Programming

Rus

FAST, SAFE SYSTEMS DEVELOPMENT

|F
vna;:w
1 v,l]
..11 i

Jim Blandy & Jason Orendorff

Programming Rust

Fast, Safe Systems Development

Jim Blandy and Jason Orendorff

Programming Rust

by Jim Blandy and Jason Orendorff Copyright © 2018 Jim Blandy, Jason
Orendorff. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Jeff Bleiel

Production Editor: Colleen Cole
Copyeditor: Jasmine Kwityn
Proofreader: Sharon Wilkey

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato

Cover Designer: Karen Montgomery

lllustrator: Rebecca Demarest

December 2017: First Edition

http://safaribooksonline.com/

Revision History for the First Edition
e 2017-11-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491927212 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Programming Rust, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to
ensure that the information and instructions contained in this work are
accurate, the publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

978-1-491-92728-1
[M]

http://oreilly.com/catalog/errata.csp?isbn=9781491927212

Preface

Rust is a language for systems programming.

This bears some explanation these days, as systems programming is
unfamiliar to most working programmers. Yet it underlies everything we

do.

You close your laptop. The operating system detects this, suspends all
the running programs, turns off the screen, and puts the computer to
sleep. Later, you open the laptop: the screen and other components are
powered up again, and each program is able to pick up where it left off.
We take this for granted. But systems programmers wrote a lot of code to
make that happen.

Systems programming is for:

Operating systems
Device drivers of all kinds
Filesystems

Databases

Code that runs in very cheap devices, or devices that must be
extremely reliable

Cryptography

Media codecs (software for reading and writing audio, video, and
image files)

Media processing (for example, speech recognition or photo
editing software)

Memory management (for example, implementing a garbage
collector)

Text rendering (the conversion of text and fonts into pixels)

Implementing higher-level programming languages (like
JavaScript and Python)

Networking

Virtualization and software containers

Scientific simulations

¢ Games

In short, systems programming is resource-constrained programming. It
is programming when every byte and every CPU cycle counts.

The amount of systems code involved in supporting a basic app is
staggering.

This book will not teach you systems programming. In fact, this book
covers many details of memory management that might seem
unnecessarily abstruse at first, if you haven't already done some systems
programming on your own. But if you are a seasoned systems
programmer, you'll find that Rust is something exceptional: a new tool
that eliminates major, well-understood problems that have plagued a
whole industry for decades.

Who Should Read This Book

If you're already a systems programmer, and you're ready for an
alternative to C++, this book is for you. If you're an experienced
developer in any programming language, whether that's C#, Java,
Python, JavaScript, or something else, this book is for you too.

However, you don't just need to learn Rust. To get the most out of the
language, you also need to gain some experience with systems
programming. We recommend reading this book while also implementing
some systems programming side projects in Rust. Build something
you’ve never built before, something that takes advantage of Rust’s
speed, concurrency, and safety. The list of topics at the beginning of this
preface should give you some ideas.

Why We Wrote This Book

We set out to write the book we wished we had when we started learning
Rust. Our goal was to tackle the big, new concepts in Rust up front and

head-on, presenting them clearly and in depth so as to minimize learning
by trial and error.

Navigating This Book

The first two chapters of this book introduce Rust and provide a brief tour
before we move on to the fundamental data types in Chapter 3. Chapters
4 and 5 address the core concepts of ownership and references. We
recommend reading these first five chapters through in order.

Chapters 6 through 10 cover the basics of the language: expressions
(Chapter 6), error handling (Chapter 7), crates and modules (Chapter 8),
structs (Chapter 9), and enums and patterns (Chapter 10). It's all right to
skim a little here, but don’t skip the chapter on error handling. Trust us.

Chapter 11 covers traits and generics, the last two big concepts you need
to know. Traits are like interfaces in Java or C#. They're also the main
way Rust supports integrating your types into the language itself. Chapter
12 shows how traits support operator overloading, and Chapter 13 covers
many more utility traits.

Understanding traits and generics unlocks the rest of the book. Closures
and iterators, two key power tools that you won’t want to miss, are
covered in Chapters 14 and 15, respectively. You can read the remaining
chapters in any order, or just dip into them as needed. They cover the
rest of the language: collections (Chapter 16), strings and text (Chapter
17), input and output (Chapter 18), concurrency (Chapter 19), macros
(Chapter 20), and unsafe code (Chapter 21).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLS, email addresses, filenames, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the
user.

Constant width italic
Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP

This icon signifies a tip or suggestion.

NOTE

This icon signifies a general note.

This icon indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/oreillymedia/programming_rust.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing
a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into
your product’'s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example:
“Programming Rust by Jim Blandy and Jason Orendorff (O’'Reilly).
Copyright 2018 Jim Blandy and Jason Orendorff, 978-1-491-92728-1."

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at
permissions@oreilly.com.

https://github.com/oreillymedia/programming_rust
mailto:permissions@oreilly.com

O’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning
Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press,
FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http.//oreilly.com/safari.

http://oreilly.com/safari
http://www.oreilly.com/safari

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at
http://bit.ly/programming-rust.

To comment or ask technical questions about this book, send email to
bookguestions@oreilly.com.

For more information about our books, courses, conferences, and news,
see our website at http.//www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http.//twitter.com/oreillymedia

Watch us on YouTube: http.//www.youtube.com/oreillymedia

http://bit.ly/programming-rust
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

The book you are holding has benefited greatly from the attention of our
official technical reviewers: Brian Anderson, Matt Brubeck, J. David
Eisenberg, and Jack Moffitt.

Many other unofficial reviewers read early drafts and provided invaluable
feedback. We would like to thank Eddy Bruel, Nick Fitzgerald, Michael
Kelly, Jeffrey Lim, Jakob Olesen, Gian-Carlo Pascutto, Larry Rabinowitz,
Jaroslav Snajdr, and Joe Walker for their thoughtful comments. Jeff
Walden and Nicolas Pierron were especially generous with their time,
reviewing almost the entire book. Like any programming venture, a
programming book thrives on quality bug reports. Thank you.

Mozilla was extremely accommodating of our work on this project, even
though it fell outside our official responsibilities and competed with them
for our attention. We are grateful to our managers, Dave Camp, Naveed
Ihsanullah, Tom Tromey, and Joe Walker, for their support. They take a
long view of what Mozilla is about; we hope these results justify the faith
they placed in us.

We would also like to express our appreciation for everyone at O’'Reilly
who helped bring this project to fruition, especially our editors Brian
MacDonald and Jeff Bleiel.

Most of all, our heartfelt thanks to our wives and children for their
unwavering love, enthusiasm, and patience.

Chapter 1. Why Rust?

In certain contexts—for example the context Rust is targeting—being

10x or even 2x faster than the competition is a make-or-break thing. It
decides the fate of a system in the market, as much as it would in the

hardware market.

—Graydon Hoare

All computers are now parallel...
Parallel programming is programming.
—Michael McCool et al., Structured Parallel

Programming
TrueType parser flaw
used by nation-state attacker for surveillance;
all software is security-sensitive.
—Andy Wingo

Systems programming languages have come a long way in the 50 years
since we started using high-level languages to write operating systems,
but two problems in particular have proven difficult to crack:

e |t's difficult to write secure code. It's especially difficult to manage
memory correctly in C and C++. Users have been suffering with
the consequences for decades, in the form of security holes
dating back at least as far as the 1988 Morris worm.

¢ It's very difficult to write multithreaded code, which is the only
way to exploit the abilities of modern machines. Even
experienced programmers approach threaded code with caution:
concurrency can introduce broad new classes of bugs and make
ordinary bugs much harder to reproduce.

Enter Rust: a safe, concurrent language with the performance of C and
C++.

http://graydon.livejournal.com/236436.html
https://twitter.com/andywingo/status/610765099498872832

Rust is a new systems programming language developed by Mozilla and
a community of contributors. Like C and C++, Rust gives developers fine
control over the use of memory, and maintains a close relationship
between the primitive operations of the language and those of the
machines it runs on, helping developers anticipate their code’s costs.
Rust shares the ambitions Bjarne Stroustrup articulates for C++ in his
paper “Abstraction and the C++ Machine Model:”

In general, C++ implementations obey the zero-overhead principle:
What you don’t use, you don’t pay for. And further: What you do use,
you couldn’t hand code any better.

To these Rust adds its own goals of memory safety and trustworthy
concurrency.

The key to meeting all these promises is Rust’'s novel system of
ownership, moves, and borrows, checked at compile time and carefully
designed to complement Rust’s flexible static type system. The
ownership system establishes a clear lifetime for each value, making
garbage collection unnecessary in the core language, and enabling
sound but flexible interfaces for managing other sorts of resources like
sockets and file handles. Moves transfer values from one owner to
another, and borrowing lets code use a value temporarily without
affecting its ownership. Since many programmers will have never
encountered these features in this form before, we explain them in detalil
in Chapters 4 and 5.

These same ownership rules also form the foundation of Rust’s
trustworthy concurrency model. Most languages leave the relationship
between a mutex and the data it's meant to protect to the comments;
Rust can actually check at compile time that your code locks the mutex
while it accesses the data. Most languages admonish you to be sure not
to use a data structure yourself after you've given it to another thread;
Rust checks that you don’t. Rust is able to prevent data races at compile
time.

Rust is not really an object-oriented language, although it has some
object-oriented characteristics. Rust is not a functional language,

although it does tend to make the influences on a computation’s result
more explicit, as functional languages do. Rust resembles C and C++ to
an extent, but many idioms from those languages don’t apply, so typical
Rust code does not deeply resemble C or C++ code. It's probably best to
reserve judgement about what sort of language Rust is, and see what
you think once you've become comfortable with the language.

To get feedback on the design in a real-world setting, Mozilla has
developed Servo, a new web browser engine, in Rust. Servo’s needs and
Rust’s goals are well matched: a browser must perform well and handle
untrusted data securely. Servo uses Rust’s safe concurrency to put the
full machine to work on tasks that would be impractical to parallelize in C
or C++. In fact, Servo and Rust have grown up together, with Servo using
the latest new language features, and Rust evolving based on feedback
from Servo’s developers.

Type Safety

Rust is a type-safe language. But what do we mean by “type safety”?
Safety sounds good, but what exactly are we being kept safe from?

Here's the definition of undefined behavior from the 1999 standard for the
C programming language, known as C99:

undefined behavior

behavior, upon use of a nonportable or erroneous program
construct or of erroneous data, for which this International
Standard imposes no requirements

Consider the following C program:

int main(int argc, char **argv) {
unsigned long a[1];
a[3] = Ox7ffff7Tb36cebUL;
return O;

}

According to C99, because this program accesses an element off the end
of the array a, its behavior is undefined, meaning that it can do anything
whatsoever. When we ran this program on Jim'’s laptop, it produced the
following output:

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.

Then it crashed. Jim’s laptop doesn’t even have a .netrc file. If you try it
yourself, it will probably do something entirely different.

The machine code the C compiler generated for this main function
happens to place the array a on the stack three words before the return
address, so storing Ox7ffff7b36cebUL in a[3] changes poor main’s return
address to point into the midst of code in the C standard library that

consults one’s .netrc file for a password. When main returns, execution
resumes not in main’s caller, but at the machine code for these lines from
the library:

warnx(_("Error: .netrc file is readable by others."));
warnx(_("Remove password or make file unreadable by others."));
goto bad;

In allowing an array reference to affect the behavior of a subsequent
return statement, the C compiler is fully standards-compliant. An
undefined operation doesn't just produce an unspecified result: it is
allowed to cause the program to do anything at all.

The C99 standard grants the compiler this carte blanche to allow it to
generate faster code. Rather than making the compiler responsible for
detecting and handling odd behavior like running off the end of an array,
the standard makes the programmer responsible for ensuring those
conditions never arise in the first place.

Empirically speaking, we're not very good at that. While a student at the
University of Utah, researcher Peng Li modified C and C++ compilers to
make the programs they translated report when they executed certain
forms of undefined behavior. He found that nearly all programs do,
including those from well-respected projects that hold their code to high
standards. And undefined behavior often leads to exploitable security
holes in practice. The Morris worm propagated itself from one machine to
another using an elaboration of the technique shown before, and this kind
of exploit remains in widespread use today.

In light of that example, let’'s define some terms. If a program has been
written so that no possible execution can exhibit undefined behavior, we
say that program is well defined. If a language’s safety checks ensure
that every program is well defined, we say that language is type safe.

A carefully written C or C++ program might be well defined, but C and
C++ are not type safe: the program shown earlier has no type errors, yet
exhibits undefined behavior. By contrast, Python is type safe. Python is
willing to spend processor time to detect and handle out-of-range array
indices in a friendlier fashion than C:

>>> g = [0]
>>> g[3] =

File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range
>>>

Python raised an exception, which is not undefined behavior: the Python
documentation specifies that the assignment to a[3] should raise an
IndexError exception, as we saw. Certainly, a module like ctypes that
provides unconstrained access to the machine can introduce undefined
behavior into Python, but the core language itself is type safe. Java,
JavaScript, Ruby, and Haskell are similar in this way.

Note that being type safe is independent of whether a language checks
types at compile time or at runtime: C checks at compile time, and is not
type safe; Python checks at runtime, and is type safe.

It is ironic that the dominant systems programming languages, C and
C++, are not type safe, while most other popular languages are. Given
that C and C++ are meant to be used to implement the foundations of a
system, entrusted with implementing security boundaries and placed in
contact with untrusted data, type safety would seem like an especially
valuable quality for them to have.

This is the decades-old tension Rust aims to resolve: it is both type safe
and a systems programming language. Rust is designed for
implementing those fundamental system layers that require performance
and fine-grained control over resources, yet still guarantees the basic
level of predictability that type safety provides. We'll look at how Rust
manages this unification in more detail in later parts of this book.

Rust’s particular form of type safety has surprising consequences for
multithreaded programming. Concurrency is notoriously difficult to use
correctly in C and C++; developers usually turn to concurrency only when
single-threaded code has proven unable to achieve the performance they
need. But Rust guarantees that concurrent code is free of data races,
catching any misuse of mutexes or other synchronization primitives at
compile time. In Rust, you can use concurrency without worrying that
you’'ve made your code impossible for any but the most accomplished

programmers to work on.

Rust has an escape valve from the safety rules, for when you absolutely
have to use a raw pointer. This is called unsafe code, and while most
Rust programs don’t need it, we’ll show how to use it and how it fits into
Rust’s overall safety scheme in Chapter 21.

Like those of other statically typed languages, Rust’s types can do much
more than simply prevent undefined behavior. An accomplished Rust
programmer uses types to ensure values are used not just safely but
meaningfully, in a way that’'s consistent with the application’s intent. In
particular, Rust’s traits and generics, described in Chapter 11, provide a
succinct, flexible, and performant way to describe characteristics that a
group of types has in common, and then take advantage of those
commonalities.

Our aim in this book is to give you the insights you need not just to write
programs in Rust, but to put the language to work ensuring that those
programs are both safe and correct, and to anticipate how they will
perform. In our experience, Rust is a major step forward in systems
programming, and we want to help you take advantage of it.

Chapter 2. A Tour of Rust

Toute l'expérience d’un individu est construit sur le plan de son

langage.

(An individual’s experience is built entirely in terms of his language.)
—Henri Delacroix

In this chapter we’ll look at several short programs to see how Rust's
syntax, types, and semantics fit together to support safe, concurrent, and
efficient code. We’ll walk through the process of downloading and
installing Rust, show some simple mathematical code, try out a web
server based on a third-party library, and use multiple threads to speed
up the process of plotting the Mandelbrot set.

Downloading and Installing Rust

The best way to install Rust is to use rustup, the Rust installer. Go to
https://rustup.rs and follow the instructions there.

You can, alternatively, go to https.//www.rust-lang.org, click Downloads,
and get pre-built packages for Linux, macOS, and Windows. Rust is also
included in some operating system distributions. We prefer rustup
because it's a tool for managing Rust installations, like RVM for Ruby or
NVM for Node. For example, when a new version of Rust is released,
you'll be able to upgrade with zero clicks by typing rustup update.

In any case, once you've completed the installation, you should have
three new commands available at your command line:

$ cargo --version

cargo 0.18.0 (fe7bOcdcf 2017-04-24)

$ rustc --version

rustc 1.17.0 (56124baa9 2017-04-24)

$ rustdoc --version

rustdoc 1.17.0 (56124baa9 2017-04-24)
$

Here, the $ is the command prompt; on Windows, this would be C:\> or
something similar. In this transcript we run the three commands we
installed, asking each to report which version it is. Taking each command
in turn:

¢ cargo is Rust’'s compilation manager, package manager, and
general-purpose tool. You can use Cargo to start a new project,
build and run your program, and manage any external libraries
your code depends on.

¢ rustc is the Rust compiler. Usually we let Cargo invoke the
compiler for us, but sometimes it's useful to run it directly.

¢ rustdoc is the Rust documentation tool. If you write
documentation in comments of the appropriate form in your
program’s source code, rustdoc can build nicely formatted HTML

https://rustup.rs
https://www.rust-lang.org

from them. Like rustc, we usually let Cargo run rustdoc for us.

As a convenience, Cargo can create a new Rust package for us, with
some standard metadata arranged appropriately:

$ cargo new --bin hello
Created binary (application) “hello™ project

This command creates a new package directory named hello, and the --
bin flag directs Cargo to prepare this as an executable, not a library.
Looking inside the package’s top-level directory:

$ cd hello

$ls-la

total 24

drwxrwxr-X. 4 jimb jimb 4096 Sep 22 21:09 .
drwx------ . 62 jimb jimb 4096 Sep 22 21:09 ..
drwxrwxr-X. 6 jimb jimb 4096 Sep 22 21:09 .git
-rw-rw-r--. 1 jimb jimb 7 Sep 22 21:09 .gitignore
-rw-rw-r--. 1 jimb jimb 88 Sep 22 21:09 Cargo.toml
drwxrwxr-x. 2 jimb jimb 4096 Sep 22 21:09 src

$

We can see that Cargo has created a file Cargo.toml to hold metadata for
the package. At the moment this file doesn’t contain much:

[package]

name = "hello"

version = "0.1.0"

authors = ["You <you@example.com>"]

[dependencies]

If our program ever acquires dependencies on other libraries, we can
record them in this file, and Cargo will take care of downloading, building,
and updating those libraries for us. We'll cover the Cargo.toml file in
detail in Chapter 8.

Cargo has set up our package for use with the git version control system,
creating a .git metadata subdirectory, and a .gitignore file. You can tell
Cargo to skip this step by specifying --vcs none on the command line.

The src subdirectory contains the actual Rust code:

$ cd src

$ls -

total 4

-rw-rw-r--. 1 jimb jimb 45 Sep 22 21:09 main.rs

It seems that Cargo has begun writing the program on our behalf. The
main.rs file contains the text:

fn main() {
printin!("Hello, world!");

}

In Rust, you don’t even need to write your own “Hello, World!” program.
And this is the extent of the boilerplate for a new Rust program: two files,
totaling nine lines.

We can invoke the cargo run command from any directory in the package
to build and run our program:

$ cargo run
Compiling hello v0.1.0 (file://homejimb/rust/hello)
Finished dev [unoptimized + debuginfo] target(s) in 0.27 secs
Running "homejimb/rust/hello/target/debug/hello’
Hello, world!
$

Here, Cargo has invoked the Rust compiler, rustc, and then run the
executable it produced. Cargo places the executable in the target
subdirectory at the top of the package:

$ Is -l ../target/debug

total 580

drwxrwxr-X. 2 jimb jimb 4096 Sep 22 21:37 build
drwxrwxr-x. 2 jimb jimb 4096 Sep 22 21:37 deps
drwxrwxr-X. 2 jimb jimb 4096 Sep 22 21:37 examples
-rwxrwxr-x. 1 jimb jimb 576632 Sep 22 21:37 hello
-rw-rw-r--. 1 jimb jimb 198 Sep 22 21:37 hello.d
drwxrwxr-x. 2 jimb jimb 68 Sep 22 21:37 incremental
drwxrwxr-X. 2 jimb jimb 4096 Sep 22 21:37 native

$../target/debug/hello

Hello, world!

When we're through, Cargo can clean up the generated files for us:

$ cargo clean

$../target/debug/hello

bash: ../target/debug/hello: No such file or directory
$

A Simple Function

Rust’s syntax is deliberately unoriginal. If you are familiar with C, C++,
Java, or JavaScript, you can probably find your way through the general
structure of a Rust program. Here is a function that computes the
greatest common divisor of two integers, using Euclid’s algorithm:

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n 1= 0 && m != 0);
while m =0 {
ifm<n{
lett=m;
m =n;
n=t;

}

m=m % n;

}

n

}

The fn keyword (pronounced “fun”) introduces a function. Here, we're
defining a function named gcd, which takes two parameters n and m,
each of which is of type u64, an unsigned 64-bit integer. The -> token
precedes the return type: our function returns a u64 value. Four-space
indentation is standard Rust style.

Rust’'s machine integer type names reflect their size and signedness: i32
is a signed 32-bit integer; u8 is an unsigned eight-bit integer (used for
“byte” values), and so on. The isize and usize types hold pointer-sized
signed and unsigned integers, 32 bits long on 32-bit platforms, and 64
bits long on 64-bit platforms. Rust also has two floating-point types, f32
and f64, which are the IEEE single-and double-precision floating-point
types, like float and double in C and C++.

By default, once a variable is initialized, its value can’'t be changed, but
placing the mut keyword (pronounced “mute”, short for mutable) before
the parameters n and m allows our function body to assign to them. In
practice, most variables don't get assigned to; the mut keyword on those
that do can be a helpful hint when reading code.

https://en.wikipedia.org/wiki/Euclidean_algorithm

The function’s body starts with a call to the assert! macro, verifying that
neither argument is zero. The ! character marks this as a macro
invocation, not a function call. Like the assert macro in C and C++, Rust’s
assert! checks that its argument is true, and if it is not, terminates the
program with a helpful message including the source location of the
failing check; this kind of abrupt termination is called a panic. Unlike C
and C++, in which assertions can be skipped, Rust always checks
assertions regardless of how the program was compiled. There is also a
debug_assert! macro, whose assertions are skipped when the program is
compiled for speed.

The heart of our function is a while loop containing an if statement and an
assignment. Unlike C and C++, Rust does not require parentheses
around the conditional expressions, but it does require curly braces
around the statements they control.

A let statement declares a local variable, like t in our function. We don’t
need to write out t's type, as long as Rust can infer it from how the
variable is used. In our function, the only type that works for t is u64,
matching m and n. Rust only infers types within function bodies: you must
write out the types of function parameters and return values, as we did
before. If we wanted to spell out t's type, we could write:

lett: u64 = m;

Rust has a return statement, but the gcd function doesn’t need one. If a
function body ends with an expression that is not followed by a
semicolon, that's the function’s return value. In fact, any block
surrounded by curly braces can function as an expression. For example,
this is an expression that prints a message and then yields x.cos() as its
value:

{

printin!("evaluating cos x");
x.cos()

}

It's typical in Rust to use this form to establish the function’s value when

control “falls off the end” of the function, and use return statements only
for explicit early returns from the midst of a function.

Writing and Running Unit Tests

Rust has simple support for testing built into the language. To test our
gcd function, we can write:

#test]
fn test_gcd() {
assert_eq!(gcd(14, 15), 1);

assert_eql(gcd(2*3*5*11* 17,
3*7*11*13*19),
3*11);
}

Here we define a function named test_gcd, which calls gcd and checks
that it returns correct values. The #[test] atop the definition marks
test_gcd as a test function, to be skipped in normal compilations, but
included and called automatically if we run our program with the cargo
test command. Let's assume we’ve edited our gcd and test_gcd
definitions into the hello package we created at the beginning of the
chapter. If our current directory is somewhere within the package’s
subtree, we can run the tests as follows:

$ cargo test
Compiling hello v0.1.0 (file://homejimb/rust/hello)
Finished dev [unoptimized + debuginfo] target(s) in 0.35 secs
Running homejimb/rust/hello/target/debug/deps/hello-2375a82d9e9673d7

running 1 test
test test_gcd ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

$

We can have test functions scattered throughout our source tree, placed
next to the code they exercise, and cargo test will automatically gather
them up and run them all.

The #[test] marker is an example of an attribute. Attributes are an open-

ended system for marking functions and other declarations with extra
information, like attributes in C++ and C#, or annotations in Java. They're
used to control compiler warnings and code style checks, include code
conditionally (like #ifdef in C and C++), tell Rust how to interact with code
written in other languages, and so on. We’ll see more examples of
attributes as we go.

Handling Command-Line Arguments

If we want our program to take a series of numbers as command-line
arguments and print their greatest common divisor, we can replace the
main function with the following:

use std::io::Write;
use std::str::FromStr;

fn main() {
let mut numbers = Vec::new();

for arg in std::env::args().skip(1) {
numbers.push(u64::from_str(&arg)
.expect("error parsing argument"));
}

if numbers.len() == 0 {
writeln!(std::io::stderr(), "Usage: gcd NUMBER ...").unwrap();
std::process::exit(1);

}

let mut d = numbers[0];

for m in &numbers[1..]{
d = gcd(d, *m);

}

printin!("The greatest common divisor of {:?} is {}",
numbers, d);
}

This is a large block of code, so let’s take it piece by piece:

use std::io::Write;
use std::str::FromStr;

The use declarations bring the two traits Write and FromStr into scope.
We’'ll cover traits in detail in Chapter 11, but for now we’ll simply say that
a trait is a collection of methods that types can implement. Although we
never use the names Write or FromStr elsewhere in the program, a trait
must be in scope in order to use its methods. In the present case:

e Any type that implements the Write trait has a write_fmt method
that writes formatted text to a stream. The std::io::Stderr type
implements Write, and we’ll use the writeln! macro to print error
messages; that macro expands to code that uses the write_fmt
method.

¢ Any type that implements the FromStr trait has a from_str method
that tries to parse a value of that type from a string. The u64 type
implements FromStr, and we’ll call u64::from_str to parse our
command-line arguments.

Moving on to the program’s main function:

fn main() {

Our main function doesn’t return a value, so we can simply omit the ->
and type that would normally follow the parameter list.

let mut numbers = Vec::new();

We declare a mutable local variable numbers, and initialize it to an empty
vector. Vec is Rust’s growable vector type, analogous to C++’s
std::vector, a Python list, or a JavaScript array. Even though vectors are
designed to be grown and shrunk dynamically, we must still mark the
variable mut for Rust to let us push numbers onto the end of it.

The type of numbers is Vec<u64>, a vector of u64 values, but as before,
we don’t need to write that out. Rust will infer it for us, in part because
what we push onto the vector are u64 values, but also because we pass
the vector’s elements to gcd, which accepts only u64 values.

for arg in std::env::args().skip(1) {

Here we use a for loop to process our command-line arguments, setting
the variable arg to each argument in turn, and evaluating the loop body.

The std::env::args function returns an iterator, a value that produces each
argument on demand, and indicates when we’'re done. lterators are

ubiquitous in Rust; the standard library includes other iterators that
produce the elements of a vector, the lines of a file, messages received
on a communications channel, and almost anything else that makes
sense to loop over. Rust’s iterators are very efficient: the compiler is
usually able to translate them into the same code as a handwritten loop.
We’ll show how this works and give examples in Chapter 15.

Beyond their use with for loops, iterators include a broad selection of
methods you can use directly. For example, the first value produced by
the iterator returned by std::env::args is always the name of the program
being run. We want to skip that, so we call the iterator’s skip method to
produce a new iterator that omits that first value.

numbers.push(u64::from_str(&arg)
.expect("error parsing argument"));

Here we call u64::from_str to attempt to parse our command-line
argument arg as an unsigned 64-bit integer. Rather than a method we’re
invoking on some u64 value we have at hand, u64::from_str is a function
associated with the u64 type, akin to a static method in C++ or Java. The
from_str function doesn’t return a u64 directly, but rather a Result value
that indicates whether the parse succeeded or failed. A Result value is
one of two variants:

e A value written Ok(v), indicating that the parse succeeded and v
is the value produced

e A value written Err(e), indicating that the parse failed and e is an
error value explaining why

Functions that perform input or output or otherwise interact with the
operating system all return Result types whose Ok variants carry
successful results—the count of bytes transferred, the file opened, and
so on—and whose Err variants carry an error code from the system.
Unlike most modern languages, Rust does not have exceptions: all errors
are handled using either Result or panic, as outlined in Chapter 7.

We check the success of our parse by using Result’'s expect method. If
the result is some Err(e), expect prints a message that includes a

description of e, and exits the program immediately. However, if the
result is Ok(v), expect simply returns v itself, which we are finally able to
push onto the end of our vector of numbers.

if numbers.len() == 0 {
writeln!(std::io::stderr(), "Usage: gcd NUMBER ...").unwrap();
std::process::exit(1);

}

There’s no greatest common divisor of an empty set of numbers, so we
check that our vector has at least one element, and exit the program with
an error if it doesn’t. We use the writeln! macro to write our error
message to the standard error output stream, provided by std::io::stderr().
The .unwrap() call is a terse way to check that the attempt to print the
error message did not itself fail; an expect call would work too, but that's
probably not worth it.

let mut d = numbers[0];

for m in &numbers[1..] {
d = gcd(d, *m);

}

This loop uses d as its running value, updating it to stay the greatest
common divisor of all the numbers we’ve processed so far. As before, we
must mark d as mutable, so that we can assign to it in the loop.

The for loop has two surprising bits to it. First, we wrote for m in
&numbers[1l..]; what is the & operator for? Second, we wrote gcd(d, *m);
what is the * in *m for? These two details are complementary to each
other.

Up to this point, our code has operated only on simple values like
integers that fit in fixed-size blocks of memory. But now we’re about to
iterate over a vector, which could be of any size whatsoever—possibly
very large. Rust is cautious when handling such values: it wants to leave
the programmer in control over memory consumption, making it clear
how long each value lives, while still ensuring memory is freed promptly
when no longer needed.

So when we iterate, we want to tell Rust that ownership of the vector

should remain with numbers; we are merely borrowing its elements for
the loop. The & operator in &numbers[1..] borrows a reference to the
vector’s elements from the second onward. The for loop iterates over the
referenced elements, letting m borrow each element in succession. The *
operator in *m dereferences m, yielding the value it refers to; this is the
next ué4 we want to pass to gcd. Finally, since numbers owns the vector,
Rust automatically frees it when numbers goes out of scope at the end of
main.

Rust’s rules for ownership and references are key to Rust’'s memory
management and safe concurrency; we discuss them in detail in Chapter
4 and its companion, Chapter 5. You'll need to be comfortable with those
rules to be comfortable in Rust, but for this introductory tour, all you need
to know is that &x borrows a reference to x, and that *r is the value that
the reference r refers to.

Continuing our walk through the program:

printin!("The greatest common divisor of {:?} is {}",
numbers, d);

Having iterated over the elements of numbers, the program prints the
results to the standard output stream. The printin! macro takes a template
string, substitutes formatted versions of the remaining arguments for the
{...} forms as they appear in the template string, and writes the result to
the standard output stream.

Unlike C and C++, which require main to return zero if the program
finished successfully, or a nonzero exit status if something went wrong,
Rust assumes that if main returns at all, the program finished
successfully. Only by explicitly calling functions like expect or
std::process::exit can we cause the program to terminate with an error
status code.

The cargo run command allows us to pass arguments to our program, so
we can try out our command-line handling:

$ cargo run 42 56
Compiling hello v0.1.0 (file://homejimb/rust/hello)

Finished dev [unoptimized + debuginfo] target(s) in 0.38 secs
Running "homejimb/rust/hello/target/debug/hello 42 56°

The greatest common divisor of [42, 56] is 14

$ cargo run 799459 28823 27347
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running "homejimb/rust/hello/target/debug/hello 799459 28823 27347

The greatest common divisor of [799459, 28823, 27347] is 41

$ cargo run 83
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running "homejimb/rust/hello/target/debug/hello 83

The greatest common divisor of [83] is 83

$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running "homejimb/rust/hello/target/debug/hello’

Usage: gcd NUMBER ...

$

We've used a few features from Rust’s standard library in this section. If
you’re curious about what else is available, we strongly encourage you to
try out Rust’s online documentation. It has a live search feature that
makes exploration easy, and even includes links to the source code. The
rustup command automatically installs a copy on your computer when
you install Rust itself. You can view the standard library documentation in
your browser with the command:

$ rustup doc --std

You can also view it on the web at https.//doc.rust-lang.org/.

https://doc.rust-lang.org/

A Simple Web Server

One of Rust’s strengths is the freely available collection of library
packages published on the website crates.io. The cargo command
makes it easy for our own code to use a crates.io package: it will
download the right version of the package, build it, and update it as
requested. A Rust package, whether a library or an executable, is called
a crate; Cargo and crates.io both derive their names from this term.

To show how this works, we’ll put together a simple web server using the
iron web framework, the hyper HTTP server, and various other crates on
which they depend. As shown in Figure 2-1, our website will prompt the
user for two numbers, and compute their greatest common divisor.

GCD Calculator — Meozilla Firefox X
GCD Calculator L
& localhost: 2000 v » =
24 81 Compute GCD

Figure 2-1. Web page offering to compute GCD

First, we’'ll have Cargo create a new package for us, named iron-gcd:

$ cargo new --bin iron-gcd

Created binary (application) “iron-gcd™ project
$ cd iron-gcd
$

Then, we’ll edit our new project’s Cargo.toml file to list the packages we
want to use; its contents should be as follows:

[package]

name = "iron-gcd"

version = "0.1.0"

authors = ["You <you@example.com>"]

https://crates.io

[dependencies]

iron ="0.5.1"
mime = "0.2.3"
router ="0.5.1"

urlencoded = "0.5.0"

Each line in the [dependencies] section of Cargo.toml gives the name of
a crate on crates.io, and the version of that crate we would like to use.
There may well be versions of these crates on crates.io newer than those
shown here, but by naming the specific versions we tested this code
against, we can ensure the code will continue to compile even as new
versions of the packages are published. We’ll discuss version
management in more detail in Chapter 8.

Note that we need only name those packages we’ll use directly; cargo
takes care of bringing in whatever other packages those need in turn.

For our first iteration, we’ll keep the web server simple: it will serve only
the page that prompts the user for numbers to compute with. In iron-
gcd/src/main.rs, we'll place the following text:

extern crate iron;
#[macro_use] extern crate mime;

use iron::prelude::*;
use iron::status;

fn main() {
printin!("Serving on http://localhost:3000...");
Iron::new(get_form).http("localhost:3000").unwrap();

}

fn get_form(_request: &mut Request) -> IronResult<Response> {
let mut response = Response::new();

response.set_mut(status::Ok);
response.set_mut(mime!(Text/Html; Charset=Utf8));
response.set_mut(r#"

<title>GCD Calculator</title>

<form action="/gcd" method="post">

<button type="submit">Compute GCD</button>
</form>

),

Ok(response)

}

We start with two extern crate directives, which make the iron and mime
crates that we cited in our Cargo.toml file available to our program. The #
[macro_use] attribute before the extern crate mime item alerts Rust that
we plan to use macros exported by this crate.

Next, we have use declarations to bring in some of those crates’ public
features. The declaration use iron::prelude::* makes all the public names
of the iron::prelude module directly visible in our own code. Generally, it's
preferable to spell out the name you wish to use, as we did for
iron::status; but by convention, when a module is named prelude, that
means that its exports are intended to provide the sort of general facilities
that any user of the crate will probably need. So in this case, a wildcard
use directive makes a bit more sense.

Our main function is simple: it prints a message reminding us how to
connect to our server, calls Iron::new to create a server, and then sets it
listening on TCP port 3000 on the local machine. We pass the get_form
function to Iron::new, indicating that the server should use that function to
handle all requests; we’ll refine this shortly.

The get_form function itself takes a mutable reference, written &mut, to a
Request value representing the HTTP request we’ve been called to
handle. While this particular handler function never uses its _request
parameter, we’ll see one later that does. For the time being, giving the
parameter a name beginning with _ tells Rust that we expect the variable
to be unused, so it shouldn’t warn us about it.

In the body of the function, we build a Response value. The set_mut
method uses its argument’s type to decide which part of the response to
set, so each call to set_mut is actually setting a different part of response:
passing status::Ok sets the HTTP status; passing the media type of the
content (using the handy mime! macro that we imported from the mime
crate) sets the Content-Type header; and passing a string sets the
response body.

Since the response text contains a lot of double quotes, we write it using
the Rust “raw string” syntax: the letter r, zero or more hash marks (that is,
the # character), a double quote, and then the contents of the string,
terminated by another double quote followed by the same number of
hash marks. Any character may occur within a raw string without being
escaped, including double quotes; in fact, no escape sequences like \"
are recognized. We can always ensure the string ends where we intend
by using more hash marks around the quotes than ever appear in the
text.

Our function’s return type, lronResult<Response>, is another variant of
the Result type we encountered earlier: this is either Ok(r) for some
successful Response value r, or Err(e) for some error value e. We
construct our return value Ok(response) at the bottom of the function
body, using the “last expression” syntax to implicitly specify the function’s
return value.

Having written main.rs, we can use the cargo run command to do
everything needed to set it running: fetching the needed crates, compiling
them, building our own program, linking everything together, and starting
it up:

$ cargo run
Updating registry ~https://github.com/rust-lang/crates.io-index’
Downloading iron v0.5.1
Downloading urlencoded v0.5.0
Downloading router v0.5.1
Downloading hyper v0.10.8
Downloading lazy_static v0.2.8
Downloading bodyparser v0.5.0

Compiling conduit-mime-types v0.7.3
Compiling iron v0.5.1
Compiling router v0.5.1
Compiling persistent v0.3.0
Compiling bodyparser v0.5.0
Compiling urlencoded v0.5.0
Compiling iron-gcd v0.1.0 (file://homejimb/rust/iron-gcd)
Running “target/debug/iron-gcd”
Serving on http://localhost:3000...

At this point, we can visit the given URL in our browser and see the page

shown earlier in Figure 2-1.

Unfortunately, clicking Compute GCD doesn’t do anything, other than
navigate our browser to the URL http.//localhost:3000/gcd, which then
shows the same page; in fact, every URL on our server does this. Let’s
fix that next, using the Router type to associate different handlers with
different paths.

First, let's arrange to be able to use Router without qualification, by
adding the following declarations to iron-gcd/src/main.rs:

extern crate router;
use router::Router;

Rust programmers typically gather all their extern crate and use
declarations together toward the top of the file, but this isn’t strictly
necessary: Rust allows declarations to occur in any order, as long as
they appear at the appropriate level of nesting. (Macro definitions and
extern crate items with #[macro_use] attributes are exceptions to this
rule: they must appear before they are used.)

We can then modify our main function to read as follows:

fn main() {
let mut router = Router::new();

router.get("/", get_form, "root");
router.post("/gcd", post_gcd, "gcd");

printin!("Serving on http://localhost:3000...");
Iron::new(router).http("localhost:3000").unwrap();

}

We create a Router, establish handler functions for two specific paths,
and then pass this Router as the request handler to Iron::new, yielding a
web server that consults the URL path to decide which handler function
to call.

Now we are ready to write our post_gcd function:

extern crate urlencoded;

use std::str::FromStr;
use urlencoded::UrlEncodedBody;

fn post_gcd(request: &mut Request) -> IronResult<Response> {
let mut response = Response::new();

let form_data = match request.get_ref.:<UrlEncodedBody>() {
Err(e) =>{
response.set_mut(status::BadRequest);
response.set_mut(format!("Error parsing form data: {:?}\n", e));
return Ok(response);
}
Ok(map) => map
3

let unparsed_numbers = match form_data.get("n") {
None => {
response.set_mut(status::BadRequest);
response.set_mut(format!(“form data has no 'n' parameter\n"));
return Ok(response);

}

Some(nums) => nums

I3

let mut numbers = Vec::new();
for unparsed in unparsed_numbers {
match u64::from_str(&unparsed) {

Err() =>{
response.set_mut(status::BadRequest);
response.set_mut(

format!("Value for 'n' parameter not a number: {:?}\n",
unparsed));
return Ok(response);
}
Ok(n) => { numbers.push(n); }
}
}

let mut d = numbers[0];

for m in &numbers[1..]{
d = gcd(d, *m);

}

response.set_mut(status::0Ok);
response.set_mut(mime!(Text/Html; Charset=Utf8));
response.set_mut(
format!("The greatest common divisor of the numbers {:?} is {}\n",
numbers, d));
Ok(response)

The bulk of this function is a series of match expressions, which will be
unfamiliar to C, C++, Java, and JavaScript programmers, but a welcome
sight to those who work with Haskell and OCaml. We've mentioned that a
Result is either a value Ok(s) for some success value s, or Err(e) for
some error value e. Given some Result res, we can check which variant it
is and access whichever value it holds with a match expression of the
form:

match res {
Ok(success) =>{ ... },
Err(error) =>{...}

}

This is a conditional, like an if statement or a switch statement in C: if res
is Ok(Vv), then it runs the first branch, with the variable success set to v.
Similarly, if res is Err(e), it runs the second branch with error set to e. The
success and error variables are each local to their branch. The value of
the entire match expression is the value of the branch that runs.

The beauty of a match expression is that the program can only access
the value of a Result by first checking which variant it is; one can never
misinterpret a failure value as a successful completion. Whereas in C and
C++ it's a common error to forget to check for an error code or a null
pointer, in Rust, these mistakes are caught at compile time. This simple
measure is a significant advance in usability.

Rust allows you to define your own types like Result with value-carrying
variants, and use match expressions to analyze them. Rust calls these
types enums; you may know them from other languages as algebraic
data types. We describe enumerations in detail in Chapter 10.

Now that you can read match expressions, the structure of post_gcd
should be clear:

e |t calls request.get_ref::<UrlEncodedBody>() to parse the
request’s body as a table mapping query parameter names to
arrays of values; if this parse fails, it reports the error back to the
client. The ::<UrlEncodedBody> part of the method call is a type

parameter indicating which part of the Request get_ref should
retrieve. In this case, the UrlEncodedBody type refers to the
body, parsed as a URLencoded query string. We'll talk more
about type parameters in the next section.

e Within that table, it finds the value of the parameter named "n",
which is where the HTML form places the numbers entered into
the web page. This value will be not a single string but a vector of
strings, as query parameter names can be repeated.

