
www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

ffirs.indd iiffirs.indd ii 5/2/2012 6:22:26 PM5/2/2012 6:22:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

PROFESSIONAL

Android™ Sensor Programming

INTRODUCTION . xxvii

 � PART I LOCATION SERVICES

CHAPTER 1 Introducing the Android Location Service . 3

CHAPTER 2 Determining a Device’s Current Location . 11

CHAPTER 3 Tracking Device Movement . 27

CHAPTER 4 Proximity Alerts . 45

 � PART II INFERRING INFORMATION FROM PHYSICAL SENSORS

CHAPTER 5 Overview of Physical Sensors . 65

CHAPTER 6 Errors and Sensor Signal Processing . 103

CHAPTER 7 Determining Device Orientation . 121

CHAPTER 8 Detecting Movement .147

CHAPTER 9 Sensing the Environment . 161

CHAPTER 10 Android Open Accessory . 189

 � PART III SENSING THE AUGMENTED, PATTERN-RICH EXTERNAL
 WORLD

CHAPTER 11 Near Field Communication (NFC) . 219

CHAPTER 12 Using the Camera . 255

CHAPTER 13 Image-Processing Techniques . 281

CHAPTER 14 Using the Microphone . 303

 � PART IV SPEAKING TO ANDROID

CHAPTER 15 Designing a Speech-Enabled App . 333

CHAPTER 16 Using Speech Recognition and Text-To-Speech APIs 349

CHAPTER 17 Matching What Was Said . 407

CHAPTER 18 Executing Voice Actions . 441

CHAPTER 19 Implementing Speech Activation .471

INDEX . 495

ffirs.indd iffirs.indd i 5/11/2012 9:36:42 AM5/11/2012 9:36:42 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

ffirs.indd iiffirs.indd ii 5/11/2012 9:36:43 AM5/11/2012 9:36:43 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

PROFESSIONAL

Android™ Sensor Programming

ffirs.indd iiiffirs.indd iii 5/11/2012 9:36:43 AM5/11/2012 9:36:43 AM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd ivffirs.indd iv 5/11/2012 9:36:43 AM5/11/2012 9:36:43 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

PROFESSIONAL

Android™ Sensor Programming

Greg Milette
Adam Stroud

ffirs.indd vffirs.indd v 5/11/2012 9:36:43 AM5/11/2012 9:36:43 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

Professional Android™ Sensor Programming

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-18348-9
ISBN: 978-1-118-22745-9 (ebk)
ISBN: 978-1-118-24045-8 (ebk)
ISBN: 978-1-118-26505-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without
limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012936847

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the prop-
erty of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 5/11/2012 9:36:46 AM5/11/2012 9:36:46 AM

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

For Tanya and Madison, my inspiration!!!

—G.M.

To Sabrina, Abigail and Elizabeth...I love you.

—A.S.

ffirs.indd viiffirs.indd vii 5/11/2012 9:36:46 AM5/11/2012 9:36:46 AM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd viiiffirs.indd viii 5/11/2012 9:36:47 AM5/11/2012 9:36:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010 Page ix

ABOUT THE AUTHORS

GREG MILETTE is a professional Android developer and founder of Gradison Technologies, an app
development company. He enjoys building practical apps like Digital Recipe Sidekick and contribut-
ing to StackOverfl ow.

ADAM STROUD is the lead developer for the Android version of RunKeeper. He is a self-proclaimed
“phandroid” and is an active participant in the Android virtual community on StackOverfl ow and
Android Google groups.

ABOUT THE CONTRIBUTORS

DAVID N. HUTCHISON (http://davidnhutch.com) was born and raised in New Zealand, and is cur-
rently a PhD candidate in physics at Cornell University, where he is developing next-generation inertial
sensors. He loves to hack up microcontroller-enabled gadgets in the machine shop, ride his motorcycle,
and start companies. David wrote Chapters 5 and 6, and contributed to Chapters 7 and 10.

JON WEBB, the developer of Jon’s Java Imaging Library, has been developing software professionally
for over three decades. He enjoys programming image processing on Android as it brings back fond
memories of his early days. Jon wrote Chapters 12 and 13.

PEARL CHEN takes a cross-disciplinary approach to her work, from HTML to LEDs, Android to
Arduino. Both an educator and developer, Pearl teaches programming and electronics, while also
acting as CTO of http://thehungryveg.com. To fi nd out more about Pearl’s upcoming workshops
and Arduino kits, visit http://klab.ca/arduino. Pearl wrote Chapter 11 and contributed to
Chapter 10.

ffirs.indd ixffirs.indd ix 5/11/2012 9:36:47 AM5/11/2012 9:36:47 AM

www.it-ebooks.info

http://davidnhutch.com
http://thehungryveg.com
http://klab.ca/arduino
http://www.it-ebooks.info/

ffirs.indd xffirs.indd x 5/11/2012 9:36:47 AM5/11/2012 9:36:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

EXECUTIVE EDITOR

Robert Elliot

PROJECT EDITOR

Brian Herrmann

TECHNICAL EDITOR

Jim Steele

PRODUCTION EDITOR

Christine Mugnolo

COPY EDITOR

Kimberly A. Cofer

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Josh Chase, Word One New York

INDEXER

Robert Swanson

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Antonis Papantoniou / iStockPhoto

CREDITS

ffirs.indd xiffirs.indd xi 5/11/2012 9:36:47 AM5/11/2012 9:36:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd xiiffirs.indd xii 5/11/2012 9:36:47 AM5/11/2012 9:36:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

ACKNOWLEDGMENTS

WE WOULD LIKE TO THANK David Hutchinson, Pearl Chen, and Jon Webb for providing content and
guidance throughout the process of authoring this book. Their expertise in physics, AOA, NFC, and
image processing allowed us to describe some exciting ways to use Android in a level of detail we
would have otherwise been unable to achieve.

We would like to thank our editors for inspiring us to write the book and their hard work in making
us sound more human-like and less like little green robots.

Finally, we could not have written this book without the help of people in the Android developer
community who share and help us all work towards a common goal. We hope this book and its code
help to repay the favor.

ffirs.indd xiiiffirs.indd xiii 5/11/2012 9:36:47 AM5/11/2012 9:36:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd xivffirs.indd xiv 5/11/2012 9:36:47 AM5/11/2012 9:36:47 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

CONTENTS

INTRODUCTION xxvii

PART I: LOCATION SERVICES

CHAPTER 1: INTRODUCING THE ANDROID LOCATION SERVICE 3

Methods Used to Determine Location 3

GPS Provider 4

How It Works 4

GPS Improvements 5

Limitations 6

Controlling GPS 7

Network Provider 8

Using Wireless Network Access Points 8

Using Cell IDs 9

Summary 10

CHAPTER 2: DETERMINING A DEVICE’S CURRENT LOCATION 11

Know Your Tools 12

LocationManager 12

LocationProvider 13

Location 13

Criteria 13

LocationListener 15

Setting up the Android Manifest 15

Determining the Appropriate Location Provider 15

GPS Location Provider 16

Network Location Provider 16

Passive Location Provider 16

Accuracy versus Battery Life 17

Receiving Location Updates 18

Receiving Location Updates with a LocationListener 18

Receiving Location Updates with a Broadcast Intent 18

Implementing the Example App 18

Implementing LocationListener 18

onLocationChanged() 19

ftoc.indd xvftoc.indd xv 5/10/2012 2:18:10 PM5/10/2012 2:18:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

xvi

CONTENTS

onProviderDisabled() and onProviderEnabled() 19

onStatusChanged() 20

Obtaining a Handle to LocationManager 20

Requesting Location Updates 23

Cleaning up After Yourself 25

Launching the Location Settings Activity 25

Summary 26

CHAPTER 3: TRACKING DEVICE MOVEMENT 27

Collecting Location Data 28

Receiving Location Updates with a Broadcast Receiver 28

Extending BroadcastReceiver 29

Registering the BroadcastReceiver with Android 30

Requesting Location Updates with a PendingIntent 32

One Intent, Multiple Receivers 33

Why Not Use a Service? 34

Viewing the Tracking Data 35

Google Map Library Components 36

MapView 37

OverlayItem 37

ItemizedOverlay 38

MapActivity 40

Filtering Location Data 40

Continuous Location Tracking and Battery Life 43

Reducing Location Update Frequency 43

Limiting Location Providers 44

Summary 44

CHAPTER 4: PROXIMITY ALERTS 45

App Structure 45

Geocoding 46

android.location.Geocoder 46

Reading the Geocoded Response 48

Setting a Proximity Alert 50

Responding to a Proximity Alert 53

Proximity Alert Limitations 55

Battery Life 55

Permissions 56

More Effi cient Proximity Alert 56

ftoc.indd xviftoc.indd xvi 5/10/2012 2:18:11 PM5/10/2012 2:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 Book Title <Chapter No> V1 - MM/DD/2010

xvii

CONTENTS

ProximityAlertService 56

Summary 61

PART II: INFERRING INFORMATION FROM PHYSICAL SENSORS

CHAPTER 5: OVERVIEW OF PHYSICAL SENSORS 65

Defi nitions 66

Android Sensor API 68

SensorManager 68

Sensor 68

Sensor Rates 69

Sensor Range and Resolution 70

SensorEventListener 71

SensorEvent 71

Sensor List 72

The Manifest File 72

SensorListActivity 73

SensorSelectorFragment 74

SensorDisplayFragment 76

Sensing the Environment 84

Sensor.TYPE_LIGHT 84

Sensor.TYPE_PROXIMITY 85

Sensor.TYPE_PRESSURE 86

Absolute Altitude 87

Relative Altitude 87

Mean Sea-Level Pressure (MSLP) 87

Where to Find MSLP 88

Sensor Units 88

Sensor Range 88

Common Use Cases 88

Sensor.TYPE_RELATIVE_HUMIDITY 89

Sensor.TYPE_AMBIENT_TEMPERATURE 89

Sensor.TYPE_TEMPERATURE 89

Sensing Device Orientation and Movement 90

Coordinate Systems 90

Global Coordinate System 91

Device Coordinate System 91

Angles 91

Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and
.TYPE_LINEAR_ACCELERATION 92

ftoc.indd xviiftoc.indd xvii 5/10/2012 2:18:11 PM5/10/2012 2:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

xviii

CONTENTS

Sensor Units and Resolution 93

Sensor.TYPE_GYROSCOPE 94

Sensor Units 94

Sensor Range 94

Sensor.TYPE_MAGNETIC_FIELD 94

Sensor Units, Range, and Resolution 95

Sensor.TYPE_ROTATION_VECTOR 97

SensorManager.getOrientation() 98

SensorManager.getInclination() 101

Sensor Fusion Schemes 101

Summary 102

CHAPTER 6: ERRORS AND SENSOR SIGNAL PROCESSING 103

Defi nitions 104

Accuracy and Precision 104

Types of Errors 105

Human Error, Systematic Error, and Random Error 105

Noise 105

Drift 105

Zero Off set (or “Off set,” or “Bias”) 105

Time Delays and Dropped Data 105

Integration Error 106

Techniques to Address Error 107

Re-zeroing 107

Filters 107

Sensor Fusion 107

Filters 107

Low-Pass 107

Weighted Smoothing 108

Simple Moving Average (SMA) 108

Choosing the Smoothing Parameter 111

Averaging: Smoothness vs. Response Time 111

Simple Moving Median (SMM) 111

High-Pass 111

Inverse Low-Pass Filter 112

Bandpass 113

Introducing Kalman Filters 114

A Better Determination of Orientation
by Using Sensor Fusion 115

Sensor Fusion: Simple vs. Proprietary 115

ftoc.indd xviiiftoc.indd xviii 5/10/2012 2:18:11 PM5/10/2012 2:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 Book Title <Chapter No> V1 - MM/DD/2010

xix

CONTENTS

Proprietary Sensor Fusion 116

Simple Sensor Fusion: The Balance Filter 117

Summary 119

CHAPTER 7: DETERMINING DEVICE ORIENTATION 121

Previewing the Example App 121

Determining Device Orientation 122

Gravity Sensor 123

Accelerometer and Magnetometer 123

Gravity Sensor and Magnetometer 124

Rotation Vector 124

Implementation Details 125

Processing Gravity Sensor Data 130

Processing Accelerometer and Magnetic Field Data 130

Processing Rotation Vector Data 132

Notifying the User of Orientation Changes 135

NorthFinder 143

Summary 146

CHAPTER 8: DETECTING MOVEMENT 147

Acceleration Data 148

Accelerometer Data 148

Linear Acceleration Sensor Data 150

Data While Device Is in Motion 150

Total Acceleration 153

Implementation 153

DetermineMovementActivity 153

AccelerationEventListener 156

Summary 159

CHAPTER 9: SENSING THE ENVIRONMENT 161

Barometer vs. GPS for Altitude Data 162

Example App Overview 162

Implementation Details 163

GPS-Based Altitude 169

Barometric Pressure–Based Altitude 170

Relative Altitude 177

Summary 187

ftoc.indd xixftoc.indd xix 5/10/2012 2:18:11 PM5/10/2012 2:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

xx

CONTENTS

CHAPTER 10: ANDROID OPEN ACCESSORY 189

A Short History of AOA 189

USB Host Versus USB Accessory 190

Electrical Power Requirements 190

Supported Android Devices 190

The Android Development Kit (ADK) 191

Hardware Components 194

Software Components 195

AOA Sensors versus Native Device Sensors 196

AOA Beyond Sensors 196

AOA Limitations 196

AOA and Sensing Temperature 197

Implementation 198

Requirements 198

Getting Started with the Arduino Software 198

Arduino Sketch 199

Android Code 205

Communication between Arduino and Android 208

Taking an Android Accessory to the Consumer Market 215

Summary 216

PART III: SENSING THE AUGMENTED, PATTERN-RICH EXTERNAL WORLD

CHAPTER 11: NEAR FIELD COMMUNICATION (NFC) 219

What Is RFID? 220

What Is NFC? 222

The NDEF Data Format 223

How and Where to Buy NFC Tags 224

NDEF-compatible NFC Tags 224

Storage Size versus Price versus Security Trade-off 224

Write Protection 226

Form Factor 226

Retailers 227

General Advantages and Disadvantages of NFC 227

Low Power and Proximity Based 228

Small, Short Data Bursts 228

Singular Scanning 229

Security 229

Card Emulation 229

ftoc.indd xxftoc.indd xx 5/10/2012 2:18:11 PM5/10/2012 2:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 Book Title <Chapter No> V1 - MM/DD/2010

xxi

CONTENTS

Android-specifi c Advantage: Intents 229

Required Hardware 230

Building an Inventory Tracking System 230

The Scenario 230

The NFC Inventory Demonstration App 230

Enabling NFC in the Settings 231

Debugging Your Tags with Apps 232

Android APIs 233

In Your AndroidManifest.xml File 233

Permissions and Minimum API Level 233

Intent Filters 233

Custom MIME Type Intent Filters 234

URI-based Intent Filters 235

In Your Main Activity Class 236

NfcManager 237

NfcAdapter 237

Foreground Dispatching 237

Foreground NDEF Push 241

Reacting to an NDEF Tag 241

NdefMessage and NdefRecord 243

Parsing and Reading NDEF Tags 245

Getting Ready to Write to a Tag 246

Writing to the Tag 248

Putting it All Together 250

Future Considerations 251

NFC N-Mark 251

Peer-to-Peer NFC Sharing 251

Peer-to-Peer Android APIs 252

Go Forth and NFC! 253

Summary 254

CHAPTER 12: USING THE CAMERA 255

Using the Camera Activity 255

Controlling the Camera with Your Own Activity 256

Claiming and Releasing a Camera 257

The Preview View 258

Controlling the Camera 261

Orientation 261

Zoom 263

Focus 264

ftoc.indd xxiftoc.indd xxi 5/10/2012 2:18:12 PM5/10/2012 2:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

xxii

CONTENTS

Switching Cameras 264

Flash 264

Other Camera Parameters 265

Creating a Simple Barcode Reader 267

Understanding Barcodes 267

Parity and Implied First Digit 269

The Check Digit 270

Right Half of the Barcode 271

Autofocus 272

Using the Camera Preview Image and Detecting the Barcode 273

Debugging Image Processing Programs on Android 275

Detecting the Barcode 276

Summary 279

CHAPTER 13: IMAGE-PROCESSING TECHNIQUES 281

The Structure of Image-Processing Programs 281

The Image-Processing Pipeline 281

Common Image-Processing Operations 282

Image-to-Image Operations 282

Image-to-Object Operations 284

Jon’s Java Imaging Library (JJIL) 284

Image 285

PipelineStage 285

Sequence 288

Ladder 289

JJIL and Detecting the Android Logo 291

Choose the Right Image Size 293

Improving Reliability in Image Processing 296

Detecting Faces 299

Image-Processing Resources 300

Summary 301

CHAPTER 14: USING THE MICROPHONE 303

Introducing the Android Clapper 303

Using MediaRecorder to Analyze Maximum Amplitude 304

Recording Maximum Amplitude 305

Asynchronous Audio Recording 310

Implementing a Clapper 312

Analyzing Raw Audio 314

ftoc.indd xxiiftoc.indd xxii 5/10/2012 2:18:12 PM5/10/2012 2:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 Book Title <Chapter No> V1 - MM/DD/2010

xxiii

CONTENTS

Setting Audio Input Parameters 315

Preparing AudioRecord 316

Recording Audio 317

Using OnRecordPositionUpdateListener 317

Using Loud Noise Detection 323

Using Consistent Frequency Detection 324

Estimating Frequency 325

Implementing the Singing Clapper 327

Summary 329

PART IV: SPEAKING TO ANDROID

CHAPTER 15: DESIGNING A SPEECH-ENABLED APP 333

Know Your Tools 334

User Interface Screen Flow 336

Voice Action Types 337

Voice User Interface (VUI) Design 338

Deciding Appropriate Tasks for Voice Actions 339

Designing What the App and Users Will Say 340

Constrain Speech Input to Increase Accuracy 340

Train Users to Know What They Can Say 340

Prompt the Users so They Know What to Say 341

Confi rm Success and Help Users Recover from Errors 342

Help Users Recover from Accidental Speech Activation 343

Teach Users Proper Speech Hygiene 344

Use Menus Cautiously 344

After the Design 345

Testing Your Design 346

Summary 347

References 347

CHAPTER 16: USING SPEECH RECOGNITION
AND TEXT-TO-SPEECH APIS 349

Text-To-Speech 349

Initialization 350

Initialization with Locale 351

Check TTS Data Action 361

Speaking 366

Speaking a Script 369

ftoc.indd xxiiiftoc.indd xxiii 5/10/2012 2:18:12 PM5/10/2012 2:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

xxiv

CONTENTS

Speech Recognition 377

Initializing 377

Using the RecognizerIntent 382

The Speech Recording Process 384

Confi guring and Processing the Result 385

RecognizerIntent Use Cases 386

Implementation 391

Direct Speech Recognition Using SpeechRecognizer 403

 Summary 405

CHAPTER 17: MATCHING WHAT WAS SAID 407

Parts of a Voice Command 407

Word Spotting 409

Indexing to Improve Word Spotting 411

Stemming 412

Phonetic Indexing 414

Matching Command Words in Persistent Storage 418

SQLite Full Text Search 418

Using the LIKE Operator 419

Using the FTS MATCH Operator 420

Implementing FTS 421

Word Searching with Lucene 426

Multi-part Commands 431

Ignoring Potential Collisions 432

Considering Ordering 434

Using a Grammar 438

Summary 438

CHAPTER 18: EXECUTING VOICE ACTIONS 441

Food Dialogue VUI Design 442

Defi ning and Executing Voice Actions 443

Executing VoiceActionCommands 448

Implementing an AlertDialog for VoiceActions 451

Implementing Multi-Turn Voice Actions 455

Implementing Multi-Turn AddFood 455

Implementing Multi-Turn RemoveFood 459

Making a Best Guess 461

Relaxing Strictness Between Commands 463

Making an Educated Guess 464

Responding When Recognition Fails 466

ftoc.indd xxivftoc.indd xxiv 5/10/2012 2:18:12 PM5/10/2012 2:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 Book Title <Chapter No> V1 - MM/DD/2010

xxv

CONTENTS

Determining Not a Command 468

Determining Inaccurate Recognition 469

Not Understanding 469

Summary 469

CHAPTER 19: IMPLEMENTING SPEECH ACTIVATION 471

Implementing Speech Activation 472

Starting Speech Recognition 473

Implementing Speech Activation within an Activity 475

Activating Speech Recognition with Movement Detection 479

Activating Speech Recognition with the Microphone 481

Activating Speech Recognition with
Continuous Speech Recognition 483

Activating Speech Recognition with NFC 487

Implementing Persistent Speech Activation 488

Using a Service for Persistent Speech Activation 489

Summary 494

INDEX 495

ftoc.indd xxvftoc.indd xxv 5/10/2012 2:18:12 PM5/10/2012 2:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

flast.indd xxviflast.indd xxvi 5/10/2012 2:17:55 PM5/10/2012 2:17:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

ANDROIDS ARE ALIVE. THEY CAN LOCATE THEMSELVES, see, listen, and understand speech. They can
sense radio signals and detect orientation, movement, and environmental properties. Can your com-
puter do all of that?

The availability of sensors is one feature Android devices have that makes them different from other
computers. Without sensors, an Android device is just an underpowered, mobile web browser with a
screen that is too small and has an awkward input mechanism.

Sensors also allow apps to do amazing things. For example, sensors can help save users from pain-
fully slow manual input and manipulation, and sensors can help users do tasks that they could never
do before. Because of this, it may be essential for an app to incorporate sensors to be successful.

Sensors will continue to be an important part of the Android platform. As the hardware specifi ca-
tions of Android devices improve, so do the number of available sensors and their quality. While
this happens, users will continue to expect apps to use any existing and new sensors when possible.
Therefore, using Android’s sensors is a crucial skill for any Android programmer to master. This
book gives you the knowledge and code you need to develop this skill and make great apps that use
sensors.

PROGRAMMING WITH ANDROID SENSORS

Writing apps that use Android’s sensors involves understanding the sensing capabilities of an
Android device, selecting which sensors to use in an app, and implementing an app that can acquire
sensor data and interpret it.

Android’s Sensing Capabilities

An Android device can have a wide variety of sensors. This book uses a defi nition of sensor that
incorporates many of an Android device’s capabilities. In this book a sensor is:

A capability that can capture measurements about the device and its external
environment.

Sensing capabilities are derived from the available hardware on Android devices and from creative
use of it. A capability may use values directly from hardware that can measure physical quantities,
such as the magnetic fi eld sensor. It may use hardware that the user typically interacts with, such as
the camera and microphone. A capability may even use a combination of hardware and server-based
processing, such as speech recognition. Whatever the source, the resulting data can inform an app
about the device’s state and the environment in which it resides.

flast.indd xxviiflast.indd xxvii 5/10/2012 2:17:56 PM5/10/2012 2:17:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxviii

INTRODUCTION

This book describes how to program apps that process information from the following sensor types:

 ‰ Location sensors: Determine a device’s location using a variety of sensors including GPS.

 ‰ Physical sensors: Detect device-specifi c properties such as orientation, acceleration, and rota-
tion and environmental properties such as light, magnetic fi eld, and barometric pressure.

 ‰ NFC scanner: Detects near fi eld communication (NFC) tags and shares data with other NFC-
enabled Android devices.

 ‰ Camera: Collects visual images.

 ‰ Microphone: Records audio.

 ‰ Speech recognition: Converts audio to text using a combination of recorded audio from the
microphone and recognition algorithms.

 ‰ External sensors: Any sensor connected using the Android Open Accessory (AOA) mechanism.

Selecting Sensing Tasks

Understanding how the sensors work helps you know which of your app’s tasks can benefi t from
sensor-related input. It also helps you interpret the sensors’ performance under various conditions
and know their limitations. For example:

 ‰ Location: Knowing how various location sensors work, as described in Chapter 1, may lead
you expect poor accuracy while a device is indoors.

 ‰ Physical sensors: Knowing information about what the physical sensors measure, as discussed
in Chapter 5, can help you understand what inferences an app can reasonably make with the
sensor output.

Using API Boilerplate

In any app, acquiring sensor data requires similar code. Each kind of data requires different boil-
erplate. In many cases, is not trivial to initialize the API and acquire the data. This book provides
code examples and libraries to help make it easier to implement. Some examples of the diffi culties
involved in using the APIs include:

 ‰ Camera: Before an app can analyze an image, it must acquire the image from the camera.
However, using a device’s camera requires handling device rotation, hardware constraints,
and using the Camera and View objects properly. Chapters 12 and 13 describe abstract
classes that handle these details.

 ‰ NFC: Using NFC involves understanding the various steps needed to read and write NFC tags
and what data to put in them. Chapter 11 explains a complete code example that is easy to adapt.

Collecting Sensor Data

Once an app can initialize and acquire sensor data, it then needs utilize the APIs to collect the data
while the app is running. Data can be collected in different ways depending on how an app uses it.
This book describes different ways to collect data for various tasks. Some examples include:

flast.indd xxviiiflast.indd xxviii 5/10/2012 2:17:56 PM5/10/2012 2:17:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxix

INTRODUCTION

 ‰ Location: Location tracking is a common use of location sensors. Some apps need to per-
sistently track location while an app performs other tasks. Chapter 3 describes several
approaches for implementing location tracking reliably.

 ‰ Speech recognition: To acquire speech recognition results an app needs to have other components
besides actually running the speech recognizer. An app also needs to allow the user to activate
speech and mediate turn taking between when the user can speak and when the app is listening.
Part 4 describes all the necessary software components you need to implement complete voice
commands.

Interpreting Sensor Data

After an app has collected some sensor data, it then needs to analyze the data to achieve a desired
effect. Each sensor requires different analysis algorithms. Some examples include:

 ‰ Physical sensors: Interpreting data from physical sensors involves calculations to convert
raw data into usable values and algorithms to help detect changes and ignore noise. Part 2
describes how.

 ‰ Camera: Processing images from the camera involves setting up an image-processing pipeline.
An app must reduce the large image that the camera collects to a manageable size that would
otherwise be too large to fi t in memory or too slow to process. Then the app needs to trans-
form the collected image in various ways to detect something within it.

 ‰ Microphone: Analyzing audio recordings involves signal-processing algorithms. Chapter 14
describes algorithms for volume detection and frequency estimation.

 ‰ Speech recognition: Executing voice commands involves matching what the user said with
command words using text search methods. Chapter 17 describes methods to improve
matching success.

Applications in This Book

This book presents applications that utilize sensors for specifi c purposes. The applications provide
practical code components that solve common problems.

Some example applications in this book include:

 ‰ Chapter 3: Using a database and a BroadcastReceiver to implement persistent, reliable
location tracking.

 ‰ Chapter 4: Using a service to implement an effi cient proximity alert that conserves battery life.

 ‰ Chapter 7: Using various physical sensors to determine if the device is face up or face down.

 ‰ Chapter 7: Using the rotation vector sensor to implement features needed for an augmented
reality app.

 ‰ Chapter 8: Using the acceleration sensors to detect movement.

 ‰ Chapter 9: Using the barometer to detect altitude.

flast.indd xxixflast.indd xxix 5/10/2012 2:17:56 PM5/10/2012 2:17:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxx

INTRODUCTION

 ‰ Chapter 10: Using AOA to collect data from an external temperature sensor.

 ‰ Chapter 11: Using NFC tags with custom data to track inventory.

 ‰ Chapter 13: Using the camera to detect the Android logo.

 ‰ Chapter 14: Using the microphone to implement a clapper by detecting loud noises and a
singing tone.

 ‰ Chapters 17 and 18: Using speech recognition and Text-to-Speech to implement voice com-
mands that query and manipulate data in a food database.

ADVANCED ANDROID PROGRAMMING

This book is for developers familiar with programming for Android. It assumes you understand
basic Android concepts like Activities and Intents but may have not have used the sensor-related
APIs. It also assumes you understand some math concepts and fully explains any physics concepts
you need to know.

Additionally, this book focuses on programming sensors. This focus allows suffi cient space to fully
describe how to process each kind of data and go beyond explaining simple uses of the APIs.

Beyond sensor programming, this book describes techniques that are applicable in any app.
For example, the chapters in this book show you how to use BroadcastReceivers, Services,
AsyncTasks, and databases for various tasks.

START SENSING!

Apps can utilize sensors to create amazing features that are unique and save a user’s time. Android’s
sensing capabilities will only improve over time and continue to be an important component in
many apps. This book arms you with the knowledge and code you need to use these capabilities to
create great apps.

ANDROID SENSING PLAYGROUND APP

This book comes with an app called Android Sensing Playground. The app enables you to execute
most of the applications and example code from this book and also utilize “playgrounds” which
allow you to observe the relevant APIs working under various parameter settings.

Download the app from Google Play here: https://play.google.com/store/apps/
details?id=root.gast.playground.

GREAT ANDROID SENSING TOOLKIT (GAST)

The code in this book is part of an open source project called Great Android Sensing Toolkit
(GAST). The latest updates and code are available on Github at the following link: https://
github.com/gast-lib.

flast.indd xxxflast.indd xxx 5/10/2012 2:17:56 PM5/10/2012 2:17:56 PM

www.it-ebooks.info

https://play.google.com/store/apps
https://github.com/gast-lib
https://github.com/gast-lib
http://www.it-ebooks.info/

xxxi

INTRODUCTION

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the website is highlighted by the
following icon:

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a
code note such as this:

code snippet fi lename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-1-118-18348-9

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Warnings hold important, not-to-be-forgotten information that is directly rel-
evant to the surrounding text.

Notes indicate notes, tips, hints, tricks, and asides to the current discussion.

 TRY THIS

The Try This sections throughout the book highlight how you can use the book’s
app to learn about the concepts being discussed.

flast.indd xxxiflast.indd xxxi 5/10/2012 2:17:56 PM5/10/2012 2:17:56 PM

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/dynamic/books/download
http://www.it-ebooks.info/

xxxii

INTRODUCTION

As for styles in the text:

 ‰ We highlight new terms and important words when we introduce them.

 ‰ We show keyboard strokes like this: Ctrl+A.

 ‰ We show fi le names, URLs, and code within the text like so: persistence.properties.

 ‰ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the Book Search Results page, click on the Errata link. On this
page, you can view all errata that has been submitted for this book and posted by Wrox editors.

A complete book list including links to errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click on the Errata Form link and complete the
form to send us the error you have found. We’ll check the information and, if appropriate, post a
message to the book’s errata page and fi x the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

flast.indd xxxiiflast.indd xxxii 5/10/2012 2:17:57 PM5/10/2012 2:17:57 PM

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com
http://www.it-ebooks.info/

xxxiii

INTRODUCTION

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an email with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxiiiflast.indd xxxiii 5/10/2012 2:17:58 PM5/10/2012 2:17:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

flast.indd xxxivflast.indd xxxiv 5/10/2012 2:17:58 PM5/10/2012 2:17:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PART I
Location Services

 � CHAPTER 1: Introducing the Android Location Service

 � CHAPTER 2: Determining a Device’s Current Location

 � CHAPTER 3: Tracking Device Movement

 � CHAPTER 4: Proximity Alerts

c01.indd 1c01.indd 1 5/10/2012 1:05:19 PM5/10/2012 1:05:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c01.indd 2c01.indd 2 5/10/2012 1:05:22 PM5/10/2012 1:05:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

1
Introducing the Android
Location Service

WHAT’S IN THIS CHAPTER?

 ‰ Providing overview of how location information is provided in

Android

 ‰ Presenting an overview of GPS

 ‰ Discussing why A-GPS is used in Android

 ‰ Providing an overview of the network location provider

Location information is becoming increasingly important in the world of mobile develop-
ment. Apps that were once location agnostic now make use of location information to provide
a richer user experience. Being able to combine a simple web search engine with up-to-the-
minute location information allows Android devices to provide a level of functionality that
was previously not possible. The capability to easily retrieve and provide location data to apps
is becoming a major feature of today’s mobile platforms. Android provides this functionality
with its location service.

Android’s location service provides access to facilities that can be used to determine a device’s
current location. This information can be used for a wide variety of functions and can allow a
device and the software that runs on it to have a better understanding of its surroundings.

METHODS USED TO DETERMINE LOCATION

Android makes use of different methods to provide location information to an app. In
Android, these facilities are called location providers, and each has its own unique set of
strengths and weaknesses. In addition, because location providers have such unique character-
istics, they each lend themselves to be used differently in different situations.

c01.indd 3c01.indd 3 5/10/2012 1:05:22 PM5/10/2012 1:05:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

4 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

The following sections give some high-level explanations as to how the different location acquisition
methods work. Although an app has little control over how the providers work, it can decide which
location provider to use. Understanding how each provider works goes a long way in understanding
its limitations and characteristics.

GPS Provider

The Global Positioning System (GPS) uses a system of satellites orbiting the planet to help a receiver
(an Android handset in this case) determine its current location. The term GPS refers to the entire
GPS system, which consists of satellites, receivers, and the control stations that monitor and adjust
it. The receiver that is located in the phone is useless without the rest of the system.

How It Works

In general, a GPS receiver uses information from the GPS satellites orbiting the earth to calculate its
current location. The GPS system contains 27 satellites that continually orbit the earth, transmitting
information to would-be receivers. Each satellite follows a defi ned path, ensuring that at least four
satellites are “visible” from any point on earth at any given time. Being able to have a “line of sight”
to at least four satellites is necessary to determine location using GPS. Figure 1-1 shows a depiction
of the GPS satellite constellation.

Source: http://gps.gov/multimedia/images

FIGURE 1-1: GPS satellite constellation

Each GPS satellite in the constellation continuously transmits its current position (ephemeris data) and
almanac data. The almanac data includes data about each satellite in the constellation, including orbit-
ing data as well as information about the overall state of the system as a whole. To say it another way,
ephemeris data is information about a single satellite, and almanac data is information about every
satellite. Every satellite transmits both. Though both the ephemeris data and almanac data provide
location data for a given satellite, the ephemeris data provides accuracy for location calculation.

c01.indd 4c01.indd 4 5/10/2012 1:05:27 PM5/10/2012 1:05:27 PM

www.it-ebooks.info

http://gps.gov/multimedia/images
http://www.it-ebooks.info/

Methods Used to Determine Location x 5

To calculate its location, a GPS receiver must be able to determine its distance from multiple satel-
lites. It does this using the ephemeris data. Included in the data that is transmitted from the satellite,
along with the position data, is the time at which the transmission started. Each GPS satellite con-
tains a highly accurate timekeeping mechanism that allows the satellite to keep its time in sync with
the rest of the satellites. To produce an accurate location calculation, the GPS satellites and GPS
receivers must have their clocks highly synchronized. Even the slightest difference in time can cause
large errors when computing location.

Using the transmission start time, the GPS receiver can calculate the time it took for the transmis-
sion to be received (the receiver knows when the transmission ended). This calculation is made with
the assumption that the radio waves that transmit the data travel at the speed of light in a vacuum
(which is not always the case). Using the start time, end time, and a constant for the speed of light,
a GPS receiver can calculate the distance of the satellite from the receiver.

Using the distance from multiple satellites, the GPS receiver can triangulate its current location.
Essentially, the point at which all the spheres intersect is the location of the receiver. A minimum
of three satellites is needed to determine a two-dimensional location (latitude and longitude).
Communications from additional satellites allow a GPS receiver to determine additional positional
information such as altitude. A GPS receiver will not limit itself to only four satellites. In general as
the number of satellites from which the receiver can receive data increases, so does the accuracy of
the location (there is an upper limit, however).

GPS is useful for determining current location, but it does have some drawbacks (especially for
mobile platforms), one of which is the time it can take to calculate the current position. Before the
location can be calculated, multiple satellites must be found. Many satellites are orbiting the earth,
but only a handful can be “seen” at any given time because most will be below the horizon and
blocked by the earth (remember, a line of sight is needed). The almanac used by the GPS system can
provide assistance in determining which satellites should be used for a given location at a given time.
However, if the GPS does not have a relatively current almanac, it will need to have the almanac
data transmitted by a GPS satellite. This can be a slow process.

GPS Improvements

Although standard GPS can provide accurate location data, the limitations it imposes make it dif-
fi cult for mobile devices to use it. To help circumvent some the limitations of standard GPS, modern
mobile devices make use of assisted GPS (A-GPS) and possibly simultaneous GPS (S-GPS).

A-GPS

A-GPS uses the mobile network to transmit the GPS almanac along with other pieces of information
to a mobile device. This use of the mobile network allows for faster transmission of the almanac,
which may lead to faster determination of the device’s current location. In addition, because the
almanac contains information about all of the GPS satellites, the device will know the approximate
location of the GPS satellites in its line of sight. This will also improve the time it takes to acquire a
GPS location.

Examination of the GPS confi guration fi le provides some insight into where the A-GPS data comes
from. Listing 1-1 shows an example of a GPS confi guration fi le that is used in Android for a device
located in North America.

c01.indd 5c01.indd 5 5/10/2012 1:05:28 PM5/10/2012 1:05:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

6 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

LISTING 1-1: An example of a GPS confi guration fi le located in /system/etc/gps.conf

NTP_SERVER=north-america.pool.ntp.org
XTRA_SERVER_1=http://xtra1.gpsonextra.net/xtra.bin
XTRA_SERVER_2=http://xtra2.gpsonextra.net/xtra.bin
XTRA_SERVER_3=http://xtra3.gpsonextra.net/xtra.bin

Listing 1-1 shows that the GPS confi guration fi le can specify the location of the A-GPS data to
download (XTRA_SERVER_1, XTRA_SERVER_2, and XTRA_SERVER_3) as well as a Network Time
Protocol (NTP) server that can be used to coordinate time (NTP_SERVER). NTP can be used to force
coordination of time. This is important because GPS relies heavily on the clocks of a GPS receiver
and the GPS satellites being in sync. Although the use of NTP does not guarantee true time syn-
chronization down to the millisecond, it does help to prevent large time differences. Because of the
numbers used in calculating times, like the speed of light, a small difference in time can lead to large
inaccuracies in location calculations.

Though most users can read /system/etc/gps.conf, increased permissions are required to write to
the fi le. Generally, users should not need to edit this fi le.

S-GPS

Devices that use standard GPS may use the same hardware to communicate with GPS satellites
and make mobile phone calls. This means that only one of these actions can take place at a time.
S-GPS addresses this issue by adding additional hardware that allows the GPS radio and the cellu-
lar network radio to be operational simultaneously. The ability to have two radios active can speed
up GPS data transmission because it allows the data to be received while the cellular network
radio is active.

Limitations

Although GPS can provide the most accurate location data, it does have limitations that may
be diffi cult to work around. First is the fact that a GPS receiver needs a clear path to a GPS
satellite. This means that GPS receivers are unlikely to work indoors, and may even have prob-
lems outside in areas where the sky is not visible (such as dense forests). Additionally, because
multiple GPS satellites are needed to produce location information, it may take a substantial
amount of time to acquire a location. This is exacerbated by that fact that devices may contain
low-powered GPS radios. For these reasons, other sources of location information are
sometimes needed.

Objects that obstruct a GPS signal may cause the signal to be refl ected before it reaches the GPS
receiver. As stated earlier, the time it takes a signal to reach the GPS receiver is used to calculate the
distance between the GPS satellite and the GPS receiver. GPS signals that are refl ected off of objects
have a different path from the GPS satellite to the GPS receiver and cause the distance calculation to
be erroneous. These types of errors are called multipath errors and can cause the location to appear
to jump from one place to another. This is often seen in urban areas where GPS signals frequently
bounce off of tall buildings.

c01.indd 6c01.indd 6 5/10/2012 1:05:28 PM5/10/2012 1:05:28 PM

www.it-ebooks.info

http://xtra1.gpsonextra.net/xtra.bin
http://xtra2.gpsonextra.net/xtra.bin
http://xtra3.gpsonextra.net/xtra.bin
http://www.it-ebooks.info/

Methods Used to Determine Location x 7

Controlling GPS

For most cases, GPS should “just work” as far as app developers are concerned. Typically, there
will be no reason to interfere with the source of the A-GPS data, or when the A-GPS data should be
purged and reinitialized.

However, Android does provide an API for controlling certain aspects of GPS data. The
LocationManager class (which is introduced in detail in the next chapter) contains a sendExtra-
Command() method that can be used to manipulate device GPS state. The LocationManager.send-
ExtraCommand() method takes three parameters: a string specifying the location provider, the extra
command, and a Bundle that provides additional information for performing the command.

At the time of this writing, the GPS location provider supports only three extra commands:

 ‰ delete_aiding_data

 ‰ force_time_injection

 ‰ force_extra_injection

The delete_aiding_data command is used to remove the A-GPS data that has been previously
downloaded. It is the only extra command that makes use of the Bundle parameter, which is used to
control what A-GPS data should be removed. The Bundle can contain Boolean values with keys to
indicate which data to remove. The keys can be any of the following strings:

 ‰ ephemeris

 ‰ almanac

 ‰ position

 ‰ time

 ‰ iono

 ‰ utc

 ‰ health

 ‰ svdir

 ‰ scsteer

 ‰ sadata

 ‰ rti

 ‰ celldb-info

 ‰ all

Passing a null for the Bundle causes all the A-GPS data to be removed.

The force_time_injection command causes the current time to be retrieved from the confi gured
NTP server and updated for the purposes of GPS calculations.

c01.indd 7c01.indd 7 5/10/2012 1:05:28 PM5/10/2012 1:05:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

8 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

The force_extra_injection command causes the A-GPS data to be downloaded from one of the
confi gured servers and used by the GPS location provider.

Network Provider

In Android, network-based location can use different methods for determining the location of a
device. As of this writing, the network location provider can provide location information using cell
towers, or based on wireless network information.

Using Wireless Network Access Points

Providing location information based on wireless network access points is one of the ways that
Android supports location resolution with the network provider. Although it does require that the
Wi-Fi radio is active, the Wi-Fi radio often consumes less battery power than the GPS hardware.

How It Works

Wi-Fi-based location detection works by having a device track what Wi-Fi access points it can
detect and the current signal strength of those access points. The device then makes a query to the
Google location service (which is different from the Android location service), which provides
location data based on the Wi-Fi information. The Wi-Fi information collected by the device
includes the mandatory access control (MAC) addresses of the Wi-Fi access points that are in
range and the strength of the signal being received from those access points.

To provide location information based on visible Wi-Fi access
points, the Google location service must obtain information
about Wi-Fi access points and their locations. This informa-
tion is collected by Android devices when a user enables use
of Google’s location service in the Location Settings screen.
Figure 1-2 shows the confi rmation screen that is presented to
a user when enabling the Google location service as a source
of location data.

Pressing Agree on this screen allows the device to record
Wi-Fi information as well as current location information
(possibly provided by GPS) and transmit this information to
Google. This essentially allows Google use each and every
Android device as a way to update the Wi-Fi location infor-
mation and constantly maintain up-to-date data.

One of the main benefi ts of the Wi-Fi location source is that
it allows devices to acquire location information in areas
where GPS cannot provide location data. As stated in the
previous section, GPS is problematic when used indoors or
even in an urban environment where tall buildings can cause
signal problems. In contrast, an urban environment may
increase the accuracy of Wi-Fi-based location because of
the abundance of Wi-Fi networks available to determine a
device’s current location.

FIGURE 1-2: Confi rmation screen

displayed when enabling Google’s

location service

c01.indd 8c01.indd 8 5/10/2012 1:05:28 PM5/10/2012 1:05:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Methods Used to Determine Location x 9

Limitations

As with GPS, using Wi-Fi networks as a source of location information does have its limitations.
First, to determine the location, Wi-Fi networks must be in range. Additionally, the networks must
have a publicly broadcasted service set identifi er (SSID) that has not been confi gured to be ignored
by Android. Access points that have an SSID that ends in _nomap will not have their information
sent to the Google location service.

Additionally, changes to the location of Wi-Fi access points can cause inaccuracies in the location
data that is produced. For example, many people now have wireless networks in their homes for
daily use. Assuming an Android device has been confi gured to use the Google location service,
Android would have sent the access point MAC address and location to the Google location service.
If the user were to change the location of that access point (take it to a vacation home, for example),
the location service might determine the device to be in the wrong location when the Wi-Fi location
source is used.

Although the location service does allow for access point location to be updated via Android
devices, Google does not allow users to explicitly set the location of an access point. An Android
device will push the information to the location service, which may wait until other devices can
confi rm the change before the location service is updated.

Using Cell IDs

In addition to using Wi-Fi information to determine device location, Android can also use the
cellular network. The cellular network is used in a similar way as Wi-Fi access points to determine
device location.

How It Works

To function properly, a cellular device must be in contact with a cell tower. As a device moves, it
may connect to a different cell tower as the signal strength of an approaching cell tower becomes
stronger. Knowing the unique ID of the tower that a device is currently connected to, and possibly
the towers that a device was previously connected to, can provide insight to where the device is
located assuming the location of a given cell tower is known.

Android and the Google location service work together to map cell tower IDs to location data in a
way that is similar to Wi-Fi data. Once a device has been confi gured to use the network provider, it
collects data on the current cell tower ID in addition to the visible wireless networks. For cell tow-
ers, this data includes the cell tower the device is currently connected to and the device’s current
GPS location. With this information, the Google location service can develop a “map” of cell towers
that includes their locations.

By again allowing Android devices to update cell ID information, the Google location service can
maintain a constantly updated store of information that increases in accuracy as the number of
entries increases.

When a device needs to fi nd its current location, it sends the ID of the cell tower it is currently
connected to, as well as historic information about past cell towers it has used, to the Google loca-
tion service. With this information, the Google location service can provide information about the

c01.indd 9c01.indd 9 5/10/2012 1:05:28 PM5/10/2012 1:05:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 x CHAPTER 1 INTRODUCING THE ANDROID LOCATION SERVICE

device’s current location based on the data it has about the cell tower network. If the IDs of multiple
cell towers are sent to the Google location service, it can use triangulation to provide increased loca-
tion accuracy. The Google location service cannot do this if the device submits only a single cell
tower ID.

Limitations

The limitations for using cell tower IDs are similar to the limitations that exist when using Wi-Fi
networks to determine location. However, because the location of cell towers is less likely to change
than the location of wireless access points, some of the complications that may exist when using
Wi-Fi access points are removed.

However, just like Wi-Fi access point data, the Google location service must have data on the cell
tower IDs that are sent by a device in order to provide location data.

SUMMARY

This chapter presented an overview of how the location providers available in Android work and
discussed their limitations. The decision of which location provider to use in which situation can be
a complex topic, and is discussed at length in the following chapters.

c01.indd 10c01.indd 10 5/10/2012 1:05:28 PM5/10/2012 1:05:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 11

2
Determining a Device’s Current
Location

WHAT’S IN THIS CHAPTER?

 ‰ Introduction to the Android Location API components

 ‰ Introduction to the diff erent sources of location information in

Android

 ‰ Example usage of the Location API to determine a device’s current

location

Mobile app developers often have to determine the device’s current location. Knowing a
device’s location enables app developers to add increased functionality to a wide range of apps.
Location data is a key component to apps like Google Maps and Google Navigator, and is also
used in Google search, Twitter, and Facebook to add another dimension to the data they are
already collecting.

For developers who have made the decision to include location data, Android provides a fairly
robust API to its location service. Although on the surface this API may seem trivial to use,
plenty of details — such as battery life and accuracy of location data — need to be considered.

As an introduction to the topic of location services in Android, this chapter provides a guided
tour of the location portions of the API. In addition, the chapter presents an app that answers
the most basic Android question (“Where am I?”) and presents location data on the screen.
Figure 2-1 shows the app’s screen.

c02.indd 11c02.indd 11 5/11/2012 9:36:03 AM5/11/2012 9:36:03 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 12

12 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

FIGURE 2-1: Current location app

KNOW YOUR TOOLS

This chapter starts the discussion of the location service by fi rst taking a bird’s-eye view of some of
the tools that Android has to offer. One of the fi rst things I do when I need to solve a problem is to
take a look at what tools I have to work with. For Android, the majority of the classes that you will
need when working with location data are located in the android.location package. For the exam-
ple app, you will need to use fi ve members of the location package. These just happen to be the fi ve
members of that package that you will frequently use when dealing with location data in Android.

Classes:

 ‰ LocationManager

 ‰ LocationProvider

 ‰ Location

 ‰ Criteria

Interfaces:

 ‰ LocationListener

Figure 2-2 shows a high-level overview of how the location components fi t together. Because these
members are so important and used so frequently, the following sections discuss each one in a little
more detail.

LocationManager

The main point of entry when using the location service in Android is the LocationManager. The
LocationManager allows an app to tell Android when it is interested in receiving updated location

c02.indd 12c02.indd 12 5/11/2012 9:36:07 AM5/11/2012 9:36:07 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 13

Know Your Tools x 13

information and when it no longer wants location updates. In addition, the LocationManager pro-
vides information about the current state of the location system such as available location providers,
enabled location providers, and GPS status information. The LocationManager can also provide the
last known (cached) location of the device.

Reads Location Provider requirements

LocationManager Criteria

Notifies with Location DataEnables

LocationListener

ConsumesProduces

Location

LocationProvider

FIGURE 2-2: Android location components

LocationProvider

LocationProvider is an abstraction for the different sources of location information in Android.
Android provides different sources of location data that have drastically different characteristics.
Though each provider generates location data differently, they all communicate with an app the
same way and provide similar data to an app in the same manner.

Location

The Location class is what encapsulates the actual location data provided to an app from a location
provider. It contains the quantifi able data such as latitude, longitude, and altitude. Once an app has
received a Location object, it can start the application-specifi c processing on that data.

One important point about the Location class is that, although it has properties for a wide range of
location data, not all location providers will populate all the properties. For example, if an app uses
a location provider that does not provide altitude, the Location instance will not contain altitude
information. The Location class also provides methods that allow an app to check if an instance
contains the information (hasAltitude() in this case).

Criteria

An app can use the Criteria class to query the LocationManager for location providers that con-
tain certain characteristics. This is useful for times when an app is less concerned with which actual
providers are used and more concerned that location providers have some common characteristics.
The Criteria class prevents an app from worrying about the implementation details of working

c02.indd 13c02.indd 13 5/11/2012 9:36:07 AM5/11/2012 9:36:07 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 14

14 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

with individual location providers directly. Once instantiated, an app can set/unset attributes on a
Criteria class to refl ect the characteristics of the location providers that it is interested in. Table 2-1
provides the list of the attributes on the Criteria class that can be used to select a location provider.

TABLE 2-1: Location Criteria Attributes

ATTRIBUTE EXPLANATION POSSIBLE VALUES

accuracy Indicates the overall

level of accuracy for a

location provider.

Criteria.ACCURACY_FINE or Criteria.

ACCURACY_COURSE

altitudeRequired Indicates whether a

location provider needs

to provide altitude

information.

True or false

bearingRequired Indicates whether a

location provider needs

to provide bearing (the

direction being traveled)

information.

True or false

bearingAccuracy Required accuracy for

bearing information.

Criteria.ACCURACY_HIGH or Criteria.

ACCURACY_LOW

costAllowed Indicates whether the

location provider is

allowed to cost the user

money.

True or false

horizontalAccu-

racy

Required accuracy for

latitude and longitude

values.

Criteria.ACCURACY_LOW, Criteria.

ACCURACY_MEDIUM, or Criteria.

ACCURACY_LOW

powerRequirement Amount of battery

power required by the

location provider.

Criteria.POWER_LOW, Criteria.POWER_

MEDIUM, or Criteria.POWER_LOW

speedRequired Indicates whether

a location provider

needs to provide speed

information.

True or false

speedAccuracy Required accuracy for

speed information.

Criteria.ACCURACY_HIGH or Criteria.

ACCURACY_LOW

verticalAccuracy Required accuracy for

altitude information.

Criteria.ACCURACY_HIGH or Criteria.

ACCURACY_LOW

c02.indd 14c02.indd 14 5/11/2012 9:36:08 AM5/11/2012 9:36:08 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 15

Determining the Appropriate Location Provider x 15

LocationListener

The LocationListener interface contains a group of callback methods that are called in reaction
to changes in a device’s current location or changes in location service state. The LocationManager
enables an app to register/unregister a location listener implementation that can be used to process
the changes in state.

There are two ways to receive location updates from the location service: a LocationListener and
a PendingIntent. This chapter focuses on using a LocationListener; the use of a PendingIntent
is deferred until the next chapter.

Now that the tools needed to implement the app have been introduced, the following sections dig
into the mechanics of requesting and processing the location information.

SETTING UP THE ANDROID MANIFEST

As with many of the services that Android provides, the location service requires an app to declare
its intentions to use it in the Android manifest. The Android manifest declaration must defi ne the
precision of the location data that will be requested. Like any other Android permission, the end
user will be shown the list of requested permissions at install time and will be able to decline instal-
lation upon seeing that list. Some users are a little squeamish at the thought of allowing an app to
determine their location if it is not clear why the app would need this information. Adding superfl u-
ous permissions is a good way to scare users away.

The two permissions that deal with live location data are android.permission.ACCESS_FINE_
LOCATION and android.permission.ACCESS_COARSE_LOCATION. As the names might indicate, the
permissions defi ne the level of accuracy that will be provided to an app from the location service.
Ultimately, these permissions defi ne which location providers can be used in an app. Because the
android.permission.ACCESS_FINE_LOCATION permission provides more accurate location data, it
can be used without explicitly specifying android.permission.ACCESS_COARSE_LOCATION to grant
permission for both fi ne-grained and coarse-grained location data. However, android.permission.
ACCESS_COARSE_LOCATION only allows for coarse-grained location data to be provided to an app.

For the app in this chapter, highly accurate location data is desired. So, the following code snippet is
added to AndroidManifest.xml:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Failure to request the correct permissions causes a java.lang.
SecurityException to be thrown at run time when requesting location updates.

DETERMINING THE APPROPRIATE LOCATION PROVIDER

Multiple sources of location data in Android provide varying levels of accuracy and battery con-
sumption. Determining when to use the different providers can have a big impact on the overall user
experience of an app. The location providers available in Android are:

c02.indd 15c02.indd 15 5/11/2012 9:36:08 AM5/11/2012 9:36:08 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 16

16 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

 ‰ GPS location provider

 ‰ Network location provider

 ‰ Passive location provider

An app can declare which location provider to use in one of two ways: by explicitly registering each
desired location provider with the LocationManager, or by specifying attributes in a Criteria
object and passing that object to the LocationManager. Using the Criteria object is useful for
allowing the user to customize the source of location data at run time. This may be of importance to
a user because use of some location providers can cost them money.

GPS Location Provider

The GPS location provider uses orbiting satellites and time to determine the current location of a
device, and tends to produce the most accurate location data. However, because it relies on a sepa-
rate radio, the GPS provider can also consume more battery power than other location providers.
This can be a major issue depending on the length of time an app needs to actively be receiving and
processing location data.

In addition to consuming more battery power, the GPS location provider can also take a long time
to acquire a fi x (location data). Time to fi rst fi x (TTFF) values of over a minute are common, and
can vary drastically from device to device or between different versions of Android. In addition,
obtaining a GPS fi x indoors is unlikely because a direct line to the sky is usually required. TTFF is
important to pay attention to because it is generally a bad idea to block the user from performing a
task while an app is waiting for location data.

Network Location Provider

The network location provider uses two data sources to provide a location fi x: Wi-Fi network loca-
tion and cell-tower location. The TTFF for the network provider can be substantially less than the
TTFF for the GPS provider. However, the network provider produces much less accurate location
data. Depending on the needs of an app, it might be worth trading the location accuracy of the GPS
provider for the low TTFF values of the network provider. The network provider may also consume
less battery power than the GPS provider because it allows the user to leave the GPS radio and (pos-
sibly) the Wi-Fi radio off.

Passive Location Provider

The passive location provider allows an app to receive location information without having to
explicitly request location update information from the LocationManager. The passive provider
provides location updates when another app has explicitly requested location updates with either
the GPS or network providers. This allows an app to piggy-back on the location information
requested from another app and prevent Android from making a special request for location data.

At fi rst glance, it may not be obvious how to use this provider. Essentially, the passive location pro-
vider allows an app to receive location updates in the background without consuming any additional
battery power, because it receives updates only when something else is receiving updates.

c02.indd 16c02.indd 16 5/11/2012 9:36:08 AM5/11/2012 9:36:08 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 17

Determining the Appropriate Location Provider x 17

This implies that an app does not have any control over which other providers are used to receive
location updates, or the frequency at which the updates will arrive (the other apps have defi ned this
when setting up the LocationManager). Because of this, use of the passive provider mandates the
use of the android.permission.ACCESS_FINE_LOCATION permission so that data from both the
GPS and network providers can be received. The Location object that is received will contain infor-
mation about the source of the location data.

The passive provider is not guaranteed to receive any location updates. If no other apps are receiving
location updates, the passive provider will not receive any either. Because of this, the passive provider
is generally not appropriate to use when an app is in the foreground and actively interacting with
the user. Use the passive location provider to keep application data up to date while running in the
background and without explicitly requesting location data.

It is good form for apps to be a “good citizens” on an Android device and remove requests for
location updates when they app exit. If an app makes the distinction of closing as opposed to back-
grounding (user clicks “back” as opposed to user pressing “home”), then the app should unregister
for updates even when using the passive provider.

Accuracy versus Battery Life

The common theme when choosing location providers is deciding between increased accuracy and
increased battery consumption. Although most apps that need location data could benefi t from
more accurate data, many of them do not truly need the accuracy, especially at the expense of
additional battery power.

Table 2-2 provides a summary of the location providers available in Android.

TABLE 2-2: Location Providers

LOCATION PROVIDER REQUIRED PERMISSION BATTERY CONSUMPTION ACCURACY

GPS Provider android.permission.

ACCESS_FINE_LOCATION

or android.permission.

ACCESS_COARSE_LOCATION

Consumes more bat-

tery power than other

location providers

Provides the

most accu-

rate location

data

Network Provider android.permission.

ACCESS_COARSE_LOCATION

Consumes less battery

power than the GPS

provider

Provides less

accuracy

than the GPS

provider

Passive Provider android.permission.

ACCESS_FINE_LOCATION

N/A N/A

Determining which location providers are the appropriate the source of location data is an impor-
tant decision when using location services. As with many other development decisions, trade-offs
exist that need to be considered.

c02.indd 17c02.indd 17 5/11/2012 9:36:09 AM5/11/2012 9:36:09 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 18

18 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

RECEIVING LOCATION UPDATES

Before getting knee-deep into Java code, one more topic warrants discussion: how an app actually
gets notifi ed about location updates. Recall from an earlier discussion that location data can be
delivered to an app in two ways: a direct call to a LocationListener, or by a broadcasted Intent.
The LocationListener approach is the simpler approach (and the one used for this chapter’s exam-
ple app), but the broadcast Intent approach can offer more fl exibility, especially if location update
information needs to be provided to more than one application component.

In either case, an app must tell the LocationManager when it is ready to start receiving updates as
well as when it no longer wants location updates. How the location updates get sent to an app is
defi ned by how an app registers for location updates with the LocationManager.

Receiving Location Updates with a LocationListener

Objects that implement LocationListener are notifi ed of location updates by a call to their
onLocationChanged() method. The specifi c LocationListener instances which will be notifi ed
about a location update are registered with LocationManager. When the LocationManager has a
new location to offer, it makes a call to onLocationChanged() for each listener. Further discussion
of LocationListener usage is deferred to when the Java code for the example app is introduced in
the section “Implementing LocationListener.”

Receiving Location Updates with a Broadcast Intent

Having an Intent broadcasted with location updates can offer increased fl exibility in situations
where an app needs the update to be received by multiple application components. To make use of
the broadcasted Intent, an app needs to implement a BroadcastReceiver and register it to receive
location update Intent(s). This can happen either in an Android manifest or at run time. The app
created in Chapter 4 includes use of a broadcast Intent.

IMPLEMENTING THE EXAMPLE APP

This section provides the details of how to put all the pieces of the location API together and start
getting location data.

The example app has an activity, CurrentLocationActivity, that displays the current location
and contains a button that allows the user to enable/disable location providers. Once the app gets a
single location, it displays some of the location details on the screen. This will enable the user to see
with the location service in action on an actual device and enable the user to start getting a feel for
how accurate the various location providers are as well as how their TTFF values differ. It is impor-
tant to understand the details of accuracy/TTFF and how they correlate to different providers when
making app development decisions.

Implementing LocationListener

To implement LocationListener, a class must contain a concrete implementation for the following
methods:

c02.indd 18c02.indd 18 5/11/2012 9:36:09 AM5/11/2012 9:36:09 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 19

Implementing the Example App x 19

 ‰ abstract void onLocationChanged(Location location)

 ‰ abstract void onProviderDisabled(String provider)

 ‰ abstract void onProviderEnabled(String provider)

 ‰ abstract void onStatusChanged(String provider, int status, Bundle extras)

These methods are discussed in the following sections.

onLocationChanged()

The method that an app is most likely to interact with is onLocationChanged(). This is the method
that is called when a new location is ready for consumption by an app. The single parameter to
this method is a Location object that contains the details of the location (latitude, longitude,
altitude, and so on). At times, this will be the only method an app needs to implement from the
LocationListener. However, the app will need to provide an implementation for the other meth-
ods to avoid compilation errors, the implementations can be left empty (I like to add a comment
indicating that they were intentionally left blank for future developers). For this app, the
onLocationChanged() method simply takes the Location object it was passed and uses its data to
populate the UI views (see Listing 2-1).

LISTING 2-1: Receiving a location update

@Override
public void onLocationChanged(Location location) {

 latitudeValue.setText(String.valueOf(location.getLatitude()));
 longitudeValue.setText(String.valueOf(location.getLongitude()));
 providerValue.setText(String.valueOf(location.getProvider()));
 accuracyValue.setText(String.valueOf(location.getAccuracy()));

 long timeToFix = SystemClock.uptimeMillis() - uptimeAtResume;

 timeToFixValue.setText(String.valueOf(timeToFix / 1000));

 findViewById(R.id.timeToFixUnits).setVisibility(View.VISIBLE);
 findViewById(R.id.accuracyUnits).setVisibility(View.VISIBLE);
}

onProviderDisabled() and onProviderEnabled()

The onProviderDisabled() and onProviderEnabled() methods provide a way for an app to
be notifi ed when the user enables or disables a location provider from the location settings menu.
Imagine, for example, that a user is currently running an app and decides to put the app in the back-
ground by pressing the home button and returning to the desktop. From there, the user can navigate
to the device settings and enable or disable different location providers. These actions may be of
interest to an app. If the user were to enable the GPS provider, the app would be able to get more
accurate location information for the device.

The onProviderDisabled() and onProviderEnabled() methods are Android’s way of letting
an app know when the state of a provider changes. Each method provides a string parameter that

c02.indd 19c02.indd 19 5/11/2012 9:36:09 AM5/11/2012 9:36:09 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 20

20 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

specifi es the name of the location provider that was either enabled or disabled. The String provider
name can be matched to the static constants in LocationManager to determine which provider had
its state changed. These methods work well with LocationManager.getProviders(), which can be
used to initially register providers that are currently enabled and dynamically add or remove more
providers as they are enabled or disabled when onProviderEnabled() or onProviderDisabled()
is called.

onStatusChanged()

The onStatusChanged() method is called when a provider either goes offl ine or comes back online.
This is a different scenario than in the previous section where the user enabled or disabled the
provider. In this scenario, the user has not changed the location settings; instead, the status of the
actual provider has changed.

The parameters to this method are a string that represents the provider, an int representing the cur-
rent status, and a Bundle that has optional data. The provider name is the same string that is passed
to both onProviderEnabled() and onProviderDisabled(). The status will be one of the three
values listed in Table 2-3.

TABLE 2-3: onStatusChanged() Status Values

VALUE STATUS

LocationProvider.OUT_OF_SERVICE The LocationProvider is currently offl ine and

probably will not come back online anytime soon.

LocationProvider.

TEMPORARILY_UNAVAILABLE

The LocationProvider is currently offl ine and

should come back online soon.

LocationProvider.AVAILABLE The LocationProvider is currently online.

The Bundle parameter contains optional provider-specifi c information. For example, a bundle
for the GPS provider will contain the number of satellites used to come up with the location
update.

Obtaining a Handle to LocationManager

Because the LocationManager is the front door into the location service, the app needs to get a
reference to it. This is done with a call to Activity.getSystemService(LOCATION_SERVICE).
This is generally done in the onCreate() method of an Activity because multiple calls to the
LocationManager throughout the lifetime of an Activity are common. Because the onCreate()
method is the fi rst method to be called in an activity’s life cycle, it is appropriate to acquire the loca-
tion manager reference here. For the example app in this chapter, the remainder of the onCreate()
method is spent retrieving references to the UI views that will hold and present the location data.
Listing 2-2 shows the implementation for the onCreate() method.

c02.indd 20c02.indd 20 5/11/2012 9:36:09 AM5/11/2012 9:36:09 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 21

Implementing the Example App x 21

LISTING 2-2: Obtaining a reference to the LocationManager

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.current_location);

 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

 latitudeValue = (TextView) findViewById(R.id.latitudeValue);
 longitudeValue = (TextView) findViewById(R.id.longitudeValue);
 providerValue = (TextView) findViewById(R.id.providerValue);
 accuracyValue = (TextView) findViewById(R.id.accuracyValue);
 timeToFixValue = (TextView) findViewById(R.id.timeToFixValue);
 enabledProvidersValue = (TextView) findViewById(R.id.enabledProvidersValue);
}

Listing 2-3 shows the layout for the activity that will display the current location data:
latitudeValue, longitudeValue, providerValue, accuracyValue, timeToFixValue, and
enabledProviderValue.

