
http://www.a-pdf.com/?tr-demo

Raspberry	Pi	Android	Projects

Table	of	Contents

Raspberry	Pi	Android	Projects

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Make	a	Remote	Desktop	Connection	to	Your	Pi	from	Anywhere

Prerequisites

Installing	Linux	on	your	Pi

Installing	using	NOOBS

Installing	using	a	Raspbian	image

Extracting	the	OS	image	to	an	SD	card

Making	necessary	changes	in	settings

Installing	necessary	components	in	the	Pi	and	Android

Connecting	the	Pi	and	Android

What	if	I	want	to	use	Wi-Fi	on	the	Pi?

Connecting	from	anywhere

Problems	with	dynamic	LAN	IP	addresses	and	external	IP	addresses

Summary

2.	Server	Management	with	Pi

Remote	console	to	the	Pi	from	Android

Exchanging	files	between	the	Pi	and	Android

A	simple	database	and	web	server	implementation

Connecting	the	sensor

Installing	the	database

Installing	the	web	server

Simple	management	of	servers

Summary

3.	Live	Streaming	of	a	Surveillance	Camera	from	the	Pi

Hardware	and	software	configurations

Streaming	video	to	an	Android	device

Manual	VLC	configurations

The	surveillance	mode

Accessing	surveillance	images	on	the	Web

Summary

4.	Turn	Your	Pi	into	a	Media	Center

Installing	and	setting	up	a	media	center	on	Pi

Starting	Kodi	on	boot

Connecting	to	the	media	center	via	remote	control	from	Android

Getting	more	from	your	media	center

Watching	videos	using	Kodi	on	an	Android	device

Streaming	the	Android	display	to	Kodi

Installing	the	media	center	using	NOOBS

Summary

5.	Missed	Calls	with	Pi

Installing	the	necessary	components

Adding	a	sensor	service	to	Bluetooth	Low	Energy

Connecting	from	an	Android	app

Sending	the	reboot	command	from	your	Android	phone	to	the	Pi

Sending	more	commands	from	your	Android	phone	to	the	Pi

Lighting	the	LEDs

Playing	sounds	on	your	Pi

Combining	the	commands	and	being	informed	on	incoming	calls

Summary

6.	The	Vehicle	Pi

Finding	out	the	car	location

Collecting	the	car	data

Getting	the	car	data	to	the	Pi

Using	your	Android	device	as	an	access	point

An	alternative	to	rooting

Rooting	Samsung	Galaxy	S2

Enabling	tethering	on	being	connected	to	a	power	source

Automatic	restart	on	power	connect

Auto	tethering

Sending	data	to	the	cloud

Putting	it	all	together

Sending	measurements

Retrieving	measurements

Summary

Index

Raspberry	Pi	Android	Projects

Raspberry	Pi	Android	Projects
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2015

Production	reference:	1210915

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-702-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Gökhan	Kurt

Reviewers

Thushara	Jayawardena

Wolf	Paulus

Eric	Wuehler

Commissioning	Editor

Nadeem	Bagban

Acquisition	Editor

Vivek	Anantharaman

Content	Development	Editor

Arwa	Manasawala

Technical	Editor

Rahul	C.	Shah

Copy	Editor

Sonia	Cheema

Project	Coordinator

Shweta	H	Birwatkar

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Arvindkumar	Gupta

Cover	Work

Arvindkumar	Gupta

About	the	Author
Gökhan	Kurt	has	been	trying	to	keep	up	with	the	the	latest	developments	in	technology
and	IT	in	his	15-year-long	development	career.	For	the	past	4	years,	he	has	been	working
at	IFS	Labs,	one	of	the	top	innovation	departments	of	the	Swedish	software	industry.
Currently,	he	is	involved	in	the	Internet	of	Things	and	has	been	developing	prototype	IoT
implementations	using	Raspberry	Pi.

He	has	a	master’s	of	science	degree	from	Chalmers	University	of	Technology	and	a
bachelors	degree	from	the	Middle	East	Technical	University.	You	can	connect	with	him	on
Twitter	(@KurtGok)	and	on	LinkedIn	(http://se.linkedin.com/in/kurtgokhan).

I	would	like	to	thank	my	dear	wife,	Hediye,	for	her	patience	during	the	writing	of	this
book.	Special	thanks	to	my	3-year-old	son,	Derin,	for	providing	me	with	the	intellectual
support	needed	for	writing	this	book	with	his	Lego	building	skills.	I	would	also	like	to
thank	my	3-month-old	daughter,	Eliz,	for	keeping	me	awake	at	night	so	that	I	was	able	to
think	about	exciting	projects	to	include	in	this	book.

http://se.linkedin.com/in/kurtgokhan

About	the	Reviewers
Thushara	Jayawardena	is	in	his	fourteenth	year	of	working	in	the	software	development
industry.	Right	after	he	graduated	from	university	in	2001,	he	joined	the	IFS	world
operations	(http://www.ifsworld.com/)	development	center	in	Colombo,	Sri	Lanka.	His
early	years	were	spent	as	a	junior	SW	engineer.	He	then	moved	into	SW	systems	as	a
system	engineer,	overseeing	mission-critical	production	systems.	During	this	time,	he
became	a	principal	systems	engineer,	and	also	moved	to	Sweden	in	2007	where	he	started
working	at	the	head	office	of	IFS	in	Linköping,	Sweden.	From	2014	to	date,	he	has	been
working	on	product	benchmarking	for	IFS.	He	has	mainly	worked	with	technologies,	such
as	Oracle	RDBMS,	J2EE	systems,	and	Jboss/Oracle	WebLogic.	He	is	also	knowledgeable
about	various	scripting	technologies	and	languages,	such	as	PowerShell	and	VB	scripting.
In	recent	years,	he’s	been	active	in	monitoring	tools	written	in	Angular	JS	and	Google
graphs.	In	the	field	of	product	benchmarking,	he	has	worked	with	data	science,	especially
generating	synthetic	data	for	load	simulations.	He	has	also	spent	considerable	time	at	work
on	performance	testing	tools,	such	as	HP	LoadRunner.

In	his	spare	time,	apart	from	travelling	and	enjoying	different	cultures	with	his	son,
daughter,	and	wife,	he	spends	time	with	Android,	Google	App	Engine,	and	Raspberry	Pi
home-brewing	projects.

Eric	Wuehler	lives	in	the	Pacific	Northwest	with	his	lovely	wife	and	three	children.	He
has	been	working	in	the	technology	field	professionally	for	over	20	years.	His	likes
tinkering	with	mobiles	and	other	small	devices.	He	is	involved	in	a	large	number	of
projects	in	various	states	of	completeness,	which	are	strewn	about	the	man	cave	(this	is,
coincidentally,	the	same	room	and	his	lovely	wife	refers	to	it	as	“the	basement”).	He	can
be	reached	online	at	ericwuehler.com.

http://www.ifsworld.com/
http://www.ericwuehler.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
The	most	popular	gadget	in	the	maker	community,	Raspberry	Pi,	and	the	most	popular
smartphone	OS,	Android,	combine	their	powers	in	this	book,	resulting	in	exciting,	useful,
and	easy-to-follow	projects.	The	projects	covered	come	in	handy	in	your	daily	interaction
with	the	Pi	and	can	be	helpful	as	building	blocks	for	even	more	amazing	projects.

What	this	book	covers
Chapter	1,	Make	a	Remote	Desktop	Connection	to	Your	Pi	from	Anywhere,	teaches	you
how	to	make	the	initial	setup	to	get	started	with	your	Pi	and	connect	remotely	to	the	Pi
desktop	from	an	Android	device	from	anywhere	in	the	world.

Chapter	2,	Server	Management	with	Pi,	builds	on	the	previous	chapter	to	manage	the	Pi
and	the	different	servers	we	install	on	it.	We	will	even	introduce	an	interesting,	useful
project	on	the	way	that	makes	use	of	these	servers.

Chapter	3,	Live	Streaming	of	a	Surveillance	Camera	from	the	Pi,	shows	you	how	to	turn
your	Pi	into	a	webcam	and	then	introduces	you	to	the	techniques	to	use	it	in	surveillance
mode,	which	is	accessible	through	an	Android	device	and	the	Internet.

Chapter	4,	Turn	Your	Pi	into	a	Media	Center,	shows	you	how	you	can	turn	your	Pi	into	a
media	center	that	is	controllable	from	an	Android	device.

Chapter	5,	Missed	Calls	with	Pi,	introduces	the	techniques	required	to	access	sensors	and
components	on	the	Pi	from	Android	through	Bluetooth	and	shows	how	the	Pi	can	notify
you	about	the	calls	you	receive	on	your	phone.

Chapter	6,	The	Vehicle	Pi,	helps	you	connect	the	Pi	to	your	car	and	follow	it	from	your
Android	phone.

What	you	need	for	this	book
All	the	software	used	in	this	book	is	freely	available	on	the	Internet.	You	need	Raspberry
Pi	2	and	an	Android	device.	In	some	chapters,	we	will	even	use	a	USB	Wi-Fi	dongle,
DHT11	or	DHT22	temperature	sensor,	jumper	cables,	an	LED	light,	a	USB	Bluetooth
dongle,	Pi	camera,	USB	GPS	receiver,	and	an	OBD	Bluetooth	interface,	all	of	which	are
available	on	online	stores.

Who	this	book	is	for
Raspberry	Pi	Android	Projects	targets	those	of	you	who	want	to	create	engaging	and
useful	projects	with	the	Pi,	which	are	controllable	through	an	Android	phone.	No	prior
knowledge	of	Pi	or	Android	is	required.	At	the	end	of	each	chapter,	you	will	have
succeeded	in	creating	a	project	that	can	be	used	daily,	and	will	be	equipped	with	skills	that
could	help	you	develop	even	more	exciting	projects	in	the	future.	The	projects	covered	in
this	book	will	contain	some	minor	programming	steps	and	these	steps	will	be	described	in
detail	even	for	the	most	inexperienced	readers.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
next	step	is	to	install	a	component	called	x11vnc.”

A	block	of	code	is	set	as	follows:

network={

				ssid="THE	ID	OF	THE	NETWORK	YOU	WANT	TO	CONNECT"

				psk="PASSWORD	OF	YOUR	WIFI"

}

Any	command-line	input	or	output	is	written	as	follows:

sudo	apt-get	install	apache2

sudo	apt-get	install	php5	libapache2-mod-php5

sudo	apt-get	install	libapache2-mod-auth-mysql	php5-mysql

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Initiate	the	connection
by	pressing	the	Connect	button,	and	you	should	now	be	able	to	see	the	Pi	desktop	on	your
Android	device.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.	You	can	also	download	the	code	bundle	of	this	book	from
https://github.com/kurtng/Raspberry-Pi-Android-Projects.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/kurtng/Raspberry-Pi-Android-Projects

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/Raspberry_Pi_Android_Projects_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/Raspberry_Pi_Android_Projects_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Make	a	Remote	Desktop
Connection	to	Your	Pi	from	Anywhere
In	this	project,	we	will	make	a	gentle	introduction	to	both	Pi	and	Android	platforms	to
warm	us	up.	Many	users	of	the	Pi	face	similar	problems	when	they	wish	to	administer	it.
You	have	to	be	near	your	Pi	and	connect	a	screen	and	a	keyboard	to	it.	We	will	solve	this
everyday	problem	by	remotely	connecting	to	our	Pi	desktop	interface.	The	chapter	covers
following	topics:

Prerequisites
Installing	Linux	in	your	Pi
Making	necessary	changes	in	settings
Installing	necessary	components	in	the	Pi	and	Android
Connecting	the	Pi	and	Android

Prerequisites
The	following	items	are	used	throughout	this	chapter	and	will	be	needed	to	complete	the
project:

Raspberry	Pi	2	Model	B:	This	is	the	latest	addition	to	the	Raspberry	Pi	family.	It	has
replaced	the	previous	Pi	1	Model	B+.	The	previous	model	should	work	fine	for	the
purpose	of	the	projects	covered	in	this	book.
MicroSD	card:	The	Raspberry	Pi	Foundation	recommends	using	an	8	GB	class	6
microSD	card.
Android	device:	The	device	should	have	at	least	a	1.5	or	higher	Android	version,
which	is	required	by	the	app	used	in	this	chapter.	In	some	of	the	exciting	projects	that
follow,	we	will	need	Android	4.3	or	later	versions.
HDMI	cable:	This	will	be	used	to	connect	the	Pi	to	a	screen	for	initial	set	up.
Ethernet	cable:	This	will	be	used	for	network	connections.
Computer:	This	will	be	used	to	copy	the	Raspbian	OS	on	to	the	microSD	card.
USB	mouse:	This	will	be	used	during	initial	setup.

The	following	image	shows	the	Raspberry	Pi	2	Model	B:

Raspberry	Pi	2	Model	B

Installing	Linux	on	your	Pi
We	will	use	Raspbian	as	the	operating	system	on	our	Pi.	My	choice	is	solely	based	on	the
fact	that	it	is	recommended	by	the	Raspberry	Pi	Foundation.	It	is	based	on	the	Debian
version	of	Linux	and	optimized	for	Raspberry	Pi	hardware.	Apart	from	being	the	most
used	operating	system	for	Raspberry	Pi,	it	contains	almost	35,000	packages,	such	as
games,	mail	servers,	office	suite,	internet	browsers	and	so	on.	At	the	time	of	writing	this
book,	the	latest	release	was	dated	May	5,	2015.

There	are	two	main	ways	of	installing	Raspbian.	You	can	either	use	the	OS	image	as	a
whole	or	you	can	begin	with	an	easy-to-use	tool-operating	system	bundle	called	NOOBS.
We	will	cover	both	cases	here.

Note
There	are	SD	cards	for	sale	with	NOOBS	or	Raspbian	already	installed.	It	might	be	a	good
idea	to	get	one	of	these	and	skip	the	OS	installation	part	of	this	chapter.

However,	before	we	begin,	we	might	need	to	format	our	SD	card	as	previous	OS
installations	may	corrupt	the	card.	You’ll	notice	this	if	only	a	fraction	of	free	space	on	the
card	is	shown	to	be	available	even	though	you	have	formatted	the	card	using	the
formatting	utility	provided	by	your	computer’s	OS.	The	tool	we	will	use	is	called	the	SD
Formatter	and	is	available	for	Mac	and	Windows	from	SD	Association	at
https://www.sdcard.org/downloads/formatter_4/index.html.	Install	and	start	it.	You	will
see	the	following	interface	asking	you	to	select	the	SD	card	location:

The	SD	Formatter	interface

https://www.sdcard.org/downloads/formatter_4/index.html

Installing	using	NOOBS
The	latest	version	of	NOOBS	can	be	found	at
http://downloads.raspberrypi.org/NOOBS_latest.	Download	and	extract	the	contents	on	to
the	SD	card.	Attach	the	card	to	your	Pi	and	connect	it	to	a	screen	using	an	HDMI	cable.
Do	not	forget	to	connect	the	USB	mouse.	When	the	Pi	is	attached	to	a	power	source,	you
will	be	presented	with	a	list	of	choices	you	can	make.	Check	the	Raspbian	installation
option	on	the	list,	and	then	click	on	Install.	This	will	install	Raspbian	on	your	SD	card	and
restart	the	Pi.

http://downloads.raspberrypi.org/NOOBS_latest

Installing	using	a	Raspbian	image
The	latest	version	of	the	Raspbian	OS	can	be	found	at
http://downloads.raspberrypi.org/raspbian_latest.	The	ZIP	file	is	almost	1	GB	in	size	and
contains	a	single	file	with	an	.img	extension,	which	is	3.2	GB	in	size.	Unzip	the	contents
and	follow	the	steps	in	the	next	section	to	extract	it	to	a	suitable	microSD	card.

http://downloads.raspberrypi.org/raspbian_latest

Extracting	the	OS	image	to	an	SD	card
To	extract	an	image	file,	we	need	a	disk	imaging	utility	and	we	will	use	a	freely	available
one	called	Win32	Disk	Imager	on	Windows.	It	can	be	downloaded	at
http://sourceforge.net/projects/win32diskimager/.	On	Mac	OS,	there	is	a	similar	tool	called
ApplePi	Baker	available	at	http://www.tweaking4all.com/hardware/raspberry-pi/macosx-
apple-pi-baker/.	Download	and	install	it	on	to	your	computer.	The	installation	will	contain
an	executable	file,	Win32DiskImager,	which	you	should	start	in	the	administrator	mode	by
right	clicking	on	it	and	selecting	Run	as	administrator.

In	the	Win32	Disk	Imager	window,	you	should	choose	the	image	file	you’ve	extracted
and	the	drive	for	SD	card	similar	to	what	is	shown	in	the	following	screenshot:

The	Win32	Disk	Imager	window

Clicking	on	the	Write	button	will	start	the	process	and	your	SD	card	will	be	ready	to	be
inserted	into	the	Pi.

http://sourceforge.net/projects/win32diskimager/
http://www.tweaking4all.com/hardware/raspberry-pi/macosx-apple-pi-baker/

Making	necessary	changes	in	settings
When	the	Pi	is	still	plugged	into	a	screen	with	HDMI,	connect	it	to	a	network	using
Ethernet.	The	first	time	the	Pi	starts,	you	will	be	presented	with	a	settings	utility	as	shown
in	the	following	screenshot:

Raspberry	Pi	Software	Configuration	Tool

You	can	optionally	select	the	first	option	in	the	list	to	Expand	Filesystem.	Select	the	third
option	as	well	to	Enable	Boot	to	Desktop.

In	the	following	menu,	select	the	second	item	in	the	list	which	is	Desktop	Log	in	as	user
‘pi’	at	the	graphical	desktop.	Then,	choose	<Finish>	and	select	Yes	to	reboot	the	device.

Choose	desktop	startup	in	the	configuration	tool

After	reboot,	you	will	be	presented	with	the	Raspbian’s	default	desktop	manager

environment	called	LXDE.

Installing	necessary	components	in	the	Pi
and	Android
As	the	following	screenshot	shows	the	LXDE	desktop	manager	comes	with	an	initial	setup
and	a	few	preinstalled	programs:

The	LXDE	desktop	management	environment

By	clicking	on	the	screen	image	on	the	tab	bar	located	at	the	top,	you	will	be	able	to	open
a	terminal	screen	that	we	will	use	to	send	commands	to	the	Pi.

The	next	step	is	to	install	a	component	called	x11vnc.	This	is	a	VNC	server	for	X,	the
window	management	component	of	Linux.	Issue	the	following	command	on	the	terminal:

sudo	apt-get	install	x11vnc

This	will	download	and	install	x11vnc	to	the	Pi.	We	can	even	set	a	password	to	be	used	by
VNC	clients	that	will	remote	desktop	to	this	Pi	using	the	following	command	and	provide
a	password	to	be	used	later	on:

x11vnc	–storepasswd

Next,	we	can	get	the	x11vnc	server	running	whenever	the	Pi	is	rebooted	and	the	LXDE
desktop	manager	starts.	This	can	be	done	through	the	following	steps:

1.	 Go	into	the	.config	directory	on	the	Pi	user’s	home	directory	located	at	/home/pi:

cd	/home/pi/.config

2.	 Make	a	subdirectory	here	named	autostart:

mkdir	autostart

3.	 Go	into	the	autostart	directory:

cd	autostart

4.	 Start	editing	a	file	named	x11vnc.desktop.	As	a	terminal	editor,	I	am	using	nano,
which	is	the	easiest	one	to	use	on	the	Pi	for	novice	users,	but	there	are	more	exciting
alternatives,	such	as	vi:

nano	x11vnc.desktop

Add	the	following	content	into	this	file:

[Desktop	Entry]

Encoding=UTF-8

Type=Application

Name=X11VNC

Comment=

Exec=x11vnc	-forever	-usepw	-display	:0	-ultrafilexfer

StartupNotify=false

Terminal=false

Hidden=false

5.	 Save	and	exit	using	(Ctrl+X,	Y,	Enter)	in	order	if	you	are	using	nano	as	the	editor	of
your	choice.

6.	 Now	you	should	reboot	the	Pi	to	get	the	server	running	using	the	following
command:

sudo	reboot

After	rebooting	using	the	sudo	reboot	command,	we	can	now	find	out	what	IP
address	our	Pi	has	been	given	in	the	terminal	window	by	issuing	the	ifconfig
command.	The	IP	address	assigned	to	your	Pi	is	to	be	found	under	the	eth0	entry	and
is	given	after	the	inet	addr	keyword.	Write	this	address	down:

Example	output	from	the	ifconfig	command

7.	 The	next	step	is	to	download	a	VNC	client	to	your	Android	device.

In	this	project,	we	will	use	a	freely	available	client	for	Android,	namely
androidVNC	or	as	it	is	named	in	the	Play	Store—VNC	Viewer	for	Android	by
androidVNC	team	+	antlersoft.	The	latest	version	in	use	at	the	writing	of	this	book
was	0.5.0.

Note
Note	that	in	order	to	be	able	to	connect	your	Android	VNC	client	to	the	Pi,	both	the
Pi	and	the	Android	device	should	be	connected	to	the	same	network—Android
through	Wi-Fi,	and	Pi	through	its	Ethernet	port.

Connecting	the	Pi	and	Android
Install	and	open	androidVNC	on	your	device.	You	will	be	presented	with	a	first	activity
user	interface	asking	for	the	details	of	the	connection.	Here,	you	should	provide
Nickname	for	the	connection,	Password	you	enter	when	you	run	the	x11vnc	–
storepasswd	command,	and	the	IP	Address	of	the	Pi	that	you	found	out	using	the
ifconfig	command.	Initiate	the	connection	by	pressing	the	Connect	button,	and	you
should	now	be	able	to	see	the	Pi	desktop	on	your	Android	device.

In	androidVNC,	you	should	be	able	to	move	the	mouse	pointer	by	clicking	on	the	screen
and	under	the	options	menu	in	the	androidVNC	app,	you	will	find	out	how	to	send	text
and	keys	to	the	Pi	with	the	help	of	Enter	and	Backspace.

Note
You	may	even	find	it	convenient	to	connect	to	the	Pi	from	another	computer.	I	recommend
using	RealVNC	for	this	purpose,	which	is	available	on	Windows,	Linux,	and	Mac	OS.

What	if	I	want	to	use	Wi-Fi	on	the	Pi?
In	order	to	use	a	Wi-Fi	dongle	on	the	Pi,	first	of	all,	open	the	wpa_supplicant
configuration	file	using	the	nano	editor	with	the	following	command:

sudo	nano	/etc/wpa_supplicant/wpa_supplicant.conf

Add	the	following	to	the	end	of	this	file:

network={

				ssid="THE	ID	OF	THE	NETWORK	YOU	WANT	TO	CONNECT"

				psk="PASSWORD	OF	YOUR	WIFI"

}

Note
I	assume	that	you	have	set	up	your	wireless	home	network	to	use	WPA-PSK	as	the
authentication	mechanism.	If	you	have	another	mechanism,	you	should	refer	to	the
wpa_supplicant	documentation.	LXDE	provides	even	better	ways	to	connect	to	Wi-Fi
networks	through	a	GUI.	It	can	be	found	on	the	upper-right	corner	of	the	desktop
environment	on	the	Pi.

Connecting	from	anywhere
Now,	we	have	connected	to	the	Pi	from	our	device,	which	we	need	to	connect	to	the	same
network	as	the	Pi.	However,	most	of	us	would	like	to	connect	to	the	Pi	from	around	the
world	as	well.	To	do	this,	first	of	all,	we	need	to	now	the	IP	address	of	the	home	network
assigned	to	us	by	our	network	provider.	By	going	to	http://whatismyipaddress.com	URL,
we	can	figure	out	what	our	home	network’s	IP	address	is.	The	next	step	is	to	log	in	to	our
router	and	open	up	requests	to	the	Pi	from	around	the	world.	For	this	purpose,	we	will	use
a	functionality	found	on	most	modern	routers	called	port	forwarding.