¢ |t walks the vector of strings, parsing each one as an unsigned
64-bit number, and returning an appropriate failure page if any of
the strings fail to parse.

e Finally, it computes the numbers’ greatest common divisor as
before, and constructs a response describing the results. The
format! macro uses the same kind of string template as the
writeln! and println! macros, but returns a string value, rather than
writing the text to a stream.

The last remaining piece is the gcd function we wrote earlier. With that in
place, you can interrupt any servers you might have left running, and
rebuild and restart the program:

$ cargo run
Compiling iron-gcd v0.1.0 (file://homejimb/rust/iron-gcd)
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running “target/debug/iron-gcd”
Serving on http://localhost:3000...

This time, by visiting http.//localhost:3000, entering some numbers, and
clicking the Compute GCD button, you should actually see some results
(Figure 2-2).

Meozilla Firefox

_Jf http://localhost:3000/ged % '1\"'

. €) @ localhost: 3000/gcd voel|lo»

S

The greatest common divisor of the numbers [24, 81] is 3

Figure 2-2. Web page showing results of computing GCD

Concurrency

One of Rust’s great strengths is its support for concurrent programming.
The same rules that ensure Rust programs are free of memory errors
also ensure threads can share memory only in ways that avoid data
races. For example:

e |f you use a mutex to coordinate threads making changes to a
shared data structure, Rust ensures that you can’t access the
data except when you're holding the lock, and releases the lock
automatically when you're done. In C and C++, the relationship
between a mutex and the data it protects is left to the comments.

¢ |f you want to share read-only data among several threads, Rust
ensures that you cannot modify the data accidentally. In C and
C++, the type system can help with this, but it's easy to get it
wrong.

¢ If you transfer ownership of a data structure from one thread to
another, Rust makes sure you have indeed relinquished all
access to it. In C and C++, it's up to you to check that nothing on
the sending thread will ever touch the data again. If you don’t get
it right, the effects can depend on what happens to be in the
processor’s cache and how many writes to memory you've done
recently. Not that we're bitter.

In this section, we’ll walk you through the process of writing your second
multi-threaded program.

Although you probably weren’t aware of it, you’'ve already written your
first: the Iron web framework you used to implement the Greatest
Common Divisor server uses a pool of threads to run request handler
functions. If the server receives simultaneous requests, it may run the
get_form and post_gcd functions in several threads at once. That may
come as a bit of a shock, since we certainly didn’t have concurrency in
mind when we wrote those functions. But Rust guarantees this is safe to
do, no matter how elaborate your server gets: if your program compiles, it

is free of data races. All Rust functions are thread-safe.

This section’s program plots the Mandelbrot set, a fractal produced by
iterating a simple function on complex numbers. Plotting the Mandelbrot
set is often called an embarrassingly parallel algorithm, because the
pattern of communication between the threads is so simple; we’ll cover
more complex patterns in Chapter 19, but this task demonstrates some of
the essentials.

To get started, we’ll create a fresh Rust project:

$ cargo new --bin mandelbrot
Created binary (application) “‘mandelbrot™ project

All the code will go in mandelbrot/src/main.rs, and we’ll add some
dependencies to mandelbrot/Cargo.toml.

Before we get into the concurrent Mandelbrot implementation, we need to
describe the computation we’re going to perform.

What the Mandelbrot Set Actually Is

When reading code, it's helpful to have a concrete idea of what it’s trying
to do, so let’s take a short excursion into some pure mathematics. We'll
start with a simple case, and then add complicating details until we arrive
at the calculation at the heart of the Mandelbrot set.

Here’s an infinite loop, written using Rust’s dedicated syntax for that, a
loop statement:

fn square_loop(mut x: f64) {
loop {
X=X*X;
}
}

In real life, Rust can see that x is never used for anything, and so might
not bother computing its value. But for the time being, assume the code
runs as written. What happens to the value of x? Squaring any number
smaller than 1 makes it smaller, so it approaches zero; squaring 1 yields
1; squaring a number larger than 1 makes it larger, so it approaches
infinity; and squaring a negative number makes it positive, after which it
behaves as one of the prior cases (Figure 2-3).

Figure 2-3. Effects of repeatedly squaring a number

So depending on the value you pass to square_loop, x either approaches
zero, stays at 1, or approaches infinity.

Now consider a slightly different loop:

fn square_add_loop(c: f64) {
letmutx=0.;
loop {

X=X*X+C;
}
}

This time, x starts at zero, and we tweak its progress in each iteration by
adding in c after squaring it. This makes it harder to see how x fares, but
some experimentation shows that if c is greater than 0.25, or less than —
2.0, then x eventually becomes infinitely large; otherwise, it stays
somewhere in the neighborhood of zero.

The next wrinkle: instead of using f64 values, consider the same loop
using complex numbers. The num crate on crates.io provides a complex
number type we can use, so we must add a line for num to the
[dependencies] section in our program’s Cargo.toml file. Here’s the entire
file, up to this point (we’ll be adding more later):

[package]

name = "mandelbrot"

version ="0.1.0"

authors = ["You <you@example.com>"]

[dependencies]
num ="0.1.27"

Now we can write the penultimate version of our loop:

extern crate num:;
use num::Complex;

#[allow(dead_code)]
fn complex_square_add_loop(c: Complex<f64>) {
let mut z = Complex {re: 0.0, im: 0.0 };
loop {
z=z2%*z+c;
}
}

It's traditional to use z for complex numbers, so we've renamed our
looping variable. The expression Complex { re: 0.0, im: 0.0 } is the way
we write complex zero using the num crate’s Complex type. Complex is a
Rust structure type (or struct), defined like this:

struct Complex<T> {
/// Real portion of the complex number
re: T,

/// Imaginary portion of the complex number
im: T

}

The preceding code defines a struct named Complex, with two fields, re
and im. Complex is a generic structure: you can read the <T> after the
type name as “for any type T". For example, Complex<f64> is a complex
number whose re and im fields are f64 values, Complex<f32> would use
32-bit floats, and so on. Given this definition, an expression like Complex
{re: R, im: 1} produces a Complex value with its re field initialized to R,
and its im field initialized to |.

The num crate arranges for *, +, and other arithmetic operators to work
on Complex values, so the rest of the function works just like the prior
version, except that it operates on points on the complex plane, not just
points along the real number line. We’ll explain how you can make Rust’s
operators work with your own types in Chapter 12.

Finally, we've reached the destination of our pure math excursion. The
Mandelbrot set is defined as the set of complex numbers c for which z
does not fly out to infinity. Our original simple squaring loop was
predictable enough: any number greater than 1 or less than -1 flies
away. Throwing a + c into each iteration makes the behavior a little
harder to anticipate: as we said earlier, values of c greater than 0.25 or
less than —2 cause z to fly away. But expanding the game to complex
numbers produces truly bizarre and beautiful patterns, which are what we
want to plot.

Since a complex number ¢ has both real and imaginary components c.re
and c.im, we’ll treat these as the x and y coordinates of a point on the
Cartesian plane, and color the point black if ¢ is in the Mandelbrot set, or
a lighter color otherwise. So for each pixel in our image, we must run the
preceding loop on the corresponding point on the complex plane, see
whether it escapes to infinity or orbits around the origin forever, and color
it accordingly.

The infinite loop takes a while to run, but there are two tricks for the
impatient. First, if we give up on running the loop forever and just try
some limited number of iterations, it turns out that we still get a decent
approximation of the set. How many iterations we need depends on how
precisely we want to plot the boundary. Second, it's been shown that, if z
ever once leaves the circle of radius two centered at the origin, it will
definitely fly infinitely far away from the origin eventually.

So here’s the final version of our loop, and the heart of our program:

extern crate num:;
use num::Complex;

/// Try to determine if "¢’ is in the Mandelbrot set, using at most "limit
/// iterations to decide.
/4
/1 If ¢ is not a member, return "Some(i)’, where i’ is the number of
/// iterations it took for "¢’ to leave the circle of radius two centered on the
/// origin. If ¢ seems to be a member (more precisely, if we reached the
/// iteration limit without being able to prove that "¢’ is not a member),
/// return “None".
fn escape_time(c: Complex<f64>, limit: u32) -> Option<u32> {
let mut z = Complex {re: 0.0, im: 0.0 };
foriin O..limit {
Z=27*2+C;
if z.norm_sqr() > 4.0 {
return Some(i);
}
}

None

This function takes the complex number c that we want to test for
membership in the Mandelbrot set, and a limit on the number of iterations
to try before giving up and declaring c to probably be a member.

The function’s return value is an Option<u32>. Rust’s standard library
defines the Option type as follows:

enum Option<T> {
None,
Some(T),

}

Option is an enumerated type, often called an enum, because its
definition enumerates several variants that a value of this type could be:
for any type T, a value of type Option<T> is either Some(v), where v is a
value of type T; or None, indicating no T value is available. Like the
Complex type we discussed earlier, Option is a generic type: you can use
Option<T> to represent an optional value of any type T you like.

In our case, escape_time returns an Option<u32> to indicate whether c is
in the Mandelbrot set—and if it's not, how long we had to iterate to find
that out. If c is not in the set, escape_time returns Some(i), where i is the
number of the iteration at which z left the circle of radius two. Otherwise,
c is apparently in the set, and escape_time returns None.

foriin O..limit {

The earlier examples showed for loops iterating over command-line
arguments and vector elements; this for loop simply iterates over the
range of integers starting with 0 and up to (but not including) limit.

The z.norm_sqgr() method call returns the square of z's distance from the
origin. To decide whether z has left the circle of radius two, instead of
computing a square root, we just compare the squared distance with 4.0,
which is faster.

You may have noticed that we use /// to mark the comment lines above
the function definition; the comments above the members of the Complex
structure start with /// as well. These are documentation comments; the
rustdoc utility knows how to parse them, together with the code they
describe, and produce online documentation. The documentation for
Rust’s standard library is written in this form. We describe documentation
comments in detail in Chapter 8.

The rest of the program is concerned with deciding which portion of the
set to plot at what resolution, and distributing the work across several
threads to speed up the calculation.

Parsing Pair Command-Line Arguments

The program needs to take several command-line arguments controlling
the resolution of the image we’ll write, and the portion of the Mandelbrot

set the image shows. Since these command-line arguments all follow a

common form, here’s a function to parse them:

use std::str::FromStr;

/// Parse the string "s" as a coordinate pair, like *"400x600" or ""1.0,0.5™.

/4

/// Specifically, *s™ should have the form <left><sep><right>, where <sep> is
/// the character given by the “separator’ argument, and <left> and <right> are both

/// strings that can be parsed by “T::from_str .

/4

/1 If °s™ has the proper form, return "Some<(x, y)>". If it doesn't parse

/// correctly, return "None".

fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)>{

match s.find(separator) {

None => None,
Some(index) => {

match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) {

(Ok(l), Ok(r)) => Some((l, r)),

_ =>None
}
}
}
}

#[test]
fn test_parse_pair() {

assert_eq!(parse_pair:
assert_eq!(parse_pair:
assert_eq!(parse_pair:
assert_eq!(parse_pair:
assert_eq!(parse_pair:
assert_eq!(parse_pair:
assert_eq!(parse_pair:

<i32>(", ', None);
:<i32>("10,", '), None);
<i32>(",10", '), None);
:<i32>("10,20", '), Some((10, 20)));
:<i32>("10,20xy", ',"), None);
:<f64>("0.5x", 'x"), None);

:<f64>("0.5x1.5", 'x), Some((0.5, 1.5)));

The definition of parse_pair is a generic function:

fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)>{

You can read the clause <T: FromStr> aloud as, “For any type T that
implements the FromStr trait...”. This effectively lets us define an entire
family of functions at once: parse_pair::<i32> is a function that parses
pairs of i32 values; parse_pair::<f64> parses pairs of floating-point
values; and so on. This is very much like a function template in C++. A
Rust programmer would call T a type parameter of parse_pair. When you
use a generic function, Rust will often be able to infer type parameters for
you, and you won’t need to write them out as we did in the test code.

Our return type is Option<(T, T)>: either None, or a value Some((v1, v2)),
where (v1, v2) is a tuple of two values, both of type T. The parse_pair
function doesn’t use an explicit return statement, so its return value is the
value of the last (and the only) expression in its body:

match s.find(separator) {
None => None,
Some(index) => {

-
}

The String type’s find method searches the string for a character that
matches separator. If find returns None, meaning that the separator
character doesn’t occur in the string, the entire match expression
evaluates to None, indicating that the parse failed. Otherwise, we take
index to be the separator’s position in the string.

match (T::from_str(&s][..index]), T::from_str(&s[index + 1..])) {
(Ok(D), Ok(r)) => Some((l, 1)),
_ =>None

}

This begins to show off the power of the match expression. The
argument to the match is this tuple expression:

(T::from_str(&s[..index]), T::from_str(&s[index + 1..]))

The expressions &sJ..index] and &s[index + 1..] are slices of the string,
preceding and following the separator. The type parameter T's

associated from_str function takes each of these and tries to parse them
as a value of type T, producing a tuple of results. This is what we match
against:

(Ok(D), Ok(r)) => Some((l, 1)),

This pattern matches only if both elements of the tuple are Ok variants of
the Result type, indicating that both parses succeeded. If so, Some((l, r))
is the value of the match expression, and hence the return value of the
function.

_ =>None

The wildcard pattern _ matches anything, and ignores its value. If we
reach this point, then parse_pair has failed, so we evaluate to None,
again providing the return value of the function.

Now that we have parse_pair, it's easy to write a function to parse a pair
of floating-point coordinates and return them as a Complex<f64> value:

/// Parse a pair of floating-point numbers separated by a comma as a complex
/// number.
fn parse_complex(s: &str) -> Option<Complex<f64>> {
match parse_pair(s, ',") {
Some((re, im)) => Some(Complex { re, im }),
None => None
}
}

#test]
fn test_parse_complex() {
assert_eq!(parse_complex("1.25,-0.0625"),
Some(Complex {re: 1.25, im: -0.0625 }));
assert_eq!(parse_complex(",-0.0625"), None);

}

The parse_complex function calls parse_pair, builds a Complex value if
the coordinates were parsed successfully, and passes failures along to
its caller.

If you were reading closely, you may have noticed that we used a

shorthand notation to build the Complex value. It's common to initialize a
struct’s fields with variables of the same name, so rather than forcing you
to write Complex { re: re, im: im }, Rust lets you simply write Complex {
re, im }. This is modeled on similar notations in JavaScript and Haskell.

Mapping from Pixels to Complex Numbers

The program needs to work in two related coordinate spaces: each pixel
in the output image corresponds to a point on the complex plane. The
relationship between these two spaces depends on which portion of the
Mandelbrot set we’re going to plot, and the resolution of the image
requested, as determined by command-line arguments. The following
function converts from image space to complex number space:

/// Given the row and column of a pixel in the output image, return the
/// corresponding point on the complex plane.
/4
/// "bounds’ is a pair giving the width and height of the image in pixels.
/1 "pixel is a (column, row) pair indicating a particular pixel in that image.
/// The “upper_left and "lower_right parameters are points on the complex
/// plane designating the area our image covers.
fn pixel_to_point(bounds: (usize, usize),
pixel: (usize, usize),
upper_left: Complex<f64>,
lower_right: Complex<f64>)
-> Complex<f64>
{
let (width, height) = (lower_right.re - upper_left.re,
upper_left.im - lower_right.im);
Complex {
re: upper_left.re + pixel.0 as f64 * width / bounds.O as 64,
im: upper_left.im - pixel.1 as f64 * height / bounds.1 as f64
// Why subtraction here? pixel.1 increases as we go down,
// but the imaginary component increases as we go up.

}
}

#test]
fn test_pixel_to_point() {
assert_eq!(pixel_to_point((100, 100), (25, 75),
Complex {re: -1.0,im: 1.0},
Complex {re: 1.0,im:-1.0}),
Complex {re: -0.5,im: -0.5 });

Figure 2-4 illustrates the calculation pixel_to_point performs.

complex point

upper_left\

bounds.®

1
\ pixel at row @, column 0

What complex point corresponds
to a pixel at a given row and column?

bounds.1

pixel at row bounds.1 - 1, columnbounds.® - 1 —_,

complex point /
lower_right

Figure 2-4. The relationship between the complex plane and the image’s pixels

The code of pixel_to_point is simply calculation, so we won't explain it in
detail. However, there are a few things to point out. Expressions with this
form refer to tuple elements:

pixel.0

This refers to the first element of the tuple pixel.

pixel.0 as 64

This is Rust’s syntax for a type conversion: this converts pixel.0 to an f64
value. Unlike C and C++, Rust generally refuses to convert between
numeric types implicitly; you must write out the conversions you need.
This can be tedious, but being explicit about which conversions occur
and when is surprisingly helpful. Implicit integer conversions seem
innocent enough, but historically they have been a frequent source of
bugs and security holes in real-world C and C++ code.

Plotting the Set

To plot the Mandelbrot set, for every pixel in the image, we simply apply
escape_time to the corresponding point on the complex plane, and color
the pixel depending on the result:

/// Render a rectangle of the Mandelbrot set into a buffer of pixels.
/4
/// The “bounds™ argument gives the width and height of the buffer "pixels’,
/// which holds one grayscale pixel per byte. The “upper_left” and “lower _right
/// arguments specify points on the complex plane corresponding to the upper-
/// left and lower-right corners of the pixel buffer.
fn render(pixels: &mut [u8],
bounds: (usize, usize),
upper_left: Complex<f64>,
lower_right: Complex<f64>)
{

assert!(pixels.len() == bounds.0 * bounds.1);

for row in O .. bounds.1 {

for column in O .. bounds.O {

let point = pixel_to_point(bounds, (column, row),
upper_left, lower_right);
pixels[row * bounds.0 + column] =
match escape_time(point, 255) {
None => 0,
Some(count) => 255 - count as u8

g

This should all look pretty familiar at this point.

pixels[row * bounds.0 + column] =
match escape_time(point, 255) {
None => 0,
Some(count) => 255 - count as u8

3

If escape_time says that point belongs to the set, render colors the
corresponding pixel black (0). Otherwise, render assigns darker colors to
the numbers that took longer to escape the circle.

Writing Image Files

The image crate provides functions for reading and writing a wide variety
of image formats, along with some basic image manipulation functions. In
particular, it includes an encoder for the PNG image file format, which
this program uses to save the final results of the calculation. In order to
use image, add the following line to the [dependencies] section of
Cargo.toml:

image ="0.13.0"

With that in place, we can write:

extern crate image;

use image::ColorType;
use image::png::PNGEncoder;
use std::fs::File;

/// Write the buffer "pixels’, whose dimensions are given by “bounds’, to the
/// file named “filename’.
fn write_image(filename: &str, pixels: &[u8], bounds: (usize, usize))

-> Result<(), std::io::Error>

{

let output = File::create(filename)?;

let encoder = PNGEnNcoder::new(output);
encoder.encode(&pixels,
bounds.0 as u32, bounds.1 as u32,
ColorType::Gray(8))?;

Ok(0)
}

The operation of this function is pretty straightforward: it opens a file and
tries to write the image to it. We pass the encoder the actual pixel data
from pixels, and its width and height from bounds, and then a final
argument that says how to interpret the bytes in pixels: the value
ColorType::Gray(8) indicates that each byte is an eight-bit grayscale
value.

That's all straightforward. What's interesting about this function is how it
copes when something goes wrong. If we encounter an error, we need to
report that back to our caller. As we’ve mentioned before, fallible
functions in Rust should return a Result value, which is either Ok(s) on
success, where s is the successful value, or Err(e) on failure, where e is
an error code. So what are write_image’s success and error types?

When all goes well, our write_image function has no useful value to
return; it wrote everything interesting to the file. So its success type is the
unit type (), so called because it has only one value, also written (). The
unit type is akin to void in C and C++.

When an error occurs, it's because either File::create wasn't able to
create the file, or encoder.encode wasn't able to write the image to it; the
I/O operation returned an error code. The return type of File:.create is
Result<std::fs::File, std::io::Error>, while that of encoder.encode is
Result<(), std::io::Error>, so both share the same error type, std::io::Error.
It makes sense for our write_image function to do the same.

Consider the call to File::create. If that returns OK(f) for a successfully
opened File value f, then write_image can proceed to write the image
data to f. But if File::create returns Err(e) for an error code e, write_image
should immediately return Err(e) as its own return value. The call to
encoder.encode must be handled similarly: failure should result in an
immediate return, passing along the error code.

The ? operator exists to make these checks convenient. Instead of
spelling everything out, and writing:

let output = match File::create(filename) {
Ok(f) =>{f}
Err(e) => { return Err(e); }

3

you can use the equivalent and much more legible:

let output = File::create(filename)?;

NOTE

It's a common beginner’'s mistake to attempt to use ? in the main function. However,
since main has no return value, this won't work; you should use Result's expect
method instead. The ? operator is only useful within functions that themselves return
Result.

There’s another shorthand we could use here. Because return types of
the form Result<T, std::io::Error> for some type T are so common—this is
often the right type for a function that does I/O—the Rust standard library
defines a shorthand for it. In the std::io module, we have the definitions:

// The std::io::Error type.
struct Error { ... };

// The std::io::Result type, equivalent to the usual "Result’, but
// specialized to use std::io::Error as the error type.
type Result<T> = std::result::Result<T, Error>

If we bring this definition into scope with a use std::io::Result declaration,
we can write write_image’s return type more tersely as Result<()>. This is
the form you will often see when reading the documentation for functions
in std::io, std::fs, and elsewhere.

A Concurrent Mandelbrot Program

Finally, all the pieces are in place, and we can show you the main
function, where we can put concurrency to work for us. First, a
nonconcurrent version for simplicity:

use std::io::Write;

fn main() {
let args: Vec<String> = std::env::args().collect();

if args.len() '=5{
writeln!(std::io::stderr(),
"Usage: mandelbrot FILE PIXELS UPPERLEFT LOWERRIGHT")
.unwrap();
writeln!(std::io::stderr(),
"Example: {} mandel.png 1000x750 -1.20,0.35 -1,0.20",
args[0])
.unwrap();
std::process::exit(1);

}

let bounds = parse_pair(&args[2], 'X)
.expect("error parsing image dimensions");

let upper_left = parse_complex(&args[3])
.expect("error parsing upper left corner point");

let lower_right = parse_complex(&args[4])
.expect("error parsing lower right corner point");

let mut pixels = vec![0; bounds.O * bounds.1];
render(&mut pixels, bounds, upper_left, lower_right);

write_image(&args[1], &pixels, bounds)
.expect("error writing PNG file");

After collecting the command-line arguments into a vector of Strings, we
parse each one and then begin calculations.

let mut pixels = vec![0; bounds.O * bounds.1];

A macro call vec!|v; n] creates a vector n elements long whose elements
are initialized to v, so the preceding code creates a vector of zeros whose

length is bounds.0 * bounds.1, where bounds is the image resolution
parsed from the command line. We’ll use this vector as a rectangular
array of one-byte grayscale pixel values, as shown in Figure 2-5.

bounds.®

first row: pixels[®@ .. bounds.® - 1]

pixels

bounds.1

last pixel: pixels[bounds.@*bounds.1 - 1]

Figure 2-5. Using a vector as a rectangular array of pixels

The next line of interest is this:

render(&mut pixels, bounds, upper_left, lower_right);

This calls the render function to actually compute the image. The
expression &mut pixels borrows a mutable reference to our pixel buffer,
allowing render to fill it with computed grayscale values, even while pixels
remains the vector’'s owner. The remaining arguments pass the image’s
dimensions, and the rectangle of the complex plane we’ve chosen to plot.

write_image(&args[1], &pixels, bounds)
.expect("error writing PNG file");

Finally, we write the pixel buffer out to disk as a PNG file. In this case, we
pass a shared (nonmutable) reference to the buffer, since write_image
should have no need to modify the buffer’s contents.

The natural way to distribute this calculation across multiple processors is
to divide the image into sections, one per processor, and let each

processor color the pixels assigned to it. For simplicity, we’ll break it into
horizontal bands, as shown in Figure 2-6. When all processors have
finished, we can write out the pixels to disk.

bounds.0

band 0, rendered by first thread rows_per_band

band 1, rendered by second thread

pixels

bounds.1

last band's height may be

band 7, rendered by last thread
less than rows_per_band

Figure 2-6. Dividing the pixel buffer into bands for parallel rendering

The crossbeam crate provides a number of valuable concurrency
facilities, including a scoped thread facility that does exactly what we
need here. To use it, we must add the following line to our Cargo.toml/
file:

crossbeam ="0.2.8"

Then, we must add the following line to the top of our main.rs file:

extern crate crossbeam;

Then we need to take out the single line calling render, and replace it
with the following:

let threads = 8;
let rows_per_band = bounds.1 / threads + 1;

{

let bands: Vec<&mut [u8]> =
pixels.chunks_mut(rows_per_band * bounds.0).collect();
crossbeam::scope(|spawner] {
for (i, band) in bands.into_iter().enumerate() {
let top = rows_per_band * i;
let height = band.len() / bounds.0;

let band_bounds = (bounds.0, height);
let band_upper_left =
pixel_to_point(bounds, (0, top), upper_left, lower_right);
let band_lower_right =
pixel_to_point(bounds, (bounds.0, top + height),
upper_left, lower_right);

spawner.spawn(move || {
render(band, band_bounds, band_upper_left, band_lower_right);

Ik
b

Breaking this down in the usual way:

let threads = 8;
let rows_per_band = bounds.1 / threads + 1;

Here we decide to use eight threads.! Then we compute how many rows
of pixels each band should have. Since the height of a band is
rows_per_band and the overall width of the image is bounds.0, the area
of a band, in pixels, is rows_per_band * bounds.0. We round the row
count upward, to make sure the bands cover the entire image even if the
height isn’t a multiple of threads.

let bands: Vec<&mut [u8]> =
pixels.chunks_mut(rows_per_band * bounds.0).collect();

Here we divide the pixel buffer into bands. The buffer's chunks_mut
method returns an iterator producing mutable, nonoverlapping slices of
the buffer, each of which encloses rows_per_band * bounds.0 pixels—in
other words, rows_per_band complete rows of pixels. The last slice that
chunks_mut produces may contain fewer rows, but each row will contain
the same number of pixels. Finally, the iterator’s collect method builds a
vector holding these mutable, nonoverlapping slices.

Now we can put the crossbeam library to work:

crossbeam::scope(|spawner| { ... });

The argument |spawner| { ... } is a Rust closure expression. A closure is a
value that can be called as if it were a function. Here, |spawner| is the
argument list, and { ... } is the body of the function. Note that, unlike
functions declared with fn, we don’t need to declare the types of a
closure’s arguments; Rust will infer them, along with its return type.

In this case, crossbeam::scope calls the closure, passing as the spawner
argument a value the closure can use to create new threads. The
crossbeam::scope function waits for all such threads to finish execution
before returning itself. This behavior allows Rust to be sure that such
threads will not access their portions of pixels after it has gone out of
scope, and allows us to be sure that when crossbeam::scope returns, the
computation of the image is complete.

for (i, band) in bands.into_iter().enumerate() {

Here we iterate over the pixel buffer’s bands. The into_iter() iterator gives
each iteration of the loop body exclusive ownership of one band,
ensuring that only one thread can write to it at a time. We explain how
this works in detail in Chapter 5. Then, the enumerate adapter produces
tuples pairing each vector element with its index.

let top = rows_per_band * i;
let height = band.len() / bounds.0;
let band_bounds = (bounds.0, height);
let band_upper_left =
pixel_to_point(bounds, (0, top), upper_left, lower_right);
let band_lower_right =
pixel_to_point(bounds, (bounds.O, top + height),
upper_left, lower_right);

Given the index and the actual size of the band (recall that the last one
might be shorter than the others), we can produce a bounding box of the
sort render requires, but one that refers only to this band of the buffer, not
the entire image. Similarly, we repurpose the renderer’s pixel_to_point
function to find where the band’s upper-left and lower-right corners fall on
the complex plane.

spawner.spawn(move || {

render(band, band_bounds, band_upper_left, band_lower_right);

D

Finally, we create a thread, running the closure move || { ... }. This syntax
IS a bit strange to read: it denotes a closure of no arguments whose body
is the { ... } form. The move keyword at the front indicates that this
closure takes ownership of the variables it uses; in particular, only the
closure may use the mutable slice band.

As we mentioned earlier, the crossbeam::scope call ensures that all
threads have completed before it returns, meaning that it is safe to save
the image to a file, which is our next action.

Running the Mandelbrot Plotter

We've used several external crates in this program: num for complex
number arithmetic; image for writing PNG files; and crossbeam for the
scoped thread creation primitives. Here’s the final Cargo.toml file
including all those dependencies:

[package]

name = "mandelbrot"

version ="0.1.0"

authors = ["You <you@example.com>"]

[dependencies]
crossbeam ="0.2.8"
image ="0.13.0"
num ="0.1.27"

With that in place, we can build and run the program:

$ cargo build --release
Updating registry ~https://github.com/rust-lang/crates.io-index’
Compiling bitflags v0.3.3

Compiling png v0.4.3
Compiling image v0.13.0
Compiling mandelbrot v0.1.0 (file://homejimb/rust/mandelbrot)
Finished release [optimized] target(s) in 42.64 secs
$ time target/release/mandelbrot mandel.png 4000x3000 -1.20,0.35 -1,0.20
real 0m1.750s
user 0m6.205s
sys 0mO0.026s
$

Here, we've used the Unix time program to see how long the program
took to run; note that even though we spent more than six seconds of
processor time computing the image, the elapsed real time was less than
two seconds. You can verify that a substantial portion of that real time is
spent writing the image file by commenting out the code that does so; on
the laptop where this code was tested, the concurrent version reduces
the Mandelbrot calculation time proper by a factor of almost four. We’'ll
show how to substantially improve on this in Chapter 19.

This command should create a file called mandel.png, which you can
view with your system’s image viewing program or in a web browser. If all
has gone well, it should look like Figure 2-7.

Figure 2-7. Results from parallel Mandelbrot program

Safety Is Invisible

In the end, the parallel program we ended up with is not substantially
different from what we might write in any other language: we apportion
pieces of the pixel buffer out among the processors; let each one work on
its piece separately; and when they’ve all finished, present the result. So
what is so special about Rust’'s concurrency support?

What we haven’'t shown here is all the Rust programs we cannot write.
The code we looked at in this chapter partitions the buffer among the
threads correctly, but there are many small variations on that code that
do not (and thus introduce data races); not one of those variations will
pass the Rust compiler’s static checks. A C or C++ compiler will
cheerfully help you explore the vast space of programs with subtle data
races; Rust tells you, up front, when something could go wrong.

In Chapters 4 and 5, we’ll describe Rust’s rules for memory safety.
Chapter 19 explains how these rules also ensure proper concurrency
hygiene. But for those to make sense, it's essential to get a grounding in
Rust’s fundamental types, which we’ll cover in the next chapter.

1 The num_cpus crate provides a function that returns the number of
CPUs available on the current system.

Chapter 3. Basic Types

There are many, many types of books in the world, which makes good
sense, because there are many, many types of people, and everybody
wants to read something different.

—Lemony Snicket
Rust’s types serve several goals:
Safety

By checking a program’s types, the Rust compiler rules out whole
classes of common mistakes. By replacing null pointers and
unchecked unions with type-safe alternatives, Rust is even able to
eliminate errors that are common sources of crashes in other
languages.

Efficiency

Programmers have fine-grained control over how Rust programs
represent values in memory, and can choose types they know the
processor will handle efficiently. Programs needn’t pay for generality
or flexibility they don’t use.

Concision

Rust manages all of this without requiring too much guidance from the
programmer in the form of types written out in the code. Rust
programs are usually less cluttered with types than the analogous
C++ program would be.

Rather than using an interpreter or a just-in-time compiler, Rust is
designed to use ahead-of-time compilation: the translation of your entire
program to machine code is completed before it ever begins execution.
Rust’s types help an ahead-of-time compiler choose good machine-level
representations for the values your program operates on: representations
whose performance you can predict, and which give you full access to
the machine’s capabilities.

Rust is a statically typed language: without actually running the program,
the compiler checks that every possible path of execution will use values
only in ways consistent with their types. This allows Rust to catch many
programming mistakes early, and is crucial to Rust’s safety guarantees.

Compared to a dynamically typed language like JavaScript or Python,
Rust requires more planning from you up front: you must spell out the
types of functions’ parameters and return values, members of struct
types, and a few other constructs. However, two features of Rust make
this less trouble than you might expect:

e Given the types that you did spell out, Rust will infer most of the
rest for you. In practice, there’s often only one type that will work
for a given variable or expression; when this is the case, Rust lets
you leave out the type. For example, you could spell out every
type in a function, like this:

fn build_vector() -> Vec<il6> {
let mut v: Vec<il6> = Vec::<il6>::new();
v.push(10i16);
v.push(20i16);
%

}

But this is cluttered and repetitive. Given the function’s return
type, it's obvious that v must be a Vec<il6>, a vector of 16-bit
signed integers; no other type would work. And from that it
follows that each element of the vector must be an i16. This is
exactly the sort of reasoning Rust’s type inference applies,
allowing you to instead write:

fn build_vector() -> Vec<il6> {
let mut v = Vec::new();
v.push(10);
v.push(20);

\Y

These two definitions are exactly equivalent; Rust will generate
the same machine code either way. Type inference gives back
much of the legibility of dynamically typed languages, while still
catching type errors at compile time.

Functions can be generic: when a function’s purpose and
implementation are general enough, you can define it to work on
any set of types that meet the necessary criteria. A single
definition can cover an open-ended set of use cases.

In Python and JavaScript, all functions work this way naturally: a
function can operate on any value that has the properties and
methods the function will need. (This is the characteristic often
called duck typing: if it quacks like a duck, it's a duck.) But it's
exactly this flexibility that makes it so difficult for those languages
to detect type errors early; testing is often the only way to catch
such mistakes. Rust’s generic functions give the language a
degree of the same flexibility, while still catching all type errors at
compile time.

Despite their flexibility, generic functions are just as efficient as
their nongeneric counterparts. We'll discuss generic functions in
detail in Chapter 11.

The rest of this chapter covers Rust’s types from the bottom up, starting
with simple machine types like integers and floating-point values, and
then showing how to compose them into more complex structures.
Where appropriate, we’ll describe how Rust represents values of these
types in memory, and their performance characteristics.

Here’s a summary of the sorts of types you'll see in Rust. This table
shows Rust’s primitive types, some very common types from the
standard library, and some examples of user-defined types:

i8, 116, i32, i64, Signed and unsigned integers,
u8, ulé, u32, u64 of given bit width

Description Values

42,
-5i8, 0x400u16, 00100i16,
20_922_789_888_000u64,

isize, usize

32, f64

bool
char
(char, u8, i32)

0

struct S { x: f32, y:
f32}

struct T(i32, char);
struct E;

enum Attend {
OnTime, Late(u32)

}
Box<Attend>

&i32, &mut i32

String

&str

[f64; 4], [u8; 256]

Vec<f64>

&[u8], &mut [u8]

&Any, &mut Read

fn(&str, usize) ->
isize
(Closure types

have no written
form)

Signed and unsigned integers,
the same size as an address on the machine
(32 or 64 bits)

IEEE floating-point numbers,
single and double precision

Boolean
Unicode character, 32 bits wide
Tuple: mixed types allowed

“unit” (empty) tuple
Named-field struct
Tuple-like struct

Unit-like struct; has no fields

Enumeration, algebraic data type

Box: owning pointer to value in heap
Shared and mutable references: nonowning
pointers that must not outlive their referent

UTF-8 string, dynamically sized

Reference to str: nonowning pointer to UTF-8
text

Array, fixed length; elements all of same type

Vector, varying length; elements all of same
type

Reference to slice: reference to a portion of an
array or vector, comprising pointer and length

Trait object: reference to any value that
implements a given set of methods

Pointer to function

Closure

b™*' (u8 byte literal)

137,
-0b0101_0010isize,
0xffff_fcOOusize

1.61803, 3.14f32,
6.0221e2364

true, false

= AN, ', WXT7E, \u{CAOY
(%', Ox7f, -1)

0

S{x:120.0, y: 209.0 }

T(120, 'X)
E

Attend::Late(5),
Attend::OnTime

Box::new(Late(15))
&s.y, &mut v

"Z— A
ramen".to_string()

"% (3: soba", &s[0..12]

[1.0, 0.0, 0.0, 1.0],
[b'"; 256]

vecl[0.367, 2.718, 7.389]

&v[10..20], &mut a[..]

value as &Any,
&mut file as &mut Read

i32::saturating_add

la, b] a*a + b*b

Most of these types are covered in this chapter, except for the following:

We give struct types their own chapter, Chapter 9.
We give enumerated types their own chapter, Chapter 10.
We describe trait objects in Chapter 11.

We describe the essentials of String and &str here, but provide
more detail in Chapter 17.

We cover function and closure types in Chapter 14.

Machine Types

The footing of Rust’s type system is a collection of fixed-width numeric
types, chosen to match the types that almost all modern processors
implement directly in hardware, and the Boolean and character types.

The names of Rust’s numeric types follow a regular pattern, spelling out
their width in bits, and the representation they use:

Size (bits) Unsigned integer Signed integer Floating-point

8 us8 i8

16 ul6é i16

32 u32 i32 f32
64 u64 i64 f64
Machine word usize isize

Here, a machine word is a value the size of an address on the machine
the code runs on, usually 32 or 64 bits.

Integer Types

Rust’s unsigned integer types use their full range to represent positive
values and zero:

Type Range

u8 0to28-1 (0to 255)

ulé 0 to 21%-1 (0 to 65,535)

u32 0to 2%2-1 (0 to 4,294,967,295)

u64 0 to 254-1 (0 to 18,446,744,073,709,551,615, or 18 quintillion)

usize O to either 232-1 or 264-1

Rust’s signed integer types use the two’s complement representation,
using the same bit patterns as the corresponding unsigned type to cover
a range of positive and negative values:

Type Range

i8 -27to2’-1(-128 to 127)

i16 -219t0 215-1 (-32,768 to 32,767)

i32 -231t0231-1 (-2,147,483,648 to 2,147,483,647)

i64 —293 10 263-1 (-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
isize Either —231 to 231-1, or —263 t0 263-1

Rust generally uses the u8 type for byte values. For example, reading
data from a file or socket yields a stream of u8 values.

Unlike C and C++, Rust treats characters as distinct from the numeric
types; a char is neither a u8 nor an i8. We describe Rust’s char type in
“Characters”.

The usize and isize types are analogous to size_t and ptrdiff_tin C and
C++. The usize type is unsigned and isize is signed. Their precision
depends on the size of the address space on the target machine: they
are 32 bits long on 32-bit architectures, and 64 bits long on 64-bit
architectures. Rust requires array indices to be usize values. Values

representing the sizes of arrays or vectors or counts of the number of
elements in some data structure also generally have the usize type.

In debug builds, Rust checks for integer overflow in arithmetic:

let big_val = std::i32::MAX;
let x = big_val + 1; // panic: arithmetic operation overflowed

In a release build, this addition would wrap to a negative number (unlike
C++, where signed integer overflow is undefined behavior). But unless
you want to give up debug builds forever, it's a bad idea to count on it.
When you want wrapping arithmetic, use the methods:

let x = big_val.wrapping_add(1); // ok

Integer literals in Rust can take a suffix indicating their type: 42u8 is a u8
value, and 1729isize is an isize. You can omit the suffix on an integer
literal, in which case Rust will try to infer a type for it from the context.
That inference usually identifies a unique type, but sometimes any one of
several types would work. In this case, Rust defaults to i32, if that is
among the possibilities. Otherwise, Rust reports the ambiguity as an
error.

The prefixes 0x, 0o, and Ob designate hexadecimal, octal, and binary
literals.

To make long numbers more legible, you can insert underscores among
the digits. For example, you can write the largest u32 value as

4 294 967 _295. The exact placement of the underscores is not
significant, so you can break hexadecimal or binary numbers into groups
of four digits rather than three, as in Oxffff_ffff, or set off the type suffix
from the digits, as in 127_u8.

Some examples of integer literals:

Literal Type Decimal value
116i8 i8 116

Oxcafeu32 u32 51966
0b0010_1010 Inferred 42

00106 Inferred 70

Although numeric types and the char type are distinct, Rust does provide
byte literals, character-like literals for u8 values: b'X' represents the ASCII
code for the character X, as a u8 value. For example, since the ASCI|I
code for A is 65, the literals b'A" and 65u8 are exactly equivalent. Only
ASCII characters may appear in byte literals.

There are a few characters that you cannot simply place after the single
guote, because that would be either syntactically ambiguous or hard to
read. The following characters require a backslash placed in front of
them:

Character Byte literal Numeric equivalent
Single quote, ' b'\" 39u8

Backslash, \ b\ 92u8

Newline b'\n' 10u8

Carriage return b'\r' 13u8

Tab b't' 9u8

For characters that are hard to write or read, you can write their code in
hexadecimal instead. A byte literal of the form b"\xHH', where HH is any
two-digit hexadecimal number, represents the byte whose value is HH.
For example, you can write a byte literal for the ASCII “escape” control
character as b'\x1b', since the ASCII code for “escape” is 27, or 1B in
hexadecimal. Since byte literals are just another notation for u8 values,
consider whether a simple numeric literal might be more legible: it
probably makes sense to use b\x1b' instead of simply 27 only when you
want to emphasize that the value represents an ASCII code.

You can convert from one integer type to another using the as operator.
We explain how conversions work in “Type Casts”, but here are some
examples:

assert_eq!(i8 as ulé6, ul6); / in range
assert_eq!(ul6 as il6, i16); // in range

assert_eq!(-1 i16 asi32, -1 i32);// sign-extended
assert_eq!(65535 ul6 as i32, 65535 i32); // zero-extended

// Conversions that are out of range for the destination

// produce values that are equivalent to the original modulo 2N,
// where N is the width of the destination in bits. This

// is sometimes called "truncation”.

assert_eq!(1000 i16 as u8, 232 u8);

assert_eq!(65535 u32 asil6, -1 il6);

assert_eq!(-1 i8 asu8, 255 u8);
assert_eq!(255 u8 asi8, -1 i8);

Like any other sort of value, integers can have methods. The standard
library provides some basic operations, which you can look up in the
online documentation. Note that the documentation contains separate
pages for the type itself (search for “i32 (primitive type)”, say), and for the
module dedicated to that type (search for “std::i32"). For example:

assert_eq!(2ul6.pow(4), 16); // exponentiation
assert_eq!((-4i32).abs(), 4); // absolute value
assert_eq!(0b101101u8.count_ones(), 4); // population count

The type suffixes on the literals are required here: Rust can’t look up a
value’s methods until it knows its type. In real code, however, there’s
usually additional context to disambiguate the type, so the suffixes aren’t
needed.

