

PYTHON® PROJECTS

INTRODUCTION . xxv

CHAPTER 1 Reviewing Core Python . 1

CHAPTER 2 Scripting with Python . 47

CHAPTER 3 Managing Data . 103

CHAPTER 4 Building Desktop Applications . 161

CHAPTER 5 Python on the Web . 223

CHAPTER 6 Python in Bigger Projects . 257

CHAPTER 7 Exploring Python’s Frontiers . 285

APPENDIX A Answers to Exercises . 303

APPENDIX B Python Standard Modules . 319

APPENDIX C Useful Python Resources . 327

REFERENCES . 331

INDEX . 333

Python® Projects

Python® Projects

Laura Cassell
Alan Gauld

Python® Projects

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-90866-2
ISBN: 978-1-118-90889-1 (ebk)
ISBN: 978-1-118-90919-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014946683

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may
not be used without written permission. Python is a registered trademark of Python Software Foundation Corporation.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any
product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

For my truly great boys—Nathan, Ben, and Matt:

We will do so many things now that I’m not writing.

Thank you for all the quiet time while I was writing;

you can come out of your rooms now.

—Laura Cassell

To my wife, Heather, for her continued support and

patience with my eccentric working hours.

—Alan Gauld

ABOUT THE AUTHORS

LAURA CASSELL has been poking at code on the web since 1997. She taught herself Perl in the early
2000s where she discovered that programming materials were in dire need of an overhaul and the
barrier to entry to teach programming was incredibly high. Thus, her journey to learn programming
so she can bring it to other people began.

Originally from Atlanta, GA, Laura founded PyLadies Atlanta, and got her start teaching Python
and JavaScript for Big Nerd Ranch. She has since moved on to engineering management and
currently resides in Portland, OR where she manages a team of Pythonistas doing software analytics
for New Relic, Inc. She still volunteers for teaching and speaking gigs when time permits.

ALAN GAULD is an enterprise architect with more than 40 years of experience in IT, working
mainly in the telecommunications and customer service areas. He has programmed in more than
20 languages, producing everything from mainframe billing systems through embedded micro-
controllers. For the last 15 years, his preference has been for Python. He is the author of a beginner’s
book on Python and is co-moderator of the python-tutor mailing list.

When not programming, he likes climbing, backpacking, and skiing. He is also a keen
photographer, artist, and acoustic music enthusiast. He lives in Scotland with his wife, Heather.

ABOUT THE TECHNICAL EDITORS

ALEX BRADBURY is a compiler hacker, Linux geek, and Free Software enthusiast. He has been
a long time contributor to the Raspberry Pi project and also co-authored Learning Python with
Raspberry Pi. He is currently a researcher at the University of Cambridge Computer Laboratory
and is a co-founder of lowRISC, a non-profi t project to produce a complete open-source System-
on-Chip (SoC).

TODD SHANDELMAN fondly remembers coding assembly language programs on punch cards
for IBM System/370 mainframes. After occupying various other ecological niches in software
technology over the years (C, C++, and Perl, to name but a few), Todd’s best days are now spent
coding pure Python 2.x and 3.x from the Linux command line. In his spare time he is a professional
translator of Russian and Hebrew, specializes in foreign-language typography, and can fi nd his
way in the dark around Unicode and UTF-8. Todd earned a Bachelor of Science degree in Business
Administration from the University of the State of New York. He lives in Houston, Texas, with his
wife and son.

Acquisitions Editor
Jim Minatel

Project Editor
Jennifer Lynn

Technical Editors
Alex Bradbury
Todd Shandelman

Production Editor
Christine Mugnolo

Copy Editor
Kimberly A. Cofer

Production Manager
Kathleen Wisor

Manager of Content Development and
Assembly
Mary Beth Wakefi eld

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

fProfessional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Patrick Redmond

Proofreader
Sarah Kaikini, Word One New York

Indexer
Johnna Dinse

Cover Designer
Wiley

Cover Image
© iStock.com/skodonnell

CREDITS

ACKNOWLEDGMENTS

I’D LIKE TO GIVE a big thank you to Alan Gauld, who helped put so much of this book together,
and to Mary James and Jennifer Lynn for making sure this idea came to fruition. It’s a better book
because of all of you.

Thank you also to the Python community, you are all the most welcoming community that I’ve
ever found. You have created a place where people feel welcome and able to approach everyone,
experts to novices alike. Keep up the good work and thank you for allowing me to be a part of this
wonderful community.

—Laura Cassell

I’D LIKE TO GIVE a shout out to Laura Cassell for kick-starting this project, Jennifer Lynn for
steering us through it, and the Python community for their support over the last 15 years.

—Alan Gauld

CONTENTS

INTRODUCTION xxv

CHAPTER 1: REVIEWING CORE PYTHON 1

Exploring the Python Language and the Interpreter 2
Reviewing the Python Data Types 3

Numeric Types: Integer and Float 4
The Boolean Type 5
The None Type 6
Collection Types 6

Strings 7
Bytes and ByteArrays 8
Tuples 10
Lists 10
Dictionaries 12
Sets 13

Using Python Control Structures 15
Structuring Your Program 15
Using Sequences, Blocks and Comments 16
Selecting an Execution Path 17
Iteration 18
Handling Exceptions 20
Managing Context 21

Getting Data In and Out of Python 21
Interacting with Users 21
Using Text Files 23

Extending Python 24
Defi ning and Using Functions 24

Generator Functions 26
Lambda Functions 27

Defi ning and Using Classes and Objects 28
Creating and Using Modules and Packages 33

Using and Creating Modules 33
Using and Creating Packages 34

Creating an Example Package 36
Using Third‐Party Packages 42
Summary 43

xviii

CONTENTS

CHAPTER 2: SCRIPTING WITH PYTHON 47

Accessing the Operating System 48
Obtaining Information About Users and Their Computer 49
Obtaining Information About the Current Process 53
Managing Other Programs 55
Managing Subprocesses More Effectively 58
Obtaining Information About Files (and Devices) 60
Navigating and Manipulating the File system 62
Plumbing the Directory Tree Depths 69

Working with Dates and Times 72
Using the time Module 72
Introducing the datetime Module 75
Introducing the calendar Module 76

Handling Common File Formats 76
Using Comma‐Separated Values 76
Working with Confi g Files 83
Working with XML and HTML Files 86

Parsing XML Files 86
Parsing HTML Files 89

Accessing Native APIs with ctypes and pywin32 93
Accessing the Operating System Libraries 94

Using ctypes with Windows 95
Using ctypes on Linux 96

Accessing a Windows Application Using COM 96
Automating Tasks Involving Multiple Applications 98

Using Python First 98
Using Operating System Utilities 98
Using Data Files 98
Using a Third‐Party Module 99
Interacting with Subprocesses via a CLI 99
Using Web Services for Server‐Based Applications 99
Using a Native Code API 100
Using GUI Robotics 100

Summary 100

CHAPTER 3: MANAGING DATA 103

Storing Data Using Python 104
Using DBM as a Persistent Dictionary 104
Using Pickle to Store and Retrieve Objects 109
Accessing Objects with shelve 111

xix

CONTENTS

Analyzing Data with Python 116
Analyzing Data Using Built‐In Features of Python 116
Analyzing Data with ittertools 119

Utility Functions 119
Data Processing Functions 121
Taming the Vagaries of groupby() 122

Using itertools to Analyze LendyDB Data 124
Managing Data Using SQL 125

Relational Database Concepts 126
Structured Query Language 127

Creating Tables 128
Inserting Data 129
Reading Data 130
Modifying Data 133

Linking Data Across Tables 134
Digging Deeper into Data Constraints 134
Revisiting SQLite Field Types 135
Modeling Relationships with Constraints 136

Many‐to‐Many Relationships 140
Migrating LendyDB to an SQL Database 143

Accessing SQL from Python 143
Using SQL Connections 143
Using a Cursor 143

Creating the LendyDB SQL Database 145
Inserting Test Data 146
Creating a LendyDB API 148

Exploring Other Data Management Options 154
Client‐Server Databases 154
NoSQL 155
The Cloud 155
Data Analysis with RPy 156

Summary 157

CHAPTER 4: BUILDING DESKTOP APPLICATIONS 161

Structuring Applications 162
Building Command-Line Interfaces 164

Building the Data Layer 164
Building the Core Logic Layer 165
Building the User Interface 169

Using the cmd Module to Build a Command-Line Interface 173
Reading Command-Line Arguments 175

xx

CONTENTS

Jazzing Up the Command-Line Interface with Some Dialogs 177
Programming GUIs with Tkinter 181

Introducing Key GUI Principles 181
Event‐Based Programming 181
GUI Terminology 182
The Containment Tree 183

Building a Simple GUI 184
Building a Tic‐Tac‐Toe GUI 186

Sketching a UI Design 186
Building Menus 187
Building a Tic‐Tac‐Toe Board 188
Connecting the GUI to the Game 190

Extending Tkinter 194
Using Tix 194
Using ttk 198

Revisiting the Lending Library 199
Exploring Other GUI Toolkits for Python 206

wxPython 207
PyQt 207
PyGTK 208
Native GUIs: Cocoa and PyWin32 209
Dabo 209

Storing Local Data 210
Storing Application‐Specifi c Data 210
Storing User‐Selected Preferences 211
Storing Application State 212
Logging Error information 212

Understanding Localization 214
Using Locales 214
Using Unicode in Python 216
Using gettext 218

Summary 220

CHAPTER 5: PYTHON ON THE WEB 223

Python on the Web 224
Parts of a Web Application 225
The Client‐Server Relationship 226
Middleware and MVC 226
HTTP Methods and Headers 227
What Is an API? 230

xxi

CONTENTS

Web Programming with Python 235
Using the Python HTTP Modules 235

Creating an HTTP Server 235
Exploring the Flask Framework 237
Creating Data Models in Flask 238
Creating Core Flask Files 239

More on Python and the Web 247
Static Site Generators 248
Web Frameworks 248

Using Python Across the Wire 248
XML‐RPC 249
Socket Servers 250

More Networking Fun in Python 253
Summary 254

CHAPTER 6: PYTHON IN BIGGER PROJECTS 257

Testing with the Doctest Module 258
Testing with the Unittest Module 262
Test‐Driven Development in Python 267
Debugging Your Python Code 267

Handling Exceptions in Python 272
Working on Larger Python Projects 276
Releasing Python Packages 280
Summary 282

CHAPTER 7: EXPLORING PYTHON’S FRONTIERS 285

Drawing Pictures with Python 286
Using Turtle Graphics 286
Using GUI Canvas Objects 286
Plotting Data 287
Using imghdr 287
Introducing Pillow 287
Trying Out ImageMagick 287

Doing Science with Python 288
Introducing SciPy 288
Doing Bioscience with Python 290
Using GIS 290
Watching Your Language 290
Getting It All 290

xxii

CONTENTS

Playing Games with Python 291
Enriching the Experience with PyGame 291
Exploring Other Options 291

Going to the Movies 292
The Computer Graphics Kit 292
Modeling and Animation 292
Photo Processing 292
Working with Audio 293

Integrating with Other Languages 293
Jython 293
IronPython 294
Cython 294
Tcl/Tk 295

Getting Physical 296
Introducing Serial Options 296
Programming the RaspberryPi 296
Talking to the Arduino 297
Exploring Other Options 297

Building Python 298
Fixing Bugs 298
Documenting 298
Testing 299
Adding Features 299
Attending Conferences 299

Summary 299

APPENDIX A: ANSWERS TO EXERCISES 303

Chapter 1 Solutions 303
Chapter 2 Solutions 305
Chapter 3 Solutions 306
Chapter 4 Solutions 311
Chapter 5 Solutions 315
Chapter 6 Solutions 316
Chapter 7 Solutions 317

APPENDIX B: PYTHON STANDARD MODULES 319

APPENDIX C: USEFUL PYTHON RESOURCES 327

Asking Questions: Mailing Lists and More 327
Reading Blogs 328

xxiii

CONTENTS

Studying Tutorials and References 328
Watching Videos 329
And Now for Something Completely Different… 329

REFERENCES 331

INDEX 333

 INTRODUCTION

 AFTER A CONFERENCE ONE YEAR, an e-mail went around the PyLadies organizers mailing
list asking, “Is anyone interested in writing a Python book?” I had kicked around the idea of a
programming book for a while. After teaching for a couple years and mentoring at PyLadies and
other coding meetups, I realized there was a need for a new, specifi c sort of programming book. I
didn’t jump to replying to the e-mail, however. I knew that writing a book would be a big process
(boy is it!) and that it would take a lot of time and effort on my part, in the way of working on the
weekends and holidays (yep, check!). I also knew that I had a full‐time job teaching programming,
I was the lead organizer for my local PyLadies chapter in Atlanta, Georgia, and I had children that
would soon start asking, “Are you writing this weekend?”

 All of the above was true (a little more than I originally thought, actually), but I knew that the book
was important. There were so many of my students asking me at the end of class, “Now that I know
the basics of Python, what do I do?” My answer was always something along the lines of, “You
can get involved in open‐source projects!” or “Take the advanced Python class!” But none of those
answers satisfi ed them or me. The answer is, “You have to really start looking for something to
work on—a problem to solve, a need that must be met.” Because, the only way to really know and
understand programming and a programming language is to solve problems with said language.

 But then the problem of “But I don’t have a problem that really needs to be solved” cropped up. So
while I could send my students off to look at open‐source projects that do, in fact, need the help,
if they didn’t understand the technology, they’d be lost and give up. Then the community loses yet
another programmer who may have brought interesting things to the table. So, that’s when, after
lots of talking to friends and family, I realized that this book needed to be written.

 WHY WE WROTE THIS BOOK

 For all those people who came up to us and asked, over the years, “What can I do now that I
understand Python basics? What things can I learn? Where do I go?” That’s why we wrote this book.

 The most chronic problem in programming books that we’ve experienced and that others have
also felt they experienced is that it goes from “These are the basics of a language” into very deep
concepts that only people who hold Computer Science (CS) degrees would understand. And that’s
not cool. Programming should be open to anyone who is interested. We should all be working
toward making the bar into programming a little lower. We feel that Python accomplishes this,
but we need to take it a step further and begin to understand how people learn abstract ideas and
concepts, to help us help them learn.

 Think of programming like learning how to build a house, but only understanding that wood
is needed and how the wood works to build a house. You still need to understand structural
engineering, electrical, plumbing, ventilation, HVAC, etc. The same concept is true for

xxvi

INTRODUCTION

programming. Languages just explain the wood being used in a house. There is plenty more that is
happening in harmony with the wood, and we want to help you uncover those concepts.

 WHO THIS BOOK FOR

 This book is not for beginners who want to learn Python. Rather, as a reader of this book, you need
to already have some Python programming under your belt. That means you’ve done some tutorials.
You also understand that whitespace matters in Python and that lists are denoted with hard braces
([]) while dicts (dictionaries) are denoted with curly braces ({ }). This book is for those people
who are still beginners, but who have completed a tutorial or two—folks who understand the basics
of Python, but are interested to learn what all they can do with Python.

 “Need is the mother of invention” goes the saying, and when you’re learning to program, this is very
true. If you need a piece of software that can perform a specifi c function or task, it’s easy to learn
a language around that need. You have a need, the language will help you, you learn the language,
you solve the problem, you’ve learned a thing, and you’ve put it to use immediately. This is awesome
and fantastic! However, what if you think programming is interesting, but you’re missing the need?
What if you don’t know what to make? That’s where this book comes in.

 This book will help you to learn the parts of Python that most people don’t think to tell new
programmers about. Most of the things covered in this book are tools and technologies that one
may only discover when they are faced with working with them. However, for new programmers
who don’t have a specifi c problem to solve, learning these tools can be diffi cult. Most of the time no
one thinks to introduce these topics to programmers because they are used so regularly. We hope to
take you on a journey through the power of Python and all of its splendor.

 You will learn how to make a web app, how to talk to a database using Python libraries, and which
system tools can help speed up your workfl ow, if you’re a systems administrator. We will briefl y
touch on topics such as security and best practices. You’ll get an overview of creating graphical
user interfaces (GUIs) using Python libraries. We will cover consuming and producing application
programming interfaces (APIs) and many other topics that are benefi cial to Python programmers.

 WHAT YOU WILL LEARN

 We hope to take you on a small tour of the basics that are available in the Python ecosystem. We’ll
introduce you to many concepts that are usually discovered only while working on a problem to
solve. While we can’t put everything into the context of problems that you may need to solve in
the future, we hope that we can illustrate the powerful features of the Python language and the
available packages and technology that are available to you, the new Python programmer.

 We will start out with a brief “crash course” in Python, in case you’ve forgotten anything. We’ll
go over the basics, and then you can decide if you want to read that chapter in its entirety or not.
Next, we go over Python as a scripting language. You’ll get to get your hands dirty, as it were,
by writing small scripts to access parts of your system, using Python. This should illustrate the

xxvii

INTRODUCTION

very basic power you have with the language. Third, we’ll start talking about data, which is
what programming is all about—manipulating data. You’ll get to dive in and work through some
examples using some of the standard libraries that come out of the box with Python. We’ll even
discuss databases so that you can get a quick intro into those. We want you to see and touch every
part of a system that you may come in contact with.

 After the fi rst three chapters, you’ll dive into desktop applications. While these aren’t incredibly
popular in Python, it is a feature of the language, and it could be useful down the line in your tenure
as a Python programmer. Next, we will step out of the desktop and onto the Internet with Python
as a data communicator. You’ll learn all about HTTP and the Web and how websites work under
the hood. You’ll even be able to play with producing and consuming APIs. APIs confuse many new
programmers; we hope to have removed much of the mystery with this chapter.

 In the fi nal chapters, we’ll show more advanced topics in Python, such as how to work with Python
in bigger projects, debugging your code, creating testing-harnesses, handling errors, and even creating
your own exceptions and exception handlers! Finally, there are appendices for reference while you are
going through the book and after, when you’re spreading your Python wings and programming.

 It is a lot of information, and it’s like a huge sandbox of tools and ideas to get you started on your
journey with the language. We hope that you try things out and research more on your own time
with certain concepts and ideas that interest you. We’ve included plenty of hands‐on exercises to
help you try out the concepts as they are presented, as well as some challenge questions in most
chapters to help you exercise your newfound knowledge.

 WHAT YOU NEED TO USE THIS BOOK

 In order to get the most out of this book, we recommend you have a modern computer running
Python 3.3 or later, a good text editor that you are comfortable using, an Internet connection
(for some parts of the book), and a healthy dose of patience and wonderment. We also
recommend that you utilize Internet searching for any problems that may arise. Professional
programmers don’t actually know it all; they usually only know those problems that they deal
with day in and day out. A lot of the time of a professional programmer is spent researching and
tracking down why a behavior is occurring. No one should ever feel bad for relying on a Google
search to solve a problem. Sometimes, your Googling abilities are just as important as your
programming ones.

 To work through the examples and projects in this book, you will also need the source code. The
source code for the samples is available for download from the Wrox website at:

www.wrox.com/go/pythonprojects

http://www.wrox.com/go/pythonprojects

xxviii

INTRODUCTION

 CONVENTIONS

 To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

 TRY IT OUT

 The Try It Out is an exercise you should work through, following the text in the book.t

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

 How It Works

 After each Try It Out , the code you’ve typed will be explained in detail. t

WARNING Warnings hold important, not‐to‐be‐forgotten information that is
directly relevant to the surrounding text.

NOTE Notes indicate notes, tips, hints, tricks, or asides to the current discussion.

 As for styles in the text:

➤ We highlight new terms and important words when we introduce them.

➤ We show keyboard strokes like this: Ctrl+A.

➤ We show fi lenames, URLs, and code within the text like so: persistence.properties .

➤ We present code in two different ways:

 We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present
 context or to show changes from a previous code snippet.

 SOURCE CODE

 As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com . Specifi cally for this book, the code download is m

on the Download Code tab at:

www.wrox.com/go/pythonprojects

http://www.wrox.com
http://www.wrox.com/go/pythonprojects

xxix

INTRODUCTION

 You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is
978‐1‐118‐90866‐2 to fi nd the code. And a complete list of code downloads for all current Wrox
books is available at www.wrox.com/dynamic/books/download.aspx .

 Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with an appropriate
compression tool.

 ERRATA

 We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

 To fi nd the errata page for this book, go to:

www.wrox.com/go/pythonprojects

 And click the Errata link. On this page you can view all errata that has been submitted for this book
and posted by Wrox editors.

 If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at http://p2p.wrox.com . The forums are a
Web‐based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e‐mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com , you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to http://p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e‐mail with information describing how to verify your account and
complete the joining process.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/go/pythonprojects
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml

xxx

INTRODUCTION

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e‐mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

NOTE You can read messages in the forums without joining P2P, but in order
to post your own messages, you must join.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The basic features of the Python language

➤ How to use the Python module mechanism

➤ How to create a new module

➤ How to create a new package

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 You can fi nd the wrox.com downloads for this chapter at www.wrox.com/go/pythonprojects
on the Download Code tab. The code is in the Chapter 1 download and individually named
according to the names throughout the chapter.

 This chapter starts with a brief review of Python—in case you have forgotten some of the
basics—and provides a foundation upon which the rest of the book is built. If you are
confi dent in your ability with basic Python coding, feel free to skip ahead until you see content
that might be of interest to you. After all, you can always come back to this chapter later if
you fi nd you need a refresher.

 In this chapter you start off by looking at the Python ecosystem, the data types, and the major
control structures and then move on to defi ning functions and classes. Next, you look at the
Python module and package system. And, fi nally, you create a basic new package of modules.

 By the end of this chapter, you should be ready to take the next step and start working with
the standard Python modules on real project tasks.

 1

http://www.wrox.com/go/pythonprojects

2 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 EXPLORING THE PYTHON LANGUAGE
AND THE INTERPRETER

 Python is a dynamic but strictly typed programming language. It is both interpreted and compiled
in that the original source code is compiled into byte code and then interpreted, but this happens
transparently to the user; you do not have to explicitly ask Python to compile your code.

 The Python language has several implementations, but the most common is the version written
in C, often referred to as CPython . Other implementations include Jython, written in Java, and
IronPython, written for the Microsoft .NET platform. CPython is the implementation used in this
book.

NOTE At the time of writing, there are two version streams of Python:
versions 2.x and 3.x. This book focuses on version 3, and the code has been
tested on several releases within that stream—up to release 3.4. Where major
compatibility issues arise with 2.x, reference will be made to version 2.7.

 Python programs are written in text fi les that customarily have the extension .py . The Pythony

interpreter, called python (in lowercase) does not actually care about the extension; it is
only for the user’s benefi t (and in some operating systems to allow the fi le and interpreter to be
linked).

 You can also input Python code directly to the interpreter. This method makes for a highly
interactive development style where ideas are prototyped or tested in the interpreter and then
transferred into a code editor. The Python interpreter is a powerful learning tool when you are
starting to use a new concept or code module.

 When working in this mode, you start the interpreter by typing python at an operating system
command prompt. The system will respond with a message telling you the Python version and some
build details, followed by the interactive prompt at which you type code. It looks like this:

 ActivePython 3.3.2.0 (ActiveState Software Inc.) based on
 Python 3.3.2 (default, Sep 16 2013, 23:10:06) [MSC v.1600 32 bit (Intel)] on win
 32
 Type "help", "copyright", "credits" or "license" for more information.
 >>>

 This message says that this interpreter is for version 3.3.2.0 of Python, it is the ActiveState
distribution (as opposed to the python.org distribution), and it was built for 32‐bit Windows. Your
message may differ slightly, but should contain the same types of information.

 If instead of running the Python interpreter interactively you want to execute a program stored in
a fi le, then at the operating system prompt you simply append the name of the fi le after the python
command:

$ python myscript.py

Reviewing the Python Data Types ❘ 3

 Python comes with two helpful functions that assist you in exploring the language: dir(name)
and help(name) . dir(name) tells you all of the names available in the object identifi ed by name .
help(name) displays information about the object called name . When you fi rst import a new
module, you will often not know what functions or classes are included. By looking at the dir()
listing of the module, you can see what is available. You can then use help() on any of the features
listed. Be sure to experiment with these functions; they are an invaluable source of information.

 REVIEWING THE PYTHON DATA TYPES

 Python supports many powerful data types. Superfi cially, these look like their counterparts in other
programming languages, but in Python they often come with super powers. Everything in Python
is an object and, therefore, has methods. This means that you can perform a host of operations on
any variable. The built‐in dir() and help() functions will reveal all. In this section you look at the
standard data types and their most important operations.

NOTE Usually you can also double‐click the fi le in your fi le explorer tool,
and the operating system makes the connection to python and runs the
program automatically. However, this often results in the program opening in
a window, completing, and the window closing again before you can see the
results, so you may prefer to type the python filename command in full at a
command‐line prompt.

TIP The Python Reference Manual (http://docs.python.org/3.3/((
reference/) provides the full detail should you need it.

 You need to be aware of some underlying concepts in Python. First, Python variables are just names.
You create variable names by assigning them to objects that are instances of types. Variables do not,
of themselves, have a type; it is the object to which they are bound that has a type. The name is just
a label and, as such, it can be reassigned to a completely different object. Assignment is performed
using = , so assigning a value to a variable looks like this:

 aVariable = aValue

 This code binds the value aValue to the variable name aVariable and, if the name does not already
exist, the interpreter adds the name to the appropriate namespace.

 The distinction between a variable and its underlying value (an object) is thus crucial in Python.
You can test variables for equality using a double equal sign (==) and object identity (that is, if two
names refer to the same object) is compared using the is operator, as shown:

>>> aString = 'I love spam'
>>> anotherString = 'I love spam'

http://docs.python.org/3.3/reference/
http://docs.python.org/3.3/reference/

4 ❘ CHAPTER 1 REVIEWING CORE PYTHON

>>> anInt = 6
>>> intAlias = anInt
>>> aString == anotherString # test equality of value
 True
>>> aString is anotherString # test object identity
 False
>>> anInt == intAlias # same value
 True
>>> anInt is intAlias # also same object identity
 True

 Python groups types according to how you can use them. For example, all types are either
categorized as mutable or immutable . If a type is immutable, it means you can’t change an object
of that type once it’s created. You can create a new data item and assign it to the same variable, but
you cannot change the original immutable value.

 Python also supports several collection types, sometimes referred to as sequences . (Strictly
speaking collections are a subset of sequences, the distinction will be made clearer later in the
chapter.) Sequences share a common set of operations, although not all sequences support all of the
operations.

 Some Python data types are callable . That means you can use the type name like a function to
produce a new instance of the type. If no value is given, a default value is returned. You will see
examples of this behavior in the following descriptions of the individual data types.

 Now that you understand the basics of working with Python data types, it’s time to take a look
at the different data types, including the numeric, boolean, and None types, as well as the various
collection types.

 Numeric Types: Integer and Float
 Python supports several numeric types including the most basic forms: integer and fl oating
point.

 Python integers are unusual in that they are theoretically of infi nite size. In practice, integers are
limited by the size of your computer’s memory. Integers support all the usual numeric operations,
such as addition, subtraction, multiplication and so on. You perform arithmetic operations using
traditional infi x notation. For example, to add two integers,

 >>> 5 + 4

 9

 or:

>>> result = 12 + 8
>>> print (result)
 20

 Literal integer values are, by default, expressed in decimal. You can use other bases by prefi xing the
number with a zero and the base’s initial. Thus, binary is represented as 0bnnn , octal as 0onnn , and
hexadecimal as 0xnnn .

Reviewing the Python Data Types ❘ 5

 The type of an integer is int , and you can use it to create integers from fl oating‐point numbers or
numeric string representations such as '123' , like this:

>>> int(5.0)
 5
>>> int('123')
 123

int can also convert from nondecimal bases (covering any base up to 36, not just the usual binary,
octal, and hexadecimal) using a second, optional, parameter. To convert a hexadecimal (base 16)
string representation to an integer, you can use:

>>> intValue = int('AB34',16)
 43828

 Python fl oating‐point numbers are of type float . Like int you can use float() to convert string
representations, like '12.34' to fl oat, and you can also use it to convert an integer number to a fl oat
value. Unlike integers, float() cannot handle strings for different bases.

 The float type also supports the normal arithmetic operations, as well as several rounding options.
Python fl oats are based on the Institute of Electrical & Electronic Engineering (IEEE) standards and
have the same ranges as the underlying computer architecture. They also suffer the same levels of
imprecision that make comparing fl oat values a risky option. Python provides modules for handling
fi xed precision decimal numbers (decimal) and rational fractions (fractions) to help alleviate this
issue. Python also natively supports a complex, or imaginary, number type called complex . These
are all typically used for fairly special purposes, so they are not covered here.

 The Boolean Type
 Python supports a Boolean type, bool , with literal values True and False . The default value of a
bool is False ; that is, bool() yields False .

 Python also supports the concept of truth‐like values for other types. For example, integers are
considered False if their value is zero. Anything else is considered True . The same applies to fl oat
values where 0.0 is False and anything else is True .

 You can convert Boolean values to integers using int() , in which case False is represented as 0 and
True as 1 .

 The Boolean type has most of the Boolean algebra operations you’d expect, including and , or , andr

not , but—surprisingly—not xor . r

NOTE Booleans are implemented as a subclass of integer and so also support
a bunch of operations that you might not expect, such as exponentiation. You
can type things like True**False and get a result of 1. You should basically
just pretend these “features” don’t exist and treat them as an implementation
detail; otherwise, your code will become very confusing.

6 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 In addition to the Boolean type, Python also supports bitwise Boolean operations on integers. That
is to say that Python treats each corresponding pair of bits within two integers as Boolean values
in their own right and applies the corresponding operation to each pair of bits. These operations
include bitwise and (&), or (|), not (̂) and, this time, xor (~), as well as bit shift operators for moving
bit patterns left (<<) or right (>>). You look more closely at these bitwise operations later in the
chapter.

 The None Type
 The None type represents a null object. There is only one None object in the Python environment,
and all references to None use that same single instance. This means that equality tests with None
are usually replaced by an identity test, like so,

 aVariable is None

 rather than:

 aVariable == None

None is the default return value of a Python function. It is also often used as a place marker or fl ag
for default parameters in functions. None is not callable and so cannot be used as a conversion
function to convert other types to None . None is considered to have a Boolean value of False .

 Collection Types
 As already mentioned Python has several types representing different kinds of collections or
sequences. These are: strings, bytes, tuples, lists, dictionaries and sets. You will see the similarities
and differences in each as they are discussed in the following sections. A standard library module
called collections provides several other more specialized collection types. You will see occasional
references to these in the sections that follow.

NOTE In many of the following discussions, you will see references to
operations accepting a collection type. Usually this includes what Python calls
iterables , which are objects that conform to Python’s iteration protocol. In
simple terms iterables are objects that you can use in loop constructs. In most
cases you will not need to worry about them, but they are described in the
Python documentation if you are interested in reading the technical details. A
good place to start is: https://wiki.python.org/moin/Iterator .

 Several common features apply to all collections, and rather than bore you by repeating them for
each type, they are covered here.

 You can get the length of any collection in Python by using the built‐in len() function. It takes a
collection object argument and returns the number of elements.

 You can access the individual elements of a collection using indexing. You do this by providing an
index number (or a valid key value for dictionaries) inside square brackets. Collection indices start

https://wiki.python.org/moin/Iterator

Reviewing the Python Data Types ❘ 7

at zero. You can also index backward from the end by using negative indices so that the last item in
the collection will have an index of –1.

 Whereas indexing is used to access just one particular element of a collection, you can use slicing tog
access multiple items in the collection. Slicing consists of a start index, an end index, and a step size,
and the numbers are separated by colons. Slicing is not valid for dictionaries or sets. The step size
argument enables you to, for example, select every other element. All values are optional, and the
defaults are the start of the collection, the last item in the collection, and a step size of one. The slice
returned consists of all (selected) elements from start to end‐1 .

 Here are a few examples of slicing applied to a string, entered at the Python interactive prompt:

>>> '0123456789'[:]
 '0123456789'
>>> '0123456789'[3:]
 '3456789'
>>> '0123456789'[:3]
 '012'
>>> '0123456789'[3:7]
 '3456'
>>> '0123456789'[3:7:2]
 '35'
>>> '0123456789'[::3]
 '0369'

 You can sort most collections by using the sorted() function. The return value is a sorted list
containing the original collection elements. Optional arguments to sorted() provide fl exibility in
how the elements are sorted and in what order.

 In general, empty collections are treated as False in Boolean expressions and True otherwise. Two
functions, any() and all() , refi ne the concept to allow more precise tests. The any() function takes
a collection as an argument and returns True if any member of the collection is true. The all()
function takes a collection as an argument and returns True if—and only if—all the members are
true.

 Strings
 Python strings are essentially collections of Unicode characters. (The implications of using Unicode
are discussed in Chapter 4 .) The default encoding is UTF8. If you are working in English, most
things will work as you expect. Once you start to use non‐English characters, things get more
interesting! For now you will be working in English and sticking with UTF8.

 Python requires that literal strings be enclosed within quotation marks. Python is extremely fl exible
in this regard and accepts single quotes (‘ Joe ’), double quotes (“Joe”), triple single quotes (‘‘‘Joe’’’),
and triple double quotes (“““Joe”””) to delimit a string. Obviously, the start and end quotes must
be of the same type, but any other quote can be contained inside the string. This is most useful for
apostrophes and similar grammatical cases (‘He said, “Hi!”’ or “My brother’s hat”). Triple quotes
of either type can span multiple lines. Here are a few examples:

>>> 'using single quotes'
 'using single quotes'
>>> "using double quotes"

8 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 'using double quotes'
>>> print('''triple single quotes spanning
... multiple lines ''')
 triple single quotes spanning
 multiple lines

 A literal string at the start of a module, class, or function that is not assigned to a variable is treated
as documentation and displayed as part of the built‐in help() output for that object.

 Special characters such as tabs (\t) or newlines (\n) must be prefi xed, or quoted, with a backslash
character, and literal backslashes must be quoted so they look like double backslashes. You can
avoid this by preceding the entire string with the letter r (for raw) to indicate that special character w
processing should not be done. Nonprintable characters can be included in a string using a
backslash followed by their hex code. For example, the escape character is \x1A . (Note that there is
no leading zero as is used for hexadecimal integer literals.)

 Strings are immutable in that you cannot directly modify or add to a string once it is formed. You
can, however, create a new string based on an existing one, and that is how many of the Python
string operations work. Python supports a wide range of operations on strings, and these are mostly
implemented as methods of the string class. Some of the most common operations are listed in
Table 1-1 .

 Several other string operations are available, but those listed in Table 1-1 are the ones you will use
most often.

 Empty strings are treated as False in Boolean expressions. All other strings are treated as True .

 Bytes and ByteArrays
 Python supports two byte‐oriented data types. A byte is an 8‐bit value, equivalent to an integer from
0–255, and represents the raw bit patterns stored by the computer or transmitted over a network.
They are very similar to strings in use and support many of the same methods. The type names are
spelled as byte and bytearray respectively.

 Literal byte strings are represented in quotes preceded by the letter b . Byte strings are immutable.
Byte arrays are similar, but they are mutable.

 In practice you will rarely use byte strings or byte arrays unless handling binary data from a fi le or
network. One issue that can catch you by surprise is that if you access an individual element using
indexing, the returned value is an integer. This means that comparing a single character byte string
with an indexed string value results in a False response, which is different from what would happen
using strings in the same way. Here is an example:

>>> s = b'Alphabet soup'
>>> c = b'A'
>>> s[0] == c
 False
 >>> s[0] == c[0]
 True

 As you can see, the key is to use indexing on both sides of the comparison.

Reviewing the Python Data Types ❘ 9

 TABLE 1-1: String Operations

OPERATION DESCRIPTION

+ Concatenation. This is a somewhat ineffi cient operation, and you can usually
avoid it by using join() instead.

* Multiplication. This produces multiple copies of the string concatenated
together.

upper, lower,

capitalize
These change the case of a string.

center, ljust,

rjust
These justify the string as needed within a given character width, padding as
needed with the specifi ed fi ll character (defaulting to a space).

startswith,

endswith
These test a substring matching the start or end of a line. Optional parameters
control the actual subsection of the string that is tested so the names are
slightly misleading. They can also test multiple substrings at once if they are
passed as a tuple.

find, index,

rfind
These return the lowest index where the given substring is found. find returns
‐1 on failure whereas index raises a ValueError exception.

rfind starts at the right‐hand side and, therefore, returns the highest index
where the substring is found.

isalpha,

isdigit,isalnum,

and so on.

These test the string content. Several test types exist, the most commonly
used being those listed; for alphabetic, numeric, and alphanumeric characters
respectively.

join This joins a list of strings using the active string as the separator. It is common
to build a string using either a single space or no space as the separator. This
is faster and more memory effi cient than using string concatenation.

split,

splitlines,

partition

These split a string into a list of substrings based on a given separator (the
default is whitespace). Note that the separators are removed in the process.
splitlines() returns a list of lines, effectively splitting using the newline
character. partition() splits a string based on the given separator, but only
up to the fi rst occurrence; it then returns the fi rst string, the separator, and the
remaining string.

strip,

lstrip,rstrip
These strip whitespace (the default) or the specifi ed characters from the ends
of the string. lstrip strips only the left side; rstrip strips only the right. None
of them remove whitespace from the middle of a string; they only remove outer
characters. To globally remove characters, use the replace operation.

replace This performs string replacement. By specifying an empty string as the
replacement, it can be used to effectively delete characters.

format This replaces the older C printf‐style string formatting used in Python
version 2. Printf style is still available in version 3, but is deprecated in
favor of format() . String formatting is explained in detail in the Python
documentation. The basic concept is that pairs of braces embedded in the
string form placeholders for data passed as arguments to format() . The
braces can contain optional style information, such as padding characters.
(You can fi nd examples throughout this book.)

10 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 You can use the struct module to convert binary data from the bytes representation to normal
Python types. Of course, to use this you will still have to know what types the byte patterns
represent in the fi rst place.

 Empty byte strings are treated as False in Boolean expressions. All other byte strings are treated as
True .

 Tuples
 Tuples are collections of arbitrary objects. The fact that they are collected together suggests that
there is probably a logical connection between them, but the language puts no restriction on the
objects contained. Tuples are often described as being the Python equivalent to records, or structs,
in other languages.

 Literal tuples consist of a series of values (or variables) separated by commas. Often, to prevent
syntax ambiguity, the tuple as a whole will be contained in parentheses, but this is not a requirement
of the tuple itself.

 Tuples are immutable, so you cannot modify or extend the tuple once it is created. You can create
a new tuple based on an existing one in the same way you did for strings, and you can create a new
empty tuple using the tuple() type function. You can use a tuple as a key in a dictionary because
they are immutable.

 One feature of Python tuples that is very useful is known as unpacking . This enables you to extract g
the values of a tuple into discrete variables. You most often see this when a function returns a tuple
of values and you want to store the individual values in separate variables. An example is shown
here using the divmod() function, which returns the quotient and remainder of an integer division
as a tuple:

>>> print(divmod(12,7))
 (1, 5)
>>> q,r = divmod(12,7)
>>> print (q)
 1
>>> print (r)
 5

 Notice how q and r can be treated as new, single‐valued variables.

 A namedtuple class in the collections module allows elements to be indexed by name rather
than position. This combines some of the advantages of a dictionary with the compactness and
immutability of a tuple.

 Empty tuples are treated as False in Boolean expressions. All other tuples are treated as True .

 Lists
 Lists in Python are highly fl exible and powerful data structures. They can be used to mimic the
behavior of many classic data structures and to form the basis of others in the form of custom
classes. They are dynamic and, like tuples, can hold any kind of object but, unlike tuples, they are
mutable, so you can modify their contents. You can also use tuple‐style unpacking to assign list
items to discrete variables.

Reviewing the Python Data Types ❘ 11

 A literal list is expressed as a comma‐separated sequence of objects enclosed in square brackets.
You can create an empty list either by specifying a pair of empty square brackets or by using the
default value of the list() type function. Lists come with several methods for adding and removing
members, and they also support some arithmetic‐style operations for concatenating and copying
lists in a similar fashion to strings.

 You can initialize a list directly by using lists of values, or you can build them programmatically
using list comprehensions. The latter looks like a single‐line for loop inside list brackets. Here is an
example that builds a list of the even squares from 1 to 10:

>>> [n*n for n in range(1,11) if not n*n % 2]
 [4, 16, 36, 64, 100]

 Table 1-2 lists some of the most common list operations.

 Empty lists are treated as False in Boolean expressions. All other lists are treated as True .

 TABLE 1-2: List operations

OPERATION DESCRIPTION

+ This concatenates two lists.

* This creates a list of multiple copies of the fi rst list. Note that the copies all refer
to the same object, which often results in surprising side effects when an object is
modifi ed. Often, list slicing or list comprehension is a better option.

append This adds an element to the end of an existing list. The new element could itself be
a list. The operation is effective in‐place, and None is returned.

extend This adds the contents of a list to the end of another list, effectively joining the two
lists. The original list is modifi ed in place. None is returned.

pop This removes an item from the end of a list or at the specifi ed index if one is
provided. Returns the item.

index This returns the index of the fi rst occurrence of an item in a list. Raise a ValueError
if not found. (The string operation of the same name has similar behavior.)

count This returns a count of the specifi ed item in the list.

insert This inserts an element before the specifi ed index. If the index is too large, it is
appended to the end of the list.

remove This removes the fi rst occurrence of the specifi ed item. It raises a ValueError if the
item does not exist.

reverse This reverses the elements of the list in‐place.

sort This sorts the elements of the list in‐place. Optional parameters provide fl exibility
in how the sort is performed. To get a sorted copy of the list without modifying the
original, use the sorted() function.

12 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 Dictionaries
 Dictionaries are super powerful data structures that beginners frequently overlook. They offer
solutions to lots of common programming problems. A dictionary is used like a list, but its elements
are accessed by using a key‐value mechanism rather than a numeric index. The elements of a Python
dictionary are thus a (non‐ordered) sequence of key‐value pairs.

 The key can be any immutable value, including a tuple. Keys must be unique. The value can be any
kind of Python object, including another dictionary, a list, or anything else that Python recognizes
as an object.

 Dictionaries are highly optimized, so lookup times are very fast. In fact Python makes extensive use
of dictionaries internally, to implement namespaces and classes, among other things. Dictionaries
also provide a solution anywhere that dynamically named values need to be stored and accessed.
Dictionaries are also effi cient where the keys are not sequential because Python uses a hashing
algorithm to map the keys into a sparse array structure. (If you didn’t understand that last sentence,
don’t worry, you are not alone, and you don’t really need to know. What it means for you is that
Python dictionaries are fast, and they use memory effi ciently.)

 Dictionary literals are composed of comma‐separated key‐value pairs. The keys and their values are
separated by colons, and the whole is contained in a pair of curly braces, or {} . It looks like this:

>>> {'aKey':'avalue', 2:7, 'booleans':{False:0,True:1}}
 {'aKey': 'avalue', 2: 7, 'booleans': {False: 0, True: 1}}

 You access the stored values by “indexing” the dictionary using the key rather than a numeric index.
If the preceding example were stored in a variable called D , you could access the aKey and the True
values like this:

>>> D['aKey']
 'avalue'
>>> D['booleans'][True]
 1

 You can create an empty dictionary by using an empty pair of braces or by using the default value of
the dict() type function.

 Dictionaries come with some extra operations for extracting lists of keys and values and handling
default values. Some of these are described in Table 1-3 .

 Dictionaries are, by the nature of their implementation, unsorted. Indeed the order may change
when new data is inserted. The collections module contains an OrderedDict class that maintains
the order of insertion should that be required. The sorted() function returns a sorted list of keys if
the keys are comparable. If the keys are incompatible (as in the preceding example), sorted() raises
a TypeError. r

 The collections module also provides a defaultdict class that enables you to specify a default
value that is returned any time a nonexistent key is used. In addition to returning the default
value, it also creates a new element for the given key with the default value. This is similar to the
setdefault method described earlier. This can be a mixed blessing because it can result in bogus
entries for badly spelled keys!

Reviewing the Python Data Types ❘ 13

 Empty dictionaries are treated as False in Boolean expressions. All other dictionaries are treated as
True .

 Sets
 Sets embody a mathematical concept that is frequently used in programming where a unique group
of elements is required. In Python, sets are a lot like dictionaries with keys but no corresponding
values.

 Sets have the Python type set . The same basic rules apply as for dictionary keys in that set values
must be immutable and unique (indeed that’s what makes it a set!). The default value from set()
is the empty set, and this is the only way to express an empty set because {} is already used for an
empty dictionary. The set() function accepts any kind of collection as its argument and converts it
to a set (dictionary values will be lost).

 There is another type of set in Python, called frozenset , that is immutable and is basically a
read‐only set. Its constructor works like set() , but it supports only a subset of the operations. You
can use a frozenset as an element of a regular set because frozenset is immutable.

 Set literals are expressed with curly braces surrounding elements separated by commas:

 myset = {1,2,3,4,5}

 Sets do not support indexing or slicing and, like dictionaries, they do not have any inherent
order. The sorted() function returns an ordered list of values. Sets have a bunch of math‐style
set operations that are distinct from other collections. Table 1-4 shows those operations that are
common to both the set and frozenset types.

 TABLE 1-3: Dictionary Operations

OPERATION DESCRIPTION

keys, values,

items
These methods return list‐like objects (called dictionary views) containing thes
keys, values, and key‐value tuples respectively. These views are dynamic, so
any changes to the dictionary (deletions and so on) after they are created are
refl ected in the view.

get, pop These methods take a key and an optional default value. get returns the
value for a key from the dictionary if the key exists or a specifi ed default if the
key does not exist. pop works the same way, but also removes the item from
the dictionary if it exists. get has a default value of None , but pop raises a
KeyError if no default is given.

setdefault This operation acts like get , but also creates a new key‐value pair in the
dictionary using the given key and the default value if the key does not exist.

fromkeys This operation initializes a dictionary using a sequence to provide the keys and
a given default value (or None if no value is given). Usually called directly as
dict.fromkeys() rather than on an existing dictionary.

14 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 TABLE 1-4: Set Operations

OPERATION DESCRIPTION

in This tests whether a single element exists in the set. Note: If the
tested item is itself a set, S1, the result will be true only if S1, as
a set, is an element of the target set. This is different from the
subset() test.

issubset, <=, < These test whether one set is a subset of the target—that is,
whether all members of the tested set are also members of the
target. If the sets are identical, the test will return True in the fi rst
two cases, but False for the < operator.

issuperset, >=, > These test whether one set is a superset of the other—that is,
whether all the members of the target set are members of the
source. If they are equal, the fi rst two operations return True ; the
last operation will return False .

union, | These return the union of two (or more) sets. The union method
takes a comma‐separated list of sets as arguments while the pipe
operator is used infi xed between the sets.

intersection, & These return the intersection set of two (or more) sets. Usage is
similar to union() .

difference, ‐ These return the members of the source set that are not members
of the target set.

symmetric_difference, ^ Returns the elements of both sets that are not in the intersection.
The method works only for two sets, but the ^ operator can be
applied to multiple sets in infi x style.

 Note that the method variations in Table 1-4 will accept any collection type as an argument whereas
the infi x operations will work only with sets.

 Table 1-5 looks at the modifi er operations that are applicable only to sets. These cannot be used
on a frozenset , although a frozenset can be used as an argument for several of them. Note that
these operations adjust the source set itself; they do not return a set—they return the Python default
value of None . The infi x operations work only on two sets (unlike those in Table 1-4) and work
only on actual sets, not other collection types. You can use the methods on multiple sets, and other
collection types are converted to a set where needed.

 Empty sets are treated as False in Boolean expressions. All other sets are treated as True .

 In the next section, you will use the data types in code as you explore the different control
structures that Python offers.

Using Python Control Structures ❘ 15

 USING PYTHON CONTROL STRUCTURES

 In this section you fi rst look at the overall structure of a Python program and then consider each
of the basic structures: sequence, selection, and iteration. Finally, you look at how Python handles
errors, review context managers, and investigate how to exchange data with the outside world.

 Structuring Your Program
 Python programs do not have any required, predefi ned entry point (for example a main() function)
and are simply expressed as source code in a text fi le that is read and executed in order starting
at the top of the fi le. (Defi nitions, such as functions, are executed in the sense that the function is
created and assigned to a name, but the internal code is not executed until the function is called.)

 Python does not have any special syntax to indicate whether a source fi le is a program or a module
and, as you will see, a given fi le can be used in either role. A typical executable program fi le

 TABLE 1-5: Set Modifi er Operations

OPERATION DESCRIPTION

update, |= These add the elements of the target set (or sets) to the
source set.

intersection_update, &= These remove all elements except those in the intersection
of source and target sets. If more than two sets are involved,
the result is the intersection of all sets involved.

difference_update, ‐= These remove all elements found in the intersection of the
sets. If multiple sets are provided, the items removed are in
the intersection of the source with any of the other sets.

symmetric_difference_update,

^=
These return the set of values in both sets involved
excepting those in the intersection. Note that this operation
works only on two sets at a time.

add This adds the given element to the set.

remove This removes the specifi ed element from the set. If the
element is not found it raises a KeyError .

discard This removes the given element from the set if it is present.
No KeyError is raised in this case if the element is not
found.

pop This removes and returns an arbitrary member from the set.
Raises KeyError if the set is empty.

clear This removes all elements from a set.

16 ❘ CHAPTER 1 REVIEWING CORE PYTHON

consists of a set of import statements to bring in any code modules needed, some function and class
defi nitions, and some directly executable code.

 In practice, for a nontrivial program, most function and class defi nitions will exist in module fi les
and be included in the imports. This leaves a short section of driver code to start the application.
Often this code will be placed in a function, and the function will often be called main() , but that is
purely a nod to programming convention, not a requirement of Python.

 Finally this “main” function needs to be called. This is often done within a special if statement at
the end of the main script. It looks like this:

 if __name__ == "__main__":
 main()

 When Python detects that a program fi le is being executed by the interpreter rather than imported
as a module, it sets the special variable __ name__ (note the double underscores on either side) to
 " __ main__ " . This means that any code inside this if block is executed only when the script is
run as a main program and not when the fi le is imported by another program. If the fi le is only ever
expected to be used as a module, the main() function may be replaced by a test() function that
executes a set of unit tests. Again, the actual name used is of no signifi cance to Python.

 Using Sequences, Blocks and Comments
 The most fundamental programming structure is a sequence of statements. Normally Python
statements occur on a line by themselves, so a sequence is simply a series of lines.

 x = 2
 y = 7
 z = 9

 In this case the statements are all assignments. Other valid statements include function calls, module
imports or defi nitions. Defi nitions include functions and classes. The various control structures
described in the following sections are also valid statements.

NOTE Python does enable you to include multiple statements on a single line
by separating them with a semicolon. Thus the following line of code consists
of three statements:

 x = 2; y = 7; z = 9

 This style is not recommended by the Python community; using separate lines
is preferred.

 Python is a block‐structured language, and blocks of code are indicated by indentation level. The
amount of indentation is quite fl exible; although most Python programmers stick to using three

Using Python Control Structures ❘ 17

or four spaces to optimize readability, Python doesn’t care. Different Integrated Development
Environments (IDEs) and text editors have their own ideas about how indentation is done. If you
use multiple programming tools, you may fi nd you get indentation errors reported because the tools
have used different combinations of tabs and spaces. If possible, set up your editor to use spaces
instead of tabs.

 The exception to the indentation rule is comments. A Python comment starts with a # symbol and
continues to the end of the line. Python accepts comments that start anywhere on the line regardless
of current indentation level, but by convention, programmers tend to retain indentation level, even
for comments.

 Selecting an Execution Path
 Python supports a limited set of selection options. The most basic structure is the if/elif/else
construct. The elif and else parts are optional. It looks like this:

 if pages < 9:
 print("It's too short")
 elif pages > 99:
 print("It's too long")
 else: print("Perfect")

 Notice the colon at the end of each test expression. That is Python’s indicator that a new block
of code is coming up. It has no start and end block markers (such as {}); the colon is the only
indication, and the block must either occur on the same line as the colon, if it’s only a single line
block, or as an indented block of code. Many Python programmers prefer the indented block style
even for single line blocks.

 Also note that there can be an arbitrary number of elif tests, but only a single else clause—or
none at all.

 The other selection structure you will fi nd in Python is the conditional expression selector. This
produces one of several values depending on the given test conditions. It looks like this:

 <a value> if <an expression> else <another value>

 An example might be where a screen coordinate is being incremented until a certain limit (perhaps
the screen’s maximum resolution) and then reset to 0 . That could be written as:

 coord = coord + increment if coord < limit else 0

 This is equivalent to the more traditional structure shown here:

 if coord < limit
 coord += increment
 else:
 coord = 0

 You should use caution when using conditional expressions because it is very easy to create obscure
code. If in doubt you should use the expanded if/else form.

18 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 One fi nal comment on Python’s comparison expressions is worth making here. In many
programming languages, if you want to test whether a value lies between two limits, you need two
separate tests, like this:

 if aValue < upperLimit and aValue > lowerLimit:
 # do something here

 Python will be quite happy to process code like that, but it offers a useful shortcut in that you can
combine the comparisons as shown here:

 if lowerLimit < avalue < upperLimit:
 # do something here

 Iteration
 Python offers several alternatives for iteration. The most fundamental and general is the while loop.
It looks like this:

 while BooleanExpression:
 aBlockOfCode
 else:
 anotherBlock

 Notice the colon (:) at the end of the while statement, which signifi es that a block of code follows.
Also notice the indentation of the block. The block will, in principle, be executed for as long as
BooleanExpression remains true. However, there are two ways you can exit out of a while loop
regardless of the BooleanExpression value. These are the break statement, which exits the loop
immediately, and a return statement if the loop is inside a function defi nition. A return statement
exits the function immediately and so will also exit any loop within the function.

 The else clause is optional and is rarely used in practice. It is executed any time the
BooleanExpression is False , including when the loop exits normally. It will not be executed if the
loop is exited by a break or return statement.

 One very common while loop idiom is to use True as the test condition to create an infi nite loop
and then have a break test within the body of the loop. Here is an example where the loop reads
user commands and processes them. If the command contains the letter q , it exits.

 while True:
 command = input('Enter a command[rwq]: ')
 if 'q' in command.lower(): break
 if command.lower() == 'r':
 # process 'r'
 elif command.lower() == 'w':
 # process 'w'
 else:

 print('Invalid command, try again')

 There is a companion statement to break , namely continue . Whereas break exits both the block
and the loop, continue exits the block for the current loop iteration only. Control then returns to
the while statement and, if appropriate, a new iteration of the block will commence.

Using Python Control Structures ❘ 19

 The next signifi cant looping construct in Python is the for loop, which looks like this:

 for item in <iterable>:
 code block
 else:
 another code block

 The for loop takes each item in the iterable and executes the code block once per item. You can
terminate the loop early using break or return as described for the while loop. You can terminate
a single iteration of the loop using continue as described earlier.

 The else block is executed when all the iterations are completed. It will not be executed if the loop
exits via a break or return .

 The iterable is anything that complies with Python’s iterator protocol. In practice this is usually a
collection such as a list, tuple, or a function that returns a collection of values such as range() . The
open() function returns a fi le iterator that enables you to loop over a fi le without fi rst reading it into
memory. It’s possible to defi ne your own custom iterable classes, too.

 One common function that is particularly used with for loops is enumerate() . This function returns
tuples containing both the iterable item and a sequence number that, by default, is equivalent to a list
index. This means that the for block can more easily update the iterable directly. enumerate() takes
a second optional argument that specifi es the sequence starting number, which you could use, for
example, to indicate the line number in a fi le, starting with 1 rather than the 0 default.

 Here is an example that illustrates some of these points printing a fi le with associated line numbers:

 for number, line in enumerate(open('myfile.txt')):
 print(number, '\t', line)

 Finally, Python has a couple of inline loop structures. You saw one of these, the list comprehension,
in the discussion of lists earlier in the chapter.

 A list comprehension is a specifi c application of a more general loop form known as a generator
expression that you can use where you might otherwise have a sequence of literal values. If you
recall the list comprehension example earlier in the chapter, you used it to populate a list with the
even squares from 1 to 10, like this:

>>> [n*n for n in range(1,11) if not n*n % 2]
 [4, 16, 36, 64, 100]

 The part inside the square brackets is a generator expression and the general form is as follows:

 <result expression> for <loop variable> in <iterable> if <filter expression>

 Comparing that with the list comprehension example you see that the result expression was n*n , the
loop variable was n , and the iterable was range(1,11) . The fi lter expression was if not n*n % 2 .

 You can rewrite that as a conventional for loop, like this:

 result = []
 for n in range(1,11):
 if n*n % 2:
 result.append(n)

20 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 One important point to appreciate about generator expressions is that they do not generate the
whole data set at once. Rather they generate (hence the name) the data items on demand, which can
lead to a signifi cant saving in memory resources when dealing with large data sets. You fi nd out
more about this later in the chapter when you look at a special type of function called a generator
function .

 Handling Exceptions
 There are two approaches to detecting errors. The fi rst involves explicitly checking each action
as it’s performed; the other attempts the operations and relies on the system generating an error
condition, or exception , if something goes wrong. Although the fi rst approach is appropriate in
some situations, in Python, it’s far more common to use the second. Python supports this technique
with the try/except/else/finally construct. In its general form, it looks like this:

 try:
 A block of application code
 except <an error type> as <anExceptionObject>:
 A block of error handling code
 else:
 Another block of application code
 finally:
 A block of clean-up code

 The except , else , and finally are all optional, although at least one of except or finally must
exist if a try statement is used. There can be multiple except clauses, but only one else or finally. y

You can omit the as… part of an except statement line if the exception details are not required.

 The try block is executed and, if an error is encountered, the exception class is tested. If an except
statement exists for that type of error, the corresponding block is executed. (If multiple exception
blocks specify the same exception type, only the fi rst matching clause is executed.) If no matching
except statement is found, the exception is propagated upwards until the top‐level interpreter is
reached and Python generates its usual traceback error report. Note that an empty except statement
will catch any error type; however, this is usually a bad idea because it hides the occurrence of any
unexpected errors.

 The else block is executed if the try block succeeds without any errors. In practice the else is
rarely used. Regardless of whether an error is caught or propagated, or whether the else clause is
executed, the finally clause will always be executed, thus providing an opportunity to release any
computing resources in a locked state. This is true even when the try/except clause is left via a
break or return statement.

 You can use a single except statement to process multiple exception types. You do this by listing the
exception classes in a tuple (parentheses are required). The optional exception object contains details
of where the exception occurred and provides a string conversion method so that a meaningful error
message may be provided by printing the object.

 It is possible to raise exceptions from your own code. It is also possible to use any of the existing
exception types or to defi ne your own by subclassing from the Exception class. You can also pass
arguments to exceptions you raise, and you can access these in the exception object in the except
clause using the args attribute of the error object.

Getting Data In and Out of Python ❘ 21

 Here is an example of raising a standard ValueError with a custom argument and then catching
that error and printing the given argument.

>>> try:
... raise ValueError('wrong value')
 ... except ValueError as error:
 ... print (error.args)
...
 ('wrong value',)

 Note that you didn’t get a full traceback, only the print output from the except block. You can also
re‐raise the original exception after processing by simply calling raise with no arguments.

 Managing Context
 Python has the concept of a runtime context . This typically includes a temporary resource of t
some kind that your program wants to interact with. A typical example might be an open fi le or
a concurrent thread of execution. To handle this Python uses the keyword with and a context
manager protocol. This protocol enables you to defi ne your own context manager classes, but you
will mostly use the managers provided by Python.

 You use a context manager by invoking the with statement:

 with open(filename, mode) as contextName:
 process file here

 The context manager ensures the fi le is closed after use. This is fairly typical of a context manager’s
role—to ensure that valuable resources are freed after use or that proper sharing precautions are
taken on fi rst use. Context managers often remove the need for a try/finally construct. The
contextlib module provides support for building your own context managers.

 You have now seen the different types of data that Python can process as well as the control
structures you can use to do that processing. It is now time to fi nd out how to get data into and out
of your Python programs and that is the subject of the next section.

 GETTING DATA IN AND OUT OF PYTHON

 Basic input and output of data is a major requirement of any programming language. You need to
consider how your programs will interact with users and with data stored in fi les.

 Interacting with Users
 To send data to users via stdout , you use the print() function, which you’ve seen several times
already. You learn how to control the output more precisely in this section. To read data from users,
you use the input() function, which prompts the user for input and then returns a string of raw
characters from stdin .

 The print() function is more complex than it fi rst appears in that it has several optional
parameters. At its simplest level, you simply pass a string and print() displays it on stdout

22 ❘ CHAPTER 1 REVIEWING CORE PYTHON

followed by an end‐of‐line (eol) character. The next level of complexity involves passing non‐string
data that print() then converts to a string (using the str() type function) before displaying the
result. Stepping up a gear, you can pass multiple items at once to print() , and it will convert and
display them in turn separated by a space.

 The previous paragraph identifi ed three fi xed elements in print() ’s behavior:

➤ It displays output on stdout .

➤ It terminates with an eol character.

➤ It separates items with a space.

 In fact, none of these are really fi xed, and print() enables you to modify any or all of them using
optional parameters. You can change the output by specifying a file argument; the separator is
defi ned by the sep argument, and the terminating character is defi ned by the end argument. The
following line prints the infamous “hello world” message, specifi ed as two strings, to a fi le using a
hyphen separator and the string "END" as an end marker:

 with open("tmp.txt", "w") as tmp:
 print("Hello", "World", end="END", sep="-", file=tmp)

 The content of the fi le should be: "Hello‐WorldEND" .

 The string format() method really comes into its own when combined with print() . This
combination is capable of presenting your data neatly and clearly separated. In addition using
format() can often be more effi cient that trying to print a long list of objects and string fragments.
There are many examples of how to use format() in the Python documentation.

 You can also communicate with the user using the input() function that reads values typed by
the user in response to a given on‐screen prompt. It is your responsibility to convert the returned
characters to whatever data type is represented and handle any errors resulting from that
conversion.

NOTE In Python version 2, the raw _ input() function was used instead of
input() . The version 2 input() function behaved rather differently. It evaluated
whatever the user typed. This created a security issue because malicious code
could be input. The version 2 input() function was removed in version 3 and
raw _ input() was renamed to input() .

 Here is an example that asks the user to enter a number. If the number is too high or too low it
prints a warning. (This could form the core of a guessing game if you cared to experiment with it.)

 target = 66

 while True :
 value = input("Enter an integer between 1 and 100")
 try:

Getting Data In and Out of Python ❘ 23

 value = int(value)
 break
 except ValueError:
 print("I said enter an integer!")

 if value > target:
 print (value, "is too high")
 elif int(value) < target:
 print("too low")
 else:
 print("Pefect")

 Here the user is provided with a prompt to enter an integer in the appropriate range. The value
read is then converted to an integer using int() . If the conversion fails, a ValueError exception
is raised, and the error message is then displayed. If the conversion succeeds, you can break
out of the while loop and proceed to test it against the target, confi dent that you have a valid
integer.

 Using Text Files
 Text fi les are the workhorses of programming when it comes to saving data, and Python supports
several functions for dealing with text fi les.

NOTE The fi le interface in Python is really a specialization of a higher‐level
abstract interface starting with a class called io.IOBase . You can mostly ignore
these; they simply create a standardized set of operations that applies to text
fi les and other “fi le like” objects.

 You saw the open() function used in previous sections and it takes a fi lename and a mode as
arguments. The mode can be any of r , w , rw , and a for read, write, read‐write, and append
respectively. (Some other modes are less often used. There are also a few optional parameters
that control how the data is interpreted, see the documentation for details.) The r mode
requires the fi le to exist; the w and rw modes create a new empty fi le (or overwrite any existing
fi le of the same name). The a mode opens an existing fi le or creates a new empty fi le if a fi le of
the specifi ed fi lename does not already exist. The fi le object returned is also a context manager
and can be used in a with block as you saw in the context manager section. If a with block is
not used, you should explicitly close the fi le using the close() method when you are fi nished
with it, thus ensuring that any data sitting in memory buffers is sent to the physical fi le on disk.
The with construct calls close() automatically, which is one of the advantages of using the
context manager approach.

 Once you have an open fi le object, you can use read() , readlines() , or readline() as required.
read() reads the entire fi le contents as a single string complete with embedded newline characters.
readlines() reads line by line into a list, and the newline characters are retained. readline() reads
the next line in the fi le, again retaining the newline. The fi le object is an iterable, so you can use it

24 ❘ CHAPTER 1 REVIEWING CORE PYTHON

directly in a for loop without the need for any of the read methods. The recommended pattern for
reading the lines in a fi le is therefore:

 with open(filename, mode) as fileobject:
 for line in fileobject:
 # process line

 You can write to a writable fi le object using the write() or writelines() methods, which are the
equivalents to the similarly named read methods. Note that there is no writeline() method for
writing a single line.

 If you are using the rw mode, you might want to move to a specifi c position in the fi le to overwrite the
existing data. You can fi nd your current position in the fi le using the tell() method. You can go to a
specifi c position (possibly one you recorded with tell() earlier) using the seek() method. seek() has
several modes of calculating position; the default is simply the offset from the start of the fi le.

 You now have all of the basic skills to write working Python programs. However, to tackle larger
projects, which are the focus of this book, you will want to extend Python’s capabilities. The next
section starts to explore how you can do just that.

 EXTENDING PYTHON

 The simplest way of extending Python is by writing your own functions. You can defi ne these in the
same fi le as the code that uses them, or you can create a new module and import the functions from
there. You look at modules in the next section; for now you will create the functions and use them
in the same fi le. In fact, you will mostly be using the interactive prompt for the examples in this
section.

 The next step in creating new functionality in Python is to defi ne your own classes and create
objects from them. Again, it is common to create classes in modules, and you see how to do so in the
next section. The examples here are simple enough that you can just use the Python prompt.

 Python programmers frequently use documentation strings in their programs. Documentation
strings are string literals that are not assigned to a variable and respect the indentation level at
which they are defi ned. You use documentation strings to describe functions, classes, or modules.
The help() function reads and presents documentation strings.

 Defi ning and Using Functions
 Several types of functions are available in Python. This section looks at the standard variety fi rst,
followed by a generator function, and concludes with the slightly enigmatic lambda function.

 You defi ne functions in Python using the def keyword. The form looks like this:

 def functionName(parameter1, param2,...):
 function block

 Python functions always return a value. You can specify an explicit return value using the return
keyword; otherwise, Python returns None by default. (If you fi nd unexpected None values appearing
in your output, check that the function concerned has an explicit return statement in its body.) You

Extending Python ❘ 25

can give default values to parameters by following the name with an equals sign and the value. You
see an example in the odds() generator function in the next section.

 You can most easily understand how a function defi nition is created and used by trying it out.

 TRY IT OUT Creating and Using a Function

 In this Try It Out, you create a new function that takes several input parameters and returns a
value. This function uses the mathematical equation of a straight line to return the corresponding
y-coordinate for a given gradient, x-coordinate, and constant. You then use the function to generate a
set of coordinates for a line.

 1. Start the Python interpreter.

 2. Type the following code to defi ne the function:

>>> def straight_line(gradient, x, constant):
... ''' returns y coordinate of a straight line
 -> gradient * x + constant'''
... return gradient*x + constant
...
 >>>

 3. Now that you have defi ned the function, test it using some simple values that you can calculate in
your head. Try calling the function with a gradient of 2 , an x value of 4 , and a constant of ‐3f :

>>> # test with a single value first
 >>> straight_line(2,4,‐3)
 5

 4. Let’s now try a more complex test of the function, using the following code:

>>> for x in range(10):
... print(x,straight_line(2,x,-3))
 ...
 0 -3
 1 -1
 2 1
 3 3
 4 5
 5 7
 6 9
 7 11
 8 13
 9 15

 5. Finally, check that the help() function correctly recognizes the function:

>>> help(straight_line)
 Help on function straight_line in module __main__:

straight_line(gradient, x, constant)
 returns y coordinate of a straight line
 -> gradient * x + constant
 (END)

26 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 How It Works

 In the fi rst line in step 2, you created the function defi nition. You named it straight _ line and said it
had three required parameters: gradient , x , and constant . These parameters correspond to the values
used in the mathematical equation y = mx+c , where m is the gradient and c is a constant.

 The second line is a documentation string that describes what the function is for and how it should be
used.

 The third line is the function code block. It could be arbitrarily complex and several lines long, but in
this case it’s a one‐liner and you are returning the result so you prefi xed it with the keyword return .
Note that the code line has to start at the same indentation level as the start of the documentation
string; otherwise, you will get an indentation error.

 You then tested the function with some simple values. Some mental arithmetic confi rms that the return
value of 5 does indeed equal (2*4‐3). The function seems to work, at least for a simple case.

 You then used the function to generate a set of x-,y- coordinate pairs using a for loop with a fi xed value
for the gradient (2) and constant (‐3) but supplying the loop variable as x . If you have some paper
handy, you can try plotting the coordinates listed to confi rm that they form a straight line.

 Finally, you used the help() function to confi rm that the documentation string was correctly detected
and displayed.

 Generator Functions
 The next form of function you look at is the generator function. Generator functions look exactly
like standard functions except that instead of using return to pass back a value, they use the
keyword yield . (In theory they can use return in addition to yield , but only the yield expressions
produce the generator behavior.)

 The bit of Pythonic magic that makes generator functions special is that they act like a freeze‐frame
camera. When a standard function reaches a return statement, it returns the value and the function
then throws away all of its internal data. The next time the function is called, everything starts off
from scratch.

 The yield statement does something different. It returns a value, just like return does, but it
doesn’t cause the function to throw away its data; instead, everything is preserved. The next
call of the function picks up from the yield statement, even if that’s in the middle of a block
or part of a loop. There can even be multiple yield statements in a single function. Because the
yield statement can be inside a loop, it is possible to create a function that effectively returns
an infi nite series of results. Here is an example that returns an incrementing series of odd
numbers:

 def odds(start=1):
 ''' return all odd numbers from start upwards'''
 if int(start) % 2 == 0: start = int(start) + 1
 while True:
 yield start
 start += 2

Extending Python ❘ 27

 In this function you fi rst check that the start argument passed is an odd integer (an even integer
divided by 2 has a zero remainder), and if not, you force it to be the next highest odd integer by
adding 1. You then create an infi nite while loop. Normally this would be a very bad idea because
your program would just block forever. However, because this is a generator function, you are using
yield to return the value of start so the function exits at this point, returning the value of start
at this moment in time. The next time the function is called, execution starts right where you left
off. So start is incremented by 2, and the loop goes round again, yielding the next odd number and
exiting the function until the next time.

 Python ensures that generator functions become iterators so that you can use them in for loops, like
so:

 for n in odds():
 if n > 7: break

 else: print(n)

 You use odds() just like a collection. Every time the loop goes around, it calls the generator function
and receives the next odd value.

 You avoid an infi nite loop by inserting the break test so you never call odds() beyond 7.

NOTE If you use odds() a second time in the same program, it creates a brand‐
new instance of the iterator and the sequence starts over.

 Now that you understand how generator functions work, you may have realized that the generator
expressions introduced earlier in this chapter are effectively just anonymous generator functions.
Generator expressions are effectively a disguised form of a generator function without a name.

 This provides a perfect segue to the fi nal function type we will be learning about here—the lambda
function.

 Lambda Functions
 The term lambda comes from a form of mathematical calculus invented by Alonzo Church. The good
news is that you don’t need to know anything about the math to use lambda functions! The idea
behind a lambda function is that it is an anonymous function block, usually very small, that you can
insert into code that then calls the lambda function just like a normal function. Lambda functions
are not things you will use often, but they are very handy when you would otherwise have to create a
lot of small functions that are used only once. They are often used in GUI or network programming
contexts, where the programming toolkit requires a function to call back with a result.

 A lambda function is defi ned like this:

 lambda <param1, param2, ...,paramN> : <expression>

 That’s the literal word lambda , followed by an optional, comma‐separated list of parameter names,
a colon, and an arbitrary Python expression that, usually, uses the input parameters. Note that the
expression does not have the word return in front of it.

28 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 Some languages allow lambda functions to be arbitrarily complex; however, Python limits you to
a single expression. The expression can become quite complex, but in practice it’s better to create a
standard function if that is the case because it will be easier to read and debug if things go wrong.

 You can assign lambda functions to variables, in which case those variables look exactly like
standard Python function names. For example, here is the straight _ line example function re‐
implemented as a lambda function:

>>> straight_line = lambda m,x,c: m*x+c
 >>> straight_line(2,4,‐3)

 5

 You see lambda functions popping up later in the book. Just remember that they are simply a
concise way to express a short, single expression, function.

 Defi ning and Using Classes and Objects
 Python supports object‐oriented programming using a traditional class‐based approach. Python
classes support multiple inheritance and operator overloading (but not method overloading), as
well as the usual mechanisms of encapsulation and message passing. Python classes do not directly
implement data hiding, although some naming conventions are used to provide a thin layer of
privacy for attributes and to suggest when attributes should not be used directly by clients. Class
methods and data are supported as well as the concepts of properties and slots . Classes have both
a constructor (__new__ ()) and an initializer (__init__ ()), as well as a destructor mechanism
(__del__ ()), although the latter is not always guaranteed to be called. Classes act as namespaces
for the methods and data defi ned therein.

 Objects are instances of classes. Instances can have their own attributes added after instantiation,
although this is not normal practice.

 A class is defi ned using the class keyword followed by the class name and a parenthesized list of
super‐classes. The class defi nition contains a set of class data and method defi nitions. A method
defi nition has as its fi rst parameter a reference to the calling instance, traditionally called self . A
simple class defi nition looks like this:

 class MyClass(object):
 instance_count = 0
 def __init__(self, value):
 self.__value = value
 MyClass.instance_count += 1
 print("instance No {} created".format(MyClass.instance_count))
 def aMethod(self, aValue):
 self.__value *= aValue
 def __str__(self):
 return "A MyClass instance with value: " + str(self.__value)
 def __del__(self):
 MyClass.instance_count -= 1

 The class name traditionally starts with an uppercase letter. In Python 3 the super class is always
object unless specifi cally stated otherwise, so the use of object as the super class in the preceding
example is actually redundant. The instance _ count data item is a class attribute because it

Extending Python ❘ 29

does not appear inside any of the class’ methods. The __ init __ () function is the initializer
(constructors are rarely used in Python unless inheriting from a built-in class). It sets the instance
variable self.__ value , increments the previously defi ned class variable instance _ count , and
then prints a message. The double underscores before value indicate that it is effectively private
data and should not be used directly. The __ init __ () method is called automatically by Python
immediately after the object is constructed. The instance method aMethod() modifi es the instance
attribute created in the __ init __ () method. The __ str __ () method is a special method used to
return a formatted string so that instances passed to the print function, for example, will be printed
in a meaningful way. The destructor __ del __ () decrements the class variable instance _ count

when the object is destroyed.

 You can create an instance of the class like this:

 myInstance = MyClass(42)

 This creates an instance in memory and then calls MyClass.__ init __ () with the new instance as
self and 42 as value .

 You can call the aMethod() method using dot notation like this:

 myInstance.aMethod(66)

 This is translated to the more explicit invocation,

 MyClass.aMethod(myInstance, 66)

 and results in the desired behavior whereby the value of the __ value attribute is adjusted.

 You can see the __ str __ () method in action if you print the instance, like this:

 print(myInstance)

 This should print the message:

 A MyClass instance with value: 2772

 You could also print the instance _ count value before and after creating/destroying an instance:

 print(MyClass.instance_count)
 inst = MyClass(44)
 print(MyClass.instance_count)
 del(inst)
 print(MyClass.instance_count)

 This should show the count being incremented and then later decremented again. (There may be
a slight delay before the destructor is called during garbage collection, but it should only be a few
moments.)

 The __ init __ () , __ del __ () , and __ str __ () methods are not the only special methods.
Several of these exist, all signifi ed by the use of double underscores (they are sometimes called
dunder methods). Operator overloading is supported via a set of these special methods including:
__ add __ () , __ sub __ () , __ mul __ () , __ div __ () , and so on. Other methods provide for the
implementation of Python protocols such as iteration or context management. You can override

30 ❘ CHAPTER 1 REVIEWING CORE PYTHON

these methods in your own classes. You should never defi ne your own dunder methods; otherwise,
future enhancements to Python could break your code.

 You can override methods in subclasses, and the new defi nitions can invoke the inherited version of
the method by using the super() function, like this:

 class SubClass(Parent):
 def __init__(self, aValue):
 super().__init__(aValue)

 The call to super(). __ init __ () translates to a call to the __ init __ () method of Parent . Using
super() avoids problems, particularly with multiple inheritance, where a class could be inherited
multiple times and you usually don’t want it to be initialized more than once.

NOTE The use of super() in Python 3 has been greatly simplifi ed
compared to its Python 2 form. The super() line in Python 2 would look like
super(SubClass, self).__ init __ (aValue) , which is much less intuitive to
use.

 Slots are a memory‐saving device, and you invoke them by using the __ slots __ special attribute
and providing a list of the object attribute names. Often __ slots __ are a premature optimization,
and you should use them only if you have a specifi c, known need.

 Properties are another feature available for data attributes. They enable you to make an attribute
read only (or even write only) by forcing access to be via a set of methods even though the usual
method syntax is not used. This is best seen by an example where you create a Circle class with a
radius attribute and area() method. You want the radius value to always be positive, so you don’t
want clients changing it directly in case they pass a negative value. You also want area to look like a
read‐only data attribute even though it is implemented as a method. You achieve both objectives by
making radius and area properties.

 TRY IT OUT Creating a Property within a Class (testCircle.py)

 In this Try It Out, you start by creating a simple Circle1 class that has only one attribute and two
callable methods: setRadius() and area() . You then create a second class, Circle2 , which makes
radius and area properties. Finally, you see how the use of properties simplifi es the use of the class in
client code.

 1. Start your favorite programming editor or IDE and create a new fi le called testCircle.py (or load
the fi le from the book download site).

 2. Enter the following code:

 class Circle1:
 def __init__(self, radius):
 self.__radius = radius
 def setRadius(self,newValue):
 if newValue >= 0:

Extending Python ❘ 31

 self.__radius = newValue
 else: raise ValueError("Value must be positive")
 def area(self):
 return 3.14159 * (self.__radius ** 2)

 class Circle2:
 def __init__(self, radius):
 self.__radius = radius

 def __setRadius(self, newValue):
 if newValue >= 0:
 self.__radius = newValue
 else: raise ValueError("Value must be positive")
 radius = property(None, __setRadius)

 @property
 def area(self):
 return 3.14159 * (self.__radius ** 2)

 3. Save the code.

 4. Start the Python interpreter and type the following code to use Circle1 :

 >>> import testCircle as tc
 >>> c1 = tc.Circle1(42)
 >>> c1.area()
 5541.76476
 >>> print(c1.__radius)
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 AttributeError: 'Circle1' object has no attribute '__radius'
 >>> c1.setRadius(66)
 >>> c1.area()
 13684.766039999999
 >>> c1.setRadius(‐4)
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 File "D:\PythonCode\Chapter1\testCircle.py", line 7, in setRadius
 else: raise ValueError("Value must be positive")
 ValueError: Value must be positive

 5. Play with Circle 2 using the following code:

 >>> c2 = Circle2(42)
 >>> c2.area
 5541.76476
 >>> print(c2.radius)
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 AttributeError: unreadable attribute
 >>> c2.radius = 12
 >>> c2.area
 452.38896
 >>> c2.radius = ‐4
 Traceback (most recent call last):

32 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 File "<interactive input>", line 1, in <module>
 File "D:\PythonCode\Chapter1\testCircle.py", line 18, in __setRadius
 else: raise ValueError("Value must be positive")
 ValueError: Value must be positive
 >>>

 How It Works

 In testCircle.py you created two classes. The fi rst, Circle1 , achieved what you wanted to do by
forcing the user to change the radius value via the setRadius() method. You did this by prefi xing the
attribute self. __ radius with two underscores, which is how Python makes things appear private.
You then created the setRadius() method that validated the supplied value before applying it and
raised an error if a negative value was found. You also provided an area() method so that the user
could evaluate the area using the usual method calling technique.

 The second class, Circle2 , went about things rather differently. It used Python’s property defi nition feature
to create an attribute called radius that was write only. It also created the area method as a read‐only
attribute. This made the user code for Circle2 much more intuitive, as you saw when you exercised the
classes in the interpreter. The key lies in the property() type function that you called like this:

 radius = property(None, __setRadius)

This code takes as arguments a set of functions for read, write, and delete (as well as a documentation
string). The default value of each is None . In this case you created the radius property with a None read
function but with the (now private) __ setRadius() method as a write function. The other values were
left at their default of None . The result was that radius could be accessed by the user as if it were a public
data attribute when assigning a value but, under the covers, Python called the __ setRadius() method.
Any attempt to read (or delete) the attribute would be ignored because the action gets routed to None .

The area property is slightly different and uses a Python property decorator (@property), which is just y

a shortcut for creating a read‐only property. This is a very common use of properties.

Looking at the interactive session, you created a Circle1 instance and printed the area using the
area() method. You then tried to print the radius directly by accessing __ radius, but Python
pretended that it had no such attribute (because of the double underscore private setting) and raised an
AttributeError . When you used the r setRadius() method, all was well, and printing the area a second
time showed that the modifi cation worked. Finally, you tried to set a negative radius and, as expected,
the method raised a ValueError exception with a custom error message: “Value must be positive.”

In the session using Circle2, you can see how much simpler the code is. You simply evaluate the area
property name to get the area and you assign a value to the radius property name. When you try
to assign a negative value, the method again raises a ValueError . Printing the radius directly again r

generates an AttributeError , although this time it has a slightly different message.r

Properties require a small amount of extra effort on the programmer’s part, but can greatly simplify the
usage of the class.

Having seen how to extend Pythons capabilities using functions and classes, the next section shows
you how to enclose these extensions in modules and packages for reusability.

Creating and Using Modules and Packages ❘ 33

 CREATING AND USING MODULES AND PACKAGES

 Modules are fundamental to most programming environments intended for nontrivial programming
tasks. They allow programs to be broken up into manageable chunks and provide a mechanism for code
reuse across projects. In Python, modules are simply source fi les, ending in .py and located somewherey

that Python can fi nd them. In practice, that means the fi le must be located in the current working
directory or a folder listed in the sys.path variable. You can add your own folders to this path by
specifying them in the PYTHONPATH environment variable for your system or dynamically at run time.

 Although modules provide a useful way of packaging up small amounts of source code
for reuse, they are not entirely satisfactory for larger projects such as GUI frameworks or
mathematical function libraries. For these Python provides the concept of a package . A package
is essentially a folder full of modules. The only requirement is that the folder should contain a fi le
called __ init __ .py , which may be empty. To the user a package looks a lot like a module, and they

submodules within the package look like module attributes.

 Using and Creating Modules
 You access modules using the import keyword, which has many variations in Python. The most
common forms are shown here:

 import aModule
 import aModule as anAlias
 import firstModule, secondModule, thirdModule...
 from aModule import anObject
 from aModule import anObject as anAlias
 from aModule import firstObject,secondObject, thirdObject...
 from aModule import *

 The last form imports all the visible names from aModule into the current namespace. (You learn
how to control visibility shortly.) This carries a signifi cant risk of creating naming confl icts with
built‐in names or names you have defi ned, or will defi ne, locally. It is therefore recommended that
you use only the last import form for testing modules at the Python prompt. The small amount of
extra typing involved in using the other forms is a small price to pay compared to the confusion
that can result from a name clash. The other from... forms are much safer because you only import
specifi ed names and, if necessary, rename them with an alias. This makes clashes with other local
names much less likely.

 Once you import a module using any of the fi rst three forms, you can access its contents by
prefi xing the required name with the module name (or alias) using dot notation. You have already
seen examples of that in the previous sections; for example, sys.path is an attribute of the sys
module.

 Having said that modules are simply source fi les, in practice, you should observe some do’s and
don’ts when creating modules. You should avoid top‐level code that will be run when the module
is imported, except, possibly, for some initialization of variables that may depend on the local
environment. This means that the code you want to reuse should be packaged as a function or a
class. It’s also common to provide a test function that exercises all the functions and classes in the
module. Module names are also traditionally lowercase only.

34 ❘ CHAPTER 1 REVIEWING CORE PYTHON

You can control visibility of the objects within your module in one of two ways. The fi rst is similar
to the privacy mechanism used in classes in that you can prefi x a name with an underscore. Such
names will not be exported when a from x import * style statement is used. The other way to
control visibility is to list only the names that you want exported in a top‐level variable called
__ all __ . This ensures that only the names you specifi cally want to be exported will be and is
recommended over the underscore method if visibility is important to you.

NOTE There is a Python style guide known as PEP8 that provides guidance
on naming conventions and code layout rules. Its use is not mandatory, but
you are strongly recommended to follow it, especially if submitting code for
inclusion in the standard library. PEP8 can be found here: http://legacy
.python.org/dev/peps/pep‐0008/ .

NOTE One very important gotcha with modules is that the sys.path list is
searched in order. This usually means that any modules you create will be
found before the built‐in or standard library modules. It is very important that
you do not use a standard module name for your own module fi les; otherwise,
strange things may happen and, even if you realize that it’s your module, that’s
being accessed, other readers are likely to be fooled.

You put most of this into practice in the next Try It Out, but fi rst, you need to look at packages and
how they differ from modules.

Using and Creating Packages
You discovered at the start of this section that a Python package is just a folder with a fi le called
__ init __ .py . All other Python fi les within that folder are the modules of the package. Pythony

considers packages as just another type of module, which means that Python packages can contain
other packages within them to an arbitrary depth—provided each subpackage also has its own
__ init __ .py fi le, it is a valid package.

NOTE Having just said that a package was defi ned by having an __ init __ .py,yy
this is not strictly true. The real defi ning feature of a package is that it has
a __ path __ attribute. However, in practice, you don’t need to provide that
because Python does it for you. So, if you create an __ init __ .py , all will yy
be well.

The __ init __ .py fi le itself is not particularly special; it is just another Python fi le, and it will
be loaded when you import the package. This means that the fi le can be empty, in which case
importing the package simply gives access to the included modules, or it can have Python code

http://legacy.python.org/dev/peps/pep%E2%80%900008/
http://legacy.python.org/dev/peps/pep%E2%80%900008/

Creating and Using Modules and Packages ❘ 35

within it like any other module. In particular it can defi ne an __ all __ list, as described earlier,
to control visibility, effectively enabling a package to have private implementation fi les that are not
exported when a client imports the package.

 A common requirement when you create a package is to have a set of functions or data shared
between all the included modules. You can achieve this by putting the shared code into a module fi le
called, say, common.py at the top level of the package and having all of the other modules import
common . It will be visible to them as part of the package, but if it is not explicitly included in the
__ all __ list, external consumers of the packages will not see it.

 When it comes to using a package, you treat it much like any other module. You have all the usual
styles of import available, but the naming scheme is extended by using dot notation to specify which
submodules you need from the package hierarchy. When you import a submodule using the dot notation,
you effectively defi ne two new names: the package and the module. Consider, for example, this statement:

 import os.path

 This code imports the path submodule of the os package. But it also makes the whole of the os
module visible as well. You can proceed to access os functions without having a separate import
statement for os itself. One implication of this is that Python automatically executes all of the
__ init __ .py fi les that it fi nds in the imported hierarchy. So in the case of os.path , it executes
os. __ init __ .py and then path. __ init __ .py. y

 On the other hand, if you use an alias after the import, like this,

 import os.path as pth

 only the os.path module is exposed. If you want to use the os module functions, you will need an
explicit import. Although only path is exposed, as the name pth , both os and path __ init __ .py

fi les will still be run.