Note
Be	aware	of	the	risks	contained	in	port	forwarding.	You	are	opening	up	access	to	your	Pi
from	all	around	the	world,	even	to	malicious	users.	I	strongly	recommend	that	you	change
the	default	password	of	the	user	pi	before	performing	this	step.	You	can	change	passwords
using	the	passwd	command.

By	logging	onto	the	router’s	management	portal	and	navigating	to	the	Port	Forwarding
tab,	we	can	open	up	requests	to	the	Pi’s	internal	network	IP	address,	which	we	have
figured	out	previously,	and	the	default	port	of	the	VNC	server,	which	is	5900.	Now,	we
can	provide	our	external	IP	address	to	androidVNC	from	anywhere	around	the	world
instead	of	an	internal	IP	address	that	works	only	if	we	are	on	the	same	network	as	the	Pi.

http://whatismyipaddress.com

Port	Forwarding	settings	on	Netgear	router	administration	page

Note
Refer	to	your	router’s	user	manual	to	see	how	to	change	the	Port	Forwarding	settings.
Most	routers	require	you	to	connect	through	the	Ethernet	port	in	order	to	access	the
management	portal	instead	of	Wi-Fi.

Problems	with	dynamic	LAN	IP	addresses
and	external	IP	addresses
There	is	one	minor	problem	with	this	setup.	The	Pi	might	get	a	new	LAN	IP	address	each
time	you	restart	it,	making	the	Port	Forwarding	setting	useless.	To	avoid	this,	most
routers	provide	the	Address	Reservation	setting.	You	can	tell	most	routers	that	each	time
a	device	with	a	unique	MAC	address	is	connected,	it	should	get	the	same	IP	address.

Another	problem	is	that	your	Internet	Service	Provider	(ISP)	might	assign	new	IP
addresses	to	you	each	time	you	restart	your	router	or	for	any	other	reason.	You	can	use	a
dynamic	DNS	service,	such	as	DynDNS,	to	avoid	such	problems.	Most	routers	are	capable
of	using	dynamic	DNS	services.	Alternatively,	you	can	get	a	static	IP	address	by
contacting	your	ISP.

Summary
In	this	project,	we	installed	Raspbian,	warmed	up	with	the	Pi,	enabled	the	desktop
environment	on	it,	and	connected	to	the	Pi	using	an	Android	device.

In	the	next	chapter,	we	will	access	the	console	of	the	Pi	directly	and	even	transfer	files	to
and	from	it	using	FTP	from	our	Android	devices.

Chapter	2.	Server	Management	with	Pi
In	the	first	half	of	this	project,	we	will	move	from	a	desktop-based	console	to	a	text-based
one	that	gives	more	power	to	the	user	and	lets	you	perform	more	advanced	tasks	compared
to	the	desktop.	We	will	access	the	Pi’s	Linux	console	from	an	Android	device	and	control
it	remotely.	In	the	second	half,	we	will	send	and	receive	files	between	the	Pi	and	Android
through	FTP.	We	will	even	combine	the	two	parts	by	managing	our	newly	installed	FTP
server	remotely	using	the	text-based	console.	In	this	chapter,	we	will	even	install	database
and	web	servers	on	to	the	Pi	to	show	how	to	manage	them	later	on.	To	make	it	even	more
fun,	we	will	implement	a	simple	but	useful	mini	project	that	makes	use	of	both	web	and
database	servers.	The	following	topics	will	be	covered:

Remote	console	to	the	Pi	from	Android
Exchanging	files	between	the	Pi	and	Android
A	simple	database	and	web	server	implementation
Simple	management	of	servers

Remote	console	to	the	Pi	from	Android
The	administrators	of	Linux	and	Unix	computers	have	been	using	text-based	command-
line	interfaces	called	shell	for	many	years	to	manage	and	administer	their	servers.	As	the
Pi’s	OS,	Raspbian,	is	a	Linux	variant,	the	most	natural	way	to	access	and	issue	commands
or	check	the	status	of	running	programs,	services,	and	different	servers	on	the	Pi	is	again
by	issuing	commands	on	this	text-based	shell.	There	are	different	shell	implementations
but	the	one	that	is	used	on	Raspbian	by	default	is	bash.	The	most	well-known	way	of
accessing	shell	remotely	on	a	Linux	server	is	through	the	Secure	Shell	protocol	known,	in
general,	as	SSH.

Note
Secure	Shell	(SSH)	is	an	encrypted	network	protocol	used	to	send	shell	commands	to	a
remote	machine	in	a	secure	way.	SSH	does	two	things	for	you.	It	enables,	through
different	tools,	such	as	the	ones	we	will	present	to	you	in	a	moment,	you	to	send
commands	to	the	remote	machine	and	it	does	this	using	a	secure	channel	established	over
an	insecure	network.

For	SSH	to	work,	there	should	be	an	SSH	server	already	running	that	can	accept	and
respond	to	SSH	client	requests.	On	Raspberry	Pi,	this	feature	is	enabled	by	default.	If	by
any	means,	it	is	disabled,	you	can	enable	it	using	the	Pi	configuration	program	by	issuing
the	following	command:

sudo	raspi-config

Then,	navigate	to	ssh	and	hit	Enter,	and	then	select	Enable	or	disable	ssh	server.

On	the	client	side,	and	as	we	are	using	Android	as	our	client	throughout	this	book,	we	will
download	an	app	called	ConnectBot.	It	is	one	of	the	most	popular	SSH	clients	on	Android
and	the	latest	version	as	of	today	is	1.8.4.	Download	it	to	your	device	and	open	it.

You	will	need	to	provide	the	username	and	IP	address	that	we	found	out	in	the	previous
chapter.	We	do	not	need	to	provide	the	port	as	ConnectBot	will	use	the	default	port	for
SSH	in	this	case.	Click	on	Yes	if	you	are	asked	to	continue	with	the	connection	because	of
problems	with	the	authenticity	of	the	host.	You	are	asked	this	question	because	you	are
connecting	to	the	Pi	for	the	first	time	through	a	remote	SSH.

Note	that	in	the	following	screenshot,	I	have	provided	the	internal	IP	address	of	my	home
network.	You	might	want	to	use	an	external	IP	address	and	connect	to	the	Pi	from	outside
your	home	network.	For	this	purpose,	you’ll	need	to	add	the	standard	FTP	ports	21	and	20
to	your	port	forwarding	settings	as	well.	The	same	applies	to	the	SSH	protocol,	which	has
a	default	port	number	of	22.

Note
As	we	have	discussed	earlier,	there	is	a	security	risk	in	opening	ports	this	way	and	also
keeping	the	default	password	for	the	user	pi	on	the	Pi.

The	following	screenshot	illustrates	connection	details	on	ConnectBot:

Connection	details	on	ConnectBot

Now,	provide	the	default	password	for	the	pi	account,	which	is	raspberry,	or	the	one	you
have	changed	it	to.	After	this	step,	you	will	be	connected	to	the	Pi	remotely	using	SSH,	as
seen	in	the	following	screenshot:

The	prompt	provided	by	ConnectBot

You	are	now	ready	to	issue	commands	on	your	Pi	and	check	the	status	of	different
services.	This	connection	will	be	saved	with	all	its	properties.	Next	time	you	want	to	log
in,	you	will	not	need	to	provide	an	address,	username,	and	password	information.

Note
On	a	Mac	or	Linux,	you	can	use	the	ssh	command	installed	on	your	system	by	default.	On
Windows,	you	can	download	PuTTY	to	issue	the	same	commands	as	the	ones	in
ConnectBot.

Exchanging	files	between	the	Pi	and
Android
In	the	second	part	of	this	chapter,	we	will	use	the	Pi	as	an	FTP	server	to	share	files
between	our	Android	devices	or	send	files	to	the	Pi	to	view	them	on	a	larger	screen	that
you	connect	to	the	Pi	HDMI	port.	The	FTP	server	we	will	use	is	vsftpd.	It	is	a	lightweight
FTP	server	used	in	many	small	projects.	To	install	it	on	our	Pi,	we	use	the	following
command:

sudo	apt-get	install	vsftpd

The	preceding	command	will	even	start	the	FTP	service.

However,	we	should	make	some	changes	in	the	configuration	of	the	FTP	server	to	use	it
effectively.	For	this	purpose,	we	need	to	edit	the	FTP	server	configuration	file	using	this
command:

sudo	nano	/etc/vsftpd.conf

Find	the	two	lines	containing	#local_enable=YES	and	#write_enable=YES	and	remove
the	#	comment	sign	at	the	beginning	of	these	lines	before	you	save	and	exit.	These
changes	will	enable	the	user	pi	to	login	and	be	able	to	send	files	to	the	Pi.	To	restart	the
FTP	server,	issue	this	command:

sudo	service	vsftpd	restart

Now,	we	need	to	install	an	FTP	client	on	Android.	For	this	purpose,	we	will	use	AndFTP.
It	is	enough	to	use	the	free	version	for	our	project.	We	see	the	following	initial	view	on	the
Android	device	after	opening	it:

An	initial	view	of	the	AndFTP	client

Pressing	the	plus	button	will	take	you	to	the	following	view,	where	you	will	be	asked	for
connection	properties:

Connection	properties	on	AndFTP

Provide	the	IP	address	of	the	Pi	you	found	out	in	the	first	chapter,	pi	as	username,	and
raspberry	as	the	password	or	the	one	you	have	changed	to.	Then,	scroll	down	to	the	end
of	the	view	and	press	the	Save	button.	This	will	save	the	connection	properties	and	send
you	back	to	the	main	view:

The	list	of	connections	in	AndFTP

Clicking	on	the	newly	created	connection,	shown	as	a	blue	folder,	will	initiate	the	FTP
connection	to	the	Pi	and	log	the	user	pi	in.	This	will	get	you	into	the	home	directory	for	the
pi	user,	as	shown	in	the	following	screenshot:

The	home	directory	of	user	pi

Now	you	will	be	able	to	upload	files	from	your	Android	device	to	the	Pi	by	pressing	the
mobile	phone-like	icon	in	AndFTP	and	choosing	a	file	to	upload	afterwards.	You	can	set
up	AndFTP	from	another	Android	device	on	the	same	network	or	even	another	computer
using	a	built-in	FTP	client,	and	download	the	newly	uploaded	file	to	view	it;	this	way,	you
have	shared	your	first	file	between	different	Android	clients	using	Raspberry	Pi	as	an	FTP
server.

A	simple	database	and	web	server
implementation
Next,	we’ll	take	our	project	one	step	further	and	install	both	a	database	and	web	server,
which	we	can	administer	later	on	using	ConnectBot.	We	will	even	make	it	more	fun	by
implementing	a	real	project	that	makes	use	of	these	servers.	The	best	candidate	for	this
purpose	is	a	sensor	measurement	scenario.	We	will	connect	a	temperature/humidity	sensor
to	our	Pi	and	save	the	measurements	into	a	database	that	we	will	install	on	the	Pi,	which	a
web	server	will	make	available	to	clients.	We	can	later	on	manage	these	servers	remotely,
which	is	the	main	objective	in	this	chapter.

Connecting	the	sensor
For	the	purpose	of	this	project,	we	will	use	a	sensor,	DHT11,	which	measures	both
temperature	and	humidity,	but	for	the	sake	of	easier	connections,	we	will	use	an	off-the-
shelf	module	called	Keyes	DHT11	or	DHT11	for	short,	which	contains	these	sensors.

Tip
There	is	even	an	improved	version	of	DHT11,	which	is	DHT22.	It	costs	a	little	bit	more
but	has	more	accurate	sensors	on	it.

Using	this	sensor	module	instead	of	the	sensors	itself	will	enable	us	to	connect	the	sensors
to	the	Pi	using	only	three	jumper	wires	and	without	a	breadboard	or	resistor.	There	is
another	advantage	of	using	this	module	instead	of	the	sensors:	the	sensors	provide	analog
data	that	the	Pi	cannot	handle.	Pi	is	capable	of	handling	digital	information	on	its	GPIO
ports.	The	DHT11	module	does	the	conversion	for	us.	The	following	image	illustrates	the
DHT11	sensor	module	along	with	a	description	of	the	pins	associated	with	it:

The	DHT11	sensor	module

The	following	image	illustrates	the	Keyes	DHT11	sensor	module:

The	Keyes	DHT11	sensor	module

Now,	connect	the	GND	output	from	the	sensor	module	to	Pi’s	GPIO	Ground,	5V	output	to
Pi’s	5V	pin,	and	DATA	to	Pi’s	GPIO-4	pin.	The	following	diagram	shows	the	layout	of
Pi’s	GPIO	pins	and	their	names:

Raspberry	Pi	GPIO	pin	layout

The	next	step	is	to	read	the	values	these	sensors	provide.	For	this	purpose,	we	will	use	a
widely	used	library	from	Adafruit,	which	is	specially	designed	for	these	kinds	of	sensors
developed	in	the	Python	programming	language.	Before	we	can	use	it,	we	need	to	install
some	software	components	to	our	Raspberry	Pi.

Firstly,	we	need	to	update	our	Pi	and	install	some	dependencies	using	these	commands:

sudo	apt-get	update

sudo	apt-get	install	build-essential	python-dev

The	sensor	library	itself	is	on	GitHub	and	we	will	download	it	from	there	onto	our	Pi
using	the	following	command:

git	clone	https://github.com/adafruit/Adafruit_Python_DHT.git

This	command	downloads	the	library	and	saves	it	in	a	subdirectory.	Now,	go	into	this
subdirectory	using	the	following	command:

cd	Adafruit_Python_DHT

Next,	you	need	to	actually	install	the	sensor	library	using	the	following	command:

sudo	python	setup.py	install

Here,	we	use	the	standard	Python	third-party	module	install	functionality,	which	installs
the	Adafruit	library	globally	onto	your	system	at	the	standard	Python	library	install
location,	/usr/local/lib/python2.7/dist-packages/.	This	is	why	we	need	superuser
privileges,	which	we	can	get	using	sudo	command.

Now	we	are	ready	to	begin	reading	measurements	from	the	sensor	using	the	example	code
that	we	downloaded	together	with	the	library.	Assuming	that	you	are	still	in	the
Adafruit_Python_DHT	directory,	the	following	command	does	the	job:

sudo	./examples/AdafruitDHT.py	11	4

In	this	command,	11	is	the	descriptor	used	to	identify	DHT11	sensor	and	4	denotes	the
GPIO	pin	4.	You	should	now	get	an	output	that	looks	like	this:

Temp=25.0*C		Humidity=36.0%

Installing	the	database
After	verifying	that	the	sensor	and	connections	to	the	Pi	work,	we	will	save	the
measurements	in	a	database.	The	database	we	will	use	is	MySQL.	Use	the	following
command	to	install	MySQL	to	the	Pi:

sudo	apt-get	install	mysql-server	python-mysqldb

During	the	installation,	you	will	be	asked	to	set	a	password	for	the	administrator	account
root.	I	will	set	admin	as	the	password	and	refer	to	it	in	the	upcoming	code.	The	following
command	takes	you	into	the	MySQL	shell	where	you	can	issue	SQL	commands,	such	as
inserting	data	into	a	database	or	querying	data	already	in	the	database.	You	should	provide
the	password	you	have	set	when	you’re	asked	for	it:

mysql	-u	root	-p

You	can	exit	from	the	MySQL	shell	anytime	using	the	exit	command.

The	next	step	in	the	MySQL	shell	is	to	create	a	database	and	use	it	for	any	further	SQL
statement	that	follow:

mysql>	CREATE	DATABASE	measurements;

mysql>	USE	measurements;

The	following	SQL	statement	will	create	a	table	in	this	newly	created	database	that	we
will	use	to	save	sensor	measurements:

mysql>	CREATE	TABLE	measurements	(ttime	DATETIME,	temperature	NUMERIC(4,1),	

humidity	NUMERIC(4,1));

The	next	step	is	to	implement	a	Python	script	that	reads	from	our	sensor	and	saves	it	to	the
database.	Put	the	following	code	in	a	file	with	the	name	sense.py	under	the	home	directory
using	the	previously	discussed	nano	command.	You	can	use	the	cd	command	without
parameters	to	go	back	to	the	home	directory	from	any	place	in	the	pi	directory	structure.
Note	an	important	fact	that	the	file	should	not	contain	any	empty	preceding	lines,	which
means	that	the	line	referring	to	the	Python	command	should	be	the	first	line	in	the	file.
The	following	code	forms	the	content	of	our	sense.py	file:

#!/usr/bin/python

import	sys

import	Adafruit_DHT

import	MySQLdb

humidity,	temperature	=	Adafruit_DHT.read_retry(Adafruit_DHT.DHT11,	4)

#temperature	=	temperature	*	1.8	+	32	#	fahrenheit

print	str(temperature)	+	"	"	+	str(humidity)

if	humidity	is	not	None	and	temperature	is	not	None:

				db	=	MySQLdb.connect("localhost",	"root",	"admin",	"measurements")

				curs	=	db.cursor()

				try:

								sqlline	=	"insert	into	measurements	values(NOW(),	{0:0.1f},	

{1:0.1f});".format(temperature,	humidity)

								curs.execute(sqlline)

								curs.execute	("DELETE	FROM	measurements	WHERE	ttime	<	NOW()	-	

INTERVAL	180	DAY;")

								db.commit()

								print	"Data	committed"

				except	MySQLdb.Error	as	e:

								print	"Error:	the	database	is	being	rolled	back"	+	str(e)

								db.rollback()

else:

				print	"Failed	to	get	reading.	Try	again!"

Note
You	should	change	the	password	parameter	in	the	MySQLdb.connect	method	call	to	the
one	you	have	assigned	to	the	root	user	on	the	MySQL	server.	You	should	even	consider
creating	a	new	user	with	access	to	just	the	measurements	table	for	security	reasons,	as	the
root	user	has	full	access	to	the	database.	Refer	to	the	MySQL	documentation	for	this
purpose.

The	next	step	is	to	change	the	file	properties	and	make	it	an	executable	file	with	the
following	command:

chmod	+x	sense.py

Note	that	this	script	saves	only	a	single	measurement.	We	need	to	schedule	the	running	of
this	script.	For	this	purpose,	we	will	use	a	built-in	Linux	utility	called	cron,	which	allows
tasks	to	be	automatically	run	in	the	background	at	regular	intervals	by	the	cron	daemon.
crontab,	also	known	as	CRON	TABle,	is	a	file	that	contains	the	schedule	of	cron	entries
to	be	run	at	specified	times.	By	running	the	following	command,	we	can	edit	this	table:

crontab	–e

Add	the	following	line	to	this	file	and	save	it.	This	will	make	the	cron	deamon	run	our
script	once	every	five	minutes:

*/5	*	*	*	*	sudo	/home/pi/sense.py

Installing	the	web	server
Now,	we	will	save	our	measurements	into	the	database.	The	next	step	is	to	view	them	in	a
web	browser	using	a	web	server.	For	this	purpose,	we	will	use	Apache	as	the	web	server
and	PHP	as	the	programming	language.	To	install	Apache	and	the	packages	required	for
our	purpose,	run	the	following	commands:

sudo	apt-get	install	apache2

sudo	apt-get	install	php5	libapache2-mod-php5

sudo	apt-get	install	libapache2-mod-auth-mysql	php5-mysql

Then,	change	your	directory	to	the	web	server’s	default	directory:

cd	/var/www

Here,	we	will	create	a	file	that	will	be	accessed	by	users	through	the	web	server	we	have
installed.	The	file	is	executed	by	the	web	server	and	the	result	of	this	execution	is	sent	to
the	clients	connected.	We	will	name	it	index.php:

sudo	nano	index.php

The	contents	should	look	like	the	following	code.	Here,	you	should	again	change	the
password	for	the	MySQL	user	root	to	the	one	you	have	chosen	in	the	call	to	the	new
mysqli	constructor	method:

<?php

//	Create	connection

$conn	=	new	mysqli("localhost",	"root",	"admin",	"measurements");

//	Check	connection

if	($conn->connect_error)	{

				die("Connection	failed:	"	.	$conn->connect_error);

}

$sql	=	"SELECT	ttime,	temperature,	humidity	FROM	measurements	WHERE	ttime	>	

NOW()	-	INTERVAL	3	DAY;";

$result	=	$conn->query($sql);

?>

<html>

<head>

<!--	Load	c3.css	-->

<link	href="https://rawgit.com/masayuki0812/c3/master/c3.min.css"	

rel="stylesheet"	type="text/css">

<!--	Load	d3.js	and	c3.js	-->

<script	src="https://rawgit.com/mbostock/d3/master/d3.min.js"	charset="utf-

8"></script>

<script	src="https://rawgit.com/masayuki0812/c3/master/c3.min.js"></scrip>

</head>

<body>

<div	id="chart"></div>

<script>

<?php

if($result->num_rows	>	0)	{

?>

var	json	=	[

<?php

		while($row	=	$result->fetch_assoc())	{

				?>{ttime:'<?=$row["ttime"]?>',temperature:<?=$row["temperature"]?>	

,humidity:<?=$row["humidity"]?>},<?

		}

}

?>

];

<?php

$conn->close();

?>

var	chart	=	c3.generate({

				bindto:	'#chart',

				data:	{

						x:	'ttime',

						xFormat:	'%Y-%m-%d	%H:%M:%S',	

						keys:	{

								x:'ttime',

								value:	['temperature',	'humidity']

						},

						json:	json,

						axes:	{

								temperature:	'y',

								humidity:	'y2'

						}

				},

				axis:	{

								x:	{

												type:	'timeseries',

												tick:	{

																format:	'%Y-%m-%d	%H:%M'

												}

								},

								y:	{

												label:	'temperature'

								},

								y2:	{

												show:	true,

												label:	'humidity'

								}

				}

});

</script>

</body>

</html>

We	want	this	page	to	be	the	default	start	page	that	web	browsers	get	whenever	they	access
the	server	directly	with	only	an	IP	address.	You	can	back	up	the	old	default	start	page	for
Apache	as	follows:

sudo	mv	index.html	oldindex.html

Navigating	to	the	IP	address	of	the	Pi	from	a	browser	will	result	in	a	view	similar	to	the
following	screenshot	after	a	few	hours	of	sensor	measurements.	Here,	I	can	access	the	Pi
using	the	external	IP	address	outside	my	home	network	as	I	have	added	the	HTTP	port	of
80	to	the	port	forwarding	settings	of	my	home	router.

Now,	we	have	a	running	FTP,	database,	and	web	servers.	Let’s	administer	these	using
ConnectBot.