Floating-Point Types

Rust provides IEEE single-and double-precision floating-point types.
Following the IEEE 754-2008 specification, these types include positive
and negative infinities, distinct positive and negative zero values, and a
not-a-number value:

Type Precision Range
f32 |EEE single precision (at least 6 decimal digits) Roughly —3.4 x 1038 to +3.4 x 1038
f64 |EEE double precision (at least 15 decimal digits) Roughly —1.8 x 10398 to +1.8 x 1038

Rust’s 32 and f64 correspond to the float and double types in C and C++
implementations that support IEEE floating point, and in Java, which
always uses IEEE floating point.

Floating-point literals have the general form diagrammed in Figure 3-1.

fractional type

part suffix
/\"L—/_\/\l-"\

31415.926e-4f64
I et

integer exponent
part

Figure 3-1. A floating-point literal

Every part of a floating-point number after the integer part is optional, but
at least one of the fractional part, exponent, or type suffix must be
present, to distinguish it from an integer literal. The fractional part may
consist of a lone decimal point, so 5. is a valid floating-point constant.

If a floating-point literal lacks a type suffix, Rust infers whether it is an f32
or f64 from the context, defaulting to 64 if both would be possible.

(Similarly, C, C++, and Java all treat unsuffixed floating-point literals as
double values.) For the purposes of type inference, Rust treats integer

literals and floating-point literals as distinct classes: it will never infer a

floating-point type for an integer literal, or vice versa.

Some examples of floating-point literals:

Literal Type Mathematical value
-1.5625 Inferred —(1 %)

2. Inferred 2

0.25 Inferred Ya

led Inferred 10,000

40f32 f32 40

9.109_383 56e-31f64 f64 Roughly 9.10938356 x 10731

The standard library’s std::f32 and std::f64 modules define constants for
the IEEE-required special values like INFINITY, NEG_INFINITY
(negative infinity), NAN (the not-a-number value), and MIN and MAX (the
largest and smallest finite values). The std::f32::consts and
std::f64::consts modules provide various commonly used mathematical
constants like E, PI, and the square root of two.

The 32 and f64 types provide a full complement of methods for
mathematical calculations; for example, 2f64.sqrt() is the double-
precision square root of two. The standard library documentation
describes these under the names “f32 (primitive type)” and “f64 (primitive
type)”. Some examples:

assert_eq!(5f32.sqgrt() * 5f32.sqrt(), 5.); // exactly 5.0, per IEEE
assert_eq!(- f6é4.floor(), -1.0);
assert!((-1. / std::f32::INFINITY).is_sign_negative());

As before, you usually won’t need to write out the suffixes in real code,
because the context will determine the type. When it doesn’t, however,
the error messages can be surprising. For example, the following doesn’t
compile:

println!("{}", (2.0).sqrt());
Rust complains:

error: no method named “sqrt” found for type “{float}" in the current scope

This can be a little bewildering; where else but on a floating-point type
would one expect to find a sqrt method? The solution is to spell out which
type you intend, in one way or another:

println!("{}", (2.0_64).sqrt()):
printin!("{}", f64::sqrt(2.0));

Unlike C and C++, Rust performs almost no numeric conversions
implicitly. If a function expects an f64 argument, it's an error to pass an
I32 value as the argument. In fact, Rust won’t even implicitly convert an
116 value to an i32 value, even though every i16 value is also an i32
value. But the key word here is implicitly: you can always write out explicit
conversions using the as operator: i as f64, or x as i32. The lack of
implicit conversions sometimes makes a Rust expression more verbose
than the analogous C or C++ code would be. However, implicit integer
conversions have a well-established record of causing bugs and security
holes; in our experience, the act of writing out numeric conversions in
Rust has alerted us to problems we would otherwise have missed. We
explain exactly how conversions behave in “Type Casts”.

The bool Type

Rust’s Boolean type, bool, has the usual two values for such types, true
and false. Comparison operators like == and < produce bool results: the
value of 2 <5 is true.

Many languages are lenient about using values of other types in contexts
that require a Boolean value: C and C++ implicitly convert characters,
integers, floating-point numbers, and pointers to Boolean values, so they
can be used directly as the condition in an if or while statement. Python
permits strings, lists, dictionaries, and even sets in Boolean contexts,
treating such values as true if they’re nonempty. Rust, however, is very
strict: control structures like if and while require their conditions to be bool
expressions, as do the short-circuiting logical operators && and ||. You
must write if x =0 { ... }, not simply if x { ... }.

Rust’s as operator can convert bool values to integer types:

assert_eq!(false as i32, 0);
assert_eq!(true asi32, 1);

However, as won’t convert in the other direction, from numeric types to
bool. Instead, you must write out an explicit comparison like x != 0.

Although a bool only needs a single bit to represent it, Rust uses an
entire byte for a bool value in memory, so you can create a pointer to it.

Characters

Rust’s character type char represents a single Unicode character, as a
32-bit value.

Rust uses the char type for single characters in isolation, but uses the
UTF-8 encoding for strings and streams of text. So, a String represents
its text as a sequence of UTF-8 bytes, not as an array of characters.

Character literals are characters enclosed in single quotes, like '8' or '!'.
You can use any Unicode character you like: '#F' is a char literal
representing the Japanese kaniji for sabi (rust).

As with byte literals, backslash escapes are required for a few
characters:

Character Rust character literal
Single quote, * "\"
Backslash, \ A\
Newline \n'
Carriage return "\r'
Tab \t'

If you prefer, you can write out a character’s Unicode code point in
hexadecimal:

e |f the character’s code point is in the range U+0000 to U+007F
(that is, if it is drawn from the ASCII character set), then you can
write the character as "\xHH', where HH is a two-digit
hexadecimal number. For example, the character literals *' and
"X2A'" are equivalent, because the code point of the character * is
42, or 2A in hexadecimal.

¢ You can write any Unicode character as \u{HHHHHH}', where
HHHHHH is a hexadecimal number between one and six digits
long. For example, the character literal \u{CAO} represents the
character “5”, a Kannada character used in the Unicode Look of

Disapproval, “G_&”. The same literal could also be simply written
as 'o".

A char always holds a Unicode code point in the range 0x0000 to
OxD7FF, or OXEOQO to Ox10FFFF. A char is never a surrogate pair half
(that is, a code point in the range 0xD800 to OXDFFF), or a value outside
the Unicode codespace (that is, greater than Ox10FFFF). Rust uses the
type system and dynamic checks to ensure char values are always in the
permitted range.

Rust never implicitly converts between char and any other type. You can
use the as conversion operator to convert a char to an integer type; for
types smaller than 32 bits, the upper bits of the character’s value are
truncated:

assert_eq!("*' as i32, 42);
assert_eq!('s' as ul6, Oxca0);
assert_eq!('s' as i8, -0x60); // U+OCAO truncated to eight bits, signed

Going in the other direction, u8 is the only type the as operator will
convert to char: Rust intends the as operator to perform only cheap,
infallible conversions, but every integer type other than u8 includes
values that are not permitted Unicode code points, so those conversions
would require runtime checks. Instead, the standard library function
std::char::from_u32 takes any u32 value and returns an Option<char>: if
the u32 is not a permitted Unicode code point, then from_u32 returns
None; otherwise, it returns Some(c), where c is the char result.

The standard library provides some useful methods on characters, which
you can look up in the online documentation by searching for “char
(primitive type)”, and for the module “std:.char”. For example:

assert_eq!("*'.is_alphabetic(), false);
assert_eq!('B'.is_alphabetic(), true);
assert_eq!('8'.to_digit(10), Some(8));
assert_eq!('s'.len_utf8(), 3);
assert_eq!(std::char::from_digit(2, 10), Some('2"));

Naturally, single characters in isolation are not as interesting as strings

and streams of text. We’'ll describe Rust’s standard String type and text
handling in general in “String Types”.

Tuples

A tuple is a pair, or triple, or quadruple, ... of values of assorted types.
You can write a tuple as a sequence of elements, separated by commas
and surrounded by parentheses. For example, ("Brazil", 1985) is a tuple
whose first element is a statically allocated string, and whose second is
an integer; its type is (&str, i32) (or whatever integer type Rust infers for
1985). Given a tuple value t, you can access its elements as t.0, t.1, and
SO on.

Tuples aren’t much like arrays: for one thing, each element of a tuple can
have a different type, whereas an array’s elements must be all the same
type. Further, tuples allow only constants as indices, like t.4. You can’t
write t.i or t[i] to get the i'th element.

Rust code often uses tuple types to return multiple values from a
function. For example, the split_at method on string slices, which divides
a string into two halves and returns them both, is declared like this:

fn split_at(&self, mid: usize) -> (&str, &str);

The return type (&str, &str) is a tuple of two string slices. You can use
pattern-matching syntax to assign each element of the return value to a
different variable:

let text = "I see the eigenvalue in thine eye";
let (head, tail) = text.split_at(21);
assert_eq!(head, "l see the eigenvalue ");
assert_eq!(tail, "in thine eye");

This is more legible than the equivalent:

let text = "I see the eigenvalue in thine eye";
let temp = text.split_at(21);

let head = temp.0;

let tail = temp.1;

assert_eq!(head, "l see the eigenvalue ");
assert_eq!(tail, "in thine eye");

You'll also see tuples used as a sort of minimal-drama struct type. For
example, in the Mandelbrot program in Chapter 2, we need to pass the
width and height of the image to the functions that plot it and write it to
disk. We could declare a struct with width and height members, but that's
pretty heavy notation for something so obvious, so we just used a tuple:

/// Write the buffer "pixels’, whose dimensions are given by “bounds’, to the
/// file named “filename’.
fn write_image(filename: &str, pixels: &[u8], bounds: (usize, usize))

-> Result<(), std::io::Error>

{.}

The type of the bounds parameter is (usize, usize), a tuple of two usize
values. Admittedly, we could just as well write out separate width and
height parameters, and the machine code would be about the same
either way. It's a matter of clarity. We think of the size as one value, not
two, and using a tuple lets us write what we mean.

The other commonly used tuple type, perhaps surprisingly, is the zero-
tuple (). This is traditionally called the unit type because it has only one
value, also written (). Rust uses the unit type where there’s no meaningful
value to carry, but context requires some sort of type nonetheless.

For example, a function that returns no value has a return type of (). The
standard library’s std::mem::swap function has no meaningful return
value; it just exchanges the values of its two arguments. The declaration
for std::mem::swap reads:

fn swap<T>(x: &mut T, y: &mut T);

The <T> means that swap is generic: you can use it on references to
values of any type T. But the signature omits the swap’s return type
altogether, which is shorthand for returning the unit type:

fn swap<T>(x: &mut T, y: &mut T) -> ();

Similarly, the write_bitmap example we mentioned before has a return
type of Result<(), std::io::Error>, meaning that the function returns a
std::io::Error value if something goes wrong, but returns no value on

SUcCcCess.

If you like, you may include a comma after a tuple’s last element: the
types (&str, i32,) and (&str, i32) are equivalent, as are the expressions
("Brazil", 1985,) and ("Brazil", 1985). Rust consistently permits an extra
trailing comma everywhere commas are used: function arguments,
arrays, struct and enum definitions, and so on. This may look odd to
human readers, but it can make diffs easier to read when entries are
added and removed at the end of a list.

For consistency’s sake, there are even tuples that contain a single value.
The literal ("lonely hearts",) is a tuple containing a single string; its type is
(&str,). Here, the comma after the value is necessary to distinguish the
singleton tuple from a simple parenthetic expression.

Pointer Types
Rust has several types that represent memory addresses.

This is a big difference between Rust and most languages with garbage
collection. In Java, if class Tree contains a field Tree left;, then leftis a
reference to another separately created Tree object. Objects never
physically contain other objects in Java.

Rust is different. The language is designed to help keep allocations to a
minimum. Values nest by default. The value ((0, 0), (1440, 900)) is stored
as four adjacent integers. If you store it in a local variable, you've got a
local variable four integers wide. Nothing is allocated in the heap.

This is great for memory efficiency, but as a consequence, when a Rust
program needs values to point to other values, it must use pointer types
explicitly. The good news is that the pointer types used in safe Rust are
constrained to eliminate undefined behavior, so pointers are much easier
to use correctly in Rust than in C++,

We’'ll discuss three pointer types here: references, boxes, and unsafe
pointers.

References

A value of type &String (pronounced “ref String”) is a reference to a
String value, a &i32 is a reference to an i32, and so on.

It's easiest to get started by thinking of references as Rust’s basic pointer
type. A reference can point to any value anywhere, stack or heap. The
expression &x produces a reference to x; in Rust terminology, we say
that it borrows a reference to x. Given a reference r, the expression *r
refers to the value r points to. These are very much like the & and *
operators in C and C++. And like a C pointer, a reference does not
automatically free any resources when it goes out of scope.

Unlike C pointers, however, Rust references are never null: there is
simply no way to produce a null reference in safe Rust. And Rust
references are immutable by default:

&T
Immutable reference, like const T* in C.

&mut T
Mutable reference, like T* in C.

Another major difference is that Rust tracks the ownership and lifetimes
of values, so mistakes like dangling pointers, double frees, and pointer
invalidation are ruled out at compile time. Chapter 5 explains Rust’s rules
for safe reference use.

Boxes

The simplest way to allocate a value in the heap is to use Box::new:

lett=(12, "eggs");
let b = Box::new(t); // allocate a tuple in the heap

The type of tis (i32, &str), so the type of b is Box<(i32, &str)>. Box::new()
allocates enough memory to contain the tuple on the heap. When b goes
out of scope, the memory is freed immediately, unless b has been moved
—Dby returning it, for example. Moves are essential to the way Rust
handles heap-allocated values; we explain all this in detail in Chapter 4.

Raw Pointers

Rust also has the raw pointer types *mut T and *const T. Raw pointers
really are just like pointers in C++. Using a raw pointer is unsafe,
because Rust makes no effort to track what it points to. For example, raw
pointers may be null, or they may point to memory that has been freed or
that now contains a value of a different type. All the classic pointer
mistakes of C++ are offered for your enjoyment.

However, you may only dereference raw pointers within an unsafe block.
An unsafe block is Rust’'s opt-in mechanism for advanced language
features whose safety is up to you. If your code has no unsafe blocks (or
if those it does have are written correctly), then the safety guarantees we
emphasize throughout this book still hold. For details, see Chapter 21.

Arrays, Vectors, and Slices

Rust has three types for representing a sequence of values in memory:

e The type [T; N] represents an array of N values, each of type T.
An array’s size is a constant determined at compile time, and is
part of the type; you can’'t append new elements, or shrink an
array.

e The type Vec<T>, called a vector of Ts, is a dynamically
allocated, growable sequence of values of type T. A vector’s
elements live on the heap, so you can resize vectors at will: push
new elements onto them, append other vectors to them, delete
elements, and so on.

e The types &[T] and &mut [T], called a shared slice of Ts and
mutable slice of Ts, are references to a series of elements that
are a part of some other value, like an array or vector. You can
think of a slice as a pointer to its first element, together with a
count of the number of elements you can access starting at that
point. A mutable slice &mut [T] lets you read and modify
elements, but can’t be shared; a shared slice &[T] lets you share
access among several readers, but doesn’t let you modify
elements.

Given a value v of any of these three types, the expression v.len() gives
the number of elements in v, and Vv][i] refers to the i'th element of v. The
first element is v[0], and the last element is v[v.len() - 1]. Rust checks that
| always falls within this range; if it doesn’t, the expression panics. The
length of v may be zero, in which case any attempt to index it will panic. i
must be a usize value; you can’t use any other integer type as an index.

Arrays

There are several ways to write array values. The simplest is to write a
series of values within square brackets:

let lazy_caterer: [u32; 6] =11, 2,4, 7, 11, 16];
let taxonomy = ["Animalia”, "Arthropoda”, "Insecta"];

assert_eq!(lazy_caterer[3], 7);
assert_eq!(taxonomy.len(), 3);

For the common case of a long array filled with some value, you can
write [V; N], where V is the value each element should have, and N is the
length. For example, [true; 10000] is an array of 10,000 bool elements, all
set to true:

let mut sieve = [true; 10000];
foriin2..100{
if sieveli] {
letmutj=i*i
while j < 10000 {
sieve[j] = false;
j=i;
}
}
}

assert!(sieve[211]);
assert!(!sieve[9876]);

You'll see this syntax used for fixed-size buffers: [Ou8; 1024] can be a
one-kilobyte buffer, filled with zero bytes. Rust has no notation for an
uninitialized array. (In general, Rust ensures that code can never access
any sort of uninitialized value.)

An array’s length is part of its type and fixed at compile time. If nis a
variable, you can’t write [true; n] to get an array of n elements. When you
need an array whose length varies at runtime (and you usually do), use a
vector instead.

The useful methods you'd like to see on arrays—iterating over elements,

searching, sorting, filling, filtering, and so on—all appear as methods of
slices, not arrays. But Rust implicitly converts a reference to an array to a
slice when searching for methods, so you can call any slice method on
an array directly:

let mut chaos =[3, 5, 4, 1, 2];
chaos.sort();
assert_eq!(chaos, [1, 2, 3, 4, 5]);

Here, the sort method is actually defined on slices, but since sort takes its
operand by reference, we can use it directly on chaos: the call implicitly
produces a &mut [i32] slice referring to the entire array. In fact, the len
method we mentioned earlier is a slice method as well. We cover slices
in more detail in “Slices”.

Vectors

A vector Vec<T> is a resizable array of elements of type T, allocated on
the heap.

There are several ways to create vectors. The simplest is to use the vec!
macro, which gives us a syntax for vectors that looks very much like an
array literal:

let mut v =vec![2, 3, 5, 7];
assert_eq!(v.iter().fold(1, |a, b| a * b), 210);

But of course, this is a vector, not an array, so we can add elements to it
dynamically:

v.push(11);
v.push(13);
assert_eq!(v.iter().fold(1, |a, b| a * b), 30030);

You can also build a vector by repeating a given value a certain number
of times, again using a syntax that imitates array literals:

fn new_pixel_buffer(rows: usize, cols: usize) -> Vec<u8> {
vec![0; rows * cols]

}

The vec! macro is equivalent to calling Vec::new to create a new, empty
vector, and then pushing the elements onto it, which is another idiom:

let mut v = Vec::new();

v.push("step");

v.push("on");

v.push("na");

v.push("pets");

assert_eq!(v, vec!['step", "on", "no", "pets");

Another possibility is to build a vector from the values produced by an
iterator:

let v: Vec<i32> = (0..5).collect();

assert_eq!(v, [0, 1, 2, 3, 4]);

You'll often need to supply the type when using collect (as we've done
here), because it can build many different sorts of collections, not just
vectors. By making the type for v explicit, we’ve made it unambiguous
which sort of collection we want.

As with arrays, you can use slice methods on vectors:

// A palindrome!

let mut v = vec!['a man", "a plan”, "a canal", "panama'];
v.reverse();

// Reasonable yet disappointing:

assert_eq!(v, vec!["panama", "a canal”, "a plan”, "a man"]);

Here, the reverse method is actually defined on slices, but the call
implicitly borrows a &mut [&str] slice from the vector, and invokes reverse
on that.

Vec is an essential type to Rust—it's used almost anywhere one needs a
list of dynamic size—so there are many other methods that construct new
vectors or extend existing ones. We’'ll cover them in Chapter 16.

A Vec<T> consists of three values: a pointer to the heap-allocated buffer
allocated to hold the elements; the number of elements that buffer has
the capacity to store; and the number it actually contains now (in other
words, its length). When the buffer has reached its capacity, adding
another element to the vector entails allocating a larger buffer, copying
the present contents into it, updating the vector’'s pointer and capacity to
describe the new buffer, and finally freeing the old one.

If you know the number of elements a vector will need in advance,
instead of Vec::new you can call Vec::with_capacity to create a vector
with a buffer large enough to hold them all, right from the start; then, you
can add the elements to the vector one at a time without causing any
reallocation. The vec! macro uses a trick like this, since it knows how
many elements the final vector will have. Note that this only establishes
the vector’s initial size; if you exceed your estimate, the vector simply
enlarges its storage as usual.

Many library functions look for the opportunity to use Vec::with_capacity
instead of Vec::new. For example, in the collect example, the iterator 0..5
knows in advance that it will yield five values, and the collect function
takes advantage of this to preallocate the vector it returns with the correct
capacity. We'll see how this works in Chapter 15.

Just as a vector’'s len method returns the number of elements it contains
now, its capacity method returns the number of elements it could hold
without reallocation:

let mut v = Vec::with_capacity(2);
assert_eq!(v.len(), 0);
assert_eq!(v.capacity(), 2);

v.push(1);

v.push(2);
assert_eq!(v.len(), 2);
assert_eq!(v.capacity(), 2);

v.push(3);
assert_eq!(v.len(), 3);
assert_eq!(v.capacity(), 4);

The capacities you'll see in your code may differ from those shown here.
Vec and the system’s heap allocator may round up requests, even in the
with_capacity case.

You can insert and remove elements wherever you like in a vector,
although these operations shift all the elements after the insertion point
forward or backward, so they may be slow if the vector is long:

let mut v = vec![10, 20, 30, 40, 50];

// Make the element at index 3 be 35.
v.insert(3, 35);
assert_eq!(v, [10, 20, 30, 35, 40, 50]);

// Remove the element at index 1.
v.remove(l);
assert_eq!(v, [10, 30, 35, 40, 50]);

You can use the pop method to remove the last element and return it.
More precisely, popping a value from a Vec<T> returns an Option<T>:

None if the vector was already empty, or Some(v) if its last element had
been v:

let mut v = vec!['carmen”, "miranda'];
assert_eq!(v.pop(), Some("'miranda"));
assert_eq!(v.pop(), Some("carmen"));
assert_eq!(v.pop(), None);

You can use a for loop to iterate over a vector:

// Get our command-line arguments as a vector of Strings.
let languages: Vec<String> = std::env::args().skip(1).collect();
for | in languages {
printin!("{}: {}", I,
ifllen) % 2==0{
"functional”
} else {
"imperative”

s

Running this program with a list of programming languages is
illuminating:

$ cargo run Lisp Scheme C C++ Fortran
Compiling fragments v0.1.0 (file:///home/jimb/rust/book/fragments)
Running ".../target/debug/fragments Lisp Scheme C C++ Fortran®
Lisp: functional
Scheme: functional
C: imperative
C++: imperative
Fortran: imperative
$

Finally, a satisfying definition for the term functional language.

Despite its fundamental role, Vec is an ordinary type defined in Rust, not
built into the language. We’'ll cover the techniques needed to implement
such types in Chapter 21.

Building Vectors Element by Element

Building a vector one element at a time isn’t as bad as it might sound.
Whenever a vector outgrows its buffer’'s capacity, it chooses a new buffer
twice as large as the old one. Suppose the vector starts with a buffer that
can hold only one element: as it grows to its final capacity, it'll have
buffers of size 1, 2, 4, 8, and so on until it reaches its final size of 27, for
some n. If you think about how powers of two work, you'll see that the
total size of all the previous, smaller buffers put together is 2"-1, very
close to the final buffer size. Since the number of actual elements is at
least half the buffer size, the vector has always performed less than two
copies per element!

What this means is that using Vec::with_capacity instead of Vec::new is a
way to gain a constant factor improvement in speed, rather than an
algorithmic improvement. For small vectors, avoiding a few calls to the
heap allocator can make an observable difference in performance.

Slices

A slice, written [T] without specifying the length, is a region of an array or
vector. Since a slice can be any length, slices can’t be stored directly in
variables or passed as function arguments. Slices are always passed by
reference.

A reference to a slice is a fat pointer: a two-word value comprising a
pointer to the slice’s first element, and the number of elements in the
slice.

Suppose you run the following code:

let v: Vec<f64> = vec![0.0, 0.707, 1.0, 0.707];
let a: [f64; 4]= [0.0,-0.707, -1.0, -0.707];

let sv: &[f64] = &v;
let sa: &[f64] = &a;

On the last two lines, Rust automatically converts the &Vec<f64>
reference and the &[f64; 4] reference to slice references that point
directly to the data.

By the end, memory looks like Figure 3-2.

stack

owning pointer

heap .0.0 0.707 | 1.0 0.707'

Figure 3-2. A vector v and an array a in memory, with slices sa and sv referring to each

reference (non-owning)

Whereas an ordinary reference is a nonowning pointer to a single value,
a reference to a slice is a nonowning pointer to several values. This

makes slice references a good choice when you want to write a function
that operates on any homogeneous data series, whether stored in an
array, vector, stack, or heap. For example, here’s a function that prints a
slice of numbers, one per line:

fn print(n: &[f64]) {
foreltinn{
printin!("{}", elt);
}
}

print(&v); // works on vectors
print(&a); // works on arrays

Because this function takes a slice reference as an argument, you can
apply it to either a vector or an array, as shown. In fact, many methods
you might think of as belonging to vectors or arrays are actually methods
defined on slices: for example, the sort and reverse methods, which sort
or reverse a sequence of elements in place, are actually methods on the
slice type [T].

You can get a reference to a slice of an array or vector, or a slice of an
existing slice, by indexing it with a range:

print(&v[0..2]); // print the first two elements of v
print(&a[2..]); // print elements of a starting with a[2]
print(&sv([1..3]); // print v[1] and v[2]

As with ordinary array accesses, Rust checks that the indices are valid.
Trying to borrow a slice that extends past the end of the data results in a
panic.

We often use the term slice for reference types like &[T] or &str, but that
is a bit of shorthand: those are properly called references to slices. Since
slices almost always appear behind references, we use the shorter name
for the more common concept.

String Types

Programmers familiar with C++ will recall that there are two string types
in the language. String literals have the pointer type const char *. The
standard library also offers a class, std::string, for dynamically creating
strings at runtime.

Rust has a similar design. In this section, we’ll show all the ways to write
string literals, then introduce Rust’s two string types. We provide more
detail about strings and text handling in Chapter 17.

String Literals

String literals are enclosed in double quotes. They use the same
backslash escape sequences as char literals:

let speech = "\"Ouch!\" said the well.\n";

In string literals, unlike char literals, single quotes don’'t need a backslash
escape, and double quotes do.

A string may span multiple lines:

printin!("In the room the women come and go,
Singing of Mount Abora");

The newline character in that string literal is included in the string, and
therefore in the output. So are the spaces at the beginning of the second
line.

If one line of a string ends with a backslash, then the newline character
and the leading whitespace on the next line are dropped:

printin!("It was a bright, cold day in April, and \
there were four of us—\
more or less.";

This prints a single line of text. The string contains a single space
between “and” and “there”, because there is a space before the
backslash in the program, and no space after the dash.

In a few cases, the need to double every backslash in a string is a
nuisance. (The classic examples are regular expressions and Windows
paths.) For these cases, Rust offers raw strings. A raw string is tagged
with the lowercase letter r. All backslashes and whitespace characters
inside a raw string are included verbatim in the string. No escape
sequences are recognized.

let default_win_install_path = r"C:\Program Files\Gorillas";

let pattern = Regex::new(r"\d+(\.\d+)*";

You can't include a double-quote character in a raw string simply by
putting a backslash in front of it—remember, we said no escape
sequences are recognized. However, there is a cure for that too. The
start and end of a raw string can be marked with pound signs:

printin!(r###"
This raw string started with "r###".
Therefore it does not end until we reach a quote mark (")
followed immediately by three pound signs (‘###'):

"HHE),

You can add as few or as many pound signs as needed to make it clear
where the raw string ends.

Byte Strings

A string literal with the b prefix is a byte string. Such a string is a slice of
u8 values—that is, bytes—rather than Unicode text:

let method = b"GET";
assert_eq!(method, &[b'G', b'E', b'TY);

This combines with all the other string syntax we’ve shown: byte strings
can span multiple lines, use escape sequences, and use backslashes to
join lines. Raw byte strings start with br".

Byte strings can’t contain arbitrary Unicode characters. They must make
do with ASCII and \xHH escape sequences.

The type of method shown here is &[u8; 3] it's a reference to an array of
three bytes. It doesn’t have any of the string methods we’ll discuss in a

minute. The most string-like thing about it is the syntax we used to write
it.

Strings in Memory

Rust strings are sequences of Unicode characters, but they are not
stored in memory as arrays of chars. Instead, they are stored using UTF-
8, a variable-width encoding. Each ASCII character in a string is stored in
one byte. Other characters take up multiple bytes.

Figure 3-3 shows the String and &str values created by the code:

let noodles = "noodles".to_string();
let oodles = &noodles[1..];
let poodles = "©_©";

noodles: oodles: poodles:
String &str &str
f\A_—'\

stack
frame ?

(.
%,

(2

A 4
heap - n -

e e three-byte UTF-8

str borrows encoding for“a"

(unsized) v —~—A—

preallocated T o -
read-only memory L - 1L
,d/—/

str
(unsized)

Figure 3-3. String, &str, and str

A String has a resizable buffer holding UTF-8 text. The buffer is allocated
on the heap, so it can resize its buffer as needed or requested. In the
example, noodles is a String that owns an eight-byte buffer, of which
seven are in use. You can think of a String as a Vec<u8> that is
guaranteed to hold well-formed UTF-8; in fact, this is how String is
implemented.

A &str (pronounced “stir” or “string slice”) is a reference to a run of UTF-8
text owned by someone else: it “borrows” the text. In the example, oodles
is a &str referring to the last six bytes of the text belonging to noodles, so
it represents the text “oodles”. Like other slice references, a &str is a fat
pointer, containing both the address of the actual data and its length. You
can think of a &str as being nothing more than a &[u8] that is guaranteed
to hold well-formed UTF-8.

A string literal is a &str that refers to preallocated text, typically stored in
read-only memory along with the program’s machine code. In the
preceding example, poodles is a string literal, pointing to seven bytes that
are created when the program begins execution, and that last until it
exits.

A String or &str’s .len() method returns its length. The length is measured
in bytes, not characters:

assert_eq!("s_a".len(), 7);
assert_eq!("s_a".chars().count(), 3);

It is impossible to modify a &str:

let mut s = "hello™;
s[0] ='c'; //error: the type “str' cannot be mutably indexed
s.push(\n"); // error: no method named "push’ found for type "&str’

For creating new strings at run time, use String.

The type &mut str does exist, but it is not very useful, since almost any
operation on UTF-8 can change its overall byte length, and a slice cannot
reallocate its referent. In fact, the only operations available on &mut str
are make_ascii_uppercase and make_ascii_lowercase, which modify the
text in place and affect only single-byte characters, by definition.

String

&str is very much like &[T]: a fat pointer to some data. String is analogous
to Vec<T>:

Vec<T> String
Automatically frees buffers Yes Yes
Growable Yes Yes
:new() and ::with_capacity() static methods Yes Yes
.reserve() and .capacity() methods Yes Yes
.push() and .pop() methods Yes Yes
Range syntax v[start..stop] Yes, returns &[T] Yes, returns &str
Automatic conversion &Vec<T>to &[T] &String to &str
Inherits methods From &[T] From &str

Like a Vec, each String has its own heap-allocated buffer that isn’'t
shared with any other String. When a String variable goes out of scope,
the buffer is automatically freed, unless the String was moved.

There are several ways to create Strings:

e The .to_string() method converts a &str to a String. This copies
the string:

let error_message = "too many pets".to_string();

¢ The format!() macro works just like println!(), except that it returns
a new String instead of writing text to stdout, and it doesn’t
automatically add a newline at the end.

assert_eq!(format!("{}°{:02}'{:02}"N", 24, 5, 23),
"24°05'23"N".to_string());

e Arrays, slices, and vectors of strings have two methods, .concat()
and .join(sep), that form a new String from many strings.

let bits = vec!["veni”, "vidi", "vici";
assert_eq!(bits.concat(), "venividivici");

assert_eq!(bits.join(",), "veni, vidi, vici");

The choice sometimes arises of which type to use: &str or String.
Chapter 5 addresses this question in detail. For now it will suffice to point
out that a &str can refer to any slice of any string, whether it is a string
literal (stored in the executable) or a String (allocated and freed at run
time). This means that &str is more appropriate for function arguments
when the caller should be allowed to pass either kind of string.

Using Strings

Strings support the == and != operators. Two strings are equal if they
contain the same characters in the same order (regardless of whether
they point to the same location in memory).

assert!("ONE".to_lowercase() == "one");

Strings also support the comparison operators <, <=, >, and >=, as well
as many useful methods and functions that you can find in the online
documentation by searching for “str (primitive type)” or the “std::str”
module (or just flip to Chapter 17). Here are a few examples:

assert!("peanut”.contains("nut"));
assert_eq!("s_d".replace("s", "m"), "'m_m");
assert_eq!(" clean\n".trim(), "clean™;

for word in "veni, vidi, vici".split(", ") {
assert!(word.starts_with("v"));

}

Keep in mind that, given the nature of Unicode, simple char-by-char
comparison does not always give the expected answers. For example,
the Rust strings "th\u{e9}" and "the\u{301}" are both valid Unicode
representations for the, the French word for tea. Unicode says they
should both be displayed and processed in the same way, but Rust treats
them as two completely distinct strings. Similarly, Rust’s ordering
operators like < use a simple lexicographical order based on character
code point values. This ordering only sometimes resembles the ordering
used for text in the user’s language and culture. We discuss these issues
in more detail in Chapter 17.

Other String-Like Types

Rust guarantees that strings are valid UTF-8. Sometimes a program
really needs to be able to deal with strings that are not valid Unicode.
This usually happens when a Rust program has to interoperate with
some other system that doesn’t enforce any such rules. For example, in
most operating systems it's easy to create a file with a filename that isn’t
valid Unicode. What should happen when a Rust program comes across
this sort of filename?

Rust’s solution is to offer a few string-like types for these situations:

Stick to String and &str for Unicode text.

When working with filenames, use std::path::PathBuf and &Path
instead.

When working with binary data that isn’t character data at all, use
Vec<u8> and &[u8].

When working with environment variable names and command-
line arguments in the native form presented by the operating
system, use OsString and &OsStr.

When interoperating with C libraries that use null-terminated
strings, use std::ffi;:CString and &CStr.

Beyond the Basics

Types are a central part of Rust. We'll continue talking about types and
introducing new ones throughout the book. In particular, Rust’s user-
defined types give the language much of its flavor, because that’s where
methods are defined. There are three kinds of user-defined types, and
we’ll cover them in three successive chapters: structs in Chapter 9,
enums in Chapter 10, and traits in Chapter 11.

Functions and closures have their own types, covered in Chapter 14. And
the types that make up the standard library are covered throughout the
book. For example, Chapter 16 presents the standard collection types.

All of that will have to wait, though. Before we move on, it's time to tackle
the concepts that are at the heart of Rust’s safety rules.

Chapter 4. Ownership

I've found that Rust has forced me to learn many of the things that |
was slowly learning as ‘good practice’ in C/C++ before | could even
compile my code. ...l want to stress that Rust isn’t the kind of language
you can learn in a couple days and just deal with the
hard/technical/good-practice stuff later. You will be forced to learn strict
safety immediately and it will probably feel uncomfortable at first.
However in my own experience, this has led me towards feeling like
compiling my code actually means something to me again.

—Mitchell Nordine

Rust makes the following pair of promises, both essential to a safe
systems programming language:

¢ You decide the lifetime of each value in your program. Rust frees
memory and other resources belonging to a value promptly, at a
point under your control.

e Even so, your program will never use a pointer to an object after
it has been freed. Using a dangling pointer is a common mistake
in C and C++: if you're lucky, your program crashes. If you're
unlucky, your program has a security hole. Rust catches these
mistakes at compile time.

C and C++ keep the first promise: you can call free or delete on any
object in the dynamically allocated heap you like, whenever you like. But
in exchange, the second promise is set aside: it is entirely your
responsibility to ensure that no pointer to the value you freed is ever
used. There’s ample empirical evidence that this is a difficult
responsibility to meet: pointer misuse has been a common culprit in
public databases of reported security problems for as long as that data
has been collected.

Plenty of languages fulfill the second promise using garbage collection,
automatically freeing objects only when all reachable pointers to them are

https://www.quora.com/What-do-C-C++-systems-programmers-think-of-Rust/answer/Mitchell-Nordine

gone. But in exchange, you relinquish control to the collector over exactly
when objects get freed. In general, garbage collectors are surprising
beasts, and understanding why memory wasn't freed when you expected
can be a challenge. And if you're working with objects that represent files,
network connections, or other operating system resources, not being able
to trust that they’ll be freed at the time you intended, and their underlying
resources cleaned up along with them, is a disappointment.

None of these compromises are acceptable for Rust: the programmer
should have control over values’ lifetimes, and the language should be
safe. But this is a pretty well-explored area of language design. You can't
make major improvements without some fundamental changes.

Rust breaks the deadlock in a surprising way: by restricting how your
programs can use pointers. This chapter and the next are devoted to
explaining exactly what these restrictions are and why they work. For
now, suffice it to say that some common structures you are accustomed
to using may not fit within the rules, and you’ll need to look for
alternatives. But the net effect of these restrictions is to bring just enough
order to the chaos to allow Rust’s compile-time checks to verify that your
program is free of memory safety errors: dangling pointers, double frees,
using uninitialized memory, and so on. At runtime, your pointers are
simple addresses in memory, just as they would be in C and C++. The
difference is that your code has been proven to use them safely.

These same rules also form the basis of Rust’s support for safe
concurrent programming. Using Rust’s carefully designed threading
primitives, the rules that ensure your code uses memory correctly also
serve to prove that it is free of data races. A bug in a Rust program
cannot cause one thread to corrupt another’s data, introducing hard-to-
reproduce failures in unrelated parts of the system. The nondeterministic
behavior inherent in multithreaded code is isolated to those features
designed to handle it—mutexes, message channels, atomic values, and
so on—rather than appearing in ordinary memory references.
Multithreaded code in C and C++ has earned its ugly reputation, but Rust
rehabilitates it quite nicely.

Rust’s radical wager, the claim on which it stakes its success, and that

forms the root of the language, is that even with these restrictions in
place, you'll find the language more than flexible enough for almost every
task, and that the benefits—the elimination of broad classes of memory
management and concurrency bugs—uwill justify the adaptations you'll
need to make to your style. The authors of this book are bullish on Rust
exactly because of our extensive experience with C and C++. For us,
Rust’'s deal is a no-brainer.

Rust’s rules are probably unlike what you’ve seen in other programming
languages. Learning how to work with them and turn them to your
advantage is, in our opinion, the central challenge of learning Rust. In this
chapter, we’ll first motivate Rust’s rules by showing how the same
underlying issues play out in other languages. Then, we’ll explain Rust’s
rules in detail. Finally, we’ll talk about some exceptions and almost-
exceptions.

Ownership

If you've read much C or C++ code, you've probably come across a
comment saying that an instance of some class owns some other object
that it points to. This generally means that the owning object gets to
decide when to free the owned object: when the owner is destroyed, it
destroys its possessions along with it.

For example, suppose you write the following C++ code:
std::string s = "frayed knot";

The string s is usually represented in memory as shown in Figure 4-1.

/“-—-—A—f-\
stack
frame g || -
4, G B
% %,
% %, %
. capacity I
v
heap-frayed kfnj]o]t -

length

Figure 4-1. A C++ std.:string value on the stack, pointing to its heap-allocated buffer

Here, the actual std::string object itself is always exactly three words
long, comprising a pointer to a heap-allocated buffer, the buffer’'s overall
capacity (that is, how large the text can grow before the string must
allocate a larger buffer to hold it), and the length of the text it holds now.
These are fields private to the std::string class, not accessible to the
string’s users.

A std::string owns its buffer: when the program destroys the string, the
string’s destructor frees the buffer. In the past, some C++ libraries shared

a single buffer among several std::string values, using a reference count
to decide when the buffer should be freed. Newer versions of the C++
specification effectively preclude that representation; all modern C++
libraries use the approach shown here. In these situations it's generally
understood that, although it's fine for other code to create temporary
pointers to the owned memory, it is that code’s responsibility to make
sure its pointers are gone before the owner decides to destroy the owned
object. You can create a pointer to a character living in a std::string’s
buffer, but when the string is destroyed, your pointer becomes invalid,
and it's up to you to make sure you don’t use it anymore. The owner
determines the lifetime of the owned, and everyone else must respect its
decisions.

Rust takes this principle out of the comments and makes it explicit in the
language. In Rust, every value has a single owner that determines its
lifetime. When the owner is freed—dropped, in Rust terminology—the
owned value is dropped too. These rules are meant to make it easy for
you to find any given value’s lifetime simply by inspecting the code, giving
you the control over its lifetime that a systems language should provide.

A variable owns its value. When control leaves the block in which the
variable is declared, the variable is dropped, so its value is dropped along
with it. For example:

fn print_padovan() {
let mut padovan = vec![1,1,1]; // allocated here
foriin3..10{
let next = padovan(i-3] + padovan[i-2];
padovan.push(next);

}
printin!("P(1..10) = {:?}", padovan);
} // dropped here

The type of the variable padovan is std::vec::Vec<i32>, a vector of 32-bit
integers. In memory, the final value of padovan will look something like
Figure 4-2.

/“-—-—A—f-\
stack
frame 9| 10-
4. G, %
% ‘%%giééz
. capacity i
\ 4
heap.11‘|2234579 -

length
Figure 4-2. A Vec 32 on the stack, pointing to its buffer in the heap

This is very similar to the C++ std::string we showed earlier, except that
the elements in the buffer are 32-bit values, not characters. Note that the
words holding padovan’s pointer, capacity, and length live directly in the
stack frame of the print_padovan function; only the vector’s buffer is
allocated on the heap.

As with the string s earlier, the vector owns the buffer holding its
elements. When the variable padovan goes out of scope at the end of the
function, the program drops the vector. And since the vector owns its
buffer, the buffer goes with it.

