically. In the subroutine, Perl’s special $a and $b variables are used to hold
the value being compared with the appropriate operator. For numeric comparison, the <=>
operator is used, and for string comparison, the cmp operator is used. The sort function will
send a list of keys to the user-defined subroutine. The sorted list is returned.

e x a m p l e 5 . 5 1

(In Script)
 use warnings;
1 sub desc_sort_subject {
2 $b <=> $a; # Numeric sort descending
 }
3 sub asc_sort_subject{
4 $a <=> $b; # Numeric sort ascending
 }

5 my %courses = (
 "101" => "Intro to Computer Science",
 "221" => "Linguistics",
 "300" => "Astronomy",
 "102" => "Perl",
 "103" => "PHP",
 "200" => "Language arts",
);
 print "\n\tCourses in Ascending Numeric Order:\n";
6 foreach my $key (sort asc_sort_subject(keys %courses)) {
7 printf "\t%-5d%s\n", $key, $courses{"$key"};
 }
8 print "\n\tCourses in Descending Numeric Order:\n";
 foreach my $key (sort desc_sort_subject(keys %courses)) {
 printf "\t%-5d%s\n", $key, $courses{"$key"};
 }

(Output)
Courses in Ascending Numeric Order:
 101 Intro to Computer Science
 102 Perl
 103 PHP
 200 Language arts
 221 Linguistics
 300 Astronomy

Courses in Descending Numeric Order:
 300 Astronomy
 221 Linguistics
 200 Language arts
 103 PHP
 102 Perl
 101 Intro to Computer Science

5.4 Hash (Associative Array) Functions 133

e x p l a n at i o n
1 This is a user-defined subroutine called desc_sort_subject. When its name is given to

the sort function, this function will be used to compare the keys passed to it. It will
sort the keys numerically.

2 The special Perl variables $a and $b are used to compare the values of the keys from
the hash called %courses. The <=> operator is a numeric comparison operator that
will compare each of the keys to be sorted as numbers. In the previous examples, we
sorted the keys alphabetically. Since $b precedes $a, the sort is descending.

3 This is also a user-defined subroutine called asc_sort_subject. This function is identical
to the previous function on line 1, except it will sort the keys of the hash in ascending
numeric order rather than descending.

4 In this function, the special variables $a and $b have been reversed, causing the sort
after the comparison to be in ascending order.

5 The hash called %courses is defined with key/value pairs.
6 The foreach loop will be used to iterate through each of the keys in the hash. It receives

its list from the output of the sort command.
7, 8 The printf function formats and prints the keys and sorted values.

Numerically Sort a Hash by Values in Ascending Order. To sort a hash by its
values, a user-defined function is also defined. The values of the hash are compared by the
special variables $a and $b. If $a is on the left-hand side of the comparison operator, the
sort is in ascending order, and if $b is on the left-hand side, then the sort is in descending
order. The <=> operator compares its operands numerically.

e x a m p l e 5 . 5 2

(In Script)
 use warnings;
1 sub asc_sort_wins {
2 $wins{$a} <=> $wins{$b};
 }
3 my %wins = (
 "Portland Panthers" => 10,
 "Sunnyvale Sluggers" => 12,
 "Chico Wildcats" => 5,
 "Stevensville Tigers" => 6,
 "Lewiston Blazers" => 11,
 "Danville Terriors" => 8,
);
 print "\n\tWins in Ascending Numeric Order:\n\n";
4 foreach my $key (sort asc_sort_wins(keys %wins)) {
5 printf "\t% -20s%5d\n", $key, $wins{$key};
 }

134 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 5 2 (c o n t i n u e d)

(Output)

Wins in Ascending Numeric Order:

 Chico Wildcats 5
 Stevensville Tigers 6
 Danville Terriors 8
 Portland Panthers 10
 Lewiston Blazers 11
 Sunnyvale Sluggers 12

e x p l a n at i o n
1 This is a user-defined subroutine called asc_sort_wins. When its name is given to the

sort function, this function will be used to compare the hash values passed to it. It will
sort the values by value, numerically.

2 The special Perl variables $a and $b are used to compare the values of the hash called
$wins. The <=> operator is a numeric comparison operator that will compare each of
the values to be sorted. To compare strings, the cmp operator is used.

3 The hash called %wins is assigned key/value pairs.
4 The foreach loop iterates through each of the elements in the hash. It receives its list

from what is returned from the sort function.
5 The printf function formats and prints the keys and sorted values.

Numerically Sort a Hash by Values in Descending Order. To sort a hash
numerically and in descending order by its values, a user-defined function is created as
in the previous example. However, this time the $b variable is on the left-hand side of the
<=> numeric operator, and the $a variable is on the right-hand side. This causes the sort
function to sort in descending order.

e x a m p l e 5 . 5 3

(In Script)
 use warnings;
 # Sorting a hash by value in descending order

1 sub desc_sort_wins {
2 $wins{$b} <=> $wins{$a}; # Reverse $a and $b
 }

3 my %wins = (
 "Portland Panthers" => 10,
 "Sunnyvale Sluggers" => 12,
 "Chico Wildcats" => 5,
 "Stevensville Tigers" => 6,
 "Lewiston Blazers" => 11,
 "Danville Terriors" => 8,
);

5.4 Hash (Associative Array) Functions 135

e x a m p l e 5 . 5 3 (c o n t i n u e d)

 print "\n\tWins in Descending Numeric Order:\n\n";
4 foreach my $key (sort desc_sort_wins(keys %wins)){
5 printf "\t% -20s%5d\n", $key, $wins{$key};
 }

(Output)

Wins in Descending Numeric Order:

 Sunnyvale Sluggers 12
 Lewiston Blazers 11
 Portland Panthers 10
 Danville Terriors 8
 Stevensville Tigers 6
 Chico Wildcats 5

e x p l a n at i o n
1 This is a user-defined subroutine called desc_sort_wins. When its name is given to the

sort function, this function will be used to compare the hash values passed to it. It will
sort the values by value, numerically but in descending order.

2 The special Perl variables $a and $b are used to compare the values of the hash called
$wins. The position of $a and $b determines whether the sort is in ascending or de-
scending order. If $a is on the left-hand side of the <=> operator, the sort is a numeric
ascending sort; if $b is on the left-hand side of the <=> operator, the sort is descend-
ing. To compare strings, the cmp operator is used.

3 The hash called %wins is assigned key/value pairs.
4 The foreach loop will be used to iterate through each of the keys in the hash. It receives

its list from what is returned from the sort function.
5 The printf function formats and prints the keys and sorted values.

5.4.6 The delete Function

The delete function deletes a specified element from a hash. The deleted value is returned
if successful.5

e x a m p l e 5 . 5 4

(In Script)
 use warnings;
1 my %employees=(
 "Nightwatchman" => "Joe Blow",
 "Janitor" => "Teddy Plunger",
 "Clerk" => "Sally Olivetti",
);

5. If a value in an %ENV hash is deleted, the environment is changed. (See “The %ENV Hash” on page 137.)

136 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 5 4 (c o n t i n u e d)

2 my $layoff=delete $employees{"Janitor"};
 print "We had to let $layoff go.\n";
 print "Our remaining staff includes: ";
 print "\n";
 while((my $key, my $value)=each %employees){
 print "$key: $value\n";
 }

(Output)
We had to let Teddy Plunger go.
Our remaining staff includes:
Nightwatchman: Joe Blow
Clerk: Sally Olivetti

e x p l a n at i o n
1 A hash is defined with three key/value pairs.
2 The delete function deletes an element from the specified hash by specifying the key.

Janitor is the key. Both key and value are removed. The hash value associated with the
key Janitor is removed and returned. The value Teddy Plunger is returned and assigned
to the scalar $layoff.

5.4.7 The exists Function

The exists function returns true if a hash key (or array index) exists, and false if not.

f o r m at

exists $ASSOC_ARRAY{KEY}

e x a m p l e 5 . 5 5

 use warnings;

1 my %employees=(
 "Nightwatchman" => "Joe Blow",
 "Janitor" => "Teddy Plunger",
 "Clerk" => "Sally Olivetti",
);

2 print "The Nightwatchman exists.\n" if exists
 $employees{"Nightwatchman"};
3 print "The Clerk exists.\n" if exists $employees{"Clerk"};
4 print "The Boss does not exist.\n" if not exists $employees{"Boss"};

(Output)
2 The Nightwatchman exists.
3 The Clerk exists.
4 The Boss does not exist.

5.4 Hash (Associative Array) Functions 137

e x p l a n at i o n
1 A hash is defined with three key/value pairs.
2 If a key "Nightwatchman" exists, the exists function returns true.
3 If a key "Clerk" exists, the exists function returns true.
4 If the key "Clerk" does not exist, the inverted value of the exists function is false.

5.4.8 Special Hashes

The %ENV Hash. The %ENV hash contains the environment variables handed to Perl
from the parent process; for example, a shell or a Web server. The key is the name of the
environment variable, and the value is what was assigned to it. If you change the value
of %ENV, you will alter the environment for your Perl script and any processes spawned
from it, but not the parent process. Environment variables play a significant roll in CGI
Perl scripts.

e x a m p l e 5 . 5 6

(In Script)
 use warnings;
1 foreach my $key (keys %ENV){
2 print "$key\n";
 }
3 print "\nYour login name $ENV{'LOGNAME'}\n";
4 my $pwd = $ENV{'PWD'};
5 print "\n", $pwd, "\n";

(Output)
2 OPENWINHOME
 MANPATH
 FONTPATH
 LOGNAME
 USER
 TERMCAP
 TERM
 SHELL
 PWD
 HOME
 PATH
 WINDOW_PARENT
 WMGR_ENV_PLACEHOLDER

3 Your login name is ellie

5 /home/jody/home

138 Chapter 5 • What’s in a Name?

e x p l a n at i o n
1 The foreach loop iterates through the keys of the %ENV hash.
3 Print the value of the key LOGNAME.
4 Assign the value of the key PWD to $pwd.
5 Print the value of $pwd, the present working directory.

The %SIG Hash. The %SIG hash allows you to set signal handlers for signals. If, for
example, you press <CTRL>+C when your program is running, that is a signal, identified
by the name SIGINT. (See UNIX manual pages for a complete list of signals.) The default
action of SIGINT is to interrupt your process. The signal handler is a subroutine that is
automatically called when a signal is sent to the process. Normally, the handler is used
to perform a clean-up operation or to check some flag value before the script aborts. (All
signal handlers are assumed to be set in the main package.)