Simple	management	of	servers
The	following	command	simply	checks	the	status	of	the	FTP	server:

service	vsftpd	status

This	command	restarts	the	FTP	server	if	there’s	any	problem	with	it:

sudo	service	vstfpd	restart

The	service	utility	that	we	have	used	lets	you	restart	the	database	and	web	server	using
these	two	commands:

sudo	service	mysql	restart

sudo	service	apache2	restart

Use	the	following	command	to	check	the	status	of	the	MySQL	server:

mysqladmin	-u	root	-p	status

If	you	believe	that	the	database	has	grown	too	much	in	size,	you	can	start	the	MySQL
console	and	run	a	SQL	query	to	see	the	database	size:

mysql	–u	root	–p

mysql>	SELECT	table_schema	"DB",	Round(Sum(data_length	+	index_length)	/	

1024	/	1024,	1)	"Size	in	MB"	

FROM			information_schema.tables	

GROUP		BY	table_schema;

You	can	even	delete	records	that	are	older	than	three	days	using	the	following	query:

select	measurements;

delete	from	measurements	where	ttime	<	NOW()	-	INTERVAL	3	DAY;

Or,	as	an	alternative,	you	can	check	the	size	of	the	filesystem	using	the	shell	command:

df	-h

Summary
This	chapter	introduced	you	to	the	management	of	Raspberry	Pi	as	a	server	and	how	to
issue	commands	to	it	from	Android.	We	installed	an	FTP	server	on	the	Pi	and	shared	files
between	Android	clients.	To	show	an	example	of	database	and	web	servers,	we
implemented	a	useful	project	and	learned	to	manage	these	servers	remotely	as	well.

The	next	chapter	will	introduce	you	to	the	Pi	camera	and	help	you	implement	a
surveillance	solution.

Chapter	3.	Live	Streaming	of	a
Surveillance	Camera	from	the	Pi
In	this	chapter,	we	will	connect	a	camera	to	Raspberry	Pi	and	stream	a	live	video	from	it.
We	will	then	be	able	to	watch	the	streaming	of	this	content	from	our	Android	device.	This
chapter	will	move	us	closer	to	usage	and	away	from	administration	of	Raspberry	Pi.

In	this	chapter,	we	will	cover	the	following	topics:

Hardware	and	software	configurations
Streaming	video	to	an	Android	device
The	surveillance	mode

Hardware	and	software	configurations
We	will	use	a	standard	camera	developed	for	the	Pi	that	costs	about	$30	in	many	major
electronics	stores.

The	Pi	camera

Pi	has	a	camera	port	where	you	can	plug	in	the	camera	cable.	The	plug	on	the	Pi	can	be
opened	by	pulling	it	upwards.	If	you	have	problems	connecting	the	camera	to	the	Pi,	you
can	find	many	videos	on	the	Internet	showing	how	to	do	it.	You	can	watch	one	from
Raspberry	Pi	Foundation	at	https://www.raspberrypi.org/help/camera-module-setup/.

The	next	step	is	to	configure	the	Pi	and	enable	the	camera	hardware.	This	is	done	using
the	Pi	configuration	program	accessed	by	issuing	the	following	command:

sudo	raspi-config

In	the	menu	provided,	select	Enable	Camera	and	hit	Enter.	Then	click	on	Finish	where
you’ll	be	prompted	to	reboot.

https://www.raspberrypi.org/help/camera-module-setup/

Streaming	video	to	an	Android	device
The	easiest	way	to	stream	from	the	Pi	to	Android	is	using	the	RaspiCam	Remote	app	that
logs	in	to	the	Pi	and	executes	the	necessary	commands.	It	then	automatically	gets	the
stream	from	the	Pi.	Download	and	open	the	app,	where	you	will	get	an	initial	view	to
provide	login	details,	such	as	the	IP	address,	username,	and	password.	Note	that	by
default,	it	uses	the	default	login	account	details	and	SSH	port.	You	will	only	need	the	IP
address	if	you	have	the	default	installation	in	place.	You	can	even	access	your	camera
from	the	Internet	if	you	enable	port	forwarding	for	port	22,	as	described	in	Chapter	1,
Make	a	Remote	Desktop	Connection	to	Your	Pi	from	Anywhere.	The	following	screenshot
displays	the	login	settings	of	the	RaspiCam	Remote	app:

Initial	view	for	RaspiCam	Remote	app

After	waiting	a	few	seconds,	you	should	see	the	first	picture	taken	by	the	Raspberry	Pi
camera	on	your	Android	device.	On	pressing	the	camera	icon,	the	camera	will	start
streaming	as	shown	in	the	following	screenshot:

Streaming	from	Pi

The	next	step	is	to	get	better	streaming	quality	using	the	H.264	setting.	After	connecting
to	the	RaspiCam	Remote	app,	you	should	open	settings	and	check	the	H.264	checkbox.
However,	before	connecting	through	the	app	again,	we	need	to	install	a	VLC	server	on	the
Pi	using	the	following	command.	You	may	experience	problems	with	the	install
commands	from	time	to	time,	but	running	it	once	again	almost	always	solves	the	problem:

sudo	apt-get	install	vlc

The	next	step	is	to	install	a	better	VLC	client	on	the	Android.	We	will	use	the	VLC	for

Android	beta	app.	After	installing	it,	open	RaspiCam	Remote	app	again,	and	then	start
streaming	by	clicking	on	the	camera	icon.	At	this	point,	Android	will	ask	you	to	select	the
standard	video	player	or	the	newly	installed	VLC	for	Android	beta.	Choose	the	latter	and
you	will	experience	a	much	better	streaming	quality.	Do	not	forget	to	add	port	8080	to	the
port	forwarding	settings	on	your	router	to	get	access	to	the	streaming	video	over	the
Internet.

Manual	VLC	configurations
The	RaspiCam	Remote	app	automatically	configures	VLC	on	the	Pi	before	it	streams
video	content.	Some	of	you	might	want	to	connect	to	the	video	stream	directly	from	the
VLC	app	and	skip	RaspiCam	on	Android.	The	following	command	is	the	same	as	the	one
that	RaspiCam	issues	from	the	account	that	you	provide	before	you	start	streaming	using
RaspiCam	on	your	Android	device:

/opt/vc/bin/raspivid	-o	-	-n	-t	0	-fps	25	-rot	0	-w	640	-h	480	|	

/usr/bin/vlc	-I	dummy	stream:///dev/stdin	--sout	

'#standard{access=http,mux=ts,dst=:8080}'	:demux=h264	&

If	you	issue	the	preceding	command,	you	will	be	able	to	view	the	streaming	content	from
the	VLC	app.	You	can	initiate	a	connection	by	clicking	on	the	antenna-like	icon	on	the
action	bar	of	the	VLC	app.	It	will	prompt	for	the	stream	address,	which	is
http://PI_IP_ADDRESS:8080.

The	surveillance	mode
It	is	cool	to	see	the	streaming	from	your	camera,	but	it	is	much	more	useful	to	be	able	to
run	it	in	surveillance	mode.	We	want	the	camera	to	react	to	motion	and	save	images	or
videos	whenever	motion	is	detected,	so	that	we	can	check	them	later	instead	of	keeping	an
eye	on	the	video.	For	this	purpose,	we	will	begin	installing	a	motion	recognition	software
on	our	Pi,	which	is	called	for	apparent	reasons,	motion:

sudo	apt-get	install	motion

This	will	install	the	motion	software	and	the	following	command	will	add	the	necessary
packages	to	the	kernel:

sudo	modprobe	bcm2835-v4l2

It	is	a	good	idea	to	put	this	in	the	/etc/rc.local	file	so	that	it	can	be	run	at	startup.	You
should	put	it	before	the	exit	0	line,	though.

We	will	even	make	some	configuration	changes	to	be	able	to	access	the	streaming	and
control	features	that	motion	provides.	Edit	the	configuration	file	of	motion	using	the
following	command:

sudo	nano	/etc/motion/motion.conf

By	default,	the	web	access	to	motion	is	restricted	to	the	localhost,	which	means	that	you
cannot	access	it	from	another	computer	other	than	the	Pi	itself.	We	will	change	this
behavior	by	finding	the	following	lines	in	the	motion.conf	file:

webcam_localhost	on

control_localhost	on

Note	that	these	are	not	consequent	lines	in	the	file.	Also,	if	you	use	nano	as	your	editor,
you	can	press	Ctrl+W	to	put	it	into	the	search	mode.

We	will	turn	off	the	localhost-only	access	behavior	by	replacing	the	preceding	lines	of
code	with	the	following	ones,	respectively:

webcam_localhost	off

control_localhost	off

In	addition,	we	want	the	motion	service	to	execute	in	the	background	mode	as	well	being
run	as	daemon.	For	this	purpose,	we	should	locate	the	following	line	of	code	in	the	same
file:

daemon	on

We	should	replace	it	with	this	line:

daemon	off

If	we	start	motion	now,	we	will	get	the	following	error:

Exit	motion,	cannot	create	process	id	file	(pid	file)	

/var/run/motion/motion.pid:	No	such	file	or	directory

To	get	rid	of	this	error,	we	can	create	this	folder	that	motion	is	complaining	about:

sudo	mkdir	/var/run/motion

Note	that	this	directory	might	get	deleted	at	startup,	so	it	is	a	good	idea	to	add	this
command	in	the	/etc/rc.local	file	as	well.

Now,	you	can	finally	start	and	stop	your	Pi	camera	in	the	surveillance	mode,	issuing	the
following	commands,	preferably	using	the	ConnectBot	app	or	any	other	SSH	client	that
we	discussed	in	the	previous	chapter.	The	following	command	will	start	motion:

sudo	motion

To	stop	motion,	issue	the	following	command:

sudo	pkill	-f	motion

If	you	always	want	to	run	it	on	startup,	which	I	would	not	recommend	as	you	can	run	out
of	storage	space	on	your	Pi,	you	should	edit	the	/etc/default/motion	file	using	the
following	command:

sudo	nano	/etc/default/motion

In	this	file,	you	will	find	the	following	line:

start_motion_daemon=no

You	should	replace	it	with	this	one:

start_motion_daemon=yes

You	may	either	use	the	following	command	to	start	the	service	or	reboot	your	Pi,	which
will	start	the	service	automatically:

sudo	service	motion	start

To	check	the	status	of	all	the	services	as	well	as	the	motion	service,	you	can	use	the
following	command:

sudo	service	--status-all

Motion	software	comes	in	two	parts.	The	first	part	is	where	you	can	watch	streaming
videos,	and	the	second	part	is	where	you	can	see	image/video	files	when	motion	is
detected.	You	can	see	the	stream	from	the	motion	software	by	opening	the
http://IP_ADRESS_OF_THE_PI:8081	web	page.	For	some	reason,	this	part	of	the	motion
software	only	works	in	Firefox,	but	the	surveillance	part	discussed	in	the	next	section	will
work	with	other	browsers.	Note	that	you	cannot	start	both	the	motion	server	and	VLC
through	the	RaspiCam	app	at	the	same	time	as	they	use	the	same	port.	The	following
screenshot	shows	the	streaming	of	a	motion	video:

A	motion	streaming	video	on	port	8081

You	can	log	on	to	Pi	using	AndFTP	as	discussed	in	the	previous	chapter	and	navigate	to
the	/tmp/motion	folder	to	see	images	saved	whenever	motion	is	detected.	Restarting	the
motion	service	will	empty	the	contents	of	the	folder.

Tip
Add	ports	8080,	8081,	and	FTP	port	21	to	your	port	forwarding	settings	inside	your	router
to	access	these	services	from	outside	your	network.

Accessing	surveillance	images	on	the	Web
In	almost	all	scenarios	where	surveillance	is	involved,	we	want	to	access	saved	images
from	when	motion	was	detected	through	the	Internet.	To	do	this,	we	will	connect	the
directory	to	which	motion	saves	images	to	the	Apache	Server	we	have	already	installed	in
the	previous	chapter.	Running	the	following	command	will	do	this	trick:

sudo	ln	-s	/tmp/motion	/var/www/motion

You	should	also	add	this	directory	to	which	motion	saves	images	and	videos	into	the
motion.conf	file	using	the	following	line	in	the	file:

target_dir	/tmp/motion

Now,	open	the	http://IP_ADRESS_OF_THE_PI/motion	link	in	a	browser	and	you	will	see
the	image	listing	that	motion	has	saved	whenever	motion	is	detected	in	front	of	the
camera.

Note	that	you	may	get	an	access	forbidden	fault	from	the	web	browser	if	motion	has	not
yet	detected	any	motion	and	created	the	/tmp/motion/	directory.	The	following	screenshot
illustrates	the	image	listing	that	motion	has	saved:

Image	and	video	files	when	motion	detected	accessed	through	the	Web

Summary
We	have	moved	away	from	administration	of	Pi	to	more	real-life	projects	and	installed	a
camera	on	the	Pi;	thereby,	viewing	streams	from	the	Pi	on	both	an	Android	device	and	the
Web.	We	have	even	learned	how	to	use	the	Pi	as	a	surveillance	camera	and	see	motion
detected	by	it.

We	will	continue	using	the	Pi	in	an	even	more	interesting	scenario	in	the	next	chapter	and
turn	it	into	a	media	center.

Chapter	4.	Turn	Your	Pi	into	a	Media
Center
We	have	been	administering	our	Pi	and	implementing	useful	projects	in	the	previous
chapters.	In	this	chapter,	we	will	use	our	Pi	more	as	a	source	of	entertainment	and	turn	it
into	a	media	center.	The	topics	covered	are	as	follows:

Installing	and	setting	up	a	media	center	on	the	Pi
Connecting	to	a	media	center	via	remote	control	from	Android
Getting	more	from	your	media	center
Installing	a	media	center	using	NOOBS

Installing	and	setting	up	a	media	center	on
Pi
The	media	center	software	we’ve	chosen	for	the	purpose	of	this	project	is	Kodi,	formerly
known	as	XBMC.	It	is	open	source	and	widely	used	with	lots	of	add-ons.

As	usual,	we	will	start	by	installing	the	necessary	software	on	our	Pi	using	the	apt-get
command:

sudo	apt-get	install	kodi

Then,	we’ll	run	the	kodi-standalone	executable,	which	will	start	Kodi	and	show	its	user
interface	on	the	HDMI	port	of	the	Pi.	It	is,	therefore,	important	that	you	connect	the	Pi	to	a
screen	using	the	HDMI	port	instead	of	a	remote	desktop	to	see	Kodi’s	user	interface.	Now,
you	can	connect	a	USB	keyboard	or	mouse	to	navigate	inside	Kodi.

Starting	Kodi	on	boot
We	definitely	do	not	want	to	run	a	command	to	start	the	media	center,	no	matter	how	easy
it	is	to	run	commands	from	Android,	as	discussed	in	previous	chapters.	For	this	reason,	we
need	to	start	the	command	on	startup	using	the	crontab	-e	command.	Add	the	following
line	at	the	end	of	the	file	the	crontab	command	command	opens:

@reboot	/usr/bin/kodi-standalone	&

Now,	whenever	you	restart	the	Pi,	Kodi	will	be	restarted	automatically.	Note	that,	here,
you	access	the	media	center	through	the	HDMI	port	of	the	Pi,	but	you	will	also	be	able	to
access	via	remote	desktop	using	the	tools	discussed	in	Chapter	1,	Make	a	Remote	Desktop
Connection	to	Your	Pi	from	Anywhere.

Connecting	to	the	media	center	via	remote
control	from	Android
The	main	problem	with	the	current	setup	is	that	you	can	only	control	the	media	center
using	a	connected	keyboard	or	mouse,	making	it	not	as	comfortable	to	use	as	a	media
center	should	be.	However,	there	is	a	remote	control	for	Kodi	on	Android,	called	Kore,
that	makes	it	really	easy	to	remotely	control	the	media	center.	You	can	download	it	from
Google	Play.	Its	official	name	is	Kore,	Official	Remote	for	Kodi	and	it	is	published	by
the	XBMC	Foundation,	which	is	a	nonprofit	organization	that	operates	the	Kodi	Media
Center	project.

Before	you	can	connect	the	remote	control	application	on	Android	to	the	Kodi	installation
on	the	Pi,	you	need	to	make	some	setup	changes	on	Kodi.	Go	to	the	SYSTEM	menu	in
Kodi,	and	then	Settings,	Services,	and	Webserver.	Here,	you	should	select	Allow	control
of	Kodi	via	HTTP.	Then	go	to	the	Remote	control	settings	in	same	menu	and	enable	the
Allow	programs	on	this	system	to	control	XBMC	and	Allow	programs	on	other
systems	to	control	XBMC	settings.	Now	open	Kore	on	Android	and	let	it	search	for	the
media	center.	If	both	the	phone	and	media	center	are	on	the	same	network,	Kore	should	be
able	to	find	it.	When	succeeded	with	the	search,	you	will	see	a	view	similar	to	the
following	screenshot:

Tip
Note	that	the	default	HTTP	port	for	Kodi	collides	with	the	motion	server’s	default	HTTP
port,	which	we	saw	in	the	previous	chapter.	You	should	either	change	the	port	setting	in
Kodi	or	stop	the	motion	server	before	making	these	changes	in	Kodi’s	settings.

Kore	has	found	the	media	center

Now,	click	on	the	newly	found	media	center	to	connect	and	start	controlling	it	remotely.	If
it	does	not	identify	the	media	center	automatically,	you	can	press	the	Next	button	and
enter	the	parameters	manually.	Port	8080	is	the	default	port	and	kodi	is	the	default
username	you	should	use	if	you	haven’t	changed	these	parameters	inside	Kodi.

Manual	settings	in	Kore

Getting	more	from	your	media	center
There	are	many	things	a	media	center	can	be	used	for.	You	can,	for	example,	download
add-ons	that	give	you	access	to	lots	of	online	content,	such	as	YouTube,	Khan	Academy,
and	TED	Talks.

Watching	videos	using	Kodi	on	an	Android	device
Another	interesting	thing	you	can	do	is	to	upload	video	from	your	phone	to	the	Pi	using
the	previously	discussed	AndFTP	app	from	Chapter	2,	Server	Management	with	Pi,	and
then	watch	movies	using	the	media	center.	You	need	to	add	a	directory	on	to	the	Pi	where
you	will	upload	these	files	as	a	media	location	in	Kodi.	Go	to	Videos	|	Files	|	Files,	and
then	navigate	to	Add	Videos….	Here,	you	should	first	select	Browse,	and	then	Root
filesystem.	Note	that	we	were	using	/home/pi	as	the	target	for	uploads	in	Chapter	2,
Server	Management	with	Pi.	It	should	work	even	in	this	case.	Browse	down	to	this
location	and	click	on	OK	on	all	three	pop	ups.	You	should	now	see	the	Pi	in	the	list	of
Videos	on	Kodi.	You	can	even	add	this	folder	to	favorites	for	easy	access.	Open	the	Kore
remote	control	app	and	browse	to	the	pi	folder	once	again	under	Videos.	When	the	pi
folder	is	highlighted	in	Kodi,	press	the	properties	button	in	the	Kore	remote	control	app.
Then	select	Add	to	favorites	by	scrolling	down	using	the	arrows	on	Kore.

The	button	that	lists	the	choices	in	Kore,	that	is,	the	properties	button

Next	open	AndFTP	from	Chapter	2,	Server	Management	with	Pi,	and	connect	to	the	Pi	or
select	the	connection	that	is	already	saved	from	previous	sessions.	You	should	now	see	the
contents	of	the	/home/pi	directory,	which	is	the	default	location	for	the	user	pi	we	have
used.	This	is	the	target	location.	Then,	select	the	mobile	phone	image	on	the	action	bar	in
AndFTP	to	select	a	video	located	on	your	mobile	phone	and	upload	it	to	Kodi.

The	AndFTP	interface	to	select	the	upload	location	from	the	phone	to	the	Pi

Recorded	videos	are	generally	located	under	DCIM/Camera.	Select	the	videos	you	want	to
upload.	Then,	click	on	the	upload	icon	in	the	action	bar:

The	AndFTP	interface	to	begin	upload	from	the	phone	to	the	Pi

Next,	you	can	browse	down	to	the	pi	directory	in	Kodi	that	we	have	added	to	the	Videos
section	and	see	the	videos	you	have	just	uploaded	on	your	media	center.

Streaming	the	Android	display	to	Kodi
Another	very	interesting	thing	you	can	do	is	to	stream	your	Android	screen	and	make
Kodi	show	this	stream.	For	this	purpose,	we	will	first	download	an	app	from	Google	Play
that	will	stream	an	Android	display	and	publish	it	using	a	URL	on	your	internal	network.
The	app	we	will	use	for	this	purpose	is	called	Screen	Stream	Mirroring	and	comes	both
as	a	free	and	a	paid	version.	For	the	sake	of	this	project,	it	is	enough	to	download	the	free
version.	After	starting	the	app,	you	will	need	to	close	a	few	advertisements	and	press	the
Start	Now	button	on	the	pop-up.

Screen	Stream	Mirroring

Here,	you	will	see	the	address	that	the	streaming	is	published	to.	We	will	now	save	this
rtsp://YOUR_ANDROID_IP_ADRESS:5000/screen	link	in	a	file	we	will	call	stream.strm
on	the	Pi	under	the	home	directory	of	the	user	pi,	which	is	/home/pi.	Then,	browse	to	the
pi	directory	in	Kodi,	find	this	file,	and	open	it.	Remember	that	we	have	saved	this
directory	under	the	Videos	section	in	Kodi	and	as	a	favorite	as	well.	Now,	you	should	be

able	to	see	whatever	you	do	on	the	Android	device’s	screen	attached	to	the	Pi’s	HDMI
port	used	by	Kodi.	Another	option	here	is	to	show	the	Android	camera	capture	through
this	channel.	The	Screen	Stream	Mirroring	app	we	use	has	a	notification	in	the	Android
notification	area.	If	you	expand	it,	you	will	see	an	option	named	CAMERA.	By	pressing
this	button,	you	will	be	able	to	start	the	camera	and	see	the	camera	capture	as	well.

The	Screen	Stream	Mirroring	notification	with	the	camera	option

Installing	the	media	center	using	NOOBS
Another	option	for	installing	the	media	center	onto	the	Pi	is	using	NOOBS.	This	way,
users	can	very	easily	install	the	media	center	without	worrying	about	details	related	to
Raspbian	OS,	as	we	did	in	this	chapter.	We	have	already	covered	the	NOOBS	installation
in	Chapter	1,	Make	a	Remote	Desktop	Connection	to	Your	Pi	from	Anywhere.	However,	in
Chapter	1,	Make	a	Remote	Desktop	Connection	to	Your	Pi	from	Anywhere,	we	used	the
offline	installation	option.	We	can	use	the	online	installation	option	instead.	You	should
download	the	online	NOOBS	installer	from
http://downloads.raspberrypi.org/NOOBS_lite_latest.	This	ZIP	file	is	much	smaller	but
you	need	to	connect	the	Pi	to	an	Ethernet	network	before	you	begin	installation.	Extract
the	contents	of	the	file	to	an	SD	card	and	restart	your	Pi	with	this	SD	card	inserted.	Now,
you	will	see	a	list	of	operating	systems	to	install.	The	list	contains	two	media	centers	as
well.	These	are	OpenELEC	and	OSMC.	Both	are	based	on	Kodi,	which	we’ve	already
covered	in	this	chapter.

http://downloads.raspberrypi.org/NOOBS_lite_latest

Summary
This	chapter	was	short,	but	fun.	We	have	learned	to	install	on	our	Pi	and	set	up	one	of	the
most	widely	used	media	centers	and	control	it	remotely	from	our	Android	device.

In	the	next	chapter,	we	will	get	our	hands	dirty	and	begin	some	Python	and	Android
programming,	and	make	use	of	even	more	connection	possibilities	between	the	Pi	and
Android.