 The Python standard library contains several packages including the os package just mentioned.
Others of note include the UI frameworks tkinter and curses , the email package, and the web‐
focused urllib , http , and html packages. You use several of these later in the book.

 NAMESPACE PACKAGES

 Python 3.3 introduced a new type of package called a namespace package . A
namespace package contains a number of portions . A portion is a reference to an
object that may, or may not, have a physical representation and may be located on
the network or in a different part of the local fi le system. Namespace packages do
not use the __ init __ .py fi le technique; rather, they depend on being part of the
sys.path defi nition used to fi nd modules during imports.

 Namespace packages are so new that, at the time of writing, it is not clear how
extensively they will be used. In the short term, you will probably not meet many of
them in practice, and the intention is that, to a user, they should not appear signifi -
cantly different from the traditional‐style packages.

36 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 You have now covered all of the theory about modules and packages. In the next section, you put
this information to work by creating some modules and a package.

 CREATING AN EXAMPLE PACKAGE

 You’ve read the theory; now it’s time to put it into practice. In this section you create a couple of
modules and bundle them as a package. You utilize the bitwise logical operators mentioned in “The
Boolean Type” section. The intention is to provide a functional interface to those operators and
extend their scope to include testing of individual bit values. In doing this you also see several of
the Python core language features that were discussed previously. The modules you develop are not
optimized for performance, but are designed to illustrate the concepts. However, it would not be
diffi cult to refi ne them into genuinely useful tools.

 TRY IT OUT Creating a Module (bits.py)

 In this Try It Out, you start out by creating a simple, conventional module based on integer inputs.
You then create another module that defi nes a class that can be used to represent a piece of binary
data and expose the bitwise functions as methods. Finally, you create a package containing both
modules.

 1. Create a new folder called bitwise . This eventually becomes your package.

 2. In that folder create a Python script called bits.py containing the following code (or load it from
the book’s downloadable fi lenamed bits.py):

 #! /bin/env python3
 ''' Functional wrapper around the bitwise operators.
 Designed to make their use more intuitive to users not
 familiar with the underlying C operators.
 Extends the functionality with bitmask read/set operations.

 The inputs are integer values and
 return types are 16 bit integers or boolean.
 bit indexes are zero based

 Functions implemented are:
 NOT(int) -> int
 AND(int, int) -> int
 OR(int,int) -> int
 XOR(int, int) -> int
 shiftleft(int, num) -> int
 shiftright(int, num) -> int
 bit(int,index) -> bool
 setbit(int, index) -> int
 zerobit(int,index) -> int
 listbits(int,num) -> [int,int...,int]
 '''

 def NOT(value):
 return ~value

Creating an Example Package ❘ 37

 def AND(val1,val2):
 return val1 & val2

 def OR(val1, val2):
 return val1 | val2

 def XOR(val1,val2):
 return val1^val2

 def shiftleft(val, num):
 return val << num

 def shiftright(val, num):
 return val >> num

 def bit(val,idx):
 mask = 1 << idx # all 0 except idx
 return bool(val & 1)

 def setbit(val,idx):
 mask = 1 << idx # all 0 except idx
 return val | mask

 def zerobit(val, idx):
 mask = ~(1 << idx) # all 1 except idx
 return val & mask

 def listbits(val):
 num = len(bin(val)) - 2
 result = []
 for n in range(num):
 result.append(1 if bit(val,n) else 0)
 return list(reversed(result))

 3. Save the fi le and, while still in your bitwise folder, start the Python interpreter.

 4. Type the following code to test your new module:

>>> import bits
 >>> bits.NOT(0b0101)
 -6
 >>> bin(bits.NOT(0b0101))
 '-0b110'
 >>> bin(bits.NOT(0b0101) & 0xF)
 '0b1010'
 >>> bin(bits.AND(0b0101, 0b0011) & 0xF)
 '0b1'
 >>> bin(bits.AND(0b0101, 0b0100) & 0xF)
 '0b100'
 >>> bin(bits.OR(0b0101, 0b0100) & 0xF)
 '0b101'
 >>> bin(bits.OR(0b0101, 0b0011) & 0xF)
 '0b111'
 >>> bin(bits.XOR(0b0101, 0b11) & 0xF)

38 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 '0b110'
 >>> bin(bits.XOR(0b0101, 0b0101) & 0xF)
 '0b0'
 >>> bin(bits.shiftleft(0b10,1))
 '0b100'
 >>> bin(bits.shiftleft(0b10,4))
 '0b100000'
 >>> bin(bits.shiftright(0b1000,2))
 '0b10'
 >>> bin(bits.shiftright(0b1000,6))
 '0b0'
 >>> bits.bit(0b0101,0)
 True
 >>> bits.bit(0b0101,1)
 False
 >>> bin(bits.setbit(0b1000,1))
 '0b1010'
 >>> bin(bits.zerobit(0b1000,1))
 '0b1000'
 >>> bits.listbits(0b10111)
 [1, 0, 1, 1, 1]

 How It Works

 The module is a fairly straightforward list of functions that wrap the built‐in bitwise operators for not
(~), and (&), or (|), xor (^), shift left (<<), and shift right (>). These operations work on binary data—that
is, simply a sequence of 1s and 0s stored as a unit within the computer. All data in the computer is,
ultimately, stored in binary form.

 These wrapper operations are complemented by a set of functions that test whether a bit has a value of
1 (this is known as being “set”), set a bit (to 1), or zero a bit (also known as “resetting” the bit). The bit
number counts from the right, starting at zero. The tests are done using a bit pattern (also known as a
bitmask) that, in all cases except zerobit() , consists of all zeros except for the bit you want to test or
set. You created the mask by shifting 1 left by the required number of bits. zerobit() uses the bitwise
complement of the usual mask to create one that consists of all 1s apart from a 0 where you want to
reset the bit.

 Finally, you have a function that lists the individual bits of the given value. This last function is slightly
more complex and demonstrates some of Python’s coding features. You fi rst determine the length of the
number by converting to a binary string with bin() and subtracting 2 (to account for the leading 0b
characters). You then create an empty result list and loop over the bits. For each bit you append either a
1 or 0, depending on whether or not the bit is set, using Python’s conditional expression construct.

 The testing of the module throws up some interesting issues. You start off by importing your new
module. Because you are in the folder where the fi le lives, Python can see it without modifying the
sys.path value. You start testing with the NOT() function (prefi xed, of course, with the module name,
bits), and straightaway you can see an anomaly in that the Python interpreter prints the decimal
representation as the result. To get around that, you can use the bin() function to convert the number
to a binary string representation. However, there is still a problem because the number is negative. This
is because Python integers are signed, that is, they can represent positive or negative numbers. Python
does this internally by having the leftmost bit represent the sign. By inverting all of the bits, you also

Creating an Example Package ❘ 39

invert the sign! You can avoid the confusion by using a bitmask of 0xF (or decimal 15 if you prefer) to
retrieve only the rightmost 4 bits. By converting this with bin() , you now see the inverted bit pattern
you expected. Obviously, if the value you were inverting was bigger than 16, you would need to use a
longer bitmask. Just remember that each hex digit is 4 bits, so all you need to do is add an extra F to
your mask.

 The next set of tests—covering the functions AND() through to shiftleft() —should be
straightforward, and you can check the results by visually inspecting the input bit patterns and the
results. The shiftright() examples do show one interesting outcome in that shifting the bits too far
to the right produces a zero result. In other words, Python fi lls the “empty” space left by the shift
operations with zeros.

 Moving on to the new functionality, you used bit() , setbit() , and zerobit() to test and modify
individual bits within the given value. Again, you can visually inspect the input and result patterns to
see that the correct results are produced. Remember that the index parameter counts from zero starting
from the right.

 Finally, you tested the listbits() function. Once more, you can easily compare the binary input
pattern with the resultant list of numbers.

 So you see that you now have a working module that you can import and use just like any other
module in Python. You could enhance the module further by providing a test function and wrapping
that in an if __ name __ clause if you wanted, but for now you can proceed to look at how to move
from a single module to a package.

 TRY IT OUT Creating a Package (bitmask.py)

 In this Try It Out, you build a class that replicates the functions in bits.py as a set of methods. You
then bundle both modules into a package.

1. Navigate into your bitwise folder.

2. Create a new fi le called bitmask.py with the following code (or load it from the book’s
downloadable fi lename bitmask.py):

 #! /bin/env python3
 ''' Class that represents a bit mask.
 It has methods representing all
 the bitwise operations plus some
 additional features. The methods
 return a new BitMask object or
 a boolean result. See the bits
 module for more on the operations
 provided.
 '''

 class BitMask(int):
 def AND(self,bm):
 return BitMask(self & bm)
 def OR(self,bm):

40 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 return BitMask(self | bm)
 def XOR(self,bm):
 return BitMask(self ^ bm)
 def NOT(self):
 return BitMask(~self)
 def shiftleft(self, num):
 return BitMask(self << num)
 def shiftright(self, num):
 return BitMask(self > num)
 def bit(self, num):
 mask = 1 << num
 return bool(self & mask)
 def setbit(self, num):
 mask = 1 << num
 return BitMask(self | mask)
 def zerobit(self, num):
 mask = ~(1 << num)
 return BitMask(self & mask)
 def listbits(self, start=0,end=-1):
 end = end if end < 0 else end+2
 return [int(c) for c in bin(self)[start+2:end]]

3. Now save it so that you can test it in the Python interpreter.

4. Staying in the bitwise folder, start Python and type the following code:

>>> import bitmask
 >>> bm1 = bitmask.BitMask()
 >>> bm1
 0
 >>> bin(bm1.NOT() & 0xf)
 '0b1111'
 >>> bm2 = bitmask.BitMask(0b10101100)
 >>> bin(bm2 & 0xFF)
 '0b10101100'
 >>> bin(bm2 & 0xF)
 '0b1100'
 >>> bm1.AND(bm2)
 0
 >>> bin(bm1.OR(bm2))
 '0b10101100'
 >>> bm1 = bm1.OR(0b110)
 >>> bin(bm1)
 '0b110'
 >>> bin(bm2)
 '0b10101100'
 >>> bin(bm1.XOR(bm2))
 '0b10101010'
 >>> bm3 = bm1.shiftleft(3)
 >>> bin(bm3)
 '0b110000'
 >>> bm1 == bm3.shiftright(3)
 True
 >>> bm4 = bitmask.BitMask(0b11110000)
 >>> bm4.listbits()

Creating an Example Package ❘ 41

 [1, 1, 1, 1, 0, 0, 0]
 >>> bm4.listbits(2,5)
 [1, 1, 0]
 >>> bm4.listbits(2,‐2)
 [1, 1, 0, 0]

5. Quit the interpreter.

 Now that you have proved the new module works, you can go ahead and convert the bitwise
directory into a Python package.

6. Create a new empty __init.py__ fi le.

7. To test that the package works, you need to change your working directory to the directory above
bitwise . Do that now.

 You now need to test that you can import the package and its contents and access the functionality.

8. Start the Python interpreter and type the following test code:

>>> import bitwise.bits as bits
 >>> from bitwise import bitmask
 >>> bits
 <module 'bitwise.bits' from 'bitwise/bits.py'>
 >>> bitmask
 <module 'bitwise.bitmask' from 'bitwise/bitmask.py'>
 >>> bin(bits.AND(0b1010,0b1100))
 '0b1000'
 >>> bin(bits.OR(0b1010,0b1100))
 '0b1110'
 >>> bin(bits.NOT(0b1010))
 '-0b1011'
 >>> bin(bits.NOT(0b1010) & 0xFF)
 '0b11110101'
 >>> bin(bits.NOT(0b1010) & 0xF)
 '0b101'
 >>> bm = bitmask.BitMask(0b1100)
 >>> bin(bm)
 '0b1100'
 >>> bin(bm.AND(0b1110))
 '0b1100'
 >>> bin(bm.OR(0b1110))
 '0b1110'
 >>> bm.listbits()
 [1, 1, 0]

 How It Works

 You created a class based on the built-in integer type, int . Because you are only providing new methods
for the class and not storing any additional data attributes, you don’t need to provide a __ new __ ()
constructor or __ init __ () initializer. The methods are all very similar to the functions written in
bits.py except that you created a BitMask instance as the return type. The listbits() method also
shows an alternative approach to deriving the list using the bin() string representation, and creating
the list using a list comprehension based on a character‐to‐integer conversion using int() . listbits()
has also been extended to provide a pair of start and end parameters that default to the full length of

42 ❘ CHAPTER 1 REVIEWING CORE PYTHON

the binary number, but could be used to extract a subset of bits. There is a small piece of work involved
in adjusting the end value depending on whether it is a positive or negative index. Negative indices do
not need the addition of two characters because they automatically apply from the right‐hand end, so a
Python conditional assignment ensures the correct end value is set.

Having created the class, you then tested it as a standard module by importing it from the local
directory. You then repeated a similar set of tests to the ones you did for bits.py . A few points toy

note include the fact that you can mix and match the traditional bitwise operators with the new
functional versions. You can also compare BitMask objects just like any other integer, as you saw in the
shiftright() example. Finally, you proved that your new listbits() algorithm worked and the new
additional arguments function as expected for both positive and negative values.

At this stage you had created two standard modules in a folder. You then created a blank __ init __ .py
fi le that turned the folder into a Python package. To test that it worked, you moved up a directory
level so that the package was visible to the interpreter. You then confi rmed that you could import the
package and modules within it and access some of the functionality. Congratulations, you now have a
package with two contained modules.

Knowing how to create—and use—the standard modules and packages, as well as ones you create
yourself, is a great starting point. However, there are many more modules and packages available on
the internet, just waiting to be downloaded. The next section explains how you can do that.

USING THIRD‐PARTY PACKAGES

Many third‐party packages are available for Python. Binary distributions of many of these
packages, complete with installer programs, are available for most common operating systems. If
a binary installer is available, either on the package website or, for Linux users, in your package
management tool, you should use it because it will be the simplest way of getting things up and
running. If a binary package is not available, you need to download and install the base package.

You can fi nd many of these third‐party packages in the Python Package Index (PyPI) at https://
pypi.python.org/pypi . They are distributed in a special format that itself requires the installation
of a third‐party package! This chicken‐and‐egg situation often confuses beginners, so this section
describes how to set up your environment such that you can access these third‐party packages.

PyPI packages come in the form of something called an egg . A Python egg is capable of deliveringg
either a standard Python package or a binary package written in C, or a mix of Python and C code.

 THE FUTURE OF PYTHON PACKAGING

 The egg format has some issues and is itself being replaced by something called a
wheel . This is all part of a wider strategy to rationalize the multiple methods of l
distributing Python packages and applications. The Python Package Authority is
leading this project. Eventually, all the tools needed to both build and install Python

https://pypi.python.org/pypi
https://pypi.python.org/pypi

Summary ❘ 43

 Installing an egg requires a tool called pip . Fortunately, installing pip does not require pip. As of
version 3.4 of Python, pip is included in the standard library, which simplifi es the process somewhat.
If pip is not included in your version of Python, you can install pip by going to https://pip.pypa
.io/en/latest/reference/pip_install.html and following the instructions.

 Download the get‐pip.py fi le using the link on the page into any convenient folder on your computer.
Change into that folder, make sure you are connected to the Internet, and run the following:

 python get-pip.py

 This will take a few moments and downloads some stuff from the Internet. You will see a few
messages like this:

 $ python3 get-pip.py
 Downloading/unpacking pip
 Downloading pip-1.5.2-py2.py3-none-any.whl (1.2MB): 1.2MB downloaded
 Installing collected packages: pip
 Successfully installed pip
 Cleaning up...

 Once pip is installed, you can use it to install a PyPI package using:

 pip install SomePackageName

 This installs the latest version of the specifi ed package. You can uninstall a package just as easily
using:

 pip uninstall SomePackageName

 Many other options are available to use, and they are described on the pip documentation page at:
https://pip.pypa.io/en/latest/reference/index.html .

 Not all packages use pip, and other install options and tools exist. The package documentation
should explain what you need to do. The current state of confusion should resolve itself in the near
future as explained in the earlier sidebar box: “The Future of Python Packaging.”

 SUMMARY

 In this chapter you reviewed the core language features of Python. You looked at the interpreter
environment, the core data types, and the language control structures and syntax. You also
considered how Python can be extended by writing functions, classes, modules, and packages.

packages should be available in a standard Python installation. The roadmap starts
to take effect in Python 3.4 with the inclusion of pip in the standard distribution.

 You should refer to the latest guidance on the Python Package Authority website
(https://python‐packaging‐user‐guide.readthedocs.org/en/latest/) if
you want to create your own distributable packages.

https://python-packaging-user-guide.readthedocs.org/en/latest/
https://pip.pypa.io/en/latest/reference/pip_install.html
https://pip.pypa.io/en/latest/reference/index.html
https://pip.pypa.io/en/latest/reference/pip_install.html

44 ❘ CHAPTER 1 REVIEWING CORE PYTHON

 The core data types are Boolean (bool), integer (int), and fl oating point (float) numbers, as well
as the special None type. Python also supports several collection types including strings, bytes, lists,
tuples, dictionaries, and sets.

 The control structures cover all of the structured programming concepts including sequences,
selection, and iteration. Selection is done using if/elif/else and a conditional expression form.
Iteration is supported via two loop constructs: for , which iterates over a collection or iterable object, r

and while , which is a more general, and potentially infi nite, loop. Python also supports exception
management via a try/except/finally construct.

 In addition to a large number of built‐in functions and a standard library of modules, Python
enables you to extend its capabilities by writing your own functions using the def or lambda
keywords. You can also extend the standard data types by creating your own data types using the
class keyword and then creating instances of those classes. Functions and classes can be stored
in separate fi les, which constitute Python modules that can be imported into other code, thus
facilitating cross program reuse. Modules can in turn be grouped into packages, which are simply
folders containing an __ init __ .py fi le.

 EXERCISES

1. How do you convert between the different Python data types? What data quality issues arise
when converting data types?

2. Which of the Python collection types can be used as the key in a dictionary? Which of the
Python data types can be used as a value in a dictionary?

3. Write an example program using an if/elif chain involving at least four different selection
expressions.

4. Write a Python for loop to repeat a message seven times.

5. How can an infi nite loop be created using a Python while loop? What potential problem might
this cause? How could that issue be resolved?

6. Write a function that calculates the area of a triangle given the base and height measurements.

7. Write a class that implements a rotating counter from 0 to 9. That is, the counter starts
at 0, increments to 9, resets to 0 again, and repeats that cycle indefi nitely. It should have
increment() and reset() methods, the latter of which returns the current count then sets the
count back to 0.

 Answers to exercises can be found in Appendix A.

Summary ❘ 45

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Python infrastructure The Python interpreter can be called without arguments to get an interactive
shell. If a fi lename is given as an argument, the interpreter will execute it and
exit.

Simple data types Python supports integers, fl oating‐point Boolean, and None data types. The
type names can be used as conversion functions. Python types are objects
and support a rich set of operations.

Collection data
types

Python supports Unicode and byte strings plus lists, tuples, dictionaries, and
sets. Strings and tuples are immutable (cannot be changed), and dictionaries
and sets require immutable types as keys. Most collections are iterables and
can be used in for loops.

Basic control
structures

Python supports sequences, selection, and repetition. Sequences are simple
lines of code; there are no block markers or statement terminators required.
Selection is via the if/elif/else structure. Two loops are provided: for
and while .

Code blocks are indicated by a terminating colon on the previous line, and
the block will be indented under that line. Restoring the indentation level
ends the block.

Error handling Python supports exception handling through the try/except/.else/
finally structure.

Users can defi ne their own exceptions or parameterize the built-in errors.

Input/output User input can be read, as a string, using the input() function.

User output can be displayed via the print() function.

Text fi les can be opened, read from, and written to. File navigation is possible
using tell() and seek() .

Defi ning functions New functions can be defi ned using the def or lambda keywords. Functions
can receive input via parameters and provide results via the return keyword.

Defi ning classes Classes are defi ned using the class keyword. Classes support single and
multiple inheritance, polymorphism, operator overloading, and method
overriding. Class attributes can be treated as properties and/or slots.
Attributes are accessed via dot notation. Classes are objects, too.

Modules and
packages

Modules are just fi les containing Python code that exist in any of the folders
listed in sys.path . Packages are folders containing modules and a (possibly
empty) fi le called __init__.py . Packages are modules, too. Names within a
module are accessed via dot notation.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Accessing and managing computer resources via the operating
system

➤ Handling common fi le formats such as CSV and XML

➤ Working with dates and times

➤ Automating applications and accessing their APIs

➤ Using third‐party modules to extend automation beyond the
standard library capabilities

 WROX.COM DOWNLOADS FOR THIS CHAPTER

 For this chapter the wrox.com code downloads are found at www.wrox.com/go/
pythonprojects on the Download Code tab. The code is in the Chapter 2 download, called
Chapter2.zip, and individually named according to the names throughout the chapter.

 Often, you may fi nd yourself undertaking tasks that involve many repetitive operations.
To combat this repetition of work, it may be possible to write a macro to automate those
operations within a single application but, if the operations span several applications,
macros are rarely effective. For example, if you back up and archive a large multimedia web
application, you may have to deal with content produced by one or more media tools, code
from an IDE, and probably some database fi les, too. Instead of macros, you need an external
programming tool to drive each application, or utility, to perform its part of the whole.
Python is well suited to this kind of orchestration role.

 2

http://www.wrox.com/go/pythonprojects
http://www.wrox.com/go/pythonprojects

48 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

In this chapter you learn how to use Python modules to check user settings as well as directory and
fi le access levels; set up the correct environment for an operation; and launch and control external
programs from your script. You also discover how Python modules help you access data in common
fi le formats, how to handle dates and times and, fi nally, how to directly access the low‐level
programming interfaces of external applications using the very powerful ctypes module and, for
Windows, the pywin32 package.

 WHAT IS SCRIPTING?

 Scripting is a term that means different things to different people so it’s important
to clarify up front what it means when you see it in this chapter. It means
coordinating the actions of other programs or applications to perform a task such
as bulk fi le printing or an automated workfl ow, such as adding a new user. You
could be using operating system utilities or large general purpose packages like an
offi ce productivity suite. Think of the way that a script in a play tells the actors
what to say, where to stand and when to enter or exit the stage. That’s what Python
“scripting” does; it coordinates the behavior of other programs.

 SYSTEM‐SPECIFIC ISSUES

 By the nature of the discussion, much of this chapter’s content is operating system
specifi c. Some modules try to be portable across operating systems whereas others
support only a subset of operations on some systems. Others come with dedicated
modules that work only on that platform. If you fi nd an example that doesn’t seem
to work for you, make sure it is not for a different operating system. Whenever
possible, we try to point out which modules are specifi c to a particular system.

 Also, in the Try It Out sections the output is often quite specifi c to the user and
operating system, so don’t expect to get exactly the same results as shown. For
example, when checking user details, you should see your own username, not the
one shown.

ACCESSING THE OPERATING SYSTEM

Most of the tasks that a typical programmer needs to undertake using the operating system—for
example, collecting user information or navigating the fi le system—can be done in a generic way
using Python’s standard library of modules. (Recall that modules are reusable pieces of code that
can be shared across multiple programs.) The key modules have been written in such a way that the
peculiarities of individual operating system behaviors have been hidden behind a higher level set of
objects and operations. The modules that you consider in this section are: os/path , pwd , glob , shutil , l
and subprocess . The material here focuses on how to use these modules in common scenarios; it
does not try to cover every possible permutation or available option.

Accessing the Operating System ❘ 49

 Obtaining Information About Users and Their Computer
 One of the fi rst things you can do when exploring the OS modules is to fi nd out what they can tell
you about users. Specifi cally, you can fi nd out the user’s ID, login name, and some of his default
settings.

 Like most new things in Python, the best way to get familiar is via the interactive prompt, so fi re up
the Python interpreter and try it out.

 TRY IT OUT Identifying the User

 In this Try It Out, you fi nd out some information about the current user. To do so, follow these steps:

 1. Start the Python interpreter.

 The os module, as the name suggests, provides access to many operating system features. It is, in
fact, a package with a submodule, os.path, that deals with managing fi le paths, names, and types.
The os module is supported by a number of other modules that you meet as you work through
the various topics in this chapter. These myriad modules are collectively referred to as the OS
modules (uppercase) and the actual os module as os (lowercase). If you are familiar with systems
programming on a UNIX system, or even with using a UNIX shell such as Bash, many of these
operations will be familiar to you.

 The OS is primarily there to manage access to the computer’s hardware in the form of CPU,
memory, storage, and networking. It regulates access to these resources and manages the creation,
scheduling, and removal of processes. The OS module functions provide insight and control over
these OS activities. In the next few sections, you look at these common tasks:

➤ Collecting user and system information

➤ Managing processes

➤ Determining fi le information

➤ Manipulating fi les

➤ Navigating folders

NOTE One of the biggest changes in Python version 3 is its increased focus on
internationalization and recognition and use of Unicode. The os module is no
exception and the functions accept Unicode strings. However, the underlying
OS functions and fi lenames are not necessarily Unicode aware and Python will,
in those cases, do a conversion to bytes using the system encoding found in
sys.getfilesystemencoding() . This is not guaranteed to work in every case
so, very occasionally, a UnicodeError may be raised. In those cases, you either
have to convert the string into a more OS‐friendly form before calling the
function or look for an alternative approach to solving your problem.

50 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 2. Type the following code into the interpreter:

 >>> import os
 >>> os.getlogin()
 'agauld'
 >>> os.getuid() # Not Windows
 1001
 >>> import pwd # Not Windows
 >>> pwd.getpwuid(os.getuid()) # Not Windows
 pwd.struct_passwd(pw_name='agauld', pw_passwd='unused', pw_uid=1001,
 pw_gid=513, pw_gecos='Alan Gauld,U-DOCUMENTATION\\agauld,
 S-1-5-21-2472883112-933775427-2136723719-1001',
 pw_dir='/home/agauld', pw_shell='/bin/bash')
 >>> for id in pwd.getpwall():
... print(id[0])
...
 SYSTEM
 LocalService
 NetworkService
 Administrators
 TrustedInstaller
 Administrator
 agauld
 Guest
 HomeGroupUser$
 ????????
 >>>

 How It Works

 After importing the os module in the fi rst line, you got the login name as a string. That is generally
most useful for creating personalized prompts or screen messages. Unfortunately, for Windows users,
that’s it; the rest of the Try It Out code is suitable for UNIX‐based systems only. However, all is not
lost because you can also fi nd some of this information from environment variables which you look at a
little later in the section “Obtaining Information About the Current Process.”

 If you have a UNIX‐based system, you use os.getuid() to get the user ID as the OS sees it, namely
a numeric value, which you can then use with various other functions. The next lines import and use
functions from the password module, pwd , to translate the OS user ID into a more complete set of
information that includes the real name, default shell and home directory. This is obviously much more
informative, but it requires the UID from os.getuid() as a starting point. An alternative function,
os.getpwnam() , takes the login name instead and returns the same information. Finally, you used
pwd.getpwall() and a for loop to extract all of the user names for this system.

 Next you fi nd out what kind of permissions the users have on fi les they create. This is signifi cant
because it affects any fi les your code produces. It may be that you need to temporarily alter the
permissions—for example, if you need to create a fi le that you execute later in the program, it needs
to have execute privileges. In UNIX, these settings are stored in something known as a umask or
user mask. It is a bitmask, like the ones you used at the end of Chapter 1 , where each bit represents a
user‐access data point, as described next.

 Python lets you look at the umask value, even on Windows, using the os.umask() function. The
os.umask() function has a slight quirk in its usage, however. It expects you to pass a new value to

Accessing the Operating System ❘ 51

 Now that you understand what you are trying to do, it’s time to try it out.

 TRY IT OUT Reading and Modifying umask Values

 In this Try It Out, you read, modify, and restore the current user’s umask value. To do so, follow these
steps:

 1. Start the Python interpreter.

 2. Type the following code into the interpreter:

 >>> import os
 >>> os.umask(0b111111111) # binary for all false ‐ 111 x 3
 18
 >>> bin(18)
 '0b10010'
 >>> os.umask(18)
 511

the function; it then sets that value and returns the old value. But if you only want to fi nd out the
current value, you can’t do it. Instead you need to set the umask to a temporary new value, read the
old one, and then reset the value to the original. The format of the mask is very compact, consisting
of 3 groups of 3 bits, 1 group for each of Owner, Group, and World permissions, respectively.

NOTE 3 bits can be concisely shown as an octal digit, and for that reason
you will often fi nd UNIX documentation that expresses these values in octal.
Python can use octal values, too, by representing the numbers with 0o in front,
so that 0o777 represents 9 bits, all set to 1.

 TABLE 2-1: Umask Binary Mappings

UMASK BINARY VALUE READ, WRITE, EXECUTE VALUES

000 Read = True, Write = True, Execute = True

001 Read = True, Write = True, Execute = False

010 Read = True, Write = False, Execute = True

011 Read = True, Write = False, Execute = False

100 Read = False, Write = True, Execute = True

101 Read = False, Write = True, Execute = False

110 Read = False, Write = False, Execute = True

111 Read = False, Write = False, Execute =False

 Within a group the 3 bits each represent one type of access—read, write, or execute. These are most
conveniently written using explicit binary notation. Table 2-1 shows how each 3‐bit binary value
maps onto permissions.

52 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 Another place to look for the system the user is running is in the sys module and, in particular, the
sys.platform attribute. This attribute often returns slightly different information than that foundm

using os.name . For example, Windows is reported as win32 rather than nt or ce . On UNIX another
function in os called os.uname() provides slightly more detail. If you have several different OSes
available to you, it can be interesting to compare the results from these different techniques. It is
recommended that you use the os.name option simply because it is universally available and returns a
well‐defi ned set of results.

 One other snippet of information that is often useful to collect is the size of the user’s terminal
in terms of its lines and columns. You can use this information to modify the display of messages
from your scripts. The shutil module provides a function for this called shutil.get _ terminal _

size() , and it is used like this:

 >>> import shutil
 >>> cols, lines = shutil.get_terminal_size()
 >>> cols
 80
 >>> lines
 49

 How It Works

 You started out by calling os.umask() with a binary value of 111111111 . That sets all permissions to
false, which you did as a security feature in the event that something went wrong. It’s better to have the
mask too restrictive than leave the user vulnerable to security exploits.

 Python then printed the decimal value 18 . By calling the bin() function, you see that 18 has the binary
mask value of 10010. If you pad that with zeros to get the full 9‐bit mask and split it into 3‐bit groups,
you see that it is 000‐010‐010 . Referring back to Table 2-1 , you fi nd that this value represents full access
to the Owner, but only read and execute access to Group and World users.

 Finally, you restored the user’s original setting by calling os.umask() again with an argument of 18
(the original value returned by umask) and the previous mask value (111111111) that you had set was
printed, in decimal, as 511 .

 Sometimes you want to know what kind of computer system the user is running, in particular the
details of the OS itself. Python has several ways of doing this, but the one you look at fi rst is the
os.name property. At the time of writing, this property returns one of the following values: posix ,
nt , mac , os2 , ce , or java .

NOTE The java value is included, although not strictly an OS. For Java
versions of Python (as opposed to the default C version), it is useful to know
that you are running under a Java virtual machine (JVM).

Accessing the Operating System ❘ 53

 The disadvantage of environment variables is that they are highly volatile. Users can create them
and remove them. Applications can do likewise, so it is dangerous to rely on the existence of an
environment variable; you should always have a default value that you can fall back on. Fortunately,
some values are fairly reliable and usually present. Three of these are particularly useful for
Windows users because the pwd.getpwuid() and os.uname() functions discussed earlier are not
available. These are HOME, OS, and PROCESSOR _ ARCHITECTURE .

 If you do try to access a variable that is not defi ned, you get the usual Python dictionary
KeyError . On most, but not all, operating systems, a program can set, or modify, environment r

variables. If this feature is supported for your OS, then Python refl ects any changes to the
os.environ dictionary back into the OS environment. In addition to using environment
variables as a source of user information, it is quite common to use them to defi ne user‐specifi c
confi guration details about a program—for example, the location of a database. This practice
is slightly frowned upon nowadays, and it’s considered better to use a confi guration fi le for such
details. But if you are working with older applications, you may need to refer to the environment
for such things.

 If the terminal size cannot be ascertained, the default return value is 80 × 24. A different default
can be specifi ed as an optional argument, but 80 × 24 is usually a sensible option because it’s the
traditional size for terminal emulators.

 Obtaining Information About the Current Process
 It can be useful for a program to know something about its current status and runtime environment.
For example, you might want to know the process identity or if the process has a preferred folder
in which to write its data fi les or read confi guration data. The OS modules provide functions for
determining these values.

 One such source of process information is the process environment, as defi ned by environment
variables. The os module provides a dictionary called os.environ that holds all the environment
variables for the current process.

NOTE On older versions of Python, the underlying os.get _ terminal _

size() must be used, but in version 3, the shutil version is recommended
instead.

NOTE The number of variables on any given system depends on all sorts
of local considerations, including the number and nature of the applications
installed, because many applications create their own environment values
during installation.

54 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 TRY IT OUT Investigating the Process Environment

 In this Try It Out, you investigate the process environment on your computer. Complete the following
steps:

 1. Start the Python interpreter.

 2. Type the following code into the interpreter:

 >>> import os
 >>> os.getpid()
 16432
 >>> os.getppid()
 3165
 >>> os.getcwd()
 /home/agauld
 >>> len(os.environ)
 48
 >>> os.environ['HOME']
 '/home/agauld'
 >>> os.environ['testing123']
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python2.7/UserDict.py", line 23, in __getitem__
 raise KeyError(key)
 KeyError: 'testing123'
 >>> os.environ['testing123'] = 42
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python2.7/os.py", line 471, in __setitem__
 putenv(key, item)
 TypeError: str expected, not int
 >>> os.environ['testing123'] = '42'
 >>> os.environ['testing123']
 '42'
 >>> del(os.environ['testing123'])
 >>> os.environ['testing123']
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python2.7/UserDict.py", line 23, in __getitem__
 raise KeyError(key)
 KeyError: 'testing123'

 How It Works

 After importing os in the fi rst line, the fi rst thing you did was determine the current process ID. You
are in the Python interpreter, so it is the interpreter process itself that you are identifying. The next
line reads the parent process ID; in this case, that is the OS shell program. You can use these IDs when
interacting with other operating system tools, as described in the next section.

 You then used the os.getcwd() function (which stands for get current working directory) to determine
which directory is currently the default. This is usually the directory from which the interpreter was
invoked but, as you will see, it is possible to change directory within your program. os.getcwd() is a
useful way of checking exactly where your code is working at any given time.

Accessing the Operating System ❘ 55

 Next you found out how big your environment was by displaying the length of the os.environ
dictionary. You then pulled out the value of the HOME environment variable that shows the user’s
home directory. You then tried to access a variable called testing123 , but because it did not exist,
you got a KeyError . You attempted to create a r testing123 variable by assigning the number 42 ,
but that yielded a TypeError because environment variables must be strings. You then assigned the
string value '42' to the testing123 variable and succeeded in creating a new environment variable
for this process. (Remember that the environment is local to this process and any subprocesses that
it spawns. This is not visible in other external processes.) You next read the value again and this
time got a value with no error messages, confi rming that you had succeeded. Finally, you deleted
the variable and proved that it was gone by once more attempting to read it—resulting in, as
expected, an error.

 Managing Other Programs
 It is often useful to be able to run other programs from within a script, and the subprocess module
is the preferred tool for this. The subprocess module contains a class called Popen that provides a
very powerful and fl exible interface to external programs. The module also has several convenience
functions that you can use when a simpler approach is preferred. The documentation describes how
to use all of these features; in this section you use only the simplest function, subprocess.call() ,
and the Popen class.

NOTE Historically, Python has had several ways to run subprocesses. This
has led to considerable confusion and a proliferation of options. Most of
these mechanisms are still available so as not to break old code, but you are
strongly advised to use the subprocess module discussed here for any new
code you write.

 The most basic use of the subprocess module is to call an external OS command and simply
allow it to run its course. The output is usually displayed on screen or stored in a data fi le
somewhere. After the program completes, you can ask the user to make some kind of selection
based on what was displayed or you can access the data fi le directly from your code. You can
force many OS tools, especially on UNIX‐based systems, into producing a data fi le as output
by providing suitable command‐line options or by using OS fi le redirection. This technique is a
very powerful way to harness the power of OS utilities in a way that Python can use for further
processing.

 This basic mechanism for calling a program is wrapped up in the subprocess.call() function. This
function has a list of strings as its fi rst parameter, followed by several optional keyword parameters
that are used to control the input and output locations and a few other things.

 The easiest way to see how it works is to try it out.

56 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 TRY IT OUT Starting External Programs

 In this Try It Out, you call various programs from within Python. Complete the following steps to see
how it works:

 1. Create a test directory, called root , and populate it with a few text fi les. (Either create them from
scratch or copy them from somewhere else.) It doesn’t matter what they contain; you are only
interested in their being there at this stage. To get the same results as shown here, the structure
should look like this:

 root
 fi leA.txt
 fi leB.txt

 2. Change into your root folder and start the Python interpreter.

 3. Type the following code at the >>> prompt (be sure to use the right commands for your OS):

 >>> import subprocess as sub
 >>> sub.call(['ls']) # Not Windows
 fileA.txt fileB.txt
 0
 >>> sub.call(['ls'], stdout=open('ls.txt', 'w')) # Not windows
 0
 >>> sub.call(['cmd', '/c', 'dir', '/b']) # Windows only
 fileA.txt
 fileB.txt
 0
 >>> sub.call(['cmd', '/c', 'dir', '/b'], stdout=open('ls.txt','w')) # Windows only
 0
 >>> sub.call(['more','ls.txt']) # Not Windows
 fileA.txt
 fileB.txt
 ls.txt
 0
 >>> sub.call(['cmd','/c','type','ls.txt']) # Windows only
 fileA.txt
 fileB.txt
 ls.txt
 0
 >>> for line in open('ls.txt'): print(line)
...
 fileA.txt

 fileB.txt

 ls.txt

 How It Works

 After importing subprocess with the alias sub in the fi rst line (it just saves some typing later!),
you called sub.call() for the fi rst time, with an argument of ['ls'] or ['cmd', '/c', 'dir', '/b']
depending on your OS. (Notice that dir is actually a subcommand of the cmd.exe shell process. The
Windows help system explains what the /c and /b fl ags do.) The output is displayed on stdout (your

Accessing the Operating System ❘ 57

 One problem that can occur when running external programs is that the OS cannot fi nd the
command. You generally get an error message when this happens, and you need to explicitly provide
the full path to the program fi le, assuming it does actually exist.

 Finally, consider how to stop a running process. For interactive programs, the simplest way is for
the user to close the external program in the normal way or issuing an interrupt signal using Ctrl+C
or Ctrl+Z, or whatever is the norm on the user’s OS. But for non‐interactive programs, you may
need to intervene from the OS, usually by examining the list of running processes and explicitly
terminating the errant process.

terminal), but the fi lenames are not accessible from within Python. The only thing returned by call()
is the operating system return code, which tells you if the program completed successfully or not, but
it does not help you interact with the data in any way. You then used sub.call() a second time, but
this time you redirected stdout to a new fi le: ls.txt . Next you used the operating system tool more
(or type on Windows) to display the fi le. The fact that ls.txt is a regular text fi le also means you can
access the data by opening the fi le and processing it in the usual way using Python commands. In this
case you simply looped over the lines and printed them, but you could have stored and used the data for
some other purpose just as easily. It is worth noting that exposing a list of fi les in a text fi le like this is a
potential security issue, and you should delete the fi le as soon as possible after processing it.

TIP Note that it is possible to get the terminal session confused, especially
when running processes in the background. The result is usually that the
keyboard seems to stop responding or it produces strange characters. If this
happens, the simplest way to restore order is to kill off any errant processes
using the OS tools. This is one of the hazards of running subprocesses from
inside Python. The subprocess module does its best to protect you from these
scenarios, but you may inadvertently get things messed up from time to time.

NOTE On Windows, another useful tool is os.startfile() . Instead of passing
a command to the function, you pass a fi lename and Windows uses its fi le
association database to start the appropriate command. As an example, if you
pass it a text fi le, it may start the Notepad editor. A second optional parameter
called operation specifi es what the called program should do with the fi le, the
most common options being open , which is the default, or print . The specifi ed
operation must be one that is recognized by Windows for the fi le type. You can
see these by right‐clicking the fi le in Windows Explorer; however, only a subset
of that list is associated with an external program. An invalid operation results
in an OSError exception being raised. If in doubt, use the Python interpreter to
experiment with the options and fi nd out which ones work.

 You have just seen how easy it is to use subprocess.call() to start an external process. You now
learn how the subprocess module gives you much more control over processes and, in particular,

58 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 To access the output of the command being run, you can add a couple of extra features to the call,
like so:

 >>> lsout = sub.Popen(['ls', '*.*'], shell=True, stdout=sub.PIPE).stdout
 >>> for line in lsout:
... print (line)

 Here you specify that stdout should be a sub.PIPE and then assign the stdout attribute of the
Popen instance to lsout . (A pipe is just a data connection to another process, in this case between

how it enables your program to interact with them while they are running, especially how to read
the process output directly from your script.

 Managing Subprocesses More Effectively
 You can use the Popen class to create an instance of a process, or command. Unfortunately,
the documentation can appear rather daunting because the Popen constructor has quite a few
parameters. The good news is that nearly all of those parameters have useful default values and can
be ignored in the simplest cases. Thus, to simply run an OS command from within a script, you only
need to do this (Windows users should substitute the dir command from the previous example):

 >>> import subprocess as sub
 >>> sub.Popen(['ls', '*.*'], shell=True)
 <subprocess.Popen object at 0x7fd3edec>
 >>> book tmp

 Notice the shell=True argument. This is necessary to get the command interpreted by the OS
command processor, or shell . Doing so ensures that the wildcard characters (l '*.*') as well as
any string quotes and the like are all interpreted the way you expect. If you do not use the shell
parameter, this happens:

 >>> sub.Popen(['ls', '*.*'])
 <subprocess.Popen object at 0x7fcd328c>
 >>> ls: cannot access *.*: No such file or directory

 Without specifying shell=True , the operating system tries to fi nd a fi le with the literal name '*.*' ,
which doesn’t exist.

 The problem with using shell=True is that it also creates security issues in the form of a potential
injection attack, so never use this if the commands are formulated from dynamically created strings,
such as those read from a fi le or from a user.

NOTE An injection attack is where a malicious (or very slapdash) user types
an input string that is read and interpreted by your program but, rather than
containing harmless data, it contains potentially harmful commands, possibly
resulting in deletion of fi les or worse. The shlex module contains a quote()
function that can mitigate the risks, but care should still be exercised when
running dynamically generated strings.

Accessing the Operating System ❘ 59

your program and the command that you are executing.) Having done so, you can then treat the
lsout variable just like a normal Python fi le and read from it—and so on.

 You can send data into the process in much the same way by specifying that stdin is a pipe to
which you can then write. The valid values that you can assign to the various streams include
open fi les, fi le descriptors, or other streams (so that stderr can be made to appear on stdout , for
example). Note that it’s possible to chain external commands together by setting, for example, the
input of the second program to be the output of the fi rst. That produces a similar effect to using the
OS pipe character (|) on a command line.

 TRY IT OUT Using subprocess.Popen to Access stdin/stdout

 To see how to use subprocess.Popen to interact with processes, complete the following steps:

 1. Start the Python interpreter in your root folder.

 2. Type this code:

 >>> import subprocess as sub
 >>> sub.Popen(['ls']) # Windows use: ("cmd /c dir /b")
 <subprocess.Popen object at 0x7fd3eecc>
 fileA.txt fileB.txt ls.txt
 >>> # Windows use: ("cmd /c dir /b", stdout=sub.PIPE)
 >>> ls = sub.Popen(['ls'], stdout=sub.PIPE)
 >>> for f in ls.stdout: print(f)
...
 b'fileA.txt\n'
 b'fileB.txt\n'
 b'ls.txt\n'
 >>> ex = sub.Popen(['ex', 'test.txt'], stdin=sub.PIPE) # Not Windows
 >>> ex.stdin.write(b'i\nthis is a test\n.\n') # Not Windows
 19
 >>> ex.stdin.write(b'wq\n') # Not Windows
 3
 >>>
 1+ Stopped python3
 >>> sub.Popen(['NonExistentFile'])
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.2/subprocess.py", line 745, in __init__
 restore_signals, start_new_session)
 File "/usr/lib/python3.2/subprocess.py", line 1361, in _execute_child
 raise child_exception_type(errno_num, err_msg)
 OSError: [Errno 2] No such file or directory: 'NonExistentFile'

 How It Works

 To start, you imported subprocess with the alias sub . The fi rst couple of commands just duplicated
what you did with subprocess.call() in that you initially produced a fi le listing on stdout , but again
could not use that data. The second case is more interesting because you redirected stdout to a sub
.PIPE that allowed you to read it via the stdout attribute. (Notice the difference between the stdout
parameter, which you set to sub.PIPE within the Popen constructor call and the stdout attribute that
you use for reading data from the Popen instance and is accessed via dot notation.) To use this, you also

60 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

assigned the result of the Popen call to a variable called ls . Popen is actually a class and the result of
the call is a new Popen object instance. The end result is very similar to the subprocess.call() case
where you fed the output to a fi le, ls.txt , and then read the fi le, but in this case you don’t wind up
creating any fi les. Rather, you read directly from the process. This means you don’t end up cluttering
your fi le system with little temporary fi les that have to be tidied up afterwards.

 The next example used the UNIX line editor ex , but this time you redirected stdin to sub.PIPE and
then fed some commands into the editor to create a short text fi le. You also passed in a fi lename as an
argument by providing a second string in the fi rst argument to Popen . Note that the input to stdin
must be a byte string (b'xxxx') rather than a normal text string.

 The penultimate example shows what happens if you try to open a non‐existent fi le (or don’t provide
the correct path information). You get an OSError exception that you could, of course, catch using
Python’s try/except structure.

 In the Try It Out examples, you accessed stdin and stdout directly; however, this can sometimes
cause problems, especially when running processes concurrently or within threads, leading to pipes
fi lling and blocking the process. To avoid these issues, it’s recommended that you use the Popen
.communicate() method and index the appropriate stream. This is slightly more complex to use,
but avoids the problems just mentioned. Popen.communicate() takes an input string (equivalent to
stdin) and returns a tuple with the fi rst element being the content of stdout and the second the
content of stderr . So, repeating the fi le listing example using r Popen.communicate() looks like this:

 >>> ls = sub.Popen(['ls'], stdout=sub.PIPE)
 >>> lsout = ls.communicate()[0]
 >>> print (lsout)
 b'fileA.txt\nfileB.txt\nls.txt\n'
 >>>

 To conclude this section, it is worth pointing out that, for simplicity, you have been using fairly basic
commands, such as ls , in the examples. Many of these commands can be performed equivalently
from within Python itself (as you see shortly). The real value in mechanisms like subprocess.call()
and Popen() is in running much more complex programs such as fi le conversion utilities and image‐
processing batch tools. Writing the equivalent functionality of these tools in Python would be a
major project, so calling the external program is a more sensible alternative. You use Python where
it is strongest, in orchestrating and validating the inputs and outputs, but leave the “heavy lifting”
to the more specialized applications.

 Obtaining Information About Files (and Devices)
 The os module is heavily biased to the UNIX way of doing things. As such it treats devices and fi les
similarly. So fi nding out about devices such as the current terminal session looks a lot like fi nding
out about fi les. In this section you now look at how you can determine fi le status and permissions
and even how to change some of their properties from within your programs. Consider the
following code:

 >>> import os
 >>> os.listdir('.')

Accessing the Operating System ❘ 61

 ['fileA.txt', 'fileB.txt', 'ls.txt', 'test.txt']
 >>> os.stat('fileA.txt')
 posix.stat_result(st_mode=33204, st_ino=1125899907117103,
 st_dev=1491519654, st_nlink=1, st_uid=1001, st_gid=513,
 st_size=257, st_atime=1388676837, st_mtime=1388677418,
 st_ctime=1388677418)

 Here you checked the current directory ('.') listing with os.listdir() . (Now that you’ve seen
os.listdir() , you hopefully realize that your use of ls or dir in subprocess was rather artifi cial
because os.listdir() does the same job directly from Python, and does it more effi ciently.) You then
used the os.stat() function to get some information about one of the fi les. This function returns a
named tuple object that contains 10 items of interest. Perhaps the most useful of these are st _ uid ,
st _ size , and st _ mtime . These values represent the fi le owner’s user ID, the size, and the last
modifi cation date/time. The times are integers that must be decoded using the time module, like so:

 >>> import time
 >>> time.localtime(1388677418)
 time.struct_time(tm_year=2014, tm_mon=1, tm_mday=2, tm_hour=15,
 tm_min=43, tm_sec=38, tm_wday=3, tm_yday=2, tm_isdst=0)
 >>> time.strftime("%Y‐%m‐%d", time.localtime(1388677418))
 '2014-01-02'

 Here you used the time module’s localtime() function to convert the integer st _ mtime value
into a time tuple showing the local time values and from there into a readable date string using the
time.strftime() function with a suitable format string. (You look more closely at the time module
in the “Using the Time Module” section later in this chapter.)

 The simple 10‐value tuple returned from os.stat() is generally convenient, but more details are
available via os.stat() than the tuple provides directly. Some of these additional values are OS
dependent, such as the st _ obtype attribute found on RiscOS systems. You need to do a little bit
more work to dig these out. You can access the details by using object attribute dot notation.

 Perhaps the most interesting fi eld that you can access from os.stat() is the st _ mode value, which
tells you about the access permissions of the fi le. You use it like this:

 >>> import os
 >>> stats = os.stat('fileA.txt')
 >>> stats.st_mode
 33204

 But that’s not too helpful; it’s just an apparently random number! The secret lies in the individual bits
making up the number; it’s another bitmask. You may recall the umask bitmask that you looked at
earlier in the chapter. The st _ mode is conceptually similar to the umask, but with the bit meanings
reversed. You can see how the access details are encoded by looking at the last 9 bits, like this:

 >>> bin(stats.st_mode)[‐9:]
 '111111101'

 By using the bin() function in combination with a slice, you have extracted the binary
representation of the last 9 bits. Looking at those as 3 groups of 3, you can see the read/write/
execute values for Owner, Group, and World respectively. Thus, in this example, Owner and
Group have all three bits set to one (True), but World only has the read and execute bits set to 1

62 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

(True), and the write access is 0 (False). (Note that these are the direct inverse of the meanings of the
umask bits; do not confuse the two!)

 The higher order bits also have meanings, and the stat module contains a set of bitmasks that
can be used to extract the details on a bit‐by‐bit basis. For most purposes the preceding access
bits are suffi cient, and helper functions exist in the os.path module that enable you to access that
information. You’ll revisit this theme when you look at os.path later in the chapter.

 You have several other ways to determine access rights to a fi le in Python. In particular the os
module provides a convenience function— os.access() —that takes a fi lename and fl ag variable (one
of os.F _ OK , os.R _ OK , os.W _ OK , or os.X _ OK) that returns a boolean result depending on whetherK

the fi le exists, or is readable, writable, or executable, respectively. These functions are all easier to
use than the underlying os.stat() and bitmask approach but it’s useful to know where the functions
are getting their data.

 Finally, the os documentation points out a potential issue when checking for access before opening
a fi le. There is a very short period between the two operations when the fi le could change either its
access level or its content. So, as is usual in Python, it’s better to use try/except to open the fi le and
deal with failure if it happens. You can then use the access checks to determine the cause of failure if
necessary. The recommended pattern looks like this:

 try:
 myfile = open('myfile.txt')
 except PermissionError:
 # test/modify the permissions here
 else:
 # process the file here
 finally:
 # close the file here

 Having seen how to explore the properties of individual fi les, you now look at the mechanisms
available for traversing the fi le system, reading folders, copying, moving, and deleting fi les, and so on.

 Navigating and Manipulating the File system
 Python provides built‐in functions for opening, reading, and writing individual fi les. The os module
adds functions to manipulate fi les as complete entities—for example, renaming, deleting, and
creating links are all catered for. However, the os module itself provides only half of the story when
it comes to working with fi les. You look at the other half when you explore the shutil module and
other utility modules that work alongside os .

NOTE In Python 3.4 a new module was introduced called pathlib , which
aims to provide an object‐oriented view of the fi le system. This potentially
replaces much of that functionality discussed in this section. However, pathlib
is marked as provisional, which means that the interfaces could change
signifi cantly in future releases or the module could even be removed from the
library. Because of this uncertainty, pathlib is not used here.

Accessing the Operating System ❘ 63

 You start with reading and navigating the fi le system. You’ve already seen how you can use
os.listdir() to get a directory listing and os.getcwd() to tell you the name of the current working
directory. You can use os.mkdir() to create a new directory and os.chdir() to navigate into a
different directory.

 TRY IT OUT Accessing Directories in Python

In this Try It Out, you create and access directories using Python. Complete the following steps:

1. Change into the root directory you used previously.

2. Start the Python interpreter and type the following Python commands:

 >>> import os
 >>> cwd = os.getcwd()
 >>> print (cwd)
 /home/agauld/book/root
 >>> os.listdir(cwd)
 ['fileA.txt', 'fileB.txt', 'ls.txt']
 >>> os.mkdir('subdir')
 >>> os.listdir(cwd)
 ['fileA.txt', 'fileB.txt', 'ls.txt', 'subdir']
 >>> os.chdir('subdir')
 >>> os.getcwd()
 '/home/agauld/book/root/subdir'
 >>> os.chdir('..')
 >>> os.getcwd()
 '/home/agauld/book/root'

How It Works

After importing os in the fi rst line, you stored the current directory in cwd and then printed it to confi rm
that you were where you thought you were. You then listed its contents. Next, you created a folder called
subdir and changed into that folder. You verifi ed the move succeeded by calling os.getcwd() again
from the new folder and found that the folder had indeed changed. Finally, you changed back up to the
previous directory using the '..' shortcut and once again verifi ed that it worked with os.getcwd() .

 One problem with the os.mkdir() function used here is that it can only create a directory in an
existing directory. If you try creating a directory in a place that doesn’t exist, it fails. Python
provides an alternative function called os.makedirs() —note the difference in spelling—that creates
all the intermediate folders in a path if they do not already exist.

 You can see how that works with the following commands:

 >>> os.mkdir('test2/newtestdir')
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 OSError: [Errno 2] No such file or directory: 'test2/newtestdir'
 >>> os.makedirs('test2/newtestdir')
 >>> os.chdir('test2/newtestdir')
 >>> print(os.getcwd())
 /home/agauld/book/root/test2/newtestdir

64 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 Here the original os.mkdir() call produced an error because the intermediate folder test2 did not
exist. The call to os.makedirs() succeeded, however, creating both the test2 and newtestdir
folders, and you were able to change into newtestdir to prove the point. Note that os.makedirs()
raises an error if the target folder already exists. You can use a couple of additional parameters to
further tune the behavior, but the default values are usually what you need.

 Another module, shutil , provides a set of higher level fi le manipulation commands. These include
the ability to copy individual fi les, copy whole directory trees, delete directory trees, and move fi les
or whole directory trees. One anomaly is the ability to delete a single fi le or group of fi les. That is
actually found in the os module in the form of the os.remove() function for fi les (and os.rmdir()
for empty directories, although shutil.rmtree() is more powerful and usually what you want).

 Another useful module is glob . This module provides fi lename wildcard handling. You are probably
familiar with the ? and * wildcards used to specify groups of fi les in the OS commands. For
example, *.exe specifi es all fi les ending in .exe . glob.glob() does the same thing in your code by
returning a list of the matching fi lenames for a given pattern.

 TRY IT OUT Using Wildcards, Copying, Deleting, and Moving Files

 In this Try It Out, you use the functions from os , glob , and shutil to manipulate whole fi les. Follow
these steps:

 1. Change into the root directory created earlier.

 2. Create a new fi le called test.py ; it doesn’t really matter what is in it, you are only interested in the
name!

 3. Start the Python interpreter and type in the following code:

 >>> import os,glob,shutil as sh
 >>> os.listdir('.') # everything in the folder
 ['fileA.txt', 'fileB.txt', 'ls.txt', 'subdir', 'test.py', 'test2']
 >>> glob.glob('*') # everything in the folder
 ['fileA.txt', 'fileB.txt', 'ls.txt', 'subdir', 'test.py', 'test2']
 >>> glob.glob('*.*') # files with an extension
 ['fileA.txt', 'fileB.txt', 'ls.txt', 'test.py']
 >>> glob.glob('*.txt') # text files only
 ['fileA.txt', 'fileB.txt', 'ls.txt']
 >>> glob.glob('file?.txt') # text files starting with 'file'
 ['fileA.txt', 'fileB.txt']
 >>> glob.glob('*.??') # any file with a 2 letter extension
 ['test.py']

 4. Look closely at the different result sets to see the effect of the different function/argument
combinations.

 5. Type the following code:

 >>> sh.copy('fileA.txt','fileX.txt')
 >>> sh.copy('fileB.txt','subdir/fileY.txt')
 >>> os.listdir('.')
 ['fileA.txt', 'fileB.txt', 'fileX.txt', 'ls.txt', 'subdir', 'test.py', 'test2']
 >>> os.listdir('subdir')
 ['fileY.txt']

Accessing the Operating System ❘ 65

 >>> sh.copytree('subdir', 'test3')
 >>> os.listdir('.')
 ['fileA.txt', 'fileB.txt', 'fileX.txt', 'ls.txt', 'subdir', 'test.py',
 'test2', 'test3']
 >>> os.listdir('test3')
 ['fileY.txt']
 >>> sh.rmtree('test2')
 >>> os.listdir('.')
 ['fileA.txt', 'fileB.txt', 'fileX.txt', 'ls.txt', 'subdir', 'test.py', 'test3']

 6. Review the output from the commands you just typed and consider their impact before typing the
following code:

 >>> os.mkdir('test4')
 >>> sh.move('subdir/fileY.txt', 'test4')
 >>> os.listdir('test4')
 ['fileY.txt']
 >>> os.listdir('subdir')
 []
 >>> os.remove('test4/fileY.txt')
 >>> os.listdir('test4')
 []
 >>> os.remove('test4')
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 OSError: [Errno 1] Operation not permitted: 'test4'
 >>> sh.rmtree('test4')
 >>> sh.rmtree('test3')
 >>> os.remove('fileX.txt')
 >>> os.listdir('.')
 ['fileA.txt', 'fileB.txt', 'ls.txt', 'subdir', 'test.py']

 How It Works

 In the fi rst set of commands, you compared the effect of os.listdir() with various patterns in the
glob.glob() function. The fi rst pattern ('*') replicated what os.listdir() did by listing the full
contents of the folder. The second pattern ('*.*') listed all fi les with an extension. (Strictly speaking
glob() does not know anything about fi les or folders; it works strictly with names, so it actually
listed all names that had a period included regardless of what kind of object it was.) Next you used
the '*.txt' pattern to fi nd all the text fi les followed by 'file?.txt' to fi nd any “txt” fi le whose name
starts with file followed by a single character. Finally, you used a combination of wildcards to fi nd
any fi le whose name ends in two characters ('*.??')

The second set of commands looked at the shutil fi le manipulation commands.

 You started by using shutil.copy() to copy single fi les: fileA.txt to a new fi le in the same folder
called fileX.txt and fileB.txt to the subdirectory subdir with a new name fileY.txt . You then
used os.listdir() twice to see the results in each folder.

 You next looked at directory level operations with the shutil.copytree() function that copied the
subdir directory and its contents to a new folder, test3 , creating it in the process. Again, you used
os.listdir() twice to confi rm the results. You used shutil.rmtree() to delete the test2 folder and its
contents. Once again os.listdir() proves the point.

66 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 You started the next sequence by creating another new folder, test4 , using os.mkdir() . Into this new
folder, you moved the fi le fileY.txt using sh.move() . Again, using os.listdir() on both folders
proves that the operation succeeded and the fi le no longer exists in subdir but does exist in test4 .

 Finally, you looked at removing fi les with os.remove() . The fi rst example removed the fi le from test4
and verifi ed that it had been deleted. The next line attempted to remove test4 itself, but produced
an error because os.remove() works only on fi les. If you need to remove a directory, you need to use
shutil.rmtree() again (or you could have used the os.rmdir() function to the same end). You fi nished
by using os.listdir() once more to confi rm that the folder had gone.

 If you look at the shutil documentation, you’ll see several variations on the copy functions with
subtly different behaviors. In most cases the standard shutil.copy() function does what you want.
Other features of shutil include the ability to create archived or compressed fi les in either zip or tar
formats. Also, you can extend the functionality of several of the functions using optional arguments.
One of the most interesting is the shutil.copytree() function, which has an ignore parameter. You
can set this to a function that takes two arguments: a root folder and a list of fi les. (The function must
accept two parameters even if they are not actually used by it.) The function then returns another list
of fi lenames that shutil.copytree() ignores. This function is then called by shutil.copytree() for
each folder of the tree being copied, with the arguments being the current folder within the tree and
the list of fi les produced by os.listdir() acting on that folder. This is useful for ignoring temporary
or archive fi les, or fi les that can be re‐created later. Here is a short example that copies a project
directory tree but ignores any compiled Python fi les (i.e., those with an extension of .pyc).

 >>> def ignore_pyc(root, names):
... return [name for name in names if name.endswith('pyc')]
...
 >>> # now test that it works
 >>> ignore_pyc('fred',['1.py','2.py','2.pyc','4.py','5.pyc'])
 ['2.pyc', '5.pyc']
 >>> sh.copytree('projdir', 'projbak', ignore=ignore_pyc)

 In this case you used a list comprehension to build the ignore list, but you could equally just return
a hard‐coded fi lename (for example RCS to avoid copying version control fi les across) or you could
have a much more complex piece of logic involving database lookups or other complex processing.
The scenario of testing for a standard pattern ('*.pyc' in your case) is so common that shutil has
a helper function called shutil.ignore _ patterns() , which takes a list of glob‐style patterns and
returns a function that can be used in shutil.copytree() . Here is the previous example again, but
this time using shutil.ignore _ patterns() :

 >>> sh.copytree('projdir', 'projbak', ignore=sh.ignore_patterns('*.pyc'))

 Remember that the ignore function is called for every folder being copied, so if it is very complex,
the copytree() operation could become quite resource‐intensive and slow.

 Finally, consider a submodule of os called os.path . The os.path module contains several helpful
tests and utility functions that can help you when using the higher‐level functions already discussed.
The most useful functions are for creating paths, deconstructing paths, expanding user details,
testing for path existence, and obtaining some information about fi le properties.

Accessing the Operating System ❘ 67

 You start your exploration of os.path by looking at some helpful test functions. You saw earlier
how you can use os.stat() to extract information about a fi le. os.path provides some helper
functions that get the more common features more easily. You can, for instance, determine the
size of a fi le using os.path.getsize() , the modifi cation time using os.path.getmtime() , and
the creation time with os.path.getctime() . You can also tell whether a name, returned by
os.listdir() for example, is a fi le or a directory using os.path.isfile() or os.path.isdir() . (You
can even test for mount points and links if that is important to you.) All of these functions take a
name as an argument and return True or False . That’s a bit easier than calling os.stat() and then
using a combination of indexing and bitmasking to extract the details.

 The next thing that os.path helps with is processing paths. You can fi nd the full path to your fi le
using os.path.abspath() and, if it’s a link, the path to the real fi le with os.path.realpath() .
Having obtained that path, you can break it into its constituent parts. Python considers a full fi le
path to look like this:

 [<drive>]<path to folder><filename><extension>

 Using os.path.splitdrive() , you can read the drive letter (if you are on Windows, otherwise it is
empty). os.path.dirname() fi nds the folder, and os.path.basename() gets the fi lename (including
the extension). You can even get the folder path and fi lename in one go with os.path.split() .
Usually that’s suffi cient but, if necessary, you can further split the fi lename into its extension and
core name with os.path.splitext() , in which case the extension includes the period, for example,
myfile.exe returns myfile and .exe .

 Often, after having inspected and worked with the various path components, you want to
reassemble the path or even create one from scratch. os.path provides another convenience
function for this called os.path.join() , which takes the various elements and combines them
into a single string using the current OS path separator, as defi ned in the constant os.sep . This is
very important because path format is one area that varies considerably across operating systems.
Since MacOS X appeared, based on a UNIX kernel, things have been a little easier because
Windows usually accepts the UNIX‐style / separator in addition to its native \ style. But it is still
safer to use os.path.join() to create fi le paths if you plan on running your script on multiple
computer types.

 You can see this operation in action on your test fi les and folders.

 TRY IT OUT Working with Paths

In this Try It Out, you use the os.path functions to determine the status of various fi les. To see them in
action, complete the following steps:

1. Change into the root directory you created earlier. Stay in the OS for the moment.

2. Using the OS, copy fileA.txt into the subdirectory subdir as fileC.txt .

3. Now create a symbolic link to fileB.txt in subdir and call it fileD.txt . (If you are on
Windows, you probably don’t create symbolic links, so you need to miss out on the steps
associated with fileD.txt). The UNIX command for this is:

 $ ln -s fileB.txt subdir/fileD.txt

68 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 4. Fire up Python and type the following code:

 >>> import os
 >>> from os import path
 >>> os.listdir('.')
 ['fileA.txt', 'fileB.txt', 'ls.txt', 'subdir', 'test.py']
 >>> path.getsize('fileA.txt')
 257
 >>> path.getctime('fileA.txt')
 1389109373.1044922
 >>> path.getsize('subdir/fileC.txt')
 257
 >>> path.getctime('subdir/fileC.txt')
 1389274706.736207
 >>> path.abspath('fileB.txt')
 '/home/agauld/book/root/fileB.txt'
 >>> path.abspath('subdir/fileD.txt') # Not Windows
 '/home/agauld/book/root/subdir/fileD.txt'
 >>> path.islink('fileB.txt') # Not windows
 False
 >>> path.islink('subdir/fileD.txt') # Not windows
 True
 >>> path.realpath('subdir/fileD.txt') # Not windows
 '/home/agauld/book/root/subdir/fileB.txt'
 >>> folder, filename = path.split(path.abspath('subdir/fileB.txt'))
 >>> print (folder, filename)
 /home/agauld/book/root/subdir fileB.txt
 >>> path.join(folder,filename)
 '/home/agauld/book/root/subdir/fileB.txt'
 >>> path.splitext(filename)
 ('fileB', '.txt')

 How It Works

 You started off by importing the modules you need and checking the contents of the current folder,
just to check that you are where you expect to be. You then compared the size and creation time of
fileA.txt and subdir/fileC.txt (which was a copy of fileA.txt if you recall). You see that the sizes
are identical but the creation times different, as you’d expect.

 You next looked at fileB.txt and its linked relation fileD.txt . This time you looked fi rst at the
absolute path to each fi le. Both show up as you’d expect in their respective places. You then tested
both fi les to see if they were links. Of course, fileB.txt is not, but fileD.txt yields a positive
result. You next asked for the real path to fileD.txt , and it revealed that the original was, in fact,
fileB.txt .

 Finally, you looked at some path manipulation. You used os.path.split() to break the fileB.txt path
into the folder and fi le parts. You joined them back together with os.path.join() and then you split up
the fi lename to get the core name and the extension. Notice the period is preserved at the front of the
extension.

Accessing the Operating System ❘ 69

 Plumbing the Directory Tree Depths
 One common automation operation is to start at a given location and apply a particular action to
every fi le (or type of fi le) in the fi le system below that location. This is often called “walking the
directory tree,” and the os module contains a powerful and fl exible function called os.walk() that
helps you do just that. It is not the most straightforward function to use, so you spend this section
looking at its key features.

 You consider an example of os.walk() being used to fi nd a specifi c fi le located somewhere within
a given directory tree or subtree. You then create a new module with a findfile() function that
you can use in your programs. That foundation can go on to form the basis for a whole group of
functions that you can use to process directory trees.

 First you need to create a test environment consisting of a hierarchy of folders under a
root directory. (You can generate this structure by extracting the fi le TreeRoot.zip from
the Chapter2.zip master fi le on the download site and then extracting the fi les within
TreeRoot.zip , or you can use the OS tools to generate it manually.) Each folder contains some
fi les, and one of the folders contains the fi le you want to fi nd, namely target.txt . You can see
this structure here:

 TreeRoot
 FA.txt
 FB.txt
 D1
 FC.txt
 D1-1
 FF.txt
 D2
 FD.txt
 D3
 FE.txt
 D3-1
 target.txt

 The os.walk() function takes a starting point as an argument and returns a generator yielding
tuples with 3 members (sometimes called a 3‐tuple or triplet): the root, a list of directories in the t
current root, and a list of the current fi les in that root. If you look at the hierarchy you have created,
you would expect the top‐level tuple to look like this:

 ('TreeRoot', ['D1','D2','D3'], ['FA.txt','FB.txt'])

 You can check that easily by writing a for loop at the interactive prompt:

 >>> import os
 >>> for t in os.walk('TreeRoot'):
... print (t)
...
 ('TreeRoot', ['D1', 'D2', 'D3'], ['FA.txt', 'FB.txt'])
 ('TreeRoot/D1', ['D1-1'], ['FC.txt'])
 ('TreeRoot/D1/D1-1', [], ['FF.txt'])
 ('TreeRoot/D2', [], ['FD.txt'])
 ('TreeRoot/D3', ['D3-1'], ['FE.txt'])
 ('TreeRoot/D3/D3-1', [], ['target.txt'])

70 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 This clearly shows the path taken by os.walk() , starting with the fi rst directory at the top level and
drilling down before moving onto the next directory and so on. It also shows how you can take a
fi le from the fi les list and construct its full path by combining the name with the root value of the
containing tuple.

 By writing your function to use regular expressions, and to return a list, you can create a
function that is much more powerful (but also slower!) than the simple glob.glob() that you saw
earlier.

 TRY IT OUT Building a File Finder (fi le_tree.py)

 In this Try It Out, you build and test a module containing a fi le‐fi nding function using the os.walk()
function as a foundation. To build the module, complete the following steps:

 1. If you haven’t done so already, create a test directory structure like the one just described (or load it
from the zip fi le).

 2. Go to your project directory where you keep your Python modules.

 3. Open your favorite text editor and type in the following code (or load it from the zip fi le):

 # file_tree.py module containing functions to assist
 # in working with directory hierarchies.
 # Based on the os.walk() function.

 import os, re
 import os.path as path

 def find_files(pattern, base='.'):
 """Finds files under base based on pattern

 Walks the file system starting at base and
 returns a list of filenames matching pattern"""

 regex = re.compile(pattern)
 matches = []
 for root, dirs, files in os.walk(base):
 for f in files:
 if regex.match(f):
 matches.append(path.join(root,f))
 return matches

4. Save the fi le as file_tree.py .

5. Go to your root folder (that is, the one above TreeRoot).

6. Start the Python interpreter and type the following to test the new function:

 >>> import file_tree
 >>> help(file_tree)
 Help on module file_tree:

NAME
 file_tree

Accessing the Operating System ❘ 71

 DESCRIPTION
 # file_tree.py module containing functions to assist in
 # working with directory hierarchies.
Based on the os.walk() function.

FUNCTIONS
 find_files(pattern, base='.')

 Finds files under base based on pattern

 Walks the file system starting at base and
 returns a list of filenames matching pattern

 FILE
 /cygdrive/d/PythonCode/Chapter2/file_tree.py

 7. Type q to exit the help screen:

 >>> file_tree.find_files('target.txt','TreeRoot')
 ['TreeRoot/D3/D3-1/target.txt']
 >>> file_tree.find_files('F.*','TreeRoot')
 ['TreeRoot/FA.txt', 'TreeRoot/FB.txt', 'TreeRoot/D1/FC.txt',
 'TreeRoot/D1/D1-1/FF.txt', 'TreeRoot/D2/FD.txt', 'TreeRoot/D3/FE.txt']
 >>> file_tree.find_files('.*\.txt','TreeRoot')
 ['TreeRoot/FA.txt', 'TreeRoot/FB.txt', 'TreeRoot/D1/FC.txt',
 'TreeRoot/D1/D1-1/FF.txt', 'TreeRoot/D2/FD.txt', 'TreeRoot/D3/FE.txt',
 'TreeRoot/D3/D3-1/target.txt']
 >>> file_tree.find_files('D.*','TreeRoot')
 []

 How It Works

 The function takes a regular expression as the parameter pattern and compiles it for effi ciency.
It then calls os.walk() in the usual way using the base parameter value and at each level of the
tree tests each fi le found against the input pattern. If it fi nds a match, it generates the full path and
adds it to the result list. Once all the fi les in the directory tree have been tested, it returns the list of
found fi les.

 You tested the code by importing the module and running the help() function on it. You saw the
comments and doc string describing how to use the function.

 After exiting help, you tested find _ files() by searching for the literal name of your fi le target.txt
and found the result TreeRoot/D3/D3‐1/target.txt . You then experimented with some regular
expressions (note the differences between the glob() wildcard syntax and the regular expression
form). F.* indicates any fi le starting with F followed by zero or more characters. .*\.txt indicates any
sequence of characters followed by a literal period and the 3 characters txt .

 Finally, you tried using a pattern that matched directory names and got back an empty list, which is
to be expected because the function only checks the fi lenames; it doesn’t look at the names in the dirs
tuple element.

 You’ve seen how Python helps you work with the OS. In the next section, you see how Python
enables you to work with dates and times.

72 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 The easiest way to come to grips with these functions is to play with them at the Python prompt.
You can try it out now.

 WORKING WITH DATES AND TIMES

 One of the most common features of scripting tasks is the use of dates and times. This could be
to identify fi les older than a certain date or between a certain range or it might be to set a process
to run at a certain time or interval. You might need to compare dates and times in data to select
an appropriate subset of a fi le’s content. Reading dates and times and comparing their values is
necessary in many scenarios.

 Unfortunately, dates and times are not clearly defi ned values like integers or fl oats. They tend to be
stored in strings with a multitude of formats. For example 2016‐02‐07, 02/07/2016, and 07/02/2016
are all possible representations for the 7th day in February, 2016. The situation is further
complicated by the possibility of rendering months and days using name abbreviations such as
Jan, Feb, or Mon, Tue, and so on. Add the fact that years may be abbreviated to two digits and the
separators can be any of a number of characters, and you start to see the complexity. How can you
reliably read a date value from a given string? Time values are almost as complex, especially if you
have to consider time zones and daylight saving rules. Fortunately, Python offers several modules to
help you do just that. The most basic is the time module, augmented by the datetime module and,
for some tasks, the calendar module.

 Using the time Module
 The time module stores times (including dates) in two different formats. The fi rst is the number
of seconds since the epoch , which is simply a fi xed date in history. For UNIX‐based systems that’s
1st January 1970. (Did you notice that’s yet another date representation?) The other representation
is as a tuple of fi elds representing the various parts of a date/time: year, month, day, hour, minute,
second, and so on. The details are all found in the time module documentation, but you need to
remember which underlying format you are using. The time modules contain various conversion
functions to switch between them.

 Two very important functions for reading and writing times as strings take into account most of
the issues just discussed. These functions are called strptime() (the “p” stands for parse) and
strftime() (the “f” stands for format). The secret to using these functions lies in a format string.
This string tells the function how to map string values to/from time values. The format string uses %
markers to indicate a fi eld and a set of character codes to indicate what the fi eld should contain. For
example, %Y indicates a four‐digit year whereas %y indicates a two‐digit year. %m indicates a two‐
digit month, and %B indicates the full month name (taking into account the local language settings).
A table in the time module documentation for strftime() provides the defi nitive list.

NOTE One quirk of the time string functions of which you should be aware is
that the strftime() function takes the format string as its fi rst argument and
the tuple to convert as its second. The strptime() function takes the input
string as its fi rst argument and the format string as its second.

Working with Dates and Times ❘ 73

 TRY IT OUT Formatting Dates and Time Strings

 In this Try It Out, you see how to use the strptime() and strftime() functions. To do so complete the
following steps, but also feel free to experiment with other variations to consolidate your understanding.

 1. Start the Python interpreter and type the following code:

 >>> import time as t
 >>> now = t.time() # Note: current time will be a different value each time
 >>> now
 1394536692.958137
 >>> gmt = t.gmtime(now)
 >>> gmt
 time.struct_time(tm_year=2014, tm_mon=3, tm_mday=11, tm_hour=11,
 tm_min=18, tm_sec=12, tm_wday=1, tm_yday=70, tm_isdst=0)
 >>>

 2. Look at the two formats for now: seconds since the epoch and gmt (a time tuple representing GMT,
or UTC, time). Next, you use the tuple version to play with strftime() .

 3. Type the following code:

 >>> t.strftime("The date is: %Y‐%m‐%d", gmt)
 'The date is: 2014-03-11'
 >>> t.strftime("The date is: %b %d, %Y", gmt)
 'The date is: Mar 11, 2014'.s
 >>> t trftime("The time is: %H:%M:%S", gmt)
 'The time is: 11:18:12'
 >>> t.strftime("It is now %I %M%p",gmt)
 'It is now 11 18AM'
 >>> t.strftime("The local time format is: %X", gmt)
 'The local time format is: 11:18:12'
 >>> t.strftime("The local date format is: %x", gmt)
 'The local date format is: 03/11/14'
 >>>

 4. Look at the reverse operation using strptime() by typing the following code:

 >>> dt = t.strptime("Saturday, March 8, 2014", "%A, %B %d, %Y")
 >>> dt
 time.struct_time(tm_year=2014, tm_mon=3, tm_mday=8, tm_hour=0,
 tm_min=0, tm_sec=0, tm_wday=5, tm_yday=67, tm_isdst=-1)
 >>> dt = t.strptime("Saturday, March 8th, 2014", "%A, %B %d, %Y")
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.2/_strptime.py", line 482, in _strptime_time
 tt = _strptime(data_string, format)[0]
 File "/usr/lib/python3.2/_strptime.py", line 337, in _strptime
 (data_string, format))
 ValueError: time data 'Saturday, March 8th, 2014' does not match
 format '%A, %B %d, %Y'
 >>> dt = t.strptime("Saturday, March 8th, 2014", "%A, %B %dth, %Y")
 >>>

 5. Notice that the format string must match the input string exactly. The use of a th postfi x on the
day completely confused the strptime() function.

74 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 6. Try a few more examples:

 >>> t.strptime("2014‐01‐01", "%Y‐%m‐%d")
 time.struct_time(tm_year=2014, tm_mon=1, tm_mday=1, tm_hour=0,
 tm_min=0, tm_sec=0, tm_wday=2, tm_yday=1, tm_isdst=-1)
 >>> t.strptime("2014‐01‐01T15:05:45", "%Y‐%m‐%dT%H:%M:%S")
 time.struct_time(tm_year=2014, tm_mon=1, tm_mday=1, tm_hour=15,
 tm_min=5, tm_sec=45, tm_wday=2, tm_yday=1, tm_isdst=-1)
 >>> t.asctime(gmt)
 'Tue Mar 11 11:18:12 2014'
 >>> t.mktime(dt)
 1394236800.0
 >>>

 How It Works

 You started by importing the time module and, to save typing, you assigned it an alias: t . You then used
the time.time() function to get the current time. This should refl ect the current time on your computer,
so the values will be different from those shown. In fact, the values should be different every time
you call the function! The now variable contains the time expressed as seconds from the epoch; note
that it is a decimal value. The part after the decimal point is dependent on your operating system and
computer clock for its accuracy, so may not be as precise as it appears. The seconds representation is
useful for doing simple time calculations, such as timing the duration between two events in your code.
(Consider using the datetime module discussed in the next section for more complex calculations.)

 You next converted the time in seconds to a time tuple, which is the format you need for the string
formatting functions to work. The tuple representation enabled you to confi rm that the now value really
is storing the current date and time.

 You then used strftime() to print out the stored time in various formats. Note that the format string
can have any string text within it, not just the special formatting characters.

 For the next set of instructions, you used the strptime() function to convert a string into a date
tuple. The fi rst example used a well‐formatted string to store the value in a variable called dt . The
next example used a less well‐formatted string in that it had a th postfi x after the day value. The
strptime() parser is not able to handle this format so you need to add the postfi x to your string value.
This becomes awkward when reading strings in this format, and you may need to use a try/except
structure with a combination of postfi xes (st , nd , rd , th) to get it right. You then tried a few otherh

formats, including some times.

 Finally, you saw two new functions. time.asctime() is a convenience function that prints a time tuple
using a standard format regardless of local settings. time.mktime() converts a time tuple into a seconds
representation.

 The time module includes several other functions for managing time zones and for getting
information about the system clocks. You can also tell if daylight savings time is in effect on the
computer.

 Finally, and far from least, the time module contains a sleep() function that pauses your program
for the specifi ed number of seconds. This is often useful in scripting when you are using background

Working with Dates and Times ❘ 75

processes to perform a task that may require some time. It is also useful when polling a resource
such as a network connection while waiting for data to arrive. You can use fractions of a second,
but you should realize that the timing is only approximate because of OS process scheduling
overheads and the like.

 Introducing the datetime Module
 The datetime module includes several objects and methods that represent both absolute dates and
times as well as relative dates and times. Relative values are used for computing differences between
times and avoid you having to do messy calculations on second-based values, dividing by 60 and
24, and so on. Some overlap exists between the time functions and the datetime objects. In general,
if you are doing comparisons or time‐based calculations, you should use the datetime module
rather than time . If you are using both in the same code, use the most basic import style to ensure
no name collisions occur.

 The main classes exposed by the datetime module are date , time , and datetime , whose names
are indicative of their scope. datetime and time objects can have a timezone attribute set to a
timezone object to take account of time zone effects. If you have complex time processing to do,
you may need to subclass the timezone class to provide any non‐trivial algorithms required. In this
book you only use the basic objects from the module. The other, and perhaps most useful, object
type exposed is the timedelta class, which handles time durations such as the result of a time
computation or a relative period such as a year or a month. The datetime module supports many
time‐based calculations using timedelta objects, including addition, subtraction, multiplication of a
delta by a number, and even various forms of division.

 You can initialize the date object by passing year, month, and day values, all of which are
mandatory. You can initialize the time object passing hour, minute, and second values, all of which
are optional and default to zero. The datetime object, you will not be surprised to learn, uses
the full gamut of year, month, day, hour, minute, and second. Some helpful class methods return
instances based on object arguments. An example is the date.today() method that returns today’s
date or the date.fromtimestamp() method that takes a time value in seconds as its argument.
Various attributes and methods exist for extracting data about the date after it has been created.
The date class includes a strftime() method similar to the one in the time module (but has no
corresponding strptime() ; for that, you must look to the datetime object).

 The time object is conceptually similar but, as mentioned earlier, includes the capability to take
account of time zone data including daylight savings information. time objects, like date objects,
support a strftime() method only.

datetime objects are a combination of both date and time objects and support a combination of
both objects’ methods. datetime also adds a few extra methods of its own, including a now() class
method for initialization to the current date and time, and combine() class method that takes date
and time objects as arguments and returns a combined datetime object with the same values. You
can do basic arithmetic using a combination of datetime and timedelta objects, the latter being
either an argument or result as appropriate. datetime objects also support both strftime() and
strptime() methods, which work in the same way as those in the time module described earlier.

 You use the datetime objects as part of a larger example in the Try It Out “Parsing XML with
ElementTree” later in the chapter.

76 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 Introducing the calendar Module
 The calendar module is the simplest of the time‐based modules in Python’s standard library.
Essentially, it generates a calendar for a given year. The calendar is a calendar.Calendar class
instance that has several support methods that allow you to, for example, iterate over the days
in a given month or produce various formatted text strings that can be useful in presenting user
messages in a script. Calendars can be formatted as plaintext or in HTML.

calendar is probably the least used of the three modules discussed, but it has some useful features
that are not available elsewhere and would be time consuming to reproduce. Among these are some
utility functions such as isleap() , which reports whether or not the specifi ed year is a leap year, and
timegm() , which converts a time.gmtime() tuple into seconds (why it is located in the calendar
module instead of time is something of a mystery).

 Finally, a couple of printing functions, prcal() and prmonth() , take a year and a year/month
combination, respectively, as arguments and display their output on stdout . These can be useful
when you want to prompt your user to choose a date.

 There are some third‐party modules available that try to simplify date and time handling in Python
by combining all the functions from all of the standard modules into a single more user‐friendly
module. Some examples include arrow and delorean , but an Internet search will reveal several
others.

 In the next section, you see how Python assists in reading and writing several common data fi le
formats.

 HANDLING COMMON FILE FORMATS

 When writing scripts to control several applications or utilities, it’s common to use fi les as the data
transfer mechanism between applications. Unfortunately the output format of one application may
not be in exactly the right format for the next application to read. At this point the script itself must
convert the output fi le into the appropriate form for the next application to read. Most applications
produce and consume variants of a few standard formats such as CSV (comma‐separated values),
HTML (HyperText Markup Language), XML (eXtended Markup Language), Windows INI (named
after the fi le extension) and, more recently, JSON (JavaScript Object Notation). You now look at
how Python’s standard library supports these various formats. (JSON is covered in Chapter 5 ,
“Python on the Web,” because it is most commonly associated with web applications.) These
modules make it easier to read and write data than if you tried to do it using the standard Python
text‐processing tools such as string methods or regular expressions.

 Using Comma‐Separated Values
 The comma‐separated value (CSV) format has been around for many years. Its name is something of
a misnomer because, though commas are the most common separator, the term CSV is often applied
to fi les using tabs or pipes (|) or, indeed, just about any other kind of character, as a separator.
At fi rst glance it might seem easy to parse data from such a fi le using the built‐in string split()
method. The problem is that the format is not absolutely standardized, and different fi les have
different ways of representing fi elds that contain the separator within them. Also, lines of data can

Handling Common File Formats ❘ 77

sometimes be split over multiple physical lines in the fi le. To make dealing with this diversity easier,
Python includes the csv module in its standard library.

 The csv module provides two mechanisms for reading CSV fi les. The simplest just reads each line
into a tuple, and the programmer has to keep track of what each position in the tuple represents.
The second method reads the data into a dictionary, often using the fi rst line of the fi le as the keys of
the dictionary. This is a particularly fl exible mechanism because it accommodates changes in the fi le
format (such as adding new keys) without breaking existing code.

NOTE One big issue with the standard csv module is that it does not handle
Unicode input. If you need to process fi les containing Unicode characters, you
should investigate third‐party modules such as unicodecsv. v

 The module defaults to the CSV format used by Microsoft Excel, but you can defi ne your own
formats too; it just takes a bit of extra work. In this chapter you are dealing with the Excel format
only.

 The examples that follow are based on a simple spreadsheet, toolhire.xlsx , as shown in
Figure 2-1 . (All of the data fi les discussed are included in the ToolhireData folder of the Chapter2
.zip download fi le in case you don’t have access to Excel.) The spreadsheet describes a small tool
hire facility set up by some friends to keep track of who is borrowing what from whom.