The %SIG hash contains values only for signals set within the Perl script.

e x a m p l e 5 . 5 7

(In Script)
 use warnings;
1 sub handler{
2 local($sig) = @_; # First argument is signal name
3 print "Caught SIG$sig -- shutting down\n";
 exit(0);
 }
4 $SIG{'INT'} = 'handler'; # Catch <CTRL>+C
 print "Here I am!\n";
5 sleep(10);
6 $SIG{'INT'}='DEFAULT';
7 $SIG{'INT'}='IGNORE';
 < Program continues here >

e x p l a n at i o n
1 handler is the name of the subroutine. The subroutine is defined.
2 $sig is a local variable and will be assigned the signal name.
3 When the SIGINT signal arrives, this message will appear, and the script will exit.
4 The value assigned to the key INT is the name of the subroutine, handler. When the

signal arrives, the handler is called.
5 The sleep function gives you 10 seconds to press <CTRL>+C to see what happens.
6 The default action is restored. The default action is to abort the process if the user

presses <CTRL>+C.
7 If you assign the value IGNORE to the $SIG hash, then <CTRL>+C will be completely

ignored and the program will continue.

5.4 Hash (Associative Array) Functions 139

The %INC Hash. The %INC hash contains the entries for each filename that has been
included via the use or require functions. The key is the filename; the value is the location
of the actual file found.

5.4.9 Context Revisited

In summary, the way Perl evaluates variables depends on how the variables are being used;
they are evaluated by context, either scalar, list, or void.

If the value on the left-hand side of an assignment statement is a scalar, the expression
on the right-hand side is evaluated in a scalar context; whereas if the value on the left-hand
side is an array, the right-hand side is evaluated in a list context.

Void context is a special form of scalar context. It is defined by the Perl monks as a
“context that doesn’t have an operator working on it. The value of a thing in void context
is discarded, not used for anything…” An example of void context is when you assign a list
to a scalar separating the elements with a comma. The comma operator evaluates its left
argument in void context, throws it away, then evaluates the right argument, and so on,
until it reaches the end of the list, discarding all but the last one.

$fruit = ("apple","pear","peach"); # $fruit is assigned "peach";
 # "apple" and "pear" are discarded
 # as useless use in void context

You’ll see examples throughout the rest of this book where context plays a major role.

e x a m p l e 5 . 5 8

(The perldoc function describes how reverse works)
1 $ perldoc -f reverse
 reverse LIST
 In list context, returns a list value consisting of the
elements of LIST in the opposite order. In scalar context, concatenates
the elements of LIST and returns a string value with all characters in the
opposite order.

e x a m p l e 5 . 5 9

(The Perl Script)
 use warnings;
1 my @list = (90,89,78,100,87);
2 my $str="Hello, world";
3 print "Original array: @list\n";
4 print "Original string: $str\n";
5 my @revlist = reverse @list;

140 Chapter 5 • What’s in a Name?

e x a m p l e 5 . 5 9 (c o n t i n u e d)

6 my $revstr = reverse $str;
7 print "Reversed array is: @revlist\n";
8 print "Reversed string is: $revstr\n";
9 my $newstring = reverse @list;
10 print "List reversed, context string: $newstring\n";
11 "Later, going into the Void!!!!\n"; # Void context

(Output)
11 Useless use of a constant ("Later, going into the void\n")
 in void context at Example line 13.
3 Original array: 90 89 78 100 87
4 Original string: Hello, world
7 Reversed array is: 87 100 78 89 90
8 Reversed string is: dlrow ,olleH
10 List reversed, context string: 78001879809

e x p l a n at i o n
11 This is a case where you will see a warning message about using void context when

you have a string constant that is not being used in assignment, print out, or doesn’t
return anything, and appears to be doing nothing. It doesn’t have any side effects and
doesn’t break the program, but demonstrates a case where Perl views void context.

5 Context is demonstrated in the documentation for Perl’s built-in reverse function.
6 The reverse function reverses the elements of an array and returns the reversed ele-

ments to another array. Context is list.
8 This time, the reverse function reverses the characters in a string. It returns the reverse

string as a scalar. Context is scalar.
9 Here the reverse function reverses the array again, but the returned value will be

assigned to a string. The context being scalar, the function will reverse the array ele-
ments and convert the list into a string of characters.

5.5 What You Should Know

1. If you don’t give a variable a value, what will Perl assign to it?

2. What are “funny characters”? What is a sigil?

3. What data types are interpreted within double quotes?

4. How many numbers or strings can you store in a scalar variable?

5. In a hash, can you have more than one key with the same name? What about
more than one value with the same name?

6. What function would you use to find the index value of an array if you know
the value of the data stored there?

Exercise 5: The Funny Characters 141

7. How does the scalar function evaluate an expression if it’s an array?

8. How do you find the size of an array?

9. What does the $" special variable do?

10. When are elements of an array or hash preceded by a $ (dollar sign)?

11. What is the difference between chop and chomp?

12. What is the difference between splice and slice?

13. What does the map function do?

14. How do you sort a numeric array? How do you sort a hash by value?

15. What function extracts both keys and values from a hash?

16. How can you remove duplicates in an array?

17. What is meant by the term scope?

18. What is “scalar” context, “list” context, “void” context? Would you be able to
 write an example to demonstrate how they differ?

5.6 What’s Next?

In the next chapter, we discuss the Perl operators. We will cover the different types of
assignment operators, comparison and logical operators, arithmetic and bitwise operators,
how Perl sees strings and numbers, how to create a range of numbers, how to generate
random numbers, and some special string functions.

exercise 5
The Funny characters

1. Write a script that will ask the user for his five favorite foods (read from STDIN).
The foods will be stored as a string in a scalar, each food separated by a comma.

a. Split the scalar by the comma and create an array.

b. Print the array.

c. Print the first and last elements of the array.

d. Print the number of elements in the array.

e. Use an array slice of three elements in the food array and assign those values to
another array. Print the new array with spaces between each of the elements.

Exercise 5: The Funny Characters

142 Chapter 5 • What’s in a Name?

2. Given the array @names=qw(Nick Susan Chet Dolly Bill), write a statement that
would do the following:

a. Replace Susan and Chet with Ellie, Beatrice, and Charles.

b. Remove Bill from the array.

c. Add Lewis and Izzy to the end of the array.

d. Remove Nick from the beginning of the array.

e. Reverse the array.

f. Add Archie to the beginning of the array.

g. Sort the array.

h. Remove Chet and Dolly and replace them with Christian and Daniel.

3. Write a script called elective that will contain a hash. The keys will be code
numbers—2CPR2B, 1UNX1B, 3SH414, 4PL400. The values will be course
names—C Language, Intro to UNIX, Shell Programming, Perl Programming.

a. Sort the hash by values and print it.

b. Ask the user to type the code number for the course he plans to take this
semester and print a line resembling the following:

You will be taking Shell Programming this semester.

4. Modify your elective script to produce output resembling the output below. The
user will be asked to enter registration information and to select an EDP number
from a menu. The course name will be printed. It doesn’t matter if the user types
in the EDP number with upper- or lowercase letters. A message will confirm the
user’s address and thank him for enrolling.

Output should resemble the following:

REGISTRATION INFORMATION FOR SPRING QUARTER

Today’s date is Wed Apr 19 17:40:19 PDT 2014

Please enter the following information:

Your full name: Fred Z. Stachelin

What is your Social Security Number (xxx-xx-xxxx): 004-34-1234

Your address:

 StreetHobartSt

 CityStateZipChicoCA

Exercise 5: The Funny Characters 143

“EDP” NUMBERS AND ELECTIVES:

————————————————–

2CPR2B | C Programming

————————————————–

1UNX1B | Intro to UNIX

————————————————–
4PL400 | Perl Programming
————————————————–
3SH414 | Shell Programming
————————————————–

What is the EDP number of the course you wish to take? 4pl400
The course you will be taking is “Perl Programming.”

Registration confirmation will be sent to your address at
 1424 HOBART ST.
 CHICO, CA 95926

Thank you, Fred, for enrolling.

5. Write a script called findem that will do the following:

a. Assign the contents of the datebook file to an array. (The datebook file is on the
CD that accompanies this book.)

b. Ask the user for the name of a person to find. Use the built-in grep function to
find the elements of the array that contain the person and number of times that
person is found in the array. The search will ignore case.

c. Use the split function to get the current phone number.

d. Use the splice function to replace the current phone number with the new
phone number, or use any of the other built-in array functions to produce
output that resembles the following:

Who are you searching for? Karen

What is the new phone number for Karen? 530-222-1255

Karen’s phone number is currently 284-758-2857.

Here is the line showing the new phone number:

Karen Evich:530-222-1255:23 Edgecliff Place, Lincoln, NB 92086:7/25/53:85100\

Karen was found in the array three times.

144 Chapter 5 • What’s in a Name?

6. Write a script called tellme that will print out the names, phones, and salaries of
all the people in the datebook file. To execute, type the following at the command
line:

tellme datebook

Output should resemble the following:

Salary: 14500
Name: Betty Boop
Phone: 245-836-8357

7. The following array contains a list of values with duplicates.

@animals=qw(cat dog bird cat bird monkey elephant cat elephant pig horse cat);

a. Remove the duplicates with the built-in map function.

b. Sort the list.

c. Use the built-in grep function to get the index value for the monkey.