LISTING 2-3: Layout for CurrentLocationActivity

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView android:id="@+id/latitudeLabel"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/latitudeLabel"
 android:layout_alignParentTop="true"
 android:layout_marginRight="4dip" />

 <TextView android:id="@+id/latitudeValue"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_alignTop="@id/latitudeLabel"
 android:layout_toRightOf="@id/latitudeLabel" />

 <TextView android:id="@+id/longitudeLabel"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/longitudeLabel"
 android:layout_below="@id/latitudeLabel"
 android:layout_marginRight="4dip" />

 <TextView android:id="@+id/longitudeValue"

continues

c02.indd 21c02.indd 21 5/11/2012 9:36:09 AM5/11/2012 9:36:09 AM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 22

22 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_alignTop="@id/longitudeLabel"
 android:layout_toRightOf="@id/longitudeLabel" />

 <TextView android:id="@+id/providerLabel"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/providerLabel"
 android:layout_below="@id/longitudeLabel"
 android:layout_marginRight="4dip" />

 <TextView android:id="@+id/providerValue"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_alignTop="@id/providerLabel"
 android:layout_toRightOf="@id/providerLabel" />

 <TextView android:id="@+id/accuracyLabel"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/accuracyLabel"
 android:layout_below="@id/providerLabel"
 android:layout_marginRight="4dip" />

 <TextView android:id="@+id/accuracyValue"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_alignTop="@id/accuracyLabel"
 android:layout_toRightOf="@id/accuracyLabel" />

 <TextView android:id="@+id/accuracyUnits"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/metersUnit"
 android:layout_alignTop="@id/accuracyLabel"
 android:layout_toRightOf="@id/accuracyValue"
 android:layout_marginLeft="4dip" />

 <TextView android:id="@+id/timeToFixLabel"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/timeToFixLabel"
 android:layout_below="@id/accuracyLabel"
 android:layout_marginRight="4dip" />

 <TextView android:id="@+id/timeToFixValue"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_alignTop="@id/timeToFixLabel"
 android:layout_toRightOf="@id/timeToFixLabel" />

 <TextView android:id="@+id/timeToFixUnits"

LISTING 2-3 (continued)

c02.indd 22c02.indd 22 5/11/2012 9:36:09 AM5/11/2012 9:36:09 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 23

Implementing the Example App x 23

 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/secondsUnit"
 android:layout_alignTop="@id/timeToFixLabel"
 android:layout_toRightOf="@id/timeToFixValue"
 android:layout_marginLeft="4dip" />

 <TextView android:id="@+id/enabledProvidersLabel"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/enabledProvidersLabel"
 android:layout_below="@id/timeToFixLabel"
 android:layout_marginRight="4dip" />

 <TextView android:id="@+id/enabledProvidersValue"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:layout_alignTop="@id/enabledProvidersLabel"
 android:layout_toRightOf="@id/enabledProvidersLabel" />

 <Button android:id="@+id/changeLocationProviderSettings"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:text="@string/changeLocationProviderSettingsText"
 android:onClick="onChangeLocationProvidersSettingsClick"
 android:layout_alignParentBottom="true" />

</RelativeLayout>

Code snippet current_location.xml

Now that the app has a reference to the LocationManager, it is ready to request location informa-
tion for the Location Service.

Requesting Location Updates

The app is now ready to ask Android to provide it with location information when it becomes avail-
able. It is important to understand that an app cannot ask Android to provide it with on-demand
location information. Apps can only request to be notifi ed when updated location information is
available.

This app needs only a single location update, so a call to one of the LocationManager.
requestSingleLocation() methods is needed. Examining the Android reference docs reveals
two fl avors of the LocationManager.requestSingleLocation() methods. One fl avor passes
a PendingIntent in order to broadcast an Intent with location data and the other passes a
LocationListener in order to receive direct callbacks. Again, this app uses the LocationListener
approach. The CurrentLocationActivity has been made a LocationListener by having it imple-
ment the LocationListener interface. This allows the app to keep all the location code in one class.

Before a LocationListener can be registered with the LocationManager, the app developer must
decide which location provider(s) the app will use. For this app, the decision is left to the end user
because the app will use only the location providers that the user has enabled. To get the list of
enabled location providers, a Criteria object is created and the attributes are set to include both

c02.indd 23c02.indd 23 5/11/2012 9:36:10 AM5/11/2012 9:36:10 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 24

24 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

the network and GPS location providers. Both the network and GPS providers provide at least a
coarse location fi x, so passing Criteria.ACCURACY_COARSE to Criteria.setAccuracy() will
include both providers for consideration. The initialized Criteria instance is then passed to the
getProviders() method along with a boolean (hard-coded to true) to indicate that only enabled
location providers should be returned. Each location provider in the returned list is then used to
obtain location data.

Because the app needs a new location every time the CurrentLocationActivity is presented to the
user (because the user is allowed to enable or disable location providers in-app), the onResume()
method is where the LocationManager is formally asked to provide a location update as they
become available, as shown in Listing 2-4.

LISTING 2-4: Registering with the LocationManager

protected void onResume() {
 super.onResume();

 StringBuffer stringBuffer = new StringBuffer();

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_COARSE);

 enabledProviders = locationManager.getProviders(criteria, true);

 if (enabledProviders.isEmpty())
 {
 enabledProvidersValue.setText("");
 }
 else
 {
 for (String enabledProvider : enabledProviders)
 {
 stringBuffer.append(enabledProvider).append(" ");

 locationManager.requestSingleUpdate(enabledProvider,
 this,
 null);
 }
 enabledProvidersValue.setText(stringBuffer);
 }

 uptimeAtResume = SystemClock.uptimeMillis();

 latitudeValue.setText("");
 longitudeValue.setText("");
 providerValue.setText("");
 accuracyValue.setText("");
 timeToFixValue.setText("");

 findViewById(R.id.timeToFixUnits).setVisibility(View.GONE);
 findViewById(R.id.accuracyUnits).setVisibility(View.GONE);
}

code snippet CurrentLocation.java

c02.indd 24c02.indd 24 5/11/2012 9:36:10 AM5/11/2012 9:36:10 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 25

Implementing the Example App x 25

Thus far, this chapter has discussed how to register a LocationListener to receive updates.
The fi nal step is unregistering for those location updates when they are no longer required
by the app.

Cleaning up After Yourself

At this point, the app is ready to start receiving and processing location data in
CurrentLocationActivity. The last part of the implementation is to have the app clean up after
itself by unregistering the location listener when it no longer needs location updates. Forgetting to
unregister a location listener could cause the providers and underlying hardware to remain active,
thus wasting battery life. Not removing a location listener registration for the GPS provider causes
(an enabled) GPS provider to actively retrieve and compute location data. This is visible to the user
because the GPS provider has its own icon alerting the user to the issue. Leaving the GPS run-
ning when it is no longer needed is bad practice and can result in negative feedback in the Android
Market.

The app doesn’t need any location updates when the CurrentLocationActivity is not interacting
with the user. As shown in Listing 2-5, it will unregister the LocationListener on the onPause()
method.

LISTING 2-5: Removing a LocationListener

@Override
protected void onPause() {
 super.onPause();
 locationManager.removeUpdates(this);
}

Had the BroadcastReceiver approach been used, the app would have again called
locationManager.removeUpdates(), and would have passed in the PendingIntent that was
passed to registerSingleUpdate().

Now that the app has code to initialize itself, process location updates, and clean up after itself, the
next step in the example app implementation is responding to the user enabling/disabling location
providers while the app is running.

Launching the Location Settings Activity

The fi nal detail of the app worth discussing is the button on the screen that enables the user to
change location provider settings. In order to receive location data from a specifi c location provider,
an app should ensure that the location provider is enabled by the user. If the user does not currently
have the provider enabled, the location settings activity can be for them and allow them to enable
the provider without leaving the app. This occurs in the example app when the Change Location
Provider Settings button is pressed. Accomplishing this is actually pretty trivial, as evidenced by
Listing 2-6, and it happens in the handler for the button click.

c02.indd 25c02.indd 25 5/11/2012 9:36:10 AM5/11/2012 9:36:10 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Milette c02 V2 - 03/21/2012 Page 26

26 x CHAPTER 2 DETERMINING A DEVICE’S CURRENT LOCATION

LISTING 2-6: Launching the location settings activity

public void onChangeLocationProvidersSettingsClick(View view)
{
 startActivity(new Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS));
}

The location settings activity screen is displayed in Figure 2-3.

FIGURE 2-3: The location settings screen

Now that you have an app capable of determining your current location, try loading the app on an
actual device and spending some time playing with the different location providers, paying special
attention to TTFF and accuracy differences. Try running the app in different environments (indoors
and outdoors, sunny and overcast, urban and rural) to see how they affect the various location pro-
viders. Spending some time getting a feel for how the providers work will give you an idea of their
limitations.

SUMMARY

This chapter provided a tour around some of the basic SDK elements that are needed to work with
Android location services. The chapter discussed some of the foundation classes, and examined the
implementation of a simple app for determining the current location of a device. This app really
is the “sunny day” scenario and does not handle some of the real-world problems an app will face
when using location services. Although the information in this chapter is enough to get up and run-
ning, the next few chapters describe how to take full advantage of Android location services.

c02.indd 26c02.indd 26 5/11/2012 9:36:10 AM5/11/2012 9:36:10 AM

www.it-ebooks.info

http://www.it-ebooks.info/

3
Tracking Device Movement

WHAT’S IN THIS CHAPTER?

 ‰ Using the Android location service to continuously track device location

 ‰ Using the Google Maps library to plot location data on a map

 ‰ Using broadcast receivers to track location in the background

 ‰ Considering eff ects on battery life

As an introduction to the Android location service, Chapter 2 discussed how to get the current
location of a device. This chapter showcases additional functionality and presents an example
app that tracks the location of a device as it moves. The app built in this chapter demonstrates
how to receive the device’s current location, persist that location in a database, and plot
the path traveled — all the persisted locations — on a map using the Google Maps external
library for Android.

With the additional functionality comes additional complexity. Continuously tracking device
location data implies keeping more device hardware (such as Wi-Fi radio or GPS radio) active,
which can adversely affect battery life. Also, the app needs to handle cases where it receives
incorrect location data, as well as cases where one or all of the location providers are
not available.

The example app for this chapter consists of three Android application components: an
activity to display both the current location and previous locations, a broadcast receiver
that receives location data in the background and stores the new locations in a database,
and another broadcast receiver that receives location updates only when the app is in the
foreground in order to update the display.

c03.indd 27c03.indd 27 5/10/2012 2:00:05 PM5/10/2012 2:00:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

28 x CHAPTER 3 TRACKING DEVICE MOVEMENT

The main screen of the app looks like Figure 3-1.

FIGURE 3-1: Main screen for the example app showing the map and the start and stop buttons

COLLECTING LOCATION DATA

One of the tasks that the example app needs to perform is the collection and persistence of location
data. Additionally, the app should continue to collect and save location data even when not in the
foreground. The app should not stop tracking location data simply because the user receives a phone
call or decides to respond to an e-mail.

Two of the Android application components that can be used to perform background tasks are
services and broadcast receivers. Each one has a unique list of pros and cons for tracking location
data. The decision of which one to use will be heavily based on the needs of the app.

This chapter’s example app uses a broadcast receiver to receive location updates in the background.
However, this chapter also provides the shell of a service for receiving the location updates in the
background, and provides some guidance for determining when to use a broadcast receiver and
when to use a service.

Receiving Location Updates with a Broadcast Receiver

Using a broadcast receiver to acquire location information is similar to using a broadcast receiver to
receive notifi cation of other Android events. A receiver is passed intents based on a fi lter, and those
intents contain data for the broadcast receiver to read and process.

c03.indd 28c03.indd 28 5/10/2012 2:00:10 PM5/10/2012 2:00:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Collecting Location Data x 29

To receive location updates with a broadcast receiver, a developer must, in no particular order:

 ‰ Create a class that extends BroadcastReceiver.

 ‰ Register the child class as a BroadcastReceiver with Android.

 ‰ Register an intent to be broadcast when Android receives new location information with the
LocationManager.

The following sections tackle these three musts.

Extending BroadcastReceiver

As stated earlier, the example app uses two broadcast receivers to track and display device location.
Because these two classes will share some common functionality, both broadcast receivers extend
LocationBroadcastReceiver. LocationBroadcastReceiver contains the functionality for retriev-
ing location data from an intent and passing it along to its children.

The intent that is passed to LocationBroadcastReceiver can contain more than just the updated
location information. Recall from Chapter 2 that the LocationListener interface provides methods
that not only allow the Android location service to send location updates, but to also send messages
to a LocationListener about the status of location providers as well as when location providers
are enabled or disabled. The same information can be retrieved from the intent that is passed to a
broadcast receiver. Table 3-1 lists the extras that can reside in an intent’s extras bundle when the
intent is sent from the Android location service.

TABLE 3-1: Intent Extra Constants

CONSTANT DATA TYPE PROVIDED DATA

LocationManager.KEY_LOCATION_CHANGED Location Updated location

information

LocationManager.KEY_PROVIDER_ENABLED boolean Flag for broadcast event

when a provider is

enabled/disabled

LocationManager.KEY_PROXIMITY_ENTERING boolean Indicates when a

 proximity alert is entering

or exiting

LocationManager.KEY_STATUS_CHANGED int The updated status of a

location provider when

the change in status is

broadcast

Querying the intent extras for the values presented in Table 3-1 provides the reasons why the intent
was broadcast. For example, if LocationManager.KEY_LOCATION_CHANGED exists in the extras, the
intent was sent in response to a new device location becoming available.

c03.indd 29c03.indd 29 5/10/2012 2:00:10 PM5/10/2012 2:00:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

30 x CHAPTER 3 TRACKING DEVICE MOVEMENT

To handle all of the possible location information, a broadcast receiver must look for all the possible
location-based keys in the intent extras. The implementation for LocationBroadcastReceiver.
onReceive() would look similar to Listing 3-1.

LISTING 3-1: Reading a location intent

@Override
public void onReceive(Context context, Intent intent)
{
 if (intent.hasExtra(LocationManager.KEY_LOCATION_CHANGED))
 {
 // ...
 }
 else if (intent.hasExtra(LocationManager.KEY_PROVIDER_ENABLED))
 {
 // ...
 }
 else if (intent.hasExtra(LocationManager.KEY_PROXIMITY_ENTERING))
 {
 // ...
 }
 else if (intent.hasExtra(LocationManager.KEY_STATUS_CHANGED))
 {
 // ...
 }
}

Registering the BroadcastReceiver with Android

To have a broadcast receiver receive intents that were broadcast, it needs to be registered with
Android. There are two ways to perform the registration: in the manifest for your app or
by calling registerReceiver() on a Context. Although each registration method will
ultimately achieve the same result, they cause Android to interact differently with a broadcast
receiver.

Manifest Registration

The manifest registration method allows a broadcast receiver to receive intents as they become
available even if no other application components are currently running. With location intents, this
means after the LocationManager has been made aware of the desire to receive location informa-
tion via a call to LocationManager.requestLocationUpdates(). Manifest registration provides
an easy method to have an app be notifi ed of location updates in the background, which is one of
the requirements of this chapter’s example app.

The broadcast receiver that will receive location updates in the background for the example app is
TrackLocationBroadcastReceiver. To register the broadcast receiver in the application manifest,
a <receiver> element must be placed in the <application> section of the AndroidManifest.xml.
Though only the name of the class that extends BroadcastReceiver needs to be specifi ed, it makes
sense to also specify the fi lter in the manifest as well so the broadcast receiver will only receive
intents relevant to the app. The application manifest declaration for the broadcast receiver that
tracks location updates is presented in Listing 3-2.

c03.indd 30c03.indd 30 5/10/2012 2:00:10 PM5/10/2012 2:00:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Collecting Location Data x 31

LISTING 3-2: Broadcast receiver manifest declaration

<receiver android:name=".location.TrackLocationBroadcastReceiver">
 <intent-filter >
 <action android:name="root.gast.playground.location.ACTION_LOCATION_CHANGED"/>
 </intent-filter>
</receiver>

In Listing 3-2, the android:name attribute for the receiver is used to declare which class is the
broadcast receiver that should receive the location updates. The code also specifi es that intents with
the action "root.gast.playground.location.ACTION_LOCATION_CHANGED" should be sent to the
receiver by declaring an action in the intent fi lter element.

The name of the action that is specifi ed is unique to this app. The string declared as the name in the
manifest will match a string that is used to set up the intent that will be broadcast for location updates.

Registering broadcast receivers in the manifest enables you to “hook in” your broadcast receiver to
Android in order to receive intents without needing to do anything with the broadcast receiver in
your code. If you scan the example app for references to TrackLocationBroadcastReceiver, you
won’t fi nd any. The code does not even need to instantiate a TrackLocationBroadcastReceiver
instance because Android will take care of creating the instance and managing its life cycle.
TrackLocationBroadcastReceiver automatically starts receiving location updates when a
pending intent is registered with the LocationManager (and location updates are provided from
a location provider) and stops receiving updates when the pending intent is unregistered from the
LocationManager. In the example app, the pending intent is registered when the user presses the Start
Tracking button and is unregistered when the user presses the Stop Tracking button in the main activity.

One important point to keep in mind when using manifest-registered broadcast receivers is that
the actual instance that receives the call to onReceive() is valid only for the duration of the
onReceive() call. In fact, each call to onReceive() may be on a different instance of the broadcast
receiver. This means that you should avoid making asynchronous calls to other classes, or storing
class-level state that may be needed for subsequent calls to onReceive().

Manual BroadcastReceiver Registration

To register a broadcast receiver outside the application manifest, an app needs to call
registerReceiver() on a Context instance. This should be done in application components that
have life cycle methods for both starting and stopping a component (such as services and activities)
because the broadcast receiver also needs to be unregistered with a call to unregisterReceiver().
Failure to unregister a broadcast receiver in an activity results in an exception where Android
warns about a memory leak. This is one of the differences between manifest-based registration and
manual registration. When using manual registration, the app is responsible for the life cycle of the
broadcast receiver, whereas in manifest-based registration, Android takes care of the life cycle.

The other, more signifi cant difference between manifest-based registration and manual registration is
that manual registration causes Android to use the same broadcast receiver instance. For manually
registered broadcast receivers, this means an app can store class-level state to be used for subsequent
calls to onReceive().

The example app uses a manually registered broadcast receiver to update the display with new loca-
tion data as it arrives. TrackLocationActivity is responsible for maintaining the state of the display
and ensuring new locations are added to the map. Because TrackLocationActivity needs to be made
aware of location updates, it contains an inner class broadcast receiver that will receive location updates.

c03.indd 31c03.indd 31 5/10/2012 2:00:10 PM5/10/2012 2:00:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

32 x CHAPTER 3 TRACKING DEVICE MOVEMENT

Because the broadcast receiver is needed only while the activity is in the foreground, it makes sense
to register a broadcast receiver in the onResume() method and unregister it in the onPause()
method of the activity. Listing 3-3 shows the partial implementation of the TrackLocationActivity
.onPause() and TrackLocationActivity .onResume() life cycle methods.

LISTING 3-3: Register/unregister broadcast receiver

@Override
protected void onResume()
{
 super.onResume();
 registerReceiver(broadcastReceiver, new IntentFilter(ADD_LOCATION_ACTION));
 // perform additional onResume tasks
}
@Override
protected void onPause()
{
 super.onPause();
 unregisterReceiver(broadcastReceiver);
 // perform additional onPause tasks
}

code snippet TrackLocationActivity.java

The registering and unregistering of a broadcast receiver does not affect whether or not location
updates in the form of intents are broadcast. It only affects the broadcast receiver’s ability to receive
those intents.

Requesting Location Updates with a PendingIntent

Once the broadcast receiver has been implemented and registered with Android, the app needs to
request that an intent is broadcast when location data updates are available. Before this request
is made, a PendingIntent needs to be created. The example app creates the pending intent in
createPendingIntent(), as shown in Listing 3-4.

LISTING 3-4: PendingIntent creation

private PendingIntent createPendingIntent()
{
 Intent intent = new Intent(ADD_LOCATION_ACTION);
 return PendingIntent.getBroadcast(getApplicationContext(),
 REQUEST_CODE,
 intent,
 PendingIntent.FLAG_UPDATE_CURRENT);
}

code snippet TrackLocationActivity.java

The parameters passed to getBroadcast() are the context which should perform the broadcast,
a user-defi ned request code (which is not used), the intent to be broadcast, and a fl ag that controls
which parts of the intent can be set when the intent is broadcast. The intent that will be broadcast is
passed an action in its constructor when it is created. This string must match the action in any intent

c03.indd 32c03.indd 32 5/10/2012 2:00:10 PM5/10/2012 2:00:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Collecting Location Data x 33

fi lter that is declared to receive this intent; whether it is in a manifest-registered broadcast receiver,
or a manually registered broadcast receiver.

Once the pending intent is created, location updates are requested by calling LocationManager.
requestLocationUpdates() in a similar way that was done in Chapter 2 to register a
LocationListener. The code to register for location updates is displayed in Listing 3-5.

LISTING 3-5: Registering enabled location providers

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_COARSE);
for (String provider : locationManager.getProviders(criteria, true))
{
 Log.d(TAG, "Enabling provider " + provider);
 locationManager.requestLocationUpdates(provider, 0, 0, pendingIntent);
}

As in Chapter 2, the code uses a criteria object to specify the characteristics of the location providers
to use and limits the list of possible location providers to those that are currently enabled by the user.

One Intent, Multiple Receivers

Upon close inspection of the example app, you will notice that it makes use of two broadcast receivers:
one that is manifest-registered and will collect location updates in the background, and one that is manu-
ally registered/unregistered and will collect location data in the foreground in order to update the UI.
Because both broadcast receivers should process incoming location data in a similar fashion, neither of
the broadcast receivers extends BroadcastReceiver directly. Both TrackLocationBroadcastReceiver
and UpdateViewBroadcastReceiver instead extend LocationBroadcastReceiver.
LocationBroadcastReceiver provides code to receive the intent that was broadcast, extracts the rel-
evant location data, and calls the correct callback methods on the two broadcast receivers (see
Figure 3-2). This may seem a tad superfl uous, but this allows the app to uniformly provide location
fi ltering via FilteringLocationBroadcastReceiver, which is discussed later in the chapter.

BroadcastReceiver

LocationBroadcastReceiver

FilteringLocationBroadcastReceiver

TrackLocationBroadcastReceiverUpdateViewBroadcastReceiver

FIGURE 3-2: BroadcastReceiver class diagram

c03.indd 33c03.indd 33 5/10/2012 2:00:11 PM5/10/2012 2:00:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

34 x CHAPTER 3 TRACKING DEVICE MOVEMENT

While it makes sense to use a broadcast receiver to obtain background location updates in this
case, a service can also be used. The next section introduces how to implement a service to receive
background location updates.

Why Not Use a Service?

Services are a commonly used application component for performing tasks in the background
in Android. Allowing a service to receive location updates is as easy as implementing the
LocationListener and registering or unregistering the service to receive location updates from
the LocationManager in the service’s onStartCommand() and onDestroy() lifecycle methods,
respectively. A service that tracks location in the background would look similar to Listing 3-6.

LISTING 3-6: Skeleton service that implements LocationListener

public class LocationTrackingService extends Service implements LocationListener
{
 private LocationManager locationManager;

 @Override
 public IBinder onBind(Intent intent)
 {
 // ...
 }

 @Override
 public void onLocationChanged(Location location)
 {
 // ...
 }

 @Override
 public void onProviderDisabled(String provider)
 {
 // ...
 }

 @Override
 public void onProviderEnabled(String provider)
 {
 locationManager.requestLocationUpdates(provider, 0, 0, this);
 }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras)
 {
 // ...
 }

 @Override
 public void onCreate()
 {
 super.onCreate();

 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

c03.indd 34c03.indd 34 5/10/2012 2:00:11 PM5/10/2012 2:00:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing the Tracking Data x 35

 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId)
 {
 for (String provider : locationManager.getProviders(true))
 {
 locationManager.requestLocationUpdates(provider, 0, 0, this);
 }

 return super.onStartCommand(intent, flags, startId);
 }

 @Override
 public void onDestroy()
 {
 super.onDestroy();

 locationManager.removeUpdates(this);
 }

This is very similar to the example presented in Chapter 2 when registering an Activity to be
notifi ed of location updates. When an app starts the service, the service will begin receiving location
data on its callback methods. When the service is destroyed, it will unregister itself from the
LocationManager and no longer receive location updates.

If a broadcast receiver and a service can provide similar functionality for this use case, why choose
one over the other? One reason to choose a broadcast receiver over a service for certain background
tasks is that they can be a lighter weight application component for passively collecting location data
compared to a service. A broadcast receiver that is manifest-registered does not need to exist outside
of the call to onReceive(), and therefore, it is available for garbage collection immediately after the
method returns. Additionally, because a broadcast receiver can be declared in the application mani-
fest, a broadcast receiver can require less setup code. In the case of this app, the manifest-registered
broadcast receiver is not referenced at all in the app outside of the manifest.

The major downside of using manifest-registered broadcast receivers is that they should not
maintain state across invocations of onReceive(). Once the onReceive() method has returned,
the actual instance is a candidate for garbage collection. This may prevent instance data from being
kept for the next call to onReceive(). This can be a tough limitation to overcome. If an app needs
to store state across multiple location updates, a service may be a better application component
to use. Broadcast receivers can be more convenient for simple computation, but services are better
suited to complex routines that require a lot of state.

Now that the app can receive the data, the next step is to present the location data to the user. This
will be discussed in the next section.

VIEWING THE TRACKING DATA

In order to present the location data to the user, the TrackLocationActivity will display a Google
map with the tracked points plotted on it. While the activity is in the foreground, the app will also
update the screen as new points are received in order to present the user with the most up-to-date
location information.

c03.indd 35c03.indd 35 5/10/2012 2:00:11 PM5/10/2012 2:00:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

36 x CHAPTER 3 TRACKING DEVICE MOVEMENT

Google Map Library Components

To display the Google map with the point data, TrackLocationActivity uses the following classes
from the Google Maps external library:

 ‰ MapView

 ‰ OverlayItem

 ‰ ItemizedOverlay

 ‰ MapActivity

To make use of the maps library, the application manifest needs to contain the following code:
<uses-library android:name="com.google.android.maps" />. In addition to the manifest
entry, the maps .jar fi le must be referenced. In Eclipse, this is done by setting the project build to
a version of the Google APIs rather than a version of the standard Android platform. Figure 3-3
shows the target build selection screen in Eclipse.

FIGURE 3-3: Selecting the Google API build target in Eclipse

c03.indd 36c03.indd 36 5/10/2012 2:00:12 PM5/10/2012 2:00:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing the Tracking Data x 37

MapView

The MapView is the view that displays the map in TrackLocationActivity. The layout for the
activity includes a <com.google.android.maps.MapView> element with an android:apiKey
attribute (see Listing 3-7). The API key attribute is necessary to use the map view. The key is gener-
ated from the certifi cate that is used to sign the APK for your app and can be obtained from the
Google Maps external library homepage, which is located at http://code.google.com/android/
add-ons/google-apis/maps-overview.html (see Listing 3-7).

LISTING 3-7: TrackingLocationActivity layout

<com.google.android.maps.MapView
 android:id="@+id/mapView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:clickable="true"
 android:apiKey="<app_api_key>"
 android:layout_alignParentTop="true"
 android:layout_above="@id/buttonsLayout" />

OverlayItem

OverlayItem is an object that is drawn on the map. The overlay item is a container for the location
data — latitude, longitude, and accuracy — that needs to be represented on the map.

The class PointOverlayItem extends OverlayItem and is used in the example app as a container
for location information that is received from the Android location service. The implementation of
PointOverlayItem is shown in Listing 3-8.

LISTING 3-8: PointOverlayItem

public class PointOverlayItem extends OverlayItem
{
 private float accuracy;

 public PointOverlayItem(double latitude, double longitude, float accuracy)
 {
 super(createGeoPoint(latitude, longitude),
 String.format("(%f, %f)", latitude, longitude),
 "");
 this.accuracy = accuracy;
 }

 private static GeoPoint createGeoPoint(double latitude, double longitude)
 {
 int e6Latitude = (int) (latitude * 1E6);
 int e6Longitude = (int) (longitude * 1E6);

 return new GeoPoint(e6Latitude, e6Longitude);
 }

 public float getAccuracy()
 { continues

c03.indd 37c03.indd 37 5/10/2012 2:00:12 PM5/10/2012 2:00:12 PM

www.it-ebooks.info

http://code.google.com/android
http://www.it-ebooks.info/

38 x CHAPTER 3 TRACKING DEVICE MOVEMENT

 return accuracy;
 }
}

code snippet PointOverlayItem.java

ItemizedOverlay

ItemizedOverlay holds the list of overlay items that need to be drawn on the overlay, and defi nes
how to draw the items. Because ItemizedOverlay is abstract, the example app creates the class
TrackLocationOverlay that extends ItemizedOverlay. TrackLocationOverlay maintains a list
of PointOverlayItems that will be plotted in the map by the draw() method.

The draw() method defi nes how each overlay item will be drawn, and in this case will iterate
over the list of PointOverlayItems and draw each one on the map. In addition, the method will
also draw a line between each point to let the user easily determine the path that was tracked. In
addition, a circle is drawn around each point, which indicates the accuracy of the location received
from the location services. Listing 3-9 shows the implementation of the draw() method and the
constructor that initializes the paint instances used to draw on the map.

LISTING 3-9: TrackLocationOverlay

public class TrackLocationOverlay extends ItemizedOverlay<OverlayItem>
{
 private List<PointOverlayItem> pointOverlayList =
 new ArrayList<PointOverlayItem>();
 private Paint trackingPaint;
 private Paint strokePaint;
 private Paint fillPaint;
 private MapView mapView;

 public TrackLocationOverlay(Drawable defaultMarker, MapView mapView)
 {
 super(boundCenterBottom(defaultMarker));

 trackingPaint = new Paint();
 trackingPaint.setColor(Color.RED);
 trackingPaint.setStrokeWidth(7);

 strokePaint = new Paint();
 strokePaint.setColor(Color.BLUE);
 strokePaint.setStrokeWidth(2);
 strokePaint.setStyle(Paint.Style.STROKE);

 fillPaint = new Paint();
 fillPaint.setColor(Color.BLUE);
 fillPaint.setStyle(Style.FILL);
 fillPaint.setAlpha(32);

 this.mapView = mapView;
 }

 @Override

LISTING 3-8 (continued)

c03.indd 38c03.indd 38 5/10/2012 2:00:12 PM5/10/2012 2:00:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing the Tracking Data x 39

 protected OverlayItem createItem(int i)
 {
 return pointOverlayList.get(i);
 }

 @Override
 public int size()
 {
 return pointOverlayList.size();
 }

 public void addPoint(double latitude, double longitude, float accuracy)
 {
 pointOverlayList.add(new PointOverlayItem(latitude,
 longitude, accuracy));
 populate();

 mapView.invalidate();
 }

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow)
 {
 super.draw(canvas, mapView, shadow);

 // If list is empty, then there is nothing to draw
 if (!pointOverlayList.isEmpty())
 {
 PointOverlayItem previous = null;

 for (PointOverlayItem pointOverlayItem : pointOverlayList)
 {
 if (previous != null)
 {
 Projection projection = mapView.getProjection();

 android.graphics.Point previousPoint =
 projection.toPixels(previous.getPoint(), null);

 android.graphics.Point currentPoint =
 projection.toPixels(pointOverlayItem.getPoint(), null);

 canvas.drawLine(previousPoint.x,
 previousPoint.y,
 currentPoint.x,
 currentPoint.y,
 trackingPaint);
 }

 previous = pointOverlayItem;
 }

 PointOverlayItem last =
 pointOverlayList.get(pointOverlayList.size() - 1);
 android.graphics.Point lastPoint =
 mapView.getProjection().toPixels(last.getPoint(), null);
 continues

c03.indd 39c03.indd 39 5/10/2012 2:00:12 PM5/10/2012 2:00:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

40 x CHAPTER 3 TRACKING DEVICE MOVEMENT

 // Draw circle(s) for accuracy. The inner circle will be translucent
 // so it does not cover up the point marker.
 canvas.drawCircle(lastPoint.x,
 lastPoint.y,
 last.getAccuracy(),
 strokePaint);

 canvas.drawCircle(lastPoint.x,
 lastPoint.y,
 last.getAccuracy(),
 fillPaint);
 }
 }
}

code snippet: TrackLocationOverlay.java

MapActivity

To use the Google Maps external library, TrackLocationActivity will need to extend
MapActivity. MapActivity adds two methods that deserve some special attention:
isRouteDisplayed() and isLocationDisplayed(). These methods are used by the Google Maps
library for accounting purposes and need to accurately refl ect if the activity is currently displaying
route and location information, respectively. The isRouteDisplayed() method should return a
value of true if the MapActivity is being used to provide a route for directions. Because this app
only displays the historical points received from the GPS, a value of false will be returned. Failure
to accurately provide this information is against the terms of service (TOS) for the library.

The MapView is what displays the map and the points on the screen. MapActivity, and any class
that extends it, will take care of the initialization and cleanup of the MapView.

Thus far, the book’s companion app can receive and display location data. The next section
discusses how and why location data needs to be fi ltered.

FILTERING LOCATION DATA

Often, it is necessary to fi lter the raw location data that is acquired from the Android location service.
One of the motivations to provide location data fi ltering is that multiple location providers may be
providing location data simultaneously. Though this does add robustness to an app, it also adds com-
plexity in that the app must determine which location updates to accept, and which ones to ignore.

For example, if an app is receiving location updates from the GPS provider with high accuracy,
and then receives a location update from the network provider with a low accuracy, the app will
probably want to ignore the location update from the network provider. Alternatively, if the app has
not received any location updates for a long period of time, it may want to accept a location update
from any location provider with any accuracy because inaccurate data is often better than no data.

The example app provides the fi ltering algorithms in the FilteringLocationBroadcastReceiver
class. This is the parent class for both location broadcast receivers that are directly used in the app,
and as such provides common fi ltering for both receivers. This is essential for the app because the
user would not want a location to be persisted to the database but not updated on the screen. This

LISTING 3-9 (continued)

c03.indd 40c03.indd 40 5/10/2012 2:00:13 PM5/10/2012 2:00:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Location Data x 41

architecture allows both broadcast receivers to use the same fi ltering algorithm without having to
directly communicate to one another.

The fi ltering code is located in FilteringLocationBroadcastReceiver .onLocationChanged()
(see Listing 3-10) which is the callback method LocationBroadcastReceiver will call when a new
location is received.

LISTING 3-10: FilteringLocationBroadcastReceiver

public abstract class FilteringLocationBroadcastReceiver extends
LocationBroadcastReceiver
{
 private static final String TAG = "FilteringLocationBroadcastReceiver";
 private static final int TIME_THRESHOLD = 30000; // 30 sec.
 private static final int ACCURACY_PERCENT = 10;
 private static final int VELOCITY_THRESHOLD = 200; // m/s

 @Override
 public void onLocationChanged(Context context, Location location)
 {
 Point lastPoint =
 PointDatabaseManager.getInstance(context).retrieveLatestPoint();
 if (lastPoint == null)
 {
 Log.d(TAG, "Adding point");
 onFilteredLocationChanged(context, location);
 }
 else
 {
 float currentAccuracy = location.getAccuracy();
 float previousAccuracy = lastPoint.getAccuracy();

 Point point =
 PointDatabaseManager.getInstance(context).retrieveLatestPoint();

 // True IFF accuracy is greater, but limited to 10% of the previous
 // accuracy and new point was generated by the same provider
 float accuracyDifference = Math.abs(previousAccuracy - currentAccuracy);
 boolean lowerAccuracyAcceptable = currentAccuracy > previousAccuracy
 && lastPoint.getProvider().equals(location.getProvider())
 && (accuracyDifference <= previousAccuracy / ACCURACY_PERCENT);

 float[] results = new float[1];

 Location.distanceBetween(point.getLatitude(),
 point.getLongitude(),
 location.getLatitude(),
 location.getLongitude(),
 results);

 float velocity =
 results[0] / ((location.getTime() - point.getTime()) / 1000);

 // Accept the new point if:

continues

c03.indd 41c03.indd 41 5/10/2012 2:00:13 PM5/10/2012 2:00:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

42 x CHAPTER 3 TRACKING DEVICE MOVEMENT

 // * The velocity seems reasonable (point did not jump)and one of the
 // following:
 // * It has a better accuracy
 // * The app has not accepted a point in TIME_THRESHOLD
 // * It's worse accuracy is still acceptable
 if (velocity <= VELOCITY_THRESHOLD
 && (currentAccuracy < previousAccuracy
 || (location.getTime() - lastPoint.getTime()) > TIME_THRESHOLD
 || lowerAccuracyAcceptable))
 {
 Log.d(TAG, "Adding point");
 onFilteredLocationChanged(context, location);
 }
 else
 {
 Log.d(TAG, "Ignoring point");
 }
 }
 }

 protected abstract void onFilteredLocationChanged(Context context,
 Location location);
}

code snippet: FilterintLocationBroadcastReceiver.java

Listing 3-10 provides the code that does the location fi ltering for the app. It compares the recently
received location update with the last persisted location update, which needs to be retrieved from
the internal app database because the manifest-registered broadcast receiver will not be able to store
any instance state across a call to onLocationChanged(). A new location will be persisted only if:

 ‰ No other points have been persisted yet.

 ‰ The accuracy of the new point is better than the accuracy of the previous point.

 ‰ No point has been received in a defi ned time threshold (30 seconds in this example).

 ‰ The accuracy is slightly worse than the accuracy of the previous point, and the new point
came from the same provider.

The justifi cation for the fi rst two bullet points is fairly obvious. These are the scenarios in which the
app is receiving its fi rst location and the app has received more accurate location data, respectively.

The third bullet point is the scenario in which the device may have been using location updates
from the GPS provider and suddenly loses the ability to receive further updates. Because the app is
receiving location updates from all enabled location providers, it should use less accurate data when
more accurate data is not available.

The fourth bullet point handles the case where a given location provider continues to provide
location updates. Location accuracy can fl uctuate and the app should not ignore updates with less
accuracy as long as the accuracy is bounded.

LISTING 3-10 (continued)

c03.indd 42c03.indd 42 5/10/2012 2:00:13 PM5/10/2012 2:00:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Location Tracking and Battery Life x 43

The other fi lter being applied in FilteringLocationBroadcastReceiver is a velocity fi lter. This
fi lter will ignore location updates where the location seems to “jump” to a location in a very short
amount of time by calculating the velocity and comparing that value to a threshold.

The velocity is determined by calculating the distance between the most recent persisted point
and the current location, and the difference in time between the most recent persisted point and
the current location. The distance between the two points is retrieved with a call to Location.
distanceBetween(). This method takes the latitude and longitude coordinates of the two points
and an array of fl oats, which will hold the results of the calculation. The result array must have a
size of at least 1 and will return approximate distance in meters on the zero-ith position in the array.
Distance calculations are defi ned using the WGS84 ellipsoid.

For the example app, the velocity threshold is set to 200 m/s and the time threshold is set to 30
seconds, meaning that any location that would have required a velocity greater than 200 m/sec to
reach it will be ignored.

At this point, the example app for this chapter is fully functional. However, a discussion on how
continuous location tracking affects battery is in order because the battery life is adversely affected
by continuously keeping device hardware active.

CONTINUOUS LOCATION TRACKING AND BATTERY LIFE

Continuously tracking a device’s location can have huge implications on battery life. This is mainly
due to enabling hardware components like the GPS radio and the Wi-Fi radio. Chapter 2 briefl y
discussed location and battery life, but really downplayed the issues because the app collected only
a single point. Because the example app in this chapter is collecting multiple points at the user’s
discretion, the issue of battery life can no longer be ignored.

Reducing Location Update Frequency

One of the simplest ways to reduce battery consumption while receiving location data is to reduce
the frequency at which location updates need to be acquired from the location services. You do this
by confi guring the parameters passed to LocationManager.requestLocationUpdates(). Recall
that when the user presses the Start Tracking button, the click handler made the following call to
the LocationManager:

locationManager.requestLocationUpdates(provider, 0, 0, pendingIntent);.

The second and third parameters defi ne minimum time and minimum distance at which location
updates should be received. By passing zeros for parameters, the location service will provide
location updates as frequently as possible. Although this approach might yield the most
complete data set, it is also the least effi cient from the perspective of battery life. Specifying
values greater than zero may prevent the radios for the location providers from constantly
remaining on, which can preserve battery life. Though some apps may absolutely require
location updates as often as they can be provided, this is not always the case. Limiting the time
between updates and allowing the radios to rest is a simple way to improve battery consumption
of an app.

c03.indd 43c03.indd 43 5/10/2012 2:00:14 PM5/10/2012 2:00:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

44 x CHAPTER 3 TRACKING DEVICE MOVEMENT

The minimum time and minimum distance values don’t have to be applied to each location provider
uniformly because the requestLocationUpdates() method allows the minimum time and
minimum distance to be specifi ed per location provider.

Limiting Location Providers

Another way to improve battery life is to limit the location providers that are used to acquire
location updates. Although the user may have every location provider enabled, an app does not need
to request updates from all of them. There may be times when an app can perform its desired task
using low-power location providers and work around the reduced accuracy.

Remember from Chapter 2 that parameters to select location providers can be set in the Criteria
class. Criteria.setPowerRequirement() will defi ne which location providers may be used by
passing POWER_LOW, POWER_MEDIUM, or POWER_HIGH.

SUMMARY

This chapter described a more complex use case for using location data and provided a runnable
solution that demonstrates how Android can be used to track location data. Through the use of
broadcast receivers and the Google Maps external library, the example app is able to both record
and present location information to the user. This chapter also presented some solutions to common
problems that can arise when tracking location data, such as dealing with erroneous location points
and loss of connectivity with a location provider.

c03.indd 44c03.indd 44 5/10/2012 2:00:14 PM5/10/2012 2:00:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

4
Proximity Alerts

WHAT’S IN THIS CHAPTER?

 ‰ Using the geocoding API to convert a location to latitude and longi-

tude points

 ‰ Using Android proximity alerts

 ‰ Understanding the limitations of the proximity alert API

 ‰ Achieving better battery life with an alternative proximity alert

implementation

Previous chapters discussed the basics of the Android location service: how to get a device’s
current location and how to track a device as it moves. This chapter discusses the proximity alert
functionality of the location service. Proximity alerts present a slightly different paradigm in that
they allow an app to be notifi ed when a device enters or leaves a defi ned area as opposed to noti-
fying an app when new location data is available. In addition to showcasing the proximity alert
functionality, this chapter also presents some of the limitations associated with proximity alerts.

To demonstrate the Android proximity alert functionality, this chapter provides an app that
allows a user to set a proximity alert for a target area. Once the device enters or leaves the
target area, the app displays a notifi cation to alert the user that the device has either entered or
left the target area.

APP STRUCTURE

The example app must perform three main tasks to achieve the overall goal of notifying the
user when the device enters or leaves a user-defi ned area. These tasks are:

 ‰ To allow the user to defi ne the target location in terms that can be used by the
LocationManager to set a proximity alert

 ‰ To make a call to the LocationManager to set the proximity alert

c04.indd 45c04.indd 45 5/10/2012 2:00:45 PM5/10/2012 2:00:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

46 x CHAPTER 4 PROXIMITY ALERTS

 ‰ To respond to the proximity alert in order to set the Notification

To accomplish the fi rst task of allowing the user to defi ne the target area for a proximity
alert, the app must translate a location entered by the user into a form that can be used by the
LocationManager. The complexity here is that the LocationManager needs latitude and longitude
coordinates to set a proximity alert, whereas humans tend to refer to locations by name. To help
bridge this gap, Android supports geocoding.

Geocoding

Geocoding is the act of converting a location name to its latitude and longitude coordinates.
Android provides the ability to geocode and reverse geocode (convert from latitude and longitude
coordinates to location information) natively without the need for a third-party library. To set a
proximity alert for a location on the user’s behalf, the app will allow the user to search for a
location and then geocode that location to obtain the latitude and longitude coordinates for the
proximity alert.

The example app contains the activity GeocodeActivity that
is responsible for both collecting target location informa-
tion from the user and geocoding the location for use by the
LocationManager. Figure 4-1 depicts the GeocodeActivity
class’s layout used to collect the user’s input.

The UI for GeocodeActivity allows the user to enter free-form
text and perform a location query by pressing the Lookup
Location button. The user will then be presented with a list
of possible matches based on the user’s entry. From here, the
user will be able to select a target location for the proxim-
ity alert. Figure 4-1 shows the app running GeocodeActivity
just after the user has entered a location string and pressed the
Lookup Location button. Notice that the user does not need
to be very specifi c when entering a location. In this case, the
user has simply entered Springfi eld and the app has presented
a list of Springfi eld locations as candidate target locations for
the proximity alert. This list of possible location matches is
generated by passing the location string provided by the user to
the Geocoder class.

android.location.Geocoder

The Geocoder class is responsible for both geocoding and reverse geocoding in Android. In the
example app, a call to Geocoder is made when the user clicks the Lookup Location button. The
manifest for GeocodeActivity specifi es that the method onLookupLocationClick() will be
run when the button is clicked. The implementation for onLookupLocationClick() is shown in
Listing 4-1.

FIGURE 4-1: The GeocodeActivity

screen

c04.indd 46c04.indd 46 5/10/2012 2:00:49 PM5/10/2012 2:00:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

App Structure x 47

LISTING 4-1: Use of Geocoder

private static final int MAX_ADDRESSES = 30;
public void onLookupLocationClick(View view)
{
 if (Geocoder.isPresent())
 {
 EditText location =
 (EditText) findViewById(R.id.enterLocationValue);

 try
 {
 Geocoder geocoder = new Geocoder(this);
 List<Address> addressList =
 geocoder.getFromLocationName(location.getText().toString(),
 MAX_ADDRESSES);

 List<AddressWrapper> addressWrapperList =
 new ArrayList<AddressWrapper>();

 for (Address address : addressList)
 {
 addressWrapperList.add(new AddressWrapper(address));
 }

 ArrayAdapter<AddressWrapper> arrayAdapter =
 new ArrayAdapter<AddressWrapper>(this,
 android.R.layout.simple_list_item_single_choice,
 addressWrapperList);
 setListAdapter(arrayAdapter);
 }
 catch (IOException e)
 {
 Log.e(TAG, "Could not geocode address”, e);

 new AlertDialog.Builder(this)
 .setMessage(R.string.geocodeErrorMessage)
 .setTitle(R.string.geocodeErrorTitle)
 .setPositiveButton(android.R.string.ok,
 new DialogInterface.OnClickListener()
 {
 @Override
 public void onClick(DialogInterface dialog, int which)
 {
 dialog.dismiss();
 }
 }).show();
 }
 }
}

code snippet GeocodeActivity.java

c04.indd 47c04.indd 47 5/10/2012 2:00:49 PM5/10/2012 2:00:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

48 x CHAPTER 4 PROXIMITY ALERTS

The method starts with a call to Geocoder.isPresent() to ensure that the methods needed to
perform geocoding and reverse geocoding (Geocoder.getFromLocationName() and Geocoder.
getFromLocation()) have concrete implementations in the version of Android that the device is
running. The isPresent() method is available only in API level 9 and greater. One thing to note is
that even when Geocoder.isPresent() returns true, the methods that perform the geocoding may
still return empty lists. Though the Geocoder.isPresent() method provides some guidance as to
whether geocoding can be performed, it does not offer any guarantees.

After checking the return value from Geocoder.isPresent(), the location string that the user has
entered is read from the EditText view and passed to Geocoder.getLocationFromName() along
with the maximum number of locations to return (MAX_ADDRESSES). The example app limits the
Geocoder.getLocationFromName() to 30 addresses. This value should ensure that location that the
user wants is included in the return value.

The string parameter that is passed to Geocoder.getLocationFromName() does not need to be a
proper address in order to perform geocoding. As shown in Figure 4-1, the user can enter a loosely
defi ned location such as the name of a city. In this case,
Geocoder.fromLocationName() will return a list of possible
matches. Naturally, the more specifi c the location string is,
the fewer number of locations will be returned. For example,
a regular street address complete with street number, street
name, city, state, and country will produce a small number
of matches (most likely one). On the other hand, a simple
city name will produce a larger number of matches because
multiple cities can exist with the same name.

The Geocoder.fromLocationName() method is pretty fl ex-
ible when it comes to the query strings that it can resolve. In
addition to locations, it can also resolve the coordinates of
landmarks as shown in Figure 4-2.

Geocoder.fromLocationName() relies on a network lookup to
resolve a location’s coordinates for a query string. If the network
lookup fails due to connectivity problems, an IOException will
be thrown by Geocode.fromLocationName(). In the example
app, An AlertDialog is then displayed to inform the user of
the problem and suggest they resubmit the query. Displaying the
AlertDialog will provide some insight for how often the
call fails.

Reading the Geocoded Response

The output of Geocoder.fromLocationName() is a list of Address objects that represent the
possible locations for the string that was passed as a parameter. The Address class contains several
pieces of information about a location including the locale-specifi c address representation and
latitude and longitude coordinates for the location. The data contained in the Address is based on

FIGURE 4-2: Geocoding the Statue

of Liberty

c04.indd 48c04.indd 48 5/10/2012 2:00:50 PM5/10/2012 2:00:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

App Structure x 49

the xAL (eXtensible Address Language) specifi cation (http://www.oasis-open.org/committees/
ciq/ciq.html#6) for representing addresses.

Because the Address class, and the xAL spec, are meant to support addresses in multiple locales
(which have different formats), there is a fair amount of member data in the Address class. For the
example app, only the latitude and longitude coordinates and enough address information to con-
struct a meaningful string to display to the user are needed.

The example app requires the textual address information (street number, state, and city) for the
purpose of displaying a meaningful location address to the user. The simplest way to access the tex-
tual address information is through the address line list member of the Address class. The address
line list contains the lines of the address that are suitable to be displayed for any locale. The xAL
documentation states that the address list is a free-form list of text-based address lines that maintain
order. This allows an app to simply iterate through the address line list and append each line in
order to produce a string suitable to display to a user in any locale. Figures 4-3 and 4-4 show exam-
ples from locations that were geocoded in different locales. Pay attention to how the different
addresses are represented in different areas of the world.

Because the Address list that is returned is displayed in a ListView, the GeocodeActivity
contains an inner class that wraps each returned Address object. This is necessary because the
default toString() method provided by Address returns a full string representation of the object.

FIGURE 4-3: Geocoding the Taj Mahal FIGURE 4-4: Geocoding Big Ben

c04.indd 49c04.indd 49 5/10/2012 2:00:50 PM5/10/2012 2:00:50 PM

www.it-ebooks.info

http://www.oasis-open.org/committees/ciq/ciq.html#6
http://www.oasis-open.org/committees/ciq/ciq.html#6
http://www.it-ebooks.info/

50 x CHAPTER 4 PROXIMITY ALERTS

Although this is useful to developers in debugging, this is not acceptable data to display to a user.
In the example app, the address lines need to be appended together in order to produce a string that
is suitable to show the user. Thus, the AddressWrapper.toString() method has the following
implementation:

@Override
public String toString()
{
 StringBuilder stringBuilder = new StringBuilder();
 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
 {
 stringBuilder.append(address.getAddressLine(i));

 if ((i + 1) < address.getMaxAddressLineIndex())
 {
 stringBuilder.append(", ");
 }
 }

 return stringBuilder.toString();
}

Now that the app has an Address instance, which also contains latitude and longitude for the
location, it can set a proximity alert to notify the user when the device is close to
the target location.

Setting a Proximity Alert

Like many other operations that use location data in Android,
an app sets a proximity alert through the LocationManager.
Obtaining a reference to the LocationManager has been
discussed in previous chapters, so the details are left out
of this chapter.

In the example app, the proximity alert is set
in the ProximityAlertActivity class. The
ProximityAlertActivity launches the GeocodeActivity in
order to generate the latitude and longitude coordinates for a
location. These latitude and longitude coordinates are
returned to the ProximityAlertActivity through an Intent
so the proximity alert can be set. Figure 4-5 shows the screen for
ProximityAlertActivity.

Figure 4-5 depicts the ProximityAlertActivity after
it has received the geocoded location information from
GeocodeActivity. From here, ProximityAlertActivity
is ready to set a proximity alert once the user presses the Set
Proximity Alert button. The code then handles the button click
and sets the proximity alert as displayed in Listing 4-2.

FIGURE 4-5: The

ProximityAlertActivity screen

c04.indd 50c04.indd 50 5/10/2012 2:00:50 PM5/10/2012 2:00:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

App Structure x 51

LISTING 4-2: Adding a proximity alert

public void onSetProximityAlertClick(View view)
{
 EditText radiusView = (EditText)findViewById(R.id.radiusValue);
 int radius =
 Integer.parseInt(radiusView.getText().toString());

 if (androidProximityTypeRadioButton.isChecked())
 {
 locationManager.addProximityAlert(latitude,
 longitude,
 radius,
 -1,
 pendingIntent);
 }
 else
 {
 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_COARSE);
 Intent intent = new Intent(this, ProximityAlertService.class);
 intent.putExtra(ProximityAlertService.LATITUDE_INTENT_KEY, latitude);
 intent.putExtra(ProximityAlertService.LONGITUDE_INTENT_KEY, longitude);
 intent.putExtra(ProximityAlertService.RADIUS_INTENT_KEY, (float)radius);
 startService(intent);
 }

 setProximityAlert.setEnabled(false);
 clearProximityAlert.setEnabled(true);
}

code snippet ProximityAlertActivity.java

The else clause in Listing 4-2 is used to set up the custom proximity alert service, which is
discussed later in this chapter.

Before a proximity alert can be set, onSetProximityAlertClick() fi rst must read the radius
value that was entered by the user. This is necessary because to defi ne a target region for a prox-
imity alert, the LocationManager needs the latitude and longitude coordinates for a location
and a value to defi ne a radius (in meters) around that location. Once the radius is read, a call
to LocationManager.addProximityAlert() is made. The parameters that are passed to
LocationManager.addProximityAlert() are listed in Table 4-1.

The code in Listing 4-2 sets a proximity alert that never expires for the location and radius that have
been specifi ed by the user.

To turn off the proximity alert, the app provides a Clear Proximity Alert button. This is necessary
since the proximity alert that is created has no expiration. ProximityAlertActivity
. onClearProximityAlertClick() is the handler for the click event of the button. The method
clears the proximity alert with a call to LocationManager.removeProximityAlert(). The
implementation of the method is shown in Listing 4-3.

c04.indd 51c04.indd 51 5/10/2012 2:00:51 PM5/10/2012 2:00:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

52 x CHAPTER 4 PROXIMITY ALERTS

TABLE 4-1: LocationManager.addProximityAlert() Parameters

TYPE NAME EXPLANATION

double latitude Latitude coordinate.

double longitude Longitude coordinate.

float radius The radius (in meters) around the location that should

trigger a proximity alert.

long expiration The time limit for the expiration. After the given amount

of time, the proximity alert will no longer be triggered.

A value of –1 indicates that the proximity alert has no

expiration.

PendingIntent intent The intent to broadcast when the proximity alert is

triggered.

LISTING 4-3: Clearing a proximity alert

public void onClearProximityAlertClick(View view)
{
 if (androidProximityTypeRadioButton.isChecked())
 {
 locationManager.removeProximityAlert(pendingIntent);
 }

 setProximityAlert.setEnabled(true);
 clearProximityAlert.setEnabled(false);
}

One thing to note in Listing 4-3 is the pendingIntent that is passed to removeProximityAlert().
That is the same intent that was used to create the proximity alert. Because the intent needs to be
used in multiple areas through the class, it is created in the onCreate() method and stored in a
member variable. Listing 4-4 shows the implementation of the onCreate() method and the creation
of the PendingIntent that is used to both set and clear the proximity alert.

LISTING 4-4: onCreate() that creates and sets the PendingIntent used by the proximity alert

@Override
protected void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.proximity_alert);

 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

 pendingIntent = ProximityPendingIntentFactory.createPendingIntent(this);

c04.indd 52c04.indd 52 5/10/2012 2:00:51 PM5/10/2012 2:00:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

App Structure x 53

 preferences = getPreferences(MODE_PRIVATE);
 androidProximityTypeRadioButton =
 (RadioButton)findViewById(R.id.androidProximityAlert);

 setProximityAlert = (Button) findViewById(R.id.setProximityAlert);
 clearProximityAlert = (Button) findViewById(R.id.clearProximityAlert);
}

The app has now successfully added a proximity alert and will be notifi ed when the device is within
the radius of the specifi ed location. To receive the registered intent that will be broadcast, the app
needs to have a BroadcastReceiver.

Responding to a Proximity Alert

Once set, a proximity alert broadcasts an intent when it detects that a device has either entered the
region defi ned by the location coordinates and the radius, or left that region. This means that to pro-
cess a proximity alert, the example app will need a broadcastreceiver that is confi gured to receive
the intent that was passed to LocationManager.addProximityAlert(). The broadcastreceiver
that is used in the example app extends the LocationBroadcastReceiver that was used in previous
chapters. Once again, the LocationBroadcastReceiver saves this app some trouble by determining
the why the intent was broadcast and which handler method should be invoked. Listing 4-5 shows the
implementation of the LocationBroadcastReceiver.onReceive() method and highlights the code
that is responsible for processing an Intent sent on behalf of a proximity alert.

LISTING 4-5: LocationBroadcastReceiver.onReceive()

@Override
public void onReceive(Context context, Intent intent)
{
 Log.d(TAG, "Received Intent”);

 if (intent.hasExtra(LocationManager.KEY_LOCATION_CHANGED))
 {
 Log.d(TAG, "Received KEY_LOCATION_CHANGED”);

 Location location =
 (Location) intent.
 getExtras().
 get(LocationManager.KEY_LOCATION_CHANGED);

 onLocationChanged(context, location);
 }
 else if (intent.hasExtra(LocationManager.KEY_PROVIDER_ENABLED))
 {
 Log.d(TAG, "Received KEY_PROVIDER_ENABLED”);

 if (intent.
 getExtras().
 getBoolean(LocationManager.KEY_PROVIDER_ENABLED))
 {
 onProviderEnabled(null);

continues

c04.indd 53c04.indd 53 5/10/2012 2:00:51 PM5/10/2012 2:00:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

54 x CHAPTER 4 PROXIMITY ALERTS

 }
 else
 {
 onProviderDisabled(null);
 }
 }
 else if (intent.hasExtra(LocationManager.KEY_PROXIMITY_ENTERING))
 {
 Log.d(TAG, "Received KEY_PROXIMITY_ENTERING");

 if (intent.getBooleanExtra(LocationManager.KEY_PROXIMITY_ENTERING,
 false))
 {
 onEnteringProximity(context);
 }
 else
 {
 onExitingProximity(context);
 }
 }
}

code snippet LocationBroadcastReceiver.java

In Listing 4-5, the intent is checked for the LocationManager.KEY_PROXIMITY_ENTERING extra.
This extra indicates why the proximity alert was fi red. Proximity alerts can be fi red because the
device is entering the target area, or because the device is exiting the target area. The boolean value
of the LocationManager.KEY_PROXIMITY_ENTERING extra indicates whether the device is entering
or leaving the defi ned area.

The concrete implementations for onEnteringProximity() and onExitingProximity() can be
found in ProximityAlertBroadcastReceiver. In both cases, the example app simply displays a
notifi cation to alert the user that the proximity alert has been received. Both methods are displayed
in Listing 4-6.

LISTING 4-6: ProximityAlertBroadcastReceiver

public class ProximityAlertBroadcastReceiver extends LocationBroadcastReceiver
{
 private static final int NOTIFICATION_ID = 9999;

 @Override
 public void onEnteringProximity(Context context)
 {
 displayNotification(context, "Entering Proximity”);
 }

 @Override

LISTING 4-5 (continued)

c04.indd 54c04.indd 54 5/10/2012 2:00:52 PM5/10/2012 2:00:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Proximity Alert Limitations x 55

 public void onExitingProximity(Context context)
 {
 displayNotification(context, "Exiting Proximity”);

 }

 private void displayNotification(Context context, String message)
 {
 String systemService = Context.NOTIFICATION_SERVICE;
 NotificationManager notificationManager =
 (NotificationManager)context.getSystemService(systemService);

 PendingIntent pi =
 PendingIntent.getActivity(context, 0, new Intent(), 0);

 Notification notification =
 new Notification(R.drawable.icon,
 message,
 System.currentTimeMillis());

 notification.setLatestEventInfo(context, "GAST”, "Proximity Alert”, pi);

 notificationManager.notify(NOTIFICATION_ID, notification);
 }
}

The example app will now display a notifi cation when the device enters the defi ned location and
when it exits the location.

PROXIMITY ALERT LIMITATIONS

So far, this chapter has presented the mechanics of implementing proximity alerts in Android.
Though proximity alerts can be a useful tool in an Android developer’s toolbox, it is important to
understand the limitations and side effects of using them. Utilizing proximity alerts can have adverse
effects on battery life as well as require additional permissions.

Battery Life

Although Android’s default proximity alert implementation may be simple to use, it can also be
costly in terms of battery life. Notice that neither ProximityAlertActivity nor GeocodeActivity
contains a call to LocationManager.requestLocationUpdates(). Recall from previous
chapters that the parameters to LocationManager.requestLocationUpdate() include values
that control the frequency of location updates and desired location providers. Remember that
requesting frequent location updates, especially with the GPS location provider, consumes a lot
of battery power. The fact that the default proximity implementation does not require a call to
LocationManager.requestLocationUpdates() means that the app does not have control over
location update frequency or the location providers that will be used. Under the hood (at least at
the time this book was written), Android sets up a LocationListener for each proximity alert
that is set. Each proximity alert will use every location provider on a device and make a call to

c04.indd 55c04.indd 55 5/10/2012 2:00:52 PM5/10/2012 2:00:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

56 x CHAPTER 4 PROXIMITY ALERTS

LocationManager. requestLocationUpdates() with both the minimum distance and minimum
time parameters set to a value of one. This means that a proximity alert with a long expiration will
consume large amounts of battery power because the device will receive location updates frequently
and continuously use the GPS location provider. Although this may be acceptable for proximity
alerts with a short expiration, it can be problematic for proximity alerts with a long expiration.

Permissions

Remember from Chapter 2 that an app needs to include the android.permission.ACCESS_
FINE_LOCATION permission in order to use the GPS provider. Because Android’s proximity alert
implementation uses the GPS provider, an app needs to include this permission in its manifest.
Failure to do so causes a SecurityException to be thrown when the LocationManager
. addProximityAlert() method is called.

Though this is not inherently a problem, it does not give the app developer much fl exibility.
With regards to permissions in Android, the general rule of thumb is to limit the list of required
permissions as much as possible. With the default proximity alert implementation, an app is
required to have the android.permission.ACCESS_FINE_LOCATION permission even if it needs only
coarse-grained location data.

MORE EFFICIENT PROXIMITY ALERT

Because of the limitations of the default proximity alert functionality, the example app provides an
alternative implementation that the user can select. The ProximityAlertActivity screen provides
radio buttons that allows the user to toggle between the default proximity alert implementation
and the custom implementation (described shortly). The idea behind the custom implementation
is to reduce the number of location updates needed to determine how close a device is to a target
location, as well as limit the amount of time the GPS location provider is active. By explicitly
making the call to LocationManager.requestLocationUpdates(), the app has more control over
which location providers are used as well as how often location updates should be received.

ProximityAlertService

The example app uses ProximityAlertService to notify the user of proximity alerts
in a more effi cient manner than the default Android implementation. As expected, the
ProximityAlertService extends the Service class and overrides the onCreate() and onStart()
methods. As shown in the following code snippet, the onCreate() method is pretty simple and just
initializes a LocationManager member variable that will provide access to the location service:

@Override
public void onCreate()
{
 super.onCreate();
 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);
}

The remainder of the initialization happens when the service is stated in the onStartCommand()
method, which is shown in Listing 4-7.

c04.indd 56c04.indd 56 5/10/2012 2:00:52 PM5/10/2012 2:00:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

More Effi cient Proximity Alert x 57

LISTING 4-7: ProximityAlertService.onStartCommand()

public int onStartCommand(Intent intent, int flags, int startId)
{
 Location bestLocation = null;

 latitude = intent.getDoubleExtra(LATITUDE_INTENT_KEY, Double.MIN_VALUE);
 longitude = intent.getDoubleExtra(LONGITUDE_INTENT_KEY, Double.MIN_VALUE);
 radius = intent.getFloatExtra(RADIUS_INTENT_KEY, Float.MIN_VALUE);

 for (String provider : locationManager.getProviders(false))
 {
 Location location = locationManager.getLastKnownLocation(provider);

 if (bestLocation == null)
 {
 bestLocation = location;
 }
 else
 {
 long locationStaleness =
 System.currentTimeMillis() - location.getTime();

 if (locationStaleness < AlarmManager.INTERVAL_HOUR * 3
 && location.getAccuracy() < bestLocation.getAccuracy())
 {
 bestLocation = location;
 }
 }
 }

 if (bestLocation != null)
 {
 if (getDistance(bestLocation) <= radius)
 {
 inProximity = true;
 }
 else
 {
 inProximity = false;
 }
 }

 locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER,
 0,
 0,
 this);

 return START_STICKY;
}

code snippet ProximityAlertService.java

c04.indd 57c04.indd 57 5/10/2012 2:00:52 PM5/10/2012 2:00:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

58 x CHAPTER 4 PROXIMITY ALERTS

Once started, the service initialization reads the extras that were passed in the intent that started the
service. In the intent, the caller must set the latitude, longitude, and radius for the proximity alert.
These values defi ne the proximity alert in the same way that they would for LocationManager.
addProximityAlert(). In the example app, these extras are set in the else clause of
ProximityAlertActivity.onSetProximityAlertClick().