 FIGURE 2-1: The toolhire spreadsheet

 The data was saved to CSV format in the fi le toolhire.csv . The raw data in that fi le looks like this:v

 ItemID,Name,Description,Owner,Borrower,DateLent,DateReturned
 1,LawnMower,Small Hover mower,Fred,Joe,4/1/2012,4/26/2012
 2,LawnMower,Ride-on mower,Mike,Anne,9/5/2012,1/5/2013
 3,Bike,BMX bike,Joe,Rob,7/3/2013,7/22/2013
 4,Drill,Heavy duty hammer,Rob,Fred,11/19/2013,11/29/2013
 5,Scarifier,"Quality, stainless steel",Anne,Mike,12/5/2013,
 6,Sprinkler,Cheap but effective,Fred,,,

 This is a fairly simple fi le, but does include one of the complexities described earlier. Notice that
Anne’s scarifi er description is surrounded by double quotes because it contains a comma.

78 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 After importing the module, you can read the fi le into a list of tuples like so:

 >>> import csv
 >>> with open('toolhire.csv') as th:
 ... toolreader = csv.reader(th)
 ... print(list(toolreader))
 ...
 [['ItemID', 'Name', 'Description', 'Owner', 'Borrower',
 'DateLent', 'DateReturned'],
 ['1', 'LawnMower', 'Small Hover mower', 'Fred', 'Joe', '4/1/2012', '4/26/2012'],
 ['2', 'LawnMower', 'Ride-on mower', 'Mike', 'Anne', '9/5/2012', '1/5/2013'],
 ['3', 'Bike', 'BMX bike', 'Joe', 'Rob', '7/3/2013', '7/22/2013'], ['4', 'Drill',
 'Heavy duty hammer', 'Rob', 'Fred', '11/19/2013', '11/29/2013'], ['5',
 'Scarifier', 'Quality, stainless steel', 'Anne', 'Mike', '12/5/2013', ''],
 ['6', 'Sprinkler', 'Cheap but effective', 'Fred', '', '', '']]
 >>>

 Notice that Anne’s scarifi er description no longer has double quotes, but does still contain the
original comma. Figuring out how to do that is the value that the csv module adds to your
programs. You can apply lots of options both to the fi le in the call to open() and in the creation of
the csv.reader object. The example shows the minimal set.

NOTE The reader object is not limited to fi les. It can also take a list of strings
as its input instead. This can be a powerful tool if you are using subprocess to
generate CSV format data on stdout .

 Writing to a CSV fi le is just as easy. In this example, you create a new page of data for the
toolhire.xlsx spreadsheet that lists the various tools available, along with some details about
when they were made available, their condition, and original price. You save the data as a CSV fi le
called tooldesc.csv that you can load into Excel as a new worksheet.

 Here is the code:

 >>> import csv
 >>> items = [
 ... ['1','Lawnmower', 'Small Hover mower', 'Fred','$150','Excellent',
 '2012-01-05'],
 ... ['2','Lawnmower','Ride-on mower','Mike','$370','Fair','2012-04-01'],
 ... ['3','Bike','BMX bike','Joe','$200','Good','2013-03-22'],
 ... ['4','Drill','Heavy duty hammer','Rob','$100','Good','2013-10-28'],
 ... ['5','Scarifier','Quality, stainless steel','Anne','$200','2013-09-14'],
 ... ['6','Sprinkler','Cheap but effective','Fred','$80','2014-01-06']
 ...]
 >>> with open('tooldesc.csv','w', newline='') as tooldata:
 ... toolwriter = csv.writer(tooldata)
 ... for item in items:
 ... toolwriter.writerow(item)
 ...

Handling Common File Formats ❘ 79

 44
 39
 33
 34
 34
 33
 >>>

 As you can see, the writer.writerow() method returns the number of characters written to the fi le.
Mostly you just ignore that! The output fi le looks like this:

 1,Lawnmower,Small Hover mower,Fred,$150,Excellent,2012-01-05
 2,Lawnmower,Ride-on mower,Mike,$370,Fair,2012-04-01
 3,Bike,BMX bike,Joe,$200,Good,2013-03-22
 4,Drill,Heavy duty hammer,Rob,$100,Good,2013-10-28
 5,Scarifier,"Quality, stainless steel",Anne,$200,2013-09-14
 6,Sprinkler,Cheap but effective,Fred,$80,2014-01-06

 Notice that the scarifi er description once again has quotes around it, and the date fi elds are written
exactly as is. If you want to get the dates in the same format as Excel produced in the original CSV
fi le, you need to do that manipulation before you write the data. This is very typical of the kinds of
inconsistencies you fi nd when using CSV fi les as a transport between different applications. You can
use the datetime module to convert the date formats. datetime contains the datetime.strptime()
function, which can parse an input string to a datetime object and the datetime.strftime()
function to write that datetime object out in the format you want. Try that out now.

 TRY IT OUT Reformatting Data and Writing to a CSV File (change_date.py)

 In this Try It Out, you read a list of tools from the tooldesc.csv fi le, then extract each date fi eld from
the list, convert the format of the date and, fi nally, write the entire data structure back to the CSV fi le.
To do this, complete the following steps:

 1. Change to the folder where you saved the CSV fi les, or create a new folder and copy the CSV fi les
from the zip fi le.

 2. Open your favorite IDE or editor. Type the following code and save it as change_date.py (or load
it from the ToolHire folder of the Chapter2.zip download fi le):

 import csv
 from datetime import datetime

 def convertDate(item):
 theDate = item[-1]
 dateObj = datetime.strptime(theDate,'%Y-%m-%d')
 dateStr = datetime.strftime(dateObj,'%m/%d/%Y')
 item[-1] = dateStr
 return item

 with open('tooldesc.csv') as td:
 rdr = csv.reader(td)
 items = list(rdr)

 items = [convertDate(item) for item in items]

80 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 with open('tooldesc2.csv', 'w', newline='') as td:
 wrt = csv.writer(td)
 for item in items:
 wrt.writerow(item)

 3. Run the script. Check that a new tooldesc2.csv fi le has been created.

 4. Open the new fi le, tooldesc2.csv , in a text editor such as Notepad.

 5. Confi rm that it has the new date format, like this:

 1,Lawnmower,Small Hover mower,Fred,$150,Excellent,01/05/2012
 2,Lawnmower,Ride-on mower,Mike,$370,Fair,04/01/2012
 3,Bike,BMX bike,Joe,$200,Good,03/22/2013
 4,Drill,Heavy duty hammer,Rob,$100,Good,10/28/2013
 5,Scarifier,"Quality, stainless steel",Anne,$200,09/14/2013
 6,Sprinkler,Cheap but effective,Fred,$80,01/06/2014

 How It Works

 You started off with the imports that you need: csv and the datetime class from the datetime
module. You then created a function to convert the dates. This starts by extracting the date fi eld from
the record and then uses the datetime.strptime() function to parse the date fi eld. The format string
("%Y‐%m‐%d") tells it to select a four‐digit year (%Y) followed by a hyphen, followed by a two‐digit
month (%m), another hyphen, and a two‐digit day (m %d). That produces a date object. You then used the d

datetime.strftime() function to format that date object in the required format by rearranging the
fi elds and using slash (/) as a separator.

 (Note that the datetime versions of strptime() and strftime() do not have the parameter order
anomalies of the time module versions.)

 Finally, you replaced the original date fi eld with the new string and returned the modifi ed record.

 The main code of the script opens the original CSV fi le, reads the records, and stores them as a list
called items . You then replaced items using a list comprehension that called your convertDate()
function on each record in items .

 Finally, you wrote the modifi ed items list out to a new CSV fi le called tooldesc2.csv. v

 So far you have been using the basic reader and writer components of the csv module that work
with lists of data items. You may recall from earlier that csv also supports a dictionary‐based
approach. You now use that to access the original toolhire.csv fi le. If you look again at the
content of the CSV fi le, you notice that the fi rst line is a list of headings that describe the columns.
The csv module can exploit that by using the headings as keys in a dictionary. This makes accessing
individual fi elds much more reliable because you no longer need to rely on the numeric position of
the fi eld in the fi le.

 The way it works is very similar to the previous code, but instead of using a csv.reader object, you
use a csv.DictReader . It looks like this: r

 >>> with open('toolhire.csv') as th:
 ... rdr = csv.DictReader(th)

Handling Common File Formats ❘ 81

 ... for item in rdr:
 ... print(item)
 ...
 {'DateReturned': '4/26/2012', 'Description': 'Small Hover mower',
 'Owner': 'Fred', 'ItemID': '1', 'DateLent': '4/1/2012',
 'Name': 'LawnMower', 'Borrower': 'Joe'}
 {'DateReturned': '1/5/2013', 'Description': 'Ride-on mower',
 'Owner': 'Mike', 'ItemID': '2', 'DateLent': '9/5/2012',
 'Name': 'LawnMower', 'Borrower': 'Anne'}
 {'DateReturned': '7/22/2013', 'Description': 'BMX bike',
 'Owner': 'Joe', 'ItemID': '3', 'DateLent': '7/3/2013',
 'Name': 'Bike', 'Borrower': 'Rob'}
 {'DateReturned': '11/29/2013', 'Description': 'Heavy duty hammer',
 'Owner': 'Rob', 'ItemID': '4', 'DateLent': '11/19/2013',
 'Name': 'Drill', 'Borrower': 'Fred'}
 {'DateReturned': '', 'Description': 'Quality, stainless steel',
 'Owner': 'Anne', 'ItemID': '5', 'DateLent': '12/5/2013',
 'Name': 'Scarifier', 'Borrower': 'Mike'}
 {'DateReturned': '', 'Description': 'Cheap but effective',
 'Owner': 'Fred', 'ItemID': '6', 'DateLent': '',
 'Name': 'Sprinkler', 'Borrower': ''}
 >>>

 Notice that, as is normal with a dictionary, the fi elds are not in the original order, and they are
keyed using the labels from the fi rst line. You can see that, as before, the scarifi er description has
lost the quotes but retained its comma.

 If, instead of printing the items, you store them in a variable, you can do some interesting analysis
of the data using list comprehensions. For example, to see all of the items owned by Fred, you can
do this:

 >>> with open('toolhire.csv') as th:
 ... rdr = csv.DictReader(th)
 ... items = [item for item in rdr]
 ...
 >>> [item['Name'] for item in items if item['Owner'] == 'Fred']
 ['LawnMower', 'Sprinkler']
 >>>

 You could do the same thing using the basic reader and its lists, but you’d need to use numeric
indices, which are much less readable. For example, the list comprehension using the earlier list
would look like this:

 >>> [item[1] for item in toolList if item[3] == 'Fred']
 ['LawnMower', 'Sprinkler']

 It isn’t nearly so obvious what you are returning or what the selection criteria are. Also, if the fi le
format ever changed, you would need to change the indices everywhere in your code.

 There is a matching DictWriter object that can write a dictionary out to a CSV fi le. You use it in
the next Try It Out exercise.

 You can use the DictReader even if your CSV fi le contains no labels. For example, the
tooldesc2.csv fi le that you created in the previous Try It Out had no label line. You can remedy

82 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

that by reading it into a DictReader and then writing it out with a DictWriter . The trick is to r

provide the labels as an argument to the DictReader constructor. Try it out now.

 TRY IT OUT Adding a Label Line to a CSV File (add_labels.py)

 In this Try it Out, you defi ne a set of labels for the tooldesc2.csv fi le and then open the fi le and
read it into a DictReader object. You then write the data out to a new fi le using a DictWriter that
automatically inserts a label heading row. To do this, complete the following steps:

 1. Change to your project folder and open your IDE or editor.

 2. Type the following code and save it as add_labels.py (or load it from the zip fi le):

 import csv

 fields = ['ItemID', 'Name', 'Description', 'Owner',
 'Price', 'Condition', 'DateRegistered']

 with open('tooldesc2.csv') as td_in:
 rdr = csv.DictReader(td_in, fieldnames = fields)
 items = [item for item in rdr]

 with open('tooldesc3.csv', 'w', newline='') as td_out:
 wrt = csv.DictWriter(td_out, fieldnames=fields)
 wrt.writeheader()
 wrt.writerows(items)

 3. Run the code and confi rm that a new fi le, tooldesc3.csv , has been created.

 4. Check that tooldesc3.csv has indeed acquired a header row by opening it in your text editor. It
should look like this:

 ItemID,Name,Description,Owner,Price,Condition,DateRegistered
 1,Lawnmower,Small Hover mower,Fred,$150,Excellent,01/05/2012
 2,Lawnmower,Ride-on mower,Mike,$370,Fair,04/01/2012
 3,Bike,BMX bike,Joe,$200,Good,03/22/2013
 4,Drill,Heavy duty hammer,Rob,$100,Good,10/28/2013
 5,Scarifier,"Quality, stainless steel",Anne,$200,09/14/2013,
 6,Sprinkler,Cheap but effective,Fred,$80,01/06/2014,

 How It Works

 After importing csv in the fi rst line, you defi ned the fi eld names as a list of strings.

 You then opened the original fi le ,tooldesc2.csv , and read it into a list, v items , using a DictReader
that had been initialized with your fields list as its fieldnames parameter.

 The next step was to write this out to a new fi le with a header line. To do that you opened
the new fi le, tooldesc3.csv , and created a v DictWriter object specifying the desired order
of the fi elds via the fieldname parameter (remember that a dictionary stores the fi elds in an arbitrary
order). You simply passed the same fields list that you used to read the fi le, thus maintaining the same
order. You then called the writeheader() method of the writer object and followed that by using the
writerows() method that writes out the entire items list in one go.

Handling Common File Formats ❘ 83

 You’ve seen how to use the csv reader and writer objects to convert between the CSV fi le format
and Python lists as well as the DictReader and DictWriter objects to do the same with dictionaries.
You’ve also seen two examples of modifying a CSV fi le format to make it more suitable for
subsequent processing. The csv module contains a few other features for dealing with non‐Excel
based CSV fi les, but you can read about those in the documentation if you need them.

 Working with Confi g Files
 Confi g fi les or, as they are often called, Windows “INI” fi les, have a very readable format that is
also easy to work with programmatically. They have fallen out of favor in recent years because
Microsoft now advocates the Windows Registry and non‐Microsoft applications are moving to
XML‐based storage. However, there are plenty of legacy applications around that use this format.
(A search for *.ini on a relatively clean installation of Windows 8.1 found several hundred fi les, so
it is far from dead!)

 The format is very good at storing multiple instances of similar data, such as per‐node settings
on a network, or for multiple categories of options, such as various screen sizes, or online versus
offl ine operational parameters. The disadvantage of the Confi g format is that it can sometimes be
too simple with the result that complex data is harder to fi t into the format. Python provides the
configparser module for reading and writing Confi g format data.

NOTE The configparser module is one that has had a name change for
Python version 3. In Python 2 it was known as ConfigParser (capitalized), but
in Python 3, it is now all lowercase: configparser . If you are working across r
Python versions, be aware of the name change. The functionality remains the
same.

 The basic structure of a Confi g fi le is as shown here:

 [DEFAULT]
 Option1=value1

 [SECTION1]
 Option2=value2
 Option3=value3

 [SECTION2]
 Option4=value4
 etc.

 The DEFAULT section is noteworthy because options defi ned there apply to all following sections.
The format has a lot of fl exibility, with spaces and indentation optional, embedded sections, and
various other variants, including the ability to interpolate a value from one option into another

84 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

option. The configparser module can handle all of these and much more. It converts the data into,
or from, a dictionary format similar to the kind used for the CSV fi les described in the previous
section.

 Basic usage is shown very clearly in the documentation with examples of creating a fi le and reading
from it. Because there is little point in repeating that here, you can browse it at your leisure and then
try it out in the following example.

 TRY IT OUT Creating and Reading a Confi g File

 In this Try It Out, you create a Confi g fi le such as might be used for the tool lending application
discussed earlier. This Confi g fi le describes the standard settings and any user‐specifi c overrides to
those values. The settings are limited to the lending period (expressed in days) and the maximum value
of items that can be borrowed (zero implies no limit and is the default value).

 To create the fi le, complete the following steps:

 1. Create a project directory and change into it.

 2. Start the Python interpreter and type the following code:

 >>> import configparser as cp
 >>> conf = cp.ConfigParser()
 >>> conf['DEFAULT'] = {'lending_period' : 0, 'max_value' : 0}
 >>> conf['Fred'] = {'max_value' : 200} # Fred's a bit rough with things!
 >>> conf['Anne'] = {'lending_period' : 30} # She is a bit forgetful sometimes
 >>> with open('toolhire.ini', 'w') as toolhire:
 ... conf.write(toolhire)
 ...
 >>>

 3. Check that a new fi le toolhire.ini has been created in your folder.

 4. Open this new fi le in your text editor (but keep your Python session running) and confi rm that it
looks like this:

 [DEFAULT]
 lending_period = 0
 max_value = 0

 [Fred]
 max_value = 200

 [Anne]
 lending_period = 30

 Having created the fi le, you can now read back some values.

 5. Go back to your Python interpreter session and type the following:

 >>> del(conf) # get rid of the old one
 >>> conf = cp.ConfigParser() # create a new one
 >>> conf.read('toolhire.ini')
 ['toolhire.ini']
 >>> conf.sections()
 ['Fred', 'Anne']

Handling Common File Formats ❘ 85

 >>> conf['DEFAULT']['max_value']
 '0'
 >>> conf['Anne']['max_value']
 '0'
 >>> conf['Anne']['lending_period']
 >>> conf['Fred']['max_value']
 '200'

 6. Finally, to investigate a bit of irregular behavior type the following:

 >>> conf['Joe']
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 File "C:\Python33\lib\configparser.py", line 954, in __getitem__
 raise KeyError(key)
 KeyError: 'Joe'
 >>> conf.options('Anne')
 ['lending_period', 'max_value']
 >>> conf.options('DEFAULT')
 Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
 File "C:\Python33\lib\configparser.py", line 667, in options
 raise NoSectionError(section)
 configparser.NoSectionError: No section: 'DEFAULT'
 >>> conf.defaults()
 OrderedDict([('lending_period', '0'), ('max_value', '0')])
 >>>

 How It Works

 After importing the module in the fi rst line, you created a ConfigParser object and then assigned
a dictionary of name/value pairs to the DEFAULT section. You then stipulated a limit on the value
of what Fred could borrow (he has a track record of breaking things!) as well as a limit on Anne’s
lending _ period (because she tends to “forget” to return things, so she needs a reminder). You
then opened the fi le “toolhire.ini ” in write mode and used the ConfigParser object to write the
data to the fi le.

 Having checked that the fi le existed and contained the correct data, you then set about reading the data
back from the fi le.

 In preparation for doing that, you deleted the original parser object and created a new one, reusing the
name conf .

 You used conf to read the toolhire.ini fi le. You checked that the expected sections were available
and saw that the DEFAULT section was not included in the list. You then read some option values
from the parser and saw that you could read the DEFAULT values even though it was not listed as a
section. Furthermore, the DEFAULT values are used when a particular option is not explicitly declared
for a user. (For example, the default max _ value is returned for Anne even though she only had
lending _ period specifi ed.)

 You then tried pushing the boundaries a bit to see how the parser handles error conditions. The fi rst
attempt was to access a user for which no values had been provided. This gave a typical dictionary
KeyError . You then read the available options for Anne and discovered that the parser returned ther

default values as well as those explicitly defi ned. You also discovered that options() does not work

86 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

for the DEFAULT section, and you needed to use the explicit defaults() method to fetch those options.
The nonstandard behavior for DEFAULTS is one of the few annoyances you will experience in using
configparser. r

 Working with XML and HTML fi les
 You are probably familiar with HTML as the language of web pages. XML is also widely used, as a
so‐called self‐describing data format. XML and HTML are closely related formats. XML is a much
more rigidly defi ned format, and that makes it easier to process using a computer. HTML is very
forgiving of malformed content and, although that makes it easy to create by hand, as well as with
specialized editors, HTML is much more hit or miss to process accurately. HTML also has many
variations because of web browser proprietary extensions. All of this means that HTML parsers
have a trickier job and often yield less than perfect results when faced with badly formatted fi les.
Because XML is easier to handle programmatically, you look at parsing it fi rst and then extend the
technique to cover HTML.

NOTE A form of HTML, known as XHTML, is also valid XML. XHTML is starting
to appear on websites as increasing numbers of web publishing tools support
it. This means that you can use XML parsers to parse XHTML as well as other
forms of XML. However, HTML5 has, in effect, deprecated XHTML, so its use in
the future is likely to diminish rather than increase.

 Parsing XML Files
 Many different parsers are available for parsing XML. The Python standard library contains no
less than fi ve (dom , minidom , expat , ElementTree , and sax). These all fall into two categories:x

those that read the entire fi le into a tree‐like data structure called a document object model (DOM)
or those that read the fi le looking for items of interest (an “event”) and triggering a response as the
items are found. The former are more fl exible for complex, or multiple, queries on the same set of
data. The latter tend to be faster and slightly simpler to use. In this book you only look at two of the
parsers, each representing one of these two approaches.

 The fi rst parser you consider is sax , which is an example of an event‐based parser. To
understand how event‐based parsers work, consider the following example that parses some
plaintext:

 >>> text = """mary had a little lamb
 ... its fleece was white as snow
 ... and everywhere that mary went
 ... the lamb was sure to go"""

 >>> def has_mary(aLine):
 ... print("We found: ", aLine)
 ...

Handling Common File Formats ❘ 87

 >>> def parse_text(theText, aPattern, function):
 ... for line in theText.split('\n'):
 ... if aPattern in line:
 ... function(line)
 ...
 >>> parse_text(text,'mary',has_mary)
 We found: mary had a little lamb
 We found: and everywhere that mary went
 >>>

 Here you create some text that you want to parse. You then defi ne a function, has _ mary() , that
you want to be called every time mary is found in the text.

 Next you create your event‐driven parsing function, parse _ text() . This function iterates over the
input text line by line. If the search string, in this case mary , is found, then it calls the function that y

has been passed in.

 When you execute parse _ text() with your text string and the has _ mary() function as
arguments, it prints out the two lines containing mary. y

 The sax module works in a similar way to your parse _ text() function; however, it uses events,
such as detecting the start of an XML element, rather than plaintext patterns. It takes in an XML
source text and a collection of events and associated event‐handler functions. It then processes the
XML text section by section, and if it fi nds a match to a given event, it calls the associated handler
to deal with it. The parser does not store the XML data, it simply iterates over it. If you need to go
back to access earlier data, you need to re‐parse the entire fi le.

 To investigate the sax parser, you need an XML fi le. You can fi nd one, called toolhire.xml , in the
ToolhireData folder of the Chapter2.zip fi le. This is simply an XML export of the toolhire.xlsx
spreadsheet that you used earlier. A fragment of that fi le, including the parts you will be extracting,
slightly edited for readability, is shown here:

 <?xml version="1.0"?>
 <?mso-application progid="FileName_Excel.Sheet"?>
 <Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 ...
 <Worksheet ss:Name="Sheet1">
 <Table ss:ExpandedColumnCount="1025" ss:ExpandedRowCount="7" x:FullColumns="1"
 x:FullRows="1" ss:DefaultRowHeight="15">
 <Column ss:AutoFitWidth="0" ss:Width="36"/>
 ...
 <Row ss:StyleID="s36">
 <Cell><Data ss:Type="String">ItemID</Data></Cell>
 <Cell><Data ss:Type="String">Name</Data></Cell>
 <Cell><Data ss:Type="String">Description</Data></Cell>
 <Cell><Data ss:Type="String">Owner</Data></Cell>
 <Cell><Data ss:Type="String">Borrower</Data></Cell>
 <Cell><Data ss:Type="String">DateLent</Data></Cell>
 <Cell><Data ss:Type="String">DateReturned</Data></Cell>
 </Row>
 <Row>
 <Cell><Data ss:Type="Number">1</Data></Cell>

88 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 <Cell><Data ss:Type="String">LawnMower</Data></Cell>
 <Cell><Data ss:Type="String">Small Hover mower</Data></Cell>
 <Cell><Data ss:Type="String">Fred</Data></Cell>
 <Cell><Data ss:Type="String">Joe</Data></Cell>
 <Cell ss:StyleID="s37"><Data ss:Type="DateTime">
 2012-04-01T00:00:00.000</Data></Cell>
 <Cell ss:StyleID="s37"><Data ss:Type="DateTime">
 2012-04-26T00:00:00.000</Data></Cell>
 </Row>
 ...
 </Worksheet>
 </Workbook>

 Assume you want to fi nd the average length of loan. You use sax to extract just the DateLent
and DateReturned fi elds for each item and store them as a tuple in a dates list. You can then later
process those dates to fi nd the duration for each lent item.

 To initialize the parser, you need to create your handler and specify the events that you are
interested in. sax actually uses a handler object, an instance of the xml.sax.handler
.ContentHandler class, or more specifi cally, a subclass of it, to combine the event and function.
Several predefi ned handler subclasses exist, including one for dealing with errors. The advantage of
this approach is that many default methods are already defi ned and others can be easily overridden,
such as startDocument() called at the very beginning of parsing and useful for setting up state
variables and the like. For simple XML parsing tasks, you normally create a custom subclass of
ContentHandler and then write your own versions of the startElement() , endElement() , and
possibly, the character() methods.

 By inspecting the XML fi le, you can see that the data you want is contained in a <Data> element
and is identifi ed by the ss:Type attribute being set to DateTime . The actual data is character data
that sits between the start and end <Data> tags, so the expected event sequence is startElement() ,
followed by character() , followed by endElement() .

 The code for your ToolHireHandler class looks like this (and is in the ToolHire folder of
Chapter2.zip as toolhiresax.py):y

import xml.sax
 import xml.sax.handler

 class ToolHireHandler(xml.sax.handler.ContentHandler):
 def __init__(self):
 super().__init__()
 self.dates = []
 self.dateLent = ''
 self.dateCounter = 0
 self.isDate = False

 def startElement(self, name, attributes):
 if name == "Data":
 data = attributes.get('ss:Type', None)
 if data == 'DateTime':
 self.isDate = True
 self.dateCounter += 1

Handling Common File Formats ❘ 89

 else:
 self.dateCounter = 0
 def endElement(self, name):
 self.isDate = False

 def characters(self, data):
 if self.isDate:
 if self.dateCounter == 1:
 self.dateLent = data
 else:
 self.dates.append((self.dateLent, data))

 if __name__ == '__main__':
 handler = ToolHireHandler()
 parser = xml.sax.make_parser()
 parser.setContentHandler(handler)
 parser.parse('toolhire.xml')
 print(handler.dates)

 The initializer calls the superclass initializer and then sets up various data attributes that you use in
the parsing and need to use across methods. It also creates an empty dates list to hold the results.

 The main parsing method is the startElement() method that looks out for Data elements and,
when one is found, refi nes the search by selecting only those with a ss:Type attribute of DateTime .
(You have to identify these values by inspecting the XML fi le manually.) Because you can have up to
two dates in a single row, you use the self.dateCounter to keep track of which date within the row
you are handling. You use the self.isDate value to indicate to the character() method that it is
inside a date element. If the data is not a DateTime type, then you reset the self.dateCounter to 0 .

 The endElement() method ensures the self.isDate fl ag is reset to False ready for the next
startElement() event to come along.

 The character() method is called whenever content outside a tag element is encountered. You are
only interested in the date information so, if the self.isDate fl ag is not set, you simply ignore the
character data. If the data is a date, then you check if it’s the fi rst date, in which case you store it in
the self.dateLent attribute; if it’s the second date, you store both dates in the self.dates list. If
only one date is found, the character handler is not called a second time, and the date is not added
to the dates list, thus ensuring you store only pairs of dates, which is what you need for the duration
calculations.

 Finally, the driver code at the bottom creates the handler and parser instances. It then sets the
handler within the parser to your ToolHireHandler instance and executes the parse() operation on
your XML fi le. After parsing is complete, it prints out the collected dates from the handler.

 You repeat this exercise using the ElementTree DOM‐based parser in the Try It Out at the end of this
section. There you can compare and contrast the two techniques. First, though, you look at parsing
HTML because the standard library HTML parser is very similar in style to the sax XML parser.

 Parsing HTML Files
 The standard library provides the html.parser module for parsing HTML. It works in a similar
way to the sax parser, in that it is event driven. It is slightly simpler to use because it only has a

90 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

single class with the handler methods defi ned within it. To show how it works, you once again
extract the dates from the toolhire.xlsx spreadsheet, but this time from the HTML export. You
can fi nd this fi le in the zip fi le under the ToolhireData/toolhire _ files folder as sheet001.htm .

 The fi le looks, in part, like this:

 <html xmlns:v="urn:schemas-microsoft-com:vml"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns="http://www.w3.org/TR/REC-html40">

 <head>
 <meta http-equiv=Content-Type content="text/html; charset=windows-1252">
 <meta name=ProgId content=Excel.Sheet>
 ...
 <body link=blue vlink=purple>

 <table border=0 cellpadding=0 cellspacing=0 width=752 style='border-collapse:
 collapse;table-layout:fixed;width:564pt'>
 <col width=64 style='width:48pt'>
 <col width=115 style='mso-width-source:userset;mso-width-alt:4205;width:86pt'>
 ...
 <tr class=xl66 height=21 style='height:15.75pt'>
 <td height=21 class=xl66 width=64 style='height:15.75pt;width:48pt'>ItemID</td>
 <td class=xl66 width=115 style='width:86pt'>Name</td>
 <td class=xl66 width=153 style='width:115pt'>Description</td>
 <td class=xl66 width=80 style='width:60pt'>Owner</td>
 <td class=xl66 width=120 style='width:90pt'>Borrower</td>
 <td class=xl66 width=99 style='width:74pt'>DateLent</td>
 <td class=xl66 width=121 style='width:91pt'>DateReturned</td>
 </tr>
 <tr height=20 style='height:15.0pt'>
 <td height=20 align=right style='height:15.0pt'>1</td>
 <td>LawnMower</td>
 <td>Small Hover mower</td>
 <td>Fred</td>
 <td>Joe</td>
 <td class=xl65 align=right>4/1/2012</td>
 <td class=xl65 align=right>4/26/2012</td>
 </tr>
 ...
 </tabular>
 </body>
 </html>

 You can see that the dates have a unique class, namely xl65 . This means you can look for <td> tags
with that class attribute value in a similar way that you did with the earlier XML example.

 The HTMLParser class works very like the saxContentHandler class in that it has methods
corresponding to HTML document elements. In the example you override the handle _ starttag() ,
handle _ endtag() , and handle _ data() methods that are directly analogous to the startElement ,
endElement , and character methods for XML.

http://www.w3.org/TR/REC-html40

Handling Common File Formats ❘ 91

 You can fi nd the code for this example in the zip fi le ToolHire folder as toolhirehtml.py . It looks y

like this:

 import html.parser

 class ToolHireParser(html.parser.HTMLParser):
 def __init__(self):
 super().__init__()
 self.dates = []
 self.dateLent = ''
 self.isDate = False
 self.dateCounter = 0

 def handle_starttag(self, name, attributes):
 if name == 'td':
 for key, value in attributes:
 if key == 'class' and value == 'xl65':
 self.isDate = True
 self.dateCounter += 1
 break
 else:
 self.dateCounter = 0

 def handle_endtag(self, name):
 self.isDate = False

 def handle_data(self, data):
 if self.isDate:
 if self.dateCounter == 1:
 self.dateLent = data
 else:
 self.dates.append((self.dateLent, data))

 if __name__ == '__main__':
 htm = open('sheet001.htm').read()
 parser = ToolHireParser()
 parser.feed(htm)
 print(parser.dates)

If you compare that with the sax example, you see that the code inside the methods is nearly identical.
The HTMLParser presents its attributes as a list of tuples. You iterate over that list looking for a class
attribute of value xl65 to identify a date fi eld. (Note that’s an x‐ELL not x‐ONE; remember that this is
an export from Microsoft Excel, hence the class name.) The parser conveniently takes care of mixed‐case
HTML tags or by converting tag names to lowercase, so you don’t need to worry about that. It also does
its best to make sense of badly formed HTML although it’s not perfect and really bad code can trip it up.

 You conclude this section on reading data fi les with a look at another of Python’s XML parsers.
This time it’s ElementTree , and you investigate it in the following Try It Out.

 TRY IT OUT Parsing XML with ElementTree (toolhireET1.py and toolhireET.py)

 In this Try It Out, you use the ElementTree XML parser to extract the same set of dates that you did
in the earlier examples. You also use the data to calculate the average loan period for the items in the
spreadsheet. To get the answer, complete the following steps:

1. Create a new project folder and copy the toolhire.xml fi le, which you used earlier, into it.

92 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

2. Open your IDE or text editor and type in and save the following code as toolhireET.py (or grab
toolhireET1.py from the zip fi le):

 import xml.etree.ElementTree as ET
 import datetime as dt

 def parseDates(filename):
 dates = []
 rows = []
 dom = ET.parse(filename)
 root = dom.getroot()
 for node in dom.iter('*'):
 if 'Row' in node.tag:
 rows.append(node)
 for row in rows:
 row_dates = []
 for node in row.iter('*'):
 for key,value in node.attrib.items():
 if 'Type' in key and 'DateTime' in value:
 row_dates.append(node.text)
 if len(row_dates) == 2:
 dates += row_dates
 return dates

 def main():
 print(parseDates('toolhire.xml'))

 if __name__ == '__main__':
 main()

3. Open an OS console window and navigate to your project folder.

4. Run the fi le from your console using python3 toolhireET.py (or toolhireET1.py if using the
zip fi le).

5. Check that the output looks like this:

 ['2012-04-01T00:00:00.000', '2012-04-26T00:00:00.000', '2012-09-05T00:00:00.000',
 '2013-01-05T00:00:00.000', '2013-07-03T00:00:00.000', '2013-07-22T00:00:00.000',
 '2013-11-19T00:00:00.000', '2013-11-29T00:00:00.000', '2013-12-05T00:00:00.000']

6. Go back into your IDE or editor and add a calculateAverage() function and modify main() as
shown (or load toolhireET.py from the zip fi le):

 def calculateAverage(dates):
 loan_periods = []
 while dates:
 lent = dates.pop(0).split('T')[0]
 ret = dates.pop(0).split('T')[0]
 lent_date = dt.datetime.strptime(lent,'%Y-%m-%d')
 ret_date = dt.datetime.strptime(ret,'%Y-%m-%d')
 loan_periods.append((ret_date - lent_date).days)
 average = sum(loan_periods)/len(loan_periods)
 return average

Accessing Native APIs with ctypes and pywin32 ❘ 93

 def main():
 dates = parseDates('toolhire.xml')
 avg = calculateAverage(dates)
 print('Average loan period is: {} days'.format(avg))

7. Save the fi le and run the code. You should see a message telling you that the average loan period is
44 days.

 How It Works

 You started by importing the ElementTree parser and assigning it an alias, ET . You then imported the
datetime module as dt in anticipation of the date calculations to follow.

 You created the parseDates() function that starts off by parsing the XML fi le into a DOM. Notice
that the parse() function takes a fi lename as an argument, not a fi le object. You then obtained the root
node from that DOM using the getroot() method. You used the iter() method to fi nd all nodes, as
signifi ed by the '*' argument. You then inspected the node, and if it had Row in its tag, you added the
node to the rows list.

 Having built a list of rows, you then drilled into each row and examined the cells. You checked their
attributes looking for a key of y Type with a value of DateTime . Once found, you inserted the date nodes
into the row _ dates list. At the end of each row, if the row _ dates list contained two dates, you added it
to the dates list; otherwise, you just ignored it. You returned the fi nal dates list at the end of the function.

You then tested the function and checked that the output was the expected list of dates.

You next added the new function calculateAverage() and modifi ed the main() function accordingly.

In the calculateAverage() function, you initialized a list to hold the length of each loan. You then
iterated over the dates list extracting them in pairs. You knew the pairs matched because you only
added pairs of dates in the parseDates() function. The extraction process involved splitting the
date strings on the letter T and only keeping the fi rst part of the string. (You had to split the strings
because the datetime.strptime() method cannot handle the decimal seconds value.) The next step
was to convert the date strings into datetime objects using the strptime() method. You then used
the datetime object’s arithmetic capabilities to compute a timedelta representing the loan period and
stored the days value in the loan _ period list. Finally, you calculated the average of the stored periods
and returned the result.

 Some applications do not lend themselves to generating data fi les. In these cases, you may need to
interact with the program via an application programmer’s interface (API). The next section shows
you how.

ACCESSING NATIVE APIS WITH ctypes AND pywin32

 Some applications or OS functions are not easily accessed from regular Python code because no
Python API exists or no user‐friendly operations are exposed that you can call from Python. The
ctypes module can provide an alternative means of access by exposing to Python the C code
libraries from which the application is built. In Windows these libraries are typically a set of DLL

94 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

Another package, installed by default in the ActiveState distribution of Python for Windows, or
available for download on other distributions, is pywin32 . This package provides access to the
Windows native libraries and, in particular, to any Microsoft component object model (COM)
interfaces. Being Windows specifi c, it is usually easier to use than ctypes which works generically
on any operating system. The same caveats apply when using pywin32 as apply to ctypes .

Accessing the Operating System Libraries
One area that is usually well documented is the OS application programming interface (API) that is
exposed in standard system libraries. In this section you use the OS libraries to perform some fairly
simple tasks that are nonetheless not available via Python’s os module. This method is particularly
useful for Windows users because many of the UNIX‐like features in the os module do not work, or
only work partially, under Windows. Accessing the Win32 API directly via ctypes (or pywin32) is
often the only option.

fi les or, in UNIX, a set of shared object libraries. ctypes enables you to load those libraries into
your application and call their functions directly from Python. This only works, of course, if you
know what functions are in the library, what arguments are required, and the return values. This
may not be published, and you then have to resort to trial and error, or reverse engineering, which
may, in turn, be prohibited by the manufacturer or vendor. However, if the library has a published
interface, ctypes provides an effective, although non‐trivial, method of access.

 SOME WORDS OF CAUTION

 Using ctypes requires a basic knowledge of C programming. If you don’t have that
skill, you may want to skip this section because it may not make much sense. On
the other hand, skimming it lets you see what the potential is, should you need it.

 When you use ctypes , you leave the safety net of the Python interpreter behind.
Remember that you are working with the raw OS libraries and sometimes directly
accessing memory locations. The libraries also work with the raw fi le system and
input/output streams, and so they may not show the results you expect in an IDE
like IDLE or Pythonwin.

 If you make a mistake, you can easily cause the Python interpreter to crash. In
extreme cases, you could even cause the OS to crash! This is why you should treat
ctypes and its friends as a last resort, only to be used when all else fails.

NOTE ctypes does not work with static libraries nor does it work with C++
libraries, unless the functions have been explicitly exported as C functions
from the C++ code.

The following sections show ctypes being used on Windows and Linux systems, but the principles
are identical, apart from getting the initial reference to the C library.

Accessing Native APIs with ctypes and pywin32 ❘ 95

 Using ctypes with Windows
 On Windows systems the basic C library is found in the msvcrt library. Some functions in msvcrt
.dll , mainly concerned with console input/output operations, are exposed in the Python msvcrt
module, but many more are not available by that route. You can easily access the native msvcrt
library from ctypes using the following code:

 >>> import ctypes as ct
 >>> libc = ct.cdll.msvcrt # Windows only

 Once you have a reference to the standard library, you can call the familiar C functions. The only
complication is that you need to ensure the arguments are type-compatible with C. In general,
integer arguments work just fi ne, but strings usually need to be explicitly marked as byte strings,
and fl oats need a special ctypes type conversion. Many type conversion functions are included in
ctypes ; you can fi nd a full list in the module documentation. Here are two examples:

 >>> libc.printf(b"%d %s %s hanging on a wall\n", 6, b"green", b"bottles")
 6 green bottles hanging on a wall
 34
 >>> libc.printf(b"Pi is: %f\n", ct.c_double(3.14159))
 Pi is: 3.141590
 16

 Notice the use of b to indicate a byte string and, in the second example, the use of the ctypes.c _

double() conversion function. Also, note that the return value of printf() , which is the number of
characters printed, is displayed after the message is printed.

 Many C functions require pointers to data (effectively memory addresses) as arguments.
ctypes enables you to do this using the byref() function. You can create an object of a given
type and then pass that object using byref() into the ctypes function call you want to perform.
Here is an example of using sscanf() that reads an integer value from a string into a Python
variable:

 >>> d = ct.c_int()
 >>> print(d.value)
 0
 >>> libc.sscanf(b"6", b"%d", ct.byref(d))
 1
 >>> print(d.value)
 6

 Next you look at a slightly more practical function in the Windows library: msvcrt. _
getdrives() . This returns a list of available drives on a Windows system, something not easily done
using Python’s standard os module. The only complication is that the returned list is a bitmask, so
you need to write a loop to test each bit to fi nd out which bits are set and map the bit position into a
drive letter. Here is the code:

 >>> drives = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 >>> drivelist = libc._getdrives()

96 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 >>> for n in range(26):
 ... mask = 1 << n # use left bit shifting to build a mask
 ... if drivelist & mask: print (drives[n], 'is available')
 ...
 C is available
 D is available
 E is available
 P is available

 The Microsoft Developers Network (msdn.microsoft.com) has full documentation for the standard
Windows library functions.

 Using ctypes on Linux
 You can use ctypes on non‐Windows systems, too. Here is an example using printf() on a Linux
system accessed via the standard C library libc.so.6 . (You can also use other UNIX‐like OSes if
you can fi nd out the name of the library that implements the standard C library functions.)

 >>> import ctypes as ct
 >>> libc = ct.CDLL('libc.so.6')
 >>> libc.printf(b"My name is %s\n", b"Fred")
 My name is Fred
 16

 The printf() and sscanf() examples in the previous section should also work using the Linux
libc , as will the byref() function and the various type conversion functions.

 Accessing a Windows Application Using COM
 Accessing an application library is almost as easy as accessing an OS system library, provided you can
get documentation for the contents of the library. However, that is not always readily available. Another
option on Windows is to use the OS functions to access the COM objects and then manipulate the
COM objects from Python. Unfortunately, COM is a complex technology and has been extended over
time to include features such as distribution over a network as well as various data access mechanisms.
Compounding the diffi culty is the fact that documentation for COM objects is often sparse and hard to
fi nd. Nonetheless, COM is often the most effective option for automating Windows applications.

 The easiest way to use COM objects in Python is to use the pywin32 package, written by Mark
Hammond and available for download from the SourceForge website or included as standard in the
ActiveState distribution of Python. The following Try It Out demonstrates the use of pywin32 to
open Excel preloaded with the toolhire.xlsx fi le you used in the earlier sections of this chapter.

 TRY IT OUT Using COM to Present a File‐Open Dialog (toolhireCOM.py)

 This Try It Out demonstrates how to use the Excel COM interface to open the application and let the
user select a fi le—all from within Python. If you are using Windows, follow along with these steps (this
example works under Windows only):

1. If you do not have the ActiveState version of Python installed, download and install the pywin32
extension package from the SourceForge website: http://sourceforge.net/projects/pywin32/ .

http://sourceforge.net/projects/pywin32/

Accessing Native APIs with ctypes and pywin32 ❘ 97

2. Open your Python IDE and create a new fi le called toolhireCOM.py (or load it from the zip fi le).
Enter the following code (making sure to set the fi lepath to your own fi le location):

 import win32com.client as com
 # set the file path as required on your PC
 filepath = r"D:\PythonCode\Chapter2\CSVexamples\toolhire.xlsx"
 fileopen = 1 # found by trial and error!
 app = com.Dispatch("Excel.Application")
 app.Visible = True
 fd = app.FileDialog(fileopen)
 fd.InitialFileName = filepath
 fd.Title = "Open the toolhire spreadsheet"
 if fd.Show() == -1:
 fd.Execute()

3. Save and run the fi le.

4. Click OK in the dialog box that opens.

5. Confi rm that the spreadsheet contains the data from the spreadsheet you used earlier.

How It Works

After importing the win32com.client module and aliasing it as com , you set the fi le path to a variable so
it’s easy to change if needed. (Note: You should use the path to your own folder, not the one that is used
here.) The next line sets a filemode variable to 1 . This determines what kind of fi le dialog is opened, in
this case a File‐Open dialog. (The value was found by trial and error, valid values lie between 1 and 4.)

You then created the Application COM object using the Dispatch() function and made the window
visible by setting its Visible property to True . At this point the window appeared on screen but
without the usual grid of cells. This is because Excel actually stores the grid in another COM object
called a Workbook . You could have created a Workbook (or more accurately a set of Workbooks , or tabs)
and opened the fi le directly instead of using a dialog box if you knew which fi le you were interested in.
Workbook objects contain Cells , and it is these you would use if you wanted to create or modify data
within a spreadsheet.

The next step was to create the dialog object using the FileDialog() method of the Application . This
took your filemode value as an argument. You then set a couple of attributes of the object to ensure it
opened in the right place and with an instructive title.

 Finally, you called the Show() method of the dialog that displays the dialog box on screen, with all
the usual functionality available to the user. If the user selects the OK button, the return value is K ‐1 .
In this case you can call the Execute() method of the dialog object that proceeds to open (or save,
if necessary) the selected fi le. At this point the spreadsheet gets populated with the Workbooks and
appears as you would normally see the application.

 You have now seen many techniques for integrating different applications in a scripting program.
The next section gives you some advice on how to bring these techniques together to complete a
scripting project.

98 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

 AUTOMATING TASKS INVOLVING MULTIPLE APPLICATIONS

 Scripting was defi ned at the start of this chapter as “coordinating the actions of other programs or
applications to perform a task.” So far, you have seen several enabling modules that can help you to
interface with these external programs, but the bigger picture of how to automate a full workfl ow
has not been discussed.

 Normally, when you approach a workfl ow automation project, you look at what the human
process is. You identify the systems used and the actions taken. You look at the input and output
data. You then try to replicate that using whatever automation options are available for each
system and process. You should take one other step before jumping in too quickly and that is
to eliminate any steps that are done purely for the human user’s convenience—for example,
formatting data into a more readable layout when the data is only an intermediate result. If the
computer can read the data without that formatting, it’s an unnecessary step. Once you have
identifi ed the necessary steps, along with the systems and tools to be used, you can look at the
automation options.

 This section considers some guidelines that should minimize the pain in developing such multi‐
application scripts. As a general rule, use the following techniques in the order discussed.

 Using Python First
 Python comes with many support modules that enable you to replicate the OS functions and
commands directly from your code. Other modules provide access to different fi le formats and
network protocols. For example, Python has modules for directly manipulating the Windows
registry and the UNIX password fi le that avoid calling external programs. Using Python directly
provides an effi cient and fl exible solution that will be easier to maintain in the future. This should
always be the fi rst choice if possible.

 Using Operating System Utilities
 The OS provides many tools and commands for performing system administration. Many of these
tools have command line interfaces (CLIs) that make them easy to call from Python code using the
subprocess module. Tools that operate without interaction are the easiest to work with, even if
this means using data fi les as an intermediate step because the fi les can be used as a recovery point
should the process fail: You simply restart with the last successful step.

 Using Data Files
 Many tools and OS commands use confi guration fi les to control how they function. By creating
or modifying these confi guration fi les prior to running the command, you can often control the
behavior without the complexity of interacting with the processes in real time. In addition, you
can usually drive such tools by using input fi les and generating output fi les rather than interactively
providing data at prompts. You can build such fi les (or read them) using Python code, and you have
seen how Python modules can assist in parsing many common data formats.

Automating Tasks Involving Multiple Applications ❘ 99

 There is a third‐party module called pexpect that makes interacting with an external console‐based t
program easier. It works by looking for expected (hence the name) prompt strings from the target
application and then responding by allowing the programmer to send responses. This works well for
login dialogs and similar interactions.

 Using Web Services for Server‐Based Applications
 Some applications provide web services as an interface option. This is often an attractive alternative
to using a third‐party module, although the trade‐off is often slower performance and the added

 Using a Third‐Party Module
 Many popular applications have third‐party modules that facilitate interacting with the application
or direct manipulation of their data fi les. Microsoft Excel is a good example, with several modules
available to assist in manipulating spreadsheets. You can manipulate many other proprietary fi le
formats using third‐party modules. Use your favorite search engine to fi nd such modules. Include
keywords like the application name, “python”, and “module”, and you should fi nd what you are
looking for fairly quickly.

 The main caveat with this approach is that third‐party modules often work only with older Python
versions and may not be updated to the latest build. Most such modules are open source, with
generous license conditions, so you usually have the option of updating the code yourself or, if that
is too big a project, perhaps copying just the code that you need for your project. Due credit to the
original authors should, of course, be given.

 Interacting with Subprocesses via a CLI
 If a tool has a CLI but cannot be driven using a data fi le, you can still use the subprocess module
and interact with the process using stdin and stdout as was demonstrated with the ex editor
earlier in the “Managing Subprocesses” section of this chapter. This is a potentially complex
strategy because you have to anticipate every possible response or input request that the application
may make. Similarly, error handling can be diffi cult to control and often, if an application deviates
from the expected interaction, you may have no choice but to abort your script and try to recover
manually. This is why using data fi les is preferable if at all possible.

NOTE On Mac OS X there is an alternative technology, which is not covered
in detail in this book, but can be useful for scripting Mac applications. It is
based on AppleScript technology and its command‐line interface: osascript .
By writing small AppleScript programs and calling them from Python via
osascript , you can often get Apple programs to “join in the dance” so to
speak. Third‐party modules are available for interacting with osascript , but
you can run it directly, using the subprocess module, too.

100 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

complexity of parsing the XML or JSON data format used by such services. Web services are
discussed in more detail in Chapter 5 .

 Using a Native Code API
 If the application you need to control offers a C library as an API, you can use ctypes to access
it from Python. The biggest problem you are likely to face with this approach is fi nding good
documentation for the API. If documentation exists, this can be a very effective technique, but if
not, it can involve a lot of painful trial and error. The Python interactive prompt is an invaluable
tool in these scenarios.

 For Windows applications you can often fi nd a COM interface and access that via the win32
package. As with using ctypes , the lack of documentation is often the biggest obstacle.

 Using GUI Robotics
 The fi nal option for GUI applications with no API is to interact with the GUI itself by sending user
event messages into the application. Such events could include key‐presses, mouse‐clicks, and so
forth. This technique is known as robotics because you are simulating a human user from your
Python program. It is really an extension of the native code access described in the previous section,
but operating at a much lower level.

 This is a frustrating technique that is very error prone and also very vulnerable to changes in the
application being controlled—for example, if an upgrade changes the screen layout, your code will
likely break. Because of the diffi culty of writing the code, as well as the fragility of the solution, you
should avoid this unless every other possibility has failed.

 SUMMARY

 This chapter looked at how to automate tasks involving several different applications or OS utilities.
You saw that Python’s standard library contains several powerful modules to assist in this. The os ,
os.path , shutil , and glob modules, for example, can provide much information about computer
resources and help you manage fi les directly from within Python.

 The subprocess module provides a mechanism to launch and interact with command line programs
from within your scripts.

 The time , datetime , and calendar modules can assist with time‐related tasks and calculations.
The time.sleep() function can introduce a pause to your script’s execution while waiting for other
processes to complete.

 You also saw that common data fi les that can be generated, or used as input by applications, can be
created or read by Python using modules such as csv , v configparser , r htmllib , and xml.etree .

 If no other form of access is available, it may be possible to use ctypes to access C functions
exposed by dynamic libraries. On Windows similar functions exposed as a COM interface may be
available, and the pywin32 modules simplify access somewhat. These techniques are usually more
complex than using data fi les or calling subprocess functions.

Summary ❘ 101

 Finally, you reviewed the options available for scripting with their pros and cons, including the
last resort option for GUIs of sending OS events to the application windows. This last option is
fraught with diffi culty and should only ever be used when all other means have been explored and
exhausted.

EXERCISES

1. Explore the os module to see what else you can discover about your computer. Be sure to read
the relevant parts of the Python documentation for the os and stat modules.

2. Try adding a new function to the file_tree module called find_dirs() that searches for
directories matching a given regular expression. Combine both to create a third function,
find_all() , that searches both fi les and directories.

3. Create another function, apply_to_files() , that applies a function parameter to all fi les
matching the input pattern. You could, for example, use this function to remove all fi les
matching a pattern, such as *.tmp , like this:

 findfiles.apply_to_files('.*\.tmp', os.remove, 'TreeRoot')

4. Write a program that loops over the fi rst 128 characters and displays a message indicating
whether or not the value is a control character (characters with ordinal values between 0x00
and 0x1F, plus 0x7F). Use ctypes to access the standard C library and call the iscntrl()
function to determine if a given character is a control character. Note this is not one of the
built‐in test methods of the string type in Python.

102 ❘ CHAPTER 2 SCRIPTING WITH PYTHON

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC DESCRIPTION

Scripting Automation of a task involving multiple tools or applications. Python is
used as the glue that binds these tools together, converting data formats
to compatible forms, synchronizing the activities, and if necessary driving
the functionality as a pseudo user.

OS environment When the OS runs a process, it creates an environment consisting of
certain confi guration details. These include things like the process priority,
its home directory, fi le permissions, and formats. Scripts often need to
customize the environment prior to launching a program to ensure that it
performs in the correct way.

Process and
subprocesses

Programs run by the OS are known as processes. A single application may
consist of a process hierarchy with a top‐level process spawning multiple
child or subprocesses. Subprocesses, by default, inherit their parent’s
environment. Scripts frequently launch other programs as subprocesses.

Tree walking The fi le system exists as a tree structure with a root node and subtrees
attached to the root. It is possible to recursively descend through this
structure to the leaf nodes, which are the individual fi les. Scripts frequently
need to process multiple fi les within a given subtree of the fi le system.

Absolute dates and
times

A fi xed date and time in history. A date such as July 4th, 1776 is an
absolute date.

Relative dates and
times

A date or time relative to another date or time. Usually expressed as a
period such as three hours or as a repeating date or time, such as the third
hour of every day or fi rst day of every month.

Parser A function that breaks down structured data into its component parts.
Parsers can be based on several different algorithms and the most
common types are either event based or tree based. Python supports
both styles for XML parsing.

Libraries Programming languages make reusable code available in code libraries.
These are conceptually like Python modules, but in compiled languages
are generated with special tools and can be either static or dynamically
linked into an application. ctypes can access dynamically linked C
libraries.

COM The Windows Common Object Model (COM) mechanism enables external
applications (or frequently an internal macro language) to manipulate the
functionality of a program. The pywin32 package simplifi es Python access
to COM objects.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ What data persistence means

➤ How to store data in fi les

➤ How to store data in a database

➤ How databases search, sort, and access data

➤ Other options for data storage

 WROX.COM DOWNLOADS FOR THIS CHAPTER

 For this chapter the wrox.com code downloads are found at www.wrox.com/go/pythonprojects
on the Download Code tab. The code is in the Chapter 3 download, called Chapter3.zip , and
individually named according to the names throughout the chapter.

 In many scenarios you need to store data between executions of your program. The data you
want to store could be local status information, such as the current location in an e‐book
reader or the current working fi lename, or it could be administrative data such as usernames
and passwords or server addresses. Often it will be large volumes of business‐oriented data
such as customer orders, inventory, or address information. Many business applications
consist of little more than a mechanism to create, view, and edit stored data.

 This capability to store data in such a way that it is available for use on subsequent invocations
of your program is known as data persistence because the data persists beyond the lifetime
of the process that created it. To implement data persistence you need to store the data
somewhere, either in a fi le or in a database.

 This chapter is a bit like a history of computing storage technologies. That’s because the need
to store data has grown—and continues to grow—ever more complex with the passage of
time. You now have a broad range of technologies available covering every storage need, from

 3

http://www.wrox.com/go/pythonprojects

104 ❘ CHAPTER 3 MANAGING DATA

a few simple confi guration settings to sophisticated distributed data sources representing thousands
of logical entities. In this chapter learn about the different options available for storing data and the
advantages and disadvantages of each. Along the way, you see how Python modules assist in this
fundamental programming task.

 STORING DATA USING PYTHON

 The simplest storage is a plaintext fi le. You have already seen in Chapter 2 how to use a text fi le
to store data in various formats, such as CSV and XML, as well as how to store unformatted
text. These formats are fi ne if you need to store the data only when the program closes and read
it back when the program is started again. This situation makes these formats very suitable for
confi guration data or application status information. These fl at‐fi le formats are less useful when you
need to handle large volumes of data non‐sequentially or search for specifi c records or fi elds. For
that, you need a database.

 A database is just a data storage system that enables you to create, read, update, and delete
individual records—this set of four fundamental data management functions is often referred to
as a CRUD interface. Database records consist of one or more key fi elds that uniquely identify
the record, plus any other fi elds needed to represent the attributes of the entity that the record
represents.

 A Python dictionary can be used as a type of non‐persistent database in that you can use the
dictionary key to create, read, update, or delete a value associated with a given dictionary key;
that could be a tuple of fi elds, or a record. All that’s missing is the ability to store the data
between sessions. The concept of a dictionary as a database has been exploited over the years,
and various forms of persistent dictionaries exist. The oldest are the database management (DBM)
family of fi les.

 Using DBM as a Persistent Dictionary
 DBM fi les originated in UNIX but have been developed over the years for other platforms as
well. Python supports several variations. These variations are hidden by the dbm module that
automatically determines the best solution based on which libraries are supported by the OS
installation at hand. If no native DBM library can be found, a basic, pure Python version is used.

 The DBM system is a simplifi ed version of a dictionary in that both the keys and values must be
strings, which means that some data conversion and string formatting is necessary if you are using
non‐string data. The advantages of a DBM database are that it is simple to use, fast, and fairly
compact.

 You can see how DBM works by revisiting the tool‐hire example from Chapter 2 . When you last
looked at it you were working from a spreadsheet as the master data source. Suppose you decided
to migrate the solution to a pure Python application? You would need a storage mechanism for the
various data elements.

 Recall that the spreadsheet had two sheets, one representing the tools for hire and the other the
actual loans by the members. The record formats are shown in Table 3-1 .

Storing Data Using Python ❘ 105

 That design is fi ne for a human working with a spreadsheet, but if you want to convert it into a
full‐blown data application you need to overcome a number of issues with it:

➤ First, there is a lot of duplication between the two entities. The Name , Description , and
Owner fi elds are all duplicated, and therefore need to be changed in two places whenever they
are edited.

➤ Both entities use the ItemID as a key, which suggests the ItemID represents both a Tool and
a Loan which is confusing.

➤ Several fi elds store names of subscribers to the service, but it would be better to have a
separate entity to describe those members and reference that member entity from the other
entities.

➤ Finally, although this started out as a tool‐hire application, there is no reason to limit it to
tools. The members could just as well borrow books or DVDs or anything else. So rather
than restrict it to tools, you can rename the Tool entity as Item . And in keeping with that,
you can rename the application to refl ect its more generic approach. Call it LendyDB .

 TABLE 3-1: Tool‐Hire Data Entities

TOOL LOAN

ItemID ItemID

Name Name

Description Description

Owner Owner

Price Borrower

Condition Date Borrowed

Date Registered Date Returned

NOTE The changes to the tool‐hire data involving removal of duplication
and splitting of data into single entities are typical of those performed during
a data design process known as normalization . This is a highly formalized
discipline, and whole books have been written on the subject. This book only
touches on the principles, but it is an important component of good database
design. If you need to design a high‐performance, high‐volume database, you
should research normalization to become familiar with the technique.

 With very little effort, you can rearrange things to overcome the issues with the spreadsheet.
Table 3-2 shows the resulting database design.

 You now have three entities, so you need to store the data in three data fi les. You can use the DBM
format for this because each entity now has a unique identifi er fi eld, which, in string format, works

106 ❘ CHAPTER 3 MANAGING DATA

 TRY IT OUT Creating a LendyDB DBM Database (create‐lendyDB.py)

 In this Try It Out you translate the data from the tool‐hire spreadsheet into the LendyDB data format
and save it as three sets of DBM fi les. You then prove that it worked by reading the fi les and printing
their contents. To do so, follow these steps:

1. Create a project folder and name it LendyDB .

2. Start your favorite editor or IDE and type the following code (or load the fi le create‐lendyDB.py
from the book’s website):

 import dbm

 # ID, Name, Description, OwnerID, Price, Condition, DateRegistered
 items = [
 ['1','Lawnmower','Tool','1','$150','Excellent','2012‐01‐05'],
 ['2','Lawnmower','Tool','2','$370','Fair','2012‐04‐01'],
 ['3','Bike','Vehicle','3','$200','Good','2013‐03‐22'],
 ['4','Drill','Tool','4','$100','Good','2013‐10‐28'],
 ['5','Scarifier','Tool','5','$200','Average','2013‐09‐14'],
 ['6','Sprinkler','Tool','1','$80','Good','2014‐01‐06']
]

 # ID, Name, Email
 members = [
 ['1', 'Fred', 'fred@lendylib.org'],
 ['2', 'Mike', 'mike@gmail.com'],
 ['3', 'Joe', 'joe@joesmail.com'],
 ['4', 'Rob', 'rjb@somcorp.com'],
 ['5', 'Anne', 'annie@bigbiz.com'],
]

 TABLE 3-2: LendyDB Data Design

ITEM MEMBER LOAN

ItemID MemberID LoanID

Name Name ItemID

Description Email BorrowerID

OwnerID Date Borrowed

Price Date Returned

Condition

Date Registered

well as a DBM key. You need to populate these fi les with data, and that means reformatting the data
from the spreadsheet. You could write a Python program to do that but, because the sample data set
is small, it’s easier to just cut and paste the data into the new format. (Or you can extract the fi les
from the LendyDB folder of the Chapter3.zip fi le from the download site.) Once you have the data
you can save it into DBM fi les quite easily, as shown in the following Try It Out.

Storing Data Using Python ❘ 107

 # ID, ItemID, BorrowerID, DateBorrowed, DateReturned
 loans = [
 ['1','1','3','4/1/2012','4/26/2012'],
 ['2','2','5','9/5/2012','1/5/2013'],
 ['3','3','4','7/3/2013','7/22/2013'],
 ['4','4','1','11/19/2013','11/29/2013'],
 ['5','5','2','12/5/2013','None']
]

 def createDB(data, dbName):
 try:
 db = dbm.open(dbName, 'c')
 for datum in data:
 db[datum[0]] = ','.join(datum)
 finally:
 db.close()
 print(dbName, 'created')

 def readDB(dbName):
 try:
 db = dbm.open(dbName, 'r')
 print('Reading ', dbName)
 return [db[datum] for datum in db]
 finally:
 db.close()

 def main():
 print('Creating data files...')
 createDB(items, 'itemdb')
 createDB(members, 'memberdb')
 createDB(loans, 'loandb')

 print('reading data files...')
 print(readDB('itemdb'))
 print(readDB('memberdb'))
 print(readDB('loandb'))

 if __name__ == "__main__": main()

3. Save the fi le as create‐lendyDB.py and run it. Verify that your output looks like this:

 Creating data files...
 itemdb created
 memberdb created
 loandb created
 reading data files...
 Reading itemdb
 [b'2,Lawnmower,Tool,2,$370,Fair,2012-04-01', b'3,Bike,Vehicle,3,$200,
 Good,2013-03-22', b'1,Lawnmower,Tool,1,$150,Excellent,2012-01-05',
 b'6,Sprinkler,Tool,1,$80,Good,2014-01-06', b'4,Drill,Tool,4,$100,
 Good,2013-10-28', b'5,Scarifier,Tool,5,$200,Average,2013-09-14']
 Reading memberdb
 [b'2,Mike,mike@gmail.com', b'3,Joe,joe@joesmail.com', b'1,Fred,
 fred@lendylib.org', b'4,Rob,rjb@somcorp.com', b'5,Anne,annie@bigbiz.com']
 Reading loandb
 [b'2,2,5,9/5/2012,1/5/2013', b'3,3,4,7/3/2013,7/22/2013', b'1,1,3,4/1/2012,
 4/26/2012', b'4,4,1,11/19/2013,11/29/2013', b'5,5,2,12/5/2013,None']

108 ❘ CHAPTER 3 MANAGING DATA

4. Inspect the contents of your LendyDB folder. You should see three sets of three fi les: one set per
entity, with extensions of .bak , .dat , and .dir .

 How It Works

 You started off by importing the dbm module. (The module internally analyzes your system to
determine which DBM library is available and initializes it for use.) You then created the raw data items
by extracting the values from the Excel spreadsheet data. Note that you changed the item Description
fi eld so that it now records what kind of item you have (tool, book, DVD, and so on). You could have
created an extra fi eld instead and that would have been equally valid, but for this exercise you chose to
reuse the existing fi eld name.

 You then defi ned the createDB() function, which opens the DBM database fi le in c , for create mode.
(The c mode creates a new fi le if one does not exist or opens the existing fi le if it has already been
created.) You then used a for loop to read each data item and store it in the database using the fi rst
fi eld as the key and joining all the fi elds as a comma‐separated string for the value.

 You used a try/finally construct to ensure all data was written to the fi le and it was closed properly.

 The readDB() function is the converse operation to createDB() . It opens the fi le using r , for read mode,r

and then returns the contents as a list using a list comprehension. If you expected the database to be very
large you could have made this function into a generator instead and yielded each line in turn. Because
you don’t expect the lending library to contain vast numbers of items or members, returning a list is fi ne.

 Finally, the main() function calls the createDB() function once for each data entity. Note that you do
not provide any fi le extension; dbm does that itself. main() then checks that the data has been created
correctly by printing the output from readDB() for each database. The databases created by dbm consist
of three fi les. One fi le contains the actual data; the other two fi les hold the index information that dbm
uses to fi nd the records in the data fi le. It is this indexing mechanism that makes dbm so much faster
than simply searching sequentially through a plaintext fi le. You should not try to edit the dbm fi les
directly because this could corrupt the database.

NOTE The mode strings used for dbm fi le operations are slightly different m

from the normal fi le modes. The default r mode is for read‐only access to an
existing database. w is for read/write access to an existing database. c creates
a new database or opens an existing one. n always creates a new, empty
database.

 Having created your database, you can now use it to read or edit the contents. This is best
demonstrated from an interactive session at the Python prompt, so fi re up the Python interpreter
from the folder where you saved the data fi les and type the following:

>>> import dbm
>>> items = dbm.open('itemdb')
>>> members = dbm.open('memberdb')
>>> loans = dbm.open('loandb','w')

Storing Data Using Python ❘ 109

>>> loan2 = loans['2'].decode()
>>> loan2
 '2,2,5,9/5/2012,1/5/2013'
>>> loan2 = loan2.split(',')
>>> loan2
 ['2', '2', '5', '9/5/2012', '1/5/2013']
>>> item2 = items[loan2[1]].decode().split(',')
>>> item2
 ['2', 'Lawnmower', 'Tool', '2', '$370', 'Fair', '2012-04-01']
>>> member2 = members[loan2[2]].decode().split(',')
>>> member2
 ['5', 'Anne', 'annie@bigbiz.com']
>>> print('{} borrowed a {} on {}'.format(
... member2[1],item2[1],loan2[3]))
 Anne borrowed a Lawnmower on 9/5/2012

 With the preceding commands, you opened the three databases, extracted loan number 2 (using
decode() to convert from the dbm bytes format into a normal Python string), and split it into its
separate fi elds. You then extracted the corresponding member and item records by using the loan
record values as keys. Finally, you printed a message reporting the data in human‐readable form.

 Of course, you can create new records in the data set, too. Here is how you create a new loan
record:

>>> max(loans.keys()).decode()
 '5'
>>> key = int(max(loans.keys()).decode()) + 1
>>> newloan = [str(key),'2','1','4/5/2014']
>>> loans[str(key)] = ','.join(newloan)
>>> loans[str(key)]
 b'6,2,1,4/5/2014'

 With the preceding code, you used the built‐in max() function to fi nd the highest existing key value
in the loans database. You then created a new key by converting that maximum value to an integer
and adding one. Next, you used the string version of the new key value to create a new loan record.
You then wrote that record out to the database using the new key fi eld. Finally, you checked that the
new record existed by using the new key value to read the record back.

 You can see that DBM fi les can be used as a database, even with multiple entities. However, if the data
is not naturally string‐based, or has many fi elds, extracting the fi elds and converting to the appropriate
format becomes tedious. You can write helper functions or methods to do that conversion for you, but
there is an easier way. Python has a module that can store arbitrary Python objects to fi les and read
them back without you having to do any data conversion. It’s time to meet the pickle module.

 Using Pickle to Store and Retrieve Objects
 The pickle module is designed to convert Python objects into sequences of binary bytes. The object
types converted include the basic data types, such as integers and boolean values, as well as system‐
and user‐defi ned classes and even collections such as lists, tuples, and functions (except those
defi ned using lambda). A few restrictions exist on objects that can be pickled; these are described in
the module documentation.

110 ❘ CHAPTER 3 MANAGING DATA

pickle is not of itself a data management solution; it merely converts objects into binary sequences.
These sequences can be stored in binary fi les and read back again so they can be used as a form of
data persistence. But pickle does not provide any means to search the stored objects or retrieve a
single object from among many stored items. You must read the entire stored inventory back into
memory and access the objects that way. pickle is ideal when you just want to save the state of a
program so that you can start it up and continue from the same position as before (for example, if
you were playing a game).

NOTE Converting data to strings (or bytes) for storage or transmission
over a network is a common operation in computing; as such, the process
has a generic name: serialization (sometimes known as marshalling). Pickle
is a Python‐specifi c form of serialization. The JavaScript Object Notation
(JSON) data format is another form of serialization that is widely used across
languages, especially on the web. You fi nd out more about JSON in Chapter 5 .
Pickle is more powerful than JSON but less general because it is restricted to
Python applications.

 The pickle module provides several functions and classes, but you normally only use the dump()
and load() functions. The dump() function dumps an object (or objects) to a fi le and the load()
function reads an object from a fi le (usually an object previously written with dump).

 To see how this works, you can use the interactive prompt and experiment with the Item data
defi nition from LendyDB in the previous section. You start off by creating a single item and this
time, instead of using a single string for all the values, you use a tuple, like this:

>>> import pickle
>>> anItem = ['1','Lawnmower','Tool','1','$150','Excellent','2012‐01‐05']
>>> with open('item.pickle','wb') as pf:
... pickle.dump(anItem,pf)
...
>>> with open('item.pickle','rb') as pf:
... itemCopy = pickle.load(pf)
...
>>> print(itemCopy)
 ['1', 'Lawnmower', 'Tool', '1', '$150', 'Excellent', '2012-01-05']
>>>

 Notice that you have to use binary fi le modes for the pickle fi le. Most importantly, notice that you
got a list back from the fi le, not just a string. Of course, these elements are all strings, so just for fun
try pickling some different data types:

>>> funData = ('a string', True, 42, 3.14159, ['embedded', 'list'])
>>> with open('data.pickle','wb') as pf:
... pickle.dump(funData, pf)
...
>>> with open('data.pickle','rb') as pf:
... copyData = pickle.load(pf)
...

Storing Data Using Python ❘ 111

>>> print (copyData)
 ('a string', True, 42, 3.14159, ['embedded', 'list'])
>>>

 That all worked as expected, and you got back the same data that you put in. The only other thing
you need to know about pickle is that it is not secure. It potentially executes objects that get
unpickled, so you should never use pickle to read data received from untrusted sources. But for
local object persistence in a controlled environment, it does a great job very simply. If you are using
pickle in your own projects you should be aware that you can get some pickle ‐specifi c exceptions
raised so you might want to wrap your code inside a try/except construct.

 For your LendyDB project, the big problem with pickle is that you can only access the data by
reading the whole fi le into memory. Wouldn’t it be great if you could have an indexed fi le of
arbitrary Python objects by combining the features of pickle and dbm ? It turns out that you can,
and the work has been done for you in the shelve module.

 Accessing Objects with shelve
 The shelve module combines the dbm module’s ability to provide random access to fi les with m

pickle ’s ability to serialize Python objects. It is not a perfect solution in that the key fi eld must still
be a string and the security issue with pickle also applies to shelve , so you must ensure your data
sources are safe. Also, like dbm fi les the module cannot tell if you modify data read into memory,
so you must explicitly write any changes back to the fi le by reassigning to the same key. Finally,
dbm fi les impose some limits around the size of objects they can store and are not designed for
concurrent access from, for example, multiple threads or users. However, for many projects, shelve
provides a simple, lightweight, and fairly fast solution for storing and accessing data.

 So as far as you are concerned, shelve acts just like a dictionary. Almost everything you do with a
dictionary you can also do with shelve instances. The only difference is that the data remains on
the disk rather than being in memory. This has obvious speed implications, but on the other hand, it
means you can work with very large dictionaries even when memory is limited.

 Before you build LendyDB with shelve , you’ll experiment with some dummy data that includes a
bigger selection of data types, including a user‐defi ned class. The fi rst thing you do is create the
shelve database fi le (or, as they are sometimes known, a shelf):f

>>> shelf = shelve.open('fundata.shelve','c')

 The open function takes the same arguments as the dbm version discussed earlier. Because you are
creating a new shelf, you use mode c for create. Now you can start adding items to the shelf:

>>> shelf['tuple'] = (1,2,'a','b',True,False)
>>> shelf['lists'] = [[1,2,3],[True,False],[3.14159, ‐66]]

 With these commands, you saved two items, each of which contains a mix of Python data types,
and shelve happily stored them without any data conversion required by you. You can check that
shelve saved the items by reading the values back:

>>> shelf['tuple']
 (1, 2, 'a', 'b', True, False)
>>> shelf['lists']
 [[1, 2, 3], [True, False], [3.14159, -66]]

112 ❘ CHAPTER 3 MANAGING DATA

 To make the data changes permanent you need to call close (normally you would use a try/
finally construct or, unlike dbm , you can use a context manager style):

>>> shelf.close()
>>> shelf['tuple']
 Traceback (most recent call last):
 File "C:\Python33\lib\shelve.py", line 111, in __getitem__
 value = self.cache[key]
 KeyError: 'tuple'

 During handling of the above exception, another exception occurred:

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "C:\Python33\lib\shelve.py", line 113, in __getitem__
 f = BytesIO(self.dict[key.encode(self.keyencoding)])
 File "C:\Python33\lib\shelve.py", line 70, in closed
 raise ValueError('invalid operation on closed shelf')
 ValueError: invalid operation on closed shelf
 >>>

 You can see that after closing the shelf you can no longer access the data; you need to reopen the shelf.

 Now you can try something slightly more complex. First, you defi ne a class, create some instances,
and then store them to a shelf:

>>> class Test:
... def __init__(self,x,y):
... self.x = x
... self.y = y
... def show(self):
... print(self.x, self.y)
...
>>> shelf = shelve.open('test.shelve','c')
>>> a = Test(1,2)
>>> a.show()
 1 2
>>> b = Test('a','b')
>>> b.show()
 a b
>>> shelf['12'] = a
>>> shelf['ab'] = b

 So far, so good. You have saved two instances of the class. Getting them back is just as easy:

>>> shelf['12']
 <__main__.Test object at 0x01BD1570>
>>> shelf['ab']
 <__main__.Test object at 0x01BD1650>
>>> c = shelf['12']
>>> c.show()
 1 2
>>> d = shelf['ab']
>>> d.show()
 a b
>>> shelf.close()

Storing Data Using Python ❘ 113

 Notice that the object returned was reported as a __main __.Test object. That raises one very
important caveat about saving and restoring user‐defi ned classes. You must make sure that the
very same class defi nition used by shelf for the save is also available to the module that reads the
class back from the shelf, and the class defi nitions must be the same. If the class defi nition changes
between writing the data and reading it back, the result is unpredictable. The usual way to make
the class visible is to put it into its own module. That module can then be imported, and used in the
code that writes, as well as the code that reads, the shelf.

NOTE You can defi ne two special methods in your class (__getstate __ and
__setstate __) that tell pickle (and therefore shelve) exactly which attributes
to save; this can avoid some issues with changes to class defi nitions provided
these two methods themselves don't change. The documentation contains
examples of this mechanism at work. In general, it's best to avoid changes to
the class defi nitions if at all possible.

 It’s time to revisit your lending library, LendyDB . This time you replicate what you did with the dbm
database, but use the shelve module instead.

 TRY IT OUT Using shelve to Store LendyDB (shelve‐lendyDB.py)

 In this Try It Out, you replicate the functionality of the dbm example but use shelve instead. The code
is simpler as a result. To do this, complete the following steps:

1. Change into your LendyDB project folder.

2. Open your favorite editor or IDE and type in the following code (or load shelve‐lendyDB.py
from the LendyDB folder of the downloaded fi les):

 import shelve

 # ID, Name, Description, OwnerID, Price, Condition, DateRegistered
 items = [
 ['1','Lawnmower','Tool','1','$150','Excellent','2012‐01‐05'],
 ['2','Lawnmower','Tool','2','$370','Fair','2012‐04‐01'],
 ['3','Bike','Vehicle','3','$200','Good','2013‐03‐22'],
 ['4','Drill','Tool','4','$100','Good','2013‐10‐28'],
 ['5','Scarifier','Tool','5','$200','Average','2013‐09‐14'],
 ['6','Sprinkler','Tool','1','$80','Good','2014‐01‐06']
]

 # ID, Name, Email
 members = [
 ['1', 'Fred', 'fred@lendylib.org'],
 ['2', 'Mike', 'mike@gmail.com'],
 ['3', 'Joe', 'joe@joesmail.com'],
 ['4', 'Rob', 'rjb@somcorp.com'],
 ['5', 'Anne', 'annie@bigbiz.com'],
]

114 ❘ CHAPTER 3 MANAGING DATA

 # ID, ItemID, BorrowerID, DateBorrowed, DateReturned
 loans = [
 ['1','1','3','4/1/2012','4/26/2012'],
 ['2','2','5','9/5/2012','1/5/2013'],
 ['3','3','4','7/3/2013','7/22/2013'],
 ['4','4','1','11/19/2013','11/29/2013'],
 ['5','5','2','12/5/2013','None']
]

 def createDB(data, shelfname):
 try:
 shelf = shelve.open(shelfname,'c')
 for datum in data:
 shelf[datum[0]] = datum
 finally:
 shelf.close()

 def readDB(shelfname):
 try:
 shelf = shelve.open(shelfname,'r')
 return [shelf[key] for key in shelf]
 finally:
 shelf.close()
 def main():
 print('Creating data files...')
 createDB(items, 'itemshelf')
 createDB(members, 'membershelf')
 createDB(loans, 'loanshelf')

 print('reading items...')
 print(readDB('itemshelf'))
 print('reading members...')
 print(readDB('membershelf'))
 print('reading loans...')
 print(readDB('loanshelf'))

 if __name__ == "__main__": main()

3. Save the fi le as shelve‐lendyDB.py and run it.

4. Check that your output matches the following output:

 Creating data files...
 reading items...
 [['1', 'Lawnmower', 'Tool', '1', '$150', 'Excellent', '2012-01-05'], ['3', 'Bike
 ', 'Vehicle', '3', '$200', 'Good', '2013-03-22'], ['2', 'Lawnmower', 'Tool', '2'
 , '$370', 'Fair', '2012-04-01'], ['5', 'Scarifier', 'Tool', '5', '$200', 'Averag
 e', '2013-09-14'], ['4', 'Drill', 'Tool', '4', '$100', 'Good', '2013-10-28'], ['
 6', 'Sprinkler', 'Tool', '1', '$80', 'Good', '2014-01-06']]
 reading members...
 [['1', 'Fred', 'fred@lendylib.org'], ['3', 'Joe', 'joe@joesmail.com'], ['2', 'Mi
 ke', 'mike@gmail.com'], ['5', 'Anne', 'annie@bigbiz.com'], ['4', 'Rob', 'rjb@som
 corp.com']]
 reading loans...
 [['1', '1', '3', '4/1/2012', '4/26/2012'], ['3', '3', '4', '7/3/2013', '7/22/201
 3'], ['2', '2', '5', '9/5/2012', '1/5/2013'], ['5', '5', '2', '12/5/2013', 'None
 '], ['4', '4', '1', '11/19/2013', '11/29/2013']]

Storing Data Using Python ❘ 115

5. Start the Python interpreter and experiment with the data by typing the following:

>>> import shelve
 <module 'shelve' from 'C:\\Python33\\lib\\shelve.py'>
>>> items = shelve.open('itemshelf','w')
>>> members = shelve.open('membershelf','w')
>>> loans = shelve.open('loanshelf','w')
>>> loan2 = loans['2']
>>> loan2
 ['2', '2', '5', '9/5/2012', '1/5/2013']
>>> item2 = items[loan2[1]]
>>> item2
 ['2', 'Lawnmower', 'Tool', '2', '$370', 'Fair', '2012-04-01']
>>> member2 = members[loan2[2]]
>>> print('{} borrowed a {} on {}'.format(
... member2[1],item2[1],loan2[3]))
 Anne borrowed a Lawnmower on 9/5/2012

>>>

6. Add a new loan record by typing the following:

>>> key = int(max(loans.keys())) + 1
>>> newloan = [str(key), '2','1','4/5/2014']
>>> loans[str(key)] = newloan
>>> loans[str(key)]
 ['6', '2', '1', '4/5/2014']
>>> loans.close() # make the change permanent

 How It Works

 The fi le is very similar to the one using dbm . You start off by importing shelve instead of dbm . The
three sets of data defi nitions that follow are identical to the earlier example. You then defi ne the two
functions: createDB() and readDB() .

 This is where the shelve version starts to simplify the code. For creation, the shelf is opened and the
data is written to the shelf directly instead of having to use the string join() method. For reading,
things are almost identical but you use a list comprehension to retrieve, store, and return the shelf
content.

 The main() function is also very similar to the dbm example except for a few tweaks to the printed
messages.

 At this stage the shelve solution doesn’t seem to have been a huge advantage. However, when you start
to access the database and modify it, the situation begins to improve. You open the three shelves and
repeat the exercises from the dbm section. But this time you do not need to split() the values to get
a list and you do not need to mess with decode() to get from bytes to normal strings. This makes the
code shorter and easier to read. (If the records had contained mixed types, the savings would have been
even more obvious.)

 Finally, you create a new loan record. Again, this does not require any decoding or joining of strings.
When you close the shelf, you ensure the data is written to disk.

116 ❘ CHAPTER 3 MANAGING DATA

 You’ve now seen the various options Python offers for storing objects and retrieving them. The
shelve module, in particular, offers a persistence mechanism that is compact, fairly fast, and
simple to use. If you have a solution that uses Python dictionaries in memory, switching to a shelve
solution is almost a trivial task. However, this is still a long way short of what is needed for complex
data handling. Operations like fi nding a set of records based on non‐key values or sorting the data
essentially still require a complete read of the data into memory. The only way to avoid that is to
move to a full‐blown database solution. However, before you look at that you should consider some
aids that Python provides to make data analysis of in‐memory data sets easier.

 ANALYZING DATA WITH PYTHON

 Once you have a set of data, you usually want to ask questions about it. For example, in the lending
library example, you might want to know the total cost of the items or even the average cost of an
item. You might want to know who contributed the most items, which items are out on loan at any
given time, and so on. You can do that using Python, and you could write functions using all the
standard Python features that would answer those questions. However, Python has some powerful
features that often get overlooked that are especially useful for analyzing data sets.

 In this section you look at some of the built‐in features you can use, especially the functional
programming features of the language. Then you turn your attention to the itertools module,
which offers more advanced features that often save time and computing resources when compared
with the standard alternatives.

 Analyzing Data Using Built‐In Features of Python
 When you analyze data, it is important to select the right data structure. For example, Python includes
a set data type that automatically eliminates duplicates. If you care only about unique values,
converting (or extracting) the data to a set can simplify the process considerably. Similarly, using Python
dictionaries to provide keyword access rather than numeric indices often improves code readability,
and thus reliability (you saw an example of that in Chapter 2 that compared the CSV dictionary-based
reader with the standard tuple-based reader). If you are fi nding that your code is getting complicated,
it’s often worthwhile to stop and consider whether a different data structure would help.

 In addition to the wide variety of data structures, Python also offers many built‐in and standard
library functions that you can use, such as any , y all , map , sorted , and slicing. (Slicing isn’t
technically a function but an operation, however it does return a value in a similar way that a
function would.) When you combine these functions with Python generator expressions and list
comprehensions, you have a powerful toolkit for slicing and dicing your data.

 You can apply these techniques to your LendyDB data to answer the questions raised in the opening
paragraph of this “Analyzing Data with Python” section. You can try that now.

 TRY IT OUT Analyzing LendyDB with Python (lendydata.py)

 In this Try It Out, you use standard Python features to answer the questions about the LendyDB
data raised earlier: 1) What is the total cost of all items? 2) What is the average cost of an item?

Analyzing Data with Python ❘ 117

3) Who contributed the most items? 4) Which items are currently on loan? To do this, complete the
following steps.

1. Create a module called lendydata.py containing the following code (or load it from the Analysis
folder of the downloadable fi les):

 items = [
 ['ID','Name', 'Description', 'OwnerID', 'Price', 'Condition', 'Registered'],
 ['1','Lawnmower','Tool','1','$150','Excellent','2012‐01‐05'],
 ['2','Lawnmower','Tool','2','$370','Fair','2012‐04‐01'],
 ['3','Bike','Vehicle','3','$200','Good','2013‐03‐22'],
 ['4','Drill','Tool','4','$100','Good','2013‐10‐28'],
 ['5','Scarifier','Tool','5','$200','Average','2013‐09‐14'],
 ['6','Sprinkler','Tool','1','$80','Good','2014‐01‐06']
]

 members = [
 ['ID', 'Name', 'Email'],
 ['1', 'Fred', 'fred@lendylib.org'],
 ['2', 'Mike', 'mike@gmail.com'],
 ['3', 'Joe', 'joe@joesmail.com'],
 ['4', 'Rob', 'rjb@somcorp.com'],
 ['5', 'Anne', 'annie@bigbiz.com'],
]

 loans = [
 ['ID','ItemID','BorrowerID','DateBorrowed','DateReturned'],
 ['1','1','3','4/1/2012','4/26/2012'],
 ['2','2','5','9/5/2012','1/5/2013'],
 ['3','3','4','7/3/2013','7/22/2013'],
 ['4','4','1','11/19/2013','11/29/2013'],
 ['5','5','2','12/5/2013','None']
]

2. Start the Python interpreter and import the data using the following command:

 >>> from lendydata import *

3. To answer the question, “What is the total cost of all items?” type the following code:

>>> def cost(item):
... return int(item[4][1:])
...
>>> cost(items[2])
 370
>>> sum(cost(item) for item in items[1:])
 1100

4. To answer the question, “What is the average cost of an item?” type this:

 >>> sum(cost(item) for item in items[1:])/len(items)‐1
 183.33333333334
 >>>

5. To answer the question, “Who contributed the most items?” type this:

>>> def owner(item): return item[3]
...

118 ❘ CHAPTER 3 MANAGING DATA

>>> for member in members[1:]:
... count = 0
... for item in items[1:]:
... if owner(item) == member[0]:
... count += 1
... print(member[1],':',count)
...
 Fred : 2
 Mike : 1
 Joe : 1
 Rob : 1
 Anne : 1
 >>>

6. To answer the question, “Which items are currently on loan?” type this:

>>> def onLoan(loan): return loan[‐1] == 'None'
...
>>> [items[int(loan[1])] for loan in loans if onLoan(loan)]
 [['5', 'Scarifier', 'Tool', '5', '$200', 'Average', '2013-09-14']]
>>>

 How It Works

 You started by creating a Python module containing your sample data and importing that data into the
interpreter. Note the handy trick of using the fi rst entry (having index 0) in each data section to store a
list of that section’s fi eld descriptions.

 This has two useful effects:

1. Every ID value of any given data section (of the three sections) now matches the zero‐relative index
of that same row in its section. For example, the ‘Mike’ row of the members data section, having
an ID of ‘3’, can now be accessed as members[3] .