Chapter	5.	Missed	Calls	with	Pi
In	this	chapter,	we	will	implement	a	much	more	programming-oriented	project	and	dive
into	Bluetooth	Smart	or	Bluetooth	Low	Energy	(BLE)	programming.	We	will	make	the
Pi	and	Android	phones	communicate	through	Bluetooth,	and	control	the	Pi	using	this
channel.	We	will	cover	the	following	topics	in	this	chapter:

Installing	the	necessary	components
Adding	a	sensor	service	to	Bluetooth	Low	Energy
Connecting	from	an	Android	app
Sending	the	reboot	command	from	your	Android	phone	to	the	Pi
Sending	more	commands	from	your	Android	phone	to	the	Pi

Installing	the	necessary	components
The	hardware	component	needed	for	this	project	is	a	BLE-enabled	Bluetooth	USB	dongle.
It	is	important	that	this	hardware	supports	BLE	as	we	will	specifically	make	use	of	this
part	of	the	Bluetooth	stack.	We	will	use	one	by	Plugable,	which	is	available	on	Amazon.

The	Bluetooth	dongle	by	Plugable

The	Raspbian	distribution	that	we	have	downloaded	already	contains	support	for
Bluetooth,	but	we	need	to	update	Bluetooth	packages	for	better	LE	support.	You	can	build
and	install	a	more	modern	of	the	Bluetooth	package	version	using	the	following
commands:

sudo	apt-get	install	libdbus-1-dev	libdbus-glib-1-dev	libglib2.0-dev	

libical-dev	libreadline-dev	libudev-dev	libusb-dev	make

mkdir	-p	work/bluepy

cd	work/bluepy

wget	https://www.kernel.org/pub/linux/bluetooth/bluez-5.33.tar.xz

tar	xvf	bluez-5.33.tar.xz

cd	bluez-5.33

./configure	--disable-systemd

make

sudo	make	install

The	make	step	will	compile	the	necessary	packages	needed	for	the	Pi	and	will	take	about
15	minutes	to	complete.	However,	you’ll	need	to	be	patient	as	it	will	lead	to	something
cool	and	useful	at	the	end.	Note	that	the	latest	version	of	BlueZ	is	5.33	at	the	time	of
writing	this	book,	and	you	can	instead	replace	it	with	the	latest	version	by	checking	the	list
of	all	available	versions	at	https://www.kernel.org/pub/linux/bluetooth/.	Note	here	that	we
have	disabled	the	systemd	support	using	the	--disable-systemd	option,	which	causes
build	errors,	otherwise.

The	preceding	commands	have	also	installed	some	command-line	tools	to	let	us	configure
and	scan	for	Bluetooth	devices.	The	following	command	lists	all	the	attached	components
on	the	USB	ports	of	the	Pi:

https://www.kernel.org/pub/linux/bluetooth/

lsusb

The	output	of	the	preceding	command	is	as	follows:

Bus	001	Device	002:	ID	0424:9514	Standard	Microsystems	Corp.

Bus	001	Device	001:	ID	1d6b:0002	Linux	Foundation	2.0	root	hub

Bus	001	Device	003:	ID	0424:ec00	Standard	Microsystems	Corp.

Bus	001	Device	004:	ID	0a5c:21e8	Broadcom	Corp.

Bus	001	Device	005:	ID	148f:5370	Ralink	Technology,	Corp.	RT5370	Wireless	

Adapter

The	Bluetooth	adapter	is	named	Broadcom	in	my	case.	To	get	more	details	on	a	specific
device,	use	the	following	command:

sudo	lsusb	-v	-d	0a5c:

Here,	note	that	0a5c	is	the	first	part	of	the	address	of	the	Bluetooth	dongle	that	I	am
reusing	to	get	more	information	on	only	this	device.

The	hciconfig	tool	will	show	you	which	devices	support	Bluetooth.	This	command
outputs	the	following	information	on	my	system:

hci0:			Type:	BR/EDR		Bus:	USB

								BD	Address:	5C:F3:70:68:BE:42		ACL	MTU:	1021:8		SCO	MTU:	64:1

								DOWN

								RX	bytes:564	acl:0	sco:0	events:29	errors:0

								TX	bytes:358	acl:0	sco:0	commands:29	errors:0

As	seen	here,	the	device	is	marked	as	DOWN.	We	will	keep	it	this	way	as	the	next	tool	we
install	requires	it	to	be	down	initially.

Note
There	are	useful	Bluetooth	LE	commands	that	you	can	use	to	check	for	other	BLE
devices.	We	will	not	use	these	commands	yet,	but	it	is	a	good	practice	to	play	with	them	to
check	if	your	BLE	devices	are	working	or	accessible.

The	same	hciconfig	tool	that	we’ve	used	previously	helps	us	bring	the	Bluetooth	device
up.	However,	do	not	do	this	if	you	want	to	proceed	with	the	rest	of	the	chapter	as	the	next
tool	requires	it	to	be	down:

sudo	hciconfig	hci0	up

It	is	a	good	idea	to	put	this	command	in	crontab,	as	discussed	previously,	using	crontab
with	the	–e	option	in	order	to	let	you	use	nano	as	the	editor	and	install	new	crontab
automatically.	Add	@reboot	sudo	hciconfig	hci0	up	inside	the	file	at	the	end,	and	save
and	exit.

There	are	two	other	commands	we	can	use:

sudo	hcitool	lescan

This	command	lists	the	BLE	devices.	Now	let’s	take	a	look	at	the	following	command:

sudo	hcitool	lecc	68:64:4B:0B:24:A7

And	this	command	tests	the	Bluetooth	connection	to	the	device.	Note	that	the	address
provided	to	the	latter	command	was	returned	by	the	former.

We	will	even	need	a	programming	support	for	Bluetooth.	We	will	use	Go	as	the	language
and	the	Gatt	package	for	Go	that	gives	support	for	Bluetooth	LE	in	the	Go	language.	The
Generic	Attribute	Profile	(Gatt)	is	a	general	specification	to	send	and	receive	small
amounts	of	data,	known	as	attributes,	over	a	BLE	link.	Let’s	run	the	following	commands
to	install	the	go	language:

cd

git	clone	https://go.googlesource.com/go

cd	go

git	checkout	go1.4.1

cd	src

./all.bash

You	might	want	to	go	and	grab	a	cup	of	coffee	here,	as	the	last	command	will	take	about
40	minutes	to	complete.	At	the	end	of	the	output,	you	will	see	that	the	go	installer	asks	you
to	add	a	binary	directory	to	your	path	for	easy	access.	The	following	commands	can
accomplish	this:

PATH=$PATH:/home/pi/go/bin

export	PATH

export	GOROOT=/home/pi/go

export	GOPATH=/home/pi/gopath

Tip
It	is	a	good	idea	to	put	these	commands	in	the	/etc/profile	file	in	order	to	execute	them
for	each	session	that	you	start	in	the	future.	Be	sure	to	add	them	at	the	end	of	the	file,
though.	Also,	do	not	forget	to	actually	execute	them	even	though	you	have	put	them	in	the
profile	file	if	you	want	to	continue	without	rebooting.

Then,	use	the	following	command	to	download	the	Gatt	package	source	files:

go	get	github.com/paypal/gatt

Now	we	will	start	a	simple	BLE	server	using	the	following	command:

cd	/home/pi/gopath/src/github.com/paypal/gatt

go	build	examples/server.go

sudo	./server

Tip
After	completing	this	chapter,	you	might	want	to	put	the	server	startup	command	inside
crontab	using	the	following	command:

crontab	-e

This	way	the	BLE	server	will	start	each	time	you	reboot	the	Pi.	Add	the	following	line	at
the	end:

@reboot	sudo	/home/pi/gopath/src/github.com/paypal/gatt/server

It	is	now	time	to	find	our	Raspberry	Pi,	which	behaves	like	a	BLE	device	from	Android.
We	will	use	the	BLE	Scanner	app	by	BluePixel	Technologies	and	is	available	on	the	Play
Store.	When	you	start	it,	you	will	see	a	list	of	BLE	devices	available	around	you	along
with	their	addresses.	The	address	of	the	Bluetooth	adapter	on	the	Pi	can	be	seen	using	the
hciconfig	command.	The	default	implementation	of	the	Gatt	server	names	the	device	as
Gopher.	The	following	screenshot	illustrates	the	BLE	Scanner	app,	showing	the	Pi	as	a
BLE	device:

The	BLE	Scanner	app	showing	the	Pi	as	a	BLE	device

The	BLE	stack	is	designed	in	a	way	that	a	device	supports	some	number	of	services	that
users	can	connect	to,	and	each	service	can	provide	read/write	or	notification
characteristics,	which	is	mainly	data	that	you	can	write	to,	read,	or	get	notifications	from.
Click	on	the	device	in	the	app	and	you	will	connect	to	the	Pi’s	newly	started	BLE	server.
You	will	be	presented	with	four	services.	The	one	we	are	interested	in	is	called
UNKNOWN	SERVICE,	which	is	unnamed	because	it	is	not	a	standard	service	and	it	is
implemented	to	only	demonstrate	the	Gatt	example	server.	Click	on	this	service	and	you
will	see	three	characteristics	provided	by	this	service:	READ,	WRITE,	and	Notification.
You	can	recognize	the	type	of	characteristic	by	looking	at	which	one	of	the	three	buttons
on	BLE	Scanner	app	is	enabled.	The	following	screenshot	illustrates	the	READ
characteristics:

The	READ	characteristic

Adding	a	sensor	service	to	Bluetooth	Low
Energy
We	will	add	a	new	service	to	the	already	existing	example	from	Gatt.	This	new	service
will	publish	two	new	characteristics	to	begin	with:	one	for	humidity	and	the	other	for
temperature	measurements.	We	will	read	the	measurements	the	same	way	using	the
techniques	we’ve	discussed	in	Chapter	2,	Server	Management	with	Pi.	To	read	these
measurements,	we	will	create	two	new	files	with	content	similar	to	the	sense.py	file	that
we	discussed	Chapter	2,	Server	Management	with	Pi.	Let’s	create	two	files	under	the	home
directory,	and	name	them	humidity.py	and	temperature.py.	The	temperature.py	file
has	the	following	content:

#!/usr/bin/python

import	sys

import	Adafruit_DHT

humidity,	temperature	=	Adafruit_DHT.read_retry(Adafruit_DHT.DHT11,	4)

print	str(temperature)

The	humidity.py	file	has	similar	content.	The	only	difference	is	that	it	prints	out	the
humidity	part	of	the	measurement	instead	of	the	temperature:

#!/usr/bin/python

import	sys

import	Adafruit_DHT

humidity,	temperature	=	Adafruit_DHT.read_retry(Adafruit_DHT.DHT11,	4)

print	str(humidity)

We	need	to	change	the	file	access	mode	to	executable	as	well	using	the	following
command:

chmod	+x	temperature.py	humidity.py

Now,	you	can	test	sensor	measurements	using	the	following	commands:

sudo	./temperature.py

sudo	./humidity.py

The	next	step	is	to	publish	these	readings	via	the	Bluetooth	channel.	We	will	create	a	new
service	inside	the	existing	Gatt	server	example.	For	this	purpose,	you	can	start	editing	the
server.go	source	file	for	the	server	example	in	the
/home/pi/gopath/src/github.com/paypal/gatt/examples	path.	You	only	need	to	add
three	lines	of	code	in	the	function	definition	for	onStateChanged	in	between	other	service
definitions.	In	the	following	content,	note	that	the	count	service	and	battery	service
already	exist.	We	only	need	to	add	the	sensor	service:

//	A	simple	count	service	for	demo.

s1	:=	service.NewCountService()

d.AddService(s1)

//	A	sensor	service	for	demo.

sSensor	:=	service.NewSensorService()

d.AddService(sSensor)

//	A	fake	battery	service	for	demo.

s2	:=	service.NewBatteryService()

d.AddService(s2)

Additionally,	in	the	same	file,	change	the	line	where	new	services	are	advertised	to	the
following	code	in	order	to	advertise	the	new	service	as	well:

//	Advertise	device	name	and	service's	UUIDs.

d.AdvertiseNameAndServices("Gopher",	[]gatt.UUID{s1.UUID(),	sSensor.UUID(),	

s2.UUID()})

We	need	to	add	the	definition	for	the	new	service	also.	The	following	code	should	be
placed	in	a	file,	named	sensor.go,	under	the	service	directory	of	the	Gatt	examples	at	the
same	level	as	other	service	definition	files,	such	as	count.go	and	battery.go:

package	service

import	(

	"fmt"

	"log"

	"os/exec"

	"strings"

	"github.com/paypal/gatt"

)

func	NewSensorService()	*gatt.Service	{

	s	:=	gatt.NewService(gatt.MustParseUUID("19fc95c0-c111-11e3-9904-	

0002a5d5c51b"))

	s.AddCharacteristic(gatt.MustParseUUID("21fac9e0-c111-11e3-9246-	

0002a5d5c51b")).HandleReadFunc(

		func(rsp	gatt.ResponseWriter,	req	*gatt.ReadRequest)	{

			out,	err	:=	exec.Command("sh",	"-c",	"sudo	

/home/pi/temperature.py").Output()

				if	err	!=	nil	{

					fmt.Fprintf(rsp,	"error	occured	%s",	err)

					log.Println("Wrote:	error	%s",	err)

				}	else	{

					stringout	:=	string(out)

					stringout	=	strings.TrimSpace(stringout)

					fmt.Fprintf(rsp,	stringout)

					log.Println("Wrote:",	stringout)

				}

	})

	s.AddCharacteristic(gatt.MustParseUUID("31fac9e0-c111-11e3-9246-	

0002a5d5c51b")).HandleReadFunc(

		func(rsp	gatt.ResponseWriter,	req	*gatt.ReadRequest)	{

			out,	err	:=	exec.Command("sh",	"-c",	"sudo	

/home/pi/humidity.py").Output()

				if	err	!=	nil	{

					fmt.Fprintf(rsp,	"error	occured	%s",	err)

					log.Println("Wrote:	error	%s",	err)

				}	else	{

					stringout	:=	string(out)

					stringout	=	strings.TrimSpace(stringout)

					fmt.Fprintf(rsp,	stringout)

					log.Println("Wrote:",	stringout)

			}

	})

	return	s

}

We	need	to	build	and	rerun	our	server	code	using	go.	The	following	commands	that	we
used	earlier	will	help	us	do	this.	Note	that	you	should	be	in	the
/home/pi/gopath/src/github.com/paypal/gatt	directory:

go	build	examples/server.go

sudo	./server

We	can	use	the	BLE	Scanner	app	on	Android	again	to	connect	to	this	new	service	and	read
the	temperature	and	humidity	sensor	values.	The	following	screenshot	illustrates	the
Gopher	services:

After	connecting	to	the	Gopher	device,	you	should	see	the	newly	added	service	with	the
19fc95c0-c111-11e3-9904-0002a5d5c51b	ID,	and	new	characteristics	for	that	service	as
shown	in	the	following	screenshot:

Newly	added	characteristics:	one	for	temperature	and	the	other	for	humidity
measurements

The	following	screenshot	illustrates	the	characteristic	details	for	temperature	measurement
after	pressing	the	the	Read	button:

Characteristics	for	temperature	measurement	showing	a	current	value	of	27	degrees

Connecting	from	an	Android	app
We	have	used	an	existing	app	to	connect	to	the	BLE	service	that	we	implemented	on
Raspberry	Pi.	This	app,	called	BLE	Scanner,	is	very	general	purpose	and	would	work	for
any	kind	of	BLE	device.	However,	we	need	a	more	specialized	app	that	only	reads
measurements	and	abstracts	away	details	of	the	BLE	protocol,	such	as	device	scan,
services,	and	service	characteristics.	In	this	section,	we	will	implement	an	Android	app	to
connect	to	the	Raspberry	Pi	BLE.	We	need	to	install	the	Android	Studio	for	this	purpose.
Android	studio	is	specifically	designed	for	Android	app	development	by	Google.	You	can
read	more	about	it	by	visiting	http://developer.android.com/tools/studio/.	You	can	find
instructions	for	installation	at	http://developer.android.com/sdk/.	We	will	use	a	real	device
to	test	our	app	and	not	the	built-in	emulator.	For	this	purpose,	you	may	need	to	install
device	drivers	specific	to	your	Android	phone	and	make	configuration	changes	to	the
Android	Studio	installation.	The	http://developer.android.com/tools/device.html	link	will
help	you	carry	out	these	actions.

Now,	start	the	Android	Studio	and	choose	a	new	project	to	create.	I	will	name	the
application	BLEPi	and	the	domain	example.com.	You	should	choose	Phone	and	Tablet	as
the	form	factor,	and	at	least	Android	5.0	as	the	minimum	SDK	as	better	BLE	support	is
introduced	with	this	SDK	to	the	Android	system.	The	core	BLE	support	is	actually	added
to	Android	4.3,	and	the	code	files	distributed	on	the	book’s	website	as	well	as	the	GitHub
repository	of	the	book	will	work	for	Android	4.3	as	well	as	Android	5.0.	However,	for	the
sake	of	simplicity	and	ease,	the	upcoming	code	is	for	Android	5.0	only.	Note	that	you
should	have	downloaded	Android	5.0	SDK	during	the	Android	Studio	installation	in	order
to	be	able	to	choose	it	in	the	create	project	wizard.	Take	a	look	at	the	links	we’ve	just
mentioned	in	this	section	for	further	details	on	this.	Then,	choose	to	add	a	blank	activity	to
the	app	and	do	not	change	the	name	of	the	activity	in	the	next	step;	we	will	keep	it	as
MainActivity.

We	will	begin	our	implementation	by	adding	Bluetooth	permissions	to	the
AndroidManifest.xml	file	inside	the	manifest	and	before	the	application	tag:

<uses-permission	

android:name="android.permission.BLUETOOTH"/>

<uses-permission	

android:name="android.permission.BLUETOOTH_ADMIN"/>

Then,	we’ll	begin	making	changes	to	the	MainActivity.java	file.	Start	by	making	the
following	class	variable	definitions:

private	BluetoothAdapter	bluetoothAdapter;

private	BluetoothLeScanner	bleScanner;

private	BluetoothGatt	bleGatt;

private	static	final	int	REQUEST_ENABLE_BT	=	1;

private	static	final	UUID	UUID_Service	=	

UUID.fromString("19fc95c0-c111-11e3-9904-0002a5d5c51b");

private	static	final	UUID	UUID_TEMPERATURE	=	

UUID.fromString("21fac9e0-c111-11e3-9246-0002a5d5c51b");

private	static	final	UUID	UUID_HUMIDITY	=	

http://developer.android.com/tools/studio/
http://developer.android.com/sdk/
http://developer.android.com/tools/device.html

UUID.fromString("31fac9e0-c111-11e3-9246-0002a5d5c51b");

The	bluetoothAdapter	definition	represents	the	local	device’s	Bluetooth	adapter	and	lets
you	perform	fundamental	Bluetooth	tasks,	such	as	discovering	other	devices	and	getting
the	properties	of	the	discovered	devices.	bleScanner	provides	methods	to	perform	scan-
related	operations	specific	to	Bluetooth	LE	devices	and	bleGatt	provides	the	Bluetooth
GATT	functionality	to	enable	communication	with	Bluetooth	Smart	devices.	The	UUIDs
we	have	defined	here	are	the	same	as	the	ones	we	have	used	in	the	sensor.go	file	that	we
saved	on	the	Pi	previously	for	the	identification	of	the	new	service	and	its	two	new
characteristics.

Tip
In	the	Android	Studio,	you	can	use	the	Alt+Enter	shortcut	key	to	automatically	import
missing	packages.	The	cursor	should	be	located	on	the	class	for	which	the	import	is
missing	in	the	java	file.	Or,	alternatively,	place	the	cursor	on	the	class,	keep	the	mouse
pointer	on	it,	and	you	will	see	a	light	bulb	menu.	In	this	menu,	you	can	select	the	import
class	option.

Inside	the	onCreate	method,	which	is	called	by	the	Android	system	when	the	app	starts
for	the	first	time,	we	can	initialize	bluetoothAdapter:

BluetoothManager	bluetoothManager	=	

(BluetoothManager)	getSystemService(Context.BLUETOOTH_SERVICE);

bluetoothAdapter	=	bluetoothManager.getAdapter();

We	need	to	define	the	startScan	method	that	will	be	called	whenever	we	want	to	initiate
a	scan	of	BLE	devices.

private	void	startScan()	{

			if	(bluetoothAdapter	==	null	||	!bluetoothAdapter.isEnabled())

			{

			Intent	enableBtIntent	=	

						new	Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

			startActivityForResult(enableBtIntent,	REQUEST_ENABLE_BT);

			}		else	{

			bleScanner	=	bluetoothAdapter.getBluetoothLeScanner();

						if	(bleScanner	!=	null)	{

										final	ScanFilter	scanFilter	=	

													new	ScanFilter.Builder().build();

									ScanSettings	settings	=	

													new	ScanSettings.Builder()

																.setScanMode(ScanSettings.SCAN_MODE_LOW_LATENCY)

																.build();

									bleScanner.startScan(

													Arrays.asList(scanFilter),	settings,	scanCallback);

						}

			}

}

Here,	we	check	if	Bluetooth	is	enabled	on	the	device	first.	If	not,	we’ll	present	a	message
box	to	let	the	user	enable	Bluetooth.	If	it	is	enabled,	we’ll	get	an	instance	of	bleScanner,
which	is	used	to	start	a	scan	using	the	startScan	method.	We	can	give	a	callback

implementation	name,	such	as	scanCallback,	which	will	be	called	whenever	a	scan
returns	some	results.	Now,	we	need	to	define	this	callback	variable,	as	shown	in	the
following	code:

private	ScanCallback	scanCallback	=	new	ScanCallback()	{

			@Override

			public	void	onScanResult(int	callbackType,	ScanResult	result)	{

						if("Gopher".equals(result.getDevice().getName()))	{

										Toast.makeText(MainActivity.this,	"Gopher	found",	

													Toast.LENGTH_SHORT).show();

										if(bleScanner	!=	null)	{

													bleScanner.stopScan(scanCallback);

										}

									bleGatt	=	

												result.getDevice().connectGatt(

																getApplicationContext(),	false,	bleGattCallback);

							}

							super.onScanResult(callbackType,	result);

				}

};

The	ScanCallback	implementation	overrides	one	important	method,	onScanResult,	which
is	called	whenever	there	is	any	new	device	to	report.	We	then	check	if	the	device	name	is
the	same	as	the	one	that	was	defined	in	the	server.go	file	on	the	Pi.	If	so,	we	can	save	the
device	properties	and	connection	information	to	the	bleGatt	variable.	We	can	even
connect	to	the	device	using	the	connectGatt	method,	and	provide	another	callback
implementation,	bleGattCallback,	which	will	be	called	whenever	an	Android	system
establishes	a	connection	to	the	device.	We	stop	the	scan	if	we	have	found	the	device	we
are	looking	for.	Here	is	the	definition	for	this	callback:

private	BluetoothGattCallback	bleGattCallback	=	new	BluetoothGattCallback()	

{

			@Override

			public	void	onConnectionStateChange(BluetoothGatt	gatt,	int	status,	int	

newState)	{

						gatt.discoverServices();

						super.onConnectionStateChange(gatt,	status,	newState);

			}

			@Override

			public	void	onServicesDiscovered(BluetoothGatt	gatt,	int	status)	{

						BluetoothGattService	service	=	

									gatt.getService(UUID_Service);

						BluetoothGattCharacteristic	temperatureCharacteristic	=	

									service.getCharacteristic(UUID_TEMPERATURE);

						gatt.readCharacteristic(temperatureCharacteristic);

						super.onServicesDiscovered(gatt,	status);

			}

			@Override

			public	void	onCharacteristicRead(BluetoothGatt	gatt,	final	

BluetoothGattCharacteristic	characteristic,	int	status)	{

						final	String	value	=	characteristic.getStringValue(0);

						runOnUiThread(new	Runnable()	{

									@Override

									public	void	run()	{

												TextView	tv;

												if(UUID_HUMIDITY.equals(characteristic.getUuid()))	{

																tv	=	(TextView)	MainActivity.this.findViewById(

																			R.id.humidity_textview);