Once the member data is initialized, the service attempts to determine if the device is within the
target area or outside the target area by calling LocationManager.getLastLocation() for each
activated location provider. The accuracy of each provider’s last location is compared. The location
with the best accuracy is used to determine if the device is currently in the target area.

The LocationManager.getLastLocation() method should not be used blindly. Although the
method is a convenient way to get location information immediately, the location information that is
returned is cached. This may result in stale location data if the device has not received any location
updates for a long period of time. It is possible for a user to turn off all location providers and then
move several miles away before re-enabling the providers. To combat the possibility of stale data,
the service checks the time on each cached location returned from LocationManager
. getLastLocation() via the Location.getTime() method. If the location was received within the
last three hours, it is probably safe to use it in this case.

Once the service is started, it starts receiving location updates from the network provider as often
as the device can supply them. Because the service implements LocationListener, it needs to
implement the onLocationChanged() method. This is where the core business logic is located.
onLocationChanged() is displayed in Listing 4-8.

LISTING 4-8: ProximityAlertService.onLocationChanged() and ProximityAlertService.getDistance()

@Override
public void onLocationChanged(Location location)
{
 float distance = getDistance(location);

 if (distance <= radius && !inProximity)
 {
 inProximity = true;
 Log.i(TAG, "Entering Proximity”);

 Intent intent =
 new Intent(ProximityPendingIntentFactory.PROXIMITY_ACTION);
 intent.putExtra(LocationManager.KEY_PROXIMITY_ENTERING, true);
 sendBroadcast(intent);
 }
 else if (distance > radius && inProximity)
 {
 inProximity = false;
 Log.i(TAG, "Exiting Proximity”);

 Intent intent =
 new Intent(ProximityPendingIntentFactory.PROXIMITY_ACTION);
 intent.putExtra(LocationManager.KEY_PROXIMITY_ENTERING, true);

c04.indd 58c04.indd 58 5/10/2012 2:00:53 PM5/10/2012 2:00:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

More Effi cient Proximity Alert x 59

 sendBroadcast(intent);
 }
 else
 {
 float distanceFromRadius = Math.abs(distance - radius);

 // Calculate the distance to the edge of the user-defined radius
 // around the target location
 float locationEvaluationDistance =
 (distanceFromRadius - location.getAccuracy()) / 2;

 locationManager.removeUpdates(this);
 float updateDistance = Math.max(1, locationEvaluationDistance);

 String provider;
 if (distanceFromRadius <= location.getAccuracy()
 || LocationManager.GPS_PROVIDER.equals(location.getProvider()))
 {
 provider = LocationManager.GPS_PROVIDER;
 }
 else
 {
 provider = LocationManager.NETWORK_PROVIDER;
 }

 locationManager.requestLocationUpdates(provider,
 0,
 updateDistance,
 this);
 }
}

private float getDistance(Location location)
{
 float[] results = new float[1];

 Location.distanceBetween(latitude,
 longitude,
 location.getLatitude(),
 location.getLongitude(),
 results);

 return results[0];
}

code snippet ProximityAlertService.java

The service achieves improved battery life with two optimizations over the default proximity alert
implementation. First, it limits the usage of the GPS. Second, it reduces the frequency of requested
location updates.

The last line in the onStartCommand() method in Listing 4-7 registers the service to receive location
updates from the network provider. The goal is to use the network provider as long as possible and

c04.indd 59c04.indd 59 5/10/2012 2:00:53 PM5/10/2012 2:00:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

60 x CHAPTER 4 PROXIMITY ALERTS

enable the GPS provider only when the accuracy of the network provider can no longer provide an
accurate estimate of the device’s distance from the target area. onLocationChanged() starts off
by computing the distance between the newest location and the target location by making a call to
getDistance(), which is displayed in the following code snippet:

private float getDistance(Location location)
{
 float[] results = new float[1];

 Location.distanceBetween(latitude,
 longitude,
 location.getLatitude(),
 location.getLongitude(),
 results);

 return results[0];
}

Once the distance is calculated, onLocationChanged() can compare the current distance with the
radius that was supplied to the service to determine if an intent should be broadcast to signal a prox-
imity alert. If no alert needs to be broadcast, the method cancels the current request for location
updates, calculates a new minimum distance, and re-registers for location updates using the new
minimum distance.

The minimum distance calculation is shown here:

float distanceFromRadius = Math.abs(distance - radius);

// Calculate the distance to the edge of the user-defined radius
// around the target location
float locationEvaluationDistance =
 (distanceFromRadius - location.getAccuracy()) / 2;

To make the calculation, the method fi rst computes the distance to the radius that encloses the
target area. The absolute value for this calculation is needed to support both entering and exiting
the target area defi ned by the radius. Once the distance to the radius of the target area is made,
the new minimum distance can be computed as the (distanceFromRadius – location accuracy) /
2. Halving the distance from the location to the radius (after subtracting out the accuracy) allows
the method request more frequent location updates as the device approaches the target area. This
alone should produce better battery life than the default proximity alert implementation included in
Android because the location update frequency will be drastically reduced for proximity alerts that
need to span large distances.

To improve battery life further, the service also limits when the GPS location provider is used. Before
re-registering for location updates, the service compares the accuracy of the latest point with the
distance from the radius. Only when the accuracy of the latest point is greater than the distance from
the target area, is the GPS provider enabled. In other words, even though the network provider has less
accuracy than the GPS provider, it is still good enough if the device is far away from the target area.

This should allow the service to enable the GPS provider only when the network provider is no
longer precise enough to any additional proximity determinations. If the newest location came from

c04.indd 60c04.indd 60 5/10/2012 2:00:53 PM5/10/2012 2:00:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary x 61

the GPS provider, the GPS provider will continue to be used because the device is probably close
enough to the target location to warrant its use.

SUMMARY

This chapter discussed parts of the location API that tend to get less attention than the parts
discussed in previous chapters. The geocoding and proximity alert functionality can be an
invaluable tool in a developer’s Android toolbox.

Geocoding allows a user to communicate location information to an app in a way that is natural
to a human. The ability to transform location and latitude and longitude coordinate information in
both directions gives developers another way to communicate location information with a human
outside of just a map.

The proximity alert API provides a quick way for Android to notify an app when the device is
approaching or departing from a given location. Although it may have negative effects on battery
life, the simple API allows it to be useful under the right conditions.

The alternative proximity alert implementation provided in this chapter provides a robust (and more
complicated) solution that will reduce the cost of battery life for an app.

c04.indd 61c04.indd 61 5/10/2012 2:00:54 PM5/10/2012 2:00:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c04.indd 62c04.indd 62 5/10/2012 2:00:54 PM5/10/2012 2:00:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PART II
Inferring Information from Physical
Sensors

 � CHAPTER 5: Overview of Physical Sensors

 � CHAPTER 6: Errors and Sensor Signal Processing

 � CHAPTER 7: Determining Device Orientation

 � CHAPTER 8: Detecting Movement

 � CHAPTER 9: Sensing the Environment

 � CHAPTER 10: Android Open Accessory

c05.indd 63c05.indd 63 5/10/2012 2:01:40 PM5/10/2012 2:01:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c05.indd 64c05.indd 64 5/10/2012 2:01:44 PM5/10/2012 2:01:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

5
Overview of Physical Sensors

WHAT’S IN THIS CHAPTER?

 ‰ Understanding the available sensors and how they actually work.

 ‰ Explaining the physical values the sensors measure and providing a

physical intuition for what these values mean.

 ‰ Understanding potential applications of each sensor and code for

common use cases.

Before the introduction of smartphones, people would interact with a range of narrowly
focused sensors in daily life. Each sensor usually resided in a single device, and was usu-
ally designed for a single purpose (oven temperature sensors, tire pressure sensors, television
remote control systems, and so on). The introduction of smartphones put an exciting range of
sensors in the hands of users and developers. Previously, sensors rarely existed in such quanti-
ties, or in such close and continuous proximity to the user. The availability of the multiple sen-
sors on a single device adds a wide array of uses for the device.

Starting with Android 1.5 (API level 3), a standard set of sensors and the associated sensor
API has been made available. In Android 2.3 (API level 9), new sensors and tools were added
to the Android developer’s toolbox. The standard sensors now include the accelerometer,
gyroscope, magnetometer (compass), light sensor, proximity sensor, relative humidity sensor
and pressure sensor. The tools added in API level 9 include methods to get rotation matrices,
quaternions (an alternate representation of rotations), and “synthetic” sensors. These provide
developers with a rich array of options for physical navigation, gaming control, augmented
reality, and many other uses.

Understanding the sensor API is useful, but not enough to develop innovative applications. To
avoid pitfalls and common misconceptions, the developer must go beyond the typical “black
box” approach where a sensor’s data is digested by an app with little understanding of what
the data represents or how it is produced. Fully understanding how the sensors work allows

c05.indd 65c05.indd 65 5/10/2012 2:01:44 PM5/10/2012 2:01:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

66 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

you to select the right sensor for an app’s task, which can be diffi cult because there are sensors with
overlapping capabilities and devices with different sensors. It also helps you to use the sensors bet-
ter by allowing you to know how to interpret the sensor output properly. In addition, understanding
how the sensors work allows you to identify new ways to use sensors in your app.

The goal of this chapter is to provide a deeper understanding of how Android sensors work and
what type of data they produce.

Portions of this chapter are reproduced from work created and shared by the
Android Open Source Project and used according to terms described in the
Creative Commons 2.5 Attribution License.

DEFINITIONS

Before getting into the discussion of sensors, some of the terms used throughout the chapter need to
be introduced.

 ‰ Microelectromechanical sensors (MEMS) are sensors that have been made on a tiny scale,
usually on silicon chips using techniques borrowed from computer-chip manufacturing. All
Android sensors are made using these techniques, but technically, the term MEMS sensor refers
to the ones that incorporate some part of their design that physically moves or vibrates: the
pressure sensor, accelerometer, gyroscope, and possibly the compass are true MEMS sensors.

The sensors referenced through the Sensor class may be of two types: a raw sensor or a
synthetic (or composite or virtual) sensor. Raw sensors give raw data from a sensor, and
one raw sensor corresponds to one actual physical component inside the Android device.
Synthetic sensors provide an abstraction layer between application code and low-level device
components by either combining the raw data of multiple raw sensors, or by modifying
the raw sensor data to make it easier to consume. They may report a physical quantity by
referring to two or three sensors (such as reporting orientation by referring to the com-
pass, which gives a north-south-east-west bearing and the accelerometer, which gives tilt).
Synthetic sensors may manipulate the sensor reading before reporting it; for example, by
integrating the gyroscope data before using it in addition to magnetometer and accelero-
meter to get a better determination of orientation. Regardless of the sensor type, the pro-
grammer accesses any type of sensor in the same way using the sensor API.

 ‰ Raw sensors:

 ‰ Sensor.TYPE_LIGHT

 ‰ Sensor.TYPE_PROXIMITY

 ‰ Sensor.TYPE_PRESSURE

 ‰ Sensor.TYPE_TEMPERATURE (deprecated)

 ‰ Sensor.TYPE_ACCELEROMETER

 ‰ Sensor.TYPE_GYROSCOPE

 ‰ Sensor.TYPE_MAGNETIC_FIELD

c05.indd 66c05.indd 66 5/10/2012 2:01:47 PM5/10/2012 2:01:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Defi nitions x 67

 ‰ Sensor.TYPE_RELATIVE_HUMIDITY

 ‰ Sensor.TYPE_AMBIENT_TEMPERATURE

 ‰ Synthetic sensors:

 ‰ Sensor.TYPE_ROTATION_VECTOR

 ‰ Sensor.TYPE_LINEAR_ACCELERATION

 ‰ Sensor.TYPE_GRAVITY

 ‰ Sensor.TYPE_ORIENTATION (deprecated)

Synthetic sensors do not necessarily have consistent implementation across differ-
ent devices. For example, some devices may use the gyroscope to determine rota-
tion vector values while others do not. Differences in hardware or sensor synthesis
implementations can cause synthetic sensors on some devices to provide better
readings than synthetic sensors on other devices. Although these differences exist,
it is still generally preferable to utilize synthetic sensor data over raw sensor data.
Sensors tend to be designed to provide good results for a device’s specifi c sensor
hardware.

However, not all synthetic sensors exist on all versions of Android. Versions of
Android earlier than 2.3 do not support the Sensor.TYPE_ROTATION_VECTOR,
Sensor.TYPE_LINEAR_ACCELERATION, or Sensor.TYPE_GRAVITY sensors.

 ‰ A binary sensor is a sensor that reports only one of two values. Most proximity sensors and
some light sensors are binary sensors, reporting only a near and far measurement.

 ‰ A continuous sensor measures any of a range of values from its minimum to its maximum.

 ‰ Dynamic range is the range of values the sensor can measure. For instance, the dynamic
range of a light sensor may be 1 to 10,000 lux.

 ‰ Saturation occurs when a sensor attempts to sense an input greater than its maximum mea-
surable value. For example, a bright halogen light can saturate the light sensor in an Android
device. In that case the sensor just reports the maximum value. When the stimulation is
removed, the signal returns values close to zero (sensor noise prevents a constant value of zero).

 ‰ In many other situations, resolution means the smallest detectable difference between actual
physical values. This detectable difference is limited by noise. However, in Android, resolu-
tion (as reported by Sensor.getResolution()) refers to the smallest difference between
possible numbers that may be reported by the sensor, even if the noise is greater. For exam-
ple, an 8-bit accelerometer with a maximum range of 39.24 m/s2 will report a resolution of
39.24 / 28 = 0.15328126 m/s2.

 ‰ Sampling frequency is the reciprocal of the time between measurements, and is measured
in Hertz (which is equivalent to 1/s, where s is the unit of seconds). In Android, a sensor’s
highest possible sampling frequency is measured using the public method Sensor.getMin-
Delay()which measures the minimum time between two measurements in microseconds.
The minimum delay is reported because the device may not necessarily take measurements
as quickly as physically possible, but this minimum delay represents the maximum sampling
frequency possible by the sensor. Minimum delay can also vary across different hardware
sensor implementations and therefore may vary from device to device.

c05.indd 67c05.indd 67 5/10/2012 2:01:48 PM5/10/2012 2:01:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

68 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Now that some of the basic sensor concepts and defi nitions have been presented, the chapter will
turn its focus to the different sensors Android supports.

ANDROID SENSOR API

The Android Sensor API consists of classes for requesting and processing sensor information from
a device’s hardware. This section outlines the classes within the Android Sensor API and illustrates
how to use the classes by providing examples in the form of code.

The entry point to the API is the SensorManager class, which allows an app to request sensor
information and register to receive sensor data. When registered, sensor data values are sent to a
SensorEventListener in the form of a SensorEvent that contains information produced from
a given Sensor.

SensorManager

SensorManager is the Android system service that gives an app access to hardware sensors. Like
other system services, it allows apps to register and unregister for sensor-related events. Once regis-
tered, an app will receive sensor data from the hardware.

In addition to allowing an app to register for sensor data, the SensorManager also provides methods
that process sensor data. SensorManager.getOrientation() is an example of such a method that
uses sensor data to generate device orientation information.

Sensor

The Sensor class is the Android representation of a hardware sensor on a device. This class exposes
information about the sensor, such as:

 ‰ Maximum range

 ‰ Minimum delay

 ‰ Name

 ‰ Power

 ‰ Resolution

 ‰ Type

 ‰ Vendor

 ‰ Version

SensorManager provides two methods to access Sensor objects: getSensorList() and getDe-
faultSensor(). The getSensorList() method retrieves all the sensors of a given type while
getDefaultSensor() returns the default sensor for the specifi ed type. The sensor returned from get-
DefaultSensor() may be either a raw sensor or a synthetic sensor that manipulates raw sensor data.

It is import for an app to examine the output from these methods because devices may or may not
support a particular sensor that an app needs. The following code sample is a generally foolproof

c05.indd 68c05.indd 68 5/10/2012 2:01:49 PM5/10/2012 2:01:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 69

method for checking for an accelerometer with getSensorList(). Checks for other sensors follow a
similar pattern.

public static boolean isAccelerometerSupported(Context context)
 {
 SensorManager sm =
 (SensorManager) context
 .getSystemService(Context.SENSOR_SERVICE);
 List<Sensor> sensors = sm.getSensorList(Sensor.TYPE_ACCELEROMETER);
 return sensors.size() > 0;
 }

Sensor Rates

When you register a listener, you specify the delay or measurement rate for the listener. The pre-
defi ned rates are:

 ‰ SENSOR_DELAY_FASTEST

 ‰ SENSOR_DELAY_GAME

 ‰ SENSOR_DELAY_UI (Suitable for usual user interface functions, like rotating the screen
orientation.)

 ‰ SENSOR_DELAY_NORMAL (The default value.)

In Android 4.0.3, these are hard-coded to be 0, 20, 67, and 200 milliseconds, respectively. You can
also specify your own delay in microseconds by passing a sensor rate value to the registration that
is not one of the aforementioned constants. However, these rates are only intended to be hints to
the system, as events may be received faster or slower than the specifi ed delay. Events are usually
received faster if the hardware and garbage collection can keep up.

Device confi guration may also affect the rate at which events are fi red. For example, the accel-
erometer on a Nexus S running Android 2.3 with a sensor rate of SENSOR_DELAY_GAME may
fi re rapidly when the device orientation changes rapidly and slowly when the device orientation
changes slowly. However, the accelerometer on Droid 2 running the same version of Android (2.3)
and using the same sensor rate (SENSOR_DELAY_GAME) produces sensor events at an approximately
constant rate. In many cases, this inconsistency in fi ring times across different devices is actually
a benefi t to the developer. The timing of the sensor events is optimized for the particular device
and returns sensor data as often as needed for different classes of applications (as suggested by the
names of the sensor rate constants) without causing undue lag. This allows for the sensor polling
procedure to be device-agnostic and future-proofed even as newer and better sensor hardware is
released.

Because the data values are not necessarily evenly spaced in time, the SensorEvent.timestamp fi eld
is important, and allows you to access the timestamp associated with the data (which is held in the
SensorEvent.values fi eld) in nanoseconds.

To fi nd the minimum delay allowed between two events in microseconds, use the Sensor.getMin-
Delay() method. This returns zero if this sensor returns a value only when the data it is measuring
changes (for example, for a binary proximity sensor).

c05.indd 69c05.indd 69 5/10/2012 2:01:49 PM5/10/2012 2:01:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

70 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Sensor Range and Resolution

Perhaps the most useful methods of the Sensor class are Sensor.getMaximumRange() and Sensor.
getResolution(), both of which take no arguments and return a fl oating-point number.

getMaximumRange() returns the maximum range the sensor can measure in the regular units
reported by the sensor. A measured value of 19.6133 m/s2 (equivalent to 2 g, where g is a unit of
acceleration) — as in STMicroelectronics’ KR3DM 3-axis accelerometer, for instance — means the
sensor can measure accelerations from +2g to –2g. If a sensor is subjected to a larger signal than the
maximum range reported here, it will simply saturate and report this maximum range value.

Binary sensors, such as binary proximity sensors that report only a near or far measurement, should
report their maximum range value in the far state and a lesser value in the near state (this value is
usually either identically 0.0 or some small number like 2E-6). While this is true is most cases, the
value from getMaximumRange() is not always reported as the far measurement on a binary prox-
imity sensor. For example, the OSRAM SFH7743 proximity sensor (in the Motorola Droid 2) has
a maximum range of 6 cm but reports a “far” value of 2.38 x 107 cm! To catch this, generally an
app may sense a near measurement as anything near zero (where near zero may be some number
less than approximately 1/100th of getMaximumRange()) and detect a far measurement as anything
equal to or greater than getMaximumRange().

getResolution() reports the resolution of the sensor, in the regular units reported by the sensor.
As described previously, resolution is a word sometimes used to describe the minimum detect-
able difference between two signals, which is a description that takes into account the noise in the
system. However, the resolution here is a digital resolution fi gure that is independent of the sensor
noise. Android sensors output digital signals, for example, 8-bit (256 possible values), 10-bit (1024
possible values), and 12-bit (4096 possible values) accelerometers are common. The maximum range
divided by the number of possible values gives the resolution reported here.

Other methods are also available that give access to the generic type of the sensor, the sensor’s name
string, vendor and version, and the power it consumes when active. This data is typically less useful
to developers and is not covered here.

Before moving on, it is important to understand that more data is not always better data. In general
apps should collect data only as quickly as necessary, and only let it affect the display (if applicable)
as often as necessary. This may sound obvious, but apps can be signifi cantly helped or hurt by con-
sideration of this point. Some sensors produce data faster than the GUI can display it. If an app
updates the GUI on every event, the app’s responsiveness will suffer and the app may crash.

For example, if an app needs to update its UI only on events received every 500 milliseconds or
more (regardless of when the sensor events are actually received), it can use the following approach.
Remember that an app can also specify the sensor rate as described in the “Sensor Rates” section.
The number specifi ed, however, is only a guideline to the system and an app cannot be assured of
receiving events at that rate.

public void onSensorChanged(SensorEvent event)
 {
 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)
 {
 long actualTime = System.currentTimeMillis();

c05.indd 70c05.indd 70 5/10/2012 2:01:49 PM5/10/2012 2:01:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 71

 if (actualTime - lastUpdate > 500)
 {
 lastUpdate = actualTime;
 // update values for app
 }
 }
 }

SensorEventListener

The SensorEventListener is an interface that provides the callbacks to alert an app to sensor-
related events. To be made aware of these events, an app registers a concrete class that implements
SensorEventListener with the SensorManager.

SensorEvent

The SensorEvent is the data structure that contains the information that is passed to an app when
a hardware sensor has information to report. A SensorEvent object is passed from the sensor sys-
tem service to callback methods on SensorEventListener. The listener then processes the data in a
SensorEvent object in an application-specifi c manner. The data members of the SensorEvent are
described next.

 ‰ SensorEvent.accuracy: Each sensor reports its accuracy as one of four levels. In this case,
accuracy refers to how reliable or “trustable” the reported values are, not necessarily how
close each value actually is to the physical value.

 ‰ A SensorEvent can have the following values for SensorEvent.accuracy:

 ‰ SensorManager.SENSOR_STATUS_ACCURACY_HIGH

 ‰ SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM

 ‰ SensorManager.SENSOR_STATUS_ACCURACY_LOW

 ‰ SensorManager.SENSOR_STATUS_UNRELIABLE

An unreliable accuracy does not mean the sensor is broken. For example, the mag-
netometer reports an unreliable status if it needs calibration, and changes accuracy
level relatively often.

If the sensor is a binary sensor, and therefore cannot give an absolute measurement,
it reports SensorManager.SENSOR_STATUS_UNRELIABLE. For example, the
binary proximity sensor may report a near and far measurement of approximately
0.0 cm and 5.0 cm respectively, but these probably don’t correspond to reality
because the nearest object may be any distance away and not just those two values.
Instead, a near or far measurement simply signifi es that a proximity threshold has
been reached. Thus a binary sensor always reports an unreliable accuracy.

 ‰ SensorEvent.sensor: An instance of the Sensor class that generated the SensorEvent.

 ‰ SensorEvent.timestamp: The time in milliseconds when the SensorEvent occurred.

 ‰ SensorEvent.values: An array of values that represent sensor data. The size of the array
and the meaning of the array values depend on the type of the sensor that produced the data.

c05.indd 71c05.indd 71 5/10/2012 2:01:49 PM5/10/2012 2:01:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

72 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Sensor List

To utilize the Sensor API described in previous sections, an app needs to register a
SensorEventListener to receive sensor data, extract data from SensorEvent depending on the
sensor type, and ensure that an app unregisters at the right time. Each type of sensor requires simi-
lar code. This section describes the boiler plate code you need by explaining an app called Sensor
List. Sensor List collects and displays the data it gets from all available sensors. Beyond highlighting
how to operate the sensor API, it is also an excellent way to explore the data the sensors produce
and the effect of different delay rates.

SensorListActivity uses two screens to interact with the user and the screens are illustrated
below. The screen illustrated in Figure 5-2 presents the user with the list of sensors that are on
the device. Once a sensor is clicked, the screen illustrated in Figure 5-3 displays the details for the
selected sensor.

FIGURE 5-1: Showing the list of sensors

on a device

FIGURE 5-2: Screenshot showing the

details of a selected sensor

The Manifest File

The fi rst step in implementing the example app is to declare the intent to use specifi c sensors in
the manifest fi le. This is done with the <uses-feature> declaration, and may include an optional
android:required attribute indicating whether the app prefers to have the feature or whether it
cannot function without a feature. The purpose of this declaration is to inform any external entity
of the sensors an app will use. This is informational only: the OS will not check for features before
installing an app, but other services such as Google Play will check an application’s <uses-fea-
ture> declaration, so it is best to declare all the sensors an app will use. (Google Play will not show

c05.indd 72c05.indd 72 5/10/2012 2:01:50 PM5/10/2012 2:01:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 73

apps that are not compatible with a user’s device). Each sensor must be specifi ed in a separate tag. A
snippet of the AndroidManifest.xml for the example app is shown here:

<uses-feature android:name="android.hardware.sensor.accelerometer"
 android:required="true" />
 <uses-feature android:name="android.hardware.sensor.compass"
 android:required="false" />

The default for the android:required attribute is true, meaning the app cannot run without it. A
value of false means that an app prefers to use the feature if available but is designed to run with-
out it.

Here are some of the possible arguments for the android:name attribute that apply to Android
sensors:

 ‰ android.hardware.sensor.accelerometer

 ‰ android.hardware.sensor.barometer

 ‰ android.hardware.sensor.compass

 ‰ android.hardware.sensor.gyroscope

 ‰ android.hardware.sensor.light

 ‰ android.hardware.sensor.proximity

If an app requires the synthetic sensors GRAVITY or LINEAR_ACCELERATION, the app should also make
android.hardware.sensor.accelerometer required. If an app requires the synthetic sensor ROTATION_
VECTOR, it should also make the accelerometer and compass required and the gyroscope optional, because
the gyroscope is sometimes but not always used to calculate this. (The gyro should be used if available, but
its presence alone does not require it to be implemented in the rotation vector sensor.)

 SensorListActivity

SensorListActivity lets the user choose a sensor to inspect and then shows the data
it produces interactively. To implement this, SensorListActivity uses two Fragments.
It uses SensorSelectorFragment to allow the user to select a sensor from a list, and
SensorDisplayFragment to show the data values from a selected sensor.

The SensorListActivity class has a short implementation. The code creates the Fragments and
then wires them together so that when the user selects a sensor, SensorSelectorFragment can
show SensorDisplayFragment. Listing 5-1 shows the code for SensorListActivity.

LISTING 5-1: Sets up Fragments for selecting sensors and viewing their data

public class SensorListActivity extends FragmentActivity
{
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState); continues

c05.indd 73c05.indd 73 5/10/2012 2:01:50 PM5/10/2012 2:01:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

74 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

 setContentView(R.layout.sensor_main);

 // wire up the fragments so selector
 // can call display
 SensorDisplayFragment sensorDisplay =
 (SensorDisplayFragment) getSupportFragmentManager()
 .findFragmentById(R.id.frag_sensor_view);
 SensorSelectorFragment sensorSelect =
 (SensorSelectorFragment) getSupportFragmentManager()
 .findFragmentById(R.id.frag_sensor_select);
 sensorSelect.setSensorDisplay(sensorDisplay);
 }
}

code snippet SensorListActivity.java

SensorSelectorFragment

When it starts, SensorSelectorFragment displays a list of sensors to the user. To build this
list, it obtains all the available sensors from SensorManager during the setSensorDisplay()
method. setSensorDisplay() also creates a SensorListAdapter to display the sensor’s
name and register an OnClickListener. When the user clicks, the OnClickListener calls
showSensorFragment() to properly show SensorDisplayFragment. The implementation
for SensorSelectorFragment is shown in listing 5-2.

LISTING 5-2: Allows the user to select a sensor to inspect

public class SensorSelectorFragment extends ListFragment
{
 private static final String TAG = "SensorSelectorFragment";

 private SensorDisplayFragment sensorDisplay;

 /**
 * connect with a display fragment to call later when user clicks a sensor
 * name, also setup the ListAdapter to show all the Sensors
 */
 public void setSensorDisplay(SensorDisplayFragment sensorDisplay)
 {
 this.sensorDisplay = sensorDisplay;

 SensorManager sensorManager =
 (SensorManager) getActivity().getSystemService(
 Activity.SENSOR_SERVICE);
 List<Sensor> sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);
 this.setListAdapter(new SensorListAdapter(getActivity()
 .getApplicationContext(), android.R.layout.simple_list_item_1,
 sensors));
 }

LISTING 5-1 (continued)

c05.indd 74c05.indd 74 5/10/2012 2:01:51 PM5/10/2012 2:01:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 75

 /**
 * hide the list of sensors and show the sensor display fragment
 * add these changes to the backstack
 */
 private void showSensorFragment(Sensor sensor)
 {
 sensorDisplay.displaySensor(sensor);
 FragmentTransaction ft =
 getActivity().getSupportFragmentManager().beginTransaction();
 ft.hide(this);
 ft.show(sensorDisplay);
 ft.addToBackStack("Showing sensor: " + sensor.getName());
 ft.commit();
 }

 /**
 * list view adapter to show sensor names and respond to clicks.
 */
 private class SensorListAdapter extends ArrayAdapter<Sensor>
 {
 public SensorListAdapter(Context context, int textViewResourceId,
 List<Sensor> sensors)
 {
 super(context, textViewResourceId, sensors);
 }

 /**
 * create a text view containing the sensor name
 */
 @Override
 public View getView(final int position, View convertView,
 ViewGroup parent)
 {
 final Sensor selectedSensor = getItem(position);
 if (convertView == null)
 {
 convertView =
 LayoutInflater.from(getContext()).inflate(
 android.R.layout.simple_list_item_1, null);
 }

 ((TextView) convertView).setText(selectedSensor.getName());

 convertView.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 if (BuildConfig.DEBUG)
 {
 Log.d(TAG,
 "display sensor! " + selectedSensor.getName());
 }

continues

c05.indd 75c05.indd 75 5/10/2012 2:01:51 PM5/10/2012 2:01:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

76 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

 showSensorFragment(selectedSensor);
 }
 });
 return convertView;
 }
 }
}

code snippet SensorSelectFragment.java

SensorDisplayFragment

SensorDisplayFragment receives the selected sensor, starts listening for data, and displays the
data it receives. The onCreateView() method does most of the initialization work, such as getting
a reference to the SensorManager. Once onCreateView() is complete, SensorDisplayFragment is
ready for SensorSelectorFragment to call displaySensor() with the user’s selected sensor.

To receive sensor data, SensorDisplayFragment registers a SensorEventListener with
the SensorManager. Because SensorDisplayFragment implements SensorEventListener,
it can register itself to receive sensor events. In order to implement SensorEventListener,
SensorDisplayFragment provides concrete implementations for onAccuracyChanged(), and
onSensorChanged(). Both methods update the display whenever a sensor reports new data or its
accuracy changes.

Because SensorDisplayFragment should receive updates only while it is being displayed, it regis-
ters itself with the SensorManager in displaySensor() and unregisters itself when it is not being
displayed. SensorDisplayFragment will no longer be displayed when SensorSelectorFragment
hides it, or when Android pauses SensorListActivity. Because hiding the fragment does not
trigger a call to onPause(), the call to SensorManager.unregisterListener() must occur in
both the onPause() (to handle any pauses, such as when the user presses the Home button) and
onHiddenChanged() (to handle being hidden). Some apps may need to restart listening for sen-
sors when part of it returns from being hidden or paused. To do so, an app may want to restart
the sensing by re-registering the SensorEventListener in the onResume() method and possibly
onHiddenChanged().

It is important to remember to unregister sensor listeners whenever they are not in use. Not doing so
drains the battery and uses system resources including the garbage collector. Android does not take
care of this by itself when another Activity comes to the foreground or when the screen is turned
off — it is in the hands of the app developer to control listeners wisely. If Android kills the app,
however, it also unregisters listeners.

After registering, SensorManager passes data periodically to the onSensorChanged()
method in the form of a SensorEvent. The onSensorChanged() method implementation
in SensorDisplayFragment updates the display with the data in SensorEvent. Since the
SensorEvent.values array holds different data based on the sensor that produced it, onSensorEvent()

LISTING 5-2 (continued)

c05.indd 76c05.indd 76 5/10/2012 2:01:51 PM5/10/2012 2:01:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 77

must fi rst determine which sensor was the source of this data. Once it determines the source, it
shows the sensor data by setting the values and labels of the appropriate TextViews.

Listing 5-3 shows the complete implementation for SensorDisplayFragment.

LISTING 5-3: Collects and displays data for a particular Sensor.

public class SensorDisplayFragment extends Fragment implements SensorEventListener
{
 private static final String TAG = "SensorDisplayFragment";
 private static final String THETA = "\u0398";
 private static final String ACCELERATION_UNITS = "m/s\u00B2";

 private SensorManager sensorManager;
 private Sensor sensor;
 private TextView name;
 private TextView type;
 private TextView maxRange;
 private TextView minDelay;
 private TextView power;
 private TextView resolution;
 private TextView vendor;
 private TextView version;
 private TextView accuracy;
 private TextView timestampLabel;
 private TextView timestamp;
 private TextView timestampUnits;
 private TextView dataLabel;
 private TextView dataUnits;
 private TextView xAxis;
 private TextView xAxisLabel;
 private TextView yAxis;
 private TextView yAxisLabel;
 private TextView zAxis;
 private TextView zAxisLabel;
 private TextView singleValue;
 private TextView cosLabel;
 private TextView cos;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState)
 {
 View layout = inflater.inflate(R.layout.sensor_view, null);

 sensorManager =
 (SensorManager) getActivity().getSystemService(Context.SENSOR_SERVICE);

 name = (TextView) layout.findViewById(R.id.name);
 type = (TextView) layout.findViewById(R.id.type);
 maxRange = (TextView) layout.findViewById(R.id.maxRange);
 minDelay = (TextView) layout.findViewById(R.id.minDelay);
 power = (TextView) layout.findViewById(R.id.power); continues

c05.indd 77c05.indd 77 5/10/2012 2:01:52 PM5/10/2012 2:01:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

78 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

 resolution = (TextView) layout.findViewById(R.id.resolution);
 vendor = (TextView) layout.findViewById(R.id.vendor);
 version = (TextView) layout.findViewById(R.id.version);
 accuracy = (TextView) layout.findViewById(R.id.accuracy);
 timestampLabel = (TextView) layout.findViewById(R.id.timestampLabel);
 timestamp = (TextView) layout.findViewById(R.id.timestamp);
 timestampUnits = (TextView) layout.findViewById(R.id.timestampUnits);
 dataLabel = (TextView) layout.findViewById(R.id.dataLabel);
 dataUnits = (TextView) layout.findViewById(R.id.dataUnits);
 xAxis = (TextView) layout.findViewById(R.id.xAxis);
 xAxisLabel = (TextView) layout.findViewById(R.id.xAxisLabel);
 yAxis = (TextView) layout.findViewById(R.id.yAxis);
 yAxisLabel = (TextView) layout.findViewById(R.id.yAxisLabel);
 zAxis = (TextView) layout.findViewById(R.id.zAxis);
 zAxisLabel = (TextView) layout.findViewById(R.id.zAxisLabel);
 singleValue = (TextView) layout.findViewById(R.id.singleValue);
 cosLabel = (TextView) layout.findViewById(R.id.cosLabel);
 cos = (TextView) layout.findViewById(R.id.cos);

 layout.findViewById(R.id.delayFastest).setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 sensorManager.unregisterListener(SensorDisplayFragment.this);
 sensorManager.registerListener(SensorDisplayFragment.this,
 sensor,
 SensorManager.SENSOR_DELAY_FASTEST);
 }
 });

 layout.findViewById(R.id.delayGame).setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 sensorManager.unregisterListener(SensorDisplayFragment.this);
 sensorManager.registerListener(SensorDisplayFragment.this,
 sensor,
 SensorManager.SENSOR_DELAY_GAME);
 }
 });

 layout.findViewById(R.id.delayNormal).setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 sensorManager.unregisterListener(SensorDisplayFragment.this);
 sensorManager.registerListener(SensorDisplayFragment.this,
 sensor,
 SensorManager.SENSOR_DELAY_NORMAL);

LISTING 5-3 (continued)

c05.indd 78c05.indd 78 5/10/2012 2:01:52 PM5/10/2012 2:01:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 79

 }
 });

 layout.findViewById(R.id.delayUi).setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 sensorManager.unregisterListener(SensorDisplayFragment.this);
 sensorManager.registerListener(SensorDisplayFragment.this,
 sensor,
 SensorManager.SENSOR_DELAY_UI);
 }
 });

 return layout;
 }

 public void displaySensor(Sensor sensor)
 {
 if (BuildConfig.DEBUG)
 {
 Log.d(TAG, "display the sensor");
 }

 this.sensor = sensor;

 name.setText(sensor.getName());
 type.setText(String.valueOf(sensor.getType()));
 maxRange.setText(String.valueOf(sensor.getMaximumRange()));
 minDelay.setText(String.valueOf(sensor.getMinDelay()));
 power.setText(String.valueOf(sensor.getPower()));
 resolution.setText(String.valueOf(sensor.getResolution()));
 vendor.setText(String.valueOf(sensor.getVendor()));
 version.setText(String.valueOf(sensor.getVersion()));

 sensorManager.registerListener(this,
 sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy)
 {
 switch(accuracy)
 {
 case SensorManager.SENSOR_STATUS_ACCURACY_HIGH:
 this.accuracy.setText("SENSOR_STATUS_ACCURACY_HIGH");
 break;
 case SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM:
 this.accuracy.setText("SENSOR_STATUS_ACCURACY_MEDIUM");
 break;
 case SensorManager.SENSOR_STATUS_ACCURACY_LOW:
 this.accuracy.setText("SENSOR_STATUS_ACCURACY_LOW");

continues

c05.indd 79c05.indd 79 5/10/2012 2:01:52 PM5/10/2012 2:01:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

80 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

 break;
 case SensorManager.SENSOR_STATUS_UNRELIABLE:
 this.accuracy.setText("SENSOR_STATUS_UNRELIABLE");
 break;
 }
 }

 @Override
 public void onSensorChanged(SensorEvent event)
 {
 onAccuracyChanged(event.sensor, event.accuracy);

 timestampLabel.setVisibility(View.VISIBLE);
 timestamp.setVisibility(View.VISIBLE);
 timestamp.setText(String.valueOf(event.timestamp));
 timestampUnits.setVisibility(View.VISIBLE);

 switch (event.sensor.getType())
 {
 case Sensor.TYPE_ACCELEROMETER:
 showEventData("Acceleration - gravity on axis",
 ACCELERATION_UNITS,
 event.values[0],
 event.values[1],
 event.values[2]);
 break;

 case Sensor.TYPE_MAGNETIC_FIELD:
 showEventData("Abient Magnetic Field",
 "uT",
 event.values[0],
 event.values[1],
 event.values[2]);
 break;
 case Sensor.TYPE_GYROSCOPE:
 showEventData("Angular speed around axis",
 "radians/sec",
 event.values[0],
 event.values[1],
 event.values[2]);
 break;
 case Sensor.TYPE_LIGHT:
 showEventData("Ambient light",
 "lux",
 event.values[0]);
 break;
 case Sensor.TYPE_PRESSURE:
 showEventData("Atmospheric pressure",
 "hPa",
 event.values[0]);
 break;
 case Sensor.TYPE_PROXIMITY:

LISTING 5-3 (continued)

c05.indd 80c05.indd 80 5/10/2012 2:01:53 PM5/10/2012 2:01:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 81

 showEventData("Distance",
 "cm",
 event.values[0]);
 break;
 case Sensor.TYPE_GRAVITY:
 showEventData("Gravity",
 ACCELERATION_UNITS,
 event.values[0],
 event.values[1],
 event.values[2]);
 break;
 case Sensor.TYPE_LINEAR_ACCELERATION:
 showEventData("Acceleration (not including gravity)",
 ACCELERATION_UNITS,
 event.values[0],
 event.values[1],
 event.values[2]);
 break;
 case Sensor.TYPE_ROTATION_VECTOR:

 showEventData("Rotation Vector",
 null,
 event.values[0],
 event.values[1],
 event.values[2]);

 xAxisLabel.setText("x*sin(" + THETA + "/2)");
 yAxisLabel.setText("y*sin(" + THETA + "/2)");
 zAxisLabel.setText("z*sin(" + THETA + "/2)");

 if (event.values.length == 4)
 {
 cosLabel.setVisibility(View.VISIBLE);
 cos.setVisibility(View.VISIBLE);
 cos.setText(String.valueOf(event.values[3]));
 }

 break;
 case Sensor.TYPE_ORIENTATION:
 showEventData("Angle",
 "Degrees",
 event.values[0],
 event.values[1],
 event.values[2]);

 xAxisLabel.setText(R.string.azimuthLabel);
 yAxisLabel.setText(R.string.pitchLabel);
 zAxisLabel.setText(R.string.rollLabel);

 break;
 case Sensor.TYPE_RELATIVE_HUMIDITY:
 showEventData("Relatice ambient air humidity",
 "%",
 event.values[0]);
 break;

continues

c05.indd 81c05.indd 81 5/10/2012 2:01:53 PM5/10/2012 2:01:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

82 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

 case Sensor.TYPE_AMBIENT_TEMPERATURE:
 showEventData("Ambien temperature",
 "degree Celcius",
 event.values[0]);
 break;
 }
 }

 private void showEventData(String label, String units, float x, float y, float z)
 {
 dataLabel.setVisibility(View.VISIBLE);
 dataLabel.setText(label);

 if (units == null)
 {
 dataUnits.setVisibility(View.GONE);
 }
 else
 {
 dataUnits.setVisibility(View.VISIBLE);
 dataUnits.setText("(" + units + "):");
 }

 singleValue.setVisibility(View.GONE);

 xAxisLabel.setVisibility(View.VISIBLE);
 xAxisLabel.setText(R.string.xAxisLabel);
 xAxis.setVisibility(View.VISIBLE);
 xAxis.setText(String.valueOf(x));

 yAxisLabel.setVisibility(View.VISIBLE);
 yAxisLabel.setText(R.string.yAxisLabel);
 yAxis.setVisibility(View.VISIBLE);
 yAxis.setText(String.valueOf(y));

 zAxisLabel.setVisibility(View.VISIBLE);
 zAxisLabel.setText(R.string.zAxisLabel);
 zAxis.setVisibility(View.VISIBLE);
 zAxis.setText(String.valueOf(z));
 }

 private void showEventData(String label, String units, float value)
 {
 dataLabel.setVisibility(View.VISIBLE);
 dataLabel.setText(label);

 dataUnits.setVisibility(View.VISIBLE);
 dataUnits.setText("(" + units + "):");

LISTING 5-3 (continued)

c05.indd 82c05.indd 82 5/10/2012 2:01:53 PM5/10/2012 2:01:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android Sensor API x 83

 singleValue.setVisibility(View.VISIBLE);
 singleValue.setText(String.valueOf(value));

 xAxisLabel.setVisibility(View.GONE);
 xAxis.setVisibility(View.GONE);

 yAxisLabel.setVisibility(View.GONE);
 yAxis.setVisibility(View.GONE);

 zAxisLabel.setVisibility(View.GONE);
 zAxis.setVisibility(View.GONE);
 }

 @Override
 public void onHiddenChanged(boolean hidden)
 {
 super.onHiddenChanged(hidden);

 if (hidden)
 {
 if (BuildConfig.DEBUG) {
 Log.d(TAG, "Unregistering listener");
 }

 sensorManager.unregisterListener(this);
 }
 }

 @Override
 public void onPause()
 {
 super.onPause();

 if (BuildConfig.DEBUG)
 {
 Log.d(TAG, "onPause");
 Log.d(TAG, "Unregistering listener");
 }

 sensorManager.unregisterListener(this);
 }
}

code snippet SensorDisplayFragment.java

So far, this chapter has discussed the Sensor API in Android. The rest of the chapter will be dedi-
cated to discussion of the actual sensors and the data they provide.

c05.indd 83c05.indd 83 5/10/2012 2:01:54 PM5/10/2012 2:01:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

84 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

TRY THIS

Select the Sensor List button to run SensorListActivity and observe live sensor
values.

SENSING THE ENVIRONMENT

This section introduces the sensors that can be used to sense properties of the physical environment
that a device is currently in. The next section describes how to sense device movement and orienta-
tion in the environment.

Sensor.TYPE_LIGHT

The light sensor is often visible on the face of the device, under a small opening in the black color-
ing on the glass. It is simply a photodiode, which operates on the same physical principle as an LED
(light-emitting diode) but in reverse. Instead of generating light when a voltage is applied, it gener-
ates a voltage when light is incident on it.

The light sensor reports its values in lux, and has a typical dynamic range between 1 and 30,000
lux. The light sensor also has a resolution of 1 lux. A value of 0.25 lux is like the indirect brightness
from a full moon; bright enough to see things, but a basic camera without a fl ash wouldn’t capture
enough light to take a photograph. An overcast day is 10,000 lux, full daylight (indirect sun) is
around 20,000 lux, and direct sunlight is around 110,000 lux. These values span a wide range and
cannot be accurately represented by a qualitative human measure such as “an overcast day” (which
may vary in brightness depending on the thickness of cloud cover, the height of the sun in the sky,
and so on). However, these numbers do represent the values that can be expected. Here are the con-
stant values (in lux) for the light sensor.

 ‰ SensorManager.LIGHT_NO_MOON: 0.001

 ‰ SensorManager.LIGHT_FULLMOON: 0.25

 ‰ SensorManager.LIGHT_CLOUDY: 100

 ‰ SensorManager.LIGHT_SUNRISE: 400

 ‰ SensorManager.LIGHT_OVERCAST: 10000

 ‰ SensorManager.LIGHT_SHADE: 20000

 ‰ SensorManager.LIGHT_SUNLIGHT: 110000

 ‰ SensorManager.LIGHT_SUNLIGHT_MAX: 120000

The light sensor is mostly used to adjust screen brightness according to ambient light. Because
screen brightness is managed by the OS and Android’s settings, this is not often something
developers typically need to access.

c05.indd 84c05.indd 84 5/10/2012 2:01:54 PM5/10/2012 2:01:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sensing the Environment x 85

Some earlier devices do not have a proximity sensor, and therefore some developers have written
programs to use the light sensor as a proximity sensor to lock and blank the screen during calls.

Sensor.TYPE_PROXIMITY

The proximity sensor is usually visible on the face of the device only in bright sunlight. It typically
looks like a dark hole underneath the blackened part of the glass, usually at the top of the front face
of a smartphone. It consists of a weak infrared LED (light-emitting diode) next to a photodetector.
When something (such as the ear of a person making a phone call) comes close enough to the sensor,
the photodetector detects the refl ected infrared light.

The LED does not shine continuously, but pulses on and off. The photodetector locks in to this
frequency of pulsing in order to make the sensor insensitive to any light that is not changing at that
exact frequency. For example, the sensor doesn’t care if you move from a bright room to a dark
room because the bright and dark are just background light levels and aren’t picked out by the
locked-in photodetector system. The photodector is looking for light that is pulsing at the exact fre-
quency of the LED. The pulsing frequency is not available for control, because the proximity detec-
tor is usually a third-party piece of hardware that internally measures the photodetector’s signal,
decides on the proximity state, and only makes a near or far state available to the app.

Some proximity sensors report the distance to an object in centimeters. Others are not designed to mea-
sure the distance to an object, but only the presence or absence of an object at a distance closer than
some threshold (this is the case with proximity sensors in many smartphones today). A typical dynamic
range for a binary sensor (reported by the getMaximumRange() method) is around 5 cm; however, a
more valuable number is the approximate threshold distance, which is usually around 2–4 cm.

Because the proximity detector is designed to detect refl ections, the actual distance reported depends on
the refl ectivity of the object. For those sensors that report only the presence or absence of an object, the
combination of the brightness of the LED, the sensitivity of the detector, and the refl ectivity of the object
gives a range of around 2–3 cm. For measurements outside of that range, the sensor should report its
maximum value (this number can be compared to the maximum range using the method getMaximum-
Range()). For measurements within that range, the sensor will report a lesser number as discussed earlier.

Proximity sensors that have only binary output are interrupt-based and are not polled apps that
make use of these types of sensors will receive an onSensorChanged() callback when a proximity
state transition occurs (near-to-far or far-to-near).

The main application of a proximity sensor is detecting the ear of the user in order to shut down or
lock the screen during calls.

To prevent rapid back-and-forth state switching when an object is exactly positioned at the distance
threshold, the threshold for the sensor switching from far to near state is typically designed to be
closer to the device than the threshold for switching from near to far state.

Typical proximity sensor LEDs operate at a wavelength of around 900 nanometers (nm), which is
longer than humans can see (typically 750 nm) but shorter than many remote controls (around 1000
nm), and can travel through the black coloring on the glass.

c05.indd 85c05.indd 85 5/10/2012 2:01:54 PM5/10/2012 2:01:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

86 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Some people have reported that very bright light can saturate the detector and trick the sensor into
giving a false reading. However, this is not usually a problem unless you are looking for it. If it is
found to be a problem, it can be circumvented by appealing to the separate light sensor for a second-
ary reading, assuming it is not saturated.

Sensor.TYPE_PRESSURE

This constant refers to a MEMS barometer, which measures air pressure. Its primary use is for
determining altitude in places where the device cannot get a GPS fi x, such as locations inside a
building. This sensor is currently available only in a few devices.

There is some misunderstanding around whether this sensor measures pres-
sure of a fi nger on the screen or the ambient air pressure. This misunder-
standing probably stems from the fact that there is also a MotionEvent.
getPressure() method, which is designed to return the pressure of a fi nger
on the screen.

In their simplest incarnation, MEMS pressure sensors look like a drum skin over a chamber with
a known pressure inside. As the outside pressure changes, the drum skin bulges in or out with the
differential pressure. More accurate MEMS pressure sensors involve a drum skin or other structure
that is set into resonant motion, and the amount that the air impedes its motion is measured. This is
related to air density, which is related to air pressure at a given temperature.

It is normal for pressure to drift by approximately 0.5 millibar (mbar) in an hour. An intensifying
storm may cause pressure to drift by 1 mbar per hour in the same direction for a few consecutive
hours. Pressure cycles up and down usually twice daily due to atmospheric tides and other effects
such as changes in temperature.

Altitude can be calculated from air pressure using the SensorManager.getAltitude() method,
which returns the altitude above sea level in meters. This uses a standard physics formula to calcu-
late the altitude (elevation) based on the measured pressure p and the pressure at sea level p0. The
pressure at sea level can be either:

 ‰ The standard pressure given by the associated constant PRESSURE_STANDARD_ATMOSPHERE,
which gives decent results for relative elevations but not for absolute elevation.

 ‰ The effective (or mean) sea-level pressure reported by an airport or other weather-
reporting station, which gives the best results for both relative and absolute elevation
measurements.

Because the latter option is signifi cantly harder to implement, it is advisable to use PRESSURE_
STANDARD_ATMOSPHERE for most cases and use the latter option only when higher absolute accuracy
and precision is necessary. However, the latter option is covered with plenty of detail in the “Mean
Sea-Level Pressure” section to get you started.

c05.indd 86c05.indd 86 5/10/2012 2:01:55 PM5/10/2012 2:01:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sensing the Environment x 87

Absolute Altitude

SensorManager.getAltitude() uses the formula shown in Figure 5-3.

h(p0, p) =
T0

p0L
1 − = 44330 ∗

p
RL

gM

p0
1 −

p
1

5.255

FIGURE 5-3: Computing altitude from atmospheric pressure

In the equation shown in Figure 5-3, h is altitude, T0 is sea-level standard temperature, L is temper-
ature lapse rate, R is the universal gas constant, g is gravitational acceleration, and M is the molar
mass of dry air. You can look up these constants online if necessary, but in general you shouldn’t
need to look them up because the simplifi ed formula appears on the right-hand side of the equation.

Relative Altitude

Using the formula from the preceding section, you can calculate relative altitude differences such
as the difference in altitude between fl oors in a shopping mall. Because pressure drifts over time,
the app should look for relative differences that happen over a short enough timescale (such as the
timescale corresponding to a person ascending a fl ight of stairs). It is important to calculate the alti-
tudes fi rst and then subtract them rather than trying to compare pressures. This will work quite well
even if the absolute altitudes are not accurate. For example:

float altitudeDifference =
 getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,pressureAtPoint2)
 -
 getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,pressureAtPoint1);

For instance, a pressure change from 1010 to 1011 mbar corresponds to descending by 8.34 m, and
(inverting the formula) an altitude change of 10 m corresponds to 1.2 mbar pressure change at sea level.

Mean Sea-Level Pressure (MSLP)

Assume you don’t want to use PRESSURE_STANDARD_ATMOSPHERE, so you need to fi nd effective sea-
level pressure. First, what is effective (or mean) sea-level pressure (MSLP)?

Consider a particular weather station in Chicago that measures an atmospheric pressure of 1000.0
mbar. It will calculate and report an MSLP (sometimes just called sea-level pressure, or SLP) of
1010.0 mbar. MSLP is calculated to be what the air pressure would be if the Chicago station were
actually sitting at sea level. We expect it to be higher because pressure gets higher as you go down
in altitude. This latter pressure is actually the pressure usually given in weather reports on televi-
sion, newspapers, and online, because then you can show weather patterns across a country despite
the differing terrain and elevations. In addition, home barometers are usually calibrated by the user
to track the MSLP rather than report the actual measured pressure — so a home barometer in this
example would measure 1010 mbar if the user has calibrated it against MSLP as is usually the case.
This can lead to some confusion because the MEMS barometer in Android is a raw sensor and
would return 1000 mbar in Chicago (assuming it is a good sensor and responds to air pressure in the
same way as the Chicago reporting station). To avoid confusion, ignore any home barometers that

c05.indd 87c05.indd 87 5/10/2012 2:01:55 PM5/10/2012 2:01:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

88 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

may be lying around and trust the value from the Android device, referenced to the reported MSLP
of the nearest reporting station to calculate altitude. The following code shows how to calculate
altitude:

float altitude =
 mSensorManager.getAltitude(pressure_localReportingStationMSLP,
 pressure_measuredOnDevice);

Where to Find MSLP

You can fi nd many sources of meteorological station data online. For example, for the United States
go to the ADDS website (http://aviationweather.gov/adds/metars/). A simple web request
can be sent (see the details on the website), and a string received for a given station. For instance, the
main Chicago station may return the following:

KMDW 171851Z 25014G23KT 10SM SCT150 BKN200 BKN250 12/M01 A2984 RMK AO2 SLP106 T01221006

You will need to parse that string to fi nd the effective sea-level pressure. You can fi nd a detailed
interpretation on the ADDS website, but briefl y: KMDW is a code that uniquely identifi es a particu-
lar station in Chicago (you can fi nd latitude and longitude at http://aviationweather.gov/adds/
metars/stations.txt), “SLP” stands for sea-level pressure, and 106 is a truncated 1010.6 mbar.
Notice that the decimal point and the fi rst two digits are dropped — this is standard notation. To
know whether the fi rst two digits that were dropped were a 09 or a 10, use the number that is clos-
est to 1000, because the other number would be unphysical.

Sensor Units

Although the pressure sensor reports pressure in millibars (mbar), many different units of pres-
sure may be encountered. For instance, all United States reporting stations will report the pressure
in inches of mercury (inHg). Other common units of pressure are: 1 mbar (millibar) = 0.001 bar =
0.1 kPa (kilopascal) = 1 hPa (hectopascal) = 1,000 dyn/cm2 (dynes per square cm) = 0.000987 atm
(atmospheres) = 0.0295 inHg (inches of mercury) = 0.750 mmHg (mm of mercury) = 0.0145 psi
(pounds per square inch).

Sensor Range

A typical dynamic range of a MEMS pressure sensor is 300–1100 mbar and a typical resolution is
0.01 mbar (for the Bosch BMP085 in the Motorola Xoom, for example). The pressure sensor has one
constant, SensorManager.PRESSURE_STANDARD_ATMOSPHERE, with a value (in mbar) of 1013.25.

Common Use Cases

The main area of anticipated use for pressure sensors is in measuring elevation. This can be for
either an absolute elevation measurement (meaning the measurement of absolute height above sea
level) or relative elevation measurement (meaning the measurement of relative elevation due to fast
but small changes in elevation — for instance, detecting fl oor changes, for indoor navigation such as
in a shopping mall or other areas where use of GPS would be problematic).

 ‰ Absolute elevation measurement: GPS can take a long time to get a fi x. Reading the pressure
sensor is quick, so an app could use a less accurate elevation measurement from the pressure
sensor and use the (possibly) more accurate GPS-based elevation value when it is available.
Alternatively, you may just be interested in fi nding the absolute altitude when GPS is turned
off or GPS signals are not available.

c05.indd 88c05.indd 88 5/10/2012 2:01:56 PM5/10/2012 2:01:56 PM

www.it-ebooks.info

http://aviationweather.gov/adds/metars
http://aviationweather.gov/adds
http://www.it-ebooks.info/

Sensing the Environment x 89

 ‰ Relative elevation measurement: Although GPS provides altitude data, GPS signal is not
always available. Using the pressure sensor, however, you may be able to determine which
fl oor in a building a device is on instead of just which building the device is in. Current
MEMS pressure sensors are sensitive enough to detect air pressure differences between dif-
ferent fl oors in a building (typically on the order of 0.3–0.4 mbar differences for typical
residential buildings and larger for buildings like shopping malls, calculable from the for-
mula given previously), especially buildings like shopping malls where each story is taller
than in a residential building. Air pressure may naturally fl uctuate by more than 0.3–0.4
mbar over time, however air pressure changes due to going upstairs or downstairs are usu-
ally faster changes and can be detected. D epending on location, pressure may vary over
the course of a year from approximately 995 to 1030 mbar with an average value of 1013
mbar. However, pressure usually drifts by less than 1 mbar over the course of an hour.

 ‰ Sensing weather: Although barometers are usually associated with weather measurements,
this is actually not as useful for users or developers as it might initially seem. National
weather reporting systems have better barometers, Android devices can usually check such
data over the Internet, and weather doesn’t vary on a small enough spatial scale to make
barometric measurement for weather measurement very useful.

Sensor.TYPE_RELATIVE_HUMIDITY

The relative humidity sensor provides the current ambient humidity as the percent of water vapor in the
air. More specifi cally, relative humidity is the amount of water vapor in the air compared to the maxi-
mum amount of water vapor that the air can hold at a given temperature. A value of 100% indicates that
the air is fully saturated. The value returned by this sensor is humidity commonly used in weather reports.

The relative humidity can be used, along with the ambient temperature, to calculate the dew point
and the absolute humidity. Dew point is the temperature at which water vapor condenses. Absolute
humidity is the mass of water in a given volume of air.

Sensor.TYPE_AMBIENT_TEMPERATURE

The ambient temperature sensor provides the room temperature in degrees Celsius. This sensor is
meant to replace the use of Sensor.TYPE_TEMPERATURE, which has been deprecated.

Sensor.TYPE_TEMPERATURE

The temperature sensor in Android devices is designed to detect the temperature of the CPU for
internal hardware calibration. It is not designed for measuring environmental temperature, and is
therefore not generally useful to developers. As of release 4.0, the sensor has been deprecated in
favor of the ambient temperature sensor.

Although the online documentation may not list the temperature sensor as deprecated, the offi cial
Android 4.0 Compatibility Defi nition states:

Device implementations MAY but SHOULD NOT include a thermometer
(i.e. temperature sensor.) If a device implementation does include a thermometer,
it MUST measure the temperature of the device CPU. It MUST NOT measure any
other temperature. (Note that this sensor type is deprecated in the Android 4.0 APIs.)
(Source: http://source.android.com/compatibility/android-4.0-cdd.pdf.)

c05.indd 89c05.indd 89 5/10/2012 2:01:56 PM5/10/2012 2:01:56 PM

www.it-ebooks.info

http://source.android.com/compatibility/android-4.0-cdd.pdf
http://www.it-ebooks.info/

90 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

The reason for deprecation appears to be that it is an internal system sensor and has no general-
purpose use in apps.

Thus far, this chapter has discussed the various concepts surrounding sensors and the Android platform,
as well as enumerated the sensors that may be available on a given Android device. The remainder of the
chapter will be dedicated to implementing application code that makes use of the sensor data.

SENSING DEVICE ORIENTATION AND MOVEMENT

This section goes into depth describing Android inertial sensors. Inertial is just a term that refers
to motion measurement. These are different than the sensors in the previous section in that they
describe what the device is doing in its environment as opposed to describing the environment itself.

Coordinate Systems

When using orientation and movement sensors in Android, two coordinate systems are defi ned: the
global coordinate system xE, yE, zE, and a device coordinate system x, y, z. Both coordinate systems
are illustrated in Figure 5-4. This fi gure shows the device positioned at the equator of Earth, with
some tilt with respect to Earth. All coordinate systems for three-axis sensors obey these coordinate
systems, except Sensor.TYPE_ORIENTATION, which is deprecated.

Source: http://developer.android.com/reference/

android/hardware/SensorEvent.html

North magnetic pole

Earth

xE

x
z

zE

y

Global coordinate system

Device coordinate system

yE

South magnetic pole

FIGURE 5-4: Android coordinate systems

c05.indd 90c05.indd 90 5/10/2012 2:01:56 PM5/10/2012 2:01:56 PM

www.it-ebooks.info

http://developer.android.com/reference
http://www.it-ebooks.info/

Sensing Device Orientation and Movement x 91

Note that SensorManager.getOrientation() has reversed x and z axes with respect to the global
coordinate system shown here.

Global Coordinate System

All sensors and methods that refer to an absolute orientation with respect to Earth (except the orien-
tation sensor) use the global coordinate system. These include:

 ‰ The rotation vector sensor, which uses the accelerometer, magnetometer, and possibly the
gyroscope to sense device orientation relative to Earth.

 ‰ getRotationMatrix(), getRotationMatrixFromVector(), and getQuaternionFromVec-
tor(), which get the rotation matrix or quaternion that can map the device coordinate sys-
tem on to the global coordinate system.

 ‰ getOrientation(), which takes a rotation matrix generated from getRotationMatrix()
and returns an orientation vector.

 ‰ getInclination(), which takes a rotation matrix from the getOrientation() method and
returns the magnetic inclination. Magnetic inclination is how much a compass needle would
deviate vertically from a plane horizontal to Earth’s surface.

In the global coordinate system:

 ‰ yE points toward magnetic north, which is approximately true north.

 ‰ xE points approximately east — parallel to Earth’s surface but 90 degrees from yE.

 ‰ zE points away from the center of the earth.

Device Coordinate System

Raw three-axis inertial sensors (accelerometer, magnetometer, and gyroscope) report values cor-
responding to the device coordinate system. The device coordinate system is partially defi ned by the
default orientation, which differs depending on the type of the device. For example, phones have
a portrait default orientation while tables have a landscape default orientation. When the device is
viewed in its default orientation, the axes are directed as follows

 ‰ The x-axis is horizontal with positive values to the right.

 ‰ The y-axis is vertical with positive values upward.

 ‰ The z-axis is positive values in front of the screen.

The coordinate system is fi xed to the device — the axis orientations are not changed when the
device goes from portrait to landscape mode.

The Android 2D APIs use a different coordinate system, where the origin is in the top-left corner
rather than at the center of the screen.

Angles

Angular quantities around axes are given by either a 3-vector, rotation matrix, or quaternion that
maps the device coordinate system on to the global coordinate system. Quaternions are an alternate

c05.indd 91c05.indd 91 5/10/2012 2:01:57 PM5/10/2012 2:01:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

92 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

representation of rotation matrices and are beyond the scope of this book. For example, a 3-vec-
tor gyroscope reading of (0.1, –0.2, 0.0) indicates that the rotation rate is +0.1 radians per second
around the x-axis, –0.2 radians per second around the y-axis, and not rotating around the z-axis.

The direction of angular three-vectors is determined by the so-called right-hand rule: if the thumb
of your right hand points along the positive direction of the axis, your fi ngers will curl around in the
direction of positive angle. The components of angular three-vectors may also be called azimuth (or
heading or yaw), pitch, and roll. This is covered in more detail later.

Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and
.TYPE_LINEAR_ACCELERATION

MEMS accelerometers (Figure 5-5) are tiny masses on tiny springs. These devices can sense:

 ‰ Speeding up or slowing down in a straight line (such as the act of throwing or catching the
device, during the short time period just before you release it or just after you catch it)

 ‰ Shaking the device

 ‰ Holding the device while going around a sharp corner in a car

 ‰ Earth’s gravity, which is 1 g downward (g is a unit of acceleration and is equal to 9.8 m/s2)

Because acceleration is often associated with the feeling of being pushed into a car seat when the gas
pedal in a car is depressed, it can be diffi cult to see why there is a constant downward acceleration
due to gravity when a mass is standing still. However, remember that F=ma shows that an accelera-
tion a is just the same thing as a force F, related through the proportionality constant m, for mass.
So whenever there is a force there will be a proportional acceleration too, even if acceleration may
not be what we call it in everyday terms. How are forces acting on masses measured? By attaching
the masses to springs and seeing how far the springs are deformed (see Figure 5-5).

m m
m

1 g of gravity 1 g of gravity
+ acceleration

to the right

freefall

CBA

FIGURE 5-5: Force being applied to a mass attached to springs

Acceleration is measured by attaching a mass to springs and seeing how far the mass deviates from
its equilibrium position. In Figure 5-5, A would correspond to the device sitting on a table. B would
correspond to the device being thrown to the right, in the instant before it leaves the user’s hand. C
would correspond to the user dropping the device, during its free-fall motion. With this in mind it
is easy to see why accelerometers measure both the force of gravity and also linear acceleration. It is
also easy to see why an accelerometer in free-fall will report zero acceleration even though it is still
subject to Earth’s gravity — this is because both the mass and the frame it is suspended from have
the same acceleration acting on them, so the springs do not deform.

c05.indd 92c05.indd 92 5/10/2012 2:01:57 PM5/10/2012 2:01:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sensing Device Orientation and Movement x 93

Every particle on Earth feels the downward force of gravity and is held against gravity through
springy molecular forces and possibly macroscopic springs. MEMS masses are also pulled
downward by gravity and their tiny springs deform, allowing acceleration due to gravity to be
measured.

The same inertial forces act, and the MEMS springs bend, when the device is shaken or swung
around in a circle (though in the latter case the acceleration is inward, and due to the force applied
to pull the device inward), so that is measured as acceleration.

Because force and the physics defi nition of acceleration are related, accelerometers can be thought of
as force-meters that measure the force acting on the MEMS mass. At rest, they measure the force of
gravity downward. When accelerating, they measure the force that caused them to accelerate (added
to the force of gravity by vector addition).

During free-fall, the force of gravity still acts downward, however the MEMS mass and the sur-
rounding frame to which it is attached (by springs) both have this same gravitational acceleration
acting equally on them, therefore the MEMS springs no longer bend and the accelerometer measures
0 g.

From Android 2.3 onward, for convenience, developers also have the synthetic sensors Sensor.
TYPE_GRAVITY and Sensor.TYPE_LINEAR_ACCELERATION available. These sensors factor out the
force due to gravity and other accelerations. The sum of the values from the gravity and linear accel-
eration sensors equals the value from the accelerometer Sensor.TYPE_ACCELEROMETER.APS

Sensor Units and Resolution

Android reports acceleration in m/s2. Earth’s gravity is 9.8 m/s2 or 1 g (gee, a unit of gravity) down-
wards. However when at rest the sensor reports its z-value to be +9.8 m/s2, because it reports posi-
tive values for downwards accelerations. For all three accelerations, the convention is:

 ‰ values[0]: Minus gx on the x-axis

 ‰ values[1]: Minus gy on the y-axis

 ‰ values[2]: Minus gz on the z-axis

where gx, gy, and gz are the three components of the measured acceleration vector.

A typical dynamic range is 0 ± 2 or ± 4 g, and a typical resolution is 0.1 m/s2. A device at rest will
often report noise of around 1/20th of a g. Vibration of the internal device vibrator (the notifi cation
vibrator) may shake it at an amplitude of 1 g. Shaking the device vigorously by hand will result in
changes of around 1–10 g. Here are the associated constants for the accelerometer and their corre-
sponding values in m/s2:

 ‰ SensorManager.GRAVITY_EARTH: 9.80665

 ‰ SensorManager.STANDARD_GRAVITY: 9.80665

A few other constants also exist, such as SensorManager.GRAVITY_SATURN, but
these are typically not very useful.

c05.indd 93c05.indd 93 5/10/2012 2:01:57 PM5/10/2012 2:01:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

94 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Sensor.TYPE_GYROSCOPE

MEMS gyroscopes are also tiny masses on tiny springs, but instead of measuring acceleration, they
are designed to measure a different force — the so-called Coriolis force due to rotation. The Coriolis
force is the tendency for a free object to veer off course when viewed from a rotating reference
frame. For instance, when you are sitting on a merry-go-round and roll a ball away from you, the
ball appears to veer away from a straight line as if there is a force acting on it. This fi ctitious force is
called the Coriolis force. It is a “fi ctitious force” because when viewed from someone standing next
to the merry-go-round, no force acts on the ball — it is simply rolling in a straight line as you would
expect from Newtonian physics.

In the MEMS world, the gyroscope works by pushing a tiny mass back-and-forth along one axis.
When the gyroscope is rotated, the Coriolis force makes the mass veer away from the direction it
was vibrating, and it starts to move along a different axis. Movement along this new axis is sensed
electrically, using capacitor plates — one capacitor plate is fi xed to the frame and one is fi xed to the
moving mass.

The Coriolis force acts only when the device is rotating, therefore gyroscopes measure only angular
velocity, or, the speed at which the device is rotating. When the device is stationary, regardless of
which direction the device is pointing, all three axes of the gyroscope will measure zero.

You cannot directly measure angle using a gyroscope. However, often the gyroscope values are inte-
grated over time to calculate an angle. The gyroscope noise and offset will introduce large errors
in the calculated angle, which if not addressed would make the integrated data be useless within a
second or so. These errors may be compensated using the information from other sensors, and are
covered in Chapter 6.

Sensor Units

Android reports values in radians per second around the standard x, y, and z axes shown in
Figure 5-4. The standard mathematical convention is followed: if the axis in question is pointing
toward you, positive values indicate counterclockwise rotations. This is given by the right-hand
rule, discussed previously.

Sensor Range

A typical maximum range to expect is around 35 degrees/second (0.61 rad/s), and a typical resolu-
tion is around 0.001 degrees/second (2E-5 rad/s).

Sensor.TYPE_MAGNETIC_FIELD

Magnetic fi eld sensors may operate under a variety of different methods depending on the manufac-
turer and architecture — they may use the Hall effect, magneto-resistive materials, or the Lorentz
force. Hall effect sensors currently comprise the largest market share of magnetometers and work
by simply passing a current through a wire. A magnetic fi eld component perpendicular to that wire
causes the electrons to have higher density on one side of the wire compared to the other, which
results in a voltage across the width of the wire that is proportional to the magnetic fi eld. Lorentz
force sensors are similar but measure a mechanical defl ection of the wire rather than voltage across

c05.indd 94c05.indd 94 5/10/2012 2:01:58 PM5/10/2012 2:01:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sensing Device Orientation and Movement x 95

the wire’s width. Regardless of the physical mechanism, magnetic fi eld sensors will report the mag-
netic fi eld in x, y, and z (by having three separate sensors, one aligned along each axis).

You may notice that the magnetic fi eld readout is quite jumpy and may seem less accurate than other
sensors. Magnetometers will undoubtedly continue to improve, but at the time of writing, creating
a low-noise, sensitive, accurate, inexpensive MEMS magnetic fi eld sensor is still an open problem in
the fi eld of MEMS.

Sensor Units, Range, and Resolution

Android reports magnetic fi elds in microtesla. A typical dynamic range is around 2000 microtesla.
The resolution for the magnetic fi eld sensor is 0.1 microtesla. Earth’s magnetic fi eld can vary from
30 microtesla to 60 microtesla, and over the U.S. the value varies from around 58 microtesla
in North Dakota to around 48 microtesla in southern Texas, and these values drift over time.
However, the absolute value does not matter much, and these should be only taken to be ballpark
estimates — MEMS-based magnetometers have both poor absolute accuracy and will vary based on
the local environment. The local environment (the presence of nearby metal, even many nonmag-
netic metals), hysteretic effects (the effect of environmental history; for example, if a metal body or
magnet was close to the sensor and then removed, it may have changed the reading on the sensor),
and drift cause measured values to change over time.

If better accuracy for the magnitude of the measurement is desired, the class android.hardware.
GeomagneticField will estimate the magnetic fi eld magnitude and direction at a given point on
Earth. You supply a latitude, longitude, altitude, and time to instantiate it, and then have access to
the following fi elds:

 ‰ float getDeclination() (Declination is the angle between magnetic north and true north
for a given location.)

 ‰ float getFieldStrength()

 ‰ float getHorizontalStrength()

 ‰ float getInclination() (Inclination is how far downward or upward the magnetic fi eld
should point, compared to the horizon.)

 ‰ float getX(), float getY(), float getZ() (These give the northward, eastward, and
downward components of the expected magnetic fi eld in nanoteslas [multiply by 1000 to get
microteslas].)

Here are the associated constants for Sensor.TYPE_MAGNETIC FIELD and their values (in
microtesla):

 ‰ SensorManager.MAGNETIC_FIELD_EARTH_MAX: 60.0

 ‰ SensorManager.MAGNETIC_FIELD_EARTH_MIN: 30.0

Ideally, MEMS magnetometers would always measure the absolute magnetic fi eld of Earth. In reality,
the measured values change over time based on both the current local magnetic environment and the
history of the device. For instance, the presence of a nearby magnet or nonmagnetic metal object dis-
torts Earth’s magnetic fi elds and results in readings that differ from magnetic north (see Figure 5-6).

c05.indd 95c05.indd 95 5/10/2012 2:01:58 PM5/10/2012 2:01:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

96 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

Because the magnetic fi eld sensor can be infl uenced by nearby metal, some people have used the sen-
sor to make an Android device into a crude metal detector. These apps watch for large changes in
the magnetic fi eld as you move a piece of metal over your stationary Android device.

NorthNorth

0
0 0.5 1−1

−1

0.5

−0.5

−0.5

East

South

West

(A)

0
0 0.5 1

1

−1

0.5

−0.5

−0.5

East

South

West

(B)

−1

1

FIGURE 5-6: (A) Device rotated by hand at approximately constant rate,

magnetic sensor readings plotted (normalized azimuth plot)

(B) Device rotated in the same way, but with a metal object nearby

The sensor may report different values before the introduction of a nearby metal object or magnet
compared with after it is removed (an effect known as hysteresis — where the sensor reading depends
on the history of the sensor’s environment and not always the real value you wish to measure).

Sometimes when interrogating the compass, there may be some “jumpiness” or a large offset in the
data. Waving the device in a fi gure eight (away from any metal objects) will usually cause the mag-
netometer to report better readings. There is nothing special about a fi gure eight other than that it
ensures a wide range of rapid data changes, which allows the magnetometer to get back on track.
The fi gure eight should not be performed in just one plane (it’s not just like driving a toy racecar
around a fl at fi gure eight track), but the user should to wave it in all three axes to calibrate all axes
of the magnetometer.

To determine when the fi gure eight calibration is needed, monitor the accuracy using
SensorEventListener.onAccuracyChanged(Sensor sensor, int accuracy). As previously
mentioned, there are four levels of accuracy: SENSOR_STATUS_ACCURACY_HIGH, SENSOR_STATUS_
ACCURACY_MEDIUM, SENSOR_STATUS_ACCURACY_LOW, and SENSOR_STATUS_UNRELIABLE. Some apps
remind the user to do this when the magnetometer reports an unreliable status, whereas others
assume the accuracy is always suffi cient or that the user knows the calibration procedure and when
to calibrate. (Another method of calibration may have the user place the device fl at on a table and
pointing toward magnetic north, and thereafter using that reading as a constant offset from subse-
quent measurements; however, it is unlikely that users will perform this procedure.)

Lastly, some people who have reported a stuck compass (stuck pointing in one direction) have said that
by waving a magnet around the device, the magnetometer can get unstuck. The magnetic fi eld sensor

c05.indd 96c05.indd 96 5/10/2012 2:01:59 PM5/10/2012 2:01:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sensing Device Orientation and Movement x 97

is often located near the top of a smartphone. The sensor can be found by moving a weak magnet
(such as a small piece of fl exible fridge magnet) over the device and watching the sensor readings.

Sensor.TYPE_ROTATION_VECTOR

Available since API level 9, Sensor.TYPE_ROTATION_VECTOR is a synthetic sensor that calculates
rotation angle of the global coordinate system with respect to the device coordinate system using the
accelerometer, the magnetometer, and possibly the gyroscope if available.

The output of this sensor is in a form similar to a quaternion, which is an alternate representation
of a rotation. Quaternions have certain mathematical advantages over expressing rotations in typi-
cal Euclidean terms, but they are not easily visualized. To get a true normalized quaternion from
the output of this sensor, use the SensorManager.getQuaternionFromVector() method. However,
quaternions are beyond the scope of this book, so we will simply skirt the issue by staying with the
Euclidean representation, and convert the output immediately to a rotation matrix using the get-
RotationMatrixFromVector() method, as shown in the following snippet:

private float[] rotationMatrix = new float[16];
private float[] rotationVector = new float[3];
public void onSensorChanged(SensorEvent event){
 switch (event.sensor.getType()){
 case Sensor.TYPE_ROTATION_VECTOR:{
 rotationVals = event.values.clone();
 break;
 }
 case ...
 }
 getRotationMatrixFromVector (rotationMatrix, rotationVector);
};

As described, rotation matrices can be thought of as just another representation of an orientation
vector — in other words, you can specify the orientation using rotationVector, or using the rota-
tionMatrix that maps rotationVector on to the global coordinate system. As such, it may be used
in, for example, an augmented reality app to calculate at what angle a virtual reality object should
appear on the screen.

SensorManager.getRotationMatrixFromVector() takes two arguments. The fi rst is a 9 or 16
element matrix to hold the desired rotation matrix. The second is the output of the rotation vector
sensor. The matrix rotationMatrix describes the rotation necessary to rotate the global coordinate
system to the device coordinate system (see Figure 5-4) — thus, it describes the orientation of the
device.

This synthetic sensor may be heavily processed depending on the implementation, and you can
expect more processing in future devices. The section on “Sensor Fusion Schemes” later in this
chapter will go into more detail.

When performing intensive three-dimensional vector calculations for graphical purposes (for
example, an augmented reality app), check out OpenGL (Open Graphics Library) — also beyond the
scope of this book, but worth learning because it has been designed for such calculations.

c05.indd 97c05.indd 97 5/10/2012 2:01:59 PM5/10/2012 2:01:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

98 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

SensorManager.getOrientation()

A rotation matrix can be obtained from getRotationMa-
trix() or getRotationMatrixFromVector(), and can
then be passed getOrientation() to get the orientation
(azimuth, pitch, and roll in radians). Note that here orienta-
tion means both the north-south-east-west bearing and the
tilt angle. It is a vector describing how the device is oriented
with respect to Earth. It is different than screen orientation
(the portrait or landscape orientation) defi ned in the getRe-
sources().getConfiguration().orientation fi eld.

Use of the deprecated Sensor.TYPE_ORIENTATION, which
reports azimuth, pitch, and roll in degrees, should be
avoided. However, Sensor.TYPE_ORIENTATION is still fairly
widely implemented by developers and will probably still
work on most devices for some time.

The coordinate system used here is shown in Figure 5-7.
Annoyingly, the x and z axes are inverted with respect to the
regular global coordinate system in Figure 5-4. The reported
values are all given by the right-hand rule: if your right-hand
thumb points along the positive direction of an axis, your
fi ngers will curl around in the direction of increasing angle.

getOrientation() returns the following values:

 ‰ values[0] = Azimuth (or heading or yaw) = Rotation about z-axis: Assume the device is fl at
on its back in portrait mode, with the top pointing toward north. The device reports 0 radi-
ans in this orientation, P/2 radians when pointing east, –P/2 radians when pointing west,
and ’ radians when pointing south.

 ‰ values[1] = Pitch = Rotation about x-axis: Assume the device is fl at on its back in portrait
mode. The device reports 0 radians in this orientation, –P/2 radians when you lift the top
upward so it is standing upright with the screen facing toward you, +P/2 radians when you
lower the top so it is standing upright with the screen facing away from you, and P radians
when the device is face down.

 ‰ values[2] = Roll = Rotation about y-axis: Assume the device is fl at on its back in portrait
mode. The device reports 0 radians in this orientation, –P/2 radians when you lift the right
side so it is standing upright on its side with the screen facing west, P/2 radians when you
lift the left side so it is standing upright with the screen facing east, and P radians when the
device is face down.

The procedure for determining device orientation is given in Listing 5-3.

Source: http://developer.android.
com/reference/android/hardware/

SensorManager.html.

y

z

x

FIGURE 5-7: The axes for getOri-
entation(). The sphere represents

Earth and the device is positioned at

the equator. The y-axis points toward

magnetic north, x points west, and z

points to the center of the earth. (The x

and z axes are inverted with respect to

Figure 5-4.) Pitch, roll, and azimuth are

defi ned by the right-hand rule around

the x, y, and z axes, respectively

c05.indd 98c05.indd 98 5/10/2012 2:01:59 PM5/10/2012 2:01:59 PM

www.it-ebooks.info

http://developer.android
http://www.it-ebooks.info/

Sensing Device Orientation and Movement x 99

LISTING 5-4: DETERMINING DEVICE ORIENTATION

 private SensorManager sm;
 private float[] accelVals;
 private float[] magVals;
 private float[] rotationMatrix = new float[16];
 private float[] orientationVals = new float[3];

 /*
 * Construct the SensorManager objects and register sensor listeners. Not
 * shown here.
 */

 // Sensor reading
 public void onSensorChanged(SensorEvent event)
 {
 switch (event.sensor.getType())
 {
 case Sensor.TYPE_ACCELEROMETER:
 {
 accelVals = event.values.clone();
 break;
 }
 case Sensor.TYPE_MAGNETIC_FIELD:
 {
 magVals = event.values.clone();
 break;
 }
 }

 SensorManager.getRotationMatrix(rotationMatrix, null, accelVals,
 magVals);
 SensorManager.getOrientation(rotationMatrix, orientationVals);

 // Optionally convert the result from radians to degrees
 orientationVals[0] = (float) Math.toDegrees(orientationVals[0]);
 orientationVals[1] = (float) Math.toDegrees(orientationVals[1]);
 orientationVals[2] = (float) Math.toDegrees(orientationVals[2]);
 };

The code in Listing 5-4 passes the accelerometer and magnetometer measurements into
getRotationMatrix(), which populates rotation Matrix. The generated rotation matrix is then
passed into getOrientation() to get yaw, pitch, and roll. In most cases (but not in this example),
an app may need to check that getRotationMatrix() returns true — it will return true if it suc-
ceeded and false if it failed.

For this example, the call to getRotationMatrix() is passed a null inclination matrix as the second
parameter. This is because the inclination matrix is not needed for the calculation and this can save
execution time.

c05.indd 99c05.indd 99 5/10/2012 2:02:00 PM5/10/2012 2:02:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

100 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

rotationMatrix is the matrix that fulfi lls:

[0 0 g] = rotationMatrix * accelVals and the inclination matrix inclinationMatrix (which
we consider in the following section) is the matrix that fulfi lls:

[0 m 0] = inclinationMatrix * rotationMatrix * magVals, where g = 9.8 m/s2 and m = the
magnitude of the magnetometer reading (to get the magnitude you add the squares of mx, my, and
mz, and then take the square root).

In other words, rotationMatrix assumes no signifi cant external acceleration other than 1 g down-
ward toward Earth (this means that it assumes the device is not being shaken), and simply maps
accelVals (which are taken in the device’s coordinate system, which is fi xed to the device) on to
the coordinate system in Figure 5-4 which is fi xed to Earth. When the device is lying fl at on its back
with the top of the device in portrait mode pointing to the north, the device’s coordinate system and
Earth’s coordinate system align, and rotationMatrix is just the identity matrix.

This method returns true on success, false on failure. Failure will occur if the device is in free fall
because the accelerometer’s downward measurement is not defi ned. (Failure will also occur if the
device is close to the magnetic north or south of Earth, although admittedly this is not likely to hap-
pen.) On failure the output matrices are not modifi ed.

orientationVals is the vector that will hold the azimuth, pitch, and roll in radians.

Notice that the values passed into onSensorChanged() are cloned before they are assigned the class
member data. This is because the SensorEvent object that is passed to onSensorChanged() may be
reused on subsequent calls. The use of clone() is needed to avoid the values getting overridden as
the array points to a reference.

This method for getting the orientation will not fail, but may give incorrect results if the device is
accelerating or a nearby magnet is affecting the magnometer.

Once you have found rotationMatrix, remapCoordinateSystem() can be used to cast rotation-
Matrix into a more convenient form. For instance, the matrix that getRotationMatrix() returns
is defi ned to have the y-axis pointing out the top of the device, so when the device is sitting fl at on
a table pointing north, it will read (0,0,0). If a particular application needs it to read (0,0,0) when
pointing north but sitting vertical, the app simply remaps the coordinate system so the x-axis is
negative. This can be implemented with the following code right after getRotationMatrix() in
onSensorChanged(). The matrix outR holds the result, but an app can make this be rotationMa-
trix instead if you simply want to overwrite rotationMatrix with the result. So, in other words,
the following code takes rotationMatrix, remaps the coordinate system as just described, and spits
out the resulting rotation matrix into outR. In subsequent code, outR can be used in the place of
rotationMatrix, as if the global coordinate axes have been redefi ned as shown in Figure 5-4:

SensorManager.remapCoordinateSystem(rotationMatrix,
 SensorManager.AXIS_Y,
 SensorManager.AXIS_MINUS_X,
 outR);

c05.indd 100c05.indd 100 5/10/2012 2:02:00 PM5/10/2012 2:02:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sensing Device Orientation and Movement x 101

The difference between using the rotation vector sensor and the getOrientation() method is that
getOrientation() has no data smoothing, whereas the rotation vector sensor may have some
smoothing. In general, if the orientation of a device is needed, some smoothing is generally also needed.

SensorManager.getInclination()

Earth’s magnetic fi eld is not perfectly horizontal at each point on Earth — a compass needle will
point downward on the northern hemisphere and upward on the southern hemisphere, though it is
not noticed because compass needles are constrained to move in a horizontal plane. Magnetic incli-
nation or magnetic dip is the angle that a compass needle will make with the horizontal and is given
by the getInclination() method. In the continental United States, inclination may be anywhere
from about 60 degrees in Texas to about 70 degrees in North Dakota.

From the defi nition of getInclination() provided in the preceding section, it is clear that if the
device is fl at on its back with the top of the screen (in portrait mode) pointing toward magnetic
north, then inclinationMatrix will be the identity matrix. In general, inclinationMatrix maps
the magnetic fi eld vector (expressed as rotationMatrix * magVals, which is therefore expressed in
the global coordinate and not the device coordinate system) onto [0 m 0].

The magnetometer will always be found to point in the global yE-zE plane in Figure 5-4, because
the only way the device knows which direction yE is, is to consult the magnetometer. In other words,
the global yE axis in Figure 5-4 is actually set by the magnetometer’s measurement of magnetic
north and not of the actual magnetic north. Inclination, then, is the magnetometer’s deviation from
the yE axis in the yE-zE plane.

Sensor Fusion Schemes

Sensor fusion describes the process of combining more than one sensor to get better results.
For example, the accelerometer responds quickly to changes but is noisy. Smoothing it results in
response lag. The gyroscope measurement, when integrated over time, provides a low-noise angle
measurement but it is useless alone because gyroscope drift means that the integrated gyroscope
data quickly becomes unphysical (unphysical meaning it doesn’t correspond to the actual orientation
of the device). Therefore, a sensor fusion system may use primarily the integrated gyroscope data,
and stop it from drifting by constantly comparing it with the accelerometer (which does not drift).

Invensense, a manufacturer of accelerometers and gyroscopes, has worked with hardware manufac-
turers that use its sensors (for example, the Samsung Galaxy Tab 10.1, HTC Sensation, EVO 3D,
and Galaxy Nexus) to implement its proprietary sensor fusion algorithms on the ROTATION_VECTOR
sensor. (The GRAVITY and LINEAR_ACCELERATION sensors are also heavily processed.) Other ven-
dors may soon follow suit, and open source sensor fusion algorithms may one day become avail-
able. Until then, if you need to determine if a device uses Invensense’s sensor fusion algorithms,
you can detect the manufacturer of the gyroscope (using the Sensor.getVendor() method) — if
it is Invensense then it is probably implemented. You can fi nd more details about sensor fusion in
Chapter 6.

c05.indd 101c05.indd 101 5/10/2012 2:02:00 PM5/10/2012 2:02:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

102 x CHAPTER 5 OVERVIEW OF PHYSICAL SENSORS

The take-home message is to use the synthetic sensors rather than the raw sensors whenever pos-
sible, because these will improve over time as sensor fusion algorithms are implemented in various
hardware devices.

SUMMARY

This chapter provided detailed information about the physical sensors on Android devices to help
you use physical sensors properly. The chapter described how to collect sensor data with the Sensor
API. It also described how the sensor hardware works. Finally, this chapter described what the sen-
sor values mean and how to interpret them.

The next chapters in this part describe sensor applications. The applications go into detail about
how to apply the information in this chapter to create useful features that use physical sensors.

c05.indd 102c05.indd 102 5/10/2012 2:02:01 PM5/10/2012 2:02:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

6
Errors and Sensor Signal
Processing

WHAT’S IN THIS CHAPTER?

 ‰ Outlining the errors that occur in sensor data

 ‰ Explaining algorithms for fi ltering data

 ‰ Understanding sensor fusion schemes

Sensors do not measure values perfectly. Instead, they can often produce data that is incor-
rect due to noise or because of degradation that occurs over time. Both of these problems may
introduce errors in the resulting data.

Fortunately, algorithms and techniques exist to address these errors. To reduce errors, an
app can fi lter output from individual sensor readings or fuse results from multiple sensors.
Additionally, some of Android’s synthetic sensors execute fi ltering algorithms or perform the
sensor fusion for you.

This chapter fi rst explores what kinds of errors can occur. Then, it describes fi ltering tech-
niques that can help remove errors from individual sensor readings. Finally, it describes some
sensor fusion schemes to combine outputs of multiple sensors to create improved results.

If Android does not provide a synthetic sensor you need, this chapter gives you the under-
standing you need to develop an approach and improve the quality of sensor data output. If
Android does provide a synthetic sensor you need, this chapter helps you understand how such
sensors work.

c06.indd 103c06.indd 103 5/10/2012 2:02:50 PM5/10/2012 2:02:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

104 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

DEFINITIONS

Before describing fi ltering algorithms or sensor fusion schemes, it is useful to understand different
terminology to describe errors, what types of errors can occur, and what kinds of techniques exist to
address them.

Accuracy and Precision

To judge a sensor’s accuracy and precision you need two relevant numbers. One is the actual value
(such as the actual humidity or actual acceleration) that the sensor is trying to measure, and one is
the measured value that the sensor reports. High accuracy means that the measured value is close
to the actual value. In contrast, high precision means that measurements are more tightly clustered
around a particular value, regardless of whether it is close to the actual value.

Figure 6-1 shows how the data values would appear under different accuracy and precision condi-
tions. Notice the cluster of values in either high accuracy or low accuracy situations that have high
precision, while low precision measurements scatter the data points.

High accuracy, high precision

P
re

ci
si

o
n

Accuracy

Low accuracy, high precision

High accuracy, low precision Low accuracy, low precision

FIGURE 6-1: Accuracy vs. precision

c06.indd 104c06.indd 104 5/10/2012 2:02:54 PM5/10/2012 2:02:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Defi nitions x 105

The word precision may sometimes be used to describe the total number of digits
a measurement returns; however, in the present usage it is related only to the
number of signifi cant digits in a measurement.

Types of Errors

When reading sensor data it is important to understand the types of errors you may encounter.
Being familiar with why a sensor reading might return bad data may play a key role in developing
algorithms to detect and process the erroneous data. Common causes of error in sensor data are dis-
cussed in the following sections.

Human Error, Systematic Error, and Random Error

Human errors are mistakes made by humans in making a measurement (such as incorrectly reading
a value from a graph) and are not addressed in this book. Systematic errors are errors that affect the
accuracy of a measurement — they are a constant offset from the true value (for instance, taking a
measurement with the magnetometer with a magnet nearby). In some cases they can be predicted or
removed by calibration or by changing the measurement scheme. On the other hand, random errors
such as noise result in imprecise measurements and cannot be removed by these techniques.

Noise

Noise is the random fl uctuation of a measured value. Although noise can be categorized (brown
noise, white noise, and so on) and statistically quantifi ed, these details are not usually necessary for
programming with Android sensors and are not covered here. Instead, this chapter introduces you
to low-pass fi lters to mitigate the effects of noise when necessary.

Drift

Drift describes slow, long-term wandering of data away from the real-world value. Drift may occur
due to the sensor reading itself degrading over time. It can also occur if a sensor value is integrated.
In such cases, a small offset (see the next section) will add up in each iteration of the integration to
cause the resulting reading to drift away from the real measurement.

Zero Off set (or “Off set,” or “Bias”)

If the output signal is not zero when the measured property is zero, the sensor has an offset or bias.
For example, if the average accelerometer measurement when the device is fl at on a table is not
exactly (0, 0, –9.80665 m/s2), the accelerometer has an offset.

If a gyroscope does not measure exactly (0, 0, 0) rad/s when stationary, even a small zero offset will
show up as an integration error when the gyro data is integrated to fi nd the angle.

Time Delays and Dropped Data

Because Android is not a real-time operating system (RTOS), some measured data values can be
delayed, resulting in incorrect timestamps. Data may even sometimes be dropped when the device is
busy. Usually this is not a concern to developers, but is worth noting in a chapter about errors.

c06.indd 105c06.indd 105 5/10/2012 2:02:54 PM5/10/2012 2:02:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

106 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

Integration Error

The gyroscope reports angular rotation rate in radians per second, however it would be more useful
in many applications to know the amount by which the device has rotated. To fi nd this quantity, you
can integrate the gyroscope’s readings and fi nd a rotation angle in radians.

Listing 6-1 shows the code required to fi nd the rotation angle in radians. event.values reports the
rate of rotation as angle-per-second. First, the code calculates the time change between sensor readings,
converts it from nanoseconds to seconds, and stores it in dT. To convert the angle-per-second value into
just angle, the code multiplies each angle in event.values by dT. This conversion works because mul-
tiplying the angle-per-second value by a time in seconds results in a measurement with angle units. The
resulting output is how far, in terms of angle, the gyroscope has rotated over the time period during dT.

LISTING 6-1: Integrates gyroscope readings to determine rotation angle in radians

//NS2S converts nanoseconds to seconds
private static final float NS2S = 1.0f / 1000000000.0f;

private float timestamp;
public void onSensorChanged(SensorEvent event)
{
 float[] valuesClone = event.values.clone();

 if (timestamp != 0)
 {
 final float dT = (event.timestamp - timestamp) * NS2S;
 angle[0] += valuesClone[0] * dT;
 angle[1] += valuesClone[1] * dT;
 angle[2] += valuesClone[2] * dT;
 }
 timestamp = event.timestamp;
}

However, the zero offset and drift in the gyroscope measurements mean that simple integration will
give poor results. Over time, it will quickly explode to give large unphysical numbers even with no
actual rotation, because offset and drift are accumulated under the integral, each time the integra-
tion executes. If you want to use gyroscope data to fi nd orientation angle, these errors must be com-
pensated for using the readings from other sensors using a “sensor fusion” approach discussed later.

The accumulated offset and drift is one reason why you can’t measure distance by double-inte-
grating the accelerometer measurement. Another reason is that, unless the device is accelerating or
decelerating at all points in time, a constant nonzero velocity and a constant zero velocity will both
contribute nothing to the double integral and, therefore, you can’t tell a nonzero velocity from zero
velocity, so a calculated distance is meaningless. For example, if you measure acceleration while a
device is sitting on the table, it will measure 0,0,-g, where g is the constant acceleration due to grav-
ity. If you measure it while it is traveling at a constant speed of 5 meters per second in the x direc-
tion, it will also measure 0,0,-g, because it is not “accelerating.” Instead, it is traveling at a constant
speed and therefore not accelerating. So the part of its travel where it is traveling at a constant speed
contributes nothing to any integrated measurement.

c06.indd 106c06.indd 106 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Filters x 107

Techniques to Address Error

The previous section discussed the types of errors that may be encountered when using Android
sensor data. In most cases, an app will also need to handle the cases where a sensor error is present.
The next sections discuss some of the methods that can be used to address sensor error.

Re-zeroing

If there is an offset present that is affecting your application, it may be useful to re-zero the sensor
measurements. This is as simple as storing a calibrated value (potentially stored when the user clicks
a Calibrate button) and subtracting it from each measured value. For instance, the device may be
placed fl at on a surface and the “downward” direction as measured by the accelerometer can be cali-
brated. This is simple enough that it doesn’t need a code example; however, the trick is getting the
user to actually perform the calibration, and know how and when to do so.

Filters

Low-pass fi lters fi lter out any high-frequency signal or noise and have a “smoothing” effect on data.
High-pass fi lters fi lter out slow drift and offset and just give the higher frequency changes. The “cut-
off frequency” is the approximate transition frequency above or below which the data is fi ltered out.
Bandpass fi lters reject both low-frequency and high-frequency data and just keep the data in some
frequency range of interest.

Sensor Fusion

Sensor fusion refers to using more than one sensor to take advantage of the strengths of each sen-
sor and mitigate the effects of the weaknesses. For example, the accelerometer can give a relatively
accurate measurement of the “downward” direction, but it has the disadvantage that it can never
tell us the north-south-east-west yaw of the device. However, the compass can supplement that mea-
surement to give yaw. A more complicated sensor fusion approach might be to also add integrated
gyroscope data to give an app access to faster and lower-noise changes than the accelerometer and
compass can give, but use the accelerometer and compass to reduce the effects of normal gyroscope
drift. In effect, an app would primarily use the high-quality gyroscope data to get orientation infor-
mation, but “nail it down” and prevent it from drifting by continually comparing it to the zero-drift
accelerometer and compass data.

FILTERS

Filtering sensor data is another technique that can be used to overcome erroneous data. The follow-
ing sections discuss a few fi ltering approaches.

Low-Pass

Although the sensors found in mobile devices are continually improving, in many cases an app may
rely on some form of smoothing or averaging, also known as low-pass fi ltering (because it fi lters out
high-frequency noise and “passes” low-frequency or slowly varying changes).

c06.indd 107c06.indd 107 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

108 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

If all you want to do is get the gravity component of the accelerometer’s measurement, use Sensor.
TYPE_GRAVITY instead. This is a synthetic sensor that consists of low-pass-fi ltered accelerometer
data. It is preferable to use the Gravity sensor rather than to fi lter the accelerometer data yourself
because it is easier and chances are it has been optimized for the particular accelerometer on each
device that will run your app.

Weighted Smoothing

A common method of implementing a low-pass fi lter to smooth data involves weighting the newest
value against the old mean. A smoothing parameter (or weighting value) a is used such that:

(New value) = (Last value) + xi * a – (Last value) * a

In other words, the last calculated value is added to xi (the most recently collected value), which is
weighted by a, with the weighted previous value being subtracted from the sum. If a is close to 1, the
new value will be xi, and if a is close to 0 the new value will not change with the calculation — this
allows xi to have any desired level of infl uence on the new value. More concisely for programming
purposes but perhaps less clearly for understanding, the algorithm may be written as:

(New mean) = (Last value) * (1– a) + xi * a

Or in Java as:

float a = 0.1f;

public void onSensorChanged(SensorEvent event
{
 x = event.values[0];
 y = event.values[1];
 z = event.values[2];
 mLowPassX = lowPass(x, mLowPassX);
 mLowPassY = lowPass(y, mLowPassY);
 mLowPassZ = lowPass(z, mLowPassZ);
}

// simple low-pass filter
float lowPass(float current, float last)
{
 return last * (1.0f - a) + current * a;
}

The value of a may need to be adjusted to fi nd the best value for an app. However, a is defi ned here
to be 0.1, which is often a decent choice for typical sampling rates when using the accelerometer to
control a character in a game, for instance. As you can see in the code snippet, a = 0 results in the
mean never changing (the newest data has no effect), whereas a = 1 results in the mean becoming
equal to the newest data point each time it is computed (the newest data completely controls the
mean). Values between 0 and 1 result in smoothed data.

Simple Moving Average (SMA)

A few extra lines of code to calculate the simple moving average (SMA) will provide a better
smoothing against single-data-point spikes. The SMA is sometimes called the rolling average or run-
ning average. This simply fi nds the arithmetic mean of the most recent k data values in a stream.
The integer k denotes the size of the averaging “window.”

c06.indd 108c06.indd 108 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Filters x 109

This method doesn’t work until k values have been collected. For the fi rst k–1 values, arbitrary val-
ues may be supplied for the average (0, for example), or the SMA calculation can be deferred until k
values have been collected.

Listing 6-2 is an example of the SMA implemented as its own object. To use it, push the newly col-
lected sensor value using pushValue() and then get the averaged value using getValue().

LISTING: 6-2: SMA implementation

public class MovingAverage
{

 private float circularBuffer[];
 private float avg;
 private int circularIndex;
 private int count;

 public MovingAverage(int k)
 {
 circularBuffer = new float[k];
 count = 0;
 circularIndex = 0;
 avg = 0;
 }

 /* Get the current moving average. */
 public float getValue()
 {
 return avg;
 }

 public void pushValue(float x)
 {
 if (count++ == 0)
 {
 primeBuffer(x);
 }
 float lastValue = circularBuffer[circularIndex];
 avg = avg + (x - lastValue) / circularBuffer.length;
 circularBuffer[circularIndex] = x;
 circularIndex = nextIndex(circularIndex);
 }

 public long getCount()
 {
 return count;
 }

 private void primeBuffer(float val)
 {
 for (int i = 0; i < circularBuffer.length; ++i)
 {
 circularBuffer[i] = val;
 }

c06.indd 109c06.indd 109 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

110 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

 avg = val;
 }

 private int nextIndex(int curIndex)
 {
 if (curIndex + 1 >= circularBuffer.length)
 {
 return 0;
 }
 return curIndex + 1;
 }
}

This code is available under the Apache 2.0 license from http://code.google.com/p/bigwords.

The effect of an SMA and weighted smoothing is shown in Figure 6-2.

Raw data

Weighted smoothing, a = 0.5

Weighted smoothing, a = 0.2

Weighted smoothing, a = 0.02

Raw data

SMA, k = 20

SMA, k = 4

SMA, k = 100

1.5

0.5

–0.5

0 250 500

1.5

0.5

–0.5

0 250 500

FIGURE 6-2: The eff ect of low-pass fi ltering on simulated accelerometer data for the weighted smoothing and

SMA approaches. Notice the trade-off between response time and smoothness. Notice also that the weighted

smoothing (a = 0.02) has a curving response after the step, versus the linear response of the SMA (k = 100).

c06.indd 110c06.indd 110 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://code.google.com/p/bigwords
http://www.it-ebooks.info/

Filters x 111

Choosing the Smoothing Parameter

The time constant of a fi lter gives the duration of a signal it will act on. A low-pass fi lter will fi lter
out signals much shorter than the time constant and a high-pass fi lter will fi lter out signals much
longer than the time constant. The time constant of the fi rst low-pass fi lter that was discussed,

(New mean) = (Last value) * (1– a) + xi * a

with coeffi cient a and sample period dt is:

t = adt € a = t
 1- a t + dt

If the desired time constant and sample rate are known, the fi lter constant a can be picked. Though
the sample rates for a sensor can be specifi ed (as discussed in Chapter 5), Android will treat the
requested sample rate as a suggestion and does not guarantee that sensor data will be delivered at
the specifi ed rate. However, the approximate sample rate is good enough for our purposes because
the cutoff frequency is a soft limit too.

Averaging: Smoothness vs. Response Time

It is clear from Figure 6-1 that choosing a smoothing parameter or window size involves a trade-
off. On one hand, a large smoothing parameter or window size means that sudden changes in data
values may take too long to be refl ected in the moving average, and on the other hand, the smooth-
ing parameter and window size should be chosen to be large enough to adequately smooth the data.
Additionally, an overly large window size may reduce response time by requiring a longer calcula-
tion. A large window size also means that an app cannot get a reading until there is suffi cient data
to fi ll the window. Thus, if it takes one minute to fi ll the window size with data, the app has to wait
that long before it has a measurement.

Also, data values may not be evenly spaced in time and the time spacing may vary from device to
device. Hence, when defi ning a suitable window size, it is better to smooth all data values collected
in a given time period rather than just the last, say, 20 values.

Simple Moving Median (SMM)

The simple moving median is, not surprisingly, the median of the most recent k data points. You can
fi nd the median by sorting the values in order of size and selecting the value closest to the center.
This will give better tolerance for sharp data spikes than the SMA — sharp spikes in data don’t even
show up if they are much narrower than k data points. On the other hand, it is signifi cantly more
diffi cult to code, relatively processor-intensive, and not usually worth it, so is not shown here.

High-Pass

A high-pass fi lter de-emphasizes the static or slowly varying background and emphasizes the higher-
frequency or transient components. Note that if all you want to do is to fi lter out the constant down-
ward gravity component of the accelerometer data and keep the higher-frequency transient changes,
use Sensor.TYPE_LINEAR_ACCELERATION instead. The Linear Acceleration sensor is a synthetic

c06.indd 111c06.indd 111 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

112 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

sensor that consists of high-pass-fi ltered accelerometer data, and has already been optimized for the
particular hardware sensors in each device that will run your app.

Inverse Low-Pass Filter

The simplest way perform high-pass fi ltering is to do a low-pass fi lter and then subtract the result
from the sensor data. For example, to fi lter the accelerometer data, the components of the data
might be separated and adjusted using the code in Listing 6-3.

LISTING 6-3: Applies low-pass-fi lter to sensor data

public void onSensorChanged(SensorEvent event
{
 final float alpha = 0.8;

 gravity[0] = a * gravity[0] + (1 - a) * event.values[0];
 gravity[1] = a * gravity[1] + (1 - a) * event.values[1];
 gravity[2] = a * gravity[2] + (1 - a) * event.values[2];

 linear_acceleration[0] = event.values[0] - gravity[0];
 linear_acceleration[1] = event.values[1] - gravity[1];
 linear_acceleration[2] = event.values[2] - gravity[2];
}

 This code snippet was derived from http://developer.android.com/reference/

android/hardware/SensorEvent.html, which is available under the Apache 2.0 License.

You can choose the parameter a as described in the “Weighted Smoothing” section. Also, you need
to start with an initial measurement or discard any initial measurements that used the initial zero
value. One way to do this would be to initialize values with the fi rst measurement.

A simple implementation of a high-pass fi lter is shown in Listing 6-4.

LISTING 6-4: Applies high-pass fi lter to sensor data

public void onSensorChanged(SensorEvent event
{
 x = event.values[0];
 y = event.values[1];
 z = event.values[2];
 mHighPassX = highPass(x, mLastX, mHighPassX);
 mHighPassY = highPass(y, mLastY, mHighPassY);
 mHighPassZ = highPass(z, mLastZ, mHighPassZ);
 mLastX = x;
 mLastY = y;
 mLastZ = z;
}

// simple high-pass filter
float highPass(float current, float last, float filtered)
{
 return a * (filtered + current - last);
}

c06.indd 112c06.indd 112 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://developer.android.com/reference
http://www.it-ebooks.info/

Filters x 113

To understand how this works, notice that if there is some background offset, this will be common
to both current and last and will be fi ltered out. If there is some slow background drift, current will
still approximately equal last and it will be fi ltered out. However, if there is some rapid change in
the value, current will not equal last, and the fl uctuation will survive through the fi lter.

You need to maintain connection with the previous value (so you need the fi ltered variable to appear
in the return statement), but you also need for the contribution from fi ltered to dissipate to zero
over time. To make the contribution dissipate over time and for the data to ultimately be centered
around zero over long time scales as high-pass-fi ltered data should, you need to multiply fi ltered by
a, which is some number between 0 and 1.

The effect of high-pass fi ltering is shown in Figure 6-3.

Raw data Simple high-pass, a = 0.7

Raw data Simple high-pass, a = 0.7Raw data Simple high-pass, a = 0.7

2

1

0
0 100 200

–1

–2

a = 0.95

2

1

0
0 100 200

–1

–2

2

1

0
0 100 200

–1

–2

2

1

0
0 100 200

–1

–2
Raw data a = 0.1

(A)

(B)

(C)

(D)

Raw data a = 0.1 a = 0.95

FIGURE 6-3: The eff ect of high-pass fi ltering on simulated accelerometer data for diff erent values of a.

Notice that high-frequency shaking in (A) passes through but low-frequency drift and off set in (A) and (B) do

not pass. (C) and (D) give two extreme values of a for comparison, plotted on a separate graph from (A) and

(B) for clarity.

Bandpass

A bandpass fi lter (or its inverse, the band-reject or notch fi lter) is useful to emphasize (or de-empha-
size) a certain frequency signal and de-emphasize (or emphasize) higher and lower frequencies.

In its simplest incarnation, and in the form most useful for most Android sensor applications, it is sim-
ply a combination of a low-pass and high-pass fi lter. Data is fi rst fi ltered to keep the higher-frequency
components, and then the very high-frequency noise is fi ltered out with a low-pass smoothing fi lter.

c06.indd 113c06.indd 113 5/10/2012 2:02:55 PM5/10/2012 2:02:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

114 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

Introducing Kalman Filters

A Kalman fi lter can provide excellent signal processing results, but is complicated to implement for
all but the simplest examples. To use a Kalman fi lter, prior knowledge about the source of the data
is needed. The algorithm is fed noisy measurements, some predictions about how the measurement’s
true value is behaving, maybe some knowledge about forces that are causing the system to change,
and a Kalman fi lter algorithm can effi ciently fi nd an accurate estimate of something’s true value.
Kalman fi lters are extremely fl exible and can be used to smooth high-frequency noise or to isolate a
periodic signal such as a pedometer signal.

Entire textbooks have been written on the subject, and it is easy to get lost in the linear algebra.
This chapter includes a simple introduction to present some exposure to a Kalman fi lter. In this
example, a signal that originated from a pressure sensor (either an internal Sensor.TYPE_PRESSURE
or external sensor via Android Open Accessory) will be processed. However, Kalman fi lters can be
applied to any signal from any sensor.

For this example, let the actual current air pressure be approximately 1010.0 mbar, plus or minus
0.5 mbar, and the pressure sensor gives uniformly random results within a range of ±1.5 mbar of the
true pressure. A Kalman fi lter picks a weighted average of the guess and the actual measurement.
The weight is computed by the following formula:

weight = guess_variance / (guess_variance + sensor_variance);

In this case, the weight computes to 0.5 / (0.5 + 1.5) = 0.25. A weight approaching 1 would mean
that the sensor’s readings can be trusted, and a value approaching 0 means the guess is trusted. A
value of 0.25 makes sense because the sensor variance is larger than the guess variance, so the guess
should be trusted more.

Assume the pressure sensor provides a measurement of 1011.0 mbar. First the weighted average is
computed:

estimate = guess + weight * (measurement - guess);

or equivalently:

estimate = (1-weight) * guess + weight * measurement;

You compute 1010 + 0.25 * (1011 – 1010) = 1010.25 mbar. Notice this value is 25 percent of the
way from 1010 to 1011 mbar, as expected.

Second, the confi dence of the 1010.25 mbar value is computed:

estimate_variance = guess_variance*sensor_variance / (guess_variance+sensor_variance)

This is 0.5 * 1.5 / (0.5 + 1.5) = 0.375 mbar. The algorithm now has a guess that the pressure is
1010.25 ± 0.375 mbar, and a sensor indicating that the pressure is plus or minus 1.5 mbar. The
algorithm is now essentially back to where it started, and can run again. Say another measurement
read to be 1010.5 mbar. The algorithm then calculates the three quantities again:

weight = 0.375 / (0.375 + 1.5) = 0.2
estimate = 1010.25 + 0.2 * (1010.5 - 1010.25) = 1010.3
estimate_variance = 0.375 * 1.5 / (0.375 + 1.5) = 0.3

c06.indd 114c06.indd 114 5/10/2012 2:02:56 PM5/10/2012 2:02:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A Better Determination of Orientation by Using Sensor Fusion x 115

So now it guesses that the pressure is 1010.3 ± 0.3 mbar.

In practice, such a simple example offers little advantage over simply smoothing the data using
a low-pass fi lter, and doesn’t include any external “forces” that would cause the actual air pres-
sure to change (such as air pressure drift, or the twice-daily air pressure fl uctuation due to atmo-
spheric tides). However, it does provide insight into how a Kalman fi lter compares measurements
to an expected physical model that you defi ne with your estimates and weights. A full explanation
would fi ll a textbook, but if functionality beyond simple smoothing and simple high-pass fi ltering is
needed, a Kalman fi lter will give the best results.

A BETTER DETERMINATION OF ORIENTATION

BY USING SENSOR FUSION

Several apps need to know the current orientation of a device. The angular velocity of the device
might be useful too, so the problem is to map the sensor outputs onto these desired quantities
(see Figure 6-4). The sensor outputs can indicate which direction is “north” and “down” (and there-
fore provide pitch, roll, and yaw) and an angular velocity, so it is natural to think that the problem
is solved (see Figure 6-5). However, the accelerometer and compass are inherently noisy and give
poor results. Note that the GPS can be used to get the heading, instead of the compass, if the device
is moving — a device in a car dock in a moving car is a good example.

Pitch and roll

YawCompass

GPS (if moving)

Gyro

Accelerometer Orientation

Angular speed

?

FIGURE 6-4: Graphical representation of the problem of using sensor fusion to determine orientation

Sensor Fusion: Simple vs. Proprietary

Since API level 9, SensorManager has had a getOrientation() method and there has been a
“Rotation sensor” (referenced by Sensor.TYPE_ROTATION) that allows a developer to easily fi nd
the orientation of the device (see Chapter 5). However, the actual implementation of these syn-
thetic sensors can be different depending on the hardware sensors and the device manufacturer. For
instance, devices since around 2010 that incorporate an Invensense brand gyroscope (and possibly
also an Invensense accelerometer) such as the Galaxy Nexus, Samsung Galaxy Tab 10.1, and HTC
EVO 3D, are likely to also incorporate Invensense’s Sensor Fusion algorithms. In short, this means

c06.indd 115c06.indd 115 5/10/2012 2:02:56 PM5/10/2012 2:02:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

116 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

that they get low-noise orientation data primarily from integrated gyroscope data, but mitigate the
effects of gyro drift by constantly comparing that data to the pitch, roll, and yaw reported by the
accelerometer and compass, which do not drift.

Pitch and roll

YawCompass

GPS (if moving)

Gyro

Accelerometer Orientation

Most obvious

Angular speed

FIGURE 6-5: Determining orientation by directly mapping sensor inputs to the desired outputs

Proprietary Sensor Fusion

Invensense’s Sensor Fusion algorithms are proprietary — Invensense as a company works with
smartphone manufacturers to get their sensors and algorithms implemented — and the action
happens behind the scenes during product development, so these algorithms are not available for
developers to use. Developers just use Sensor.TYPE_ROTATION on participating devices. Older
devices, non-participating devices, or devices using a different brand of gyroscope (which includes
most devices today) use the algorithms depicted in Figure 6-5 or Figure 6-6 to fi nd orientation.
However, the presence of SensorManager.getOrientation() and Sensor.TYPE_ROTATION in
the API and the success of Invensense’s approach means that other gyroscope and Android device
manufacturers will follow suit, and comparable open source Android sensor fusion algorithms
will probably become available. This means that it is always a good idea to use the rotation sensor
or getOrientation() whenever possible, rather than use raw accelerometer and compass data,
so that in future devices your app will use superior sensor fusion algorithms without any work on
your part.

SensorManager.getOrientation() requires a rotation matrix as a parameter. In the Android API,
there are multiple ways to produce the rotation matrix. However, for the use of getOrientation(),
a rotation matrix should not be produced by passing the sensor readings from the accelerometer and
magnetic fi eld sensor to the getRotationMatrix() method. The reason to avoid this method for
producing a rotation matrix is that orientation should be relatively static. An app usually wants to
know which way the phone is pointing, and not take into account any rapid shaking of the phone.
Any readings from the accelerometer will include shaking of the device.

Because the sensor fusion algorithms are not available to most developers, developers continue to
consider other methods to determine orientation. They may naively expect that, knowing the ini-
tial orientation, if they integrate the gyro measurement (see Figure 6-7) they can compute any fi nal

c06.indd 116c06.indd 116 5/10/2012 2:02:56 PM5/10/2012 2:02:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A Better Determination of Orientation by Using Sensor Fusion x 117

orientation. Unfortunately, if the gyro doesn’t read perfectly zero when stationary (and it doesn’t),
this offset and drift will keep adding to the computed angle, and within a second or so, a completely
unphysical answer may be produced.

Pitch and roll

YawCompass

GPS (if moving)

Gyro

Accelerometer Orientation

Angular speed

Low-pass filter

Quick-and-dirty

FIGURE 6-6: Quick and dirty use of a low-pass fi lter to determine orientation

FIGURE 6-7: Integrating gyroscope readings to determine orientation

Pitch and roll

YawCompass

GPS (if moving)

Gyro

Accelerometer Orientation

Angular speed

Integration

Gyro only

Simple Sensor Fusion: The Balance Filter

A simple sensor fusion algorithm called a balance fi lter or complementary fi lter (though it is not a
complementary fi lter in the technical sense) has been promoted by Shane Colton at MIT (see
Figure 6-8). This integrates the gyroscope to get angle, then high-pass fi lters the result to remove
drift, and adds it to the smoothed accelerometer and compass results. The integrated, high-pass-fi l-
tered gyro data and the accelerometer/compass data are added in such a way that the two parts add
to one, so that the output is an accurate estimate in units that make sense.

For the balance fi lter, the time constant may be tweaked to tune the response. The shorter the time
constant, the better the response but the more acceleration noise will be allowed to pass through.

c06.indd 117c06.indd 117 5/10/2012 2:02:56 PM5/10/2012 2:02:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

118 x CHAPTER 6 ERRORS AND SENSOR SIGNAL PROCESSING

To see how this works, imagine you have the newest gyro data point (in rad/s) stored in gyro, the
newest angle measurement from the accelerometer is stored in angle_acc, and dt is the time from
the last gyro data until now. Then your new angle would be calculated using

angle = b * (angle + gyro*dt) + (1 - b) *(angle_acc);

You may start by trying b = 0.98 for instance, because you want to primarily use the gyroscope
data. You will also probably want to use a fast gyroscope measurement time dt so the gyro doesn’t
drift more than a couple of degrees before the next measurement is taken.

The balance fi lter is useful and simple to implement, but is not the ideal sensor fusion approach.
Invensense’s approach involves some clever algorithms and probably some form of Kalman fi lter
(see Figure 6-9) and will provide superior orientation results.

Pitch and roll

YawCompass

GPS (if moving)

Gyro

Accelerometer Orientation

Angular speed

Integration

High-pass filter

Low-pass filter

“Balance” filter

Σ

FIGURE 6-8: Using a balance fi lter to determine orientation

Pitch and roll

YawCompass

GPS (if moving)

Gyro

Accelerometer Orientation

Physical model

Angular speed

Kalman filter

Kalman filter
predictions
and filtering

FIGURE 6-9: Use of Kalman fi lters to determine device orientation

c06.indd 118c06.indd 118 5/10/2012 2:02:56 PM5/10/2012 2:02:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary x 119

SUMMARY

Sensors produce various types of errors from different sources. In order to use the data that a sensor
provides, an app must be able to detect and work around this erroneous data. This chapter provided
some techniques for dealing with sensor error in the form of fi ltering and sensor fusion techniques.

Understanding the difference between various fi ltering algorithms will allow you to determine when
the use of each algorithm is appropriate. For example, high-pass and low-pass fi lters behave differ-
ently and are used in different scenarios. Being able to identify when the various fi ltering algorithms
and fusion techniques are appropriate is an important part of utilizing the data that sensors provide.

Furthermore, understanding when proprietary sensor fusion techniques might be “baked” in to an
existing Android API call can prevent an author from implementing or using a fusion technique that
is home grown like a balance fi lter.

The approaches in the chapter are useful in a wide range of scenarios for interpreting physical sen-
sor data. However, the approaches can also be used on any sensor data that an app is processing.
Chapters 7–10 describe processing different kinds of the sensor data for various tasks and use the
algorithms and concepts described in this chapter when appropriate.

c06.indd 119c06.indd 119 5/10/2012 2:02:57 PM5/10/2012 2:02:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c06.indd 120c06.indd 120 5/10/2012 2:02:57 PM5/10/2012 2:02:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

7
Determining Device Orientation

WHAT’S IN THIS CHAPTER?

 ‰ Using the gravity sensor to determine orientation

 ‰ Using the accelerometer and magnetometer to determine device orientation

 ‰ Using the rotation vector synthetic sensor to determine device orientation

 ‰ Using OpenGL to perform simple screen drawing

Determining the orientation of a device is something that is useful to many apps. Games, for
example, can use changes in a device’s orientation as a way of allowing humans to interact and
control a device. A human can change the orientation of a device and an app can react to that
change in orientation. The sensors used to determine device orientation were introduced in
Chapter 5. This chapter goes into more detail on how to effectively use some of these sensors
and provides an example app to further demonstrate their usage.

The example app functionality described in this chapter determines whether a device is face up
or face down. Multiple sensors can be used to determine device orientation of this nature, and
the code presented in this chapter makes use of multiple sensors to detect the desired changes
in orientation.

PREVIEWING THE EXAMPLE APP

When the device senses a change in the device orientation (with respect to the face of the
device), the example app for this chapter uses the Text-To-Speech (TTS) facilities to announce
that the device is face up or face down, as well as display the current orientation on the screen.
In addition to the current orientation, the app also displays the sensor data on the screen to
allow the user to see how manipulating the device affects the sensor data.

The app allows the user to select different sensors to detect the change in orientation and pro-
vides a group of radio buttons that the user can toggle to select the desired sensor.

c07.indd 121c07.indd 121 5/11/2012 9:31:49 AM5/11/2012 9:31:49 AM

www.it-ebooks.info

http://www.it-ebooks.info/

122 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

Because audio feedback is not always convenient (especially while working in a coffee shop), the
app also allows the user to disable the TTS alerts as well as control their volume with the standard
Android volume keys. The main screen for the app is shown in Figure 7-1.

FIGURE 7-1: The Determine Orientation screen

Now that what the example app will do has been discussed, this chapter will move on to how the
example app will perform its task of determining device orientation.

DETERMINING DEVICE ORIENTATION

As discussed in the previous section, the example app uses multiple different sensors to determine
the device orientation. The app allows the user to choose one of the following sensors to determine
device orientation:

 ‰ Gravity sensor

 ‰ Accelerometer and magnetometer

 ‰ Gravity sensor and magnetometer

 ‰ Rotation sensor

 You might notice that the TYPE_ORIENTATION sensor is missing. This sensor has been
deprecated and therefore will not be used in the example app.

The next few sections discuss how each of the sensors listed will be used.

c07.indd 122c07.indd 122 5/11/2012 9:31:54 AM5/11/2012 9:31:54 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 123

Gravity Sensor

Using the gravity sensor (available in API level 9 and greater) to determine whether the device is face
up or face down can be one of the easier approaches discussed in this chapter. However, it yields less
data on the overall orientation of the device. The gravity sensor yields the force due to gravity on the
X, Y, and Z axes. Refer to Figure 5-4 to see how the X, Y, and Z axes are defi ned with respect to an
Android device.

One important note about Figure 5-4 is that the depiction is of a device in its default orientation.
The default orientation for phones is portrait, but this is not true of most tablets. However, even for
a device that has a default orientation of landscape, the axes will still be orientated as Y pointing up,
X pointing to the right, and Z pointing out of the screen.

From Figure 5-4, you can see that to determine if the device is face up or face down, the values of
the Z axis need to be considered. The arrow of the Z axis indicates the direction of positive values.
So, when the device is face up, the values are positive, and the values are negative when the device is
face down.

The magnitude of the gravity sensor is defi ned by the force of gravity that is being applied to a
device. Technically, this is based on where the device is located. Chances are that the device will be
located on Earth where the force of gravity is roughly 9.8 m/sec2. So, when the device is lying face
up on a table, the gravity sensor should report a magnitude of 9.8 on the Z axis. When the device is
face down on a table, the gravity sensor should report a magnitude of –9.8 on the Z axis.

As discussed in Chapter 5, the values reported by the sensor will be affected by noise, so the code
that uses the sensor will need to account for the noise when attempting to determine device orienta-
tion. For this application of the gravity sensor, this means that values reported when the device is
lying face up or face down will not be exactly 9.8 and –9.8 m/sec2. Furthermore, hardware offsets
may also prevent the value of 9.8 m/sec2 from being reported by the sensor.

Accelerometer and Magnetometer

The accelerometer and magnetometer can be used together to determine device orientation. The
data provided from both of these sensors can be used to generate a rotation matrix via a call to
SensorManager.getRotationMatrix(). The generated rotation matrix can then be passed to
SensorManager.getOrientation(), which will compute rotation around the X, Y, and Z axes.

As mentioned in Chapter 5, nearby magnets can infl uence the magnetometer. The magnetometer
can also be exceedingly noisy and may not be calibrated correctly. All of these scenarios can lead to
incorrect sensor data.

The output from the SensorManager.getOrientation() call is a list of values that contains the
azimuth, pitch, and roll for the device. Refer to Figure 5-9 to see how the Earth’s axes are defi ned
for the SensorManager.getOrientation() call.

In Figure 5-9, the azimuth is the Z axis, the pitch is the X axis, and the roll is the Y axis. To
determine if the device is face up or face down, only the X and Y axes (pitch and roll values) need
to be considered. The Z axis (azimuth) gives the orientation of the top of the device with respect to
north. Although this can be useful, the application does not care about that orientation.

c07.indd 123c07.indd 123 5/11/2012 9:31:54 AM5/11/2012 9:31:54 AM

www.it-ebooks.info

http://www.it-ebooks.info/

124 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

The values from the X axis indicate how much the device is rotated up or down on its short edges.
Because the device needs to be fl at to be considered in a face-up or face-down position, the code
looks for small values. A value of p/2 radians or –p/2 radians indicates that the device is standing
perpendicular to the ground on either its top or bottom, respectively.

Similarly, the Y axis values indicate whether or not the device is standing on one of its long edges.
A value of –p/2 radians indicates that the device is standing perpendicular to the ground on its left
edge, and a value of p/2 radians indicates that the device is standing on its right side perpendicular
to the ground. Values of 0 or –p indicate that the device is lying fl at.

For this app, the device is considered to be in a face-up or face-down position only if it is lying rela-
tively fl at on a surface. Therefore, the pitch needs to have a value of 0 radians and the roll needs to
have a value of 0 radians when face up and p radians when face down. Once again, the sensors used
for the calculations will be affected by noise, which the app will need to consider.

While the values provided by the accelerometer can be used to generate a rotation matrix that can be
fed to SensorManager.getRotationMatrix(), accelerometer data may not be the best choice. This
is because the orientation should be something relatively static, meaning that an app usually wants
to know which way the phone is pointing and not take into account any rapid shaking of the phone.
Therefore, instead of using the accelerometer, which would include that fast shaking, use of the
gravity sensor may be a better choice because it would isolate the overall orientation of the phone.

Gravity Sensor and Magnetometer

Using the gravity sensor and magnetometer sensors to determine orientation is similar to using
the accelerometer and magnetometer. In both cases, a rotation matrix is generated with a call
to SensorManager.getRotationMatrix() and the generated rotation matrix is passed to
SensorManager.getRotationMatrix(). The only difference is that values obtained from the grav-
ity sensor are passed to the SensorManager.getRotationMatrix() call instead of values originat-
ing from the accelerometer

Rotation Vector

As discussed in Chapter 5, the rotation vector sensor is a synthetic sensor that makes use of the
accelerometer, magnetometer, and possibly the gyroscope to produce device orientation information.
Because of the raw sensors used by the rotation vector sensor, its output can be used in much the
same way as the output of the accelerometer and magnetometer that was discussed in the previous
section. The rotation vector returned from the sensor can be converted to a rotation matrix with a
call to SensorManager.getRotationMatrixFromVector() and the resulting rotation matrix can be
passed to SensorManager.getOrientation().

Using the rotation vector is often simpler than using the accelerometer and magnetometer to
determine device orientation. The rotation vector synthetic sensor hides some of the complexity of
using multiple sensors together to produce the data needed to generate a rotation matrix to pass to
SensorManager.getOrientation(). Thus, it is often preferable to use the rotation matrix synthetic
sensor over the accelerometer and magnetometer to determine device orientation.