2. You have access to the fi eld names, both programmatically and as an aide‐de‐memoir in the
interpreter, by accessing the fi rst record.

 The downside is that, in your processing code, you must remember to adjust by 1 the length, and
indices, of the data sections, to account for the extra header‐line record of each section.

 You then used standard Python tools to answer several questions about the data using standard
Python tools. For each question you defi ned a small helper function that typically just extracted a
fi eld from a data entry. For the fi rst question it returned the cost as an integer value by extracting
the string value and stripping the dollar sign from the front before converting to an integer. You
then used Python’s built‐in sum() function applied to a generator expression to calculate the total
cost of the items. And you computed the average item cost by dividing that total cost by the number
of items.

 To fi nd out who contributed which items, you defi ned a function owner() that simply extracted the
ownerID fi eld from an item record. You then looped over all the members checking how many items
each member owned.

 Finally, you determined which items were out on loan by creating a helper function, called
onLoan() , that returned a boolean result depending on whether or not the DateReturned fi eld

Analyzing Data with Python ❘ 119

was None . You then used this in a list comprehension with a fi lter condition using the onLoan()
function.

 In the preceding Try It Out you saw that you can use the built‐in functions and data structures
combined with loops and generators to answer most questions about data. The problem is that for
volumes of data this technique requires storing large lists in memory and may involve looping over
those lists many times. This can become very slow and resource‐intensive. The Python itertools
module provides several functions that can reduce the load signifi cantly.

 Analyzing Data with itertools
 The itertools module of the standard Python library provides a set of tools that utilize functional
programming principles to consume iterable objects and produce other iterables as results. This
means that the functions can be combined to build sophisticated data fi lters.

 Before looking at how itertools can be used on the LendyDB data, you should look at some of the
functions provided using simpler data sets. These functions are powerful, but operate in slightly
different ways than most of the functions you have dealt with in the past. In particular, they are all
geared around processing iterators. You should recall that all the standard Python collections, as
well as objects such as fi les, are iterators. You can also create your own custom iterators by defi ning
some methods that adhere to the Python iterator protocol. The simplest iterators are strings, so
that’s mainly what the documentation uses to demonstrate the itertools functions, but remember
that these functions work with any kind of iterator, not just strings.

 Utility Functions
 The fi rst group of functions you look at includes relatively simple functions that you typically use to
provide input to the other functions in the module. The count() function works a lot like the built‐
in range() function, except where range() generates numbers up to a limit, count() generates an
indefi nite series of numbers from a start point, incrementing by a given, optional, stepsize . It looks
like this:

>>> import itertools as it
>>> for n in it.count(15,2) :
... if n < 40: print(n, end=' ')
... else: break
...
 15 17 19 21 23 25 27 29 31 33 35 37 39

 The repeat() function is even simpler; it just repeats its argument continuously, or for the number
of repetitions specifi ed, like this:

>>> for n in range(7):
... print(next(it.repeat('yes ')), end='')
...
 yes yes yes yes yes yes yes >>>
>>> list(it.repeat(6,3))
 [6, 6, 6]
>>>

120 ❘ CHAPTER 3 MANAGING DATA

 The cycle() function rotates over the input sequence over and over again. This is useful for building
round‐robin–style iterations for load balancing or resource allocation. Consider the case where you
have a number of resources and want to allocate data to each resource in turn. You can build a list
of resources, then cycle over that list until you run out of data. You can simulate this technique
using lists as resources, like this:

>>> res1 = []
>>> res2 = []
>>> res3 = []
>>> resources = it.cycle([res1,res2,res3])
>>> for n in range(30):
... res = next(resources)
... res.append(n)
...
>>> res1
 [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
>>> res2
 [1, 4, 7, 10, 13, 16, 19, 22, 25, 28]
>>> res3
 [2, 5, 8, 11, 14, 17, 20, 23, 26, 29]
>>>

 The chain() function concatenates all the input arguments into a single collection and then returns
each element. If the arguments were all of the same type, you could achieve the same result by adding
the collections together with the plus operator, but chain() also works for types of collections that
are not compatible with the plus operator. Here is an example using a list, a string, and a set:

>>> items = it.chain([1,2,3],'astring',{'a','set','of','strings'})
>>> for item in items:
... print(item)
...
 1
 2
 3
 a
 s
 t
 r
 i
 n
 g
 a
 of
 set
 strings

NOTE Several of the itertools functions produce a potentially infi nite series
of output data. This has the potential to lock your program into an infi nite
loop. You need to take extra care to ensure you provide an exit mechanism
when using these functions.

Analyzing Data with Python ❘ 121

 Finally, there is the islice() function that works like the slice operator but, because it uses a
generator, is more memory effi cient. It does have one signifi cant difference from the normal slice:
You cannot use negative indices to count backward from the end, because iterators do not always
have well‐defi ned endpoints.

 You could use islice() like this:

>>> data = list(range(20))
>>> data[3:12:2]
 [3, 5, 7, 9, 11]
>>> for d in it.islice(data,3,12,2): print(d, end=' ')
...
 3 5 7 9 11

itertools can do much more than just generate data. It can also help analyze data using a variety
of data processing functions.

 Data Processing Functions
itertools has many data processing functions that either take input data and transform
the elements, or fi lter the contents in some way. By combining these functions you can build
sophisticated data processing tools. One feature that many of these functions have in common is
that they accept a function object as a parameter.

NOTE Passing functions as arguments is a common feature of functional
programming style and can seem a little strange at fi rst. You just need to
remember that, in Python, a function is an object, too. A function name is
just like any other variable; it is simply a reference to a function object. As
such, you can pass a function name, such as f, into another function, say, g,
and function g can call the input function f internally. Functions that return a
boolean result are often referred to as predicates .

 The compress() function acts a little bit like a higher‐order version of the bitmasks that you
explored in Chapters 1 and 2. It takes a collection of data as its fi rst argument and a collection of
boolean values as its second. It returns those items of the fi rst collection that correspond to the True
values of the second collection. Here is a basic example:

 >>> for item in it.compress([1,2,3,4,5],[False,True,False,0,1]):
 ... print (item)
 ...
 2
 5

 Note that the boolean values do not need to be pure boolean values; they can be anything that
Python can convert to boolean, even expressions. (The itertools.filterfalse() function works
in exactly the same way, but in reverse; it returns those elements whose corresponding boolean fl ags
are False instead of True .)

122 ❘ CHAPTER 3 MANAGING DATA

 Likewise, the dropwhile() and takewhile() functions have related, but opposite, effects. Both
take an input function and a collection, or iterator, as arguments and then apply the function to the
input data elements one at a time. dropwhile() ignores all of the input elements until the function
argument evaluates to False , whereas takewhile() returns the elements until the result is False .
You can see the difference in these examples that use the same input data and argument function:

>>> def singleDigit(n): return n < 10
...
>>> for n in it.dropwhile(singleDigit,range(20)): print(n,end=' ')
...
 10 11 12 13 14 15 16 17 18 19
>>> for n in it.takewhile(singleDigit,range(20)): print(n,end=' ')
...
 0 1 2 3 4 5 6 7 8 9

 Note that both of these functions stop processing the data after the fi rst time a trigger is detected.
Consider this example:

>>> for n in it .dropwhile(singleDigit,[1,2,12,4,20,7,999]): print(n,end=' ')
...
 12 4 20 7 999

 Notice that the output includes the single‐digit numbers following the fi rst non–single‐digit number,
for the reason just indicated: Once dropwhile stops dropping, nothing else is dropped thereafter.
(And takewhile's taking behavior is analogous.)

 The accumulate() function applies its input function to each element of the input data along with
the result of the previous operation. (The default function is addition and the fi rst result is always
the fi rst element.) Thus, for an input data set of [1,2,3,4] the initial value, result1 , is 1 , followed
by the function applied to result1 and 2 to produce result2 , and to result2 and 3 to create
result3 , and to result3 and 4 to create result4 . The output is result1 , result2 , result3 , and
result4 . (The fi nal result value is the same as applying the reduce() function from the functools
module.) Here is an example using accumulate()'s default addition operator:

>>> for n in it.accumulate([1,2,3,4,]): print(n, end=' ')
 ...
 1 3 6 10

 Taming the Vagaries of groupby()
groupby() is one of the most useful and powerful of the itertools functions, but it has a number
of little foibles that can catch you out. Its basic role is to collect the input data into groups based on
a key derived by an input function and return those groups as iterators in their own right.

 The fi rst problem is that the function only groups for as long as it fi nds the same key, but it creates
a new group if a new key is found. Then, if the original key is found later in the sequence, it creates
a new group with the same key rather than adding the new element to the original group. To avoid
this behavior, it is best if the input data is sorted using the same key function used by groupby() .

 The second snag is that the groups generated by groupby() are not really independent iterators;
they are effectively views into the original input collection. Thus, if the function moves on to the

Analyzing Data with Python ❘ 123

next group of data, the previous groups become invalid. The only way to retain the groups for later
processing is to copy them into a separate container—a list, for example.

 To reinforce these concepts, you look at an example that produces a set of data groups that can
be processed independently. The example is built up to the fi nal, correct solution starting from an
initial, naïve, but broken solution.

 First, you defi ne several groups of data and use the built‐in all() function as a key. The all()
function returns True when all of its input data items are True.

>>> data = [[1,2,3,4,5],[6,7,8,9,0],[0,2,4,6,8],[1,3,5,7,9]]
>>> for d in data: print(all(d))
 ...
 True
 False
 False
 True

 Next, you apply the groupby() function to your data:

>>> for ky,grp in it.groupby(data,key=all):
... print(ky, grp)
 ...
 True <itertools._grouper object at 0x7fd3ee2c>
 False <itertools._grouper object at 0x7fd3ee8c>
 True <itertools._grouper object at 0x7fd3ee2c>

 You can see that groupby() returned two separate groups both keyed on True . To avoid that you
must sort the data before processing it with groupby() , like this:

>>> for ky,grp in it.groupby(sorted(data,key=all), key=all):
... print(ky, grp)
 ...
 False <itertools._grouper object at 0x7fd3ef4c>
 True <itertools._grouper object at 0x7fd3ee2c>

 Now you want to try to access these groups, so you store each one in a variable:

>>> for ky,grp in it.groupby(sorted(data,key=all), key=all):
... if ky: trueset = grp
... else: falseset=grp
...
>>> for item in falseset: print(item)
...
>>>

 As you can see, falseset is empty. That’s because the falseset group was created fi rst and then
the underlying iterator (grp) moved on, thus invalidating the value just stored in falseset . To save
the sets for later access, you need to store them as lists, like this:

>>> groups = {True:[], False:[]}
>>> for ky,grp in it.groupby(sorted(data,key=all), key=all):
... groups[ky].append(list(grp))
...

124 ❘ CHAPTER 3 MANAGING DATA

>>> groups
 {False: [[[6, 7, 8, 9, 0], [0, 2, 4, 6, 8]]],
 True: [[[1, 2, 3, 4, 5], [1, 3, 5, 7, 9]]]}
 >>>

 Notice that you created a dictionary whose keys are the expected ones (True and False), and whose
values are lists. You then had to append the groups, converted to lists, as you found them. This
may seem complex, but if you remember to sort the input data fi rst and copy the groups into lists as
groupby() generates them, you will fi nd that groupby() is a powerful and useful tool.

 Using itertools to Analyze LendyDB Data
 You’ve seen what itertools has to offer, so now it’s time to try using it with your LendyDB data.
You want to repeat the analysis that you did using the standard tools, but see how the itertools
functions can be brought to bear, too. Remember, the real point of the itertools module is not so
much that it gives you new features, but rather that it lets you process large volumes of data more
effi ciently. Given the tiny amount of data you are using in this chapter, you won’t actually see any
effi ciency improvements, but as you scale the data volumes up, it does make a difference.

 TRY IT OUT Analyzing the LendyDB Data Using itertools

 In this Try It Out, you repeat the earlier analysis of the LendyDB data using some of the itertools
functions. To achieve this, follow these steps:

1. Change into the folder where you stored the lendydata.py fi le.

2. Start the Python interpreter and import the data fi le using the following command:

>>> from lendydata import *

3. Import the itertools module:

>>> from itertools import *

4. To answer the question, “What is the total cost of all items?” type this:

>>> def cost(item):
... return int(item[4][1:])
...
>>> for n in islice(accumulate(cost(item) for item in items[1:]),
... len(items)‐2,None):
... print(n)
...
1100

5. To answer the question, “What is the average cost of an item?” type this:

>>> n/len(items)‐1
183.33333333334
>>>

6. To answer the question, “Who contributed the most items?” type this:

>>> def owner(item): return item[3]
...

Managing Data Using SQL ❘ 125

>>> owners = {}
>>> for ky,grp in groupby(sorted(items[1:], key=owner), key=owner):
... owners[ky] = len(list(grp))
...
>>> for member in members[1:]:
... print(member[1],' : ', owners[member[0]])
...
 Fred : 2
 Mike : 1
 Joe : 1
 Rob : 1
 Anne : 1

7. To answer the question, “Which items are currently on loan?” type this:

>>> def returned(loan): return not (loan[‐1] == 'None')
...
>>> [items[int(loan[1])] for loan in filterfalse(returned,loans)]
 [['5', 'Scarifier', 'Tool', '5', '$200', 'Average', '2013-09-14']]

 How It Works

 As in the previous Try It Out you created small helper functions to improve the readability of the code.
To answer the fi rst question you used the accumulate() function to produce a running count of the costs,
then used islice() to extract only the last item by specifying a start index of len(items)‐2 and a stop
index of None . (You had to subtract 2 to account for the headers line at the start of items .) Because the
result, n , was still in scope, you could calculate the average by simply dividing n by the number of items.

 The question of who contributed most is answered quite differently from the previous Try It Out
because you used groupby() to gather the related items. In this case you are interested only in the size
of the group, not the details, so you used len() to calculate the size of the group. You then iterated over
the members, in conventional style, to print the names and counts.

 You answered the fi nal question by inverting the logic of the helper function, returned() , to return
whether an item has been returned. By using that in the filterfalse() function, you could fi nd those
items that had not been returned and, therefore, were still out on loan.

 In this section you have seen how a mix of the conventional Python data structures, functions,
and operators, combined with the functional techniques of the itertools module, enable you to
perform complex analysis of quite large data sets. However, there comes a point when the volume
and complexity of the data call for another approach, and that means introducing a new technology:
relational databases powered by the Structured Query Language (SQL).

 MANAGING DATA USING SQL

 In this section you are introduced to some of the concepts behind SQL and relational databases. You
fi nd out how to use SQL to create data tables and populate them with data, and how to manipulate
the data contained within those tables. You go on to link tables to capture the relationships between
data and fi nally apply all of these techniques to your lending library data.

126 ❘ CHAPTER 3 MANAGING DATA

Relational Database Concepts
The basic principle of a relational database is very simple. It’s simply a set of two‐dimensional
tables . Columns are known as fi elds and rows as records . Field values can refer to other records,
either in the same table, or in another table—that’s the “relational” part.

A table holding data about employees might look like Table 3-3 .

TABLE 3-3: Employee Data

EMPID NAME HIREDATE GRADE MANAGERID

1020304 John Brown 20030623 Foreman 1020311

1020305 Fred Smith 20040302 Laborer 1020304

1020307 Anne Jones 19991125 Laborer 1020304

 RELATIONSHIP CARDINALITY

 Relationships within a database link two or more entities together. The number
of each entity involved in the relationship is known as its cardinality. The y
relationships can be one‐to‐one, where one record links to exactly one other record.
They can also be one‐to‐many, such as the employee‐to‐manager relationship in the
example.

 A relationship can also be many‐to‐many. This relationship is best explained by an
example. Suppose you introduced a new table of tasks. Each task could have many
employees assigned to it. At the same time, each employee could have several tasks.
There is, therefore, a many‐to‐many relationship between employees and tasks.

 Much of the work in any database application is focused on maintaining the many‐
to‐many relationships within the database. Several forms of graphical notation
(known as entity‐relationship diagrams) are used to describe database structures. s
Most of these notations have a strong emphasis on showing the cardinality of each
relationship.

Notice a couple of conventions demonstrated by this data:

➤ You have an identifi er (ID) fi eld to uniquely identify each row; this ID is known as the
primary key . It is possible to have other keys too, but conventionally, there is nearly always
an ID fi eld to uniquely identify a record. This helps should an employee decide to change her
name, for example.

➤ You can link one row to another by having a fi eld that holds the primary key value for
another row. Thus an employee’s manager is identifi ed by the ManagerID fi eld, which is
simply a reference to another EmpID entry in the same table. Looking at your data, you see
that both Fred and Anne are managed by John who is, in turn, managed by someone else,
whose details are not visible in this section of the table.

Managing Data Using SQL ❘ 127

 To determine employee John Brown’s salary, you would fi rst look up John’s grade in the main
employee data table. You would then consult the Salary table to learn what an employee of that
grade is paid. Thus you can see that John, a foreman, is paid $60,000.

 Relational databases take their name from this ability to link table rows together in relationships .
Other database types include network databases, hierarchical databases, and l fl at‐fi le databases
(which includes the DBM databases you looked at earlier in the chapter). For large volumes of data,
relational databases are by far the most common.

 You can do much more sophisticated queries, too, and you look at how to do this in the next few
sections. But before you can query anything, you need to create a database and insert some data.

 Structured Query Language
 The Structured Query Language, or SQL (pronounced either as Sequel or as the letters S‐Q‐L), is
the standard software tool for manipulating relational databases. In SQL an expression is often
referred to as a query , regardless of whether it actually returns any data. y

 SQL is comprised of two parts. The fi rst is the data defi nition language (DDL). This is the set of
commands used to create and alter the shape of the database itself—its structure. DDL tends to be
quite specifi c to each database, with each vendor’s DLL having a slightly different syntax.

 The other part of SQL is the data manipulation language (DML). DML, used to manipulate
database content rather than structure, is much more highly standardized between databases. You
spend the majority of your time using DML rather than DDL.

 TABLE 3-4: Salary Data

GRADE AMOUNT

000010 Foreman 60000

 000011 Laborer 35000

NOTE In this book you use the SQLite database system, which has three big
advantages. First, it has an API module provided as part of Python's standard
library. Second, it is a simple dialect of SQL to learn. Third, and by no means
least, SQLite works from a single data fi le and code library so you don't need
to set up a database server or worry about any of the database administration
duties normally associated with maintaining relational databases.

 You only look briefl y at DDL, just enough to create (with the CREATE command) and destroy
(with the DROP command) your database tables so that you can move on to fi lling them with data,
retrieving that data in interesting ways, and even modifying it, using the DML commands (INSERT ,
SELECT , UPDATE , and DELETE).

 You are not restricted to linking data within a single table. You can create another table for Salary. y

A salary can be related to Grade , and so you get a second table like Table 3-4 .

128 ❘ CHAPTER 3 MANAGING DATA

 Creating Tables
 To create a table in SQL you use the CREATE command. It is quite easy to use and takes the
following form:

 CREATE TABLE tablename (fieldName, fieldName,....);

NOTE To use the SQL interactive prompt you need to download the SQLite
interpreter because it does not come with Python. You can fi nd it on the
SQLite website at http://www.sqlite.org/download.html . The versions may
not match exactly, but the database format is suffi ciently stable that the latest
interpreter can generally be used with the Python sqlite3 module without
diffi culty, although the versions might not match exactly. You only need to
download the binary for your OS labeled “shell”; the libraries are already
installed with Python. (Linux users can usually fi nd SQLite in the package
manager, and this is the easiest way to install it, if available.)

 You can fi nd the offi cial guide to the SQLite interpreter at http://sqlite
.org/cli.html .

NOTE SQL statements in the interpreter must be terminated with a semicolon.
This is because SQL statements can span multiple lines, so the interpreter
needs to be told when you are done. SQL executed by Python code is passed
as a single, complete string, so a closing semicolon is not necessary.

 SQL is not case‐sensitive and, unlike Python, does not care about whitespace or indentation levels.
An informal style convention is used, but it is not rigidly adhered to, and SQL itself cares not a jot!

 Try creating your Employee and Salary tables in SQLite. The fi rst thing to do is start the
interpreter, which you do simply by invoking sqlite3 with a single command‐line argument, the
database fi lename. If that database fi le exists, the interpreter will open it, otherwise it will create a
new database fi le by that name. (If you omit the database fi lename entirely, the interpreter will still
process your commands, but your data will exist only in RAM, and will disappear irretrievably
when you exit the interpreter.)

 Thus, to create an employee database you execute the SQLite interpreter like this:

 $ sqlite3 employee.db
 SQLite version 3.8.2 2013-12-06 14:53:30
 Enter ".help" for instructions
 Enter SQL statements terminated with a ";"
 sqlite>

 The interpreter creates an empty database called employee.db and leaves you at the sqlite>
prompt, ready to type SQL commands. You are now ready to create some tables:

 sqlite> create table Employee
 ...> (EmpID,Name,HireDate,Grade,ManagerID);

http://www.sqlite.org/download.html
http://sqlite.org/cli.html
http://sqlite.org/cli.html

Managing Data Using SQL ❘ 129

 sqlite> create table Salary
 ...> (SalaryID, Grade,Amount);
 sqlite> .tables
 Employee Salary
 sqlite>

 Note that you moved the list of fi elds into a separate line, making it easier to see them. The fi elds
are listed by name but have no other defi ning information such as data type. This is a peculiarity
of SQLite; most databases require you to specify the type along with the name. It is possible
to specify types in SQLite too, but it is not essential (you look at this in more detail later in
the chapter).

 Also note that you tested that the create statements had worked by using the .tables command to
list all the tables in the database. The SQLite interpreter supports several of these dot commands
that you use to fi nd out about your database. .help provides a list of the commands along with a
brief description of their functions.

 You can do lots of other things when you create a table. As well as declaring the types of data in
each column, you can also specify constraints on the values. Constraints are rules that the database
enforces to help ensure the data remains consistent. For example, NOT NULL means the value is
mandatory and must be fi lled in, and UNIQUE means that no other record can have the same value
in that fi eld. Usually you specify the primary key fi eld to be NOT NULL and UNIQUE . You can also
specify which fi eld is the PRIMARY KEY . You look more closely at these more advanced creation
options later in the chapter.

NOTE SQLite provides a modest set of constraints that you can apply. Some
commercial databases provide very rich and powerful constraint options, and
it is tempting to use constraints to implement much of the business logic
around the data. This is usually a mistake because it forces you to insert or
modify your data in a particular order, which can become increasingly diffi cult
to fi gure out. It is best to keep constraints for controlling data integrity and
build the application logic into the program code.

 For now you leave the basic table defi nition as it is and move on to the more interesting topic of
actually creating some data.

 Inserting Data
 The fi rst thing to do after creating the tables is to fi ll them with data. You do this using the SQL
INSERT statement. The structure is very simple:

 INSERT INTO Tablename (column1, column2...) VALUES (value1, value2...);

 An alternate form of INSERT uses a query to select data from elsewhere in the database, but that’s
too advanced at this stage. You can read about it in the SQLite manual, which you can fi nd at:
http://sqlite.org/lang.html .

http://sqlite.org/lang.html

130 ❘ CHAPTER 3 MANAGING DATA

 To insert some rows into your Employee table, do the following:

 sqlite> insert into Employee (EmpID, Name, HireDate, Grade, ManagerID)
 ...> values ('1020304','John Brown','20030623','Foreman','1020311');
 sqlite> insert into Employee (EmpID, Name, HireDate, Grade, ManagerID)
 ...> values ('1020305','Fred Smith','20040302','Laborer','1020304');
 sqlite> insert into Employee (EmpID, Name, HireDate, Grade, ManagerID)
 ...> values ('1020307','Anne Jones','19991125','Laborer','1020304');

 And for the Salary table:

 sqlite> insert into Salary (SalaryID, Grade,Amount)
 ...> values('000010','Foreman',60000);
 sqlite> insert into Salary (SalaryID, Grade,Amount)
 ...> values('000011','Laborer',35000);

 And that’s it. You have created two tables and populated them with data corresponding to the
values described in the introduction. Notice that you used actual numbers for the salary amount,
not just string representations. SQLite tries to determine the correct data type based on the INSERT
input values we provide. Because it makes the most sense to have SQLite maintain salary data as
a numeric type, it behooves you to inform SQLite of that preference in your INSERT statements by
specifying salary data in numeric—not string—format.

 Now you are ready to start experimenting with the data. This is where the fun starts!

 Reading Data
 You read data from a database using SQL’s SELECT command. SELECT is the very heart of SQL and
has the most complex structure of all the SQL commands. You start with the most basic form and
add additional features as you go. The most basic SELECT statement looks like this:

 SELECT column1, column2... FROM table1,table2...;

NOTE You can use the special wildcard character (*(() instead of a list of fi eld *
names to return all of the fi elds. You should only use this when working at
the interactive prompt. If you were to use it in application code and someone
later added an extra column to the database, your application would break.
By specifying the exact fi elds to be returned, your code becomes much more
resilient to changes in the database.

 To select the names of all employees in your database, you use:

 sqlite> SELECT Name from Employee;
 John Brown
 Fred Smith
 Anne Jones

 You are rewarded with a list of all of the names in the Employee table. In this case that’s only three,
but if you have a big database that’s probably going to be more information than you want. To

Managing Data Using SQL ❘ 131

restrict the output, you need to be able to limit your search somewhat. SQL enables you to do this
by adding a WHERE clause to your SELECT statement, like this:

 SELECT col1,col2... FROM table1,table2... WHERE condition;

 The condition is an arbitrarily complex boolean expression that can even include nested SELECT
statements within it.

 Now, add a WHERE clause to refi ne your search of names. This time you only look for names of
employees who are laborers:

 sqlite> SELECT Name
 ...> FROM Employee
 ...> WHERE Employee.Grade = 'Laborer';
 Fred Smith
 Anne Jones

 You only get two names back, not three (because John Brown is not a laborer). You can extend the
WHERE condition using boolean operators such as AND , OR , NOT , and so on. Note that = in a WHERE
condition performs a case‐sensitive test. When using the = test, the case of the string is important;
testing for 'laborer' would not have worked!

 SQLite has some functions that can be used to manipulate strings, but it also has a comparison
operator called LIKE that uses % as a wildcard character for more fl exible searching. The example
just shown, written using LIKE , looks like this:

 sqlite> SELECT Name FROM Employee
 ...> WHERE lower(employee.grade) LIKE 'lab%';
 Fred Smith
 Anne Jones

 After converting grade to lowercase, you then tested it for an initial substring of 'lab' . When used
in conjunction with lower() , upper() , and SQLite’s other string‐manipulation functions, LIKE can
greatly increase the scope of your text‐based searches. The SQLite documentation has a full list of
the functions available.

NOTE You can test out the SQLite functions in the interpreter using the
following technique. In a SELECT statement the return value can be any
expression and the table clause can be empty. By combining these two
features you can write code like SELECT lower('FREDDY'); and SQLite returns
the value 'freddy' . This is very useful when you want to quickly experiment
with a function to see what it does.

 Notice too that in the WHERE clause you used dot notation (employee.grade) to signify the Grade
fi eld. In this case it was not really needed because you were only working with a single table
(Employee , as specifi ed in the FROM clause) but, where multiple tables are specifi ed, you need to

132 ❘ CHAPTER 3 MANAGING DATA

make clear which table the fi eld belongs to. As an example, change your query to fi nd the names of
all employees paid more than $50,000. To do that, you need to consider data in both tables:

 sqlite> SELECT Name, Amount
 ...> FROM Salary, Employee
 ...> WHERE Employee.Grade = Salary.Grade
 ...> AND Salary.Amount > 50000;
 John Brown|60000

 As expected, you only get one name back—that of the foreman. But notice that you also got back
the salary, because you added Amount to the list of columns selected. Also note that you have two
parts to your WHERE clause, combined using an AND boolean operator. The fi rst part links the two
tables by ensuring that the common fi elds are equal; this is known as a join in SQL. A couple other
features of this query are worth noting.

 Because the fi elds that you are selecting exist in two separate tables, you have to specify both of the
tables from which the result comes. The order of the fi eld names is the order in which you get the data
back, but the order of the tables doesn’t matter so long as the specifi ed fi elds appear in those tables.

 You specifi ed two unique fi eld names so SQLite can fi gure out which table to take them from. If you
had also wanted to display the Grade , which appears in both tables, you would have had to use dot
notation to specify which table’s Grade you wanted, like this:

 sqlite> SELECT Employee.Grade, Name, Amount
 ...> FROM Employee, Salary
 etc/...

 Note in particular that SQL would require such qualifi cation even though the choice of table here
for the Grade fi eld really does not matter, because the WHERE condition guarantees that for any result
row displayed the grades of the two tables will have the identical value in any case.

 The fi nal feature of SELECT discussed here (although you can read about several more in the SQL
documentation for SELECT) is the capability to sort the output. Databases generally hold data either
in the order that makes it easiest to fi nd things, or in the order in which they are inserted; in either
case that’s not usually the order you want things displayed! To deal with that you can use the ORDER
BY clause of the SELECT statement. It looks like this:

 SELECT columns FROM tables WHERE expression ORDER BY columns;

 Notice that the fi nal ORDER BY clause can take multiple columns; this enables you to have primary,
secondary, tertiary, and so on sort orders.

 You can use this to get a list of names of employees sorted by HireDate :

 sqlite> SELECT Name
 ...> FROM Employee
 ...> ORDER BY HireDate;
 Anne Jones
 John Brown
 Fred Smith

 (It is interesting to note that HireDate was perfectly acceptable as an ORDER BY column, even
though HireDate is not a column SELECTed for display.)

Managing Data Using SQL ❘ 133

 And that’s really all there is to it; you can’t get much easier than that! The only thing worthy
of mention is that you didn’t use a WHERE clause. If you had used one, it would have had to
come before the ORDER BY clause. Thus, although SQL doesn’t require that all components of a
SELECT statement be present, it does require that those elements that are present will appear in a
prescribed order.

 That’s enough about reading data; you now look at how to modify your data in place.

 Modifying Data
 You can change the data in your database in two ways. You can alter the contents of one or more
records, or, more drastically, you can delete a record or even the contents of a whole table. Changing
the content of an existing record is the more common case, and you do that using SQL’s UPDATE
command.

 The basic format is:

 UPDATE table SET column = value WHERE condition;

 You can try it out on the Employee database by changing the salary of a foreman to $70,000:

 sqlite> UPDATE Salary
 ...> SET Amount = 70000
 ...> WHERE Grade = 'Foreman';

 Be careful to get the WHERE clause right. If you don’t specify one, every row in the table is modifi ed,
and that’s not usually a good idea. Similarly, if the WHERE clause is not specifi c enough, you end up
changing more rows than you want. One way to check you have it right is to do a SELECT using the
same WHERE clause and check that only the rows you want to change are found. If all is well, you can
repeat the WHERE clause from the SELECT in your UPDATE statement.

 A more drastic change you might need to make to your database table, rather than merely modifying
certain fi elds of a given row or rows, is to entirely delete one or more rows from the table. You
would do this using SQL’s DELETE FROM command, whose basic form looks like this:

 DELETE FROM Table WHERE condition

 So, if you want to delete Anne Jones from your Employee table you can do it like this:

 sqlite> DELETE FROM Employee
 ...> WHERE Name = 'Anne Jones';

 If more than one row matches your WHERE condition, all of the matching rows are deleted. SQL
always operates on all the rows that match the specifi ed WHERE condition. In this respect SQL is
quite different from, say, using a regular expression in a Python program to perform substring
substitution on a string (where the default behavior is to modify only the fi rst occurrence found,t
unless you specifi cally request otherwise).

 An even more drastic change you might want to make to your database is to delete not only all of a
table’s rows, but to delete the entire table itself. This is done using SQL’s DROP command.

 Obviously, destructive commands like DELETE and DROP must be used with extreme caution.

134 ❘ CHAPTER 3 MANAGING DATA

 Linking Data Across Tables
 The possibility of linking data between tables was mentioned earlier, in the section on SELECT .
However, this is such a fundamental part of relational database theory that you consider it in more
depth here. The links between tables represent the relationships between data entities that give a
relational database such as SQLite its name. The database maintains not only the raw data about
the entities, but also information about the relationships.

 The information about the relationships is stored in the form of database constraints, applied when
you defi ne the database structure using the CREATE statement. Before you see how to use constraints
to model relationships, you fi rst need to look deeper into the kinds of constraints available in SQLite.

 Digging Deeper into Data Constraints
 You normally express the constraints on a fi eld‐by‐fi eld basis within the CREATE statement. This
means you can expand the basic CREATE defi nition from,

 CREATE Tablename (Column, Column,...);

 to:

 CREATE Tablename (
 ColumnName Type Constraints,
 ColumnName Type Constraints,
 ...);

 The most common constraints are:

➤ NOT NULL

➤ PRIMARY KEY [AUTOINCREMENT]

➤ UNIQUE

➤ DEFAULT value

NOT NULL is fairly self‐explanatory; it indicates that the value must exist and not be NULL . A NULL
value is simply one that has no specifi ed value, rather like None in Python. If no suitable value
is provided for a fi eld governed by a NOT NULL constraint, data insertion will utterly fail—quite
possibly not only for that particular fi eld, but also for the entire row. (Or, far worse, violation of the
constraint could cause a very large database update transaction—possibly involving hundreds or
thousands of rows—to fail in its entirety.)

PRIMARY KEY tells SQLite to use this column as the main key for lookups (in practice this means
it is optimized for faster searches). The optional AUTOINCREMENT keyword means that an INTEGER
type value is automatically assigned on each INSERT and the value automatically incremented
by one. This saves a lot of work for the programmer in maintaining separate counts. Note that
the AUTOINCREMENT “keyword” is not normally used; rather, it is implied from a type/constraint
combination of INTEGER PRIMARY KEY . This not‐so‐obvious quirk of the SQLite documentation
trips up enough people for it to appear at the top of the SQLite Frequently Asked Questions page,
found here: http://sqlite.org/faq.html .

http://sqlite.org/faq.html

Managing Data Using SQL ❘ 135

 The UNIQUE constraint means that the value of the fi eld must be unique within the specifi ed column.
If you try to insert a duplicate value into a column that has a UNIQUE constraint, an error results and
the row is not inserted. UNIQUE is often used for non‐ INTEGER type PRIMARY KEY columns.

DEFAULT is always accompanied by a value. The value is what SQLite inserts into that fi eld if the
user does not explicitly provide one.

 Here is a short example showing some of these constraints, including the use of DEFAULT :

 sqlite> CREATE table test
 ...> (Id INTEGER PRIMARY KEY,
 ...> Name NOT NULL,
 ...> Value INTEGER DEFAULT 42);
 sqlite> INSERT INTO test (Name, Value) VALUES ('Alan', 24);
 sqlite> INSERT INTO test (Name) VALUES ('Heather');
 sqlite> INSERT INTO test (Name, Value) VALUES ('Laura', NULL);
 sqlite> SELECT * FROM test;
 1|Alan|24
 2|Heather|42
 3|Laura|

 The fi rst thing to notice is that although none of the INSERT statements had an Id value, there is an
Id value in the SELECT output. That’s because by specifying Id to be an INTEGER PRIMARY KEY , it
is automatically generated by SQLite. Notice too how the entry for Heather has the default Value
set. Also, note that the Value for Linda is nonexistent, or NULL . There is an important difference
between NOT NULL and DEFAULT . The former does not allow NULL values, either by default or
explicitly. The DEFAULT constraint prevents unspecifi ed NULLs , but does not prevent deliberate
creation of NULL values.

 You can also apply constraints to the table itself, such as how to handle data confl icts like duplicates
in a UNIQUE column. For example, a table constraint could specify that where a confl ict occurs the
entire database query will be cancelled, or it could specify that only the changes to the confl icting
row be cancelled. Table constraints are not discussed further in this chapter; you should consult the
documentation for details.

 Revisiting SQLite Field Types
 The other kind of constraint that you can apply, as already mentioned, is to specify the column type.
This is very like the concept of data types in a programming language. The valid types in SQLite are
as follows:

➤ TEXT

➤ INTEGER

➤ REAL

➤ NUMERIC

➤ BLOB

➤ NULL

136 ❘ CHAPTER 3 MANAGING DATA

 These types should be self‐evident, with the possible exceptions of NUMERIC , which enables the
storage of fl oating‐point numbers as well as integers, and BLOB , which stands for Binary Large
Object, typically used for media data such as images. NULL is not really a type, but simply
suggests that no explicit type has been specifi ed. Most databases come with a much wider set of
types including, crucially, a DATE type. As you are about to see, however, SQLite has a somewhat
unconventional approach to types that renders such niceties less relevant.

NOTE The SQL standard, having been defi ned by committee, including many
database vendors with existing products, is very broad in its list of types.
SQLite tries to accommodate this by aliasing several different names to the
same underlying type. Thus, the native TEXT type can also be expressed as a
STRING or as a VARCHAR because these are terms used by other vendors. The
idea is that porting SQL code from another database to SQLite should be as
painless as possible.

 Most databases strictly apply the types specifi ed. However, SQLite employs a more dynamic scheme,
where the type specifi ed is more like a hint and any type of data can be stored in the table. When
data of a different type is loaded into a fi eld, SQLite uses the declared type to try to convert the
data, but if it cannot be converted, it is stored in its original form. Thus, if a fi eld is declared as
INTEGER , but the TEXT value '123' is passed in, SQLite converts the string '123' to the number 123 .
However, if the TEXT value 'Freddy' is passed in, the conversion fails, so SQLite simply stores the
string 'Freddy' in the fi eld! This can cause some strange behavior if you are not aware of this foible.
Most databases treat the type declaration as a strict constraint and fail if an illegal value is passed.

 Modeling Relationships with Constraints
 Having seen the various kinds of constraints available and how you can use them in your database,
it’s time to return to the topic of modeling relationships. So how do constraints help you to model
data and, in particular, relationships? Look again at your simple two‐table database, as summarized
in Table 3-5 and Table 3-6 .

 Looking at the Employee table fi rst you see that the EmpID value should be of INTEGER type and
have a PRIMARY KEY constraint; the other columns, with the possible exception of the ManagerID ,
should be NOT NULL . ManagerID should also be of type INTEGER .

 TABLE 3-5: Employee Database Table

EMPID NAME HIREDATE GRADE MANAGERID

1020304 John Brown 20030623 Foreman 1020311

1020305 Fred Smith 20040302 Laborer 1020304

1020307 Anne Jones 19991125 Laborer 1020304

Managing Data Using SQL ❘ 137

 For the Salary table you see that, once more, the SalaryID should be an INTEGER with PRIMARY
KEY . The Amount column should also be an INTEGER , and you should apply a DEFAULT value of, say,
20000 . Finally, the Grade column should be constrained as UNIQUE because you don’t want more
than one salary per grade! (Actually, this is a bad idea because normally salary varies with things
like length of service as well as grade, but you ignore such niceties for now. In fact, in the real world,
you should probably call this a Grade table and not Salary .)y

 The modifi ed SQL looks like this:

 sqlite> CREATE TABLE Employee (
 ...> EmpID INTEGER PRIMARY KEY,
 ...> Name NOT NULL,
 ...> HireDate NOT NULL,
 ...> Grade NOT NULL,
 ...> ManagerID INTEGER
 ...>);

 sqlite> CREATE TABLE Salary (
 ...> SalaryID INTEGER PRIMARY KEY,
 ...> Grade UNIQUE,
 ...> Amount INTEGER DEFAULT 20000
 ...>);

 You can try out these constraints by attempting to enter data that breaks them and see what
happens. Hopefully you see an error message!

 One thing to point out here is that the INSERT statements you used previously are no longer
adequate. You previously inserted your own values for the ID fi elds, but these are now auto‐
generated so you can (and should) omit them from the inserted data. But this gives rise to a new
diffi culty. How can you populate the ManagerID fi eld if you don’t know the EmpID of the manager?
The answer is you can use a nested select statement. In this example, you do this in two stages usingt
NULL fi elds initially and then using an UPDATE statement after creating all the rows.

 To avoid a lot of repeat typing you can put all of the commands in a couple of fi les, called
employee.sql for the table creation commands and load _ employee.sql for the INSERT
statements. This is the same idea as creating a Python script fi le ending in .py to save typing
everything at the >>> prompt.

 The employee.sql fi le looks like this (and is in the SQL folder of the Chapter3.zip download):

DROP TABLE Employee;
CREATE TABLE Employee (
EmpID INTEGER PRIMARY KEY,

 TABLE 3-6: Salary Database Table

SALARYID GRADE AMOUNT

000010 Foreman 60000

000011 Laborer 35000

138 ❘ CHAPTER 3 MANAGING DATA

Name NOT NULL,
HireDate NOT NULL,
Grade NOT NULL,
ManagerID INTEGER
);

DROP TABLE Salary;
CREATE TABLE Salary (
SalaryID INTEGER PRIMARY KEY,
Grade UNIQUE,
Amount INTEGER DEFAULT 10000
);

 Notice that you drop the tables before creating them. The DROP TABLE command, as mentioned
earlier, deletes the table and any data within it. This ensures the database is in a completely clean
state before you start creating your new table. (You will get some errors reported the fi rst time you
run this script because no tables exist to DROP , but you can ignore them. Subsequent executions
should be error free.)

 The load _ employee.sql script looks like this (and is also available in the SQL folder of the .zip
fi le):

INSERT INTO Employee (Name, HireDate, Grade, ManagerID)
 VALUES ('John Brown','20030623','Foreman', NULL);

INSERT INTO Employee (Name, HireDate, Grade, ManagerID)
 VALUES ('Fred Smith','20040302','Labourer',NULL);
INSERT INTO Employee (Name, HireDate, Grade, ManagerID)
 VALUES ('Anne Jones','19991125','Labourer',NULL);

UPDATE Employee
SET ManagerID = (SELECT EmpID
 From Employee

 WHERE Name = 'John Brown')
WHERE Name IN ('Fred Smith','Anne Jones');

INSERT INTO Salary (Grade, Amount)
 VALUES('Foreman','60000');
INSERT INTO Salary (Grade, Amount)

 VALUES('Labourer','35000');

 Notice the use of the nested SELECT statement inside the UPDATE command, and also the fact
that you used a single UPDATE to modify both employee rows at the same time by using The SQL
IN operator that works like the Python in keyword for testing membership of a collection. By
extending the set of names being tested, you can easily add more employees with the same manager.

This is typical of the problems you can have when populating a database when constraints are
being used. You need to plan the order of the statements carefully to ensure that, for every row that
contains a reference to another table, you have already provided the data for it to reference! It’s a bit
like starting at the leaves of a tree and working back to the trunk. Always create, or insert, the data
with no references fi rst, then the data that references that data, and so on. If you are adding data
after the initial creation, you need to use queries to check that the data you need already exists, and
add it if it doesn’t. At this point a scripting language like Python becomes invaluable!

Managing Data Using SQL ❘ 139

 Finally, you run these from the SQLite prompt like this:

 sqlite> .read employee.sql
 sqlite> .read load_employee.sql

 Make sure you have the path issues sorted out, though: Either start sqlite3 from wherever the .sql
scripts are stored (as you did earlier) or provide the full path to the script.

 Now try a query to check that everything is as it should be:

 sqlite> SELECT Name
 ...> FROM Employee
 ...> WHERE Grade IN
 ...> (SELECT Grade FROM Salary WHERE amount >50000)
 ...> ;
 John Brown

 That seems to work; John Brown is the only employee earning more than $50,000. Notice that you
used an IN condition combined with another embedded SELECT statement. This is a variation on
a similar query that you performed previously using a cross table join. Both techniques work, but
usually the join approach will be faster.

 Although this is an improvement over the original unconstrained defi nition and it ensures
that the ManagerID is an integer, it does not ensure that the integer is a valid EmpID key. You
need the embedded SELECT statement for that. However, SQLite offers one more constraint
that helps you ensure the data is consistent, and that is the REFERENCES constraint. This
tells SQLite that a given fi eld references another specifi ed fi eld somewhere in the database.
You can apply the REFERENCES constraint to the ManagerID fi eld by modifying the CREATE
statement like this:

 CREATE TABLE Employee (
 ...
 ManagerID INTEGER REFERENCES Employee(EmpID)
);

 You see that the REFERENCES constraint specifi es the table and the key fi eld within it. At the time of
writing, SQLite does not actually enforce this constraint by default (although it is worth including
in your code as documentation of your intentions). However, you can turn checking on by using a
pragma statement. A pragma is a special command that is used to control the way the interpreter
works. It looks like this:

 PRAGMA Foreign_Keys=True;

NOTE The term foreign key signifi es that it is a key from a different row
in the database. This could be a key from the same table, as in the case of
the ManagerID , or it could be a reference to another table entirely. In either
case the key being referenced comes from a different row and is therefore
described as being “foreign.”

140 ❘ CHAPTER 3 MANAGING DATA

 If you now modify the employee.sql fi le to add the pragma and modify the create statement, it
should look like this:

PRAGMA Foreign_Keys=True;

 DROP TABLE Employee;
 CREATE TABLE Employee (
 EmpID INTEGER PRIMARY KEY,
 Name NOT NULL,
 HireDate NOT NULL,
 Grade NOT NULL,
 ManagerID INTEGER REFERENCES Employee(EmpID)
);

 DROP TABLE Salary;
 CREATE TABLE Salary (
 SalaryID INTEGER PRIMARY KEY,
 Grade UNIQUE,
 Amount INTEGER DEFAULT 10000
);

 After running the script and reloading the data with the load _ employee.sql script, you can check
that it works by trying to insert a new employee with a ManagerID not already in the table. Like this:

 sqlite> .read employee.sql
 sqlite> .read load_employee.sql
 sqlite> insert into Employee (Name,HireDate,Grade,ManagerID)
 ...> values('Fred', '20140602','Laborer',999);
 Error: FOREIGN KEY constraint failed
 sqlite>

 This is a big advantage in keeping your data consistent. It is now impossible for a non‐valid worker‐
to‐manager relationship to be created (although you can still use NULL values that indicate that no
manager relationship exists).

 Many‐to‐Many Relationships
 One scenario you haven’t covered is where two tables are linked in a many‐to‐many relationship.
That is, a row in one table can be linked to several rows in a second table and a row in the second
table can at the same time be linked to many rows in the fi rst table.

 Consider an example. Imagine creating a database to support a book publishing company. It needs
lists of authors and lists of books. Each author may write one or more books. Each book may have
one or more authors. How do you represent that in a database? The solution is to represent the
relationship between books and authors as a table in its own right. Such a table is often called an
intersection table or a mapping table . Each row of this table represents a book/author relationship.
Now each book has potentially many book/author relationships, but each relationship only has one
book and one author, so you have converted a many‐to‐many relationship into two one‐to‐many
relationships. And you already know how to build one‐to‐many relationships using IDs. It looks like
this (you can fi nd the code in the fi le books.sql in the SQL folder of the .zip fi le):

PRAGMA Foreign_Keys=True;

drop table author;

Managing Data Using SQL ❘ 141

create table author (
ID Integer PRIMARY KEY,
Name Text NOT NULL
);

drop table book;
create table book (
ID Integer PRIMARY KEY,
Title Text NOT NULL
);

drop table book_author;
create table book_author (
bookID Integer NOT NULL REFERENCES book(ID),
authorID Integer NOT NULL REFERENCES author(ID)
);

insert into author (Name) values ('Jane Austin');
insert into author (Name) values ('Grady Booch');
insert into author (Name) values ('Ivar Jacobson');
insert into author (Name) values ('James Rumbaugh');

insert into book (Title) values('Pride & Prejudice');
insert into book (Title) values('Emma');
insert into book (Title) values('Sense &; Sensibility');
insert into book (Title) values ('Object Oriented Design with Applications');
insert into book (Title) values ('The UML User Guide');

insert into book_author (BookID,AuthorID) values (
(select ID from book where title = 'Pride &; Prejudice'),
(select ID from author where Name = 'Jane Austin')
);

insert into book_author (BookID,AuthorID) values (
(select ID from book where title = 'Emma'),
(select ID from author where Name = 'Jane Austin')
);

insert into book_author (BookID,AuthorID) values (
(select ID from book where title = 'Sense & Sensibility'),
(select ID from author where Name = 'Jane Austin')
);

insert into book_author (BookID,AuthorID) values (
(select ID from book where title = 'Object Oriented Design with Applications'),
(select ID from author where Name = 'Grady Booch')
);

insert into book_author (BookID,AuthorID) values (
(select ID from book where title = 'The UML User Guide'),
(select ID from author where Name = 'Grady Booch')
);

insert into book_author (BookID,AuthorID) values (
(select ID from book where title = 'The UML User Guide'),
(select ID from author where Name = 'Ivar Jacobson')
);

142 ❘ CHAPTER 3 MANAGING DATA

insert into book_author (BookID,AuthorID) values (
(select ID from book where title = 'The UML User Guide'),
(select ID from author where Name = 'James Rumbaugh')
);

 If you look at the values inserted into the tables, you see that Jane Austin has three books to her
credit, while the book The UML User Guide has three authors.

 If you load that into SQLite in a database called books.db (or just use the fi le books.db found in the
SQL folder of the Chapter3 . zip fi le), you can try some queries to see how it works:

 $ sqlite3 books.db
 SQLite version 3.8.2 2013-12-06 14:53:30
 Enter ".help" for instructions
 Enter SQL statements terminated with a ";"
 sqlite> .read books.sql
 Error: near line 3: no such table: author
 Error: near line 9: no such table: book
 Error: near line 15: no such table: book_author

 sqlite> .tables
 author book book_author

 Notice the errors resulting from the DROP statements. You always get those the fi rst time you run
the script because the tables don’t exist yet. Now you can fi nd out which Jane Austin books are
published:

 sqlite> SELECT title FROM book, book_author
 ...> WHERE book_author.bookID = book.ID
 ...> AND book_author.authorID = (
 ...> SELECT ID from Author
 ...> WHERE name='Jane Austin');
 Pride & Prejudice
 Emma
 Sense & Sensibility

 Things are getting a bit more complex, but if you sit and work through it you’ll get the idea soon
enough. Notice you need to include both of the referenced tables—book and book _ author—in
the table list after the SELECT . (The third table, author , is not listed there because it is listed againstr

its own embedded SELECT statement.) Now try it the other way around—see who wrote The UML
User Guide :

 sqlite> SELECT name FROM author, book_author
 ...> WHERE book_author.authorID = author.ID
 ...> AND book_author.bookID = (
 ...> SELECT ID FROM book
 ...> WHERE title='The UML User Guide');
 Grady Booch
 Ivar Jacobson
 James Rumbaugh

 If you look closely you see that the structure of the two queries is identical—you just swapped
around the table and fi eld names a little.

Migrating LendyDB to an SQL Database ❘ 143

 That’s enough for that example; you now return to your lending library. You now see how you
convert it from fi le‐based storage to a full SQL database. You then go on to build an accompanying
Python module that enables application writers to ignore the SQL and just call Python functions.

 MIGRATING LENDYDB TO AN SQL DATABASE

 In this section you re‐create the LendyDB database using a combination of SQL and Python code.
Before getting into the nitty‐gritty, you need to see how Python and SQL come together.

 Accessing SQL from Python
 SQLite provides an application programming interface or API consisting of a number of standardI
functions that allow programmers to perform all the same operations that you have been doing
without using the interactive SQL prompt. The SQLite API is written in C, but wrappers have
been provided for other languages, including Python. Python has similar interfaces to many other
databases, and they all provide a standard set of functions and provide very similar functionality.
This interface is called the Python DBAPI, and its existence makes porting data between databases
much easier than if each database had its own interface.

 The DBAPI defi nes a couple of useful conceptual objects that form the core of the interface. These
are connections and cursors .

 Using SQL Connections
 A connection is the conduit between your application code and the database’s SQL engine. The
name comes from the client‐server architecture used by most SQL databases whereby the client must
connect to the server over a network. For SQLite the connection is actually to the data fi le via the
SQLite library. The arguments passed to create the connection are of necessity database‐specifi c. For
example, many databases require a user ID and password, and some require IP addresses and ports,
whereas SQLite just requires a fi lename. It looks like this:

 >>> import sqlite3
 >>> db = sqlite3.connect('D:/PythonCode/Chapter3/SQL/lendy.db')

 Once a connection has been established, you can go on to create cursors, which are the mechanism
used to issue SQL commands and receive their output. In principle you can have more than one
cursor per connection, but in practice that is rarely needed.

Using a Cursor
 When accessing a database from within a program, one important consideration is how to access
the many rows of data potentially returned by a SELECT statement without running out of memory.
The answer is to use what is known in SQL as a cursor . A cursor is a Python iterator so it can berr
accessed iteratively one row at a time. Thus, by selecting data into a cursor and using the cursor
methods to extract the results either as a list (for smaller volumes of data), or row by row, you can
process large collections of data. You now try that out.

144 ❘ CHAPTER 3 MANAGING DATA

 TRY IT OUT Using the Python DBAPI

 In this Try It Out, you use the sqlite3 module to create a table, populate it with data, and perform
some queries with SELECT . You then delete the data, drop the tables, and exit. To achieve that complete
the following steps:

1. Start the Python interpreter and type the following code:

 >>> import sqlite3
 >>> db = sqlite3.connect(':memory:')
 >>> cur = db.cursor()
 >>> cur.execute("create table test(id,name)")
 <sqlite3.Cursor object at 0x7fd28ca0>
 >>> cur.execute(
 ... "insert into test (id,name) values (1,'Alan')")
 <sqlite3.Cursor object at 0x7fd28ca0>
 >>> cur.execute(
 ... "insert into test (id,name) values (2,'Laura')")
 <sqlite3.Cursor object at 0x7fd28ca0>
 >>> cur.execute(
 ... "insert into test (id,name) values (3,'Jennifer')")
 <sqlite3.Cursor object at 0x7fd28ca0>
 >>> cur.execute("Select * FROM test")
 <sqlite3.Cursor object at 0x7fd28ca0>
 >>> print(cur.fetchall())
 [(1, 'Alan'), (2, 'Laura'), (3, 'Jennifer')]

2. As you can see, the cursor returns a list of tuples. This is very similar to what you started off with,
back in the “Using Comma‐Separated Values” section of Chapter 2 ! And you could simply use this
list in your program as if you had read it from a fi le—using the database merely as a persistence
mechanism. However, the real power of the database lies in its ability to perform sophisticated
queries using SELECT . Try out a few queries using the following code:

 >>> def findData(cursor, aString):
 ... cursor.execute("select * from test where name like ?",(aString,))
 ... return cur.fetchall()
 ...
 >>> findData(cur,'A%')
 [(1, 'Alan')]
 >>> findData(cur,'%a%')
 [(1, 'Alan'), (2, 'Laura')]

3. Finally, try a few data manipulation commands:

 >>> cur.execute("delete from test")
 <sqlite3.Cursor object at 0x7fd28ca0>
 >>> cur.execute("drop table test")
 <sqlite3.Cursor object at 0x7fd28ca0>
 >>> cur.close()
 >>> db.commit()
 >>> db.close()

Migrating LendyDB to an SQL Database ❘ 145

 How It Works

 You started by importing the sqlite module. The next step was to create a connection to the
database fi le, which in this case was :memory: , indicating you wanted a temporary database held in
the computer’s memory. You then created a cursor object that you subsequently used for all the SQL
interaction.

 You created a test table and inserted three records. You then used the Select * idiom to extract all
the data from the table. You used the fetchall() method of the cursor to view the output as a list of
tuples. (Other options include using fetchone() within a loop or fetchmany() to return batches of
results.)

The next step involved defi ning a Python function that used a string to locate records of interest. This
demonstrates how Python functions can be created to hide the details of the SQL from the user. You
use this technique later to create an API for the lending library applications.

Having shown that the function works, you deleted the records, dropped the tables, and closed the
cursor. You then executed the connection commit() method that permanently applies any changes you
made, followed by closing the database connection itself.

The use of commit is slightly complex, with the DBAPI sometimes calling commit for you, and at other
times you need to do it explicitly. As a general rule, you should always call commit before closing the
database connection. In this example it makes no real difference because the database exists only in
memory and disappears whenever you close the connection. If you are using a fi le‐based database, you
need the commit() to ensure your changes are visible next time you open the database.

 Creating the LendyDB SQL Database
 The database design is not signifi cantly different from its previous incarnations. You just have to
translate it into SQL syntax and add in some constraints to improve data integrity.

 The initial database setup is usually easiest to do using raw SQL commands as you did in the earlier
sections. Although it is possible to do it all from Python, occasionally another tool is better suited to
the task at hand.

NOTE If you don’t have the SQLite interpreter installed, you can still execute
a SQL script using the executescript() method of the cursor object. This
method takes an SQL script as an argument. The script can be read from a fi le
or a standard Python string, which could be a multiline triple‐quoted string.
Note that you need to terminate the SQL statements with semicolons just as
you did when using the sqlite3 interpreter.

 The code looks like this (and is available in the fi le lendydb.sql in the SQL folder of the .zip fi le):

PRAGMA Foreign_Keys=True;

drop table loan;

146 ❘ CHAPTER 3 MANAGING DATA

drop table item;
drop table member;

create table member (
ID INTEGER PRIMARY KEY,
Name TEXT NOT NULL,
Email TEXT);

create table item (
ID INTEGER PRIMARY KEY,
Name TEXT NOT NULL,
Description TEXT NOT NULL,
OwnerID INTEGER NOT NULL REFERENCES member(ID),
Price NUMERIC,
Condition TEXT,
DateRegistered TEXT);

create table loan (
ID INTEGER PRIMARY KEY,
ItemID INTEGER NOT NULL REFERENCES item(ID),
BorrowerID INTEGER NOT NULL REFERENCES member(ID),
DateBorrowed TEXT NOT NULL,
DateReturned TEXT);

 You need to drop all the tables at the top of the script, and the order is important because
otherwise the referential constraints fail, and an error results. Notice also that you used the
NUMERIC type for the item price because this caters for both integer and fl oating‐point values. It
also means you don’t need to worry about those pesky dollar signs that you had to strip off in
the previous incarnations of the data. Apart from the various key fi elds, the other fi elds are all
declared as TEXT .

 Now that the database is ready, you can insert the test data.

 Inserting Test Data
 The database design now includes some referential constraints so you need to think about the order
in which you populate the data. The member data has no references, so it can be loaded fi rst. The
item data only references members, so it comes next. Finally, the loan data references both members
and items, so it must come last.

 For the data insertion, you are essentially repeating the same INSERT operation over and over with
different data values. This time Python is the better solution because you can write the SQL once
and execute it many times using either the executemany() method of the cursor object or by calling
the execute() method from within a Python for loop. It looks like this (and the code is in the fi le
lendydata‐sql.py):y

import sqlite3

members = [
 ['Fred', 'fred@lendylib.org'],

['Mike', 'mike@gmail.com'],
 ['Joe', 'joe@joesmail.com'],
 ['Rob', 'rjb@somcorp.com'],
 ['Anne', 'annie@bigbiz.com'],

Migrating LendyDB to an SQL Database ❘ 147

]
member_sql = '''insert into member (Name, Email) values (?, ?)'''

items = [
['Lawnmower','Tool', 0, 150,'Excellent', '2012‐01‐05'],

 ['Lawnmower','Tool', 0, 370,'Fair', '2012‐04‐01'],
 ['Bike', 'Vehicle', 0, 200,'Good', '2013‐03‐22'],
 ['Drill', 'Tool', 0, 100,'Good', '2013‐10‐28'],

['Scarifier','Tool', 0, 200,'Average', '2013‐09‐14'],
 ['Sprinkler','Tool', 0, 80,'Good', '2014‐01‐06']
]
item_sql = '''
insert into item
(Name, Description, ownerID, Price, Condition, DateRegistered)
values (?, ?, ?, ?, ?, date(?))'''
set_owner_sql = '''
update item
set OwnerID = (SELECT ID from member where name = ?)
where item.id = ?
'''

loans = [
 [1,3,'2012‐01‐04','2012‐04‐26'],

[2,5,'2012‐09‐05','2013‐01‐05'],
[3,4,'2013‐07‐03','2013‐07‐22'],

 [4,1,'2013‐11‐19','2013‐11‐29'],
 [5,2,'2013‐12‐05', None]
]
loan_sql = '''
insert into loan
(itemID, BorrowerID, DateBorrowed, DateReturned)
values (?, ?, date(?), date(?))'''

db = sqlite3.connect('lendy.db')
cur = db.cursor()

cur.executemany(member_sql, members)
cur.executemany(item_sql, items)
cur.executemany(loan_sql, loans)

owners = ('Fred','Mike','Joe','Rob','Anne','Fred')
for item in cur.execute("select id from item").fetchall():
 itemID = item[0]
cur.execute(set_owner_sql, (owners[itemID‐1], itemID))

cur.close()
db.commit()
db.close()

 Several things are noteworthy in this script. The fi rst point is the format of the dates. Although
SQLite does not have a Date data type, it does have a number of functions that can be used to create
standardized date strings and values that it then stores as text (or in some cases as fl oating‐point
numbers). The date() function used here requires the date string to be in the format shown, and
an invalid date string will be stored as NULL. Using date() therefore improves data quality by
ensuring only valid and consistently formatted dates get stored.

148 ❘ CHAPTER 3 MANAGING DATA

 The item OwnerID fi eld is specifi ed as NOT NULL , so you fi lled it with a dummy value (0) that is then
overwritten by the UPDATE code later in the script.

 You could have used a for loop to process the INSERT statements, but instead used the
executemany() method that takes the statement and a sequence (or iterator or generator) and
repeatedly applies the statement until the iteration is completed.

 The variable values are inserted into the query strings by using a question mark as a placeholder.
This is very similar to the string formatting method that uses {} as a place marker.

NOTE SQLite’s use of date functions to handle date fi elds is very unusual, but
it fi ts well with SQLite’s dynamic typing mechanism.

 The other date functions include a version of the strftime() function that you
met in the “Using the time Module” section of Chapter 2 . The SQLite version
adds some extra features.

 One point to note about SQLite’s time structure is that it always uses UTC (aka
GMT) because this avoids any of the complex issues surrounding time zones
and daylight saving time. For display of the data in local time format, you need
to use time functions within Python to convert the times returned by SQLite.
A page in the SQLite documentation describes how the various date functions
can be used in several common scenarios (http://www.sqlite.org/lang_((
datefunc.html).

NOTE You may wonder why string formatting was not used to insert the
values into the SQL statements. This is because string formatting is vulnerable
to a security attack known as an injection attack , whereby harmful code cank
be injected into the SQL statement. Using the SQLite execute() mechanism as
the formatting tool eliminates this risk because it checks for rogue values.

 At this point you have created the database and populated it with some test data. The next stage is
to make that data accessible to applications via an application programming interface (API).

 Creating a LendyDB API
 When defi ning an API for a database, it’s normal to start off by thinking about the basic entities and
providing functions to create, read, update, and delete the items. (This is often known as a CRUD
interface after the initials of the operations.) The temptation is to provide these functions as a thin
wrapper around the corresponding SQL commands. However, to the application programmer it is
not particularly useful to just be given an ID of a member—for example, it would be much better
in most cases to get the member name instead. Otherwise, the programmer must perform multiple
reads of the member database to create a useful display for the user. On the other hand, there may

http://www.sqlite.org/lang_datefunc.html
http://www.sqlite.org/lang_datefunc.html

Migrating LendyDB to an SQL Database ❘ 149

be times when an ID is the best option because the programmer may want to get more specifi c
details about the member. The skill in building a good API comes from being able to resolve these
contradictions in a way that makes the application programmer effective while retaining full access
to the data.

 Although the CRUD operations are a good foundation, it is often more useful to the application
programmer if some higher‐level operations are also available that span entities. To do this you need
to think about how your data is likely to be used in an application. What kinds of questions will the
designer want to ask? If you are also the application programmer, this is relatively easy, but if you
are providing the database as part of a bigger project, it gets more diffi cult.

 For the lending library example, you focus only on the CRUD interface to items and members. The
principles should be obvious, and you have the opportunity to extend the API to cover loans in
Exercise 3.3 at the end of the chapter. (The code for items and members is in the lendydata.py fi le
in the SQL folder of the .zip fi le.)

'''
Lending library database API

Provides a CRUD interface to item and member entities
and init and close functions for database control.
'''

import sqlite3 as sql

db=None
cursor = None

CRUD functions for items

def insert_item(Name, Description, OwnerID, Price, Condition):
 query = '''
 insert into item
 (Name, Description, OwnerID, Price, Condition, DateRegistered)
 values (?,?,?,?,?, date('now'))'''
 cursor.execute(query,(Name,Description,OwnerID,Price,Condition))

def get_items():
 query = '''
 select ID, Name, Description, OwnerID, Price, Condition, DateRegistered
 from item'''
 return cursor.execute(query).fetchall()

def get_item_details(id):
 query = '''
 select name, description, OwnerID, Price, Condition, DateRegistered
 from item
 where id = ?'''
 return cursor.execute(query,(id,)).fetchall()[0]

def get_item_name(id):
 return get_item_details(id)[0]

def update_item(id, Name=None, Description=None,
 OwnerID=None, Price=None, Condition=None):
query = '''
 update item

150 ❘ CHAPTER 3 MANAGING DATA

 set Name=?, Description=?, OwnerID=?, Price=?, Condition=?
 where id=?'''
 data = get_item_details(id)

if not Name: Name = data[0]
 if not Description: Description = data[1]
 if not OwnerID: OwnerID = data[2]

if not Price: Price = data[3]
if not Condition: Condition = data[4]

 cursor.execute(query, (Name,Description,OwnerID,Price,Condition,id))

def delete_item(id):
query = '''
delete from item

 where id = ?'''
 cursor.execute(query,(id,))

CRUD functions for members

def insert_member(name, email):
 query = '''
 insert into member (name, email)

values (?, ?)'''
 cursor.execute(query, (name,email))

def get_members():
 query = '''

select id, name, email
 from member'''
 return cursor.execute(query).fetchall()

def get_member_details(id):
query = '''

 select name, email
 from member

where id = ?'''
 return cursor.execute(query, (id,)).fetchall()[0]

def get_member_name(id):
 return get_member_details(id)[0]

def update_member(id, Name=None, Email=None):
 query = '''
 update member
 set name=?, email=?

where id = ?'''
 data = get_member_details(id)
 if not Name: Name = data[0]

if not Email: Email = data[1]
 cursor.execute(query, (Name, Email, id))

def delete_member(id):
 query = '''

delete from member
 where id = ?'''
 cursor.execute(query,(id,))

Database init and close

Migrating LendyDB to an SQL Database ❘ 151

def initDB(filename = None):
 global db, cursor
 if not filename:

 filename = 'lendy.db'
 try:
 db = sql.connect(filename)

 cursor = db.cursor()
except:

 print("Error connecting to", filename)
 cursor = None

 raise

def closeDB():
 try:
 cursor.close()

 db.commit()
 db.close()
 except:
 print("problem closing database...")

 raise

if __name__ == "__main__":
 initDB() # use default file

print("Members:\n", get_members())
print("Items:\n",get_items())

 In this module you create two global variables for the database connection and the cursor. The
initDB() function initializes these variables, and the same cursor is used in each of the query
functions within the module. The closeDB() function then closes these objects when you are
fi nished using the module. This approach means that the initDB() / closeDB() functions must
be called to initialize and fi nalize the database, which adds a little bit of complexity for the
user, but it means that the individual queries are much simpler because you do not need to
manage the database and cursor objects each time a query is called. Notice, too, that you set the
Foreign _ Keys pragma in the initDB() function to ensure that all the transactions are checked
for referential integrity.

 The query functions all follow the same pattern. A SQL query string is created, using triple quotes
to allow multiple line layouts, and then that string is passed to the cursor.execute() method. The
retrieved values are passed back where appropriate. The cursor.execute() parameter substitution
mechanism is used throughout.

 The two update methods have an extra twist in that they have defaulted input parameters. This
means that the user can provide only those fi elds that are changing. The other fi elds are populated
based on the existing values that are retrieved by using the appropriate get‐details function.

 The two get‐name functions are provided for the convenience of the user to easily map from
the database identifi ers returned in the get‐details queries to meaningful names. Typically, the
application programmer should use these functions before displaying the results to the end user.

 The fi nal section of the module, inside the if test, is a very basic test function just to check that the
connection and cursor objects are working as expected. It does not comprehensively test all of the
API functions; you will do that in the Try It Out that follows.

152 ❘ CHAPTER 3 MANAGING DATA

 TRY IT OUT Using the LendyDB API

 In this Try It Out, you use the lendydata.py module to insert, read, update, and delete entities from
the lendy.db database created earlier. To do this, complete the following steps:

1. Switch to the folder containing your lendy.db database fi le.

2. Start the Python interpreter and type the following code:

 >>> import lendydata as ld
 >>> ld.initDB()
 >>> ld.get_members()
 [(1, 'Fred', 'fred@lendylib.org'), (2, 'Mike', 'mike@gmail.com'),
 (3, 'Joe', 'joe@joesmail.com'), (4, 'Rob', 'rjb@somcorp.com'),
 (5, 'Anne', 'annie@bigbiz.com')]
 >>> ld.get_items()
 [(1, 'Lawnmower', 'Tool', 1, 150, 'Excellent', '2012-01-05'),
 (2, 'Lawnmower', 'Tool', 2, 370, 'Fair', '2012-04-01'),
 (3, 'Bike', 'Vehicle', 3, 200, 'Good', '2013-03-22'),
 (4, 'Drill', 'Tool', 4, 100, 'Good', '2013-10-28'),
 (5, 'Scarifier', 'Tool', 5, 200, 'Average', '2013-09-14'),
 (6, 'Sprinkler', 'Tool', 1, 80, 'Good', '2014-01-06')]

3. Having proved you can access the data, you now add an item by typing:

 >>> ld.insert_item('Python Projects','Book',6,30,'Excellent')
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "lendydata.py", line 20, in insert_item
 cursor.execute(query,(Name,Description,OwnerID,Price,Condition))
 sqlite3.IntegrityError: FOREIGN KEY constraint failed

4. The preceding error proves that the referential integrity check works; you fi rst need to add a
member and then add the new item. Type this:

 >>> ld.insert_member('Alan','alan@emailaddress.com')
 >>> ld.get_members()
 [(1, 'Fred', 'fred@lendylib.org'), (2, 'Mike', 'mike@gmail.com'),
 (3, 'Joe', 'joe@joesmail.com'), (4, 'Rob', 'rjb@somcorp.com'),
 (5, 'Anne', 'annie@bigbiz.com'), (6, 'Alan', 'alan@emailaddress.com')]
 >>> ld.insert_item('Python Projects','Book',6,30,'Excellent')
 >>> ld.get_items()
 [(1, 'Lawnmower', 'Tool', 1, 150, 'Excellent', '2012-01-05'),
 (2, 'Lawnmower', 'Tool', 2, 370, 'Fair', '2012-04-01'),
 (3, 'Bike', 'Vehicle', 3, 200, 'Good', '2013-03-22'),
 (4, 'Drill', 'Tool', 4, 100, 'Good', '2013-10-28'),
 (5, 'Scarifier', 'Tool', 5, 200, 'Average', '2013-09-14'),
 (6, 'Sprinkler', 'Tool', 1, 80, 'Good', '2014-01-06'),
 (7, 'Python Projects', 'Book', 6, 30, 'Excellent', '2014-06-23')]

5. You successfully added an item. Now modify the item and member by typing this:

 >>> ld.update_item(7,Price=25)
 >>> ld.get_item_details(7)
 ('Python Projects', 'Book', 6, 25, 'Excellent', '2014-06-23')

Migrating LendyDB to an SQL Database ❘ 153

 >>> ld.get_member_name(6)
 'Alan'
 >>> ld.update_member(6,Name='Alan Gauld')
 >>> ld.get_member_details(6)
 ('Alan Gauld', 'alan@emailaddress.com')

6. To delete the data you added, type this:

 >>> ld.delete_member(6)
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "lendydata.py", line 97, in delete_member
 cursor.execute(query,(id,))
 sqlite3.IntegrityError: FOREIGN KEY constraint failed
 >>> ld.delete_item(7)
 >>> ld.delete_member(6)

7. To see how the API can be used for arbitrary queries, type the following:

 >>> ld.cursor.execute('''
 ... select * from item
 ... where OwnerID in (select id from member where name like '%e%')
 ... ''').fetchall()
 [(1, 'Lawnmower', 'Tool', 1, 150, 'Excellent', '2012-01-05'),
 (2, 'Lawnmower', 'Tool', 2, 370, 'Fair', '2012-04-01'),
 (3, 'Bike', 'Vehicle', 3, 200, 'Good', '2013-03-22'),
 (5, 'Scarifier', 'Tool', 5, 200, 'Average', '2013-09-14'),
 (6, 'Sprinkler', 'Tool', 1, 80, 'Good', '2014-01-06')]
 >>> ld.cursor.execute('''
 ... select * from item
 ... where OwnerID not in (select id from member where name like '%e%')
 ... ''').fetchall()
 [(4, 'Drill', 'Tool', 4, 100, 'Good', '2013-10-28')]
 >>> ld.get_member_name(4)
 'Rob'

8. Finally, close the database like this:

 >>> ld.closeDB()

 How It Works

 You started by importing the lendydata.py module and assigning a shorter alias, ld . You then
initialized the module by calling initDB() . You proved that the connection was valid by fetching the list
of members and items.

 You next proceeded to try to add an item, but the OwnerID value was for a nonexistent member and the
database Foreign _ Keys constraint check prevented the operation from completing. You then added
the missing member followed by the item, which, this time, was successfully added.

 Having added data, you went on to explore the update functions by modifying the price of the new
item and the name of the new member. You also used the get _ member _ name() helper function to
verify that the OwnerID of 6 was indeed the member that you had created.

 You next tried to delete the new member but, again, referential integrity checks prevented this because
the member was being referenced by an item. First you needed to delete the item and then the member.

154 ❘ CHAPTER 3 MANAGING DATA

 Having exercised the high‐level functions of the API, you proceeded to use the cursor object directly
to execute arbitrary SQL statements. In this case you found all items owned by members with an “e”
in their name followed by all items owned by members without an “e”. You used the get _ member _

name() helper function to verify that the only such member with an ID of 4 was in fact Rob.

 Finally, you closed the database, which ensured that all changes were committed, and that the
connection and cursor objects were properly fi nalized.

 You have now built a high‐level API for application programmers to use and have seen that by
making the underlying cursor object accessible you enable the user to issue arbitrary low‐level SQL
commands, too. This kind of fl exibility is usually appreciated by application programmers, although
if they fi nd that they must use SQL extensively, they should request an addition to the functional
API.

 Of course SQLite is not the only tool available for working with large data volumes, and Python
can provide support for these alternatives, too. In the next section, you look at some alternatives to
SQLite and how Python works in these environments.

 EXPLORING OTHER DATA MANAGEMENT OPTIONS

 You have many options for managing large amounts of data. In this section you look at traditional
client‐server databases, newer databases known as “NoSQL” databases, and how cloud storage is
changing approaches to data management. Finally, you consider some powerful data analysis tools
that can be accessed from Python using third‐party modules.

 Client‐Server Databases
 The traditional SQL database is rather different from SQLite in the way it is constructed. In these
databases you have a database server process accessed over a network by multiple clients. The
Python DBAPI is designed so that you can work with these databases just as easily as you did with
SQLite. Only minor changes in the way you initialize the database connection are usually all that is
necessary. Occasionally you’ll see minor changes to the SQL syntax, and the parameter substitution
symbol is sometimes different, too. But, in general, swapping from one SQL interface to another is a
relatively painless experience.

 Several reasons exist for wanting to adopt a client‐server database or to migrate to one from SQLite.
The fi rst is capacity; most client‐server databases can scale up to much larger volumes of data than
SQLite. In addition, they can be confi gured to distribute their processing over several servers and
disks, which greatly improves performance when multiple users are accessing the data concurrently.
The second reason for migrating from SQLite is that larger databases usually come with a much
richer set of SQL commands and query types as well as more data types. Many even support object‐
oriented techniques and have their own built‐in programming languages that enable you to write
stored procedures, effectively putting the API into the database itself. Usually, a much richer set
of database constraints can be used to tighten up data integrity far beyond the simple foreign key
checks that SQLite performs.

Exploring Other Data Management Options ❘ 155

 The biggest downside of selecting a client‐server database is the extra complexity of administering
the database. Usually a dedicated administrator is needed to set up users, adjust their access
privileges, tune the SQL query engine performance, and do backups, data extracts, and loads.

 Popular client‐server databases include commercial offerings such as SQL Server, Oracle, and DB2,
as well as open source projects such as MySQL, PostGres, and Firebird.

 NoSQL
 As data storage needs have expanded both in size and in variety, several projects have been
exploring alternatives to SQL. Many of these projects are associated with what is called “Big
Data,” which usually relates to the harvesting of large volumes of, often unstructured, data from
places such as social media sites or from sensors in factories or hospitals and so on. One of the
features of this kind of data is that most of it is of little signifi cance to the database user, but
amongst the detritus are gems to be had that can infl uence sales strategy or alert you to imminent
failure of components or processes so that action can be taken in advance. The nature, volumes,
and need for rapid access of such data means that traditional SQL databases are not well suited to
the task.

 The solution has been a variety of technologies that go under the collective term NoSQL . NoSQL
does not mean that no SQL is used, but rather it stands for Not Only SQL. SQL may still be
available for traditional queries on these new databases, but alternative query techniques are also
used, especially for searching unstructured data. Some examples of NoSQL approaches (with typical
implementations) are Document (MongoDB), Key‐Value (Dynamo), Columnar (HBase), and Graphs
(Allegro). All of these diverge to some degree or other from the traditional relational model of
multiple, two‐dimensional tables with cross‐references. To get the best from these systems, you need
to consider which architecture best suits the nature of your data. Many solutions are open source,
but commercial offerings exist, too.

 Although NoSQL databases do provide the potential for faster and more fl exible access to a
wider variety of data, they generally sacrifi ce qualities like data integrity, transactional control,
and usability. The products are all evolving rapidly, although at the time of writing they require
lower‐level programming skills to utilize the data compared to traditional SQL databases that
could change quite quickly. Most of the popular databases offer Python modules that facilitate
programming them from Python.

 The Cloud
 Cloud computing has become popular in recent years with its promise of computing on‐demand.
This potentially offers lower costs, more fl exibility, and lower risks than traditional data center–
based solutions. It brings its own set of concerns, of course, especially for sensitive data or where
network reliability is an issue. The biggest use of cloud technologies in the database world has been
in combination with the NoSQL solutions, discussed in the previous section, and other Big Data
solutions such as Hadoop. Many cloud storage providers offer these technologies on a software‐
as‐a‐service (SAAS) basis. This offers an attractive option for those just dipping a toe into the Big
Data or NoSQL world.

156 ❘ CHAPTER 3 MANAGING DATA

 The advantage of cloud computing for the application programmer is that the data is abstracted
into a virtual database located at a single consistent network address. The physical location
of the data may change over time, or the amount of storage available may grow or shrink, but
to the programmer it doesn’t matter. (This does not mean that normal error handling can be
ignored, but it does mean that the code can be largely decoupled from the physical design of the
data storage.)

 One of the biggest providers of cloud storage and database technology is the online retailer Amazon.
It provides storage and an API (Amazon Web Services, or AWS) as well as a proprietary NoSQL
database called SimpleDB, in addition to several other open source offerings. Other cloud suppliers
are starting to offer similar products. Many providers offer small amounts of free storage and access
as an incentive to try the product before committing to a signifi cant investment.

 Amazon AWS has Python support available, including a comprehensive tutorial to both Python
and the AWS interface, at http://boto.readthedocs.org/en/latest/ . Similar interfaces are
available, or will likely soon become available, from the other providers.

 Data Analysis with RPy
 Though client‐server SQL, NoSQL, and cloud computing all provide solutions for handling
large data volumes or many users, you have other data management issues to consider. Often,
the processing of large volumes of data is more important than the storage or retrieval. If
that processing involves a high degree of statistical exploration or manipulation, Python
offers a basic statistics module (introduced to the standard library in version 3.4). If that
is not enough, there is the R programming language. R is a specialized language designed for
statistical number crunching on a large scale. Like Python it has accumulated a large library of
add‐in modules, and many statistical researchers use R as their platform of choice, publishing
their research using R.

 The good news for Python programmers is that there is an interface from Python to R called rpy2
that opens up this processing power without having to become an expert in R. Knowing the basics of
R, especially its data handling concepts, is pretty much essential, but much of your Python knowledge
can be applied, too. You can fi nd rpy2 on the Python Package Index and install it via pip .

NOTE Cloud services usually rely on the premise that the data can be
physically moved, without notifying the client, so long as the service is not
interrupted. New data centers can be brought online and data transferred
to these transparently. Unfortunately, many corporate clients insist on
knowing where their data is being stored. There may be concerns about data
protection regulations—or more likely the lack of such—in some countries.
These concerns are frequently written into project contracts in sectors such as,
defense, government, and fi nance. If your cloud provider cannot guarantee
adherence to the contract terms, you may need to look elsewhere or may even
decide that cloud storage is not appropriate.

http://boto.readthedocs.org/en/latest/

Summary ❘ 157

 Data management has many facets, and this chapter has reviewed how Python supports you,
from small volumes to large, from simple data persistence through to complex data analysis.
Once you have control of your data, you are in a much stronger position to create powerful,
user‐friendly applications whether on the desktop or on the web. That’s the subject of the next
two chapters.

 SUMMARY

 In this chapter you learned how to store and retrieve data so that your application can pick up
from where it left off or so that you can work on multiple different projects. You saw how you
could do this with fl at fi les using indexed fi les (DBM), pickles, and shelves. You then looked at
SQL and relational databases using SQLite and concluded with a review of some alternative
technologies.

 Flat fi les are good for storing small amounts of data or for saving the program’s state information
when it shuts down. They are less useful where multiple queries have to be made, especially if
querying on more than one key value. DBM fi les act like persistent dictionaries that can only store
strings. Pickles turn binary objects into strings. Shelves combine DBM and pickle to act like
persistent dictionaries, albeit limited to using strings for the keys.

 SQL is used to manage data in a relational database management system (RDBMS). Relational
databases are conceptually made up of one or more two‐dimensional tables, each representing one
logical entity. Cross‐references between tables act as a model for the relationships between entities.
SQL provides commands to build and manage the tables in a database as well as operations to
create, delete, query, and update the data within those tables.

 Python provides the DBAPI, which is a standard protocol for accessing SQL‐based databases. The
DBAPI primarily consists of two objects: a connection and a cursor. The cursor is the primary
object used for executing SQL commands and retrieving their results. Results are returned as a list
of tuples.

 The SQLite database interface is provided in Python’s standard library, and you can download a
standalone interpreter. SQLite, as the name suggests, is a lightweight version of SQL that stores the
entire database in a single fi le and supports a lightweight subset of the SQL language. SQLite can be
used on small‐ to medium‐sized projects, and it is then relatively easy to migrate to a larger database
if the project expands in scale. DBAPI libraries are available for most major databases and can be
downloaded from third parties.

 By using the DBAPI it is possible to build a data abstraction layer that hides both the details of the
database design and the SQL language from the application programmer, further facilitating the
migration process if it becomes necessary.

 Several other database technologies exist, and this is an active area of development with several
NoSQL projects vying for popular support. These databases tend to have quite specifi c areas of
applicability, and no single solution suits all scenarios. Many are focused on the challenges of
managing “Big Data” and are well suited to cloud‐based solutions.

158 ❘ CHAPTER 3 MANAGING DATA

EXERCISES

1. To appreciate the work that pickle does for you, try building a simple serialization function for
numbers, called ser_num() . It should accept any valid integer or fl oat number as an argument
and convert it into a byte string. You should also write a function to perform the reverse
operation to read a byte string produced by your ser_num() function and convert it back
to a number of the appropriate type. (Hint: You may fi nd the struct module useful for this
exercise.)

2. Write a version of the employee database example using shelve instead of SQLite. Populate
the shelf with the sample data and write a function that lists the name of all employees earning
more than a specifi ed amount.

3. Extend the lendydata.py module to provide CRUD functions for the loan table. Add an extra
function, get_active_loans() , to list those loans that are still active. (Hint: That means the
DateReturned fi eld is NULL .)

4. Explore the Python statistics module to see what it offers (only available in Python 3.4 or
later).

Summary ❘ 159

▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT DESCRIPTION

Persistence The ability to store data between program executions such that when a
program is restarted it can restore its data to the state it was in when the
program was last stopped.

Flat fi le A standard fi le containing data. The data may be in text form or binary form.

DBM A form of fi le storage that uses a combination of a fl at fi le to store the data and
index fi les to store the location of individual data records for rapid retrieval.
Both keys and data must be in string format. In Python a dictionary‐like
interface is provided by the dbm module.

Serialization The process of converting binary data into a string of bytes for storage or
transmission over a network.

Pickle A Python‐specifi c format for serializing binary data. Most Python objects can
be serialized using Pickle. Because it poses some security risks, care must be
exercised when reading data from untrusted sources.

Shelve A combination of DBM and Pickle technologies to provide a persistent
dictionary. Arbitrary binary data can be stored against a string‐based key.

Relational
Database

A database comprising one or more tables. Table rows represent records,
and columns represent the fi elds of the record. Field values can refer to other
records within the database, thus representing relationships between entities.

Relationship Each record in a relational database has a unique “primary key,” and other
records can store references to the primary key of another record, thus
establishing a relationship between the two records and their two tables.
Relationships can span tables.

Constraint Various rules can be defi ned to ensure data integrity is maintained within
the database. These rules are known as constraints and regulate such things
as data types, whether a value is required or optional, and whether a cross‐
reference must contain a valid key from another entity.

Cardinality Relationships in a database can represent various types of mapping. The
numbers of each entity in the mapping are called its cardinality. For example,
if one entity refers to exactly one other entity, that is a 1‐1 mapping. If several
entities refer to one other entity, that is a 1‐N mapping. If many entities refer
to many other entities, that is a many‐to‐many mapping.

Structured
Query
Language (SQL)

A standardized mechanism for working with relational databases. The language
contains commands for defi ning the database structure, known as the data
defi nition language (DDL), and commands for manipulating and retrieving the
data within the database, known as data manipulation language (DML).

continues

160 ❘ CHAPTER 3 MANAGING DATA

KEY CONCEPT DESCRIPTION

DBAPI A standard programming protocol for accessing relational databases from
Python. The DBAPI implementations vary slightly in details, but porting code
between DBAPI libraries is much easier than porting at the native database
library level.

NoSQL Not Only SQL is a term used to describe several database technologies that do
not conform to the traditional relational model. Many of these technologies are
focused on managing very large volumes of data with a variety of data types,
much of it unstructured, such as documents and social media data. SQL is not
well suited to handling such unstructured data, and hence NoSQL technology
has become increasingly important.

(continued)

 WHAT YOU LEARN IN THIS CHAPTER:

➤ How to structure and build command-line applications

➤ How to enrich command-line applications

➤ How to structure and build GUI applications with Tkinter

➤ How to enrich Tkinter applications with Tix and ttk

➤ How third‐party frameworks extend your GUI options

➤ How to localize and internationalize your applications

 WROX.COM DOWNLOADS FOR THIS CHAPTER

 For this chapter the wrox.com code downloads are found at www.wrox.com/go/
pythonprojects on the Download Code tab. The code is in the Chapter 4 download, called
Chapter4.zip , and individually named according to the names throughout the chapter.