831

Index

Symbols
!~ operator, 222
! operator, 163
!= operator, 158
$_ (topic variable) function, 90–91, 300
$ perldoc DBI, 558
$_ scalar, 223
$ sign, 52
$& variable, 240
$$ variables, 635–636
%ENV hash, 137–138
%INC hash, 139
%= operator, 151
% (modulo) operator, 166
%SIG hash, 138, 669–673
% wildcard, 741–742
& (ampersands), 350
&& operator, 163
&= operator, 152
() (parentheses), 92
* (asterisk), 262, 663
**= operator, 151
*= operator, 151
** (exponentiation) operator, 166
* (multiplication) operator, 166
+= operator, 151
+ (addition) operator, 166
-d switch, 718
-= operator, 151
- (subtraction) operator, 166
. (dot) metacharacter, 251–252
.= operator, 151

/ (forward slashes), 56, 597
/etc/passwd file, 638
/= operator, 151
/ (division) operator, 166
:: (double colons), 410
; (semicolons), 529, 726
< (less than) operator, 736, 739
<<= operator, 152
<= (less than or equal) operator, 736
<> (not equal to) operator, 736, 737
<=> (space ship) operator, 121, 130, 158
= (equal sign), 86, 503
== operator, 158
=~ operator, 222
= (equal) operator, 151, 736, 737
>>= operator, 152
> (greater than) operator, 736, 739
>= (greater than or equal) operator, 736
? (question mark), 663
? placeholder, 571–578
@ARGV array, 333–338
@_ array, passing arguments, 352–368
@INC array, 418–420, 797–802
@ISA array, 484–486
@ symbol, 52
[] (square brackets), 100, 663
\ (backslash), 52, 379, 597
^= operator, 152
_ (underscore), 743
{} (curly braces), 100, 265
|= operator, 152
|| operator, 163

832 Index

A
abs function, 675
accept function, 675
accessing

databases, 521
directories, 608–612
elements

arrays, 95–97
slicing, 98–99

files, modifying, 620–621
hash values, 101–102

accounts, SAM (Security Accounts Manager), 639
ActivePerl, 8
adding

columns, 554
elements, arrays, 105
entries, 579
multiple records, 573
primary keys, 555
tables, primary keys, 543–544

addition (+) operator, 166
addresses

blessings, 455
memory, 380, 454

alarm function, 671, 672–673, 675
aliases

SQL (Structured Query Language), 758
typeglobs, references, 400–404

alphanumeric characters, 59
alternation of patterns, 273
alternative characters, 249
alternative quotes, 20, 55–59
ALTER TABLE command, 554, 748, 759
American National Standards Institute. See ANSI
ampersands (&), 350
anchored characters, 249, 269–271
AND operator, 736, 740
anonymous arrays, 382
anonymous hashes, 383
anonymous pipes, 326–333
anonymous subroutines, 393–394, 478. See also

closures
anonymous variables, 382–383
ANSI (American National Standards Institute), 723
APIs (application programming interfaces), 530
appending files, 316
application programming interfaces. See APIs
applications (Dancer), 808–830
applying

CPAN Minus, 441–444
DBI (Database Independent Interface), 560–561
modules, 431–436, 798–799
multiple placeholders, 572

Perlbrew, 441–444
PPM (Perl Program Manager), 439–441
quotes, 737

architecture, client/server, 521
ARCHIVE attribute, 600
arguments

command-line, passing at, 29
methods, passing, 466
passing, 333–341
subroutines, passing, 352–368

arithmetic functions, 167–171
arithmetic operators, 166–167
arrays, 17, 81–82, 91–99

@_, passing arguments, 352–368
@ARGV, 333–338
@INC, 418–420, 797–802
@ISA, 484–486
anonymous, 382
assigning, 92–93
copying, 98–99
elements

adding, 105
modifying, 120
referencing, 95–97
removing, 106–107
replacing, 106–107

files, slurping, 302
functions, 105–125

chomp function, 111–112
chop function, 111–112
delete function, 106–107
exists function, 124
grep function, 112–114
join function, 118–119
map function, 119–121
pop function, 109–110
push function, 105
reverse function, 125
shift function, 110–111
sort function, 121–124
splice function, 107–109
split function, 114–118
unshift function, 106

hashes, 104, 387
indexes, checking values, 124
input, assigning, 311–312
lists, 385, 386
looping, 97–98
multidimensional, 99
naming, 92
output field separators, 93–94
range operators, 95
reversing, 125

Index 833

rows, fetching, 564
sizing, 94–95
slicing, 98–99
sorting, 121–124
times function, 645
transforming, 119–121
variables, 92

arrow (±) operator, 382
ascending order, 130, 550
ASCII, 122, 159, 290
assigning

arrays, 92–93
hashes, 100–101
input

arrays, 311–312
hashes, 312–313
scalar variables, 307–308

numbers, 82
range operators, 95
scalar variables, 88
strings, 82
typeglobs, 412
values, 353–355

assignment operators, 151–153
assignment statements, 86–87
associativity, operators, 149–151
asterisk (*), 262, 663
atan2 function, 675
attributes, 448, 525

directories, 599–602
files, 599–602, 613
Moose, 776–7.95
PrintError, 567
RaiseError, 567

autodecrement operators, 172–173
autoincrement operators, 172–173
AUTOLOAD function, 369–370, 484
$AUTOLOAD function, 486–489
automatic error handling, 567
autovivification, 297
awk command, 114

B
backquotes, 52, 55, 659–660
backslash (\), 52, 379, 597
barewords, 44, 58
base classes, 484, 489. See also classes
BEGIN block, 371
BETWEEN operator, 736
BETWEEN statement, 743
binary operators, 147. See also operators
bind function, 676

binding
columns, 569
parameters, 571–578
runtime, 472–476

bind_param() method, 574
bin folders, 532
binmode function, 676
bits, 173–174
bitwise logical operators, 173–175
bitwise operators, 174–175
black boxes, 348
blank lines, formatting, 503
bless function, 455, 676
blessings, 454
blocks, 182–187

BEGIN, 371
END, 371

Boolean context, 38
Boolean types, 153
bracket expressions (POSIX), 257–258
break statements, 204
build() method, 459
built-in functions, 3, 596

arithmetic, 168
scripts, 39–40

bytecode, 2

C
C, 3
C++, 3
caches, queries, 577–578
call-by-references, 353
caller function, 676
calling

functions, 473
methods, 473, 484–486
processes, 629
subroutines, 349–352, 410
system calls, 595–629. See also system calls

capturing
patterns, 276–279
turning off, 281

Carp module, 665–666
Carp.pm module, 428–430
case sensitivity, 86

databases, 529
SQL (Structured Query Language), 727

catching signals, 669
categories (Perl), 11
CategoryID key, 756
C dependencies, 805–806
CGIs (Common Gateway Interfaces), 522, 585, 807

here documents, 67

834 Index

CGIs (Common Gateway Interfaces) (continued)
modules, 711

characters
alphanumeric, 59
classes, 253–256
conversion, 69
delimiters, 220
globbing, 663–664
metacharacters, 220, 245–296. See also

metacharacters
sigils, 85
special, 53
whitespace, 249

char data type, 81
charts, flow, 162
chdir function, 607–608, 676
checkers, data, 469
checking syntax, 46
child processes, 629, 649
chmod command, 43
chmod function, 614–615, 676
chomp function, 43, 111–112, 308–309, 676
chop function, 111–112, 308–309, 677
chown function, 615, 677
chr function, 120, 677
Christianson, Tom, 449
chroot function, 677
classes, 450, 453–454, 459

base, 489
characters, 253–256
creating, 30
DBI (Database Independent Interface), 558–560
defining, 448–449
derived, 489–496
methods, 457. See also methods
parent, 489
SUPER pseudo, 499–501
UNIVERSAL, 484

clauses
FROM, 546
GROUP BY, 763
JOIN, 551–552
LIMIT, 550, 734
ORDER BY, 550, 744
WHERE, 548–550, 736

clients
databases, 521–522
MySQL, 532

closedir function, 610, 677
close function, 677
closing filehandles, 299
closures

defining, 478–480

objects, 481–484
clustering patterns, 273–275
cmp operator, 132, 159
Cobb, E. F. “Ted,” 723
code, threaded, 2
coercion, 148
columns, 524, 525

adding, 554
binding, 569
dropping, 555
selecting by, 546, 732

combining arrays and hashes, 104
command-lines

arguments, passing at, 29
MS-DOS, 605. See also Windows
mysql, 724
switches, 44–47, 716–717
testing, 45
UNIX, 41

commands. See also functions
ALTER TABLE, 554
awk, 114
chmod, 43
cpan, 802–803
CREATE DATABASE, 540–541
CREATE TABLE statement, 541–543
date, 57
debugging, 720–722
DELETE, 552–553
DESCRIBE, 543, 730–731
DROP DATABASE, 555
drop database, 761
EXTRACT, 769
INSERT, 745–746
INSERT statement, 544–546
interpreters, 45
LIKE, 530
ls, 599
net.exe, 639
NOT LIKE, 530
pod, 504–505
pwd, 55
QUIT, 529
SELECT, 546–547, 731–745
SHOW, 543, 730–731
show, 537
show database, 538
show databases, 728
SQL (Structured Query Language), 539–540,

725–728
start, 654–655
substitution, 53, 659–660
system calls, 595

Index 835

touch, 620
UPDATE, 553–554, 746–747
USE, 529, 728
WHERE clause, 548–550

comments, 16
scripts, 38–39

commit() method, 583–585
Common Gateway Interfaces. See CGIs
comparing operands, 154
compiler directives, 84. See also pragmas
compiling programs, 412, 421
complex data structures, 104
components of relational databases, 522–527
compound statements, 182–187
conditional operators, 156–157
conditionals, 21

operators, 22
configuring passwords (MySQL), 533
connect function, 677
connecting

databases, 521, 561–563. See also databases
MySQL, 532–533

connect() method, 560, 561–562
consoles

mysql, 724
MySQL, editing keys, 533

constants, 18, 408. See also literals
constructors, 450, 457, 459
constructors, creating with objects, 458
constructs, 15–27

decision-making, 183–187
if, 183–184
if/else, 156, 184–185
if/else/else, 185–186
quotes, 55
qw, 92
unless, 186–187

contents, viewing modules, 428–430
context

hashes, 139–140
operators, 145–147
scripts, 38
subroutines, 366–368

continue statements, 210–212
control

loops, 25, 204–212
structures, 182–187

controlling terminals, 630
conventions

case sensitivity, 529, 727
naming, 85–86

databases, 529
SQL(Structured Query Language), 727

UNC (universal naming convention), 597
conversion characters, 69
converting strings/numbers, 148
Coordinated Universal Time (UTC), 643
c (complement) option, 289
copying arrays, 98–99
CORE namespace, 215
cos function, 677
CPAN (Comprehensive Perl Archive Network), 6–7,

408
@INC, 797–802
DBDs (database driver modules), 558
modules, 436–441

cpan command, 802–803
CPAN Minus, applying, 441–444
CPAN.pm module, 437
cpan shells, 438
CPU time, 643, 645. See also time
CREATE DATABASE command, 540–541
CREATE INDEX statement, 748
create() method, 459
CREATE TABLE statement, 541–543, 748, 751–753
cross joins, 756
crypt function, 677
-c switches, 46
curly braces ({}), 100, 265
customizing sorting, 122

D
Dancer, 585–590, 807–808

applications, 808–830
exercises, 829–830
parameters, 818–826
POST requests, 826–828
resources, 811
templates, 814–818

data, packing/unpacking, 624–629
database driver modules. See DBDs
Database Independent Interface. See DBI
databases

? placeholder, 571–578
case sensitivity, 529
commands

ALTER TABLE command, 554
CREATE TABLE statement, 541–543
DELETE command, 552–553
DROP DATABASE command, 555
INSERT statement, 544–546
JOIN clause, 551–552
SELECT command, 546–547
UPDATE command, 553–554
WHERE clause, 548–550