												}	else	{

																tv	=	(TextView)	MainActivity.this.findViewById(

																			R.id.temperature_textview);

														}

													tv.setText(value);

								}

						});

						BluetoothGattService	service	=	

									gatt.getService(UUID_Service);

						readNextCharacteristic(gatt,	characteristic);

						super.onCharacteristicRead(gatt,	characteristic,	status);

			}

};

In	this	callback	implementation,	we	override	three	important	methods	called	from	the
Android	system	on	different	times.	The	onConnectionStateChange	method	is	called
whenever	a	connection	is	established	to	the	remote	device	through	Bluetooth.	In	this	case,
we	can	initiate	the	service	discovery	of	the	device	using	the	discoverServices	method.
The	onServicesDiscovered	method	is	then	called	when	services	are	discovered	on	the
device.	In	such	a	case,	we’ll	read,	to	begin	with,	the	temperature	characteristics	for	the
sensor	service	that	we’ve	defined	on	the	Pi	using	the	readCharacteristic	method.
Whenever	the	value	of	the	characteristic	reading	operation	has	succeeded	the	third
overridden	method,	onCharacteristicRead	is	called	where	we	read	the	next	characteristic
which	is	humidity,	and	then	wait	for	this	operation	to	succeed	in	the	same	method.	Then,
we	take	turns	to	read	the	humidity	and	temperature	values	using	the
readNextCharacteristic	method	that	we’ll	define	in	the	same	callback	implementation.
This	is	because	the	BLE	protocol	does	not	let	us	read	both	characteristics	at	the	same	time.
Let’s	take	a	look	at	the	following	code:

private	void	readNextCharacteristic(BluetoothGatt	

gatt,BluetoothGattCharacteristic	characteristic)	{

			BluetoothGattService	service	=	gatt.getService(UUID_Service);

			if	(UUID_HUMIDITY.equals(characteristic.getUuid()))	{

							BluetoothGattCharacteristic	temperatureCharacteristic	=	

										service.getCharacteristic(UUID_TEMPERATURE);

							gatt.readCharacteristic(temperatureCharacteristic);

			}	else	{

						BluetoothGattCharacteristic	humidityCharacteristic	=	

									service.getCharacteristic(UUID_HUMIDITY);

						gatt.readCharacteristic(humidityCharacteristic);

					}

}

Whenever	the	respective	read	operation	succeeds,	we	get	the	value	of	the	measurement
using	the	getStringValue	method	of	the	returned	characteristic	object,	and	then	show
it	in	the	UI	elements	that	we	will	define	in	the	activity_main.xml	file	as	follows:

<TextView

								android:id="@+id/temperature_textview"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_alignParentEnd="true"	/>

				<TextView

								android:id="@+id/humidity_textview"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"	/>

For	the	code	to	be	complete,	we	need	to	define	the	following	methods	as	well	in	the
MainActivity.java	file:

@Override

protected	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	

data)	{

			if(requestCode	==	REQUEST_ENABLE_BT)	{

						startScan();

			}

			super.onActivityResult(requestCode,	resultCode,	data);

}

@Override

protected	void	onResume()	{

			startScan();

			super.onResume();

}

@Override

protected	void	onPause()	{

			if(bleScanner	!=	null)	{

						bleScanner.stopScan(scanCallback);

						}

			if	(bleGatt	!=	null)	{

							bleGatt.close();

							bleGatt.disconnect();

							bleGatt	=	null;

			}

			super.onPause();

}

The	onActivityResult	method	is	called	whenever	a	user	enables	Bluetooth,	and	we	need
to	start	scanning	in	this	case	as	well	as	every	time	the	user	starts	an	app	where	onResume	is
called.	If	the	user	closes	the	app,	the	Bluetooth	connection	can	be	stopped	through	the
onPause	method.

This	is	a	great	opportunity	to	test	our	the	first	version	of	our	app	that	we	have
implemented	so	far	and	verify	that	it	works.	Select	Run	app	in	the	Run	menu	in	the
Android	Studio,	and	you	will	be	given	an	option	to	select	the	location	to	install	the	app.
You	will	then	see	the	Android	device	that	you	have	attached	to	your	computer	in	the	list.

Sending	the	reboot	command	from	your
Android	phone	to	the	Pi
Until	now,	we	have	been	receiving	data	from	the	Pi	through	BLE.	Now,	we	will	send
commands	to	it	using	the	same	channel.	We	will	implement	a	new	write	characteristic	in
the	same	service	as	our	temperature	and	humidity	read	characteristics	are,	which	were
defined	on	the	Pi.	Using	these	new	characteristics,	we	will	send	the	reboot	command	to
the	Pi.	Let’s	begin	by	editing	the	sensor.go	file	again	and	put	the	following	code	at	the	end
of	it:

s.AddCharacteristic(gatt.MustParseUUID("41fac9e0-c111-11e3-9246-	

0002a5d5c51b")).HandleWriteFunc(

		func(r	gatt.Request,	data	[]byte)	(status	byte)	{

			log.Println("Command	received")

			exec.Command("sh",	"-c",	"sudo	reboot").Output()

			return	gatt.StatusSuccess

	})

Build	and	restart	the	BLE	server	using	the	following	commands:

cd	/home/pi/gopath/src/github.com/paypal/gatt

go	build	examples/server.go

sudo	./server

Now,	test	the	characteristics	mentioned	previously	using	the	BLE	Scanner	app.	Whenever
you	write	something	to	these	characteristics,	the	Pi	will	reboot.

The	next	step	is	to	implement	this	new	reboot	function	in	the	Android	app	that	we	have
been	building.

First,	add	the	UUID	of	the	this	new	write	characteristics	we	have	just	defined	and	a
variable	to	control	the	operation	sequences,	as	shown	in	the	following	code:

private	static	final	UUID	UUID_REBOOT	=	

			UUID.fromString("41fac9e0-c111-11e3-9246-0002a5d5c51b");

private	volatile	boolean	isSendReboot	=	false;

The	boolean	variable,	isSendReboot,	will	be	used	to	initiate	the	write	characteristic
operation	and	orchestrate	it	together	with	the	read	operations	previously	defined.	The	BLE
stack	cannot	handle	read/write	operations	that	are	too	close	to	each	other,	and	we	want	to
avoid	performing	one	operation	before	the	previous	one	is	completed.	Then,	in	the
onCharacteristicRead	function	of	bleGattCallback,	change	the	line	where	we	call
readNextCharacteristic	with	the	following	piece	of	code:

if(isSendReboot)	{

			BluetoothGattCharacteristic	rebootCharacteristic	=	

						service.getCharacteristic(UUID_REBOOT);

			rebootCharacteristic.setValue("reboot");

			gatt.writeCharacteristic(rebootCharacteristic);

}	else	{

			readNextCharacteristic(gatt,	characteristic);

}

Here,	we	will	write	a	value,	reboot,	to	the	reboot	characteristic	if	the	control	variable	is
set,	by	clicking	a	button	that	we	will	soon	implement.	We	can	override	another	method	in
bleGattCallback:

@Override

public	void	onCharacteristicWrite(BluetoothGatt	gatt,	

BluetoothGattCharacteristic	characteristic,	int	status)	{

			isSendReboot	=	false;

			readNextCharacteristic(gatt,	characteristic);

			super.onCharacteristicWrite(gatt,	characteristic,	status);

}

This	method	is	called	whenever	the	write	characteristic	operation	succeeds	when	we	reset
our	control	variable	and	continue	with	the	read	operations.	Those	of	you	who	are
observant	might	see	a	minor	problem	with	this	code,	namely	that	we	are	sending	a	reboot
command	to	the	Pi,	but	at	the	same	time,	we’re	also	trying	to	read	characteristics	from	the
Bluetooth	device	located	on	the	same	device	that	we	are	trying	to	reboot.	These	readings
will	not	work	when	the	Pi	reboots,	and	our	app	will	not	be	able	to	reconnect	if	we	do	not
close	and	reopen	it	after	the	reboot	has	been	completed	successfully.	The	solution	to	this
issue	will	be	left	as	an	exercise	for	you.

The	last	part	of	the	implementation	is	to	add	a	button	for	the	command	to	our	user
interface	and	connect	this	button	to	a	method	in	the	MainAcitivity.java	file	which	will
be	executed	whenever	the	button	is	pressed.	Add	the	following	lines	to	the
activity_main.xml	file	inside	the	RelativeLayout	tag	to	begin	with:

<Button

								android:id="@+id/reboot_button"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_below="@id/humidity_textview"

								android:text="Reboot"

								android:onClick="sendRebootCommand"

								android:enabled="false"/>

Define	the	sendRebootCommand	method	in	the	MainActivity.java	file:

public	void	sendRebootCommand(View	v)	throws	InterruptedException

{

isSendReboot	=	true;

}

The	only	thing	this	function	does	when	the	Reboot	button	is	clicked	on	is	set	the	control
variable	that	we	have	defined	previously.

You	can	also	add	the	following	code	in	the	onScanResult	method	of	the	ScanCallback
class	instance	after	the	call	to	the	device.connectGatt	method	to	enable	the	button	when
we	connect	to	Raspberry	Pi	via	Bluetooth:

if(bleGatt	!=	null)	{

			MainActivity.this.findViewById(R.id.reboot_button).setEnabled(true);

}

This	is	a	good	place	to	test	the	app	again	and	see	if	you	can	successfully	restart	the	Pi
through	an	Android	device.

Sending	more	commands	from	your
Android	phone	to	the	Pi
In	the	previous	section,	we	have	sent	the	reboot	command	from	Android	to	the	Pi.	In	this
section,	we	will	send	two	new	commands.	One	to	light	up	a	LED	that	we	will	connect	to
the	Pi,	and	another	to	play	sound	on	the	Pi.	These	commands	will	be	reused	in	the
forthcoming	sections.

Lighting	the	LEDs
We’ll	begin	by	connecting	a	LED	light	to	the	GPIO	ports	of	the	Pi.	The	LEDs	usually
come	with	a	short	and	long	leg.	Connect	a	resistor	to	the	short	leg	of	the	LED,	and	connect
a	female/female	jumper	to	the	other	side	of	the	resistor.	This	jumper	should	then	be
connected	to	one	of	the	ground	pins	of	the	Pi.	Take	a	look	at	the	schema	in	Chapter	2,
Server	Management	with	Pi,	to	identify	the	pins.	Note	that	we	already	used	one	of	the
ground	pins	when	we	connected	our	temperature-humidity	sensor	to	the	Pi.	However,
there	are	plenty	of	ground	pins	available.	The	long	leg	of	the	LED	should	be	connected	to
one	of	the	GPIO	pins.	We	will	choose	number	17.	You	can	take	a	look	the	GPIO	port
mappings	diagram	in	Chapter	2,	Server	Management	with	Pi,	to	identify	port	17.

Tip
It	is	a	good	idea	to	choose	a	resistor	in	the	span	of	270Ω	to	470Ω.	This	resistor	to	protects
the	LED	lamp	from	unexpected	voltage	changes.	If	you	choose	a	resistor	with	lower	ohm
values,	then	the	LED	will	be	brighter.

We	will	access	the	GPIO	and	LED	lamp	using	a	software	utility	called	wiringPi.	We	can
download	and	install	it	using	the	following	commands:

cd

git	clone	git://git.drogon.net/wiringPi

cd	wiringPi

./build

These	commands	have	helped	us	to	install	a	command-line	tool	called	gpio,	which	you
can	now	use	to	light	the	LED	lamp:

gpio	-g	mode	17	out

gpio	-g	write	17	1

You	can	turn	it	off	using	the	following	comand:

gpio	-g	write	17	0

We	need	to	add	two	new	characteristics	to	our	BLE	server	implementation:	the	first	to	turn
the	light	on,	and	the	second	to	turn	it	off.	Add	the	following	lines	to	the	end	of	the
sensor.go	file,	and	note	that	we	have	new	UUIDs	for	each	new	characteristic	that	we
create:

s.AddCharacteristic(gatt.MustParseUUID("51fac9e0-c111-11e3-9246-

0002a5d5c51b")).HandleWriteFunc(

		func(r	gatt.Request,	data	[]byte)	(status	byte)	{

			log.Println("Command	received	to	turn	on")

			exec.Command("sh",	"-c",	"gpio	-g	mode	17	out").Output()

			exec.Command("sh",	"-c",	"gpio	-g	write	17	1").Output()

			return	gatt.StatusSuccess

	})

	s.AddCharacteristic(gatt.MustParseUUID("61fac9e0-c111-11e3-9246-

0002a5d5c51b")).HandleWriteFunc(

		func(r	gatt.Request,	data	[]byte)	(status	byte)	{

			log.Println("Command	received	to	turn	off")

			exec.Command("sh",	"-c",	"gpio	-g	mode	17	out").Output()

			exec.Command("sh",	"-c",	"gpio	-g	write	17	0").Output()

			return	gatt.StatusSuccess

	})

Now,	build	and	restart	the	BLE	server	again.	If	you	have	added	the	BLE	server	command
inside	the	crontab,	you	might	need	to	reboot	the	Pi.	Next,	connect	to	the	Pi	using	the	BLE
Scanner	app	again	and	use	the	Write	button	on	characteristics	section	in	the	app	to	write
values	to	these	characteristics.	You	will	need	to	provide	some	text	to	write	to,	otherwise,
the	BLE	Scanner	app	will	not	send	commands.	Once	you	do	this,	you	will	be	able	to	turn
the	LED	on	and	off.

Tip
It	is	always	a	good	idea	to	check	the	new	characteristics	you’ve	added	in	BLE	Scanner
app	before	you	try	to	access	it	with	the	app	that	we	are	building.	This	way,	we	can	be	sure
that	we	have	added	the	characteristics	correctly	on	the	Pi	side.

The	next	step	is	to	implement	this	new	function	in	our	app.	We	can	begin	by	introducing
two	new	buttons	in	the	activity_main.xml	file:

<Button

								android:id="@+id/turnon_button"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_below="@id/reboot_button"

								android:text="Turn	on"

								android:onClick="sendTurnOnCommand"

								android:enabled="false"/>

				<Button

								android:id="@+id/turnoff_button"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_below="@id/turnon_button"

								android:text="Turn	off"

								android:onClick="sendTurnOffCommand"

								android:enabled="false"/>

In	MainActivity.java,	define	the	new	UUID	and	control	variables	for	the	new
characteristics:

private	static	final	UUID	UUID_TURNON	=	

			UUID.fromString("51fac9e0-c111-11e3-9246-0002a5d5c51b");

private	static	final	UUID	UUID_TURNOFF	=	

			UUID.fromString("61fac9e0-c111-11e3-9246-0002a5d5c51b");

private	volatile	boolean	isSendTurnOn	=	false;

private	volatile	boolean	isSendTurnOff	=	false;

In	the	onScanResult	method	of	scanCallback,	add	the	following	code	in	the	if-statement
to	enable	these	two	buttons	just	after	enabling	the	reboot	button:

MainActivity.this.findViewById(R.id.turnon_button).setEnabled(true);

MainActivity.this.findViewById(R.id.turnoff_button).setEnabled(true);

In	the	onCharacteristicRead	method	of	bleGattCallback,	add	new	else-if	statements	to
the	existing	check	of	the	control	variable	for	isSendReboot.	The	new	code	will	look
similar	to	the	following:

if(isSendReboot)	{

			BluetoothGattCharacteristic	rebootCharacteristic	=	

						service.getCharacteristic(UUID_REBOOT);

			rebootCharacteristic.setValue("reboot");

			gatt.writeCharacteristic(rebootCharacteristic);

}	else	if(isSendTurnOn)	{

			BluetoothGattCharacteristic	turnOnCharacteristic	=	

						service.getCharacteristic(UUID_TURNON);

			turnOnCharacteristic.setValue("turnon");

			gatt.writeCharacteristic(turnOnCharacteristic);

}	else	if(isSendTurnOff)	{

			BluetoothGattCharacteristic	turnOffCharacteristic	=	

						service.getCharacteristic(UUID_TURNOFF);

			turnOffCharacteristic.setValue("turnoff");

			gatt.writeCharacteristic(turnOffCharacteristic);

}	else	{

			readNextCharacteristic(gatt,	characteristic);

}

In	the	onCharacteristicWrite	method,	add	the	following	code	snippet	to	reset	the
control	variables:

isSendTurnOn	=	false;

isSendTurnOff	=	false;

Finally,	add	new	functions	that	can	be	called	on	click	events	for	the	new	buttons:

public	void	sendTurnOnCommand(View	v)	throws	InterruptedException

{

			isSendTurnOn	=	true;

}

public	void	sendTurnOffCommand(View	v)	throws	InterruptedException

{

			isSendTurnOff	=	true;

}

Your	app	will	look	similar	to	the	following	screenshot:

The	final	version	of	the	app

Be	patient	to	see	the	effects	of	the	new	buttons	after	clicking	on	them	as	it	will	take	a	few
seconds	for	the	messages	to	arrive	in	the	Pi,	and	for	the	the	LED	lamp	to	be	turned	on.

Playing	sounds	on	your	Pi
To	be	able	to	play	sounds	on	the	Pi,	sound	modules	should	be	loaded	on	reboot.	To	do	this,
we	need	to	add	sound	module	specifications	to	the	/etc/modules	file.	Add	snd-bcm2835
in	this	file	if	it	does	not	already	exist	there.

Tip
You	can	use	the	lsmod	command-line	tool	to	see	which	modules	are	loaded	at	the	moment:

sudo	modprobe	snd_bcm2835

This	command	loads	the	sound	module	without	rebooting	for	the	contents	of	the
/etc/modules	file	to	take	effect.

We	even	need	to	find	an	audio	file	to	play,	which	we	can	download	using	the	following
command:

cd

wget	http://www.freespecialeffects.co.uk/soundfx/sirens/whistle_blow_01.wav

You	can	now	play	this	sound	using	the	following	command:

aplay	whistle_blow_01.wav

Tip
Note	that	that	the	audio	channel	might	default	due	to	HDMI	output	and	you	may	not	hear
anything	on	your	3.5mm	jack.	In	this	case,	you	can	run	the	following	command	to	set	the
default	audio	player	to	the	3.5mm	jack:

amixer	cset	numid=3	1

The	next	step	is	to	add	the	new	write	characteristic	to	the	sensor.go	file,	as	shown	in	the
following	code:

s.AddCharacteristic(gatt.MustParseUUID("71fac9e0-c111-11e3-9246-

0002a5d5c51b")).HandleWriteFunc(

		func(r	gatt.Request,	data	[]byte)	(status	byte)	{

			log.Println("Command	received	to	whistle	")

			exec.Command("sh",	"-c",	"aplay	/home/pi/whistle_blow_01.wav").Output()

			return	gatt.StatusSuccess

	})

Do	not	forget	to	build	and	restart	the	Pi	using	the	go	build	examples/server.go
command.	Next,	define	a	new	button	in	the	activity_main.xml	file:

<Button

								android:id="@+id/whistle_button"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_below="@id/turnoff_button"

								android:text="Whistle"

								android:onClick="sendWhistleCommand"

								android:enabled="false"/>

Define	a	new	event	handler	for	the	onClick	event	in	the	MainActivity.java	file:

public	void	sendWhistleCommand(View	v)	throws	InterruptedException

{

				isSendWhistle	=	true;

}

Next,	add	new	the	UUID	and	control	variables	to	the	same	file:

private	static	final	UUID	UUID_WHISTLE	=	

			UUID.fromString("71fac9e0-c111-11e3-9246-0002a5d5c51b");

private	volatile	boolean	isWhistle	=	false;

Enable	the	new	button	in	the	onScanResult	method	of	the	scanCallback	instance	variable
inside	the	if-statement	for	the	bleGatt	null	check:

MainActivity.this.findViewById(R.id.whistle_button).setEnabled(true);

Add	the	following	code	in	the	new	else-if	statement	in	the	onCharacteristicRead	handler
for	the	bleGattCallback	variable:

else	if(isSendWhistle)	{

			BluetoothGattCharacteristic	whistleCharacteristic	=	

						service.getCharacteristic(UUID_WHISTLE);

			whistleCharacteristic.setValue("whistle");

			gatt.writeCharacteristic(whistleCharacteristic);

}

Add	a	new	statement	to	reset	the	control	variable	in	the	onCharacteristicWrite	method:

isSendWhistle	=	false;

Now	the	whistle	command	is	ready	to	be	tested	from	our	app.

Combining	the	commands	and	being	informed	on
incoming	calls
In	this	last	section,	we	will	combine	the	whistle	and	LED	light	up	commands	and	initiate
this	new	command	whenever	our	phone	rings.	By	now,	we	are	used	to	creating	new
characteristics.	Here	is	a	new	one	to	be	added	to	sensor.go	file:

s.AddCharacteristic(gatt.MustParseUUID("81fac9e0-c111-11e3-9246-

0002a5d5c51b")).HandleWriteFunc(

		func(r	gatt.Request,	data	[]byte)	(status	byte)	{

			log.Println("Command	received	to	turn	on	and	whistle")

			exec.Command("sh",	"-c",	"aplay	/home/pi/whistle_blow_01.wav").Output()

			exec.Command("sh",	"-c",	"gpio	-g	mode	17	out").Output()

			exec.Command("sh",	"-c",	"gpio	-g	write	17	1").Output()

			return	gatt.StatusSuccess

	})

We	can	combine	these	two	commands	to	save	ourselves	from	the	development	details	of
sending	two	separate	commands	as	a	single	transaction.	We	need	a	new	permission	in	the
AndroidManifest.xml	file	to	get	an	incoming	call	state	from	the	Android	system:

<uses-permission	android:name="android.permission.READ_PHONE_STATE"	/>

We	also	need	new	instance	variables	in	MainActivity.java:

private	static	final	UUID	UUID_WHISTLE_AND_TURNON	=	

			UUID.fromString("81fac9e0-c111-11e3-9246-0002a5d5c51b");

private	volatile	boolean	isSendWhistleAndTurnOn	=	false;

Then,	we	need	to	get	an	instance	of	a	system	phone	service	and	attach	our	own	listener	to
it.	Add	these	two	lines	of	code	in	the	onCreate	method:

TelephonyManager	TelephonyMgr	=	(TelephonyManager)	

			getSystemService(Context.TELEPHONY_SERVICE);

TelephonyMgr.listen(new	PhoneListener(),	

PhoneStateListener.LISTEN_CALL_STATE);

Next,	define	a	local	PhoneListener	class:

class	PhoneListener	extends	PhoneStateListener	{

			public	void	onCallStateChanged(int	state,	String	incomingNumber)	{

						super.onCallStateChanged(state,	incomingNumber);

						switch	(state)	{

									case	TelephonyManager.CALL_STATE_RINGING:

									Toast.makeText(getApplicationContext(),	incomingNumber,	

Toast.LENGTH_LONG).show();

									Toast.makeText(getApplicationContext(),	"CALL_STATE_RINGING",	

Toast.LENGTH_LONG).show();

									isSendWhistleAndTurnOn	=	true;

									break;

						default:

									break;

						}

			}

}

Here,	whenever	we	get	a	state	change	on	the	phone,	we	check	if	this	is	a
CALL_STATE_RINGING	state.	If	it	is,	we	can	set	the	control	variable	for	the	newly	created
command	in	the	same	way	as	the	button	click	event	handlers	did	for	previously	defined
commands.	Then,	we	can	add	this	additional	else-if	statement	in	the	onCharacteristic
read	method	as	well:

else	if(isSendWhistleAndTurnOn)	{

			BluetoothGattCharacteristic	whistleAndTurnOnCharacteristic	=	

						service.getCharacteristic(UUID_WHISTLE_AND_TURNON);

			whistleAndTurnOnCharacteristic.setValue("whistleturnon");

			gatt.writeCharacteristic(whistleAndTurnOnCharacteristic);

}

Next,	we’ll	reset	the	control	variable	in	the	onCharacteristicWrite	method	as	follows:

isSendWhistleAndTurnOn	=	false;

Now,	you	will	be	able	to	see	the	LED	lamp	turned	on	and	hear	the	whistle	sound	on	the	Pi
as	soon	as	your	phone	rings.	Note	that	our	app	needs	to	be	started	and	visible	for	this	to
work.	This	is	caused	by	one	of	the	two	main	issues	with	the	code	we	have.	All	the
communication	with	the	Pi	through	BLE	should	actually	be	done	in	side	an	Android
service,	and	phone	events	need	to	be	handled	inside	BroadcastReceiver	instead	of	in	an
activity.	Both	of	these	implementations,	that	is,	Pi	communication	and	phone	state
interception,	should	actually	be	separated	from	the	activity.	An	activity	should	actually	be
a	UI	component	and	nothing	more.	However,	our	intention	here	was	to	show	you	only	the
fun	parts	and	be	quick	and	dirty.	These	further	improvements	on	the	Android	code	will	be
left	as	an	exercise	for	you.