 Python is a general‐purpose programming language. That means it can be used for many
different types of programs. You have already seen how it can be used as a scripting language
to glue applications together, as well as its use in managing data persistence and access. You
now look at how it can be used to build complete desktop applications.

 Desktop applications are the mainstay of personal computing. They include such standard
facilities as word‐processing programs, spreadsheets, and even games. They often function
entirely on the desktop, with no network access required. At other times they may be
inherently network oriented, as is the case with a web browser or a client–server database
application. The distinguishing feature is that the bulk of the functionality is executed on the
local PC.

 4

http://www.wrox.com/go/pythonprojects
http://www.wrox.com/go/pythonprojects

162 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 Desktop applications can have a graphical user interface (GUI) or a command-line interface (CLI).
In this chapter you see how an application can be structured in such a way that different user
interfaces can be created on top of the same underlying program logic. This means you can start off
with a simple text interface and then add a graphical front end on top of the existing code. This idea
can be taken even further, and a web user interface can often be added, too, making your desktop
application into a network application. You see how to do that in the next chapter.

 You start off by looking at the basic structure, or architecture , of an application. You then build
a simple command-line application that is then extended using some Python modules to provide a
much richer user experience. You then move on to build a GUI front end using Python’s standard
GUI toolkit: Tkinter. This incorporates all the standard GUI features such as controls, menus,
and dialogs. You then incorporate extra GUI features and enhance the appearance of the interface
using more Python module magic. Next, you take a look at other GUI frameworks that offer even
more powerful capabilities. Finally, you look at how to support local confi gurations and multiple
languages.

 STRUCTURING APPLICATIONS

 The key to building effective, extensible applications is to apply a layered architecture. The most
common approach is to split the application into three layers: the user interface, the core logic (also
known as the business logic), and the data. There may also be a network layer when the application
uses the network extensively.

NOTE There is a more formal version of this multi‐layer architecture known
as client‐server computing. In the client‐server model, a strict hierarchy of
request–response operation is maintained. Each layer is a client of the layer
below and makes requests that receive responses. The lower layers are
servers to the layers above. The core logic layer acts as both a server to the
user interface layer and a client of the data layer. True client‐server design is
beyond the scope of this book, but the multilayer approach demonstrated
incorporates many of the same concepts.

 The user interface should present the application logic to the user, but not implement that logic. Its
role is to make navigation of the application’s features as simple as possible and to display results
or outcomes as clearly as possible. The user interface controls which functions are available at any
point in time—for example, it should not be possible to close a document if no document is open.
If using an object‐oriented program (OOP), the objects will typically represent things like menus,
buttons, and windows. The user interface accesses the core logic by calling functions or methods
provided by the logic layer.

 The core logic layer contains all of the algorithms and state management of the data. This is where
you write the code that changes the data values, creates new entities, opens and closes fi les, and
so on. The aim here is to provide a set of functions, or services, that can be accessed from the user

Structuring Applications ❘ 163

 The interaction between the user interface, logic, and data layers is often designed using a pattern
called Model View Controller (MVC). In general, the model represents the core logic and data
layers, while the view represents the display elements in the user interface, and the controller
represents the interaction and dependencies between those display elements. You use a simplifi ed
version of the MVC pattern in this chapter for the GUI design.

interface. For this to be effective, the core logic functions should not print results, but should return
them as values (that is, strings, numbers, lists, objects and so on) that the user interface can present
in the appropriate place and format. The core logic only presents the information; it does not
concern itself with how that information is displayed. It is this separation of concerns between logic
and display that enables you to build different user interfaces on top of the same core logic. The
core logic operates on data provided by the data layer. If using OOP, the objects will represent the
conceptual entities of the problem, such as bank accounts, people, network messages and locations,
and so on.

 The data layer manages data. It stores the data in a safe place and retrieves it on demand. It should
not contain sophisticated algorithms or logic specifi c to the application; it simply delivers raw
data to the core logic layer for processing. The data layer may include some basic data‐integrity
processing to ensure consistency of the data. It may also incorporate security features such as
password control or encryption. It should expose the data via a set of objects, functions, or services.
If using OOP, your objects will typically represent queries, tables, data connections, and so on.
Ideally, you should be able to build multiple applications using the same basic data services. The
data layer was discussed in more detail in Chapter 3 , “Managing Data.”

NOTE There are many ways to represent a software design, and many
books have been written on the subject. Nowadays most of the industry
uses a notation called the Unifi ed Modeling Language (UML). Essentially,
it is a graphical representation of classes and their structure, as well as the
corresponding objects and their interactions. UML is a formally defi ned design
language that in its pure form can result in automated code generation. It
consists of many diagrams and associated icons. For small projects such as
the ones in this book, UML is an unnecessary overhead, but if you ever work
on larger projects and need a way to record and share the structure of your
program, then you should research UML.

NOTE The MVC model was originally developed at Xerox Parc as part of
the Smalltalk 80 programming environment. Over the years MVC has been
adopted by many different languages and UI frameworks and in the process
has diverged signifi cantly from the Smalltalk original. However, the core ideas
remain the same: separation of data (model) from the presentation (view) and
interaction (controller).

164 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 BUILDING COMMAND-LINE INTERFACES

 In this section you build a very simple command-line interface application for the well‐known game
tic‐tac‐toe. The principles discussed in the earlier sections are applied, but in a very simple form so
that you can focus on the program structure rather than the detail of what the code is doing. (The
code is included in the Chapter4.zip fi le under the folder OXO .)

 Building the Data Layer
 You start off creating this game by designing the data layer. For this game you need only a simple
text fi le to hold the state of the game so that it can be saved or resumed. A tic‐tac‐toe game consists
of a board with nine squares. Each square can be empty or have the letter ‘X’ or ‘O’ in it. You can
represent those three options with a simple list of characters. For storage you convert that list into a
simple character string.

 The only other piece of data needed is which player is due to move next but, in a computer versus
human game, you can assume the human is always next to go. So your data layer interface consists
of only two exposed, or published, methods:

 saveGame()

 restoreGame()

 Because you want to keep your layers separate, you should put these methods into a module. To
create this module, type the following code and save it as oxo_data.py (or load it from the OXO
folder of the Chapter4.zip download):

''' oxo_data is the data module for a tic‐tac‐toe (or OXO) game.
 It saves and restores a game board. The functions are:
 saveGame(game) ‐> None
 restoreGame() ‐> game
 Note that no limits are placed on the size of the data.
 The game implementation is responsible for validating
 all data in and out.'''

import os.path
game_file = ".oxogame.dat"

def _getPath():
 ''' getPath ‐> string
 Returns a valid path for data file.
 Tries to use the users home folder, defaults to cwd'''

 try:
 game_path = os.environ['HOMEPATH'] or os.environ['HOME']
 if not os.path.exists(game_path):
 game_path = os.getcwd()
 except (KeyError, TypeError):
 game_path = os.getcwd()
 return game_path

def saveGame(game):
 ''' saveGame(game) ‐> None

Building Command-Line Interfaces ❘ 165

 saves a game object in the data file in the users home folder.
 No checking is done on the input, which is expected to
 be a list of characters'''

 path = os.path.join(_getPath(), game_file)
 with open(path, 'w') as gf:

 gamestr = ''.join(game)
 gf.write(gamestr)

def restoreGame():
''' restoreGame() ‐> game

 Restores a game from the data file.
 The game object is a list of characters'''

 path = os.path.join(_getPath(), game_file)
 with open(path) as gf:
 gamestr = gf.read()

 return list(gamestr)

def test():
print("Path = ", _getPath())

 saveGame(list("XO XO OX"))
 print(restoreGame())

if __name__ == "__main__": test()

 The fi rst function, _ getPath() , is a helper function that uses the os module to try to determine
the user’s home folder and, if that fails, use the current folder. By convention, functions that are
not intended to be called by module users have a leading underscore in front of their name, like
_getPath() . The saveGame() function uses _getPath() to create a new fi le containing the string
representation of the game. The fi nal function restoreGame() also uses _getPath() to locate the
saved fi le and open it, reading back the stored game data.

 Ideally, you would include a more sophisticated test function (or a set of unit tests, like those
described in Chapter 6 , “Python on Bigger Projects”). In the interest of brevity, these are not
shown here.

NOTE In the data module, you have included documentation strings for the
module and functions. You should always do this in your working code, but
because full descriptions of the code are provided in the text, and to save
space in the book, documentation strings have been omitted in the other
modules.

 Building the Core Logic layer
 You now create the core logic of the game. For that you need to defi ne a number of functions that
are used throughout the course of a game. However, to know what those functions are, you fi rst
need to think about how the game will be played. So, before diving into logic code, you need to map
out the sequence of play and, for that, you can use a sequence diagram.

166 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 The game starts by presenting the user with a menu of options. These will include the options to
start a new game or restore a saved game. In either case, once the game has been set up, the board
will be displayed and the user prompted to select a cell. The computer then analyzes the move
and responds with its own. The board is then shown again until a winner is found. The sequence
diagram for this is as shown in Figure 4-1 .

Start application

User Ul Logic Data

Present menu

Select choice-new

Present new board

Select cell

New game

New board

User move

Outcome

Outcome

Updated board

Save game Save game

Present updated board

Select quitIf Quit

Repeat until
win or quit

Save prompt

Confirm

Inform user [user wins]
[no result] Computer move

Inform user [win or draw]

 FIGURE 4-1: Module interaction sequence diagram

 The sequence diagram is a simplifi ed version of a UML sequence diagram. Each of the “objects”
(modules in this case), along with the user, are represented by a vertical line. The arrows indicate
messages fl owing between the modules (and user). The messages have descriptive titles. Some messages
are optional, and the conditions that cause them are indicated in square brackets (called guards). Some
sequences of arrows are enclosed in boxes, and these represent loops or conditional blocks with a
description given in the upper‐left corner. In this case the main game‐play sequence is repeated until
there is a win, or draw, or until the user selects quit. If the user selects quit, then the sequence in the
box at the bottom is executed. Sequence diagrams are a very powerful analysis and design tool.

 From the sequence diagram, you can see that you need to provide functions to handle the user’s
menu choices (only new is shown in the diagram), as well as a function to play the game. The latter
would need to return different results depending on the outcome, which is usually a bad idea.
However, if you create separate functions for the user’s and computer’s moves, you can then use the

Building Command-Line Interfaces ❘ 167

same analysis helper function for both the user and the computer. With that in mind you need to
write the following functions:

 newGame()
 saveGame()
 restoreGame()
 userMove()
 computerMove()

 You need helper functions to generate a random move and analyze whether a given move wins the
game. The list of helper functions is therefore:

 _generateMove()
 _isWinningMove()

 Once again, to keep the separation between the layers, you should put the logic code into a separate
module, this time called oxo_logic.py . It looks like this: y

''' This is the main logic for a tic‐tac‐toe game.
It is not optimised for a quality game it simply
generates random moves and checks the results of
a move for a winning line. Exposed functions are:
newGame()
saveGame()
restoreGame()
userMove()
computerMove()
'''

import os, random
import oxo_data

def newGame():
 return list(" " * 9)

def saveGame(game):
 oxo_data.saveGame(game)

def restoreGame():
 try:
 game = oxo_data.restoreGame()
 if len(game) == 9:
 return game
 else: return newGame()
 except IOError:
 return newGame()

def _generateMove(game):
 options = [i for i in range(len(game))
 if game[i] == " "]
 return random.choice(options)

def _isWinningMove(game):
 pass

168 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 The newGame() function simply returns a new list of nine spaces.

 The saveGame() function calls the oxo_data function of the same name. The restoreGame()
function is marginally more complex in that it catches any errors arising because the data fi le cannot
be found and validates the length of the restored game. It could do more data validation on the
content of the data, but you can add that later if you wish.

 The _generateMove() function looks for the unused cells in the current game and then randomly
selects a cell to place the computer’s move. This is not optimal, and a more intelligent algorithm
would greatly improve the quality of the game.

 The _ isWinningMove() method has been left unfi nished because it is the most complex of the logic
functions. This is where the real processing takes place. The approach you take is very simple and
relies on the fact that there are only eight possible wining lines. They can be listed in terms of the
indices of the game cells involved:

 wins = ((0,1,2), (3,4,5), (6,7,8),
 (0,3,6), (1,4,7), (2,5,8),
 (0,4,8),(2,4,6))

 To assess whether a move has resulted in a win, you need to check each winning line. You can
extract the character in each cell of the candidate line and construct a three‐character string. For a
win all three characters need to be either ‘X’ or ‘O’. The function looks like this:

def _isWinningMove(game):
 wins = ((0,1,2), (3,4,5), (6,7,8),
 (0,3,6), (1,4,7), (2,5,8),
 (0,4,8), (2,4,6))

 for a,b,c in wins:
 chars = game[a] + game[b] + game[c]
 if chars == 'XXX' or chars == 'OOO':
 return True
 return False

 Finally, you need a pair of functions that can analyze a user move and a computer move. The former
takes a cell value input by the user; the latter needs only the game because it uses _ generateMove()

internally. They return the outcome of the move as one of four character codes. An empty string
means the game is still on, an ‘X’ or ‘O’ signifi es the victor, and a ‘D’ means it’s a draw. These
functions look like this:

def userMove(game,cell):
 if game[cell] != ' ':
 raise ValueError('Invalid cell')
 else:
 game[cell] = 'X'
 if _isWinningMove(game):
 return 'X'
 else:
 return ''

def computerMove(game):
 cell = _generateMove(game)

Building Command-Line Interfaces ❘ 169

 if cell == ‐1:
 return 'D'
 game[cell] = 'O'

if _isWinningMove(game):
 return 'O'
 else:

 return ''

 You could have implemented all of these functions as methods of a Game class. That would have
removed the need to pass the game data into each function.

 Finally, you need a test function:

def test():
 result = ''

game = newGame()
 while not result:
 print(game)
 try:

 result = userMove(game, _generateMove(game))
 except ValueError:
 print("Oops, that shouldn't happen")

 if not result:
 result = computerMove(game)

 if not result: continue
 elif result == 'D':
 print("Its a draw")

 else:
 print("Winner is:", result)

 print(game)

if __name__ == "__main__":
 test()

 The test function keeps on generating moves until either somebody wins or the board fi lls up (at
which point _ generateMove() returns ‐1). The moves are generated entirely randomly, so there is
no intelligence in the selections. You can run the code, and you should see something like this (the
actual results you get are random because you use the random module to generate the moves):

 [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
 [' ', ' ', ' ', ' ', ' ', 'O', ' ', 'X', ' ']
 [' ', 'X', ' ', 'O', ' ', 'O', ' ', 'X', ' ']
 Winner is: X
 [' ', 'X', ' ', 'O', 'X', 'O', 'O', 'X', ' ']

 It’s not very pretty, but then, it’s not supposed to be. Presentation is in the user interface, and that’s
what you build next.

Building the User Interface
 In the previous section, you started to think about how the user would perceive the application, that
is, the user experience . The user experience is the key factor in driving the user interface design. You

170 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

need to consider the fl ow of control from entering the application through normal use to exit. In a
command-line application, the most common approaches are to offer menus, often nested to several
levels, or to accept commands typed at a prompt. In this section you build a set of very simple
menus and create a simple prompt‐based solution. This process illustrates both techniques while
keeping the code size small.

 If you walk through the user experience in playing a game of tic‐tac‐toe, the game starts by offering
a menu that allows the user to start a new game, resume a saved game, request help, or quit. (The
ability to quit easily is an important, but often overlooked, feature of good user interface design.)

 The quit option just exits the program. The help screen displays a page of explanatory text. Both of
the other options take the user into a tic‐tac‐toe game. Once in that game, the user can either select
a cell, save the game, or quit. If they choose to quit while the game is still in progress, they should be
asked if they want to save the game fi rst. If they choose a cell, then the computer analyzes the move,
makes its own move, analyzes that, and presents the result. If either move results in a win or in all
cells being used, then a message is displayed to the user and an option to quit or return to the main
menu.

 The user interface presents the information and manages the fl ow from screen to screen. It does not
perform any of the computational logic; that is provided by the core logic layer. The user interface
simply calls the functions that you defi ned in the oxo_logic module.

 You start by defi ning a function to display a menu and return a valid user selection. The function
could be specifi c to the menu and include the menu defi nition within it; however, it is not much
harder to write a function that takes a menu as input and is therefore reusable for all menus in the
system. You could even extract it to a module for reuse across projects.

 The menu code, which you can save in oxo_ui.py (or load it from the zip fi le), looks like this:

''' CLI User Interface for Tic‐Tac‐Toie game.
 Use as the main program, no reusable functions'''

import oxo_logic

menu = ["Start new game",
 "Resume saved game",
 "Display help",
 "Quit"]

def getMenuChoice(aMenu):
 ''' getMenuChoice(aMenu) ‐> int

 takes a list of strings as input,
 displays as a numbered menu and
 loops until user selects a valid number'''

 if not aMenu: raise ValueError('No menu content')
 while True:
 print("\n\n")
 for index, item in enumerate(aMenu, start=1):
 print(index, "\t", item)

Building Command-Line Interfaces ❘ 171

 try:
 choice = int(input("\nChoose a menu option: "))
 if 1 <= choice <= len(aMenu):

 return choice
 else: print("Choose a number between 1 and", len(aMenu))
 except ValueError:

 print("Choose the number of a menu option")

def main():
print(getMenuChoice(menu))

 getMenuChoice([]) # raise error

if __name__ == "__main__": main()

 Notice that the enumerate function is used to generate the menu option numbers and that they start
at 1 because most users fi nd 0 a strange option choice. The function keeps repeating until the user
selects a valid choice, with prompts to correct invalid choices.

 Having presented some choices, you now need to write code to do all of those things. The methods
are named after the menu options and are shown as follows:

def startGame():
return oxo_logic.newGame()

def resumeGame():
return oxo_logic.restoreGame()

def displayHelp():
print('''

 Start new game: starts a new game of tic‐tac‐toe
 Resume saved game: restores the last saved game and commences play

Display help: shows this page
 Quit: quits the application
 ''')

def quit():
 print("Goodbye...")

raise SystemExit

 Your next step is to write a function to process the user’s choice. That can be done using an
if/elif chain, but that can become diffi cult to maintain if there are many options. Although
the number of possible choices in this project is small, you use a dispatch table because this is a
powerful, effi cient, and fl exible technique. You also need to change the main() function to loop
over the menu and game code until the user quits. Make the following modifi cations to your
program:

def executeChoice(choice):
 ''' executeChoice(int) ‐> None

 Execute whichever option the user selected.
If the choice produces a valid game then

 play the game until it completes.'''

172 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 dispatch = [startGame, resumeGame, displayHelp, quit]
 game = dispatch[choice‐1]()
 if game:

 # play game here
 pass

def main():
 while True:
 choice = getMenuChoice(menu)

 executeChoice(choice)

 That only leaves the task of actually playing the game. You need to write a function that takes a starting
game position and interacts with the user until the game completes, either because there are no more
moves or a winner is found. In addition, it helps if you have a function that displays the game in the
usual grid layout rather than the fl at data format that you are using internally. These are shown here:

def printGame(game):
 display = '''

 1 | 2 | 3 {} | {} | {}
 ‐‐‐‐------ ‐‐‐‐--------
 4 | 5 | 6 {} | {} | {}

 ‐‐‐‐------ ‐--‐‐‐------
 7 | 8 | 9 {} | {} | {}'''
 print(display.format(*game))

def playGame(game):
 result = ""

while not result:
 printGame(game)
 choice = input("Cell[1‐9 or q to quit]: ")
 if choice.lower()[0] == 'q':

 save = input("Save game before quitting?[y/n] ") if
 save.lower()[0] == 'y':
 oxo_logic.saveGame(game)

 quit()
 else:

 try:
 cell = int(choice)‐1

 if not (0 <= cell <= 8): # check range
 raise ValueError
 except ValueError:
 print("Choose a number between 1 and 9 or 'q' to quit ")

 continue

 try:
 result = oxo_logic.userMove(game,cell)
 except ValueError:
 print("Choose an empty cell ")
 continue
 if not result:
 result = oxo_logic.computerMove(game)

 if not result:
 continue
 elif result == 'D':
 printGame(game)
 print("Its a draw")

Using the cmd Module to Build a Command-Line Interface ❘ 173

 else:
 printGame(game)
 print("Winner is", result, "\n")

 The printGame() function uses formatting to insert the game values into the display. Note the use
of the asterisk (*game) that expands the list into its individual elements.

 The playGame() function displays the user interface prompt for the game screen. You ask for a
number representing the cell that the user wishes to place an ‘X’ into. You also provide the option
to quit, and if it is selected, offer the chance to save the game. If the user’s choice is valid, you then
use the oxo_logic functions to determine the outcome of the selection, and if not, a fi nishing
move to get the computer to take a turn. Notice how all of the rules of the game and the data
management are in the lower layers. The user interface layer is dealing with presentation and control
fl ow only. One slight quirk of the design is that the board is passed into both the userMove() and
computerMove() functions, but the updated board is not returned by the functions. That is because
the board object is a mutable list and, as such, can be changed by the function and the original
variable will refl ect those changes.

 Later in this chapter, you revisit this game and see how easily you can create a new GUI‐based user
interface layer on top of the existing oxo_logic and oxo_data modules. Before you do that, there
are a couple of interesting options you can use to enhance your command-line applications. You
look at them in the next sections.

 USING THE CMD MODULE TO BUILD A
COMMAND-LINE INTERFACE

 Python has a module in its standard library called cmd that is specifi cally designed for building
command-line interfaces. In particular it creates the type of interface that you use for Python’s help
and debugger systems. It presents a command prompt, and you can type in a command. You can
request help, and a help screen is presented with the list of available commands. If you type “help
<command>”, you get a screen explaining how to use the specifi ed command.

 In this section you build a cmd ‐based version of the tic‐tac‐toe game from the previous section. It has the
same four options that you displayed in the opening menu. The game play part is exactly the same as
before. (The fi nished code is in the fi le oxo‐cmd.py in the y OXO folder of the Chapter4.zip download.)

cmd is based on an object‐oriented framework whereby you defi ne a new subclass of the cmd.Cmd
class. This subclass overrides some key methods to provide your application‐specifi c behavior. You
then defi ne a set of methods whose names begin with the string do_. The class then interprets the
part following the underscore as a command word that the user can type.

 You can build a skeleton version of your tic‐tac‐toe game by defi ning some methods that simply
print a message to see how it works. It looks like this:

import cmd

class Oxo_cmd(cmd.Cmd):
 intro = "Enter a command: new, resume, quit. Type 'help' or '?' for help"
 prompt = "(oxo) "

174 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 def do_new(self, arg):
 print("Starting new game")

 def do_restore(self, arg):
 print("Restoring previous game")

 def do_quit(self, arg):
 print("Goodbye...")

 raise SystemExit

def main():
 game = Oxo_cmd().cmdloop()

if __name__ == "__main__":
 main()

 With the preceding code, you created a new class derived from cmd.Cmd . To that you added an intro
message and a prompt string. You then defi ned the command‐response methods.

 Notice that you don’t need a help command because that is built into the class mechanism for free.
Also notice that you need to provide a second dummy parameter in the method defi nitions, even if it
is not used in the method.

 Finally, in the main function you instantiate the game object and execute its cmdloop() method.

 If you run that, you see that it produces a fully functioning command interpreter application.

 To turn it into a working tic‐tac‐toe game, you need to make only a couple of minor tweaks. You
import both the oxo_logic and oxo_ui modules. You create a game class variable to hold the game
data. Then you call the ui_logic module functions from your command methods. Finally, you call
the oxo_ui.playGame() method to initiate the original game play.

 The fi nal game looks like this:

 import cmd , oxo_ui, oxo_logic

 class Oxo_cmd(cmd.Cmd):
 intro = "Enter a command: new, resume, quit. Type 'help' or '?' for help"
 prompt = "(oxo) "

game = ""

 def do_new(self, arg):
 self.game = oxo_logic.newGame()

 oxo_ui.playGame(self.game)

 def do_resume(self, arg):
 self.game = oxo_logic.restoreGame()
 oxo_ui.playGame(self.game)

 def do_quit(self, arg):
 print("Goodbye...")
 raise SystemExit

 def main():
 game = Oxo_cmd().cmdloop()

Reading Command-Line Arguments ❘ 175

 if __name__ == "__main__":
 main()

 There are many other options and features for you to explore in the cmd.Cmd class, but hopefully
this example has shown you how easy it is to build a command interpreter style application using
cmd . It should also have demonstrated how powerful the separation of the presentation from the
logic is. For a very small amount of coding, you have created an entirely different version of the tic‐
tac‐toe game, but the logic and data layers are completely identical.

 In the next section, you take a look at the command line itself and see how to read those command-
line input arguments.

 READING COMMAND-LINE ARGUMENTS

 When you start a command-line program, the command line itself is stored as a list of strings in
sys.argv . The fi rst element is the script name, and the following elements are the arguments to the v

command. Thus, if you had a fi le copying script you might call it like this:

 $ python mycopy.py originalfile copyfile

 And the sys.argv value would be:

 ["mycopy.py", "originalfile", "copyfile"]

 However, it’s often the case that command-line scripts take optional arguments to control the
display or functionality. For example, many programs offer a “ ‐h ” or “–-help ” option that causes
the command’s help information to be displayed. You can process those options by examining the
contents of sys.argv , but it’s a nontrivial task so Python includes the v argparse module to assist in
handling these kinds of command options.

 You now modify the original tic‐tac‐toe code to display the help message if either ‐h or --help is
specifi ed on the command line. It also goes direct to a new game if ‐n or --new is specifi ed, and
it goes straight to a restored game if ‐r or --res or --restore is given. This enables experienced
tic‐tac‐toe players to bypass the initial menu if they wish.

NOTE Python argument processing assumes UNIX‐style arguments—that is,
they start with either one or two hyphens. The traditional option style on DOS
or Windows is a forward slash; argparse does not process those arguments by
default, but you can specify prefi x characters as an optional argument when
creating the parser if you need to support other styles.

 The fi rst thing you need to do is import the module:

import argparse as ap

176 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 Next, modify the main function as shown:

def main():
 p = ap.ArgumentParser(description="Play a game of Tic‐Tac‐Toe")
 grp = p.add_mutually_exclusive_group()
 grp.add_argument("‐n","--new", action='store_true',
 help="start new game")
 grp.add_argument("‐r","--res", "--restore", action='store_true',
 help="restore old game")
 args = p.parse_args()

 if args.new:
 executeChoice(1)
 elif args.res:
 executeChoice(2)
 else:
 while True:
 choice = getMenuChoice(menu)
 executeChoice(choice)

 Now, if you try it out, the ‐h (or --help) option produces a standard help screen format produced
by argparse :

 usage: oxo_args_ui.py [-h] [-n | -r]

 Play a game of Tic-Tac-Toe

 optional arguments:
 -h, --help show this help message and exit
 -n, --new start new game
 -r, --res, --restore restore old game

 If you specify ‐n (or --new) , it goes straight into a new game. Specifying ‐r , r --res , or --restore
brings back the last saved game.

 You should notice a couple of features of the argparse code. First, you created the options as a
mutually exclusive group. That was because it makes no sense to specify both new and restore
options in the same command. Also you provided a description of the program in the constructor
of ArgumentParser and this then appears in the help screen. Finally, by specifying an action of
store_true , you made the options into boolean fl ags that enabled them to be used as truth values in
the if/elif tests.

 The argparse module has many other tricks up its sleeve. It can interpret arguments as different
types, it can count options and it can associate multiple options, and so on. There is a tutorial on its
use, and the documentation has several examples.

 The last thing to point out here is that you have effectively given your code yet another user interface
mechanism without any modifi cation to the game logic or the data layer. Separating presentation
from logic and data is a very powerful design technique.

 In the next section, you take a look at a different way to make a command-line application more
professional looking for your users, by adding a few GUI features while not implementing a full
GUI application.

Jazzing Up the Command-Line Interface with Some Dialogs ❘ 177

 JAZZING UP THE COMMAND-LINE INTERFACE WITH
SOME DIALOGS

 It is possible to add a few GUI elements to a command-line interface application without the
complexity of building a completely graphical user interface. In particular you can pop up
information or warning boxes instead of simply printing a message on the terminal. This often
makes the messages stand out more to the user—they do not get lost in the mass of text on the
screen. You can also use the standard fi le selection dialogs when choosing fi lenames. In this section
you add some GUI message boxes to the tic‐tac‐toe user interface to highlight error messages and to
notify the user of the fi nal outcome of a game.

TIP It is usually a good idea to allow the code to write to the terminal, too,
just in case the user is not running a GUI environment—for example, if they are
logging in remotely over ssh or similar. You can do this as a matter of course
or have a command-line option, such as --nogui , to control how the prompts
are displayed.

 Before you start modifying the game itself, you can explore how these message boxes work at the
command-line prompt. They are defi ned in submodules of the tkinter package that you explore
more fully later in the chapter. These submodules are:

➤ tkinter.messagebox

➤ tkinter.filedialog

➤ tkinter.simpledialog

➤ tkinter.colorchooser

➤ tkinter.font

 You only use the fi rst module in this section, but the principle is the same for all of them.
Unfortunately, the offi cial documentation is very sparse, so a bit of experimentation at the Python
prompt goes a long way. You can try that now with the tkinter.messagebox module.

 TRY IT OUT Exploring Tkinter Message Boxes

In this Try It Out, you play with the various message boxes available in Python’s tkinter.messagebox
module. You learn how to incorporate these into a non‐GUI program and how to deal with a couple of
minor niggles that arise. Complete the following steps:

1. Start the Python interpreter and type the following code:

 >>> import tkinter.messagebox as mb
 >>> mb.showinfo("Title", "Your message here")
 'ok'
 >>>

178 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 The result should look like Figure 4-2 . Notice the message box has the title and message specifi ed,
plus an icon indicating that it is an informational message. Also notice the strange blank window
that appeared. You want to hide that!

2. To remove the blank window, close both of the displayed Tkinter windows and type the
following:

 >>> import tkinter
 >>> tk = tkinter.Tk()
 >>> tk.withdraw()
 ''

3. Notice the empty window reappeared on its own this time, then disappeared once you typed the
command withdraw() .

4. You can now bring up your message box by itself by typing:

 >>> mb.showinfo("Title", "That's better!")
 'ok'
 >>>

 FIGURE 4-2: Initial message box screenshot

Jazzing Up the Command-Line Interface with Some Dialogs ❘ 179

5. Dismiss the dialog box and try some other message box variants, like this:

 >>> dir(mb)
 ['ABORT', 'ABORTRETRYIGNORE', 'CANCEL', 'Dialog', 'ERROR', 'IGNORE',
 'INFO', 'Message', 'NO', 'OK', 'OKCANCEL', 'QUESTION', 'RETRY',
 'RETRYCANCEL', 'WARNING', 'YES', 'YESNO', 'YESNOCANCEL',
 '__builtins__', '__cached__', '__doc__', '__file__',
 '__initializing__', '__loader__', '__name__', '__package__',
 '_show', 'askokcancel', 'askquestion', 'askretrycancel',
 'askyesno', 'askyesnocancel', 'showerror', 'showinfo',
 'showwarning']
 >>> mb.showerror("An Error", "Oops!")
 'ok'
 >>> mb.showwarning("Title","This may not work...")
 'ok'
 >>> mb.askyesno("Title", "Do you love me?")
 True
 >>> mb.askokcancel("Title", "Are you well?")
 True
 >>> mb.askquestion("Title", "How are you?")
 'yes'
 >>> mb.askretrycancel("Title","Go again?")
 True
 >>> mb.askyesnocancel("Title", "Are you well?")
 >>>

 How It Works

 You started off by importing the messagebox submodule and giving it an alias to reduce typing. You
then tried to display an error, but discovered a secondary empty window appeared in addition to
the expected information message. This secondary window is, in fact, the main Tkinter application
window where you would normally put your controls and menus and so on. To prevent that from
appearing, you have to import the main Tkinter module and instantiate the top level Tk object. You
then make that invisible by calling withdraw() . Having done that, you can call on the messagebox
objects as often as you like, and the top‐level window remains invisible.

 You then explored the module further. By taking a dir() listing, you could see the other functions
available and tried each of them in turn. Notice that some return strings such as 'ok' while others
return boolean results. It’s best to experiment at the interactive prompt to determine what each one
returns. Notice that clicking Cancel , when it appears, returns a None value.

 You can experiment in a similar way with some of the other standard dialogs, such as the fi le dialogs or
font and color pickers.

 Having seen how the standard dialogs work, you can put them to use in your tic‐tac‐toe game
by presenting the results using showinfo dialogs. You also ask the user if they want to save an
incomplete game before quitting with an askyesno dialog. Although you could make all of the
prompts use dialogs, this actually leads to a very cumbersome user interface with dialogs popping
up and disappearing constantly. It is better to use this technique judiciously to highlight important
information only.

180 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 The modifi cations you need to make are in the playGame() function. You could modify
any of the previous versions of the game, but in this example you use the original
oxo_ui.py fi le as the basis and save it as oxo_dialog_ui.py . (Or simply load it from the y Chaper4.

zip fi le.)

 The fi rst thing to do is add the import statements:

import tkinter
import tkinter.messagebox as mb

 Then you need to modify main to get rid of the top level window:

 def main():
 top = tkinter.Tk()
 top.withdraw()
 while True:
 choice = getMenuChoice(menu)
 executeChoice(choice)

 Finally, you modify playGame() as shown here:

 def playGame(game):
 result = ""
 while not result:
 printGame(game)
 choice = input("Cell[1-9 or q to quit]: ")
 if choice.lower()[0] == 'q':
 save = mb.askyesno("Save game","Save game before quitting?")
 if save:
 oxo_logic.saveGame(game)
 quit()
 else:
 try:
 cell = int(choice)-1
 if not (0 <= cell <= 8):
 raise ValueError
 except ValueError:
 print("Choose a number or 'q' to quit")
 continue

 try:
 result = oxo_logic.userMove(game,cell)
 except ValueError:
 mb.showerror("Invalid cell", "Choose an empty cell")
 continue
 if not result:
 result = oxo_logic.computerMove(game)
 if not result:
 continue
 elif result == 'D':
 printGame(game)
 mb.showinfo("Result", "It's a draw")
 else:
 printGame(game)
 mb.showinfo("Result", "Winner is {}".format(result))

Programming GUIs with Tkinter ❘ 181

 Although there is quite a lot of code shown here, there are only a few lines of changes. Once again
no changes were needed in the logic or data layers.

 The next section takes you into the world of GUIs.

 PROGRAMMING GUIS WITH TKINTER

 In this section you fi nd out how to create GUIs using Python’s standard GUI toolkit, Tkinter. All
GUIs are built on top of a toolkit of functions or, more commonly, a class library. You look at some
of the other toolkits that you can use with Python later in the chapter, but for now the Tkinter
toolkit provides a solid foundation for the basic principles.

 You start out by examining some of the basic concepts of GUI design, including how GUI toolkits
are structured and used.

 Introducing Key GUI Principles
 Virtually all GUIs are event driven. That means you need to write your code to respond to certain
events generated by the GUI toolkit. GUIs come with a whole language of their own in terms of the
objects from which a GUI is built. There are windows, frames, controls, and so on. These objects
are all connected by something called a containment tree . You see what each of these concepts
means and how they fi t together to form a GUI in the following sections.

 Event‐Based Programming
 You saw how programs can be event driven back in Chapter 2 , “Scripting with Python,” when
you explored the parsing of XML and HTML fi les. Essentially, the parsers used an internal loop,
and whenever they encountered an item of interest, they sent a message to your code. In effect they
called a function that you provided.

NOTE This type of function is sometimes called a “callback” because you
register it with the framework and then the framework calls it back. GUI
programming uses callback functions extensively.

 GUI programs function in a similar manner. The toolkit has an infi nite loop within it and, as the
user clicks buttons, moves the mouse, or presses keys, the toolkit generates events that result in
functions being called. You write functions and register them with particular events so that when a
user selects, say the File‐> Save menu item, your function doFileSave() gets called.

 This means the shape of your program code changes. Instead of you controlling the fl ow of the
program from beginning to end, you instead initialize your data and then hand control over to the
toolkit. This can be an unsettling experience for some programmers at fi rst, but once you get used
to it, you will fi nd it actually frees you from a lot of mundane control‐fl ow programming and lets
you focus on what your program needs to do.

182 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 GUI Terminology
 One of the fi rst things you notice when dealing with GUIs is the number of new terms you need
to learn. You’ve already met event, and will no doubt be familiar with many more, such as menu,
button, scrollbar, and so on. As a programmer you fi nd that, sometimes, the common understanding
of terms is not quite what the programming meaning is. In addition, there are a bunch of other
terms that are not usually exposed to users. Table 4-1 lists some of the most important GUI terms
and their meaning from a programmer’s perspective.

 TABLE 4-1: Explanations of Key GUI Terms

TERM DESCRIPTION

Window An area of the screen controlled by an application. Windows are usually
rectangular but some GUI environments permit other shapes. Windows can
contain other windows and frequently every single GUI control is treated as a
window in its own right.

Control A control is a GUI object used for controlling the application. Controls have
properties and usually generate events. Normally controls correspond to application
level objects and the events are coupled to methods of the corresponding object
such that when an event occurs the object executes one of its methods.

Widget A visible control. Some controls (such as timers) can be associated with a given
window but are not visible. Widgets are that subset of controls that are visible and
can be manipulated by the user or programmer.

Frame A type of widget used to group other widgets together. Often a frame is used
to represent the complete window and further frames are embedded within it.
Frames sometimes have visible borders and background colors but at other times
are invisible and solely used as a container object.

Label A widget containing some text or a simple image. It does not generate any events
but can be modifi ed in response to an event elsewhere.

Button A widget with text and/or images that can be pressed by the user and emits an
event in response.

Text Entry A widget that can display and/or receive text. It can be a single line entry on a
form or a multiline entry such as a text editor pane. Text widgets can often contain
other widgets such as images.

Menu A widget representing a menu control. The menu contains menu items and/or sub‐
menus. Menus provide all the mechanisms for the navigation of the menu widget
hierarchy. Menu Items, when selected, emit events that can be processed.

Canvas A widget for containing graphical shapes and images. Canvas objects
normally contain methods that permit drawing of geometrical shapes, charts, and
so on.

Programming GUIs with Tkinter ❘ 183

TERM DESCRIPTION

Geometry Every window and widget has a geometry, or set of coordinates indicating
its location and size. Different toolkits represent this information differently.
Tkinter uses the format (width, height). Location information if needed is shown
as: (x‐coordinate, y‐coordinate) and is relative to the containing widget.

Dialog A special kind of window that is owned by the parent application but can be
moved around the screen independently. Dialogs can be modal, that means you
must close the dialog before the application responds to any other actions, or
modeless where the dialog operates in parallel to the main application window.

Messagebox A small dialog box that generally presents very simple prompts or requests simple
types of user input. You have already used Tkinter’s message boxes in an earlier ’
section.

Layout Controls are laid out within a frame according to a particular set of rules or
guidelines. These rules form a layout. The layout may be specifi ed in a number
of ways, either using on‐screen coordinates specifi ed in pixels, using relative
position to other components (left, top etc.) or using a grid or table arrangement.
A coordinate system is easy to understand but diffi cult to manage when, for
example, a window is resized. You are advised to use non‐resizable windows if
working with coordinate-based layouts. Better still use non‐coordinate layouts and
let the toolkit manage things for you.

Parent‐Child GUI applications tend to consist of a hierarchy of widgets/controls. The top level
frame comprising the application window contains sub frames that in turn contain
still more frames or controls. These controls can be visualized as a tree structure with
each control having a single parent and a number of children. In fact it is normal for
this structure to be stored explicitly by the widgets so that the programmer, or more
commonly the GUI environment itself, can often perform some common action to a
control and all of its children. For example, closing the topmost widget results in all
of the child widgets being closed too. The containing widget is called the parent.

Focus When a window gets focus it becomes the active window in that all keystrokes
and mouse clicks will go to that window and its child widgets. For example a word
processor may have a modeless dialog box for searches. The user can switch focus
between the main window and the dialog by clicking with the mouse on whichever
window is to receive input.

 The Containment Tree
 Every GUI application is constructed in a tree‐like manner with a top‐level window containing other
windows that in turn contain more windows until you eventually reach the lowest level controls and
widgets. This hierarchy can be represented as a tree structure and is known as the containment tree.

 Events arrive at a child widget, which, if it is unable to handle it, passes the event to its parent
and so on up to the top level. Similarly, if a command is given to draw a widget, it will send the

184 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

command on down to its children; thus a draw command to the top‐level widget redraws the entire
application, whereas one sent to a button likely only redraws the button.

 This concept of events percolating up the tree and commands being pushed down is fundamental to
understanding how GUIs operate at the programmer level. It is also the reason that you always need
to specify a widget’s parent when creating it, so that it knows where it sits in the containment tree.
An example containment tree is shown in Figure 4-3 .

Top

Frame

Frame

Entry Label Button Button

Frame

FIGURE 4-3: Example of a GUI containment tree

 This illustrates the top‐level widget containing a single Frame that represents the outermost window
border. This in turn contains two more Frames ; the fi rst contains a text Entry widget and a Label ,
and the second contains the two Buttons used to control the application. You should refer back to
this diagram when you get ready to build a simple GUI in the next section.

 Building a Simple GUI
 It’s time to turn this discussion into real code. You start by building the application illustrated
in Figure 4-3 in the previous section. The code looks like this (and can be loaded from the fi le
demo1.py in the Tkinter folder of the Chapter4.zip fi le):

import tkinter as tk

create the top level window/frame
top = tk.Tk()
F = tk.Frame(top)
F.pack(fill="both")

Now the frame with text entry
fEntry = tk.Frame(F, border=1)
eHello = tk.Entry(fEntry)
eHello.pack(side="left")
lHistory = tk.Label(fEntry, text=" ", foreground="steelblue")
lHistory.pack(side="bottom", fill="x")
fEntry.pack(side="top")

Programming GUIs with Tkinter ❘ 185

 You start by importing tkinter and creating a top‐level widget. (You already saw this in the earlier
section on using message boxes.) Next, you create a Frame to hold all of the other widgets. The fi rst
parameter of all widget creation methods is the parent widget, so in this case you specify the parent
as being top . The next step calls F.pack() . The pack() call invokes a simple layout manager that, by
default, simply packs components into the containing object starting at the top and working down.
You are packing your Frame object into its parent, top , that represents the main window. The fi ll
option tells the widget to expand to fi ll the window in both vertical and horizontal directions.

 You then create a second Frame to hold the Entry and Label widgets. You use named parameters of
the constructor to set a border around the entry widget and set the foreground color of the label
font. Notice also that you are using arguments to tell the packer to place the widgets at the sides
of the frame rather than its default vertical stacking arrangement. You can see the usage pattern
developing—create a widget then pack it. Finally, you pack the new fEntry frame itself.

NOTE A naming convention for widget variables is used in the example where
the fi rst character indicates the type of widget. This is sometimes useful as a
reminder of what each variable is, but can create a maintenance issue if you
change the widget type later. The use of such a convention is entirely optional;
it makes no difference to Python or Tkinter.

 The next step is to create the buttons and associate some behavior with them. For that you need to
create an event handler that is activated when the user presses a button:

create the event handler to clear the text
def evClear():
lHistory['text'] = eHello.get()
eHello.delete(0,tk.END)

 The event handler sets the text of the lHistory label to the contents of the eHello entry fi eld and
then deletes the text from the eHello fi eld itself. You use a dictionary style access to set the Label ’s
text. This technique works for any of the attributes of the widget. The delete() method takes 0
as the fi rst argument. That indicates the start of the text, and the special value tk.END , used as the
second argument, means the end of the text.

 You create the buttons and connect the event handler with the following code:

Finally the frame with the buttons.
sink this one for emphasis
fButtons = tk.Frame(F, relief="sunken", border=1)
bClear = tk.Button(fButtons, text="Clear Text", command=evClear)
bClear.pack(side="left", padx=5, pady=2)
bQuit = tk.Button(fButtons, text="Quit", command=F.quit)
bQuit.pack(side="left", padx=5, pady=2)
fButtons.pack(side="top", fill="x")

Now run the eventloop
F.mainloop()

186 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 Once again, you create a frame to hold the buttons and then pack the buttons using side arguments. You
also added some padding to the buttons so that you can create some space around them. The bClear
button is connected to your event handler function by specifying the function name, evClear , as the r

command argument. The bQuit button uses the predefi ned quit method on the top‐level frame, F . F

WARNING It is very important that you specify the name of the function only
and do not call it using parentheses after the name. Doing so would assign the
return value of the function (in this case None) as the event handler.

 Finally, you start the Tkinter mainloop() running and wait for the user to do something. If you run
the code, the resulting window should look like Figure 4-4 , which shows before and after versions
of the application.

 FIGURE 4-4: demo1.py in action

 You’ll fi nd that you can resize, iconify, and move the window just like any other window in your
desktop. Pressing the Quit button closes the application (as does the usual close icon on the title bar)
and pressing the Clear button calls your evClear function.

 Referring back to the containment tree diagram from the previous section, you see that it describes
the layout of this application with three frames, a label and entry box, and two buttons.

 Now that you’ve seen the basics in action, you can move onto a more realistic example using more
widgets and linking the controls to more substantial event handling functions. It’s time to revisit
your tic‐tac‐toe game.

 Building a Tic‐Tac‐Toe GUI
 In this section you build a GUI for your tic‐tac‐toe game using exactly the same logic and data layers
as previously. This GUI is much closer to the kind of GUI you would expect to see on a modern
desktop application, complete with menus, buttons, and mouse interaction rather than relying on
keyboard input. By using the same tic‐tac‐toe logic as before, you can focus on the structure of the
GUI without thinking too much about how the application itself works.

 Sketching a UI Design
 When building a substantial GUI application, it often helps to sketch out roughly what you want it
to look like before jumping into code. For a tic‐tac‐toe game, you want a menu bar with File and
Help menus. The File menu has New , Resume , Save , and Exit menu items. (You could have called

Programming GUIs with Tkinter ❘ 187

the menu the Game menu, but File is the conventional choice for GUI applications and consistency
of style is one of the advantages of using GUIs.) The Help menu has Help and About options.

 The board itself will be represented by nine buttons laid
out in the usual grid style. When a button is clicked, its
label will display the player’s mark.

 A status bar on the bottom will display messages to the
user and the fi nal results will be presented using message
boxes. It should look something like Figure 4-5 .

 With a clear idea of the layout, you now want to start
thinking about the code structure. The GUI essentially
consists of three areas: the menu bar, the board, and the
status bar. The board needs to be treated as a group and
centered in its frame so you could make the board itself
another frame inside the central frame. The status bar
just displays text so it will consist only of a label widget.
That just leaves the menu bar.

 Building Menus
 Menus in Tkinter are a little more complex than the widgets you’ve used so far. The initial menu
bar is actually quite easy to create because it’s the default for a new menu. But, how do you create
the drop‐down menus? The answer is that the menu class has a method called add_cascade() that
applies a submenu to a higher level menu. Tkinter knows about menus so it automatically creates
drop‐down and pop‐out menus as necessary without you having to do anything clever. The fi nal
anomaly to menus is that they are not added to the window using the normal layout manager
methods, like pack() . Instead the top‐level widget’s menu attribute is set to the top‐level menu object.

 Creating menus can become rather tiresome with a lot of repetitive typing so it’s often easier to
model the menus as data and then use a loop to process the data structure into a menu hierarchy.
You can use that approach here even though your menus are actually quite short.

 The code to build the menus looks like this (you can load it from the zip fi le as oxo_menu.py in the
OXO folder):

import tkinter as tk
import tkinter.messagebox as mb
import oxo_logic

top = tk.Tk()

def buildMenu(parent):
 menus = (
 ("File", (("New", evNew),
 ("Resume", evResume),
 ("Save", evSave),
 ("Exit", evExit))),
 ("Help", (("Help", evHelp),
 ("About", evAbout)))
)

File

Status bar

Help

X O O

X X

Window Title Bar

 FIGURE 4-5: Tic‐tac‐toe GUI design

188 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 menubar = tk.Menu(parent)
 for menu in menus:
 m = tk.Menu(parent)

 for item in menu[1]:
 m.add_command(label=item[0], command=item[1])
 menubar.add_cascade(label=menu[0], menu=m)

 return menubar

def dummy():
 mb.showinfo("Dummy", "Event to be done")

evNew = dummy
evResume = dummy
evSave = dummy
evExit = top.quit
evHelp = dummy
evAbout = dummy

mbar = buildMenu(top)

top["menu"] = mbar

tk.mainloop()

 After the initial imports and creation of the top level widget, you defi ne the menu‐building
function.

 The menu structure is defi ned as a set of nested tuples. The leaf node menu items consist of name‐
function pairs. You then create the top‐level menu bar object and loop over the data structure
building the submenus and inserting them into the menu bar. The complete menu bar object is
returned.

 The next section of code defi nes the event handler functions—at least, it will do so when you are
fi nished. For now you simply defi ne a dummy function to handle all events (except evExit , which
is trivial) and assign it to each of the event handler variables. Soon, you return to these variable
assignments and convert them into defi nitions of the real event handling functions for your game.

 Finally, you execute the buildMenu() function and assign the result to the top widget’s menu
attribute. You then run the mainloop() .

 When you run this program, you should get a window with a menu bar and when you select any
menu item it calls the dummy function.

 Building a Tic‐Tac‐Toe Board
 Having created the menu structure, you now want to extend the program to create the board. This
sits within a Frame that itself sits centrally inside an outer Frame . The reason for this design is that it
separates out the tasks of laying out the board buttons from the layout of the board as a whole.

 In the same way that you did for the menus, you create a function that builds the board. The board
is the part of the game that is connected to the logic layer and the basic game play so you also need

Programming GUIs with Tkinter ❘ 189

to defi ne code to convert the logical layer’s data model of a game into the displayed board within
your GUI and vice‐versa. You can do that in small helper functions. You also need to add an event
handler function to set the button label when a button is clicked; the interplay between the GUI and
logic layer is also part of the button click event handler code.

 You tackle the GUI building part fi rst. The code is as shown here (and can be loaded from
oxo_gui_board.py from the OXO folder of the zip fi le):

def evClick(row,col):
 mb.showinfo("Cell clicked", "row:{}, col:{}".format(row,col))

def buildBoard(parent):
 outer = tk.Frame(parent, border=2, relief="sunken")
 inner = tk.Frame(outer)
 inner.pack()

 for row in range(3):
 for col in range(3):
 cell = tk.Button(inner, text=" ", width="5", height="2",
 command=lambda r=row, c=col : evClick(r,c))
 cell.grid(row=row, column=col)
 return outer

 mbar = buildMenu(top)
 top["menu"] = mbar

board = buildBoard(top)
board.pack()
status = tk.Label(top, text="testing", border=0,
 background="lightgrey", foreground="red")
status.pack(anchor="s", fill="x", expand=True)

tk.mainloop()

 You have started to use some of the more cosmetic features of Tkinter to improve the widget’s
appearance and more clearly separate them on the screen. In this case you used the border and
relief attributes to make the board frame more clearly distinct from the menu and status bar (that
you also defi ned here because it’s just two extra lines and gets you close to your fi nal GUI structure).
You also set the color options for the status bar and “anchor” it to the bottom of the top‐level frame
(signifi ed by using a value of s , for south).

 The board construction itself is just a couple of for loops creating the grid pattern. (The width
and height values were determined by trial and error.) The command argument for the buttons is
interesting because it uses the lambda function mechanism. The reason for this is that the command
argument must be a function that takes no arguments, but you need to pass in the row and column
values. You do that by setting up two, default‐valued parameters where the values are the row and
col values at the point of button creation. Each button calls the evClick function with its own
unique set of values. This is a common trick when programming with Tkinter. You also used the
grid layout manager rather than the packer because the board layout is a perfect match to the grid
style of layout. You simply specify the row and column locations of each control and the grid does
the rest.

190 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 Connecting the GUI to the Game
 Having gotten the basic GUI structure in place, you can now turn your attention to writing the
game play code and hooking up the various menus to the fi nal event handling functions. You can
tackle the game code fi rst as it sits mainly in the evClick event handler and is aided by a couple of
helper functions that you can call cells2game and game2cells .

 The modifi cations look like this (and can be loaded from the fi le oxo_gui_game.py in OXO folder of
the zip fi le):

gameover = False
def evClick(row,col):
 global gameover
 if gameover:
 mb.showerror("Game over", "Game over!")
 return
 game = cells2game()
 index = (3*row) + col
 result = oxo_logic.userMove(game, index)
 game2cells(game)

 if not result:
 result = oxo_logic.computerMove(game)
 game2cells(game)
 if result == "D":
 mb.showinfo("Result", "It's a Draw!")
 gameover = True
 else:
 if result == "X" or result == "O":
 mb.showinfo("Result", "The winner is: {}".format(result))
 gameover = True

def game2cells(game):
 table = board.pack_slaves()[0]
 for row in range(3):
 for col in range(3):
 table.grid_slaves(row=row,column=col)[0]['text'] = game[3*row+col]

def cells2game():
 values = []
 table = board.pack_slaves()[0]
 for row in range(3):
 for col in range(3):
 values.append(table.grid_slaves(row=row, column=col)[0]['text'])
 return values

 If you compare the evClick code to the original playGame() function, you will see that there are
many similarities. The game2cells() function is analogous to the original printGame() function.
The cells2game() function uses some widget methods to retrieve the child widgets, in this case the
buttons. You could have, as an alternative, stored the lists of buttons in a global data structure that
would have given more direct access. The game logic of userMove and computerMove is unchanged
even though the user interface is vastly different.

Programming GUIs with Tkinter ❘ 191

 The last thing to do is fi ll in the menu event handlers. These are almost trivial to complete, and the
fi nished program looks like this (it is found as oxo_gui_complete.py in the OXO folder of the zip
fi le):

 import tkinter as tk
 import tkinter.messagebox as mb
 import oxo_logic

 top = tk.Tk()

 def buildMenu(parent):
 menus = (
 ("File",(("New", evNew),
 ("Resume", evResume),
 ("Save", evSave),
 ("Exit", evExit))),
 ("Help",(("Help", evHelp),
 ("About", evAbout)))
)

 menubar = tk.Menu(parent)
 for menu in menus:
 m = tk.Menu(parent)
 for item in menu[1]:
 m.add_command(label=item[0], command=item[1])
 menubar.add_cascade(label=menu[0], menu=m)

 return menubar

def evNew():
 status['text'] = "Playing game"
 game2cells(oxo_logic.newGame())

def evResume ():
 status['text'] = "Playing game"
 game = oxo_logic.restoreGame()
 game2cells(game)

def evSave():
 game = cells2game()
 oxo_logic.saveGame(game)

def evExit ():
 if status['text'] == "Playing game":
 if mb.askyesno("Quitting","Do you want to save the game before
 quitting?"):
 evSave()
 top.quit()

def evHelp ():
 mb.showinfo("Help",'''
 File‐>New: starts a new game of tic‐tac‐toe
 File‐>Resume: restores the last saved game and commences play

192 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 File‐>Save: Saves current game.
 File‐>Exit: quits, prompts to save active game
 Help‐>Help: shows this page

Help‐>About: Shows information about the program and author''')

def evAbout():
mb.showinfo("About","Tic‐tac‐toe game GUI demo by Alan Gauld")

 def evClick(row,col):
 if status['text'] == "Game over":
 mb.showerror("Game over", "Game over!")
 return

 game = cells2game()
 index = (3*row) + col
 result = oxo_logic.userMove(game, index)
 game2cells(game)

 if not result:
 result = oxo_logic.computerMove(game)
 game2cells(game)
 if result == "D":
 mb.showinfo("Result", "It's a Draw!")
 status['text'] = "Game over"
 else:
 if result =="X" or result == "O":
 mb.showinfo("Result", "The winner is: {}".format(result))

 status['text'] = "Game over"

 def game2cells(game):
 table = board.pack_slaves()[0]
 for row in range(3):
 for col in range(3):
 table.grid_slaves(row=row,column=col)[0]['text'] = game[3*row+col]

 def cells2game():
 values = []
 table = board.pack_slaves()[0]
 for row in range(3):
 for col in range(3):
 values.append(table.grid_slaves(row=row, column=col)[0]['text'])
 return values

 def buildBoard(parent):
 outer = tk.Frame(parent, border=2, relief="sunken")
 inner = tk.Frame(outer)
 inner.pack()

 for row in range(3):
 for col in range(3):
 cell = tk.Button(inner, text=" ", width="5", height="2",
 command=lambda r=row, c=col : evClick(r,c))
 cell.grid(row=row, column=col)
 return outer

Programming GUIs with Tkinter ❘ 193

 mbar = buildMenu(top)
 top["menu"] = mbar

 board = buildBoard(top)
 board.pack()
status = tk.Label(top, text="Playing game", border=0,

 background="lightgrey", foreground="red")
 status.pack(anchor="s", fill="x", expand=True)

 tk.mainloop()

 The event functions mirror the original functions in that they
mostly just call the oxo_logic functions and then use the
game2cells() function to display the board. You now use the
status text instead of the global gameover fl ag. The Help menus
simply display text in a showinfo dialog.

 The fi nal working game looks like Figure 4-6 .

 There is a lot more you could do to add polish to this game, but
it provides enough to show what can be done using Tkinter as
a user interface toolkit and illustrates once again the power of
separating the logic and data layers from the presentation layer.
You have now written more than 600 lines of code to play the
various versions of tic‐tac‐toe. That’s enough for anyone, so it’s
time to move onto new pastures.

 Tkinter has many other widgets and tricks for you to play with.
Experiment with the simple GUI application we started with
and add or modify the different options that affect layout and appearance. You haven’t even looked
at how to display formatted text or images or plot graphs or build complex dialogs. All of these
things are possible and build on the foundation you saw here. There are many Tkinter tutorials and
sample programs around, including IDLE, the default IDE for Python. Reading the code and seeing
how these programs control appearance and use widgets is a great way to learn.

 FIGURE 4-6: Final Tkinter GUI

NOTE There is an excellent online tutorial on Tkinter programming, available from
New Mexico Tech, which includes some material on the newer features of Tkinter:

http://infohost.nmt.edu/tcc/help/pubs/lang.html

 Unfortunately, it is based on the old Python 2 Tkinter package structure so
examples need tweaking for version 3.

 There is also one book, Python and Tkinter Programming , by John Grayson
dedicated to Tkinter that is quite out of date now, but does contain useful
reference material and some longer, more sophisticated, examples than you
fi nd in other tutorials.

 Mark Lutz also has extensive coverage of Tkinter in his massive reference work
Programming Python (O’Reilly, 2011). The latest edition of Lutz's book uses
Python version 3.

http://infohost.nmt.edu/tcc/help/pubs/lang.html

194 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 Tkinter has a couple of extension modules that are included in the standard library (although some
Linux distributions omit them for some reason). In the next section, you see what these extension
modules can add to your programs.

 Extending Tkinter
 The two biggest criticisms leveled at Tkinter are that it doesn’t have enough widgets and it looks
ugly. In comparison to the other GUI toolkits, these are valid issues. However, in recent releases,
Tkinter has been fi ghting back with the introduction of two new modules built on top of Tkinter.
These are tix , which adds several new widgets, and ttk , which enables theming, which basically,
just means the GUI can look more like the native OS GUI.

NOTE Both tix and ttk are dependent on the underlying libraries from the
Tcl/Tk project being installed. If you have problems getting tix or ttk to work,
check that the Tcl/Tk libraries are all installed. Normally, the Python installers
do this for you, but sometimes confl icts can arise, and you need to sort things
out manually.

 Unfortunately, the documentation for these modules is not as comprehensive as you would want,
and at the time of writing, the Python documentation often just contains links to the Tcl/Tk
documentation. Once you get used to it, you can usually fi gure out what options you need from
there, but it’s not ideal. However, the power of the Python interactive prompt comes to the rescue
once again, because you can play with them and experiment to fi nd out what they have to offer.
Both modules support most of the same Tkinter widgets that you have used so far; so you should
be able to take your Tkinter program and convert it to using ttk or Tix fairly easily. For Tix it is as
simple as changing the tkinter import line as shown:

 import tkinter.tix as tk

 This is one benefi t of using the tk alias when importing—you don’t need to change all your tkinter
prefi xes to tix ; you simply set the import to use the same alias. You can try that on your tic‐tac‐
toe game if you like. It functions identically to the Tkinter version except that the title bar of the
window displays tix instead of Tk .

 For ttk it’s marginally more complicated because ttk uses the tkinter mainloop and top‐level
window so you need to import both. You then refer to ttk when creating widgets and tkinter
when controlling the top window and event loop. You see this in practice later, in the “Using ttk”
section.

 Using Tix
 Because tix is so similar to tkinter , you can translate all you know about r tkinter into tix and
jump straight into learning about the new widgets. There are more than 40 of them, but some are
very poorly documented, even in the Tcl/Tk community. If you stick to the subset listed on the
Python documentation page, you should be fi ne. You only dip a toe in the water here, but hopefully
it is enough to demonstrate that tix is a valuable addition to the Tkinter family.

Programming GUIs with Tkinter ❘ 195

 The widgets that you look at here are the ComboBox , the ScrolledText , and the Notebook .

 You can see how a ComboBox input control can be used to set a label’s text by typing the following
code at the Python interactive prompt:

 >>> import tkinter.tix as tix
 >>> top = tix.Tk()
 >>> lab = tix.Label(top)
 >>> lab.pack()
 >>> cb = tix.ComboBox(top,command=lambda s:lab.config(text=s))
 >>> for s in ["Fred","Ginger","Gene","Debbie"]:
 ... cb.insert("end",s)
 ...
 >>> cb.pick(0)
 >>> lab['text'] = "Pick any item"
 >>> cb.pack()
 >>> top.mainloop()
 >>>

 There are several things to note here. First, you used
config() to set the text attribute rather than the dictionary
style access you used previously. The advantage of config()
is that you can set multiple attributes at once just by passing
them as named arguments. Second, the event handler
lambda function uses a string argument, s , which is passed
in by the widget event. The string holds the currently
selected value. Figure 4-7 shows the resulting window in
action.

 The ScrolledText widget is an extension of the
standard Text widget. As such it can display images as
well as formatted text. The Tix version adds scrollbars
automatically, which is a useful addition that involves quite
a lot of work using the standard toolkit. In use it is very
much like the other Tkinter widgets. You can play with it by
typing the following code:

 >>> top = tix.Tk()
 >>> st = tix.ScrolledText(top, width=300, height=100)
 >>> st.pack(side='left')
 >>> top.mainloop()

 Figure 4-8 shows the resulting text box with
enough text to activate the vertical scrollbar.

 You can simply type into the text box
manually or insert text programmatically,
like so:

 >>> t = st.subwidget('text')
 >>> t

 FIGURE 4-7: A Tix ComboBox

 FIGURE 4-8: A Tix ScrolledText Widget in Action

196 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 <tkinter.tix._dummyText object at 0x019186D0>
 >>> t.insert('0.0',"Some inserted text")
 >>> t.insert('end',"\n more inserted text")
 >>>

 Notice that you used the subwidget() method to get a reference to the underlying text widget and
then used its insert() method to insert the text. This technique of fetching the underlying standard
widget is quite common when working with Tix widgets.

 You can also select areas of text in a text widget. Carrying on the previous example, you can change
the font and weight of the fi rst line of the previous text like so:

 >>> t.tag_configure('newfont', font=("Roman", 16, "bold"))
 >>> s = t.get('1.0','1.end')
 >>> t.delete('1.0','1.end')
 >>> t.insert('1.0',s,'newfont')

 The tag _ configure() method creates a new tag , that is to say a style that you can apply to text. g
The style is called newfont and uses a Roman font, of size 16 points and weight bold . This triplet
font specifi er format is standard across Tkinter (and therefore Tix and ttk).

 You then used get() to fetch the text from the fi rst character through to the end of line 1 . You then
deleted the existing text from the widget and replaced it with the same text but using the newfont
tag as a third argument of the insert() method.

NOTE Text indexing in Tkinter uses strings that contain numbers formatted
like a fl oating‐point number, but actually contains row and column coordinates
separated by a period. Rows start from 1 , but columns from 0 , so 1.0 is the fi rst
character in the fi rst row. You can use the string end or the predefi ned constant
tkinter.END to signify the end of a line, or the end of all text, depending on
context.

 The result is as shown in Figure 4-9 . Note
that all of this is being displayed in a Tix
ScrolledText widget, but you are actually
using the underlying standard Tkinter Text
widget to manipulate the text.

 The fi nal widget you look at is an altogether
more complex contraption. It is a NoteBook
widget. It consists of a number of pages,
each with an associated tab that the user
can select to activate the page. The page is
just a Tkinter container that can be populated with whatever controls you want to use. Often it is a
text window or a form. You create a two‐page notebook, the fi rst pane containing a ScrolledText
widget and the other a set of buttons that launch various message box dialogs.

 FIGURE 4-9: Modifying Text appearance in a text widget

Programming GUIs with Tkinter ❘ 197

 To see the Notebook in action, type the following code into a fi le and execute it from the command
line or your IDE (or load it from the fi le tix‐notebook.py in the Tkinter folder of the zip fi le, if
you prefer):

import tkinter.tix as tix
import tkinter.messagebox as mb

top = tix.Tk()

nb = tix.NoteBook(top, width=300, height=200)
nb.pack(expand=True, fill='both')

nb.add('page1', label="Text")
f1 = tix.Frame(nb.subwidget('page1'))
st = tix.ScrolledText(f1)
st.subwidget('text').insert("1.0", "Here is where the text goes...")
st.pack(expand=True)
f1.pack()

nb.add('page2', label="Message Boxes")
f2 = tix.Frame(nb.subwidget('page2'))
tix.Button(f2, text="error", bg="lightblue",
 command=lambda t="error", m="This is bad!":
 mb.showerror(t,m)).pack(fill='x',expand=True)
tix.Button(f2, text="info", bg='pink',
 command=lambda t="info", m="Information":
 mb.showinfo(t,m)).pack(fill='x',expand=True)
tix.Button(f2, text="warning", bg='yellow',
 command=lambda t="warning", m="Don't do it!":
 mb.showwarning(t,m)).pack(fill='x',expand=True)
tix.Button(f2, text="question", bg='green',
 command=lambda t="question", m="Will I?":
 mb.askquestion(t,m)).pack(fill='x',expand=True)
tix.Button(f2, text="yes‐no", bg='lightgrey',
 command=lambda t="yes‐no", m="Are you sure?":
 mb.askyesno(t,m)).pack(fill='x',expand=True)
tix.Button(f2, text="yes‐no‐cancel", bg='black', fg='white',
 command=lambda t="yes‐no‐cancel", m="Last chance...":
 mb.askyesnocancel(t,m)).pack(fill='x',expand=True)

f2.pack(side='top', fill='x')

top.mainloop()

 In this example you imported the modules and created the top‐level widget as usual. You then
created a tix.Notebook object called nb . To this you added a page and called it page1 . You then
created a frame and made its parent the page1 page that you just created. You added a text widget
and some text, and then packed the widget and frame.

 Next, you created a second page, called page2 , and added a frame to that page as before. You then
created a bunch of buttons and linked them to the various message boxes using lambda functions as
commands. You modifi ed the pack() options of both the buttons and the frame to make the buttons
occupy the full width of the page, and you gave them different colors to make them stand out.

198 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 Notice that for the notebook, buttons, and ScrolledText widgets, we specifi ed the expand option
to the packer. expand tells the layout manager to expand the widget when the window is resized.
By using expand in combination with fill and anchor , you can very precisely control how yourr

widgets behave when resizing the window. (It is well worth experimenting with the options to get a
feel for them.)

 Finally, you started the mainloop() function. When you ran it, the result should have looked like
Figure 4-10 , which shows both pages of the notebook in action.

 Using ttk
 As mentioned earlier, the ttk module brings the concept of themes to Tkinter and Python. A theme
is a graphical style and enables the same GUI structure to take on the look and feel of the native
operating system. There are several themes that ship with ttk , but you can also create bespoke
themes of your own.

 The predefi ned themes vary by operating system, and you can fi nd the names for your platform
by looking at the output of ttk.Style().theme_names() . On Windows they include Classic (the
default), winnative , vista , and xpnative .

ttk comes with its own versions of 11 of the standard Tkinter widgets that are theme aware as
well as 6 new widgets of its own, including a ComboBox and NoteBook . You can change the look of
applications just by changing the theme. Figure 4-11 shows a very simple Tkinter GUI presented fi rst
using classic , then using vista , and then using classic again, but this time on the Ubuntu Linux
platform. Notice that the top button doesn’t change too much, but the new ttk button is different in
each image. The code looks like this:

 >>> import tkinter as tk
 >>> import tkinter.ttk as ttk
 >>> top = tk.Tk()
 >>> s = ttk.Style()
 >>> s.theme_use('classic')

 FIGURE 4-10: Tix Notebook showing two pages

Programming GUIs with Tkinter ❘ 199

 Obviously, you need to swap vista for classic in the style object to get the Vista theme. It
should be obvious that you need to do a small amount of extra work to defi ne the style object, but
otherwise the use of ttk mostly looks like normal Tkinter programming. You should notice when
you run the code that the differences are more than simple tweaks to the appearance of the button.
The behavior is different too. For example, when you mouse over the button, it changes color
differently to the old style button object.

 That’s all you really need to know about ttk for now. There are lots of options that you can play
around with; you can even defi ne your own styles and themes. Mostly, you just use it as shown, and
you get small but signifi cant improvements to your Tkinter program’s look and feel.

Revisiting the Lending Library
 You’ve now looked at several parts of the Tkinter toolset. It is time to wrap things up by bringing
these pieces together in a larger example based on something less frivolous than a tic‐tac‐toe game.
You revisit the lending library database that you created in Chapter 3 and build a GUI front end.
This will reinforce much of what you have already done, but also introduces some new elements and
techniques:

➤ The ScrolledListBox widget

➤ How to capture low‐level events such as mouse double‐click and window‐level events

➤ How to create and use custom dialog boxes

➤ How to set fonts

➤ How to activate/deactivate widgets using the state attribute

➤ How to build a GUI using object‐oriented techniques

 You’ll build this in the following Try It Out.

 FIGURE 4-11: Various ttk Themes

 >>> tk.Button(top,text="old button").pack()
 >>> ttk.Button(top,text="new button").pack()
 >>>

200 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 TRY IT OUT Building a Lending Library GUI

 In this Try It Out, you add a GUI to the Lending Library database you created in Chapter 3 . (There is
quite a lot of code, so you may want to load it from the download zip fi le for Chapter 4 . The fi les are in
the Lendy folder and named as described in the text.) To do this, follow these steps:

 1. Create a project folder called Lendy and copy your lendydata.py module from Chapter 3 , as well
as the lendy.db database, into the new folder. (Alternatively, just use the Chapter 2 project folder
for this example; it’s your choice.)

2. Open your text editor or IDE and create a fi le called lendy‐gui.py (or load it from the zip fi le).
Type the following:

import tkinter.tix as tix
import tkinter.messagebox as mb
import optionsdialog as od
import lendydata as data
import os

class LendingLibrary:
def __init__(self, root):
 self.isDirty = False
 self.top = root
 root['menu'] = self.buildMenus(root)
 mainWin = self.buildNoteBook(root)
 mainWin.pack(fill='both', expand=True)
 self.top.protocol('WM_DELETE_WINDOW', self.evClose)
 self.top.title('Lending Library')
 data.initDB() # use default file
 self.items = data.get_items()
 self.members = data.get_members()
 self.populateItemList()
 self.populateMemberList()

def buildMenus(self, top):
 menus= (
 ("Item", (("New", self.evNewItem),
 ("Edit", self.evEditItem),
 ("Delete", self.evDeleteItem),
)),
 ("Member", (("New", self.evNewMember),
 ("Edit", self.evEditMember),
 ("Delete",self.evDeleteMember),
)),
 ("Help", (("Help", self.evHelp),
 ("About", lambda : mb.showinfo(
 "Help About",
 "Lender application\nAuthor: Alan Gauld""")
))))

 self.menubar = tix.Menu(top)
 for menu in menus:
 m = tix.Menu(top)
 for item in menu[1]:
 m.add_command(label=item[0], command=item[1])
 self.menubar.add_cascade(label=menu[0], menu=m)

Programming GUIs with Tkinter ❘ 201

 return self.menubar

def buildNoteBook(self, top):
 mono_font = self.getMonoFont()
 nb = tix.NoteBook(top)

 nb.add("itemPage",label="Items",
 raisecmd=lambda pg="item": self.evPage(pg))
 fr = tix.Frame(nb.subwidget("itemPage"))
 self.itemFmt = "{:15} {:15} {:10} ${:<8} {:12}"
 tix.Label(fr, font=mono_font,
 text=self.itemFmt.format("Name","Description",
 "Owner","Price",
 "Condition")).pack(anchor='w')
 slb = tix.ScrolledListBox(fr, width=500, height=200)
 slb.pack(fill='both', expand=True)
 fr.pack(fill='both', expand=True)
 self.itemList = slb.subwidget("listbox")
 self.itemList.configure(font=mono_font, bg='white')
 self.itemList.bind('<Double-1>', self.evEditItem)

 nb.add("memberPage",label="Members",
 raisecmd=lambda pg="member": self.evPage(pg))
 fr = tix.Frame(nb.subwidget("memberPage"))
 self.memberFmt = "{:<15} {:<40}"
 tix.Label(fr, font=mono_font,
 text=self.memberFmt.format("Name","Email Address")).pack
 (anchor='w')
 slb = tix.ScrolledListBox(fr, width=40, height=20)
 slb.pack(fill='both', expand=True)
 fr.pack(fill='both', expand=True)
 self.memberList = slb.subwidget("listbox")
 self.memberList.configure(font=mono_font, bg='white')
 self.memberList.bind('<Double-1>', self.evEditMember)

 return nb

def getMonoFont(self):
 if os.name == 'nt':
 return ('courier','10','')
 else:
 return ('mono','10','')

def populateItemList(self):
 self.itemList.delete('0','end')
 for item in self.items:
 item = list(item[1:])
 item[2] = data.get_member_name(item[2])
 self.itemList.insert('end', self.itemFmt.format(*item))

def populateMemberList(self):
 self.memberList.delete('0','end')
 for mbr in self.members:
 self.memberList.insert('end', self.memberFmt.format(*mbr[1:]))

202 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

def evClose(self, event=None):
 data.closeDB()
 self.top.quit()

3. If you are typing this by hand, you might want to stop there and replace all of the references to
event handlers (self.evXXXXX) in the widget creation and bind lines, except evClose , with None .
That will allow you to run the GUI and see what it looks like. You will need to add the following
starter code at the bottom of the fi le before you run it:

if __name__ == "__main__":
top = tix.Tk()
app = LendingLibrary(top)
top.mainloop()

4. Having seen the UI in action, you can now restore the original event handler references in the class
code to how it was and continue to add the event handler code below to the class defi nition:

notebook event handler
def evPage(self, page):
 if page=='item':
 self.menubar.entryconfigure('Item', state='active')
 self.menubar.entryconfigure('Member', state='disabled')
 if page=='member':
 self.menubar.entryconfigure('Item', state='disabled')
 self.menubar.entryconfigure('Member', state='active')

######### Item Event Handlers #######
def evNewItem(self):
 dlg = od.OptionsDialog(top,(
 ["Name", ""],
 ["Description", ""],
 ["Owner", ""],
 ["Price", ""],
 ["Condition", ""]))
 if dlg.changed:
 ownerID = self.get_member_id(dlg.options[2][1])
 data.insert_item(dlg.options[0][1],dlg.options[1][1],
 ownerID, int(dlg.options[3][1]),
 dlg.options[4][1])
 self.items = data.get_items()
 self.populateItemList()

def evEditItem(self, event=None):
 # get selected member
 indices = self.itemList.curselection()
 index = int(indices[0]) if indices else 0
 item = self.items[index]
 ownerID = item[3]
 ownerName = data.get_member_name(ownerID)
 dlg = od.OptionsDialog(top,(
 ["Name", item[1]],
 ["Description", item[2]],
 ["Owner", ownerName],
 ["Price", item[4]],
 ["Condition", item[5]]))

Programming GUIs with Tkinter ❘ 203

 if dlg.changed:
 if dlg.options[2][1] != ownerName: # its changed
 ownerID = self.get_member_id(dlg.options[2][1])
 data.update_item(item[0],dlg.options[0][1],dlg.options[1][1],
 ownerID, int(dlg.options[3][1]),
 dlg.options[4][1])
 self.items = data.get_items()
 self.populateItemList()

def evDeleteItem(self):
 indices = self.itemList.curselection()
 index = int(indices[0]) if indices else 0
 item = self.items[index]
 data.delete_item(item[0])
 self.items = data.get_items()
 self.populateItemList()

Ideally should use a combo box in options dialog.
this gives potential error if more than one member with same name
def get_member_id(self, name):
 for member in self.members:
 if member[1] == name:
 return member[0]

######### Member Event Handlers #######
def evNewMember(self):
 dlg = od.OptionsDialog(top,(
 ["Name",""],
 ["Email",""]))
 if dlg.changed:
 data.update_member(None,dlg.options[0][1],dlg.options[1][1])
 self.members = data.get_members()
 self.populateMemberList()

def evEditMember(self, event=None):
 indices = self.memberList.curselection()
 index = int(indices[0]) if indices else 0
 mbr = self.members[index]
 dlg = od.OptionsDialog(top,(
 ["Name",mbr[1]],
 ["Email",mbr[2]]))
 if dlg.changed:
 data.update_member(mbr[0],dlg.options[0][1],dlg.options[1][1])
 self.members = data.get_members()
 self.populateMemberList()

def evDeleteMember(self):
 indices = self.memberList.curselection()
 index = int(indices[0]) if indices else 0
 mbr = self.members[index]
 data.delete_member(mbr[0])
 self.members = data.get_members()
 self.populateMemberList()

204 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

Help event handler
def evHelp(self):
 mb.showinfo("Help", """

Lending Library Application

Item‐>New:
 Create a new item in the library

Item‐>Edit:
 Modify the attributes of the
 selected item (default is first)

Item‐>Delete:
 Delete selected item (no default)

Member‐>New:
 Add a member to the library

Member‐>Edit:
 Modify selected members data
 (default is first)

Member‐>Delete:
 Delete selected member (no default)

Help‐>Help:
 Display this screen

Help‐>About:
 About the program.""")

if __name__ == "__main__":
top = tix.Tk()
app = LendingLibrary(top)
top.mainloop()

5. The code uses another class called OptionsDialog , which is defi ned in another fi le. Create a new fi le
called optionsdialog.py (or open it from the Chapter4.zip fi le) containing the following code:

import tkinter.tix as tix
import tkinter.simpledialog

class OptionsDialog(tkinter.simpledialog.Dialog):
def __init__(self, master, options, *args):
 self.options = options
 self.entries = []
 self.changed = False
 super().__init__(master, *args)

def body(self, top):
 ''' define GUI elements'''
 f = tix.Frame(top)
 f.pack(expand=True, fill='x')
 for row, opt in enumerate(self.options):
 tix.Label(f,text=opt[0]).grid(row=row, column=0, sticky='w')
 e = tix.Entry(f)
 e.grid(row=row, column=1, sticky='e')
 e.insert('end', str(opt[1]))
 self.entries.append(e)

Programming GUIs with Tkinter ❘ 205

def apply(self):
 ''' store entry values in options '''
 for index, opt in enumerate(self.options):
 opt[1] = self.entries[index].get()
 self.changed = True

if __name__ == "__main__":
top = tix.Tk()
app = OptionsDialog(top,(["First","my value"],["Second","Another value"]))
top.mainloop()

 6. Run lendy‐gui.py .

 You should fi nd the items and members listed in their respective tabs, and the menus will activate/
deactivate in synchronization with the tabs. You can use the menus to edit a row of either tab, or you
can double‐click to do the same. The window close icon should shut everything down cleanly.

 How It Works

 The main GUI follows the basic pattern that you have already seen for GUI applications except that
this time you put the code into a class. The class initializer, __init__() , sets up some instance variables
and calls various helper functions to build the GUI. The fi rst of these creates the menus from a data
structure as you did in the tic‐tac‐toe GUI, and the second builds the tix.NoteBook , which is the main
window of the application. The big difference this time is that you use a tix.ScrolledListbox instead
of a tix.ScrolledText widget. The Scrolled ListBox widget has the advantage of making selection
of a row easier. To help with the layout, in particular to align the columns with the Label bar at the
top of the NoteBook pages, you changed the font to a monospaced variant. To overcome discrepancies
in installed fonts on different operating systems, you used the os.name attribute, which you learned
about in Chapter 2 , to set the font to an appropriate value. You also set the background color to white,
which helps identify selected rows.

 You also used the bind() method to link a double‐click of the left mouse button (<Double-1>) to the
appropriate edit event handler . bind() is the mechanism used for any kind of event handling that lies
beyond the scope of the default widget command handler. The biggest difference is that the callback
function must accept an event argument. The event object will contain information about things like
which key has been pressed, the location of the mouse, or whatever is needed to process the event. In
this case you simply ignore the event object and give the parameter a default value of None so that it
can still be used by the normal command callback mechanism as well as the double‐click binding. You
use a conversion function from the lendydata module, get_member_name() , to turn the OwnerID value
returned by the database into a more user‐friendly name on the display. There is no inverse function
to return the OwnerID for a given name because there could be several members with the same name.
To get around that, you create your own helper method, get_member_id() , which simply returns the
fi rst matching ID from self.items . (Ideally, you would create a combo box in the options dialog, but
that would complicate the data‐driven nature of the dialog signifi cantly. For now you can live with the
compromise.)

 The event handlers are all fairly self‐explanatory. The evPage() handler is fi red when a new NoteBook
page is selected, and it simply switches the active menu to track the active page. This ensures you can’t
use member functions when looking at the items and vice versa. It is simply a case of modifying the
state attribute of the appropriate Menu widgets.

206 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 The new and edit event handlers contain a lot of similar code, and a helper function could be
created to simplify them and avoid repetition, but doing so introduces an extra level of complexity
in marshalling the correct input values so it was decided to leave them as‐is. They do both utilize the
get_member_id() method to derive an OwnerID value from the supplied owner name value.

 Similarly, a helper function could have been used to pick out the selected index, but the function is only
two lines so again it was left as‐is. Notice that the selection is potentially a list of indices and that these
are returned as strings so you explicitly convert to integers to get a numeric index.

 Most of the work is done by the data module, which is as you would expect; the GUI, after
all, should be about presentation only. You might notice that there is no core logic layer in this
application. That is because you are essentially just modifying the data so there is no business
logic to speak of and therefore no need of a core logic layer. The GUI just calls the data layer
directly. By exposing the data layer as an API, you have allowed the GUI to be written without
any reference to SQL. This means you could swap out the underlying SQLite implementation and
replace it with, say, Postgres or MySQL, and the API would remain the same; the GUI would not need
to change.

 The fi nal piece of the puzzle is the OptionsDialog . This is implemented in a separate module because,
potentially, you could reuse this in other projects. It takes a list of names and values and displays them
as a form. You can then edit the values and save any changes. The dialog is built as a class that inherits
from a generic dialog framework included in the standard library. The framework provides several
methods that can be overridden to change how the dialog functions. The body() method is called when
the dialog is created and is where the GUI layout is defi ned. The apply() method is called if the user
clicks the OK button, and the method processes and stores the data in any way that is needed by the
calling program. Other methods exist that allow you to change the button layout and behavior and to
validate data entry. In this case you simply store the incoming data in a list and then update that list (in
the apply() method) if the user clicks the OK button. After the dialog is closed, the list can be accessed
by the call to extract the new values.

 You’ve now covered enough Tkinter to see how it can wrap a GUI around your application logic and
data. It’s not the most powerful toolkit around, but it is quick and easy to get started, and it comes
out of the box with Python. In the next section, you review some of the more powerful third‐party
GUI toolkits available.

 Exploring Other GUI Toolkits for Python
 There are many GUI toolkits around, ranging from the very specifi c native toolkits for Windows,
MacOS X, and X windows, to more generic, multiplatform toolkits. Most of them have a wrapper
layer of some kind available for Python. They all have the same core ideas and concepts that you
saw in Tkinter, although some require an object‐based approach while others, like Tkinter, permit
a procedural style of programming, too. If Tkinter is not working for you, or if your main area
of interest is GUI development, then these other toolkits may hold the answer. In the following
sections, you fi nd out about the strengths and weaknesses of each, and for the platform independent
toolkits a very short “hello world” style sample program. If you want to run these, you need to
install the toolkits because they are all provided by third parties.

Programming GUIs with Tkinter ❘ 207

 That having been said, there are no absolute best or worst toolkits here. Each has its fans, and
different programmers prefer different toolkits. It is worth taking some time to try out each toolkit
of interest and at least work through their introductory tutorial to see whether it fi ts your personal
style of coding. There are also some useful online videos that introduce their features, too.

 wxPython
 This is a long‐standing toolkit that is a wrapper around the C++ wxWidgets project. wxWidgets is a
C++ toolkit designed to work on all the popular operating systems while maintaining a native look
and feel. Version 3.0 of wxPython was released late in 2013.

 It has a rich set of widgets and powerful features supporting things like cross platform printing.
(Printing from a GUI is one of those functions that sounds like it should be easy, but very rarely
is!) There are some graphical GUI building tools that can generate code for you, or you can do
everything by hand by crafting the code, as you did for Tkinter. While wxPython is powerful, it is
still much simpler than some of the other toolkits discussed.

 There are active mailing lists and forums for both wxWidgets and wxPython. There are a couple of
books available on wxPython, including one written by the lead developers. The wxPython website
is: http://www.wxpython.org .

 A sample wxPython program looks like this:

 import wx

 app = wx.App(False)
 frame = wx.Frame(None, wx.ID_ANY, size=(320,240), "Hello World")
 frame.Show(True)

 app.MainLoop()

 PyQt
 The Qt toolkit came to prominence in the development of the KDE desktop environment for Linux
although it had been developed some time before that as a commercial product. Over time the
licensing arrangements of Qt have been simplifi ed such that it is now widely used in open source
projects and supports most operating systems with a native look and feel. Qt is a C++ toolkit, and
PyQt is the Python wrapper around that. Version 5.2 was released in early 2014.

 To give some idea of the scale, Qt has more than 400 classes available and several thousand
functions and methods. The learning curve is considerable, but so is the power. Some advanced
features are available only to commercial users (who pay license fees), and this mixed mode of
free and licensed software is probably the biggest drawback of Qt and hence PyQt. There is a
full‐featured graphical GUI building tool for PyQt.

 A true open source (LGPL) alternative has been released in the form of PySide that offers similar
functionality to PyQt and was developed by Nokia while they owned the Qt toolkit. Version 1.2.1
of PySide was released mid-2013.

 There are at least two books available on PyQt programming. The website is: http://www
.riverbankcomputing.com/software/pyqt/intro . The PySide web site is: http://qt‐project
.org/wiki/PySide .

http://www.wxpython.org
http://www.riverbankcomputing.com/software/pyqt/intro
http://qt%E2%80%90project.org/wiki/PySide
http://www.riverbankcomputing.com/software/pyqt/intro
http://qt%E2%80%90project.org/wiki/PySide

208 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 A sample PyQt program looks like this:

 import sys
 from PyQt4 import QtGui

 app = QtGui.QApplication(sys.argv)
 win = QtGui.QWidget()
 win.resize(320, 240)
 win.setWindowTitle("Hello World!")
 win.show()

 sys.exit(app.exec_())

 A sample PySide program looks like this:

 import sys
 from PySide import QtGui

 app = QtGui.QApplication(sys.argv)
 win = QtGui.QWidget()
 win.resize(320, 240)
 win.setWindowTitle("Hello World!")
 win.show()

 sys.exit(app.exec_())

 As you can see, they are effectively identical, apart from the import statements.