836 Index

databases (continued)
connecting, 561–563
disconnecting, 561–563
dropping, 538, 555
error messages, 567–570
formatting, 538, 748–749
interfaces, modules, 713
MySQL, 519–594. See also MySQL
naming, 529
schemas, 527
searching, 537–538
servers, 523
SQL (Structured Query Language). See also SQL

navigating, 728–729
tables, 729–731

statements, 579–582
syntax, 528–530
tables, 523–524

adding, 543–544
sorting, 550–551

transactions, 583–590
USE statements, 541

Databases Demystified, 520
data checkers, 469
Data Definition Language. See DDL
Data::Dumper module, 384
data encapsulation, 448, 450
DATA filehandles, 223–225
_ _DATA_ _ literal, 63, 64
Data Manipulation Language. See DML
data structures, inodes, 599, 621
data types, 81–87

arrays, 91–99
assignment statements, 86–87
complex data structures, 104
hashes, 99–104
naming conventions, 85–86
packages, 82–85
scalar variables, 87–91
scope, 82–85
SQL (Structured Query Language), 749–750

date and time functions, 766–770
date command, 57
DBDs (database driver modules), 556

installing, 556–558
DBI (Database Independent Interface), 556–578

applying, 560–561
class methods, 558–560

dbmclose function, 678
dbmopen function, 678
DDL (Data Definition Language), 748–761
debugging, 718–722

commands, 720–722
exiting, 719–720
script errors, 43–44
starting, 719–720

decision-making constructs, 183–187
declaring

forward declarations, 351
packages, 410
subroutines, 349

default databases, 534. See also databases
defined function, 89, 349, 678
defining

classes, 448–449
closures, 478–480
lexical variables, 83
methods, 456
objects, 447–448
subroutines, 122, 349–352

DELETE command, 552–553
delete function, 17, 18, 106–107, 135–136, 678
DELETE statement, 560, 747–748
deleting

directories, 607
duplicates

arrays, 121
hashes, 103–104

entries, 580
newlines, 111–112

delimiters, 220
global change, 232
substitution, modifying, 234

DELIMITER statement, 114, 118
deposit() method, 448
dereferencing pointers, 379
derived classes, 489–496
descendants, 629
descending order, 134, 550
DESCRIBE command, 543, 730–731
DESTROY method, 476
destructors, 450, 476–478
diagnostics, 31

errors, 567
diagnostics pragma, 76–77
die function, 299–300, 665, 678
digits, metacharacters, 248
digraph operators, 100
directives, compilers, 84. See also pragmas
directories, 597–612

accessing, 608–612
attributes, 599–602
creating, 605–607
deleting, 607

Index 837

modifying, 607–608
passwords, 638–639
searching, 603–605
UNIX, 609

DIRECTORY attribute, 600
disconnecting databases, 561–563
disconnect() method, 561, 563
DISTINCT keyword, 733
distributions (Perl), 6–9
division (/) operator, 166
DML (Data Manipulation Language), 731–748
documentation

modules, 501–508, 596
MySQL, 531, 539
online, 12
Perl, 9–12
text, translating pod, 506–508

documents, here, 19, 66–68
do function, 678
do() method, 579
d (delete) option, 288
dot (.) metacharacter, 251–252
double colons (::), 410
double data type, 81
double quotes, 52, 53–54
do/until loops, 194–196
do-while loops, 24
do/while loops, 194–196
downloading Perl, 6–9
DROP DATABASE command, 555
drop database command, 761
DROP INDEX statement, 748
dropping

columns, 555
databases, 538, 555
tables, 555

DROP TABLE statement, 748, 761
dump function, 679
duplicates

arrays, removing, 121
hashes, removing, 103–104, 129

E
each function, 18, 128–129, 679
editing, 85

files, 340–341
keys, 533

editors
text, selecting, 34–35
third-party, 34
types of, 35

effective guids. See guids

effective uids. See euids
elements

arrays
adding, 105
modifying, 120
referencing, 95–97
removing, 106–107
replacing, 106–107

values, searching, 112–114
e modifier, 238
encapsulation, data, 448, 450
END block, 371
_ _END_ _ literal, 63, 64
entries

adding, 579
deleting, 580
updating, 581

environments, processes, 632–633
eof function, 338–340, 679
eq operator, 159
equality operators, 157–160
equal sign (=), 86, 503
equal to (=) operator, 736, 737
error handling, 664–669, 711
error messages

HTTP (Hypertext Transfer Protocol), 585
SQL (Structured Query Language), 567–570

errors
scripts, 43–44
spelling, 85
syntax, 2

escape sequences, 57
string literals, 61–63

-e switches, 45
euids (effective uids), 631
eval function, 666–669, 679
evaluating expressions, 147, 150, 238
examples (Moose), 778–781

extensions, 785–791
inheritance, 791–795

exclusive or (xor) operator, 164
exec function, 652, 679
execute() method, 560
execute statement, 571
executing

hashes, 566
last statements, 357
loops, 204
rows, 564
scripts, 40–42
SQL (Structured Query Language) statements,

724–725

838 Index

exercises (Dancer), 829–830
exists function, 18, 124, 136–137, 679
exit function, 654, 679
exiting debugging, 719–720
exp function, 679
exponentiation (**) operator, 166
Exporter module, 489
Exporter.pm module, 424–426, 435
exporting modules, 424–426
expressions, 147

bracket (POSIX), 257–258
evaluating, 147, 150, 238
regular, 28, 112, 219–244. See also regular

expressions
extensions

languages, modules, 715
.LNK, 617
Moose examples, 785–791
passwords, 641
Win32::NetAdmin, 640

EXTRACT command, 769

F
fat comma operators, 100
fcntl function, 680
feature pragma, 74
features, state, 363
fetch_array() method, 564
fetching

results, 563–566
values, 569

fields, 524, 525
map function, creating, 303
output field separators, 93–94

File::Find module, 603
filehandles. See also files

@ARGV arrays, 333–338
closing, 299
DATA, 223–225
printing, 49–50
processes, 634–636
references, typeglobs, 402–404
scripts, 37–42
special variables, 705
STDERR, 402
STDIN, 307–333, 402
STDOUT, 402
underscore, 622
user-defined, 297–307

_ _FILE_ _ literal, 63, 64
filenames, globbing, 663–664
fileno function, 680
files, 3, 26–27, 297–346, 597–612

/etc/passwd, 638
accessing, modifying, 620–621
arguments, passing, 333–341
attributes, 599–602, 613
editing, 340–341
handling, modules, 711–712
hard/soft links, 616–620
hashes, loading, 306–307
House.pm, 465
input from , reading, 90–91
locking, 317–319
opening, 297–298

appending, 316
reading, 324–325
writing, 313–314

packing/unpacking, 624–629
passwords, 638–639
pattern matching, 241
permissions, 605, 606, 612–616
.pm packages, 420–423
pod, 502–504
reading

opening, 298
scalar assignments, 300–305

renaming, 620
scripts, 16
searching, 603–605
slurping

arrays, 302
into strings with read() function, 304

statistics, 621–623
testing, 342–343
Win32 binary, 315

File::spec module, 598
file systems, ReFS (Resilient File System), 597
filters, 326. See also pipes

input, 330–333
output, 327–329

find() function, 603
finish() method, 561
flags, modifiers, 70
float data type, 81
flock function, 317–319, 680
flow

charts, 162
loops, 204

folders, bin, 532
foreach loops, 24, 97–98, 130, 198–202
foreach modifiers, 203–204
foreign keys, 755
fork function, 649–651, 680
forks, 649
for loops, 24, 196–198

Index 839

format function, 680
format specifiers, 69–70
formatting

databases, 538, 748–749
date and time, 767
directories, 605–607
fields, map function, 303
instance methods, 460–461
instructions, 503
keys, 753–755
lists from scalar variables, 114–118
MySQL passwords, 533
objects with constructors, 458
OOP (Object-Oriented Perl), 450–451, 464–472
printing

printf function, 69–74
say function, 73–74
sprintf function, 73

processes
UNIX, 649–654
Win32, 654–657

scripts, 33–37, 42–44
filehandles, 37–42
linebreaks, 35–36
numbers, 36–37
statements, 35–36, 39
strings, 36–37
switches, 44–47
whitespace, 35–36

SQL (Structured Query Language) statements,
528, 725

tables, 751–753
formline function, 680
forward declarations, 351
forward slashes (/), 56, 597
frameworks, Dancer, 585–590. See also Dancer
free-form languages, 16
FROM clause, 546
full joins, 756
functions, 25–26, 347, 675–704. See also

subroutines
$_ (topic variable), 90–91
abs, 675
accept, 675
alarm, 671, 672–673, 675
arithmetic, 167–171
arrays, 105–125

chomp function, 111–112
chop function, 111–112
delete function, 106–107
exists function, 124
grep function, 112–114
join function, 118–119

map function, 119–121
pop function, 109–110
push function, 105
reverse function, 125
shift function, 110–111
sort function, 121–124
splice function, 107–109
split function, 114–118
unshift function, 106

atan2, 675
AUTOLOAD, 369–370, 484
$AUTOLOAD, 486–489
bind, 676
binmode, 676
bless, 455, 676
built-in, 3, 39–40, 596
caller, 676
calling, 473
chdir, 607–608, 676
chmod, 614–615, 676
chomp, 43, 308–309, 676
chop, 308–309, 677
chown, 615, 677
chr, 120, 677
chroot, 677
close, 677
closedir, 610, 677
connect, 677
context, 38
cos, 677
crypt, 677
d, 679
dbmclose, 678
dbmopen, 678
defined, 89, 349, 678
delete, 17, 18, 678
die, 299–300, 665, 678
do, 678
dump, 679
each, 18, 679
eof, 338–340, 679
eval, 666–669, 679
exec, 652, 679
exists, 18, 679
exit, 654, 679
exp, 679
fcntl, 680
fileno, 680
File::spec module, 598
find(), 603
flock, 317–319, 680
fork, 649–651, 680
format, 680