While the angles produced by SensorManager.getOrientation() can be a convenient representa-
tion of device rotation, there are related limitations. The Euclidean representation of rotation may not

c07.indd 124c07.indd 124 5/11/2012 9:31:55 AM5/11/2012 9:31:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 125

be suitable for more complex apps where problems such as Gimbal lock may occur. Because of these
limitations, a quaternion representation of the current rotation may be preferable. For such cases, the
SensorManager.getQuaternionFromVector() can be used to generate the quaternion representation.

Implementation Details

Now it’s time to jump into more of the implementation details of the app. The implementation for
this part of the example app is located entirely in DetermineOrientationActivity.

The layout used for the DetermineOrientationActivity presents the user with a set of radio
buttons as well as displays the data returned from the selected sensor in the screen. Listing 7-1
shows the layout for the activity.

LISTING 7-1: Layout for DetermineOrientationActivity

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:orientation=”vertical” >

 <RadioGroup android:id=”@+id/sensorSelector”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:layout_alignParentTop=”true” >

 <RadioButton android:id=”@+id/gravitySensor”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/gravitySensorLabel”
 android:checked=”true”
 android:onClick=”onSensorSelectorClick” />

 <RadioButton android:id=”@+id/accelerometerMagnetometer”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/accelerometerMagnetometerLabel”
 android:checked=”false”
 android:onClick=”onSensorSelectorClick” />

 <RadioButton android:id=”@+id/gravityMagnetometer”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/gravityMagnetometerLabel”
 android:checked=”false”
 android:onClick=”onSensorSelectorClick” />

 <RadioButton android:id=”@+id/rotationVector”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/rotationVectorLabel”
 android:checked=”false”

continues

c07.indd 125c07.indd 125 5/11/2012 9:31:55 AM5/11/2012 9:31:55 AM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

126 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

 android:onClick=”onSensorSelectorClick” />
 </RadioGroup>

 <ToggleButton android:id=”@+id/ttsNotificationsToggleButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/speakOrientationLabel”
 android:checked=”true”
 android:layout_below=”@id/sensorSelector”
 android:textOn=”@string/ttsNotificationsOn”
 android:textOff=”@string/ttsNotificationsOff”
 android:onClick=”onTtsNotificationsToggleButtonClicked” />

 <TextView android:id=”@+id/selectedSensorLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/selectedSensorLabel”
 android:layout_below=”@id/ttsNotificationsToggleButton”
 android:layout_marginRight=”5dip” />

 <TextView android:id=”@+id/selectedSensorValue”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_toRightOf=”@id/selectedSensorLabel”
 android:layout_alignTop=”@id/selectedSensorLabel”
 android:layout_alignBottom=”@id/selectedSensorLabel” />

 <TextView android:id=”@+id/orientationLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/orientationLabel”
 android:layout_below=”@id/selectedSensorValue”
 android:layout_marginRight=”5dip” />

 <TextView android:id=”@+id/orientationValue”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_toRightOf=”@id/orientationLabel”
 android:layout_alignTop=”@id/orientationLabel”
 android:layout_alignBottom=”@id/orientationLabel” />

 <TextView android:id=”@+id/sensorXLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_below=”@id/orientationValue”
 android:layout_marginRight=”5dip” />

 <TextView android:id=”@+id/sensorXValue”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_toRightOf=”@id/sensorXLabel”
 android:layout_alignTop=”@id/sensorXLabel”

LISTING 7-1 (continued)

c07.indd 126c07.indd 126 5/11/2012 9:31:55 AM5/11/2012 9:31:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 127

 android:layout_alignBottom=”@id/sensorXLabel” />

 <TextView android:id=”@+id/sensorYLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_below=”@id/sensorXLabel”
 android:layout_marginRight=”5dip” />

 <TextView android:id=”@+id/sensorYValue”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_toRightOf=”@id/sensorYLabel”
 android:layout_alignTop=”@id/sensorYLabel”
 android:layout_alignBottom=”@id/sensorYLabel” />

 <TextView android:id=”@+id/sensorZLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_below=”@id/sensorYLabel”
 android:layout_marginRight=”5dip” />

 <TextView android:id=”@+id/sensorZValue”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_toRightOf=”@id/sensorZLabel”
 android:layout_alignTop=”@id/sensorZLabel”
 android:layout_alignBottom=”@id/sensorZLabel” />

</RelativeLayout>

code snippet determine_orientation.xml

The initialization steps that need to be performed by the DetermineOrientationActivity are:

 ‰ Get a reference to the SensorManager

 ‰ Initialize the Text-To-Speech facility (to notify the user of the device’s orientation)

As with most activities, this is done in DetermineOrientationActivity.onCreate(), which is
shown in Listing 7-2.

LISTING 7-2: DetermineOrientationActivity.onCreate()

@Override
protected void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 super.setContentView(R.layout.determine_orientation);

 // Keep the screen on so that changes in orientation can be easily
 // observed
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 // Set up stream to use for Text-To-Speech

continues

c07.indd 127c07.indd 127 5/11/2012 9:31:55 AM5/11/2012 9:31:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

128 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

 ttsParams = new HashMap<String, String>();
 ttsParams.put(Engine.KEY_PARAM_STREAM, String.valueOf(TTS_STREAM));

 // Set the volume control to use the same stream as TTS which allows
 // the user to easily adjust the TTS volume
 this.setVolumeControlStream(TTS_STREAM);

 // Get a reference to the sensor service
 sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 // Initialize references to the UI views that will be updated in the
 // code
 sensorSelector = (RadioGroup) findViewById(R.id.sensorSelector);
 selectedSensorValue = (TextView) findViewById(R.id.selectedSensorValue);
 orientationValue = (TextView) findViewById(R.id.orientationValue);
 sensorXLabel = (TextView) findViewById(R.id.sensorXLabel);
 sensorXValue = (TextView) findViewById(R.id.sensorXValue);
 sensorYLabel = (TextView) findViewById(R.id.sensorYLabel);
 sensorYValue = (TextView) findViewById(R.id.sensorYValue);
 sensorZLabel = (TextView) findViewById(R.id.sensorZLabel);
 sensorZValue = (TextView) findViewById(R.id.sensorZValue);
 ttsNotificationsToggleButton =
 (ToggleButton) findViewById(R.id.ttsNotificationsToggleButton);

 // Retrieve stored preferences
 preferences = getPreferences(MODE_PRIVATE);
 ttsNotifications =
 preferences.getBoolean(TTS_NOTIFICATION_PREFERENCES_KEY, true);
}

After the initialization is complete, the next step is to register for the appropriate sensors based
on the user’s preferences. Recall from Figure 7-1 that the user can toggle the method that is used
to determine the orientation of the device. The code needs to register for the proper sensor events
based on the user’s selection. The DetermineOrientationActivity. updateSelectedSensor()
method is responsible for enabling and disabling the appropriate sensors based on the user’s
selection. The method is called from both DetermineOrientationActivity.onResume()and
the code that handles the clicks to the radio buttons. Listing 7-3 shows the implementation of the
updateSelectedSensor() method.

LISTING 7-3: DetermineOrientationActivity.UpdateSelectedSensor()

private void updateSelectedSensor()
{
 // Clear any current registrations
 sensorManager.unregisterListener(this);

 // Determine which radio button is currently selected and enable the
 // appropriate sensors
 selectedSensorId = sensorSelector.getCheckedRadioButtonId();
 if (selectedSensorId == R.id.accelerometerMagnetometer)
 {

LISTING 7-2 (continued)

c07.indd 128c07.indd 128 5/11/2012 9:31:55 AM5/11/2012 9:31:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 129

 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 RATE);

 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
 RATE);
 }
 else if (selectedSensorId == R.id.gravityMagnetometer)
 {
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),
 RATE);

 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
 RATE);
 }
 else if ((selectedSensorId == R.id.gravitySensor))
 {
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),
 RATE);
 }
 else
 {
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR),
 RATE);
 }

 // Update the label with the currently selected sensor
 RadioButton selectedSensorRadioButton =
 (RadioButton) findViewById(selectedSensorId);
 selectedSensorValue.setText(selectedSensorRadioButton.getText());
}

code snippet DetermineOrientationActivity.java

Notice that the method fi rst makes a call to SensorManager.unregister() to turn off any sensor
updates that may already be registered. This is done so that the users can update the method used to
determine the orientation as often as they desire and the app will respond appropriately.

Because updateSelectedSensor() registers the current instance of
DetermineOrientationActivity, the class must implement SensorEventListener and contain
implementation for both onSensorChanged() and onAccuracyChanged().

This implementation for determining the device’s orientation does not use the sensor accuracy, so
the implementation of onAccuracyChanged() is left blank other than a logging comment.

The onSensorChanged() method must process SensorEvents from multiple different sensors.
The actual sensor data that is received is dependent on the user’s selection. Because the sensor
registrations are updated when the user selects a different sensor, the onSensorChanged() method
does not need to concern itself with what the user’s selection. The method will receive only the rel-
evant sensor data.

c07.indd 129c07.indd 129 5/11/2012 9:31:56 AM5/11/2012 9:31:56 AM

www.it-ebooks.info

http://www.it-ebooks.info/

130 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

The sensor data is located in the SensorEvent.values array. Because the data can represent
different quantities depending on what sensor generated it, onSensorChanged() must determine the
source of the data before it can determine how to process the data.

Processing Gravity Sensor Data

For the gravity sensor, the SensorEvent.values array contains the magnitude of gravity as applied
to the X, Y, and Z axes in the zeroth, fi rst, and second slots in the array, respectively. Because
the Z axis goes through the screen of the device and out of the back of the device, the code needs
to use the third (offset 2) value in the array. When the device is on its back, the force of grav-
ity being applied to the Z axis should equal the 1 G (9.8 m/sec2), which is stored in the constant
SensorManager.STANDARD_GRAVITY. When the phone is on its face, the force of gravity on the Z
axis should be –1 * SensorManager.STANDARD_GRAVITY (–9.8 m/sec2). However, remember that
the sensor does generate a fair amount of noise, causing the actual values reported by the sensor to
fl uctuate. To combat the noise, the app uses a value of SensorManager.STANDARD_GRAVITY/2 as the
threshold for determining if the device is face up or face down. This provides the added bonus of
allowing the user to trigger the face-up and face-down handlers without the device being perfectly
parallel to the ground, making it easier for the user to get the triggers to fi re.

The code snippet that processes the gravity sensor data is presented in Listing 7-4.

LISTING 7-4: Determining orientation with the gravity sensor

private static final double GRAVITY_THRESHOLD =
 SensorManager.STANDARD_GRAVITY / 2;
...
case Sensor.TYPE_GRAVITY:
 ...
 if (event.values[2] >= GRAVITY_THRESHOLD)
 {
 onFaceUp();
 }
 else if (event.values[2] <= (GRAVITY_THRESHOLD * -1))
 {
 onFaceDown();
 }

 break;
...

code snippet DetermineOrientationActivity.java

Processing Accelerometer and Magnetic Field Data

The values from the accelerometer and the magnetic sensors are passed to SensorManager
. getRotationMatrix() to generate a rotation matrix that is used as input to SensorManager
. getOrientation() to produce the device orientation.

Because both sets of values are needed to determine the device orientation,
DetermineOrientationActivity maintains the most recent array of values from both sensors as

c07.indd 130c07.indd 130 5/11/2012 9:31:56 AM5/11/2012 9:31:56 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 131

member data for the class. When reading sensor data that may not be consumed before a subse-
quent call to onSensorEvent(), it is important to copy the event.values instead of just assigning
another reference. This is because app code does not “own” the SensorEvent and cannot be sure
that the values will not be changed. Cloning the event.values array ensures that app code will
maintain the value of the event.values array passed to onSensorEvent() even if it should be
overwritten by Android.

When onSensorChanged() is called with updated sensor information from either the accelerometer
or the magnetic sensor, the method updates the correct member data to generate a rotation matrix
with a call to generateRotationMatrix(). Once the rotation matrix is computed, it is passed to
determineOrientation(), which computes the orientation. Being dependent on sensor data from
two different sources can make using SensorManager.getOrientation() less convenient than
using data from a single sensor (like the gravity sensor) to detect simple device orientation changes.

Listing 7-5 shows the implementation for generateRotationMatrix(). The method uses the latest
accelerometer and magnetometer values to compute a rotation matrix only if both sets of values
have been populated with sensor data.

LISTING 7-5: generateRotationMatrix()

private float[] generateRotationMatrix()
{
 float[] rotationMatrix = null;

 if (accelerationValues != null && magneticValues != null)
 {
 rotationMatrix = new float[16];
 boolean rotationMatrixGenerated;
 rotationMatrixGenerated =
 SensorManager.getRotationMatrix(rotationMatrix,
 null,
 accelerationValues,
 magneticValues);

 if (!rotationMatrixGenerated)
 {
 Log.w(TAG, getString(R.string.rotationMatrixGenFailureMessage));

 rotationMatrix = null;
 }
 }

 return rotationMatrix;
}

code snippet DetermineOrientationActivity.java

After verifying that accelerationValues and magneticValues (which are updated in onSensor-
Changed()) are non-null, generateRotationMatrix() passes the acceleration and magnetic value
arrays to SensorManager.getRotationMatrix(). The initial null check of the acceleration and
magnetic values ensures that they both have been updated in onSensorChanged(), meaning that the

c07.indd 131c07.indd 131 5/11/2012 9:31:56 AM5/11/2012 9:31:56 AM

www.it-ebooks.info

http://www.it-ebooks.info/

132 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

class has received data from both sensors. The call to SensorManager.getRotationMatrix() takes
four parameters. The fi rst two parameters are fl oat arrays that hold the computed rotation matrix
and the inclination matrix. For this app, null is passed for the inclination matrix (parameter two)
because those values are not needed. The third and fourth parameters are the acceleration and mag-
netic values that were set in the onSensorChanged() method.

Once the call to getRotationMatrix() returns, the array passed as the fi rst parameter will contain
the rotation matrix that can be used to compute the device orientation. It is good practice to check
the return value of getRotationMatrix(). If a value of false is returned, the output arrays will be
left untouched.

Processing Rotation Vector Data

The sensor data received from the rotation vector sensor gets processed in much the same way as
the data from the accelerometer and magnetometer. The major differences are that there is only
one sensor used, eliminating the need to preserve cloned member data, and the rotation matrix is
generated differently.

The complete implementation for onSensorChanged(), which processes the SensorEvents for
the accelerometer and the gravity and magnetic fi eld sensors, is shown in Listing 7-6.

 LISTING 7-6: DetermineOrientationActivity.onSensorChanged()

@Override
public void onSensorChanged(SensorEvent event)
{
 float[] rotationMatrix;

 switch (event.sensor.getType())
 {
 case Sensor.TYPE_GRAVITY:
 sensorXLabel.setText(R.string.xAxisLabel);
 sensorXValue.setText(String.valueOf(event.values[0]));

 sensorYLabel.setText(R.string.yAxisLabel);
 sensorYValue.setText(String.valueOf(event.values[1]));

 sensorZLabel.setText(R.string.zAxisLabel);
 sensorZValue.setText(String.valueOf(event.values[2]));

 sensorYLabel.setVisibility(View.VISIBLE);
 sensorYValue.setVisibility(View.VISIBLE);
 sensorZLabel.setVisibility(View.VISIBLE);
 sensorZValue.setVisibility(View.VISIBLE);

 if (selectedSensorId == R.id.gravitySensor)
 {
 if (event.values[2] >= GRAVITY_THRESHOLD)
 {

c07.indd 132c07.indd 132 5/11/2012 9:31:56 AM5/11/2012 9:31:56 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 133

 onFaceUp();
 }
 else if (event.values[2] <= (GRAVITY_THRESHOLD * -1))
 {
 onFaceDown();
 }
 }
 else
 {
 accelerationValues = event.values.clone();
 rotationMatrix = generateRotationMatrix();

 if (rotationMatrix != null)
 {
 determineOrientation(rotationMatrix);
 }
 }

 break;
 case Sensor.TYPE_ACCELEROMETER:
 accelerationValues = event.values.clone();
 rotationMatrix = generateRotationMatrix();

 if (rotationMatrix != null)
 {
 determineOrientation(rotationMatrix);
 }
 break;
 case Sensor.TYPE_MAGNETIC_FIELD:
 magneticValues = event.values.clone();
 rotationMatrix = generateRotationMatrix();

 if (rotationMatrix != null)
 {
 determineOrientation(rotationMatrix);
 }
 break;
 case Sensor.TYPE_ROTATION_VECTOR:

 rotationMatrix = new float[16];
 SensorManager.getRotationMatrixFromVector(rotationMatrix,
 event.values);
 determineOrientation(rotationMatrix);
 break;
 }
}

code snippet DetermineOrientationActivity.java

When the user toggles either the accelerometer and magnetometer or the rotation vector sensors,
determineOrientation()is called to compute the orientation from a given rotation matrix.
Listing 7-7 shows the implementation of determineOrientation().

c07.indd 133c07.indd 133 5/11/2012 9:31:57 AM5/11/2012 9:31:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

134 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

LISTING 7-7: DetermineOrientationActivity.determineOrientation()

private void determineOrientation(float[] rotationMatrix)
{
 float[] orientationValues = new float[3];
 SensorManager.getOrientation(rotationMatrix, orientationValues);

 double azimuth = Math.toDegrees(orientationValues[0]);
 double pitch = Math.toDegrees(orientationValues[1]);
 double roll = Math.toDegrees(orientationValues[2]);

 sensorXLabel.setText(R.string.azimuthLabel);
 sensorXValue.setText(String.valueOf(azimuth));

 sensorYLabel.setText(R.string.pitchLabel);
 sensorYValue.setText(String.valueOf(pitch));

 sensorZLabel.setText(R.string.rollLabel);
 sensorZValue.setText(String.valueOf(roll));

 sensorYLabel.setVisibility(View.VISIBLE);
 sensorYValue.setVisibility(View.VISIBLE);
 sensorZLabel.setVisibility(View.VISIBLE);
 sensorZValue.setVisibility(View.VISIBLE);

 if (pitch <= 10)
 {
 if (Math.abs(roll) >= 170)
 {
 onFaceDown();
 }
 else if (Math.abs(roll) <= 10)
 {
 onFaceUp();
 }
 }
}

code snippet DetermineOrientationActivity.java

SensorManager.getOrientation() takes two parameters: a float[] containing the rotation
matrix, and a second float[] that will contain the computed values when the method returns.
Once the call returns, the app has the values that it needs to determine the orientation of the
device.

The float[] populated by the SensorManager.getOrientation() call contains the azimuth,
pitch, and roll in slots 0, 1, and 2 of the array. The values will all be in radians. Mainly for display
purposes, the app will convert the values to degrees with calls to Math.toDegrees(). The converted
values will be written to the UI views so that the user can see the changes in values while changing
the orientation of the device. The converted values will also be used to determine if the device is face
up or face down.

c07.indd 134c07.indd 134 5/11/2012 9:31:57 AM5/11/2012 9:31:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 135

As discussed earlier in this chapter, the only values that are needed to determine if the device is face
up or face down are the pitch and the roll. The pitch should be zero if the device is perpendicular to
the ground. However, just like with the gravity sensor, the noise from the sensors must be factored
into the algorithm. Additionally, it may be desirable to widen the window when the face-up handler
and the face-down handler will be invoked so that the user can easily trigger the handlers. Because
of this, a pitch threshold of 10 degrees is used when processing the pitch value. Also, because this
app does not care in which direction the device is tilted, the absolute value of the pitch is used.

For similar reasons, the threshold for the roll value is also a value of 10 degrees. This means that
the device can be considered face up when the absolute value of the roll is less than or equal to 10
degrees. The device can be considered face down when the absolute value of the roll is greater than
or equal to 170 degrees.

The previous sections explained how the sensor data for determining device orientation was received
and how it was processed to determine if the device was face up or face down. The only thing left
is to notify the user when the orientation changes. DetermineOrientationActivity contains two
methods, onFaceDown() and onFaceUp(), which are called when the device changes orientation.

Notifying the User of Orientation Changes

Once the app has determined that the device is either face up or face down, it uses Text-To-Speech
(TTS) to alert the user. This makes it easy for a user to be alerted of orientation changes without
having to view the screen. Other, more common use cases may have the handler disable ringers or
enable/disable other device functionality. Speaking the orientation just makes operating the app easy
for the user. Listing 7-8 shows the implementation for onFaceUp() and onFaceDown().

LISTING 7-8: onFaceUp() and onFaceDown()

/**
 * Handler for device being face up.
 */
private void onFaceUp()
{
 if (!isFaceUp)
 {
 if (tts != null && ttsNotificationsToggleButton.isChecked())
 {
 tts.speak(getString(R.string.faceUpText),
 TextToSpeech.QUEUE_FLUSH,
 ttsParams);
 }

 orientationValue.setText(R.string.faceUpText);
 isFaceUp = true;
 }
}

/**
 * Handler for device being face down.
 */

continues

c07.indd 135c07.indd 135 5/11/2012 9:31:57 AM5/11/2012 9:31:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

136 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

private void onFaceDown()
{
 if (isFaceUp)
 {
 if (tts != null && ttsNotificationsToggleButton.isChecked())
 {
 tts.speak(getString(R.string.faceDownText),
 TextToSpeech.QUEUE_FLUSH,
 ttsParams);
 }

 orientationValue.setText(R.string.faceDownText);
 isFaceUp = false;
 }
}

code snippet DetermineOrientationActivity.java

Thusfar, only the parts of DetermineOrientationActivity that deal with Android sensor data or
initialization have been discussed. The activity has a few other tricks up its sleeve to keep the screen
on and allow the volume buttons to control the volume of the TTS output stream. Because these are
out of scope of the discussion of Android sensors, the chapter does not explain that code.

To support the use of TTS, DetermineOrientationActivity extends
SpeechRecognizingAndSpeakingActivity, which allows DetermineOrientationActivity
to easily support multiple languages. SpeechRecognizationAndSpeechActivity is discussed in
Chapter 18.

Listing 7-9 shows the complete DetermineOrientationActivity implementation.

LISTING 7-9: Complete DetermineOrientationActivity implementation

public class DetermineOrientationActivity
extends SpeechRecognizingAndSpeakingActivity implements SensorEventListener
{
 private static final String TAG = "DetermineOrientationActivity";
 private static final int RATE = SensorManager.SENSOR_DELAY_NORMAL;
 private static final int TTS_STREAM = AudioManager.STREAM_NOTIFICATION;
 private static final String TTS_NOTIFICATION_PREFERENCES_KEY =
 "TTS_NOTIFICATION_PREFERENCES_KEY";
 private static final double GRAVITY_THRESHOLD =
 SensorManager.STANDARD_GRAVITY / 2;

 private SensorManager sensorManager;
 private float[] accelerationValues;
 private float[] magneticValues;
 private TextToSpeech tts;
 private boolean isFaceUp;
 private RadioGroup sensorSelector;

LISTING 7-8 (continued)

c07.indd 136c07.indd 136 5/11/2012 9:31:57 AM5/11/2012 9:31:57 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 137

 private TextView selectedSensorValue;
 private TextView orientationValue;
 private TextView sensorXLabel;
 private TextView sensorXValue;
 private TextView sensorYLabel;
 private TextView sensorYValue;
 private TextView sensorZLabel;
 private TextView sensorZValue;
 private HashMap<String, String> ttsParams;
 private ToggleButton ttsNotificationsToggleButton;
 private SharedPreferences preferences;
 private boolean ttsNotifications;
 private int selectedSensorId;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 super.setContentView(R.layout.determine_orientation);

 // Keep the screen on so that changes in orientation can be easily
 // observed
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 // Set up stream to use for Text-To-Speech
 ttsParams = new HashMap<String, String>();
 ttsParams.put(Engine.KEY_PARAM_STREAM, String.valueOf(TTS_STREAM));

 // Set the volume control to use the same stream as TTS which allows
 // the user to easily adjust the TTS volume
 this.setVolumeControlStream(TTS_STREAM);

 // Get a reference to the sensor service
 sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 // Initialize references to the UI views that will be updated in the
 // code
 sensorSelector = (RadioGroup) findViewById(R.id.sensorSelector);
 selectedSensorValue = (TextView) findViewById(R.id.selectedSensorValue);
 orientationValue = (TextView) findViewById(R.id.orientationValue);
 sensorXLabel = (TextView) findViewById(R.id.sensorXLabel);
 sensorXValue = (TextView) findViewById(R.id.sensorXValue);
 sensorYLabel = (TextView) findViewById(R.id.sensorYLabel);
 sensorYValue = (TextView) findViewById(R.id.sensorYValue);
 sensorZLabel = (TextView) findViewById(R.id.sensorZLabel);
 sensorZValue = (TextView) findViewById(R.id.sensorZValue);
 ttsNotificationsToggleButton =
 (ToggleButton) findViewById(R.id.ttsNotificationsToggleButton);

 // Retrieve stored preferences
 preferences = getPreferences(MODE_PRIVATE);
 ttsNotifications =
 preferences.getBoolean(TTS_NOTIFICATION_PREFERENCES_KEY, true);
 }

continues

c07.indd 137c07.indd 137 5/11/2012 9:31:58 AM5/11/2012 9:31:58 AM

www.it-ebooks.info

http://www.it-ebooks.info/

138 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

 @Override
 protected void onResume()
 {
 super.onResume();

 ttsNotificationsToggleButton.setChecked(ttsNotifications);
 updateSelectedSensor();
 }

 @Override
 protected void onPause()
 {
 super.onPause();

 // Unregister updates from sensors
 sensorManager.unregisterListener(this);

 // Shutdown TTS facility
 if (tts != null)
 {
 tts.shutdown();
 }
 }

 @Override
 public void onSensorChanged(SensorEvent event)
 {
 float[] rotationMatrix;

 switch (event.sensor.getType())
 {
 case Sensor.TYPE_GRAVITY:
 sensorXLabel.setText(R.string.xAxisLabel);
 sensorXValue.setText(String.valueOf(event.values[0]));

 sensorYLabel.setText(R.string.yAxisLabel);
 sensorYValue.setText(String.valueOf(event.values[1]));

 sensorZLabel.setText(R.string.zAxisLabel);
 sensorZValue.setText(String.valueOf(event.values[2]));

 sensorYLabel.setVisibility(View.VISIBLE);
 sensorYValue.setVisibility(View.VISIBLE);
 sensorZLabel.setVisibility(View.VISIBLE);
 sensorZValue.setVisibility(View.VISIBLE);

 if (selectedSensorId == R.id.gravitySensor)
 {
 if (event.values[2] >= GRAVITY_THRESHOLD)
 {
 onFaceUp();
 }

LISTING 7-9 (continued)

c07.indd 138c07.indd 138 5/11/2012 9:31:58 AM5/11/2012 9:31:58 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 139

 else if (event.values[2] <= (GRAVITY_THRESHOLD * -1))
 {
 onFaceDown();
 }
 }
 else
 {
 accelerationValues = event.values.clone();
 rotationMatrix = generateRotationMatrix();

 if (rotationMatrix != null)
 {
 determineOrientation(rotationMatrix);
 }
 }

 break;
 case Sensor.TYPE_ACCELEROMETER:
 accelerationValues = event.values.clone();
 rotationMatrix = generateRotationMatrix();

 if (rotationMatrix != null)
 {
 determineOrientation(rotationMatrix);
 }
 break;
 case Sensor.TYPE_MAGNETIC_FIELD:
 magneticValues = event.values.clone();
 rotationMatrix = generateRotationMatrix();

 if (rotationMatrix != null)
 {
 determineOrientation(rotationMatrix);
 }
 break;
 case Sensor.TYPE_ROTATION_VECTOR:

 rotationMatrix = new float[16];
 SensorManager.getRotationMatrixFromVector(rotationMatrix,
 event.values);
 determineOrientation(rotationMatrix);
 break;
 }
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy)
 {
 Log.d(TAG,
 String.format("Accuracy for sensor %s = %d",
 sensor.getName(), accuracy));
 }

 private float[] generateRotationMatrix()
 { continues

c07.indd 139c07.indd 139 5/11/2012 9:31:58 AM5/11/2012 9:31:58 AM

www.it-ebooks.info

http://www.it-ebooks.info/

140 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

 float[] rotationMatrix = null;

 if (accelerationValues != null && magneticValues != null)
 {
 rotationMatrix = new float[16];
 boolean rotationMatrixGenerated;
 rotationMatrixGenerated =
 SensorManager.getRotationMatrix(rotationMatrix,
 null,
 accelerationValues,
 magneticValues);

 if (!rotationMatrixGenerated)
 {
 Log.w(TAG, getString(R.string.rotationMatrixGenFailureMessage));

 rotationMatrix = null;
 }
 }

 return rotationMatrix;
 }

 private void determineOrientation(float[] rotationMatrix)
 {
 float[] orientationValues = new float[3];
 SensorManager.getOrientation(rotationMatrix, orientationValues);

 double azimuth = Math.toDegrees(orientationValues[0]);
 double pitch = Math.toDegrees(orientationValues[1]);
 double roll = Math.toDegrees(orientationValues[2]);

 sensorXLabel.setText(R.string.azimuthLabel);
 sensorXValue.setText(String.valueOf(azimuth));

 sensorYLabel.setText(R.string.pitchLabel);
 sensorYValue.setText(String.valueOf(pitch));

 sensorZLabel.setText(R.string.rollLabel);
 sensorZValue.setText(String.valueOf(roll));

 sensorYLabel.setVisibility(View.VISIBLE);
 sensorYValue.setVisibility(View.VISIBLE);
 sensorZLabel.setVisibility(View.VISIBLE);
 sensorZValue.setVisibility(View.VISIBLE);

 if (pitch <= 10)
 {
 if (Math.abs(roll) >= 170)
 {
 onFaceDown();
 }

LISTING 7-9 (continued)

c07.indd 140c07.indd 140 5/11/2012 9:31:58 AM5/11/2012 9:31:58 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Determining Device Orientation x 141

 else if (Math.abs(roll) <= 10)
 {
 onFaceUp();
 }
 }
 }

 private void onFaceUp()
 {
 if (!isFaceUp)
 {
 if (tts != null && ttsNotificationsToggleButton.isChecked())
 {
 tts.speak(getString(R.string.faceUpText),
 TextToSpeech.QUEUE_FLUSH,
 ttsParams);
 }

 orientationValue.setText(R.string.faceUpText);
 isFaceUp = true;
 }
 }

 private void onFaceDown()
 {
 if (isFaceUp)
 {
 if (tts != null && ttsNotificationsToggleButton.isChecked())
 {
 tts.speak(getString(R.string.faceDownText),
 TextToSpeech.QUEUE_FLUSH,
 ttsParams);
 }

 orientationValue.setText(R.string.faceDownText);
 isFaceUp = false;
 }
 }

 private void updateSelectedSensor()
 {
 // Clear any current registrations
 sensorManager.unregisterListener(this);

 // Determine which radio button is currently selected and enable the
 // appropriate sensors
 selectedSensorId = sensorSelector.getCheckedRadioButtonId();
 if (selectedSensorId == R.id.accelerometerMagnetometer)
 {
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 RATE);

 sensorManager.registerListener(this,

continues

c07.indd 141c07.indd 141 5/11/2012 9:31:58 AM5/11/2012 9:31:58 AM

www.it-ebooks.info

http://www.it-ebooks.info/

142 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

 sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
 RATE);
 }
 else if (selectedSensorId == R.id.gravityMagnetometer)
 {
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),
 RATE);

 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
 RATE);
 }
 else if ((selectedSensorId == R.id.gravitySensor))
 {
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),
 RATE);
 }
 else
 {
 sensorManager.registerListener(this,
 sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR),
 RATE);
 }

 // Update the label with the currently selected sensor
 RadioButton selectedSensorRadioButton =
 (RadioButton) findViewById(selectedSensorId);
 selectedSensorValue.setText(selectedSensorRadioButton.getText());
 }

 public void onSensorSelectorClick(View view)
 {
 updateSelectedSensor();
 }

 public void onTtsNotificationsToggleButtonClicked(View view)
 {
 ttsNotifications = ((ToggleButton) view).isChecked();
 preferences.edit()
 .putBoolean(TTS_NOTIFICATION_PREFERENCES_KEY, ttsNotifications)
 .commit();
 }

 @Override
 public void onSuccessfulInit(TextToSpeech tts)
 {
 super.onSuccessfulInit(tts);
 this.tts = tts;
 }

LISTING 7-9 (continued)

c07.indd 142c07.indd 142 5/11/2012 9:31:59 AM5/11/2012 9:31:59 AM

www.it-ebooks.info

http://www.it-ebooks.info/

NorthFinder x 143

 @Override
 protected void receiveWhatWasHeard(List<String> heard,
 float[] confidenceScores)
 {
 // no-op
 }
}
code snippet DetermineOrientationActivity.java

code snippet DetermineOrientationActivity.java

NORTHFINDER

The NorthFinder app illustrates how to use the rotation vector sensor to implement an augmented
reality app, and how to use OpenGL to change the screen color. When the rear camera is pointed
within 20 degrees of north, the app changes the screen’s color from red to green. Because the app
knows which direction the user is pointing the camera, it could add camera views or other overlays
and make a full augmented reality app.

Getting the correct orientation requires two steps: acquire the rotation vector of the device and
remap the rotation vector’s coordinates to be along the camera’s axes. The onSensorChanged()
method performs these two steps using SensorManager.getRotationMatrixFromVector() and
SensorManager.remapCoordinateSystem(). If the call to remapCoordinateSystem() is removed,
the app will measure when the top of the device is pointing north instead of when the device’s rear
camera is pointing north. Listing 7-10 contains the full implementation.

LISTING 7-10: NorthFinder

public class NorthFinder extends Activity implements SensorEventListener
{
 private static final int ANGLE = 20;

 private TextView tv;
 private GLSurfaceView mGLSurfaceView;
 private MyRenderer mRenderer;
 private SensorManager mSensorManager;
 private Sensor mRotVectSensor;
 private float[] orientationVals = new float[3];

 private final float[] mRotationMatrix = new float[16];

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.sensors_north_main);

 mRenderer = new MyRenderer();
 mGLSurfaceView = (GLSurfaceView) findViewById(R.id.glsurfaceview);

continues

c07.indd 143c07.indd 143 5/11/2012 9:31:59 AM5/11/2012 9:31:59 AM

www.it-ebooks.info

http://www.it-ebooks.info/

144 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

 mGLSurfaceView.setRenderer(mRenderer);

 tv = (TextView) findViewById(R.id.tv);

 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
 mRotVectSensor =
 mSensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

 }

 @Override
 protected void onResume()
 {
 super.onResume();
 mSensorManager.registerListener(this, mRotVectSensor, 10000);
 }

 @Override
 protected void onPause()
 {
 super.onPause();
 mSensorManager.unregisterListener(this);
 }

 @Override
 public void onSensorChanged(SensorEvent event)
 {
 // It is good practice to check that we received the proper sensor event
 if (event.sensor.getType() == Sensor.TYPE_ROTATION_VECTOR)
 {
 // Convert the rotation-vector to a 4x4 matrix.
 SensorManager.getRotationMatrixFromVector(mRotationMatrix,
 event.values);
 SensorManager
 .remapCoordinateSystem(mRotationMatrix,
 SensorManager.AXIS_X, SensorManager.AXIS_Z,
 mRotationMatrix);
 SensorManager.getOrientation(mRotationMatrix, orientationVals);

 // Optionally convert the result from radians to degrees
 orientationVals[0] = (float) Math.toDegrees(orientationVals[0]);
 orientationVals[1] = (float) Math.toDegrees(orientationVals[1]);
 orientationVals[2] = (float) Math.toDegrees(orientationVals[2]);

 tv.setText(" Yaw: " + orientationVals[0] + "\n Pitch: "
 + orientationVals[1] + "\n Roll (not used): "
 + orientationVals[2]);

LISTING 7-10 (continued)

c07.indd 144c07.indd 144 5/11/2012 9:31:59 AM5/11/2012 9:31:59 AM

www.it-ebooks.info

http://www.it-ebooks.info/

NorthFinder x 145

 }
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy)
 {
 // no-op
 }

 class MyRenderer implements GLSurfaceView.Renderer
 {
 public void onDrawFrame(GL10 gl)
 {
 // Clear screen
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);

 // Detect if the device is pointing within +/- ANGLE of north
 if (orientationVals[0] < ANGLE && orientationVals[0] > -ANGLE
 && orientationVals[1] < ANGLE
 && orientationVals[1] > -ANGLE)
 {
 gl.glClearColor(0, 1, 0, 1); // Make background green
 }
 else
 {
 gl.glClearColor(1, 0, 0, 1); // Make background red
 }
 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height)
 {
 // no-op
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config)
 {
 // no-op
 }
 }
}

code snippet NorthFinder.java

The rotation vector sensor can be used to control a game or in an augmented reality application.
OpenGL (Open Graphics Library) can also be used in both cases. This example included the basic
example showing how to use OpenGL to perform the simple task of changing the screen from red
to green.

c07.indd 145c07.indd 145 5/11/2012 9:31:59 AM5/11/2012 9:31:59 AM

www.it-ebooks.info

http://www.it-ebooks.info/

146 x CHAPTER 7 DETERMINING DEVICE ORIENTATION

SUMMARY

This chapter provided an example of how to make a simple orientation determination, whether the
device is face up or face down. To accomplish this, the example in the chapter made use of multiple
sensors including the accelerometer, magnetometer, rotation vector, and gravity sensor.

In addition to using TTS to notify the user when the device orientation changes from face up to
face down, the DetermineOrientationActivity also displays the values that are used to make the
determination to the screen. This also allows the user to see how the values change as the phone
is moved. Taking some time to run the app and see the values change would be a good use of time
before trying to use the sensors. Becoming familiar with how the different axes’ rotation values
change when the device is moved can save a lot of time during implementation.

c07.indd 146c07.indd 146 5/11/2012 9:31:59 AM5/11/2012 9:31:59 AM

www.it-ebooks.info

http://www.it-ebooks.info/

8
Detecting Movement

WHAT’S IN THIS CHAPTER?

 ‰ Explaining the diff erence between the accelerometer and the linear

acceleration sensor

 ‰ Introducing some of the issues involved with using acceleration data

in Android

 ‰ Providing a method to smooth acceleration data

 ‰ Providing a functional example of acceleration data being collected

and processed to detect device movement

Chapter 7 discussed ways to determine the current orientation of a device using the gravity
sensor and SensorManager.getOrientation(). This chapter discusses methods to detect
device movement using the accelerometer and the linear acceleration sensor. Although both
sensors provide acceleration data, the data has differences that may make one sensor prefer-
able over the other in certain situations. This chapter illustrates the differences in how the
acceleration data is represented for each sensor.

To aid in illustrating the use of these sensors, this chapter provides an example in the form of
a motion detector that uses Text-To-Speech to indicate when device movement is detected. The
example app in this chapter will be provided sensor information in a similar manner to the
way sensor data was read in Chapter 7. The main difference is the actual sensors that are used
in this chapter—the accelerometer and the linear acceleration sensor. As explained in Chapter
5, the accelerometer provides raw acceleration data for the X, Y, and Z axes, and the linear
acceleration is a synthetic sensor that performs processing on the raw sensor data before
providing it to an app.

The example provided in this chapter will detect linear movement and, similar to the example
in Chapter 7, use the Android TTS facility to announce that the device has detected move-
ment. In addition to the audio cues that the device is moving, the example app will also plot

c08.indd 147c08.indd 147 5/10/2012 2:03:49 PM5/10/2012 2:03:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

148 x CHAPTER 8 DETECTING MOVEMENT

the X, Y, and Z axes values as well as the net acceleration value on a graph in real time. The data
for the plot will also be stored on the external storage area so that the data can be analyzed (outside
of the app) after the app has fi nished.

Though plotting the data has nothing to do with the detection
of movement, it does help tell the story of the data the acceler-
ometer and linear acceleration sensors provide. Being able to
analyze the change in component acceleration values (X, Y, and
Z axes) and how they affect net acceleration can be extremely
useful when attempting to use the data. Figure 8-1 shows a
screen shot of the example app collecting and plotting accelera-
tion data.

Whereas Chapter 5 gave a broad overview of these two sensors,
this chapter dives into the details of using the sensors and mak-
ing sense of the data they provide.

ACCELERATION DATA

Both the accelerometer and the linear acceleration sensor
provide acceleration data for the X, Y, and Z axes. The accel-
eration data not only provides the magnitude of the acceleration
(in m/sec2), but also the direction of the acceleration. For each
axis, a positive acceleration indicates acceleration in one direc-
tion and a negative value indicates acceleration in the opposite
direction. Refer to Figure 5-4 to see how the axes are defi ned
for a device.

As an example, if the device is lying fl at on a surface and is
moved from left to right, a positive acceleration for the X axis would be generated. Conversely, if
the device is moved from right to left, a negative acceleration value will be generated. The same logic
can be applied to the Y and Z axes as well.

Though both the accelerometer and the linear acceleration sensor produce acceleration data, the
major difference between the two is how gravity affects the data values. The accelerometer produces
raw acceleration data and is affected by the force of gravity, whereas the linear acceleration sensor
factors out the acceleration due to gravity.

Accelerometer Data

Figure 8-2 shows a plot of raw acceleration data that was received from the accelerometer while the
device was lying fl at on a table with its screen pointing up. Notice that the value of the Z axis is con-
tinuously reading a value of ª9.8 m/sec2. This is because even when the device is lying motionless, it
is being affected by gravity.

If the device is rotated up such that the Y axis forms a 90° angle with the ground, the acceleration value
along the Z axis will drop to 0, while the acceleration along the Y axis will jump to 9.8 m/sec2. In this
way, the raw accelerometer data is related to data that was provided by the gravity sensor in Chapter 7.

FIGURE 8-1: Running and plotting

acceleration data

c08.indd 148c08.indd 148 5/10/2012 2:03:53 PM5/10/2012 2:03:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Acceleration Data x 149

FIGURE 8-2: Accelerometer data of a device lying in its back

Accelerometer Data
10

5

0

–5

–10
0 2000 4000 6000 8000 10000 12000

X Axis
Y Axis
Z Axis

A
cc

el
er

at
io

n
(m

/s
ec

2
)

Elapsed Time (ms)

To remove the effect of gravity on the acceleration values, a high-pass fi lter can be applied to the
raw accelerometer data. A high-pass fi lter will reduce the offset that is caused by the constant
force of gravity being applied to the device. When using the accelerometer data, this is probably
a necessity for an app because including gravity can lead to erroneous calculations. Figure 8-3
shows a plot of accelerometer data where a high-pass fi lter has been applied to the raw data.
Notice that with the high-pass fi lter applied, all axes values are ª0 while the device is lying
motionless.

Chapter 6 dives much deeper into the details of fi ltering sensor data.

FIGURE 8-3: Accelerometer plot with a high-pass fi lter applied

Accelerometer Data

A
cc

el
er

at
io

n
(m

/s
ec

2
)

10

5

0

–5

–10
1000 2000 3000 4000 5000

Elapsed Time (ms)
6000 7000 8000 9000 10000 11000

X Axis
Y Axis
Z Axis

c08.indd 149c08.indd 149 5/10/2012 2:03:53 PM5/10/2012 2:03:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

150 x CHAPTER 8 DETECTING MOVEMENT

Linear Acceleration Sensor Data

Compare Figure 5-4 to Figure 8-4, which shows unfi ltered data plotted from the linear accel-
eration sensor. The data was again collected while the device was lying motionless on its back.
Notice that the X, Y, and Z axes all show continuous values close to zero. This is because the
linear acceleration sensor factors out the acceleration due to gravity without the need to apply
any additional fi ltering.

Linear Acceleration Sensor Data

A
cc

el
er

at
io

n
(m

/s
ec

2
)

10

5

0

–5

–10
0 1000 1000 3000 4000

Elapsed Time (ms)
5000 6000 7000 8000 9000 10000

X Axis
Y Axis
Z Axis

FIGURE 8-4: Linear acceleration sensor plotted data

To reiterate a point made in Chapter 5, if your app needs access to acceleration data that is not infl u-
enced by gravity, it is better to use the linear acceleration sensor and allow it to fi lter the data, than
to use the raw accelerometer data.

Though data received when the device is motionless illustrates the differences between raw acceler-
ometer data and data received from the linear acceleration sensor (and the need to fi lter it), it is data
while the device is accelerating/decelerating that the example app is really concerned with. Because
the linear acceleration sensor data and the fi ltered accelerometer data are similar, most of the images
of plots that follow only depict data received from only one of the sensors.

Data While Device Is in Motion

When using either the accelerometer or the linear acceleration sensor, an app will typically be inter-
ested in the data that is received while the device is accelerating or decelerating. For example, the
example for this chapter will monitor one of the sensors (which the user can select) and use the data

c08.indd 150c08.indd 150 5/10/2012 2:03:54 PM5/10/2012 2:03:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Acceleration Data x 151

provided by that sensor to detect changes in device movement. Figure 8-5 shows a plot of data that
was recorded while the device went through the following sequence of events:

 1 . Lay the device fl at on its back for 10 seconds.

 2. Move the device left to right along the X axis.

 3. Leave the device motionless for 10 seconds.

 4. Move the device right to left along the X axis.

 5. Leave the device motionless for 10 seconds.

 6. Move the device left to right along the X axis.

 7 . Leave the device motionless for 10 seconds.

 8. Move the device right to left on the X axis.

 9. Leave the device motionless for 10 seconds.

From Figure 8-5, you can see the “spikes” where the device went from motionless to moving. The
acceleration values on the X axis went from a value of ª0 to values greater than or less than 0.

FIGURE 8-5: Acceleration data from moving device along the X axis

Accelerometer Data

A
cc

el
er

at
io

n
(m

/s
ec

2
)

10

5

0

–5

–10
0 5000 10000 15000 20000 25000

Elapsed Time (ms)
30000 35000 40000 45000 50000 55000

X Axis
Y Axis
Z Axis

Remember that both acceleration sensors not only provide the magnitude of the acceleration, but
also the direction as determined by the sign of the acceleration. In Figure 8-5, a move from left to
right is shown to have a sharp change in the acceleration value in the positive direction followed by

c08.indd 151c08.indd 151 5/10/2012 2:03:54 PM5/10/2012 2:03:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

152 x CHAPTER 8 DETECTING MOVEMENT

a sharp change in the negative direction. The positive value indicates a force being applied in the
positive direction of the X axis as the device accelerates, and the negative value indicates a force
being applied in the negative direction of the X axis as the device decelerates. Conversely, when the
device is moved from right to left, fi rst a negative acceleration value is provided from the sensor fol-
lowed by a positive value.

The same logic can be applied to the Y and Z axes and is depicted in Figure 8-6, which shows plot-
ted data that was recorded by the example app. The data generated for this plot came from a device
where the following actions were applied:

 1. Lay the device fl at on its back motionless for 10 seconds.

 2. Shake the device left and right along the X axis for 10 seconds.

 3. Lay the device fl at on its back motionless for 10 seconds.

 4. Shake the device forward and back along the Y axis for 10 seconds.

 5. Lay the device fl at on its back motionless for 10 seconds.

 6. Shake the device up and down along the Z axis for 10 seconds.

 7. Lay the device fl at on its back motionless for 10 seconds.

From Figure 8-6, you can see the drastic change in the acceleration values along each axis when the
device is being shaken. This provides the foundation for what is needed to detect motion.

FIGURE 8-6 Data plot from moving the device in the direction of all three axes

Accelerometer Data

A
cc

el
er

at
io

n
(m

/s
ec

2
)

10

5

0

–5

–10
0 10000 20000 30000 40000

Elapsed Time (ms)
50000 60000 70000 80000

X Axis
Y Axis
Z Axis

The accelerometer and the linear acceleration sensors provide the acceleration in each direction over
a three-dimensional space. The next section describes how to compute the total acceleration.

c08.indd 152c08.indd 152 5/10/2012 2:03:54 PM5/10/2012 2:03:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementation x 153

Total Acceleration

The example in this chapter is not concerned with the direction in which the device is accelerating,
but the fact that it is accelerating. To determine if the device is accelerating, the acceleration values
from the X, Y, and Z axes can be used to compute total acceleration by calculating the square root
of the sum of the squares for the axes values.

To detect general device acceleration, this is a better approach than simply looking at each axis
individually because this will allow you to set a threshold on the acceleration that your app will
respond to. This would allow an app to differentiate between the incidental acceleration produced
from a person bumping a sitting device from the intentional acceleration produced by a person
shaking a device.

Now that some of the concepts have been introduced, it is time to jump into the details of the code.

IMPLEMENTATION

The classes that implement the movement detection part of the example app are located in the
root.gast.playground.movement package, which contains DetermineMovementActivity
and AccelerationEventListener. DetermineMovementActivity is responsible for load-
ing the UI, getting a handle to the SensorManager, and registering for sensor updates.
AccelerationEventListener implements SensorEventListener and will receive and respond to
updates from the acceleration sensors.

DetermineMovementActivity

Recall from Figure 8-1 that the example app for this chapter allows users to select which sen-
sor they want to utilize in order to detect movement, indicate whether or not to fi lter the data,
and display a graph of the acceleration data across the X, Y and Z axes. A third-party library
(http://androidplot.com) is used to generate the graph, but that is not the focus of this chapter.
However, for those who are interested, the entire source code is available at this book’s companion
website at www.wrox.com.

Once users have selected which sensor to use to report acceleration data, and confi gured the options
for processing the sensor data, they can touch the toggle button at the bottom of the screen to start
receiving acceleration data. The handler for the toggle button click event starts or stops the data col-
lection based on the button’s current state. The code for the toggle button click handler is shown in
Listing 8-1.

LISTING 8-1: Toggle button handler

public void onReadAccelerationDataToggleButtonClicked(View view)
{
 ToggleButton toggleButton = (ToggleButton)view;

 if (toggleButton.isChecked())
 {

c08.indd 153c08.indd 153 5/10/2012 2:03:55 PM5/10/2012 2:03:55 PM

www.it-ebooks.info

http://androidplot.com
http://www.wrox.com
http://www.it-ebooks.info/

154 x CHAPTER 8 DETECTING MOVEMENT

 startReadingAccelerationData();
 }
 else
 {
 stopReadingAccelerationData();
 }
}

The plotting operation is started in the startReadingAcceleration() method, which is
shown in Listing 8-2. In Listing 8-2, the member variable sensorSelector is a reference to the
RadioGroup that allows the user to select the desired sensor. The member variable useHighPass-
Filter refl ects whether the user has checked the Use High-Pass Filter on the main screen of the
activity (see Figure 8-1).

LISTING 8-2: Initialize the AccelerationSensorEventListeners

private void startReadingAccelerationData()
{
 if (!readingAccelerationData)
 {
 // Clear any plot that may already exist on the chart
 xyPlot.clear();
 xyPlot.redraw();

 // Disable UI components so they cannot be changed while plotting
 // sensor data
 for (int i = 0; i < sensorSelector.getChildCount(); i++)
 {
 sensorSelector.getChildAt(i).setEnabled(false);
 }
 ttsNotificationsCheckBox.setEnabled(false);
 highPassFilterCheckBox.setEnabled(false);

 // Data files are stored on the external cache directory so they can
 // be pulled off of the device by the user
 File accelerometerDataFile =
 new File(getExternalCacheDir(), "accelerometer.csv");
 File linearAcceclerationDataFile =
 new File(getExternalCacheDir(), "linearAcceleration.csv");

 if (selectedSensorType == Sensor.TYPE_ACCELEROMETER)
 {
 xyPlot.setTitle("Sensor.TYPE_ACCELEROMETER");
 accelerometerListener =
 new AccelerationEventListener(xyPlot,
 useHighPassFilter,
 accelerometerDataFile,
 (useTtsNotification ? tts : null),
 ttsParams,
 getString(R.string.movementDetectedText));

c08.indd 154c08.indd 154 5/10/2012 2:03:55 PM5/10/2012 2:03:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementation x 155

 linearAccelerationListener =
 new AccelerationEventListener(null,
 useHighPassFilter,
 linearAcceclerationDataFile,
 (useTtsNotification ? tts : null),
 ttsParams,
 getString(R.string.movementDetectedText));
 }
 else
 {
 xyPlot.setTitle("Sensor.TYPE_LINEAR_ACCELERATION");
 accelerometerListener =
 new AccelerationEventListener(null,
 useHighPassFilter,
 accelerometerDataFile,
 (useTtsNotification ? tts : null),
 ttsParams,
 getString(R.string.movementDetectedText));

 linearAccelerationListener =
 new AccelerationEventListener(xyPlot,
 useHighPassFilter,
 linearAcceclerationDataFile,
 (useTtsNotification ? tts : null),
 ttsParams,
 getString(R.string.movementDetectedText));
 }

 sensorManager.registerListener(accelerometerListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 RATE);

 sensorManager.registerListener(linearAccelerationListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION),
 RATE);

 readingAccelerationData = true;

 Log.d(TAG, "Started reading acceleration data");
 }

code snippet DetermineMovementActivity.java

Listing 8-2 shows startReadingAcceleration() creating two instances of
AccelerationEventListener and registering them both with SensorManager.registerListener().
There is a listener for the accelerometer and the linear acceleration sensor because both
sensors will be receiving acceleration data at the same time and writing the data to two different
CSV fi les. However, the data of only one sensor will be plotted to the chart, or be used to
detect movement.

The CSV fi les that are written can be used to analyze the sensor data after the app has been closed.
It was these CSV fi les that were used to generate the charts displayed earlier in the chapter.

c08.indd 155c08.indd 155 5/10/2012 2:03:55 PM5/10/2012 2:03:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

156 x CHAPTER 8 DETECTING MOVEMENT

From a sensor standpoint, the only other interesting method in DetermineMovementActivity is
stopReadingAccelerationData(), which is called when the user touches an activated toggle but-
ton or presses the back button. stopReadingAccelerationData() is where the app makes the call
to SensorManager.unregisterListener() to stop receiving acceleration data and clean up after
itself. Listing 8-3 shows the implementation of stopReadingAccelerationData().

LISTING 8-3: Stop app from receiving acceleration data

private void stopReadingAccelerationData()
{
 if (readingAccelerationData)
 {
 // Re-enable sensor and options UI views
 for (int i = 0; i < sensorSelector.getChildCount(); i++)
 {
 sensorSelector.getChildAt(i).setEnabled(true);
 }
 ttsNotificationsCheckBox.setEnabled(true);
 highPassFilterCheckBox.setEnabled(true);

 sensorManager.unregisterListener(accelerometerListener);
 sensorManager.unregisterListener(linearAccelerationListener);

 // Tell listeners to clean up after themselves
 accelerometerListener.stop();
 linearAccelerationListener.stop();

 readingAccelerationData = false;

 Log.d(TAG, "Stopped reading acceleration data");
 }
}

DetermineMovementActivity contains the boilerplate code for initializing the app to receive sen-
sor data. The code is similar to the code that was provided in previous chapters for setting up a
SensorEventListener, which includes retrieving a reference to the SensorManager and register-
ing a SensorEventListener to receive updated sensor data. Both of these topics were discussed at
length in Chapter 5, so an in-depth discussion of the code is not included in this chapter.

Instead, the chapter moves on to the specifi c details for handling and processing acceleration
data to accomplish the task at hand — detecting movement — the details for which are in the
AccelerationEventListener class.

AccelerationEventListener

The AccelerationEventListener is responsible for receiving and processing the acceleration data.
For the example app, this entails fi ltering the data, computing the total acceleration, writing the data
to a CSV fi le, plotting the data on the graph, and detecting movement.

Because the AccelerationEventListener needs to receive sensor data, it implements
SensorEventListener. Therefore, it must provide an implementation for the onSensorChanged()

c08.indd 156c08.indd 156 5/10/2012 2:03:55 PM5/10/2012 2:03:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementation x 157

and onAccuracyChanged() methods. For the example app, onAccuracyChanged() has an empty
implementation. onSensorChanged() is where the main business logic of the app is located and is
shown in Listing 8-4.

LISTING 8-4: onSensorChanged()

private static final int THRESHHOLD = 2;
@Override
public void onSensorChanged(SensorEvent event)
{
 float[] values = event.values.clone();

 // Pass values through high-pass filter if enabled
 if (useHighPassFilter)
 {
 values = highPass(values[0],
 values[1],
 values[2]);
 }

 // Ignore data if the high-pass filter is enabled, has not yet received
 // some data to set it
 if (!useHighPassFilter || (++highPassCount >= HIGH_PASS_MINIMUM))
 {
 double sumOfSquares = (values[0] * values[0])
 + (values[1] * values[1])
 + (values[2] * values[2]);
 double acceleration = Math.sqrt(sumOfSquares);

 // Write to data file
 writeSensorEvent(printWriter,
 values[0],
 values[1],
 values[2],
 acceleration,
 event.timestamp);

 // If the plot is null, the sensor is not active. Do not plot the
 // data or used the data to determine if the device is moving
 if (xyPlot != null)
 {
 long current = SystemClock.uptimeMillis();

 // Limit how much the chart gets updated
 if ((current - lastChartRefresh) >= CHART_REFRESH)
 {
 long timestamp = (event.timestamp / 1000000) - startTime;

 // Plot data
 addDataPoint(xAxisSeries, timestamp, values[0]);
 addDataPoint(yAxisSeries, timestamp, values[1]);
 addDataPoint(zAxisSeries, timestamp, values[2]);

continues

c08.indd 157c08.indd 157 5/10/2012 2:03:55 PM5/10/2012 2:03:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

158 x CHAPTER 8 DETECTING MOVEMENT

 addDataPoint(accelerationSeries, timestamp, acceleration);

 xyPlot.redraw();

 lastChartRefresh = current;
 }

 // A "movement" is only triggered of the total acceleration is
 // above a threshold
 if (acceleration > THRESHHOLD)
 {
 Log.i(TAG, "Movement detected");

 if (tts != null)
 {
 tts.speak(movementText,
 TextToSpeech.QUEUE_FLUSH,
 ttsParams);
 }
 }
 }
 }
}

code snippet AccelerationEventListener.java

The data that is passed to onSensorChanged() resides in SensorEvent.values. The values member
contains a three-element float array, which contains the values of the X, Y, and Z axes, respec-
tively. Both the accelerometer and the linear acceleration sensor pass data that is formatted the same
way, which allows the example app to process the data from the different sources in the same man-
ner (even using the same class).

The fi rst step is to apply the high-pass fi lter if the user has enabled it. If the user has enabled the
high-pass fi lter, the values in SensorEvent.values are passed to highPass(), which will apply
the high-pass fi lter and return the results. The high-pass fi lter algorithm that is used in this chapter
is the one that is presented in the Android javadoc for the SensorEvent class that is provided by
Google. Recall from Chapter 6 that a simple way to perform high-pass fi ltering is to perform a low-
pass fi lter and then subtract the result from the sensor data. Listing 8-5 shows the implementation
for the highPass() method that performs the high-pass fi ltering operation.

LISTING 8-5: Google’s high-pass fi lter algorithm

private static final float ALPHA = 0.8f;
private float[] highPass(float x, float y, float z)
{
 float[] filteredValues = new float[3];

 gravity[0] = ALPHA * gravity[0] + (1 - ALPHA) * x;
 gravity[1] = ALPHA * gravity[1] + (1 - ALPHA) * y;

LISTING 8-4 (continued)

c08.indd 158c08.indd 158 5/10/2012 2:03:56 PM5/10/2012 2:03:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary x 159

 gravity[2] = ALPHA * gravity[2] + (1 - ALPHA) * z;

 filteredValues[0] = x - gravity[0];
 filteredValues[1] = y - gravity[1];
 filteredValues[2] = z - gravity[2];

 return filteredValues;
}

This code snippet was derived from http://developer.android.com/reference/android/hardware/SensorEvent.html

which is available under the Apache 2.0 License.

The discussion of how the high-pass fi lter works is discussed in detail in Chapter 6.

Once the data has been (conditionally) fi ltered, the total acceleration can be computed using the
square root of the sum of the squares of the X, Y, and Z axes’ acceleration values. The values of the
three axes and the acceleration are then written to the data fi le.

If the listener has a reference to a graph, it will additionally graph the data and then use the accel-
eration to determine of the device is moving. Once the total acceleration is computed, a simple com-
parison to a threshold can be used to detect movement. If movement is detected, the TTS is used to
indicate the detected movement to the user.

SUMMARY

This chapter discussed how acceleration data can be obtained in Android via the accelerometer and
the linear acceleration synthetic sensor. Additionally, the differences in the data provided by each
sensor, mainly how gravity affects the data, were also discussed.

Detecting general motion is the foundation for performing many more complex tasks with the accel-
eration data. From the data provided in this chapter, it is easy see that detecting the device being
shaken is the same as detecting general motion with the total acceleration threshold set to a
higher value.

Using the real-time graph to see how moving the device affects the acceleration sensors in real time
can be incredibly useful in understanding how the acceleration sensors work. The reader is encour-
aged to spend some time running the example app and examining both the in-app graph and the
data CSV fi les that are saved to become more familiar with how the acceleration sensors work.

c08.indd 159c08.indd 159 5/10/2012 2:03:56 PM5/10/2012 2:03:56 PM

www.it-ebooks.info

http://developer.android.com/reference/android/hardware/SensorEvent.html
http://www.it-ebooks.info/

c08.indd 160c08.indd 160 5/10/2012 2:03:56 PM5/10/2012 2:03:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

9
Sensing the Environment

WHAT’S IN THIS CHAPTER?

 ‰ Providing an example implementation of how to use the barometer

to produce altitude

 ‰ Comparing the altitude produced by GPS and the altitude produced

using barometric pressure

 ‰ Showing how to acquire external sea-level pressure data from a web

service

 ‰ Explaining use cases for barometric data

The past few chapters have discussed how to determine how a device is oriented in its envi-
ronment and whether it is moving. This chapter discusses how a device can make sense of the
environment itself. As stated in Chapter 5, Android supports many different sensors that can
be used to make sense of the environment. This chapter focuses on one of the newest environ-
ment sensors supported by Android, the barometer.

Recall from Chapter 5 that the main purpose for the barometer is to detect the altitude of a
given device. This sensor is useful when a device cannot obtain a GPS signal and still needs to
provide altitude data.

To showcase the barometer sensor, this chapter adds altimeter functionality to the book’s
example app. The altimeter provides the ability to determine a device’s current altitude as well
as compute the relative altitude as the device’s altitude changes. Because it does not rely solely
on GPS data (which also provides altitude data), the altimeter will remain fully functional
indoors where a GPS signal would probably be lost.

As explained in Chapter 5, altitude can be calculated by passing a barometer reading to the
SensorManager.getAltitude() method. SensorManager.getAltitude() takes two fl oat
parameters, which represent the current atmospheric pressure at sea level and the atmospheric
pressure as reported by the barometer and returns the altitude in meters. The pressure at
sea level can be obtained by using the SensorManager.PRESSURE_STANDARD_ATMOSPHERE

c09.indd 161c09.indd 161 5/10/2012 2:04:30 PM5/10/2012 2:04:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

162 x CHAPTER 9 SENSING THE ENVIRONMENT

constant, or by getting the information from an external source. The example app will compute the
altitude using both the standard atmospheric pressure constant and by retrieving the current pres-
sure from a web service. Using both values for the altitude computation showcases the difference
between the two values as well as illustrates how to obtain and process both values.

BAROMETER VS. GPS FOR ALTITUDE DATA

Although receiving altitude from the GPS is convenient from a coding perspective, it may not always
be possible. For example, should the device be in a location where it cannot get a GPS fi x (indoors,
for example), an app will not receive a call to onLocationChanged(). Furthermore, because it can
take a signifi cant amount of time to get a GPS fi x, GPS altitude data may not be available in a timely
fashion. Use of GPS can also consume more battery power than the barometer, which alone can
make the barometer an attractive choice for receiving altitude information.

The barometer, on the other hand, reports pressure readings almost immediately and is almost always
able to produce relatively accurate readings. Though it might not be the ideal source of altitude data in
all cases, the sensor is certainly useful in a large number of cases where altitude is needed by an app.

EXAMPLE APP OVERVIEW.

Figure 9-1 shows a screen capture of the altimeter activity,
DetermineAltitudeActivity, in the book’s companion app.

The altimeter displays the absolute altitude and relative altitude
using data from both the GPS and the barometer. Because the
altitude can be calculated from barometer readings using the
standard pressure constant and an externally provided sea-
level pressure reading, the activity makes both calculations and
shows them in the UI.

Retrieving barometer data is similar to retrieving data from
other sensors on a device; the activity will get a handle for
the SensorManager and register a SensorEventListener to
receive callbacks when the sensor data is ready to be consumed.
When the barometer data is received, it can be passed to
SensorManager.getAltitude() in order to compute the alti-
tude that can be displayed in the screen.

DetermineAltitudeActivity also provides the altitude that
is provided by the location service so that a comparison can
be made between the barometer-based altitude values and the
location service–based values. To accomplish this, the activity
also needs a reference to the location service and must register a
LocationListener to receive location updates.

In addition to calculating the absolute altitude, DetermineAltitudeActivity also calculates a rela-
tive altitude. Relative altitude is the difference between the altitude values at two points in time. To
calculate relative altitude, users fi rst press the “Mark Starting Altitude” button. Doing so records the

FIGURE 9-1: The

DetermineAltitudeActivity screen

c09.indd 162c09.indd 162 5/10/2012 2:04:34 PM5/10/2012 2:04:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 163

device’s current altitude using the GPS and barometer values. When users are ready to calculate rela-
tive altitude, they again press the toggle button. The relative altitude is calculated using the GPS and
barometer and displayed to the screen.