Summary
In	this	chapter,	we	covered	a	lot	of	content,	ranging	from	BLE	implementations	on	the	Pi
to	details	of	the	Android	BLE	code.	We	had	great	fun	with	the	Pi	and	came	up	with	a
useful	project	that	can	be	developed	further.

In	the	next	chapter,	we	will	learn	more	ways	to	make	use	of	BLE	equipment	on	the	Pi	and
use	our	phones	not	just	as	Android	devices,	but	also	as	access	points	for	the	Pi.

Chapter	6.	The	Vehicle	Pi
We	will	continue	to	use	Bluetooth	on	our	Pi	in	this	chapter	to	track	the	location	and	data
from	our	car.	The	following	sections	will	be	covered	in	this	chapter:

Finding	out	the	location	of	the	car
Using	your	Android	device	as	an	access	point
Collecting	the	car	data
Sending	data	to	the	cloud
Putting	it	all	together

Finding	out	the	car	location
In	this	chapter,	we	will	collect	the	engine	data	from	our	car,	but	things	will	get	more
exciting	if	we	can	gather	some	for	of	location	data	as	well.	For	this	purpose,	we	will
connect	a	USB	GPS	receiver	to	the	Pi	and	receive	our	location	through	this	piece	of
equipment.	We	will	use	one	of	the	cheapest	receivers	available	in	the	market,	as	shown	in
the	following	image:

The	Globalsat	BU-353	GPS	receiver

After	connecting	the	GPS	to	the	Pi,	you	can	issue	the	lsusb	command	to	see	if	it	is
registered	correctly.	The	output	from	this	command	on	my	system	is	as	follows,	and	here
Prolific	is	the	GPS	adapter:

Bus	001	Device	002:	ID	0424:9514	Standard	Microsystems	Corp.

Bus	001	Device	001:	ID	1d6b:0002	Linux	Foundation	2.0	root	hub

Bus	001	Device	003:	ID	0424:ec00	Standard	Microsystems	Corp.

Bus	001	Device	004:	ID	148f:5370	Ralink	Technology,	Corp.	RT5370	Wireless	

Adapter

Bus	001	Device	005:	ID	067b:2303	Prolific	Technology,	Inc.	PL2303	Serial	

Port

Bus	001	Device	006:	ID	0a5c:21e8	Broadcom	Corp.

The	next	thing	we	need	to	install	is	a	GPS	daemon	that	receives	location	information	from
the	adapter:

sudo	apt-get	install	gpsd	gpsd-clients	python-gps

You	might	need	to	reboot	in	order	to	get	the	daemon	to	start.	Otherwise,	you	can	issue	the

following	command	to	get	it	working	immediately:

sudo	gpsd	/dev/ttyUSB0	-F	/var/run/gpsd.sock

The	installation	script	has	even	provided	us	with	a	tool	to	see	the	current	GPS	location	and
the	satellites	that	are	in	range	through	a	text-based	window:

cgps	–s

Tip
The	GPS	receiver	works	best	outdoors	or	with	a	clear	view	of	the	sky	near	a	window.

The	output	on	my	system	and	in	my	location	from	the	cgps	command	is	shown	in	the
following	screenshot:

The	output	from	the	cgps	–s	command

Here,	you	can	see	the	GPS	satellites	that	I,	in	particular,	have	in	my	view,	and	my	latitude
and	longitude	as	well	as	other	useful	information	that	is	available	through	the	GPS	system.

Tip
If	you	get	a	timeout	error	from	the	cgps	command,	you	need	to	restart	the	GPS	daemon
using	the	following	commands:

sudo	killall	gpsd

sudo	gpsd	/dev/ttyUSB0	-F	/var/run/gpsd.sock

If	you	get	this	timeout	even	though	you	have	rebooted	the	Pi,	then	you	can	put	the
following	commands	in	crontab,	but,	there	is	even	a	better	place	to	put	these,	which	will
be	described	later	on:

@reboot	sudo	killall	gpsd

@reboot	sudo	gpsd	/dev/ttyUSB0	-F	/var/run/gpsd.sock

It	is	possible	to	get	the	location	information	programmatically	from	Python	as	well.	We
will	make	use	of	this	possibility	later	on.	But	for	now,	the	following	Python	code	in	a	file

named	getgps.py	to	test	the	Python	gps	library:

#!	/usr/bin/python

from	gps	import	*

import	math

gpsd	=	gps(mode=WATCH_ENABLE)	#starting	the	stream	of	info

count	=	0

while	count	<	10:		#	wait	max	50	seconds

				gpsd.next()

				if	gpsd.fix.latitude	!=	0	and	not	math.isnan(gpsd.fix.latitude)	:

								print	gpsd.fix.latitude,gpsd.fix.longitude

								break

				count	=	count	+	1

				time.sleep(5)

The	only	thing	this	tiny	program	does	is	to	output	the	GPS	location	whenever	there	is	one
to	report.	We	can	call	it	using	the	python	getgps.py	command.

Collecting	the	car	data
For	the	purpose	of	collecting	the	car	data,	we	will	use	a	standard	On-board	diagnostics
(OBD)	interface	found	on	most	cars	and	referred	to	as	OBD-II	or	EOBD	in	Europe.	These
are	equivalent	standards	used	to	connect	to	the	OBD	port	of	the	car;	you	can	also	read
diagnostics	data	and	fault	codes	about	the	car	from	this	port.

Note
In	1996,	the	OBD-II	specification	was	made	mandatory	for	all	cars	manufactured	and	sold
in	the	United	States.	The	European	Union	followed	suit	in	2001	by	making	EOBD
mandatory	for	all	gasoline	(petrol)	vehicles	sold	in	the	European	Union,	followed	by	all
diesel	vehicles	in	2003.	In	2010,	the	HDOBD	(heavy	duty)	specification	was	made
mandatory	for	certain	select	commercial	(non-passenger	car)	engines	sold	in	the	United
States.	Even	China	followed	suit	in	2008,	and	by	then,	some	light	vehicles	in	China	were
required	by	the	Environmental	Protection	Administration	Office	to	implement	OBD.

On	most	cars,	the	OBD	interface	is	found	under	the	steering	wheel.	On	a	Toyota	Aygo
from	2008,	it	is	found	on	the	right-hand	side	under	the	steering	wheel.	Some	car
manufacturers	do	not	have	standard	port	connections.	So,	you	might	have	to	buy	an	extra
OBD	converter	cable.	The	port	in	the	car	looks	like	this:

The	OBD	connection	in	the	car

We	will	connect	an	ELM327-Bluetooth	sender	to	this	OBD	connection	and	the	Bluetooth
dongle	from	the	previous	chapter	to	the	Pi	and	make	the	two	communicate.	The	ELM327
is	a	programmed	microcontroller	produced	by	ELM	Electronics	to	translate	the	on-board
diagnostics	(OBD)	interface.	The	ELM327	command	protocol	is	one	of	the	most	popular
PC-to-OBD	interface	standards	implemented.	You	can	buy	one	of	these	pieces	of
hardware	in	any	price	range	with	different	properties	on	Amazon.	The	one	that	I	have	is
by	Goliton:

The	ELM	327-OBD	Bluetooth	sender

The	easiest	way	to	get	data	from	a	car	is	to	use	an	app	on	Android	that	can	translate	the
data	for	you.	Search	for	OBD	on	the	Play	Store,	and	you	will	find	lots	of	great	apps	that
can	connect	to	ELM327	and	show	you	all	the	details	of	your	car	data.	However,	we	want
to	have	a	lot	more	fun	than	this.

Getting	the	car	data	to	the	Pi
To	collect	car	data	from	the	Pi	using	Python	via	Bluetooth,	we	need	to	install	some	tools.
Run	the	following	update	command	to	download	Bluetooth-related	packages.	Note	that	I
am	assuming	that	you	have	a	new	Raspbian	installation.	Same	packages	have	been
installed	in	previous	chapters	as	well:

sudo	apt-get	install	bluetooth	bluez-utils	blueman	python-serial	python-

wxgtk2.8	python-wxtools	wx2.8-i18n	libwxgtk2.8-dev	git-core	--fix-missing

Tip
You	are	most	probably	sitting	in	your	car	and	working	right	now.	If	you	are	struggling	to
figure	out	how	to	connect	to	the	Internet,	you	can	always	use	your	Android	device	as	a
hotspot	and	connect	to	the	Internet	using	the	Wi-Fi	dongle	that	we	need	for	this	chapter
later	on	anyway.

Connecting	the	Pi	to	a	Wi-Fi	network	was	covered	previously,	but	lets	remind	ourselves
about	how	it	works.

Add	the	following	lines	to	the	/etc/wpa_supplicant/wpa_supplicant.conf	file.	You
need	to	have	configured	the	hotspot	to	apply	the	WPA	PSK	security	instead	of	PSK2:

network={

								ssid="YOUR_NETWORKID_FOR_HOTSPOT"

								psk="YOUR_PASSWORD_FOR_HOTSPOT"

}

Now,	reboot	the	Pi,	and	after	a	few	minutes,	you	will	see	that	it	is	automatically	connected
to	the	hotspot	on	the	Android	device	in	the	hotspot	settings	window.

Once	again,	we	can	use	the	lsusb	command	to	list	the	connected	USB	devices.	The	output
on	my	system	is	shown	as	follows:

Bus	001	Device	002:	ID	0424:9514	Standard	Microsystems	Corp.

Bus	001	Device	001:	ID	1d6b:0002	Linux	Foundation	2.0	root	hub

Bus	001	Device	003:	ID	0424:ec00	Standard	Microsystems	Corp.

Bus	001	Device	004:	ID	148f:5370	Ralink	Technology,	Corp.	RT5370	Wireless	

Adapter

Bus	001	Device	005:	ID	067b:2303	Prolific	Technology,	Inc.	PL2303	Serial	

Port

Bus	001	Device	006:	ID	0a5c:21e8	Broadcom	Corp.

The	005	device	is	the	Bluetooth	dongle	that	I	am	reusing	from	the	previous	section.	Issue
the	hcitool	scan	command	to	see	if	you	can	reach	the	OBD	Bluetooth	device	connected
to	the	car:

Scanning…

								00:1D:A5:15:A0:DC							OBDII

You	can	see	the	MAC	address	of	the	OBD	device	as	well;	write	it	down	as	it	will	be	used
later.

Tip

If	you	get	into	problems,	such	as	scanning	or	reaching	the	OBD,	you	can	use	the	following
commands	to	see	the	status	of	the	connected	Bluetooth	dongle	and	the	bluetooth	service
on	the	Pi:

hciconfig	hci0	

/etc/init.d/bluetooth	status	

Let’s	take	a	look	at	the	following	command:

/etc/init.d/bluetooth	restart	

The	preceding	command	is	used	to	restart	the	bluetooth	service.

Now,	we	need	to	give	the	pi	user	access	to	the	Bluetooth	device.	Edit	the	/etc/group	file,
find	the	row	containing	the	bluetooth	text,	and	add	pi	to	the	end	of	this	row.	It	needs	to
look	something	similar	to	bluetooth:x:113:pi.

We	can	now	connect	the	Pi’s	Bluetooth	dongle	to	the	OBD	Bluetooth	device	using	the
rfcomm	command.	This	command	should	be	the	first	thing	you	execute	before	connecting
to	OBD.	You	can	hang	up	before	continuing	using	the	Ctrl+C	key	combination:

sudo	rfcomm	connect	hci0	00:1D:A5:15:A0:DC

Here,	you	should	use	the	MAC	address	of	your	own	ODB	Bluetooth,	which	we	found	out
previously	using	the	hcitool	scan	command.

Now,	issue	the	following	Bluetooth	pairing	command	to	pair	the	Pi	with	OBD	and	use	the
MAC	address	of	OBD:

sudo	bluez-simple-agent	hci0	00:1D:A5:15:A0:DC

The	PIN	is	usually	either	0000	or	1234:

RequestPinCode	(/org/bluez/2336/hci0/dev_00_1D_A5_15_A0_DC)

Enter	PIN	Code:	1234

Release

New	device	(/org/bluez/2336/hci0/dev_00_1D_A5_15_A0_DC)

We	should	even	add	the	dbus	connection	support	before	we	continue	to	the	next
command:

sudo	update-rc.d	-f	dbus	defaults

sudo	reboot

Make	the	OBD	device	trusted	by	the	Pi	in	order	to	skip	manual	pairing	the	next	time	using
the	following	command:

sudo	bluez-test-device	trusted	00:1D:A5:15:A0:DC	yes

Tip
The	following	command	will	let	you	test	the	connection	if	you	have	any	problems.
Replace	the	MAC	address	with	your	OBD	adapter’s	MAC	address:

sudo	l2ping	00:1D:A5:15:A0:DC

We	will	use	a	tool,	called	pyOBD-pi,	to	access	the	data	that	the	OBD	dongle	makes
available.	Download	and	start	the	logger	using	the	git	command.	This	is	a	more
developer-friendly	version	of	a	well-known	library	located	at
https://github.com/peterh/pyobd:

git	clone	https://github.com/Pbartek/pyobd-pi

cd	pyobd-pi

sudo	python	./obd_recorder.py

Tip
Do	not	forget	to	turn	your	ignition	on.	Also,	don’t	forget	to	connect	via	Bluetooth	using
the	upcoming	command.	It	is	a	good	idea	to	put	this	in	crontab,	otherwise,	you’ll	need	to
use	it	every	time	you	reboot	the	Pi:

sudo	rfcomm	connect	hci0	00:1D:A5:15:A0:DC	&

The	command	will	save	the	data	traffic	to	the	log	directory.	If	you	get	errors	regarding
0100	response:CAN	ERROR,	then	you	have	problems	with	protocol	selections,	and	you
simply	need	to	edit	the	obd_io.py	file	and	find	the	following	line:

self.send_command("0100")

Then,	add	the	following	lines	of	code	just	before	it:

self.send_command("ATSP0")		#	select	auto	protocol

wx.PostEvent(self._notify_window,	DebugEvent([2,"ATSP0	response:"	+	

self.get_result()]))

In	this	way,	we	have	forced	the	communication	protocol	to	be	chosen	automatically.

Tip
You	may	want	to	run	the	init	server	script	on	reboot.	You	cannot	put	it	in	cronbtab	as	the
Bluetooth	or	GPS	might	not	be	ready	when	it	is	run.	Put	the	commands	at	the	end	of
/etc/rc.local	file	before	the	exit	line,	instead:

sudo	killall	gpsd

sudo	gpsd	/dev/ttyUSB0	-F	/var/run/gpsd.sock

sudo	rfcomm	connect	hci0	00:1D:A5:15:A0:DC	&

https://github.com/peterh/pyobd

Using	your	Android	device	as	an	access
point
We	will	send	the	data	we	have	gathered	so	far	to	a	location	on	a	cloud,	but	we	need	to
connect	the	Pi	to	the	Internet	before	we	do	this.	Making	an	Android	device	an	Internet
access	point	or	a	hotspot	is	trivial	and	can	be	done	from	the	settings	of	a	device.	We	can
then	connect	the	Pi	to	this	network	that	Android	provides.	However,	there	is	a	major
problem	with	this	setup.	First	of	all,	we	want	to	be	able	to	leave	the	Pi	and	the	phone	in
the	car	all	the	time.	As	soon	as	the	car	starts,	we	want	the	data	to	be	sent	automatically,
and	we	do	not	want	to	carry	around	the	Pi	and	a	phone.	However,	if	we	leave	the	phone	in
the	car	and	it	is	connected	to	the	12V	power	output,	the	device	will	soon	run	out	of	battery
and	shut	down.	Then,	we’ll	need	to	power	it	on	manually	and	make	changes	in	the	hotspot
settings	again.	We	want	all	these	steps	to	be	undertaken	automatically.	For	this	reason,	we
need	a	way	to	get	the	device	powered	on	as	soon	as	it	is	connected	to	a	power	source,	or
the	power	source	it	is	connected	to,	such	as	a	12V	power	output	in	the	car,	wakes	up	when
we	start	the	car.	The	techniques	I	will	now	present	require	that	you	have	super	user
privileges	to	your	Android	device,	which	means	that	we	need	to	root	the	device.

An	alternative	to	rooting
An	alternative	to	rooting	a	device	is	using	a	USB	Wi-Fi	3G	modem	to	get	Internet	access
in	the	car.	Note	that	most	of	the	3G	USB	modems	in	the	market	do	not	provide	you	with	a
Wi-Fi	network.	They	only	give	network	access	to	the	computer	into	which	they	are
plugged.	The	one	we	need	acts	similar	to	a	Wi-Fi	hotspot	when	connected	to	a	USB	power
source.	You	can	find	these	at	online	retailers,	such	as	Amazon	or	AliExpress.	The	one	I
personally	use	is	shown	in	the	following	image:

The	USB	Wi-Fi	3G	modem

If	you	choose	to	use	one	of	these,	you	may	jump	over	the	rest	of	this	section	and	go
directly	to	the	next.

Rooting	Samsung	Galaxy	S2
There	are	different	ways	of	rooting	different	devices.	I	will	use	one	of	the	most	common
second	hand	Android	devices	in	the	market,	namely,	Samsung	Galaxy	S2.	If	you	have
another	phone,	there	are	plenty	of	resources	available	on	the	Internet	on	how	to	root	each
device.	The	most	popular	one	is	located	at	http://www.androidcentral.com/root,	the
Android	Central	website.

Note
Note	that	rooting	a	device	will	make	the	guarantee	invalid.	This	may	cause	damage	to
your	phone	and	is	not	a	secure	process.	Do	it	on	your	own	risk.	But	the	steps	provided
here	worked	for	me.	You	should	backup	any	files	you	would	like	to	keep	before	you
continue	with	the	rest	of	this	chapter.

Samsung	devices	can	be	put	into	recovery	mode	by	pressing	the	volume	down,	power,
home	buttons	at	the	same	time.	By	pressing	these	buttons,	you	will	get	Samsung’s
standard	recovery	screen	with	a	warning	sign	on	it.	We	should	replace	this	recovery
program	with	another	one,	as	the	standard	recovery	is	only	to	be	done	through	a	computer
connected	via	a	USB	and	downloads	a	complete	OS	image.	However,	what	we	really	need
to	do	is	only	replace	a	kernel	with	one	that	gives	us	super	user	rights.	We	also	want	to
make	sure	that	we	do	this	from	an	SD	card	attached	to	an	Android	device.	That	is	why	we
need	to	replace	Samsung’s	default	recovery	program.	We	can	do	this	again	using	the
recovery	operation	provided	by	Samsung.

When	you	put	the	device	in	this	recovery	mode,	attach	it	to	a	computer	through	a	USB.
Next,	we	can	download	a	software,	named	Odin,	to	upload	a	new	recovery	tool	to	the
phone.	It	can	be	downloaded	from	quite	a	lot	of	places	on	the	Internet	along	with	different
versions.	The	one	we	will	use	is	called	ODIN3_v1.85.zip,	and	it	is	located	at
https://www.androidfilehost.com/?fid=9390169635556426736.	Another	file	we	need	is	a
kernel	to	replace	the	existing	one	that	will	help	us	with	new	ways	of	recovery	operations.
This	file	is	named	Jeboo	Kernel,	and	can	be	found	at
http://downloadandroidrom.com/file/GalaxyS2/kernels/JB/jeboo_kernel_i9100_v1-2a.tar.

As	instructed	on	the	recovery	screen	on	the	phone,	you	should	press	the	volume	up	button
to	put	the	device	in	the	download	mode.	Then,	start	Odin,	and	select	the	newly
downloaded	Jeboo	Kernel	as	PDA.	You	should	see	a	COM	box	marked	in	yellow	if	the
phone	is	correctly	connected,	and	is	in	the	kernel	download	mode:

http://www.androidcentral.com/root
https://www.androidfilehost.com/?fid=9390169635556426736
http://downloadandroidrom.com/file/GalaxyS2/kernels/JB/jeboo_kernel_i9100_v1-2a.tar

Odin	shows	Jeboo	as	PDA	and	a	connected	device	on	COM11.	Click	on	Start	to	upload
upload	the	new	Jeboo	kernel	you	have	selected.

It	should	not	take	too	much	time	before	you	get	a	PASS	notification:

Odin	has	been	completed	successfully

Now,	your	phone	should	reboot,	and	you	should	see	a	warning	triangle	on	the	restart
screen,	indicating	that	you	have	a	new	kernel	with	the	“recovery	from	SD	card”	feature.

The	next	step	is	to	save	the	CWM	Super	User	file	from
http://downloadandroidrom.com/file/tools/SuperSU/CWM-SuperSU-v0.99.zip	to	the	SD
card	and	attach	it	to	the	device.	Now,	power	off	your	device	and	put	it	into	recovery	mode
again	this	time	using	a	slightly	different	key	combination,	that	is,	volume	up,	power,	home.
Note	that	we	press	volume	up	instead	of	volume	down	as	we	did	before.	You	will	see	a
different	recovery	screen	called	CWM-based	Recovery.	You	can	scroll	up	and	down
using	the	volume	up	and	volume	down	keys.	Select	the	Install	Zip	item	using	the	home
button,	and	then	the	Choose	from	SD	card	option.	You	should	browse	to	the	CWM	Super
User	ZIP	file	that	you	have	downloaded	on	to	the	SD	card.	Finally,	choose	Yes.