840 Index

functions (continued)
formline, 680
getc, 311, 680
getgrent, 681
getgrgid, 681
getgrnam, 681
gethostbyaddr, 681
gethostbyname, 681
gethostent, 681
getlogin, 635, 681
getnetbyaddr, 681
getnetbyname, 682
getnetent, 682
getpeername, 682
getpgrp, 682
getppid, 635–636, 682
getpriority, 637, 682
getprotobyname, 682
getprotobynumber, 683
getprotoent, 683
getpwent, 641, 683
getpwnam, 642, 683
getpwuid, 643, 683
getservbyname, 683
getservbyport, 684
getservent, 684
getsockname, 684
getsockopt, 684
glob, 663–664, 684
gmtime, 646, 684
goto, 684
grep, 685
has, 777–778
hashes, 125–140

delete function, 135–136
each function, 128–129
exists function, 136–137
map function, 129
values function, 126–128

hex, 685
import, 685
index, 685
int, 685
ioctl, 685
join, 685
key, 685
keys, 18
kill, 670–671, 685
last, 686
lc, 686
lcfirst, 686
length, 686
link, 618, 686

listen, 686
local, 686
localtime, 648, 686
localtime(), 40, 43, 88
lock, 686
log, 687
lstat, 600, 621–623, 687
m, 687
map, 303, 687
mkdir, 605–607, 687
msgctl, 687
msgget, 688
msgrcv, 688
msgsnd, 688
my, 688
new, 688
next, 688
no, 688
not, 688
oct, 689
open, 297–298, 689
opendir, 609, 689
ord, 689
our, 689
pack, 624–629, 690
package, 690
pgrp, 636
pipe, 690
pop, 17, 690
pos, 691
print, 43, 50, 51–52, 691
printf, 16, 50, 69–74, 691
prototype, 691
push, 17, 691
q, 691
qq, 691
quotemeta, 691
qw, 691
qx, 691
rand, 168, 692
read, 692
read(), 304, 310
readdir, 609, 692
readlink, 619
readlline, 692
readllink, 692
readpipe, 692
recv, 692
redo, 692
ref, 396, 693
remdir, 607
rename, 620, 693
require, 421, 693

Index 841

reset, 693
return, 349, 693
reverse, 693
rewinddir, 611, 693
rindex, 693
rmdir, 693
s, 694
say, 16, 73–74
scalar, 694
seek, 319–322, 694
seekdir, 611, 694
select, 317, 694
semctl, 694
semget, 694
semop, 695
send, 695
setpriority, 637–638, 695
setsockopt, 695
shift, 17, 695
shmctl, 695
shmget, 695
shmread, 696
shmwrite, 696
shutdown, 696
sin, 696
sleep, 672, 696
socket, 696
socketpair, 696
sort, 17, 132, 697
splice, 17, 697
split, 697
sprintf, 73, 697
SQL (Structured Query Language), 761–770

date and time, 766–770
numeric, 762–764
string, 765

sqrt, 697
srand, 168, 697
stat, 599, 621–623, 698
string operators, 175–178
study, 698
sub, 698
sub $AUTOLOAD, 486–489
subs, 371–372
substr, 699
symlink, 619, 699
syscall, 658–659, 699
sysopen, 699
sysread, 699
syssek, 699
system, 661–662, 700
syswrite, 700
tell, 322–324, 700

telldir, 611, 700
tie, 701
tied, 701
time, 702
times, 645, 702
topic variable ($_), 300
tr, 222, 702
truncate, 702
uc, 702
ucfirst, 702
umask, 616, 702
undef, 89–90, 702
UNIVERSAL, 486–489
unlink, 618, 703
unpack, 624–629, 703
unshift, 17, 703
untie, 703
use, 421, 703
utime, 620–621, 703
values, 18, 703
vec, 704
wait, 653, 704
waitpid, 653, 704
wantarray, 367–368, 704
wanted(), 603
warn, 666, 704
Win32::Spawn, 655–656
write, 704
y, 704

funny characters. See sigils

G
garbage collection, 476–478
generating random numbers, 168
ge operator, 155
getc function, 311, 680
getgrent function, 681
getgrgid function, 681
getgrnam function, 681
gethostbyaddr function, 681
gethostbyname function, 681
gethostent function, 681
getlogin function, 635, 681
getnetbyaddr function, 681
getnetbyname function, 682
getnetent function, 682
getpeername function, 682
getpgrp function, 682
getppid function, 635–636, 682
getpriority function, 637, 682
getprotobyname function, 682
getprotobynumber function, 683
getprotoent function, 683

842 Index

getpwent function, 641, 683
getpwnam function, 642, 683
getpwuid function, 643, 683
GET requests, 811, 812
getservbyname function, 683
getservbyport function, 684
getservent function, 684
getsockname function, 684
getsockopt function, 684
GET strings, 818
getters, 450
global change, 232
global match modifiers, 229
global special variables, 706–708
global variables, 349
globbing, 663–664
glob function, 663–664, 684
g modifier, 229, 236
GMT (Greenwich Mean Time), 643
gmtime function, 646, 684
Goldberg, Ian, 168
goto function, 684
goto statements, 205–109
grant tables, 536
graphical user tools (MySQL), 534–537
greater than (>) operator, 736, 739
greater than or equal (>=) operator, 736
greedy metacharacters, 261, 267–268, 280
Greenwich Mean Time. See GMT
grep function, 112–114, 685
GROUP BY clause, 763
groups

patterns, 273–275
processes, 630

gt operator, 155
guids (effective guids), 631

H
h2ph scripts, 658–659
handlers, verbs, 812
handles, 558

statements, 563–566
handling

errors, 664–669, 711
files, modules, 711–712
quotes, 576–577

hard references, 378–380
hard/soft links, files, 616–620
has function, 777–778
hashes, 18, 81–82, 99–104

%SIG, 669–673
anonymous, 383
arrays, 104, 387

assigning, 100–101
context, 139–140
duplicates, removing, 103–104, 129
files, loading, 306–307
functions, 125–140

delete function, 135–136
each function, 128–129
exists function, 136–137
map function, 129
values function, 126–128

hash of, 389
indexes, 100
input, assigning, 312–313
references, 603
rows, fetching, 566
slicing, 102–103
sorting, 130–135
special, 137–139
subroutines, passing, 355
values, accessing, 101–102

HEAD requests, 812
here documents, 19, 66–68
hex function, 685
HIDDEN attribute, 600
House.pm file, 465
HTTP (Hypertext Transfer Protocol) error messages,

585

I
IBM, SQL. See SQL
identifiers, 408
identifying versions, 9
IDEs (Integrated Development Environments), 34
if constructs, 183–184
if/else constructs, 156, 184–185
if/else/else constructs, 185–186
if/else/else statements, 22
if/else statements, 21
if modifiers, 188–189
if statements, 21
i modifier, 230, 237
import function, 685
importing

methods, creating, 435
modules, 424–426

Importing module, 426
indexes, 91, 526. See also lists

arrays, checking values, 124
hashes, 100
resource representation, 826
values, searching, 112–114

index function, 685
inheritance, 449, 450, 484–501

Index 843

@ISA array, 484–486
derived classes, 489–496
methods, overriding, 499–501
Moose examples, 791–795
multiple, 489, 496–499
single, 489

init() method, 459
inline subroutines, 124
inner joins, 756
inodes, 599, 600, 621
input

arrays, assigning, 311–312
filters, 330–333
hashes, assigning, 312–313
scalar variables, assigning, 307–308

input from files, reading, 90–91
input/output. See I/O
INSERT command, 745–746
INSERT statement, 544–546, 560
installing

DBDs (database driver modules), 556–558
modules

manually, 801–802
Perlbrew, 802

MySQL, 531
instance methods, 457

formatting, 460–461
invoking, 458
parameters, passing, 467–469

instance variables, 466
instantiation, 457
instructions, formatting, 503
int data type, 81
Integrated Development Environments. See IDEs
interaction (user), invoking methods, 462–464
interfaces, 595–674. See also navigating

APIs (application programming interfaces), 530
CGIs (Common Gateway Interfaces), 522, 585,

807
databases, modules, 713
DBI (Database Independent Interface), 556–578

applying, 560–561
class methods, 558–560

error handling, 664–669
here documents, 67
MySQL Query Browser, 534
operating systems, 658–664
processes, 629–657
Query Browser (MySQL), 725

interpolative context, 38
interpreted languages, overview of, 2
interpreters

commands, 45

pod, 506
int function, 685
invoking

instance methods, 458
methods, 457, 462–464

I/O (input/output), printing, 49–50
ioctl function, 685
IS [NOT] NULL operator, 736
-i switch, 340–341

J
Java, 3
JavaScript, 2
JOIN clause, 551–552
join function, 118–119, 685
joins, 756, 757

K
key function, 685
keys

CategoryID, 756
editing, 533
foreign, 755
formatting, 753–755
hashes, 100, 130. See also hashes
primary, 526, 753–754

adding, 555
tables, 543–544

references, hashes, 603
keys function, 18
keywords, 453

DISTINCT, 733
SQL (Structured Query Language), 727

kill function, 670–671, 685

L
labels, 204

nested loops and, 208–210
languages, 2

DDL (Data Definition Language), 748–761
DML (Data Manipulation Language), 731–748
extensions, modules, 715
free-form, 16
SEQUEL (Structured English Query Language),

723
SQL (Structured Query Language). See SQL

last function, 686
last statements, 204
last statements, executing, 357
lcfirst function, 686
lc function, 686
left joins, 756

844 Index

length function, 686
le operator, 155
less than (<) operator, 736, 739
less than or equal (<=) operator, 736
lexagraphical ordering, 155
lexical variables, defining, 83
lib pragma, 420
libraries, 31

modules, applying, 431–436
objects, applying, 508–512
RegExLib.com, 245–247
standard Perl 5.18 library, 417–436

LIKE command, 530
LIKE operator, 736, 741
LIMIT clause, 550, 734
limiting number of lines, 734
linebreaks

scripts, 35–36
_ _LINE_ _ literal, 63, 64
lines, limiting number of, 734
link function, 618, 686
links

hard/soft, files, 616–620
symbolic, 617

Linux
PPM (Perl Program Manager), 558
system calls, 595

list context, 366
listen function, 686
lists, 91. See also arrays

arrays, 385
of lists, 99, 386
scalar variables, creating, 114–118
separators, 93
unordered, 99–104. See also hashes
values, returning, 126–128

literals, 18
numeric, 60–61
printing, 59–66
special, 63–66
strings, 61–63

.LNK extensions, 617
loading files, hashes, 306–307
locales, modules, 714
local function, 686
localhost, 523
local operator, 358
local Perl, 801
localtime function, 648, 686
localtime() function, 40, 43, 88
local to block special variables, 705
lock function, 686
locking files, 317–319

log function, 687
logical operators, 162–164
logical word operators, 164–166
login information, 635
look around assertions, 282–285
looping

arrays, 97–98
modifiers, 202–216

loops, 23
for, 24, 196–198
control, 25, 204–212
do/until, 194–196
do-while, 24
do/while, 194–196
foreach, 24, 97–98, 130, 198–202
nested and labels, 208–210
repetition, 190–202
until, 23, 192–194
while, 23, 190–192, 223

ls command, 599
lstat function, 600, 621–623, 687
lt operator, 155

M
main package, 82
main packages, 348
management

RDBMS (relational database management
systems), 521

SAM (Security Accounts Manager), 639
managers, package, 800–801
man pages, 10
manual error handling, 567
map function, 119–121, 129, 303, 687
masks, system, 616
matching

modifiers, 226
patterns, 219–244, 261–286

% wildcard, 741–742
m operator, 225–229

quotes, 53, 58
math modules, 713
memory addresses, 380, 454
messages, error, 43–44