Rust’'s Box type serves as another example of ownership. A Box<T> is a
pointer to a value of type T stored on the heap. Calling Box::new(v)
allocates some heap space, moves the value v into it, and returns a Box
pointing to the heap space. Since a Box owns the space it points to,
when the Box is dropped, it frees the space too.

For example, you can allocate a tuple in the heap like so:

{
let point = Box::new((0.625, 0.5)); // point allocated here

let label = format!("{:?}", point); // label allocated here
assert_eq!(label, "(0.625, 0.5)");
} // both dropped here

When the program calls Box::new, it allocates space for a tuple of two f64

values on the heap, moves its argument (0.625, 0.5) into that space, and
returns a pointer to it. By the time control reaches the call to assert_eq!,
the stack frame looks like Figure 4-3.

point label
I\A/\/-\M

stack
frame o 12-

™ =Era § [DEGDEEEOEED |

Figure 4-3. Two local variables, each owning memory in the heap

The stack frame itself holds the variables point and label, each of which
refers to a heap allocation that it owns. When they are dropped, the
allocations they own are freed along with them.

Just as variables own their values, structs own their fields; and tuples,
arrays, and vectors own their elements:

struct Person { name: String, birth: i32 }

let mut composers = Vec::new();

composers.push(Person { name: "Palestrina".to_string(),
birth: 1525 });

composers.push(Person { name: "Dowland".to_string(),
birth: 1563 });

composers.push(Person { name: "Lully".to_string(),
birth: 1632 });

for composer in &composers {

printin!("{}, born {}", composer.name, composer.birth);

}

Here, composers is a Vec<Person>, a vector of structs, each of which
holds a string and a number. In memory, the final value of composers
looks like Figure 4-4.

composers

stack
frame 9|4 3-

[0] [1] [2]

w hame birth

heap .’ 16 | 10 |1525 ¥ 8 | 7 [1563 Q 8 | 5 [1632 -

o5 /o
2, ‘%

lPaIestrina . lDowland . Lully —.

Figure 4-4. A more complex tree of ownership

There are many ownership relationships here, but each one is pretty
straightforward: composers owns a vector; the vector owns its elements,
each of which is a Person structure; each structure owns its fields; and
the string field owns its text. When control leaves the scope in which
composers is declared, the program drops its value, and takes the entire
arrangement with it. If there were other sorts of collections in the picture
—a HashMap, perhaps, or a BTreeSet—the story would be the same.

At this point, take a step back and consider the consequences of the
ownership relations we’ve presented so far. Every value has a single
owner, making it easy to decide when to drop it. But a single value may
own many other values: for example, the vector composers owns all of its
elements. And those values may own other values in turn: each element
of composers owns a string, which owns its text.

It follows that the owners and their owned values form trees: your owner
is your parent, and the values you own are your children. And at the
ultimate root of each tree is a variable; when that variable goes out of
scope, the entire tree goes with it. We can see such an ownership tree in
the diagram for composers: it's not a “tree” in the sense of a search tree

data structure, or an HTML document made from DOM elements. Rather,
we have a tree built from a mixture of types, with Rust’s single-owner rule
forbidding any rejoining of structure that could make the arrangement
more complex than a tree. Every value in a Rust program is a member of
some tree, rooted in some variable.

Rust programs don’t usually explicitly drop values at all, in the way C and
C++ programs would use free and delete. The way to drop a value in
Rust is to remove it from the ownership tree somehow: by leaving the
scope of a variable, or deleting an element from a vector, or something of
that sort. At that point, Rust ensures the value is properly dropped, along
with everything it owns.

In a certain sense, Rust is less powerful than other languages: every
other practical programming language lets you build arbitrary graphs of
objects that point to each other in whatever way you see fit. But it is
exactly because Rust is less powerful that the analyses the language can
carry out on your programs can be more powerful. Rust’s safety
guarantees are possible exactly because the relationships it may
encounter in your code are more tractable. This is part of Rust’s “radical
wager” we mentioned earlier: in practice, Rust claims, there is usually
more than enough flexibility in how one goes about solving a problem to
ensure that at least a few perfectly fine solutions fall within the restrictions
the language imposes.

That said, the story we’ve told so far is still much too rigid to be usable.
Rust extends this picture in several ways:

e You can move values from one owner to another. This allows you
to build, rearrange, and tear down the tree.

e The standard library provides the reference-counted pointer types
Rc and Arc, which allow values to have multiple owners, under
some restrictions.

¢ You can “borrow a reference” to a value; references are
nonowning pointers, with limited lifetimes.

Each of these strategies contributes flexibility to the ownership model,

while still upholding Rust’s promises. We'll explain each one in turn, with
references covered in the next chapter.

Moves

In Rust, for most types, operations like assigning a value to a variable,
passing it to a function, or returning it from a function don’t copy the
value: they move it. The source relinquishes ownership of the value to
the destination, and becomes uninitialized; the destination now controls
the value’s lifetime. Rust programs build up and tear down complex
structures one value at a time, one move at a time.

You may be surprised that Rust would change the meaning of such
fundamental operations; surely assignment is something that should be
pretty well nailed down at this point in history. However, if you look
closely at how different languages have chosen to handle assignment,
you'll see that there’s actually significant variation from one school to
another. The comparison also makes the meaning and consequences of
Rust’'s choice easier to see.

Consider the following Python code:

s = ['udon’, 'ramen’, 'soba’]
t=s
u=s

Each Python object carries a reference count, tracking the number of
values that are currently referring to it. So after the assignment to s, the
state of the program looks like Figure 4-5 (note that some fields are left
out).

Python local
variables

list
(PyListObject)

@ %

list
elements

1] 4 | soba
strings d
(PyASClIObject) 1 [5 |ramen

\ 4

11 4 | udon

G B @

Q. o,
%,

Figure 4-5. How Python represents a list of strings in memory

Since only s is pointing to the list, the list's reference count is 1; and since
the list is the only object pointing to the strings, each of their reference
counts is also 1.

What happens when the program executes the assignments to t and u?

Python implements assignment simply by making the destination point to
the same object as the source, and incrementing the object’s reference
count. So the final state of the program is something like Figure 4-6.

Python local
variables

list
(PyListObject)

elements

1] 4 | soba
strings d
(PyASClIObject) 1 [5 |ramen
\ 4
11 4 | udon
%, %y,
//’/0 ’Z

Figure 4-6. The result of assigning s to both t and u in Python

Python has copied the pointer from s into t and u, and updated the list’s
reference count to 3. Assignment in Python is cheap, but because it
creates a new reference to the object, we must maintain reference counts

to know when we can free the value.

Now consider the analogous C++ code:

using namespace std;

vector<string> s = { "udon", "ramen", "soba" };
vector<string>t=s;

vector<string> u = s;

The original value of s looks like Figure 4-7 in memory.

e e

stack
frame

heap

Figure 4-7. How C++ represents a vector of strings in memory

What happens when the program assigns s to t and u? Assigning a
std::vector produces a copy of the vector in C++; std::string behaves
similarly. So by the time the program reaches the end of this code, it has
actually allocated three vectors and nine strings (Figure 4-8).

S t u
stack
frame » e o
heap BB el [Tol T Tal T T WMo T ol T T4 of T Tl T Tal [1

N . s s

Figure 4-8. The result of assigning s to both t and u in C++

Depending on the values involved, assignment in C++ can consume

unbounded amounts of memory and processor time. The advantage,
however, is that it's easy for the program to decide when to free all this
memory: when the variables go out of scope, everything allocated here
gets cleaned up automatically.

In a sense, C++ and Python have chosen opposite trade-offs: Python
makes assignment cheap, at the expense of requiring reference counting
(and in the general case, garbage collection). C++ keeps the ownership
of all the memory clear, at the expense of making assignment carry out a
deep copy of the object. C++ programmers are often less than
enthusiastic about this choice: deep copies can be expensive, and there
are usually more practical alternatives.

So what would the analogous program do in Rust? Here’s the code:

let s = vec!['udon".to_string(), "ramen".to_string(), "soba".to_string()];
lett=s;
letu=s;

Like C and C++, Rust puts plain string literals like "udon” in read-only
memory, so for a clearer comparison with the C++ and Python examples,
we call to_string here to get heap-allocated String values.

After carrying out the initialization of s, since Rust and C++ use similar
representations for vectors and strings, the situation looks just as it did in
C++ (Figure 4-9).

stack
frame 413

heap

Figure 4-9. How Rust represents a vector of strings in memory

But recall that, in Rust, assignments of most types move the value from
the source to the destination, leaving the source uninitialized. So after
initializing t, the program’s memory looks like Figure 4-10.

S t

heap

Figure 4-10. The result of assigning s to t in Rust

What has happened here? The initialization let t = s; moved the vector’s
three header fields from s to t; now t owns the vector. The vector’s
elements stayed just where they were, and nothing happened to the

strings either. Every value still has a single owner, although one has
changed hands. There were no reference counts to be adjusted. And the
compiler now considers s uninitialized.

So what happens when we reach the initialization let u = s;? This would
assign the uninitialized value s to u. Rust prudently prohibits using
uninitialized values, so the compiler rejects this code with the following
error:

error[E0382]: use of moved value: 's
--> ownership_double_move.rs:9:9

|
8| lett=s;
| - value moved here
9| letu=s;
| A value used here after move

Consider the consequences of Rust’'s use of a move here. Like Python,
the assignment is cheap: the program simply moves the three-word
header of the vector from one spot to another. But like C++, ownership is
always clear: the program doesn’t need reference counting or garbage
collection to know when to free the vector elements and string contents.

The price you pay is that you must explicitly ask for copies when you
want them. If you want to end up in the same state as the C++ program,
with each variable holding an independent copy of the structure, you
must call the vector’s clone method, which performs a deep copy of the
vector and its elements:

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s.clone();
let u = s.clone();

You could also re-create Python’s behavior by using Rust’s reference-
counted pointer types; we’ll discuss those shortly in “Rc and Arc: Shared
Ownership”.

More Operations That Move

In the examples thus far, we've shown initializations, providing values for
variables as they come into scope in a let statement. Assigning to a
variable is slightly different, in that if you move a value into a variable that
was already initialized, Rust drops the variable’s prior value. For
example:

let mut s = "Govinda".to_string();
s = "Siddhartha".to_string(); // value "Govinda" dropped here

In this code, when the program assigns the string "Siddhartha" to s, its
prior value "Govinda" gets dropped first. But consider the following:

let mut s = "Govinda".to_string();
lett=s;
s = "Siddhartha".to_string(); // nothing is dropped here

This time, t has taken ownership of the original string from s, so that by
the time we assign to s, it is uninitialized. In this scenario, no string is
dropped.

We've used initializations and assignments in the examples here
because they’re simple, but Rust applies move semantics to almost any
use of a value. Passing arguments to functions moves ownership to the
function’s parameters; returning a value from a function moves ownership
to the caller. Building a tuple moves the values into the tuple. And so on.

You may now have a better insight into what'’s really going on in the
examples we offered in the previous section. For example, when we were
constructing our vector of composers, we wrote:

struct Person { name: String, birth: i32 }
let mut composers = Vec::new();

composers.push(Person { name: "Palestrina".to_string(),
birth: 1525 });

This code shows several places at which moves occur, beyond

initialization and assignment:
Returning values from a function

The call Vec::new() constructs a new vector, and returns, not a
pointer to the vector, but the vector itself: its ownership moves from
Vec::new to the variable composers. Similarly, the to_string call
returns a fresh String instance.

Constructing new values

The name field of the new Person structure is initialized with the
return value of to_string. The structure takes ownership of the string.

Passing values to a function

The entire Person structure, not just a pointer, is passed to the
vector’s push method, which moves it onto the end of the structure.
The vector takes ownership of the Person, and thus becomes the
indirect owner of the name String as well.

Moving values around like this may sound inefficient, but there are two
things to keep in mind. First, the moves always apply to the value proper,
not the heap storage they own. For vectors and strings, the value proper
is the three-word header alone; the potentially large element arrays and
text buffers sit where they are in the heap. Second, the Rust compiler’s
code generation is good at “seeing through” all these moves; in practice,
the machine code often stores the value directly where it belongs.

Moves and Control Flow

The previous examples all have very simple control flow; how do moves
interact with more complicated code? The general principle is that, if it's
possible for a variable to have had its value moved away, and it hasn’t
definitely been given a new value since, it's considered uninitialized. For
example, if a variable still has a value after evaluating an if expression’s
condition, then we can use it in both branches:

let x = vec![10, 20, 30];
ifc{
f(x); 7/ ... ok to move from x here
} else {
g(x); /... and ok to also move from x here

}

h(x) // bad: x is uninitialized here if either path uses it
For similar reasons, moving from a variable in a loop is forbidden:

let x = vec![10, 20, 30];
while f() {
g(x); / bad: x would be moved in first iteration,
// uninitialized in second

That is, unless we’'ve definitely given it a new value by the next iteration:

let mut x = vec![10, 20, 30];

while f() {
a(x); // move from x
x = h(); // give x a fresh value

}

e(x);

Moves and Indexed Content

We’ve mentioned that a move leaves its source uninitialized, as the
destination takes ownership of the value. But not every kind of value
owner is prepared to become uninitialized. For example, consider the
following code:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
foriin 101 .. 106
v.push(i.to_string());
}

// Pull out random elements from the vector.
let third = v[2];
let fifth = v[4];

For this to work, Rust would somehow need to remember that the third
and fifth elements of the vector have become uninitialized, and track that
information until the vector is dropped. In the most general case, vectors
would need to carry around extra information with them to indicate which
elements are live and which have become uninitialized. That is clearly not
the right behavior for a systems programming language; a vector should
be nothing but a vector. In fact, Rust rejects the preceding code with the
following error:

error[E0507]: cannot move out of indexed content
--> ownership_move_out_of vector.rs:14:17

NANNN\

help: consider using a reference instead "&v[2]
cannot move out of indexed content

|
14| let third = v[2];

|

|

|

|
It also makes a similar complaint about the move to fifth. In the error
message, Rust suggests using a reference, in case you want to access
the element without moving it. This is often what you want. But what if
you really do want to move an element out of a vector? You need to find
a method that does so in a way that respects the limitations of the type.

Here are three possibilities:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
foriin 101 .. 106
v.push(i.to_string());
}

// 1. Pop a value off the end of the vector:
let fifth = v.pop().unwrap();
assert_eq!(fifth, "105");

// 2. Move a value out of the middle of the vector, and move the last
// element into its spot:

let second = v.swap_remove(l);

assert_eq!(second, "102");

// 3. Swap in another value for the one we're taking out:
let third = std::mem::replace(&mut v[2], "substitute".to_string());
assert_eq!(third, "103");

// Let's see what's left of our vector.
assert_eq!(v, vec!['101", "104", "substitute"]);

Each one of these methods moves an element out of the vector, but does
so in a way that leaves the vector in a state that is fully populated, if
perhaps smaller.

Collection types like Vec also generally offer methods to consume all
their elements in a loop:

let v = vec!["liberté".to_string(),
"égalité".to_string(),
"fraternité".to_string()];

formutsinv{
s.push('!);
printin!("{}", s);
}

When we pass the vector to the loop directly, as in for ... in v, this moves
the vector out of v, leaving v uninitialized. The for loop’s internal
machinery takes ownership of the vector, and dissects it into its
elements. At each iteration, the loop moves another element to the

variable s. Since s now owns the string, we’re able to modify it in the loop
body before printing it. And since the vector itself is no longer visible to
the code, nothing can observe it mid-loop in some partially emptied state.

If you do find yourself needing to move a value out of an owner that the
compiler can’t track, you might consider changing the owner’s type to
something that can dynamically track whether it has a value or not. For
example, here’s a variant on the earlier example:

struct Person { name: Option<String>, birth: i32 }

let mut composers = Vec::new();
composers.push(Person { name: Some("Palestrina".to_string()),
birth: 1525 });

You can’t do this:

let first_name = composers[0].name;

That will just elicit the same “cannot move out of indexed content” error
shown earlier. But because you've changed the type of the name field
from String to Option<String>, that means that None is a legitimate value
for the field to hold, so this works:

let first_name = std::mem::replace(&mut composers[0].name, None);
assert_eq!(first_name, Some("Palestrina".to_string()));
assert_eq!(composers[0].name, None);

The replace call moves out the value of composers[0].name, leaving
None in its place, and passes ownership of the original value to its caller.
In fact, using Option this way is common enough that the type provides a
take method for this very purpose. You could write the preceding
manipulation more legibly as follows:

let first_name = composers[0].name.take();

This call to take has the same effect as the earlier call to replace.

Copy Types: The Exception to Moves

The examples we’ve shown so far of values being moved involve vectors,
strings, and other types that could potentially use a lot of memory and be
expensive to copy. Moves keep ownership of such types clear and
assignment cheap. But for simpler types like integers or characters, this
sort of careful handling really isn’t necessary.

Compare what happens in memory when we assign a String with what
happens when we assign an i32 value:

let strl = "somnambulance".to_string();
let str2 = strl;

let num1:i32 = 36;
let num2 = num1;

After running this code, memory looks like Figure 4-11.

strl str2
num| num?2

stack .
fame ARSNGB o [6] ¥

\

—

N

heap .somnambu[ance -

Figure 4-11. Assigning a string moves the value, whereas assigning an i32 copies it

As with the vectors earlier, assignment moves strl to str2, so that we
don’t end up with two strings responsible for freeing the same buffer.
However, the situation with num1 and numz2 is different. An i32 is simply
a pattern of bits in memory; it doesn’t own any heap resources, or really
depend on anything other than the bytes it comprises. By the time we've
moved its bits to num2, we’ve made a completely independent copy of
num1.

Moving a value leaves the source of the move uninitialized. But whereas
it serves an essential purpose to treat strl as valueless, treating numl
that way is pointless; no harm could result from continuing to use it. The
advantages of a move don’t apply here, and it's inconvenient.

Earlier we were careful to say that most types are moved; now we've
come to the exceptions, the types Rust designates as Copy types.
Assigning a value of a Copy type copies the value, rather than moving it.
The source of the assignment remains initialized and usable, with the
same value it had before. Passing Copy types to functions and
constructors behaves similarly.

The standard Copy types include all the machine integer and floating-
point numeric types, the char and bool types, and a few others. A tuple or
fixed-size array of Copy types is itself a Copy type.

Only types for which a simple bit-for-bit copy suffices can be Copy. As
we’ve already explained, String is not a Copy type, because it owns a
heap-allocated buffer. For similar reasons, Box<T> is not Copy; it owns
its heap-allocated referent. The File type, representing an operating
system file handle, is not Copy; duplicating such a value would entail
asking the operating system for another file handle. Similarly, the
MutexGuard type, representing a locked mutex, isn’t Copy: this type isn’'t
meaningful to copy at all, as only one thread may hold a mutex at a time.

As a rule of thumb, any type that needs to do something special when a
value is dropped cannot be Copy. A Vec needs to free its elements; a
File needs to close its file handle; a MutexGuard needs to unlock its
mutex. Bit-for-bit duplication of such types would leave it unclear which
value was now responsible for the original’s resources.

What about types you define yourself? By default, struct and enum types
are not Copy:

struct Label { number: u32 }

fn print(l: Label) { printin!("STAMP: {}", .Lnumber); }

let | = Label { number: 3 };
print(l);

printin!("My label number is: {}", l.number);

This won’t compile; Rust complains:

error[E0382]: use of moved value: "l.number’
--> ownership_struct.rs:12:40

|
11| print(l);
| - value moved here
12| printin!("My label number is: {}", l.number);
| AANNAN value used here after move

= note: move occurs because I has type "main::Label’, which does not
implement the "Copy" trait

Since Label is not Copy, passing it to print moved ownership of the value
to the print function, which then dropped it before returning. But this is
silly; a Label is nothing but an i32 with pretensions. There’s no reason
passing | to print should move the value.

But user-defined types being non-Copy is only the default. If all the fields
of your struct are themselves Copy, then you can make the type Copy as
well by placing the attribute #[derive(Copy, Clone)] above the definition,
like so:

#[derive(Copy, Clone)]
struct Label { number: u32 }

With this change, the preceding code compiles without complaint.
However, if we try this on a type whose fields are not all Copy, it doesn’t
work. Compiling the following code:

#[derive(Copy, Clone)]
struct StringLabel { name: String }

elicits this error:

error[E0204]: the trait "Copy™ may not be implemented for this type
--> ownership_string_label.rs:7:10

|
7 | #[derive(Copy, Clone)]

I NNNN

8 | struct StringLabel { name: String }
| e this field does not implement "Copy’

Why aren’t user-defined types automatically Copy, assuming they’re
eligible? Whether a type is Copy or not has a big effect on how code is
allowed to use it: Copy types are more flexible, since assignment and
related operations don’t leave the original uninitialized. But for a type’s
implementer, the opposite is true: Copy types are very limited in which
types they can contain, whereas non-Copy types can use heap allocation
and own other sorts of resources. So making a type Copy represents a
serious commitment on the part of the implementer: if it's necessary to
change it to non-Copy later, much of the code that uses it will probably
need to be adapted.

While C++ lets you overload assignment operators and define
specialized copy and move constructors, Rust doesn’t permit this sort of
customization. In Rust, every move is a byte-for-byte, shallow copy that
leaves the source uninitialized. Copies are the same, except that the
source remains initialized. This does mean that C++ classes can provide
convenient interfaces that Rust types cannot, where ordinary-looking
code implicitly adjusts reference counts, puts off expensive copies for
later, or uses other sophisticated implementation tricks.

But the effect of this flexibility on C++ as a language is to make basic
operations like assignment, passing parameters, and returning values
from functions less predictable. For example, earlier in this chapter we
showed how assigning one variable to another in C++ can require
arbitrary amounts of memory and processor time. One of Rust’s
principles is that costs should be apparent to the programmer. Basic
operations must remain simple. Potentially expensive operations should
be explicit, like the calls to clone in the earlier example that make deep
copies of vectors and the strings they contain.

In this section, we’ve talked about Copy and Clone in vague terms as
characteristics a type might have. They are actually examples of traits,
Rust’s open-ended facility for categorizing types based on what you can
do with them. We describe traits in general in Chapter 11, and Copy and
Clone in particular in Chapter 13.

Rc and Arc: Shared Ownership

Although most values have unigue owners in typical Rust code, in some
cases it’s difficult to find every value a single owner that has the lifetime
you need; you'd like the value to simply live until everyone’s done using
it. For these cases, Rust provides the reference-counted pointer types Rc
and Arc. As you would expect from Rust, these are entirely safe to use:
you cannot forget to adjust the reference count, or create other pointers
to the referent that Rust doesn’t notice, or stumble over any of the other

sorts of problems that accompany reference-counted pointer types in
C++.

The Rc and Arc types are very similar; the only difference between them
is that an Arc is safe to share between threads directly—the name Arc is
short for atomic reference count—whereas a plain Rc uses faster non-
thread-safe code to update its reference count. If you don’t need to share
the pointers between threads, there’s no reason to pay the performance
penalty of an Arc, so you should use Rc; Rust will prevent you from
accidentally passing one across a thread boundary. The two types are
otherwise equivalent, so for the rest of this section, we’ll only talk about
Rc.

Earlier in the chapter we showed how Python uses reference counts to
manage its values’ lifetimes. You can use Rc to get a similar effect in
Rust. Consider the following code:

use std::rc::Rc;

// Rust can infer all these types; written out for clarity
let s: Rc<String> = Rc::new("shirataki".to_string());
let t: Re<String> = s.clone();

let u: Re<String> = s.clone();

For any type T, an Rc<T> value is a pointer to a heap-allocated T that
has had a reference count affixed to it. Cloning an Rc<T> value does not
copy the T; instead, it simply creates another pointer to it, and increments
the reference count. So the preceding code produces the situation

illustrated in Figure 4-12 in memory.

Each of the three Rc<String> pointers is referring to the same block of
memory, which holds a reference count and space for the String. The
usual ownership rules apply to the Rc pointers themselves, and when the
last extant Rc is dropped, Rust drops the String as well.

S t u

stack
frame

heap

shirataki

Figure 4-12. A reference-counted string, with three references

You can use any of String’s usual methods directly on an Rc<String>:

assertl(s.contains("shira"));
assert_eq!(t.find("taki"), Some(5));
printin!("{} are quite chewy, almost bouncy, but lack flavor", u);

A value owned by an Rc pointer is immutable. If you try to add some text

to the end of the string:

s.push_str(" noodles");

Rust will decline:

error: cannot borrow immutable borrowed content as mutable
--> ownership_rc_mutability.rs:12:5

12| s.push_str(" noodles");
| ~ cannot borrow as mutable

Rust’s memory and thread-safety guarantees depend on ensuring that no
value is ever simultaneously shared and mutable. Rust assumes the
referent of an Rc pointer might in general be shared, so it must not be
mutable. We explain why this restriction is important in Chapter 5.

One well-known problem with using reference counts to manage memory
is that, if there are ever two reference-counted values that point to each
other, each will hold the other’s reference count above zero, so the
values will never be freed (Figure 4-13).

Figure 4-13. A reference-counting loop, these objects will not be freed

It is possible to leak values in Rust this way, but such situations are rare.
You cannot create a cycle without, at some point, making an older value
point to a newer value. This obviously requires the older value to be
mutable. Since Rc pointers hold their referents immutable, it's not
normally possible to create a cycle. However, Rust does provide ways to
create mutable portions of otherwise immutable values; this is called
interior mutability, and we cover it in “Interior Mutability”. If you combine

those techniques with Rc pointers, you can create a cycle and leak
memory.

You can sometimes avoid creating cycles of Rc pointers by using weak
pointers, std::rc::Weak, for some of the links instead. However, we won't
cover those in this book; see the standard library’s documentation for
details.

Moves and reference-counted pointers are two ways to relax the rigidity
of the ownership tree. In the next chapter, we’ll look at a third way:
borrowing references to values. Once you have become comfortable with
both ownership and borrowing, you will have climbed the steepest part of
Rust’s learning curve, and you’ll be ready to take advantage of Rust’s
unique strengths.

Chapter 5. References

Libraries cannot provide new inabilities.
—Mark Miller

All the pointer types we’ve seen so far—the simple Box<T> heap pointer,
and the pointers internal to String and Vec values—are owning pointers:
when the owner is dropped, the referent goes with it. Rust also has
nonowning pointer types called references, which have no effect on their
referents’ lifetimes.

In fact, it's rather the opposite: references must never outlive their
referents. You must make it apparent in your code that no reference can
possibly outlive the value it points to. To emphasize this, Rust refers to
creating a reference to some value as borrowing the value: what you
have borrowed, you must eventually return to its owner.

If you felt a moment of skepticism when reading the phrase “You must
make it apparent in your code,” you're in excellent company. The
references themselves are nothing special—under the hood, they'’re just
addresses. But the rules that keep them safe are novel to Rust; outside
of research languages, you won’t have seen anything like them before.
And although these rules are the part of Rust that requires the most effort
to master, the breadth of classic, absolutely everyday bugs they prevent
is surprising, and their effect on multithreaded programming is liberating.
This is Rust’s radical wager, again.

As an example, let's suppose we’re going to build a table of murderous
Renaissance artists and the works they’re known for. Rust’s standard
library includes a hash table type, so we can define our type like this:

use std::collections::HashMap;

type Table = HashMap<String, Vec<String>>;

In other words, this is a hash table that maps String values to

Vec<String> values, taking the name of an artist to a list of the names of
their works. You can iterate over the entries of a HashMap with a for
loop, so we can write a function to print out a Table for debugging:

fn show(table: Table) {
for (artist, works) in table {
printin!("works by {}.", artist);
for work in works {
printinl(" {}", work);
}
}
}

Constructing and printing the table is straightforward:

fn main() {
let mut table = Table::new();
table.insert("Gesualdo".to_string(),
vec!['many madrigals".to_string(),
"Tenebrae Responsoria“.to_string()]);
table.insert("Caravaggio".to_string(),
vec!["The Musicians".to_string(),
"The Calling of St. Matthew".to_string()]);
table.insert("Cellini".to_string(),
vec!["'Perseus with the head of Medusa".to_string(),
"a salt cellar".to_string()]);

show(table);

And it all works fine:

$ cargo run
Running ‘/home/jimb/rust/book/fragments/target/debug/fragments’
works by Gesualdo:
Tenebrae Responsoria
many madrigals
works by Cellini:
Perseus with the head of Medusa
a salt cellar
works by Caravaggio:
The Musicians
The Calling of St. Matthew
$

But if you've read the previous chapter’s section on moves, this definition
for show should raise a few questions. In particular, HashMap is not
Copy—it can’t be, since it owns a dynamically allocated table. So when
the program calls show(table), the whole structure gets moved to the
function, leaving the variable table uninitialized. If the calling code tries to
use table now, it'll run into trouble:

show(table);
assert_eq!(table['Gesualdo"][0], "many madrigals");

Rust complains that table isn’t available anymore:

error[E0382]: use of moved value: “table
--> references_show_moves_table.rs:29:16

|
28| show(table);

| - value moved here
29| assert_eq!(table["Gesualdo"][0], "many madrigals");
| AN value used here after move

= note: move occurs because “table’ has type "HashMap<String, Vec<String>>",
which does not implement the “Copy’ trait

In fact, if we look into the definition of show, the outer for loop takes
ownership of the hash table and consumes it entirely; and the inner for
loop does the same to each of the vectors. (We saw this behavior earlier,
in the “liberté, égalité, fraternité” example.) Because of move semantics,
we’ve completely destroyed the entire structure simply by trying to print it
out. Thanks, Rust!

The right way to handle this is to use references. A reference lets you
access a value without affecting its ownership. References come in two
kinds:

e A shared reference lets you read but not modify its referent.
However, you can have as many shared references to a
particular value at a time as you like. The expression &e yields a
shared reference to e’s value; if e has the type T, then &e has the
type &T, pronounced “ref T". Shared references are Copy.

e If you have a mutable reference to a value, you may both read
and modify the value. However, you may not have any other
references of any sort to that value active at the same time. The
expression &mut e yields a mutable reference to e’s value; you
write its type as &mut T, which is pronounced “ref mute T".
Mutable references are not Copy.

You can think of the distinction between shared and mutable references
as a way to enforce a multiple readers or single writer rule at compile
time. In fact, this rule doesn’t apply only to references; it covers the
borrowed value’s owner as well. As long as there are shared references
to a value, not even its owner can modify it; the value is locked down.
Nobody can modify table while show is working with it. Similarly, if there
Is a mutable reference to a value, it has exclusive access to the value;
you can’t use the owner at all, until the mutable reference goes away.
Keeping sharing and mutation fully separate turns out to be essential to
memory safety, for reasons we’ll go into later in the chapter.

The printing function in our example doesn’t need to modify the table, just
read its contents. So the caller should be able to pass it a shared
reference to the table, as follows:

show(&table);

References are nonowning pointers, so the table variable remains the
owner of the entire structure; show has just borrowed it for a bit.
Naturally, we’ll need to adjust the definition of show to match, but you'll
have to look closely to see the difference:

fn show(table: &Table) {
for (artist, works) in table {
printin!("works by {}.", artist);
for work in works {
printinl(" {}", work);
}
}
}

The type of show’s parameter table has changed from Table to &Table:

instead of passing the table by value (and hence moving ownership into
the function), we’'re now passing a shared reference. That's the only
textual change. But how does this play out as we work through the body?

Whereas our original outer for loop took ownership of the HashMap and
consumed it, in our new version it receives a shared reference to the
HashMap. Iterating over a shared reference to a HashMap is defined to
produce shared references to each entry’s key and value: artist has
changed from a String to a &String, and works from a Vec<String> to a
&Vec<String>.

The inner loop is changed similarly. Iterating over a shared reference to a
vector is defined to produce shared references to its elements, so work is
now a &String. No ownership changes hands anywhere in this function;
it's just passing around nonowning references.

Now, if we wanted to write a function to alphabetize the works of each
artist, a shared reference doesn’t suffice, since shared references don'’t
permit modification. Instead, the sorting function needs to take a mutable
reference to the table:

fn sort_works(table: &mut Table) {
for (_artist, works) in table {
works.sort();

}
}

And we need to pass it one:

sort_works(&mut table);

This mutable borrow grants sort_works the ability to read and modify our
structure, as required by the vectors’ sort method.

When we pass a value to a function in a way that moves ownership of the
value to the function, we say that we have passed it by value. If we
instead pass the function a reference to the value, we say that we have
passed the value by reference. For example, we fixed our show function
by changing it to accept the table by reference, rather than by value.
Many languages draw this distinction, but it's especially important in

Rust, because it spells out how ownership is affected.

References as Values

The preceding example shows a pretty typical use for references:
allowing functions to access or manipulate a structure without taking
ownership. But references are more flexible than that, so let’s look at
some examples to get a more detailed view of what’s going on.

Rust References Versus C++ References

If you're familiar with references in C++, they do have something in
common with Rust references. Most importantly, they’re both just
addresses at the machine level. But in practice, Rust’s references have a
very different feel.

In C++, references are created implicitly by conversion, and dereferenced
implicitly too:

// C++ code!

intx =10;

int & = x; // initialization creates reference implicitly
assert(r == 10); // implicitly dereference r to see x's value
r=20; // stores 20 in x, r itself still points to x

In Rust, references are created explicitly with the & operator, and
dereferenced explicitly with the * operator:

// Back to Rust code from this point onward.

let x = 10;

letr = &x; // &x Iis a shared reference to x
assert!(*r==10); // explicitly dereference r

To create a mutable reference, use the &mut operator:

let muty = 32;
let m = &mut y; // &mut y is a mutable reference to y
*m += 32; // explicitly dereference m to set y's value

assert!l(*m == 64); //and to see y's new value

But you might recall that, when we fixed the show function to take the
table of artists by reference instead of by value, we never had to use the
* operator. Why is that?

Since references are so widely used in Rust, the . operator implicitly
dereferences its left operand, if needed:

struct Anime { name: &'static str, bechdel_pass: bool };
let aria = Anime { name: "Aria: The Animation", bechdel_pass: true };
let anime_ref = &aria;

assert_eq!(anime_ref.name, "Aria: The Animation");

// Equivalent to the above, but with the dereference written out:
assert_eq!((*anime_ref).name, "Aria: The Animation");

The printin! macro used in the show function expands to code that uses
the . operator, so it takes advantage of this implicit dereference as well.

The . operator can also implicitly borrow a reference to its left operand, if
needed for a method call. For example, Vec’s sort method takes a
mutable reference to the vector, so the two calls shown here are
equivalent:

let mut v = vec![1973, 1968];
v.sort(); // implicitly borrows a mutable reference to v
(&mut v).sort(); // equivalent; much uglier

In a nutshell, whereas C++ converts implicitly between references and
lvalues (that is, expressions referring to locations in memory), with these
conversions appearing anywhere they’re needed, in Rust you use the &
and * operators to create and follow references, with the exception of the
. operator, which borrows and dereferences implicitly.

Assigning References

Assigning to a Rust reference makes it point at a new value:

let x = 10;

lety = 20;

let mut r = &x;
ifb{r=8&y;}

assert!(*r == 10 || *r == 20);

The reference r initially points to x. But if b is true, the code points it at y
instead, as illustrated in Figure 5-1.

X r y

stack
frame

Figure 5-1. The reference r, now pointing to y instead of x

This is very different from C++, where assigning to a reference stores the
value in its referent. There’s no way to point a C++ reference to a location
other than the one it was initialized with.

References to References

Rust permits references to references:

struct Point { x: i32, y: i32 }

let point = Point { x: 1000, y: 729 };
let r: &Point = &point;

let rr; &&Point = &r;

let rrr; &&&Point = &rr;

(We’ve written out the reference types for clarity, but you could omit
them; there’s nothing here Rust can't infer for itself.) The . operator
follows as many references as it takes to find its target:

assert_eq!(rrr.y, 729);

In memory, the references are arranged as shown in Figure 5-2.

point
X y r rr rr

stack
farin 1000 | 729

Figure 5-2. A chain of references to references

So the expression rrr.y, guided by the type of rrr, actually traverses three
references to get to the Point before fetching its y field.

Comparing References

Like the . operator, Rust’s comparison operators “see through” any
number of references, as long as both operands have the same type:

let x = 10;
lety = 10;

let rx = &x;
let ry = &y;

let rrx = ℞
let rry = &ry;

assertl(rrx <= rry);
assertl(rrx == rry);

The final assertion here succeeds, even though rrx and rry point at
different values (namely, rx and ry), because the == operator follows all
the references and performs the comparison on their final targets, x and
y. This is almost always the behavior you want, especially when writing
generic functions. If you actually want to know whether two references
point to the same memory, you can use std::ptr::eq, which compares
them as addresses:

assertl(rx ==ry); // their referents are equal
assert!(!std::ptr::eq(rx, ry)); // but occupy different addresses

References Are Never Null

Rust references are never null. There’s no analogue to C’'s NULL or
C++'s nullptr; there is no default initial value for a reference (you can’t
use any variable until it's been initialized, regardless of its type); and Rust
won't convert integers to references (outside of unsafe code), so you
can’t convert zero into a reference.

C and C++ code often uses a null pointer to indicate the absence of a
value: for example, the malloc function either returns a pointer to a new
block of memory, or nullptr if there isn’t enough memory available to
satisfy the request. In Rust, if you need a value that is either a reference
to something or not, use the type Option<&T>. At the machine level, Rust
represents None as a null pointer, and Some(r), where r is a &T value, as
the nonzero address, so Option<&T> is just as efficient as a nullable
pointer in C or C++, even though it's safer: its type requires you to check
whether it's None before you can use it.

Borrowing References to Arbitrary Expressions

Whereas C and C++ only let you apply the & operator to certain kinds of
expressions, Rust lets you borrow a reference to the value of any sort of
expression at all:

fn factorial(n: usize) -> usize {
(1..n+1).fold(1, |a, b] a * b)
}

let r = &factorial(6);
assert_eq!(r + & ,);

In situations like this, Rust simply creates an anonymous variable to hold
the expression’s value, and makes the reference point to that. The
lifetime of this anonymous variable depends on what you do with the
reference:

¢ If you immediately assign the reference to a variable in a let
statement (or make it part of some struct or array that is being
immediately assigned), then Rust makes the anonymous variable
live as long as the variable the let initializes. In the preceding
example, Rust would do this for the referent of r.

e Otherwise, the anonymous variable lives to the end of the
enclosing statement. In our example, the anonymous variable
created to hold 1009 lasts only to the end of the assert_eq!
statement.

If you're used to C or C++, this may sound error-prone. But remember
that Rust will never let you write code that would produce a dangling
reference. If the reference could ever be used beyond the anonymous
variable’s lifetime, Rust will always report the problem to you at compile
time. You can then fix your code to keep the referent in a named variable
with an appropriate lifetime.

References to Slices and Trait Objects

The references we've shown so far are all simple addresses. However,
Rust also includes two kinds of fat pointers, two-word values carrying the
address of some value, along with some further information necessary to
put the value to use.

A reference to a slice is a fat pointer, carrying the starting address of the
slice and its length. We described slices in detail in Chapter 3.

Rust’s other kind of fat pointer is a trait object, a reference to a value that
implements a certain trait. A trait object carries a value’s address and a
pointer to the trait's implementation appropriate to that value, for invoking
the trait’'s methods. We’'ll cover trait objects in detail in “Trait Objects”.

Aside from carrying this extra data, slice and trait object references
behave just like the other sorts of references we’ve shown so far in this
chapter: they don’'t own their referents; they are not allowed to outlive
their referents; they may be mutable or shared; and so on.

Reference Safety

As we've presented them so far, references look pretty much like
ordinary pointers in C or C++. But those are unsafe; how does Rust keep
its references under control? Perhaps the best way to see the rules in
action is to try to break them. We’'ll start with the simplest example

possible, and then add in interesting complications and explain how they
work out.

Borrowing a Local Variable

Here’s a pretty obvious case. You can’'t borrow a reference to a local
variable and take it out of the variable’s scope:

{

letr;

{
letx =1;
r=&X;

}

assert_eq!(*r, 1); // bad: reads memory X" used to occupy

}
The Rust compiler rejects this program, with a detailed error message:

error: "X does not live long enough
--> references_dangling.rs:8:5

7| r=&x;
| - borrow occurs here
81 }
| ~°x dropped here while still borrowed
9 | assert_eq!(*r, 1); // bad: reads memory "X used to occupy
101}

| - borrowed value needs to live until here

Rust’s complaint is that x lives only until the end of the inner block,
whereas the reference remains alive until the end of the outer block,
making it a dangling pointer, which is verboten.

While it's obvious to a human reader that this program is broken, it's
worth looking at how Rust itself reached that conclusion. Even this simple
example shows the logical tools Rust uses to check much more complex
code.

Rust tries to assign each reference type in your program a lifetime that
meets the constraints imposed by how it is used. A lifetime is some
stretch of your program for which a reference could be safe to use: a
lexical block, a statement, an expression, the scope of some variable, or
the like. Lifetimes are entirely figments of Rust’s compile-time

imagination. At runtime, a reference is nothing but an address; its lifetime
Is part of its type and has no runtime representation.

In this example, there are three lifetimes whose relationships we need to
work out. The variables r and x each have a lifetime, extending from the
point at which they’re initialized until the point that they go out of scope.

The third lifetime is that of a reference type: the type of the reference we
borrow to &x, and store in r.

Here’s one constraint that should seem pretty obvious: if you have a
variable x, then a reference to x must not outlive x itself, as shown in

Figure 5-3.

{
let r;

{
let x = 1;

lifetime of &x must not
exceed this range

assert_eq!(*r, 1);

Figure 5-3. Permissible lifetimes for &x

Beyond the point where x goes out of scope, the reference would be a
dangling pointer. We say that the variable’s lifetime must contain or
enclose that of the reference borrowed from it.

Here’s another kind of constraint: if you store a reference in a variable r,
the reference’s type must be good for the entire lifetime of the variable,
from the point it is initialized to the point it goes out of scope, as shown in
Figure 5-4.

let r;
{
let x = 1;
[F = Bx:
‘o lifetime of anything stored in
} r must cover at least this range

assert eq!(*r, 1);

Figure 5-4. Permissible lifetimes for reference stored in r

If the reference can't live at least as long as the variable does, then at
some point r will be a dangling pointer. We say that the reference’s
lifetime must contain or enclose the variable’s.

The first kind of constraint limits how large a reference’s lifetime can be,
while the second kind limits how small it can be. Rust simply tries to find
a lifetime for each reference that satisfies all these constraints. In our
example, however, there is no such lifetime, as shown in Figure 5-5.