 PyGTK
 The Gimp ToolKit, or GTK+ as it’s now known, was originally developed in C as the GUI toolset
for the GNU GIMP graphics editor. It then developed into a generic graphical toolkit and has
become the toolkit behind the GNOME desktop environment used on many Linux distributions.
PyGTK is the name used for the Python wrapper around the GTK+ toolkit. However, the situation
has become more complex, and there are several parts to PyGTK matching the various parts of
GTK+ itself. PyGObject is now the offi cial module supporting most of the GNOME software
platform including the GUI. As part of the GNU stable, it is an open source project so it has no
complex license issues to contend with. New versions are released regularly.

 There is a graphical design tool called Glade that can be used to create the GUI. In typical GNU
fashion, the documentation is comprehensive, but not tailored to beginners. The system is very
powerful and multiplatformed. Once installed it is reasonably simple to use.

 There are several books on GTK+ programming, but they are focused on the underlying C API, not
on the Python bindings. This leaves the online, but excellent, documentation found here: https://
live.gnome.org/PyGObject .

 A sample GTK program looks like this:

 from gi.repository import Gtk

 win = Gtk.Window(title="Hello World")
 win.resize(320,240)

https://live.gnome.org/PyGObject
https://live.gnome.org/PyGObject

Programming GUIs with Tkinter ❘ 209

 win.connect("delete-event", Gtk.main_quit)
 win.show_all()

 Gtk.main()

 Native GUIs: Cocoa and PyWin32
 Cocoa and Win32 are the native GUI toolkits for the Mac OS X and Windows operating systems
respectively. Both can be programmed from Python. The PyObjC toolkit for Cocoa is provided
by the MacPython project, and the native MacOS X development tools can be used to create and
connect the GUI to code. You have already met the Pywin32 package back in Chapter 2 , where
its ability to expose the Win32 API was discussed. The Win32 API is not only about low‐level
Windows functions, but also it has all the functions used to build Windows native GUIs. The
mechanisms are the same; you just call different functions.

 The disadvantages to both these toolkits, especially the Win32 API, is the complexity involved
combined with the fact that they are strictly limited to their own operating system. If you
know that you will never need to support anything else, that may not be a problem. The Cocoa
option does at least provide a useful set of development tools, but the Windows option is not so
richly endowed.

 A far better option for native Windows development is the use of IronPython. This is a version
of Python written in Microsoft .NET and supported on Microsoft’s Visual Studio development
environment as a standard .NET language. This gives access to all the .NET functionality, but is
still limited to Windows. (There is a .NET clone for other platforms known as Mono, but it is not
widely used for desktop applications.)

 The MacPython website is http://homepages.cwi.nl/~jack/macpython/ . The IronPython
website is http://ironpython.net /.

 Dabo
 Dabo is rather different from the other toolkits described in that it is more than just a GUI toolkit.
Dabo is a fully featured application framework and toolset. It specializes in database applications
such as those commonly found in businesses. It comes with a set of GUI widgets, currently
based on a wxWidgets foundation but modifi ed for Dabo (theoretically, another GUI toolkit
could be used but the development team has found more productive ways to spend its time!). On top
of the GUI, it provides a set of classes that contains the business logic and bridges the gap between
the user interface and data layer. The data layer can be any of half a dozen databases, including
SQLite.

 It is possible to build complex logic into a Dabo application, although its natural home is in building
forms-based tools that provide a view and editing capability to the base data. Version 0.9.12 was
released June 2013. The Dabo website is found at http://www.dabodev.com/ .

 You’ve now covered a fair amount of ground, especially regarding user interface options. You now
look at some other issues you will likely meet in building real‐world desktop applications in Python:
storing confi guration data and localization.

http://homepages.cwi.nl/~jack/macpython/
http://ironpython.net
http://www.dabodev.com/

210 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

STORING LOCAL DATA

In Chapter 3 you saw various strategies for storing data. Earlier in this chapter, you saw how an
application can be structured in layers with a data layer at the bottom of the stack. That data
layer is concerned with managing the core entities of your application. Those core entities are
not the only kinds of data you need to store. You often need to store data about the application
itself. That confi guration data is specifi c to a single user or perhaps to the local computer system
and hence is called local data. Typically, it is stored in a confi guration fi le or as environment
variables. You saw how to read that data in Chapter 2 . In this section you consider the various
kinds of local data that an application may need to maintain and the options available for
storing it.

Applications have several different types of confi guration data. Some of it is concerned with
getting the application to work in the fi rst place, for example, the network address of a server or
the location of the data fi les. These values are typically specifi c to a given installation or computer
system rather than to an individual user.

Other types of confi guration data are things like user preferences. For example, the user may have
some control over the layout of the user interface, the colors used, the location and size of the
Windows on screen, and so on. Another common category of user‐confi gured data is the selection
of helper applications used, for example, the user’s preferred text or image editing software. Some of
these details could be exposed in a preferences dialog that the user edits and explicitly saves. Indeed
it may even be possible to store different preferences for different usage scenarios for the same
application.

Other settings may be stored by the application itself so that it can restore itself to the last state
when it restarts. These settings might include the last opened fi le, the currently open windows and
dialogs, and the screen coordinates of each.

The fi nal data type you might want to store is information about how the application is functioning.
In particular, error conditions or unexpected inputs can be recorded. This is generically known as
logging and involves storing information in a log fi le that can be examined later either as part of a
debug process or to improve effectiveness of the design.

Storing Application‐Specifi c Data
Application specifi c data could be stored on the local computer, or it could be stored in a local
network location that all instances of the application can reach. This raises the question of how the
computer knows where to look. The usual solution to this problem is to set an environment variable
or use a local confi guration fi le stored in the startup folder of the application. This can then be set as
part of the installation procedure. It can even be provided as a startup parameter.

The advantage of storing this kind of information on the network is that it is shared so that any
changes made, for example if the database is moved, can be detected immediately by all of the
installed instances on the network without having to manually reconfi gure each machine or user
confi guration. It also allows for a backup confi guration to be available in the event of a system
failure and by changing one environment variable or confi guration setting on the local computers
the new central confi guration can be accessed with minimal downtime.

Storing Local Data ❘ 211

 The physical storage medium is relatively unimportant because the data are relatively static and
normally only read once when the application starts up. A simple confi guration fi le using plaintext,
XML, or even Windows INI format will likely suffi ce. Python provides tools for creating and
reading all of these; refer to Chapter 2 for details.

 Storing User‐Selected Preferences
 User preferences are nearly always stored in the local computer, and often in a confi guration
fi le stored in the user’s home directory. Occasionally, applications store user preferences in the
main database, especially if the database contains a signifi cant amount of user data anyway. The
disadvantage of using the database is that the application can access the preferences only if the
database is accessible, which may not be the case if the user is mobile. It is disconcerting for a
user to fi nd that the application appears or functions differently depending on whether they are
connected to their network or not. Local storage is defi nitely the preferred option for this kind of
data.

 Locating the data should be straightforward if a standard fi lename is used and the location is the
home directory, because the home directory is nearly always obtainable either as an environment
setting or as a user database value. (See Chapter 2 for guidance on how to determine user details
such as the home directory.)

 The format is normally a text fi le using either Windows INI or XML format. If the number of
settings is very large, a small local database using SQLite might be appropriate, but this would be
separate from the main application data store.

 One other factor to consider when dealing with user preferences is how these are set and modifi ed.
If the settings are few and simple in nature (for example boolean or integer values), then it might be
acceptable to generate a default preferences fi le and ask the user to manually edit the fi le. This does
carry a risk if the user is not familiar with text editors and uses a rich format word processor to edit
the fi le. This can render the confi guration fi le unreadable by the application. However, if the users
are likely to be experienced in editing text, such as developers or system administrators, then this
approach can work well. If the confi guration data is not simple or is stored in a structured fi le using
XML or similar, then user editing is much less suitable and error prone, and a preferences dialog
needs to be included in the application itself.

 STORING AND NAMING CONFIGURATION DATA

 Some operating systems or environments have preferred ways to store confi guration
data. Microsoft recommends that Windows applications use the Windows Registry
(for which Python provides the winreg module). The registry can store data for
individual users or for the computer as a whole. The disadvantage of the registry
is that it is Windows specifi c, and if your code is intended to run on multiple
operating systems, you need to have two storage mechanisms, so many developers
prefer to standardize on confi guration fi les even for Windows.

212 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

Storing Application State
Storing application state is the least standardized form of local data storage. The location and
format of the storage is down to the developer. Some applications make the choice of whether to
save-state a user preference; others do it automatically, while most do not save state (except perhaps
for a list of recently accessed fi les). You need to decide how much state information you want to
store, where to store it, and what format to use.

To keep application behavior consistent, you should choose a local storage option so that the
application behaves as expected even when disconnected from the network. However, you need to
be careful with error handling because, if the application was closed while online but then opened
offl ine, many of the resources previously used may not be accessible. You need to have a working
fallback confi guration that can be used when things go wrong.

The format of the state data is likely to be quite complex because it may involve multiple windows
and even tabs and control settings within windows. This almost inevitably requires a rich
storage format such as XML. On the other hand, if you are only saving the open fi le history,
a simple text fi le may suffi ce, or you could even append it to the user’s preference data in their
confi guration fi le.

Logging Error Information
You often want to keep a record of unexpected events or inputs so that you can analyze them later.
This could be during testing, following a system failure, or even as a continuous improvement

 The X Windows system has its own confi guration database (managed via the
xrdb program) and expects its confi gurable data in a specifi c format. The local
settings for all X applications are stored in the fi le .Xresources in the user’s home
directory. Fortunately, if you are creating X‐based programs in Python, you are
likely to be using one of the GUI toolkits discussed earlier, and they hide these
details from you. However, if your application uses X‐based programs as helper
applications, you may need to read or modify these X confi guration fi les. This
should be treated as a scripting challenge, and the principles found in Chapter 2
apply.

 Finally, most operating systems have recommended naming conventions for
confi guration fi les. On UNIX systems they often start with a period (that makes
them invisible to normal fi le listing tools), end with the letters rc , and are typically
stored in the user’s home directory (for user settings) and the application directory
(for systemwide settings and defaults). For example, the vim text editor uses the
fi le .vimrc to store user preferences. It is also becoming common for confi guration
data fi les to be stored under the hidden directory .config in the user’s home
directory, and this is the location recommended by the freedesktop.org standards.
On Windows the confi guration fi les are usually in Windows INI format and have
an extension of .ini .

Storing Local Data ❘ 213

activity. The usual way to do this is to record messages in a log fi le. The log fi le might be a single
fi le that just grows continuously or, more commonly, a fi le whose name is based on the date.
Housekeeping (archiving or deleting of old fi les) of old fi les might be done manually, automatically,
or via a shell script.

 Python provides the logging package to assist in this process. It can generate standard information
in a standard fi le with different levels of logging (that is it can fl ag a message with different category
markers: debug, info, warning, error, and critical). The package is very fl exible and allows for many
different confi guration options to control how it works. The basic usage is straightforward and you
can extend its functions as you need them.

 At the most basic level you import the module and then call one of several logging methods
corresponding to the categories mentioned. For example:

 >>> import logging
 >>> logging.basicConfig(level=logging.DEBUG)
 >>> logging.info('Heres some info')
 INFO:root:Heres some info
 >>> logging.error('Oops, thats bad')
 ERROR:root:Oops, thats bad
 >>> logging.critical('AAARGH, Its all gone wrong!')
 CRITICAL:root:AAARGH, Its all gone wrong!

 It’s important that you call basicConfig() before using any of the logging methods; otherwise,
it has no effect, and you use the default values. The level setting indicates the minimum level of
message that is displayed; DEBUG is the lowest level, so everything gets printed. In addition to setting
the level, you can also specify an output fi lename.

 You can also specify the format of the log message including things like the date of the message,
the fi le and function where it was generated, and so on. (The options are all documented in the
LogRecord section of the logging documentation.) Because the default format doesn’t include any
date or time information, you usually want to set something like this:

 >>> import logging
 >>> logging.basicConfig(format="%(asctime)s %(levelname)s : %(message)s")
 >>> logging.error('Its going wrong')
 2014-04-24 16:12:44,832 ERROR : Its going wrong
 >>> logging.error('Its going wrong')
 2014-04-24 16:12:54,415 ERROR : Its going wrong
 >>>
 >>> logging.critical('Told you...')
 2014-04-24 16:13:08,431 CRITICAL : Told you...

 You can also use a datefmt argument to basicConfig() to change the date format using the same
options as you used in time.strftime() . Here is a short example:

 >>> import logging
 >>> logging.basicConfig(format="%(levelname)s:%(asctime)s %(message)s",
 datefmt="%Y/%m/%d‐%I:%M")
 >>> logging.error("It's happened again")
 ERROR:2014/04/24-04:21 It's happened again
 >>>

214 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 There are many other things you can do, but the basic usage described here should be enough for all
but the largest projects.

 UNDERSTANDING LOCALIZATION

 Localization is the name given to the various actions required to make a computer application
usable in different localities. That includes such features as time zone differences, date and time
formatting, currency symbols, numeric formatting and, of course, language differences. In extreme
cases it might require a new UI layout to take account of reading direction, such as right to left.
Your computer operating system likely has many of these features controlled by a confi guration
setting, usually created when the operating system is fi rst installed. Most users never change this
setting and therefore take it for granted and never think about it. As a programmer your code may
have to run on different computers each with potentially different localization options.

 In this section you learn about how Python provides support for localization through the use of
locales and the Unicode character set. A locale is simply a code value that indicates a standardized
group of localized settings (time zone, date format, currency, and so on). Unicode is an international
standard for representing characters in different alphabets, for example, Latin, Arabic, Chinese, and
so on, as well as different symbols such as punctuation marks and math.

 Unicode is all very well in that it enables you to use different alphabets, but how do you
translate the strings used in your applications into different languages? That process is known as
internationalization . There is a standard industry process for this using a mechanism called gettext
that generates language‐specifi c fi les containing mappings from your embedded strings to the
different language versions. Python supports this mechanism via the gettext module. Localization
includes the ability to select the correct string translation using gettext .

 Using Locales
 Python supports different locales via the locale module. The way the module works is quite complex
and uses a layered approach; however, mostly you don’t need to know about that. You can use a
very small subset and generally you pick up the correct locale for your user.

 When your program starts, it is usually set to the “C” locale by default (although that may not
always be the case, and local confi guration settings may have changed it). However, you usually
want to set the locale that your user has chosen. The way to do that is to call the locale
.setlocale() function with an empty locale argument. This causes the system locale to be selected.
Most of the time, that’s all you need to do. You are strongly recommended to do this only once in
your program and to do so near the start of your code.

 You can then use locale.getlocale() to fetch the local details if you need to fi nd out what has
been set up (you see that in action in the next section where you look at how to translate your
program’s strings into the local language).

 Unfortunately, setting the locale is not the end of the story. If you want that change to take effect,
there are some changes you need to make to your code. Specifi cally, there are some type conversion
and comparison operations that are not locale-aware in the standard library and built‐in functions.
To get around that, the locale module provides alternatives. In other cases the standard functions

Understanding Localization ❘ 215

do understand locales if you give them the right hints. For example, the time.strftime() function
can format times to the local style if you use the appropriate formatting specifi cations such as %x for
the localized date and %X for the localized time. Similarly, to print() numbers in the locale specifi c
format, you need to specify the n style instead of d or f or g in the string format() method.

 The following interpreter session demonstrates some of these features:

 >>> import locale as loc
 >>> import time
 >>> loc.setlocale(loc.LC_ALL,'')
 'English_United States.1252'
 >>> loc.currency(350)
 '$350.00'
 >>> time.strftime("%x %X", time.localtime())
 '4/22/2014 7:44:57 PM'
 >>>

 Repeating those in a cygwin session set to the en _ GB locale, you can see some differences:

 >>> import locale as loc
 >>> import time
 >>> loc.setlocale(loc.LC_ALL, '')
 'en_GB.UTF-8'
 >>> loc.currency(350)
 '£350.00'
 >>> time.strftime("%x %X", time.localtime())
 '22/04/2014 19:32:23'

 The locale itself is clearly very differently specifi ed. The currency uses the appropriate symbols, and
the dates and times are quite different with the UK version using a 24‐hour clock format and with
the day and month of the date transposed.

 You can now try some of the conversion and comparison functions. These work the same in both
UK and U.S. English, so there is no point in doing a comparison this time.

 >>> print("{:n}".format(3.14159))
 3.14159
 >>> print("{:n}".format(42))
 42
 >>> loc.strcoll("Spanish", "Inquisition")
 1
 >>> loc.strcoll("Inquisition", "Spanish")
 -1
 >>> loc.strcoll("Spanish","Spanish")
 0

 These examples show how the string formatting n specifi er works for both integers and fl oating‐
point numbers. The locale.strcoll() string comparison examples are useful because they take
account of locale specifi c ideas on character ordering. The return values are 1 if the fi rst string is
“higher” valued, ‐1 if it is “lower” valued, and 0 if the two arguments are the same.

 Locale provides the following conversion functions that are useful in particular situations: atoi() ,
atof() , str() , format() , and format _ string() .

216 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 Using Unicode in Python
 Computers store data as binary numbers. Characters are mapped onto these numbers so that when
the computer prints a string of characters it maps the numeric data in memory to a set of character
representations on screen. Back in the dawn of computing, characters were represented by as few
as 5 bits and more commonly using 7 or 8 bits. All of these encodings could fi t into a single 8‐bit
byte of storage, so it was very compact. Unfortunately, a single byte can only cater to 256 different
combinations, which is fi ne for the Latin alphabets, used in the Western nations where modern
computing originated, but nowhere near enough for all the alphabets in the world as a whole. Over
time each country and corporation invented its own encoding system, and software engineers had
to write lots of code to cater to these if their software was to be used in different localities. The
solution was the Unicode standard.

 Unicode is a 32‐bit character catalog that can store a huge number of possible characters. Unicode
characters are represented by entities called code points that are the numeric values that map
onto characters. Code points are described using the format U+xxxx. The U+ indicates that it is
a Unicode code point and the xxxx is the hexadecimal number representing the location of the
code point in Unicode (there can be up to 8 hex digits not just 4). Code points are then mapped to
characters that also have descriptive names. Thus the character “A” is listed as “U+0041 LATIN
CAPITAL LETTER A”. The Python representation of the Unicode encoding is \uxxxx for 4
digits or \Uxxxxxxxx for 8 digits, which is a fairly obvious translation of the Unicode format,
simply replacing U+ with \u or \U . The codes and names can all be found on the Unicode website
at http://www.unicode.org/Public/UNIDATA/NamesList.txt . It is important to realize that
Unicode defi nes the character only, not its appearance. What you see as a character on your
computer screen, or printed out on paper, is known as a glyph, which is a graphical representation
of that character in some font or other. Unicode does not specify the font family, weight, size, or any
other details about appearance, only the actual character.

 The Unicode data has to be stored on the computer as a set of bytes that, as you recall, can only
store values from 0–255. The simplest translation, or encoding, of Unicode is known as UTF‐32 and g
is a one-to-one mapping from the Unicode code point value to a 32‐bit number. This is simple to
understand, but requires 4 bytes for every character, making it very memory and bandwidth hungry.
To conserve space two other encodings are used. UTF‐16 uses 16‐bit blocks to represent most
characters, but with an option to extend that to two 16‐bit blocks for some rarely used characters.
Microsoft Windows uses UTF‐16 by default.

NOTE The extension in UTF‐16 is known as a surrogate and is indicated by a
block containing a value in the range 0xD800‐0xDFFF. UTF‐8 uses a different
scheme whereby if a byte has a value greater than 128 it indicates that it is part
of a multibyte sequence.

 UTF‐8 stores the most commonly used characters in a single 8‐bit block, but can be extended to
use 2, 3, or 4 blocks for less commonly used characters. This makes UTF‐8 the most compact
format if you are using the right set of characters—specifi cally the Latin alphabet. UTF‐8 also has

http://www.unicode.org/Public/UNIDATA/NamesList.txt

Understanding Localization ❘ 217

the convenient feature of having the original ASCII character set as its lowest set of bytes, making
interworking with older non‐Unicode applications much easier. UTF‐8 is the default encoding for
Python version 3.

 That is all pretty complicated, so how does Python help you handle all of this? Python version 3
uses Unicode strings with UTF‐8 as its default encoding, although you can change that if you need
to. The way to change the encoding is to put a special comment as the very fi rst line of your code,
like this,

 # -*- coding: <encoding name> ‐*‐

 where the encoding name is whatever encoding you choose to use, typically utf‐16 or ascii .

 You can also use the Unicode characters in literal strings. You can even use their long names, for
example:

 >>> print('A')
 A
 >>> print('\u0041')
 A
 >>> print("\N{LATIN CAPITAL LETTER A}")
 A

 They all print the same character, A.

 You can use the encode() method of a string to get the raw bytes used to store the data:

 >>> print("\u00A1Help!")
 ¡Help!
 >>> print("\u00A1Help!".encode('utf‐8'))
 b'\xc2\xa1Help!'
 >>> b'\xc2\xa1Help!'.decode('utf‐8')
 '¡Help!'
 >>>

 Notice that the second version printed the UTF‐8 two‐byte representation of the inverted
exclamation point represented by \u00A1 . The third line converted the encoding back into a string
using encode() ’s complementary method decode() .

 So far you’ve seen how to represent single Unicode characters, how to change the default encoding
used by Python, and how to convert a string into its byte representation using encode() and how to
turn bytes into a Unicode string using decode() . Mostly that is all you need to know about Unicode
and Python. The interpreter does most of the work for you. You can go on to defi ne your own
encodings, too, but that requires some more detailed knowledge and a study of the codecs module.
You really shouldn’t need to do that in most situations.

 To conclude this section, you should be aware of the unicodedata module that is particularly useful
at the interactive prompt as a way of fi nding out about Unicode characters. Combined with the data
published on the Unicode website you should be able to answer most questions that arise during
regular coding.

 You can tell the Unicode name and category of a given character using the unicodedata module
and that can then be used to look up the website for more details. Assume you have just stored some

218 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

data that you believe to contain a Unicode string and you want to know about the characters it
contains. You might try this:

 >>> data = b'\xd9\x85\xd8\xb1\xd8\xad\xd8\xa8\xd8\xa7 \xd8\xa3\xd9\x84\xd8\xa7\
xd9\x86'

 >>> print(data.decode('utf-8'))

 >>> for ch in data.decode('utf-8'):
 ... print(ord(ch), ud.name(ch))
 ...
 1605 ARABIC LETTER MEEM
 1585 ARABIC LETTER REH
 1581 ARABIC LETTER HAH
 1576 ARABIC LETTER BEH
 1575 ARABIC LETTER ALEF
 32 SPACE
 1571 ARABIC LETTER ALEF WITH HAMZA ABOVE
 1604 ARABIC LETTER LAM
 1575 ARABIC LETTER ALEF
 1606 ARABIC LETTER NOON
 >>>

 Here you have a byte string that you suspect is UTF‐8 characters and you want to fi nd out what
kind of data it is. You can try decoding it, to check that it is valid UTF‐8, and that works, but you
don’t recognize the printed character set. You then import the unicodedata module and run a for
loop over the data printing out the long Unicode name of each character. From this it is obvious that
the data is in Arabic.

 Using gettext
 To translate your program strings using the gettext mechanism, there is a standard set of steps
you need to take. First, you have to use gettext functions to identify the strings in your code that
you want translated. Second, you run a utility to extract those strings into a template fi le, typically
called messages.po . After that you have to produce translation fi les based on messages.po , ideally
by hiring a set of translators or perhaps by trusting Google translate or similar tools! Third, use
another tool to convert the translation fi les to the language specifi c .mo format used by getttext ,
for example, messages _ en.mo for the English version. Finally, you need to ship the folder with the
.mo fi les in it along with your translation. There are various different tools available depending on
the operating system. For Windows users there are a couple of scripts in the Tools/i18n folder of
your Python distribution. For UNIX‐like systems there are operating system utilities available that
are Python aware.

 You now walk through a simple example—the ubiquitous “Hello world” script. The fi rst step is to
use the gettext module and its functions to mark your program strings that require translation.
You start by creating a new Python code fi le called gettext _ demo.py (or load it from the gettext
folder of the zip fi le):

import gettext
import locale as loc

Set up the locale and translation mechanism
#############################

Understanding Localization ❘ 219

loc.setlocale(loc.LC_ALL,'')
filename = "res/messages_{}.mo".format(loc.getlocale()[0][0:2])

trans = gettext.GNUTranslations(open(filename,'rb'))
trans.install()

Now the main program with gettext markers
#############################
print(_("Hello World"))

 This sets the locale as discussed in the previous section and uses it to dynamically create the name of
the translation fi le to be used. You are only creating an English translation so you could have hard-
coded the name, but using getlocale() demonstrates how it would be done if you had more than
one language available.

 Next, you instantiate a gettext.GNUTranslations object and install() it. This activates the
magic function _() that you then use to surround all the strings you need translated. In this case
that’s the single string " Hello World" .

 Your next step is to generate the messages.po template fi le. If you are on a UNIX-like operating
system, you can run the tool xgettext like this:

 $ xgettext gettext_demo.py

NOTE The Windows equivalents of the UNIX tools are pygettext.py and
msgfmy.py . Both are found in the y Tools/i18n folder of a standard Python
install.

 You should now fi nd a messages.po fi le in the same folder as your Python fi le. Open this in your
text editor and replace the string CHARSET with UTF‐8 and insert a translation of " Hello world "
in the empty string at the bottom. Just to prove that the translation is being picked up, you should
use something like "Hello beautiful world " but normally, for English, you would just repeat
the same string. (There are a bunch of other metadata fi elds that you could fi ll in, but they are not
needed for this demonstration so you can just ignore them.) Now save the fi le as messages_en.po . It
should look like this:

 # SOME DESCRIPTIVE TITLE.
 # Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
 # This file is distributed under the same license as the PACKAGE package.
 # FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
 #
 #, fuzzy
 msgid ""
 msgstr ""
 "Project-Id-Version: PACKAGE VERSION\n"
 "Report-Msgid-Bugs-To: \n"
 "POT-Creation-Date: 2014-04-22 18:05+0100\n"
 "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"

220 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

 "Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
 "Language-Team: LANGUAGE <LL@li.org>\n"
 "Language: \n"
 "MIME-Version: 1.0\n"
 "Content‐Type: text/plain; charset=UTF‐8 \n"
 "Content-Transfer-Encoding: 8bit\n"

 #: gettext-demo.py:14
 msgid "Hello World"
 msgstr "Hello beautiful world"

 Next, you want to create the res (for resource) folder that you specifi ed in the fi lename in the
Python script. The name is not critical, but res is a reasonable convention. You now run another
utility called msgfmt like this:

 $ msgfmt -o res/messages_en.mo messages_en.po

 Note the different fi le endings! This creates the translation fi le that you told gettext to read when
running your script. You are now ready to run the demo:

 $ python3 gettext_demo.py

 You should fi nd that the translated string "Hello beautiful world" is printed instead of the
original "Hello World" that you had in your code. This proves that the translation worked. You
can go on to make more translation fi les by repeating the steps after running xgettext for each new
language. To test them you need to change the local language settings.

 Localization is a complex and growing area of study. However, if you plan on distributing your
applications to multiple language users or in different countries, it is something you cannot afford to
ignore.

 SUMMARY

 In this chapter you saw the power of structuring applications in layers to separate out the data
processing from the core, or business, logic and the presentation. In particular you saw how you
could build multiple user interfaces on top of the same core logic and data layers. In the process you
explored several variations of command-line interfaces including different styles of user interaction
and powerful command-line options.

 You also saw how to build GUI applications using Tkinter, the standard GUI toolkit in Python,
along with its ancillary modules that offer more widgets and improved appearance. You concluded
this exploration by building a signifi cant user interface on top of an existing data layer using
many of the features already explored but using an object-oriented style rather than a procedural
approach. Finally, you reviewed some alternative third‐party GUI frameworks that offer even more
power than Tkinter should you wish to get more serious about GUI applications.

 The chapter looked at some wider issues in building applications for other people to use. It covered
the various types of non‐core data (such as confi guration values) that you can store and the options
available for each type. You also covered the use of the Python logging module to record signifi cant
events and how you can manage the levels of logging and how it is stored.

Summary ❘ 221

 You concluded the chapter with a look at the issues around localizing applications for the user. This
includes using localized settings for currency and time formats as well as different alphabets. Python
supports Unicode character sets, and you used encode() and decode() methods to convert strings
to and from their raw bytes. Finally, you experimented with the gettext mechanism for displaying
different languages within your application.

EXERCISES

1. Convert the oxo‐logic.py module to refl ect OOP design by creating a Game class.

2. Explore the Tkinter.filedialog module to get the name of a text fi le from a user and then
display that fi le on screen.

3. Replace the label in the fi rst GUI example program with a Tix ScrolledText widget so that it
displays the history of all the entries from the Entry widget.

4. Rewrite the fi rst GUI example to be compatible with gettext and generate a new English
version with different text on the controls.

222 ❘ CHAPTER 4 BUILDING DESKTOP APPLICATIONS

▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT DESCRIPTION

Desktop application A program that runs primarily on the user’s local computer. Generally an
interactive program that, for example, modifi es data or plays a game.

Data layer The part of an application that stores, modifi es, and retrieves data. It has
little or no knowledge of the application logic or business rules and no
knowledge of how the data will be presented.

Core logic The part of the application that processes the data. This is where the
complex algorithms and business rules will be located. The data will be
fetched or written via the data layer. The logic is not concerned with how
the results are presented merely that the correct data are created.

Presentation layer
(aka User Interface)

The part of the application with which the user interacts. This is all about
presenting the data in a clear manner and enabling the user to access
the functions of the application in a logical and obvious manner. The
presentation layer should not depend on the correctness of the underlying
data to function, it is only concerned with presenting the data it is given.
(Some basic data validation could legitimately occur, such as ensuring that
a given fi eld contains an integer within a given range.)

Localization The process and mechanisms whereby different users can use the same
application regardless of their location and still see the output in terms
that they recognize. That is the application should comply with local
layouts of structured data such as dates or currency.

Unicode An internationally agreed set of standards for presenting character sets.
Unicode is not concerned with the shape of the characters it represents
(their glyphs) but only with the content, or meaning, of the individual
characters.

Internationalization The process of translating the strings on a display such that they are
legible by users of different languages.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Understanding how Python works on the web

➤ Creating a web app with Python

➤ Connecting a web app to a database

➤ Creating an API

➤ Parsing and manipulating data in a web app

 WROX.COM DOWNLOADS FOR THIS CHAPTER

 For this chapter the wrox.com code downloads are found at www.wrox.com/go/
pythonprojects on the Download Code tab. The code is in the Chapter 5 download, called
Chapter5.zip , and individually named according to the names throughout the chapter.

 Up to this point you’ve been using Python locally to investigate and parse data on your local
machine. But what about when you want to use Python for remote data manipulation, or
across “the wire”?

 Python is a very powerful language, and it’s not just for doing system administration tasks or
fi le system tasks locally. You can use Python across networks to handle tasks using REST and
XMLRPC. This chapter looks into both of these, but the focus is on the most popular method
of using Python remotely: HTTP using REST.

 In this chapter you use some of the more popular web technologies with Python, including
HTTP and REST, to create a web app that links to a database. You use technologies such as
Flask and SQLite to complete the web app, and fi nally, you create an application programming
interface (API) and learn to parse and manipulate data in the web app.

 5

http://www.wrox.com/go/pythonprojects
http://www.wrox.com/go/pythonprojects

224 ❘ CHAPTER 5 PYTHON ON THE WEB

 REST stands for Representational State Transfer . It’s a fancy name for the technology andrr
architecture style of a certain web service. This service doesn’t rely on the implementation of
components or protocol syntax; instead, it worries about how to interact with data (sending it back
and forth within the constraints placed upon it). We explain RESTful architecture in the section on
building an API with Flask. For now, just know that REST is a thing that makes up the architecture
of web services.

NOTE Because it is beyond the scope of this book to teach the fundamentals
of front‐end web development, we've provided you with the fi les you need
to have a nice interface. We will be focusing on the middle layer of Python
and how to hook up the front end to the database and web server. We can
only lightly touch on the JavaScript that is provided. It is recommended that
you familiarize yourself with modern front‐end technologies should you be
focusing your Python development on the web.

 PYTHON ON THE WEB

 As you may know, the web is made up of a few technologies, not just one. Figure 5-1 shows a high‐
level overview of the structure of a modern web app.

Browser

Date

Python
Ruby
Java
Etc.

SQLite
SQL
Postgres
Redis
Etc.

API

CLIENT-SIDE

SERVER-SIDE

HTML
CSS
Javascript

 FIGURE 5-1: Note the two sides of a web app: client‐side and server‐side. Server‐side data is served via a web
server such as Apache or Nginx.

Python on the Web ❘ 225

 As you can see, the front end of a web app consists of a browser that handles the HTML, CSS, and
JavaScript. The middle layer, in this case, is Python, but in general this is usually some scripting
language such as Ruby, Perl, or PHP, or JavaScript. The back end will house your database (SQLite)
and web server, or HTTP Daemon (commonly, Nginx or Apache). Although it is beyond the scope
of this book to explain the fundamentals of the back end and front end, you will learn how to set up
a very simple server.

NOTE Should you need to make this server public, it is highly recommended
that you fully understand the fundamentals of any technology with which you
are unfamiliar. So, read the docs and know what you’re getting into, and learn
how to securely set up a public‐facing web server before doing so.

 Let’s move on and start explaining how each of these pieces work together.

 Parts of a Web Application
 You can serve data across networks in a few ways. Python is a language
that can handle almost all of those ways. We briefl y touch on the most
common uses of Python as a server‐side language, and then we use the
most modern and most common way of using Python on the web: building
a web application.

 The basic structure of any network request is shown in Figure 5-2 . What
happens between “Server Receives Request” and “Server Returns Data to
Requestor”? That is where Python lives.

 Because browsers can’t ship with every interpreter ever created—and we
certainly don’t want them to come with compilers—we needed to fi nd a
way to bridge static pages and dynamic data so that we could have interactive, dynamic web pages.
We know that we have a web server that is serving up fi les that make up our web app, but how does
the server know what fi les we’re using? How can the server tell that the app is written in Python and
not, say, Ruby?

 Welcome WSGI! WSGI, or Web Server Gateway Interface , is how your web server (like Apache)
knows about and can run Python fi les. It is beyond the scope of this book to delve into the
intricacies of WSGI; just know that most modern web servers support it, and if you want to run
Python on a server, that server needs to have WSGI available. If you’re interested in a deeper
understanding of server operations and what is known as “DevOps,” it is recommended that you
research the more lower‐level technologies, such as WSGI. For our purposes, however, we’ll be using
a framework that has already taken care of that piece of server architecture for us and uses WSGI.
You will see this term referenced throughout when discussing Python on the web, so hopefully you’ll
remember it and understand what part it plays in the grand scheme of things.

Request Is Made

Server Receives Request

Server Returns Data
to Requestor

FIGURE 5-2: Structure
of a network request

226 ❘ CHAPTER 5 PYTHON ON THE WEB

 The Client‐Server Relationship
 What is a client? In web development, a client usually refers to a web browser, which sends out requestst
to your web server for fi les. However, you will see other uses of the term “client” to mean another server
that is requesting data from a second server. For the purposes of this chapter, a client is basically a
browser—in other words, the part of the web app that wants to display the data that the app is returning.
This is also the part of the web app that the user will be interacting with. If you’ve ever heard the term
“client‐side JavaScript” and never really understood it, this should clear up that confusion: Client‐side
JavaScript is JavaScript that is only on the client side and performs actions directly in the client (a web
browser), and not on the server. This includes, for example, changing colors or styles on a webpage when
certain events are fi red (i.e., a button-click changes the color of a background). These functions never
actually talk to a server and can be used locally, if needed (without an Internet connection).

 So, what is server‐side JavaScript, then? As you probably guessed, it’s JavaScript that is executed on
the server, usually by an event from the client side, such as a GET request or client‐side JavaScript.
We won’t be dealing with any server‐side JavaScript in this book because we’re using Python, which
is our server‐side language of choice. This is where our logic will live. This is the part of the app that
takes the actions from the client and makes magic happen.

 Middleware and MVC
Middleware is a fairly new term in web development. It refers to the part of the technology stack
that will take in data from the front end (the client), manipulate it, pass it into or out of the database
(or other service that may be running), and then send it back to the front end. Basically, the logic of
your system/app should live in your middle layer, your data should live in your data layer, and your
styles should live in the front end. It is never ideal to have your front end (JavaScript) doing much
data logic, which can be better handled in your middle layer.

 All of these pieces actually have a nice name—it is called model‐view‐controller (MVC) . Most
modern frameworks use some sort of MVC architecture. The benefi t of MVC is that your client
doesn’t have to deal with the logic of your app, and your logic doesn’t have to deal with your data
models. You can set your data models and forget 'em! (sorta).

 Say you’re working on a large project and you have web designers writing your HTML and CSS
and some of the JavaScript that makes your web app look slick and shiny. Then you have very smart
mathematicians working on your data layer, because you need precise numbers to be calculated
from data inputted from your slick, shiny client. What happens if you have your logic code in your
client‐side fi les? Let’s say you put your calculations in the templates that the web designers were
working on. Furthermore, let’s say that your web designers wanted to manipulate something and
they thought your calculation was the problem. This isn’t ideal, is it? MVC somewhat solves this
problem by separating out your data layer (the data model that is storing your precise calculations), l
from the controllers you’re writing to do your precise calculations, with the view that your web
designers are working on to make a shiny, slick web app.

 So, what does all this mean in the Python world? Well, you’re going to come across the term
“MVC” and you should understand the overview of the architecture. We use a framework in this
chapter that utilizes a sort of MVC architecture, so you should now have a better understanding of
why we’ve made most of the decisions we’ve made, moving forward.

Python on the Web ❘ 227

 HTTP Methods and Headers
 HTTP stands for HyperText Transfer Protocol . This is the protocol that is used to pass data around l
on the web, usually via a web browser. When a client makes a request, it uses this HTTP protocol.
This might look familiar to anyone who’s done any web programming with HyperText Markup
Language (HTML). HTTP is made to pass HTML.

 HTTP methods are the verbs of the web. The two most basic methods are GET and POST. These do
what you might expect. When you send the web server a GET request, you are requesting to get data t
from the server. This request, or GET, is used every time you load a web page into your browser.
So, when you go to twitter.com, your browser is sending a GET request to the Twitter servers and
asking for information.

 What about when you type out a tweet and hit the Tweet button? When you are sending data to the
server, you are using a POST method call. This indicates to the server that you are going to attempt
to post data t to the server. (We lightly touch on some other method calls as you go through the
process of building your app.)

NOTE If you plan to use Python for web development, it is highly
recommended that you familiarize yourself with all the HTTP methods available.

 So, how does the web server know what method is being sent? It does this via the HTTP headers
(see Figure 5-3).

 FIGURE 5-3: The Chrome Developer Tools, illustrating the headers of a server request for a fi le

228 ❘ CHAPTER 5 PYTHON ON THE WEB

 As you can see in Figure 5-3 , we have gone to http://www.python.org and in doing so, have sent a
GET request to the server for a JavaScript fi le that is named iotbs2‐core.js . The server responded
with a status code of “200 OK,” which simply means that the fi le was available to be served and
was served. Other HTTP Status Codes exist: the code 404 is the most widely known—it means
“Not Found,” meaning the fi le was not found on the server, so it could not be served.

 Headers contain information for the server, to know what you are requesting from the server.
This helps the HTTP, or web, server to respond properly to requests that are made from the
Internet. Headers also contain metadata, such as what browser was being used to make the
request. As you can see in Figure 5-3 , the request was made using Chrome on a Macintosh
running OS X 10.8.5.

 If you’re going to be developing for the web and you don’t have a dedicated front‐end team to check
your API’s implementation, you’re going to have to do your own debugging. It’s also helpful to know
how your API will be accessed and to be able to replicate that for testing and debugging purposes.
To do this, you will be using the Chrome Developer Tools (or DevTools, for short).

 TRY IT OUT Using the Chrome Developer Tools

 In this Try It Out, you practice using the Chrome Developer Tools, which you will be using later in this
chapter.

 1. Open your Chrome browser. From the menu, click View and then select Developer. Finally, click
Developer Tools.

 2. In the DevTools window, click the Network tab (see Figure 5-4).

 3. Go to http://www.python.org .

You should see a list of fi les, some ending with .js , such as jquery.min.js . These are all the fi les
that have been requested when we told the browser to get us python.org.

 4. Click one of the fi les ending with .js. You should see a new window appear in the right pane, with
the Preview tab highlighted (see Figure 5-5).

 5. Click the Headers tab, to the left of the highlighted Preview tab (see Figure 5-6).

 You should now see the HTTP header that was sent to the server, requesting the fi le along with the
response headers that the server returned. Feel free to click the Response tab to see what the server actu-
ally returned. You work more with the Response tab later on, when you start debugging your own API.

NOTE DevTools will be one of the most used tools you'll work with if you are
doing web development. Another tool that may come in handy while testing
your API, if you don't want to test using a live page, is SimpleRestClient. This
is a free Chrome plug‐in that you can fi nd in the Chrome App store and install
directly into Chrome. Of course, other REST clients are available, so feel free to
fi nd one that suits you.

http://www.python.org
http://www.python.org

Python on the Web ❘ 229

FIGURE 5-4: The DevTools Network tab

 FIGURE 5-5: Preview of the selected fi le

230 ❘ CHAPTER 5 PYTHON ON THE WEB

What Is an API?
API stands for application programming interface . An API is simply the approved way for others
to interact with an outside application, without actually having access to the database itself. Take
Twitter, for example. How do the many Twitter clients out there get the Twitter data? Does Twitter
just let anyone onto its systems? No, not really. Twitter uses an API to allow other developers to
utilize its data. The modern use of an API is a RESTful API, meaning that you use URLs to talk to
the remote application’s API, and the remote application returns data depending on the data you’ve
sent to the specifi ed URL.

You can fi nd many tutorials online that show you how to use certain libraries in Python to access an
API and pull data. You will be going a step farther than that—you will create your own API to serve
data. You will then use that API to code up your client‐side fi les to pull in the correct data. But fi rst,
let’s look at the data that most APIs return: JSON.

FIGURE 5-6: Headers for the selected fi le

 JSON (JAVASCRIPT OBJECT NOTATION)

 If you’ve ever heard the term “JSON” (jay‐sahn), you’ve probably thought it was
some magical secret that only supersmart computer scientists understood. Or you
just thought it was some weird thing that web developers kept going on about.
Either way, it’s very easy—almost too easy—to understand.

Python on the Web ❘ 231

 In the following Try It Out, you learn how to access a third‐party API to get data. For this
example, you use the USDA’s API for Farmer’s Markets in a given area. You can fi nd plenty of other
governmental APIs at www.data.gov . You can fi nd the documentation for this example at http://
search.ams.usda.gov/farmersmarkets/v1/svcdesc.html .

 TRY IT OUT Using a Third‐Party API

 In this Try It Out, you’ll fi nd lists of farmers markets for a given U.S. ZIP code.

1. Install the requests library:

 pip install requests
 OR
 easy_install requests

2. Open a new Terminal window and start your Python interpreter:

˜$ python

 Python 3.3.3 (default, Feb 14 2014, 12:35:03)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.

3. Import the requests library. If you have requests properly installed, you should simply see your
prompt returned once you press Return/Enter. If you don’t, you haven’t installed requests properly.
Check out the documentation on the requests website to see how to remedy this.

 >>> import requests

 >>>

 JSON is simply key:value pairs that are formatted to resemble a JavaScript object.
Like dicts in Python, JavaScript has a data structure that is very similar. They are
called objects in JavaScript, and they look like this:

 { name: "Henry",
 email: "henry@henry.com",
 job: "Accountant"
 }

 This is simply an object with three keys: name , email , and job . Each key has a cor-
responding value.

 When we talk to most modern APIs, the format of the data that is sent and received
is usually JSON. This means that we simply have to structure our data as key:value
pairs and wrap it in curly braces ({}). Some APIs can have JSON sent to them along
with them sending JSON back out. And some APIs simply provide JSON data.
We'll look at a third‐party API that sends data as JSON. We'll also look at how to
parse that data, how to read it, and how Python handles it.

http://www.data.gov
http://search.ams.usda.gov/farmersmarkets/v1/svcdesc.html
http://search.ams.usda.gov/farmersmarkets/v1/svcdesc.html

232 ❘ CHAPTER 5 PYTHON ON THE WEB

4. Make a request to the USDA’s API. Save the object returned from the request into a variable and
then print that result:

 >>>url = requests.get("http://search.ams.usda.gov/farmersmarkets/v1/data.svc/
zipSearch?zip=46201")

 // Feel free to replace the zip code '46201' with your own zip code to see local
 farmer's markets in your area

 >>> print(url)
 <Response [200]>

 Here you are calling requests.get() . Earlier we talked about HTTP request methods—this
request is sending a GET request to the server, to get back some data (a JSON object in this case).
What do we know about an HTTP response status code of 200? This simply means that the request
was received and returned 'OK' , meaning everything is OK.

5. Call the .json() method on the object so that it is in a form that Python can understand. Save the
result of calling the .json() method on the object that was returned, and print the variable:

 >>> results = url.json()

 >>> print(results)
 {'results': [{'id': '1003905', 'marketname': '1.7 Irvington Farmers Market & Art
 Fair'}, {'id': '1005421', 'marketname': "2.4 Original Farmers' Market at
 Indianapolis City Market"}, {'id': '1006165', 'marketname': '2.4 Indy Winter
 Farmers Market'}, {'id': '1002600', 'marketname': '2.9 Statehouse Market'},
 {'id': '20312', 'marketname': '2.9 Stadium Village Farmers Market '}, {'id':
 '1002467', 'marketname': '3.8 Farmers Market at the Barn'}, {'id': '1004011',
 'marketname': "4.2 Hurlock Farmers' and Watermen's Market"}, {'id': '1003161',
 'marketname': '4.4 38th & Meridian Farmers Market'}, {'id': '1006494',
 'marketname': '6.1 52 & Shadeland Avenue Farmers Market'}, {'id': '1005505',
 'marketname': '6.6 Broad Ripple Farmers Market'}, {'id': '1006523',
 'marketname': '6.7 Binford Farmers Market'}, {'id': '1003901', 'marketname':
 '7.9 Cumberland Farmers Market'}, {'id': '1004663', 'marketname': '12.1 Geist
 Farmers Market'}, {'id': '1009026', 'marketname': '12.1 Farm to Fork Farmers
 Market at Normandy Farms'}, {'id': '1007367', 'marketname': '13.5 Carmel
 Farmers Market'}, {'id': '1000748', 'marketname': '13.6 Fishers Farmers
 Market'}, {'id': '1004686', 'marketname': '14.5 Zionsville Farmers Market'},
 {'id': '1008028', 'marketname': '16.0 Brownsburg Farmers Market'}, {'id':
 '1000129', 'marketname': "16.2 Plainfield Chamber Farmers' Market"}]}

 What you’re seeing here is a list of all the markets that is returned when you query for that ZIP
code. The data for this query lives on the USDA’s servers; however, because the USDA has provided
an API, you can access this data without actually accessing the database itself.

 What data type is being returned ? It’s a one‐item dict with the key “results” containing a list of d
dicts as its value. How do you know?{ = dict indicator..... [= list indicator..... {
= dict indicator . The fi rst dict item is titled “results,” and its data is a list. Remember dicts are
key:value pairs. Remember lists are simply number indices (0th indexed). So, how do you get the
list out of the fi rst dict? You have to reference the dict with its key—in this case the key is the word
“results” after the { and u .

6. To get the value of that key, call it like so:

 >>> for result in results['results']:

http://search.ams.usda.gov/farmersmarkets/v1/data.svc/zipSearch?zip=46201
http://search.ams.usda.gov/farmersmarkets/v1/data.svc/zipSearch?zip=46201

Python on the Web ❘ 233

 ... print(result)
 {'id': '1003905', 'marketname': '1.7 Irvington Farmers Market & Art Fair'}
 {'id': '1005421', 'marketname': "2.4 Original Farmers' Market at Indianapolis City
 Market"}
 {'id': '1006165', 'marketname': '2.4 Indy Winter Farmers Market'}
 {'id': '1002600', 'marketname': '2.9 Statehouse Market'}
 {'id': '20312', 'marketname': '2.9 Stadium Village Farmers Market '}
 {'id': '1002467', 'marketname': '3.8 Farmers Market at the Barn'}
 {'id': '1004011', 'marketname': "4.2 Hurlock Farmers' and Watermen's Market"}
 {'id': '1003161', 'marketname': '4.4 38th & Meridian Farmers Market'}
 {'id': '1006494', 'marketname': '6.1 52 & Shadeland Avenue Farmers Market'}
 {'id': '1005505', 'marketname': '6.6 Broad Ripple Farmers Market'}
 {'id': '1006523', 'marketname': '6.7 Binford Farmers Market'}
 {'id': '1003901', 'marketname': '7.9 Cumberland Farmers Market'}
 {'id': '1004663', 'marketname': '12.1 Geist Farmers Market'}
 {'id': '1009026', 'marketname': '12.1 Farm to Fork Farmers Market at Normandy
 Farms'}
 {'id': '1007367', 'marketname': '13.5 Carmel Farmers Market'}
 {'id': '1000748', 'marketname': '13.6 Fishers Farmers Market'}
 {'id': '1004686', 'marketname': '14.5 Zionsville Farmers Market'}
 {'id': '1008028', 'marketname': '16.0 Brownsburg Farmers Market'}
 {'id': '1000129', 'marketname': "16.2 Plainfield Chamber Farmers' Market"}

 When you run this code, you should see a Unicode‐encoded list of farmers markets for the area of
Indianapolis within the ZIP code 46201 (or your ZIP code if you changed that data point).

 How It Works

 You just used an API from the USDA to search for farmers markets within a certain ZIP code, based on
the data housed in the USDA’s databases. You got the result back from the server and using the requests
library’s .json() method, you got that information out of the data the server sent back to you in the
JSON format, so that you could read it. You then noted the structure of the data, so that you could get
each individual listing and list them out via a for loop.

 What if you wanted to get the name of the farmers market and search for it via Google?

 Luckily, the USDA has done the heavy lifting of fi nding each market via Google Maps, by providing a
link to the corresponding Google map for each market. This search, according to the USDA API docs
(http://search.ams.usda.gov/farmersmarkets/v1/svcdesc.html), will return some market details,
provided you pass in a market ID, which you can get from the earlier inquiry. Included in the results is
a link to the Google map. Let’s watch it in action:

 >>>market = "http://search.ams.usda.gov/farmersmarkets/v1/data.svc/mktDetail?id="

 >>> for result in results['results']:
 ... id = result['id']
 ... details = requests.get(market + id).json()
 ... print(details['marketdetails']['GoogleLink'])
 http://maps.google.com/?q=39.7776%2C%20-86.0782%20(%22Irvington+Farmers+Market+%26+
 Art+Fair%22)
 This is the example of one of the links that may be returned.

 What does this code do? Can you decipher it? Try to write it out in human‐readable format using pen
and paper, or type it out as if you were explaining it to someone else. If you are unsure what is going on

http://search.ams.usda.gov/farmersmarkets/v1/svcdesc.html
http://search.ams.usda.gov/farmersmarkets/v1/data.svc/mktDetail?id=
http://maps.google.com/?q=39.7776%2C%20-86.0782%20(%22Irvington+Farmers+Market+%26+Art+Fair%22
http://maps.google.com/?q=39.7776%2C%20-86.0782%20(%22Irvington+Farmers+Market+%26+Art+Fair%22

234 ❘ CHAPTER 5 PYTHON ON THE WEB

exactly, insert print statements after each line to see what the code looks like as it is going through each
line, like this:

 >>>for result in results['results']:
 ... id = result['id']
 ... print(id) [RS – all these need parenthesss[
 ... print result['id']
 ... details = requests.get(market + id).json()
 ... print details
 ... print details['marketdetails']
 ... print details['marketdetails']['GoogleLink']

 As a fun exercise, open Chrome and go to the URL: http://search.ams.usda.gov/farmersmarkets/
v1/data.svc/zipSearch?zip=46201 . Notice the results you get back. Open the DevTools and take a
look at the response headers (see Figure 5‐7). Notice the response is identical to the response you got
back when you queried the URL in the Python interpreter (200 OK). Next, click the Preview tab, and
you should see each result returned as a JSON object. Feel free to click around and inspect the data the
browser can see with the data you’ve been inspecting.

 So, now the question is: How does that work? How does the Requests library do that? That’s for
our next section, “Web Programming with Python.” Though we won’t be making our own requests‐
like library, we will look at the underlying logic and functionality that Python provides in order to
make such a library.

 FIGURE 5-7: The Headers tab in Chrome’s DevTools, illustrating the HTTP response from the USDA website

http://search.ams.usda.gov/farmersmarkets/v1/data.svc/zipSearch?zip=46201
http://search.ams.usda.gov/farmersmarkets/v1/data.svc/zipSearch?zip=46201

Web Programming with Python ❘ 235

 WEB PROGRAMMING WITH PYTHON

 In the preceding section, you took a look at the Requests library. In this section you’re going to see a
little bit of the technologies Requests employs under the hood. Then, using the Flask web framework
(http://flask.pocoo.org), you’ll take the lending library, give it a web interface, and make it
interactive via a browser. But fi rst, you should understand just how things are working before you
put big bows on them.

 Using the Python HTTP Modules
 Python is incredibly powerful, versatile, and easy to use. Part of the reason for this is all the built‐
in functionality that comes with the base Python install. When you install Python, you also get a
plethora of modules that you can use. Included in these modules are the http modules— http
.server , r http.client —and a few others. In this section you work with the http.server module
to see just how easy it is to spin up a quick HTTP server so that you can quickly begin serving
web pages for debugging/testing purposes. This section also illustrates just how some of the more
popular third‐party libraries use Python’s built‐in modules to create incredibly powerful tools for
the Python developer.

 Let’s take a look at the http.server module and see just how quickly you can get an HTTP server
up and running locally.

 Creating an HTTP Server
 In this Try It Out, you set up, in just a few lines of code, an HTTP server that will run locally
and serve up pages that you’ll create and serve out of your local directory. After this exercise, you
should have a good idea of just how some of the more popular frameworks and third‐party libraries
implement Python’s built‐in modules to harness incredible power to create easy‐to‐use tools.

 TRY IT OUT Serving Local Files via http.server

 This Try It Out demonstrates how you can serve fi les in your local directory, via a web browser, to test
or debug any code that may need a web server running. This also illustrates just how powerful Python’s
built‐in modules can be.

1. In your project directory, create a directory for Chapter 5 and, using your editor of choice, create
an index.html fi le with the following code and save it:

<!doctype html>
<html>

<head>
<title>HELLO WORLD!</title>

</head>
<body>
<p> Hello World! I am serving this page via Python! WOWZERS!</p>

</body>

</html>

http://flask.pocoo.org

236 ❘ CHAPTER 5 PYTHON ON THE WEB

2. Open a new Terminal window and start up your Python interpreter. Import the two built‐in
modules you’ll need:

 Python'
 Python 3.3.3 (default, Feb 14 2014, 12:35:03)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import socketserver
 >>> import http.server

3. Decide which port you want to use to serve the data—you’re free to use any port you want, but
this example uses 8080:

 >>> PORT = 8080

 Note that the variable PORT is in all caps because it is a constant, which means it will not be
changed within your program.

4. Set up a handler called Handsy to handle the requests you’ll be sending:

 >>> Handsy = http.server.SimpleHTTPRequestHandler

5. Now that you have a request handler, you can set up your simple HTTP Daemon (or httpd ,
because that’s how most UNIX conventions name these things):

 >>>httpd = socketserver.TCPServer(("", PORT), Handsy)

 What are you doing here? You’re passing in an empty string, the PORT constant, and then the
variable Handsy , which is a request handler object. Can you explain, in plain words, what may be
happening? It may help to write this down on paper in paragraph form.

6. Finally, you need to serve the directory to the correct port so that you can access it via your
browser:

 >>> httpd.serve_forever()

7. Leaving the Terminal window open and running, open a browser and point it to http://
localhost:8000/ . You should see something like the web page shown in Figure 5-8 .

 FIGURE 5-8: Note how this displays the HTML fi le we created earlier.

http://localhost:8000/
http://localhost:8000/

Web Programming with Python ❘ 237

8. Go back to your Terminal window, where your server is running. You should see the following:

 >>> httpd.serve_forever()
127.0.0.1 ‐ ‐ [14/Feb/2014 14:17:02] "GET / HTTP/1.1" 200 ‐
127.0.0.1 ‐ ‐ [14/Feb/2014 14:17:04] "GET / HTTP/1.1" 200 ‐

 Remember what a status code of 200 means? “OK,” meaning the server found index.html and was
able to serve it to the client. Easy, huh?

 How It Works

 Python’s built‐in HTTP modules enable you to quickly “spin up” a small HTTP server to serve
simple pages. The http.server module will search in the directory provided for an index.html fi le
(you provided "" , which means the directory you were in when you started the server), and if there
is an index.html fi le, it will serve that fi le. If that fi le is not present, http.server uses the list _

directory() method to list the contents of the present directory. This is helpful for debugging and
testing code, but it shouldn’t be used for production systems. However, if you want to make a larger
library, such as the Flask library you’ll be using, or the Requests library that you used earlier, you can
write code around these built‐ins that will create helpful tools to use later on.

NOTE Python 3 makes creating an HTTP server even easier. You can go to the
directory that you want to serve through the HTTP server and simply run this
command:
python ‐m http.server 8000 .

 That command will serve the directory, on localhost, at the port you provided.
So, if you go to your Chapter 5 directory, where your index.html fi le is stored,
and run this command in a Terminal, you'll be able to point your browser to
http://localhost:8000 and see your index.html ! Try it on a directory that
doesn't have an index.html fi le and see what the results are.

 Exploring the Flask Framework
 Now, you take a closer look at the Flask framework. It is a third‐party library written in Python
that will help you to do everything from creating your own APIs to creating a full web‐based
application. Flask supports templating, using the Jinja template system, and therefore you can use it
as an all‐in‐one web framework. You use this functionality for the next part of this chapter.

 Before you begin, you’ll need to install Flask (pip install flask). You’ll be using SQLite3 for
your database. Luckily, SQLite3 comes with Python 3. SQLite is a smaller database that is perfect
for this simple example app. If you’re doing a larger app, we recommend you take the time to
research larger databases such as PostgreSQL, SQLAlchemy, or many of the others available,
including the NoSQL databases such as Redis. For the purposes of this chapter, however, you’ll use
SQLite, which is a very easy, small, and lightweight database.

 Once you have Flask installed, you’ll set up a very simple app, which you will build on to complete
the larger app.

http://localhost:8000

238 ❘ CHAPTER 5 PYTHON ON THE WEB

 To start, you want to set up the directory structure where each part of your project will live. You
can set up projects in many different ways, and each tutorial shows you a different way, but the
basic idea is the same. Because you’ll be working in an MVC‐like environment, you’re going to want
to separate out each piece of the project. In the following Try It Out, once you unzip the lendy.zip
fi le, you should have a directory structure similar to this:

 lendy (the silly name of your lending app)

 static

 templates

 This structure is similar to how most projects start out. You want to separate each piece of the
project. The static directory will hold static fi les, such as images and scripts. The templates
directory is where the templates will live.

 Let’s look at each piece of a typical MVC architecture:

➤ Model: This is where the data models live, or the tables in the database. This is going to be
the table for your users (not secure) and the items that you’ll be lending.

➤ View: This is what the users will see—what you show to them in a browser; or how they
interact with the data, and where the data will go, once the next step does its job.

➤ Controller: This is the part of the app that “controls” the data fl ow. Users interact with this
part. So, a user may send form data to the back end, which is picked up via the controller
part of the project. This part interacts with the model and can initiate either an update,
creation, or even deletion. This is also the “heaviest” part of the app, in that this part receives
data from the model layer and returns it to the view. This is, basically, the brain of your
web app.

 Let’s see how all of these pieces fi t together by creating the basics for your web app.

 Creating Data Models in Flask
 In this example you will be use the lendydb database that you created in Chapter 3, in the section
“Creating the LendyDB SQL Database.” You will use two of the data entities: a member and an
item. Members will be able to log in and view the inventory of items and add items to the inventory.
You will be using a text editor and saving fi les in this exercise. You will not be using any security
measures, for the sake of time. However, you should be very familiar with the most common
security practices before setting up public web interfaces.

NOTE Flask has Python 3 support, but only in 3.3 and newer; older versions
of Python 3 (3.2 and older) will not work. Also, most plug‐ins are developed
under 2.7, so porting them to Python 3, though possible, is an undertaking
left to the reader. Should you encounter any abnormalities and cannot fi nd
help via an Internet search, going back to Python 2.7 and using Flask in that
environment is recommended.

Web Programming with Python ❘ 239

 The data model for this application consists of the two fi les from Chapter 3: lendydata.py , whichy

is the API, and lendy.db , which is the actual database. You need to copy both of these into your
lendy folder.

 Creating Core Flask Files
 Now it’s time to really get to the meat of the app—everything that will give us functionality and
allow us to have a working web app. Let’s create the Python fi les for the app.

 TRY IT OUT Setting Up a Simple Flask App (lendy.zip)

 This Try It Out demonstrates how to get a Flask project started.

1. In your project directory (lendy), open the fi lenamed lendy.py , which contains the following:

 import sqlite3, os, lendydata
 from flask import Flask, request, session, g, redirect, url_for, abort, \
 render_template, flash

 These fi rst two lines import the libraries and modules you’ll be using. The fi rst line is importing the
sqlite3 and os modules, which come with Python, as well as the lendydata API module you created
in Chapter 3. The second line is importing only the modules from the Flask library that you will be
using. This is good practice when it comes to imports. Only import those modules and libraries that
you’ll actually be using. Remember, when you import you are running all the code in that fi le that
you’ve designated in the import. So, if a module has 40 methods, you’re importing all those method
defi nitions. So, import only that which you’ll be using.

2. Set up the confi g for your app:

 app = Flask(__name__)

 # Load default config and override config from an environment variable
 app.config.update(dict(
 DATABASE=os.path.join(app.root_path, 'lendy.db'),
 DEBUG=True,
 SECRET_KEY='nickknackpaddywhack',
 USERNAME='admin',
 PASSWORD='thisisterrible'
))
 app.config.from_envvar('LENDY_SETTINGS', silent=True)

 Here you are creating your Flask object and assigning it the name of app . You are then setting up
your Flask confi g properties. Because everything in Python is a fi rst‐class object, you can modify
this object as needed.

 Note the __name__ variable being passed around in the fi rst two lines. Remember, when
a Python script runs, depending on how it was run—directly, as the __main__ module, by
running it with the command python app.py , or indirectly, by importing it from another
(main) Python fi le. The Python interpreter sets the __name__ variable to either __main__ or the
name of the fi le that was being imported. Here you are passing the __name__ variable to Flask
and to the config.from_object methods. This will be determined by how you’re running your
script, as __main__ or as the name of your script (in our case the __name__ variable here will
be set to lendy).

240 ❘ CHAPTER 5 PYTHON ON THE WEB

 Next, you are updating the dict that goes along with your Flask object. Python objects are basically
dicts all the way down, which is the reason you can modify them at any time. The all caps indicate
that you are setting constant variables (variables that will never change). These variables are going
to be passed around in the app and help you to run your program.

 First, you have the DATABASE variable, which is declaring where the database fi le will reside. SQLite
creates a simple fi le that is the database, which is why it’s “lite.” This os.path.join() call is
simply setting up the path to the SQLite fi le that you’ll be making in a moment.

 Second, you have DEBUG=True . This is because you are in development mode. When you’re ready
to send your Flask project to production, you want to set this variable to FALSE .

 Next, you have the SECRET_KEY . This variable should be something random, long, and hard to
guess. Here it is set to be none of those things, for illustrative purposes. This key will help to keep
your client‐side session secure.

 Finally, you have USERNAME and PASSWORD . These are the credentials for your app. Because you’re
making a very simple app, you’re going to store these in the confi g, and not in a database. These
of course, should be set up to be more diffi cult than shown here and put into a database and
encrypted, but again for our purposes, security isn’t the fi rst concern. Also, it is assumed that your
app will remain private and locally hosted for now.

 The last line is important for later. This sets up an environment variable called LENDY_SETTINGS , which
contains the confi g variables. However, you’ve set those here, so this confi g fi le doesn’t exist (yet!),
which is why the silent= True fl ag is set. This will ignore errors if the confi g fi le isn’t found. Should
you want to add a confi g fi le, you’d need the LENDY_SETTINGS variable to point to said confi g fi le.

3. Now, dissect the database connections, because this is where the heart of the app lies:

 def get_db():
 """Opens a new database connection if one does not exist for our current request
 context (the g object helps with this task)"""

 if not hasattr(g, 'sqlite_db'):
 lendydata.initDB()
 g.sqlite_db = lendydata.db
 return g.sqlite_db

 @app.teardown_appcontext
 def close_db(error):
 """Closes the database again at the end of the request. Note the 'g'
 object which makes sure we only operate on the current request."""
 if hasattr(g, 'sqlite_db'):
 lendydata.closeDB()

 This code, in a nutshell, opens a database connection so that you have a handle on the SQLite
database and can perform functions on it. There is an init_db function in there, which you will
use in a moment. There is also a bit of Flask magic with the get_db() method call. This is opening
a new connection if one doesn’t exist yet, and the g variable is a special object in Flask that is valid
for the active request only. This keeps data integrity through various request objects. Finally, the
code opens the database; then, once the app is done using the connection, it closes the connection
with the lendydata.close() function.

Web Programming with Python ❘ 241

 Note in the @app.teardown_appcontext decorated method, you are once again using the g object.
This object is really flask.g , but because you imported it directly, you can use it as simply g . This
object keeps each request separate so that if you close a database connection you aren’t closing
all the database connections, or other connections. This is part of the ease and simplicity of using
libraries. Many times libraries will include things like this g object, which makes your job much
easier so that you can simply do the tasks that you need to do (in this case, open and close database
connections per connection) without having to fuss with the minute details/intricacies of each part.

4. Add the magic:

if __name__ == '__main__':
app.run()

 Here is where the magic of all Python scripts is invoked and made. Remember earlier we spoke
about __name__ and __main__ ? What do they mean, exactly? When Python runs a script, a hidden
variable called __name__ is set. When the script is run as the fi rst Python script, this __name__
property is set to __main__ to let the interpreter know that this is the fi rst script. Any subsequent
scripts that are called after __main__ (through import statements) have their __name__ variables
set to their fi lenames, so if you import os , then the os script (which is just a .py fi le) will have
its __name__ variable set to os . This is a lot like namespacing in other languages and is basically
Python’s version of the practice.

5. Open Terminal, and in the directory where you saved your lendy.py fi le, run this command:

python lendy.py

 You should see this:

 * Running on http://127.0.0.1:5000/
 * Restarting with reloader

6. Now, go to localhost:5000 in your web browser. You should get a 404 error in your browser and
see this in your Terminal window:

 127.0.0.1 - - [18/Feb/2014 12:10:44] "GET / HTTP/1.1" 404 -

7. The server returned a 404 because you don’t have any views (or templates) yet. Let’s add those. In
the lendy.py fi le add the following lines:

@app.route('/')
@app.route('/login', methods=['GET', 'POST'])
def login():

error = None
if request.method == 'POST':
 if request.form['username'] != app.config['USERNAME']:
 error = 'Invalid username'
 elif request.form['password'] != app.config['PASSWORD']:
 error = 'Invalid password'
 else:
 session['logged_in'] = True
 flash('You were logged in')
 return redirect(url_for('show_inventory'))
return render_template('login.html', error=error)

http://127.0.0.1:5000/

242 ❘ CHAPTER 5 PYTHON ON THE WEB

 This is the real magic and power of Flask in action. Note that Flask uses decorator methods to
create your HTTP routes. This saves you a ton of time and makes the code easier to maintain.
With these specifi c routes, you’re telling Flask that if anyone hits the endpoint of /login or the
root directory (/), the login() function will be called, and you’ll evaluate the value of the request
method (we discussed this earlier in the chapter; here we allow POST and GET methods, and
handle each specifi cally). Then you check the username and password values that are passed in,
and if they are true, you alert the user that he’s been logged in and you take him to the login.html
template via the render_template() method. Basically, you want the user to hit the login page
when visiting the site.

8. Set up the other views for your other pages. In your lendy.py fi le, add the following:

@app.route('/inventory')
def show_inventory():
 get_db()
 allItems = lendydata.get_items()
 inventory = [dict(zip(['name','description'],[item[1],item[2]]))
 for item in allItems]

 return render_template('items.html', items=inventory)

 This code is similar to the preceding code. When a user hits the endpoint /inventory , the show_
inventory function will be invoked and run. This function is calling the get_db() function shown
earlier and then is executing the get_items() API function, making a query for all the items in
the table. You then construct a dictionary of the fi eld names and values used in the Web page. You
are then passing this dictionary to your template for population. Note this endpoint doesn’t have
a methods= argument being passed to the route() method. That is because the default method is
GET, so there is no need to pass that argument to the function.

9. What if you want to add items to your inventory? Let’s add that endpoint to your lendy.py fi le:

 @app.route('/add', methods=['POST'])
def add_item():
 if not session.get('logged_in'):
 abort(401)
 get_db()
 ownerID = [row[0] for row in lendydata.get_members()
 if row[1] == request.form['owner']]
 try: ownerID = ownerID[0]
 except IndexError:
 # implies no owners match name
 # should raise error/create new member
 ownerID = 1 # use default member for now.

 lendydata.insert_item(request.form['name'],
 request.form['description'],
 ownerID,
 request.form['price'],
 request.form['condition'])

 flash('New entry was successfully posted')

 return redirect(url_for('show_inventory'))

Web Programming with Python ❘ 243

This method uses the get_members() API function to fi nd the owner’s ID from the name captured
in the form. It then calls the add_item() API function to add the item to the database.

 You still can’t see anything because you haven’t actually created the templates. The templates are
what the browser will actually show to the user. This is where the HTML magic lives. However,
the real magic lies in the power of having those templates be able to pass data to your Python
middleware. Let’s see just how this happens.

 Next you’ll take a look at the templates.

 They are already provided for you in the lendy.zip fi le in the lendy/templates folder. We’ll just
briefl y discuss each one to give you a sense of how everything is interacting.

10. Open the base.html fi le in the templates directory and review its contents:

 <!doctype html>
 <title>Inventory Of Things</title>
 <link rel=stylesheet type=text/css href="{{ url_for('static',
 filename='style.css') }}">
 <div class=page>
 <h1>Lendy</h1>
 <div class=metanav>
 {% if not session.logged_in %}
 log in

 {% endif %}
 </div>
 {% for message in get_flashed_messages() %}
 <div class=flash>{{ message }}</div>
 {% endfor %}
 {% block body %}{% endblock %}
 </div>

 When dealing with templates, there is usually a base HTML fi le that will hold the base scaffolding
for your site. This usually includes navigation and other pieces of the page setup that will not
be changing throughout the app. This is how many of your favorite one‐page web apps work:
templates.

 Once you have your base template in order, you can start making your other screens. You will need
a login screen, an inventory list screen, and an inventory add screen. Let’s look at the important
parts of each so that you have a better understanding of just how each piece is working with the
others.

244 ❘ CHAPTER 5 PYTHON ON THE WEB

11. In your templates folder for your lendy app, create the login screen by creating a login.html fi le
and adding the following code:

{% extends "base.html" %}
{% block body %}
 <h2>Login</h2>

{% if error %}<p class=error>Error: {{ error }}{% endif %}
<form action="{{ url_for('login') }}" method=post>
<dl>
 <dt>Username:
 <dd><input type=text name=username>
 <dt>Password:
 <dd><input type=password name=password>
 <dd><input type=submit value=Login>
</dl>

</form>
{% endblock %}

 Note how the fi rst line indicates that this template is extended from the base.html . You declare
that fi rst so that your templating engine understands that you want to include all the pieces of
base.html on your page. Each page will have this line included so as to indicate which HTML fi le
you’ll be extending from.

 Secondly, note the {% block body %} line. This indicates that you have a body block, which
will include the HTML that you want to display. All of the HTML is wrapped in the {% block
body %} … {% endblock %} notation. These tags indicate the dynamic parts of the template. For
instance, let’s look at the following line:

 {% if error %}<p class=error>Error: {{ error }}{% endif %}

 Notice the difference between the {% if error %} tag and the {{ error }} tag. The double
curly braces ({{ … }}) indicate that you will be populating that space with data from your app; the
value inside those braces is a variable that you will be passing to the template via your functions
in the Flask code. The curly brace with a percent sign ({% …%}) indicates an action for the
template engine to act upon. So the {% blockbody %} indicates to the template engine that you
are starting the block body, and the {% if error %} tag indicates that you will be performing
some logic in the template. This notation is very common in many templating engines, so you’ll
probably see it often.

12. Reload the app in your browser. You should see a login page when you hit either http://
localhost:5000 or http://localhost:5000/login . If you get an error, double‐check your
typing and your indentation. Also, recall the fi rst Try It Out section in this chapter and use the
Chrome DevTools to inspect your requests for any clues about your error.

 Now you want to add the screens you’ll use to list your items and add an item to your inventory.
Again, we’ve provided these screens, but feel free to type them all out for your own muscle
memory. We’ll just be looking at the important parts of the templates.

13. Open items.html and note the use of {% and {{ . Can you explain what is going on based on what
you learned from the login.html template?

http://localhost:5000
http://localhost:5000
http://localhost:5000/login

Web Programming with Python ❘ 245

 {% extends "base.html" %}
{% block body %}
 {% if session.logged_in %}
 <form action="{{ url_for('add_item') }}" method=post class=add-item>
 <dl>
 <dt>Item Name:
 <dd><input type=text size=30 name=name>
 <dt>Item Description:
 <dd><textarea name=description rows=5 cols=40></textarea>
 <dt>Item Condition:
 <dd><input type=text size=30 name=condition>
 <dt>Item Price:
 <dd><input type=text size=30 name=price>
 <dt>Owner Name:
 <dd><input type=text size=30 name=owner> <dd><input type=submit
 value=Submit>
 </dl>
 </form>
 {% endif %}
 <ul class=entries>
 {% for item in items %}
 <li class=”item_list”>
 <h2>{{ item.name }}</h2>{{ item.description|safe }}

 {% else %}
 There doesn't seem to be anything here. Add some items, maybe?
 {% endfor %}

{% endblock %}

 Here you are passing a form action and method. If you’re logged in, you’re setting up the form to
take the new item and create a POST method that will then be passed to the 'add_item' URL,
which is a mapping to the add_item function in the lendy.py fi le.

 Another interesting part in this template is that it contains two functionalities in this one template.
One is the adding of items, and the other is the listing. If you are logged in, you can add items and
see the item listing. If you are not logged in, you can only see the list of items. You have many ways
to display this information. You could make separate screens for listing items and adding items.
You can hide divs using CSS and display the adding of items only if the user clicks a button. Feel
free to try a few options for this functionality to fi nd one you like best. We’ll stick with a quick and
dirty way for now.

 The next step is adding in the CSS. This step is very simple. The CSS has been provided for you in
the static folder, named style.css . It is very common for style.css to be the base CSS fi le in
a project. Our CSS is very simple; however, the power of CSS is great, and its functionality can be
amazing. Feel free to experiment with other ways to implement your app using different CSS values.

14. Open the style.css fi le from the static folder and take a look:

 body{
 font-family: sans-serif;
 background: #eee;
 }

246 ❘ CHAPTER 5 PYTHON ON THE WEB

 a, h1, h2{
 color: #377ba8;
 }

 h1, h2{
 font-family: 'Georgia', serif;
 margin: 0;
 }

 h1{
 border-bottom: 2px solid #eee;
 }

 h2{
 font-size: 1.2em;
 }

 .page{
 margin: 2em auto;
 width: 35em;
 border: 5px solid #ccc;
 padding: 0.8em;
 }

 .inventory{
 list-style: none;
 margin: 0;
 padding: 0;
 }

 .inventory li{
 margin: 0.8em 1.2em;
 }

 .inventory li h2{
 margin-left: -1em;
 }

 .add-item{
 font-size: 0.9em;
 border-bottom: 1px solid #ccc;
 }

 .add-item dl{
 font-weight: bold;
 }

 .metanav{
 text-align: right;
 font-size: 0.8em;
 padding: 0.3em;
 margin-bottom: 1em;
 background: #fafafa;
 }

More on Python and the Web ❘ 247

 .flash{
 background: #cee5F5;
 padding: 0.5em;
 border: 1px solid #aacbe2;
 }

 .error{
 background: #f0d6d6;
 padding: 0.5em;
 }

 Note that you are defi ning some base styles for your basic elements (body, h1, h2, and so on); then
you defi ne some classes (those lines beginning with a period; the period denotes a class name in
CSS, and ID names are denoted with the pound, or sharp sign, #).

 The most important part to note is the .flash class. This is a Flask feature. Flask has 'flash' ,
which will fl ash error messages or other system feedback to the user by displaying the text on the
screen. You can go back and look at the previous code and see where the fl ash function was called
and how you’re using it.

 That’s it! You’re done! You’ve created a small Flask app to help you keep track of your inventory
of things!

15. Start your Flask app like you did before (when you got the 404 error) and see if you now have a
working web app.

 You may encounter some errors, so check over your code for spelling and syntax mistakes (most
especially, in Python, indention errors). If you still can’t fi gure out what may be causing your error, fi re
up your Chrome DevTools and start inspecting the requests that you’re sending and what the server
is returning upon the request. This may help you. Remember to check out the Network tab. You may
need to refresh the page to populate the Network tab with the requests that have been made.

 How It Works

 You’ve just set up a small web app using the Flask framework to do the heavy HTTP lifting. You set
up an app that creates a database and allows you to connect to the database. You created tables in said
database to store your data. You then set up your views, which tell the app how and when to return
data, and what data to return. You set up endpoints (the /<foo> part of your URL) and mapped those
to functions to help you pass data back and forth from the templates to the database. You then created
templates to display all the information, and using Jinja as your templating engine, you set things up so
that the templates can pass data back and forth with the lendy.py fi le. You then styled things to make
them pretty and easier on your user (us!).

MORE ON PYTHON AND THE WEB

 Creating web apps with Python is incredibly easy. You can do all the heavy lifting yourself, or you
can try one of the many open source frameworks out there to help you with it, or help with just a
few parts. You can build websites in two main ways with Python: static site generators and full‐on

248 ❘ CHAPTER 5 PYTHON ON THE WEB

web frameworks. This section briefl y describes both methods and includes a list of some of the more
popular generators and frameworks.

 Static Site Generators
 Static site generators are usually used for things like blogs and other documentation—where you
may make a new page at a time and want to serve out that page but the content on the page won’t
be changing once it’s published. Some of the more popular static site generators include, but are not
limited to:

➤ Pelican: Probably the most popular and well‐known static site generator in Python. There is
also lots of community support, including plug‐ins and themes for Pelican.

➤ Hyde: A little larger than Pelican, with a bit more of a learning curve, but quite robust.

➤ Nikola: Fully featured, lots of community involvement and support. Also supports custom-
ization, including themes and plug‐ins.

➤ Mynt: Used by www.pyladies.com and a few other sites. Mynt lauds itself as having the fea-
tures of a content management system (CMS) without the rigid implementation.

 Web Frameworks
 Web frameworks are all‐in‐one systems that give you the power to create APIs, web apps, and even a
comprehensive CMS. Here are a few we recommend:

➤ Flask: Flask is quite versatile, from creating simple APIs that others will access to creating full
web apps.

➤ Django: Django is quite popular and very robust. It even includes an admin interface that
allows users to put entries in the database with an easy‐to‐navigate user interface that is
highly customizable.

➤ Bottle: Bottle is smaller than Flask and simply gives you just what you need to create a website,
with very little overhead and limited functionality. It’s perfect for smaller websites and pages.

➤ Pyramid: Pyramid is similar to Flask in that it can be used for small projects, but you can also
use it for larger projects, and it can be scaled up as needed.

 Of course, many more web frameworks are available. We recommend fi nding one that suits you and
your project, or just play around with a few to fi nd one you feel more comfortable with.

 USING PYTHON ACROSS THE WIRE

 You can do many different tasks across a network connection. Whether that connection is the public
Internet, a local area network, or a private network, you can process data, serve web pages, and
even run Python scripts remotely. This section introduces a few of the simple, different ways you
can run Python across a wire. None of the examples are production‐ready code, but this should be a
good way to get you familiar with the different powers Python can provide.

http://www.pyladies.com

Using Python Across the Wire ❘ 249

 XML‐RPC
 XML‐Remote Procedure Call (XML‐RPC) is an older technology that is still used in a few legacy
systems. This is how data was once processed across the Internet, using XML. We now use JSON to
pass data back and forth; however, some systems still use XML and require remote procedural calls.
Because of this Python has a built‐in XML‐RPC module. Let’s make one and watch it in action.

 In this Try It Out, you set up, in just a few lines of code, an XML‐RPC server that will run locally
in one Terminal and serve up a simple Python script, which you create. You then open another
Terminal window and run the code remotely.

 TRY IT OUT Running Python Code Remotely

 This Try It Out demonstrates how you can serve fi les in your local directory, via an XMLRPC server.

1. Open your Python interpreter and import the xmlrpc.server object from the
SimpleXMLRPCServer module:

 Python 3.3.3 (default, Feb 14 2014, 12:35:03)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> from xmlrpc.server import SimpleXMLRPCServer

2. Similar to the HTTP code earlier in the chapter, you have to create a server object. You also want
to create some sort of system feedback that will tell you that your code is working:

 >>> server = SimpleXMLRPCServer(("localhost", 8080))

3. Set up your server with the code you will be running, in this case a simple function that will square
a number that is passed in:

 >>> def square(n):
... return n * n
... print("We've got a connection and are listening on port 8080...huzzah!")

4. Next you’re going to register your function, so that it can be used by the client code you’ll be
creating in just a moment:

 >>> server.register_function(square, "square")

5. Finally, you want to start the server:

 >>> server.serve_forever()

 You should now see your print statement print out to let you know that you’re serving on port
8080.

 Do not close this Terminal or stop the process; you need it to continue running to complete the
next part of the example.

6. Open a new Terminal window, start a Python interpreter, and import the xmlrpc.client library:

 Python 3.3.3 (default, Feb 14 2014, 12:35:03)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import xmlrpc.client

250 ❘ CHAPTER 5 PYTHON ON THE WEB

 If you happened to read any of the documentation on the http.server library you probably
discovered that there is an http.client library as well, which will allow you to access URLs via a
client. The xmlrpc library is set up in much the same way.

7. Now you want to set up a server proxy object like so:

 >>> proxy = xmlrpc.client.ServerProxy("http://localhost:8080")

8. Finally, you want to call your remote procedure (or the Python function that is sitting on the server
in the other Terminal window):

 >>> print("the square root of 3 is %s" % proxy.square(3))

 You should see the string print out “the square root of 3 is 9.” Now, go look in your server
Terminal window, and you should see that the server received a request and returned with a status
of 200, like so:

 127.0.0.1 - - [19/Feb/2014 23:14:41] "POST /RPC2 HTTP/1.1" 200 -

9. To stop the server, simply go into the Terminal window where the server is running and hit Ctrl+C
to stop the server.

 This should stop the server and open that port back up for use.

 How It Works

 We just showed you how to set up an xmlrpc server and an xmlrpc client and have them talk to one
another. This is the power of Python in action. Both of these modules are built into Python and are
available for use out of the box.

 Many people ask just what you could use such functionality for in the real world. XML processing was
once the way we processed data across the wire. Some organizations still use this method. However, the
power that we wanted to illustrate was that you can even set up Python to run remotely. So, if you had
a large data fi le and wanted to process it remotely, you could set up code on a remote server and then
call that code from another machine. Next, you’ll look at some other examples that can also accomplish
these tasks.

 Socket Servers
 If you’ve ever heard anyone talk about “Websockets” or “streaming data,” they’re usually talking about
TCP and socket servers. These servers utilize TCP, or Transmission Control Protocol . You may have l
heard of TCP/IP, which this is the same thing. Python, of course, has some built‐in libraries that can
enable you to create TCP sockets to send and receive data between two points using the Internet Protocol.

 In this Try It Out you get a bit more involved with some Python, and do some things in a more
“pythonic” way. You’re going to again set up a server and a client, so you’ll need two Terminal
windows running to complete this task. However, you’re also going to create a class to handle your
TCP requests to illustrate the use of classes in Python.

http://localhost:8080

Using Python Across the Wire ❘ 251

 TRY IT OUT Running Python Code Remotely via TCP

 This Try It Out demonstrates how to set up a socket server via Python for using TCP to send/receive
data directly from one machine to another over the Internet.

1. Create a new fi le, server.py , and import the SocketServer module:

#server.py

import socketserver

2. Set up your class for the request handler. This class is going to be instantiated once per connection,
and each time you will want the handle() method to be overridden so that you can communicate
with the client:

class TCPHandler(socketserver.BaseRequestHandler):
def handle(self):
self.data = self.request.recv(1024).strip()
print("{} wrote:".format(self.client_address[0]))
print(self.data)
just send back the same data, but upper‐cased
self.request.sendall(self.data.upper())

self is the instance of the TCPHandler class. This is the TCP socket that is connected to the client
(this will make more sense when you get to the client code). Here you are taking the request that
is being sent over from the client, stripping it, and saving it to the data property on the instance
(self.data). You then are calling some illustrative print statements, so that you can see things as
they happen. Finally, you are sending the data back to the client, but transforming the string into
all uppercase characters, so that you can see a change has happened.

3. Now you do something familiar—you check to see if you’re running as main, and if so, you want
to set the HOST and PORT variables to let the code know what host and port you want to listen to
for connections:

if __name__ == "__main__":
HOST, PORT = "localhost", 8080

4. Finally, you do something that you’ve done each time you’ve set up a new server—create a server
object that will allow your client to connect—and then you serve it forever:

server = SocketServer.TCPServer((HOST, PORT), TCPHandler)
server.serve_forever()

 Now you need to create the client code.

5. Create a new fi le, client.py , and import the proper libraries:

#client.py

import socket
import sys

6. Now you need to defi ne the host and port you’ll be connecting to—remember, the server.py code
is listening on this host and port for incoming connections:g

HOST, PORT = "localhost", 8080

252 ❘ CHAPTER 5 PYTHON ON THE WEB

7. Next, create some data that you can send over to the server. You’ll use sys.argv to parse the
arguments you’ll be passing in; this will be your data:

data = " ".join(sys.argv[1:])

8. Now you need to set up your socket. The socket.SOCK_STREAM is simply the type of socket (TCP)
that you’ll be connecting through:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

9. Now use a try:finally to try and connect:

try:
sock.connect((HOST, PORT))
 sock.sendall(bytes(data + "\n", "utf‐8"))

received = str(sock.recv(1024), "utf‐8")

finally:
sock.close()

 What is happening here is that you are trying to connect to the server and send your data. You are
then storing the received data into the “received” variable. Finally, no matter what happens (success
or failure of gaining a connection and sending/receiving data), you are closing your socket.