HTTP (Hypertext Transfer Protocol), 585
SQL (Structured Query Language), 567–570

metacharacters, 220, 245–296
alternative characters, 249
anchored characters, 249, 269–271
digits, 248
dot (.), 251–252
look around assertions, 282–285
miscellaneous characters, 250

Index 845

m modifier, 271–272
RegExLib.com library, 245–247
remembered characters, 250, 276–279
repeated characters, 249, 261–286
single characters, 248, 251–258
s modifier, 252
substitution, 285–290
Unicode, 290–294
whitespace characters, 249, 258–261

metasymbols, 248, 253
methods, 347, 448, 450. See also subroutines

arguments, passing, 466
bind_param(), 574
build(), 459
calling, 473, 484–486
commit(), 583–585
connect(), 560, 561–562
constructors, 459
create(), 459
DBI (Database Independent Interface), 558–560
defining, 456
deposit(), 448
DESTROY, 476
disconnect(), 561, 563
do(), 579
execute(), 560
fetch_array(), 564
finish(), 561
importing, creating, 435
init(), 459
instance, 457

formatting, 460–461
invoking, 458
passing parameters, 467–469

invoking, 457, 462–464
new(), 456
overriding, 499–501
prepare(), 560
rollback(), 583–585
set_color(), 460
set_owner(), 456, 460
set_price(), 460
shoot(), 473
speak, 457
startup(), 459
subroutines, 456–464, 459
types of, 457
view(), 448
withdraw(), 448

m function, 687
miscellaneous characters, 250
mixing types, 148–149
mkdir function, 605–607, 687

m modifier, 271–272
models, client/server, 521
modes, 606
modifiers

e, 238
flags, 70
foreach, 203–204
g, 229, 236
i, 230, 237
if, 188–189
looping, 202–216
m, 271–272
matching, 226
regular expressions, 221–225
s, 252
statements, 188–190
substitution, 235
tr, 287
unless, 189–190
while, 202–203
x, 231

modifying
directories, 607–608
elements, arrays, 120
expressions, 221
files, accessing, 620–621
global change, 232
substitution delimiters, 234

modules, 31, 407–446, 710–715
applying, 431–436, 798–799
Carp, 665–666
Carp.pm, 428–430
C dependencies, 805–806
CGIs (Common Gateway Interfaces), 711
contents, viewing, 428–430
CPAN (Comprehensive Perl Archive Network),

436–441
cpan command, 802–803
CPAN Minus, applying, 441–444
CPAN.pm, 437
Dancer. See Dancer
database interfaces, 713
Data::Dumper, 384
documentation, 501–508, 596
error handling, 711
Exporter, 489
Exporter.pm, 424–426, 435
exporting/importing, 424–426
File::Find, 603
file handling, 711–712
File::spec, 598
Importing, 426
installing manually, 801–802

846 Index

modules (continued)
language extensions, 715
locales, 714
math, 713
networks, 713–714
OOP (Object-Oriented Perl), 464–472, 714
overview of, 407–417
package managers, 800–801
Perlbrew, 441–444
programming, 710
retrieving, 438
searching, 798
Shell.pm, 660–661
SomeModule.pm, 426
standard Perl 5.18 library, 417–436
terminals, 714
text processing, 712
time, 714
Time::Piece, 644
Win32::File, 600–602, 613
Win32::NetAdmin, 640
Win32::Process, 656–657
Windows, 806

modulo (%) operator, 166
Moose, 775–796

attributes, 776–7.95
examples, 778–781

extensions, 785–791
inheritance, 791–795

has function, 777–778
Moo (2/3 Moose), 795
types, 781–785

m operator, 225–229
MS-DOS command line, 605. See also Windows
msgctl function, 687
msgget function, 688
msgrcv function, 688
msgsnd function, 688
multidimensional arrays, 99
multiple inheritance, 489, 496–499
multiple placeholders, 572
multiple records, adding, 573
multiplication (*) operator, 166
my function, 688
my operator, 84, 358–361
MySQL, 519–594

? placeholder, 571–578
commands, 539–540

ALTER TABLE command, 554
CREATE DATABASE command, 540–541
CREATE TABLE statement, 541–543
DELETE command, 552–553
DROP DATABASE command, 555

INSERT statement, 544–546
JOIN clause, 551–552
SELECT command, 546–547
UPDATE command, 553–554
WHERE clause, 548–550

connecting, 532–533
consoles, editing keys, 533
databases

connecting, 561–563
disconnecting, 561–563

DBI (Database Independent Interface), 556–578
applying, 560–561
class methods, 558–560

documentation, 539
error messages, 567–570
EXTRACT command, 769
graphical user tools, 534–537
installing, 531
navigating, 530–555
overview of, 519–520
privileges, 536
Query Browser, 534, 725
relational databases, 520–530

client/server databases, 521–522
components, 522–527

searching, 537–538
selecting, USE statements, 541
statements, 579–582
syntax, 528–530
tables

adding, 543–544
sorting, 550–551

terminology, 531
transactions, 583–590

mysql command-line, 724

N
named parameters, 469
namespaces, 82

CORE, 215
packages, 412
variables, 82

naming
arrays, 92
case sensitivity, 86
databases, 529
modules, 408
scripts, 35
UNC (universal naming convention), 597

naming conventions, 85–86, 727
navigating

databases, 728–729
directories/files, 597–612

Index 847

error handling, 664–669
MySQL, 530–555
operating systems, 658–664
Perl, 595–674
processes, 629–657
system calls, 595–629

negative look behinds, 282
ne operator, 159
nested data structures, 383–393
nested loops and labels, 208–210
net.exe command, 639
network modules, 713–714
new function, 688
newlines

deleting, 111–112
s modifier, 252

new() method, 456
next function, 688
NICEVALUE value, 638
no function, 688
northwind databases, 524. See also databases;

relational databases
not equal to (<>) operator, 736, 737
not function, 688
NOT LIKE command, 530
NOT LIKE operator, 736, 741
NOT NULL, defining as, 543
NOT operator, 736
NULL, 737–739
numbers, 19

assigning, 82
inodes, 600
random, generating, 168
scripts, 36–37
strings, converting, 148

numeric equality operators, 157–158
numeric functions, 762–764
numeric literals, 60–61
numeric values, relational operators and, 154

O
Object-Oriented Perl. See OOP
objects, 30, 450

closures, 481–484
constructors, creating with, 458
defining, 447–448
libraries, applying, 508–512
references, 454, 460

oct function, 689
online documentation, 12
OOP (Object-Oriented Perl), 447–518

classes, defining, 448–449

closures
defining, 478–480
objects, 481–484

destructors, 476–478
formats, 450–451
garbage collection, 476–478
inheritance, 484–501
methods, subroutines, 456–464
modules, 714

creating, 464–472
documentation, 501–508

objects
applying from Perl libraries, 508–512
defining, 447–448

polymorphism, 472–476
programs, 451–454
runtime binding, 472–476
terminology, 449–450

opendir function, 609, 689
open function, 297–298, 689
opening

anonymous pipes, 326–333
files, 297–298

appending, 316
reading, 298, 324–325
writing, 313–314

operands, 147
comparing, 154
smartmatch operators, 160–162

operating systems, interfaces, 658–664
operators, 20, 145–180. See also specific operators

AND, 736, 740
BETWEEN, 736
arithmetic, 166–167
arrow (±), 382
assignment, 86, 151–153
associativity, 149–151
autodecrement, 172–173
autoincrement, 172–173
backslash (\), 379
bitwise, 174–175
bitwise logical, 173–175
Boolean types, 153
cmp, 132
conditional, 156–157
conditionals, 22
context, 38, 145–147
digraph, 100
equality, 157–160
equal to (=), 736, 737
expressions, evaluating, 147, 150
fat comma, 100

848 Index

operators (continued)
file testing, 342–343
greater than (>), 736, 739
greater than or equal (>=), 736
IS [NOT] NULL, 736
less than (<), 736, 739
less than or equal (<=), 736
LIKE, 736, 741
local, 358
logical, 162–164
logical word, 164–166
my, 84, 358–361
NOT, 736
not equal to (<>), 736, 737
NOT LIKE, 736, 741
OR, 736, 740
pattern binding, 222–223
precedence, 149–151
range, 95, 175
regular expressions, 225–242

g modifier, 229
i modifier, 230
m operator, 225–229
pattern binding with substitution, 232–242
s operator, 232
x modifier, 231

relational, 154–155
s, 232
scope, 357–361
smartmatch, 160–162
SQL (Structured Query Language), 736
state, 358–361
strings, 175–178
tr, 285–290
types, mixing, 148–149
XOR, 736
y, 285–290

Oppel, Andy, 520
options

c (complement), 289
command-line, 44–47
d (delete), 288
s (squeeze), 290

Oracle, 723
ORDER BY clause, 550, 744
ordered lists, 92. See also lists
ord function, 689
OR operator, 736, 740
our function, 689
output

filters, 327–329
of filters to files, sending to, 329–330

output field separators, 93–94

overriding methods, 499–501
ownership of files, 612–616

P
package function, 690
_ _PACKAGE_ _ literal, 64
packages, 82–85, 408–411, 453. See also classes

declaring, 410
main, 348
managers, 800–801
namespaces, 412
.pm files, 420–423
references, 409–411
variables, 349, 416

pack function, 624–629, 690
packing data, 624–629
pages, man, 10
parameters

binding, 571–578
Dancer, 818–826
instance methods, passing, 467–469
named, 469

parent classes, 484, 489. See also classes
parentheses (()), 92
parent methods, overriding, 499–501
parent process ids. See ppids
Parrot, 4–6
passing

arguments, 333–341
command-line, 29
methods, 466
subroutines, 352–368

parameters, instance methods, 467–469
references, 394

passwords
extensions, 641
files, 638–639
getpwent function, 641
MySQL, 533

PATHEXT environment variables, 41
pathnames, 417
pattern binding operators, 222–223
patterns

alternation, 273
capturing, 276–279
clustering, 273–275
groups, 273–275
matching, 219–244, 261–286

% wildcard, 741–742
m operator, 225–229

saving, 230–231
Perl

categories, 11

Index 849

documentation, 9–12
downloading, 6–9
functions, 675–704
local, 801
modules, 710–715
navigating, 595–674
overview of, 1–2
pragmas, 708–710
Quick Start, 15–32
Strawberry, 806
users of, 3
versions, 4