{

let r;
{
let x = 1;
T There is no lifetime that lies

entirely within this range...

}
assert _eq!(*r, 1);J

..but also fully encloses this range.

Figure 5-5. A reference with contradictory constraints on its lifetime

Let’'s now consider a different example where things do work out. We
have the same kinds of constraints: the reference’s lifetime must be
contained by x’s, but fully enclose r's. But because r’s lifetime is smaller
now, there is a lifetime that meets the constraints, as shown in Figure 5-

{
let x = 1;
{ |
let r = &x;
e The inner lifetime covers
assert eql (*r, 1) the lifetime of r, but is fully
.- enclosed by the lifetime of x.
L }
1

Figure 5-6. A reference with a lifetime enclosing r's scope, but within x’s scope

These rules apply in a natural way when you borrow a reference to some
part of some larger data structure, like an element of a vector:

letv =vec![l, 2, 3];
let r = &v[1];

Since v owns the vector, which owns its elements, the lifetime of v must
enclose that of the reference type of &v[1]. Similarly, if you store a
reference in some data structure, its lifetime must enclose that of the data
structure. If you build a vector of references, say, all of them must have
lifetimes enclosing that of the variable that owns the vector.

This is the essence of the process Rust uses for all code. Bringing more
language features into the picture—data structures and function calls,
say—introduces new sorts of constraints, but the principle remains the
same: first, understand the constraints arising from the way the program
uses references; then, find lifetimes that satisfy them. This is not so
different from the process C and C++ programmers impose on
themselves; the difference is that Rust knows the rules, and enforces
them.

Receiving References as Parameters

When we pass a reference to a function, how does Rust make sure the
function uses it safely? Suppose we have a function f that takes a
reference and stores it in a global variable. We'll need to make a few
revisions to this, but here’s a first cut:

// This code has several problems, and doesn't compile.
static mut STASH: &i32;
fn f(p: &i32) { STASH =p; }

Rust’s equivalent of a global variable is called a static: it's a value that's
created when the program starts and lasts until it terminates. (Like any
other declaration, Rust’'s module system controls where statics are
visible, so they’re only “global” in their lifetime, not their visibility.) We
cover statics in Chapter 8, but for now we’ll just call out a few rules that
the code just shown doesn’t follow:

e Every static must be initialized.

¢ Mutable statics are inherently not thread-safe (after all, any
thread can access a static at any time), and even in single-
threaded programs, they can fall prey to other sorts of reentrancy
problems. For these reasons, you may access a mutable static
only within an unsafe block. In this example we’re not concerned
with those particular problems, so we’ll just throw in an unsafe
block and move on.

With those revisions made, we now have the following:

static mut STASH: &i32 = &128;
fn f(p: &i32) { // still not good enough
unsafe {
STASH = p;
}
}

We’re almost done. To see the remaining problem, we need to write out a
few things that Rust is helpfully letting us omit. The signature of f as

written here is actually shorthand for the following:
fn f<'a>(p: &'ai32){... }

Here, the lifetime 'a (pronounced “tick A”) is a lifetime parameter of f. You
can read <'a> as “for any lifetime 'a” so when we write fn f<'a>(p: &'a i32),
we’re defining a function that takes a reference to an i32 with any given
lifetime ‘a.

Since we must allow 'a to be any lifetime, things had better work out if it's
the smallest possible lifetime: one just enclosing the call to f. This
assignment then becomes a point of contention:

STASH = p;

Since STASH lives for the program’s entire execution, the reference type
it holds must have a lifetime of the same length; Rust calls this the 'static
lifetime. But the lifetime of p’s reference is some 'a, which could be
anything, as long as it encloses the call to f. So, Rust rejects our code:

error[E0312]: lifetime of reference outlives lifetime of borrowed content...
--> references_static.rs:6:17

|
6 | STASH = p;

I N
|
= note: ...the reference is valid for the static lifetime...
note: ...but the borrowed content is only valid for the anonymous lifetime #1
defined on the function body at 4:0
--> references_static.rs:4:1
|
4| fnf(p: &i32) {/ still not good enough
5] unsafe {
STASH = p;

At this point, it's clear that our function can’t accept just any reference as
an argument. But it ought to be able to accept a reference that has a
'static lifetime: storing such a reference in STASH can’t create a dangling

pointer. And indeed, the following code compiles just fine:

static mut STASH: &i32 = &10;

fn f(p: &'static i32) {
unsafe {
STASH = p;
}
}

This time, f's signature spells out that p must be a reference with lifetime
'static, so there’s no longer any problem storing that in STASH. We can
only apply f to references to other statics, but that’s the only thing that’s
certain not to leave STASH dangling anyway. So we can write:

static WORTH_POINTING_AT: i32 = 1000;
f(&WORTH_POINTING_AT);

Since WORTH_POINTING_AT is a static, the type of
&WORTH_POINTING_AT is &'static i32, which is safe to pass to f.

Take a step back, though, and notice what happened to f's signature as
we amended our way to correctness: the original f(p: &i32) ended up as
f(p: &'static i32). In other words, we were unable to write a function that
stashed a reference in a global variable without reflecting that intention in
the function’s signature. In Rust, a function’s signature always exposes
the body’s behavior.

Conversely, if we do see a function with a signature like g(p: &i32) (or
with the lifetimes written out, g<'a>(p: &'a i32)), we can tell that it does
not stash its argument p anywhere that will outlive the call. There’s no
need to look into g’s definition; the signature alone tells us what g can
and can’t do with its argument. This fact ends up being very useful when
you're trying to establish the safety of a call to the function.

Passing References as Arguments

Now that we’ve shown how a function’s signature relates to its body, let's
examine how it relates to the function’s callers. Suppose you have the
following code:

// This could be written more briefly: fn g(p: &i32),
// but let's write out the lifetimes for now.
fn g<'a>(p: &'ai32){...}

let x = 10;
9(&x);

From g’s signature alone, Rust knows it will not save p anywhere that
might outlive the call: any lifetime that encloses the call must work for ‘a.
So Rust chooses the smallest possible lifetime for &x: that of the call to g.
This meets all constraints: it doesn’t outlive x, and encloses the entire call
to g. So this code passes muster.

Note that although g takes a lifetime parameter 'a, we didn’t need to
mention it when calling g. You only need to worry about lifetime
parameters when defining functions and types; when using them, Rust
infers the lifetimes for you.

What if we tried to pass &x to our function f from earlier that stores its
argument in a static?

fn f(p: &'statici32) { ... }

let x = 10;

f(&x);

This fails to compile: the reference &x must not outlive x, but by passing it
to f, we constrain it to live at least as long as 'static. There’s no way to
satisfy everyone here, so Rust rejects the code.

Returning References

It's common for a function to take a reference to some data structure, and
then return a reference into some part of that structure. For example,
here’s a function that returns a reference to the smallest element of a
slice:

// v should have at least one element.
fn smallest(v: &[i32]) -> &i32 {
let mut s = &v[0];
forrin &v[1.]{
if*r<*s{s=r;}
}

S

}

We’ve omitted lifetimes from that function’s signature in the usual way.
When a function takes a single reference as an argument, and returns a
single reference, Rust assumes that the two must have the same lifetime.
Writing this out explicitly would give us:

fn smallest<'a>(v: &'a [i32]) -> &'ai32{... }
Suppose we call smallest like this:

let s;

{
let parabola =19, 4, 1,0, 1, 4, 9];
s = smallest(¶bola);

}

assert_eq!(*s, 0); // bad: points to element of dropped array

From smallest’s signature, we can see that its argument and return value
must have the same lifetime, 'a. In our call, the argument ¶bola must
not outlive parabola itself; yet smallest’s return value must live at least as
long as s. There’s no possible lifetime 'a that can satisfy both constraints,
so Rust rejects the code:

error: “parabola’ does not live long enough
--> references_lifetimes_propagated.rs:12:5

11| s = smallest(¶bola);
| borrow occurs here
12|}
| ~ parabola” dropped here while still borrowed
13| assert_eq!(*s, 0); // bad: points to element of dropped array
14|}
| - borrowed value needs to live until here

Moving s so that its lifetime is clearly contained within parabola’s fixes the
problem:

{
let parabola =19, 4, 1,0, 1, 4, 9];
let s = smallest(¶bola);
assert_eq!(*s, 0); / fine: parabola still alive

}

Lifetimes in function signatures let Rust assess the relationships between
the references you pass to the function and those the function returns,
and ensure they’re being used safely.

Structs Containing References

How does Rust handle references stored in data structures? Here’'s the
same erroneous program we looked at earlier, except that we’ve put the
reference inside a structure:

// This does not compile.
struct S {

r: &i32
}

let s;

{
let x = 10;
s=S{r &x};
}

assert_eq!(*s.r, 10); / bad: reads from dropped "x°

The safety constraints Rust places on references can’t magically
disappear just because we hid the reference inside a struct. Somehow,
those constraints must end up applying to S as well. Indeed, Rust is
skeptical:

error[E0106]: missing lifetime specifier
--> references_in_struct.rs:7:12

|
7| r: &i32
| " expected lifetime parameter

Whenever a reference type appears inside another type’s definition, you
must write out its lifetime. You can write this:

struct S {
r: &'static i32
}

This says that r can only refer to i32 values that will last for the lifetime of
the program, which is rather limiting. The alternative is to give the type a
lifetime parameter 'a, and use that for r:

struct S<'a> {
r-&'ai32
}

Now the S type has a lifetime, just as reference types do. Each value you
create of type S gets a fresh lifetime 'a, which becomes constrained by
how you use the value. The lifetime of any reference you store in r had
better enclose 'a, and 'a must outlast the lifetime of wherever you store
the S.

Turning back to the preceding code, the expression S {r: &x } creates a
fresh S value with some lifetime 'a. When you store &x in the r field, you
constrain 'a to lie entirely within x’s lifetime.

The assignment s = S{ ... } stores this S in a variable whose lifetime
extends to the end of the example, constraining 'a to outlast the lifetime
of s. And now Rust has arrived at the same contradictory constraints as
before: 'a must not outlive x, yet must live at least as long as s. No
satisfactory lifetime exists, and Rust rejects the code. Disaster averted!

How does a type with a lifetime parameter behave when placed inside
some other type?

struct T {
s: S // not adequate

}

Rust is skeptical, just as it was when we tried placing a reference in S
without specifying its lifetime:

error[E0106]: missing lifetime specifier
--> references_in_nested_struct.rs:8:8

8| s:S /I notadequate
| N expected lifetime parameter

We can’t leave off S’s lifetime parameter here: Rust needs to know how a
T's lifetime relates to that of the reference in its S, in order to apply the
same checks to T that it does for S and plain references.

We could give s the 'static lifetime. This works:

struct T {
s: S<'static>

}

With this definition, the s field may only borrow values that live for the
entire execution of the program. That's somewhat restrictive, but it does
mean that a T can’t possibly borrow a local variable; there are no special
constraints on a T's lifetime.

The other approach would be to give T its own lifetime parameter, and
pass that to S:

struct T<'a> {
s: S<'a>

}

By taking a lifetime parameter 'a and using it in s’s type, we’ve allowed
Rust to relate a T value’s lifetime to that of the reference its S holds.

We showed earlier how a function’s signature exposes what it does with
the references we pass it. Now we’ve shown something similar about
types: a type’s lifetime parameters always reveal whether it contains
references with interesting (that is, non-'static) lifetimes, and what those
lifetimes can be.

For example, suppose we have a parsing function that takes a slice of
bytes, and returns a structure holding the results of the parse:

fn parse_record<'i>(input: &'i [u8]) -> Record<'i>{ ...}

Without looking into the definition of the Record type at all, we can tell
that, if we receive a Record from parse_record, whatever references it
contains must point into the input buffer we passed in, and nowhere else
(except perhaps at 'static values).

In fact, this exposure of internal behavior is the reason Rust requires
types that contain references to take explicit lifetime parameters. There’s
no reason Rust couldn’t simply make up a distinct lifetime for each
reference in the struct, and save you the trouble of writing them out. Early
versions of Rust actually behaved this way, but developers found it

confusing: it is helpful to know when one value borrows something from
another value, especially when working through errors.

It's not just references and types like S that have lifetimes. Every type in
Rust has a lifetime, including 132 and String. Most are simply 'static,
meaning that values of those types can live for as long as you like; for
example, a Vec<i32> is self-contained, and needn’t be dropped before
any particular variable goes out of scope. But a type like Vec<&'a i32>
has a lifetime that must be enclosed by 'a: it must be dropped while its
referents are still alive.

Distinct Lifetime Parameters

Suppose you've defined a structure containing two references like this:

struct S<'a> {
X: &'ai32,
y: &'ai32

}

Both references use the same lifetime 'a. This could be a problem if your
code wants to do something like this:

let x =
letr;

{
lety =

{
lets=S{x: &x,y: &y };
r=s.x;
}
}

This code doesn't create any dangling pointers. The reference to y stays
in s, which goes out of scope before y does. The reference to x ends up
in r, which doesn’t outlive Xx.

If you try to compile this, however, Rust will complain that y does not live
long enough, even though it clearly does. Why is Rust worried? If you
work through the code carefully, you can follow its reasoning:

e Both fields of S are references with the same lifetime 'a, so Rust
must find a single lifetime that works for both s.x and s.y.

e We assign r = s.x, requiring 'a to enclose r’s lifetime.

e We initialized s.y with &y, requiring 'a to be no longer than y’'s
lifetime.

These constraints are impossible to satisfy: no lifetime is shorter than y’s
scope, but longer than r's. Rust balks.

The problem arises because both references in S have the same lifetime
‘a. Changing the definition of S to let each reference have a distinct
lifetime fixes everything:

struct S<'a, 'b> {
X: &'ai32,
y: &'bi32

}

With this definition, s.x and s.y have independent lifetimes. What we do
with s.x has no effect on what we store in s.y, so it's easy to satisfy the
constraints now: ‘a can simply be r’s lifetime, and 'b can be s’s. (y’s
lifetime would work too for 'b, but Rust tries to choose the smallest
lifetime that works.) Everything ends up fine.

Function signatures can have similar effects. Suppose we have a
function like this:

fn f<'a>(r: &'ai32, s: &'a i32) -> &'ai32 {r } / perhaps too tight

Here, both reference parameters use the same lifetime 'a, which can
unnecessarily constrain the caller in the same way we’ve shown
previously. If this is a problem, you can let parameters’ lifetimes vary
independently:

fn f<'a, 'b>(r: &'ai32, s: &'b i32) -> &'ai32 {r } // looser

The downside to this is that adding lifetimes can make types and function
signatures harder to read. Your authors tend to try the simplest possible
definition first, and then loosen restrictions until the code compiles. Since
Rust won’t permit the code to run unless it's safe, simply waiting to be
told when there’s a problem is a perfectly acceptable tactic.

Omitting Lifetime Parameters

We've shown plenty of functions so far in this book that return references
or take them as parameters, but we’ve usually not needed to spell out
which lifetime is which. The lifetimes are there; Rust is just letting us omit
them when it's reasonably obvious what they should be.

In the simplest case, if your function doesn’t return any references (or
other types that require lifetime parameters), then you never need to
write out lifetimes for your parameters. Rust just assigns a distinct lifetime
to each spot that needs one. For example:

struct S<'a, 'b> {
X: &'ai32,
y: &'bi32

}

fn sum_r xy(r: &i32,s: S) ->i32{
r+sx+sy

}
This function’s signature is shorthand for:
fn sum_r xy<'a,'b, 'c>(r: &'ai32, s: S<'b, 'c>) ->i32

If you do return references or other types with lifetime parameters, Rust
still tries to make the unambiguous cases easy. If there’s only a single
lifetime that appears among your function’s parameters, then Rust
assumes any lifetimes in your return value must be that one:

fn first_third(point: &[i32; 3]) -> (&i32, &i32) {
(&point[0], &point[2])
}

With all the lifetimes written out, the equivalent would be:
fn first_third<'a>(point: &'a [i32; 3]) -> (&'a i32, &'a i32)

If there are multiple lifetimes among your parameters, then there’s no

natural reason to prefer one over the other for the return value, and Rust
makes you spell out what’s going on.

But as one final shorthand, if your function is a method on some type and
takes its self parameter by reference, then that breaks the tie: Rust
assumes that self’s lifetime is the one to give everything in your return
value. (A self parameter refers to the value the method is being called on,
Rust’s equivalent of this in C++, Java, or JavaScript, or self in Python.
We’ll cover methods in “Defining Methods with impl”.)

For example, you can write the following:

struct StringTable {
elements: Vec<String>,

}

impl StringTable {
fn find_by prefix(&self, prefix: &str) -> Option<&String> {
foriin O .. self.elements.len() {
if self.elements]i].starts_with(prefix) {
return Some(&self.elements]i]);

}
}

None

}
}

The find_by_prefix method’s signature is shorthand for:
fn find_by prefix<'a, 'b>(&'a self, prefix: &'b str) -> Option<&'a String>

Rust assumes that whatever you're borrowing, you're borrowing from
self.

Again, these are just abbreviations, meant to be helpful without
introducing surprises. When they’re not what you want, you can always
write the lifetimes out explicitly.

Sharing Versus Mutation

So far, we've discussed how Rust ensures no reference will ever point to
a variable that has gone out of scope. But there are other ways to
introduce dangling pointers. Here’s an easy case:

let v =vecl[4, 8, 19, 27, 34, 10];

letr = &v;

let aside = v; // move vector to aside

r[O]; // bad: uses "v', which is now uninitialized

The assignment to aside moves the vector, leaving v uninitialized, turning
r into a dangling pointer, as shown in Figure 5-7.

v aside
stack
frame 816
heap 4 1 8119127134110

Figure 5-7. A reference to a vector that has been moved away

Although v stays in scope for r's entire lifetime, the problem here is that
Vv's value gets moved elsewhere, leaving v uninitialized while r still refers
to it. Naturally, Rust catches the error:

error[E0505]: cannot move out of "v' because it is borrowed
--> references_sharing_vs_mutation_1.rs:10:9

9| letr=4&y;
| - borrow of "v* occurs here

10| letaside =v; // move vector to aside
| MMM move out of 'V occurs here

Throughout its lifetime, a shared reference makes its referent read-only:
you may not assign to the referent or move its value elsewhere. In this
code, r's lifetime contains the attempt to move the vector, so Rust rejects
the program. If you change the program as shown here, there’s no
problem:

let v =vecl[4, 8, 19, 27, 34, 10];
{

letr = &v;
r[O]; // ok: vector is still there

}

let aside = v;

In this version, r goes out of scope earlier, the reference’s lifetime ends
before v is moved aside, and all is well.

Here’s a different way to wreak havoc. Suppose we have a handy
function to extend a vector with the elements of a slice:

fn extend(vec: &mut Vec<f64>, slice: &[f64]) {
for elt in slice {
vec.push(*elt);
}
}

This is a less flexible (and much less optimized) version of the standard
library’s extend_from_slice method on vectors. We can use it to build up
a vector from slices of other vectors or arrays:

let mut wave = Vec::new();
let head = vec![0.0, 1.0];
let tail =[0.0, -1.0];

extend(&mut wave, &head); // extend wave with another vector
extend(&mut wave, &tail); // extend wave with an array

assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0]);

So we’ve built up one period of a sine wave here. If we want to add
another undulation, can we append the vector to itself?

extend(&mut wave, &wave);
assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0,
0.0, 1.0, 0.0, -1.0]);

This may look fine on casual inspection. But remember that when we add
an element to a vector, if its buffer is full, it must allocate a new buffer
with more space. Suppose wave starts with space for four elements, and
so must allocate a larger buffer when extend tries to add a fifth. Memory
ends up looking like Figure 5-8.

slice
vec —~A—

extend's
stack frame ? ?

caller's
stack frame ®

heap

wave's old
buffer (freed)

wave's new,
enlarged buffer

A 4
.0.0 1000]-1.0] 00

length
capacity

Figure 5-8. A slice turned into a dangling pointer by a vector reallocation

The extend function’s vec argument borrows wave (owned by the caller),
which has allocated itself a new buffer with space for eight elements. But
slice continues to point to the old four-element buffer, which has been
dropped.

This sort of problem isn’t unique to Rust: modifying collections while
pointing into them is delicate territory in many languages. In C++, the
std::vector specification cautions you that “reallocation [of the vector’s
buffer] invalidates all the references, pointers, and iterators referring to
the elements in the sequence.” Similarly, Java says, of modifying a
java.util.Hashtable object:

[l]f the Hashtable is structurally modified at any time after the iterator is
created, in any way except through the iterator’'s own remove method,
the iterator will throw a ConcurrentModificationException.

What's especially difficult about this sort of bug is that it doesn’t happen
all the time. In testing, your vector might always happen to have enough
space, the buffer might never be reallocated, and the problem might
never come to light.

Rust, however, reports the problem with our call to extend at compile
time:

error[E0502]: cannot borrow “wave™ as immutable because it is also borrowed as mutable
--> references_sharing_vs_mutation_2.rs:9:24

9| extend(&mut wave, &wave);
- MM mutable borrow ends here

| | immutable borrow occurs here
| mutable borrow occurs here

In other words, we may borrow a mutable reference to the vector, and we
may borrow a shared reference to its elements, but those two references’
lifetimes may not overlap. In our case, both references’ lifetimes contain
the call to extend, so Rust rejects the code.

These errors both stem from violations of Rust'’s rules for mutation and
sharing:

e Shared access is read-only access. Values borrowed by shared
references are read-only. Across the lifetime of a shared
reference, neither its referent, nor anything reachable from that
referent, can be changed by anything. There exist no live mutable

references to anything in that structure; its owner is held read-
only; and so on. It's really frozen.

e Mutable access is exclusive access. A value borrowed by a
mutable reference is reachable exclusively via that reference.
Across the lifetime of a mutable reference, there is no other
usable path to its referent, or to any value reachable from there.
The only references whose lifetimes may overlap with a mutable
reference are those you borrow from the mutable reference itself.

Rust reported the extend example as a violation of the second rule: since
we’ve borrowed a mutable reference to wave, that mutable reference
must be the only way to reach the vector or its elements. The shared
reference to the slice is itself another way to reach the elements, violating
the second rule.

But Rust could also have treated our bug as a violation of the first rule:
since we’ve borrowed a shared reference to wave’s elements, the
elements and the Vec itself are all read-only. You can’t borrow a mutable
reference to a read-only value.

Each kind of reference affects what we can do with the values along the
owning path to the referent, and the values reachable from the referent
(Figure 5-9).

Ownership tree Borrowing a shared reference Borrowing a mutable reference
. inaccessible
variable
¢ | ® | ¢

mutable
reference

shared

heap- reference

allocated

not
values

read-only

read-only accessible only
through the reference

Figure 5-9. Borrowing a reference affects what you can do with other values in the same
ownership tree

Note that in both cases, the path of ownership leading to the referent
cannot be changed for the reference’s lifetime. For a shared borrow, the
path is read-only; for a mutable borrow, it's completely inaccessible. So
there’s no way for the program to do anything that will invalidate the
reference.

Paring these principles down to the simplest possible examples:

let mut x = 10;

let rl = &x;
letr2 = &x; // ok: multiple shared borrows permitted
X +=10; // error: cannot assign to X" because it is borrowed

let m = &mut x; // error: cannot borrow “x° as mutable because it is
// also borrowed as immutable

let muty = 20;

let m1 = &muty;

let m2 = &mut y; // error: cannot borrow as mutable more than once
letz=y; // error: cannot use "y’ because it was mutably borrowed

It is OK to reborrow a shared reference from a shared reference:

let mut w = (107, 109);

letr = &w;

let rO = &r.0; // ok: reborrowing shared as shared
letml=&mutr.1; //error: can't reborrow shared as mutable

You can reborrow from a mutable reference:

let mut v = (136, 139);
letm = &mut v;
let mO = &mut m.0; // ok: reborrowing mutable from mutable

*m0 = 137;
letrl =&m.1; // ok: reborrowing shared from mutable,
// and doesn't overlap with mO
v.1; // error: access through other paths still forbidden

These restrictions are pretty tight. Turning back to our attempted call
extend(&mut wave, &wave), there’s no quick and easy way to fix up the
code to work the way we’d like. And Rust applies these rules everywhere:
if we borrow, say, a shared reference to a key in a HashMap, we can't
borrow a mutable reference to the HashMap until the shared reference’s

lifetime ends.

But there’s good justification for this: designing collections to support
unrestricted, simultaneous iteration and modification is difficult, and often
precludes simpler, more efficient implementations. Java’s Hashtable and
C++’s vector don’t bother, and neither Python dictionaries nor JavaScript
objects define exactly how such access behaves. Other collection types
in JavaScript do, but require heavier implementations as a result. C++’s
std::map promises that inserting new entries doesn’t invalidate pointers to
other entries in the map, but by making that promise, the standard
precludes more cache-efficient designs like Rust’'s BTreeMap, which
stores multiple entries in each node of the tree.

Here’s another example of the kind of bug these rules catch. Consider
the following C++ code, meant to manage a file descriptor. To keep
things simple, we’re only going to show a constructor and a copying
assignment operator, and we’re going to omit error handling:

struct File {
int descriptor;

File(int d) : descriptor(d) { }

File& operator=(const File &rhs) {
close(descriptor);
descriptor = dup(rhs.descriptor);

}
h

The assignment operator is simple enough, but fails badly in a situation
like this:

File flopen("foo.txt", ...));

f=t.
If we assign a File to itself, both rhs and *this are the same object, so

operator= closes the very file descriptor it's about to pass to dup. We
destroy the same resource we were meant to copy.

In Rust, the analogous code would be:

struct File {
descriptor: i32

}

fn new_file(d: i32) -> File {
File { descriptor: d }
}

fn clone_from(this: &mut File, rhs: &File) {
close(this.descriptor);
this.descriptor = dup(rhs.descriptor);

}

(This is not idiomatic Rust. There are excellent ways to give Rust types
their own constructor functions and methods, which we describe in
Chapter 9, but the preceding definitions work for this example.)

If we write the Rust code corresponding to the use of File, we get:

let mut f = new_file(open("foo.txt", ...));

clone_from(&mut f, &f);

Rust, of course, refuses to even compile this code:

error[E0502]: cannot borrow “f* as immutable because it is also
borrowed as mutable
--> references_self assignment.rs:18:25

|
18| clone_from(&mut f, &f);

| - - mutable borrow ends here

| | immutable borrow occurs here
| mutable borrow occurs here

This should look familiar. It turns out that two classic C++ bugs—failure to
cope with self-assignment, and using invalidated iterators—are the same
underlying kind of bug! In both cases, code assumes it is modifying one
value while consulting another, when in fact they’re both the same value.
If you've ever accidentally let the source and destination of a call to
memcpy or strcpy call overlap in C or C++, that's yet another form the
bug can take. By requiring mutable access to be exclusive, Rust has
fended off a wide class of everyday mistakes.

The immiscibility of shared and mutable references really demonstrates
its value when writing concurrent code. A data race is possible only when
some value is both mutable and shared between threads—which is
exactly what Rust’s reference rules eliminate. A concurrent Rust program
that avoids unsafe code is free of data races by construction. We’'ll cover
this aspect in more detail when we talk about concurrency in Chapter 19,
but in summary, concurrency is much easier to use in Rust than in most
other languages.

RUST’'S SHARED REFERENCES VERSUS C’S POINTERS
TO CONST

On first inspection, Rust’s shared references seem to closely
resemble C and C++'s pointers to const values. However, Rust’s
rules for shared references are much stricter. For example, consider
the following C code:

intx =42; // int variable, not const

const int *p = &x; // pointer to const int

assert(*p == 42);

X++; // change variable directly

assert(*p == 43); // “constant” referent's value has changed

The fact that p is a const int * means that you can’t modify its referent
via p itself: (*p)++ is forbidden. But you can also get at the referent
directly as x, which is not const, and change its value that way. The C
family’s const keyword has its uses, but constant it is not.

In Rust, a shared reference forbids all modifications to its referent,
until its lifetime ends:

let mut x =42; // nonconst i32 variable

let p = &x; // shared reference to i32

assert_eq!(*p, 42);

X +=1; // error: cannot assign to x because it is borrowed

assert_eq!(*p, 42); //if you take out the assignment, this is true

To ensure a value is constant, we need to keep track of all possible
paths to that value, and make sure that they either don’t permit

modification or cannot be used at all. C and C++ pointers are too
unrestricted for the compiler to check this. Rust's references are
always tied to a particular lifetime, making it feasible to check them at
compile time.

Taking Arms Against a Sea of Objects

Since the rise of automatic memory management in the 1990s, the
default architecture of all programs has been the sea of objects, shown in
Figure 5-10.

This is what happens if you have garbage collection and you start writing
a program without designing anything. We’ve all built systems that look
like this.

This architecture has many advantages that don’t show up in the
diagram: initial progress is rapid, it's easy to hack stuff in, and a few
years down the road, you'll have no difficulty justifying a complete rewrite.
(Cue AC/DC'’s “Highway to Hell.”)

]

Figure 5-10. A sea of objects

Of course, there are disadvantages too. When everything depends on
everything else like this, it's hard to test, evolve, or even think about any
component in isolation.

One fascinating thing about Rust is that the ownership model puts a

speed bump on the highway to hell. It takes a bit of effort to make a cycle
in Rust—two values such that each one contains a reference pointing to
the other. You have to use a smart pointer type, such as Rc, and interior
mutability—a topic we haven’t even covered yet. Rust prefers for
pointers, ownership, and data flow to pass through the system in one
direction, as shown in Figure 5-11.

18 |68
L)

Figure 5-11. A tree of values

The reason we bring this up right now is that it would be natural, after
reading this chapter, to want to run right out and create a “sea of structs,”
all tied together with Rc smatrt pointers, and re-create all the object-
oriented antipatterns you're familiar with. This won’t work for you right
away. Rust’s ownership model will give you some trouble. The cure is to
do some up-front design and build a better program.

Rust is all about transferring the pain of understanding your program from
the future to the present. It works unreasonably well: not only can Rust
force you to understand why your program is thread-safe, it can even

require some amount of high-level architectural design.

Chapter 6. Expressions

LISP programmers know the value of everything, but the cost of
nothing.

—Alan Perlis, epigram #55

In this chapter, we’ll cover the expressions of Rust, the building blocks
that make up the body of Rust functions. A few concepts, such as
closures and iterators, are deep enough that we will dedicate a whole
chapter to them later on. For now, we aim to cover as much syntax as
possible in a few pages.

An Expression Language

Rust visually resembles the C family of languages, but this is a bit of a
ruse. In C, there is a sharp distinction between expressions, bits of code
that look something like this:

5* (fahr-32) / 9
and statements, which look more like this:

for (; begin != end; ++begin) {
if (*begin == target)
break;

}

Expressions have values. Statements don't.

Rust is what is called an expression language. This means it follows an
older tradition, dating back to Lisp, where expressions do all the work.

In C, if and switch are statements. They don’t produce a value, and they
can't be used in the middle of an expression. In Rust, if and match can
produce values. We already saw a match expression that produces a
numeric value in Chapter 2:

pixels[r * bounds.0 + c] =
match escapes(Complex { re: point.0, im: point.1 }, 255) {
None => 0,
Some(count) => 255 - count as u8

%
An if expression can be used to initialize a variable:

let status =
if cpu.temperature <= MAX_TEMP {
HttpStatus::Ok
} else {
HttpStatus::ServerError // server melted

h

A match expression can be passed as an argument to a function or
macro:

printin!(“Inside the vat, you see {}.",
match vat.contents {
Some(brain) => brain.desc(),
None => "nothing of interest"

D

This explains why Rust does not have C’s ternary operator (exprl ?
expr2 : expr3). In C, it is a handy expression-level analogue to the if
statement. It would be redundant in Rust: the if expression handles both
cases.

Most of the control flow tools in C are statements. In Rust, they are all
expressions.

Blocks and Semicolons

Blocks, too, are expressions. A block produces a value and can be used
anywhere a value is needed:

let display_name = match post.author() {
Some(author) => author.name(),
None => {
let network_info = post.get_network_metadata()?;
let ip = network_info.client_address();
ip.to_string()
}
2

The code after Some(author) => is the simple expression author.name().
The code after None => is a block expression. It makes no difference to
Rust. The value of the block is the value of its last expression,
ip.to_string().

Note that there is no semicolon after that expression. Most lines of Rust
code do end with either a semicolon or curly braces, just like C or Java.
And if a block looks like C code, with semicolons in all the familiar places,
then it will run just like a C block, and its value will be (). As we
mentioned in Chapter 2, when you leave the semicolon off the last line of
a block, you're making that block produce a value—the value of the final
expression.

In some languages, particularly JavaScript, you're allowed to omit
semicolons, and the language simply fills them in for you—a minor
convenience. This is different. In Rust, the semicolon actually means
something.

let msg = {
// let-declaration: semicolon is always required
let dandelion_control = puffball.open();

// expression + semicolon: method is called, return value dropped
dandelion_control.release_all_seeds(launch_codes);

// expression with no semicolon: method is called,

// return value stored in "'msg’
dandelion_control.get_status()

h

This ability of blocks to contain declarations and also produce a value at
the end is a neat feature, one that quickly comes to feel natural. The one
drawback is that it leads to an odd error message when you leave out a

semicolon by accident.

if preferences.changed() {
page.compute_size() // oops, missing semicolon

}

If you made this mistake in a C or Java program, the compiler would
simply point out that you’re missing a semicolon. Here’s what Rust says:

error[E0308]: mismatched types
--> expressions_missing_semicolon.rs:19:9

|
19| page.compute_size() // oops, missing semicolon
| NNNNNNNNNNNNNNNNNNN expected ()’ found tuple

= note: expected type ()’
found type “(u32, u32)'

Rust assumes you’ve omitted this semicolon on purpose; it doesn’t
consider the possibility that it's just a typo. A confused error message is
the result. When you see expected type (), look for a missing semicolon
first.

Empty statements are also allowed in blocks. An empty statement
consists of a stray semicolon, all by itself:

loop {
work();
play();
; // <-- empty statement

}

Rust follows the tradition of C in allowing this. Empty statements do

nothing except convey a slight feeling of melancholy. We mention them
only for completeness.

Declarations

In addition to expressions and semicolons, a block may contain any
number of declarations. The most common are let declarations, which
declare local variables:

let name: type = expr;

The type and initializer are optional. The semicolon is required.

A let declaration can declare a variable without initializing it. The variable
can then be initialized with a later assignment. This is occasionally useful,
because sometimes a variable should be initialized from the middle of
some sort of control flow construct:

let name;

if user.has_nickname() {
name = user.nickname();

} else {
name = generate_unigue_name();
user.register(&name);

}

Here there are two different ways the local variable name might be
initialized, but either way it will be initialized exactly once, so name does
not need to be declared mut.

It's an error to use a variable before it’s initialized. (This is closely related
to the error of using a value after it's been moved. Rust really wants you
to use values only while they exist!)

You may occasionally see code that seems to redeclare an existing
variable, like this:

for line in file.lines() {
let line = line?;

This is equivalent to:

for line_result in file.lines() {
let line = line_result?;

The let declaration creates a new, second variable, of a different type.
The type of line_result is Result<String, io::Error>. The second variable,
line, is a String. It's legal to give the second variable the same name as
the first. In this book, we’ll stick to using a _result suffix in such situations,
so that all variables have distinct names.

A block can also contain item declarations. An item is simply any
declaration that could appear globally in a program or module, such as a
fn, struct, or use.

Later chapters will cover items in detail. For now, fn makes a sufficient
example. Any block may contain a fn:

use std::io;
use std::cmp::Ordering;

fn show_files() -> io::Result<()> {
let mut v = vecl![];

fn cmp_by timestamp_then_name(a: &Filelnfo, b: &Filelnfo) -> Ordering {
a.timestamp.cmp(&b.timestamp) // first, compare timestamps
reverse() // newest file first
.then(a.path.cmp(&b.path)) // compare paths to break ties

}

v.sort_by(cmp_by_timestamp_then_name);

When a fn is declared inside a block, its scope is the entire block—that is,
it can be used throughout the enclosing block. But a nested fn cannot
access local variables or arguments that happen to be in scope. For
example, the function cmp_by timestamp_then_name could not use v
directly. (Rust also has closures, which do see into enclosing scopes.

See Chapter 14.)

A block can even contain a whole module. This may seem a bit much—
do we really need to be able to nest every piece of the language inside
every other piece?—but programmers (and particularly programmers
using macros) have a way of finding uses for every scrap of orthogonality
the language provides.

if and match

The form of an if expression is familiar:

if conditionl {
block1

} else if condition2 {
block2

} else {
block _n

}

Each condition must be an expression of type bool; true to form, Rust
does not implicitly convert numbers or pointers to Boolean values.

Unlike C, parentheses are not required around conditions. In fact, rustc
will emit a warning if unnecessary parentheses are present. The curly
braces, however, are required.

The else if blocks, as well as the final else, are optional. An if expression
with no else block behaves exactly as though it had an empty else block.

match expressions are something like the C switch statement, but more
flexible. A simple example:

match code {
0 => printin!("OK"),
1 => printin!("Wires Tangled"),
2 => println!("User Asleep"),
__=>printin!("Unrecognized Error {}", code)

}

This is something a switch statement could do. Exactly one of the four
arms of this match expression will execute, depending on the value of
code. The wildcard pattern _ matches everything, so it serves as the
default: case.

The compiler can optimize this kind of match using a jump table, just like
a switch statement in C++. A similar optimization is applied when each
arm of a match produces a constant value. In that case, the compiler

builds an array of those values, and the match is compiled into an array
access. Apart from a bounds check, there is no branching at all in the
compiled code.

The versatility of match stems from the variety of supported patterns that
can be used to the left of => in each arm. Above, each pattern is simply a
constant integer. We've also shown match expressions that distinguish
the two kinds of Option value:

match params.get("name") {
Some(name) => printin!("Hello, {}!", name),
None => println!("Greetings, stranger.")

}

This is only a hint of what patterns can do. A pattern can match a range
of values. It can unpack tuples. It can match against individual fields of
structs. It can chase references, borrow parts of a value, and more.
Rust’s patterns are a mini-language of their own. We’ll dedicate several
pages to them in Chapter 10.

The general form of a match expression is:

match value {
pattern => expr,

,

The comma after an arm may be dropped if the expr is a block.

Rust checks the given value against each pattern in turn, starting with the
first. When a pattern matches, the corresponding expr is evaluated and
the match expression is complete; no further patterns are checked. At
least one of the patterns must match. Rust prohibits match expressions
that do not cover all possible values:

let score = match card.rank {
Jack => 10,
Queen => 10,
Ace =>11

}; // error: nonexhaustive patterns

All blocks of an if expression must produce values of the same type:

let suggested_pet =
if with_wings { Pet::Buzzard } else { Pet::Hyena }; // ok

let favorite_number =
if user.is_hobbit() { "eleventy-one" } else {9 }; // error

let best_sports_team =
if is_hockey_season() { "Predators" }; // error

(The last example is an error because in July, the result would be ().)

Similarly, all arms of a match expression must have the same type:

let suggested_pet =
match favorites.element {
Fire => Pet::RedPanda,
Air => Pet::Buffalo,
Water => Pet::Orca,
__=>None // error: incompatible types

if let

There is one more if form, the if let expression:

if let pattern = expr {
block1

} else {
block2

}

The given expr either matches the pattern, in which case blockl runs, or
it doesn’t, and block2 runs. Sometimes this is a nice way to get data out
of an Option or Result:

if let Some(cookie) = request.session_cookie {
return restore_session(cookie);

}

if let Err(err) = present_cheesy_anti_robot_task() {
log_robot_attempt(err);
politely_accuse_user_of being_a_robot();

} else {
session.mark_as_human();

}

It's never strictly necessary to use if let, because match can do
everything if let can do. An if let expression is shorthand for a match with
just one pattern:

match expr {
pattern => { block1 }
_=>{block2}

Loops

There are four looping expressions:

while condition {
block

}

while let pattern = expr {
block

}

loop {
block

}

for pattern in collection {
block

}

Loops are expressions in Rust, but they don’t produce useful values. The
value of a loop is ().

A while loop behaves exactly like the C equivalent, except that again, the
condition must be of the exact type bool.

The while let loop is analogous to if let. At the beginning of each loop
iteration, the value of expr either matches the given pattern, in which
case the block runs, or it doesn’t, in which case the loop exits.

Use loop to write infinite loops. It executes the block repeatedly forever
(or until a break or return is reached, or the thread panics).

A for loop evaluates the collection expression, then evaluates the block
once for each value in the collection. Many collection types are
supported. The standard C for loop:

for (inti=0;i<20;i++){
printf("%d\n", i);
}

is written like this in Rust:

foriin0..20{
printin!("{}", i);
}

As in C, the last number printed is 19.

The .. operator produces a range, a simple struct with two fields: start
and end. 0..20 is the same as std::ops::Range { start: 0, end: 20 }.
Ranges can be used with for loops because Range is an iterable type: it
implements the std::iter::Intolterator trait, which we’ll discuss in Chapter
15. The standard collections are all iterable, as are arrays and slices.

In keeping with Rust’'s move semantics, a for loop over a value consumes
the value:

let strings: Vec<String> = error_messages();
for s in strings { // each String is moved into s here...

printin!("{}", s);
} // ...and dropped here
printin!("{} error(s)", strings.len()); // error: use of moved value

This can be inconvenient. The easy remedy is to loop over a reference to
the collection instead. The loop variable, then, will be a reference to each
item in the collection:

for rs in &strings {
printin!("String {:?} is at address {:p}.", *rs, rs);
}

Here the type of &strings is &Vec<String> and the type of rs is &String.

Iterating over a mut reference provides a mut reference to each element:

for rs in &mut strings { // the type of rs is &mut String
rs.push(\n"); // add a newline to each string

}
Chapter 15 covers for loops in greater detail and shows many other ways
to use iterators.

A break expression exits an enclosing loop. (In Rust, break works only in
loops. It is not necessary in match expressions, which are unlike switch

statements in this regard.)

A continue expression jumps to the next loop iteration:

// Read some data, one line at a time.
for line in input_lines {
let trimmed = trim_comments_and_whitespace(line);
if trimmed.is_empty() {
// Jump back to the top of the loop and
// move on to the next line of input.
continue;

}

In a for loop, continue advances to the next value in the collection. If
there are no more values, the loop exits. Similarly, in a while loop,
continue rechecks the loop condition. If it's now false, the loop exits.