Reboot	the	device,	and	you	will	see	a	new	app	called	Super	User,	which	indicates	that
you	have	successfully	rooted	your	device.	You	can	even	verify	that	you	have	super	user
access	to	your	device	by	downloading	one	of	the	Super	User	checker	apps	on	Google	Play.
You	will	see	a	message	box	asking	you	a	question	from	the	Super	User	app,	that	we	had
installed	from	the	previous	step,	if	you	want	to	grant	super	user	privileges	to	any	other	app
asking	to	get	those.

http://downloadandroidrom.com/file/tools/SuperSU/CWM-SuperSU-v0.99.zip

Enabling	tethering	on	being	connected	to	a	power
source
As	our	phone	hypothetically	stays	in	the	car	all	the	time,	and	only	gets	powered	up	when
the	car	is	being	used,	we	need	to	find	a	way	to	enable	Wi-Fi	tethering	or	a	hotspot,	as	it	is
as	well	called,	whenever	the	phone	is	connected	to	a	power	source.	There	are	two	cases
that	we	might	encounter,	though:

The	battery	has	run	out	and	the	phone	is	turned	off	at	night.	Here,	we	need	to	find	a
way	to	turn	on	the	phone	whenever	it	gets	powered	up	again.	This	happens	when	we
start	the	car.	When	the	phone	is	successfully	turned	on,	we	need	to	find	a	way	to
enable	a	hotspot.
The	phone	still	has	enough	battery	to	keep	it	turned	on,	but	as	it	hasn’t	been	used,	the
hotspot	is	disabled.	Note	that	the	only	device	using	the	phone’s	hotspot	is	the	Pi	and
it	is	turned	off	if	the	car	isn’t	being	used.	When	we	start	the	car	again,	the	phone	gets
powered	up	from	the	USB	contact.	In	this	case,	we	need	to	enable	the	hotspot	again.

Automatic	restart	on	power	connect
When	we	connect	a	turned	off	Samsung	device	to	a	power	source,	we	will	see	a	gray
battery	image	with	a	turning	arrow	inside	it.	Then,	when	it	begins	charging	the	battery,	we
will	see	another	colored	battery	image	showing	the	current	charge	level.	This	second
image	is	generated	by	a	program	that	is	triggered	whenever	a	turned	off	device	begins
charging	the	battery.	It	is	a	binary	file	located	in	/system/bin/playlpm	on	the	phone.	We
will	change	this	file	to	a	script	of	our	own	to	reboot	the	device.	In	order	to	be	able	to	edit
this	file,	we	need	super	user	privileges.	This	is	why	we	have	rooted	the	phone.	As	an
Android	system	is	actually	a	Linux	OS	under	the	hood,	we	can	run	any	Linux	command
on	it.	We	can	do	this	using	an	app	that	we	can	download	from	the	Play	Store,	called
Terminal	Emulator:

The	Terminal	Emulator	app	screen

Now,	issue	the	upcoming	commands	to	change	the	contents	of	the	playlpm	file	and	make
it	an	executable	file.	We	need	to	also	remount	the	/system	directory	in	order	to	enable	it
for	write	operations:

mount	-o	rw,remount	/system

mv	playlpm	playlpmbackup

echo	"#!/system/bin/sh"	>	playlpm

echo	"sleep	60"	>>	playlpm

echo	"/system/bin/reboot"	>>	playlpm

chmod	0755	/system/bin/playlpm

chown	root.shell	/system/bin/playlpm

mount	-o	ro,remount	/system

Turn	off	the	device	and	connect	it	to	a	power	source.	You	will	see	that	it	turns	on
automatically	after	one	minute.	We	have	introduced	the	one	minute	delay	because	if	the
battery	is	totally	discharged,	it	will	not	have	enough	capacity	to	restart	the	device.	We
want	to	wait	at	least	one	minute	in	these	kinds	of	situations	for	the	battery	to	get	charged
enough	to	restart	the	device.	If	it	is	not	charged	sufficiently,	you	might	need	to	charge	your
phone	before	it	can	automatically	restart.	You	can	charge	the	phone	without	getting	it
restarted	by	putting	it	in	to	the	recovery	mode	and	then	begin	charging	it.

Auto	tethering
Now	we	are	able	to	restart	the	device	on	connecting	it	to	a	power	source.	We	need	to	also
enable	tethering	on	the	device	when	it	wakes	up	or	is	connected	to	a	power	source.	There

are	apps	on	the	market	that	already	do	this,	but	the	best	ones	are	paid.	This	is	one	of	the
reasons	that	we	will	implement	our	own	app	for	this	purpose.	The	other	reason	is	that	it	is
fun.

We	can	create	a	new	application	in	the	Android	Studio	as	we	did	before.	We	will	not	need
any	Activity	for	this	application.

Create	a	new	java	file,	called	StartTetheringAtBootReceiver,	for	BroadcastReceiver
and	add	the	following	code	in	it:

public	class	StartTetheringAtBootReceiver	extends	BroadcastReceiver	{

			public	static	void	setWifiTetheringEnabled(boolean	enable,	Context	

context)	{

						WifiManager	wifiManager	=	(WifiManager)	

context.getSystemService(Context.WIFI_SERVICE);

						Method[]	methods	=	

									wifiManager.getClass().getDeclaredMethods();

							for	(Method	method	:	methods)	{

								if	(method.getName().equals("setWifiApEnabled"))	{

												try	{

																	method.invoke(wifiManager,	null,	enable);

													}	catch	(Exception	ex)	{

																ex.printStackTrace();

													}

													break;

									}

						}

			}

				@Override

			public	void	onReceive(Context	context,	Intent	intent)	{

						if	(Intent.ACTION_BOOT_COMPLETED.equals(intent.getAction())	||	

Intent.ACTION_POWER_CONNECTED.equals(intent.getAction()))	{

									setWifiTetheringEnabled(true,	context);

						}

			}

}

This	piece	of	code	receives	broadcast	events	whenever	the	phone	is	booted	or	connected
to	a	power	source,	and	enables	tethering	on	the	device	with	the	default	settings.	If	we’d
like	to	change	the	name	of	the	network	or	the	password,	we’ll	need	to	modify	the	settings
on	the	device.

Add	the	manifest	definition	for	the	new	broadcast	receiver	to	AndroidManifest.xml
inside	the	application	tag:

<receiver

android:name=".StartTetheringAtBootReceiver"

			android:label="StartTetheringAtBootReceiver">

			<intent-filter>

						<action	android:name="android.intent.action.BOOT_COMPLETED"	/>

						<action	android:name="android.intent.action.ACTION_POWER_CONNECTED"	

/>

			</intent-filter>

</receiver>

Add	the	following	permission	declarations	inside	the	manifest	tag:

<uses-permission	android:name="android.permission.CHANGE_WIFI_STATE"/>

<uses-permission	android:name="android.permission.RECEIVE_BOOT_COMPLETED"	

/>

Now,	install	this	app	to	your	phone	and	see	if	the	tethering	is	enabled	whenever	you	reboot
the	device	or	connect	a	power	cable	to	it.

We	can	optionally	add	a	shortcut	button	for	tethering	in	MainActivity.	In	the
activity_main.xml	file,	add	the	following	button	definition:

<Button	android:text="@string/enable"	

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"	

								android:onClick="click"/>

Next,	in	the	MainAcitivty.java	file,	define	the	handler	for	the	button:

public	void	click(View	v)	{

			StartTetheringAtBootReceiver

						.setWifiTetheringEnabled(true,	this);

}

Next,	we	need	to	connect	the	Pi	to	the	hotspot	that	we	have	created	so	far.	Connecting	the
Pi	to	a	Wi-Fi	network	was	covered	earlier,	but	let’s	remind	ourselves	about	this	concept
again.	Add	the	upcoming	lines	of	code	to	the
/etc/wpa_supplicant/wpa_supplicant.conf	file.	We	can	configure	the	hotspot	to	apply
WPA	PSK	security	instead	of	PSK2:

network={

								ssid="YOUR_NETWORKID_FOR_HOTSPOT"

								psk="YOUR_PASSWORD_FOR_HOTSPOT"

}

Now,	we’ll	reboot	the	Pi,	and	after	a	few	minutes,	we’ll	see	that	it	is	automatically
connected	to	a	hotspot	on	the	Android	device	in	the	hotspot	settings	window:

The	list	of	connected	devices	is	shown	in	hotspot	settings	in	Android

You	must	be	wondering	why	we	have	covered	this	content	at	this	point.	This	is	because	in
order	to	implement	the	next	section,	you’ll	most	probably	need	to	sit	in	your	car	and
communicate	with	the	Pi	inside	your	car,	where	you	most	probably	do	not	have	more
network	access	than	the	hotspot	Android	provides	you	with.	Now,	if	you	connect	to	the
same	hotspot	on	Android	from	your	computer,	you	will	be	able	to	SSH	to	the	Pi	with	a
tool	called	PuTTY	that	you	can	install	on	Windows	machines	or	using	built	in	SSH
terminal	tool	on	a	Mac.

Sending	data	to	the	cloud
We	will	use	a	Google	Docs	spreadsheet	to	save	data	and	a	special	Python	library
developed	for	this	purpose.	We	begin	doing	this	by	creating	an	API	key	to	access	Google
services.

Browse	to	https://console.developers.google.com/project	and	create	an	account	for	this
purpose.	When	it’s	ready,	you	will	be	directed	to	the	Google	Developer	Console:

The	Google	Developer	Console	start	page

Here,	we’ll	need	to	create	a	new	project	in	the	Select	a	project	drop-down	menu.	Give	it	a
suitable	name,	accept	the	agreement,	and	click	on	Create.	Select	the	newly	created
project,	APIs	&	auth,	and	then	select	APIs	from	the	menu	on	the	left-hand	side.	Then,
find	and	select	Drive	API,	and	press	the	Enable	API	button.	When	it	is	enabled,	go	to
Credentials	on	the	left-hand	side	menu	under	APIs	&	auth:

https://console.developers.google.com/project

The	menu	to	enable	OAuth	in	the	Google	Developer	Console

Here,	under	OAuth,	click	on	the	Create	new	Client	ID	button.	In	the	message	box	that
appears,	select	the	Service	account,	and	click	on	the	Create	Client	ID	button.	We’ll	see	a
box	telling	us	that	we	have	successfully	created	New	public/private	key	pair	for	the
project.	We’ll	even	see	that	the	site	has	sent	us	a	JSON	file	with	credentials	in	it.	For	the
dummy	account	I	created,	the	contents	looks	similar	to	this:

{

		"private_key_id":	"ed5a741ff85f235167015d99a1adc3033f0e6f9f",

		"private_key":	"-----BEGIN	PRIVATE	KEY-----

\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDM9YJ2otxwdhcL\nQJ8ipZO

uILkq9dzWDJJgtjSgFUXTJvjgzTDNa2WXGy9p9i4Wuzrj5OJli/M5dMWr\n+CVZCpsfV7Xt7iqk

eCEo0dN225HDiAXXMvWKhDsiofau0xLCTFLDnLZFWqAd55ec\naENYQKp6ZEc6dGaA7Kp7O1+7L

tEB2a4yqgZIelL6fTSSLQqyV477OS2Dkq+nz5Sz\nRyTexcDWioDNp2vdGadqDfRKsI7ELwgWsc

aV6jrbHz2uDuC844UnTL4WKMugp1n1\nObTuGDl1gldEIWlk2XSLFkGfY30lYV7XwrUQGgc85AG

RwdH7qYrQM3jO4D+6thAH\nETq4qjRRAgMBAAECggEAJjXXHrr6EdVSMnzXriPkRmA/ZSz1AMrT

N0iAwx90Jwtq\n9q4KXSGajPM6gaytpvs83WO8eWX/8EQ+3fKjM9hwVwWJG1R9irACrpN/svb4U

9W2\nEQqlEC/avngnfyxGoQaNn35F1OQyWaDlePlPJNLZdXvgc5tjyMFWfybwj/sIaCmR\nj5nt

V2aY/gCEbe6km7L/LkC3C7CesIWstUGMHCjh2aPeQT+Hpodf23AnLZuSo34j\nB+lSI/RjnDsd0

HfazOgaOXa/yK4SliTaMWUBiMSXQcwZZsVp/RL0Ve6W2PSfi092\n+hATaaRnA8zB8fx7PnAltP

hFwVr9+jjbYbq+wypoyQKBgQDoLJytaR4wof46MUiL\nMWrXDopi5dG2ofUSXR+JEIThe7yyYep

zzdWFL+rXNEzD5X9UcfCodwZ0PKLN3u0t\nZJ5Iq111bxwwZix5uVStRi6stgGaewF6nkDqN8y5

TJJgnZB9wSBuG3RvCU4zwXKZ\ngj2+azWme7PSyOHKNODbBd9DkwKBgQDh/e7nct49/Z0Om/+kN

J+NXUjka+S1yF7n\nhL+HZ2WU1gL8iQjXPxnCX1lThw7C4rForH/esOs+f1XMje8NYi7ggslqxo

XwFRH6\ny/tuCRaY+e62xmJAxj2o8InsvQQkSM+dtuZiaNq3gCatHKbx2C6SVQal/y3yuR0c\n0

0adgr6fCwKBgQDSlAvzGIFiWLsNqr+CR+sAbVbExm9EN3bhFgdROONc4+7M2BRe\nvlUoPMLCN9

RcZR3syH8fPP1klc6P7N6vqjAJ9yuIJKOrnjA+owKTOjGBQn8HzwMT\nZM+536xWcIXfDWoNNQo

l887SGt2MAavgYYmA2RpLCq2Zw8tOrFE5NgU+8wKBgQCe\nAiwNy3S0JySu2EevidOcxYJ3ozBw

IT6p5Vj81UBjBhdkdnOl+8qI6p3MFvwtKs8b\n/rARBeYU9ncI5Jwl4WYhN5CYhWGUcUb28bRER

Tp1jxpm1OJRo8ns2vG0gpvourfe\n78i5OdLixklEdGoNYjd9vNE/MuHveZpvUxFmg8m/7QKBgC

GVTkOXWLpRxuYT+M+M\n28LBgftHxu0YZdXx8mU9x6LQYG2aFxho7bkEYiEaNYJn51kdNZqzrIH

ebxT/dh/z\nddd5nR93E6WsPuqstZF4ZhJ+l2m77wmG9u5gfRifrNpc3TK0IswydFPIMNVxMz+d

\nl3cdqtiW6rvWSQoHC0brpcYL\n-----END	PRIVATE	KEY-----\n",

		"client_email":	"14902682557-

05eecriag0m9jbo50ohnt59sest5694d@developer.gserviceaccount.com",

		"client_id":	"14902682557-

05eecriag0m9jbo50ohnt59sest5694d.apps.googleusercontent.com",

		"type":	"service_account"

}

We	can	choose	to	generate	a	new	key	from	the	Developer	Console	site	using	the	Generate
new	JSON	key	button	for	our	project.

At	this	stage,	we	need	to	generate	a	P12	key	using	the	Generate	new	P12	key	button.
This	file	will	be	used	later	on.	We	will	also	be	provided	with	a	secret	key	when	we
download	the	file	which	we	need	to	note	down.	The	following	screenshot	illustrates	the
Google	Developer	Console	after	successful	creation	of	the	API	key:

Google	Developer	Console	after	successful	API	key	creations

Before	we	can	install	the	Google	Python	library,	we	need	to	install	a	tool,	called	pip,

which	will	help	us	install	an	OAuth	client	we	will	use	to	connect	to	Google	services.	Use
the	following	commands	to	do	this:

curl	-O	https://raw.githubusercontent.com/pypa/pip/master/contrib/get-

pip.py

sudo	python	get-pip.py

Then,	use	this	new	pip	tool	to	install	the	OAuth	clients:

sudo	apt-get	update

sudo	apt-get	install	build-essential	libssl-dev	libffi-dev	python-dev

sudo	pip	install	--upgrade	oauth2client

sudo	pip	install	PyOpenSSL

The	next	step	is	to	download	and	install	the	client	library	to	access	Google	Sheets	on	the
Pi	using	the	following	commands:

git	clone	https://github.com/burnash/gspread.git

cd	gspread

sudo	python	setup.py	install

Before	we	begin	coding,	we	need	to	add	a	new	spreadsheet	on	the	https://docs.google.com
website.	Select	Sheets	in	the	menu,	create	a	new	sheet	using	the	plus	(+)	sign,	and	change
the	name	from	Untitled	spreadsheet	to	CAR_OBD_SHEET.	It	should	be	saved
automatically.	We	need	to	share	this	spreadsheet	with	the	Google	Developer	Console
client	created	for	us	when	we	generated	the	OAuth	key	pair.	We’ll	find	a	client_email
field	in	the	JSON	file	we’ve	downloaded.	We	will	share	the	new	spreadsheet	with	this
client.	Now,	open	the	CAR_OBD_SHEET	spreadsheet	in	Google	Docs	and	click	on	the	Share
button:

Open	the	spreadsheet	in	Google	Docs

In	the	pop-up	window,	paste	client_email	from	the	JSON	file,	then	click	on	the	Send
button	on	the	pop-up	window.	This	will	share	the	spreadsheet	with	the	client	generated
when	we	created	the	OAuth	key	pair	in	the	previous	step:

https://docs.google.com

Sharing	the	spreadsheet	with	the	generated	client

Now,	we	will	test	to	see	if	everything	works	fine.	Create	a	file	on	the	Pi,	name	it
send_to_sheet.py,	and	put	the	following	content	in	it.	Do	not	forget	to	create	the	OAuth
JSON	file	and	put	the	contents	of	the	one	we	have	downloaded	from	the	Google
Developer	Console	and	name	it	as	piandroidprojects.json:

import	json

import	gspread

from	datetime	import	datetime

from	oauth2client.client	import	SignedJwtAssertionCredentials

json_key	=	json.load(open('piandroidprojects.json'))

scope	=	['https://spreadsheets.google.com/feeds']

credentials	=	SignedJwtAssertionCredentials(json_key['client_email'],	

json_key['private_key'],	scope)

gc	=	gspread.authorize(credentials)

t	=	datetime.now()

sh	=	gc.open("CAR_OBD_SHEET").add_worksheet(str(t.year)	+	"_"	+	

str(t.month)	+	"_"	+	str(t.day)	+	"_"	+	str(t.hour)	+	"_"	+	str(t.minute)	+	

"_"	+	str(t.second),	100,	20)

sh.update_cell(1,	1,	0.23)

Now,	run	the	file	using	the	python	send_to_sheet.py	command,	and	we	will	see	the
update	on	the	Google	Docs	sheet.	The	code	will	create	a	new	worksheet	named	as	the
current	timestamp	and	save	a	single	value	in	this	sheet.	Note	that	Google	allows	200
worksheets	per	sheet,	and	by	default,	100	rows	per	worksheet;	in	our	code,	we	create	a
new	worksheet	each	time	we	run	it.	We	need	to	clean	the	sheet	from	time	to	time	in	order
to	not	to	go	beyond	the	limit.

Putting	it	all	together
In	the	next	two	sections,	we	will	put	together	what	we	have	done	so	far.	First,	we’ll	begin
by	sending	data	to	the	Google	Docs	sheet.	Then,	we	will	build	an	Android	app	to	show	the
data	on	a	map.

Sending	measurements
We	will	use	a	Python	script	to	access	GPS	data	on	the	Pi	that	we’ll	need	to	run	on	system
reboot.	For	this	purpose,	add	the	following	code	at	the	end	of	the	/etc/rc.local	file:

sudo	killall	gpsd

sudo	gpsd	/dev/ttyUSB0	-F	/var/run/gpsd.sock

sudo	rfcomm	connect	hci0	00:1D:A5:15:A0:DC	&

sleep	1m

current_time=$(date	"+%Y.%m.%d-%H.%M.%S")

file_name=/home/pi/log_sender.txt

new_filename=$file_name.$current_time

sudo	/home/pi/pyobd-pi/sender.py	>	$new_filename	2>&1	&

Here,	we	can	restart	the	GPS	services,	connect	to	the	OBD	Bluetooth	dongle,	create	a	log
file,	and	start	the	sender.py	script	that	we	will	implement	next:

#!/usr/bin/env	python

import	obd_io

from	datetime	import	datetime

import	time

import	threading

import	commands

import	time

from	gps	import	*

import	math

import	json

import	gspread

from	oauth2client.client	import	SignedJwtAssertionCredentials

gpsd	=	None

class	GpsPoller(threading.Thread):

		def	__init__(self):

				threading.Thread.__init__(self)

				global	gpsd	

				gpsd	=	gps(mode=WATCH_ENABLE)	

		def	run(self):

				global	gpsd

				while	True:

						gpsd.next()

class	OBD_Sender():

				def	__init__(self):

								self.port	=	None

								self.sensorlist	=	[3,4,5,12,13,31,32]

				def	connect(self):

								self.port	=	obd_io.OBDPort("/dev/rfcomm0",	None,	2,	2)

								if(self.port):

												print	"Connected	to	"+str(self.port)

				def	is_connected(self):

								return	self.port

				def	get_data(self):

								if(self.port	is	None):

												return	None

								current	=	1

								while	1:

												cell_list	=	[]

												localtime	=	datetime.now()

												cell	=	sh.cell(current,	1)

												cell.value	=	localtime

												cell_list.append(cell)

												try:

																gpsd.next()

												except:

																print	"gpsd.next()	error"

												cell	=	sh.cell(current,	2)

												cell.value	=	gpsd.fix.latitude

												cell_list.append(cell)

												cell	=	sh.cell(current,	3)

												cell.value	=	gpsd.fix.longitude

												cell_list.append(cell)

												column	=	4

												for	index	in	self.sensorlist:

																(name,	value,	unit)	=	self.port.sensor(index)

																cell	=	sh.cell(current,	column)

																cell.value	=	value

																cell_list.append(cell)

																column	=	column	+	1

												try:

																sh.update_cells(cell_list)

																print	"sent	data"

												except:

																print	"update_cells	error"

												current	=	current	+	1

												time.sleep(10)

json_key	=	json.load(open('/home/pi/pyobd-pi/piandroidprojects.json'))

scope	=	['https://spreadsheets.google.com/feeds']

credentials	=	SignedJwtAssertionCredentials(json_key['client_email'],	

json_key['private_key'],	scope)

while	True:

				try:

								gc	=	gspread.authorize(credentials)

								break

				except:

								print	"Error	in	GoogleDocs	authorize"

t	=	datetime.now()

sh	=	

gc.open("CAR_OBD_SHEET").add_worksheet(str(t.year)+"_"+str(t.month)+"_"+str

(t.day)+"_"+str(t.hour)+"_"+str(t.minute)+"_"+str(t.second),	100,	20)

gpsp	=	GpsPoller()

gpsp.start()

o	=	OBD_Sender()

o.connect()

time.sleep(5)

o.connect()

time.sleep(5)

o.get_data()

The	code	begins	running	at	the	end	where	we	define	json_key	by	loading	the	JSON	key
file.	Then,	we’ll	try	to	authorize	using	the	gspread.authorize(credentials)	method.
The	next	step	is	to	create	a	new	worksheet	with	the	date	timestamp	as	the	title,	and	then
start	to	consume	the	GPS	data	in	another	thread	defined	by	the	GpsPoller	class.	Next,
we’ll	initiate	the	OBD_Sender	class	and	connect	to	the	ODB	Bluetooth	device	twice.	The
connect	operation	may	fail	when	it’s	executed	for	the	first	time,	but	it	almost	always
succeeds	when	it’s	run	a	second	time.	Then,	we	need	to	run	the	get_data	method	of	the
OBD_Sender	class	to	begin	the	loop.

The	GpsPoller	class	consumes	all	the	values	of	the	GPS	device	connected	to	the	serial
USB	port.	This	is	required	in	order	to	get	the	most	recent	values	whenever	we	access	the
gpsd.fix.latitude	and	gpsd.fix.longitude	variables.