PERL5LIB environment variable, 419–420
Perl 6, 4–6
Perlbrew, 441–444, 803–805
permissions, files, 605, 606, 612–616
pgids (process group ids), 636
pgrp function, 636
phpMyAdmin tool, 535–536
pids (positive integers), 629
pipe function, 690
pipes, 27, 326–333
placeholders

?, 571–578
multiple, 572
multiple records, adding, 573

.pm files, packages, 420–423
pod (Plain Old Documentation), 501–508
pointers, 29–30, 377, 379. See also references
polymorphism, 450, 472–476
pop function, 17, 109–110, 690
Portable Operating System Interface. See POSIX
pos function, 691
positive integers. See pids
positive look behinds, 282
POSIX (Portable Operating System Interface),

257–258
POST requests, 812, 826–828
ppids (parent process ids), 635–636
PPM (Perl Program Manager), 408

applying, 439–441
DBDs (database driver modules), installing,

556–558
Linux, 558

pragmas, 74–78, 417, 422, 708–710. See also
modules

diagnostics, 76–77
feature, 74
lib, 420
strict, 77–78, 84, 361–364, 400
use locale, 122
warning, 75–76
warnings, 85

precedence, operators, 149–151, 164
predefined variables, 18
prepare() method, 560
primary keys, 526, 753–754

adding, 555
tables, 543–544

PrintError attribute, 567
printf function, 16, 50, 691

formatting, 69–74
print function, 43, 50, 51–52, 691
printing, 16, 49–79

filehandles, 49–50
here documents, 66–68
literals, 59–66

numeric, 60–61
special, 63–66
strings, 61–63

pragmas, 74–78
diagnostics, 76–77
feature, 74
strict, 77–78
warning, 75–76

printf function, 69–74
print function, 51–52
quotes, 52–59
say function, 73–74
sprintf function, 73
words, 51

print statements, 44
priorities of processes, 637–638
privacy, 82–85
private objects, 448. See also objects
privileges (MySQL), 536
procedures, 347. See also subroutines
processes, 3, 629–657

calling, 629
child, 629, 649
environments, 632–633
filehandles, 634–636
groups, 630
priorities, 637–638
servers, 523
signals, sending, 670
text modules, 712
time, 643–649
UNIX, 629–631, 649–654
Win32, 631–632, 654–657

process group ids. See pgids
programming modules, 710
programs

compiling, 412, 421
methods, calling, 473
Moose. See Moose

850 Index

programs (continued)
OOP (Object-Oriented Perl), 451–454
set user ID, 631

properties, 448
prototype function, 691
prototypes, 365–366
pseudo classes, SUPER, 499–501
pseudo-random numbers, 168
public objects, 448. See also objects
push function, 17, 105, 691
PUT requests, 812
pwd command, 55
Python, 2

Q
q function, 691
qq function, 691
quantifiers, 261
queries, 521, 723. See also databases; MySQL; SQL

caches, 577–578
MySQL Query Browser, 534
SQL (Structured Query Language), 725–728

Query Browser (MySQL), 725
question mark (?), 663
Quick Start (Perl), 15–32
QUIT command, 529
quotemeta function, 691
quotes, 19

alternative, 20, 55–59
applying, 737
backquotes, 55
constructs, 55
double, 53–54
handling, 576–577
here documents, 66–68
matching, 53, 58
printing, 52–59
rules, 57
single, 54

qw construct, 92
qw function, 691
qx function, 691

R
RaiseError attribute, 567
Rakudo Perl, 4–6
rand function, 168, 692
random numbers, generating, 168
range operators, 95, 175
RDBMS (relational database management systems),

521, 522, 530. See also MySQL
readdir function, 609, 692

read function, 692
read() function, 304, 310
reading

files
opening, 298, 324–325
scalar assignments, 300–305

input from files, 90–91
STDIN filehandle, 307–333

readlink function, 619
readlline function, 692
readllink function, 692
READONLY attribute, 600
readpipe function, 692
records, 524, 526

multiple, adding, 573
recv function, 692
redo function, 692
redo statements, 204, 205–209
references, 29–30, 377–405

anonymous variables, 382–383
call-by-references, 353
elements, arrays, 95–97
filehandles, typeglobs, 402–404
hard, 378–380
hashes, 603
memory addresses, 454
nested data structures, 383–393
objects, 454, 460
overview of, 377–378
strict pragma, 400
subroutines, 393–396
symbolic, 398–400
typeglobs, 400–404
variables, packages, 409–411

referents, 454, 460
ref function, 396, 693
ReFS (Resilient File System), 597
RegExLib.com library, 245–247
regular expressions, 28, 112, 219–244

metacharacters. See metacharacters
modifiers, 221–225
need for, 220–221
operators, 225–242

g modifier, 229
i modifier, 230
m operator, 225–229
pattern binding with substitution, 232–242
s operator, 232
x modifier, 231

overview of, 219–220
relational database management systems. See

RDBMS
relational databases, 520–530, 723

Index 851

client/server databases, 521–522
components, 522–527

relational operators, 154–155
relations, 756
remdir function, 607
remembered characters, 250, 276–279
removing

directories, 607
duplicates

arrays, 121
hashes, 103–104, 129

elements, 106–107
newlines, 111–112

rename function, 620, 693
renaming files, 620
repeated characters, 249

metacharacters, 261–286
repeating patterns, matching, 261–286
repetition, loops, 190–202
replacing elements, arrays, 106–107
representation, index resources, 826
requests, 723. See also queries

GET, 811
HEAD, 812
POST, 812, 826–828
PUT, 812

require function, 421, 693
reserved words, 453, 529, 727
reset function, 693
Resilient File System. See ReFS
resources, 825

Dancer, 811
index representation, 826
for Perl, 7–8

results
fetching, 563–566
sorting, ORDER BY clauses, 744

result sets, 525, 530
number of lines, limiting, 734
SQL (Structured Query Language), 728

retrieving modules, 438
return function, 349, 693
returning

lists, 126–128
values, 356–357

return values, 647. See also values
reverse function, 125, 693
reversing

arrays, 125
hashes, sorting, 131

rewinddir function, 611, 693
rindex function, 693
rmdir function, 693

roles, multiple inheritance, 496–499
rollback() method, 583–585
roots, 631
routines, 347. See also subroutines
rows, 526
rules, quotes, 57
runtime

binding, 472–476
modules as, 421

S
SAM (Security Accounts Manager), 639
saving

formatting, sprintf function, 73
patterns, 230–231

say function, 16, 73–74
scalar context, 139–140, 366
scalar function, 694
scalar variables, 17, 29, 81–82, 87–91, 92

input, assigning, 307–308
lists, creating, 114–118
scripts, 37–38

schemas, 527, 534
Schwartz, Randal, 2
scope, 82–85

operators, 357–361
of variables, 351–352

scripts, 2, 33–48
built-in functions, 39–40
comments, 38–39
context, 38
creating, 33–37
errors, 43–44
executing, 40–42
filehandles, 37–42
files, 16
formatting, 42–44
h2ph, 658–659
linebreaks, 35–36
Moose, 776
naming, 35
numbers, 36–37
scalar variables, 37–38
statements, 35–36, 39
strings, 36–37
switches, 44–47
system calls, 595
text editors, selecting, 34–35
whitespace, 35–36

searching
databases, 537–538
directories, 603–605
files, 603–605

852 Index

searching (continued)
modules, 798

Security Accounts Manager. See SAM
seekdir function, 611, 694
seek function, 319–322, 694
SELECT command, 546–547, 731–745
SELECT DISTINCT statement, 733
select function, 317, 694
selecting

columns, 732
by columns, 546
databases, USE statements, 541
hashes, 566
rows, 564
text editors, 34–35

semctl function, 694
semget function, 694
semicolons (;), 529, 726
semop function, 695
send function, 695
sending

output of filters to files, 329–330
signals, processes, 670
values to subroutines, 352

separate resources, 825
separators

lists, 93
output field, 93–94

SEQUEL (Structured English Query Language), 723
sequences

escape, 57
operators, associativity, 149–151
string literals, 61–63
subroutines. See subroutines

server databases, 521–522, 523
set_color() method, 460
set_owner() method, 456, 460
set_price() method, 460
setpriority function, 637–638, 695
sets, result, 525, 728
setsockopt function, 695
setters, 450
set user ID programs, 631
s function, 694
shebang lines, 41
Shell.pm module, 660–661
shells

cpan, 438
CPAN (Comprehensive Perl Archive Network),

442
metacharacters, globbing, 663–664

shift function, 17, 110–111, 695
shmctl function, 695

shmget function, 695
shmread function, 696
shmwrite function, 696
shoot() method, 473
short-circuit operators, 162–164
shortcuts, 617
SHOW command, 543, 730–731
show command, 537
show database command, 538
show databases command, 728
shutdown function, 696
sigils, 85
signals

%SIG hash, 669–673
catching, 669
processes, sending, 670

simple statements, 188–190, 221–225
sin function, 696
single characters, metacharacters, 248, 251–258
single inheritance, 489
single quotes, 52, 54
single statements, 182
sizing arrays, 94–95
sleep function, 672, 696
slicing

arrays, 98–99
hashes, 102–103

slurping files
into arrays, 302
into strings with read() function, 304

smartmatch operators, 160–162
s modifier, 252
socket function, 696
socketpair function, 696
soft links, files, 616–620
SomeModule.pm module, 426
s operator, 232
s (squeeze) option, 290
sort function, 17, 121–124, 132, 697
sorting

arrays, 121–124
hashes, 130–135
results, ORDER BY clauses, 744
tables, 550–551

space ship (<=>) operators, 121, 130, 158
speak method, 457
special characters, 53
special hashes, 137–139. See also hashes

%ENV hash, 137–138
%INC hash, 139
%SIG hash, 138

special literals, 63–66
special process variables, 635

Index 853

special variables
$&, 240
filehandles, 705
global, 706–708
local to block, 705

specifiers, format, 69–70
spelling errors, 85
splice function, 17, 107–109, 697
split function, 114–118, 697
sprintf function, 73, 697
SQL (Structured Query Language), 520. See also

MySQL
commands, 539–540, 725–728
CREATE DATABASE command, 540–541
databases

navigating, 728–729
syntax, 528–530
tables, 729–731

data types, 749–750
DDL. See DDL
DML. See DML
error messages, 567–570
functions, 761–770

date and time, 766–770
numeric, 762–764
string, 765

operators, 736
overview of, 723
standards, 724
statements

executing, 724–725
formatting, 725

sqrt function, 697
square brackets ([]), 100, 663
srand function, 168, 697
standard Perl 5.18 library, 417–436
standards