A loop can be labeled with a lifetime. In the following example, 'search: is
a label for the outer for loop. Thus break 'search exits that loop, not the

inner loop.

'search:
for room in apartment {
for spot in room.hiding_spots() {
if spot.contains(keys) {
printin!("Your keys are {} in the {}.", spot, room);
break :

}
}
}

Labels can also be used with continue.

return Expressions

A return expression exits the current function, returning a value to the
caller.

return without a value is shorthand for return ():

fnf() { // return type omitted: defaults to ()
return; // return value omitted: defaults to ()

}

Like a break expression, return can abandon work in progress. For
example, back in Chapter 2, we used the ? operator to check for errors
after calling a function that can fail:

let output = File::create(filename)?;

and we explained that this is shorthand for a match expression:

let output = match File::create(filename) {
Ok(f) =>f,
Err(err) => return Err(err)

I3

This code starts by calling File::create(filename). If that returns OK(f),
then the whole match expression evaluates to f, so f is stored in output
and we continue with the next line of code following the match.

Otherwise, we’ll match Err(err) and hit the return expression. When that
happens, it doesn’t matter that we’re in the middle of evaluating a match
expression to determine the value of the variable output. We abandon all
of that and exit the enclosing function, returning whatever error we got
from File::.create().

We’'ll cover the ? operator more completely in “Propagating Errors”.

Why Rust Has loop

Several pieces of the Rust compiler analyze the flow of control through
your program.

e Rust checks that every path through a function returns a value of
the expected return type. To do this correctly, it needs to know
whether or not it's possible to reach the end of the function.

¢ Rust checks that local variables are never used uninitialized. This
entails checking every path through a function to make sure
there’s no way to reach a place where a variable is used without
having already passed through code that initializes it.

¢ Rust warns about unreachable code. Code is unreachable if no
path through the function reaches it.

These are called flow-sensitive analyses. They are nothing new; Java
has had a “definite assignment” analysis, similar to Rust’s, for years.

When enforcing this sort of rule, a language must strike a balance
between simplicity, which makes it easier for programmers to figure out
what the compiler is talking about sometimes—and cleverness, which
can help eliminate false warnings and cases where the compiler rejects a
perfectly safe program. Rust went for simplicity. Its flow-sensitive
analyses do not examine loop conditions at all, instead simply assuming
that any condition in a program can be either true or false.

This causes Rust to reject some safe programs:

fn wait_for_process(process: &mut Process) -> i32 {
while true {
if process.wait() {
return process.exit_code();
}
}

} // error: not all control paths return a value

The error here is bogus. It is not actually possible to reach the end of the

function without returning a value.

The loop expression is offered as a “say-what-you-mean” solution to this
problem.

Rust’s type system is affected by control flow, too. Earlier we said that all
branches of an if expression must have the same type. But it would be
silly to enforce this rule on blocks that end with a break or return
expression, an infinite loop, or a call to panic!() or std::process:exit().
What all those expressions have in common is that they never finish in
the usual way, producing a value. A break or return exits the current
block abruptly; an infinite loop never finishes at all; and so on.

So in Rust, these expressions don’t have a normal type. Expressions that
don’t finish normally are assigned the special type !, and they’'re exempt
from the rules about types having to match. You can see ! in the function
signature of std::process::exit():

fn exit(code: i32) -> !

The ! means that exit() never returns. It's a divergent function.

You can write divergent functions of your own using the same syntax,
and this is perfectly natural in some cases:

fn serve_forever(socket: ServerSocket, handler: ServerHandler) -> ! {
socket.listen();
loop {
let s = socket.accept();
handler.handle(s);

}
}

Of course, Rust then considers it an error if the function can return
normally.

This concludes the part of this chapter that focuses on control flow. The
rest covers Rust functions, methods, and operators.

Function and Method Calls

The syntax for calling functions and methods is the same in Rust as in
many other languages:

let x = gcd(1302, 462); // function call

let room = player.location(); // method call

In the second example here, player is a variable of the made-up type
Player, which has a made-up .location() method. (We’ll show how to
define your own methods when we start talking about user-defined types
in Chapter 9.)

Rust usually makes a sharp distinction between references and the
values they refer to. If you pass a &i32 to a function that expects an i32,
that's a type error. You'll notice that the . operator relaxes those rules a
bit. In the method call player.location(), player might be a Player, a
reference of type &Player, or a smart pointer of type Box<Player> or
Rc<Player>. The .location() method might take the player either by value
or by reference. The same .location() syntax works in all cases, because
Rust’s . operator automatically dereferences player or borrows a
reference to it as needed.

A third syntax is used for calling static methods, like Vec::new().

let mut numbers = Vec::new(); // static method call

The difference between static and nonstatic methods is the same as in
object-oriented languages: nonstatic methods are called on values (like
my_vec.len()), and static methods are called on types (like Vec::new()).

Naturally, method calls can be chained:

Iron::new(router).http("localhost:3000").unwrap();

One quirk of Rust syntax is that in a function call or method call, the usual

syntax for generic types, Vec<T>, does not work:

return Vec<i32>::with_capacity(1000); // error: something about chained comparisons
let ramp = (0 .. n).collect<Vec<i32>>(); // same error
The problem is that in expressions, < is the less-than operator. The Rust

compiler helpfully suggests writing ::<T> instead of <T> in this case, and
that solves the problem:

return Vec::<i32>::with_capacity(1000); // ok, using ::<

let ramp = (0 .. n).collect::<Vec<i32>>(); // ok, using ::<
The symbol ::<...> is affectionately known in the Rust community as the
turbofish.

Alternatively, it is often possible to drop the type parameters and let Rust
infer them:

return Vec::with_capacity(10); // ok, if the fn return type is Vec<i32>

let ramp: Vec<i32> = (0 .. n).collect(); // ok, variable's type is given

It's considered good style to omit the types whenever they can be
inferred.

Fields and Elements
The fields of a struct are accessed using familiar syntax. Tuples are the
same except that their fields have numbers rather than names:

game.black _pawns // struct field
coords.1 // tuple element

If the value to the left of the dot is a reference or smart pointer type, it is
automatically dereferenced, just as for method calls.

Square brackets access the elements of an array, a slice, or a vector:

piecesli] // array element

The value to the left of the brackets is automatically dereferenced.
Expressions like these three are called Ivalues, because they can appear
on the left side of an assignment:

game.black _pawns = 0x00ff0000 00000000 u64;
coords.1 =0;
pieces[2] = Some(Piece::new(Black, Knight, coords));

Of course, this is permitted only if game, coords, and pieces are declared
as mut variables.

Extracting a slice from an array or vector is straightforward:

let second_half = &game_moves[midpoint .. end];

Here game_moves may be either an array, a slice, or a vector; the result,
regardless, is a borrowed slice of length end - midpoint. game_moves is
considered borrowed for the lifetime of second_half.

The .. operator allows either operand to be omitted; it produces up to four
different types of object depending on which operands are present:

// RangeFull

a.. //RangeFrom { start: a}
.b //RangeTo{end: b}
a.. b /Range {start: a, end: b}

Rust ranges are half-open: they include the start value, if any, but not the
end value. The range 0 .. 4 includes the numbers 0, 1, 2, and 3.

Only ranges that include a start value are iterable, since a loop must
have somewhere to start. But in array slicing, all four forms are useful. If
the start or end of the range is omitted, it defaults to the start or end of
the data being sliced.

So an implementation of quicksort, the classic divide-and-conquer sorting
algorithm, might look, in part, like this:

fn quicksort<T: Ord>(slice: &mut [T]) {
if slice.len() <=1{
return; // Nothing to sort.

}

// Partition the slice into two parts, front and back.
let pivot_index = partition(slice);

// Recursively sort the front half of “slice’.
quicksort(&mut slice[.. pivot_index]);

// And the back half.
quicksort(&mut slice[pivot_index + 1 ..]);

Reference Operators
The address-of operators, & and &mut, are covered in Chapter 5.

The unary * operator is used to access the value pointed to by a
reference. As we’ve seen, Rust automatically follows references when
you use the . operator to access a field or method, so the * operator is
necessary only when we want to read or write the entire value that the
reference points to.

For example, sometimes an iterator produces references, but the
program needs the underlying values:

let padovan: Vec<u64> = compute_padovan_sequence(n);
for elem in &padovan {
draw_triangle(turtle, *elem);

}

In this example, the type of elem is &u64, so *elem is a u64.

Arithmetic, Bitwise, Comparison, and Logical
Operators

Rust’s binary operators are like those in many other languages. To save
time, we assume familiarity with one of those languages, and focus on
the few points where Rust departs from tradition.

Rust has the usual arithmetic operators, +, -, *, /, and %. As mentioned in
Chapter 3, integer overflow is detected, and causes a panic, in debug
builds. The standard library provides methods like a.wrapping_add(b) for
unchecked arithmetic.

Dividing an integer by zero triggers a panic even in release builds.
Integers have a method a.checked_div(b) that returns an Option (None if
b is zero) and never panics.

Unary - negates a number. It is supported for all the numeric types
except unsigned integers. There is no unary + operator.

printin!("{}", -100); //-100
printin!("{}", -100u32); // error: can't apply unary "-" to type "u32
printin!("{}", +100); // error: expected expression, found "+

As in C, a % b computes the remainder, or modulus, of division. The
result has the same sign as the lefthand operand. Note that % can be
used on floating-point numbers as well as integers:

let x = 1234.567 % 10.0; // approximately 4.567

Rust also inherits C’s bitwise integer operators, &, |, #, <<, and >>.
However, Rust uses ! instead of ~ for bitwise NOT:

let hi: u8 = 0xe0;
let lo = thi; // Ox1f

This means that 'n can’t be used on an integer n to mean “n is zero.” For
that, write n == 0.

Bit shifting is always sign-extending on signed integer types and zero-
extending on unsigned integer types. Since Rust has unsigned integers,
it does not need Java’'s >>> operator.

Bitwise operations have higher precedence than comparisons, unlike C,
so if you write X & BIT != 0, that means (x & BIT) I= 0, as you probably
intended. This is much more useful than C’s interpretation, x & (BIT != 0),
which tests the wrong bit!

Rust’'s comparison operators are ==, I=, <, <=, >, and >=. The two values
being compared must have the same type.

Rust also has the two short-circuiting logical operators && and ||. Both
operands must have the exact type bool.

Assignment

The = operator can be used to assign to mut variables and their fields or
elements. But assignment is not as common in Rust as in other
languages, since variables are immutable by default.

As described in Chapter 4, assignment moves values of nhoncopyable
types, rather than implicitly copying them.

Compound assignment is supported:

total += item.price;

This is equivalent to total = total + item.price;. Other operators are
supported too: —=, *=, and so forth. The full list is given in Table 6-1, at
the end of this chapter.

Unlike C, Rust doesn’t support chaining assignment: you can’'t write a=b
= 3 to assign the value 3 to both a and b. Assignment is rare enough in
Rust that you won’t miss this shorthand.

Rust does not have C’s increment and decrement operators ++ and --.

Type Casts

Converting a value from one type to another usually requires an explicit
cast in Rust. Casts use the as keyword:

letx =17, // X Is type i32
let index = x as usize; // convert to usize

Several kinds of casts are permitted:

e Numbers may be cast from any of the built-in numeric types to
any other.

Casting an integer to another integer type is always well-defined.
Converting to a narrower type results in truncation. A signed
integer cast to a wider type is sign-extended; an unsigned integer
is zero-extended; and so on. In short, there are no surprises.

However, as of this writing, casting a large floating-point value to
an integer type that is too small to represent it can lead to
undefined behavior. This can cause crashes even in safe Rust. It
is a bug in the compiler, github.com/rust-lang/rust/issues/10184.

e Values of type bool, char, or of a C-like enum type, may be cast
to any integer type. (We’'ll cover enums in Chapter 10.)

Casting in the other direction is not allowed, as bool, char, and
enum types all have restrictions on their values that would have
to be enforced with runtime checks. For example, casting a ul6
to type char is banned because some ul6 values, like 0xd800,
correspond to Unicode surrogate code points and therefore
would not make valid char values. There is a standard method,
std::char::from_u32(), which performs the runtime check and
returns an Option<char>; but more to the point, the need for this
kind of conversion has grown rare. We typically convert whole
strings or streams at once, and algorithms on Unicode text are
often nontrivial and best left to libraries.

https://github.com/rust-lang/rust/issues/10184

As an exception, a u8 may be cast to type char, since all integers
from O to 255 are valid Unicode code points for char to hold.

e Some casts involving unsafe pointer types are also allowed. See
“Raw Pointers”.

We said that a conversion usually requires a cast. A few conversions
involving reference types are so straightforward that the language
performs them even without a cast. One trivial example is converting a
mut reference to a non-mut reference.

Several more significant automatic conversions can happen, though:

e Values of type &String auto-convert to type &str without a cast.
e Values of type &Vec<i32> auto-convert to &[i32].

¢ Values of type &Box<Chessboard> auto-convert to
&Chessboard.

These are called deref coercions, because they apply to types that
implement the Deref built-in trait. The purpose of Deref coercion is to
make smart pointer types, like Box, behave as much like the underlying
value as possible. Using a Box<Chessboard> is mostly just like using a
plain Chessboard, thanks to Deref.

User-defined types can implement the Deref trait, too. When you need to
write your own smart pointer type, see “Deref and DerefMut”.

Closures

Rust has closures, lightweight function-like values. A closure usually
consists of an argument list, given between vertical bars, followed by an
expression:

letis_even = [x| x % 2 == 0;

Rust infers the argument types and return type. You can also write them
out explicitly, as you would for a function. If you do specify a return type,
then the body of the closure must be a block, for the sake of syntactic
sanity:

letis_even = |x: u64| -> bool x % 2 == 0; // error

letis_even = |x: u64| -> bool {x % 2==0}; // ok
Calling a closure uses the same syntax as calling a function:
assert_eq!(is_even(14), true);

Closures are one of Rust’s most delightful features, and there is a great
deal more to be said about them. We shall say it in Chapter 14,

Precedence and Associativity

Table 6-1 gives a summary of Rust expression syntax. Operators are
listed in order of precedence, from highest to lowest. (Like most
programming languages, Rust has operator precedence to determine the
order of operations when an expression contains multiple adjacent
operators. For example, in limit < 2 * broom.size + 1, the . operator has
the highest precedence, so the field access happens first.)

Table 6-1. Expressions

Expression type Example Related traits
Array literal [1, 2, 3]

Repeat array literal [0; 50]

Tuple (6, "crullers™)

Grouping 2+2)

Block {f0;: 90}

Control flow expressions if ok { f() }
ifok{1}else {0}
if let Some(x) =f() {x } else {0}
match x {None =>0, =>1}
forvine {f(v); } std::iter::Intolterator
while ok { ok = f(); }
while let Some(x) = it.next() { f(X); }

loop { next_event(); }

break
continue
return 0
Macro invocation printin!("ok")
Path std::f64::consts::PlI
Struct literal Point {x: 0, y: 0}
Tuple field access pair.0 Deref, DerefMut

Struct field access point.x Deref, DerefMut

Method call

Function call

Index

Error check
Logical/bitwise NOT
Negation
Dereference

Borrow

Type cast
Multiplication
Division

Remainder (modulus)
Addition

Subtraction

Left shift

Right shift

Bitwise AND

Bitwise exclusive OR
Bitwise OR

Less than

Less than or equal
Greater than

Greater than or equal
Equal

Not equal

Logical AND

Logical OR

Range

Assignment

point.translate(50, 50)

stdin()

arr[0]

create_dir("tmp")?
lok

-num

*ptr

&val

X as u32
n*2

n/2

n% 2

n+1

n-1

n<<1
n>>1

n&il

n~1

nji

n<1

n<=1

n>1

n>=1

n==

n'=1

x.0k && y.ok
x.0k || backup.ok
start .. stop
x = val
x*=1

x/=1

Deref, DerefMut

Fn(Argo, ...) -> T,
FnMut(Argo, ...) -> T,
FnOnce(ArgO, ...)->T

Index, IndexMut
Deref, DerefMut

Not
Neg
Deref, DerefMut

Mul

Div

Rem

Add

Sub

Shl

Shr

BitAnd

BitXor

BitOr
std::cmp::PartialOrd
std::cmp::PartialOrd
std::cmp::PartialOrd
std::cmp::PartialOrd
std::cmp::PartialEq
std::cmp::PartialEq

MulAssign
DivAssign

X %=1 RemAssign

X+=1 AddAssign
Compound assignment X—=1 SubAssign

x<<=1 ShlAssign

X>>=1 ShrAssign

X&=1 BitAndAssign

x"=1 BitXorAssign

x|=1 BitOrAssign
Closure X, y| X +y

All of the operators that can usefully be chained are left-associative. That
IS, a chain of operations such as a—b — c is grouped as (a — b) — c, not a
— (b = c). The operators that can be chained in this way are all the ones
you might expect:

* % + - << > & M| && || as

The comparison operators, the assignment operators, and the range
operator .. can’'t be chained at all.

Onward

Expressions are what we think of as “running code.” They’re the part of a
Rust program that compiles to machine instructions. Yet they are a small
fraction of the whole language.

The same is true in most programming languages. The first job of a
program is to run, but that’s not its only job. Programs have to
communicate. They have to be testable. They have to stay organized and
flexible, so that they can continue to evolve. They have to interoperate
with code and services built by other teams. And even just to run,
programs in a statically typed language like Rust need some more tools
for organizing data than just tuples and arrays.

Coming up, we’ll spend several chapters talking about features in this
area: modules and crates, which give your program structure, and then
structs and enums, which do the same for your data.

First, we’'ll dedicate a few pages to the important topic of what to do when
things go wrong.

Chapter 7. Error Handling

| knew if | stayed around long enough, something like this would
happen.

—George Bernard Shaw on dying

Error handling in Rust is just different enough to warrant its own short
chapter. There aren’t any difficult ideas here, just ideas that might be new
to you. This chapter covers the two different kinds of error-handling in
Rust: panic and Results.

Ordinary errors are handled using Results. These are typically caused by
things outside the program, like erroneous input, a network outage, or a
permissions problem. That such situations occur is not up to us; even a
bug-free program will encounter them from time to time. Most of this
chapter is dedicated to that kind of error. We’ll cover panic first, though,
because it's the simpler of the two.

Panic is for the other kind of error, the kind that should never happen.

Panic

A program panics when it encounters something so messed up that there
must be a bug in the program itself. Something like:

e Out-of-bounds array access

¢ Integer division by zero

¢ Calling .unwrap() on an Option that happens to be None
e Assertion failure

(There’s also the macro panic!(), for cases where your own code
discovers that it has gone wrong, and you therefore need to trigger a
panic directly. panic!() accepts optional println!()-style arguments, for
building an error message.)

What these conditions have in common is that they are all—not to put too
fine a point on it—the programmer’s fault. A good rule of thumb is: “Don’t
panic”.

But we all make mistakes. When these errors that shouldn’t happen, do
happen—what then? Remarkably, Rust gives you a choice. Rust can
either unwind the stack when a panic happens, or abort the process.
Unwinding is the default.

Unwinding

When pirates divvy up the booty from a raid, the captain gets half of the
loot. Ordinary crew members earn equal shares of the other half. (Pirates
hate fractions, so if either division does not come out even, the result is
rounded down, with the remainder going to the ship’s parrot.)

fn pirate_share(total: u64, crew_size: usize) -> u64 {
let half = total / 2;
half / crew_size as u64

}

This may work fine for centuries until one day it transpires that the
captain is the sole survivor of a raid. If we pass a crew_size of zero to
this function, it will divide by zero. In C++, this would be undefined
behavior. In Rust, it triggers a panic, which typically proceeds as follows:

e An error message is printed to the terminal:

thread 'main’ panicked at 'attempt to divide by zero', pirates.rs:3780
note: Run with 'RUST_BACKTRACE=1" for a backtrace.

If you set the RUST_BACKTRACE environment variable, as the
messages suggests, Rust will also dump the stack at this point.

e The stack is unwound. This is a lot like C++ exception handling.

Any temporary values, local variables, or arguments that the
current function was using are dropped, in the reverse of the
order they were created. Dropping a value simply means
cleaning up after it: any Strings or Vecs the program was using
are freed, any open Files are closed, and so on. User-defined
drop methods are called too; see “Drop”. In the particular case of
pirate_share(), there’s nothing to clean up.

Once the current function call is cleaned up, we move on to its
caller, dropping its variables and arguments the same way. Then
that function’s caller, and so on up the stack.

o Finally, the thread exits. If the panicking thread was the main
thread, then the whole process exits (with a nonzero exit code).

Perhaps panic is a misleading name for this orderly process. A panic is
not a crash. It's not undefined behavior. It's more like a
RuntimeException in Java or a std::logic_error in C++. The behavior is
well-defined; it just shouldn’t be happening.

Panic is safe. It doesn’t violate any of Rust’s safety rules; even if you
manage to panic in the middle of a standard library method, it will never
leave a dangling pointer or a half-initialized value in memory. The idea is
that Rust catches the invalid array access, or whatever it is, before
anything bad happens. It would be unsafe to proceed, so Rust unwinds
the stack. But the rest of the process can continue running.

Panic is per thread. One thread can be panicking while other threads are
going on about their normal business. In Chapter 19, we’ll show how a
parent thread can find out when a child thread panics and handle the
error gracefully.

There is also a way to catch stack unwinding, allowing the thread to
survive and continue running. The standard library function
std::panic::catch_unwind() does this. We won’t cover how to use it, but
this is the mechanism used by Rust’s test harness to recover when an
assertion fails in a test. (It can also be necessary when writing Rust code
that can be called from C or C++, because unwinding across non-Rust
code is undefined behavior; see Chapter 21.)

|deally, we would all have bug-free code that never panics. But nobody’s
perfect. You can use threads and catch_unwind() to handle panic,
making your program more robust. One important caveat is that these
tools only catch panics that unwind the stack. Not every panic proceeds
this way.

Aborting

Stack unwinding is the default panic behavior, but there are two
circumstances in which Rust does not try to unwind the stack.

If a .drop() method triggers a second panic while Rust is still trying to
clean up after the first, this is considered fatal. Rust stops unwinding and
aborts the whole process.

Also, Rust’s panic behavior is customizable. If you compile with -C
panic=abort, the first panic in your program immediately aborts the
process. (With this option, Rust does not need to know how to unwind the
stack, so this can reduce the size of your compiled code.)

This concludes our discussion of panic in Rust. There is not much to say,
because ordinary Rust code has no obligation to handle panic. Even if
you do use threads or catch_unwind(), all your panic-handling code will
likely be concentrated in a few places. It's unreasonable to expect every
function in a program to anticipate and cope with bugs in its own code.
Errors caused by other factors are another kettle of fish.

Result

Rust doesn’'t have exceptions. Instead, functions that can fail have a
return type that says so:

fn get_weather(location: LatLng) -> Result<WeatherReport, io::Error>

The Result type indicates possible failure. When we call the
get_weather() function, it will return either a success result Ok(weather),
where weather is a new WeatherReport value, or an error result
Err(error_value), where error_value is an io::Error explaining what went
wrong.

Rust requires us to write some kind of error handling whenever we call
this function. We can'’t get at the WeatherReport without doing something
to the Result, and you’ll get a compiler warning if a Result value isn’'t
used.

In Chapter 10, we’ll see how the standard library defines Result and how
you can define your own similar types. For now, we’ll take a “cookbook”
approach and focus on how to use Results to get the error-handling
behavior you want.

Catching Errors

The most thorough way of dealing with a Result is the way we showed in
Chapter 2: use a match expression.

match get_weather(hometown) {
OK(report) => {
display_weather(hometown, &report);

}

Err(err) => {
printin!("error querying the weather: {}", err);
schedule_weather_retry();

}
}

This is Rust’s equivalent of try/catch in other languages. It's what you use
when you want to handle errors head-on, not pass them on to your caller.

match is a bit verbose, so Result<T, E> offers a variety of methods that
are useful in particular common cases. Each of these methods has a
match expression in its implementation. (For the full list of Result
methods, consult the online documentation. The methods listed here are
the ones we use the most.)

¢ result.is_ok() and result.is_err() return a bool telling if result is a
success result or an error result.

e result.ok() returns the success value, if any, as an Option<T>. If
result is a success result, this returns Some(success_value);
otherwise, it returns None, discarding the error value.

¢ result.err() returns the error value, if any, as an Option<E>.

¢ result.unwrap_or(fallback) returns the success value, if result is
a success result. Otherwise, it returns fallback, discarding the
error value.

// A fairly safe prediction for Southern California.
const THE_USUAL: WeatherReport = WeatherReport::Sunny(72);

// Get a real weather report, if possible.

// If not, fall back on the usual.

let report = get_weather(los_angeles).unwrap_or(THE_USUAL);
display_weather(los_angeles, &report);

This is a nice alternative to .0k() because the return type is T, not
Option<T>. Of course, it only works when there’s an appropriate
fallback value.

e result.unwrap_or_else(fallback_fn) is the same, but instead of
passing a fallback value directly, you pass a function or closure.
This is for cases where it would be wasteful to compute a fallback
value if you're not going to use it. The fallback_fn is called only if
we have an error result.

let report =
get_weather(hometown)

.unwrap_or_else(|_err| vague_prediction(hometown));

(Chapter 14 covers closures in detail.)

e result.unwrap() also returns the success value, if result is a
success result. However, if result is an error result, this method
panics. This method has its uses; we’ll talk more about it later.

e result.expect(message) is the same as .unwrap(), but lets you
provide a message that it prints in case of panic.

Lastly, two methods for borrowing references to the value in a Result:

o result.as_ref() converts a Result<T, E> to a Result<&T, &E>,
borrowing a reference to the success or error value in the existing
result.

¢ result.as_mut() is the same, but borrows a mutable reference.
The return type is Result<&mut T, &mut E>.

One reason these last two methods are useful is that all of the other
methods listed here, except .is_ok() and .is_err(), consume the result

they operate on. That is, they take the self argument by value.
Sometimes it's quite handy to access data inside a result without
destroying it, and this is what .as_ref() and .as_mut() do for us. For
example, suppose you’d like to call result.ok(), but you need result to be
left intact. You can write result.as_ref().ok(), which merely borrows result,
returning an Option<&T> rather than an Option<T>.

Result Type Aliases

Sometimes you’ll see Rust documentation that seems to omit the error
type of a Result:

fn remove_file(path: &Path) -> Result<()>

This means that a Result type alias is being used.

A type alias is a kind of shorthand for type names. Modules often define a
Result type alias to avoid having to repeat an error type that's used
consistently by almost every function in the module. For example, the
standard library’s std::io module includes this line of code:

pub type Result<T> = result::Result<T, Error>;

This defines a public type std::io::Result<T>. It's an alias for Result<T,
E>, but hardcoding std::io::Error as the error type. In practical terms, this
means that if you write use std::io; then Rust will understand
l0::Result<String> as shorthand for Result<String, io::Error>.

When something like Result<()> appears in the online documentation,
you can click on the identifier Result to see which type alias is being used
and learn the error type. In practice, it's usually obvious from context.

Printing Errors

Sometimes the only way to handle an error is by dumping it to the
terminal and moving on. We already showed one way to do this:

printin!("error querying the weather: {}", err);

The standard library defines several error types with boring names:
std::io::Error, std::fmt::Error, std::str::Utf8Error, and so on. All of them
implement a common interface, the std::error::Error trait, which means
they share the following features:

e They're all printable using println!(). Printing an error with the {}
format specifier typically displays only a brief error message.
Alternatively, you can print with the {:?} format specifier, to get a
Debug view of the error. This is less user-friendly, but includes
extra technical information.

I/ result of “printIn!("error: {}", err);”
error: failed to lookup address information: No address associated with
hostname

I result of “printIn!("error: {:?}", err);

error: Error { repr: Custom(Custom { kind: Other, error: StringError(
"failed to lookup address information: No address associated with
hostname") }) }

e err.description() returns an error message as a &str.

e err.cause() returns an Option<&Error>: the underlying error, if
any, that triggered err.

For example, a networking error might cause a banking
transaction to fail, which could in turn cause your boat to be
repossessed. If err.description() is "boat was repossessed"”, then
err.cause() might return an error about the failed transaction; its
.description() might be "failed to transfer $300 to United Yacht

Supply”, and its .cause() might be an io::Error with details about
the specific network outage that caused all the fuss. That third
error is the root cause, so its .cause() method would return None.

Since the standard library only includes rather low-level features,
this is usually None for standard library errors.

Printing an error value does not also print out its cause. If you want to be
sure to print all the available information, use this function:

use std::error::Error;
use std::io::{Write, stderr};

/// Dump an error message to “stderr’.

/4
/// If another error happens while building the error message or

/// writing to “stderr’, it is ignored.
fn print_error(mut err: &Error) {
let = writeln!(stderr(), "error: {}", err);
while let Some(cause) = err.cause() {
let = writeln!(stderr(), "caused by: {}", cause);
err = cause;
}
}

The standard library’s error types do not include a stack trace, but the
error-chain crate makes it easy to define your own custom error type that
supports grabbing a stack trace when it's created. It uses the backtrace
crate to capture the stack.

Propagating Errors

In most places where we try something that could fail, we don’t want to
catch and handle the error immediately. It is simply too much code to use
a 10-line match statement every place where something could go wrong.

Instead, if an error occurs, we usually want to let our caller deal with it.
We want errors to propagate up the call stack.

Rust has a ? operator that does this. You can add a ? to any expression
that produces a Result, such as the result of a function call:

let weather = get_weather(hometown)?;

The behavior of ? depends on whether this function returns a success
result or an error result:

¢ On success, it unwraps the Result to get the success value
inside. The type of weather here is not Result<WeatherReport,
io::Error> but simply WeatherReport.

e On error, it immediately returns from the enclosing function,
passing the error result up the call chain. To ensure that this
works, ? can only be used in functions that have a Result return

type.

There’s nothing magical about the ? operator. You can express the same
thing using a match expression, although it's much wordier:

let weather = match get_weather(hometown) {
Ok(success_value) => success_value,
Err(err) => return Err(err)

I3

The only differences between this and the ? operator are some fine
points involving types and conversions. We’ll cover those details in the
next section.

In older code, you may see the try!() macro, which was the usual way to

propagate errors until the ? operator was introduced in Rust 1.13.

let weather = try!(get_weather(hometown));

The macro expands to a match expression, like the one above.

It's easy to forget just how pervasive the possibility of errorsis in a
program, particularly in code that interfaces with the operating system.
The ? operator sometimes shows up on almost every line of a function:

use std::fs;
use std::io;
use std::path::Path;

fn move_all(src: &Path, dst: &Path) -> io::Result<()> {
for entry_result in src.read_dir()? { // opening dir could fail
let entry = entry_result?; // reading dir could fail
let dst_file = dst.join(entry.file_name());
fs::rename(entry.path(), dst_file)?; // renaming could fail

}
Ok((O) // phew!

Working with Multiple Error Types

Often, more than one thing could go wrong. Suppose we are simply
reading numbers from a text file.

use std::io::{self, BufRead};

/// Read integers from a text file.
/// The file should have one number on each line.
fn read_numbers(file: &mut BufRead) -> Result<Vec<i64>, io::Error> {
let mut numbers = vec![];
for line_result in file.lines() {
let line = line_result?; // reading lines can fail
numbers.push(line.parse()?); // parsing integers can fail

}
Ok(numbers)

}
Rust gives us a compiler error:

numbers.push(line.parse()?); // parsing integers can fail
ANANANNNNNNAA the trait “std::convert::From<std::num::ParselntError>"
is not implemented for “std::io::Error’

The terms in this error message will make more sense when we reach
Chapter 11, which covers traits. For now, just note that Rust is
complaining that it can’t convert a std::num::ParselntError value to the
type std::io::Error.

The problem here is that reading a line from a file and parsing an integer
produce two different potential error types. The type of line_result is
Result<String, std::io::Error>. The type of line.parse() is Result<i64,
std::num::ParselntError>. The return type of our read_numbers() function
only accommodates io::Errors. Rust tries to cope with the ParselntError
by converting it to a io::Error, but there’s no such conversion, so we get a
type error.

There are several ways of dealing with this. For example, the image crate
that we used in Chapter 2 to create image files of the Mandelbrot set
defines its own error type, ImageError, and implements conversions from

lo::Error and several other error types to ImageError. If you'd like to go
this route, try the aforementioned error-chain crate, which is designed to
help you define good error types with just a few lines of code.

A simpler approach is to use what'’s built into Rust. All of the standard
library error types can be converted to the type Box<std::error::Error>,
which represents “any error.” So an easy way to handle multiple error
types is to define these type aliases:

type GenError = Box<std::error::Error>;
type GenResult<T> = Result<T, GenError>;

Then, change the return type of read_numbers() to
GenResult<Vec<i64>>. With this change, the function compiles. The ?
operator automatically converts either type of error into a GenError as
needed.

Incidentally, the ? operator does this automatic conversion using a
standard method that you can use yourself. To convert any error to the
GenError type, call GenError::from():

let io_error = io::Error::new(// make our own io::Error
io::ErrorKind::Other, "timed out");
return Err(GenError::from(io_error)); // manually convert to GenError

We'll cover the From trait and its from() method fully in Chapter 13.

The downside of the GenError approach is that the return type no longer
communicates precisely what kinds of errors the caller can expect. The
caller must be ready for anything.

If you're calling a function that returns a GenResult, and you want to
handle one particular kind of error, but let all others propagate out, use
the generic method error.downcast_ref.:<ErrorType>(). It borrows a
reference to the error, if it happens to be the particular type of error
you’re looking for:

loop {
match compile_project() {
OK(()) => return Ok(()),

Err(err) => {
if let Some(mse) = err.downcast_ref::<MissingSemicolonError>() {
insert_semicolon_in_source_code(mse.file(), mse.line())?;
continue; // try again!
}
return Err(err);
}
}
}

Many languages have built-in syntax to do this, but it turns out to be
rarely needed. Rust has a method for it instead.

Dealing with Errors That “Can’t Happen”

Sometimes we just know that an error can’t happen. For example,
suppose we’'re writing code to parse a configuration file, and at one point
we find that the next thing in the file is a string of digits:

if next_char.is_digit(10) {
let start = current_index;
current_index = skip_digits(&line, current_index);
let digits = &line[start..current_index];

We want to convert this string of digits to an actual number. There’s a
standard method that does this:

let num = digits.parse::<u64>();

Now the problem: the str.parse::<u64>() method doesn’t return a u64. It
returns a Result. It can fail, because some strings aren’t numeric.

"bleen".parse::<u64>() // ParselntError: invalid digit

But we happen to know that in this case, digits consists entirely of digits.
What should we do?

If the code we’re writing already returns a GenResult, we can tack on a ?
and forget about it. Otherwise, we face the irritating prospect of having to
write error-handling code for an error that can’t happen. The best choice
then would be to use .unwrap(), a Result method we mentioned earlier.

let num = digits.parse::<u64>().unwrap();

This is just like ? except that if we’re wrong about this error, if it can
happen, then in that case we would panic.

In fact, we are wrong about this particular case. If the input contains a
long enough string of digits, the number will be too big to fit in a u64.

"99999999999999999999".parse::<u64>() // overflow error

Using .unwrap() in this particular case would therefore be a bug. Bogus
input shouldn’t cause a panic.

That said, situations do come up where a Result value truly can’t be an
error. For example, in Chapter 18, you'll see that the Write trait defines a
common set of methods (.write() and others) for text and binary output.
All of those methods return io::Results, but if you happen to be writing to
a Vec<u8>, they can't fail. In such cases, it's acceptable to use .unwrap()
or .expect(message) to dispense with the Results.

These methods are also useful when an error would indicate a condition
SO severe or bizarre that panic is exactly how you want to handle it.

fn print_file_age(filename: &Path, last_modified: SystemTime) {
let age = last_modified.elapsed().expect('system clock drift");

\

Here, the .elapsed() method can fail only if the system time is earlier than
when the file was created. This can happen if the file was created
recently, and the system clock was adjusted backward while our program
was running. Depending on how this code is used, it's a reasonable
judgment call to panic in that case, rather than handle the error or
propagate it to the caller.

Ignoring Errors

Occasionally we just want to ignore an error altogether. For example, in
our print_error() function, we had to handle the unlikely situation where
printing the error triggers another error. This could happen, for example,
if stderr is piped to another process, and that process is killed. As there’s
not much we can do about this kind of error, we just want to ignore it; but
the Rust compiler warns about unused Result values:

writeln!(stderr(), "error: {}", err); // warning: unused result

The idiom let _ = ... is used to silence this warning:

let _ = writelnl(stderr(), "error: {}", err); // ok, ignore result

Handling Errors in main()

In most places where a Result is produced, letting the error bubble up to
the caller is the right behavior. This is why ? is a single character in Rust.
As we’ve seen, in some programs it's used on many lines of code in a
row.

But if you propagate an error long enough, eventually it reaches main(),
and that’s where this approach has to stop. main() can’t use ? because
its return type is not Result.

fn main() {
calculate_tides()?; // error: can't pass the buck any further

}
The simplest way to handle errors in main() is to use .expect().

fn main() {
calculate_tides().expect("error"); // the buck stops here

}

If calculate_tides() returns an error result, the .expect() method panics.
Panicking in the main thread prints an error message, then exits with a
nonzero exit code, which is roughly the desired behavior. We use this all
the time for tiny programs. It's a start.

The error message is a little intimidating, though:

$ tidecalc --planet mercury

thread 'main’ panicked at 'error: "moon not found", buildslaverust-buildbot/s
lave/nightly-dist-rustc-linux/build/src/libcore/result.rs:837

note: Run with 'RUST_BACKTRACE=1" for a backtrace.

The error message is lost in the noise. Also, RUST_BACKTRACE=1 is
bad advice in this particular case. It pays to print the error message
yourself:

fn main() {
if let Err(err) = calculate_tides() {
print_error(&err);

std::process::exit(1);
}
}

This code uses an if let expression to print the error message only if the
call to calculate_tides() returns an error result. For details about if let

expressions, see Chapter 10. The print_error function is listed in “Printing
Errors”.

Now the output is nice and tidy:

$ tidecalc --planet mercury
error: moon not found

Declaring a Custom Error Type

Suppose you are writing a new JSON parser, and you want it to have its
own error type. (We haven't covered user-defined types yet; that's
coming up in a few chapters. But error types are handy, so we’ll include a
bit of a sneak preview here.)

Approximately the minimum code you would write is:

// json/src/error.rs

#[derive(Debug, Clone)]
pub struct JsonError {
pub message: String,
pub line: usize,
pub column: usize,

}

This struct will be called json::error::JsonError, and when you want to
raise an error of this type, you can write:

return Err(JsonError {
message: "expected '] at end of array".to_string(),
line: current_line,
column: current_column

D

This will work fine. However, if you want your error type to work like the
standard error types, as your library’s users will expect, then you have a
bit more work to do:

use std;
use std::fmt;

// Errors should be printable.
impl fmt::Display for JsonError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{} ({}:{})", self.message, self.line, self.column)

}
}

// Errors should implement the std::error::Error trait.

impl std::error::Error for JsonError {
fn description(&self) -> &str {
&self.message

}
}

Again, the meaning of the impl keyword, self, and all the rest will be
explained in the next few chapters.

Why Results?

Now we know enough to understand what Rust is getting at by choosing
Results over exceptions. Here are the key points of the design:

e Rust requires the programmer to make some sort of decision,
and record it in the code, at every point where an error could
occur. This is good because otherwise, it's easy to get error
handling wrong through neglect.

e The most common decision is to allow errors to propagate, and
that's written with a single character, ‘“?’. Thus error plumbing
does not clutter up your code the way it does in C and Go. Yet it's
still visible: you can look at a chunk of code and see at a glance
all places where errors are propagated.

¢ Since the possibility of errors is part of every function’s return
type, it's clear which functions can fail and which can't. If you
change a function to be fallible, you're changing its return type,
so the compiler will make you update that function’s downstream
users.

¢ Rust checks that Result values are used, so you can't
accidentally let an error pass silently (a common mistake in C).

e Since Result is a data type like any other, it's easy to store
success and error results in the same collection. This makes it
easy to model partial success. For example, if you're writing a
program that loads millions of records from a text file, and you
need a way to cope with the likely outcome that most will
succeed, but some will fail, you can represent that situation in
memory using a vector of Results.

The cost is that you'll find yourself thinking about and engineering error
handling more in Rust than you would in other languages. As in many
other areas, Rust’s take on error handling is wound just a little tighter
than what you're used to. For systems programming, it's worth it.

Chapter 8. Crates and Modules

This is one note in a Rust theme: systems programmers can have nice
things.
—Robert O’Callahan, “Random Thoughts on Rust:
Crates.io and IDEs”

Suppose you're writing a program that simulates the growth of ferns, from
the level of individual cells on up. Your program, like a fern, will start out
very simple, with all the code, perhaps, in a single file—just the spore of
an idea. As it grows, it will start to have internal structure. Different pieces
will have different purposes. It will branch out into multiple files. It may
cover a whole directory tree. In time it may become a significant part of a
whole software ecosystem.