Implementation Details

Listing 9-1 shows the layout that is used by DetermineAltitudeActivity. The layout has
TextViews for each piece of data that will be displayed to the user, as well as a toggle button that is
used to compute relative altitude.

LISTING 9-1: DetermineAltitudeActivity layout

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:orientation=”vertical” >

 <!-- GPS Altitude -->
 <TextView android:id=”@+id/gpsAltitudeSectionHeading”
 style=”@style/apptext”
 android:text=”@string/gpsAltitudeLabel”
 android:layout_alignParentTop=”true” />

 <TextView android:id=”@+id/gpsAltitudeSectionDivider”
 style=”@style/line_separator”
 android:layout_below=”@id/gpsAltitudeSectionHeading” />

 <TextView android:id=”@+id/gpsAltitudeLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/altitudeLabel”
 android:layout_below=”@id/gpsAltitudeSectionDivider”/>

 <TextView android:id=”@+id/gpsAltitude”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignTop=”@id/gpsAltitudeLabel”
 android:layout_alignBottom=”@id/gpsAltitudeLabel”
 android:layout_toRightOf=”@id/gpsAltitudeLabel”
 android:text=”@string/notAvailable”/>

 <TextView android:id=”@+id/gpsRelativeAltitudeLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/relativeAltitudeLabel”
 android:layout_below=”@id/gpsAltitude”/>

 <TextView android:id=”@+id/gpsRelativeAltitude”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”

continues

c09.indd 163c09.indd 163 5/10/2012 2:04:35 PM5/10/2012 2:04:35 PM

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

164 x CHAPTER 9 SENSING THE ENVIRONMENT

 android:layout_alignTop=”@id/gpsRelativeAltitudeLabel”
 android:layout_alignBottom=”@id/gpsRelativeAltitudeLabel”
 android:layout_toRightOf=”@id/gpsRelativeAltitudeLabel”
 android:text=”@string/notAvailable”/>

 <!-- Standard Pressure Barometer Altitude -->
 <TextView android:id=”@+id/barometerAltitudeSectionHeading”
 style=”@style/apptext”
 android:text=”@string/barometerAltitudeLabel”
 android:layout_below=”@id/gpsRelativeAltitudeLabel”
 android:layout_marginTop=”10dip” />

 <TextView android:id=”@+id/barometerAltitudeSectionDivider”
 style=”@style/line_separator”
 android:layout_below=”@id/barometerAltitudeSectionHeading” />

 <TextView android:id=”@+id/barometerAltitudeLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/altitudeLabel”
 android:layout_below=”@id/barometerAltitudeSectionDivider”/>

 <TextView android:id=”@+id/barometerAltitude”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignTop=”@id/barometerAltitudeLabel”
 android:layout_alignBottom=”@id/barometerAltitudeLabel”
 android:layout_toRightOf=”@id/barometerAltitudeLabel”/>

 <TextView android:id=”@+id/barometerRelativeAltitudeLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/relativeAltitudeLabel”
 android:layout_below=”@id/barometerAltitude”/>

 <TextView android:id=”@+id/barometerRelativeAltitude”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignTop=”@id/barometerRelativeAltitudeLabel”
 android:layout_alignBottom=”@id/barometerRelativeAltitudeLabel”
 android:layout_toRightOf=”@id/barometerRelativeAltitudeLabel”/>

 <TextView android:id=”@+id/standardPressureLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/standardPressureLabel”
 android:layout_below=”@id/barometerRelativeAltitude”/>

 <TextView android:id=”@+id/standardPressure”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignTop=”@id/standardPressureLabel”
 android:layout_alignBottom=”@id/standardPressureLabel”

LISTING 9-1 (continued)

c09.indd 164c09.indd 164 5/10/2012 2:04:35 PM5/10/2012 2:04:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 165

 android:layout_toRightOf=”@id/standardPressureLabel”
 android:text=”@string/notAvailable”/>

 <!-- MSLP Barometer Altitude -->
 <TextView android:id=”@+id/mslpBarometerAltitudeSectionHeading”
 style=”@style/apptext”
 android:text=”@string/mslpBarometerAltitudeLabel”
 android:layout_below=”@id/standardPressureLabel”
 android:layout_marginTop=”10dip” />

 <TextView android:id=”@+id/mslpBarometerAltitudeSectionDivider”
 style=”@style/line_separator”
 android:layout_below=”@id/mslpBarometerAltitudeSectionHeading” />

 <TextView android:id=”@+id/mslpBarometerAltitudeLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/altitudeLabel”
 android:layout_below=”@id/mslpBarometerAltitudeSectionDivider”/>

 <TextView android:id=”@+id/mslpBarometerAltitude”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignTop=”@id/mslpBarometerAltitudeLabel”
 android:layout_alignBottom=”@id/mslpBarometerAltitudeLabel”
 android:layout_toRightOf=”@id/mslpBarometerAltitudeLabel”
 android:text=”@string/notAvailable”/>

 <TextView android:id=”@+id/mslpRelativeAltitudeLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/relativeAltitudeLabel”
 android:layout_below=”@id/mslpBarometerAltitude”/>

 <TextView android:id=”@+id/mslpBarometerRelativeAltitude”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignTop=”@id/mslpRelativeAltitudeLabel”
 android:layout_alignBottom=”@id/mslpRelativeAltitudeLabel”
 android:layout_toRightOf=”@id/mslpRelativeAltitudeLabel”
 android:text=”@string/notAvailable”/>

 <TextView android:id=”@+id/mslpLabel”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/mslpLabel”
 android:layout_below=”@id/mslpBarometerRelativeAltitude”/>

 <TextView android:id=”@+id/mslp”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignTop=”@id/mslpLabel”
 android:layout_alignBottom=”@id/mslpLabel”
 android:layout_toRightOf=”@id/mslpLabel”
 android:text=”@string/notAvailable”/>
 continues

c09.indd 165c09.indd 165 5/10/2012 2:04:35 PM5/10/2012 2:04:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

166 x CHAPTER 9 SENSING THE ENVIRONMENT

 <ToggleButton
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:layout_below=”@id/mslpLabel”
 android:onClick=”onToggleClick”
 android:textOff=”Mark Starting Altitude”
 android:textOn=”Compute Relative Altitude” />

</RelativeLayout>

code snippet determine_altitude.xml

Listing 9-2 shows the member data and constants used throughout DetermineAltitudeActivity.
These are presented and referenced in the rest of the code listings throughout the chapter.

LISTING 9-2: DetermineAltitudeActivity member data and constants

private static final String TAG = "DetermineAltitudeActivity";
private static final int TIMEOUT = 1000; //1 second
private static final long NS_TO_MS_CONVERSION = (long)1E6;

// System services
private SensorManager sensorManager;
private LocationManager locationManager;

// UI Views
private TextView gpsAltitudeView;
private TextView gpsRelativeAltitude;
private TextView barometerAltitudeView;
private TextView barometerRelativeAltitude;
private TextView mslpBarometerAltitudeView;
private TextView mslpBarometerRelativeAltitude;
private TextView mslpView;

// Member state
private Float mslp;
private long lastGpsAltitudeTimestamp = -1;
private long lastBarometerAltitudeTimestamp = -1;
private float bestLocationAccuracy = -1;
private float currentBarometerValue;
private float lastBarometerValue;
private double lastGpsAltitude;
private double currentGpsAltitude;
private boolean webServiceFetching;
private long lastErrorMessageTimestamp = -1;

Listing 9-3 shows the onCreate() method for DetermineAltitudeActivity. Most of the code
in onCreate() should be familiar by now because it follows the same pattern that has been used

LISTING 9-1 (continued)

c09.indd 166c09.indd 166 5/10/2012 2:04:35 PM5/10/2012 2:04:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 167

throughout the book. The method acquires references to the UI views that will be updated and
retrieves a handle to both the location and sensor services.

LISTING 9-3: DetermineAltitudeActivity.onCreate()

@Override
protected void onCreate(Bundle savedInstanceState)
{
 super.onCreate(savedInstanceState);
 setContentView(R.layout.determine_altitude);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 sensorManager =
 (SensorManager) getSystemService(Context.SENSOR_SERVICE);
 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

 gpsAltitudeView = (TextView) findViewById(R.id.gpsAltitude);

 gpsRelativeAltitude =
 (TextView) findViewById(R.id.gpsRelativeAltitude);

 barometerAltitudeView = (TextView) findViewById(R.id.barometerAltitude);
 barometerRelativeAltitude =
 (TextView) findViewById(R.id.barometerRelativeAltitude);
 mslpBarometerAltitudeView =
 (TextView) findViewById(R.id.mslpBarometerAltitude);
 mslpBarometerRelativeAltitude =
 (TextView) findViewById(R.id.mslpBarometerRelativeAltitude);
 mslpView = (TextView) findViewById(R.id.mslp);

 webServiceFetching = false;

 TextView standardPressure =
 (TextView)findViewById(R.id.standardPressure);
 String standardPressureString =
 String.valueOf(SensorManager.PRESSURE_STANDARD_ATMOSPHERE);
 standardPressure.setText(standardPressureString);
}

The last three statements of the onCreate() method display the value of the standard atmospheric
pressure constant to the user. Recall from Figure 9-1 that in addition to the altitude values, the
activity also displays the values that were used for sea level. Because the standard atmospheric
pressure is a constant, the view can be set once when the activity is created because it will not need
to be updated (this is not the case for the externally accessed sea-level value, which will need to be
updated later in the activity).

Because both sensor data and location data are needed by DetermineAltitudeActivity, the activity
implements both LocationListener and SensorEventListener. This allows the activity to register
itself to receive location and sensor updates and conveniently update the UI. The registration for both
location and sensor data happens in the onResume() method, which is shown in Listing 9-4.

c09.indd 167c09.indd 167 5/10/2012 2:04:36 PM5/10/2012 2:04:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

168 x CHAPTER 9 SENSING THE ENVIRONMENT

LISTING 9-4: DetermineAltitudeActivity.onResume()

@Override
protected void onResume()
{
 super.onResume();

 List<String> enabledProviders = locationManager.getProviders(true);

 if (enabledProviders.isEmpty()
 || !enabledProviders.contains(LocationManager.GPS_PROVIDER))
 {
 Toast.makeText(this,
 R.string.gpsNotEnabledMessage,
 Toast.LENGTH_LONG).show();
 }
 else
 {
 // Register every location provider returned from LocationManager
 for (String provider : enabledProviders)
 {
 // Register for updates every minute
 locationManager.requestLocationUpdates(provider,
 60000, // minimum time of 60000 ms (1 minute)
 0, // Minimum distance of 0
 this,
 null);
 }
 }

 Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);

 // Only make registration call if device has a pressure sensor
 if (sensor != null)
 {
 sensorManager.registerListener(this,
 sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
}

Because the user can disable location providers, the onResume() method registers only active loca-
tion providers by iterating through the array returned from the call to getProviders(true).
Passing the value of true ensures that only active location providers are returned. In addition, the
code checks that the GPS location provider is present. At the time of this writing, the GPS provider
is the only location provider that can provide altitude information.

Care must be taken when registering for updates from the barometer because not every device has
a barometer. To compensate for this, the method makes a call to getDefaultSensor(), passing the
constant for the pressure sensor (barometer). If the method returns a value of null, the device does
not contain a barometer and the registration can be skipped.

c09.indd 168c09.indd 168 5/10/2012 2:04:36 PM5/10/2012 2:04:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 169

Now that the activity is registered to receive location and sensor information, it will receive call-
backs when updated location and/or barometer readings are available. The next sections will dive
into the details of processing the information that is received.

GPS-Based Altitude

The altitude that is provided by the GPS location provider can be read with a simple call to
Location.getAltitude(). The method call returns the altitude in meters. In the example for this
chapter, the GPS altitude is read when onLocationChanged() is called. Listing 9-5 shows the imple-
mentation of DetermineAltitudeActivity.onLocationChanged().

LISTING 9-5: Retrieving the altitude provided by GPS

@Override
public void onLocationChanged(Location location)
{
 if (LocationManager.GPS_PROVIDER.equals(location.getProvider())
 && (lastGpsAltitudeTimestamp == -1
 || location.getTime() - lastGpsAltitudeTimestamp > TIMEOUT))
 {
 double altitude = location.getAltitude();
 gpsAltitudeView.setText(String.valueOf(altitude));
 lastGpsAltitudeTimestamp = location.getTime();
 currentGpsAltitude = altitude;
 }

 float accuracy = location.getAccuracy();
 boolean betterAccuracy = accuracy < bestLocationAccuracy;
 if (mslp == null || (bestLocationAccuracy > -1 && betterAccuracy))
 {
 bestLocationAccuracy = accuracy;

 if (!webServiceFetching)
 {
 webServiceFetching = true;
 new MetarAsyncTask().execute(location.getLatitude(),
 location.getLongitude());
 }
 }
}

Before the altitude is read, the method verifi es that the location object contains altitude information
with a call to Location.hasAltitude(). This check is needed because the activity will register all
enabled location providers when it’s brought to the foreground (see Listing 9-4), but not every loca-
tion provider provides altitude data. The reason for using location providers that do not provide
altitude data is explained later in the chapter.

Along with verifying that altitude data is present, the code checks to see if lastGpsAltitudeTime-
stamp contains a value of –1, indicating that it has never been set (Listing 9-2 shows the variable’s

c09.indd 169c09.indd 169 5/10/2012 2:04:36 PM5/10/2012 2:04:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

170 x CHAPTER 9 SENSING THE ENVIRONMENT

declaration and initialization to a value of –1). Furthermore, the code compares the difference of the
current location’s timestamp with the timestamp that was set the last time the UI was updated with
the location-based altitude data. If the difference is greater than the value of TIMEOUT (a constant
representing 1 sec.), the UI is updated with the current altitude value, and the current altitude is
stored in a class member variable (currentGpsAltitude). This check ensures that the screen is not
updated more than once a second with location service altitude data.

In Listing 9-5, only the highlighted code deals with location-based altitude. The rest of the method
supports retrieving sea-level pressure externally, which is discussed later in the chapter.

Barometric Pressure–Based Altitude

Computing the altitude using the barometer is relatively straightforward. To get a fairly good read-
ing of the altitude, an app only needs to read the barometer in a similar fashion to other sensors
and pass the values that were read to SensorManager.getAltitude(). SensorManager.getAlti-
tude() encapsulates the formula needed to perform the actual calculation and returns the altitude
in meters.

In the example, the reading of the barometer and call to SensorManager.getAltitude() happens
on the onSensorEvent() method that is called when sensor data is available. The method is shown
in Listing 9-6.

LISTING 9-6: Reading barometer data and calculating altitude

@Override
public void onSensorChanged(SensorEvent event)
{
 float altitude;
 currentBarometerValue = event.values[0];

 double currentTimestamp = event.timestamp / NS_TO_MS_CONVERSION;
 double elapsedTime = currentTimestamp - lastBarometerAltitudeTimestamp;
 if (lastBarometerAltitudeTimestamp == -1 || elapsedTime > TIMEOUT)
 {
 altitude =
 SensorManager
 .getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 currentBarometerValue);
 barometerAltitudeView.setText(String.valueOf(altitude));

 if (mslp != null)
 {
 altitude = SensorManager.getAltitude(mslp,
 currentBarometerValue);
 mslpBarometerAltitudeView.setText(String.valueOf(altitude));
 mslpView.setText(String.valueOf(mslp));
 }

 lastBarometerAltitudeTimestamp = (long)currentTimestamp;
 }
}

c09.indd 170c09.indd 170 5/10/2012 2:04:36 PM5/10/2012 2:04:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 171

The method fi rst reads the event.values array to retrieve the raw barometer reading. event.
values is an array of fl oats, and for the barometer, the sensor data is located in the fi rst (zero-eth)
position.

Listing 9-6 makes two calls to SensorManager.getAltitude(). The fi rst call uses the
SensorManager.PRESSURE_STANDARD_ATMOSPHERE constant, and the second call passes the
mslp variable as the fi rst parameter. Recall from earlier in the chapter that the fi rst parameter of
SensorManager.getAltitude() is the altitude at sea level. The fi rst call makes use of the standard
pressure constant that will yield fairly accurate altitude results when computing relative altitude.

However, if more accurate altitude data is desired, the mean sea-level pressure (MSLP) should be
used. As explained in Chapter 5, the MSLP is the pressure that is reported by an external source
such as a weather station. Though using the MSLP can provide increased accuracy when computing
altitude, it must fi rst be retrieved from that external source. Luckily, many places on the Internet
supply MSLP information through a web service.

DetermineAltitudeActivity makes use of one such web service to retrieve MSLP based on the
device’s current location. Once the value is set, it can be used on onSensorChanged() to update the
UI with the MSLP-computed altitude. Because web services should be accessed asynchronously (and
off the main thread), onSensorChanged() needs to verify that the mslp variable has been set before
accessing it. Hence, the check for a null mslp before its value is used.

The next section discusses how to retrieve the MSLP values.

Retrieving MSLP Values

To use the MSLP, the DetermineAltitudeActivity connects to a remote web service supplying
the device’s current location as parameters to the web service call. The web service responds with
weather data that includes the MSLP for the location it was sent. To facilitate access to the web
service, DetermineAltitudeActivity contains a private inner class, MetarAsyncTask, that makes
the call to the web service in another thread (to avoid blocking the main thread, which can cause an
“Application Not Responding” error) and process the response. Listing 9-7 shows the implementa-
tion of the MetarAsyncTask.

LISTING 9-7: Class to access weather web service and retrieve MSLP data

private class MetarAsyncTask extends AsyncTask<Number, Void, Float>
{
 private static final String WS_URL =
 "http://ws.geonames.org/findNearByWeatherJSON";
 private static final String SLP_STRING = "slp";

 @Override
 protected Float doInBackground(Number... params)
 {
 Float mslp = null;
 HttpURLConnection urlConnection = null;

continues

c09.indd 171c09.indd 171 5/10/2012 2:04:36 PM5/10/2012 2:04:36 PM

www.it-ebooks.info

http://ws.geonames.org/findNearByWeatherJSON
http://www.it-ebooks.info/

172 x CHAPTER 9 SENSING THE ENVIRONMENT

 try
 {
 // Generate URL with parameters for web service
 Uri uri =
 Uri.parse(WS_URL)
 .buildUpon()
 .appendQueryParameter("lat", String.valueOf(params[0]))
 .appendQueryParameter("lng", String.valueOf(params[1]))
 .build();

 // Connect to web service
 URL url = new URL(uri.toString());
 urlConnection = (HttpURLConnection) url.openConnection();

 // Read web service response and convert to a string
 InputStream inputStream =
 new BufferedInputStream(urlConnection.getInputStream());

 // Convert InputStream to String using a Scanner
 Scanner inputStreamScanner =
 new Scanner(inputStream).useDelimiter("\\A");
 String response = inputStreamScanner.next();
 inputStreamScanner.close();

 Log.d(TAG, "Web Service Response -> " + response);

 JSONObject json = new JSONObject(response);

 String observation =
 json
 .getJSONObject("weatherObservation")
 .getString("observation");

 // Split on whitespace
 String[] values = observation.split("\\s");

 // Iterate of METAR string until SLP string is found
 String slpString = null;
 for (int i = 1; i < values.length; i++)
 {
 String value = values[i];

 if (value.startsWith(SLP_STRING.toLowerCase())
 || value.startsWith(SLP_STRING.toUpperCase()))
 {
 slpString =
 value.substring(SLP_STRING.length());
 break;
 }
 }

LISTING 9-7 (continued)

c09.indd 172c09.indd 172 5/10/2012 2:04:37 PM5/10/2012 2:04:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 173

 // Decode SLP string into numerical representation
 StringBuffer sb = new StringBuffer(slpString);

 sb.insert(sb.length() - 1, ".");

 float val1 = Float.parseFloat("10" + sb);
 float val2 = Float.parseFloat("09" + sb);

 mslp =
 (Math.abs((1000 - val1)) < Math.abs((1000 - val2)))
 ? val1
 : val2;
 }
 catch (Exception e)
 {
 Log.e(TAG, "Could not communicate with web service", e);
 }
 finally
 {
 if (urlConnection != null)
 {
 urlConnection.disconnect();
 }
 }

 return mslp;
 }

 @Override
 protected void onPostExecute(Float result)
 {
 long uptime = SystemClock.uptimeMillis();

 if (result == null
 && (lastErrorMessageTimestamp == -1
 || ((uptime - lastErrorMessageTimestamp) > 30000)))
 {
 Toast.makeText(DetermineAltitudeActivity.this,
 R.string.webServiceConnectionFailureMessage,
 Toast.LENGTH_LONG).show();

 lastErrorMessageTimestamp = uptime;
 }
 else
 {
 DetermineAltitudeActivity.this.mslp = result;
 }

 DetermineAltitudeActivity.this.webServiceFetching = false;
 }
}

code snippet DetermineAltitudeActivity.java

c09.indd 173c09.indd 173 5/10/2012 2:04:37 PM5/10/2012 2:04:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

174 x CHAPTER 9 SENSING THE ENVIRONMENT

The web service used in the chapter example is provided by www.geonames.org. GeoNames pro-
vides a simple web service (among other things) that takes coordinate values (latitude and longitude)
as parameters and returns weather data. The GeoNames web service can return data in both XML
and JSON formats. For this example, the web service returns a response in JSON. For more infor-
mation on what other services GeoNames provides, take a look at its website.

The GeoNames weather web service returns weather data encoded as a METAR string. METAR
is a commonly used standard for formatting weather data. It is used among pilots and meteorolo-
gists to make weather predictions, and is standardized through the International Civil Aviation
Organization (ICAO).

A typical METAR string containing weather data looks like:

KNUQ 021756Z 30004KT 10SM CLR 13\/07 A3017 RMK AO2 SLP218 T01280072 10128
20050 58004

A METAR string is separated by white space and contains various components of weather data.
The fi rst string, KNUQ in this case, is the unique identifi er of the reporting station that was the source
of the data. The reporting station is followed by encoded weather data. The complete contents of a
METAR string are out of the scope of the chapter. For now it is enough to know that the part of a
METAR string that contains sea-level pressure begins with SLP. For the preceding METAR string,
the encoded sea-level pressure is SLP218.

Although METAR is standardized, various regions around the world do make locale-specifi c addi-
tions to the standard. For example, the SLP data located in the preceding METAR string is unique
to North America and may not be present in METAR strings in other parts of the world.

To receive METAR-encoded weather data from the GeoNames web service, the MetarAsyncTask
must generate an HTTP request and send it to the web service. It does this in the fi rst part of
MetarAsyncTask.doInBackground() with the following code:

// Generate URL with parameters for web service
Uri uri =
 Uri.parse(WS_URL)
 .buildUpon()
 .appendQueryParameter("lat", String.valueOf(params[0]))
 .appendQueryParameter("lng", String.valueOf(params[1]))
 .build();

// Connect to web service
URL url = new URL(uri.toString());
urlConnection = (HttpURLConnection) url.openConnection();

// Read web service response and convert to a string
InputStream inputStream =
 new BufferedInputStream(urlConnection.getInputStream());

// Convert InputStream to String using a Scanner
Scanner inputStreamScanner =
 new Scanner(inputStream).useDelimiter("\\A");
String response = inputStreamScanner.next();
inputStreamScanner.close();

c09.indd 174c09.indd 174 5/10/2012 2:04:37 PM5/10/2012 2:04:37 PM

www.it-ebooks.info

http://www.geonames.org
http://www.it-ebooks.info/

Example App Overview. x 175

After the code is executed, the response from the web service is located in the variable name
response. A typical response from the GeoNames web service is presented in Listing 9-8.

LISTING 9-8: GeoNames METAR web service response

{
 "weatherObservation": {
 "weatherCondition": "n\/a",
 "clouds": "n\/a",
 "observation": "KNUQ 021756Z 30004KT 10SM CLR 13\/07 A3017 RMK AO2 SLP218",
 "windDirection": 300,
 "ICAO": "KNUQ",
 "elevation": 12,
 "seaLevelPressure": 1021.8,
 "countryCode": "US",
 "lng": -122.03333333333333,
 "dewPoint": "7.2",
 "temperature": "12.8",
 "windSpeed": "04",
 "humidity": 68,
 "datetime": "2012-02-02 17:56:00",
 "stationName": "Mountain View, Moffett Field",
 "lat": 37.416666666666664
 }
}

The response from the web service contains more than just a METAR string. In fact, it contains the
decoded sea-level pressure in the fi eld name seaLevelPressure. Though this fi eld does represent
the sea-level pressure, this chapter focuses on how to decode the METAR string. Knowing how to
decode the SLP part of a METAR string will allow an app to make use of many different weather
data sources that may not return the decoded sea-level pressure.

The weather METAR string is located in the “observation” fi eld of the JSON web service response.
After receiving the response, the MetarAsyncTask.doInBackground() method uses the JSON
library in Android to parse the METAR string and locate the sea-level pressure data. It does this in
the following code:

JSONObject json = new JSONObject(response);

String observation =
 json
 .getJSONObject("weatherObservation")
 .getString("observation");

// Split on whitespace
String[] values = observation.split("\\s");

// Iterate of METAR sting until SLP string is found
String slpString = null;
for (int i = 1; i < values.length; i++)
{

c09.indd 175c09.indd 175 5/10/2012 2:04:37 PM5/10/2012 2:04:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

176 x CHAPTER 9 SENSING THE ENVIRONMENT

 String value = values[i];

 if (value.startsWith(SLP_STRING.toLowerCase())
 || value.startsWith(SLP_STRING.toUpperCase()))
 {
 slpString =
 value.substring(SLP_STRING.length());
 break;
 }
}

Upon completion of the code, the sea-level portion of the METAR string is located in the slpString
variable. As can be verifi ed by the sample JSON response in Listing 9-8, the slpString should have
a value of 218, which is the encoded value of the sea-level pressure.

To decode the sea-level pressure, the code adds a decimal point before the last character and pre-
pends the string with either 10 or 09. The determination of what to prepend the string with is made
by determining which value would make the sea-level pressure closer to 1000. The following code
snippet decodes the SLP METAR string:

// Decode SLP string into numerical representation
StringBuffer sb = new StringBuffer(slpString);

sb.insert(sb.length() - 1, ".");

float val1 = Float.parseFloat("10" + sb);
float val2 = Float.parseFloat("09" + sb);

mslp =
 (Math.abs((1000 - val1)) < Math.abs((1000 - val2)))
 ? val1
 : val2;

At this point MetarAsyncTask.doInBackground() is fi nished processing the sea-level pressure from
the GeoNames web service, and has parsed the response. The Android AsynTask handles passing
the return value to MetarAsynTask.postExecute(), which either stores the mean sea-level pressure
as part of the DetermineAltitudeActivity member data, or displays a toast to the user if there
was an error.

Launching MetarAsyncTask

Because device location is needed to retrieve MSLP data from the GeoNames web service, a web
service request cannot be made until the app has received location data. Recall from previous
chapters that some location providers (especially the GPS provider) may take minutes to return a
single location fi x. It is often not desirable to block a user from performing a task in an app until a
location is received. To combat long time to fi rst fi x (TTFF) times, DetermineAltitudeActivity
makes use of all location providers that are currently enabled (shown in Listing 9-4). Assuming
that the user has a location provider other than the GPS provider enabled, the app should receive a
location from the location service in a relatively small amount of time. Once a location is received
in DetermineAltitudeActivity.onLocationChanged(), the method makes the determination
on whether or not a request needs to be sent to the web service to refresh MSLP. In addition to

c09.indd 176c09.indd 176 5/10/2012 2:04:37 PM5/10/2012 2:04:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 177

processing location service altitude data, onLocationChanged() also initiates the call to the web ser-
vice. Listing 9-9 again shows the implementation of DetermineAlltitudeActivity.onLocation-
Changed(), but this time highlights the portion of the method that makes the call to the web service.

LISTING 9-9: Making the web service call from onLocationChanged()

@Override
public void onLocationChanged(Location location)
{
 if (LocationManager.GPS_PROVIDER.equals(location.getProvider())
 && (lastGpsAltitudeTimestamp == -1
 || location.getTime() - lastGpsAltitudeTimestamp > TIMEOUT))
 {
 double altitude = location.getAltitude();
 gpsAltitudeView.setText(String.valueOf(altitude));
 lastGpsAltitudeTimestamp = location.getTime();
 currentGpsAltitude = altitude;
 }

 float accuracy = location.getAccuracy();
 boolean betterAccuracy = accuracy < bestLocationAccuracy;
 if (mslp == null || (bestLocationAccuracy > -1 && betterAccuracy))
 {
 bestLocationAccuracy = accuracy;

 if (!webServiceFetching)
 {
 webServiceFetching = true;
 new MetarAsyncTask().execute(location.getLatitude(),
 location.getLongitude());
 }
 }
}

Listing 9-9 shows the conditional call to MetarAsynTask.execute() (which makes the call to
MetarAsyncTask.doInBackground() on another thread) only if the MSLP had not yet been
retrieved, or if the latest location has a better accuracy than the previous location used to retrieve
the MSLP. There is also a check to ensure that only one call to the web service is made at a time.

Thus far, the main topic of this chapter has been computing absolute altitude. This is useful in some
use cases, but a more common use case for the barometer is to calculate relative altitude.

Relative Altitude

Relative altitude is used to determine the change in altitude. For example, by computing the dif-
ference between an ending altitude and a starting altitude, an app can determine if a device has
changed fl oors in a building. This can be another useful piece of information when performing
tasks such as navigation. An app can use GPS to provide a user with general directions to a build-
ing, then use the barometer to produce fi ne-grained navigation within the building. Although the

c09.indd 177c09.indd 177 5/10/2012 2:04:38 PM5/10/2012 2:04:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

178 x CHAPTER 9 SENSING THE ENVIRONMENT

GPS can also provide altitude information, it is unlikely to produce any position information while
indoors.

Recall from Figure 9-1 that the screen for DetermineAltitudeActivity has a toggle button
that allows the user to mark a starting altitude when it is pressed, and computes relative alti-
tude when the button is pressed again. The relative altitude calculation is made in the handler
for the toggle button click. The layout (shown in Listing 9-1) defi nes the click handler to be
DetermineAltitudeActivity.onToggleClick(), which is shown in Listing 9-10.

LISTING 9-10: Calculating relative altitude

public void onToggleClick(View view)
{
 if (((ToggleButton)view).isChecked())
 {
 lastGpsAltitude = currentGpsAltitude;
 lastBarometerValue = currentBarometerValue;
 gpsRelativeAltitude.setVisibility(View.INVISIBLE);
 barometerRelativeAltitude.setVisibility(View.INVISIBLE);

 if (mslp != null)
 {
 mslpBarometerRelativeAltitude.setVisibility(View.INVISIBLE);
 }
 }
 else
 {
 double delta;

 delta = currentGpsAltitude - lastGpsAltitude;
 gpsRelativeAltitude.setText(String.valueOf(delta));
 gpsRelativeAltitude.setVisibility(View.VISIBLE);

 delta = SensorManager
 .getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 currentBarometerValue)
 - SensorManager
 .getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 lastBarometerValue);

 barometerRelativeAltitude.setText(String.valueOf(delta));
 barometerRelativeAltitude.setVisibility(View.VISIBLE);

 if (mslp != null)
 {
 delta = SensorManager.getAltitude(mslp, currentBarometerValue)
 - SensorManager.getAltitude(mslp, lastBarometerValue);
 mslpBarometerRelativeAltitude.setText(String.valueOf(delta));
 mslpBarometerRelativeAltitude.setVisibility(View.VISIBLE);
 }
 }
}

c09.indd 178c09.indd 178 5/10/2012 2:04:38 PM5/10/2012 2:04:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 179

The fi rst if block of the method is executed when the user wants to mark the current altitude.
Marking the current altitude is as simple as assigning lastGpsAltitude the value of currentG-
psAltitude for the GPS-based altitude and lastBarometerValue the value of currentBarom-
eterValue for the barometer data. Both currentGpsAltitude and currentBarometerValue are
constantly updated when new calls are made to onLocationChanged() and onSensorEvent(),
respectively. This means that both values always maintain the current values for their respective
sensors.

The else block is executed when the user presses the toggle button after the app has marked the
starting altitude. Because DetermineAltitudeActivity maintains the current GPS and barometer
values as part of its member data, computing relative altitude is as simple as computing the differ-
ence between the current and starting altitudes for both GPS and barometer data.

In a similar fashion to onSensorEvent(), onToggleClick() computes the altitude using both the
standard pressure constant and the MSLP if it has been populated. Once all the calculations are
made, the UI is updated with the values to inform the user.

Figure 9-2 shows a screen capture of DetermineAltitudeActivity after the user has marked the
current altitude, walked up a fl ight of stairs, and computed the relative altitude. Figure 9-3 also
shows a screen capture of DetermineAltitudeActivity, but this time the relative altitude was
calculated as the user walked down that same fl ight of stairs.

FIGURE 9-2: Increasing relative

altitude

FIGURE 9-3: Decreasing relative

altitude

c09.indd 179c09.indd 179 5/10/2012 2:04:38 PM5/10/2012 2:04:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

180 x CHAPTER 9 SENSING THE ENVIRONMENT

Notice that the relative altitude values are positive as the altitude increases and negative as the alti-
tude decreases.

For the sake of completeness, Listing 9-11 shows the complete implementation of
DetermineAltitudeActivity. The code is also available on the book’s companion website.

LISTING 9-11: Complete implementation of DetermineAltitudeActivity

public class DetermineAltitudeActivity extends Activity
 implements SensorEventListener, LocationListener
{
 private static final String TAG = "DetermineAltitudeActivity";
 private static final int TIMEOUT = 1000; //1 second
 private static final long NS_TO_MS_CONVERSION = (long)1E6;

 // System services
 private SensorManager sensorManager;
 private LocationManager locationManager;

 // UI Views
 private TextView gpsAltitudeView;
 private TextView gpsRelativeAltitude;
 private TextView barometerAltitudeView;
 private TextView barometerRelativeAltitude;
 private TextView mslpBarometerAltitudeView;
 private TextView mslpBarometerRelativeAltitude;
 private TextView mslpView;

 // Member state
 private Float mslp;
 private long lastGpsAltitudeTimestamp = -1;
 private long lastBarometerAltitudeTimestamp = -1;
 private float bestLocationAccuracy = -1;
 private float currentBarometerValue;
 private float lastBarometerValue;
 private double lastGpsAltitude;
 private double currentGpsAltitude;
 private boolean webServiceFetching;
 private long lastErrorMessageTimestamp = -1;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.determine_altitude);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 sensorManager =
 (SensorManager) getSystemService(Context.SENSOR_SERVICE);
 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

 gpsAltitudeView = (TextView) findViewById(R.id.gpsAltitude);

c09.indd 180c09.indd 180 5/10/2012 2:04:39 PM5/10/2012 2:04:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 181

 gpsRelativeAltitude =
 (TextView) findViewById(R.id.gpsRelativeAltitude);

 barometerAltitudeView = (TextView) findViewById(R.id.barometerAltitude);
 barometerRelativeAltitude =
 (TextView) findViewById(R.id.barometerRelativeAltitude);
 mslpBarometerAltitudeView =
 (TextView) findViewById(R.id.mslpBarometerAltitude);
 mslpBarometerRelativeAltitude =
 (TextView) findViewById(R.id.mslpBarometerRelativeAltitude);
 mslpView = (TextView) findViewById(R.id.mslp);

 webServiceFetching = false;

 TextView standardPressure =
 (TextView)findViewById(R.id.standardPressure);
 String standardPressureString =
 String.valueOf(SensorManager.PRESSURE_STANDARD_ATMOSPHERE);
 standardPressure.setText(standardPressureString);
 }

 @Override
 protected void onResume()
 {
 super.onResume();

 List<String> enabledProviders = locationManager.getProviders(true);

 if (enabledProviders.isEmpty()
 || !enabledProviders.contains(LocationManager.GPS_PROVIDER))
 {
 Toast.makeText(this,
 R.string.gpsNotEnabledMessage,
 Toast.LENGTH_LONG).show();
 }
 else
 {
 // Register every location provider returned from LocationManager
 for (String provider : enabledProviders)
 {
 // Register for updates every minute
 locationManager.requestLocationUpdates(provider,
 60000, // minimum time of 60000 ms (1 minute)
 0, // Minimum distance of 0
 this,
 null);
 }
 }

 Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);

 // Only make registration call if device has a pressure sensor
 if (sensor != null)
 {
 sensorManager.registerListener(this,

continues

c09.indd 181c09.indd 181 5/10/2012 2:04:39 PM5/10/2012 2:04:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

182 x CHAPTER 9 SENSING THE ENVIRONMENT

 sensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
 }

 @Override
 protected void onPause()
 {
 super.onPause();

 sensorManager.unregisterListener(this);
 locationManager.removeUpdates(this);
 }

 @Override
 public void onSensorChanged(SensorEvent event)
 {
 float altitude;
 currentBarometerValue = event.values[0];

 double currentTimestamp = event.timestamp / NS_TO_MS_CONVERSION;
 double elapsedTime = currentTimestamp - lastBarometerAltitudeTimestamp;
 if (lastBarometerAltitudeTimestamp == -1 || elapsedTime > TIMEOUT)
 {
 altitude =
 SensorManager
 .getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 currentBarometerValue);
 barometerAltitudeView.setText(String.valueOf(altitude));

 if (mslp != null)
 {
 altitude = SensorManager.getAltitude(mslp,
 currentBarometerValue);
 mslpBarometerAltitudeView.setText(String.valueOf(altitude));
 mslpView.setText(String.valueOf(mslp));
 }

 lastBarometerAltitudeTimestamp = (long)currentTimestamp;
 }
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy)
 {
 // no-op
 }

 @Override
 public void onLocationChanged(Location location)
 {
 if (LocationManager.GPS_PROVIDER.equals(location.getProvider())

LISTING 9-11 (continued)

c09.indd 182c09.indd 182 5/10/2012 2:04:39 PM5/10/2012 2:04:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Example App Overview. x 183

 && (lastGpsAltitudeTimestamp == -1
 || location.getTime() - lastGpsAltitudeTimestamp > TIMEOUT))
 {
 double altitude = location.getAltitude();
 gpsAltitudeView.setText(String.valueOf(altitude));
 lastGpsAltitudeTimestamp = location.getTime();
 currentGpsAltitude = altitude;
 }

 float accuracy = location.getAccuracy();
 boolean betterAccuracy = accuracy < bestLocationAccuracy;
 if (mslp == null || (bestLocationAccuracy > -1 && betterAccuracy))
 {
 bestLocationAccuracy = accuracy;

 if (!webServiceFetching)
 {
 webServiceFetching = true;
 new MetarAsyncTask().execute(location.getLatitude(),
 location.getLongitude());
 }
 }
 }

 @Override
 public void onProviderDisabled(String provider)
 {
 // no-op
 }

 @Override
 public void onProviderEnabled(String provider)
 {
 // no-op
 }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras)
 {
 // no-op
 }

 public void onToggleClick(View view)
 {
 if (((ToggleButton)view).isChecked())
 {
 lastGpsAltitude = currentGpsAltitude;
 lastBarometerValue = currentBarometerValue;
 gpsRelativeAltitude.setVisibility(View.INVISIBLE);
 barometerRelativeAltitude.setVisibility(View.INVISIBLE);

 if (mslp != null)

continues

c09.indd 183c09.indd 183 5/10/2012 2:04:40 PM5/10/2012 2:04:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

184 x CHAPTER 9 SENSING THE ENVIRONMENT

 {
 mslpBarometerRelativeAltitude.setVisibility(View.INVISIBLE);
 }
 }
 else
 {
 double delta;

 delta = currentGpsAltitude - lastGpsAltitude;
 gpsRelativeAltitude.setText(String.valueOf(delta));
 gpsRelativeAltitude.setVisibility(View.VISIBLE);

 delta = SensorManager
 .getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 currentBarometerValue)
 - SensorManager
 .getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 lastBarometerValue);

 barometerRelativeAltitude.setText(String.valueOf(delta));
 barometerRelativeAltitude.setVisibility(View.VISIBLE);

 if (mslp != null)
 {
 delta = SensorManager.getAltitude(mslp, currentBarometerValue)
 - SensorManager.getAltitude(mslp, lastBarometerValue);
 mslpBarometerRelativeAltitude.setText(String.valueOf(delta));
 mslpBarometerRelativeAltitude.setVisibility(View.VISIBLE);
 }
 }
 }

 private class MetarAsyncTask extends AsyncTask<Number, Void, Float>
 {
 private static final String WS_URL =
 "http://ws.geonames.org/findNearByWeatherJSON";
 private static final String SLP_STRING = "slp";

 /**
 * @see android.os.AsyncTask#doInBackground(Params[])
 */
 @Override
 protected Float doInBackground(Number... params)
 {
 Float mslp = null;
 HttpURLConnection urlConnection = null;

 try
 {
 // Generate URL with parameters for web service
 Uri uri =

LISTING 9-11 (continued)

c09.indd 184c09.indd 184 5/10/2012 2:04:40 PM5/10/2012 2:04:40 PM

www.it-ebooks.info

http://ws.geonames.org/findNearByWeatherJSON
http://www.it-ebooks.info/

Example App Overview. x 185

 Uri.parse(WS_URL)
 .buildUpon()
 .appendQueryParameter("lat", String.valueOf(params[0]))
 .appendQueryParameter("lng", String.valueOf(params[1]))
 .build();

 // Connect to web service
 URL url = new URL(uri.toString());
 urlConnection = (HttpURLConnection) url.openConnection();

 // Read web service response and convert to a string
 InputStream inputStream =
 new BufferedInputStream(urlConnection.getInputStream());

 // Convert InputStream to String using a Scanner
 Scanner inputStreamScanner =
 new Scanner(inputStream).useDelimiter("\\A");
 String response = inputStreamScanner.next();
 inputStreamScanner.close();

 Log.d(TAG, "Web Service Response -> " + response);

 JSONObject json = new JSONObject(response);

 String observation =
 json
 .getJSONObject("weatherObservation")
 .getString("observation");

 // Split on whitespace
 String[] values = observation.split("\\s");

 // Iterate of METAR string until SLP string is found
 String slpString = null;
 for (int i = 1; i < values.length; i++)
 {
 String value = values[i];

 if (value.startsWith(SLP_STRING.toLowerCase())
 || value.startsWith(SLP_STRING.toUpperCase()))
 {
 slpString =
 value.substring(SLP_STRING.length());
 break;
 }
 }

 // Decode SLP string into numerical representation
 StringBuffer sb = new StringBuffer(slpString);

 sb.insert(sb.length() - 1, ".");

continues

c09.indd 185c09.indd 185 5/10/2012 2:04:40 PM5/10/2012 2:04:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

186 x CHAPTER 9 SENSING THE ENVIRONMENT

 float val1 = Float.parseFloat("10" + sb);
 float val2 = Float.parseFloat("09" + sb);

 mslp =
 (Math.abs((1000 - val1)) < Math.abs((1000 - val2)))
 ? val1
 : val2;
 }
 catch (Exception e)
 {
 Log.e(TAG, "Could not communicate with web service", e);
 }
 finally
 {
 if (urlConnection != null)
 {
 urlConnection.disconnect();
 }
 }

 return mslp;
 }

 @Override
 protected void onPostExecute(Float result)
 {
 long uptime = SystemClock.uptimeMillis();

 if (result == null
 && (lastErrorMessageTimestamp == -1
 || ((uptime - lastErrorMessageTimestamp) > 30000)))
 {
 Toast.makeText(DetermineAltitudeActivity.this,
 R.string.webServiceConnectionFailureMessage,
 Toast.LENGTH_LONG).show();

 lastErrorMessageTimestamp = uptime;
 }
 else
 {
 DetermineAltitudeActivity.this.mslp = result;
 }

 DetermineAltitudeActivity.this.webServiceFetching = false;
 }
 }
}

code snippet DeterminAltitudeActivity.java

LISTING 9-11 (continued)

c09.indd 186c09.indd 186 5/10/2012 2:04:40 PM5/10/2012 2:04:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary x 187

SUMMARY

This chapter expanded on the information that was presented in Chapter 5 about the barometer
and provided an implementation that made use of pressure data to calculate altitude. This is just one
use of the barometer, but will probably end up being one of the most common use cases for pressure
data.

Using barometer-based altitude data can add another dimension to location data because it allows
devices to provide fi ner-grained location information without the use of the GPS.

The app displayed in the chapter is robust enough to enable users to start experimenting with the
barometer right away, assuming they have a device with the sensor. Between the sensor API, the
standard atmospheric pressure constant, and the SensorManager.getAltitude() method, making
use of barometric data is fairly straightforward.

The next chapter covers the Android Open Accessory Development Kit (AOA). AOA allows external
hardware to communicate with an Android device via USB.

c09.indd 187c09.indd 187 5/10/2012 2:04:41 PM5/10/2012 2:04:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c09.indd 188c09.indd 188 5/10/2012 2:04:41 PM5/10/2012 2:04:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10
Android Open Accessory

WHAT’S IN THIS CHAPTER?

 ‰ Introducing AOA

 ‰ Explaining how AOA works and why developers may want to use it

 ‰ Presenting some of the limitations of AOA

 ‰ Providing an example of code that uses AOA

Android Open Accessory (AOA) is a protocol that allows an Android device to interact with
external sensors and actuators via USB. This addition to the Android SDK is exciting for both
electronics hobbyists and mobile professionals because it opens up the possibilities of reacting to
real-world inputs like temperature changes and controlling real-world objects such as lights with-
out being limited to the current form-factor of a mobile phone or its current hardware sensors.

A SHORT HISTORY OF AOA

AOA is a relatively new and underutilized feature of the Android SDK, having only been
announced by Google at the Google I/O developer conference in May 2011. Offi cial Android
SDK support for external hardware such as USB devices (and, to some extent, NFC) is still in
the early phases and the infancy of the APIs may help explain why some idiosyncrasies such as
power requirements (to be described in a later section) exist.

At the same time as announcing the AOA APIs in the Android SDK, Google also announced
the availability of an Android Development Kit (ADK) microcontroller based on the popular
Arduino hardware platform. In conjunction with external hardware, it is easy to see how
mobile phones have shifted away from simply being cellular-enabled phones to “little comput-
ers in your pocket,” which can act as the brains for applications ranging from wearable com-
puting to home automation.

c10.indd 189c10.indd 189 5/10/2012 2:05:50 PM5/10/2012 2:05:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

190 x CHAPTER 10 ANDROID OPEN ACCESSORY

Currently AOA projects have remained mostly in the realm of hobbyists, but, as the AOA platform
matures and the open source hardware movement grows, we should start to see more commer-
cial projects built on this protocol much like Apple’s MFi (Made for iPhone/iPad/iPod Touch)
program which allows third-party developers to create 30-pin dock connector accessories. And,
unlike Apple’s MFi program, AOA is free to use, there are no licensing fees, and no non-disclosure
agreements to sign. Based on our experiences, it would seem that there are two main barriers to
AOA development: lack of Android devices that support AOA and lack of Android developers with
electronics experience; hopefully this chapter will help address the latter problem!

USB Host Versus USB Accessory

Without AOA, due to the nature of USB protocols, most Android devices’ USB ports cannot act
as a USB host and are therefore incapable of sending commands to an external accessory. AOA
uses a clever workaround: the Android device enters a special accessory mode where, although it
is technically acting as an accessory to the external hardware, it sends information to the external
hardware, which is interpreted by the hardware as commands. Meanwhile, the external hardware
can send sensor information to the Android device.

In the actual physical confi guration, the external hardware is the USB host (it powers the bus and
enumerates connected devices) and the Android device is the USB accessory. However, in order to
avoid confusion, this book refers to the external hardware as the accessory and the Android device
as the device even though the master-slave roles are essentially reversed.

Electrical Power Requirements

The accessory must provide 500mA at 5V for charging power to the Android device. Though it may
seem strange that a small external device like a temperature sensor is required to charge an Android
smartphone or tablet while connected to it, this is a limitation of the underlying USB protocols
rather than an oversight by the AOA developers. This is one part of AOA that will almost certainly
change in the future as protocol workarounds are developed, or as more devices are released that
can natively act as a USB host.

Supported Android Devices

Though most future Android devices will support AOA, Android hardware is not required to
support Accessory Mode even if it has a suffi cient OS version. Although AOA was released starting
with Android 3.1 for tablets and backported to version 2.3.4 for phones, the decision to include
AOA into the OS is made by the device manufacturer. Many custom Android ROMs built by popu-
lar fi rmware distributors such as CyanogenMod don’t support AOA (although some versions of
CyanogenMod do support it).

To guarantee AOA support, a Google Nexus line of phones running 2.3.4, 3.1, 4.0, and higher
is recommended. If you have a non-Nexus phone or an Android tablet, a quick way to check for
compatibility is to search for the Basic Accessory Demo app by Microchip Technology, Inc., in

c10.indd 190c10.indd 190 5/10/2012 2:05:54 PM5/10/2012 2:05:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

The Android Development Kit (ADK) x 191

the Android Market. (Direct links: https://play.google.com/store/apps/details?id=com.
microchip.android.BasicAccessoryDemo_API12 for tablets and https://play.google.com/
store/apps/details?id=com.microchip.android.BasicAccessoryDemo for phones.) If you
are unable to view or install this app, it is an indicator that your phone does not support AOA.
Microchip also maintains a list of compatible devices on their website: http://microchip.
com/android.

So while this may seem like Android fragmentation at its worst, there are alternative external
hardware microcontrollers that can be used such as the SparkFun IOIO, which is backwards
compatible to Android 1.5. Or you can consider eschewing a hardwired USB connection and the
current AOA API and instead communicate over Bluetooth or WiFi using the proper Arduino shield.
Continue reading for more information about what microcontrollers are supported by Android and
when you should look for other solutions.

THE ANDROID DEVELOPMENT KIT (ADK)

As mentioned earlier in this chapter, Google announced an Arduino-based ADK alongside the
release of AOA support in the Android SDK. Arduino is an open-source single-board micro-
controller system that has become popular among hobbyists because it simplifi es the process of
using electronics in multidisciplinary projects due to its easy to learn, high level programming
language and non-intimidating IDE. Arduinos come in many varying sizes and form factors
which add to its desirability as a microntroller platform. Refer to Figure 10-1 for examples of
various Arduinos.

FIGURE 10-1: Various Arduino form factors. The LilyPad (left) for wearable and soft electronics projects, a

 typical Uno (top right), and the Mega ADK (bottom right). Only the Mega ADK is compatible with AOA.

c10.indd 191c10.indd 191 5/10/2012 2:05:54 PM5/10/2012 2:05:54 PM

www.it-ebooks.info

https://play.google.com/store/apps/details?id=com
https://play.google.com
http://microchip
http://www.it-ebooks.info/

192 x CHAPTER 10 ANDROID OPEN ACCESSORY

The easiest to use AOA compatible Arduino is the Mega ADK. However, while its mainstream
popularity may make the Arduino “brand” synonymous with electronics tinkering, it’s important
to understand that an ADK is also an open-source platform (the protocols for making an Android
compatible development kit are licensed under Creative Commons and Apache 2.0 licenses) so
anyone can create their own custom hardware. As long as the hardware has integrated USB host
support and implements the Android Accessory Protocol as outlined by Google to establish
communication to a USB connected Android device and to indicate to the device to use a special
AOA accessory mode, then it can be considered ADK-compatible.

The Android developer portal lists some of the vendors on their ADK information page (http://
accessories.android.com) but the following are some development kits of note:

 ‰ Arduino Mega ADK (http://store.arduino.cc): By today’s standards, a “typical”
Arduino is an Arduino Uno. An Arduino Mega 2560 is programmed by a developer in
exactly the same manner as an Uno but a Mega 2560 is double the physical size and has
more fl ash memory, SRAM, and EEPROM to perform faster. A step up, the Mega ADK is a
Mega 2560 with integrated USB host controllers.

The instructions and code examples from this chapter will use a Mega ADK.

 ‰ Seeed Studio Seeeduino (www.seeedstudio.com/depot/seeeduino-adk-main-board-
p-846.html), SparkFun Electric Sheep (www.sparkfun.com/products/10745), and Modern
Device Freeduino USB Host Board (http://shop.moderndevice.com/products/freed-

uino-usb-host-board): The Arduino specifi cations are open-source so anyone can make
Arduino compatible hardware and use the Arduino IDE to program it without learning a
new programming language for each microcontroller. These boards are a great example of
the advantages of open source hardware since it means that various ADKs can be offered
with different specs, be competitively priced, or even be simultaneously backwards compat-
ible for 1.5+ Android devices using non-AOA APIs.

 ‰ Microchip PIC24F Accessory Development Starter Kit (www.microchip.com/stellent/
idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en553673): Microchip
Technology has been in the semiconductor chip business for a long time. Comparatively
speaking, Arduino is still a new kid on the block at seven years of age (created 2005) and
Microchip is a grizzled veteran at 25 (created in 1987 as a spinoff of now defunct General
Instrument).

Microchip’s line of PIC microcontrollers are widely used in the embedded systems industry
and possibly show up in some commercial electronic gadgets you use today. However, this
long history may explain why most new electronics hobbyists have never heard of a PIC
chip before — Microchip caters to electrical engineers and hasn’t changed their website
much to refl ect the growing popularity of the open source hardware movement. Shopping
on the Microchip website can be confusing and the PIC development environment (the C
programming language and Microchip’s IDE called MPLAB) isn’t as welcoming as the
Arduino IDE.

So while there can be an argument made for the PIC24F and upcoming PIC32, because
they are superior spec-wise due to a better and more tightly integrated USB host support,
many other factors make it hard to recommend PIC chips to newcomers to electronics.
However, if you are already familiar with PIC chips, this would be a great development
board to pick up.

c10.indd 192c10.indd 192 5/10/2012 2:06:07 PM5/10/2012 2:06:07 PM

www.it-ebooks.info

http://accessories.android.com
http://accessories.android.com
http://store.arduino.cc):
http://www.seeedstudio.com/depot/seeeduino-adk-main-board-p-846.html
http://www.seeedstudio.com/depot/seeeduino-adk-main-board-p-846.html
http://www.seeedstudio.com/depot/seeeduino-adk-main-board-p-846.html
http://www.sparkfun.com/products/10745
http://shop.moderndevice.com/products/freed-uino-usb-host-board):
http://shop.moderndevice.com/products/freed-uino-usb-host-board):
http://shop.moderndevice.com/products/freed-uino-usb-host-board):
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en553673):
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en553673):
http://www.it-ebooks.info/

The Android Development Kit (ADK) x 193

On the bright side, hardware developers with more experience have being doing all the “hard work”
for us and many derivative ADKs have been created based on the PIC chipset such as the IOIO to be
discussed next and soon-to-be ADK compatible boards such as the Pinguino (http://pinguino.
cc/) which allow you to write fi rmware code in BASIC or C, and even a language that matches the
Arduino programming language.

ARDUINO COMPATIBLE

Wondering what the difference between an offi cial Arduino product is and one that
is labeled as “Arduino compatible” is? An offi cial Arduino board is still designed
and manufactured by various companies but they pay a licensing fee to fund con-
tinued work on the Arduino platform. They also work with the Arduino team to
ensure compatibility and quality. However, having stated that, do not assume that
it means that non-offi cial Arduino boards are necessarily inferior products — they
are simply part of the open source ecosystem.

 ‰ Sparkfun IOIO (www.sparkfun.com/products/10748): The IOIO (pronounced “yo-yo”) is
a very interesting Android-compatible microcontroller because it pre-dated the Google AOA
announcement by a month and uses a completely different communication protocol. Instead
of using the Android Accessory Protocol required for an ADK, the IOIO cleverly uses the
information transferred by the Android Debug Bridge (ADB) commonly used for logging
debug messages while testing Android applications connected to a computer. More recently,
beta AOA support has been added and apps built for the IOIO will attempt to use AOA fi rst
and then gracefully fall back to ADB for non-AOA phones and tablets.

Price-wise, the IOIO is $50 USD compared to $80 USD for a Mega ADK, which can make it very
appealing to the wallet. The IOIO is based on the Microchip PIC chipset discussed in the bullet
point immediately above, which partially accounts for the price difference. Firmware has already
been pre-installed in the IOIO board (unlike the Arduino based ADKs) so the only code that you
need to write is Java code in your Android app.

For all these reasons, IOIO may sound clearly better than AOA, however there are two main draw-
backs to IOIO. The fi rst is that ADB is incredibly powerful – you can do almost anything by ADB. An
accessory could do damage to the Android device via ADB, either maliciously or through bad coding.
Therefore I, for one, would not be comfortable connecting my device to a IOIO-based accessory that I
had not built myself. This poses a serious problem if you want to mass-produce and sell your Android
accessory. Secondly, in order to connect to a IOIO-based accessory, the user must open Settings Í
Applications Í Development, and check the box to allow USB debugging (though this only needs to
be done once). To sell a IOIO-based product to the non-technically-inclined public you would have to
show them how to turn on that feature and have them comfortable enabling it. Google could change
ADB to get around these problems, but at this stage that seems unlikely and probably unwise.

For a more thorough comparison, please refer to this blog entry by Ytai Ben-Tsvi, the creator of the
IOIO: http://ytai-mer.blogspot.com/2011/06/ioio-over-openaccessory-adk-available.
html.

In addition to these devices, it’s possible to set up almost any microcontroller to be AOA compatible
by adding a pre-assembled USB host shield such as these listed on the Circuits@Home

c10.indd 193c10.indd 193 5/10/2012 2:06:08 PM5/10/2012 2:06:08 PM

www.it-ebooks.info

http://pinguino.cc
http://pinguino.cc
http://www.sparkfun.com/products/10748):
http://ytai-mer.blogspot.com/2011/06/ioio-over-openaccessory-adk-available
http://www.it-ebooks.info/

194 x CHAPTER 10 ANDROID OPEN ACCESSORY

website: www.circuitsathome.com/products-page/arduino-shields/. Refer to Figure 10-3 for
how an breadboard shield sits on top of an Arduino Mega.

Hardware Components

The Arduino microcontroller board (see Figure 10-2) usually consists of the microcontroller chip,
USB or other connectivity interface, and supporting circuitry with notifi cation LEDs (light-emitting
diodes). Sensors can be interfaced with the board’s pin headers, often by using a shield. Shields may
either be bare breadboards (no electronic components, but an array of holes to solder components
on), or have pre-soldered components. (See Figure 10-3.) For example, shields may provide Ethernet/
WiFi/USB/XBee connectivity, provide SD card storage, or hold a wide range of sensors and
actuators. Although the possible voltage supply levels from microcontrollers are low, larger devices
(such as large motors) may be controlled using relays. Relays are electronic switches — they allow
the controller to turn on or off a large external current with just a small control voltage signal.

FIGURE 10-2: A close up view of the Arduino ADK board

FIGURE 10-3: An Arduino Mega “breadboard” shield. Shields interface with the pin headers and sit atop a

microcontroller board. Sensors or other devices may sit on a shield.

c10.indd 194c10.indd 194 5/10/2012 2:06:08 PM5/10/2012 2:06:08 PM

www.it-ebooks.info

http://www.circuitsathome.com/products-page/arduino-shields
http://www.it-ebooks.info/

The Android Development Kit (ADK) x 195

Software Components

For Android Open Accessory, you need two programs: an Android program running on your
Android device, and another program running on your Arduino. The program running on the
Arduino is referred to as fi rmware in the online Android SDK documentation but most Arduino
users will refer to this program as a sketch. (The term sketch is analogous to the idea of being able
to pick up a pencil and quickly draw something; Arduino development is meant to be fast and easy.)

After the Arduino board is connected to the Android device, communication begins immediately
and the relevant application launches (or the user will be taken to the Google Play to download the
app if it is not installed).

The Arduino platform is both hardware and software. The Arduino software component consists of a
simplifi ed IDE with a standard programming language compiler and the boot loader that runs on the
board. Arduino sketches are written in the Arduino programming language, which is a thin layer on
top of C++. Programmers with previous experience in C, C++, Java, or a similar open-source project
called Processing (www.processing.org) should fi nd Arduino syntax very easy to learn.

Sketches are uploaded to the board by clicking the Upload button on the Arduino IDE. (The
Arduino IDE is not part of Eclipse, it is a separate program that needs to be downloaded from
www.arduino.cc.) Once uploaded, sketches run a setup function fi rst and then will loop infi nitely
as long as the Arduino is receiving electrical power and there are no errors in the code. If power is
removed, the board will retain the sketch next time it is powered up. Figure 10-4 shows the Arduino
IDE and a barebones sketch with two required methods unsurprisingly named setup() and loop().

FIGURE 10-4: The Arduino IDE and a basic Arduino sketch

c10.indd 195c10.indd 195 5/10/2012 2:06:37 PM5/10/2012 2:06:37 PM

www.it-ebooks.info

http://www.processing.org
http://www.arduino.cc
http://www.it-ebooks.info/

196 x CHAPTER 10 ANDROID OPEN ACCESSORY

More information about the Arduino environment will be discussed in the “Getting Started with the
Arduino Software” section later in this chapter.

AOA SENSORS VERSUS NATIVE DEVICE SENSORS

A developer can do many things using only native sensors, such as the accelerometer, in an Android
device. However, at times the sensors on a device cannot provide the data needed for an application.
The device may not have a sensor to provide the data, or the sensor on the device may not provide
enough precision and/or sensitivity in the data it reports. For instance, there is no good way to
measure wind speed, blood alcohol level, or ambient temperature with an Android device. (The
temperature sensor in Android devices measures CPU temperature — if you want room tempera-
ture you need an external sensor.) In addition, though in-device sensor sensitivity improves with
newer devices, there will always be cases where far more sensitive sensors exist but cannot be inte-
grated into an Android device. For instance, MEMS gyroscopes are nowhere near as good as large,
bulky, fi ber-optic gyroscopes, and external light sensors may detect broader levels of light than the
built-in light sensor is capable of measuring. In general, AOA sensors have vastly greater sensing
possibilities.

AOA BEYOND SENSORS

Common sensors that are easily interfaced with AOA include temperature, light, capacitive (touch)
sensors, accelerometers, gyroscopes, and magnetometers. Joysticks or other input devices are also
common.

Of course, Arduino isn’t just limited to collecting sensor information — it can also act on the envi-
ronment. The counterpart to a sensor is an actuator. Actuators include motors, lights, and buzzers,
and many larger components that may be switched using relays.

AOA LIMITATIONS

Arduino has a fi nite sampling frequency, which limits the ability to handle sensor signals that rap-
idly vary. This frequency is different for analog (waveform-like) and digital (step-like) inputs, and
varies by the brand and model of the Arduino board. For example, Arduino Mega analog inputs
may sample up to 10 kHz (10,000 times per second), whereas its digital inputs can read once per
instruction cycle, or 16 MHz (6 million times per second). It is, of course, impossible to measure a
signal that varies faster than your sampling frequency (or even one fi fth or one tenth of your sam-
pling frequency, because you often require several data points to adequately defi ne a rapid value
fl uctuation). This means, for instance, that the analog input cannot be directly used to sense FM
radio wave frequencies (~100 MHz) or even high-pitched audible sounds via microphone (the fre-
quency limit of human hearing is around 20 kHz). The problems caused by sampling at a slower
frequency than the frequency you are trying to measure are called aliasing errors. You can imagine,
for instance, that if waves are crashing on a beach every 10 seconds and I only take a measurement
of the wave height of the nearest wave every 60 seconds, I’m not going to be able to know exactly
where each wave is, nor even know that they crash every 10 seconds — I’d have no idea. Clever elec-
trical engineering workarounds can be used, but these are advanced topics that are not covered here.

c10.indd 196c10.indd 196 5/10/2012 2:06:37 PM5/10/2012 2:06:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

AOA and Sensing Temperature x 197

In addition, although AOA can directly sense the outputs of many digital and some analog sensors,
not all sensors can simply be plugged into a microcontroller. Often some kind of circuit is needed to
interface the sensor with Arduino. These circuits may scale or otherwise operate on the signal from
the sensor in order to convert it into voltages that Arduino can handle.

AOA AND SENSING TEMPERATURE

As a simple example of how to use AOA, this chapter discusses how to use AOA to collect readings
from an external temperature sensor. In the example, an Arduino board with a 10-bit analog-to-
digital converter is used. This means that when the sensor applies a voltage of between 0 and 5 volts
on one of the analog input pins, it will be mapped to a value between 0 and 1023. This yields a reso-
lution between readings of 5 volts / 1024 units, or 0.0049 volts (4.9 mV) per unit.

Assume you are using an MCP9701/9701A temperature sensor manufactured by Microchip (www.
microchip.com/wwwproducts/Devices.aspx?dDocName=en022290). If you are buying this com-
ponent, you will want the one suffi xed TO and not LT or TT. These refer to the package and form
factor – the TO has long leads that are easy to connect for our purposes, whereas the other ones are
surface-mount and only have short stubby legs. You may verify this by searching for images of these
components (e.g. on a component vendor site like http://digikey.com).

Next, download the datasheet from the microchip webpage by looking immediately underneath the
blue Data Sheets header in the Documentation section of that webpage (the download link is named
MCP9700/01 - Low-Power Linear Active Thermistor ICs) or by doing a web search with the model
number of the component. If you are unfamiliar with technical datasheets, there is a brief tutorial
on the Sparkfun website (www.sparkfun.com/tutorials/223).