ANSI (American National Standards Institute),
723

SQL (Structured Query Language), 724
Unicode, 290–294

start command, 654–655
starting debugging, 719–720
startup() method, 459
state feature, 363
statements, 147

BETWEEN, 743
ALTER TABLE, 748, 759
assignment, 86–87
break, 204
compound, 182–187
continue, 210–212
CREATE INDEX, 748

CREATE TABLE, 541–543, 748, 751–753
DELETE, 560, 747–748
DELIMITER, 114, 118
DROP INDEX, 748
DROP TABLE, 748, 761
execute, 571
goto, 205–109
handles, 563–566
if, 21
if/else, 21
if/else/else, 22
INSERT, 544–546
last, 204, 357
modifiers, 188–190
MySQL, 579–582
print, 44
redo, 204, 205–209
regular expressions, 221–225
scripts, 35–36, 39
SELECT DISTINCT, 733
simple, 188–190
single, 182
SQL (Structured Query Language), 528

executing, 724–725
formatting, 725

switch, 212–216
UPDATE, 560
USE, 541

state operator, 358–361
stat function, 599, 621–623, 698
statistics, files, 621–623
stat structure, 342
STDERR filehandle, 49–50, 402
STDIN filehandle, 49–50, 307–333, 402
STDOUT filehandle, 49–50, 402
Strawberry Perl, 6, 806
streams, 49–50
strictness, 82–85
strict pragma, 77–78, 361–364
strict pragmas, 84, 400
strings, 19

assigning, 82
binding, 222–223
equality operators, 159
files, slurping, 304
functions, 765
GET, 818
literals, 61–63
numbers, converting, 148
operators, 175–178
relational operators, 155
scripts, 36–37

Structured English Query Language. See SEQUEL

854 Index

Structured Query Language. See SQL
structures

control, 182–187
inodes, 599, 621
nested data, 383–393
stat, 342

study function, 698
sub $AUTOLOAD function, 486–489
sub function, 698
subprograms, 347, 409–411. See also subroutines
subroutines, 25–26, 347–375, 408

anonymous, 478. See also closures
arguments, passing, 352–368
calling, 349–352, 410
context, 366–368
declaring, 349
defining, 122, 349–352
inline, 124
methods, 456–464, 459
overview of, 348–352
references, 393–396, 394

subs function, 371–372
substitution, 232

commands, 53, 659–660
delimiters, modifying, 234
metacharacters, 285–290
modifiers, 235
pattern binding with, 232–242

substr function, 699
subtraction (-) operator, 166
superclasses, 489
SUPER pseudo classes, 499–501
superusers, 536, 631
switches, 44–47

-d, 718
-c, 46
command line, 716–717
-e, 45
-i, 340–341
-w, 46–47

switch feature, 214–216
switch statements, 212–216
symbolic links, 617
symbolic references, 378, 398–400
symbols, 408

exporting, 425
metasymbols, 248, 253
tables, 412–417

symlink function, 619, 699
syntax, 15–27

errors, 2
MySQL, 528–530
shebang lines, 41

syscall function, 658–659, 699
sysopen function, 699
sysread function, 699
syssek function, 699
SYSTEM attribute, 600
system calls, 595–629
system function, 661–662, 700
system masks, 616
syswrite function, 700

T
tables, 99, 523–524

databases, 520. See also databases; MySQL
dropping, 555
formatting, 751–753
grant, 536
JOIN clause, 551–552
joins, 757
primary keys, adding, 543–544
sorting, 550–551
SQL (Structured Query Language)
databases, 729–731
symbols, 412–417

telldir function, 611, 700
tell function, 322–324, 700
templates

Dancer, 814–818
pack/unpack functions, 624–629

terminals
controlling, 630
modules, 714

terminating SQL statements, 529, 726
terminology

MySQL, 531
OOP (Object-Oriented Perl), 449–450

ternary conditional operators, 156–157
ternary operators, 147. See also operators
testing

command-lines, 45
files, 342–343

text
comments. See comments
editors, selecting, 34–35
processes, modules, 712

third-party editors, 34
threaded code, 2
tied function, 701
tie function, 701
time

data and time functions, 766–770
files, modifying, 620–621
modules, 714
processes, 643–649

Index 855

time function, 702
Time::Piece module, 644
times function, 645, 702
tools

dancer, 808
MySQL, 534–537
phpMyAdmin, 535–536

topic variable ($_) function, 300
topic variables, 90–91
touch command, 620
transactions, 583–590
transforming arrays, 119–121
translating pod documentation into text, 506–508
tr function, 222
tr operator, 285–290
troubleshooting script errors, 43–44. See also error

handling
truncate function, 702
turning off

capturing, 281
greedy metacharacters, 267–268, 280

typeglobs
assigning, 412
references, 400–404

types
Boolean, 153
of context, 38
data, 81–87. See also data types
of editors, 35
of methods, 457
mixing, 148–149
Moose, 781–785
of references, 378
of time values, 643

typos, 85

U
ucfirst function, 702
uc function, 702
umask function, 616, 702
unary operators, 147. See also operators
UNC (universal naming convention), 597
undef function, 89–90, 702
underscore filehandle, 622
Unicode, metacharacters, 290–294
Uniform Resource Locators. See URLs
UNIVERSAL class, 484
UNIVERSAL function, 486–489
universal naming convention. See UNC
UNIX, 2

command-lines, 41
commands. See also commands

ls, 599

touch, 620
directories, 609

attributes, 599–600
creating, 605

files
attributes, 599–600
hard/soft links, 616–617
ownership/permissions, 612
passwords, 638–639, 641
renaming, 620

functions
chmod, 614
chown, 615
link, 618
readlink, 619
symlink, 619
umask, 616
unlink, 618

processes, 629–631
creating, 649–654
environments, 632–633
filehandles, 634–636

system calls, 595
times function, 646

unless constructs, 186–187
unless modifiers, 189–190
unlink function, 618, 703
unordered lists, 99–104. See also hashes
unpack function, 624–629, 703
unpacking data, 624–629
unshift function, 17, 106, 703
untie function, 703
until loops, 23, 192–194
UPDATE command, 553–554, 746–747
UPDATE statement, 560
updating entries, 581
URLs (Uniform Resource Locators), 811
USE command, 529, 728
use function, 421, 703
use locale pragma, 122
user-defined filehandles, 297–307
user interaction, invoking methods, 462–464
USE statement, 541
UTC (Coordinated Universal Time), 643
utime function, 620–621, 703

V
values

ASCII, 159
assigning, 353–355
elements, searching, 112–114
fetching, 569
hashes, accessing, 101–102

856 Index

values (continued)
indexes

checking arrays, 124
searching, 112–114

indexes, searching, 112–114
lists, returning, 126–128
logical operators, 162
numeric, relational operators and, 154
return, 356–357, 647
subroutines, sending, 352
time, 643. See also time

values function, 18, 126–128, 703
variables, 17, 408

$$, 635–636
$&, 240
anonymous references, 382–383
arrays, 92
environments, 632–633
error diagnostics, 567
global, 349
hashes. See hashes
instance, 466
namespaces, 82
packages, 349, 409–411, 416
PATHEXT environment, 41
PERL5LIB environment, 419–420
predefined, 18
scalar, 17, 29, 81–82, 87–91, 92

creating lists, 114–118
scripts, 37–38

scope of, 351–352
special

filehandles, 705
global, 706–708
local to block, 705

special process, 635
topic, 90–91

vec function, 704
verbs (Dancer), 811
versions

identifying, 9
MySQL, 530
Perl, 4

viewing module contents, 428–430
view() method, 448
visibility, 409. See also scope
void context, 38

W
Wagner, David, 168
wait function, 653, 704
waitpid function, 653, 704
Wall, Larry, 1, 2, 3, 478

WAMP, 531
wantarray function, 367–368, 704
wanted() function, 603
warn function, 666, 704
warning pragma, 75–76
warnings, 46–47
warnings pragma, 85
Web servers, 522. See also servers
WHERE clause, 548–550, 736
WHICH value, 638
while loops, 23, 190–192, 223
while modifiers, 202–203
whitespace

characters, 249
metacharacters, 258–261
scripts, 35–36

WHO value, 638
wildcards

%, 741–742
_ (underscore), 743

Win32
binary files, 315
password extensions, 641
processes, 631–632, 654–657

Win32::File module, 600–602, 613
Win32::NetAdmin module, 640
Win32::Process module, 656–657
Win32::Spawn function, 655–656
Windows

alarm function, 672–673
directories

attributes, 600–602
creating, 605–607

files
attributes, 600–602, 613
hard/soft links, 617–620
ownership/permissions, 612–616
passwords, 638–639
renaming, 620

functions, chmod, 614–615
modules, 806
processes, environments, 632–633
times function, 646

withdraw() method, 448
words. See also text

logical word operators, 164–166
printing, 51
reserved, 529
strict pragma, 77–78

write function, 704
writing, 313–314. See also reading
-w switches, 46–47

Index 857

X
XAMPP, 531
x modifier, 231
x= operator, 152
XOR operator, 736
xor (exclusive or) operator, 164

Y
y function, 704
y operator, 285–290

Z
zeroes, 631

	Contents
	Preface
	5 What’s In a Name?
	5.1 More About Data Types
	5.1.1 Basic Data Types (Scalar, Array, Hash)
	5.1.2 Package, Scope, Privacy, and Strictness
	5.1.3 Naming Conventions
	5.1.4 Assignment Statements

	5.2 Scalars, Arrays, and Hashes
	5.2.1 Scalar Variables
	5.2.2 Arrays
	5.2.3 Hashes—Unordered Lists
	5.2.4 Complex Data Structures

	5.3 Array Functions
	5.3.1 Adding Elements to an Array
	5.3.2 Removing and Replacing Elements
	5.3.3 Deleting Newlines
	5.3.4 Searching for Elements and Index Values
	5.3.5 Creating a List from a Scalar
	5.3.6 Creating a Scalar from a List
	5.3.7 Transforming an Array
	5.3.8 Sorting an Array
	5.3.9 Checking the Existence of an Array Index Value
	5.3.10 Reversing an Array

	5.4 Hash (Associative Array) Functions
	5.4.1 The keys Function
	5.4.2 The values Function
	5.4.3 The each Function
	5.4.4 Removing Duplicates from a List with a Hash
	5.4.5 Sorting a Hash by Keys and Values
	5.4.6 The delete Function
	5.4.7 The exists Function
	5.4.8 Special Hashes
	5.4.9 Context Revisited

	5.5 What You Should Know
	5.6 What’s Next?
	EXERCISE 5 The Funny Characters

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