The	get_data	method	of	the	OBD_Sender	class	sends	the	local	time,	latitude,	and	longitude
values	to	the	spreadsheet,	and	it	also	sends	seven	different	readings	defined	in
self.sensorlist	=	[3,4,5,12,13,31,32].	We	can	see	these	values	from	the	SENSORS
list	in	the	obd_sensors.py	file.	For	your	information,	these	are	the	Fuel	System	Status,
Calculated	Load	Value,	Coolant	Temp,	Engine	RPM,	Vehicle	Speed,	Engine	Start	MIN,
and	Engine	Run	MIL	values.	We	can	change	the	indexes	to	read	the	values	that	we	want.
Take	a	look	at	additional	values	at	https://en.wikipedia.org/wiki/OBD-II_PIDs.	We	go
through	these	codes,	read	their	current	values,	and	send	them	to	the	different	cells	of	a
current	row	on	our	worksheet.	After	starting	and	driving	your	car	around,	you	can	see	that
the	data	is	uploaded	to	the	spreadsheet,	as	shown	in	the	following	screenshot:

https://en.wikipedia.org/wiki/OBD-II_PIDs

Data	uploaded	to	the	spreadsheet

Retrieving	measurements
We	will	build	our	very	own	app	to	download	the	measurement	values	and	show	them	on	a
map.	Create	a	new	blank	project	in	the	Android	Studio,	and	choose	to	include	a	Google
Maps	Activity	during	the	last	step	of	create	project	wizard.	I’ve	used	Android	4.3	as	the
base	SDK	for	this	project;	I	will	name	my	main	activity	as	MapsActivity.

To	access	Google	Docs	and	download	the	content	of	the	spreadsheet,	we	will	use	some	of
the	Java	libraries	provided	by	Google.	They	are	located	at	different	places.	Download	the
ZIP	files	from	the	following	locations:

A	general	purpose	Java	client	for	Google	data	services	is	located	at
https://github.com/google/gdata-java-client,	and	the	file	is	named	as	gdata-
src.java-*.zip,	which	is	found	under	the	Source	link.
Download	the	HTTP	client	from	https://developers.google.com/api-client-
library/java/google-http-java-client/download	which	is	named	as	google-http-java-
client-featured.zip.	We	will	use	this	to	authorize	ourselves.
Download	the	OAuth	client	contained	in	google-oauth-java-client-
featured.zip,	which	is	available	at	https://developers.google.com/api-client-
library/java/google-oauth-java-client/download

Now,	open	these	ZIP	files,	locate	the	following	JAR	libraries,	and	move	them	to	the	libs
folder	under	your	Android	app	directory:

gdata-base-1.0.jar

gdata-core-1.0.jar

gdata-spreadsheet-3.0.jar

google-api-client-1.20.0.jar

google-http-client-1.20.0.jar

google-http-client-jackson-1.20.0.jar

google-oauth-client-1.20.0.jar

guava-11.0.2.jar

jackson-core-asl-1.9.11.jar

To	include	these	libraries	in	your	Android	project,	you	need	to	add	them	to	the
build.gradle	file	for	Module:app.	To	do	this,	add	the	following	code	under	the
dependencies	tag.

compile	files('libs/gdata-spreadsheet-3.0.jar')

compile	files('libs/gdata-core-1.0.jar')

compile	files('libs/guava-11.0.2.jar')

compile	files('libs/gdata-base-1.0.jar')

compile	files('libs/google-http-client-1.20.0.jar')

compile	files('libs/google-http-client-jackson-1.20.0.jar')

compile	files('libs/google-api-client-1.20.0.jar')

compile	files('libs/google-oauth-client-1.20.0.jar')

compile	files('libs/jackson-core-asl-1.9.11.jar')

When	you	edit	the	build.gradle	file,	you	might	get	a	message	in	Android,	stating	that
Gradle	files	has	changed	since	last	project	sync.	A	project	sync	maybe	necessary	for

https://github.com/google/gdata-java-client
https://developers.google.com/api-client-library/java/google-http-java-client/download
https://developers.google.com/api-client-library/java/google-oauth-java-client/download

the	IDE	to	work	properly.	Click	on	the	Sync	Now	link	located	near	this	notification	to
update	the	project.

The	next	step	is	to	move	the	P12	key	file,	which	we	have	downloaded	from	the	Google
Developer	Console,	and	include	it	in	our	Android	project.	We	need	to	copy	this	file	in	the
raw	directory	located	at	PROJECT_HOME\app\src\main\res\raw	and	rename	it	as
piandroidprojects.p12.

As	we	plan	to	show	the	content	on	a	map,	we	will	use	Google’s	Map	API	for	this	purpose.
To	use	it,	we	need	an	access	API	key.	Go	to	the	developer	console	again	at
https://console.developers.google.com/project,	and	select	the	project	that	we’ve	created
previously.	In	the	menu	located	on	the	left-hand	side,	choose	APIs	under	APIS	&	auth,
then,	Google	Maps	Android	API,	and	finally,	click	on	the	Enable	API	button.	Next,
navigate	to	Credentials,	and	click	on	the	Create	new	key	button	under	the	Public	API
access	section.	We	need	to	choose	Android	key	in	the	window	that	pops	up.	Copy	the
generated	API	key	and	replace	it	with	the	YOUR_KEY_HERE	string	in	the
google_maps_api.xml	file.	Now,	we	are	ready	with	our	Android	project	setup,	and	it	is
time	to	code	now.

The	first	thing	to	do	in	the	code	is	download	a	list	of	sheets	from	Google	Docs.	There	is
one	sheet	for	each	restart	of	the	Pi.	Add	the	following	code	inside	the	onCreate	method	of
the	MapsActivity.java	file:

new	RetrieveSpreadsheets().execute();

This	piece	of	code	will	create	an	asynchronous	task	that	is	implemented	as	an	Android
AsyncTask,	which	downloads	and	presents	the	spreadsheets.	Let’s	define	the	task	class	in
the	same	file	as	well:

class	RetrieveSpreadsheets	extends	AsyncTask<Void,	Void,	

List<WorksheetEntry>>	{

			@Override

			protected	List<WorksheetEntry>	doInBackground(Void	params)	{

						try	{

									service	=	

												new	SpreadsheetService("MySpreadsheetIntegration-v1");

									HttpTransport	httpTransport	=	new	NetHttpTransport();

									JacksonFactory	jsonFactory	=	new	JacksonFactory();

									String[]	SCOPESArray	=	

												{"https://spreadsheets.google.com/feeds",	

													

"https://spreadsheets.google.com/feeds/spreadsheets/private/full",	

													"https://docs.google.com/feeds"};

									final	List	SCOPES	=	Arrays.asList(SCOPESArray);

									KeyStore	keystore	=	KeyStore.getInstance("PKCS12");

									keystore.load(

												getResources().openRawResource(R.raw.piandroidprojects),	

"notasecret".toCharArray());

									PrivateKey	key	=	(PrivateKey)	keystore.getKey("privatekey",	

"notasecret".toCharArray());

									GoogleCredential	credential	=	

https://console.developers.google.com/project

												new	GoogleCredential.Builder()

																.setTransport(httpTransport)

																.setJsonFactory(jsonFactory)

																.setServiceAccountPrivateKey(key)

																.setServiceAccountId("14902682557-

05eecriag0m9jbo50ohnt59sest5694d@developer.gserviceaccount.com")

																.setServiceAccountScopes(SCOPES)

																.build();

									service.setOAuth2Credentials(credential);

									URL	SPREADSHEET_FEED_URL	=	new	

URL("https://spreadsheets.google.com/feeds/spreadsheets/private/full");

									SpreadsheetFeed	feed	=	

												service.getFeed(SPREADSHEET_FEED_URL,	SpreadsheetFeed.class);

									List<SpreadsheetEntry>	spreadsheets	=	feed.getEntries();

									return	spreadsheets.get(0).getWorksheets();

						}	catch	(MalformedURLException	e)	{

									e.printStackTrace();

						}	catch	(ServiceException	e)	{

									e.printStackTrace();

						}	catch	(IOException	e)	{

									e.printStackTrace();

						}	catch	(GeneralSecurityException	e)	{

									e.printStackTrace();

						}

						return	null;

			}

			protected	void	onPostExecute(final	List<WorksheetEntry>	worksheets)	{

						if(worksheets	==	null	||	worksheets.size()	==	0)	{

									Toast.makeText(MapsActivity.this,	"Nothing	saved	yet",	

Toast.LENGTH_LONG).show();

						}	else	{

									final	List<String>	worksheetTitles	=	

												new	ArrayList<String>();

									for(WorksheetEntry	worksheet	:	worksheets)	{

													worksheetTitles.add(

																worksheet.getTitle().getPlainText());

									}

									AlertDialog.Builder	alertDialogBuilder	=	

												new	AlertDialog.Builder(MapsActivity.this);

									alertDialogBuilder.setTitle("Select	a	worksheet");

									alertDialogBuilder.setAdapter(

												new	ArrayAdapter<String>(

																MapsActivity.this,

																android.R.layout.simple_list_item_1,	

worksheetTitles.toArray(new	String[0])),

																new	DialogInterface.OnClickListener()	{

																			@Override

																			public	void	onClick(DialogInterface	dialog,	int	which)	{

																						new	RetrieveWorksheetContent()

																									.execute(worksheets.get(which));

																			}

													});

												alertDialogBuilder.create().show();

}

						}

			}

Before	we	describe	the	preceding	code,	define	an	instance	variable	for	the	spreadsheet
service,	which	is	used	in	the	task	we	have	just	defined:

SpreadsheetService	service;

The	Android	AsyncTask	requires	us	to	override	the	doInBackground	method,	which	is
executed	in	a	new	thread	whenever	we	call	the	execute	method	of	the	task	that	we
performed	in	onCreate.	In	doInBackground,	we	will	define	KeyStore,	and	load	the	P12
file	that	we’ve	downloaded	from	the	Google	Developer	Console	and	copied	to	the	raw
directory	of	our	Android	project.	Note	that	notasecret	was	the	secret	that	the	Developer
Console	informed	me	about	when	I	created	and	downloaded	the	P12	file.	Also,	inside	the
setServiceAccountId	method,	you’ll	need	to	use	your	own	account	name.	You	can	find	it
in	the	Developer	Console	under	the	Service	account	section	in	the	Email	address	field	as
well	as	in	the	JSON	key	file	client_email	field.	In	the	background	method,	after	loading
the	key	file	and	defining	the	credentials,	we’ll	authorize	ourselves	to	Google	Spreadsheets
service	using	OAuth.	We’ll	simply	get	the	first	spreadsheet	that	I	assume	is
CAR_OBD_SHEET	and	return	the	worksheets	in	it.	We	could	go	through	all	the	spreadsheets
and	search	for	the	title	as	well,	but	I	will	skip	this	part	of	the	code	and	assume	that	you
have	only	one	spreadsheet	in	your	account	with	the	title	as	CAR_OBD_SHEET.

The	second	function	we’ll	define	is	onPostExecute.	This	function	is	called	inside	the	UI
thread	by	the	Android	system	whenever	background	processing	is	performed.	It	is
important	that	this	is	run	in	the	UI	thread	as	we	cannot	touch	UI	elements	if	we	run	UI-
related	code	in	non-UI	threads.

Note	here	that	the	return	value	of	the	doInBackground	method	is	sent	as	a	parameter	to	the
onPostExecute	method,	which	is	a	list	of	worksheets	found	in	a	sheet	in	the	Google	Docs
service.	We’ll	go	through	this	list	and	collect	the	titles	in	another	list.	Then,	we’ll	show
this	list	in	a	pop-up	dialog	box,	which	a	user	can	click	on	and	select.	Whenever	the	user
selects	one	of	the	worksheets,	Android	calls	the	onClick	method	of
DialogInterface.OnClickListener,	which	we	have	sent	in	as	a	parameter	to	the	adapter
of	AlertDialog.	This	method	calls	the	execute	method	of	another	AsyncTask	that	we’ll
call	RetrieveWorksheetContent,	which,	as	the	name	implies,	retrieves	the	content	of	the
selected	worksheet.	Here	is	the	definition	for	this	task:

class	RetrieveWorksheetContent	extends	AsyncTask<WorksheetEntry,	Void,	

List<List<Object>>>	{

			@Override

			protected	List<List<Object>>	doInBackground(WorksheetEntry	params)	{

						WorksheetEntry	worksheetEntry	=	params[0];

						URL	listFeedUrl=	worksheetEntry.getListFeedUrl();

						List<List<Object>>	values	=	new	ArrayList<List<Object>>();

						try	{

									ListFeed	feed	=	

												service.getFeed(listFeedUrl,	ListFeed.class);

									for(ListEntry	entry	:	feed.getEntries())	{

													List<Object>	rowValues	=	new	ArrayList<Object>();

													for	(String	tag	:	entry.getCustomElements().getTags())	{

															Object	value	=	

																		entry.getCustomElements().getValue(tag);

																rowValues.add(value);

												}

												values.add(rowValues);

									}

						}	catch	(IOException	e)	{

									e.printStackTrace();

						}	catch	(ServiceException	e)	{

									e.printStackTrace();

						}

						return	values;

			}

			@Override

			protected	void	onPostExecute(List<List<Object>>	values)	{

						setUpMap(values);

						super.onPostExecute(values);

			}

}

Here,	the	most	important	part	is	where	we	iterate	through	feed.getEntries(),	which
refers	to	all	the	rows	in	the	spreadsheet	and	the	part	where	we	iterate	through
entry.getCustomElements().getTags(),	refers	to	all	the	columns.	Then,	in
onPostExecute,	we’ll	call	the	setUpMap	method	with	all	the	values	that	we	have	retrieved.
Inside	this	method,	we’ll	create	markers	on	the	map	that	is	contained	in	MapsActivity.
Comment	out	the	automatically	defined	setUpMap	method	if	you	do	not	want	a	marker	at
location	0,0,	which	Android	Studio	has	defined	for	you	as	an	example:

private	void	setUpMap(List<List<Object>>	values)	{

			for(List<Object>	value	:	values)	{

							String	title	=	values.get(0).toString();

							try	{

									double	latitude	=	

												Double.parseDouble(value.get(1).toString());

									double	longitude	=	

												Double.parseDouble(value.get(2).toString());

									if	(latitude	!=	0	&&	longitude	!=	0)

													mMap.addMarker(

															new	MarkerOptions().position(

																			new	LatLng(latitude,	longitude)))

																.setTitle(title);

						}	catch(NumberFormatException	ex)	{

						}

			}

}

When	you	start	the	app,	you	will	see	a	list	of	spreadsheets	to	choose	from:

The	list	of	spreadsheets

Next,	after	selecting	one	of	these	sheets,	you	can	see	the	data	on	the	map:

The	data	points	on	the	map

Summary
In	this	chapter,	we	covered	a	lot	of	content,	ranging	from	car	diagnostics	to	Android
device	root	process.	We	even	covered	a	lot	of	Android	code.

I	hope	that	all	of	you	have	fun	implementing	these	exciting	projects,	will	try	to	enhance
them	and	making	them	better	than	I	did.

Index
A

Android	Central
URL	/	Rooting	Samsung	Galaxy	S2

Android	device
using,	as	access	point	/	Using	your	Android	device	as	an	access	point
rooting,	alternative	/	An	alternative	to	rooting
Samsung	Galaxy	S2,	rooting	/	Rooting	Samsung	Galaxy	S2
tethering,	enabling	/	Enabling	tethering	on	being	connected	to	a	power	source
automatic	restart,	on	power	connect	/	Automatic	restart	on	power	connect
auto	tethering	/	Auto	tethering
data,	sending	to	cloud	/	Sending	data	to	the	cloud

Android	phone
reboot	command,	sending	to	Pi	/	Sending	the	reboot	command	from	your
Android	phone	to	the	Pi
more	commands,	sending	to	Pi	/	Sending	more	commands	from	your	Android
phone	to	the	Pi

Android	Studio
URL	/	Connecting	from	an	Android	app

B
BLE	Scanner	app	/	Installing	the	necessary	components,	Connecting	from	an
Android	app
BluePixel	Technologies	LLP	/	Installing	the	necessary	components
Bluetooth	Low	Energy	(BLE)

necessary	components,	installing	/	Installing	the	necessary	components
versions,	URL	/	Installing	the	necessary	components
sensor	service,	adding	/	Adding	a	sensor	service	to	Bluetooth	Low	Energy
Android	app,	connecting	from	/	Connecting	from	an	Android	app
reboot	command,	sending	from	Android	phone	to	Pi	/	Sending	the	reboot
command	from	your	Android	phone	to	the	Pi
more	commands,	sending	from	Android	phone	to	Pi	/	Sending	more	commands
from	your	Android	phone	to	the	Pi
LED	command,	lighting	/	Lighting	the	LEDs
sound	command,	playing	/	Playing	sounds	on	your	Pi
commands,	combining	/	Combining	the	commands	and	being	informed	on
incoming	calls

C
camera

hardware	configurations	/	Hardware	and	software	configurations
software	configurations	/	Hardware	and	software	configurations

car	data
collecting	/	Collecting	the	car	data
collecting,	from	Pi	/	Getting	the	car	data	to	the	Pi

car	location
finding	out	/	Finding	out	the	car	location

ConnectBot
about	/	Remote	console	to	the	Pi	from	Android

cron	/	Installing	the	database
crontab	/	Installing	the	database
CWM	Super	User	file	/	Rooting	Samsung	Galaxy	S2

D
data

sending,	to	cloud	/	Sending	data	to	the	cloud
database

and	web	server,	implementation	/	A	simple	database	and	web	server
implementation
installing	/	Installing	the	database

E
ELM327-Bluetooth	/	Collecting	the	car	data

F
files

exchanging,	between	Pi	and	Android	/	Exchanging	files	between	the	Pi	and
Android

G
Generic	Attribute	Profile	(Gatt)	/	Installing	the	necessary	components

H
HTTP	client

URL	/	Retrieving	measurements

J
Java	client

URL	/	Retrieving	measurements
Jeboo	Kernel	/	Rooting	Samsung	Galaxy	S2

K
Keyes	DHT11	(DHT11)	/	Connecting	the	sensor
Kodi

starting,	on	boot	/	Starting	Kodi	on	boot
Kore	/	Connecting	to	the	media	center	via	remote	control	from	Android

L
LED	command

lighting	/	Lighting	the	LEDs
Linux,	installation	on	Pi

about	/	Installing	Linux	on	your	Pi
NOOBS	used	/	Installing	using	NOOBS
Raspbian	image	used	/	Installing	using	a	Raspbian	image
OS	image,	extracting	to	SD	card	/	Extracting	the	OS	image	to	an	SD	card

M
media	center

installing	/	Installing	and	setting	up	a	media	center	on	Pi
setting	up	/	Installing	and	setting	up	a	media	center	on	Pi
Kodi,	starting	on	boot	/	Starting	Kodi	on	boot
connecting,	via	remote	control	from	Android	/	Connecting	to	the	media	center
via	remote	control	from	Android
about	/	Getting	more	from	your	media	center,	Watching	videos	using	Kodi	on	an
Android	device,	Streaming	the	Android	display	to	Kodi
installing,	NOOBS	used	/	Installing	the	media	center	using	NOOBS

N
NOOBS

URL	/	Installing	using	NOOBS,	Installing	the	media	center	using	NOOBS
used,	for	installing	media	center	/	Installing	the	media	center	using	NOOBS

O
OAuth	client

URL	/	Retrieving	measurements
Odin	/	Rooting	Samsung	Galaxy	S2
On-board	diagnostics	(OBD)	/	Collecting	the	car	data

P
Pi

prerequisites	/	Prerequisites
settings,	changes	making	/	Making	necessary	changes	in	settings
components,	installing	/	Installing	necessary	components	in	the	Pi	and	Android
and	Android,	connecting	/	Connecting	the	Pi	and	Android
remote	console,	from	Android	/	Remote	console	to	the	Pi	from	Android
and	Android,	files	exchanging	between	/	Exchanging	files	between	the	Pi	and
Android
media	center,	setting	up	/	Installing	and	setting	up	a	media	center	on	Pi

Plugable	/	Installing	the	necessary	components
port	forwarding	/	Connecting	from	anywhere
pyOBD-pi	tool	/	Getting	the	car	data	to	the	Pi

R
Raspberry	Pi	Foundation

URL	/	Hardware	and	software	configurations
Raspbian	/	Installing	Linux	on	your	Pi
Raspbian	image

URL	/	Installing	using	a	Raspbian	image
RaspiCam	Remote	app

about	/	Streaming	video	to	an	Android	device
VLC	configurations,	manual	/	Manual	VLC	configurations

reboot	command
sending,	from	Android	phone	to	Pi	/	Sending	the	reboot	command	from	your
Android	phone	to	the	Pi

remote	console
to	Pi,	from	Android	/	Remote	console	to	the	Pi	from	Android

rooting
alternatives	/	An	alternative	to	rooting

S
Screen	Stream	Mirroring	/	Streaming	the	Android	display	to	Kodi
SD	Association

URL	/	Installing	Linux	on	your	Pi
SD	Formatter	/	Installing	Linux	on	your	Pi
Secure	Shell	(SSH)

about	/	Remote	console	to	the	Pi	from	Android
sensor

connecting	/	Connecting	the	sensor
sensor	service

adding,	to	Bluetooth	Low	Energy	(BLE)	/	Adding	a	sensor	service	to	Bluetooth
Low	Energy

servers
managing	/	Simple	management	of	servers

sound	command
playing	/	Playing	sounds	on	your	Pi

surveillance	images
accessing,	on	Web	/	Accessing	surveillance	images	on	the	Web

surveillance	mode
about	/	The	surveillance	mode

V
video

streaming,	to	Android	device	/	Streaming	video	to	an	Android	device
VLC	configurations	/	Manual	VLC	configurations

VLC	configurations
manual	/	Manual	VLC	configurations

W
web	server

installing	/	Installing	the	web	server
Wi-Fi

using,	on	Pi	/	What	if	I	want	to	use	Wi-Fi	on	the	Pi?
Win32	Disk	Imager

URL	/	Extracting	the	OS	image	to	an	SD	card

	Raspberry Pi Android Projects
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Make a Remote Desktop Connection to Your Pi from Anywhere
	Prerequisites
	Installing Linux on your Pi
	Installing using NOOBS
	Installing using a Raspbian image
	Extracting the OS image to an SD card
	Making necessary changes in settings
	Installing necessary components in the Pi and Android
	Connecting the Pi and Android
	What if I want to use Wi-Fi on the Pi?
	Connecting from anywhere
	Problems with dynamic LAN IP addresses and external IP addresses
	Summary
	2. Server Management with Pi
	Remote console to the Pi from Android
	Exchanging files between the Pi and Android
	A simple database and web server implementation
	Connecting the sensor
	Installing the database
	Installing the web server
	Simple management of servers
	Summary
	3. Live Streaming of a Surveillance Camera from the Pi
	Hardware and software configurations
	Streaming video to an Android device
	Manual VLC configurations
	The surveillance mode
	Accessing surveillance images on the Web
	Summary
	4. Turn Your Pi into a Media Center
	Installing and setting up a media center on Pi
	Starting Kodi on boot
	Connecting to the media center via remote control from Android
	Getting more from your media center
	Watching videos using Kodi on an Android device
	Streaming the Android display to Kodi
	Installing the media center using NOOBS
	Summary
	5. Missed Calls with Pi
	Installing the necessary components
	Adding a sensor service to Bluetooth Low Energy
	Connecting from an Android app
	Sending the reboot command from your Android phone to the Pi
	Sending more commands from your Android phone to the Pi
	Lighting the LEDs
	Playing sounds on your Pi
	Combining the commands and being informed on incoming calls
	Summary
	6. The Vehicle Pi
	Finding out the car location
	Collecting the car data
	Getting the car data to the Pi
	Using your Android device as an access point
	An alternative to rooting
	Rooting Samsung Galaxy S2
	Enabling tethering on being connected to a power source
	Automatic restart on power connect
	Auto tethering
	Sending data to the cloud
	Putting it all together
	Sending measurements
	Retrieving measurements
	Summary
	Index