Looking at the datasheet, there is a picture of the sensor (the one with long leads, called 3-Pin
TO-92 on the datasheet, is the one you want). The pins are labeled VDD, VOUT, and GND. The
VDD pin is where it gets its electrical power — connect +5 volts to that by connecting it to any of
the +5V outputs labeled on the Arduino board. The GND pin is the ground pin, or the other end
of the electrical circuit — you connect it to the GND pin header on the Arduino board. The VOUT
pin is where the signal comes out. This signal is a voltage that you will measure and then map back
to a real-world temperature as described later. You can connect this pin to any of the numbered pin
headers labeled Analog In. For this example, you can connect it to pin number A3.

To make these three electrical connections, you may clip or solder three long wires to the leads and
push the free end into the pin headers. Or, if you have a board where +5V, GND, and an analog
input pin are close enough together, you may just push the three leads of the unmodifi ed sensor into
the pin headers (you may do this on the Arduino Mega, for instance, using Analog Input number 0).

On the datasheet you will notice that the voltage is scaled to a temperature coeffi cient of 19.5 mV/°C
(this is listed as the typical value — you can calibrate your individual sensor if you wish). The output
voltage at 0 °C is also scaled to 400 mV (typical). Therefore, the voltage coming out of the sensor is
Vout[mV] = k[mV/°C] * T[°C] + V0 [mV] (the units are written in square brackets), where k is the tem-
perature coeffi cient, T is the temperature you want to measure, and V0 is the output voltage at 0 C.

In other words, the voltage coming out of the temperature sensor when the actual room temperature
is 25°C is Vout[mV] = 19.5 * 25 + 400 = 887.5 mV. If you convert that from millivolts to volts, 887.5

c10.indd 197c10.indd 197 5/10/2012 2:06:38 PM5/10/2012 2:06:38 PM

www.it-ebooks.info

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en022290
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en022290
http://digikey.com
http://www.sparkfun.com/tutorials/223
http://www.it-ebooks.info/

198 x CHAPTER 10 ANDROID OPEN ACCESSORY

mV = 0.8875 V. Next, assume this temperature sensor is directly plugged into the analog input pin
described in the fi rst paragraph of this section. You fi nd that 0.8875 volts / (5 volts / 1024 units) =
181.8. So 887.5 mV is between the possible digital values of 181 and 182, and closer to 182. So on
a scale of 0 to 1023 units, the microcontroller will register the signal coming from the sensor as
being at 182 units. Finding temperature in the code is as simple as getting that 182 number from the
microcontroller and calculating backward to fi nd that the temperature is 25°C.

Implementation

Now that this chapter has introduced the example app, it is time to discuss the actual implementa-
tion. The implementation includes the Arduino sketch code as well as code that runs on the Android
device. The code is based on the ADK package that is available as a download from http://
developer.android.com/guide/topics/usb/adk.html. The ADK package contains code to
interact with many kinds of input and output. This section simplifi es the ADK package’s app so that
it can explain a complete, simple code example that collects data from a specifi c temperature sen-
sor. Before discussing code, a quick discussion on what is required to use AOA and how to get the
Arduino software running is needed.

Requirements

The following is a list of the minimum requirements needed to use AOA:

 ‰ An AOA-compatible Android device. To test compatibility before trying this example, please
refer to the “Supported Android Devices” section for links to the Microchip AOA demon-
stration apps available on the Google Play.

 ‰ An Arduino-compatible microcontroller board as discussed in the “The Android
Development Kit (ADK)” section previously. We recommend the Arduino Mega ADK if you
are unsure.

 ‰ A “breadboard” or breadboard shield (see Figure 10-3). Breadboard shields are available
from many vendors; just search for “prototyping breadboard shield for Arduino Mega.”
For example, the “ProtoShield with breadboard” shown at www.bizoner.com/prototype-
shield-protoshield-with-bread-board-for-arduino-mega-p-183.html has pin
headers already attached, and has the option to solder components to the bare board, or to
push them (without solder) into holes in a white prototyping breadboard allowing for quick
prototyping before components are semi-permanently soldered in place.

 ‰ A temperature sensor. This example uses a Microchip MCP9701/9701A temperature sensor.
If you choose a different temperature sensor, you may need to adjust your calculations.

Getting Started with the Arduino Software

Before using AOA, you must download the Arduino IDE. You can fi nd the Arduino development
software under the Download tab at http://arduino.cc. An important warning is that Arduino
recently had a 1.0 release and saw many major upgrades; some API method names have changed.
The Android AOA libraries supplied by Google have not been upgraded so they are out-of-sync and

c10.indd 198c10.indd 198 5/10/2012 2:06:38 PM5/10/2012 2:06:38 PM

www.it-ebooks.info

http://developer.android.com/guide/topics/usb/adk.html
http://developer.android.com/guide/topics/usb/adk.html
http://www.bizoner.com/prototype-shield-protoshield-with-bread-board-for-arduino-mega-p-183.html
http://www.bizoner.com/prototype-shield-protoshield-with-bread-board-for-arduino-mega-p-183.html
http://www.bizoner.com/prototype-shield-protoshield-with-bread-board-for-arduino-mega-p-183.html
http://arduino.cc
http://www.it-ebooks.info/

AOA and Sensing Temperature x 199

the Arduino compiler will produce many errors in version 1.0. You should download version 0023
of the Android IDE instead of the Android 1.0 version for these examples — on the downloads page,
scroll down to the Previous IDE Versions section.

Install the Arduino IDE to your Mac, Windows, or Linux machine based your specifi c computer
platform instructions linked from the Getting Started page: http://arduino.cc/en/Guide/
HomePage. The driver installation for Windows can be a bit tricky so pay special attention to that
part of the instructions.

Arduino is very beginner friendly and comes pre-packaged with code samples available from within
the IDE by looking under File Í Examples from the top menu bar. Additional tutorials and refer-
ence guides are also available on the Arduino website. Once you are comfortable with uploading one
of the example sketches to your board, read on.

The next step is to set up the Android development environment to use with AOA. You can do this
by following the instructions at http://developer.android.com/guide/topics/usb/adk.html
under the “Installing the Arduino software and necessary libraries” section of the webpage.

Now that you have the development environment set up, the discussion moves to the actual
implementation. The Arduino code (see Listing 10-1) is discussed fi rst and then the Android code. For
the remainder of the implementation, it is assumed that the temperature sensor is connected to pin.

Arduino Sketch

Create an Arduino project by selecting File Í New from the top menu of the Arduino IDE. A new,
blank window will appear. Save this fi le as Arduino_Temp_Sensor.pde.

All Arduino projects must have a setup() and a loop() method declared. You should run each one
once initially to ensure the microcontroller is clear of previous programs, and the loop() method
will also check for presence of the board.

/* The two essential methods for any Arduino sketch:
setup() and loop(). Run both of them once to ensure a
clear and functional board. */
void setup();
void loop();

/* Now declare setup() for real. This method will run
once after the board has been powered on or reset. */
void setup()
{
}

/* Now declare loop() for real. This method will continue
to loop until Arduino is powered down or reset. */
void loop()
{
}

For debugging and message logging, use Arduino’s serial communications monitor. When
your Arduino is hooked up to your computer via USB, you can get useful information from the

c10.indd 199c10.indd 199 5/10/2012 2:06:38 PM5/10/2012 2:06:38 PM

www.it-ebooks.info

http://arduino.cc/en/Guide
http://developer.android.com/guide/topics/usb/adk.html
http://www.it-ebooks.info/

200 x CHAPTER 10 ANDROID OPEN ACCESSORY

microcontroller using the Serial.print() or Serial.println() commands. To open the serial
monitor, select Tools Í Serial Monitor from the top menu and make sure that it matches the baud
rate that you have defi ned in your Arduino sketch using the Serial.begin() command. For more
information about serial communications, visit the Arduino documentation: http://arduino.cc/
en/Serial/Begin. For more information about the Serial.print() command, visit: http://
arduino.cc/en/Serial/Print.

The following is an updated setup() method:

void setup()
{
 // start serial debugging
 Serial.begin(115200);
 Serial.print("\r\nADK has run setup().");
 Serial.println("Ready to start reading the temp...");
}

As noted previously, we’ll be plugging the temperature sensor’s input pin into the Analog In pin of
the Arduino ADK marked A3. Constants are useful because if you ever reorganize the layout of
your circuit, it’s only a matter of changing one number. The following line of code defi nes a constant
named TEMP_SENSOR and sets it to be pin A3. Much like Java programming, Arduino constants are
typically declared at the beginning of a fi le.

#define TEMP_SENSOR A3 // the temperature sensor pin

To get data from the sensor, within the loop() method, use the Arduino analogRead() method to
read the voltage of the temperature sensor’s analog input pin and store it as an unsigned 16 bit vari-
able (uint16).

A reading may take 100 microseconds depending on the microcontroller, so in that case, the
maximum reading rate would be 10kHz. You can look up the analog pin read speed for your par-
ticular Arduino on the manufacturer’s website. However, temperature doesn’t change much in a
fraction of a second so if you don’t want to get data at the maximum reading rate you can slow it
down with a time delay using the delay() method. Using a delay is also benefi cial in order to not
use system resources unnecessarily; however, the Android device will expect a certain timeliness in
order to maintain the AOA connection so a delay of 100 ms is ideal.

The following is an updated loop() method with serial debugging:

void loop()
{
 // Read the voltage from the sensor
 uint16_t val;
 val = analogRead(TEMP_SENSOR);
 Serial.println(val,HEX);
 Serial.write(val);
 // Delay for 100 milliseconds.
 delay(100);
}

And that’s all it takes to get data from a temperature sensor! Listing 10-1 shows the full Arduino
sketch. As you can see, this is why they are called sketches!

c10.indd 200c10.indd 200 5/10/2012 2:06:38 PM5/10/2012 2:06:38 PM

www.it-ebooks.info

http://arduino.cc
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Print
http://www.it-ebooks.info/

AOA and Sensing Temperature x 201

To test the sketch, upload to your Arduino ADK and open up the Arduino serial monitor. You will see
the monitor output ADK has run setup(), followed by Ready to start reading the temp..., then
a series of "val=##" where ## will be a number from 0 to 1023. This is a not the actual temperature but
a number based on the temperature coeffi cient of your sensor. The Android app discussed in an upcom-
ing section section will take care of the math to convert the sensor data into Celsius readings.

Touch the temperature sensor or shine a warm light bulb on your circuit to see the temperature coef-
fi cient increase. Remove the source of heat and watch the val variable decrease. If you do not see
this change, confi rm that your circuit is wired correctly. It’s very easy to confuse the pins for 5V and
GND based on the direction you plugged them into the breadboard, or to confuse the slot for pin
A3 with a nearby pin.

LISTING 10-1: The Arduino sketch Arduino_Temp_Sensor.pde for reading temperature data

without an AOA device

#define TEMP_SENSOR A3 // the temperature sensor pin

/* The two essential methods for any Arduino sketch:
setup() and loop(). Run both of them once to ensure a
clear and functional board. */
void setup();
void loop();

/* Now declare setup() for real. This methood will run
once after the board has been powered on or reset. */
void setup()
{
 // start serial debugging
 Serial.begin(115200);
 Serial.println("\r\nADK has run setup().");
 Serial.println("Ready to start reading the temp...");
}

/* Now declare loop() for real. This method will continue
to loop until Arduino is powered down or reset. */
void loop()
{
 // Read the voltage from the sensor
 uint16_t val;
 val = analogRead(TEMP_SENSOR);
 Serial.print("val=");
 Serial.println(val,HEX);

 // Delay for 100 milliseconds.
 delay(100);
}

Building on the previous sketch, let’s add AOA capabilities. First you must include some Arduino
libraries and classes using the #include directive. You should already have installed these librar-

c10.indd 201c10.indd 201 5/10/2012 2:06:39 PM5/10/2012 2:06:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

202 x CHAPTER 10 ANDROID OPEN ACCESSORY

ies as part of the setup. These statements go at the very top of the sketch. The Max3421e and Usb
libraries are for USB Host controlling:

// the USB Host libraries
#include <Max3421e.h>
#include <Usb.h>

AndroidAccessory is the Google-supplied, C++ class for instantiating the Android Accessory
protocol:

// the AOA library
#include <AndroidAccessory.h>

Now you are ready to implement AOA features in your Arduino code! Instantiate a new instance of
the AndroidAccessory class named acc and defi ne the metadata associated with the board.

// create an instance of the AndroidAccessory class
AndroidAccessory acc("Manufacturer name",
 "Model",
 "Description",
 "1.0",
 "http://www.example.com",
 "Serial number");

Through the use of Android intent fi lters, this metadata can be read by the Android device to deter-
mine which app to launched when the phone or tablet is plugged into the ADK board via USB. The
Android app will only use the manufacturer, model, and version information to determine when the
accessory is connected; description, URI, and serial number are not used by the intent fi lters.

Continuing on, if you recall from much earlier in this chapter, the Arduino is acting as a USB host to
the Android device so the Arduino is obligated to supply 5V of power to the phone. The powerOn()
method of the AndroidAccessory class is a convenience method that simply calls the powerOn()
method in the Max3421e library. Call powerOn() in your setup() method:

void setup()
{
 // start serial debugging
 Serial.begin(115200);
 Serial.println("\r\nADK has run setup().");
 Serial.println("Ready to start reading the temp...");

 // Power up the USB host controller
 acc.powerOn();
}

To check if the Android device is connected via USB and that the Android app has been launched,
use the isConnected() method of the AndroidAccessory class your loop(). For our tempera-
ture sensor example code, if the AOA device is connected, start reading the temperature sensor.
Otherwise, do nothing.

void loop()
{
 if (acc.isConnected())
 {
 // Read the voltage from the sensor

c10.indd 202c10.indd 202 5/10/2012 2:06:39 PM5/10/2012 2:06:39 PM

www.it-ebooks.info

http://www.example.com
http://www.it-ebooks.info/

AOA and Sensing Temperature x 203

 uint16_t val;
 val = analogRead(TEMP_SENSOR);
 Serial.print("val=");
 Serial.println(val,HEX);
 }

 // Delay for 100 milliseconds.
 delay(100);
}

For other Arduino projects, you may wish to use the else condition to detect a recently discon-
nected device and reset the Arduino circuit to its default state. For example, if a button on your
Android app turns on a LED, it makes sense to turn the LED off if the device is disconnected from
the Arduino board.

if (acc.isConnected())
{
 // turn on LED
}
else {
 // device may have been disconnected so turn off LED
}

Finally, get the Arduino and Android to send data back and forth. There are two methods available
in the AndroidAccessory class that do as their names imply: read() and write(). For the tempera-
ture sensor, the data is packaged into three bytes. The reason for this is that the value reported by
the analog input pin will be a number from 0 to 1023, so we need at least two bytes to hold a value
up to 1023. (One byte (8 bits) can hold a maximum value of 2^8 - 1 = 255.) The method of pack-
aging and unpackaging of the two smaller bytes into the larger number are shown in the Arduino
sketch and Android code, respectively. The third byte (actually, the fi rst byte we send) is simply to
specify which sensor or actuator the reading refers to. We only have one sensor, so in this simple
example we set this byte to be zero, however it is clear how we may choose other numbers to refer to
other sensors or actuators.

if (acc.isConnected())
{
 // Read the voltage from the sensor
 uint16_t val;
 val = analogRead(TEMP_SENSOR);
 Serial.print("val=");
 Serial.println(val,HEX);

 // Declare a message to be sent to the Android device
 byte msg[3];

 // default to 0 for the first sensor
 msg[0] = 0x0;

 /* Repackage val into two bytes. (This is unpackaged
 by the composeInt method in the Android code.)
 >> is a right-shift operator, so >> 8 moves all the
 bits in val to the right by 8 places.
 For more information, look up bitwise operations in

c10.indd 203c10.indd 203 5/10/2012 2:06:39 PM5/10/2012 2:06:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

204 x CHAPTER 10 ANDROID OPEN ACCESSORY

 the C programming language. */
 msg[1] = val >> 8;
 msg[2] = val & 0xff;

 // Finally, send the message to the Android device
 acc.write(msg, 3);
}

The temperature sensor example doesn’t use read() but, for your other Arduino projects, you could
use it to read input from the Android phone such as an on/off press on a UI button, a range of num-
bers from a UI slider, or anything else your app wants to send to the Arduino.

LISTING 10-2: The Arduino sketch Arduino_Temp_Sensor_with_AOA.pde for reading

temperature data without an AOA device

// the USB Host libraries
#include <Max3421e.h>
#include <Usb.h>

// the AOA library
#include <AndroidAccessory.h>

#define TEMP_SENSOR A3 // the temperature sensor pin

// create an instance of the AndroidAccessory class
AndroidAccessory acc(“Manufacturer name",
 “Model",
 “Description",
 “1.0",
 “http://www.example.com",
 “Serial number");

/* The two essential methods for any Arduino sketch:
setup() and loop(). Run both of them once to ensure a
clear and functional board. */
void setup();
void loop();

/* Now declare setup() for real. This methood will run
once after the board has been powered on or reset. */
void setup()
{
 // start serial debugging
 Serial.begin(115200);
 Serial.println("\r\nADK has run setup().");
 Serial.println("Ready to start reading the temp...");

 // Power up the Android device.
 acc.powerOn();
}

/* Now declare loop() for real. This method will continue

c10.indd 204c10.indd 204 5/10/2012 2:06:40 PM5/10/2012 2:06:40 PM

www.it-ebooks.info

http://www.example.com
http://www.it-ebooks.info/

AOA and Sensing Temperature x 205

to loop until Arduino is powered down or reset. */
void loop()
{
 if (acc.isConnected())
 {
 // Read the voltage from the sensor
 uint16_t val;
 val = analogRead(TEMP_SENSOR);
 Serial.print("val=");
 Serial.println(val,HEX);

 // Declare a message to be sent to the Android device
 byte msg[3];

 // default to 0 for the first sensor
 msg[0] = 0x0;

 /* Repackage val into two bytes. (This is unpackaged
 by the composeInt method in the Android code.)
 >> is a right-shift operator, so >> 8 moves all the
 bits in val to the right by 8 places.
 For more information, look up bitwise operations in
 the C programming language. */
 msg[1] = val >> 8;
 msg[2] = val & 0xff;

 // Finally, send the message to the Android device
 acc.write(msg, 3);
 }

 // Delay for 100 milliseconds.
 delay(100);
}

As you can see by the bolded area of code in Listing 10-2, implementing the Android Accessory
Protocol in the Arduino fi rmware only takes about six lines of code — and three of the lines were
imports of preexisting libraries. And communicating with the Android device simply uses acc.
write() to send data or acc.read() to write data. It’s that easy to get started on the Arduino end!

Compile the sketch by clicking on the Verify button and confi rm that there are no errors. When the
Arduino IDE’s status bar indicates that it is done compiling, make sure that your Arduino is plugged
into your computer and upload the sketch to the Arduino by clicking on the Upload button. When
the status bar indicates that it is done uploading, it is time to move on to Android code.

Android Code

First an overview: The Android code is located in BaseActivity. Before BaseActivity can access
any of the USB accessories, it must gain permission to do so. After receiving permission from the
user, BaseActivity initializes the USBManager and uses it to connect to the temperature sensor.
Once connected, BaseActivity reads the data from the sensor and updates the user interface.

To start, make an XML fi le called accessory_filter.xml that provides manufacturer, model,
and version information to allow you to start the app when the correct accessory is connected.

c10.indd 205c10.indd 205 5/10/2012 2:06:40 PM5/10/2012 2:06:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

206 x CHAPTER 10 ANDROID OPEN ACCESSORY

Save this fi le to the res/xml folder of your project. This must be an exact match to the manufac-
turer, model, and version information metadata supplied in the Arduino sketch when you create a
AndroidAccessory instance. The contents of the XML fi le are illustrated in Listing 10-3.

LISTING 10-3: xml/accessory_fi lter.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <usb-accessory manufacturer="Manufacturer name" model="Model" version="1.0" />
</resources>

If an accessory is not connected when the user runs the app, the app displays a prompt to connect
the accessory. If an accessory is connected without the app running, Android runs the app.

Secondly, make sure the minimum SDK of the application is set to at least API level 10. If you’re
deploying to a 2.3.4+ Android phone only, double-check that you are targeting the 2.3.3 Google
API libraries as seen in Figure 10-5 since AOA was backported from 3.1 via a library. (No checkbox
exists for 2.3.4 in the settings panel!)

FIGURE 10-5: Make sure 2.3.3 Google libraries are checked off when deploying to phones.

In the manifest fi le, check that the device supports AOA. If you’re using a 2.3.4+ Android phone,
include both of these elements in the manifest:

<uses-sdk android:minSdkVersion="10" />
<uses-library android:name="com.android.future.usb.accessory" />

c10.indd 206c10.indd 206 5/10/2012 2:06:40 PM5/10/2012 2:06:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

AOA and Sensing Temperature x 207

If you’re using a 3.1+ Android phone or tablet, then the <uses-library> isn’t necessary — instead,
just set the minimum SDK to at least 12. In that case, the app will be using the platform APIs
instead of the add-on library:

<uses-sdk android:minSdkVersion="12" />
<uses-feature android:name="android.hardware.usb.accessory" />

In addition, for all Android OS versions, add an intent fi lter to launch the app immediately when it’s
been connected via USB to a matching device listed in the accessory fi lter xml:

<intent-filter>
 <action android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"/>
</intent-filter>
<meta-data
 android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />

Listing 10-4 shows the AndroidManifest.xml fi le in its entirety for a 3.1+ AOA compatible device
with the variations for 2.3.4+ devices commented out for your reference.

LISTING 10-4: AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.temperaturesensor"
 android:versionCode="1"
 android:versionName="1.0">

 <!-- Android 2.3.4+ devices: -->
 <!-- <uses-sdk android:minSdkVersion="10" /> -->

 <!-- Android 3.1+ devices -->
 <uses-sdk android:minSdkVersion="12" />

 <!-- Android 3.1+ devices: -->
 <uses-feature android:name="android.hardware.usb.accessory" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <!-- Android 2.3.4+ devices: -->
 <!-- <uses-library android:name="com.android.future.usb.accessory" /> -->
 <activity android:name=".BaseActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action
 android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"/>
 </intent-filter>
 <meta-data
 android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 (UsbAccessory) intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

continues

c10.indd 207c10.indd 207 5/10/2012 2:06:40 PM5/10/2012 2:06:40 PM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

208 x CHAPTER 10 ANDROID OPEN ACCESSORY

 android:resource="@xml/accessory_filter" />
 </activity>

 </application>
</manifest>

In the BaseActivity class, there are two other differences to between 2.3.4 and 3.1 devices,
because the android.hardware.usb package is written in such a way that it must instantiate
UsbManager and UsbAccessory objects differently from how you do it if you are using the library.

If you’re using a 2.3.4+ Android phone, you should obtain a reference to UsbManager and
UsbAccessory in the following way:

import com.android.future.usb.UsbAccessory;
import com.android.future.usb.UsbManager;
UsbManager manager = UsbManager.getInstance(this);
UsbAccessory accessory = UsbManager.getAccessory(intent);

If you’re using a 3.1+ Android phone or tablet, you should obtain a reference to UsbManager and
UsbAccessory in the following way:

import com.android.hardware.usb.UsbAccessory;
import com.android.hardware.usb.UsbManager;
UsbManager manager = (UsbManager) getSystemService(Context.USB_SERVICE);
UsbAccessory accessory = (UsbAccessory)
 intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

The full code follows in Listing 10-5 but here are some highlights that may need some elaboration
for all AOA projects.

Communication between Arduino and Android

If you are wondering what the protocol is that allows the Arduino to speak to the Android device,
and vice versa, you may be interested to know that it simply uses an instance of an Android
FileInputStream when reading sensor data from a connected Arduino device (and FileOutputStream
when writing commands to the Arduino device). This is very similar to using native OS protocols to
read and write from a system fi le or buffer where, instead of a fi le, it’s a microcontroller!

Because these code statements are not in the same method, the following are some statements to
keep an eye out for in BaseActivity.java:

 ‰ In the openAccessory() method:

 mFileDescriptor = mUsbManager.openAccessory(accessory);
 // ...
FileDescriptor fd = mFileDescriptor.getFileDescriptor();
 mInputStream = new FileInputStream(fd);

 ‰ And in the run() method:

ret = mInputStream.read(buffer);

LISTING 10-4 (continued)

c10.indd 208c10.indd 208 5/10/2012 2:06:41 PM5/10/2012 2:06:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

AOA and Sensing Temperature x 209

LISTING 10-5: BaseActivity.java

package com.example.temperaturesensor;

import java.io.FileDescriptor;
import java.io.FileInputStream;
import java.io.IOException;
import java.text.DecimalFormat;

import android.app.Activity;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.os.ParcelFileDescriptor;
import android.util.Log;
import android.widget.TextView;

//for Android 2.3.4+ devices:
/*
import com.android.future.usb.UsbAccessory;
import com.android.future.usb.UsbManager;
*/

//for Android 3.1+ devices
import android.hardware.usb.UsbAccessory;
import android.hardware.usb.UsbManager;

public class BaseActivity extends Activity implements Runnable
{
 private static final String TAG = "AOA,BaseActivity";
 private static final String ACTION_USB_PERMISSION =
 "com.example.aoaTempSensor.action.USB_PERMISSION";
 private static final int MESSAGE_TEMPERATURE = 2;
 private static final DecimalFormat TEMP_FORMATTER =
 new DecimalFormat("### " + (char) 0x00B0 + "C");

 private UsbManager mUsbManager;
 private PendingIntent mPermissionIntent;
 private boolean mPermissionRequestPending;
 private UsbAccessory mAccessory;
 private ParcelFileDescriptor mFileDescriptor;
 private FileInputStream mInputStream;
 private TextView temperatureValue;

 private Handler mHandler = new Handler()
 {
 @Override

continues

c10.indd 209c10.indd 209 5/10/2012 2:06:41 PM5/10/2012 2:06:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

210 x CHAPTER 10 ANDROID OPEN ACCESSORY

 public void handleMessage(Message msg)
 {
 if (msg.what == MESSAGE_TEMPERATURE)
 {
 handleTemperatureMessage((Integer) msg.obj);
 }
 }
 };

 private final BroadcastReceiver mUsbReceiver = new BroadcastReceiver()
 {
 @Override
 public void onReceive(Context context, Intent intent)
 {
 String action = intent.getAction();
 if (ACTION_USB_PERMISSION.equals(action))
 {
 synchronized (this)
 {
 // 2.3.4+ devices:
 //UsbAccessory accessory = UsbManager.getAccessory(intent);

 // 3.1+ devies:
 UsbAccessory accessory = (UsbAccessory)
 intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

 boolean hasPermission =
 intent.getBooleanExtra(UsbManager.EXTRA_PERMISSION_GRANTED,
 false);
 if (hasPermission)
 {
 openAccessory(accessory);
 }
 else
 {
 Log.d(TAG,
 "permission denied for accessory " + accessory);
 }
 mPermissionRequestPending = false;
 }
 }
 else if (UsbManager.ACTION_USB_ACCESSORY_DETACHED.equals(action))
 {
 // 2.3.4+ devices:
 //UsbAccessory accessory = UsbManager.getAccessory(intent);

 // 3.1+ devices
 UsbAccessory accessory = (UsbAccessory)
 intent.getParcelableExtra(UsbManager.EXTRA_ACCESSORY);

 if (accessory != null && accessory.equals(mAccessory))
 {

LISTING 10-5 (continued)

c10.indd 210c10.indd 210 5/10/2012 2:06:41 PM5/10/2012 2:06:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

AOA and Sensing Temperature x 211

 closeAccessory();
 }
 }
 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.aoa);

 temperatureValue = (TextView) findViewById(R.id.temperatureValue);

 // 2.3.4+ devices:
 //mUsbManager = UsbManager.getInstance(this);

 // 3.1+ devices:
 mUsbManager = (UsbManager) getSystemService(Context.USB_SERVICE);

 mPermissionIntent =
 PendingIntent.getBroadcast(this,
 0,
 new Intent(ACTION_USB_PERMISSION),
 0);

 IntentFilter filter = new IntentFilter(ACTION_USB_PERMISSION);
 filter.addAction(UsbManager.ACTION_USB_ACCESSORY_DETACHED);
 registerReceiver(mUsbReceiver, filter);

 if (getLastNonConfigurationInstance() != null)
 {
 mAccessory = (UsbAccessory) getLastNonConfigurationInstance();
 openAccessory(mAccessory);
 }

 if (mAccessory != null)
 {
 showTemp();
 }
 else
 {
 hideTemp();
 }
 }

 @Override
 public void onResume()
 {
 super.onResume();

 UsbAccessory[] accessories = mUsbManager.getAccessoryList();
 UsbAccessory accessory = (accessories == null ? null : accessories[0]);
 if (accessory != null)
 {

continues

c10.indd 211c10.indd 211 5/10/2012 2:06:41 PM5/10/2012 2:06:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

212 x CHAPTER 10 ANDROID OPEN ACCESSORY

 if (mUsbManager.hasPermission(accessory))
 {
 openAccessory(accessory);
 }
 else
 {
 synchronized (mUsbReceiver)
 {
 if (!mPermissionRequestPending)
 {
 mUsbManager.requestPermission(accessory,
 mPermissionIntent);

 mPermissionRequestPending = true;
 }
 }
 }
 }
 else
 {
 Log.d(TAG, "mAccessory is null");
 }
 }

 @Override
 public void onPause()
 {
 super.onPause();
 closeAccessory();
 }

 @Override
 public void onDestroy()
 {
 unregisterReceiver(mUsbReceiver);
 super.onDestroy();
 }

 @Override
 public Object onRetainNonConfigurationInstance()
 {
 if (mAccessory != null)
 {
 return mAccessory;
 }
 else
 {
 return super.onRetainNonConfigurationInstance();
 }
 }

 private void handleTemperatureMessage(Integer temperature)

LISTING 10-5 (continued)

c10.indd 212c10.indd 212 5/10/2012 2:06:42 PM5/10/2012 2:06:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

AOA and Sensing Temperature x 213

 {
 if (temperature != null)
 {
 // The calibration factors below (4.9, 400, 19.5) come from the
 temperature sensor's datasheet
 double voltagemv = temperature * 4.9;
 double kVoltageAtZeroCmv = 400;
 double kTemperatureCoefficientmvperC = 19.5;
 double temperatureC = ((double) voltagemv - kVoltageAtZeroCmv)
 / kTemperatureCoefficientmvperC;

 temperatureValue.setText(TEMP_FORMATTER.format(temperatureC));
 }
 }

 private Integer composeInt(byte hi, byte lo)
 {
 int val = (int) hi & 0xff;
 val *= 256;
 val += (int) lo & 0xff;
 return val;
 }

 public void run()
 {
 int ret = 0;
 // As explained on http://developer.android.com/guide/topics/usb/accessory.html,
 // "The Android accessory protocol supports packet buffers up to 16384 bytes,
 // so you can choose to always declare your buffer to be of this size for
 // simplicity."
 byte[] buffer = new byte[16384];
 int i;

 while (ret >= 0)
 {
 try
 {
 ret = mInputStream.read(buffer);
 }
 catch (IOException e)
 {
 break;
 }

 i = 0;
 while (i < ret)
 {
 int len = ret - i;

 switch (buffer[i])
 {
 case 0x0:
 if (len >= 3)
 {
 Message m = Message.obtain(mHandler,

continues

c10.indd 213c10.indd 213 5/10/2012 2:06:42 PM5/10/2012 2:06:42 PM

www.it-ebooks.info

http://developer.android.com/guide/topics/usb/accessory.html
http://www.it-ebooks.info/

214 x CHAPTER 10 ANDROID OPEN ACCESSORY

 MESSAGE_TEMPERATURE);
 m.obj = composeInt(buffer[i + 1], buffer[i + 2]);
 mHandler.sendMessage(m);
 }
 i += 3;
 break;

 default:
 Log.d(TAG, "unknown msg: " + buffer[i]);
 i = len;
 break;
 }
 }
 }
 }

 private void openAccessory(UsbAccessory accessory)
 {
 mFileDescriptor = mUsbManager.openAccessory(accessory);
 if (mFileDescriptor != null)
 {
 mAccessory = accessory;
 FileDescriptor fd = mFileDescriptor.getFileDescriptor();
 mInputStream = new FileInputStream(fd);
 new Thread(null, this, "AOATempSensor").start();
 Log.d(TAG, "accessory opened");
 showTemp();
 }
 else
 {
 Log.d(TAG, "accessory open fail");
 }
 }

 private void closeAccessory()
 {
 hideTemp();

 try
 {
 if (mFileDescriptor != null)
 {
 mFileDescriptor.close();
 }
 }
 catch (IOException e)
 {
 Log.e(TAG, "Error closing file", e);
 }
 finally
 {
 mFileDescriptor = null;

LISTING 10-5 (continued)

c10.indd 214c10.indd 214 5/10/2012 2:06:42 PM5/10/2012 2:06:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Taking an Android Accessory to the Consumer Market x 215

 mAccessory = null;
 }
 }

 private void showTemp()
 {
 temperatureValue.setText("");
 }

 private void hideTemp()
 {
 temperatureValue.setText("Please connect the accessory.");
 }
}

code snippet <BaseActivity.java>

TAKING AN ANDROID ACCESSORY TO THE CONSUMER MARKET

So while the average price tag of an ADK is $80 USD, it may be easy to justify purchasing one to
build that Android-powered cat litter box you’ve always dreamed about building, but it doesn’t
make sense to include a full ADK in a commercial project like a medical device or home automation
system. An important point to keep in mind as you consider developing commercial, external hard-
ware products for Android devices is that the ADK should be considered for prototyping only. If you
have expectations to manufacture a run of more than a hundred items, shipping an ADK with each
product is not cost effective.

The topic of taking a physical object to market is beyond the scope of this chapter but here are some
tips to get you further along after you’ve prototyped on an ADK:

 ‰ First, make sure that your product has a viable business model and intended audience. To
offset the steep start up costs of getting a production run ready for your cat litter box idea,
make sure that more people than just your mom and dad are going to buy it.

 ‰ Figure out how to much the average person is willing to pay for your product at retail pric-
ing. For example, a frequent jogger who wants to log their runs might be willing to pay $100
for an exercise accessory. However, together, a Nike+ sensor and adapter for an iPod is only
$50 so make sure your product is competitive enough by either adjusting price or features.

 ‰ Related to the previous point, strip down your product into the essential components so you
can produce it and still make a profi t. And if you plan on selling your product via a retail
outlet, subtract at least 50% from the expected retail price tag to get this breaking point
number because a lot goes into markup.

 ‰ In terms of electronics, if you consider the Arduino Mega ADK, it has almost 60 pins on it
and your product is unlikely to need all of them. The printed curcuit board should be a lot
smaller; you also don’t need the extra USB outlet that is used for programming the ADK. The
brains of the Mega ADK is a chip called the ATmega2560 by Atmel and they can be bought
individually for $20; however, buy 100 ATmega2560 chips in bulk and you only pay $10
each. If you instead go with the PICs from Microchip, you can get the price down to $4 each
and also have integrated USB host controllers in the same chip. The idea is that you must be

c10.indd 215c10.indd 215 5/10/2012 2:06:42 PM5/10/2012 2:06:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

216 x CHAPTER 10 ANDROID OPEN ACCESSORY

aggressive with cutting manufacturing costs. On the fl ip side, if you have a very unique prod-
uct that would merit a high markup (e.g. a limited production run featuring artwork from
a famous artist), then you can be more liberal with the cost cutting, but that is why the fi rst
two points are important — know your audience!

 ‰ This particular tip will be harder to accomplish without some previous experience fi rst but
you will need to fi nd a manufacturer. Depending on your product, you may be able to get by
with local creators or artisans, or send away designs to be 3D printed or laser cut. For some
products, you may want to brush up on your Cantonese or Mandarin as Phillip Torrone,
hardware developer and writer at Make Magazine, describes in his blog article entitled
“Why Every Maker Should Learn Chinese”: http://blog.makezine.com/2011/07/07/
why-every-maker-should-learn-chinese/.

 ‰ As an alternative to traditional manufacturing routes and production cycles, Kickstarter
(www.kickstarter.com) type of sites are cropping up all the time and companies such as
Quirky (www.quirky.com) are taking the crowd sourcing idea and actually putting their
industrial design and manufacturing knowledge into popularly voted projects pitched by
anyone.

So while these tips are not a comprehensive plan for monetizing your AOA app, they should get you
started in thinking about taking AOA beyond a hobby activity.

SUMMARY

This chapter introduced the Android AOA. It discussed the how AOA works, what it can accom-
plish, and why it is relevant to Android sensor development. The goal of this chapter was to intro-
duce you to the various parts required to create an Android Accessory. On the hardware end: you
learned of several ADKs, including the Arduino Mega ADK, and how they differ from each other,
alongside additional external hardware components such as a temperature sensor. On the software
end: you learned about ADK fi rmware, namely Arduino sketches, and what APIs are required in the
Android app.

Although this chapter did go into enough detail to provide an example of how to use AOA, it is far
from a complete overview of all the things you can create using the AOA. Hopefully you have been
enticed to increase your knowledge of basic electronics components including other actuators like
motors and other sensors like the temperature sensor, and then combining it with the Android pro-
gramming knowledge you have gained throughout this book.

This chapter completes the discussion of inferring information from physical sensors. It showed that
there are various kinds of sensors available on Android devices that give it an awareness of its own
state and its immediate environment. You can extend these capabilities using the AOA mechanism.

The next part of this book describes using some of Android’s other sensing capabilities to increase
its awareness further. By using the NFC scanner, camera, and microphone an Android app can fi nd
things in the world that emit or display identifying information and detect patterns that the device
can see and hear.

c10.indd 216c10.indd 216 5/10/2012 2:06:43 PM5/10/2012 2:06:43 PM

www.it-ebooks.info

http://blog.makezine.com/2011/07/07
http://www.kickstarter.com
http://www.quirky.com
http://www.it-ebooks.info/

PART III
Sensing the Augmented,
Pattern-Rich External World

 � CHAPTER 11: Near Field Communication (NFC)

 � CHAPTER 12: Using the Camera

 � CHAPTER 13: Image-Processing Techniques

 � CHAPTER 14: Using the Microphone

c11.indd 217c11.indd 217 5/10/2012 2:07:56 PM5/10/2012 2:07:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c11.indd 218c11.indd 218 5/10/2012 2:07:59 PM5/10/2012 2:07:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

11
Near Field Communication (NFC)

WHAT’S IN THIS CHAPTER?

 ‰ Describing NFC and relationship to RFID

 ‰ Describing how NFCs work

 ‰ Explaining sample code

If you’ve ever waved your credit card in front of a grocery checkout terminal, entered into your
apartment or offi ce building with a tap of a key fob, or installed an electronic toll collector
under your car to zoom past the lines at the toll booth, then you are familiar with this seem-
ingly invisible technology called radio frequency identifi cation (RFID) and its subset technol-
ogy, near fi eld communication (NFC).

With the NFC hardware on the Samsung Nexus S and Samsung Galaxy Nexus, you can
sense electronically enabled objects that come within close range of your device and read
data from these objects. In addition, when two NFC-enabled Android devices meet, they
can use NFC to submit data peer-to-peer. The inclusion of NFC on Android devices enables
developers to create low friction interactions, such as those that are described throughout
this chapter.

This chapter also gives you an overview of what these two contactless technologies are,
outlines the advantages and disadvantages of NFC with Android, walks you through the
tools and code needed to build a small NFC-enabled inventory system with the Android
SDK, and wraps up by discussing the future of NFC on Android. As a bonus, some sug-
gested use case scenarios are listed at the end of the chapter to jump start your own NFC
development.

c11.indd 219c11.indd 219 5/10/2012 2:07:59 PM5/10/2012 2:07:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

220 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

 WHAT IS RFID?

A discussion of NFC would not be possible without fi rst exploring radio frequency identifi cation,
because NFC is a subset of RFID. Radio frequency identifi cation tags come in many form factors,
such as cards and key fobs, but you’ve probably encountered the very common RFID sticker while
shopping at major drugstores such as Walgreens (U.S.) or Shoppers Drug Mart (Canada). They are
usually 2.5 cm square white stickers attached to almost all the products on the shelves. Major retail
stores use RFID for inventory tracking and theft prevention.

If you look closely enough by holding the sticker up to the light or peeling away the white plastic,
you will see a fl at, rectangular coil of metal strips much like that shown in Figure 11-1; these coils
are the antennas that “listen” for radio frequency. Within the coils are other larger metal blocks;
the circuit layouts vary, but these metal blocks are very small integrated circuits (IC) made of sili-
con. These ICs can store small amounts of manufacturer defi ned identifi cation data and the logic to
allow the tag to transmit data back to the RFID reader via the antenna.

FIGURE 11-1: The internal components of an RFID sticker

Many types of RFID tags exist, with the major categories being active or passive, or a combination of
the two. Active RFID tags have built-in batteries and have the advantage of being able to receive and
transmit from a much longer distance (up to 10 meters or more) than passive tags. Passive tags, as
you might have already guessed, do not have an on-board power supply and are limited to only a few
feet at most.

The benefi ts of passive tags mean that they can be cheaper, smaller, and can remain readable as long
as the circuit remains in good condition (that is, not cut or severely bent).

Without on-board power, passive RFID tags get activated when they are “interrogated” by an RFID
reader or scanner. The scanner (which must always have an electrical supply) emits short-range
radio frequency signals that the antenna in the tags can detect and convert into power.

How does a seemingly innocuous object such as a sticker create power out of thin air? If that seems
unbelievable, imagine back to your days in high school science class. An experiment your teacher
may have had you try was to create a DIY power generator by wrapping magnetic wire around a
magnet and connecting it to a light bulb. When you spin the wires around the magnet at high speed,

c11.indd 220c11.indd 220 5/10/2012 2:08:02 PM5/10/2012 2:08:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is RFID? x 221

it causes electrons to become excited and activate the light bulb. This electricity is created through a
process called electromagnetic induction.

If you’ve never done this experiment before or just want a refresher, visit www.amasci.com/amateur/
coilgen.html to watch a video of a DIY generator in action and read the instructions on how to make
your own. Then have a look at the antenna coils in the RFID tag in Figure 11-2. Not that far off, right?

Invisible to the naked eye, the radio waves generated by the RFID scanner are enough to cause the
coils of the RFID tag to oscillate, which can be converted to energy.

FIGURE 11-2: An RFID with clear plastic casing lets you see the wire coils easily.

If you own a Samsung Nexus S, take off the back battery cover. Glued onto the plastic is a gray rect-
angle; that is the hardware antenna of your phone’s NFC reader, as shown in Figure 11-3. The back
cover alone won’t be able to scan anything, but when it’s receiving power from the phone via the
two metal contacts it has the energy to start scanning.

FIGURE 11-3: The NFC hardware antenna of the Nexus S can be found on the inside of the back cover.

c11.indd 221c11.indd 221 5/10/2012 2:08:14 PM5/10/2012 2:08:14 PM

www.it-ebooks.info

http://www.amasci.com/amateur
http://www.it-ebooks.info/

222 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

In contrast, the Samsung Galaxy Nexus has the antenna built into the battery; peeling off the cover
of the battery will reveal the NFC antenna. So if you ever replace your Galaxy Nexus’s battery,
ensure that the replacement has NFC capabilities!

FIGURE 11-4: The NFC antenna on the Galaxy Nexus comes as part of the battery (right).

The NFC controller (part number PN65N), developed by electronics component manufacturing
company NXP Semiconductors, is soldered onto a printed circuit board with the rest of the internal
phone components.

Most RFID tags only store a 40-bit unique identifi er such as 0x12345678AB. When a scanner acti-
vates an RFID tag, the tag transmits this unique ID and the middleware of the scanner interprets it.
The middleware may use this information to then pass it on to software that looks it up in an inven-
tory system or, in the case of mall security systems, to trigger an alarm to indicate that you’re car-
rying around a product whose tag was not deactivated. The read time of an RFID scanner to its tag
can happen in less than 100 milliseconds!

WHAT IS NFC?

NFC tags share the same basic technology of those previously mentioned retail RFID stickers in that
they are passive and are meant for short-range scanning, specifi cally at a frequency of 13.56MHz.
The biggest comparisons to make between NFC and the wider spectrum of RFID tags is that near
fi eld communications, as its name would imply, is meant for very short range scanning of 1–4 cm.
NFC tags are advertised to be scannable at up to a distance of 10 cm, but that would only occur
under perfect conditions.

Another large difference between RFID and NFC is the size of the data transaction. As mentioned,
most RFID tags contain a 40-bit unique identifi er and are read-only. In comparison, a small NFC
tag can store 48 bytes of data, average around 144 bytes, and go up to 8 kilobytes (8,152 bytes) for
larger tags. Its data can also be rewritten by any reader if the tag is not write-protected.

c11.indd 222c11.indd 222 5/10/2012 2:08:22 PM5/10/2012 2:08:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is NFC? x 223

 The NDEF Data Format

Unlike RFID technology, which has many proprietary implementations for data exchange,
the NFC standards are regulated by various bodies including the International Organization
for Standardization (ISO), International Electrotechnical Commission (IEC), European
Telecommunications Standards Institute (ETSI), and ECMA (the European association for
standardizing information and communication systems). In addition, the NFC Forum
(www.nfc-forum.org) is a consortium of manufacturers, applications developers, fi nancial ser-
vices institutions, and other stakeholders created to promote NFC technologies and develop NFC
standards.

As defi ned by the NFC Forum, the standard data format for NFC-compliant devices and tags is a
lightweight binary message format named NFC Data Exchange Format, or NDEF for short. This
data format is comprised of an encompassing NDEF message container that can contain one or
more NDEF records.

An NDEF record carries application data (commonly referred to as the payload) and additional
meta data to help NFC applications quickly parse the payload during a data transaction. Alongside
the payload, each NDEF record must defi ne meta data values for the payload, such as type and
length. An additional identifi er URI is optional.

The following list summarizes these meta data fi elds with a brief explanation of how each relates to
the Android NFC APIs. These parameters are discussed in the “NdefMessage and NdefRecord” sec-
tion of the Building an Inventory Tracking System code example.

 ‰ Payload length: An unsigned integer indicating the size of the payload measured in octets.
(An octet is 8 bits of computer storage.)

The Android operating system takes care of generating the length value so you don’t need to
worry about defi ning it yourself.

 ‰ Payload type: An arbitrary type as declared by the developer for its specifi c application.

Example types include: URIs such as web addresses; MIME media formats such as text/
plain-text for plaintext or text/x-vCard for electronic business cards; or NFC-specifi c
record types such as the NFC Smart Poster record type defi nition (the ability to encode
URLs, SMSs, and phone numbers on an NFC tag) or the NFC Signature record type defi ni-
tion (for digitally signing NFC tags).

The Android APIs expect payload type to be converted to a byte array. In addition,
the Android APIs also request higher-level categorization of the payload type
through the use of Type Name Format (TNF) values defi ned by the Android
SDK. These TNF constants indicate to the interpreter what structure to expect
from the payload type so it knows how to handle it. An example TNF might be
NdefRecord.TNF_ABSOLUTE_URI for a URI or NdefRecord.TNF_WELL_KNOWN for
plaintext.

 ‰ Payload identifi er: An optional and arbitrary URI-based value set by the developer.

Payload identifi ers are rarely used in practice, however the ability for NDEF messages to
contain multiple NDEF records means that you can cross-reference records should such a
scenario arise.

The Android API will accept anything encoded into a byte array for the identifi er.

c11.indd 223c11.indd 223 5/10/2012 2:08:33 PM5/10/2012 2:08:33 PM

www.it-ebooks.info

http://www.nfc-forum.org
http://www.it-ebooks.info/

224 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

It should be noted that the NDEF specifi cations do not provide support for error handling, so it is
up to the receiving application parser to determine the validity of the payload. For further infor-
mation about the NDEF format, a 25-page PDF document entitled NFC Data Exchange Format
(NDEF) Technical Specifi cation is available on the NFC Forum website by fi lling out the form at
www.nfc-forum.org/specs/spec_license.

Keep in mind that NFC is a 15-year-old evolving technology and the NDEF data specifi cations were
defi ned after the creation of the NFC hardware; there exist NFC tags, especially legacy tags, which
do not support NDEF and implement their own proprietary formats. You can write to a tag using a
format other than NDEF, but that requires you to write your own custom protocol stack to handle
reading and writing the raw data on tags. Therefore, NDEF and NDEF-compatible tags are recom-
mended for quicker development and the widest Android support — especially when you want to
take advantage of Android’s powerful intent fi lter feature to launch the most appropriate app for the
content stored on the tag.

 How and Where to Buy NFC Tags

The type of NFC tag you should acquire depends on its intended usage. Three important questions
are: How much data do you want to store on it? Do you want to be able to write-protect it? And
what environment will the NFC tag be deployed to?

NDEF-compatible NFC Tags

See Table 11-1 for a chart of compatible, commercially available NFC tags. Each type’s rewrite capa-
bility, available memory, communication speed, and price range are also indicated in the chart.

To be the most compatible with Android devices and the Android SDK, buy tags marked as NFC
Forum Type 1, 2, 3, or 4 because they are the most compatible with the NDEF spec discussed in the
previous section.

Storage Size versus Price versus Security Trade-off

Design your application with the lowest NFC tag storage footprint as possible considering the cost
of the tags and their security features.

Consider a scenario in which you want to share a picture. Attempting to encode even a very
small JPEG thumbnail photo would cause your storage requirements to skyrocket to 3000 bytes,
which would increase the costs of the NFC sticker. Instead, it would be better to embed a
link to an online resource that the Android application would then download after scanning
the NFC tag.

Type 1 and Type 2 tags are very similar, however the least expensive and most widely available NFC
chips are the NFC Forum Type 2 tags sold under the MIFARE UltraLights brand owned by NXP
Semiconductors. Many online retailers will carry only the 48- and 144-byte variants, though. The
smaller storage size makes the MIFARE UltraLights appropriate for links or plaintext. A shortened
URL might consume 23 bytes, a plaintext sentence containing “The quick brown fox jumps over the
lazy dog” uses 51 bytes, and a custom MIME type to deep-link to content within an app might use
around 100 bytes.

c11.indd 224c11.indd 224 5/10/2012 2:08:33 PM5/10/2012 2:08:33 PM

www.it-ebooks.info

http://www.nfc-forum.org/specs/spec_license
http://www.it-ebooks.info/

What Is NFC? x 225

NFC

FORUM

TYPE

POPULAR

PRODUCTS OF

THIS TYPE

OPERATIONS

SPECIFICATIONS

REWRITE

CAPABILITIES

AVAILABLE

MEMORY

COMMUNICATION

SPEED

PRICE RANGE

(PRICE PER

UNIT)

1 Broadcom

Topaz

ISO 14443A User rewrit-

able; can be

marked as

read-only by

user

96 bytes,

expand-

able to

2KB

106kbit/s Low

(~$1-2 USD)

2 MIFARE

UltraLight

ISO 14443A User rewrit-

able; can be

marked as

read-only by

user

48 bytes,

144 bytes

is com-

mon,

expand-

able to

2KB

106kbit/s Low

(~$1-2 USD)

3 Sony FeliCa JIS X 6319-4 Manufacture

pre-confi g-

ured to be

read-only or

re-writable.

variable,

theoreti-

cal 1MB

212kbit/s or

424kbit/s

High

(~$8-10 USD

or higher)

4 NXP DESFire,

NXP SmartFX

ISO 14443A,

ISO 14443B

Manufacture

pre-confi g-

ured to be

read-only or

rewritable.

4KB for

DESFire,

up to

32KB for

SmartFX

Up to 424kbit/s Medium-

High (~$3-4

USD)

TABLE 11-1: Compatible, Commercially Available NFC Tags

c11.indd 225c11.indd 225 5/10/2012 2:08:33 PM5/10/2012 2:08:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

226 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

An electronic business card in vCard format with your contact information might use up to 300
bytes, so a typical Type 2 tag would not be suffi cient. Two options to explore when you want more
storage are to purchase Type 3 or 4 NFC cards or MIFARE Classic tags.

Type 3 Sony FeliCa (which is short for Felicity Card) tags have higher amounts of storage but they
are harder to order off the shelf. FeliCa technology has been widely accepted as a secure form of
NFC and is used in high-profi le electronic payment systems such as the Octopus transit card system
in Hong Kong. Extra security comes at a higher per-unit price tag, however.

Conversely, the Type 4 NXP DESFire can be purchased in 4k and 8k variants, but their encryption
scheme was recently proven to be insecure so the additional costs are not worthwhile.

When you need more space but don’t want to pay more, you can fi nd some MIFARE tags sold under
the “Classic” label (sometimes called MIFARE Standard) that are currently supported by the Nexus
line of phones. They can hold up to 4KB but they may not be supported in the future by other
Android devices or the SDK, because the MIFARE Classic tags use a proprietary protocol to format
NDEF messages and this requires device manufacturers to pay licensing fees.

If you are controlling the environment and devices that your NFC application is deployed in, there
shouldn’t be any foreseeable issue with using MIFARE Classic tags for the time being. Table 11-2
contains a chart on the MIFARE Classic chips.

Write Protection

As indicated in the rewrite capabilities columns of Tables 11-1 and 11-2, some tags are more appro-
priate for prototyping or controlled environments because their data can be rewritten using any
NFC reader/writer, including those found on mobile phones. If you are planning to release these tags
into the wild, purchase Type 1 or Type 2 tags so you can set read-only privileges yourself. (Keep in
mind the size limitations of these tags, though.)

MIFARE Classics can be write-protected only by the manufacturer. If you are past the prototyping
phase, you could work directly with a manufacturer such as NXP or Sony to create tags that are
shipped with read-only capabilities.

Form Factor

Another consideration to keep in mind when purchasing NFC stickers is the surface that you will be
sticking them onto. Paper, fabric, wood, plastic, and other non-conductive materials shouldn’t cause
any problems, but take care if you are applying to metal surfaces. Because metal is conductive, you
should look for “metal isolated” tags that are thicker than regular stickers.

For extra environmental protection of your NFC stickers, buy “outdoor” or “laundry” type tags
that are water-resistant or waterproof. If you don’t want to use stickers, plastic-encased NFC tags in
the form factor of contactless credit cards and key fobs are also an alternative.

In very rare deployment scenarios, note that there exist fabrics and materials that can be coated with
specifi c metals to shield out radio waves, including those from NFC tags and readers; this may act in
your favor or against it. An example of this fabric in use is in special RFID-shielding passport wal-
lets. Lastly, be conscious of deploying NFC in scientifi c or medical labs that may actively be trying
to block out radio waves.

c11.indd 226c11.indd 226 5/10/2012 2:08:34 PM5/10/2012 2:08:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is NFC? x 227

MIFARE TYPE OPERATIONS

SPECIFICATIONS

REWRITE

CAPABILITIES

AVAILABLE

MEMORY

COMMUNICATION

SPEED

PRICE RANGE

(PRICE PER UNIT)

Classic 1K ISO 14443A

compatible,

but NDEF is

formatted using

a proprietary

protocol

User rewrit-

able; only

manufacturer

can mark as

read-only

752 bytes 106kbit/s Low

(~$1 USD)

Classic 4K ISO 14443A

compatible,

but NDEF is

formatted using

a proprietary

protocol

User rewrit-

able; only

manufacturer

can mark as

read-only

3440

bytes

106kbit/s Low-Medium

(~$2 USD)

TABLE 11-2: Information about Classic MIFARE Chips

Retailers

For the hobbyist or newcomer, shopping for NFC tags might be a bit overwhelming, so here are
some suggested online retailers:

 ‰ For U.S.-based developers, Tagstand (www.tagstand.com) offers NFC starter kits with 15
NFC stickers of four varying sizes. You can order custom logo NFC stickers with a minimum
batch size of 50 stickers.

 ‰ For Europeans, Finnish company UPM also offers plain and custom-printed NFC stickers
directly or through its TagAge website (www.tagage.net).

 ‰ You can order high-volume batches of NFC stickers or cards directly from NXP
Semiconductors; especially worth exploring when you want to get MIFARE Classic tags
write-protected.

 ‰ If you are an open source hardware tinkerer, Adafruit Industries sells NFC tags in card and
key fob format. It also sells the PN532 NFC/RFID controller breakout board, which can
be used for experimenting with NFC outside of your Android device, for example, with an
Arduino microcontroller. You can fi nd Adafruit’s NFC inventory here: www.adafruit.com/
category/55.

Many other online retailers sell NFC tags and you can fi nd them by doing a web search. An impor-
tant point to remember when buying NFC tags is that some retailers will simply list them as RFID
tags, so keep an eye out for the specifi c NFC frequency of 13.56 MHz.

Gen eral Advantages and Disadvantages of NFC

Why choose NFC technology for your application? And when should you choose an
alternative such as QR barcodes or Bluetooth? This section goes into the pros and cons of

c11.indd 227c11.indd 227 5/10/2012 2:08:34 PM5/10/2012 2:08:34 PM

www.it-ebooks.info

http://www.tagstand.com
http://www.tagage.net
http://www.adafruit.com
http://www.it-ebooks.info/

228 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

NFC. References to any Android applications can be found and downloaded by searching in
Google Play.

Low Power and Proximity Based

The biggest selling feature of NFC interactions is something Google likes to call “low friction”
because the experience of using NFC should be one of instant gratifi cation — just tap and go.

Turning on NFC scanning for your device is described in the “Enabling NFC in the Settings” sec-
tion later and, once enabled, your device can be left to scan for tags whenever the screen is on with
very little power draw on the battery.

The advantage of NFC tags over barcodes or QR codes (aka 3-D barcodes) is that you don’t need
line of sight. A 2-D barcode needs to be lined up with the laser or camera that’s reading it and
a QR code needs to be decently lit for a camera application to read it. As long as the Android
device’s screen is turned on and has been set to detect NFC tags in the Android settings, an
NFC tag just needs to be held close to the reader (regardless of orientation) and can be detected
through thin amounts of material such as the fabric of your wallet or the plastic on the back of a
Samsung Nexus S.

Small, Short Data Bursts

Although NFC-enabled devices such as the Nexus S do enable peer-to-peer transactions, NFC is not
to be used for verbose communications between two devices. For scenarios in which you want to
transfer more than a kilobyte of data, consider using Bluetooth or Wi-Fi to do the heavy lifting and
leave NFC to just get the interaction started.

The NFC standard currently supports data rates of 106kbit/s, 212kbit/s , and 424kbit/s, which
is fi ne for data transactions below 4KB. Bluetooth is a mid-range wireless technology that works
within a 10-meter range and transfers data at a rate of 2.1Mbps. This higher data transfer rate
makes it ideal for ongoing, peer-to-peer communications such as syncing screens of the same app on
two different Android phones in scenarios where there is no reliable Wi-Fi.

However, Bluetooth requires a pairing process that can be quite cumbersome, so it makes sense
to use NFC to help quickly authenticate the pairing process and then hand it off to Bluetooth to
continue the communications. One such example of this is the proposed two-player game mode
of Fruit Ninja in which two NFC-enabled Android devices can tap and quickly launch into a
head-to-head battle mode. (Sadly, this battle mode was only a demo proof of concept at the
Google I/O 2011 developer conference; the Fruit Ninja found in Google Play does not
use NFC.)

When Internet or 3G networks are available, NFC can do the device handshaking and the app can
then continue on with the transaction in the cloud. For example, the Hashable mobile app lets you
tap phones so you can immediately check in with others on http://hashable.com.

c11.indd 228c11.indd 228 5/10/2012 2:08:34 PM5/10/2012 2:08:34 PM

www.it-ebooks.info

http://hashable.com
http://www.it-ebooks.info/

What Is NFC? x 229

Singular Scanning

If you’re considering using NFC for simultaneous inventory tracking of multiple items, or “push
cart checkout” in which you are attempting to scan multiple items at once, you should be aware
that only one NFC tag can be reliably scanned at a time; and considering the distance limitations of
fewer than 10 cm or less, it’s unlikely the scannable space would allow for more than one item to be
within range unless it was stacked like a deck of cards.

Security

The short range of the NFC chip is its biggest security feature. Consider that some RFID tags are
used for animal tracking over several miles, and therefore the tags can be read from far distances. In
contrast, NFC chips must be held within centimeters of the reader, making it harder for “sniffers”
to fi nd out if you are carrying an NFC-enabled device. Manufacturers of NFC chips have also gone
the extra step of shielding the tag to further reduce their ability to be read from specialized, long-
distance RFID readers.

The NFC on your phone is also turned off when the screen is off so “sniffers” cannot just read the
data on your phone.

The data on an NFC tag can also be encrypted before writing to it using your own encryption
schema, such as using MD5 or AES, and certain tags can be made read-only by the user or the
manufacturer.

Card Emulation

Card emulation is the capability of an NFC chip on a mobile device to act like a contactless smart-
card, such as a PayPass™ or payWave™ credit card, when presented at retail store terminals. The
PN65N NFC controller chip installed on the Nexus line of phones has a component called the
Secure Element (or SmartMX), which is an embedded version of a smartcard.

Google Wallet uses the Secure Element, however, it is important to note that Google has reserved
not to open up any public APIs to emulate cards on Android phones. Google advocates developers
to design their application with peer-to-peer abilities instead of attempting to emulate cards using
the device’s Secure Element hardware.

Android -specifi c Advantage: Intents

The Android intent fi lter system is a huge advantage to building low-friction interactions with NFC.
You don’t need to be redirected to a URL like a QR code might. The detection of an NFC tag can
deep-link into an app already installed on your phone or redirect you to Google Play to download
the app.

A good example of this is an add-on app to Evernote called Touchanote that launches into specifi c
Evernote entries. For example, you could stick an NFC sticker onto a textbook and use Evernote to

c11.indd 229c11.indd 229 5/10/2012 2:08:35 PM5/10/2012 2:08:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

230 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

type and record your notes. Now, every time you pull that book off the shelf, give it a scan to pick
up where you left.

Required Hardware

The biggest disadvantage that NFC has in the Android ecosystem is the availability of phones and
tablets that have built-in NFC readers at the moment. Android devices that can currently read and
write NFC tags include: the Google Nexus line of phones (Samsung Nexus S and Samsung Galaxy
Nexus), the Samsung Galaxy SII, and the HTC Amaze 4G, among others.

There currently exists no off-the-shelf ability to add NFC support to phones that were not shipped
with NFC. As a developer, it is recommended to obtain either the Nexus S or Galaxy Nexus to fully
test NFC interactions because there is no desktop emulation.

You may have heard of the ability to buy passive NFC stickers or NFC-enabled SIM cards for your
phone but these add-ons only enable compatibility with NFC payment systems like Google Wallet,
and do not enable your phone to read other NFC tags.

For extreme hardware tinkerers, you may be able to take advantage of the new Android Open
Accessory APIs and an Android ADK to connect an Android phone to a custom, external USB NFC
tag reader (such as a PN532), but this option is not for the faint of heart. (See Chapter 10 for more
information on Android Open Accessory.)

It’s unlikely that you would be able to purchase an NFC-enabled device running a version of
Android below Gingerbread, but it’s worth noting that the NFC APIs are available only on devices
running Android 2.3 (API level 9) and higher.

BUILDIN G AN INVENTORY TRACKING SYSTEM

In this section you apply what you’ve read about NFC theory and start working on the example
Android project.

The Sce nario

Consider this scenario: You are an IT support professional. You handle the inventory of various
computer systems, but you often swap out the RAM and other internal components and want to
keep track of them. You want a custom app that will let you tag the cases of desktop computers so
when you scan them, you can quickly see what’s inside without ever pulling out a screwdriver.

The NFC Inventory Demonstration App

Figure 11-5 shows the screens from the NFC Inventory demo app supplied with this book’s example
source code and app.

c11.indd 230c11.indd 230 5/10/2012 2:08:35 PM5/10/2012 2:08:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Inventory Tracking System x 231

FIGURE 11-5: Main activity of the demo NFC app (left); updating an NFC tag with newer specs (right)

On the main activity screen, type in a computer name, the amount of RAM, and the processor
speed of the computer you want to track. Clicking the Update button sets the phone into a mode
that allows you to write NDEF data to a compatible NFC tag.

Scanning a tag with inventory NDEF data updates the three text fi elds with the currently recorded
specs. If you ever upgrade the computer or swap out parts, scan the tag attached to the computer,
edit the text fi elds, and click Update to overwrite the tag with the newest specs.

Enablin g NFC in the Settings

In addition to enabling the usual Development Mode settings, you must turn on NFC. On a device
running Gingerbread: go to Settings Í Wireless & Network settings. Scroll down and look for the
NFC list item toward the bottom. As Figure 11-6 shows, make sure the NFC checkbox is checked in
order to read and exchange tags.

On a device running Ice Cream Sandwich: swipe down from the top of any screen to pull down
the notifi cation shade. Next to the date, click on the settings icon (the three sliders). Under the
Wireless & Networks heading, click on More. As Figure 11-6 shows, make sure the NFC checkbox
is checked off.

c11.indd 231c11.indd 231 5/10/2012 2:08:35 PM5/10/2012 2:08:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

232 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

FIGURE 11-6: Turn on NFC in your settings. For both Gingerbread (left) and Ice Cream Sandwich (right), ensure

that the NFC option is checked off

Once NFC has been enabled in the settings, and as long as the device’s screen is on, NFC tags that
come into range will be detected. For security reasons, the Android OS does not respond to NFC
tags when the screen is turned off. Oddly, the Android OS will still scan tags even when the screen is
on but locked.