This chapter covers the features of Rust that help keep your program
organized: crates and modules. We'll also cover a wide range of topics
that come up naturally as your project grows, including how to document
and test Rust code, how to silence unwanted compiler warnings, how to
use Cargo to manage project dependencies and versioning, how to
publish open source libraries on crates.io, and more.

http://robert.ocallahan.org/2016/08/random-thoughts-on-rust-cratesio-and.html

Crates

Rust programs are made of crates. Each crate is a Rust project: all the
source code for a single library or executable, plus any associated tests,
examples, tools, configuration, and other junk. For your fern simulator,
you might use third-party libraries for 3D graphics, bioinformatics, parallel
computation, and so on. These libraries are distributed as crates (see
Figure 8-1).

mandelbrot

image

pNg num

gt

flate2 rand

we=24ssodd

color_quant lzw Libe

std

Figure 8-1. A crate and its dependencies

The easiest way to see what crates are and how they work together is to
use cargo build with the --verbose flag to build an existing project that
has some dependencies. We did this, using “A Concurrent Mandelbrot
Program” as our example. The results are shown here:

$ cd mandelbrot

$ cargo clean # delete previously compiled code
$ cargo build --verbose
Updating registry ~https://github.com/rust-lang/crates.io-index’
Downloading image v0.6.1
Downloading crossbeam v0.2.9
Downloading gif v0.7.0
Downloading png v0.4.2

... (downloading and compiling many more crates)

Compiling png v0.4.2
Running ‘rustc .../png-0.4.2/src/lib.rs
--crate-name png
--crate-type lib
--extern num=.../libnum-a2e6e61627ca7fe5.rlib
--extern inflate=.../libinflate-331fc425bf167339.rlib
--extern flate2=.../libflate2-857dff75f2932d8a.rlib

Compiling image v0.6.1
Running ‘rustc .../image-0.6.1/./src/lib.rs
--Crate-name image
--crate-type lib
--extern png=.../libpng-16c24f58491a5853.rlib

Compiling mandelbrot v0.1.0 (file://.../mandelbrot)
Running ‘rustc src/main.rs
--crate-name mandelbrot
--crate-type bin
--extern crossbeams=.../libcrossbeam-ba292320058da7df.rlib
--extern image=.../libimage-254ec48c8f0684f2.rlib

We reformatted the rustc command lines for readability, and we deleted a
lot of compiler options that aren’t relevant to our discussion, replacing
them with an ellipsis (...).

You might recall that by the time we were done, the Mandelbrot
program’s main.rs contained three extern crate declarations:

extern crate num,;
extern crate image;
extern crate crossbeam;

These lines simply tell Rust that num, image, and crossbeam are external
libraries, not part of the Mandelbrot program itself.

We also specified in our Cargo.toml file which version of each crate we
wanted:

[dependencies]
num ="0.1.27"
image ="0.6.1"
crossbeam ="0.2.8"

The word dependencies here just means other crates this project uses:
code we're depending on. We found these crates on crates.io, the Rust
community’s site for open source crates. For example, we found out
about the image library by going to crates.io and searching for an image
library. Each crate’s page on crates.io provides links to documentation
and source code, as well as a line of configuration like image = "0.6.1"
that you can copy and add to your Cargo.toml. The version numbers
shown here are simply the latest versions of these three packages at the
time we wrote the program.

The Cargo transcript tells the story of how this information is used. When
we run cargo build, Cargo starts by downloading source code for the
specified versions of these crates from crates.io. Then, it reads those
crates’ Cargo.toml files, downloads their dependencies, and so on
recursively. For example, the source code for version 0.6.1 of the image
crate contains a Cargo.toml file that includes this:

[dependencies]
byteorder = "0.4.0"

num ="0.1.27"
enum_primitive ="0.1.0"
glob ="0.2.10"

Seeing this, Cargo knows that before it can use image, it must fetch
these crates as well. Later on, we’ll see how to tell Cargo to fetch source
code from a Git repository or the local filesystem rather than crates.io.

Once it has obtained all the source code, Cargo compiles all the crates. It
runs rustc, the Rust compiler, once for each crate in the project’s
dependency graph. When compiling libraries, Cargo uses the --crate-type
lib option. This tells rustc not to look for a main() function but instead to

https://crates.io/

produce an .rlib file containing compiled code in a form that later rustc
commands can use as input. When compiling a program, Cargo uses --
crate-type bin, and the result is a binary executable for the target
platform: mandelbrot.exe on Windows, for example.

With each rustc command, Cargo passes --extern options giving the
filename of each library the crate will use. That way, when rustc sees a
line of code like extern crate crossbeam;, it knows where to find that
compiled crate on disk. The Rust compiler needs access to these .rlib
files because they contain the compiled code of the library. Rust will
statically link that code into the final executable. The .rlib also contains
type information, so Rust can check that the library features we’re using
in our code actually exist in the crate, and that we’re using them correctly.
It also contains a copy of the crate’s public inline functions, generics, and
macros, features that can’t be fully compiled to machine code until Rust
sees how we use them.

cargo build supports all sorts of options, most of which are beyond the
scope of this book, but we will mention one here: cargo build --release
produces an optimized build. Release builds run faster, but they take
longer to compile, they don’t check for integer overflow, they skip
debug_assert!() assertions, and the stack traces they generate on panic
are generally less reliable.

Build Profiles

There are several configuration settings you can put in your Cargo.tom/
file that affect the rustc command lines that cargo generates.

Command line Cargo.toml section used
cargo build [profile.debug]
cargo build --release [profile.release]

cargo test [profile.test]

The defaults are usually fine, but one exception we’ve found is when you
want to use a profiler—a tool that measures where your program is
spending its CPU time. To get the best data from a profiler, you need
both optimizations (usually enabled only in release builds) and debug
symbols (usually enabled only in debug builds). To enable both, add this
to your Cargo.toml.

[profile.release]
debug = true # enable debug symbols in release builds

The debug setting controls the -g option to rustc. With this configuration,
when you type cargo build --release, you'll get a binary with debug
symbols. The optimization settings are unaffected.

The Cargo documentation lists many other settings you can adjust.

http://doc.crates.io/manifest.html

Modules

Modules are Rust's namespaces. They’re containers for the functions,

types, constants, and so on that make up your Rust program or library.
Whereas crates are about code sharing between projects, modules are
about code organization within a project. They look like this:

mod {
use cells::Cell;

/// A cell made by an adult fern. It disperses on the wind as part of

/// the fern life cycle. A spore grows into a prothallus -- a whole

/// separate organism, up to 5mm across -- which produces the zygote
/// that grows into a new fern. (Plant sex is complicated.)

pub struct Spore {

\

/// Simulate the production of a spore by meiosis.
pub fn produce_spore(factory: &mut Sporangium) -> Spore {

\

/// Mix genes to prepare for meiosis (part of interphase).
fn recombine(parent: &mut Cell) {

\

A module is a collection of items, named features like the Spore struct
and the two functions in this example. The pub keyword makes an item
public, so it can be accessed from outside the module. Anything that isn’t
marked pub is private.

let s = spores::produce_spore(&mut factory); // ok

spores::recombine(&mut cell); // error: “recombine’ is private

Modules can nest, and it’s fairly common to see a module that’s just a

collection of submodules:

mod {
pub mod {
}
pub mod {
}
pub mod {

-
}

In this way, we could write out a whole program, with a huge amount of
code and a whole hierarchy of modules, all in a single source file.
Actually working that way is a pain, though, so there’s an alternative.

Modules in Separate Files

A module can also be written like this:

mod

Earlier, we included the body of the spores module, wrapped in curly
braces. Here, we're instead telling the Rust compiler that the spores
module lives in a separate file, called spores.rs:

// spores.rs

/// A cell made by an adult fern...
pub struct Spore {

\

/// Simulate the production of a spore by meiosis.
pub fn produce_spore(factory: &mut Sporangium) -> Spore {

\

/// Mix genes to prepare for meiosis (part of interphase).
fn recombine(parent: &mut Cell) {

\

spores.rs contains only the items that make up the module. It doesn’t
need any kind of boilerplate to declare that it's a module.

The location of the code is the only difference between this spores
module and the version we showed in the previous section. The rules
about what'’s public and what's private are exactly the same either way.
And Rust never compiles modules separately, even if they're in separate
files: when you build a Rust crate, you’re recompiling all of its modules.

A module can have its own directory. When Rust sees mod spores;, it
checks for both spores.rs and spores/mod.rs; if neither file exists, or both
exist, that's an error. For this example, we used spores.rs, because the
spores module did not have any submodules. But consider the
plant_structures module we wrote out earlier. If we decide to split that

module and its three submodules into their own files, the resulting project
would look like this:

fern_sim/

—— Cargo.toml

—— src/

—— main.rs

—— spores.rs

— plant_structures/
—— mod.rs

—— leaves.rs

—— roots.rs

— stems.rs

In main.rs, we declare the plant_structures module:

pub mod :

This causes Rust to load plant_structures/mod.rs, which declares the
three submodules:

// in plant_structures/mod.rs
pub mod :

pub mod :

pub mod :

The content of those three modules is stored in separate files named
leaves.rs, roots.rs, and stems.rs, located alongside mod.rs in the
plant_structures directory.

Paths and Imports

The :: operator is used to access features of a module. Code anywhere in
your project can refer to any standard library feature by writing out its
absolute path:

ifsl>s2{
.:std::mem::swap(&mut s1, &mut s2);

}

This function name, ::std::mem::swap, is an absolute path, because it
starts with a double colon. The path ::std refers to the top-level module of
the standard library. ::std::mem is a submodule within the standard
library, and ::std::mem::swap is a public function in that module.

You could write all your code this way, spelling out ::std::f64::consts::PI
and ::std::collections::HashMap::new every time you want a circle or a
dictionary, but it would be tedious to type and hard to read. The
alternative is to import features into the modules where they’re used:

use std::mem;

ifsl>s2{
mem::swap(&mut s1, &mut s2);

}

The use declaration causes the name mem to be a local alias for
::std::mem throughout the enclosing block or module. Paths in use
declarations are automatically absolute paths, so there is no need for a
leading ::.

We could write use std::mem::swap; to import the swap function itself
instead of the mem module. However, what we did above is generally
considered the best style: import types, traits, and modules (like
std::mem), then use relative paths to access the functions, constants,
and other members within.

Several names can be imported at once:

use std::collections::{HashMap, HashSet}; // import both

use std::io::prelude::*; //import everything
This is just shorthand for writing out all the individual imports:

use std::collections::HashMap;
use std::collections::HashSet;

// all the public items in std.::io::prelude:
use std::io::prelude::Read;

use std::io::prelude::Write;

use std::io::prelude::BufRead;

use std::io::prelude::Seek;

Modules do not automatically inherit names from their parent modules.
For example, suppose we have this in our proteins/mod.rs:

// proteins/mod.rs
pub enum AminoAcid {...}
pub mod :

Then the code in synthesis.rs does not automatically see the type
AminoAcid:

// proteins/synthesis.rs
pub fn synthesize(seq: &AminoAcid]) // error: can't find type "AminoAcid

Instead, each module starts with a blank slate and must import the
names it uses:

// proteins/synthesis.rs
use super::AminoAcid; // explicitly import from parent

pub fn synthesize(seq: &AminoAcid]) // ok

The keyword super has a special meaning in imports: it's an alias for the
parent module. Similarly, self is an alias for the current module.

// in proteins/mod.rs

// import from a submodule
use self::synthesis::synthesize;

// import names from an enum,
// so we can write "Lys’ for lysine, rather than "AminoAcid::Lys’
use self::AminoAcid::*;

While paths in imports are treated as absolute paths by default, self and
super let you override that and import from relative paths.

(The AminoAcid example here is, of course, a departure from the style
rule we mentioned earlier about only importing types, traits, and modules.
If our program includes long amino acid sequences, this is justified under
Orwell's Sixth Rule: “Break any of these rules sooner than say anything
outright barbarous.”)

Submodules can access private items in their parent modules, but they
have to import each one by name. use super::*; only imports items that
are marked pub.

Modules aren’t the same thing as files, but there is a natural analogy
between modules and the files and directories of a Unix filesystem. The
use keyword creates aliases, just as the In command creates links.
Paths, like filenames, come in absolute and relative forms. self and super
are like the . and .. special directories. And extern crate grafts another
crate’s root module into your project. It is a lot like mounting a filesystem.

The Standard Prelude

We said a moment ago that each module starts with a “blank slate,” as
far as imported names are concerned. But the slate is not completely
blank.

For one thing, the standard library std is automatically linked with every
project. It's as though your /ib.rs or main.rs contained an invisible
declaration for it:

extern crate std;

Furthermore, a few particularly handy names, like Vec and Result, are
included in the standard prelude and automatically imported. Rust
behaves as though every module, including the root module, started with
the following import:

use std::prelude::vl::*;

The standard prelude contains a few dozen commonly used traits and
types. It does not contain std. So if your module refers to std, you’'ll have
to import it explicitly, like this:

use std;

Usually, it makes more sense to import the particular feature of std that
you're using.

In Chapter 2, we mentioned that libraries sometimes provide modules
named prelude. But std::prelude::v1 is the only prelude that is ever
imported automatically. Naming a module prelude is just a convention
that tells users it's meant to be imported using *.

Items, the Building Blocks of Rust

A module is made up of items. There are several kinds of item, and the
list is really a list of the language’s major features:

Functions

We have seen a great many of these already.

Types

User-defined types are introduced using the struct, enum, and trait
keywords. We'll dedicate a chapter to each of them, in good time; a
simple struct looks like this:

pub struct Fern {
pub roots: RootSet,
pub stems: StemSet

}

A struct’s fields, even private fields, are accessible throughout the
module where the struct is declared. Outside the module, only public
fields are accessible.

It turns out that enforcing access control by module, rather than by
class as in Java or C++, is surprisingly helpful for software design. It
cuts down on boilerplate “getter” and “setter” methods, and it largely
eliminates the need for anything like C++ friend declarations. A single
module can define several types that work closely together, such as
perhaps frond::LeafMap and frond::LeafMaplter, accessing each
other’s private fields as needed, while still hiding those
implementation details from the rest of your program.

Type aliases

As we’ve seen, the type keyword can be used like typedef in C++, to
declare a new name for an existing type:

type Table = HashMap<String, Vec<String>>;

The type Table that we're declaring here is shorthand for this
particular kind of HashMap.

fn show(table: &Table) {

\

impl blocks

Methods are attached to types using impl blocks:

impl Cell {
pub fn distance_from_origin(&self) -> 64 {
f64::hypot(self.x, self.y)

}
}

The syntax is explained in Chapter 9. An impl block can’t be marked
pub. Instead, individual methods are marked pub to make them visible
outside the current module.

Private methods, like private struct fields, are visible throughout the
module where they’re declared.

Constants

The const keyword introduces a constant. The syntax is just like let
except that it may be marked pub, and the type is required. Also,
UPPERCASE_NAMES are conventional for constants:

pub const ROOM_TEMPERATURE: f64 = 20.0; // degrees Celsius

The static keyword introduces a static item, which is nearly the same
thing:

pub static ROOM_TEMPERATURE: f64 = 68.0; // degrees Fahrenheit

A constant is a bit like a C++ #define: the value is compiled into your
code every place it's used. A static is a variable that's set up before
your program starts running and lasts until it exits. Use constants for

magic numbers and strings in your code. Use statics for larger
amounts of data, or any time you’ll need to borrow a reference to the
constant value.

There are no mut constants. Statics can be marked mut, but as
discussed in Chapter 5, Rust has no way to enforce its rules about
exclusive access on mut statics. They are, therefore, inherently non-
thread-safe, and safe code can’t use them at all:

static mut PACKETS_SERVED: usize = 0;

printin!("{} served", PACKETS_SERVED); // error: use of mutable static

Rust discourages global mutable state. For a discussion of the
alternatives, see “Global Variables”.

Modules

We've already talked about these quite a bit. As we’ve seen, a
module can contain submodules, which can be public or private, like
any other named item.

Imports
use and extern crate declarations are items too. Even though they’re
just aliases, they can be public:
// in plant_structures/mod.rs

pub use self::leaves::Leaf;
pub use self::;roots::Root;

This means that Leaf and Root are public items of the
plant_structures module. They’re still simple aliases for
plant_structures::leaves::Leaf and plant_structures::roots::Root.

The standard prelude is written as just such a series of pub imports.

extern blocks

These declare a collection of functions written in some other language
(typically C or C++), so that your Rust code can call them. We’ll cover

extern blocks in Chapter 21.

Rust warns about items that are declared, but never used:

warning: function is never used: 'is_square’
--> src/crates_unused_items.rs:23:9

|
23|/ pub fn is_square(root: &Root) -> bool {
24| | root.cross_section_shape().is_square()
25| }

|

This warning can be puzzling, because there are two very different
possible causes. Perhaps this function really is dead code at the
moment. Or, maybe you meant to use it in other crates. In that case, you
need to mark it and all enclosing modules as public.

Turning a Program into a Library

As your fern simulator starts to take off, you decide you need more than a
single program. Suppose you've got one command-line program that
runs the simulation and saves results in a file. Now, you want to write
other programs for performing scientific analysis of the saved results,
displaying 3D renderings of the growing plants in real time, rendering
photorealistic pictures, and so on. All these programs need to share the
basic fern simulation code. You need to make a library.

The first step is to factor your existing project into two parts: a library
crate, which contains all the shared code, and an executable, which
contains the code that’s only needed for your existing command-line
program.

To show how you can do this, let’'s use a grossly simplified example
program:

struct Fern {
size: f64,
growth_rate: f64

}

impl Fern {
/// Simulate a fern growing for one day.
fn grow(&mut self) {
self.size *= 1.0 + self.growth_rate;
}
}

/// Run a fern simulation for some number of days.
fn run_simulation(fern: &mut Fern, days: usize) {
for _in0 .. days{
fern.grow();
}
}

fn main() {
let mut fern = Fern {
size: 1.0,
growth_rate: 0.001
3

run_simulation(&mut fern, 1000);
printin!(“final fern size: {}", fern.size);

}
We’ll assume that this program has a trivial Cargo.toml file:

[package]

name = "fern_sim"

version = "0.1.0"

authors = ["You <you@example.com>"]

Turning this program into a library is easy. Here are the steps:

1. Rename the file src/main.rs to src/lib.rs.

2. Add the pub keyword to items in src/lib.rs that will be public
features of our library.

3. Move the main function to a temporary file somewhere. We’'ll
come back to it in a minute.

The resulting src/lib.rs file looks like this:

pub struct Fern {
pub size: f64,
pub growth_rate: f64

}

impl Fern {
/// Simulate a fern growing for one day.
pub fn grow(&mut self) {
self.size *= 1.0 + self.growth_rate;

}
}

/// Run a fern simulation for some number of days.
pub fn run_simulation(fern: &mut Fern, days: usize) {
for _in0O .. days{
fern.grow();
}
}

Note that we didn’t need to change anything in Cargo.toml. This is

because our minimal Cargo.toml file leaves Cargo to its default behavior.

By default, cargo build looks at the files in our source directory and
figures out what to build. When it sees the file src/lib.rs, it knows to build

a library.

The code in src/lib.rs forms the root module of the library. Other crates
that use our library can only access the public items of this root module.

The src/bin Directory

Getting the original command-line fern_sim program working again is
also straightforward: Cargo has some built-in support for small programs
that live in the same codebase as a library.

In fact, Cargo itself is written this way. The bulk of the code is in a Rust
library. The cargo command-line program that we’ve been using
throughout this book is a thin wrapper program that calls out to the library
for all the heavy lifting. Both the library and the command-line program
live in the same source repository.

We can put our program and our library in the same codebase, too. Put
this code into a file named src/bin/efern.rs:

extern crate fern_sim;
use fern_sim::{Fern, run_simulation};

fn main() {
let mut fern = Fern {
size: 1.0,
growth_rate: 0.001

8
run_simulation(&mut fern, 1000);
printin!(“final fern size: {}", fern.size);

}

The main function is the one we set aside earlier. We've added an extern
crate declaration, since this program will use the fern_sim library crate,
and we’re importing Fern and run_simulation from the library.

Because we've put this file into src/bin, Cargo will compile both the
fern_sim library and this program the next time we run cargo build. We
can run the efern program using cargo run --bin efern. Here’s what it
looks like, using --verbose to show the commands Cargo is running:

$ cargo build --verbose
Compiling fern_sim v0.1.0 (file:///.../fern_sim)
Running ‘rustc src/lib.rs --crate-name fern_sim --crate-type lib ...
Running “rustc src/bin/efern.rs --crate-name efern --crate-type bin ..."

https://github.com/rust-lang/cargo

$ cargo run --bin efern --verbose
Fresh fern_sim v0.1.0 (file:///.../fern_sim)
Running “target/debug/efern
final fern size: 2.7169239322355985

We still didn’t have to make any changes to Cargo.toml, because again,
Cargo’s default is to look at your source files and figure things out. It
automatically treats .rs files in src/bin as extra programs to build.

Of course, now that fern_sim is a library, we also have another option.
We could have put this program in its own isolated project, in a

completely separate directory, with its own Cargo.toml listing fern_sim as
a dependency:

[dependencies]
fern_sim = { path = "../fern_sim" }

Perhaps that is what you'll do for other fern-simulating programs down
the road. The src/bin directory is just right for a simple program like efern.

Attributes

Any item in a Rust program can be decorated with attributes. Attributes
are Rust’s catch-all syntax for writing miscellaneous instructions and
advice to the compiler. For example, suppose you're getting this warning:

libgit2.rs: warning: type “git_revspec’ should have a camel case name
such as "GitRevspec’, #{warn(non_camel_case_types)] on by default

But you chose this name for a reason, and you wish Rust would shut up
about it. You can disable the warning by adding an #[allow] attribute on
the type:

#[allow(non_camel_case_types)]
pub struct git_revspec {

\

Conditional compilation is another feature that’s written using an attribute,
the #[cfg] attribute:

// Only include this module in the project if we're building for Android.
#[cfg(target_os = "android")]
mod :

The full syntax of #[cfg] is specified in the Rust Reference; the most
commonly used options are listed here:

#[cfg(...)] option Enabled when

test Tests are enabled (compiling with cargo test or rustc --test).
debug_assertions Debug assertions are enabled (typically in nonoptimized builds).
unix Compiling for Unix, including macOS.

windows Compiling for Windows.

target_pointer_width

Y-y Targeting a 64-bit platform. The other possible value is "32".

target_arch = Targeting x86-64 in particular. Other values: "x86", "arm", "aarch64",
"x86_64" "powerpc”, "powerpc64”, "mips".

https://doc.rust-lang.org/reference.html#conditional-compilation

target_os = "macos" Compiling for macOS. Other values: "windows", "ios", "android”, "linux",
"openbsd", "netbsd", "dragonfly", "bitrig".

The user-defined feature named "robots" is enabled (compiling with cargo
feature = "robots" build --feature robots or rustc --cfg feature=""robots™). Features are
declared in the [features] section of Cargo.toml.

A is not satisfied. To provide two different implementations of a function,

not(4) mark one with #[cfg(X)] and the other with #[cfg(not(X))].
all(A,B) Both A and B are satisfied (the equivalent of &&).
any(A,B) Either A or B is satisfied (the equivalent of ||).

Occasionally, we need to micromanage the inline expansion of functions,
an optimization that we’re usually happy to leave to the compiler. We can
use the #[inline] attribute for that:

/// Adjust levels of ions etc. in two adjacent cells
/// due to osmosis between them.

#[inline]

fn do_osmosis(cl: &mut Cell, c2: &mut Cell) {

\

There’s one situation where inlining won’t happen without #[inline]. When
a function or method defined in one crate is called in another crate, Rust
won't inline it unless it's generic (it has type parameters) or it's explicitly
marked #[inline].

Otherwise, the compiler treats #[inline] as a suggestion. Rust also
supports the more insistent #[inline(always)], to request that a function be
expanded inline at every call site, and #[inline(never)], to ask that a
function never be inlined.

Some attributes, like #[cfg] and #[allow], can be attached to a whole
module and apply to everything in it. Others, like #[test] and #[inline],
must be attached to individual items. As you might expect for a catch-all
feature, each attribute is custom-made and has its own set of supported
arguments. The Rust Reference documents the full set of supported
attributes in detail.

To attach an attribute to a whole crate, add it at the top of the main.rs or
lib.rs file, before any items, and write #! instead of #, like this:

http://doc.crates.io/manifest.html#the-features-section
https://doc.rust-lang.org/reference/attributes.html

// libgit2_sys/lib.rs
#1[allow(non_camel_case_types)]

pub struct git_revspec {

\

pub struct git_error {

\

The #! tells Rust to attach an attribute to the enclosing item rather than
whatever comes next: in this case, the #![allow] attribute attaches to the
whole libgit2_sys crate, not just struct git_revspec.

#! can also be used inside functions, structs, and so on, but it's only
typically used at the beginning of a file, to attach an attribute to the whole
module or crate. Some attributes always use the #! syntax because they
can only be applied to a whole crate.

For example, the #![feature] attribute is used to turn on unstable features
of the Rust language and libraries, features that are experimental, and
therefore might have bugs or might be changed or removed in the future.
For instance, as we’re writing this, Rust has experimental support for
128-bit integer types i128 and ul28; but since these types are
experimental, you can only use them by (1) installing the Nightly version
of Rust and (2) explicitly declaring that your crate uses them:

#1[feature(i128_type)]

fn main() {

// Do my math homework, Rust!

printin!("{}", 9204093811595833589 ul28 * 19973810893143440503 ul28);
}

Over time, the Rust team sometimes stabilizes an experimental feature,
so that it becomes a standard part of the language. The #![feature]
attribute then becomes superfluous, and Rust generates a warning
advising you to remove it.

Tests and Documentation

As we saw in “Writing and Running Unit Tests”, a simple unit testing
framework is built into Rust. Tests are ordinary functions marked with the
#[test] attribute.

#test]

fn math_works() {
let x:i32 =1;
assertl(x.is_positive());
assert_eq!(x + 1, 2);

}
cargo test runs all the tests in your project.

$ cargo test
Compiling math_test v0.1.0 (file:///.../math_test)
Running target/release/math_test-e31ed91ae51ebf22

running 1 test
test math_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; O measured

(You'll also see some output about “doc-tests,” which we’ll getto in a
minute.)

This works the same whether your crate is an executable or a library.
You can run specific tests by passing arguments to Cargo: cargo test
math runs all tests that contain math somewhere in their name.

Tests commonly use the assert! and assert_eq! macros from the Rust
standard library. assert!(expr) succeeds if expr is true. Otherwise, it
panics, which causes the test to fail. assert_eq!(v1, v2) is just like assert!
(vl == v2) except that if the assertion fails, the error message shows both
values.

You can use these macros in ordinary code, to check invariants, but note
that assert! and assert_eq! are included even in release builds. Use
debug_assert! and debug_assert_eq! instead to write assertions that are

checked only in debug builds.

To test error cases, add the #[should_panic] attribute to your test:

/// This test passes only if division by zero causes a panic,
/// as we claimed in the previous chapter.
#test]
#[should_panic(expected="divide by zero")]
fn test_divide by zero_error() {
1/0; //should panic!
}

Functions marked with #[test] are conditionally compiled. When you run
cargo test, Cargo builds a copy of your program with your tests and the
test harness enabled. A plain cargo build or cargo build --release skips
the testing code. This means your unit tests can live right alongside the
code they test, accessing internal implementation details if they need to,
and yet there’s no runtime cost. However, it can result in some warnings.
For example:

fn roughly_equal(a: f64, b: f64) -> bool {
(a-b).abs() < 1le-6
}

#test]
fn trig_works() {
use std::f64::consts::PI;
assert!(roughly_equal(Pl.sin(), 0.0));
}

In a testing build, this is fine. In a nontesting build, roughly _equal is
unused, and Rust will complain:

$ cargo build

Compiling math_test v0.1.0 (file:///.../math_test)
warning: function is never used: ‘roughly_equal’
--> src/crates_unused_testing_function.rs:7:1

|
7 |/ fn roughly_equal(a: f64, b: f64) -> bool {
8|| (a-Db).abs()<1le-6
911}

"

= note: #[warn(dead_code)] on by default

So the convention, when your tests get substantial enough to require
support code, is to put them in a tests module and declare the whole
module to be testing-only using the #[cfg] attribute:

#[cfg(test)] // include this module only when testing
mod {
fn roughly_equal(a: f64, b: f64) -> bool {
(a-b).abs() < le-6
}

#test]

fn trig_works() {
use std::f64::consts::PI;
assert!(roughly_equal(Pl.sin(), 0.0));

}
}

Rust’s test harness uses multiple threads to run several tests at a time, a
nice side benefit of your Rust code being thread-safe by default. (To
disable this, either run a single test, cargo test testname; or set the
environment variable RUST_TEST_THREADS to 1.) This means that,
technically, the Mandelbrot program we showed in Chapter 2 was not the
second multithreaded program in that chapter, but the third! The cargo
test run in “Writing and Running Unit Tests” was the first.

Integration Tests

Your fern simulator continues to grow. You've decided to put all the major
functionality into a library that can be used by multiple executables. It
would be nice to have some tests that link with the library the way an end
user would, using fern_sim.rlib as an external crate. Also, you have some
tests that start by loading a saved simulation from a binary file, and it is
awkward having those large test files in your src directory. Integration
tests help with these two problems.

Integration tests are .rs files that live in a tests directory alongside your
project’s src directory. When you run cargo test, Cargo compiles each
integration test as a separate, standalone crate, linked with your library
and the Rust test harness. Here is an example:

// tests/unfurl.rs - Fiddleheads unfurl in sunlight

extern crate fern_sim;
use fern_sim::Terrarium;
use std::time::Duration;

#test]

fn test_fiddlehead_unfurling() {
let mut world = Terrarium::load("tests/unfurl_files/fiddlehead.tm");
assert!(world.fern(0).is_furled());
let one_hour = Duration::from_secs(60 * 60);
world.apply_sunlight(one_hour);
assert!(world.fern(0).is_fully_unfurled());

}

Note that the integration test includes an extern crate declaration, since it
uses fern_sim as a library. The point of integration tests is that they see
your crate from the outside, just as a user would. They test the crate’s
public API.

cargo test runs both unit tests and integration tests. To run only the
integration tests in a particular file—for example, tests/unfurl.rs—use the
command cargo test --test unfurl.

Documentation

The command cargo doc creates HTML documentation for your library:

$ cargo doc --no-deps --open
Documenting fern_sim v0.1.0 (file:///.../fern_sim)

The --no-deps option tells Cargo to generate documentation only for
fern_sim itself, and not for all the crates it depends on.

The --open option tells Cargo to open the documentation in your browser
afterward.

You can see the result in Figure 8-2. Cargo saves the new
documentation files in target/doc. The starting page is
target/doc/fern_sim/index.html.

Crate fern_sim [-]1[src]

| Simulate the growth of ferns, from the level of individual cells
on up.

Reexports

pub use plant_structures::Fern;

pub use simulation::Terrarium;
Modules

cells The simulation of biological cells, which is
as low-level as we go.

plant_structures Higher-level biological structures.
simulation Overall simulation control.

spores Fern reproduction.

Figure 8-2. Example of documentation generated by rustdoc

The documentation is generated from the pub features of your library,
plus any doc comments you've attached to them. We've seen a few doc
comments in this chapter already. They look like comments:

/// Simulate the production of a spore by meiosis.
pub fn produce_spore(factory: &mut Sporangium) -> Spore {

\

But when Rust sees comments that start with three slashes, it treats
them as a #[doc] attribute instead. Rust treats the preceding example
exactly the same as this:

#[doc = "Simulate the production of a spore by meiosis."]
pub fn produce_spore(factory: &mut Sporangium) -> Spore {

\

When you compile or test a library, these attributes are ignored. When
you generate documentation, doc comments on public features are
included in the output.

Likewise, comments starting with //! are treated as #![doc] attributes, and
are attached to the enclosing feature, typically a module or crate. For
example, your fern_sim/src/lib.rs file might begin like this:

//! Simulate the growth of ferns, from the level of
//!'individual cells on up.

The content of a doc comment is treated as Markdown, a shorthand
notation for simple HTML formatting. Asterisks are used for *italics* and
pold type, a blank line is treated as a paragraph break, and so on.
However, you can also fall back on HTML; any HTML tags in your doc
comments are copied through verbatim into the documentation.

You can use "backticks’ to set off bits of code in the middle of running
text. In the output, these snippets will be formatted in a fixed-width font.
Larger code samples can be added by indenting four spaces.

/// A block of code in a doc comment:
/A

/1 if everything().works() {

/A printinl("ok”);

"o}

You can also use Markdown fenced code blocks. This has exactly the

same effect.

/// Another snippet, the same code, but written differently:
/4

/8

/1 if everything().works() {

/1 println!("ok");

"}

/8

Whichever format you use, an interesting thing happens when you
include a block of code in a doc comment. Rust automatically turns it into
a test.

Doc-Tests

When you run tests in a Rust library crate, Rust checks that all the code
that appears in your documentation actually runs and works. It does this
by taking each block of code that appears in a doc comment, compiling it
as a separate executable crate, linking it with your library, and running it.

Here is a standalone example of a doc-test. Create a new project by
running cargo new ranges and put this code in ranges/src/lib.rs:

use std::ops::Range;

/// Return true if two ranges overlap.
/4
/// assert_eq!(ranges:.overlap(0..7, 3..10), true);
/// assert_eq!(ranges::overlap(1..5, 101..105), false);
/4
/// If either range is empty, they don't count as overlapping.
/4
/// assert_eq!(ranges::overlap(0..0, 0..10), false);
/4
pub fn overlap(rl: Range<usize>, r2: Range<usize>) -> bool {
rl.start <rl.end && r2.start <r2.end &&
rl.start <r2.end && r2.start < rl.end

The two small blocks of code in the doc comment appear in the
documentation generated by cargo doc, as shown in Figure 8-3.

Function ranges::overlap [-][src]

pub fn overlap(rl: Range<usize>, r2: Range<usize>) -> bool
- | Return true if two ranges overlap.

assert_eq! (ranges::overlap(0..7, 3..10), true);
assert_eq!(ranges::overlap(l..5, 101..105), false);

If either range is empty, they don't count as overlapping.

assert_eq! (ranges::overlap(0..0, 0..10), false);

Figure 8-3. Documentation showing some doc-tests

They also become two separate tests:

$ cargo test
Compiling ranges v0.1.0 (file://l.../ranges)

Doc-tests ranges

running 2 tests
test overlap O ... ok
test overlap_1 ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured

If you pass the --verbose flag to Cargo, you'll see that it's using rustdoc --
test to run these two tests. Rustdoc stores each code sample in a
separate file, adding a few lines of boilerplate code, to produce two
programs. Here’s the first:

extern crate ranges;

fn main() {
assert_eq!(ranges::overlap(0..7, 3..10), true);
assert_eq!(ranges::overlap(1..5, 101..105), false);

}

And here’s the second:

extern crate ranges;
fn main() {
assert_eq!(ranges::overlap(0..0, 0..10), false);

}

The tests pass if these programs compile and run successfully.

These two code samples contain assertions, but that’s just because in
this case, the assertions make decent documentation. The idea behind
doc-tests is not to put all your tests into comments. Rather, you write the
best possible documentation, and Rust makes sure the code samples in
your documentation actually compile and run.

Very often a minimal working example includes some details, such as
imports or setup code, that are necessary to make the code compile, but
just aren’t important enough to show in the documentation. To hide a line
of a code sample, put a # followed by a space at the beginning of that
line:

/// Let the sun shine in and run the simulation for a given
/// amount of time.

/4

/// #use fern_sim:: Terrarium;

/// # use std::time::Duration;

/// #let mut tm = Terrarium::new();

/11 tm.apply_sunlight(Duration::from_secs(60));

/4

pub fn apply_sunlight(&mut self, time: Duration) {

\

Sometimes it's helpful to show a complete sample program in
documentation, including a main function and an extern crate declaration.
Obviously, if those pieces of code appear in your code sample, you do
not also want Rustdoc to add them automatically. The result wouldn't
compile. Rustdoc therefore treats any code block containing the exact
string fn main as a complete program, and doesn’t add anything to it.

Testing can be disabled for specific blocks of code. To tell Rust to
compile your example, but stop short of actually running it, use a fenced

code block with the no_run annotation:

/// Upload all local terrariums to the online gallery.
/4

/// " no_run

/// let mut session = fern_sim::connect();

/// session.upload_all();

S

pub fn upload_all(&mut self) {

\

If the code isn’'t even expected to compile, use ignore instead of no_run.
If the code block isn’'t Rust code at all, use the name of the language, like
c++ or sh, or text for plain text. rustdoc doesn’t know the names of
hundreds of programming languages; rather, it treats any annotation it
doesn’t recognize as indicating that the code block isn’t Rust. This
disables code highlighting as well as doc-testing.

Specifying Dependencies

We’ve seen one way of telling Cargo where to get source code for crates
your project depends on: by version number.

image ="0.6.1"

There are several ways to specify dependencies, and some rather
nuanced things you might want to say about which versions to use, so it's
worth spending a few pages on this.

First of all, you may want to use dependencies that aren’t published on
crates.io at all. One way to do this is by specifying a Git repository URL
and revision:

image = { git = "https://github.com/Piston/image.git", rev = "528f19c" }

This particular crate is open source, hosted on GitHub, but you could just
as easily point to a private Git repository hosted on your corporate
network. As shown here, you can specify the particular rev, tag, or
branch to use. (These are all ways of telling Git which revision of the
source code to check out.)

Another alternative is to specify a directory that contains the crate’s
source code:

image = { path = "vendor/image" }

This is convenient when your team has a single version control repository
that contains source code for several crates, or perhaps the entire
dependency graph. Each crate can specify its dependencies using
relative paths.

Having this level of control over your dependencies is powerful. If you
ever decide that any of the open source crates you use isn’'t exactly to
your liking, you can trivially fork it: just hit the Fork button on GitHub and
change one line in your Cargo.toml file. Your next cargo build will

seamlessly use your fork of the crate instead of the official version.

Versions

When you write something like image = "0.6.1" in your Cargo.toml file,
Cargo interprets this rather loosely. It uses the most recent version of
image that is considered compatible with version 0.6.1.

The compatibility rules are adapted from Semantic Versioning.

¢ A version number that starts with 0.0 is so raw that Cargo never
assumes it's compatible with any other version.

e A version number that starts with 0.x, where x is nonzero, is
considered compatible with other point releases in the 0.x series.
We specified image version 0.6.1, but Cargo would use 0.6.3 if
available. (This is not what the Semantic Versioning standard
says about 0.x version numbers, but the rule proved too useful to
leave out.)

e Once a project reaches 1.0, only new major versions break
compatibility. So if you ask for version 2.0.1, Cargo might use
2.17.99 instead, but not 3.0.

Version numbers are flexible by default because otherwise the problem
of which version to use would quickly become overconstrained. Suppose
one library, libA, used num ="0.1.31" while another, libB, used num =
"0.1.29". If version numbers required exact matches, no project would be
able to use those two libraries together. Allowing Cargo to use any
compatible version is a much more practical default.

Still, different projects have different needs when it comes to
dependencies and versioning. You can specify an exact version or range
of versions by using operators:

Cargo.toml line Meaning
image = "=0.10.0" Use only the exact version 0.10.0
image = ">=1.0.5" Use 1.0.5 or any higher version (even 2.9, if it's available)

image = ">1.0.5 <1.1.9" Use a version that’s higher than 1.0.5, but lower than 1.1.9

image = "<=2.7.10" use any version up to 2.7.10

http://semver.org/

Another version specification you'll occasionally see is the wildcard *.
This tells Cargo that any version will do. Unless some other Cargo.toml
file contains a more specific constraint, Cargo will use the latest available
version. The Cargo documentation at doc.crates.io covers version
specifications in even more detail.

Note that the compatibility rules mean that version numbers can’t be
chosen purely for marketing reasons. They actually mean something.
They’re a contract between a crate’s maintainers and its users. If you
maintain a crate that’s at version 1.7, and you decide to remove a
function or make any other change that isn’t fully backward compatible,
you must bump your version number to 2.0. If you were to call it 1.8,
you'd be claiming that the new version is compatible with 1.7, and your
users might find themselves with broken builds.

http://doc.crates.io/crates-io.html

Cargo.lock

The version numbers in Cargo.toml are deliberately flexible, yet we don’t
want Cargo to upgrade us to the latest library versions every time we
build. Imagine being in the middle of an intense debugging session when
suddenly cargo build upgrades you to a new version of a library. This
could be incredibly disruptive. Anything changing in the middle of
debugging is bad. In fact, when it comes to libraries, there’s never a good
time for an unexpected change.

Cargo therefore has a built-in mechanism to prevent this. The first time
you build a project, Cargo outputs a Cargo.lock file that records the exact
version of every crate it used. Later builds will consult this file and
continue to use the same versions. Cargo upgrades to newer versions
only when you tell it to, either by manually bumping up the version
number in your Cargo.toml file, or by running cargo update:

$ cargo update
Updating registry ~https://github.com/rust-lang/crates.io-index’
Updating libc v0.2.7 ->v0.2.11
Updating png v0.4.2 ->v0.4.3

cargo update only upgrades to the latest versions that are compatible
with what you’ve specified in Cargo.toml. If you've specified image =
"0.6.1", and you want to upgrade to version 0.10.0, you’ll have to change
that in Cargo.toml. The next time you build, Cargo will update to the new
version of the image library and store the new version number in
Cargo.lock.

The preceding example shows Cargo updating two crates that are hosted
on crates.io. Something very similar happens for dependencies that are
stored in Git. Suppose our Cargo.toml file contains this:

image = { git = "https://github.com/Piston/image.git", branch = "master" }

cargo build will not pull new changes from the Git repository if it sees that
we’ve got a Cargo.lock file. Instead, it reads Cargo.lock and uses the

https://crates.io

same revision as last time. But cargo update will pull from master, so that
our next build uses the latest revision.

Cargo.lock is automatically generated for you, and you normally won't
edit it by hand. Nonetheless, if your project is an executable, you should
commit Cargo.lock to version control. That way, everyone who builds
your project will consistently get the same versions. The history of your
Cargo.lock file will record your dependency updates.

If your project is an ordinary Rust library, don’t bother committing
Cargo.lock. Your library’s downstream users will have Cargo.lock files
that contain version information for their entire dependency graph; they
will ignore your library’s Cargo.lock file. In the rare case that your project
is a shared library (i.e., the output is a .dll, .dylib, or .so file), there is no
such downstream cargo user, and you should therefore commit
Cargo.lock.

Cargo.tom/’s flexible version specifiers make it easy to use Rust libraries
in your project and maximize compatibility among libraries. Cargo.lock’s
bookkeeping supports consistent, reproducible builds across machines.

Together, they go a long way toward helping you avoid dependency hell.

Publishing Crates to crates.io

You've decided to publish your fern-simulating library as open source
software. Congratulations! This part is easy.

First, make sure Cargo can pack the crate for you.

$ cargo package
warning: manifest has no description, license, license-file, documentation,
homepage or repository. See http://doc.crates.io/manifest.html#package-metadata
for more info.