10. Finally, you want to print out the results of your connection:

print("Sent: {}".format(data))
print("Received: {}".format(received))

11. Run the code and see what happens. You will, again, need two Terminal windows. In the fi rst
Terminal window, you want to run your Python code:

$ python server.py

12. In the other Terminal window, run the client code and pass in a string as an argument:

$ python client.py Hello from Python Projects' TCP server!

13. Verify that the following displays in the server window:

$ python server.py
127.0.0.1 wrote:
b'Hello from Python Projects TCP Server!'

14. Verify that the following displays in the client window:

 $ python3 client.py Hello from Python Projects TCP Server!
 Sent: Hello from Python Projects TCP Server!
 Received: HELLO FROM PYTHON PROJECTS TCP SERVER!

 The server is very excited that you were able to connect!

 How It Works

 You successfully created a TCP socket and connected to it via a client script, and then had each script
send and receive data back and forth. By setting up a server and telling it what host and port to listen

More Networking Fun in Python ❘ 253

to, you were able to create a client that would send data to that host at that port, and the two pieces
were able to rendezvous and send/receive data successfully.

 We’ve only shown you the very basics of what Python sockets can do. Our job here is to familiarize
you with all the tools that are available in the Python ecosphere. There may be times when a direct
data connection is needed, for updating data feeds in real time—this is where the power of sockets
and streaming data comes in very handy. Luckily for you, Python makes this fairly easy. We, of
course, recommend that if you’re going to be creating network connections on a lower level, you
understand the security risks and cautions that you will need to be aware of before undertaking
such a task.

 MORE NETWORKING FUN IN PYTHON

 You may be interested in delving a bit deeper into networking with Python. If so, here is a short list
of some of the more popular networking libraries available for download:

➤ Twisted (http://twistedmatrix.com): Twisted is very large, very powerful, and full of
networking goodness. However, as of this writing it is not fully functional with Python 3.
If you’re interested in doing some event‐driven networking, Twisted is for you. Support for
SMTP, POP3, IMAP, SSHv2, and DNS is included. So if you’ve always wanted to make your
own e‐mail server, you and Twisted may be a match made in heaven. If you’re interested in
setting up your own SSL server—get Twisted!

➤ Tornado (http://www.tornadoweb.org): Tornado is lauded as a web framework and
asynchronous networking library. Mainly made for larger applications that may need long‐
lived connections, Tornado uses non‐blocking I/O and is perfect for Websockets and long
polling. We put Tornado in the “networking” section rather than the “web frameworks”
section because it’s more focused on the networking side of web frameworks than on creating
templates and making things pretty.

➤ gevent (http://www.gevent.org): According to gevent’s own website, gevent is “a
coroutine‐based Python networking library….that provides a high‐level synchronous API…”
When you need to do some crazy coroutines across your network, you may want to take a
gander at gevent. Currently, gevent is only for Python 2.

 You should now have a good idea of the power and ease with which Python can be used to send
and receive data across the wire. If you’re interested in any sort of data passing using Python, this
chapter should have given you a nice jumping-off point to go explore more and hopefully create
interesting things with your discoveries.

 Python’s community is full of helpful people, so if you happen to fi nd a framework or library that
you particularly like, join the mailing lists, the IRC channels, and any other conversations you can
fi nd. Contribute to those projects, and help the communities grow larger and stronger. Participation
in technologies that you fi nd interesting and/or helpful not only helps the projects and organization
that is offering the technology, but it helps all developers who may need to use or want to learn that
technology.

http://twistedmatrix.com
http://www.tornadoweb.org
http://www.gevent.org

254 ❘ CHAPTER 5 PYTHON ON THE WEB

 SUMMARY

 You started off this chapter by learning about how Python works on the web. The front end of a
web app consists of a browser that handles the HTML, CSS, and JavaScript. The middle layer,
in this case, is Python. The back end houses your database (SQLite) and web server. You also
learned about APIs (application programming interfaces), which is the approved way for others to
interact with an outside application, without actually having access to the database itself. Next,
you practiced using a third‐party API and the Requests library. Along with that, you explored the
technologies Requests employs under the hood. Then, using the Flask web framework, you took the
lending library, gave it a web interface, and made it interactive via a browser. Finally, you learned a
few of the various easy ways you can run Python across a wire.

EXERCISES

1. Consider our code from earlier in this chapter:

 >>>for result in results['results']:
 ... id = result['id']
 ... print(id)
 ... print (result['id'])
 ... details = requests.get(market + id).json()
 ... print (details)
 ... print (details['marketdetails'])
 ... print (details['marketdetails']['GoogleLink'])

 Using what you know about Python, can you fi gure out a way to create a list comprehension
that will do the same thing as the preceding code? Remember that list comprehensions are
constructed like this:

 [expression for item in list if conditional]

2. Using what you know so far about how to use fi les in Python, can you save the output of your
call to the USDA's API to a fi le on your machine, to parse later? (Is saving it as a .txt fi le fi ne?)

3. Can you fi nd the docs for Flask that would help us to break our app into smaller, modularized
fi les with our endpoints/views in a separate fi le, rather than having one big Python fi le with
everything in it? (Hint: It is one concept/feature that Flask offers.)

4. What other HTTP methods can you fi nd? Can you fi nd ways to use them in a Flask app?

5. By reading the Requests docs, can you fi nd the method call needed to output the HTML of a
website by passing the URL to a requests method?

Summary ❘ 255

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Where Python fi ts
on the web

Python is the language that the server uses to manipulate the actual data
that is being passed back and forth between machines on the web.

HTTP and HTTP
methods

The basic “language” of how machines communicate over the web. GET
and POST methods and their purposes.

APIs Application programming interface, or how to interface with other servers
in order to retrieve or manipulate data. You can produce or consume
APIs.

How to create a
Flask app

The Flask framework is very powerful for creating web apps using Python
as the server‐side code. This also illustrated how to produce an API.

Templates in Flask Templates are very common in web apps. They are ways to introduce
logic and create dynamic content on web pages.

XMLRPC Python has built‐in functionality to create XMLRPC servers to pass data
over the wire. This is really helpful only to people who will be supporting
older/legacy systems, which still use this method of data passing.

Socket servers Python has a very handy built‐in library named “socketserver,” which
will allow you to create sockets to connect to via other scripts. This is
incredibly powerful for processing data over the wire.

SimpleHTTPServer This is a way to make a simple HTTP server to test fi les locally or to
integrate into making a larger framework to use as a debug mode.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Testing your Python code

➤ Debugging your Python code

➤ Handling errors in your Python code

➤ Structuring and releasing your Python code

➤ Tuning the performance of your Python code

 WROX.COM DOWNLOADS FOR THIS CHAPTER

 You can fi nd the wrox.com downloads for this chapter at www.wrox.com/go/pythonprojects
on the Download Code tab. The code is in the Chapter 6 download, called Chapter 6 .zip ,
and individually named according to the names throughout the chapter.

 So far you’ve looked at many ways to use Python. You’ve made local scripts to handle small
tasks, you’ve handled medium‐sized tasks locally, and you’ve even made a small web app using
Flask. But what if you fi nd yourself in the midst of a larger project? Python, as you have seen
by now, is a very powerful language. It’s also very open, meaning you, the developer, have
access to all aspects of the language. This openness, however, makes testing your Python code
more important than ever. Every object in Python is a fi rst‐class object, so you can change and
manipulate any object available to you. Because you can change and manipulate objects, you
must make sure to test and verify the logic of our code.

 Python is not a “typed” language in the same way that C and Java are explicitly typed. You
can pass objects around in Python and the interpreter will try to manipulate them to the best
of its ability. If it cannot perform an operation on an object or data that is available, however,
it raises an exception, which causes your program to crash. So, how can you prevent this?
How can you write code, share that code, and guarantee that others can use it and that the
code will function as expected? Testing.

 6

http://www.wrox.com/go/pythonprojects

258 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 TESTING WITH THE DOCTEST MODULE

 The simplest form of testing in Python is the doctest module. This module is made for testing the simpler
parts of your code, to verify that it will function as expected, as written in your document strings (triple
quotes '''...''' or """...""" , single or double quotes will both work). Doctest tests are written like this:

 '''
 this function should take in a number and return its squared value
 >>> sq(3)
 9
 '''

 def sq(n):
 return n*n

WARNING With doctest, your code indentation matters. The indentation
of your fi rst line dictates further indentations, so you are committed to that
pattern. Your doctest strings will be fed into the interpreter exactly as you have
written them—if the interpreter is expecting a certain indentation, you need to
make sure your doctest strings have that indentation pattern.

 Also, keep in mind that as Python changes and evolves, indentation patterns
may change, so your doctest strings may fail in the future. This is one reason
why many people do not rely heavily on doctest for signifi cant testing.

 The usual way of writing doctest tests is to use the interpreter, write the code, and then run it in the
interpreter. Then you copy and paste the interpreter text into the doctest string, as follows:

 Python 3.3.3 (default, Feb 14 2014, 12:35:03)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> def sq(n):
 ... return n*n
 ...
 >>> sq(3)
 9
 >>>

 So you would simply copy the following lines, and put them in your doctest strings:

 >>> sq(3)
 9

 Doctest is not suitable for testing of large, complicated methods or functions. But it is really good at
“contract programming.” By using doctest strings and saying “this function, when passed a 3 as an
argument, will return a 9” and then calling the function, you are setting up a contract: if you pass
a certain piece of data, the function will behave as you expect it to. However, you cannot test every
possible outcome, so doctest will hit its limitations fairly quickly with larger projects.

 In the following example you create and then run a small Python script with some doctest strings to
test your code.

Testing with the Doctest Module ❘ 259

 TRY IT OUT Creating and Executing Simple Doctest Tests

 This Try It Out demonstrates how you can test a simple fi le that has a few functions using doctest,
which houses testing strings in documentation strings, using triple quotes (''' ... ''').

1. Create a directory for Chapter 6 in your project directory, and then using your editor of choice,
create a Python fi lenamed simple_doctest.py . Include the following function and test:

def simple_math(x, y):
'''

 >>> simple_math(1, 2)
 3

>>> simple_math('k', 'v')
 'kv'

'''

return x + y

 You must have a space after the interpreter prompt (t >>>) for the tests to run. Your fi rst line with
the interpreter prompt (>>> simple_math(1,2)') would not run properly if it were formatted as
>>>simple_math(1,2) . The space is mandatory.

2. Open a new Terminal window and from your Chapter 6 directory and run the following
command:

 python -m doctest -v simple_doctest.py

 Here you are calling Python, but by passing it the ‐m fl ag, you are telling Python you want to
execute the fi le using a module—in this case the doctest module. The ‐v fl ag means that you want
“verbose” output. If you take off the ‐v fl ag and rerun the code, you will see that it simply fi nishes
silently, meaning the code runs, but then you are given another Terminal prompt and nothing
further from the Python interpreter. Finally, the last argument is, of course, the fi le you are testing.
With the ‐v fl ag, you should see the following output:

 ~chapter6$ python -m doctest -v simple_doctest.py
 Trying:
 simple_math(1, 2)
 Expecting:
 3
 ok
 Trying:
 simple_math('k', 'v')
 Expecting:
 'kv'
 ok
 1 items had no tests:
 simple_doctest
 1 items passed all tests:
 2 tests in simple_doctest.simple_math
 2 tests in 2 items.
 2 passed and 0 failed.
 Test passed.

 Note that you must have a space after the interpreter prompt (>>>) for the tests to run.

260 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

3. Next, write these tests as if you wanted fully documented contract programming. In your editor,
open your simple_doctest.py fi le and add these lines:

def simple_math(x, y):
'''
This function will return x + y
we can use it on numbers. Passing 1 and 2:

 >>> simple_math(1, 2)
 3

We should get 3 as a return value

It will also work on strings. Passing the strings 'k' and 'v':

 >>> simple_math('k', 'v')
 'kv'

We should get 'kv'
'''
return x + y

 Note that you must have a newline between your expected result and any documentation string
that you are putting into the doctest string. So, when you have your expected 3 after your simple_
math(1,2) call, you must have that newline in place before you specify the behavior you want.
Otherwise, the interpreter will try to evaluate that line as expected output, therefore rendering that
test a failure.

4. There are times where you will need to evaluate a value that cannot be consistently predicted (like
an address in memory). Add the following to your simple_doctest.py fi le (after your fi rst test is
fi ne):

 class SimpleClass():
 pass

 def class_testing_method_ahoy(obj):
 ''' Should return a list containing the object

 >>> SimpleClass(class_testing_method_ahoy())
 [<doctest_class_testing_method_ahoy.SimpleClass object at /
 0x10382a390]
 '''

 return [obj]

 Now run the tests and observe the output. You should see that your tests fail because the code is
evaluating a location in memory that we cannot reliably predict each time. Note the memory addresses
in your output.

 chapter6 $ python -m doctest -v simple_doctest.py
 Trying:
 class_testing_method_ahoy(SimpleClass())
 Expecting:
 [<doctest_class_testing_method_ahoy.SimpleClass object at /
 0x10382a390>]
 **

Testing with the Doctest Module ❘ 261

 File "./simple_doctest.py", line 27, in /
 simple_doctest.class_testing_method_ahoy
 Failed example:
 class_testing_method_ahoy(SimpleClass())
 Expected:
 [<simple_doctest.SimpleClass object at 0x10382a390>]
 Got:
 [<simple_doctest.SimpleClass object at 0x10af0fe50>]
 Trying:
 simple_math(1, 2)
 Expecting:
 3
 ok
 Trying:
 simple_math('k', 'v')
 Expecting:
 'kv'
 ok
 2 items had no tests:
 simple_doctest
 simple_doctest.SimpleClass
 1 items passed all tests:
 2 tests in simple_doctest.simple_math
 **
 1 items had failures:
 1 of 1 in simple_doctest.class_testing_method_ahoy
 3 tests in 4 items.
 2 passed and 1 failed.
 Test Failed 1 failures.

 Doctest requires the actual output to match the expected output exactly. When we specify a memory
address to Doctest as the expected output, the actual memory address received from the test must
precisely match the declared expected value. When we:

 [<simple_doctest.SimpleClass object at 0x10382a390>]

 Doctest wants an object at the memory location 0x10382a90 , but you’re going to be creating a new
object in a new memory location. You don’t really care about the memory location, only that the object
is created. Doctest provides a way to work around this:

 >>> class_testing_method_ahoy(SimpleClass()) /
 # doctest: +ELLIPSIS
 [<simple_doctest.SimpleClass object at 0x...>]

 The ELLIPSIS option lets doctest know that what follows can be any value. This will return a
successful test:

 Trying:
 class_testing_method_ahoy(SimpleClass()) # doctest: +ELLIPSIS
 Expecting:
 [<simple_doctest.SimpleClass object at 0x...>]
 ok

262 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 Trying:
 simple_math(1, 2)
 Expecting:
 3
 ok
 Trying:
 simple_math('k', 'v')
 Expecting:
 'kv'
 ok
 2 items had no tests:
 simple_doctest
 simple_doctest.SimpleClass
 2 items passed all tests:
 1 tests in simple_doctest.class_testing_method_ahoy
 2 tests in simple_doctest.simple_math
 3 tests in 4 items.
 3 passed and 0 failed.
 Test passed.

 The ELLIPSIS constant is also useful if you are checking that a list is returned, such as when using
the range() method. Say you want to make sure you get back the numbers 1–4,590 when you call
range(4589) . Rather than print the entire list of 4,590 numbers, you can use the ELLIPSIS constant
and simply have your result be [0, 1, ... , 4588, 4589] . Doctest has many of these constants for
different situations. Refer to the full doctest documentation for a list of all of them.

 How It Works

 The doctest module is built into the Python language. It takes in strings that are usually copied directly
from the interpreter and then evaluates those strings when the fi le is called. It does this by using the
module (calling Python on the command line with the ‐m fl ag, followed by the module 'doctest' and
then the fi lename).

 Although doctest is good for evaluating whether your documentation strings are true and the code
behaves as expected, it is not meant for thorough, robust testing of more complicated codebases.
There are many other facets to the doctest API. You should check out the documentation to
familiarize yourself with the full functionality of the module.

 TESTING WITH THE UNITTEST MODULE

 What if you need signifi cant testing and you want to verify that your codebase is operating as
expected? This is a job for the unittest module. This module is more robust than the doctest module,
and will test your code thoroughly. Unittest is like the baseline testing module on which most testing
libraries are based. It is also an excellent introduction to test‐driven development (TDD) in Python.

 The term unit test is not unique to Python. If you’re familiar with other languages andt
programming, you have no doubt heard of unit testing. Unit testing is simply testing your code
in units. So, if you have fi ve functions in your code, you want to have a minimum of fi ve units in

Testing with the Unittest Module ❘ 263

your testing harness for each unit of functionality in your codebase. Unit tests also consist of a test
fi le, which contains all of your tests, written in the same structure or format as any other Python
fi le. The only difference is that each test begins with test , and each test harness is a class from the t
Unittest.Test object. For example, if you have a function named login , and you want to test that
function, create a test named test _ login , which would then call your login function and run
your tests against the output of that function.

 Don’t forget that when you are writing unittest classes, you need to import the code module you’ll
be testing into your test code. If you were testing users.py , you would need to y import users into
your test.py fi le, so that you can test the functions in the users module with your unittests.

 You create unittest tests by creating classes that are subclasses to the TestCase class, as follows:

 import unittest

 class PythonProjectsTest(unittest.TestCase):
 eturn

 You want to put statements within your class that will be evaluated when the test is run and return
an assertion value of True or False :

 import unittest

 class PythonProjectsTest(unittest.TestCase):
 def test_to_fail(self):
 self.failIf(False)

 if __name__ == '__main__':
 unittest.main()

 In the preceding example, you use the assertion method failIf() to evaluate the value in the
parentheses. If the value is true, you will receive a failure message when you run the test. In this
case, you’re passing in False , which will, of course, evaluate to false. Therefore, this test will return
a failure.

 If you run this test you should see the following output:

 ==
 FAIL: test_to_fail (__main__.PythonProjectsTest)
 --
 Traceback (most recent call last):
 File "<stdin>", line 3, in test_to_fail
 AssertionError: True is not false

 --
 Ran 1 test in 0.000s

 FAILED (failures=1)

 If you change self.failIf(True) to self.failIf(False) , you should see your output change to:

 --
 Ran 1 test in 0.000s
 OK

264 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 Note that unittest doesn’t evaluate whether a test is actually passing; it is simply evaluates whether an
exception is thrown. Therefore, if an exception is not thrown, the test is considered OK. This could
mean that your precise calculation, while returning a not‐so precise number, shows as passing, or OK,
not because the result is correct—which it isn’t—but simply because the test is not raising an exception.

 Following are the three possible outcomes of unittest if it doesn’t actually have passing tests:

➤ OK: The test is OK; no exception raised.

➤ Fail: An AssertionError was raised (the test has failed).

➤ Error: An exception was raised that is not an AssertionError .

 The best way to understand unit testing and the unittest module is to just do some testing.

 TRY IT OUT Building and Running Unit Tests Using the unittest Module

 In this Try It Out, you will write functions and test them using the unittest module, to understand the
architecture of the unittest module.

1. In your Chapter 6 directory, create the fi le ch6_example.py . This fi le contains some fairly useless
functions, but they are easy to test:

#ch6_example.py

def first(chars):
chars.sort()
return chars[0]

 def last(chars):
 chars.sort()
 return chars[-1]

2. Create the test fi le and call it unittest_example.py . Import unittest and then, from your
ch6_example.py fi le, import your two functions. Importing these functions directly means you
won’t have to call ch6_example.first() or ch6_example.last() when testing them, and you
can simply call first() and last() . Remember, this is called aliasing our functions into our code g
through importing.

 #unittest_example.py

 import unittest
 from ch6_example import first, last

3. Create two lists, one with numbers and one with strings. You’ll be using these lists to test your two
different sort functions. Then, set up the testing class, inheriting from the unittest.TestCase class:

 #unittest_example.py

 import unittest
 from ch6_example import first, last

 list_nums = [7,9,5]
 list_chars = ['m', 'd', 'Z', 'l']import unittest

 class TestPPMath(unittest.TestCase):

Testing with the Unittest Module ❘ 265

4. Next, test a few assertions to see how they behave. Start with the most common: assertEqual .
This test should pass, because when you sort your list of numbers, the fi rst element in the list is 5 ,
so this should return true:

 import unittest
 from ch6_example import first, last

 list_nums = [7,9,5]
 list_chars = ['m', 'd', 'Z', 'l']

 class TestPPMath(unittest.TestCase):

 def test_first(self):
 self.assertEqual(first(list_nums), 5)

 Remember: All testing functions that you want to run must begin with test .

5. Similar to AssertEqual , which checks equality, there is also assertTrue , which checks that the
fi rst value is the second value, and therefore true:

 import unittest
 from ch6_example import first, last

 list_nums = [7,9,5]
 list_chars = ['m', 'd', 'Z', 'l']

 class TestPPMath(unittest.TestCase):

 def test_first(self):
 self.assertEqual(first(list_nums), 5)

 def test_last(self):
 self.assertTrue(last(list_chars), 'm')

6. Unittest is only looking for exceptions, like the assertionError exception. You can use the
failUnless() function to tell it to fail that test unless it is returning true:

 import unittest
 from ch6_example import first, last

 list_nums = [7,9,5]
 list_chars = ['m', 'd', 'Z', 'l']

 class TestPPMath(unittest.TestCase):

 def test_first(self):
 self.assertEqual(first(list_nums), 5)

 def test_last(self):
 self.assertTrue(last(list_chars), 'm')

 def testFirstAgain(self):
 self.failUnless(first(list_chars), 'Z')

266 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

7. If you want the test to fail if it’s true, you use the failIf() function, which fails if the inputs
evaluate to true. So, this test should fail when you run it:

 import unittest
 from ch6_example import first, last

 list_nums = [7,9,5]
 list_chars = ['m', 'd', 'Z', 'l']

 class TestPPMath(unittest.TestCase):

 def test_first(self):
 self.assertEqual(first(list_nums), 5)

 def test_last(self):
 self.assertTrue(last(list_chars), 'm')

 def testFirstAgain(self):
 self.failUnless(first(list_chars), 'Z')

 def testLastAgain(self):
 self.failIf(last(list_nums), 9)

8. Finally, insert your __main__ check and run the unittest.main() method to actually test your
new testing class:

 import unittest
 from ch6_example import first, last

 list_nums = [7,9,5]
 list_chars = ['m', 'd', 'Z', 'l']

 class TestPPMath(unittest.TestCase):

 def test_first(self):
 self.assertEqual(first(list_nums), 5)

 def test_last(self):
 self.assertTrue(last(list_chars), 'm')

 def testFirstAgain(self):
 self.failUnless(first(list_chars), 'Z')

 def testLastAgain(self):
 self.failIf(last(list_nums), 9)

 if __name__ == '__main__':
 unittest.main()

 How It Works

 When you write tests, you’re simply creating static data to pass into functions you’ve already defi ned.
You want to pass a known value to the function and then express, in your tests, the value you expect to
be returned. If that value isn’t returned, the test should fail. If the value is returned, the test passes and
the code moves on to the next testing function.

Debugging Your Python Code ❘ 267

 Some readers may quickly realize that testing with static data isn’t foolproof. What if the data that
is passed in isn’t a type that you’ve tested? This is why writing good tests is important. One function
in your program may have multiple tests, or one test could verify multiple situations.

 TEST‐DRIVEN DEVELOPMENT IN PYTHON

 A term that is becoming more and more popular in the Python community is test‐driven
development (TDD). What exactly does that mean? Although TDD is a very important topic when itt
comes to Python development, it is also a very robust topic. Therefore, this section gives only a very
brief introduction of TDD so that you can familiarize yourself with the term and its basic defi nition.

 TDD simply means writing your tests fi rst. Most developers groan when they hear the word
“testing.” They think it means longer development time and more effort on their part, and less of the
fun stuff like writing the actual code that will make their project run. However, testing can be just
as fun as the other stuff. And although it does require the developer to write more lines of code, it
leads to better quality code and more maintainability later on in the project. Your future self and co‐
collaborators will thank you for taking the time to write tests fi rst and develop against those tests.

 So, how exactly does TDD work? Write tests! It’s really that simple. There is, of course, an art form
to writing good tests, and it’s important that you take the time to study up and become familiar
with proper TDD practices. Here are the basics:

1. Write tests fi rst.

2. All tests should fail at fi rst.

3. Write code.

4. Test code against tests.

5. Rewrite code.

6. Retest code against tests.

7. Repeat until all tests are passing.

 This is the gist of TDD. You can probably see why doctest may not be the best answer for all testing
situations. Once you have to test and retest, and you begin testing more complex ideas, doctest will
hit its limitations. As stated, there is an art to writing effective tests, however, and that is where the
beauty of TDD comes in.

 DEBUGGING YOUR PYTHON CODE

 Most developers will likely tell you that they hate debugging. It’s tedious, persnickety, and can
become rather boring or infuriating fairly quickly. It doesn’t have to be this way. Taking a new look
at debugging and testing can make even the most cynical developer a little less irritated.

 When you run into a bug with your code, rather than think about how annoying it is (don’t worry,
it’s the natural reaction), think about how this is actually an opportunity to learn. Something is
broken somewhere, some stone has gone unturned. This is your chance to fi nd that stone, turn it

268 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

over, and see what there is to see! You’re well on your way to becoming a seasoned programmer
with every bug you squash.

 Python makes debugging a little less of a hassle with the Python debugger module, or the pdb. If
you read Chapter 5 and explored the Chrome Developer Tools, you may notice some similarities. If
you’re a web developer by trade who is trying Python on for size, you’ll probably fi nd that you like
the pdb and it reminds you a little of your favorite web debugging software.

 The pdb is fairly powerful in that it enables you to insert breakpoints in your code that will stop
your code running, and drop you into a pdb prompt or terminal. This is very handy because you can
then begin examining the data you have in scope at that moment. If you fi nd an exception is being
raised when a certain function is called, you can put a pdb() call in that function and then you can
start to examine the data in an interactive interpreter in your terminal. Let’s try it out.

 The following example illustrates using the pdb module for debugging your Python code.

 TRY IT OUT Using the Python Debugger, or pdb module (pdb_example.py)

 This Try It Out demonstrates how you can utilize the power of the pdb module to debug or examine
your Python code.

1. Open the pdb_example.py fi le. You should see the following:

#pdb_example.py

class ExampleClass(object):

 def __init__(self, name, number):
 self.name = name
 self.number = number

 def example_entry(self):
 return "The example name is {0} with the number {1}".format(self.name,
 self.number)

if __name__ == '__main__':
 example = ExampleClass("Carla", 456)

 return example.example_entry()

2. Import the pdb module:

#pdb_example.py

import pdb

class ExampleClass(object):

 def __init__(self, name, number):
 self.name = name
 self.number = number

 def example_entry(self):
 return "The example name is {0} with the number {1}".format(self.name,
 self.number)

Debugging Your Python Code ❘ 269

 if __name__ == '__main__':
 example = ExampleClass("Carla", 456)

 return example.example_entry()

3. The pdb module has many powerful features. The fi rst one you look at is the .set_trace()
method, so add a set_trace() to your code:

 #pdb_example.py

 import pdb

 class ExampleClass(object):

 def __init__(self, name, number):
 self.name = name
 self.number = number

 def example_entry(self):
 pdb.set_trace()
 return "The example name is {0} with the number {1}".format(self.name,
 self.number)

 if __name__ == '__main__':
 example = ExampleClass("Carla", 456)

 return example.example_entry()

4. Save the fi le. Now run your pdb_example.py fi le. You should be dropped into a pdb interpreter,
which is noted with the (Pdb) prompt:

 chapter6$ python pdb_example.py
 > /Users/lcassell/Documents/Python_Companion/chapter6/pdb_example.py(13)
 example_entry()
 -> return "The example name is {0} with the number {1}".format(self.name,
 self.number)
 (Pdb)

5. Type n and press Enter/Return:

 (Pdb) n
 --Return--
 > /Users/lcassell/Documents/Python_Companion/chapter6/pdb_example.py(13)
 example_entry()->'The example ...he number 456'
 -> return "The example name is {0} with the number {1}".format(self.name,
 self.number)
 (Pdb)

 What you’ve done is stepped down to the next (n) line in the fi le. Look at the pdb_example.py fi le
and you’ll see that the set_trace() is placed before your return string:

 #pdb_example.py

 import pdb

 class ExampleClass(object):

270 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 def __init__(self, name, number):
 self.name = name
 self.number = number

 def example_entry(self):
 pdb.set_trace()
 return "The example name is %s with the number %d" % name, number

 if __name__ == '__main__':
 example = ExampleClass("Carla", 456)

 example.example_entry()

 This means that the program will break at that line and open a pdb interpreter so that you can
examine your code. When you type n and then press Enter/Return, you’re moving to the next line
in the code, which is your return statement. That line will execute and you’ll see the printout of the
string (with some ellipses to indicate text that was left out for readability (/):

> /Users/lcassell/Documents/Python_Companion/chapter6/pdb_example.py(13)
 example_entry()‐>'The example ...he number 456'
-> return "The example name is {0} with the number {1}".format(self.name,
 self.number)
 (Pdb)

6. While still in the debugger, simply press Enter/Return again. You should see that the next line in
the code is executed. It’s as if you’ve type n and Enter/Return again. The debugger retains your last
command and will simply execute it with the Enter/Return key:

 (Pdb)
 --Return--
 > /Users/lcassell/Documents/Python_Companion/chapter6/pdb_example.py(19)<module>()
 ->None
 -> example.example_entry()
 (Pdb)

 If you keep pressing Enter/Return, you’ll see that you simply step through the rest of the program
until it completes and you’re back to your command prompt and out of the pdb environment:

 (Pdb)
 --Return--
 > /Users/lcassell/Documents/Python_Companion/chapter6/pdb_example.py(19)<module>()
 ->None
 -> example.example_entry()
 (Pdb)
 chapter6$

7. Start up the debugger again and run through some more handy commands:

chapter6$ python pdb_example.py
 > /Users/lcassell/Documents/Python_Companion/chapter6/pdb_example.py(13)
 example_entry()
 -> return "The example name is {0} with the number {1}".format(self.name,
 self.number)
 (Pdb)

Debugging Your Python Code ❘ 271

8. This time, print the value of some variables. At the debugger prompt, type p self.name and press
Enter/Return:

 > /Users/lcassell/Documents/Python_Companion/chapter6/pdb_example.py(13)
 example_entry()
 -> return "The example name is {0} with the number {1}".format(self.name,
 self.number)
 (Pdb) p self.name
 'Carla'
 (Pdb)

 You can use the print functionality by simply typing p followed by the variable name.

9. At your prompt, type locals() and press Enter/Return. You should see all objects that are in the
local scope at that moment:

 (Pdb) p self.name
 'Carla'
 (Pdb) locals()
 {'self': <__main__.ExampleClass object at 0x106c66450>}
 (Pdb)

 In this case your current local scope contains just your class, which is what it should be.

10. Type globals() and see what you have available in your global scope:

 (Pdb) locals()
 {'self': <__main__.ExampleClass object at 0x106c66450>}
 (Pdb) globals()
 {'example': <__main__.ExampleClass object at 0x106c66450>, '__builtins__': <module
 'builtins' (built-in)>, '__name__': '__main__', '__file__': 'pdb_example.py',
 'ExampleClass': <class '__main__.ExampleClass'>, 'pdb': <module 'pdb' from
 '/usr/local/Cellar/python3/3.3.3/Frameworks/Python.framework/Versions/3.3/
 lib/python3.3/pdb.py'>, '__package__': None, '__loader__': <_frozen_importlib.
 SourceFileLoader object at 0x106b9a410>, '__cached__': None, '__doc__': None}
 (Pdb)

 Note that you have many things available to you, including your ExampleClass object, your
pdb module (that you imported), and your local Python source. There may be times where
you are debugging that you need to inspect what is in your local scope, to see if you have
that data available to you. The locals() and globals() functions will be very useful during
these times.

11. Type c and press Enter/Return. You should be taken out of the pdb, your code should complete,
and you should see your normal command prompt. With the pdb, c simply continues running the
program.

12. To quit the debugger without running the rest of your program, type q at the (Pdb) prompt and
press Enter/Return prompt.

 How It Works

 The pdb is a built‐in module in Python’s standard library. You simply import the pdb into your fi le,
then either call the stack _ trace() method to enter the debugger environment or call other methods

272 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

to perform certain functions within the fi le at run time, which will then take you into the debugger
interface. The pdb is incredibly useful for debugging code at run time and for examining the data
in your code at certain points in a “live” environment. The pdb module contains many commands;
consult a reference for a more robust list.

 Handling Exceptions in Python
 Python is an interpreted language, which means that there is no compiler to compile your code and fi nd
any logic or syntax errors before you run it. So how does Python handle this? Python uses exceptions
to handle errors. This type of handling can mean that making one small mistake in your code can
cause your entire program to fail. Because of this you want to test thoroughly, but on top of that, you
also want to set up some fail-safes in case you encounter exceptions with your code during run time.

 For example, if you try the following code in your interpreter,

 >>> def sum(a, b):
 ... return a + b
 ...
 >>> sum("no", 4)

 you’ll get the following error:

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in sum
 TypeError: Can't convert 'int' object to str implicitly

 As you can see, when you try to pass a string to a mathematic function, which can only operate on
integers and fl oats, it throws a TypeError . This tells you that the data you sent to the function is r

not of the correct type. Because Python is not a strongly typed language, nor is it compiled, the only
errors that you will get are exceptions, which will crop up at run time. When an exception is thrown
at run time, your entire program will quit if there is no exception handling in place. It is imperative
that you check for these sorts of “gotchas.” Not checking for them can render your code unusable,
and that’s not a very good codebase to have!

 A number of exceptions are built into the Python language. Here is a list of those exceptions:

 BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- StandardError
 | +-- BufferError
 | +-- ArithmeticError
 | | +-- FloatingPointError
 | | +-- OverflowError
 | | +-- ZeroDivisionError
 | +-- AssertionError
 | +-- AttributeError

Debugging Your Python Code ❘ 273

 | +-- EnvironmentError
 | | +-- IOError
 | | +-- OSError
 | | +-- WindowsError (Windows)
 | | +-- VMSError (VMS)
 | +-- EOFError
 | +-- ImportError
 | +-- LookupError
 | | +-- IndexError
 | | +-- KeyError
 | +-- MemoryError
 | +-- NameError
 | | +-- UnboundLocalError
 | +-- ReferenceError
 | +-- RuntimeError
 | | +-- NotImplementedError
 | +-- SyntaxError
 | | +-- IndentationError
 | | +-- TabError
 | +-- SystemError
 | +-- TypeError
 | +-- ValueError
 | +-- UnicodeError
 | +-- UnicodeDecodeError
 | +-- UnicodeEncodeError
 | +-- UnicodeTranslateError
 +-- Warning
 +-- DeprecationWarning
 +-- PendingDeprecationWarning
 +-- RuntimeWarning
 +-- SyntaxWarning
 +-- UserWarning
 +-- FutureWarning
 +-- ImportWarning
 +-- UnicodeWarning
 +-- BytesWarning

 With so much that can go wrong, how do you gracefully handle exceptions in Python? With a
try‐except block. The try‐except block will try a piece of code and if the code throws one of the
preceding exceptions, it will catch that exception and print out an error message, as defi ned in the
base exception class, or you can even print your own error messages for each exception:

 >>> try:
 ... sum("yes", 9)
 ... except TypeError:
 ... print("Both inputs must be integers")
 ...
 Both inputs must be integers

 You can also have try‐except blocks handle exceptions so that your program doesn’t fail and you
can continue moving down the stack:

 >>> try:
 ... some_function()

274 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 ... except:
 ... graceful_function()
 ... else:
 ... next_function()

 Sometimes you will want to run a function no matter if your try-catch catches an exception or runs.
In that case you want to use the fi nally statement.

 >>> try:
 ... some_function()
 ... except:
 ... graceful_function()
 ... finally:
 cleanup_function()

 But what if you want your code to throw its own exceptions? What if you want to check for some
certain type of data, and if that is not present, you want to alert the user? You can make custom
exception classes to use on top of built‐ins.

 In the following example, you create and use customs exceptions.

 TRY IT OUT Creating and Using Custom Exceptions in Python (exceptClass.py)

 This Try It Out demonstrates how you can create and then use custom exceptions in your Python code.

1. Open exceptClass.py to familiarize yourself with the class you’ll be using:

 # exceptClass.py

 class TestClass(object):

 def __init__(self, name, number):

 name = self.name
 number = self.number

 def return_values(self):

 print ("The values are: ", self.name, self.number)

2. Write the exception that you’ll throw if self.number isn’t a number. The fi rst step to writing an
exception is that it must be a class that inherits from the Exception class. Add the following lines
to your exceptClass.py fi le:

exceptClass.py

class TestClass(object):

 def __init__(self, name, number):

 self.name = name
 self.number = number

 def return_values(self):

 print ("The values are: ", self.name, self.number)

Debugging Your Python Code ❘ 275

 class notANumber(Exception):
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return repr(self.value)

 Here you’ve created your own customized exception that will be thrown if the number attribute is
not, in fact, a number. You’ve also overridden the __init__ function for the Exception class, and
rather than using args you’re going to use value to catch the value that raised the exception. You
are also overriding the __str__() method to output the self.value property using the repr()
method call, which will give you the correct representation of the value that raised the exception
(this is what will be printed out with your exception error message).

3. Next, change your return_values() method into something that can check whether self
.number is an int . If the type of self.number isn’t an int, you want to raise your exception.
Implement a very simple if/else statement to check in your try/catch:

 # exceptClass.py

 class TestClass(object):

 def __init__(self, name, number):

 self.name = name
 self.number = number

 def return_values(self):
 try:
 if (type(self.name) is int):
 return "The values are: ", type(self.name), type(self.number)
 else:
 raise notANumber(self.number)
 except notANumber as e:
 print("The value for number must be an int you passed: ", e.value)

 class notANumber(Exception):
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return repr(self.value)

 What you are doing here is a simple check on the type of self.name . If it is not an int, you are
raising the exception you defi ned earlier. Should the self.number property actually be an int,
you’re simply returning a string that tells you the types of each property of your instance. If the
type is not an int, notANumber will be raised and you’ll pass in self.number to be evaluated and
output in your error message.

4. Now, run your script in interactive mode. Start up a Python interpreter, but do it using the ‐i fl ag
and calling your exceptClass.py fi le, like so:

 $ python -i exceptClass.py
 >>>

276 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 When you use the ‐i fl ag when starting a Python interpreter, you can pass in a Python fi le and
this imports the fi le you’ve passed in without having to explicitly import in the interpreter. This
means you have both classes you’ve defi ned in your exampleClass.py fi le, and you don’t have to
namespace them with exampleClass.<foo> ; you can simply call things.

5. Next, create a new instance of your TestClass, and pass in two strings (rather than a string and
an integer):

 (ch3Ex2)$ python -i exceptClass.py
 >>> exampl = TestClass('string1', 'string2')

6. Call return_values() on your newly created instance and note the output:

 (ch3Ex2)$ python -i exceptClass.py
 >>> exampl = TestClass('string1', 'string2')
 >>> exampl.return_values()
 The value for number must be an int you passed: string

 The try‐except worked and caught that you were passing in a string rather than an integer

7. Create another instance and pass in a string and an integer; then call return_values() on that
instance and note the output:

 >>> exm = TestClass('string1', 42)
 >>> exm.return_values()
 ('The values are: ', <class 'str'>, <class 'int'>)

 How It Works

 When you create an exception class, you’re really creating a subclass from the base Exception class
that is built into Python. With this, you have control over how your own customized exceptions will
behave when they are raised. You created a very simple class, and saw that when the exception was
raised, your class will give feedback to the user as to what type of data was passed into your class.

 As you can see, this feature can be incredibly powerful when writing larger projects. Hopefully this
has given you enough of a glimpse into the formulation of exceptions that you can write your own,
should the need arise.

 WORKING ON LARGER PYTHON PROJECTS

 When developing with Python you may fi nd that different projects have different versions of
different packages. What do you do when your local environment is Python 2.7, but that project you
want to work on (or inherited) is 2.6? Or 3.4? This is a problem that many Python developers have
encountered, so of course they created a solution. Enter virtualenv.

Virtualenv is a virtual environment for your Python projects. It enables you to create numerous
Python instances and develop against all the libraries you need for certain projects. Say you want
to work on a project that uses Python 2.7, which you have installed locally, but the project needs a

Working on Larger Python Projects ❘ 277

different version of a library than what you have installed locally. The Python versions match up but
the library’s versions do not. This is a job for virtualenv!

 In this example, you create and then activate a virtualenv to create sandboxes for your individual
Python projects.

 TRY IT OUT Creating and Activating Virtualenvs

 This Try It Out demonstrates how to install, activate, deactivate, and remove virtualenvs from your
system.

1. Install virtualenv by using the commands appropriate for your system:

 OSX:
brew install virtualenv

 Linux:
apt‐get install python‐virtualenv
pacman ‐s install python‐virtualenv

 Windows (powershell users):
pip install virtualenv

2. Move into the directory where you’ll be working. Some power users create a temp_env directory
on their systems and create virtualenvs in that. This is a great workfl ow if you have many
virutalenvs to manage. For your purposes, however, you’ll just keep things simple. Once you are in
your directory, create your virtualenv:

 $ cd chapter6
 $ virtualenv ch6Ex3
 $

3. If you do a directory listing of the contents in the directory where you created your virtualenv,
you should see a directory for the name of your environment (in this case ch6Ex3). You’ll be using
that directory to activate your environment. This is also the directory that will house all of your
installs and your Python code for this environment. To activate the new virtualenv, simply add the
following command:

 $ source ch6Ex3/bin/activate
 (ch6Ex3)$

 When you are in an active virtualenv, your command prompt will show the name of the virtualenv
within parentheses before your command prompt. In this case you have (ch6Ex3)$.

4. Now let’s do an experiment. If you did the exercises in Chapter 5 , you should have installed
requests via pip install requests . Start a Python interpreter and see if you can use requests:

 (ch6Ex3)$ python
 Python 2.7.5 (default, Aug 25 2013, 00:04:04)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import requests

 What version of the Python shell do you have? Is it 3.4? Or 2.7? How can you change that?

278 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 Once you press Enter/Return after importing requests, you should see an ImportError exception,
declaring there are no module requests. This is because although you imported requests to your
system‐wide Python, you are not using that Python environment now, and you must reinstall
requests if you want to use it in this virutalenv.

5. exit() out of the interpreter and pip install requests, while still in your virtualenv:

 (ch6Ex3)$ python
 Python 2.7.5 (default, Aug 25 2013, 00:04:04)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import requests
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ImportError: No module named requests
 >>>exit()
 (ch6Ex3)$ pip install requests
 Downloading/unpacking requests
 Downloading requests-2.2.1-py2.py3-none-any.whl (625kB): 625kB downloaded
 Installing collected packages: requests
 Successfully installed requests
 Cleaning up...
 (ch6Ex3)$

 After you install a package you’re still in your virtualenv, and you’ll remain in your virtualenv until
you deactivate that environment.

6. Note that even after installing a package, you are still in your virtualenv and will remain there until
you deactivate that environment. Deactivate your environment like so:

 (ch6Ex3)$ pip install requests
 Downloading/unpacking requests
 Downloading requests-2.2.1-py2.py3-none-any.whl (625kB): 625kB downloaded
 Installing collected packages: requests
 Successfully installed requests
 Cleaning up...
 (ch6Ex3)$ deactivate
 $

 You’ve successfully installed virtualenv, created a new virtualenv to use, installed a package for that
environment, and even deactivated the virtualenv. What if you want to remove that environment
altogether? Say you’re done with that project and you want to remove all those fi les you installed.

7. To remove a virtualenv, systematically remove the directory it created:

 (ch6Ex3)$ pip install requests
 Downloading/unpacking requests
 Downloading requests-2.2.1-py2.py3-none-any.whl (625kB): 625kB downloaded
 Installing collected packages: requests
 Successfully installed requests
 Cleaning up...
 (ch6Ex3)$ deactivate
 $rm -rf ch6Ex3/
 $

Working on Larger Python Projects ❘ 279

 How It Works

 Virtualenv provides a way for Python developers to create environments that may have various version
requirements. This helps to keep environments separate from others and allows the system to have
sandboxes for development of multiple Python projects.

 Oftentimes you have projects where more than one person is working in the environment. What
happens when you have a long list of requirements that your project needs and you have four people
working on the project, on different machines? Do you want to have your teammates simply type
pip install <module _ name> over and over? No, you do not.

 Virtualenv has a very nice feature that enables you to make a requirements.txt fi le and put the
packages needed for your program into the fi le. Anyone using your package can simply type pip
install requirements.txt and get all the dependencies that your package requires! It really is
that easy!

 TRY IT OUT Creating a requirements.txt fi le to Simplify Adding Modules

 This Try It Out demonstrates how to create a fake requirements.txt fi le and populate it with some
popular packages.

1. Create a new virtualenv:

 $virtualenv ch6Ex3
 $source ch6Ex3/bin/activate
 (ch6Ex3)$

2. Write the requirements.txt fi le. In your Chapter 6 directory, create requirements.txt and add
the following lines:

 BeautifulSoup==3.2.0
 requests
 https://github.com/django/django/tarball/master

 These lines are all different. Usually, requirements.txt will have uniformity, but for illustrative
purposes, these lines show the three most common ways to get a package installed via pip.

 The fi rst line (BeautifulSoup==3.2.0) shows that you want to install BeautifulSoup (a web
scraping tool), but you want version 3.2.0, hence the double equal signs.

 The second line (Requests) installs the current version.

 The fi nal line (https://github.com/django/django/tarball/master) indicates that you want
to download and install the package at the URL provided. In this case you’ll be downloading and
installing the entire Django project that is available on the master branch of the Django repository
(this is a pretty big fi le, so be prepared for a short download wait).

3. Save this fi le and then activate your virtualenv and install those requirements:

 $ source ch6Ex3/bin/activate
 (ch6Ex3)$ pip install -r requirements.txt

https://github.com/django/django/tarball/master
https://github.com/django/django/tarball/master

280 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

 You should see messages about downloading and installing the three packages we’ve provided.
Once the packages are successfully downloaded and installed, you should see a “Cleaning up…”
message, followed by your virtualenv prompt:

 Successfully installed Django
 Cleaning up...
 (ch6Ex3)$

4. Start up Python and see if you really do have those packages installed:

 Python 2.7.5 (default, Aug 25 2013, 00:04:04)
 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import requests
 >>> import BeautifulSoup
 >>> import django
 >>>

 If you can import without an error being raised, you’ve successfully installed all of the requirements
for your phantom project. Feel free to rm ‐rf ch6Ex3 virtualenv now. This will remove the
virtualenv and all the packages you’ve installed, including the very large Django project.

How It Works

Requirements.txt is a feature of virtualenv that allows developers to include all the necessary libraries
needed for their module to work with their Python package. This allows quick setup of environments
so that developers can begin work quickly.

RELEASING PYTHON PACKAGES

The __init __.py ('dunder, init, dunder') fi le is fairly important when releasing code out into
the wild. For Python projects, __init __.py needs to be at each level of the codebase’s directory
structure. For example, say you have a rather large codebase that has multiple .py fi les. You start by
putting a __init __.py in the fi rst layer of the directory structure:

 my_package
 |----__init__.py
 |---- my_package.py
 |---- my_subpackage
 |---- __init__.py
 |---- my_subpackage.py

This tells the Python interpreter that you want to treat the directory as a Python package. The cool
part is that you can leave the __init __.py fi le empty, or you can put confi guration variables in it.
Commonly, folks will import modules/libraries, or other confi gurations in their __init __.py fi le—
basic setup work to help the package function.

So what happens when you create an __init __.py fi le and import something? How does Python’s
namespacing work now? Suppose you have the following import statement in my _ package/ __

init __.py :

Releasing Python Packages ❘ 281

 from file import File

 When you want to call that import in the my _ package.py fi le you would simply say:

 from my_package import File

 Another use of the __init __.py fi le is to import all the modules that you’d like to import into the
namespace of your package. You do this by assigning the __all __ variable to your subpackage in
your package level __init __.py (the fi rst one):

 __all__ = ['my_subpackage']

 Doing this makes it so that when your users declare from my _ package import * it will import all
of the modules from my _ subpackage .

 PIP AND PYPI

 You’ve been using pip to install third‐party libraries and modules throughout this
book. But just what is pip, and how does it work?

 Pip is the Python package installer. It installs packages that are in the PyPI (pro-
nounced pie‐P‐I, not pie‐pie). The PyPI is the Python Package Index, also known as
“The Cheese Shop” (another Monty Python reference), to more seasoned Python
developers. This is where you can upload your own Python packages so that they
will be available via pip install <package _ name> . Sometimes, people will sim-
ply upload their own packages to PyPI because it’s easier for them to install those
packages on multiple machines. Oftentimes people upload their packages because
they hope it will be helpful to others.

 To fi nd out more about the Package Index, or to search the index, you can go to
http://pypi.python.org/pypi . This is the main page for PyPI and has all the
information you need to get started.

NOTE Can you think of a way you could have used a __init __.py fi le in the
Flask application? That would have made the code more Pythonic. (We did not
do this because we wanted to show you the “raw” way of doing things, so that
you can understand the inner workings of things before adding more steps
and layers).

 Now that you have your code written, and your __init __.py fi les in place, what if you want to
release this code out into the wild? What if you want to be able to install this module on other
machines by simply typing pip install <package _ name> ?

http://pypi.python.org/pypi

282 ❘ CHAPTER 6 PYTHON IN BIGGER PROJECTS

SUMMARY

We’ve looked over some of the basics of testing and packaging for your Python projects. You should
now have a clear idea of just how most Python packages and modules/libraries are architected and
created. A good exercise for the reader is to go back through the beginning of the book and work
through the exercises using the concepts you’ve learned in this chapter. Can you rewrite the code in
Chapter 3 to be test‐driven? Can you package your Flask app from Chapter 5 and send it to another
computer to be run and developed? You should try these things out so that you have a clear idea of
just how all parts and pieces of Python packages are working together.

EXERCISES

1. In the zip fi le for this chapter, open the fi le markets.py and write a doctest string to test the
value being returned by the function in the fi le. Can you think of a reason why a simple doctest
string in this code could be incredibly useful for maintaining the code in the future?

2. Write a unittest for a function that will take a string and return that string reversed. Make sure
the test fails, because you haven’t written the function to test, yet.

3. Write a function for your unittest that takes a string and returns the reverse of that string. Now,
run your unittest against that function and modify the function until it passes.

 If you want to upload your own packages to the PyPI you’ll need to register with
PyPI and then follow the tutorial, which is linked on the homepage. It really is that
simple. You register, you upload your package, and then it will be available to you,
shortly, via pip install <package _ name> .

 Keep in mind that when you upload a package to PyPI, it is readily available for
anyone to download and use. This is why it is so important to practice good,
Pythonic programming at all times. You never know when someone will download
and use your module, and you want them to be able to use your creation with as
little headache as possible.

Summary ❘ 283

▸ WHAT YOU LEARNED IN THIS CHAPTER

TOPIC DESCRIPTION

Unit test Usually a function that is written in a separate testing script, that imports
the code to be tested, and that tests each function in the imported code.

Virtualenv Third‐party software that allows developers to create system sandboxes
for Python development, using customized versions of Python and Python
libraries/modules.

TDD (Test‐Driven
Development

A development style where one writes tests fi rst, which will fail, then writes
the actual functioning code to make the tests past, therefore driving the
development cycle based on testing fi rst.

Pdb Python Debugger, an interactive debugging module for Python.

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Specialist application areas using Python

➤ Third‐party packages for specialist applications

➤ How to contribute to Python’s development

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 There are no Wrox code downloads for this chapter, but the various solutions discussed all
have packages that are available for download. Many of these are available via the Python
Package Index (PyPI) or have binary installers that you can download from the package’s
home site. Each section provides information about download locations for the associated
packages.

 In the earlier chapters of this book, you looked at how Python can be used to interact with
your operating system and other programs, how it can manage data using fl at fi les and
databases, and how you can build both desktop and web‐based applications. You have also
seen some of the techniques and tools that can help you build larger scale programs effi ciently
and reliably.

 In this concluding chapter, you see how Python can support you in many wider areas of
programming. You consider the various frameworks, packages, libraries, and even distinct
Python distributions that have been developed to support specialist areas of interest such as
science and language processing. You also see how some niche application types have acquired
specialist tools and packages to support their specifi c needs. Finally, you look at how you can
contribute to the Python community itself to help make Python even better.

 7

286 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

 DRAWING PICTURES WITH PYTHON

 Many tools are available for drawing and processing graphics in Python. These range from simple
drawing libraries like turtle to highly specialized modules and frameworks like matplotlib and
Pillow . The following sections describe the capabilities and areas of application of each option. w

 Using Turtle Graphics
 The easiest way to draw pictures from code is probably to use turtle graphics . Turtle graphics was
invented as a way of drawing pictures using the programming language Logo. The idea was to
issue directional commands to a robotic device—the turtle—with a pen attached that, in turn,
produced a drawing. The concept proved popular, and now most languages provide some kind
of turtle graphics support. In Python, it comes in the form of the turtle module. By default, the
module presents the graphics in a small pop‐up window built using Tkinter. You can specify a Tk
canvas object (see the next section for more details about canvas objects) when you initialize the
turtle system from within an application, or you can use the module at the interactive prompt to
experiment with the system. The offi cial documentation gives a comprehensive description of the
functions and methods available, and you can get a good feel for what is possible by running the
demonstration. Type the following at the OS command prompt:

 python -m turtledemo

 This brings up a window with a menu of examples that you can start and stop, and also displays
the code of the running example so that you can see how to achieve the same effects in your
programs.

 Using GUI Canvas Objects
 Most GUI frameworks include a canvas object. A canvas is an area on-screen in which you can
draw lines and shapes, add images, and even insert text. The Tkinter Canvas object is fairly typical
and supports drawing arcs, ovals (including circles), lines, rectangles, polygons, text, images, and
even windows (so you can embed a widget inside a canvas). A minimal canvas program showing a
red circle looks like this:

 >>> import Tkinter as tk
 >>> top = tk.Tk()
 >>> c = tk.Canvas(top, width=50, height=50)
 >>> c.pack()
 >>> c.create_oval(10,10,40,40,outline='red',fill='red')
 1
 >>> top.mainloop()

 The Canvas class contains many, many methods that enable you to build sophisticated graphics
programs.

 This is all at a very low level of abstraction. For a higher level you can turn to other libraries such
as the turtle module discussed earlier, or some more exotic, third‐party options such as those
discussed next.

Drawing Pictures with Python ❘ 287

 Plotting Data
 The most popular data‐plotting tool for Python is matplotlib , which you can fi nd at http://
matplotlib.org/ and downloaded from PyPI or included as part of the scipy package discussed
later in this chapter. The website includes links to many examples and tutorials.

matplotlib is closely tied into the other scipy packages and, as such, can be rather intimidating if
you only want a simple graph. Several other lightweight packages are available on PyPI that attempt
to address this and provide an easier‐to‐use plotting library, but for serious plotting matplotlib is
the best solution.

 Using imghdr
 If your graphics interests are more focused on images than data, the imghdr module offers some
useful help in determining what kind of image fi le you are dealing with. The module is part of the
standard library and is quite simple to use. Rather than relying on the fi lename extension, it tests the
data content of the fi le to determine the image type.

 The module consists of a single function, what() , which takes either a fi lename or fi lestream as an
argument and returns the image type. The module supports most common fi le types, but you can
extend its range by adding your own custom test functions to handle other image types.

 Introducing Pillow
 For many years the standard solution for manipulating images in Python was the Python Imaging
Library (PIL). PIL has not been ported to Python version 3; instead, a replacement library, called
Pillow, has been created that builds on PIL but adds some new features.

 Pillow’s homepage is at http://pillow.readthedocs.org . You can install it via PyPI.

 Pillow is based on an Image class that can be opened and saved. By specifying the appropriate
parameters, converting a JPEG fi le to a PNG fi le, for example, can be as simple as this:

 >>> from PIL import Image
 >>> Image.open('foo.jpg').save('foo.png')

 You can also use the Image object to retrieve information about the image, such as its size. Many
more powerful options are available, too. For example, you can transpose images by fl ipping them
or rotating them, as well as resizing and applying fi lters. Pillow is like an image editing program that
you drive programmatically.

 Trying Out ImageMagick
 ImageMagick is a similar tool to Pillow, but it’s based on the command‐line suite of tools of the
same name. The command‐line website is at http://www.imagemagick.org/ .

 The Python package, wand , is on PyPI and uses ctypes to harness much of ImageMagick’s power.
You can fi nd the website here: http://docs.wand‐py.org . The site has documentation, including a
user guide and references.

http://matplotlib.org/
http://matplotlib.org/
http://pillow.readthedocs.org
http://www.imagemagick.org/
http://docs.wand%E2%80%90py.org

288 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

 An image conversion program, similar to the Pillow example in the previous section, looks like this:

>>> from wand.image import Image
>>> with Image(filename='foo.jpg') as img:
... img.format = 'png'
... img.save(filename='foo.png')
>>>

 You can fi nd many other modules and packages for graphics work in Python. The PyPI search tool
and web search engines will reveal many examples. The tools that have been highlighted in this
chapter should cover most eventualities, but don’t be afraid to try alternatives.

 DOING SCIENCE WITH PYTHON

 Python has a long tradition of use within the scientifi c and mathematical communities. As a result,
many modules and packages have been created to meet the specialized needs of the communities.
Before looking at the third‐party options available, you should fi rst consider the built‐in support
that Python offers.

 Python’s native types offer much for scientifi c computing. In particular, the Python integer type
with its effectively unlimited size makes it well suited for working with large volumes and long series
calculations. Python’s fl oating‐point type is comparable to that of other languages, but in addition
you have the options of using decimal and fraction types that reduce errors due to rounding. Finally,
Python is one of the few languages that natively supports the complex, or “imaginary,” number type
used so extensively in science and engineering applications.

 Of course, having a variety of data types is only half the story; along with the data you need
operations to support them. Once again, Python’s built‐in operations are supplemented by the
standard library with modules like math , cmath , and statistics providing a wide range of options.
Modules, such as the collections module, also provide support for more exotic data types like
named tuples, ordered dictionaries, and chain maps—used as an effi cient way to link multiple
mappings.

 Although these are all powerful tools, they still do not provide the specifi c support needed for
performing detailed scientifi c analysis, and this is where the special third‐party libraries come into
play. Chief among these is the SciPy package, discussed next.

 Introducing SciPy
 SciPy has a long history, evolving out of several independent development streams. These have
gradually come together to form a powerful integrated whole. The SciPy project incorporates
six separate bundles that form an integrated “stack” of tools. You can fi nd the SciPy website at
http://www.scipy.org/ .

 The six bundles are:

➤ NumPy: One of the oldest mathematical packages for Python and the foundation of many
others. NumPy includes a set of types and operations suitable for numerical analysis and
simulations. These include an N dimensional array object, linear algebra, Fourier transforms,

http://www.scipy.org/

Doing Science with Python ❘ 289

and various random number generators. In addition, NumPy offers hooks to access the
wealth of scientifi c and mathematic tools written in Fortran and C.

➤ SciPy: The package for which the project is named. It includes functions for integration, sig-
nal processing, sparse data structures, and numerous special‐purpose functions.

➤ Matplotlib: This package was discussed under the “Plotting Data” heading earlier in this
chapter. It produces high‐quality graphs, suitable for publication, offering a great deal of
control over layout, labeling, and so on. It aims to compete with commercial packages such
as Mathematica and MATLAB in this regard. It also supports several GUI toolkits for build-
ing graphics-rich desktop applications.

➤ SymPy: This is designed to perform symbolic math. Rather than display numerical results, it
uses concepts like sqrt(2) as a symbol within its answers. This would look strange to users
without a math background, but to mathematicians it is a standard tool and has the advan-
tage of not being subject to the rounding errors associated with traditional fl oating‐point
representations. You can think of it as a tool for doing pure math rather than doing arithme-
tic. In the former, the result is symbolic; in the latter it is a number. You can use it to solve
integral and differential calculus problems, Bessel functions, Eigenvalues, and much more.
SymPy includes an interactive shell prompt at which you can enter your expressions, as well
as a package you can import into your own applications.

➤ Pandas: This is a data analysis toolkit. In Chapter 3 you heard about rpy for interfacing with
the R statistics analysis language. Pandas is a pure Python alternative to the R environment.
At the time of writing, Pandas is less powerful than R in this regard, but it is a project that is
growing with each release. In addition, it integrates with the other SciPy packages better than
the rpy solution. If you are purely interested in statistics, stick with rpy , but if you want a
more integrated analysis workfl ow and are using the other SciPy elements, take a close look
at Pandas.

➤ IPython: This is not specifi cally aimed at scientifi c users. It is a powerful replacement for the
standard Python interactive interpreter. It replaces the traditional >>> prompt with In[n]: ,
where n is the number of the command. Output lines are preceded by Out[n]: where n
matches the value in the corresponding In[]: prompt. As well as understanding all of the
usual Python language, IPython adds several new features. For example, there is a shortcut
to the help() function. It also enables you to run OS commands by prefi xing them with an
exclamation point (!). But IPython is much more than just an interactive prompt. It includes
a notebook concept where whole sessions can be stored and retrieved. You can thus work on
multiple projects and save the state of each when you are done, then restore that state and
continue with all history and so on intact. IPython also works with the other SciPy bundles,
including matplotlib and SymPy, and can display graphs or symbolic expressions. You can
fi nd examples of what the notebook can do along with full documentation on the IPython
website at http://ipython.org/ . The combination of matplotlib, SymPy, and IPython
offers a powerful alternative to commercial packages such as MATLAB or Mathematica.

 Finally, several add‐ons for SciPy are included under the SciKit banner. These cover areas
such as aeronautical engineering; audio, image, and video processing, environmental science,
and others.

http://ipython.org/

290 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

 Doing Bioscience with Python
 One area of science that has come to the fore in recent years is bioscience, and particularly
the analysis of DNA. The bioPython package has been developed to meet this need (http://
biopython.org/). The package includes support for reading and writing most of the standard fi les
used in bioinformatics as well as a Sequence class for analyzing DNA sequences.

 In addition to bioPython, some other modules are available, and you can fi nd them using your
preferred search engine. Before trying to reinvent the wheel, it is always wise to check whether
somebody else has already done the work for you!

 Using GIS
 With the explosion of satellite navigation and mobile electronic mapping software, the fi eld of
Geographic Information Systems (GIS) has seen an upsurge of interest. ArcGIS (https://www
.arcgis.com) is a standardized set of tools for geo‐processing. Python support for ArcGIS comes in
the form of ArcPy, a package that has the goal of providing “access to geo‐processing tools as well
as additional functions, classes, and modules that enable you to create simple or complex workfl ows
quickly and easily.”

 There is one big problem. At the time of writing, ArcPy is only available for Python v2.7, not for
Python v3. However, for GIS processing ArcPy really is the best option currently available.

 Watching Your Language
 The study of human language and processing natural languages into data has been an area of study
for many years. There have been rapid advances in recent years, and with increased computing
power natural language processing is starting to appear in mainstream projects.

 Python has the Natural Language ToolKit to support this area, and its homepage is located at
http://www.nltk.org/ . The toolkit provides access to several specialized tools and enables
programmers to parse and tokenize text, analyze its structure, and categorize it. You can fi nd and
install NLTK from PyPI.

 Getting It All
 Although all of the previously discussed packages are powerful tools, getting them installed into
a standard Python distribution can be a complex process using the normal installation tools.
Fortunately, you have alternatives in the shape of Anaconda and Enthought Canopy. These are
distributions of Python packaged up with all of the science tools you are likely to need. In addition
to the SciPy and NLTK frameworks already discussed, Anaconda has more than 100 other specialist
packages built in. The distribution is made available by Continuum Analytics, which also offers
other packages on a commercial basis. Canopy is a very similar concept with a free basic version
available as well as enhanced, commercial offerings.

 Anaconda can be installed on Windows, Mac OS, or Linux and does not interfere with existing
installations of Python. Anaconda supports Python versions 2.6 through 3.4 at the time of writing.
The Anaconda homepage is located at https://store.continuum.io/cshop/anaconda/ .

http://biopython.org/
http://biopython.org/
https://www.arcgis.com
https://www.arcgis.com
http://www.nltk.org/
https://store.continuum.io/cshop/anaconda/

Playing Games with Python ❘ 291

 Canopy is likewise available on all the major platforms, and its web page is at https://www
.enthought.com/products/canopy/ .

 PLAYING GAMES WITH PYTHON

 You have already seen how Python can be used to build basic games in Chapter 4 , “Building
Desktop Applications,” where you built several variations on the classic tic‐tac‐toe game. However,
most game players today expect something a tad more exciting and dynamic. Python can support
many types of games and has comprehensive support for generating random numbers, an essential
part of any game, built right into the random module of the standard library. The module has
functions that can simulate dice rolls, pick random choices from a selection, or just generate a
random number in a variety of formats.

 Enriching the Experience with PyGame
 If you want a rich game experience using multimedia, the PyGame third‐party package is a good
place to start. It provides a set of modules that encapsulate the Simple DirectMedia Layer (SDL)
that enables programs to access audio, keyboard, joystick, and graphics hardware. It is also cross‐
platform, so PyGame works with most popular OSes. It is modular so you only need to use the bits
that are useful to you, keeping your code small.

 Its website at http://www.pygame.org includes many example programs, as well as several
tutorials. PyGame has an active community of users for help and support. Several books on building
games using Python and PyGame are also available.

 Exploring Other Options
 PyGame is not the only gaming‐focused library. You can use several other options. One example is
Pyganim, which is a sprite animation module built on top of the PyGame infrastructure, but easier to
use. Albow is a GUI toolkit specifi cally targeted at building games with PyGame. Many other packages
are written on top of PyGame, bearing witness to its popularity as a foundation games framework.

 Of course, you don’t have to use PyGame. Other packages access the low‐level hardware and
libraries. PyOpenGL, as the name implies, provides access to the OpenGL libraries.

 One feature of gaming that is also supported is the back‐end physics engines needed to model
the real‐world behavior of physical objects. Python also has tools to support this in the shape of
packages like pymunk for 2‐D modeling. Panda3d and the Python Computer Graphics Kit (cgkit)
provide support for 3‐D.

 In addition to graphics, most games also need sound. For that you can use built‐in modules in the
standard library including aifc , wave , and sunau . The winsound module provides low‐level access
to Windows sound facilities. On top of these low‐level libraries, the gaming community has built
several packages to assist in generating suitably exciting sounds to accompany your action.

 Many other libraries are available, too. In fact, the number of options available for the games
programmer can be bewildering. You can fi nd a useful summary at https://wiki.python.org/
moin/PythonGameLibraries .

https://www.enthought.com/products/canopy/
http://www.pygame.org
https://wiki.python.org/moin/PythonGameLibraries
https://www.enthought.com/products/canopy/
https://wiki.python.org/moin/PythonGameLibraries

292 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

 GOING TO THE MOVIES

 Python has a long history in the movie business, with several computer‐generated imagery (CGI)
studios adopting Python as a scripting engine. Several well‐known movies had Python doing some
of the production work behind the scenes. To support this, various packages have been developed
and made available to a wider audience. Examples include Nuke, Maya, and Blender. Many of
these are built on a foundation provided by the cgkit package mentioned in the “Playing Games
with Python” section earlier in this chapter. This means that you have lots of scope for using Python
while creating and editing your next video masterpiece.

 The Computer Graphics Kit
 The cgkit package provides a set of low‐level types and operations needed to create 3‐D scenes. It
also provides a rendering engine, although the results can be displayed in other rendering engines if
required. cgkit includes bindings to the Pixar RenderMan API. cgkit also includes the Maya plug‐
ins that enable Maya (see the next section) to interact with Python and vice versa.

 Tutorials and reference documentation are available, although they do expect a basic knowledge of
3‐D computer graphics principles such as would be acquired by using 3‐D modeling applications.

 Version 2 of the cgkit was released in early 2013. cgkit is available for Python versions 2 and 3.
The package is stable with very little new development underway.

 The homepage for the cgkit is at http://cgkit.sourceforge.net/introduction.html .

 Modeling and Animation
 Many tools are available for digital compositing of video images. Those discussed here are a
representative selection, and all include some degree of Python integration.

 The NUKE family of products is aimed squarely at the professional end of the video graphics
market. It is a commercial compositing tool that integrates with Python but has a price to match
its target audience, although a free trial is available as is a limited‐functionality Personal Learning
Edition for non‐commercial use. You can fi nd the NUKE homepage at http://www.thefoundry
.co.uk/products/nuke‐product‐family/ . NUKE uses Python 2.7.

 Maya is another 3‐D animation and compositing tool. It, too, is a commercial product, competing
with NUKE, and also offers a free trial. It can be scripted using Python, and you can incorporate
Maya animations into your Python programs. The Maya/Python integration is part of the cgkit
bundle described in the previous section. You can fi nd the Maya homepage at http://www
.autodesk.co.uk/products/autodesk‐maya/overview .

 Blender is yet another animation and compositing package, but it is open source and therefore free,
making it much more accessible to the consumer market. It, too, uses Python for its scripting engine.
The homepage is at http://www.blender.org/features/ . Blender uses Python 3.

 Photo Processing
 For processing photographic images, many of the solutions discussed in the “Drawing Pictures
with Python” section at the start of the chapter apply. Pillow and ImageMagick are both effective

http://cgkit.sourceforge.net/introduction.html
http://www.thefoundry.co.uk/products/nuke%E2%80%90product%E2%80%90family/
http://www.autodesk.co.uk/products/autodesk-maya/overview
http://www.blender.org/features/
http://www.thefoundry.co.uk/products/nuke%E2%80%90product%E2%80%90family/
http://www.autodesk.co.uk/products/autodesk-maya/overview

Integrating with Other Languages ❘ 293

tools for manipulating photographic images, capable of cropping, changing exposure, and so on. In
addition, the SciPy bundle of packages includes features for processing images with features such as
Gaussian blur.

 You can also fi nd many special‐purpose modules in PyPI to perform specifi c tasks such as resizing
or cropping images. There is a module, psd‐tools , for reading Adobe Photoshop .psd fi les. For
processing the EXIF metadata there is, for example, the pyexif module that uses the exiftool
command‐line application under the covers.

 The fi nal category of photo tools is that of online media managers. Modules enable you to transfer
photos to and from various sites such as Picasa, Flickr, Facebook, and Twitter. An example of this
category is picasa‐downloader . Unfortunately, many of these are still only available for Python v2, r

and most use the Pillow or ImageMagick tools under the covers anyway.

Working with Audio
 You’ve already heard about the built‐in modules in the standard library: aifc , wave , sunau , and the
winsound . These are just as applicable for non‐gaming sound applications.

 SciPy and its various packages can also be used to process sound fi les, especially in conjunction with
some of the SciKit add‐ons. This is especially useful for analyzing sound content or plotting signal
waveforms.

 There is a useful Python wiki-page listing many sound‐ and music‐oriented projects at https://
wiki.python.org/moin/PythonInMusic .

INTEGRATING WITH OTHER LANGUAGES

 The normal Python distribution that you have been using until now is written and built using the
C language and is often referred to as CPython. There are other implementations of the Python
language in other languages. These non‐C based interpreters facilitate integration of the other
language with Python. Two of the best known of these alternate Python versions are Jython, written
in Java, and IronPython, an implementation for Microsoft’s .NET environment. A third alternative
is Cython, which is not strictly an implementation of Python but a very closely related subset
that can be compiled into C to provide very fast performance while still providing the speed of
development of a Python‐like language. Finally, it is possible to access Tcl/Tk code from within the
Tkinter package.

Jython
 The Java implementation of Python offers many advantages to Java programmers looking for an
interactive environment in which to test their Java classes or to build prototype solutions that can, if
necessary, be converted to full Java later.

 The distribution includes both an interpreter and a compiler. The interpreter comes with the
familiar interactive prompt, as well as the ability to run scripts directly. In addition to importing
Python modules (including many of the regular Python standard library modules), Jython can
import Java libraries, making the classes available to the Python interpreter as if they were regular

https://wiki.python.org/moin/PythonInMusic
https://wiki.python.org/moin/PythonInMusic

294 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

Python classes. This makes it possible to exercise and test new Java classes interactively at the
Jython prompt. Jython also enables dynamic prototyping of solutions by mixing Java and Python
code together. The interpreter can also be used to run script fi les with all of these same features for
bigger projects or prototypes.

 The compiler takes Jython code (either pure Python or a mixture of Java classes and Python code)
and compiles it into a .java fi le. This is a powerful tool for prototyping new classes because they
can be developed and written in Python, compiled, and included in Java code. Once proven, the
Python version can be seamlessly replaced with a pure Java version.

 The downside of Jython is that it tends to produce slower code than pure Java and is also more
memory hungry. This is largely due to the fact that the compiler effectively embeds a Python
interpreter in the output fi les.

 At the time of writing, Jython is at version 2.7, although work is underway to migrate to version 3.

 IronPython
 IronPython is a version of Python written for the Microsoft .NET framework. .NET is not a single
language system; rather, it depends on a common bytecode to which several languages can be
compiled. The modules so produced can then be shared between languages. Thus, code written in
IronPython can import modules written in C#, C++, Visual Basic, and several other .NET‐compatible
languages. Similarly, IronPython modules can be imported by any of those other .NET languages.
IronPython is an extremely appealing prospect for developers working on the .NET platform.

 Better still is the fact that an open source variant of .NET called Mono has been produced that
can run under Linux and Mac OS X and many others, including mainframe computers and games
consoles. This is achieved while maintaining binary‐level compatibility with the Microsoft .NET
implementation. (At the other end of the spectrum, a slightly limited version, called Mono Touch,
runs on iOS and Android for building smartphone apps.) As .NET becomes the de facto standard
for building applications on Microsoft Windows, the availability of Python within that framework
is a major boon for Python programmers.

 The IronPython implementation supports most of the standard Python library as well as the .NET
module system. Modules in .NET are called assemblies, but they are imported into IronPython
in exactly the same way that ordinary Python modules are imported. Some issues exist due to the
dynamic typing used by Python and the .NET type system, which is more static in nature. However,
once understood these can be worked around using some helper features built into IronPython. Full
documentation is provided on the IronPython documentation site at http://ironpython.net/
documentation/ .

 At the time of writing, IronPython was compatible with Python version 2.7, and a project was
underway to develop a Python 3 version. A set of tools is available to enable IronPython development
within the Microsoft VisualStudio IDE, which is the default IDE for .NET development.

 Cython
 Cython is signifi cantly different from the other language integration options discussed here. It is,
in effect, a separate language from Python but is highly compatible with it, describing itself as a

http://ironpython.net/documentation/
http://ironpython.net/documentation/

Integrating with Other Languages ❘ 295

super‐set of Python. This means Python programmers can easily learn Cython and take advantage
of its special features.

 So what are these features that would make you want to use Cython? In short, speed. Cython is a
compiler that produces C code that, in turn, can be compiled to native machine code and thereby
has the potential to run much faster than its Python equivalent. This compiled code can then be
imported back into regular Python just like any other module to provide the best of both worlds—
easy Python development combined with C‐level speed of execution.

 The Cython extensions are mainly geared around interacting with native C code, and in this regard
are similar to the helper features of the ctypes module discussed in the section “Accessing Native
APIs with ctypes and pywin32,” back in Chapter 2 .

NOTE If your Python code consists of importing a module that is already
written in C and executing its functions, converting your program to Cython
will have little performance impact. But, if your code contains a lot of pure
Python processing, the difference can be signifi cant.

 Cython is not the only Python‐to‐C translator, but it is probably the easiest to use for the average
Python programmer. You can fi nd the Cython website at http://cython.org/ .

Tcl/Tk
 The tkinter and tix GUI modules are built on top of the Tcl/Tk and Tix toolkits. As such, they
have the ability to execute Tcl code from within Python by using a method of the embedded tk
object: self.tk.call() .

 This method is the key to how the tix module is built. If you look at the code in tix.py , you fi nd y

many method defi nitions that look like this example from the Notebook class:

 def raised(self):
 return self.tk.call(self._w, 'raised')

 As you can see, the method is simply a wrapper for a call to the underlying Tix widget (self. _ w) .
If you are familiar with Tcl/Tk and Tix, you can fairly easily extend the existing Python widgets to
utilize some Tcl features that are not otherwise available. An alternative method to call() is eval() ,
which evaluates an input string as a Tcl expression.

 But the integration does not need to stop with GUI widget access. You can pass arbitrary Tcl code
to the eval() method and have it executed by the embedded Tcl interpreter. This could include
importing Tcl modules that provide features that Python does not. Of course, you need to know Tcl
to use this effectively! Here is the basic “Hello World” script that can be run in any command‐line
console using the standard output stream:

 >>> import tkinter
 >>> tcl = tkinter.Tcl()
 >>> tcl.eval('''

http://cython.org/

296 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

 ... puts "Hello world"
 ... ''')
 Hello world
 ''
 >>>

 The section inside triple quotes can be any Tcl script you wish.

 GETTING PHYSICAL

 There has been an upsurge of hobbyists interested in programming physical devices in recent years.
Low‐cost, highly fl exible products such as the Arduino microcontroller card and the RaspberryPi
single board computer (SBC) have become available at very low cost. Python is well suited to
programming such devices, and several libraries exist to assist in the process. Indeed, Python is one
of the recommended languages for the RaspberryPi.

 It is not necessary to spend money on hardware to connect Python to the outside world. Most
computers still have a serial port running the RS232 protocol, and it is possible to connect that to
various peripheral devices and access them using Python. Similarly, the MIDI interface can be used
to access musical instruments, and even the ubiquitous USB interface can be manipulated with the
right modules in place.

 As is the case in any kind of integration, you need to understand both ends of the connection. If you
are not familiar with the physical devices to which you want to connect, you will struggle. The fi rst
step in integrating Python with anything is to fi rst fi nd out how the target device interacts with the
world. Only then will the libraries discussed in the following sections become useful to you.

 Introducing Serial Options
 You can access the RS232 communications port on a computer (or indeed any other serial port,
including old‐style PS‐2 mice or pens) using the serial module made available by the PySerial
project, which has its homepage at http://pyserial.sourceforge.net/ . Comprehensive
documentation and examples are included.

 The module provides support for several OSes including Windows and Linux, as well as Jython
and IronPython. It can be installed from PyPI, or as a Linux package in most distributions, or, for
Windows, as a binary installer. It works with Python versions 2 and 3.

 The PyUSB library is available for USB access. It is written in Python using ctypes under the
covers to access the low‐level code. You can fi nd PyUSB at https://github.com/walac/pyusb .
The website is a tad sparse, but it includes a tutorial with several examples. It is assumed that you
already understand how USB interfaces function.

 PyUSB is available from the GitHub repository, but is easier to install via the PyPI.

 Programming the RaspberryPi
 The RaspberryPi is a single board computer, about the size of a credit card, and sold at very low
cost. It was originally intended to encourage interest in computing technology and programming.

http://pyserial.sourceforge.net/
https://github.com/walac/pyusb

Getting Physical ❘ 297

It has been hugely successful not only in its original objective, but also as a hobbyist tool. Many
owners have capitalized on its small size and built the computer into small physical enclosures for
applications such as weather monitoring, security systems, robotics experiments, and vehicle control.

 The RaspberryPi runs various distributions of Linux, the default being Raspbian Linux. It includes
a full Python distribution, and Python is the recommended language for user programming. Used
in its basic confi guration, it can be treated like any other computer, and indeed, if mounted in a
suitable case with monitor, mouse, and keyboard connected, it functions just like any other Linux‐
powered PC, albeit with modest computing resources. If used as a control system for a custom
project, the programming environment may well involve using some of the peripheral access
techniques, especially PyUSB for access to the built‐in USB ports.

 You can fi nd the RaspberryPi homepage at http://www.raspberrypi.org/ .

 There is a free community online magazine called “The MagPi,” where enthusiasts can share
experiences, tips, and projects. In addition, several books on the subject have been published, as well
as regular conferences and local user groups.

 Talking to the Arduino
 The Arduino products are, in many ways, complementary to the RaspberryPi. Where the
RaspberryPi aims to teach about computing and programming, Arduino is more directly aimed
at the electronics enthusiast. It enables experimentation with interfaces, both analog and digital.
The various microcontroller circuit boards in the Arduino range come in various confi gurations of
inputs and outputs. Typically they include a USB interface, several analog input pins, as well as some
digital I/O pins, thus enabling the user to attach various external devices.

 Accessories are also available to extend the types of devices that can be connected. Also included is
a code library, called Wiring, written in C, that provides access to the various ports. There is an IDE
that helps users write their code and provides a single‐click mechanism to upload it to the board.
The Arduino homepage is at http://www.arduino.cc/. /

 Although the Arduino processor normally has to have a binary application downloaded, it can
also be controlled by connecting the Arduino to a controlling computer, such as a RasberryPi. This
enables Python to be used to send instructions to the Arduino via the USB or serial ports. There is
a library to facilitate this called pyfirmata , which is available from PyPI. There is a web page that
discusses this further, with several examples of what is possible, at http://playground.arduino
.cc/interfacing/python .

 Exploring Other Options
 The popularity of the RaspberryPi and Arduino projects has spawned several competing products.
Many of these are simply low‐cost clones of the other projects, especially the Arduino, but others
are genuine alternatives with a slightly different set of objectives or presentation of the ideas; for
example, creating the smallest board possible. In most cases Python can be used to access the boards
over a serial link or even by a network connection using standard Python modules.

 Your favorite search engine should fi nd many candidates. You should check the nature of the
interfaces provided and how the programming is done. Some Arduino clones require you to

http://www.raspberrypi.org/
http://www.arduino.cc/
http://playground.arduino.cc/interfacing/python
http://playground.arduino.cc/interfacing/python

298 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

program the chip on a genuine Arduino and then transfer it to the clone board for installation in the
fi nal device.

 BUILDING PYTHON

 One area of special interest for Python programmers is Python itself. Python is a very open
architecture with many features that enable the programmer to inspect the internal workings of
the interpreter, as well as the data structures within the program. Being an open source project
means that the development of the language is a community affair and everyone who uses Python
can share in its development. If there is a feature of Python that you think is broken or can be
improved, there is a process for fi xing it. If there is a feature you’d like to add, there is a process for
adding it.

 If you want to get involved in Python development, whether because you have a personal itch to
scratch or just as a way of giving back to the community that gave you Python, you have several
ways to get started. You can fi nd a good introduction to all of the options at https://docs
.python.org/devguide/index.html .

 Fixing Bugs
 Perhaps the most obvious place to start getting involved with Python is in fi xing bugs. The very
act of reporting bugs is a useful contribution, but supplying fi xes is even better. There is an offi cial
bug tracker application, and before submitting a bug you should check whether it has already been
reported, and what, if anything, is being done to fi x it. If it’s a new bug, you can fi ll in a report (and
optionally supply a fi x).

 Once a bug has been reported, the tracker supports a conversational model whereby users can
suggest fi xes, comment on patches, and so on. The bug tracker homepage is at https://docs
.python.org/3/bugs.html .

 Documenting
 In most open source projects, it is easier to get someone to write code than to get someone to write
documentation. Python is no exception. Although the offi cial documentation is quite good for an
open source project, it still has many areas that are sketchy at best and in some cases completely
lacking. (You saw an example of that with the tix module used in Chapter 4 . Several tix widgets
are available that are not described in the offi cial documentation.)

 Volunteering to document some of these darker corners of Python is a worthwhile endeavor, and
one that provides a relatively gentle introduction to open source community. Documentation
issues are reported on the standard Python bug tracker that you can use to submit bug reports and
suggested fi xes. If you want to get more fully involved, you can subscribe to the docs@python.org
mailing list. You can fi nd more specifi c details on the process on this website: https://docs
.python.org/devguide/docquality.html .

 The documentation is actually generated using a purpose‐built document processor called Sphinx.
The Sphinx content is created in reStructuredText (reST), a lightweight markup system similar to

https://docs.python.org/devguide/index.html
https://docs.python.org/3/bugs.html
mailto:docs@python.org
https://docs.python.org/devguide/docquality.html
https://docs.python.org/devguide/index.html
https://docs.python.org/3/bugs.html
https://docs.python.org/devguide/docquality.html

Summary ❘ 299

that used on many wiki-pages. (The Python Docutils project supplies the underlying toolset for
processing reST fi les.) The Sphinx website is at http://sphinx‐doc.org/index.html .

 Testing
 Unless you plan on getting involved in core Python development, the best way to contribute to
testing is to download and use the early beta releases. You can then report bugs found using the bug
tracker as usual.

 Adding Features
 If your itch is not due to a bug but due to a missing or incomplete feature, either in the Python
language itself or in a module, you should consider submitting the idea to the python‐ideas mailing
list. You can sign up to the list at https://mail.python.org/mailman/listinfo/python‐ideas .
The list enables your idea to be discussed by the wider community. If yours is considered a good
idea, you may be invited to submit a Python Enhancement Proposal, or PEP.

 It must be said you have far more chance of getting a module change approved than a core language
feature, but language changes do happen, and if it’s a good idea it is worth trying.

 Attending Conferences
 Another, altogether easier, way of getting involved in the Python community is to attend the various
local user groups and conferences held every year. These afford opportunities to learn about Python
and its infrastructure, hear about successful projects based on Python, and, of course, to present
your own experiences with Python.

 Several major international Python conferences are held annually, as well as some smaller events
either focused on a local area or a special interest group. Details of these are often announced
online, in the various Python mailing lists, and a list is maintained here: https://wiki.python
.org/moin/PythonEvents .

 SUMMARY

 In this chapter you looked at the wider world of Python. In particular, you considered the specialist
areas that are not covered by the standard library but have extensive support from Python in the
wider community.

 You’ve seen how graphics can be produced and manipulated using core Python modules as well as
various third‐party libraries, especially Pillow and ImageMagick.

 Many third‐party libraries are available in the fi eld of science, and the foundation for many of these
is the SciPy bundle of packages and tools. Distributions like Anaconda make installation of these
packages much easier.

 For games programming you discovered that the PyGame package provides low‐level graphics and
multimedia access. Third‐party computational engines also help you to develop realistic game play.

http://sphinx%E2%80%90doc.org/index.html
https://mail.python.org/mailman/listinfo/python%E2%80%90ideas
https://wiki.python.org/moin/PythonEvents
https://wiki.python.org/moin/PythonEvents

300 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

 The video processing and movie world is well served with commercial products using Python.
Blender provides an open source option for you to create your own video masterpiece.

 Python integration with other languages is available in various forms. Jython provides two‐way
integration with Java, and IronPython integrates with Microsoft’s .NET infrastructure as well as the
open source Mono implementation.

 You can get Python talking to the physical world via the serial and USB ports either directly or
via low‐cost microcontroller boards like the Arduino. When combined with small single board
computers like the RasberryPi, you can build compact but powerful projects.

 Finally, you saw how you can get involved in the Python development activities. Whether it be by
fi xing documentation or code or simply by getting involved in the discussions on the community
mailing lists and forums, you can have a share in improving Python.

EXERCISES

1. In the section on SciPy you discovered that there were many more areas of science with Python
libraries available. Pick some areas of science and see what support you can fi nd in the Python
community. (Hint: The Anaconda and Enthought Canopy distributions contain much more than
the basic SciPy bundle of packages.)