Packaging fern_sim v0.1.0 (file:///.../fern_sim)

Verifying fern_sim v0.1.0 (file:///.../fern_sim)

Compiling fern_sim v0.1.0 (file:///.../fern_sim/target/package/fern_sim-0.1.0)

The cargo package command creates a file (in this case,
target/package/fern_sim-0.1.0.crate) containing all your library’s source
files, including Cargo.toml. This is the file that you'll upload to crates.io to
share with the world. (You can use cargo package --list to see which files
are included.) Cargo then double-checks its work by building your library
from the .crate file, just as your eventual users will.

Cargo warns that the [package] section of Cargo.toml is missing some
information that will be important to downstream users, such as the
license under which you’re distributing the code. The URL in the warning
is an excellent resource, so we won'’t explain all the fields in detail here.
In short, you can fix the warning by adding a few lines to Cargo.tom!.

[package]

name = "fern_sim"

version = "0.1.0"

authors = ["You <you@example.com>"]

license = "MIT"

homepage = "https://fernsim.example.com/"
repository = "https://gitlair.com/sporeador/fern_sim"
documentation = "http://fernsim.example.com/docs"
description = """

Fern simulation, from the cellular level up.

https://crates.io

NOTE

Once you publish this crate on crates.io, anyone who downloads your crate can see
the Cargo.toml file. So if the authors field contains an email address that you'd rather
keep private, now’s the time to change it.

Another problem that sometimes arises at this stage is that your
Cargo.toml file might be specifying the location of other crates by path, as
shown in “Specifying Dependencies”:

image = { path = "vendor/image" }

For you and your team, this might work fine. But naturally, when other
people download the fern_sim library, they will not have the same files
and directories on their computer that you have. Cargo therefore ignores
the path key in automatically downloaded libraries, and this can cause
build errors. The fix, however, is straightforward: if your library is going to
be published on crates.io, its dependencies should be on crates.io too.
Specify a version number instead of a path:

image ="0.6.1"

If you prefer, you can specify both a path, which takes precedence for
your own local builds, and a version for all other users:

image = { path = "vendor/image", version = "0.6.1" }

Of course, in that case it's your responsibility to make sure that the two
stay in sync.

Lastly, before publishing a crate, you’ll need to log in to crates.io and get
an APl key. This step is straightforward: once you have an account on
crates.io, your “Account Settings” page will show a cargo login command,
like this one:

$ cargo login 5j0dV54BjIXBpUUbflj7G9DvNI1vsWW1

Cargo saves the key in a configuration file, and the API key should be
kept secret, like a password. So run this command only on a computer
you control.

That done, the final step is to run cargo publish:

$ cargo publish
Updating registry ~https://github.com/rust-lang/crates.io-index’
Uploading fern_sim v0.1.0 (file:///.../fern_sim)

With this, your library joins thousands of others on crates.io.

Workspaces

As your project continues to grow, you end up writing many crates. They
live side by side in a single source repository:

fernsoft/

— .git/...

—— fern_sim/

—— Cargo.tom|
—— Cargo.lock
—— src/...

—— target/...
— fern_img/

—— Cargo.tom|
—— Cargo.lock
—— src/...

—— target/...
L— fern_video/
—— Cargo.toml
—— Cargo.lock
—— src/...

— target/...

The way Cargo works, each crate has its own build directory, target,
which contains a separate build of all that crate’s dependencies. These
build directories are completely independent. Even if two crates have a
common dependency, they can’t share any compiled code. This is
wasteful.

You can save compilation time and disk space by using a Cargo
workspace, a collection of crates that share a common build directory
and Cargo.lock file.

All you need to do is create a Cargo.toml file in your repository’s root
directory and put these lines in it:

[workspace]
members = ["fern_sim", "fern_img", "fern_video"]

where fern_sim etc. are the names of the subdirectories containing your
crates. Delete any leftover Cargo.lock files and target directories that

exist in those subdirectories.

Once you've done this, cargo build in any crate will automatically create
and use a shared build directory under the root directory (in this case,
fernsoft/target). The command cargo build --all builds all crates in the
current workspace. cargo test and cargo doc accept the --all option as
well.

More Nice Things

In case you're not delighted yet, the Rust community has a few more
odds and ends for you:

e When you publish an open source crate on crates.io, your
documentation is automatically rendered and hosted on docs.rs
thanks to Onur Aslan.

e If your project is on GitHub, Travis CI can build and test your
code on every push. It's surprisingly easy to set up; see travis-
ci.org for details. If you're already familiar with Travis, this
.travis.yml file will get you started:

language: rust
rust:

- stable

e You can generate a README.md file from your crate’s top-level
doc-comment. This feature is offered as a third-party Cargo
plugin by Livio Ribeiro. Run cargo install readme to install the
plugin, then cargo readme --help to learn how to use it.

We could go on.

Rust is new, but it's designed to support large, ambitious projects. It has
great tools and an active community. System programmers can have
nice things.

https://crates.io
https://travis-ci.org

Chapter 9. Structs

Long ago, when shepherds wanted to see if two herds of sheep were
isomorphic, they would look for an explicit isomorphism.

—John C. Baez and James Dolan, “Categorification”

Rust structs, sometimes called structures, resemble struct types in C and
C++, classes in Python, and objects in JavaScript. A struct assembles
several values of assorted types together into a single value, so you can
deal with them as a unit. Given a struct, you can read and modify its
individual components. And a struct can have methods associated with it
that operate on its components.

Rust has three kinds of struct types, named-field, tuple-like, and unit-like,
which differ in how you refer to their components: a named-field struct
gives a name to each component, whereas a tuple-like struct identifies
them by the order in which they appear. Unit-like structs have no
components at all; these are not common, but more useful than you
might think.

In this chapter, we’ll explain each kind in detail, and show what they look
like in memory. We’ll cover how to add methods to them, how to define
generic struct types that work with many different component types, and
how to ask Rust to generate implementations of common handy traits for
your structs.

https://arxiv.org/abs/math/9802029

Named-Field Structs

The definition of a named-field struct type looks like this:

/// A rectangle of eight-bit grayscale pixels.
struct GrayscaleMap {

pixels: Vec<u8>,

size: (usize, usize)

}

This declares a type GrayscaleMap with two fields named pixels and
size, of the given types. The convention in Rust is for all types, structs
included, to have names that capitalize the first letter of each word, like
GrayscaleMap, a convention called CamelCase. Fields and methods are
lowercase, with words separated by underscores. This is called
Shake_case.

You can construct a value of this type with a struct expression, like this:

let width = 1024;

let height = 576;

let image = GrayscaleMap {
pixels: vec![O; width * height],
size: (width, height)

2

A struct expression starts with the type name (GrayscaleMap), and lists
the name and value of each field, all enclosed in curly braces. There’s
also shorthand for populating fields from local variables or arguments
with the same name:

fn new_map(size: (usize, usize), pixels: Vec<u8>) -> GrayscaleMap {
assert_eq!(pixels.len(), size.0 * size.1);
GrayscaleMap { pixels, size }

}

The struct expression GrayscaleMap { pixels, size } is short for
GrayscaleMap { pixels: pixels, size: size }. You can use key: value syntax
for some fields and shorthand for others in the same struct expression.

To access a struct’s fields, use the familiar . operator:

assert_eq!(image.size, (1024, 576));
assert_eq!(image.pixels.len(), 1024 * 576);

Like all other items, structs are private by default, visible only in the
module where they're declared. You can make a struct visible outside its
module by prefixing its definition with pub. The same goes for each of its
fields, which are also private by default:

/// A rectangle of eight-bit grayscale pixels.
pub struct GrayscaleMap {

pub pixels: Vec<u8>,

pub size: (usize, usize)

}
Even if a struct is declared pub, its fields can be private:

/// A rectangle of eight-bit grayscale pixels.
pub struct GrayscaleMap {

pixels: Vec<u8>,

size: (usize, usize)

}

Other modules can use this struct and any public methods it might have,
but can’t access the private fields by name or use struct expressions to
create new GrayscaleMap values. That is, creating a struct value
requires all the struct’s fields to be visible. This is why you can’t write a
struct expression to create a new String or Vec. These standard types
are structs, but all their fields are private. To create one, you must use
public methods like Vec::new().

When creating a named-field struct value, you can use another struct of
the same type to supply values for fields you omit. In a struct expression,
if the named fields are followed by .. EXPR, then any fields not
mentioned take their values from EXPR, which must be another value of
the same struct type. Suppose we have a struct representing a monster
in a game:

struct Broom {

name: String,

height: u32,

health: u32,

position: (f32, 32, 32),
intent: Broomintent

}

/// Two possible alternatives for what a "Broom™ could be working on.
#[derive(Copy, Clone)]
enum Broomintent { FetchWater, DumpWater }

The best fairy tale for programmers is The Sorcerer’s Apprentice: a
novice magician enchants a broom to do his work for him, but doesn’t
know how to stop it when the job is done. Chopping the broom in half
with an axe just produces two brooms, each of half the size, but
continuing the task with the same blind dedication as the original:

// Receive the input Broom by value, taking ownership.

fn chop(b: Broom) -> (Broom, Broom) {
// Initialize "broom1” mostly from "b’, changing only “height’. Since
// "String” is not "Copy’, "broom1" takes ownership of 'b™'s name.
let mut broom1 = Broom { height: b.height/ 2, .. b };

// Initialize "broom2™ mostly from “broom1°. Since "String’ is not
// "Copy’, we must clone "name” explicitly.
let mut broom2 = Broom { name: broom1.name.clone(), .. broom1 };

// Give each fragment a distinct name.
brooml.name.push_str(" I');
broom2.name.push_str(" II");

(broom1, broom2)

With that definition in place, we can create a broom, chop it in two, and
see what we get:

let hokey = Broom {
name: "Hokey".to_string(),
height: 60,
health: 100,
position: (100.0, 200.0, 0.0),
intent: Broomintent::FetchWater

let (hokeyl, hokey?2) = chop(hokey);
assert_eq!(hokeyl.name, "Hokey I');
assert_eq!(hokeyl.health, 100);

assert_eq!(hokey2.name, "Hokey II");
assert_eq!(hokey2.health, 100);

Tuple-Like Structs
The second kind of struct type is called a tuple-like struct, because it
resembles a tuple:

struct Bounds(usize, usize);

You construct a value of this type much as you would construct a tuple,
except that you must include the struct name:

let image_bounds = Bounds(1024, 768);

The values held by a tuple-like struct are called elements, just as the
values of a tuple are. You access them just as you would a tuple’s:

assert_eq!(image_bounds.0 * image_bounds.1, 786432);

Individual elements of a tuple-like struct may be public or not:

pub struct Bounds(pub usize, pub usize);

The expression Bounds(1024, 768) looks like a function call, and in fact it
is: defining the type also implicitly defines a function:

fn Bounds(elemO: usize, eleml: usize) -> Bounds { ... }

At the most fundamental level, named-field and tuple-like structs are very
similar. The choice of which to use comes down to questions of legibility,
ambiguity, and brevity. If you will use the . operator to get at a value’s
components much at all, identifying fields by name provides the reader
more information, and is probably more robust against typos. If you will
usually use pattern matching to find the elements, tuple-like structs can
work nicely.

Tuple-like structs are good for newtypes, structs with a single component
that you define to get stricter type checking. For example, if you are

working with ASCII-only text, you might define a newtype like this:

struct Ascii(Vec<u8>);

Using this type for your ASCII strings is much better than simply passing
around Vec<u8> buffers and explaining what they are in the comments.
The newtype helps Rust catch mistakes where some other byte buffer is
passed to a function expecting ASCII text. We'll give an example of using
newtypes for efficient type conversions in Chapter 21.

Unit-Like Structs

The third kind of struct is a little obscure: it declares a struct type with no
elements at all:

struct Onesuch;

A value of such a type occupies no memory, much like the unit type ().
Rust doesn’t bother actually storing unit-like struct values in memory or
generating code to operate on them, because it can tell everything it
might need to know about the value from its type alone. But logically, an
empty struct is a type with values like any other—or more precisely, a
type of which there is only a single value:

let o = Onesuch;

You've already encountered a unit-like struct when reading about “Fields
and Elements”. Whereas an expression like 3..5 is shorthand for the
struct value Range { start: 3, end: 5 }, the expression .., a range omitting
both endpoints, is shorthand for the unit-like struct value RangeFull.

Unit-like structs can also be useful when working with traits, which we’ll
describe in Chapter 11.

Struct Layout

In memory, both named-field and tuple-like structs are the same thing: a
collection of values, of possibly mixed types, laid out in a particular way in
memory. For example, earlier in the chapter we defined this struct:

struct GrayscaleMap {
pixels: Vec<u8>,
size: (usize, usize)

}

A GrayscaleMap value is laid out in memory as diagrammed in Figure 9-
1.

image
k ~ — N
stac
- 786432786432 1024 | 768
- ~" ~_ " 4
pixels size

T [

Figure 9-1. A GrayscaleMap structure in memory

Unlike C and C++, Rust doesn’t make specific promises about how it will
order a struct’s fields or elements in memory; this diagram shows only
one possible arrangement. However, Rust does promise to store fields’
values directly in the struct’s block of memory. Whereas JavaScript,
Python, and Java would put the pixels and size values each in their own

heap-allocated blocks and have GrayscaleMap’s fields point at them,
Rust embeds pixels and size directly in the GrayscaleMap value. Only
the heap-allocated buffer owned by the pixels vector remains in its own
block.

You can ask Rust to lay out structures in a way compatible with C and
C++, using the #[repr(C)] attribute. We’ll cover this in detail in Chapter 21.

Defining Methods with impl

Throughout the book we’ve been calling methods on all sorts of values.
We've pushed elements onto vectors with v.push(e), fetched their length
with v.len(), checked Result values for errors with r.expect("msg"), and so
on.

You can define methods on any struct type you define. Rather than
appearing inside the struct definition, as in C++ or Java, Rust methods
appear in a separate impl block. For example:

/// A last-in, first-out queue of characters.

pub struct Queue {
older: Vec<char>, //older elements, eldest last.
younger: Vec<char> // younger elements, youngest last.

}

impl Queue {
/// Push a character onto the back of a queue.
pub fn push(&mut self, c: char) {
self.younger.push(c);

}

/// Pop a character off the front of a queue. Return "Some(c)’ if there
/// was a character to pop, or "None’ if the queue was empty.
pub fn pop(&mut self) -> Option<char> {
if self.older.is_empty() {
if self.younger.is_empty() {
return None;

}

// Bring the elements in younger over to older, and put them in
// the promised order.

use std::mem::swap;

swap(&mut self.older, &mut self.younger);
self.older.reverse();

}

// Now older is guaranteed to have something. Vec's pop method
// already returns an Option, so we're set.
self.older.pop()

An impl block is simply a collection of fn definitions, each of which
becomes a method on the struct type named at the top of the block. Here
we’ve defined a public struct Queue, and then given it two public
methods, push and pop.

Methods are also known as associated functions, since they’re
associated with a specific type. The opposite of an associated function is
a free function, one that is not defined as an impl block’s item.

Rust passes a method the value it's being called on as its first argument,
which must have the special name self. Since self’s type is obviously the
one named at the top of the impl block, or a reference to that, Rust lets
you omit the type, and write self, &self or &mut self as shorthand for self:
Queue, self: &Queue or self: &mut Queue. You can use the longhand
forms if you like, but almost all Rust code uses the shorthand, as shown
before.

In our example, the push and pop methods refer to the Queue’s fields as
self.older and self.younger. Unlike C++ and Java, where the members of
the “this” object are directly visible in method bodies as unqualified
identifiers, a Rust method must explicitly use self to refer to the value it
was called on, similar to the way Python methods use self, and the way
JavaScript methods use this.

Since push and pop need to modify the Queue, they both take &mut self.
However, when you call a method, you don’t need to borrow the mutable
reference yourself; the ordinary method call syntax takes care of that

implicitly. So with these definitions in place, you can use Queue like this:

let mut g = Queue { older: Vec::new(), younger: Vec::new() };

g.push('0);
g.push('1);
assert_eq!(g.pop(), Some('0));

d.push('e’);
assert_eq!(qg.pop(), Some('1"));
assert_eq!(g.pop(), Some('»");
assert_eq!(qg.pop(), None);

Simply writing g.push(...) borrows a mutable reference to g, as if you had

written (&mut g).push(...), since that's what the push method’s self
requires.

If a method doesn’t need to modify its self, then you can define it to take
a shared reference instead. For example:

impl Queue {
pub fn is_empty(&self) -> bool {
self.older.is_empty() && self.younger.is_empty()
}
}

Again, the method call expression knows which sort of reference to
borrow:

assert!(g.is_empty());
g.push('®";
assert!(!q.is_empty());

Or, if a method wants to take ownership of self, it can take self by value:

impl Queue {
pub fn split(self) -> (Vec<char>, Vec<char>) {
(self.older, self.younger)
}
}

Calling this split method looks like the other method calls:

let mut g = Queue { older: Vec::new(), younger: Vec::new() };

q.push('P’);
d.push('D’);
assert_eq!(g.pop(), Some('P"));
d.push('XY);

let (older, younger) = g.split();
// q is now uninitialized.
assert_eq!(older, vec!['D'));
assert_eq!(younger, vec!['X);

But note that, since split takes its self by value, this moves the Queue out
of g, leaving q uninitialized. Since split’'s self now owns the queue, it's

able to move the individual vectors out of it, and return them to the caller.

You can also define methods that don’t take self as an argument at all.
These become functions associated with the struct type itself, not with
any specific value of the type. Following the tradition established by C++
and Java, Rust calls these static methods. They’re often used to provide
constructor functions, like this:

impl Queue {
pub fn new() -> Queue {
Queue { older: Vec::new(), younger: Vec::new() }

}
}

To use this method, we refer to it as Queue::new: the type name, a
double colon, and then the method name. Now our example code
becomes a bit more svelte:

let mut g = Queue::new();

g.push(™);

It's conventional in Rust for constructor functions to be named new;
we’'ve already seen Vec::new, Box::new, HashMap::new, and others. But
there’s nothing special about the name new. It's not a keyword, and types
often have other static methods that serve as constructors, like
Vec::with_capacity.

Although you can have many separate impl blocks for a single type, they
must all be in the same crate that defines that type. However, Rust does
let you attach your own methods to other types; we’ll explain how in
Chapter 11.

If you're used to C++ or Java, separating a type’s methods from its
definition may seem unusual, but there are several advantages to doing
So:

e It's always easy to find a type’s data members. In large C++ class
definitions, you might need to skim hundreds of lines of member

function definitions to be sure you haven’'t missed any of the
class’s data members; in Rust, they're all in one place.

Although one can imagine fitting methods into the syntax for
named-field structs, it's not so neat for tuple-like and unit-like
structs. Pulling methods out into an impl block allows a single
syntax for all three. In fact, Rust uses this same syntax for
defining methods on types that are not structs at all, such as
enum types and primitive types like i32. (The fact that any type
can have methods is one reason Rust doesn’t use the term
object much, preferring to call everything a value.)

The same impl syntax also serves neatly for implementing traits,
which we’ll go into in Chapter 11.

Generic Structs

Our earlier definition of Queue is unsatisfying: it is written to store
characters, but there’s nothing about its structure or methods that is
specific to characters at all. If we were to define another struct that held,
say, String values, the code could be identical, except that char would be
replaced with String. That would be a waste of time.

Fortunately, Rust structs can be generic, meaning that their definition is a
template into which you can plug whatever types you like. For example,
here’s a definition for Queue that can hold values of any type:

pub struct Queue<T> {
older: Vec<T>,
younger: Vec<T>

}

You can read the <T> in Queue<T> as “for any element type T...”. So this
definition reads, “For any type T, a Queue<T> is two fields of type
Vec<T>.” For example, in Queue<String>, T is String, so older and
younger have type Vec<String>. In Queue<char>, T is char, and we get a
struct identical to the char-specific definition we started with. In fact, Vec
itself is a generic struct, defined in just this way.

In generic struct definitions, the type names used in <angle brackets> are
called type parameters. An impl block for a generic struct looks like this:

impl<T> Queue<T> {
pub fn new() -> Queue<T>{
Queue { older: Vec::new(), younger: Vec::new() }

}

pub fn push(&mut self, t: T) {
self.younger.push(t);
}

pub fn is_empty(&self) -> bool {
self.older.is_empty() && self.younger.is_empty()
}

\

You can read the line impI<T> Queue<T> as something like, “for any type
T, here are some methods available on Queue<T>.” Then, you can use
the type parameter T as a type in the method definitions.

We’'ve used Rust’s shorthand for self parameters in the preceding code;
writing out Queue<T> everywhere becomes a mouthful and a distraction.
As another shorthand, every impl block, generic or not, defines the
special type parameter Self (note the CamelCase name) to be whatever
type we’'re adding methods to. In the preceding code, Self would be
Queue<T>, so we can abbreviate Queue::new’s definition a bit further:

pub fn new() -> Self {
Queue { older: Vec::new(), younger: Vec::new() }

}

You might have noticed that, in the body of new, we didn’t need to write
the type parameter in the construction expression; simply writing Queue {
... y was good enough. This is Rust’s type inference at work: since there’s
only one type that works for that function’s return value—namely,
Queue<T>—Rust supplies the parameter for us. However, you'll always
need to supply type parameters in function signatures and type
definitions. Rust doesn’t infer those; instead, it uses those explicit types
as the basis from which it infers types within function bodies.

For static method calls, you can supply the type parameter explicitly
using the turbofish ::<> notation:

let mut g = Queue::<char>::new();

But in practice, you can usually just let Rust figure it out for you:

let mut g = Queue::new();
let mut r = Queue::new();

g.push("CAD"); // apparently a Queue<& 'static str>
r.push(0.74); // apparently a Queue<f64>

g.push("BTC"); // Bitcoins per USD, 2017-5
r.push(2737.7); // Rust fails to detect irrational exuberance

In fact, this is exactly what we’ve been doing with Vec, another generic
struct type, throughout the book.

It's not just structs that can be generic. Enums can take type parameters
as well, with a very similar syntax. We’ll show that in detail in “Enums”.

Structs with Lifetime Parameters

As we discussed in “Structs Containing References”, if a struct type
contains references, you must name those references’ lifetimes. For
example, here’s a structure that might hold references to the greatest and
least elements of some slice:

struct Extrema<'elt> {
greatest: &'elt i32,
least: &'elt 132

}

Earlier, we invited you to think of a declaration like struct Queue<T> as
meaning that, given any specific type T, you can make a Queue<T> that
holds that type. Similarly, you can think of struct Extrema<'elt> as
meaning that, given any specific lifetime 'elt, you can make an
Extrema<'elt> that holds references with that lifetime.

Here’s a function to scan a slice and return an Extrema value whose
fields refer to its elements:

fn find_extrema<'s>(slice: &'s [i32]) -> Extrema<'s> {
let mut greatest = &slice[0];
let mut least = &slice[0];

foriin 1l..slice.len() {
if slice[i] < *least {least = &slice][i];}
if slice[i] > *greatest { greatest = &slice[i]; }

}

Extrema { greatest, least }

}

Here, since find_extrema borrows elements of slice, which has lifetime 's,
the Extrema struct we return also uses 's as the lifetime of its references.
Rust always infers lifetime parameters for calls, so calls to find_extrema
needn’t mention them:

leta=[0,-3,0, 15, 48];
let e = find_extrema(&a);
assert_eq!(*e.least, -3);

assert_eq!(*e.greatest, 48);

Because it's so common for the return type to use the same lifetime as
an argument, Rust lets us omit the lifetimes when there’s one obvious
candidate. We could also have written find_extrema’s signature like this,
with no change in meaning:

fn find_extremag(slice: &[i32]) -> Extrema {

\

Granted, we might have meant Extrema<'static>, but that’s pretty
unusual. Rust provides a shorthand for the common case.

Deriving Common Traits for Struct Types

Structs can be very easy to write:

struct Point {
x: f64,
y: 64

}

However, if you were to start using this Point type, you would quickly
notice that it's a bit of a pain. As written, Point is not copyable or
cloneable. You can't print it with printin!("{:?}", point); and it does not
support the == and != operators.

Each of these features has a name in Rust—Copy, Clone, Debug, and
PartialEq. They are called traits. In Chapter 11, we’ll show how to
implement traits by hand for your own structs. But in the case of these
standard traits, and several others, you don’t need to implement them by
hand unless you want some kind of custom behavior. Rust can
automatically implement them for you, with mechanical accuracy. Just
add a #[derive] attribute to the struct:

#[derive(Copy, Clone, Debug, PartialEq)]
struct Point {

x: f64,

y: f64
}

Each of these traits can be implemented automatically for a struct,
provided that each of its fields implements the trait. We can ask Rust to
derive PartialEq for Point because its two fields are both of type 64,
which already implements PartialEq.

Rust can also derive PartialCmp, which would add support for the
comparison operators <, >, <=, and >=. We haven’t done so here,
because comparing two points to see if one is “less than” the other is
actually a pretty weird thing to do. There’s no one conventional order on
points. So we choose not to support those operators for Point values.

Cases like this are one reason that Rust makes us write the #[derive]
attribute rather than automatically deriving every trait it can. Another
reason is that implementing a trait is automatically a public feature, so
copyability, cloneability, and so forth are all part of your struct’s public
API and should be chosen deliberately.

We'll describe Rust’'s standard traits in detail, and tell which ones are #
[derive]able, in Chapter 13.

Interior Mutability

Mutability is like anything else: in excess, it causes problems, but you

often want just a little bit of it. For example, say your spider robot control
system has a central struct, SpiderRobot, that contains settings and 1/0
handles. It's set up when the robot boots, and the values never change:

pub struct SpiderRobot {
species: String,
web_enabled: bool,
leg_devices: [fd::FileDesc; 8],

\

Every major system of the robot is handled by a different struct, and each
one has a pointer back to the SpiderRobot:

use std::rc::Rc;

pub struct SpiderSenses {
robot: Rc<SpiderRobot>, // <-- pointer to settings and 1/O
eyes: [Camera; 32],
motion: Accelerometer,

\

The structs for web construction, predation, venom flow control, and so
forth also each have an Rc<SpiderRobot> smart pointer. Recall that Rc
stands for reference counting, and a value in an Rc box is always shared
and therefore always immutable.

Now suppose you want to add a little logging to the SpiderRobot struct,
using the standard File type. There’s a problem: a File has to be mut. All
the methods for writing to it require a mut reference.

This sort of situation comes up fairly often. What we need is a little bit of
mutable data (a File) inside an otherwise immutable value (the
SpiderRobot struct). This is called interior mutability. Rust offers several
flavors of it; in this section, we’ll discuss the two most straightforward

types: Cell<T> and RefCell<T>, both in the std::cell module.

A Cell<T> is a struct that contains a single private value of type T. The
only special thing about a Cell is that you can get and set the field even if
you don’t have mut access to the Cell itself:

o Cell::new(value) creates a new Cell, moving the given value into
it.

e cell.get() returns a copy of the value in the cell.

¢ cell.set(value) stores the given value in the cell, dropping the
previously stored value.

This method takes self as a non-mut reference:

fn set(&self, value: T) // note: not "&mut self

This is, of course, unusual for methods named set. By now, Rust
has trained us to expect that we need mut access if we want to
make changes to data. But by the same token, this one unusual
detail is the whole point of Cells. They’re simply a safe way of
bending the rules on immutability—no more, no less.

Cells also have a few other methods, which you can read about in the
documentation.

A Cell would be handy if you were adding a simple counter to your
SpiderRobot. You could write:

use std::cell::Cell;
pub struct SpiderRobot {

hardware_error_count: Cell<u32>,

\

and then even non-mut methods of SpiderRobot can access that u32,
using the .get() and .set() methods:

https://doc.rust-lang.org/std/cell/struct.Cell.html

impl SpiderRobot {
/// Increase the error count by 1.
pub fn add_hardware_error(&self) {
let n = self.hardware_error_count.get();
self.hardware_error_count.set(n + 1);

}

/// True if any hardware errors have been reported.
pub fn has_hardware_errors(&self) -> bool {
self.hardware_error_count.get() > 0

}
}

This is easy enough, but it doesn’t solve our logging problem. Cell does
not let you call mut methods on a shared value. The .get() method
returns a copy of the value in the cell, so it works only if T implements the
Copy trait. For logging, we need a mutable File, and File isn’t copyable.

The right tool in this case is a RefCell. Like Cell<T>, RefCell<T> is a
generic type that contains a single value of type T. Unlike Cell, RefCell
supports borrowing references to its T value:

o RefCell::new(value) creates a new RefCell, moving value into it.

o ref_cell.borrow() returns a Ref<T>, which is essentially just a
shared reference to the value stored in ref_cell.

This method panics if the value is already mutably borrowed; see
details to follow.

o ref_cell.borrow_mut() returns a RefMut<T>, essentially a
mutable reference to the value in ref_cell.

This method panics if the value is already borrowed; see details
to follow.

Again, RefCell has a few other methods, which you can find in the
documentation.

The two borrow methods panic only if you try to break the Rust rule that
mut references are exclusive references. For example, this would panic:

let ref_cell: RefCell<String> = RefCell::new("hello".to_string());

https://doc.rust-lang.org/std/cell/struct.RefCell.html

let r = ref_cell.borrow(); // ok, returns a Ref<String>
let count = r.len(); // ok, returns "hello".len()
assert_eq!(count, 5);

let mut w = ref_cell.borrow_mut(); // panic: already borrowed
w.push_str(" world");

To avoid panicking, you could put these two borrows into separate
blocks. That way, r would be dropped before you try to borrow w.

This is a lot like how normal references work. The only difference is that
normally, when you borrow a reference to a variable, Rust checks at
compile time to ensure that you're using the reference safely. If the
checks fail, you get a compiler error. RefCell enforces the same rule
using runtime checks. So if you're breaking the rules, you get a panic.

Now we’'re ready to put RefCell to work in our SpiderRobot type:

pub struct SpiderRobot {

log_file: RefCell<File>,

\

impl SpiderRobot {
/// Write a line to the log file.
pub fn log(&self, message: &str) {
let mut file = self.log_file.borrow_mut();
writeln!(file, "{}", message).unwrap();

}
}

The variable file has type RefMut<File>. It can be used just like a mutable
reference to a File. For details about writing to files, see Chapter 18.

Cells are easy to use. Having to call .get() and .set() or .borrow() and
.borrow_mut() is slightly awkward, but that’s just the price we pay for
bending the rules. The other drawback is less obvious and more serious:
cells—and any types that contain them—are not thread-safe. Rust
therefore will not allow multiple threads to access them at once. We'll
describe thread-safe flavors of interior mutability in Chapter 19, when we
discuss “Mutex<T>", “Atomics”, and “Global Variables”.

Whether a struct has named fields or is tuple-like, it is an aggregation of
other values: if | have a SpiderSenses struct, then | have an Rc pointer to
a shared SpiderRobot struct, and | have eyes, and | have an
accelerometer, and so on. So the essence of a struct is the word “and”: |
have an X and a Y. But what if there were another kind of type built
around the word “or”? That is, when you have a value of such a type,
you'd have either an X or a Y? Such types turn out to be so useful that
they’re ubiquitous in Rust, and they are the subject of the next chapter.

Chapter 10. Enums and Patterns

Surprising how much computer stuff makes sense viewed as tragic
deprivation of sum types (cf. deprivation of lambdas)

—Graydon Hoare

The first topic of this chapter is potent, as old as the hills, happy to help
you get a lot done in short order (for a price), and known by many names
in many cultures. But it's not the devil. It's a kind of user-defined data
type, long known to ML and Haskell hackers as sum types, discriminated
unions, or algebraic data types. In Rust, they are called enumerations, or
simply enums. Unlike the devil, they are quite safe, and the price they
ask is no great privation.

C++ and C# have enums; you can use them to define your own type
whose values are a set of named constants. For example, you might
define a type named Color with values Red, Orange, Yellow, and so on.
This kind of enum works in Rust, too. But Rust takes enums much
further. A Rust enum can also contain data, even data of varying types.
For example, Rust’'s Result<String, io::Error> type is an enum; such a
value is either an Ok value containing a String, or an Err value containing
an io::Error. This is beyond what C++ and C# enums can do. It's more
like a C union—but unlike unions, Rust enums are type-safe.

Enums are useful whenever a value might be either one thing or another.
The “price” of using them is that you must access the data safely, using
pattern matching, our topic for the second half of this chapter.

Patterns, too, may be familiar if you’ve used unpacking in Python or
destructuring in JavaScript, but Rust takes patterns further. Rust patterns
are a little like regular expressions for all your data. They’re used to test
whether or not a value has a particular desired shape. They can extract
several fields from a struct or tuple into local variables all at once. And
like regular expressions, they are concise, typically doing it all in a single
line of code.

https://twitter.com/graydon_pub/status/555046888714416128

Enums

Simple, C-style enums are straightforward:

enum Ordering {
Less,
Equal,
Greater

}

This declares a type Ordering with three possible values, called variants
or constructors: Ordering::Less, Ordering::Equal, and Ordering::Greater.
This particular enum is part of the standard library, so Rust code can
import it, either by itself:

use std::cmp::Ordering;

fn compare(n: i32, m: i32) -> Ordering {
ifn<m/{
Ordering::Less
}elseifn>m{
Ordering::Greater
} else {
Ordering::Equal
}
}

or with all its constructors:

use std::cmp::Ordering;
use std::cmp::Ordering::*; //* to import all children

fn compare(n: i32, m: i32) -> Ordering {
ifn<m/{
Less
}elseifn>m/{
Greater
} else {
Equal
}
}

After importing the constructors, we can write Less instead of
Ordering::Less, and so on, but because this is less explicit, it's generally
considered better style not to import them except when it makes your
code much more readable.

To import the constructors of an enum declared in the current module,
use a self import:

enum Pet {
Orca,
Giraffe,

\

use self::Pet::*;

In memory, values of C-style enums are stored as integers. Occasionally
it's useful to tell Rust which integers to use:

enum HttpStatus {
Ok = 200,
NotModified = 304,
NotFound = 404,

\

Otherwise Rust will assign the numbers for you, starting at 0.
By default, Rust stores C-style enums using the smallest built-in integer
type that can accommodate them. Most fit in a single byte.

use std::mem::size_of;
assert_eq!(size_of::<Ordering>(), 1);
assert_eq!(size_of::<HttpStatus>(), 2); // 404 doesn't fit in a u8

You can override Rust’s choice of in-memory representation by adding a
#[repr] attribute to the enum. For details, see Chapter 21.

Casting a C-style enum to an integer is allowed:

assert_eq!(HttpStatus::Ok as i32, 200);

However, casting in the other direction, from the integer to the enum, is
not. Unlike C and C++, Rust guarantees that an enum value is only ever
one of the values spelled out in the enum declaration. An unchecked cast
from an integer type to an enum type could break this guarantee, so it's
not allowed. You can either write your own checked conversion:

fn http_status_from_u32(n: u32) -> Option<HttpStatus> {
match n {
200 => Some(HttpStatus::Ok),
304 => Some(HttpStatus::NotModified),
404 => Some(HttpStatus::NotFound),

_ =>None

or use the enum_primitive crate. It contains a macro that autogenerates
this kind of conversion code for you.

As with structs, the compiler will implement features like the == operator
for you, but you have to ask.

#[derive(Copy, Clone, Debug, PartialEq)]
enum TimeUnit {
Seconds, Minutes, Hours, Days, Months, Years

}
Enums can have methods, just like structs:

impl TimeUnit {
/// Return the plural noun for this time unit.
fn plural(self) -> &'static str {
match self {
TimeUnit::Seconds => "seconds",
TimeUnit::Minutes => "minutes",
TimeUnit::Hours => "hours",
TimeUnit::Days => "days",
TimeUnit::Months => "months",
TimeUnit::Years => "years"
}
}

/// Return the singular noun for this time unit.
fn singular(self) -> &'static str {

https://crates.io/crates/enum_primitive

self.plural().trim_right_matches('s")

}
}

So much for C-style enums. The more interesting sort of Rust enum is
the kind that contains data.

Enums with Data

Some programs always need to display full dates and times down to the
millisecond, but for most applications, it's more user-friendly to use a
rough approximation, like “two months ago.” We can write an enum to
help with that:

/// A timestamp that has been deliberately rounded off, so our program
/// says "6 months ago” instead of "February 9, 2016, at 9:49 AM".
#[derive(Copy, Clone, Debug, PartialEq)]
enum RoughTime {

InThePast(TimeUnit, u32),

JustNow,

InTheFuture(TimeUnit, u32)

}

Two of the variants in this enum, InThePast and InTheFuture, take
arguments. These are called tuple variants. Like tuple structs, these
constructors are functions that create new RoughTime values.

let four_score_and_seven_years_ago =
RoughTime::InThePast(TimeUnit::Years, 4*20 + 7);

let three_hours_from_now =
RoughTime::InTheFuture(TimeUnit::Hours, 3);

Enums can also have struct variants, which contain named fields, just like
ordinary structs:

enum Shape {
Sphere { center: Point3d, radius: 32 },
Cuboid { cornerl: Point3d, corner2: Point3d }

}

let unit_sphere = Shape::Sphere { center: ORIGIN, radius: 1.0 };

In all, Rust has three kinds of enum variant, echoing the three kinds of
struct we showed in the previous chapter. Variants with no data
correspond to unit-like structs. Tuple variants look and function just like
tuple structs. Struct variants have curly braces and named fields. A single

enum can have variants of all three kinds.

enum RelationshipStatus {
Single,
InARelationship,
ltsComplicated(Option<String>),
ItsExtremelyComplicated {
car: DifferentialEquation,
cdr: EarlyModernistPoem
}
}

All constructors and fields of a public enum are automatically public.

Enums in Memory

In memory, enums with data are stored as a small integer tag, plus
enough memory to hold all the fields of the largest variant. The tag field is
for Rust’s internal use. It tells which constructor created the value, and

therefore which fields it has.
As of Rust 1.17, RoughTime fits in 8 bytes, as shown in Figure 10-1.

1 tag byte (0 means InThePast)

1 byte for the TimeUnit field (5 means Years)

2 unused bytes (padding for alignment)
4 bytes for the u32 field

v

87 | InThePast(Years, 87)

3 | InTheFuture(Hours, 3)

Figure 10-1. RoughTime values in memory

Rust makes no promises about enum layout, however, in order to leave
the door open for future optimizations. In some cases, it would be
possible to pack an enum more efficiently than the figure suggests. We'll
show later in this chapter how Rust can already optimize away the tag

field for some enums.

Rich Data Structures Using Enums

Enums are also useful for quickly implementing tree-like data structures.
For example, suppose a Rust program needs to work with arbitrary JSON
data. In memory, any JSON document can be represented as a value of
this Rust type:

enum Json {
Null,
Boolean(bool),
Number(f64),
String(String),
Array(Vec<Json>),
Object(Box<HashMap<String, Json>>)

}

The explanation of this data structure in English can’t improve much upon
the Rust code. The JSON standard specifies the various data types that
can appear in a JSON document: null, Boolean values, numbers, strings,
arrays of JSON values, and objects with string keys and JSON values.
The Json enum simply spells out these types.

This is not a hypothetical example. A very similar enum can be found in
serde_json, a serialization library for Rust structs that is one of the most-
downloaded crates on crates.io.

The Box around the HashMap that represents an Object serves only to
make all Json values more compact. In memory, values of type Json take
up four machine words. String and Vec values are three words, and Rust
adds a tag byte. Null and Boolean values don’t have enough data in them
to use up all that space, but all Json values must be the same size. The
extra space goes unused. Figure 10-2 shows some examples of how
Json values actually look in memory.

A HashMap is larger still. If we had to leave room for it in every Json
value, they would be quite large, eight words or so. But a
Box<HashMap> is a single word: it's just a pointer to heap-allocated
data. We could make Json even more compact by boxing more fields.

https://crates.io

Null

Boolean(true)

129.0 Number(129.0)

[\S] = (o]
=

buffer: capacity: length:

(none) 0 | Array(vec![])

Figure 10-2. Json values in memory

What's remarkable here is how easy it was to set this up. In C++, one
might write a class for this:

class JSON {
private:
enum Tag {
Null, Boolean, Number, String, Array, Object
h
union Data {
bool boolean;
double number;
shared_ptr<string> str;
shared_ptr<vector<JSON>> array;
shared_ptr<unordered_map<string, JSON>> object;

Data() {}
~Data() {}

h)

Tag tag;
Data data;

public:
bool is_null() const { return tag == Null; }
bool is_boolean() const { return tag == Boolean; }
bool get_boolean() const {
assert(is_boolean());
return data.boolean;
}
void set_boolean(bool value) {
this->~JSON(); // clean up string/array/object value

tag = Boolean;
data.boolean = value;

}
-

At 30 lines of code, we have barely begun the work. This class will need
constructors, a destructor, and an assignment operator. An alternative
would be to create a class hierarchy with a base class JSON and
subclasses JSONBoolean, JSONString, and so on. Either way, when it's
done, our C++ JSON library will have more than a dozen methods. It will
take a bit of reading for other programmers to pick it up and use it. The
entire Rust enum is eight lines of code.

Generic Enums

Enums can be generic. Two examples from the standard library are
among the most-used data types in the language:

enum Option<T> {
None,
Some(T)

}

enum Result<T, E> {
Ok(T),
Err(E)

}

These types are familiar enough by now, and the syntax for generic
enums is the same as for generic structs. One unobvious detail is that
Rust can eliminate the tag field of Option<T> when the type T is a Box or
some other smart pointer type. An Option<Box<i32>> is stored in
memory as a single machine word, 0 for None and nonzero for Some
boxed value.

Generic data structures can be built with just a few lines of code:

// An ordered collection of "T's.
enum BinaryTree<T> {
Empty,
NonEmpty(Box<TreeNode<T>>)
}

// A part of a BinaryTree.
struct TreeNode<T> {
element: T,
left: BinaryTree<T>,
right: BinaryTree<T>
}

These few lines of code define a BinaryTree type that can store any
number of values of type T.

A great deal of information is packed into these two definitions, so we will
take the time to translate the code word for word into English. Each

BinaryTree value is either Empty or NonEmpty. If it's Empty, then it
contains no data at all. If NonEmpty, then it has a Box, a pointer to a
heap-allocated TreeNode.

Each TreeNode value contains one actual element, as well as two more
BinaryTree values. This means a tree can contain subtrees, and thus a
NonEmpty tree can have any number of descendants.

A sketch of a value of type BinaryTree<&str> is shown in Figure 10-3