2. In the “Going to the Movies” section you saw that commercial (and open source) applications
can be scripted using Python as a macro language. This is not the only area where this is
possible. Research the use of Python as a macro language and produce a list of some popular
applications that can be scripted using Python.

3. Python is used in many other niche areas. Try to identify an area that you have an interest in
and fi nd out what support might be available. (Hint: PyPI has a search facility.)

Summary ❘ 301

▸ WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPT DESCRIPTION

Turtle graphics A graphics technique whereby drawings are produced by moving a virtual
turtle around the drawing surface. The turtle has a pen attached that can be
raised/lowered, its color changed, and its thickness varied. The turtle can
move in a specifi ed direction for a specifi ed distance.

Canvas widget A low‐level drawing widget that supports basic operations such as drawing
lines, polygons, and circles. It can also handle text and image fi les.

Pillow An extension of the older Python Imaging Library (PIL). Pillow is used to
convert and manipulate image fi les.

ImageMagick A command‐line toolset for manipulating and converting image fi les. Many
libraries and modules encapsulate ImageMagick’s capabilities.

SciPy A set of tools for doing scientifi c and numerical analysis in Python. There is an
eponymous SciPy package that provides general‐purpose scientifi c tools, but
the term encompasses a group of other related packages as well.

SciKit A collection of scientifi c and numerical processing modules that generally
relies upon SciPy but is not part of the formal SciPy bundle of packages. SciKit
includes packages covering many fi elds of scientifi c investigation.

NumPy A package within SciPy that provides advanced numerical processing tools.

SymPy A package within SciPy for doing symbolic math.

Pandas A package within SciPy that provides a statistical data analysis toolset.

IPython Interactive Python. A sophisticated replacement for the standard Python
command prompt. It includes a powerful notebook mechanism whereby
individual sessions can be saved and restored.

bioPython A suite of tools used for doing bioscience.

ArcGIS A standard set of tools for doing geographical information processing. ArcPy
provides a Python wrapper around the ArcGIS toolset.

NLTK A set of tools for analyzing natural language text.

PyGame A toolset for creating games in Python. It includes powerful support for
multimedia programming, including graphics and audio as well as interaction
with keyboard, mice, joysticks, and other peripherals.

CGI Computer‐generated imagery (CGI) has become a widely used tool in the
motion picture industry. Python is used in many of the tools used to create and
manage CGI images.

CPython The standard implementation of the Python language interpreter, written in C.

continues

302 ❘ CHAPTER 7 EXPLORING PYTHON’S FRONTIERS

KEY CONCEPT DESCRIPTION

Jython An alternative implementation of the Python interpreter written in Java. This
enables Jython to import Java classes in addition to Python modules. Jython
also features a compiler for turning Python code into Java bytecode that can in
turn be imported by Java programs.

Cython A superset of the Python language that can be compiled into C and from there
into Python modules with enhanced performance.

IronPython An implementation of Python for Microsoft’s .NET platform. This makes it
compatible with any other modules written for .NET (or the open source clone,
Mono).

PySerial A project that provides tools whereby a Python programmer can access the
serial ports of a computer.

PyUSB A project that provides tools whereby a Python programmer can access the
USB devices on a computer.

Sphinx A purpose‐built documentation tool used to create the Python documentation.
The content format is reStructuredText, which is a kind of markup language
supported by the Python Docutils project and toolset.

PEP A Python Enhancement Proposal. This is the formal mechanism for getting
changes into a Python release.

(continued)

 Chapter 1 Solutions
1. How do you convert between the different Python data types? What data quality issues

arise when converting data types?

 You convert between types using the type functions. Thus, to convert a fl oat or string
to an integer, you use the int() type function. To convert an object to a string, you use
the str() type function. And so on.

 When making the conversion, it is possible that you might lose some data in the
process. For example, converting a fl oating‐point number to an integer loses the
decimal part of the number (for example, int(2.3) results in 2). If it’s important to
retain the detail, you must retain a copy of the original as well.

2. Which of the Python collection types can be used as the key in a dictionary? Which of

the Python data types can be used as a value in a dictionary?

 Dictionary keys must be immutable. That means that of the basic Python types,
integers, booleans, fl oats, strings, and tuples can all be used as keys (although fl oats are
not recommended due to their imprecision, especially if you will be computing the key
value rather than just storing it). Other custom types, such as frozenset , can also be
used as keys provided they are immutable.

 Dictionary values can be of any type regardless of mutability.

3. Write an example program using an if/elif chain involving at least four different

selection expressions.

 You could use any number of choices here. This example uses colors. Your if/elif/
else code should look something like the following:

 (red, orange, yellow, green, blue, violet) = range(6)
 color = int(input('Type a number between 1 and 6'))-1
 if color == red:
 print ('You picked red')

 A

304 ❘ APPENDIX A ANSWERS TO EXERCISES

 elif color == orange:
 print ('You picked orange')
 elif color == yellow:
 print ('You picked yellow')
 elif color == green:
 print ('You picked green')
 else:
 print('I don't like your color choice')

4. Write a Python for loop to repeat a message seven times.

 for n in range(7):
 print('Here is a message')

5. How can an infi nite loop be created using a Python while loop? What potential problem

might this cause? How could that issue be resolved?

 An infi nite loop is written using the while True: idiom.

 The problem is that this is an infi nite loop so it never ends. Sometimes that’s what you want,
but often you need to exit if certain conditions occur. In those cases you can use an if check
with a break statement. Here is a short loop that echoes the user input until the user enters
an empty string:

 while True:
 message = input('Enter a message: ')
 if not message: break
 print(message)

6. Write a function that calculates the area of a triangle given the base and height measurements.

 def area_of_triangle(base, height):
 return 0.5 * base * height

7. Write a class that implements a rotating counter from 0 to 9. That is, the counter starts

at 0, increments to 9, resets to 0 again, and repeats that cycle indefi nitely. It should have

increment()and reset()methods, the latter of which returns the current count then sets

the count back to 0.

 class RotatingCounter:
 def __init__(self, start = 0)
 self.counter = 0

 def increment(self):
 self.counter += 1
 if self.counter > 9:
 self.counter = 0
 return self.counter

 def reset(self, value=0):
 current_value = self.counter
 if 0 < value < 9:
 self.counter = value
 else:
 raise ValueError('Value must be between 0 and 9')
 return current_value

Appendix A Answers to Exercises ❘ 305

 Chapter 2 Solutions
1. Explore the os module to see what else you can discover about your computer. Be sure to

read the relevant parts of the Python documentation for the os and stat modules.

 Start the Python interpreter and type the following:

 >>> import os
 >>> os.nice(0) # get relative process priority
 0
 >>> os.nice(1) # change relative priority
 1
 >>> os.times() # process times: system, user etc...
 posix.times_result(user=0.02, system=0.01,
 children_user=0.0, children_system=0.0, elapsed=1398831612.5)
 >>> os.isatty(0) # is the file descriptor arg a tty?(0 = stdin)
 True
 >>> os.isatty(4) # 4 is just an arbitrary test value
 False
 >>> os.getloadavg() # UNIX only ‐ number of processes in queue
 (0.56, 0.49, 0.44)
 >>> os.cpu_count() # New in Python 3.4
 4

 There are many other functions you could try. For example: os.getpriority() ,
os.get_exec_path() , os.strerror() , and so on.

2. Try adding a new function to the file_tree module called find_dirs() that searches

for directories matching a given regular expression. Combine both to create a third function,

find_all(), that searches both fi les and directories.

 See Chapter2.zip solutions/findfiles.py . The findfiles.py module included in the
solutions download provides solutions to all three of the functions in the exercise as well
as a couple of alternatives that you might fi nd useful. The specifi c code for the examples is
reproduced here:

def find_dirs(pattern, base='.'):
 """Finds directories under base based on pattern

 Walks the filesystem starting at base and
 returns a list of directory names matching pattern"""

 regex = re.compile(pattern)
 matches = []
 for root, dirs, files in os.walk(base):
 for d in dirs:
 if regex.match(d):
 matches.append(path.join(root,d))
 return matches

def find_all(pattern, base='.'):
 """Finds files and folders under base based on pattern

 Returns the combined results of find_files and find_dirs"""

306 ❘ APPENDIX A ANSWERS TO EXERCISES

matches = find_dirs(pattern,base)
 matches += find_files(pattern,base)

return matches

3. Create another function, apply_to_files(), that applies a function parameter to all fi les

matching the input pattern. You could, for example, use this function to remove all fi les

matching a pattern, such as *.tmp , like this:

 findfiles.apply_to_files('.*\.tmp', os.remove, 'TreeRoot')

 See Chapter2.zip solutions/findfiles.py as described previously for Exercise 2.

def apply_to_files(pattern, function, base='.'):
''' Apply function to any files matching pattern

 function should take a full file path as an argument
the return value, if any, will be ignored '''

regex = re.compile(pattern)
 errors = []
 for root, dirs, files in os.walk(base):
 for f in files:
 if regex.match(f):
 try: function(path.join(root,f))
 except: errors.append(path.join(root,f))

return errors

4. Write a program that loops over the fi rst 128 characters and displays a message indicat-

ing whether or not the value is a control character (characters with ordinal values between

0x00 and 0x1F, plus 0x7F). Use ctypes to access the standard C library and call the

iscntrl()function to determine if a given character is a control character. Note this is not

one of the built‐in test methods of the string type in Python.

 See Chapter2.zip solutions/Ex2‐4.py . The code for the iscntrl() function is provided
here:

 import ctypes as ct
 # libc = ct.CDLL('libc.so.6') # in Linux
 libc = ct.cdll.msvcrt # in Windows

 for c in range(128):
 print(c, ' is a ctrl char' if libc.iscntrl(c) else 'is not a ctrl char')

 Chapter 3 Solutions
1. To appreciate the work that pickle does for you, try building a simple serialization

function for numbers, called ser_num(). It should accept any valid integer or fl oat number

as an argument and convert it into a byte string. You should also write a function to perform

the reverse operation to read a byte string produced by your ser_num()function and con-

vert it back to a number of the appropriate type. (Hint: You may fi nd the struct module

useful for this exercise.)

Appendix A Answers to Exercises ❘ 307

 Create a fi le containing the following code (located in Exercise3_1.py in the Solutions
folder of the .zip fi le):

import struct

def ser_num(n):
 '''
 ser_num(int|float) ‐> byte string

 convert n to a byte string if it is a float or int.
 ints are stored using their string representation,
 encoded as UTF‐8, since they are arbitrarily long.
 floats are stored as C doubles

 Raise Type error for any other type.'''

 if isinstance(n, int):
 # convert to bytes using str()
 data = bytes('i','utf‐8') + bytes(str(n),'utf‐8')
 elif isinstance(n, float):
 # convert to bytes with struct.pack
 data = bytes('f','utf‐8') + struct.pack('d', n)
 else: raise TypeError('Expecting int or float')
 return data

def get_num(b):
 '''
 get_num(bytes) ‐> int|float

 convert bytestring b to an int of float'''

 flag = str(b[:1],'utf‐8')
 data = b[1:]
 # convert to binary
 if flag == 'i':
 s = str(data, 'utf‐8')
 return int(s)
 elif flag == 'f':
 return struct.unpack("d", data)[0]
 else: raise ValueError('Unrecognised byte string format')

if __name__ == '__main__':
 e = 0.000000000000000001
 i = 1234567
 f = 3.1415926
 bi = ser_num(i)
 bf = ser_num(f)
 i == get_num(bi)
 f‐e <= get_num(bf) <= f+e
 try: be = ser_num('a string')
 except TypeError: print('Type error on string')
 try: d = get_num(b'1234')
 except ValueError: print('Value Error on invalid bytes')

308 ❘ APPENDIX A ANSWERS TO EXERCISES

2. Write a version of the employee database example using shelve instead of SQLite. Populate

the shelf with the sample data and write a function that lists the name of all employees earn-

ing more than a specifi ed amount.

 Create a fi le containing the following code (located in Exercise3_2.py in the Solutions
folder of the .zip fi le):

import shelve

#'ID', 'Name', 'HireDate', 'Grade', 'ManagerID'
employees = [
['1','John Brown', '2006‐02‐23', 'Foreman', ''],
['2','Fred Smith', '2014‐04‐03', 'Laborer', '1'],
['3','Anne Jones', '2009‐06‐17', 'Laborer', '1'],
]

#'Grade','Amount'
salaries = [
['Foreman', 60000],
['Laborer', 30000]
]

def createDB(data, shelfname):
 try:
 shelf = shelve.open(shelfname,'c')
 for datum in data:
 shelf[datum[0]] = datum
 finally:
 shelf.close()

def readDB(shelfname):
 try:
 shelf = shelve.open(shelfname,'r')
 return [shelf[key] for key in shelf]
 finally:
 shelf.close()

def with_salary(n):
 grades = [salary[0] for salary in readDB('salaryshelf') if salary[1] >= n]
 for staff in readDB('employeeshelf'):
 if staff[3] in grades:
 yield staff

def main():
 print('Creating data files...')
 createDB(employees, 'employeeshelf')
 createDB(salaries, 'salaryshelf')

 print('Staff paid more than 30000:')
 for staff in with_salary(30000):
 print(staff[1])
 print('Staff paid more than 50000:')
 for staff in with_salary(50000):
 print(staff[1])

if __name__ == "__main__": main()

Appendix A Answers to Exercises ❘ 309

3. Extend the lendydata.py module to provide CRUD functions for the loan table. Add an

extra function, get_active_loans(), to list those loans that are still active (Hint: That

means the DateReturned fi eld is NULL.)

 Add the following code (located in Exercise3_3.py in the Solutions folder of the .zip
fi le) to the lendydata.py module:

CRUD functions for loans

def insert_loan(item,borrower):
 query = '''
 insert into loan
 (itemID, BorrowerID, DateBorrowed, DateReturned)
 values (?, ?, date(?), date(?))'''

 cursor.execute(query, (item,borrower,'now',''))

def get_loans():
 query = '''
 select id, itemID, BorrowerID, DateBorrowed, DateReturned
 from loan'''
 return cursor.execute(query).fetchall()

def get_active_loans():
 query = '''
 select id, itemID, BorrowerID, DateBorrowed
 from loan
 where DateReturned is NULL'''
 return cursor.execute(query).fetchall()

def get_loan_details(id):
 query = '''
 select itemID, BorrowerID, DateBorrowed, DateReturned
 from loan
 where id = ?'''
 return cursor.execute(query, (id,)).fetchall()[0]

def update_loan(id, itemID=None, BorrowerID=None,
 DateBorrowed=None, DateReturned=None):
 query = '''
 update loan
 set itemID=?,BorrowerID=?,DateBorrowed=date(?),DateReturned=date(?)
 where id = ?'''
 data = get_loan_details(id)
 if not itemID: itemID = data[0]
 if not BorrowerID: BorrowerID = data[1]
 if not DateBorrowed: DateBorrowed = data[2]
 if not DateReturned: DateReturned = data[3]
 cursor.execute(query, (itemID,BorrowerID,DateBorrowed,DateReturned, id))

def delete_loan(id):
 query = '''
 delete from loan
 where id = ?'''
 cursor.execute(query,(id,))

310 ❘ APPENDIX A ANSWERS TO EXERCISES

 You can test it using the following lines in the if __name__ == '__main__' stanza (or you
can import it and use it interactively):

initDB()
print('Testing loans\n\n')
insert_loan(1,3)
print("Loans: ", get_loans())
print("Active Loans: ", get_active_loans())
print('Details of 4:',get_loan_details(4))
update_loan(6,DateReturned='2014‐06‐23')
print('Details of 6:',get_loan_details(6))
delete_loan(6)
print('All:',get_loans())
closeDB()

4. Explore the Python statistics module to see what it offers (only available in Python 3.4 or

later).

 Open a Python 3.4 or later interpreter and type:

 >>> import statistics as stats
 >>> stats.mean(range(6))
 2.5
 >>> stats.median(range(6))
 2.5
 >>> stats.median_low(range(6))
 2
 >>> stats.median_high(range(6))
 3
 >>> stats.median_grouped(range(6))
 2.5
 >>> stats.mode(range(6))
 Traceback (most recent call last):
 File "<pyshell#13>", line 1, in <module>
 stats.mode(range(6))
 File "C:\Python34\lib\statistics.py", line 434, in mode
 'no unique mode; found %d equally common values' % len(table)
 statistics.StatisticsError: no unique mode; found 6 equally common values
 >>> stats.mode(list(range(6))+[3])
 3
 >>> stats.pstdev(list(range(6))+[3])
 1.5907898179514348
 >>> stats.stdev(list(range(6))+[3])
 1.7182493859684491
 >>> stats.pvariance(list(range(6))+[3])
 2.5306122448979593
 >>> stats.variance(list(range(6))+[3])
 2.9523809523809526

Appendix A Answers to Exercises ❘ 311

 Chapter 4 Solutions
1. Convert the oxo‐logic.py module to refl ect OOP design by creating a Game class .

 See the following code (available in the Chapter4.zip fi le, in the Solutions folder as
ex4‐1.py):

 import os, random
 import oxo_data

 class Game():
 def __init__(self):
 self.board = list(" " * 9)

 def save(self, game):
 ' save game to disk '
 oxo_data.saveGame(self.board)

 def restore(self):
 ''' restore previously saved game.
 If game not restored successfully return new game'''
 try:
 self.board = oxo_data.restoreGame()
 if len(self.board) != 9:
 self.board = list(" " * 9)
 return self.board
 except IOError:
 self.board = list(" " * 9)
 return self.board

 def _generateMove(self):
 ''' generate a random cell from those available.
 If all cells are used return -1'''
 options = [i for i in range(len(self.board)) if self.board[i] == " "]
 if options:
 return random.choice(options)
 else: return -1

 def _isWinningMove(self):
 wins = ((0,1,2), (3,4,5), (6,7,8),
 (0,3,6), (1,4,7), (2,5,8),
 (0,4,8), (2,4,6))
 game = self.board
 for a,b,c in wins:
 chars = game[a] + game[b] + game[c]
 if chars == 'XXX' or chars == 'OOO':
 return True
 return False

 def userMove(self,cell):
 if self.board[cell] != ' ':
 raise ValueError('Invalid cell')
 else:
 self.board[cell] = 'X'
 if self._isWinningMove():

312 ❘ APPENDIX A ANSWERS TO EXERCISES

 return 'X'
 else:
 return ""

 def computerMove(self):
 cell = self._generateMove()
 if cell == -1:
 return 'D'
 self.board[cell] = 'O'
 if self._isWinningMove():
 return 'O'
 else:
 return ""

 def test():
 result = ""
 game = Game()
 while not result:
 print(game.board)
 try:
 result = game.userMove(game._generateMove())
 except ValueError:
 print("Oops, that shouldn't happen")
 if not result:
 result = game.computerMove()

 if not result: continue
 elif result == 'D':
 print("Its a draw")
 else:
 print("Winner is:", result)
 print(game.board)

 if __name__ == "__main__":
 test()

2. Explore the Tkinter.filedialog module to get the name of a text fi le from a user and

then display that fi le on screen.

 Create or copy a text fi le into a folder. Change into that folder and start the Python
interpreter. Type the following at the Python interpreter:

 >>> import tkinter.filedialog as fd
 >>> target = fd.askopenfilename()
 >>> for line in open(target):
 ... print(line, end='')
 ...
 <Your chosen file contents should appear here>

3. Replace the label in the fi rst GUI example program with a Tix ScrolledText widget so

that it displays the history of all the entries from the Entry widget.

Appendix A Answers to Exercises ❘ 313

 The solution can be found in the download zip fi le in the Solutions folder as ex4‐3.py . The
code is shown here:

 import tkinter.tix as tk

 # create the event handler to clear the text
 def evClear():
 txt = stHistory.subwidget('text')
 txt.insert('end',eHello.get()+'\n')
 eHello.delete(0, 'end')

 # create the top level window/frame
 top = tk.Tk()
 F = tk.Frame(top)
 F.pack(fill="both")

 # Now the frame with text entry
 fEntry = tk.Frame(F, border=1)
 eHello = tk.Entry(fEntry)
 eHello.pack(side="left")
 stHistory = tk.ScrolledText(fEntry, width=150, height=55)
 stHistory.pack(side="bottom", fill="x")
 fEntry.pack(side="top")

 # Finally the frame with the buttons.
 # We'll sink this one for emphasis
 fButtons = tk.Frame(F, relief="sunken", border=1)
 bClear = tk.Button(fButtons, text="Clear Text", command=evClear)
 bClear.pack(side="left", padx=5, pady=2)
 bQuit = tk.Button(fButtons, text="Quit", command=F.quit)
 bQuit.pack(side="left", padx=5, pady=2)
 fButtons.pack(side="top", fill="x")

 # Now run the eventloop
 F.mainloop()

4. Rewrite the fi rst GUI example to be compatible with gettext and generate a new English

version with different text on the controls.

 The solution, based on Ex4‐3.py , is found in the zip fi le under Solutions as ex4‐4.py and
messages_en.po .

 The code, with changes in bold, is as shown:

 import tkinter.tix as tk

gettext mods
import gettext
import locale
locale.setlocale(locale.LC_ALL,'')
filename="res/messages_{}.mo".format(locale.getlocale()[0][0:2])
trans=gettext.GNUTranslations(open(filename,'rb'))
trans.install()
#######################

314 ❘ APPENDIX A ANSWERS TO EXERCISES

 # create the event handler to clear the text
 def evClear():
 txt = stHistory.subwidget('text')
 txt.insert('end',eHello.get()+'\n')
 eHello.delete(0, 'end')

 # create the top level window/frame
 top = tk.Tk()
 F = tk.Frame(top)
 F.pack(fill="both")

 # Now the frame with text entry
 fEntry = tk.Frame(F, border=1)
 eHello = tk.Entry(fEntry)
 eHello.pack(side="left")
 stHistory = tk.ScrolledText(fEntry, width=150, height=55)
 stHistory.pack(side="bottom", fill="x")
 fEntry.pack(side="top")

 # Finally the frame with the buttons.
 # We'll sink this one for emphasis
 fButtons = tk.Frame(F, relief="sunken", border=1)
 bClear = tk.Button(fButtons, text=_("Clear Text"), command=evClear)
 bClear.pack(side="left", padx=5, pady=2)
 bQuit = tk.Button(fButtons, text=_("Quit") , command=F.quit)
 bQuit.pack(side="left", padx=5, pady=2)
 fButtons.pack(side="top", fill="x")

 # Now run the eventloop
 F.mainloop()

 The edited messages_en.po fi le looks like this:

 # SOME DESCRIPTIVE TITLE.
 # Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
 # This file is distributed under the same license as the PACKAGE package.
 # FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
 #
 #, fuzzy
 msgid ""
 msgstr ""
 "Project-Id-Version: PACKAGE VERSION\n"
 "Report-Msgid-Bugs-To: \n"
 "POT-Creation-Date: 2014-05-16 19:40+0100\n"
 "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
 "Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
 "Language-Team: LANGUAGE <LL@li.org>\n"
 "Language: \n"
 "MIME-Version: 1.0\n"
 "Content‐Type: text/plain; charset=UTF‐8\n "
 "Content-Transfer-Encoding: 8bit\n"

 #: ex4-4.py:34
 msgid "Clear Text"
 msgstr "Move to History"

Appendix A Answers to Exercises ❘ 315

 #: ex4-4.py:36
 msgid "Quit"
 msgstr "Exit"

 Chapter 5 Solutions
1. Consider our code from earlier in this chapter:

 >>>for result in results['results']:
 ... id = result['id']
 ... print(id)
 ... print (result['id'])
 ... details = requests.get(market + id).json()
 ... print (details)
 ... print (details['marketdetails'])
 ... print (details['marketdetails']['GoogleLink'])

 Using what you know about Python, can you fi gure out a way to create a list comprehension

that will do the same thing as the preceding code? Remember that list comprehensions are

constructed like this:

 [expression for item in list if conditional]

 Here is the solution:

 print([requests.get(market + result['id'].json()['marketdetails']['GoogleLink'])
 for result in results['results']])

2. Using what you know so far about how to use fi les in Python, can you save the output of

your call to the USDA’s API to a fi le on your machine, to parse later? (Saving it as a .txt fi le

is fi ne.)

 You can use the list comprehension above to simply write to a fi le as such:

 file = open("markets.txt", "w")
 file.write([requests.get(market +
 result['id'].json()['marketdetails']['GoogleLink'])
 for result in results['results']\n])
 file.close

3. Can you fi nd the docs for Flask that would help us to break our app into smaller, modular-

ized fi les with our endpoints/views in a separate fi le, rather than having one big Python fi le

with everything in it? (Hint: It is one concept/feature that Flask offers.)

 Flask docs can be found at (http://flask.pocoo.org/docs/blueprints/#blueprints).

 Blueprints are how we can separate our app into separate fi les so that we don’t have one
large python fi le with every piece of functionality in it.

4. What other HTTP methods can you fi nd? Can you fi nd ways to use them in a Flask app?

 Depending on how the reader researches the question, they will fi nd there are a few other
HTTP methods; GET, PUT, DELETE, OPTIONS. The second part of this exercise will vary,
but the point is to get the reader reading docs and learning how to fi nd answers, and explore
what is available to them.

http://flask.pocoo.org/docs/blueprints/#blueprints

316 ❘ APPENDIX A ANSWERS TO EXERCISES

5. By reading the Requests docs, can you fi nd the method call needed to output the HTML of a

website by passing the URL to a requests method?

 It’s not pretty, but it’s easy!

 >>> import requests
 >>> r = requests.get("http://www.python.org")
 >>> r.text

Chapter 6 Solutions
1. In the zip fi le for this chapter, open the fi le markets.py and write a doctest string to test the

value being returned by the function in the fi le. Can you think of a reason why a simple doct-

est string in this code could be incredibly useful for maintaining the code in the future?

 Depending on the static data you’ve decided to use, answers will vary, however here is one
example using the ZIP code in the code (you may have changed this):

import requests
results = requests.get("http://search.ams.usda.gov/farmersmarkets/v1/data.svc/
zipSearch?zip=46201").json()
def get_details(results):
 '''
 >>> print(get_details(results))
 http://maps.google.com/?q=39.7776%2C%20‐86.0782%20(%22Irvington+Farmers+
 Market+%22Error! Hyperlink reference not valid.
 '''
 market = "http://search.ams.usda.gov/farmersmarkets/v1/data.svc/mktDetail?id="
 for result in results['results']:
 id = result['id']
 details = requests.get(market+id).json()
 return details['marketdetails']['GoogleLink']

2. Write a unittest for a function that will take a string and return that string reversed. Make

sure the test fails, because you haven’t written the function to test… yet.

 import unittest
 from reverse import rev
 class TestRev(unittest.TestCase):
 def test_rev(self):
 self.assertEqual(rev('robot'), 'tobor')

 '''

3. Write a function for your unittest that takes a string and returns the reverse of that string.

Now, run your unittest against that function and modify the function until it passes.

 #reverse.py
 def rev(chars):
 chars.sort(reverse=True)
 return chars

http://www.python.org

Appendix A Answers to Exercises ❘ 317

 Chapter 7 Solutions
1. In the section on SciPy you discovered that there were many more areas of science with

Python libraries available. Pick some areas of science and see what support you can fi nd in

the Python community. (Hint: The Anaconda and Enthought Canopy distributions contain

much more than the basic SciPy bundle of packages.)

 The Anaconda and Canopy websites list the modules included in their respective
distributions. Here is just a sample of the obviously scientifi c options:

➤ astroid

➤ astropy

➤ biopython

➤ bokeh

➤ geos

➤ libffi

➤ libnetcdf

➤ libsodium

➤ mccab

2. In the “Going to the Movies” section you saw that commercial (and open source) applica-

tions can be scripted using Python as a macro language. This is not the only area where this

is possible. Research the use of Python as a macro language and produce a list of some popu-

lar applications that can be scripted using Python.

 The Python wiki has a page dedicated to this topic. Here is the address: https://wiki
.python.org/moin/AppsWithPythonScripting .

 As you can see, the list encompasses everything from the GIMP image toolkit, to the vim and
emacs editors, to the OpenOffi ce productivity suite. Doubtless there are others not listed on
the wiki-page, but there should be plenty here for you to get going with.

3. Python is used in many other niche areas. Try to identify an area that you have an interest in

and fi nd out what support might be available. (Hint: PyPI has a search facility.)

 One area many people are passionate about is music. Python supports this in various ways
including several audio players, MIDI tools, audio servers, fi le format convertors, and so on.

 However, Python also supports the creation of original music via a piano tutor (The
Turcanator), musical notation editors (Frescobaldi), analysis of sounds (pcsets), and
generation of sounds (Cabel).

 There are many others ranging from easy‐to‐use applications to highly technical APIs for
audio professionals.

https://wiki.python.org/moin/AppsWithPythonScripting
https://wiki.python.org/moin/AppsWithPythonScripting

 The Python standard library contains well over 200 modules, although the exact number
varies between distributions. Not all of these modules are recommended for use by the typical
Python programmer; many have specialized uses associated with the Python internal modules
and are intended mainly for use by developers working on Python itself. And certain other
modules, remnants of older Python versions now superseded by more modern alternatives, are
retained mainly for compatibility with old code.

 This appendix lists all of the standard packages and modules that are recommended for
“normal use” and highlights, in bold, those used or discussed in this book. Modules marked
in the offi cial documentation as deprecated, or intended for use by core developers, as well
as some designed to be development tools, have been omitted from the list. A few minor
clarifi cations to the descriptions have been added. Not all packages have been expanded to
show the individual modules, and in these cases a package‐level description is provided.

a

aifc Read and write audio fi les in AIFF or AIFC format.

argparse Command‐line option and argument-parsing library.

array Space‐effi cient arrays of uniformly typed numeric values.

asynchat Support for asynchronous command/response protocols.

asyncio Asynchronous I/O, event loop, coroutines, and tasks.

asyncore A base class for developing asynchronous socket‐handling services.

atexit Register and execute cleanup functions.

audioop Manipulate raw audio data.

 B

Copyright © 2001-2014 Python Software Foundation; All Rights Reserved.

320 ❘ APPENDIX B PYTHON STANDARD MODULES

b

RFC 3548: Base16, Base32, Base64 Data Encodings; Base85, and ASCII85.

binascii Tools for converting data to and from various ASCII‐encoded binary
representations.

binhex Encode and decode fi les in binhex4 format.

bisect Array bisection algorithms for binary searching.

bz2 Interfaces for bzip2 compression and decompression.

c

calendar Functions for working with calendars, including some emulation of the
UNIX cal(1) program.

cgi Helpers for running Python scripts via the common gateway interface (CGI).

cgitb Confi gurable traceback handler for CGI scripts.

chunk Module to read Interchange File Format (IFF) chunks.

cmath Mathematical functions for complex numbers.

cmd Build line‐oriented command interpreters.

code Facilities to implement read‐eval‐print loops.

codecs Encode and decode data and streams.

collections Container data types.

collections.abc Abstract base classes for containers.

colorsys Conversion functions between RGB and other color systems.

compileall Tools for byte‐compiling all Python source fi les in a directory tree or some
subset thereof.

concurrent Execute computations concurrently using threads or processes.

confi gparser Confi guration fi le parser.

contextlib Utilities for with‐statement contexts.

copy Shallow and deep copy operations.

copyreg Register pickle support functions.

crypt (UNIX) The crypt() function used to check UNIX passwords.

csv Write and read tabular data to and from comma‐delimited data fi les.
(Other delimiters can also be used.)

ctypes A foreign function library for Python.

curses (UNIX) An interface to the curses library, providing portable terminal handling.

Python Standard Modules ❘ 321

 d

datetime Basic date and time types.

dbm Interfaces to various key‐value database formats.

decimal Implementation of the General Decimal Arithmetic Specifi cation.

diffl ib Helper classes and functions for computing differences between objects.

distutils Support for building and installing Python modules into an existing Python
installation.

doctest Test snippets of code appearing within docstrings.

 e

e-mail Package supporting the parsing, manipulating, and generating of e‐mail
messages, including MIME documents.

encodings Package supporting various character encodings.

enum Implementation of an enumeration class.

errno Standard errno system symbols.

 f

fcntl (UNIX) The fcntl() and ioctl() system calls.

fi lecmp Compare fi les effi ciently.

fi leinput Loop over standard input or a list of fi les.

fnmatch UNIX shell–style fi lename pattern matching.

fractions Rational numbers.

ftplib FTP protocol client (requires sockets).

functools Higher‐order functions and operations on callable objects.

 g

Portable reading of passwords and retrieval of the user ID.

gettext Multilingual internationalization services.

glob UNIX shell–style pathname pattern expansion.

grp (UNIX) The group database (getgrnam() and friends).

gzip Interfaces for gzip compression and decompression using fi le objects.

322 ❘ APPENDIX B PYTHON STANDARD MODULES

h

hashlib Secure hash and message digest algorithms.

heapq Heap queue algorithm (aka, priority queue).

hmac Keyed‐Hashing for Message Authentication (HMAC) implementation for
Python.

html.entities Data structures useful for processing HTML.

html.parser A simple parser that can handle HTML and XHTML.

http Package supporting use of HTTP including client, server, and cookie
management.

http.server HTTP server and request handlers.

i

IMAP4 protocol client (requires sockets).

imghdr Determine the type of image contained in a fi le or byte stream.

io Core tools for working with streams.

ipaddress IPv4/IPv6 manipulation library.

itertools Functions creating iterators for effi cient looping.

 j

json Encode and decode the JSON data format.

k

keyword Test whether a given string is a Python keyword.

l

linecache Provides random access to individual lines from text fi les using a cache.

locale Internationalization services.

logging Flexible event logging for applications.

lzma A Python wrapper for the liblzma compression library.

Python Standard Modules ❘ 323

 m

macpath Mac OS 9 path manipulation functions.

mailbox Manipulate mailboxes in various formats.

mailcap Mailcap fi le handling.

math Mathematical functions [sin(), and so on].

mimetypes Mapping of fi lename extensions to MIME types.

mmap Interface to memory‐mapped fi les for UNIX and Windows.

msvcrt (Windows) Miscellaneous useful routines from the MS VC++ run time.

multiprocessing Package for process‐based parallelism.

 n

netrc Loading of .netrc fi les.

nis (UNIX) Interface to Sun’s NIS (Yellow Pages) library.

nntplib NNTP protocol client (requires sockets).

numbers Abstract base classes for numeric types (Complex, Real, Integral, and so on).

 o

operator Functions corresponding to the standard operators (add, subtract, and so
on).

os Miscellaneous operating system interfaces.

 As Chapter 2 makes clear, the os module is one of several modules used to
interact with the OS on Python, and the selection of functions provided is
somewhat arbitrary and inconsistent.

os.path Provides helper functions for manipulating and testing fi le paths.

ossaudiodev (Linux,
FreeBSD)

Access to OSS‐compatible audio devices.

 p

pathlib Provides an object‐oriented model of fi le system paths.

pdb A debugger for interactive Python interpreters.

pickle Convert Python objects to streams of bytes and back.

pipes (UNIX) A Python interface to UNIX shell pipelines.

platform Retrieves as much platform identifying data as possible.

plistlib Generate and parse Mac OS X plist fi les.

324 ❘ APPENDIX B PYTHON STANDARD MODULES

poplib POP3 protocol client (requires sockets).

pprint Pretty prints Python data structures.

profi le Python source code profi ler.

pstats Statistics object for use with the profi ler.

pty (Linux) Handling of pseudo‐terminals for Linux.

pwd (UNIX) The password database [getpwnam() and friends].

 q

queue A queue class suitable for communicating between threads.

quopri Encode and decode fi les using the MIME quoted‐printable encoding.

 r

Generate pseudorandom numbers with various common distributions.

re Regular‐expression operations.

readline (UNIX) GNU readline support for Python.

reprlib An alternate repr() implementation with size limits.

resource (UNIX) An interface to provide resource usage information about the current
process.

 s

sched General‐purpose event scheduler.

select Wait for I/O completion on multiple streams.

selectors High‐level I/O multiplexing.

shelve Python object persistence.

shlex Simple lexical analysis for UNIX shell–like languages.

shutil High‐level fi le operations, including copying.

signal Set handlers for asynchronous events.

smtpd An SMTP server implementation in Python.

smtplib SMTP protocol client (requires sockets).

sndhdr Determine the type of sound fi le.

socket Low‐level networking interface.

socketserver A framework for network servers.

spwd (UNIX) The shadow password database [getspnam() and friends].

sqlite3 A DB‐API 2.0 implementation using SQLite 3.x.

ssl TLS/SSL wrapper for socket objects.

Python Standard Modules ❘ 325

stat Utilities for interpreting the results of f os.stat(), os.lstat() , and
os.fstat() .

statistics Mathematical statistics functions.

string Common string operations.

stringprep String preparation, as per RFC 3453.

struct Read and write binary data in a byte array.

subprocess Subprocess management.

sunau Provide an interface to the Sun AU sound format.

sys Access system‐specifi c parameters and functions.

sysconfi g Python’s confi guration information.

syslog (UNIX) An interface to the UNIX syslog library routines.

 t
tarfi le Read and write tar‐format archive fi les.

telnetlib Telnet client class.

tempfi le Generate temporary fi les and directories.

termios (UNIX) POSIX style TTY control.

textwrap Text wrapping and fi lling.

threading Parallel processing based on threads.

time Time access and conversions.

timeit Measure the execution time of code snippets.

tkinter Interface to Tcl/Tk for graphical user interfaces.

tkinter.messagebox Standard message dialogs.

tkinter.tix Tk Extension Widgets for Tkinter.

tkinter.ttk Tk themed widget set.

tkinter.fi ledialog Variations on standard File dialogs.

tkinter.simpledialog A base class for building custom dialogs.

tty (UNIX) Utility functions that perform common terminal control operations.

turtle An educational framework for developing simple graphics applications.

types Names for Python’s built‐in types.

 u

Access the Unicode database.

unittest Unit testing framework for Python.

urllib Package for processing URLs including requests, responses, errors, and so on.

uu Encode and decode fi le‐like objects to and from uuencode format.

uuid UUID objects (universally unique identifi ers) according to RFC 4122.

326 ❘ APPENDIX B PYTHON STANDARD MODULES

w

warnings Issue warning messages and control their disposition.

wave Provide an interface to the WAV sound format.

weakref Support for weak references and weak dictionaries.

webbrowser Easy‐to‐use controller for web browsers.

win32com.client Third‐party module providing access to the native Win32 API.

winreg (Windows) Provides helper functions and a Key class for manipulating the Windows
registry.

winsound (Windows) Access to the sound‐playing machinery for Windows.

wsgiref Package providing a reference implementation of WSGI along with various
WSGI utility functions and classes.

 x

xdrlib Encoders and decoders for the External Data Representation (XDR).

xml Package containing XML processing modules.

xml.dom Document object model (DOM) API for Python.

xml.minidom Minimal document object model (DOM) implementation.

xml.etree Implementation of the ElementTree API.

Xml.parsers.expat An interface to the Expat non‐validating XML parser.

xml.sax Package containing SAX2 base classes and convenience functions.

xml.sax.handler Base classes for SAX event handlers.

xmlrpc Package providing support for XMLRPC.

Xmlrpc.client Provides helper functions and classes for XML‐RPC client access.

Xmlrpc.server Basic XML‐RPC server implementations.

z

zipfi le Read and write zip‐format archive fi les.

zlib Low‐level interface to compression and decompression routines compatible
with gzip.

 This appendix lists some useful resources for the intermediate‐level Python programmer.
The list does include a few tutorials, but these are either more in‐depth than most beginner’s
tutorials or they cover specifi c topic areas. Many of the links point to user support forums and
mailing lists. Several of the resources were recommended by the Python “Tutor” mailing list
community following a request for suggestions.

ASKING QUESTIONS: MAILING LISTS AND MORE

 Many Python mailing lists are available, covering a wide variety of topics and interest areas.
The Python “Tutor” mailing list is specifi cally targeted at those learning Python and its
standard library along with the fundamentals of programming. The main Python mailing
list is a source of information about all aspects of Python, but is populated by a particularly
Python‐savvy team who may be less tolerant of poorly researched questions. You can fi nd the
offi cial Python mailing lists at https://mail.python.org/mailman/listinfo .

 At the time of writing, almost 200 lists are available; however, many relate to special events
such as conferences or local user groups. Nonetheless, many technical lists are available on the
offi cial site.

 Many third‐party packages also have their own mailing lists or web forums for support and
maintenance. Examples include the wxPython GUI library and the Django web framework.

 The gmane.org website and news server offers access to all the offi cial mailing lists as well as
many other lists. At the time of writing it hosts more than 230 top‐level Python mailing lists,
and many of these have several sublists. All of these are available in web, usenet, and e‐mail
formats. Other related technologies such as SQLite, Tcl/Tk, and the various OSes all have
extensive lists available, too.

 Newsgroups are a legacy from the early pre‐web days of the Internet, but are still heavily used
by professional programmers. They often provide more direct access to a true expert than
some of the more casual web forums. The general Python mailing list is also available on
usenet as news://comp.lang.python .

 C

https://mail.python.org/mailman/listinfo
news://comp.lang.python

328 ❘ APPENDIX C USEFUL PYTHON RESOURCES

 Some people prefer IRC channels because of the immediate response. The problem with that is that
you are limited to whoever is logged on at the same time you are. Using a mailing list, web forum,
or newsgroup, although slightly slower, is more likely to get you a defi nitive solution or answer to
your question.

 Stackoverfl ow (www.stackoverflow.com) is a popular site for asking questions and getting answers.
It contains an archive of previous questions and their answers. Some people complain that the
answers are not always optimal, but that is the nature of the Internet; if you get an answer that
works, it’s better than no answer at all. As always with archives, it’s best to search the archive
before posting a new, duplicate question.

READING BLOGS

 If you don’t have specifi c questions and just want to fi nd out what other Python programmers are
doing or thinking, a blog may be your best bet. Here are a few blog sites with useful material:

➤ Doug Hellman has a long established website at http://pymotw.com/2/contents.html
that features different Python modules on a weekly basis. In addition, he maintains a more
informal but useful blog at http://doughellmann.com/ .

➤ The effbot site is not strictly a blog in the traditional sense, but it contains a miscellany of
useful articles and information from Python stalwart Frederick Lundh and is well worth a
browse. You can fi nd it at http://effbot.org/ .

➤ The fi nal suggestion is not Python specifi c, but a general programming blog. The author has
strong opinions, sometimes controversial, but that just adds to the interest. It is written by
Joel Spolsky and is located at http://www.joelonsoftware.com/index.html .

STUDYING TUTORIALS AND REFERENCES

 Many universities now use Python in their programming courses. This has led to a number of online
courses and tutorials being produced by the universities or their students. Some are basic and aimed
at beginners, but others feature specifi c packages or libraries or teach more advanced techniques.

 The University of Cambridge has several short courses available as PDF fi les. You can fi nd them
linked from this site: http://www.ucs.cam.ac.uk/docs/course‐notes/unix‐courses/
PythonProgIntro .

 You can fi nd other similar courses with the aid of your favorite search engine.

 In addition, several computer companies use Python or encourage programmers to learn about it.
Two well‐known examples are Apple and Google, both of which provide Python courses featuring
multimedia instruction. You can fi nd their courses at the following URLs.

 This one is for iTunes users: https://itunes.apple.com/gb/itunes‐u/hands‐on‐python‐
tutorial‐chapter/id448754574?mt=10 . This is for the Google fans: https://developers
.google.com/edu/python/ .

http://www.stackoverflow.com
http://pymotw.com/2/contents.html
http://doughellmann.com/
http://effbot.org/
http://www.joelonsoftware.com/index.html
http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/PythonProgIntro
https://itunes.apple.com/gb/itunes-u/hands-on-python-tutorial-chapter/id448754574?mt=10
https://itunes.apple.com/gb/itunes-u/hands-on-python-tutorial-chapter/id448754574?mt=10
https://developers.google.com/edu/python/
http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/PythonProgIntro
https://developers.google.com/edu/python/

And Now for Something Completely Different… ❘ 329

 Wikipedia (http://en.wikipedia.org/wiki/Main_Page) is a fantastic resource for technical
information. If you come across computer science terms that you want to understand, Wikipedia is
a great place to try fi rst. It can sometimes be a tad overly technical for beginners, but it usually has
links to gentler tutorials at the bottom of the page.

 Several online books about Python are available, including the following two titles, each of which
focuses on a specifi c area of interest:

➤ Dive Into Python is a beginner’s book, but with a slightly deeper than usual treatment. You
can fi nd it at http://www.diveintopython3.net/ . It is also included in the ActiveState
Windows distribution of Python.

➤ Text Processing in Python is slightly outdated nowadays, but it still contains a lot of useful
material on searching and manipulating textual data in all its many forms. The online version
of the book is available at http://gnosis.cx/TPiP/ .

 WATCHING VIDEOS

 YouTube has several videos on Python. The quality ranges from excellent to poor, as is usually the
case on community‐based sites like YouTube. However, if you learn well from video it’s worth a
browse; you can always hit the stop button if you don’t like what you fi nd. YouTube is, of course,
located at https://www.youtube.com/ .

 ShowMeDo is a web‐based video training site. It offers a mix of free and paid‐for training materials.
The quality is more consistent than YouTube and well worth a browse. Check it out at http://
showmedo.com/ .

 AND NOW FOR SOMETHING COMPLETELY DIFFERENT…

 As a fi nal treat, you can try the Python Challenge. This is a bit like an adventure game for Python
programmers. You start with easy examples, which then become more progressively diffi cult. The
location of the next challenge is revealed by solving the current one. If you fi nd that you are writing
a lot of code for any individual challenge, you are probably going the wrong way about solving it.
The fun starts here: http://www.pythonchallenge.com/ .

http://en.wikipedia.org/wiki/Main_Page
http://www.diveintopython3.net/
http://gnosis.cx/TPiP/
https://www.youtube.com/
http://showmedo.com/
http://showmedo.com/
http://www.pythonchallenge.com/

REFERENCES

 A. Church . (1985). The Calculi of Lambda‐Conversion . Princeton University Press : Princeton,
NJ .

 M. Hammond & A. Robson . (2000). Python Programming On Win32: Help for Windows
Programmers . O’Reilly Media : Sebastopol, CA .

 J. Grayson . (2000). Python and Tkinter Programming . Manning Publications : Shelter Island, g
NY .

 M. Lutz . (2011). Programming Python . O’Reilly Media : Sebastopol, CA .

 N. Rappin & R. Dunn . (2006). WxPython in Action . Manning Publications : Shelter Island,
NY .

333

INDEX

Symbols & numbers

== (double equal), variable equality and, 3
; (semi-colon), in statements, 16
3-tuple, 69

A

accumulate() function, 122, 125
add_cascade() function, 187
aifc module, 291, 319
all() function, 7
analyzing data

built-in features and, 116–119
itertools module, 119–124

animation, 292
answers to exercises, 303–317
any() function, 7
APIs (application programming interfaces)
ctypes module and, 93–97
JSON, 230–231
pywin32 module and, 93–97
third-party, 231–234
web, 230–234
Windows, access, 96–97

application libraries, 96–97
application state, storage, 212
applications

architecture, 162
command line interfaces

arguments, 175–176
cmd module, 173–175
core logic layer, 165–169

data layer, 164–165
dialogs, 177–181

Flask framework, 239–247
server-based, web services, 99–100
structure, 162–163
user interface, 169–173

application-specifi c data, storage, 210–211
Arduino products, 297
argparse module, 176, 319
ArgumentParser, 176
argument-parsing library, 319
arguments, command line interfaces, 175–176
array module, 319
ASCII characters, 217
askyesno dialog, 179
asynchat module, 319
asyncio module, 319
asyncore module, 319
atexit module, 319
atof() function, 215
atoi() function, 215
audience for book, xxiv
audio, 293
audioop module, 319
AUTOINCREMENT keyword, 134–135
automation, multiple applications and

data fi les, 98
GUI robotics, 100
native code APIs, 100
operating system utilities, 98
server-based, 99–100
subprocesses, 99
third-party modules, 99

334

base64 module – Cmd class

B

base64 module, 320
basicConfig() function, 213
bin() function, 61
binary mappings, umask, 51
binascii module, 320
bind() function, 205
binhex module, 320
bioscience with Python, 290
bisect module, 320
blocks, 16–17

try-except, 273
blogs, 328
book audience, xxiv
bool data type, 5–6
Bottle framework, 248
break statement, 18
bug fi xing, 298
buttons, 182
byref() function, 95
byte data type, 8
bytearray data type, 8
bz2 module, 320

C

C library, 94–95
calculateAverage() function, 93
Calendar class, 76
calendar module, 76, 320
callable data types, 4
canvas, 182
Canvas class, 286
canvas object, 286
cardinality, 126
cgi module, 320
cgitb module, 320
cgkit package, 292
chain() function, 120
character() function, 89
character() method, 88
Chrome Developer Tools, 228–230
chunk module, 320
Circle class, 30

class keyword, 28
class libraries, 181
classes

Calendar, 76
Canvas, 286
Circle, 30
Cmd, 173–175
ContentHandler, 88
context manager classes, 21
creating, 24
datetime, 80
datetime module, 75
defaultdict, 12
defi ning, 28–32
defi nitions, module fi les, 16
Exception, 20, 274–275
exception classes, 20
Game, 169
HTMLParser, 90
io.IOBase, 23
namedtuple, 10
Notebook, 295
objects, 28
OptionsDialog, 204
OrderedDict, 12
pickle module, 110
Popen, 55, 58
properties, creating, 30–32
saxContentHandler, 90
Sequence, 290
super-classes, 24
TCPHandler, 250, 251
TestCase, 263
TestClass, 276
ToolHireHandler, 88–89
unittest, 263

client-server databases, 154–155
client-server relationship, 226
CLIs (command line interfaces), 98

subprocess automation, 99
close() method, 23
closeDB() function, 151
cloud computing, 155–156
cmath module, 288, 320
Cmd class, 173–175

335

cmd module – data, plotting

cmd module, 320
command line interface, 173–175

Cocoa, 209
code module, 320
code points (Unicode), 216
codecs module, 320
collection types, 6–7

byte, 8
bytearray, 8
dictionaries, 12–13
lists, 10–11
sets, 13–15
strings, 7–8

literal, 8–9
operations, 9–10

tuples, 10
collections

indexing, 6–7
slicing, 7

collections module, 6, 288, 320
collections.abc module, 320
colorsys module, 320
COM objects, 96–97
command line interfaces

arguments, reading, 175–176
cmd module, 173–175
core logic layer, 165–169
data layer, 164–165
dialogs, tkinter message boxes, 177–179

commands
CREATE, 128–129
DROP TABLE, 138
INSERT, 129–130
SELECT, 130–133

comments, 16–17
compileall module, 320
compress() function, 121
concurrent module, 320
conferences, 299
Confi g fi les, 83–86
configparser module, 84–85, 320
confi guration data, storage, 211–212
connections, XML-RPC, 249–250
constructors, Popen, 58
containment tree, 183

ContentHandler class, 88
context management, 21
context manager classes, 21
contextlib module, 320
continue statement, 18
contract programming, doctest and, 258
control structures, 15–16

blocks, 16–17
comments, 16–17
context management, 21
exception handling, 20–21
execution path, 17–18
iteration, 18–20
sequences, 16–17

controls, 182
conventions used in book, xxv–xxvi
copy module, 320
copying, fi les, 64–66
copyreg module, 320
core logic layer, 162–163, 165–169
count() function, 119
CPython, 2
CREATE command, 128–129
createDB() function, 108, 115
CRUD, 104
crypt module, 320
CSV (comma-separated value) format,

76–77
label lines, 82–83
writing to fi les, 79–80

csv module, 77–83, 320
csv.reader object, 78
ctypes library, 320
ctypes module, 93–94, 320

operating system library access, 94–96
curses library, 320
curses module, 320
cursor.execute() method, 151
cycle() function, 120
Cython, 294–295

D

Dabo, 209
data, plotting, 287

336

data analysis – dialogs

data analysis
built-in features and, 116–119
cloud computing, 155–156
itertools module, 119–124

data fi les, automation and, 98
data layer, 163

command line interfaces, 164–165
data persistence, 103

DBM
as persistent dictionary, 104–109
pickle module, 109–111
shelve module, 111–116

data storage, 104
DBM as persistent dictionary, 104–109

pickle module, 109–111
shelve module, 111–116

local data, 210
application state, 212
application-specifi c data, 210–211
confi guration data, 211–212
error information logs, 212–214
user-selected preferences, 211–212

data types, 3–4
bool, 5–6
callable, 4
collections, 6–7

byte, 8
bytearray, 8
dictionaries, 12–13
lists, 10–11
sets, 13–15
strings, 7–10
tuples, 10

group types, 4
immutable, 4
mutable, 4
None, 6
numeric

fl oat, 5
int, 4–5

tuples, 10
databases. See also relational databases

client-server, 154–155
fl at-fi le, 127
hierarchical, 127

inserting data, 129–130
modifying data, 133
network, 127
NoSQL, 155
reading data, 130–133
tables, creating, 128–129

dates and times, 72
calendar module, 76
datetime module, 75
formatting, 73–74
time module, 74–75

datetime class, 80
datetime module, 75, 321
DBM (database management), as persistent

dictionary, 104–109
pickle module, 109–111
shelve module, 111–116

DBM library, 104–108
dbm module, 321
DDL (data defi nition language), 127
debugging, 267–268

fi xing bugs, 298
pdb module, 268–272

decimal module, 321
decode() function, 108
def keyword, 24, 44
defaultdict class, 12
defi ning

classes, 28–32
functions, 24–25
objects, 28–32

deleting fi les, 64–66
desktop applications, 161–162. See also applications
devices

Arduino products, 297
information about, 60–62
RaspberryPi, 296–297
serial options, 296

DevTools (Chrome), 228–230
dialogs, 183

askyesno, 179
fi le-open, 96–97
message box, 196
showinfo, 179, 193
tkinter message boxes, 177–179

337

f fdict () function – Flask framework

dict() function, 12–13
dictionaries, 12–13

DBM as persistent dictionary, 104–109
difflib module, 321
dir() function, 3
directories, accessing, 63
directory tree, 69–71
Dispatch() function, 97
distutils module, 321
Dive Into Python, 329
Django framework, 248
DML (data manipulation language), 127
doctest module, 258, 321

interpreter prompt, 259
doctest tests, 258

contract programming and, 258
creating, 259–262
executing, 259–262

documentation, 298–299
doFileSave() function, 180
downloads, source code, xxvi–xxvii
DROP TABLE command, 138
dropwhile() function, 122
dump() function, 110

E

effbot.org, 328
ElementTree parser, 91–93
else statement, 20–21
email module, 321
encode() function, 217
encodings module, 321
endElement() function, 88, 89
entity-relationship diagrams, 126
enum module, 321
enumerate() function, 171
errata, xxvii
errno module, 321
error information logs, 212–214
evClick code, 190
event-based programming, 180
evPage() handler, 205
example package creation, 36–39
except statement, 20–21

Exception class, 20, 274–275
exception classes, 20
exception handling, 20–21, 272

custom exceptions, 274–276
try-except block, 273

execution paths, 17–18
exercise answers, 303–317
expressions, generator expressions, 19
external programs, 56–57

F

failIf() function, 263
fcntl module, 321
feature additions, 299
fi elds, SQLite, 135–136
fi le formats, CSV (comma-separated value), 76–77
File Open dialogs, 96–97
filecmp module, 321
FileDialog() function, 97
FileDialog() method, 97
fi le-fi nder, 70–71
fileinput module, 321
fi les, information about, 60–62
fi lesystem

Confi g fi les, 83–86
copying fi les, 64–66
deleting fi les, 64–66
directories, accessing, 63
directory tree, 69–71
fi le-fi nder, 70–71
HTML fi les, parsing, 89–93
moving fi les, 64–66
navigating, 63
pathlib module, 62
paths, 67–69
reading, 63
wildcards, 64–66
XML fi les, parsing, 86–89

filterfalse() function, 125
finally statement, 20–21
Flask framework, 237–238, 248

app creation, 239–247
data models, 238–239
MVC architecture, 238

338

Flask library – ffunctions

Flask library, 237
fl at-fi le databases, 127
float data type, 5
fnmatch module, 321
focus, 183
for loop, 19
foreign keys, 139
format() function, 22, 215
format_string() function, 215
fractions module, 321
frames, 182
frameworks

Bottle, 248
Django, 248
Flask, 237–238, 248

app creation, 239–247
data models, 238–239

Pyramid, 248
ftplib module, 321
functions

accumulate(), 122, 125
add_cascade(), 187
all(), 7
any(), 7
atof(), 215
atoi(), 215
basicConfi g(), 213
bin(), 61
bind(), 205
byref(), 95
calculateAverage(), 93
chain(), 120
character(), 88, 89
close(), 23
closeDB(), 151
compress(), 121
count(), 119
createDB(), 108, 115
creating, 25–26
cursor.execute(), 151
cycle(), 120
decode(), 108
defi ning, 24–25
dict(), 12–13

dir(), 3
Dispatch(), 97
doFileSave(), 180
dropwhile(), 122
dump(), 110
encode(), 217
endElement(), 88, 89
enumerate(), 171
failIf(), 263
FileDialog(), 97
fi lterfalse(), 125
foreign, library, 320
format(), 22, 215
format_string(), 215
generator functions, 20, 26–27
get_db(), 242
get_items, 242
_getPath(), 165
globals(), 271
glob.glob(), 65
groupby(), 122–123
handle_data(), 90
handle_endtag(), 90
handle_starttag(), 90
help(), 3, 8, 71
__init__(), 28–29
initDB(), 151
input(), 21, 22
isleap(), 76
islice(), 121, 125
.json(), 232
lambda, 27–28
len(), 6
list(), 11
listbits(), 41
load(), 110
locals(), 271
localtime(), 61
mainloop(), 186
odds(), 27
os.getcwd(), 54
os.getpwnam(), 50
os.get_terminal_size(), 52–53
os.getuid(), 50

339

ffunctools module – grp module

os.listdir(), 61
os.mkdir(), 63–64
os.name(), 52–53
os.remove(), 66
os.rmdir(), 66
os.startfi le(), 57
os.state(), 61
os.umask(), 50
os.walk(), 69–70
pack(), 185
parse(), 93
parse_ text(), 87
parseDates(), 93
prcal(), 76
print(), 21–22
prmonth(), 76
pwd.getpwall(), 50
range(), 119
read(), 23
readDB(), 108, 115
readline(), 23
readlines(), 23
reduce(), 122
repeat(), 119
route(), 242
set(), 13–15
setlocale(), 214
setRadius(), 30–32
set_trace(), 269
shutil.copy(), 65
shutil.copytree(), 65
shutil.rmtree(), 65
sleep(), 74–75
sorted(), 7
split(), 76–77
startDocument(), 88
startElement(), 88, 89
str(), 215
strftime(), 72–74, 215
strptime(), 72–74, 93
sub.call(), 56–57
subprocess.call(), 55–59
subwidget(), 196
sum(), 119

tag_confi gure(), 196
takewhile(), 122
time.time(), 74
using, 25–26
what(), 287
withdraw(), 178
write(), 24
writelines(), 24
writer.writerow(), 79

functools module, 321

G

Game class, 169
gaming

PyGame, 291
Pyganim, 291

generator expressions, 19
generator functions, 20, 26–27
geometry, 183
GET method, 227
get_db() function, 242
get_items function, 242
getpass module, 321
_getPath() function, 165
gettext module, 214, 218–220, 321
gevent, 253
GIS (Geographic Information Systems),

290
glob module, 321
globals() function, 271
glob.glob() function, 65
glyphs, 216
gmane.org, 327
graphics

canvas objects, 286
data, plotting, 287
ImageMagick, 287–288
imghdr module, 287
Pillow, 287
turtle graphics, 286

group types, 4
groupby() function, 122–123
grp module, 321

340

h l fGUIs (graphical user interfaces) – iteration

GUIs (graphical user interfaces)
containment tree, 183
event-based programming, 180
robotics, automation and, 100
terms, 182–183
Tkinter, 180

building, 184–186
tic-tac-toe GUI, 186–194

toolkits, 206–207
Cocoa, 209
Dabo, 209
PyGTK, 208–209
PyQt, 207–208
PyWin32, 209
wxPython, 207

gzip module, 321

H

-h argument, 175
handle_data() function, 90
handle_endtag() function, 90
handle_starttag() function, 90
handling exceptions, 20–21, 272

custom exceptions, 274–276
try-except block, 273

hashlib module, 322
heapq module, 322
Hellman, Doug, 328
help() function, 3, 8, 71
--help argument, 175
hierarchical databases, 127
hmac module, 322
HTML (Hypertext Markup Language),

227–230
parsing fi les, 89–93

html.entities module, 322
HTMLParser class, 90
html.parser module, 89–93,

322
HTTP (HyperText Transfer Protocol),

227–230
GET method, 227
headers, 228

modules
Flask framework, 237–247
server creation, 235–237

POST method, 227
http module, 322
http.client library, 250
http.server, 235–237
http.server library, 250
http.server module, 322
Hyde, 248

I

if/elif/else construct, 17–18
Image object, 287
ImageMagick, 287–288, 292–293
imaplib module, 322
imghdr module, 287, 322
immutable data types, 4
import keyword, 33–34
in keyword, 139
indexing collections, 6–7
__init__() function, 28–29
initDB() function, 151
initializers, superclass, 89
input() function, 21, 22
input/output

text fi les, 23–24
user interactions, 21–23

INSERT command, 129–130
int data type, 4–5
interacting with users, 21–23
internationalization, 214
intersection tables, 140
io module, 322
io.IOBase class, 23
ipaddress library, 322
ipaddress module, 322
IPython package, 289
IronPython, 2, 294
is operator, 3
isleap() function, 76
islice() function, 121, 125
iteration, 18–20

341

itertools module – lists

itertools module, 119–124, 322
LendyDB analysis, 124–125

J

JSON (Javascript Object Notation), APIs,
230–231

.json() function, 232
json module, 322
Jython, 2, 293–294

K

keyword module, 322
keywords
in, 139
with, 21
AUTOINCREMENT, 134–135
class, 28
def, 24, 44
import, 33–34
lambda, 44
return, 24, 26
yield, 26

L

label lines, CSV fi les, 82–83
labels, 182
lambda functions, 27–28
lambda keyword, 44
languages

CPython, 2
Cython, 294–295
IronPython, 2, 294
Jython, 2, 293–294
Natural Language Toolkit, 290
Tcl/Tk toolkit, 295–296
Tix toolkit, 295–296

layered architecture, 162
core logic layer, 162–163
data layer, 163

layout, 183
len() function, 6

lending library, 108, 199–206
LendyDB

analysis, 116–119
creating, 106–108
itertools and, 124–125
migration to SQL database,

143–145
SQL database

API creation, 148–154
creation, 145–146
test data insertion, 146–148

storage, 113–115
Tkinter and, 199–206

libraries
application, accessing, 96–97
argument-parsing, 319
C, 94–95
class, 181
ctypes, 320
curses, 320
DBM, 104–108
Flask, 237
foreign functions, 320
http.client, 250
http.server, 250
ipaddress, 322
lending, 108, 199–206
lzma, 322
modules, 48
nis, 323
operating system, 94–96
PIL (Python Imaging Library), 287
plotting, 287
PyUSB, 296
Requests, 231–234
SQLite, 143
standard, 35
syslog routines, 325
Wiring, 297

linecache module, 322
list() function, 11
listbits() function, 41
lists, 10–11

operations, 11

342

literal strings – modules

literal strings, 8–9
special characters, 8

load() function, 110
local data, storage, 210

application state, 212
application-specifi c data, 210–211
confi guration data, 211–212
error information logs, 212–214
user-selected preferences, 211–212

locale module, 322
locales, 214

localization and, 214–215
localization, 214
gettext, 218–220
locales, 214–215
Unicode, 216–218

locals() function, 271
localtime() function, 61
logging module, 322
logging package, 213
logs, error information, 212–214
loops

for, 19
while, 18

lzma libraries, 322
lzma module, 322

M

macpath module, 323
mailbox module, 323
mailcap module, 323
mailing lists, 327–328
mainloop() function, 186
many-to-many relationships,

140–143
mapping tables, 140
math module, 288, 323
matplotlib, 287
Matplotlib package, 289
menus, 182, 187–188
message box dialogs, 196
message boxes, 183
messagebox submodule, 179

methods. See functions
overriding, 30

middleware, 226
mimetypes module, 323
mmap module, 323
modeling, 292
modules
aifc, 291, 319
argparse, 176, 319
array, 319
asynchat, 319
asyncio, 319
asyncore, 319
atexit, 319
audioop, 319
base64, 320
binascii, 320
binhex, 320
bisect, 320
bz2, 320
calendar, 76, 320
cgi, 320
cgitb, 320
chunk, 320
class defi nitions, 16
cmath, 288, 320
cmd, 320
code, 320
codecs, 320
collections, 288, 320
collections.abc, 320
colorsys, 320
compileall, 320
concurrent, 320
confi gparser, 84–85, 320
contextlib, 320
copy, 320
copyreg, 320
creating, 33–34
crypt, 320
csv, 77–83, 320
ctypes, 93–94, 320
curses, 320
datetime, 75, 321

343

modules – modules

dbm, 321
decimal, 321
diffl ib, 321
distutils, 321
doctest, 258, 321
email, 321
encodings, 321
enum, 321
errno, 321
fcntl, 321
fi lecmp, 321
fi leinput, 321
fnmatch, 321
fractions, 321
ftplib, 321
functools, 321
getpass, 321
gettext, 214, 321
glob, 321
grp, 321
gzip, 321
hashlib, 322
heapq, 322
hmac, 322
html.entities, 322
html.parser, 89–93, 322
http, 322
http.server, 322
imaplib, 322
imghdr, 287, 322
io, 322
ipaddress, 322
itertools, 119–124, 322
json, 322
keyword, 322
libraries, 48
linecache, 322
literal strings, 8
locale, 322
logging, 322
lzma, 322
macpath, 323
mailbox, 323
mailcap, 323

math, 288, 323
mimetypes, 323
mmap, 323
msvcrt, 323
multiprocessing, 323
netrc, 323
nis, 323
nntplib, 323
numbers, 323
operator, 323
os, 323
os.path, 67–69, 323
ossaudiodev, 323
oxo_logic, 174
oxo_ui, 174
pathlib, 62, 323
pdb, 268–272, 323
pickle, 109–111, 323
pipes, 323
platform, 323
plistlib, 323
poplib, 324
pprint, 324
profi le, 324
pstats, 324
pty, 324
pwd, 324
queue, 324
quopri, 324
random, 324
re, 324
readline, 324
reprlib, 324
resource, 324
sched, 324
select, 324
selectors, 324
shelve, 111–116, 324
shlex, 324
shutil, 66, 324
signal, 324
smtpd, 324
sndhdr, 324
socket, 324

344

modules (continued) – NoSQL databases

modules (continued)
socketserver, 324
spwd, 324
sqlite, 324
ssl, 324
stat, 325
statistics, 288, 325
string, 325
stringprep, 325
struct, 325
subprocess, 55–60, 325
sunau, 291, 325
sysconfi g, 325
syslog, 325
tarfi le, 325
telnetlib, 325
tempfi le, 325
termios, 325
textwrap, 325
third-party, automation and, 99
threading, 325
time, 61, 72–75, 325
timeit, 325
tix, 194–198
tkinter, 325
tkinter.fi ledialog, 325
tkinter.messagebox, 177–179, 325

messagebox submodule,
179

tkinter.simpledialog, 325
tkinter.tix, 325
tkinter.ttk, 325
ttk, 198–199
tty, 325
turtle, 325
types, 325
unicodedata, 325
unittest, 264–266, 325
urllib, 325
uu, 325
uuid, 325
warnings, 326
wave, 291, 326
weakref, 326

webbrowser, 326
win32com.client, 326
winreg, 326
winsound, 326
wsgiref, 326
xdrlib, 326
xml, 326
xml.dom, 326
xml.etree, 326
xml.minidom, 326
xml.parsers.expat, 326
xmlrpc, 326
Xmlrpc.client, 326
Xmlrpc.server, 326
xml.sax, 326
xml.sax.handler, 326
zipfi le, 326
zlib, 326

movies, cgkit package, 292
moving fi les, 64–66
msvcrt library, 95
msvcrt module, 323
multiprocessing module, 323
mutable data types, 4
MVC (Model View Controller), 163,

226
Mynt, 248

N

-n argument, 175, 176
namedtuple class, 10
namespace packages, 36
Natural Language ToolKit, 290
nested select statement (SQL), 137
netrc module, 323
network databases, 127
--new argument, 175, 176
Nikola, 248
nis library, 323
nis module, 323
nntplib module, 323
None type, 6
NoSQL databases, 155

345

Notebook class – persistence

Notebook class, 295
NUKE products, 292
numbers module, 323
NumPy package, 288–289

O

objects
canvas, 286
classes, 28
defi ning, 28–32
Image, 287

odds() function, 27
operating system, 48–49

automation and, 98
current process, 53–55
device information, 60–62
fi le information, 60–62
fi lesystem, 62–68
library access, 94–96
program management, 55–58
user identifi cation, 49–50

operator module, 323
operators

dictionaries, 13
is, 3
lists, 11
set modifi ers, 15
sets, 14
string operations, 10

OptionsDialog class, 204
OrderedDict classes, 12
os module, 48–59, 323
os.environ dictionary, 53
os.getcwd() function, 54
os.getpwnam() function, 50
os.get_terminal_size() function, 52–53
os.getuid() function, 50
os.listdir() function, 61
os.mkdir() function, 63–64
os.name() function, 52–53
os.path module, 49, 67–69, 323
os.remove() function, 66
os.rmdir() function, 66

ossaudiodev module, 323
os.startfi le() function, 57
os.state() function, 61
os.umask() function, 50
os.walk() function, 69–70
oxo_logic module, 174
oxo_ui module, 174

P

P2P, forums, xxvii–xxviii
pack() function, 185
packages, 34–36

cgkit, 292
creating, 39–42
example, creating, 36–39
IPython, 289
logging, 213
namespace, 36
Pandas, 289
PyPI (Python Package Index), 42–43
releasing, 280–282
SymPy, 289
third-party, 42–43
wand, 287–288

Pandas package, 289
parent-child, widgets, 183
parse() function, 93
parse_ text() function, 87
parseDates() function, 93
parsing

HTML fi les, 89–93
XML fi les, 86–89

ElementTree, 91–93
pathlib module, 62, 323
paths, 67–69
pdb module, 268–272, 323
Pelican, 248
PEP8 style guide, 34
persistence, 103

DBM
as persistent dictionary, 104–109
pickle module, 109–111
shelve module, 111–116

346

pexpect – Requests library

pexpect, 99
photographs, 292–293
physical devices, 296–298
pickle module, 109–111, 323
PIL (Python Imaging Library), 287
Pillow, 287, 292–293
pip, 281
pipes, 58–59
pipes module, 323
pips, 43
platform module, 323
plistlib module, 323
plotting data, 287
plotting library, 287
Popen class, 55, 58
Popen constructor, 58
poplib module, 324
portions, namespace packages, 36
POST method, 227
pprint module, 324
prcal() function, 76
preferences, user-selected, storage,

211–212
primary key, 126
print() function, 21–22
prmonth() function, 76
process environment, 53–55
profile module, 324
program management, 55–58
programs, external, 56–57
properties, 28

creating, 30–32
pstats module, 324
pty module, 324
pwd module, 324
pwd.getpwall() function, 50
PyGame, 291
Pyganim, 291
PyGTK, 208–209
PyPI (Python Package Index),

42–43
pip and, 281

PyQt, 207–208
Pyramid framework, 248

Python, versions, 2
python, 2
Python Challenge, 329
PyUSB library, 296
PyWin32, 209

Q

queue module, 324
quopri module, 324

R

-r argument, 175, 176
random module, 324
range() function, 119
RaspberryPi, 296–297
re module, 324
read() function, 23
readDB() function, 108, 115
readline() function, 23
readline module, 324
readlines() function, 23
reduce() function, 122
references for study, 328–329
relational databases, 126

cardinality, 126
entity-relationship diagrams, 126
fi elds, 126
foreign keys, 139
linking data, 134–140
many-to-many relationships, 140–143
nested select statement, 137
primary key, 126
records, 126
relationship constraints, 136–140
tables, 126

intersection tables, 140
mapping tables, 140

remote running. See XML-RPC (XML-Remote
Procedure Call)

repeat() function, 119
reprlib module, 324
Requests library, 231–234

347

frequirements for using book – SQL (Structured Query Language)

requirements for using book, xxv
requirements.txt fi le, 279–280
--res argument, 175, 176
resource module, 324
resources

blogs, 328
mailing lists, 327–328
study tutorials and references, 328–329
YouTube videos, 329

REST (Representational State Transfer), 224
--restore argument, 175, 176
return keyword, 24, 26
route() function, 242
row_dates list, 93
RPy, 156–157

S

sax parser, 86–87
saxContentHandler class, 90
sched module, 324
scientifi c computing, 288

bioscience, 290
GIS (Geographic Information Systems), 290
SciPy, 288–289

SciPy, 288–289
scripting, 48
SDL (Simple DirectMedia Layer), 291
SELECT command, 130–133
select module, 324
selectors module, 324
Sequence class, 290
sequences, 4, 16–17

diagram, command line interface, 166
serial devices, 296
server-based applications, web services, 99–100
set() function, 13–15
setlocale() function, 214
setRadius() function, 30–32
sets, 13–15
set_trace() function, 269
shells, 58
shelve module, 111–116, 324
shlex module, 324

showinfo dialog, 193
showinfo dialogs, 179
shutil module, 324

documentation, 66
shutil.copy() function, 65
shutil.copytree() function, 65
shutil.rmtree() function, 65
signal module, 324
sleep() function, 74–75
slicing in collections, 7
slots, 28
Smalltalk 80, 163
smtpd module, 324
sndhdr module, 324
socket module, 324
socket servers, 250–253
socketserver module, 324
sorted() function, 7
source code, downloads, xxvi–xxvii
special characters, 8
split() method, 76–77
Spolsky, Joel, 328
spwd module, 324
SQL (Structured Query Language),

125–126
CREATE command, 128–129
DDL (data defi nition language), 127
DML (data manipulation language), 127
DROP TABLE command, 138
INSERT command, 129–130
inserting data, 129–130
LendyDB database

API creation, 148–154
creation, 145–146
test data, 146–148

many-to-many relationships, 140–143
modifying data, 133
nested select statement, 137
queries, 127
reading data, 130–133
relational databases, 126
relationships, constraints, 136–140
SELECT command, 130–133
SQLite, fi eld types, 135–136

348

SQL (Structured Query Language) (continued) – h h f lThe Python Reference Manual

SQL (Structured Query Language) (continued)
tables

creating, 128–129
linking data, 134–140

UNIQUE constraint, 135
SQLite library, 143
sqlite module, 324
ssl module, 324
standard library, 35
startDocument() function, 88
startElement() function, 88, 89
stat module, 325
statements

; (semi-colon) in, 16
break, 18
continue, 18
else, 20–21
except, 20–21
fi nally, 20–21
try, 20–21
yield, 26

static site generators, 248
statistics module, 288, 325
stdin, 21
stdin/stdout, subprocess.Popen, 59–60
stdout, 21
storage, 104

DBM as persistent dictionary, 104–109
pickle module, 109–111

local data, 210
application state, 212
application-specifi c data, 210–211
confi guration data, 211–212
error information logs, 212–214
user-selected preferences, 211–212

str() function, 215
strftime() function, 72–74, 215
string module, 325
stringprep module, 325
strings, 7–8

delimiting, 8
literal, 8–9
operations, 9–10

strptime() function, 72–74, 93

struct module, 325
study tutorials and references, 328–329
sub.call() function, 56–57
subprocess module, 55–60, 325
subprocess.call() function, 55–59
subprocesses, automation and, 99
subprocess.Popen, 59–60
subwidget() function, 196
sum() function, 119
sunau module, 291, 325
superclass initializer, 89
super-classes, 24
SymPy package, 289
sysconfig module, 325
syslog module, 325

T

tables (databases)
creating, 128–129
intersection tables, 140
linking data, 134–140
mapping tables, 140

tag_confi gure() function, 196
takewhile() function, 122
tarfile module, 325
Tcl/Tk toolkit, 295–296
TCP (Transmission Control Protocol), 250–253
TCPHandler class, 250, 251
TDD (test-driven development), 262, 267
telnetlib module, 325
tempfile module, 325
termios module, 325
TestCase class, 263
TestClass class, 276
testing, 299

doctests, 258–262
TDD (test-driven development), 262, 267
unit testing, 262–267

text entry, 182
text fi les, 23–24
Text Processing in Python, 329
textwrap module, 325
The Python Reference Manual, 3

349

third-party APIs – virtualenvs

third-party APIs, 231–234
third-party modules, automation and, 99
third-party packages, 42–43
THPHandler class, 250
threading module, 325
tic-tac-toe GUI

board, 188–189
connecting to game, 190–194
menu building, 187–188
UI design, 186–187

time. See also dates and times
formatting times, 73–74

time module, 61, 72–75, 325
sleep() function, 74–75

timeit module, 325
time.time() function, 74
tix module, 194–198
Tix toolkit, 295–296
Tkinter, 180

building, 184–186
canvas object, 286
LendyDB, 199–206
message boxes, 177–179
tic-tac-toe GUI, 186–194
tix, 194–198
ttk, 198–199

tkinter module, 325
tkinter.fi ledialog module, 325
tkinter.messagebox module, 177–179, 325
messagebox submodule, 179

tkinter.simpledialog module, 325
tkinter.tix module, 325
tkinter.ttk module, 325
ToolHireHandler class, 88–89
Tornado, 253
triplets, 69
try statement, 20–21
try-except block, 273
ttk module, 198–199
tty module, 325
tuples, 10
turtle graphics, 286
turtle module, 325
tutorials for study, 328–329

Twisted, 253
types module, 325

U

umask, 50
binary mappings, 51
values, 51–52

UML (Unifi ed Modeling Language), 163
Unicode characters

ASCII characters and, 217
code points, 216
encoding, 216
glyphs, 216
locales and, 214
overview, 216
strings, 7

unicodedata module, 325
UNIQUE constraint, 135
unit testing, 262–263
unittest classes, 263
unittest module, 264–266, 325
unpacking, tuples and, 10
urllib module, 325
user experience, 169
user interface, building, 169–173
users

identifying, 49–50
interacting with, 21–23

user-selected preferences, storage,
211–212

uu module, 325
uuid module, 325

V

values
umask, 51–52
variables and, 3

variables, 3
== (double equal) and, 3
values and, 3

virtualenvs, 276–277
activating, 277–279

350

wand package – zlib module

W

wand package, 287–288
warnings module, 326
wave module, 291, 326
weakref module, 326
web

APIs (application programming interfaces),
230–234

Chrome Developer Tools, 228–230
client-service relationships, 226
gevent, 253
HTML (HyperText Markup Language), 227–230
HTTP (HyperText Transfer Protocol), 227–230

GET method, 227
headers, 228
POST method, 227

middleware, 226
MVC (Model View Controller), 226
Tornado, 253
Twisted, 253

web apps
architecture, 224
front end, 224–225
requests, 225
WSGI (Web Server Gateway Interface), 225

web programming, 233
frameworks, 248
HTTP modules

Flask framework, 237–247
server creation, 235–237

socket servers, 250–253
static site generators, 248
TCP (Transmission Control Protocol), 250–253

web services, REST, 224
webbrowser module, 326
websites, gmane.org, 327
what() function, 287
while statement, 18
widgets, 182
wildcards, 64–66
win32com.client module, 326
Windows

APIs, access, 96–97
library, 96

windows, 182
winreg module, 326
winsound module, 326
Wiring library, 297
with keyword, 21
withdraw() function, 178
write() function, 24
writelines() function, 24
writer.writerow() function, 79
WSGI (Web Server Gateway Interface),

225
wsgiref module, 326
wxPython, 207

X

xdrlib module, 326
Xerox Parc, 163
XML (eXtensible Markup Language), parsing

fi les, 86–89
ElementTree, 91–93

xml module, 326
xml.dom module, 326
xml.etree module, 326
xml.minidom module, 326
xml.parsers.expat module, 326
XML-RPC (XML-Remote Procedure Call),

249–250
xmlrpc module, 326
Xmlrpc.client module, 326
Xmlrpc.server module, 326
xml.sax module, 326
xml.sax.handler module, 326

Y

yield keyword, 26
yield statement, 26
YouTube videos, 329

Z

zipfile module, 326
zlib module, 326

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Python® Projects
	ABOUT THE AUTHORS
	ABOUT THE TECHNICAL EDITORS
	CREDITS
	ACKNOWLEDGMENTS
	CONTENTS
	INTRODUCTION
	CHAPTER 1: REVIEWING CORE PYTHON
	Exploring the Python Language and the Interpreter
	Reviewing the Python Data Types
	Numeric Types: Integer and Float
	The Boolean Type
	The None Type
	Collection Types
	Strings
	Bytes and ByteArrays
	Tuples
	Lists
	Dictionaries
	Sets

	Using Python Control Structures
	Structuring Your Program
	Using Sequences, Blocks and Comments
	Selecting an Execution Path
	Iteration
	Handling Exceptions
	Managing Context

	Getting Data In and Out of Python
	Interacting with Users
	Using Text Files

	Extending Python
	Defining and Using Functions
	Generator Functions
	Lambda Functions

	Defining and Using Classes and Objects

	Creating and Using Modules and Packages
	Using and Creating Modules
	Using and Creating Packages

	Creating an Example Package
	Using Third-Party Packages
	Summary

	CHAPTER 2: SCRIPTING WITH PYTHON
	Accessing the Operating System
	Obtaining Information About Users and Their Computer
	Obtaining Information About the Current Process
	Managing Other Programs
	Managing Subprocesses More Effectively
	Obtaining Information About Files (and Devices)
	Navigating and Manipulating the File system
	Plumbing the Directory Tree Depths

	Working with Dates and Times
	Using the time Module
	Introducing the datetime Module
	Introducing the calendar Module

	Handling Common File Formats
	Using Comma-Separated Values
	Working with Config Files
	Working with XML and HTML Files
	Parsing XML Files
	Parsing HTML Files

	Accessing Native APIs with ctypes and pywin32
	Accessing the Operating System Libraries
	Using ctypes with Windows
	Using ctypes on Linux

	Accessing a Windows Application Using COM

	Automating Tasks Involving Multiple Applications
	Using Python First
	Using Operating System Utilities
	Using Data Files
	Using a Third-Party Module
	Interacting with Subprocesses via a CLI
	Using Web Services for Server-Based Applications
	Using a Native Code API
	Using GUI Robotics

	Summary

	CHAPTER 3: MANAGING DATA
	Storing Data Using Python
	Using DBM as a Persistent Dictionary
	Using Pickle to Store and Retrieve Objects
	Accessing Objects with shelve

	Analyzing Data with Python
	Analyzing Data Using Built-In Features of Python
	Analyzing Data with ittertools
	Utility Functions
	Data Processing Functions
	Taming the Vagaries of groupby()

	Using itertools to Analyze LendyDB Data

	Managing Data Using SQL
	Relational Database Concepts
	Structured Query Language
	Creating Tables
	Inserting Data
	Reading Data
	Modifying Data

	Linking Data Across Tables
	Digging Deeper into Data Constraints
	Revisiting SQLite Field Types
	Modeling Relationships with Constraints

	Many-to-Many Relationships
	Migrating LendyDB to an SQL Database
	Accessing SQL from Python
	Using SQL Connections
	Using a Cursor

	Creating the LendyDB SQL Database
	Inserting Test Data
	Creating a LendyDB API

	Exploring Other Data Management Options
	Client-Server Databases
	NoSQL
	The Cloud
	Data Analysis with RPy

	Summary

	CHAPTER 4: BUILDING DESKTOP APPLICATIONS
	Structuring Applications
	Building Command-Line Interfaces
	Building the Data Layer
	Building the Core Logic Layer
	Building the User Interface

	Using the cmd Module to Build a Command-Line Interface
	Reading Command-Line Arguments
	Jazzing Up the Command-Line Interface with Some Dialogs
	Programming GUIs with Tkinter
	Introducing Key GUI Principles
	Event-Based Programming
	GUI Terminology
	The Containment Tree

	Building a Simple GUI
	Building a Tic-Tac-Toe GUI
	Sketching a UI Design
	Building Menus
	Building a Tic-Tac-Toe Board
	Connecting the GUI to the Game

	Extending Tkinter
	Using Tix
	Using ttk

	Revisiting the Lending Library
	Exploring Other GUI Toolkits for Python
	wxPython
	PyQt
	PyGTK
	Native GUIs: Cocoa and PyWin32
	Dabo

	Storing Local Data
	Storing Application-Specific Data
	Storing User-Selected Preferences
	Storing Application State
	Logging Error information

	Understanding Localization
	Using Locales
	Using Unicode in Python
	Using gettext

	Summary

	CHAPTER 5: PYTHON ON THE WEB
	Python on the Web
	Parts of a Web Application
	The Client-Server Relationship
	Middleware and MVC
	HTTP Methods and Headers
	What Is an API?

	Web Programming with Python
	Using the Python HTTP Modules
	Creating an HTTP Server
	Exploring the Flask Framework
	Creating Data Models in Flask
	Creating Core Flask Files

	More on Python and the Web
	Static Site Generators
	Web Frameworks

	Using Python Across the Wire
	XML-RPC
	Socket Servers

	More Networking Fun in Python
	Summary

	CHAPTER 6: PYTHON IN BIGGER PROJECTS
	Testing with the Doctest Module
	Testing with the Unittest Module
	Test-Driven Development in Python
	Debugging Your Python Code
	Handling Exceptions in Python

	Working on Larger Python Projects
	Releasing Python Packages
	Summary

	CHAPTER 7: EXPLORING PYTHON’S FRONTIERS
	Drawing Pictures with Python
	Using Turtle Graphics
	Using GUI Canvas Objects
	Plotting Data
	Using imghdr
	Introducing Pillow
	Trying Out ImageMagick

	Doing Science with Python
	Introducing SciPy
	Doing Bioscience with Python
	Using GIS
	Watching Your Language
	Getting It All

	Playing Games with Python
	Enriching the Experience with PyGame
	Exploring Other Options

	Going to the Movies
	The Computer Graphics Kit
	Modeling and Animation
	Photo Processing
	Working with Audio

	Integrating with Other Languages
	Jython
	IronPython
	Cython
	Tcl/Tk

	Getting Physical
	Introducing Serial Options
	Programming the RaspberryPi
	Talking to the Arduino
	Exploring Other Options

	Building Python
	Fixing Bugs
	Documenting
	Testing
	Adding Features
	Attending Conferences

	Summary

	APPENDIX A: ANSWERS TO EXERCISES
	Chapter 1 Solutions
	Chapter 2 Solutions
	Chapter 3 Solutions
	Chapter 4 Solutions
	Chapter 5 Solutions
	Chapter 6 Solutions
	Chapter 7 Solutions

	APPENDIX B: PYTHON STANDARD MODULES
	APPENDIX C: USEFUL PYTHON RESOURCES
	Asking Questions: Mailing Lists and More
	Reading Blogs
	Studying Tutorials and References
	Watching Videos
	And Now for Something Completely Different…

	REFERENCES
	INDEX
	ADVERT
	EULA