The power draw of turning on the NFC option is negligible, so there’s no need to turn off NFC
when you’re done developing.

Debuggi ng Your Tags with Apps

As a test, you may want to download and try these two apps created by NXP Semiconductor to
practice reading and writing to your tags:

 ‰ NFC TagWriter by NXP (https://play.google.com/store/apps/details?id=com.nxp
.nfc.tagwriter) gives you an all-in-one interface to play around with reading NFC stickers
and writing to tags that are not locked. TagWriter gives you four built-in NDEP record data
types to write such as vCard, URL, plaintext, and SMS.

 ‰ NFC TagInfo by NXP (https://play.google.com/store/apps/details?id=com.nxp
.taginfolite) gives you more information about the tag than the TagWriter app. In addi-
tion to showing you any available raw data saved to the sticker, TagInfo also summarizes
the type of NFC tag (for example, MIFARE Classic), who the manufacturer is (for example,
NXP), how much data is used/available, and other interesting tidbits like ISO/IEC compat-
ibility and protocol information. You can also use this app to analyze your credit cards and

c11.indd 232c11.indd 232 5/10/2012 2:08:35 PM5/10/2012 2:08:35 PM

www.it-ebooks.info

https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter
https://play.google.com/store/apps/details?id=com.nxp.taginfolite
https://play.google.com/store/apps/details?id=com.nxp.taginfolite
http://www.it-ebooks.info/

Android APIs x 233

other contactless smart tags you already own for NFC compatibility, although the data on
them will likely be encrypted.

ANDROID APIS

Now that you’re set up, this section dives into some code! The code in this section is based on
http://nfc.android.com/StickyNotes.zip, which is under the Apache 2.0 license.

In Your AndroidManifest.xml File

Every Android project has a Manifest fi le and this one is no different. Here are some basic addi-
tions you will need to make to your project’s AndroidManifest.xml to make your app NFC
compatible.

Permissions and Minimum API Level

To target devices that support the NFC APIs, you must declare android.hardware.NFC as a fea-
ture. Depending on your application, you may want to also declare it as a required feature. You also
need to indicate that your application requires permission to use the NFC reader hardware by add-
ing code like this:

<uses-feature
 android:name="android.hardware.nfc"
 android:required="true" />

<uses-permission android:name="android.permission.NFC" />

If NFC is a required feature of your application, be sure to also declare a minimum SDK version of
2.3.3 (level 10) or 4.0 (level 14). Although API level 9 supports NFC, the tag dispatch options are
limited and there is no tag writing support, so targeting level 9 is not recommended. API level 10
includes reader/writer support and foreground NDEF pushing.

The latest Ice Cream Sandwich Android SDK provides improved NDEF pushing to other Android
devices via Android Beam and improved NDEF creation. You can fi nd APIs specifi c to Android 4.0’s
Beam feature in the “Peer-to-Peer NFC Sharing” section later in this chapter.

This inventory example targets SDK version 2.3.3, so you will need the following code:

<uses-sdk android:minSdkVersion="10" />

Intent Filters

For your Activity, add an IntentFilter to handle the NFC tag scanning event. Three Intents
are available and the Android tag dispatching system prioritizes them. From highest to lowest
priority, they are:

 ‰ android.nfc.action.NDEF_DISCOVERED

 ‰ android.nfc.action.ACTION_TECH_DISCOVERED.

 ‰ android.nfc.action.ACTION_TAG_DISCOVERED

c11.indd 233c11.indd 233 5/10/2012 2:08:35 PM5/10/2012 2:08:35 PM

www.it-ebooks.info

http://nfc.android.com/StickyNotes.zip
http://www.it-ebooks.info/

234 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

The highest-priority IntentFilter, NDEF_DISCOVERED, should be used for the majority of scenarios
because it offers the most precise fi lter for matching the content of a tag to the application that
should handle it.

The lowest-priority IntentFilter, ACTION_TAG_DISCOVERED, was introduced with NFC sup-
port in API level 9 and is more of a legacy Intent. If either NDEF_DISCOVERED or ACTION_TECH_
DISCOVERED is set, the probability of an ACTION_TAG_DISCOVERED IntentFilter triggering your
application when it is not in the foreground is unlikely, so its use in the manifest fi le is not recom-
mended by the Google Android documentation.

The remaining IntentFilter, ACTION_TECH_DISCOVERED, is generally to be used as a fallback
when the NFC tag is not formatted using NDEF. If you are controlling the content written to the
tags and have chosen NDEF, you may never need to use ACTION_TECH_DISCOVERED in your mani-
fest for your application. If you are working with legacy tags and/or non-NDEF data, please refer
to the Advanced NFC documentation at http://developer.android.com/guide/topics/nfc/
advanced-nfc.html.

Using the preferred NDEF_DISCOVERED IntentFilter, your declaration would look like this if your
NFC tag contained plaintext:

<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="text/plain" />
</intent-filter>

However, listening for such a generic MIME type will not allow other NFC-enabled applications
to be triggered by scanning this tag. Alternatively, if you leave out the IntentFilter, the scanning
of the NFC tag will be handled by the preinstalled Tags application, which will attempt to read the
content of your tag. And if multiple NFC-enabled applications are installed, there’s a large possibil-
ity that the select-an-action Android OS Activity Chooser will pop up.

To create a friction-less scanning experience for the user, use the most precise IntentFilter as
possible for your app. The best way to do that is to create your own custom MIME type for your
IntentFilter instead of using something as generic as plaintext.

Custom MIME Type Intent Filters

For example, the following code is registering IntentFilters for the custom MIME type
“application/root.gast.playground.nfc”, which is specifi c to this chapter’s demo application:

<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="application/root.gast.playground.nfc" />
</intent-filter>

Note that the MIME type application/root.gast.playground.nfc is arbitrarily defi ned by the
developer. It can be anything, however you must be consistent between the IntentFilters defi ned
in your Android Manifest and what you write to your tags.

c11.indd 234c11.indd 234 5/10/2012 2:08:36 PM5/10/2012 2:08:36 PM

www.it-ebooks.info

http://developer.android.com/guide/topics/nfc
http://www.it-ebooks.info/

Android APIs x 235

The following is an example of creating an NDEF record with the custom application/root.
gast.playground.nfc MIME type. This example was simplifi ed for readability; the “NdefMessage
and NdefRecord” section goes into this code in more detail.

String mimeType = "application/root.gast.playground.nfc";
byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));
//...
NdefRecord r = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeBytes, id, dataBytes);

URI-based Intent Filters

If you want to avoid locking NFC tag creation to your particular app, it’s very useful to instead
use the URI MIME type to register IntentFilters. The Foursquare app for Android uses this
to its advantage by allowing individual venue owners to create their own NFC-enabled location
check-in tags using any NFC writer (including the NFC TagWriter app mentioned previously in the
“Debugging Your Tags with Apps” section).

As outlined in the Foursquare developer documentation (https://developer.foursquare.com/
client/), a venue owner simply needs to make an NFC tag that links to its venue page, for exam-
ple, http://m.foursquare.com/venue/VENUE_ID where VENUE_ID is an ID string such as 128530,
which is the ID for the Foursquare head offi ce in New York.

If you have the Foursquare app already installed and scan one of these tags, that specifi c
venue page will automatically launch within the Foursquare app because of the power of
IntentFilters. Using a URI MIME type also allows the interaction to gracefully fall back to
using the preinstalled Tags app to read the URL and give the user an option to launch a web
browser to view the mobile website.

When declaring a URI-based IntentFilter for everything within a domain name, set the scheme,
host, and (when needed) port of your URI. For example:

<data
 android:scheme="http"
 android:host="localhost"
 android:port="8080" />

If there’s even more specifi c content to fi lter by such as a web folder, you can add a path, pathPat-
tern, or pathPrefix attribute to the data element. For more information about the data element,
please visit the Android developer documentation: http://developer.android.com/guide/top-
ics/manifest/data-element.html.

This is how the IntentFilter would appear in Foursquare’s manifest fi le because the Foursquare
app will want to react to all tags containing the URL http://m.foursquare.com/venue/:

<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data
 android:host="m.foursquare.com"
 android:pathPrefix="/venue/"
 android:scheme="http" />
</intent-filter>

c11.indd 235c11.indd 235 5/10/2012 2:08:36 PM5/10/2012 2:08:36 PM

www.it-ebooks.info

https://developer.foursquare.com/client
https://developer.foursquare.com/client
http://m.foursquare.com/venue/VENUE_ID
http://developer.android.com/guide/top-ics/manifest/data-element.html
http://developer.android.com/guide/top-ics/manifest/data-element.html
http://developer.android.com/guide/top-ics/manifest/data-element.html
http://m.foursquare.com/venue/:
http://www.it-ebooks.info/

236 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

Because the NFC inventory demo app of this chapter is used mainly for reading and writing to NFC
tags, a custom MIME type is used for this chapter’s code examples. Listing 11-1 contains the full
AndroidManifest.xml fi le for your reference.

LISTING 11-1: Manifest fi le needed to run NFC example

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="root.gast.playground.nfc"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="10" />

 <uses-feature
 android:name="android.hardware.nfc"
 android:required="true" />

 <uses-permission android:name="android.permission.NFC" />

 <application
 android:icon="@drawable/icon"
 android:launchMode="singleTask"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".NFCInventoryActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 <!-- Handle NFC tags detected from outside our application -->
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="application/root.gast.playground.nfc" />
 </intent-filter>

 </activity>
 </application>
</manifest>

code snippet AndroidManifest.xml

Now that your Manifest fi le is set up, the next section examines the demo app’s main Activity
class.

In Your Main Activity Class

You can fi nd the full main Activity code of this demonstration app in the root.gast.playground
.nfc.NFCInventoryActivity.java fi le of this book’s source code, but this section goes over some
key NFC-related APIs.

c11.indd 236c11.indd 236 5/10/2012 2:08:36 PM5/10/2012 2:08:36 PM

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Android APIs x 237

NfcManager

NfcManager is a high-level manager used to obtain a reference to an instance of an NFC Adapter.
This class is redundant, so continue to the next section for the real meat.

NfcAdapter

The NFC Adapter is your bridge to the NFC hardware. It lets you check if the NFC option is turned
on and it controls the pushing of NDEF data to and from NFC tags.

You should not instantiate an NfcAdapter instance yourself; instead call the static helper
method getDefaultAdapter(), which is a shortcut for getSystemService(), to leverage
the context’s cached NfcAdapter. See the following code for how it is used for the demo NFC
Inventory app:

public class NFCInventoryActivity extends Activity
{
 //...

 NfcAdapter mNfcAdapter;

 //...

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 //...

 // get an instance of the context's cached NfcAdapter
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);

 // check if NFC is enabled
 Boolean nfcEnabled = mNfcAdapter.isEnabled();
 if (nfcEnabled)
 {
 // show off your fancy NFC feature!
 } else
 {
 // let the user know how to turn NFC on in the Settings
 }

 //...
 }
 //...
}

In addition to isEnabled(), two main pairs of methods to be aware of in the NfcAdapter class are
enableForegroundDispatch() and disableForegroundDispatch(), and enableForegroundNde-
fPush() and disableForegroundNdefPush(), which the next sections describe.

Foreground Dispatch ing

enableForegroundDispatch() and disableForegroundDispatch() turn on and off the fore-
ground activity’s priority to receive intent dispatches when NFC tags are scanned.

c11.indd 237c11.indd 237 5/10/2012 2:08:36 PM5/10/2012 2:08:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

238 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

To illustrate this, say you have two NFC tags; one is encoded with a URI (http://m.foursquare
.com) and the other is a custom MIME type (application/root.gast.playground.nfc). In addi-
tion, the main Activity class has created IntentFilters for the root.gast.playground.nfc
custom MIME type only. When foreground dispatching is enabled, and the app is running and in
focus, attempts to scan the tag with the URI will have no visible results — even the Activity Chooser
will not be triggered.

Related, if an app such as TagInfo by NXP is listening for all types of tags to be scanned, when the
TagInfo app is running and in focus on your device, it will redirect all NFC scanned tag events to
itself because it has foreground dispatching enabled. Even if other apps are listening for root.gast
.playground.nfc tag dispatch events, they will not be notifi ed of them by the Android OS.

Where to Declare Intent Filters: Manifest File Versus Activity Class

You may be wondering: What’s the difference between an NFC-related IntentFilter declared in
the AndroidManifest.xml and IntentFilters declared in an Activity class? Why declare two
separate instances of them, especially if they are listening for the same thing?

The following are some scenarios for how NFC-related intents react in the Android operating system. All
scenarios assume that an NDEF_DISCOVERED IntentFilter is set in the Android manifest of our demo
app, and is registered to dispatch whenever a tag matches the MIME type root.gast.playground.nfc
and no other types. All scenarios also have a main Activity class in which an onResume() method is
defi ned and checks for an ACTION_NDEF_DISCOVERED Intent in order to populate a set of text fi elds.

Scenario #1: The Android device is turned on and is waiting on the homescreen. Foreground dis-
patching is not enabled:

FIGURE 11-7: NFC Scenario #1

User scans NFC
tag containing

MIME-type
"root.gast.play

ground.nfc"

Android sees
that MIME type
registered in
the manifest

Activity
Manager

Launches NFC
Inventory

Demo

onResume()
fired and app
updates text

fields

Scenario #2: Demo app is already open and foreground dispatching is not enabled:

FIGURE 11-8: NFC Scenario #2

User scans
NFC tag

containing
MIME-type

"root.gast.play
ground.nfc"

Android sees
matching

MIME type
registered in

the NFC
Inventory

Demo app's
manifest

Activity
Manager

Launches NFC
Inventory

Demo

onResume()
fired and app
updates text

fields

User scans
NFC tag

containing URI
"http://

m.foursquare.
com/veue/
128530"

Android sees
that URI types

are not
registered in

NFC Inventory
Demo app's

manifest

Android sees
that tag

content in
Foursquare's
app matches

the URI
scanned.

Activity
Manager
launches

Foursquare's
app

c11.indd 238c11.indd 238 5/10/2012 2:08:37 PM5/10/2012 2:08:37 PM

www.it-ebooks.info

http://m.foursquare.com
http://m.foursquare.com
http://m.foursquare.com/veue/128530
http://m.foursquare.com/veue/128530
http://m.foursquare.com/veue/128530
http://m.foursquare.com/veue/128530
http://www.it-ebooks.info/

Android APIs x 239

Scenario #3: Demo app is already open and foreground dispatching is enabled:

FIGURE 11-9: NFC Scenario #3

User scans NFC tag
containing MIME-

type
"root.gast.playground

.ntc"

Android see the NFC
Inventory Demo app
engabled foreground

dispatching

onNewIntent()
handles Intent

instead of
ActivityManager and
the app updates tedt

fields

User scans NFC tag
containing URI

"http://
m.foursquare.com/

venue/128530"

Android sees that the
NFC Inventory Demo

app enabled
foreground
dispatching

onNewIntent()
handles intent

instead of
ActivityManager and

the app displays
proper read error

message

As you can see with Scenario #3, some subtle but important differences exist between allowing the
Android operating system to handle the Intents declared in the manifest fi le versus handling them
via foreground dispatching.

Implementing the Intent Filter in NFCInventoryActivity.java

It is best practice to disable foreground dispatches in your Activity class’s onPause() method.
Enable foreground dispatches in onResume().

It is especially important to enable foreground dispatching when getting ready to write to a tag,
otherwise hovering over the URI-based NFC tag would zip you over to the Foursquare app and you
would never be able to write to that tag.

The following code example is a modifi ed version (simplifi ed for readability) of how the demo inven-
tory app implements foreground dispatching:

public class NFCInventoryActivity extends Activity
{

 // NFC-related variables
 NfcAdapter mNfcAdapter;
 PendingIntent mNfcPendingIntent;
 IntentFilter[] mReadTagFilters;

 /* Called when the activity will start interacting with the user. */
 @Override
 protected void onResume()
 {
 //...

 // Handle foreground NFC scanning in this activity by creating a
 // PendingIntent with FLAG_ACTIVITY_SINGLE_TOP flag
 mNfcPendingIntent = PendingIntent.getActivity(this, 0, new Intent(this,
 getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

 // Create intent filter to handle NDEF NFC tags detected from inside our
 // application when in "read mode":

c11.indd 239c11.indd 239 5/10/2012 2:08:37 PM5/10/2012 2:08:37 PM

www.it-ebooks.info

http://m.foursquare.com/venue/128530
http://m.foursquare.com/venue/128530
http://m.foursquare.com/venue/128530
http://www.it-ebooks.info/

240 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

 IntentFilter ndefDetected = new IntentFilter(
 NfcAdapter.ACTION_NDEF_DISCOVERED);
 try
 {
 ndefDetected.addDataType("application/root.gast.playground.nfc");
 } catch (MalformedMimeTypeException e)
 {
 throw new RuntimeException("Could not add MIME type.", e);
 }
 mReadTagFilters = new IntentFilter[] { ndefDetected };

 // Enable priority for current activity to detect scanned tags
 // enableForegroundDispatch(activity, pendingIntent,
 // intentsFiltersArray, techListsArray);
 mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,
 mReadTagFilters, null);
 //...
 }

 /* Called when the system is about to start resuming a previous activity. */
 @Override
 protected void onPause() {
 //...
 mNfcAdapter.disableForegroundDispatch(this);
 //...
 }
 //...
}

To summarize the preceding code:

1. Create an IntentFilter (ndefDetected) to listen for root.gast.playground.nfc NDEF
NFC tags.

2. Create an array of IntentFilters (mReadTagFilters) and populate it with ndefDetected
previously.

3. Create a PendingIntent (mNfcPendingIntent) with the FLAG_ACTIVITY_SINGLE_TOP fl ag
set so each new NFC scan doesn’t create multiple instances of the main Activity. (This
makes it so the Android Back button exits the app immediately instead of having to dismiss
several screens of recently scanned NFC tags.)

 Related to setting the FLAG_ACTIVITY_SINGLE_TOP fl ag, you may or may not have noticed
that the Activity’s launch mode was set to be "singleTask" to avoid multiple Activity
instances.

<activity
 android:label="@string/app_name"
 android:launchMode="singleTask"
 android:name=".NFCInventoryActivity" >

 For more information on the Android back stack, visit the Android developer site: http://
developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html.

4. Enable foreground dispatching using the enableForegroundDispatch() method.

c11.indd 240c11.indd 240 5/10/2012 2:08:38 PM5/10/2012 2:08:38 PM

www.it-ebooks.info

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://www.it-ebooks.info/

Android APIs x 241

Filtering for generic tags

If you were instead looking to create an IntentFilter for generic tags, you could either add a wild-
card data type (*/*) as illustrated in the following code, or use null for the intentFiltersArray
parameter. The following two examples are almost equivalent except that the latter will default to
NfcAdapter.ACTION_TAG_DISCOVERED instead of NfcAdapter.ACTION_NDEF_DISCOVERED and it
will catch all tags.

Using a wildcard:

IntentFilter ndefDetected = new IntentFilter(
 NfcAdapter.ACTION_NDEF_DISCOVERED);
ndefDetected.addDataType("*/*"); //catch all MIME types
mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,
 mNdefExchangeFilters, null);

Using null:

mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,
 null, null);

Using NDEF_DISCOVERED is preferred in your manifest because TAG_DISCOVERED is the lowest-
priority IntentFilter and will react to all scanned NFC tags. However, inside your Activity
class (meaning that your app is running and has focus), it doesn’t make much difference between the
previous two IntentFilter examples because no other Activity can receive the intent when fore-
ground dispatching is enabled.

If you were looking to create an IntentFilter on a URI such as the previously mentioned
Foursquare examples, it may look something like this in your app:

IntentFilter ndefDetected = new IntentFilter(
 NfcAdapter.ACTION_NDEF_DISCOVERED);
ndefDetected.addDataScheme("http");
ndefDetected.addDataAuthority("m.foursquare.com", null);
ndefDetected.addDataPath("/venue/", 0);

Foreground NDEF Push

The methods enableForegroundNdefPush() and disableForegroundNdefPush() were made
available in API level 10 for sharing NDEF data between Android devices. With the new features of
Ice Cream Sandwich, these two methods have been deprecated in favor of setNdefPushMessage()
or setNdefPushCallbackMessage() for newer devices. Both of these methods are explored later in
the “Peer-to-Peer NFC Sharing” section.

Reacting to an NDEF Tag

As described in the “In Your AndroidManifest.xml File” section, you can create IntentFilters
in your manifest for detecting NDEF tags, or you can create them within your application’s main
Activity as described in the “Foreground Dispatching” section.

To handle Intents dispatched when your application is not in the foreground, use getIntent().
getAction() in your onResume() method to fi nd out if ACTION_NDEF_DISCOVERED caused the app
to start up.

c11.indd 241c11.indd 241 5/10/2012 2:08:38 PM5/10/2012 2:08:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

242 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

To handle foreground Intents, create an onNewIntent() method in your Activity. The following
code shows the logic fl ow for handling both NDEF tags using ACTION_NDEF_DISCOVERED and non-
NDEF tags using the ACTION_TAG_DISCOVERED Intent.

public class NFCInventoryActivity extends Activity
{
 //...

 /* Called when the activity will start interacting with the user. */
 @Override
 protected void onResume()
 {
 //...

 // tag received when app is not running and not in the foreground:
 if (getIntent().getAction().equals(NfcAdapter.ACTION_NDEF_DISCOVERED))
 {
 NdefMessage[] msgs = getNdefMessagesFromIntent(getIntent());
 //do something with the NDEF messages here
 }

 //...
 }

 /*
 * This is called for activities that set launchMode to "singleTop" or
 * "singleTask" in their manifest package, or if a client used the
 * FLAG_ACTIVITY_SINGLE_TOP flag when calling startActivity(Intent).
 */
 @Override
 protected void onNewIntent(Intent intent)
 {
 //...

 if (intent.getAction().equals(NfcAdapter.ACTION_NDEF_DISCOVERED))
 {
 NdefMessage[] msgs = getNdefMessagesFromIntent(intent);
 // Do something with the NDEF messages here
 } else if (intent.getAction().equals(
 NfcAdapter.ACTION_TAG_DISCOVERED))
 {
 Toast.makeText(this,
 "This NFC tag currently has no inventory NDEF data.",
 Toast.LENGTH_LONG).show();
 }

 //...
 }
 //...
}

Note that getNdefMe ssagesFromIntent() is a custom method that is discussed in the next section
on reading tags.

c11.indd 242c11.indd 242 5/10/2012 2:08:38 PM5/10/2012 2:08:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android APIs x 243

NdefMessage and NdefRecord

The NdefMessage and NdefRecord classes in the android.nfc.tech package of the Android SDK
relate very closely to the NFC Forum’s specifi cations discussed earlier in “The NDEF Data Format”
section. As a refresher, an NDEF message is a container that can hold one or more NDEF records.
An NDEF record has a payload and additional meta data such as type, length, and optional payload
identifi er.

Use getParcelableArrayExtra() on the Intent object with the item keyword name NfcAdapter.
EXTRA_NDEF_MESSAGES to get the raw data in Parcels. Assuming that the raw data is not null, you
can create an NdefMessage object by iterating over the raw Parcelable object. Or, because there is
typically only one message when working with NDEF, use the value at the fi rst index, for example,
msgs[0].

Parcelable[] rawMsgs = intent
 .getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

NdefMessage[] msgs = new NdefMessage[rawMsgs.length];
for (int i = 0; i < rawMsgs.length; i++) {
 msgs[i] = (NdefMessage) rawMsgs[i];
}

There are not many methods for NdefMessage but the most important one to know is getRe-
cords(), which simply returns an array of NdefRecords. Again, for NDEF there is typically only
one record so create an NdefRecord from the value in the fi rst index unless you know otherwise.

getPayload() will likely be your most used NdefRecord method, but the following are some exam-
ples of common getter methods for NdefRecord and its usage:

NdefRecord record = msgs[0].getRecords()[0];

//Returns the variable length payload
byte[] payload = record.getPayload();
Log.d(TAG,new String(payload));

// Returns the optional variable length ID
byte[] id = record.getId();
Log.d(TAG, "id: " + new String(id));

// Returns the variable length Type field
byte[] type = record.getType();
Log.d(TAG, "type: " + new String(type));

// Returns the 3-bit TNF. TNF is the top-level type.
short tnf = record.getTnf();
Log.d(TAG, Short.toString(tnf));

So that is an example of reading NDEF data, but what about creating your own? In the case of the
demo app, it has three editable text fi elds in which freeform text strings can be inputted. For read-
ability, the demo app creates a JSON object out of the text fi eld inputs before encoding the values
into a byte array to become the NDEF record’s payload.

c11.indd 243c11.indd 243 5/10/2012 2:08:38 PM5/10/2012 2:08:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

244 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

JSONObject computerSpecs = new JSONObject();
// use computerSpecs.put(“specTypeName”, specTextFieldValue); to populate JSONObject
String data = computerSpecs.toString();
byte[] dataBytes = data.getBytes(Charset.forName("UTF-8"));

NdefRecord’s instantiation parameters are byte arrays, so you must also encode the custom MIME
type into a byte array:

String mimeType = "application/root.gast.playground.nfc";
byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));

And because you are not going to use the optional NDEF record identifi er, set it to be empty bytes:

byte[] id = new byte[0];

From there, it is as easy as instantiating a new NdefRecord and passing in:

 ‰ A 3-bit TNF constant, which is a higher-level constant to indicate what type of payload
is being encoded. In this case, Ndef.TNF_MIME_MEDIA has a value of 0x00000002 and
indicates that it will follow a standards-based MIME type specifi cation. Other options
include:

 ‰ TNF_ABSOLUTE_URI (0x00000003)

 ‰ TNF_EMPTY (0x00000000)

 ‰ TNF_EXTERNAL_TYPE (0x00000004)

 ‰ TNF_UNKNOWN (0x00000005)

 ‰ TNF_WELL_KNOWN (0x00000001)

 ‰ The MIME type as a byte array

 ‰ The ID as a byte array

 ‰ The payload data as a byte array

This code creates an NdefMessage by passing in the newly created NdefRecord as a parameter:

NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeBytes, id, dataBytes);
NdefMessage m = new NdefMessage(new NdefRecord[] { record });

An example of creating an NdefRecord for a URI would look like the following:

byte[] uriBytes = "http://m.foursquare.com/venue/128530"
 .getBytes(Charset.forName("US-ASCII"));
byte[] id = new byte[0];
byte[] emptyPayload = new byte[0];
NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 uriBytes, id, emptyPayload);
NdefMessage m = new NdefMessage(new NdefRecord[] { record });

 For your reference, Listing 11-2 provides the full createNdefFromJson() custom method.

LISTING 11-2: NDEF creation method

public class NFCInventoryActivity extends Activity {
 //...

 private NdefMessage createNdefFromJson()

c11.indd 244c11.indd 244 5/10/2012 2:08:39 PM5/10/2012 2:08:39 PM

www.it-ebooks.info

http://m.foursquare.com/venue/128530
http://www.it-ebooks.info/

Android APIs x 245

 {

 // get the values from the form's text fields:
 Editable nameField = mName.getText();
 Editable ramField = mRAM.getText();
 Editable processorField = mProcessor.getText();

 // create a JSON object out of the values:
 JSONObject computerSpecs = new JSONObject();
 try
 {
 computerSpecs.put("name", nameField);
 computerSpecs.put("ram", ramField);
 computerSpecs.put("processor", processorField);
 } catch (JSONException e)
 {
 Log.d(TAG, "Could not create JSON");
 }

 // create a new NDEF record and containing NDEF message using the app's
 // custom MIME type:
 String mimeType = "application/root.gast.playground.nfc";
 byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));
 String data = computerSpecs.toString();
 byte[] dataBytes = data.getBytes(Charset.forName("UTF-8"));
 byte[] id = new byte[0];
 NdefRecord record = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeBytes, id, dataBytes);
 NdefMessage m = new NdefMessage(new NdefRecord[] { record });

 // return the NDEF message
 return m;
 }

 //...
}

The preceding example uses a JSON object but you can defi ne the data payload in any manner that
is appropriate for your own unique applications. Just remember to keep in mind the storage size of
the NFC tag you will be writing to and choose an appropriate payload schema to accommodate the
size limitations.

Parsing and Reading NDEF Tags

When an NFC tag is scanned, the Android operating system automatically parses the tag meta data
and payload data on the tag and encapsulates it into an Intent. Use getParcelableExtra() on the
Intent object with the item keyword name NfcAdapter.EXTRA_TAG to read the Tag object.

Tag detectedTag = intent
 .getParcelableExtra(NfcAdapter.EXTRA_TAG);

Log.d(TAG, tag.getID()); //log tag identifier if one is available

To fi nd out more information on this Tag object, such as its type, size, or read/write ability, you
need to get an instance of an Ndef object for the given tag. If your tag was using non-NDEF data,
you would instead get an instance of another supported tag technology such as IsoDep or NfcV as

c11.indd 245c11.indd 245 5/10/2012 2:08:39 PM5/10/2012 2:08:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

246 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

outlined in the Advanced NFC documentation online at http://developer.android.com/guide/
topics/nfc/advanced-nfc.html.

The following code snippet shows an example of outputting some of the more useful property get-
ters of an Ndef object such as getType(), getMaxSize(), isWritable(), and canMakeReadOnly():

Ndef ndef = Ndef.get(detectedTag);

// Get the NDEF tag type (such as NFC_FORUM_TYPE_1 through
// NFC_FORUM_TYPE_4 and MIFARE_CLASSIC)
Log.d(TAG, ndef.getType().toString());

// Get the maximum NDEF message size in bytes
Log.d(TAG, Integer.toString(ndef.getMaxSize()));

// Determine if the tag is writable.
Log.d(TAG, ndef.isWritable() ? "true" : "false");

// Indicates whether a tag can be made read-only
Log.d(TAG, ndef.canMakeReadOnly() ? "true" : "false");

As an alternative to parsing the NDEF message from an Intent (for example, you are storing a
reference to the tag and not the Intent), you could use the getNdefMessage() method on the
Ndef instance, but it’s more convenient to read the NDEF message immediately upon handling
the Intent as you see in the next example. For your reference, the usage of getNdefMessage() is
shown here:

Ndef ndef = Ndef.get(detectedTag);
// Read the current NdefMessage on this tag.
try {
 ndef.connect();
 NdefMessage ndefMessage = ndef.getNdefMessage();
 Log.d(TAG, ndefMessage.toString());
 NdefRecord record = ndefMessage.getRecords()[0];
byte[] payload = record.getPayload();
 Log.d(TAG, new String(payload));
 // Do something with the payload here
 ndef.close();
} catch (IOException e) {
 Log.e(TAG, "IOException reading tag");
} catch (FormatException e) {
 Log.e(TAG, "FormatException reading tag");
}

Getting Ready to Write to a Tag

Because the NFC chip on the Android phone is on a mobile device and mobile devices tend to move
around, it is best to immediately attempt to write to an NFC sticker based on an Intent being fi red
when a tag has moved into scanning range. If a tag is out of range and you attempt to write to it,
you will get an I/O error.

Instead of registering for the more specifi c ACTION_NDEF_DISCOVERED IntentFilter, you should
listen for the more generic ACTION_TAG_DISCOVERED IntentFilter. This will give you the fl exibil-
ity to format a tag that’s not already in NDEF format.

c11.indd 246c11.indd 246 5/10/2012 2:08:40 PM5/10/2012 2:08:40 PM

www.it-ebooks.info

http://developer.android.com/guide
http://www.it-ebooks.info/

Android APIs x 247

Similar to what you already did to create a foreground dispatch for reading a tag, you will do some-
thing similar for preparing to write to a tag. The demo NFC Inventory app has an Update button
that will turn on foreground dispatching.

The custom createNdefFromJson() method is covered in Listing 11-2 and the custom writeTag()
method is covered in the section immediately following this code snippet.

public class NFCInventoryActivity extends Activity {
 //...

 // NFC-related variables
 NfcAdapter mNfcAdapter;
 PendingIntent mNfcPendingIntent;
 IntentFilter[] mReadTagFilters;
 IntentFilter[] mWriteTagFilters;
 private boolean mWriteMode = false;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 //...

 // write_tag element is the Update button
 findViewById(R.id.write_tag).setOnClickListener(mTagWriter);

 // Handle foreground NFC scanning in this activity by creating a
 // PendingIntent with FLAG_ACTIVITY_SINGLE_TOP flag
 mNfcPendingIntent = PendingIntent.getActivity(this, 0, new Intent(this,
 getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

 // Create intent filter to detect any NFC tag when attempting to write
 // to a tag in "write mode"
 IntentFilter tagDetected = new IntentFilter(
 NfcAdapter.ACTION_TAG_DISCOVERED);

 // create IntentFilter arrays:
 mWriteTagFilters = new IntentFilter[] { tagDetected };
 }

 /*
 * This is called for activities that set launchMode to "singleTop" in their
 * package, or if a client used the FLAG_ACTIVITY_SINGLE_TOP flag when
 * calling startActivity(Intent).
 */
 @Override
 protected void onNewIntent(Intent intent)
 {
 //...

 if (intent.getAction().equals(NfcAdapter.ACTION_TAG_DISCOVERED))
 {
 Tag detectedTag = intent
 .getParcelableExtra(NfcAdapter.EXTRA_TAG);
 writeTag(createNdefFromJson(), detectedTag);

c11.indd 247c11.indd 247 5/10/2012 2:08:40 PM5/10/2012 2:08:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

248 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

 }

 //...
 }

 private void enableTagWriteMode()
 {
 mWriteMode = true;
 mNfcAdapter.enableForegroundDispatch(this, mNfcPendingIntent,
 mWriteTagFilters, null);
 }

 private View.OnClickListener mTagWriter = new View.OnClickListener()
 {
 @Override
 public void onClick(View arg0)
 {
 enableTagWriteMode();
 }

 };

 //...
}

Writing to the Tag

Once you have an NdefMessage object by either creating your own (refer to the “NdefMessage and
NdefRecord” section) or storing the NdefMessage from a previously scanned NFC tag, writing to a
tag is quite straightforward with the Android SDK.

First, you must open a connection to the Ndef object of a Tag using the connect() method to allow
I/O operations on the NFC tag. Once the connection is made, you can write to the tag by using
the writeNdefMessage() method and passing in an NdefMessage object. Optionally, you can use
makeReadOnly() to write-protect the tag if the tag technology supports it. Finally, use the close()
method to close the I/O connection.

The following is the workfl ow in its simplest form:

Ndef ndef = Ndef.get(detectedTag);
// Read the current NdefMessage on this tag.
try {
 ndef.connect();

 // Overwrite the NdefMessage on this tag
 ndef.writeNdefMessage(ndefMessage);

 // Make a tag read-only.
 ndef.makeReadOnly();

 ndef.close();
} catch (IOException e) {
 Log.e(TAG,"IOException reading tag");

c11.indd 248c11.indd 248 5/10/2012 2:08:40 PM5/10/2012 2:08:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Android APIs x 249

} catch (FormatException e) {
 Log.e(TAG,"FormatException reading tag");
}

However, as with any operation that requires I/O communications, many scenarios can cause the
write process to fail, such as:

 ‰ Attempting to write to a tag that’s already read-only.

 ‰ Attempting to write to a tag that cannot fi t the data in your NdefMessage object.

 ‰ Attempting to write to a tag that does not support NDEF.

 ‰ I/O errors such as moving the device away from the NFC tag during the write process.

Also, if the tag that you are writing to is not already formatted to accept NDEF data (such as a
MIFARE Classic tag), it must be formatted fi rst. Following is the custom writeTag() method used
in the demo NFC Inventory app, which you can use for all of your projects, too:

LISTING 11-3: Write NDEF data to tag method

boolean writeTag(NdefMessage message, Tag tag)
{
 int size = message.toByteArray().length;

 try
 {
 Ndef ndef = Ndef.get(tag);
 if (ndef != null)
 {
 ndef.connect();

 if (!ndef.isWritable())
 {
 Toast.makeText(this,
 "Cannot write to this tag. This tag is read-only.",
 Toast.LENGTH_LONG).show();
 return false;
 }
 if (ndef.getMaxSize() < size)
 {
 Toast.makeText(
 this,
 "Cannot write to this tag. Message size (" + size
 + " bytes) exceeds this tag's capacity of "
 + ndef.getMaxSize() + " bytes.",
 Toast.LENGTH_LONG).show();
 return false;
 }

 ndef.writeNdefMessage(message);
 Toast.makeText(this,

continues

c11.indd 249c11.indd 249 5/10/2012 2:08:40 PM5/10/2012 2:08:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

250 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

 "A pre-formatted tag was successfully updated.",
 Toast.LENGTH_LONG).show();
 return true;
 } else
 {
 NdefFormatable format = NdefFormatable.get(tag);
 if (format != null)
 {
 try
 {
 format.connect();
 format.format(message);
 Toast.makeText(
 this,
 "This tag was successfully formatted and updated.",
 Toast.LENGTH_LONG).show();
 return true;
 } catch (IOException e)
 {
 Toast.makeText(
 this,
 "Cannot write to this tag due to I/O Exception.",
 Toast.LENGTH_LONG).show();
 return false;
 }
 } else
 {
 Toast.makeText(
 this,
 "Cannot write to this tag. This tag does not support NDEF.",
 Toast.LENGTH_LONG).show();
 return false;
 }
 }
 } catch (Exception e)
 {
 Toast.makeText(this,
 "Cannot write to this tag due to an Exception.",
 Toast.LENGTH_LONG).show();
 }

 return false;
}

If you want to explore writing non-NDEF data, please refer to the Android SDK documentation for
the android.nfc.tech classes located on developer.android.com.

Putting it All Togeth er

Throughout this chapter you’ve been gathering the bits and pieces needed to put together a simple
NFC inventory tracker, so here’s a quick review.

LISTING 11-3 (continued)

c11.indd 250c11.indd 250 5/10/2012 2:08:41 PM5/10/2012 2:08:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Future Considerations x 251

In the Android manifest XML fi le, use the <uses-feature android:name="android.hardware.
nfc"/> and <uses-permission android:name="android.permission.NFC" /> options to allow
your app to use NFC. Also, create an intent fi lter with an action name of "android.nfc.action
.NDEF_DISCOVERED" to handle NDEF-formatted NFC tags when the application is not open on your
device.

In your main Activity, get a reference to the NfcAdapter and enable foreground dispatching of
scanned tags by passing in a PendingIntent and a set of IntentFilter arrays via the enable-
ForegroundDispatch() method.

Scanned NFC tags automatically get encapsulated into Intents, so read the data on them by apply-
ing getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES) on those Intents to extract
out the NDEF message. Because there’s typically only one NDEF message and one NDEF record
with the tags that you’ll be writing, you can quickly get an NdefRecord payload by getting the fi rst
record of an NdefMessage, for example, ndefMessage.getRecords()[0].getPayload();.

Writing to a tag typically means encoding a TNF constant, a MIME type, and payload into separate
byte arrays and creating an NdefRecord and NdefMessage out of them. Use the writeNdefMes-
sage() method on an Ndef object of a Tag to write content to the tag.

The NFC Inventory demo application puts these all together and the only extra code is related to
handling UI elements. Getting started with the NFC API is simple! Find the full manifest, main
Activity code, and supporting layout and string XML fi les of the demonstration app in the sup-
plied example source code and app of this book.

FUTURE CONSIDERATIONS

In addition to the previously covered Android APIs, what else
should you put consideration into to make a successful NFC project?

NFC N-Mark

To make yo ur NFC application or product more visible, you may
want to download the N-Mark, shown in Figure 11-10, from the
NFC Forum. This logo is used in much the same way you might use
the WiFi or Bluetooth logos. Consider placing the N-Mark on the
actual NFC sticker to help the users fi nd the sweet spot for placing
their mobile device for scanning.

Visit http://www.nfc-forum.org/resources/N-Mark/ for more information. You must agree to a
click-through license in order to download a zip package of various image formats.

Peer-to-Peer NFC Shar ing

With NXP Semiconductors announcing in a November 2011 press release that they have been
designed into 90 mobile devices, the future for NFC-enabled interactions is only going to change
from being novel to becoming mainstream.

FIGURE 11-10: NCF Forum’s

N-Mark. The “N-Mark” logo is a

trademark or registered trade-

mark of NFC Forum, Inc.

c11.indd 251c11.indd 251 5/10/2012 2:08:42 PM5/10/2012 2:08:42 PM

www.it-ebooks.info

http://www.nfc-forum.org/resources/N-Mark
http://www.it-ebooks.info/

252 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

As more devices become NFC enabled, we can move from simply thinking of NFC as being a pas-
sive, one-sided conversation into one that is peer-to-peer. Android Beam, released with the latest
Android 4.0 release, should open up new possibilities for interactions on the go.

With the newest Android APIs, if a specifi ed activity is in the foreground and it is touched to
another NFC-enabled device with its screen unlocked, a prompt on the device running the
activity will appear requesting to “beam” to the other device. The receiver can then accept or
deny the beam request.

Depending on the data format, the receiving phone does not even need to be running Ice Cream
Sandwich. It could be a Nexus S running Gingerbread!

Peer-to-Peer Android APIs

Iterating upon the inventory tracking example, imagine that you are in the middle of updating a
computer, but you are interrupted by an emergency. You must leave immediately but don’t want to
lose your edits to the text fi elds you’ve already made. You have your coworker come over and beam
him or her your current text fi eld values.

You need to be aware of only a few new APIs to get your app enabled to send peer-to-peer NFC
data, so if you already have an app NFC-ready, it should only be a few lines of code to get your
NFC data sharing working.

In API level 10, a pair of methods were introduced in the NfcAdapter class for peer-to-peer shar-
ing: enableForegroundNdefPush() and disableForegroundNdefPush(). These two methods
have since been deprecated in API level 14 to make way for setNdefPushMessage() to automati-
cally beam a predefi ned NDEF message and setNdefPushMessageCallback() to construct the
NdefMessage object on demand before beaming.

To take advantage of Android Beam, your activity must implement the android.nfc.
NfcAdapter.CreateNdefMessageCallback interface, which means you must implement a creat-
eNdefMessage() method in your Activity.

The following shows how little code you need to add to get the inventory demo working peer-to-
peer by leveraging the already existing createNdefFromJson() method! The receiving phone will
read the beaming phone exactly like a regular NFC sticker.

import android.nfc.NfcAdapter.CreateNdefMessageCallback;

public class NFCInventoryActivity extends implements
 CreateNdefMessageCallback
{
 //...

 NfcAdapter mNfcAdapter;

 //...

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 //...

c11.indd 252c11.indd 252 5/10/2012 2:08:42 PM5/10/2012 2:08:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Go Forth and NFC! x 253

 // get an instance of the context's cached NfcAdapter
 // check if NFC is enabled

 // register the callback
 // usage: setNdefPushMessageCallback(callback, activity,
 // optionalExtraActivities)
 mNfcAdapter.setNdefPushMessageCallback(this,this);
 //...
 }

 @Override
 public NdefMessage createNdefMessage(NfcEvent event) {
 NdefMessage msg = createNdefFromJson();
 return msg;
 }
 //...
}

GO FORTH AND NFC!

This chapter touched upon some interesting implementations of NFC already out there such as Fruit
Ninja’s battle mode, Hashable’s networking handshake, Touchanote’s quick launch into Evernote
feature, Foursquare check-ins, and Android Beam.

Here are some additional ideas to get you excited to build more NFC-enabled applications for
Android!

 ‰ Other inventory tracking systems.

 ‰ Keyless door entry systems.

 ‰ Two-step verifi cation authentication in which you require a passcode plus a physical NFC-
enabled object such as phone or tag.

 ‰ Time tracking systems: imagine putting your phone next to your desk to sign in and remov-
ing it to sign out.

 ‰ Notifi cation alarm diffuser: automatically deactivate extraneous sounds originating from
your phone when you’ve already got e-mail and calendar notifi cations on your desktop
computer.

 ‰ Money exchange applications: keep tabs with friends, or at bars or small businesses.

 ‰ Customer and table tracking applications: great for restaurants that use a number-based
ordering system.

 ‰ Frequent shopper and loyalty card replacement using peer-to-peer mode.

 ‰ Secure coupons for high-end items to thwart counterfeiting.

 ‰ Innovative retail shopping experiences: Best Buy already attaches QR codes to its product
displays that link to the product page on the Best Buy mobile website, so imagine if it added
NFC stickers too. Other retailers should think about using stickers in-store to add meta data
to their products to enable potential buyers to build side-by-side comparison charts for prod-
ucts, or to add products to online shopping carts and wish lists.

c11.indd 253c11.indd 253 5/10/2012 2:08:43 PM5/10/2012 2:08:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

254 x CHAPTER 11 NEAR FIELD COMMUNICATION (NFC)

 ‰ Speed up location-based check-ins to services such as Foursquare, Gowalla, or Google Places.

 ‰ Interactive toys.

 ‰ NFC-enabled media (music and video) centers.

 ‰ “Smart” posters and advertisements.

 ‰ Special events promotions: imagine getting people to visit physical locations to unlock con-
tent such as game levels or free music tracks.

What will you make with these new NFC features?

SUMMARY

That was a long journey through the rocky landscape of RFID and NFC technology. Hopefully by
now you should remember two key things about the technology itself:

 ‰ NFC is the special RFID radio frequency of 13.56MHz, and

 ‰ Always use NDEF data for ease of development on the Android platform!

In terms of implementing NFC in your Android applications, you should have a fi rm grasp on the
multiple spots to add your intents fi lters and how to read/write to NFC tags. And, always remember
the importance of enabling foreground dispatching.

Moving forward, keep in mind how easy it is to create peer-to-peer experiences with the Android
NFC and get your app ready for the steady increase of NFC-enabled devices ready to hit the con-
sumer market over the next 1–3 years. The future looks very bright for NFC!

Despite the potential usefulness of NFC technology, there will likely be some objects that an app
needs to detect that are not augmented with NFC tags. The next two chapters describe how to
detect such objects using the camera.

c11.indd 254c11.indd 254 5/10/2012 2:08:43 PM5/10/2012 2:08:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

12
Using the Camera

WHAT’S IN THIS CHAPTER?

 ‰ Capturing images with the Android camera

 ‰ Creating your own Activity for controlling the camera

 ‰ Capturing images continuously during camera preview

 ‰ Creating a simple barcode reader that uses camera preview

The Android platform creates an incredible opportunity for image processing, because it offers
an image processing system that is universally available, handheld, inexpensive, easy to pro-
gram, networked, and provides processing power equivalent to a low-end personal computer.
This chapter shows you how to begin to make use of this remarkable platform by focusing on
image processing that happens immediately after capturing the image.

USING THE CAMERA ACTIVITY

If all you want to do is capture an image, things could not be much easier. All you have
to do is create an Intent with the action MediaStore.ACTION_IMAGE_CAPTURE, passing
it a fi lename as extended data with the name MediaStore.EXTRA_OUTPUT. Then call
startActivityForResult(), passing your Intent and an identifi er identifying this Intent
to your onActivityResult() method.

What this does is fi re up the camera application, giving the user the opportunity to control the
camera parameters themselves and take a picture. The picture is stored into your chosen fi le,
and your onActivityResult() method is called when it is done.

Listing 12-1 shows the key steps, and SimpleCaptureActivity in the provided code gives you
the complete application.

c12.indd 255c12.indd 255 5/10/2012 2:09:44 PM5/10/2012 2:09:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

256 x CHAPTER 12 USING THE CAMERA

LISTING 12-1: Taking a photo

private final int PICTURE_ACTIVITY_CODE = 1;
private final String FILENAME = "sdcard/photo.jpg";
private void launchTakePhoto()
{
 Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 mFile = new File(FILENAME);
 Uri outputFileUri = Uri.fromFile(mFile);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, outputFileUri);
 startActivityForResult(intent, PICTURE_ACTIVITY_CODE);
}
protected void onActivityResult(int requestCode, int resultCode,
 Intent data)
{
 if (requestCode == PICTURE_ACTIVITY_CODE)
 {
 if (resultCode == RESULT_OK)
 {
 ImageView imageView =
 (ImageView) findViewById(R.id.imageView1);
 Uri inputFileUri = Uri.fromFile(mFile);
 imageView.setImageURI(inputFileUri);
 }
 }
}

If a picture is all you need, that’s all you need to do. But you probably want to do more, and that’s
what the rest of this chapter is about. In reading it, you’ll learn how to write an Activity that
controls every aspect of the camera — focus, fl ash, white balance, and so on — and provides the
user with a live preview for feedback. You then learn how to capture and use the preview image,
eventually understanding how a complete image processing program, for barcode capture, works.

Controlling the Camera with Your Own Activity

Writing your own camera Activity gives you the opportunity to control everything there is to
control about the camera. The developers of Android have provided a useful starting point in the
CameraPreview Activity that is included in the API Demos sample code (http://developer
.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/

index.html), which is the basis for this chapter’s fi rst program that controls the camera, called
LiveCapture. This section shows how this Activity is constructed and then extends it to control
more of the camera functions.

Android gives hardware developers maximum freedom in implementation, and nowhere is this truer
than in the camera. Different Android platforms have zero, one, or more cameras, and each camera
can have different capabilities. It is therefore essential that you write your Activity in such a way
that it adapts to the cameras available to it. If you don’t do that, at best you’ll be limiting what your
Activity can do — and, more likely, your Activity will crash when it encounters something it
doesn’t expect.

c12.indd 256c12.indd 256 5/10/2012 2:09:49 PM5/10/2012 2:09:49 PM

www.it-ebooks.info

http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/index.html
http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/index.html
http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/index.html
http://www.it-ebooks.info/

Using the Camera Activity x 257

Claiming and Releasing a Camera

The fi rst thing LiveCaptureActivity has to do is to determine which camera it will
capture with — remember, there can be more than one! The basic process is shown in
Listing 12-2.

LISTING 12-2: Choosing a camera

 mNumberOfCameras = Camera.getNumberOfCameras();
 CameraInfo cameraInfo = new CameraInfo();
 for (int i = 0; i < mNumberOfCameras; i++)
 {
 Camera.getCameraInfo(i, cameraInfo);
 if (cameraInfo.facing == CameraInfo.CAMERA_FACING_BACK)
 {
 mDefaultCameraId = i;
 }
 }
 if (mDefaultCameraId == -1)
 {
 // test for no cameras
 if (nCameras > 0)
 {
 mDefaultCameraId = 0;
 } else
 {
 // nothing can be done; tell the user then exit
 Toast toast = Toast.makeText(getApplicationContext(),
 R.string.no_cameras, Toast.LENGTH_LONG);
 toast.show();
 finish();
 }
 }

As Listing 12-2 shows, you start by determining the number of cameras using getNumberOfCameras().
Then you test each camera, reading its characteristics into a CameraInfo object instance created for
this purpose. If at least one is facing away from the user (that is, facing toward the back of the Android
device), LiveCapture chooses it.

The if statement following the camera-testing loop handles the case where no suitable camera is
found. If this is because no camera is backward-facing, you use the fi rst camera, if there is one. If
the device has no camera at all, you give up.

Before looking into the internals of how the preview is shown to the user, there is one addi-
tional part of the setup. Camera programs must be well behaved, because many programs
may want to use the camera, and only one can use it at a time. As an Android programmer,
you know that your Activity can be stopped permanently whenever it has been paused.
That is why it is essential to release the camera when your Activity is paused, as shown in
Listing 12-3.

c12.indd 257c12.indd 257 5/10/2012 2:09:49 PM5/10/2012 2:09:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

258 x CHAPTER 12 USING THE CAMERA

LISTING 12-3: Releasing the camera

protected void onPause() {
 super.onPause();
 if (mCamera != null) {
 mPreview.setCamera(null);
 mCamera.release();
 mCamera = null;
 }
}

If you don’t release the camera, it is possible that your Activity could be terminated while
still owning the camera — not a good situation, and very likely to result in a RuntimeException
that will be hard to interpret (because it will happen when your program is no longer
running).

Likewise, when your Activity starts, you’ll want to resume camera ownership, as shown in
Listing 12-4.

LISTING 12-4: Opening the camera

protected void onResume()
{
 super.onResume();
 mCamera = Camera.open(mDefaultCameraId);
 mPreview.setCamera(mCamera);
}

This is all you have to do to manage the selection and ownership of the camera. The next section
discusses how the camera preview display works.

The Preview View

Preview is a View that shows a live preview of the camera image. The full code is in Listing 12-11 at
the end of this chapter. You can use it like any other View, inserting it into a Layout by including it
an XML layout description fi le, as LiveCapture does in its main.XML:

 <jjil.android.Preview
 android:id="@+id/preview1"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 </jjil.android.Preview>

The key thing to understand about Preview (and showing camera previews in Android in gen-
eral) is that it shows the camera preview in a SurfaceView fi eld. SurfaceView is the one class in
Android that can show a camera preview. You must have a SurfaceView if you are going to use
camera preview.

Preview creates its SurfaceView in its constructor, as shown in Listing 12-5.

c12.indd 258c12.indd 258 5/10/2012 2:09:49 PM5/10/2012 2:09:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Camera Activity x 259

LISTING 12-5: Creating the SurfaceView

public class Preview extends ViewGroup implements SurfaceHolder.Callback {
 private SurfaceHolder mHolder;
 private SurfaceView mSurfaceView;

 public Preview(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 mSurfaceView = new SurfaceView(context, attributeSet);
 addView(mSurfaceView);
 // Install a SurfaceHolder.Callback so we get notified when the
 // underlying surface is created and destroyed.
 mHolder = mSurfaceView.getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
}

The other thing you’ll notice about Preview’s constructor is that it creates a SurfaceHolder
(mHolder) to manage the SurfaceView. mHolder is the object that is used to communicate with the
camera (through a callback in Preview) and connect it to the SurfaceView. Note that mHolder’s
type is set to SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS. In some releases of Android, this was
required for a SurfaceView used to show a camera preview (in later releases it is ignored).

Look next at the surfaceCreated() and surfaceDestroyed() methods in Preview, shown in
Listing 12-6. These are the callback methods the SurfaceHolder uses to communicate with the
Preview class. You told the SurfaceHolder about them when you invoked mHolder’s addCallback()
method in Listing 12-5. The camera can’t start using the SurfaceView until it has been created,
which doesn’t happen immediately. So the surfaceCreated() callback connects the camera to the
SurfaceView through its SurfaceHolder, and surfaceDestroyed() terminates any camera preview
that is going on.

LISTING 12-6: SurfaceHolder callback methods

public void surfaceCreated(SurfaceHolder holder) {
 try {
 if (mCamera != null) {
 mCamera.setPreviewDisplay(holder);
 }
 } catch (IOException exception) {
 Log.e(TAG, "IOException caused by setPreviewDisplay()", exception);
 }
}

public void surfaceDestroyed(SurfaceHolder holder) {
 if (mCamera != null) {
 mCamera.stopPreview();
 }
}

c12.indd 259c12.indd 259 5/10/2012 2:09:49 PM5/10/2012 2:09:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

260 x CHAPTER 12 USING THE CAMERA

The rest of the Preview class deals with connecting to a particular camera, and, especially, choosing
an appropriate preview size. It is important to realize that when you use camera preview you’re
ceding control of part of the Android display to the camera. That is the reason for the use of the
SurfaceHolder and the callbacks that allow it to tell Preview when the SurfaceView is ready.
SurfaceHolder mediates between the application, embodied in the Preview class, and the camera.

The image the camera gives to SurfaceHolder for display (and, as you’ll see later, for image pro-
cessing) is supplied by the camera in one of a few fi xed sizes, called preview sizes. Cameras support
different preview sizes because an image’s use determines its shape and size (for example, a standard
TV image has a small size and a 4:3 aspect ratio, whereas an HDTV image has a large size and a
16:9 aspect ratio). Android’s graphics hardware can stretch the preview image to fi t in whatever
View you supply — but you don’t want to change its aspect ratio (that would distort the image) and
you do want to exactly fi ll the space you have for Preview, if possible. In other words, the aspect
ratio of the camera image should match the aspect ratio of Preview.

Getting the aspect ratios to match is tricky because the camera that is being shown in the preview
can change as the result of calls to the setCamera() method, and each camera supports different
preview sizes. At the same time, the size of the SurfaceView object can change as the display is
rotated and Android rebuilds the user interface.

Preview makes setCamera() available to choose a particular camera to preview, as shown
in Listing 12-7. All setCamera() does is read the supported preview sizes from the camera
and then call requestLayout(). Preview’s overrides of onLayout() and onMeasure() do the
actual work of choosing an appropriate preview size and starting the camera using it based on
mSupportedPreviewSizes.

LISTING 12-7: setCamera

public void setCamera(Camera camera) {
 mCamera = camera;
 if (mCamera != null) {
 mSupportedPreviewSizes =
 mCamera.getParameters().getSupportedPreviewSizes();
 requestLayout();
 }
}

The computation needed to choose the best preview size from the ones supported by the camera is
done in getOptimalPreviewSize(), which chooses the preview size that matches the aspect ratio
(if possible) or, failing that, the one that is closest to the desired height (which will at least give a
preview image about the same resolution as your display area). You call getOptimalPreviewSize()
from switchCamera() whenever the camera changes and you use the computed size to override
onLayout() and onMeasure(). onLayout() stretches the camera preview image to fi ll Preview’s
area as much as possible, centering the image if it doesn’t completely fi ll the space. Finally,
surfaceChanged() sets the camera parameters to this size, and starts preview.

Never try to change the preview size while camera preview is running. If you do,
you’ll get a RuntimeException.

c12.indd 260c12.indd 260 5/10/2012 2:09:49 PM5/10/2012 2:09:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Camera Activity x 261

Note that you don’t actually interact with the camera drawing code in any way, for example by
overriding onDraw(). This is inaccessible, and under the control of the SurfaceHolder. The only
way you can alter the display in the preview image area is by putting another (transparent) view
in front of it in the z-order and drawing on that. You are also not allowed to modify the camera
preview image in other ways common in Android, for example by making it partially transparent.

Controlling the Camera

LiveCapture controls just one camera parameter, the preview size, but you might want to control
many camera parameters. Each camera allows you to control some or none of these parameters. The
method of controlling them is similar to the technique used in LiveCapture:

1. Take control of the camera and use getParameters() to get a Camera.Parameters object
for it.

2. Interrogate the Camera.Parameters object using get methods to determine what the camera
supports.

3. Choose appropriate settings based on the requirements of the application and user.

4. Assign the chosen values by modifying the Camera.Parameters object using set methods and
then call setParameters().

Most camera parameters can be changed while camera preview is running without causing
problems, but you have to stop and start camera preview whenever you switch cameras — otherwise
you’ll get the dreaded RuntimeException.

The next section examines how LiveCapturePlus controls more of the camera parameters. To keep
things simple, you give the user a button for each different parameter; pressing the button advances
the parameter to the next legal value.

Orientation

If you play with LiveCapture on an Android device you’ll notice some disconcerting behavior: in
some orientations, the preview image is sideways. This is because Android automatically rotates
everything on the screen — text and so on — but it doesn’t automatically do this for the cam-
era preview. That is left for the application to control. You’ll do this in an improved version of
LiveCapture, called LiveCapturePlus, which will also allow you to control more of the camera
hardware.

The relationship between the display orientation and the camera orientation is diffi cult to under-
stand because it involves rotation around two different axes, of the camera and the display. Android
gives you two measurements to determine how to orient the image:

 ‰ The current orientation of the display, from getDefaultDisplay().getRotation(). It is
measured in a clockwise direction facing the display.

 ‰ The camera orientation, which is defi ned in the Android documentation as the “angle
that the camera image needs to be rotated clockwise so it shows correctly on the display
in its natural orientation.” It is a fi eld in the CameraInfo object, which is intrinsic to the
camera — it doesn’t change as the Android device is rotated.

c12.indd 261c12.indd 261 5/10/2012 2:09:49 PM5/10/2012 2:09:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

262 x CHAPTER 12 USING THE CAMERA

Camera orientation needs more explanation. Digital cameras use an image sensor, which captures the
image and supplies it as an array of pixels, and in which you may think of coordinate (0, 0) as the top-
left corner, as shown in Figure 12-1. However, the pixel at (0, 0) could have come from any corner of
the image sensor, depending on the camera design — Figure 12-1 shows an image sensor in which the
pixel at (0, 0) comes from the top-right corner of the sensor. So you need to know how much the pixel
array must be rotated so that it lines up again with the image sensor. This is the camera orientation.

You might think that the camera orientation in Figure 12-1 is 90°, but this actually depends on
whether the camera is on the front or the back of the Android device. If the camera is on the back
of the device, rotating the image 90° clockwise around the camera axis is correct. But if the camera
is on the front of the device, the camera axis points the other way, so a 90° clockwise rotation will
cause the image to be displayed upside down. You actually need to make a 90° counter-clockwise
rotation, which is the same thing as a 270° rotation clockwise.

First row

Image pixel array

Rotate

Camera orientation

Image sensor

First ro
w Capture

FIGURE 12-1: Camera orientation

The calculations for this are done in setCameraDisplayOrientation(), from ManagedCamera
Activity (this is a simplifi ed version of http://developer.android.com/reference/android/
hardware/Camera.html#setDisplayOrientation(int)), shown in Listing 12-8. (LiveCapturePlus
and the rest of the samples in this chapter use this Activity by deriving their own activities from it.)
You start by converting the current display orientation from an enumerated to a numeric value. Now,
think of the display orientation as doing some of the work required to get the camera image oriented
correctly — after all, the user has rotated the display (and image) for you! You have to compute what
additional rotation you need. In the case of a backward-facing camera, all you have to do is take the
difference between the rotation you want (that is, the camera orientation), and the display orientation.
The calculation is the same for a frontward-facing camera, but you start with a counter-clockwise
rotation by the camera orientation (that is, 360 minus the camera orientation). You then call
setDisplayOrientation() to apply the calculated rotation to the camera image.

LISTING 12-8: setCameraDisplayOrientation

 public void setCameraDisplayOrientation() {
 CameraInfo cameraInfo = new CameraInfo();
 Camera.getCameraInfo(mCameraCurrentlyLocked, cameraInfo);

c12.indd 262c12.indd 262 5/10/2012 2:09:50 PM5/10/2012 2:09:50 PM

www.it-ebooks.info

http://developer.android.com/reference/android
http://www.it-ebooks.info/

Using the Camera Activity x 263

 int rotation = getWindowManager().getDefaultDisplay()
.getRotation();

 int degrees = 0;
 switch (rotation) {
 case Surface.ROTATION_0: degrees = 0; break;
 case Surface.ROTATION_90: degrees = 90; break;
 case Surface.ROTATION_180: degrees = 180; break;
 case Surface.ROTATION_270: degrees = 270; break;
 }

 int desiredRotation =
 (cameraInfo.facing == Camera.CameraInfo.CAMERA_FACING_FRONT) ?
 (360 - cameraInfo.orientation) : cameraInfo.orientation;
 int result = (desiredRotation - degrees + 360) % 360;
 mCamera.setDisplayOrientation(result);
 }

Zoom

LiveCapturePlus determines whether it should enable the camera zoom button with a simple test
in switchCamera():

 mButtonZoom.setEnabled(cameraParameters.isZoomSupported()
 && cameraParameters.getMaxZoom() > 0);

The value returned by getMaxZoom() can vary depending on the preview size, which is why
LiveCapturePlus calls it after determining how it’s going to show the preview, and the preview
size, in setCameraDisplayOrientation().

You should never call getMaxZoom() without calling isZoomSupported()
fi rst to make sure it is allowed. Some cameras do not support zoom at all
when using certain camera preview sizes, so always test isZoomSupported()
after setting the preview size. Also, some cameras return 0 for getMaxZoom()
to indicate that zoom is not supported, rather than returning false for
isZoomSupported().

In this example, the actual control of zoom is done in the onClickListener for the zoom button:

 Camera.Parameters cameraParameters = mCamera.getParameters();
 cameraParameters.setZoom((cameraParameters.getZoom() + 1)
 % cameraParameters.getMaxZoom() + 1);
 mCamera.setParameters(cameraParameters);

All that’s going on here is you are advancing zoom to the next level every time the user presses the
zoom button. The zoom value is an arbitrary integer value. The actual magnifi cation ratios from
zoom are available in getZoomRatios().

c12.indd 263c12.indd 263 5/10/2012 2:09:50 PM5/10/2012 2:09:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

264 x CHAPTER 12 USING THE CAMERA

Focus

Focus is defi ned as the distance at which an image of an object will be as sharp as possible. On
Android devices focus is controlled by a string, which makes it possible to describe lots of different
options for setting focus. You can set it at infi nity, at a fi xed value, or for close-up use with a macro
lens (you see how to use autofocus later in this chapter).

First, a word on the importance of the macro lens. In many things you’ll want to do with image
processing on Android, you’ll want to look at things close to the camera — barcodes, text, and so
on. Doing this with a normal lens is next to impossible, because when you move the camera close
to the object, it goes out of focus. You either have to move the camera far enough away so things
are focused (but then the image is tiny) or move it up close to get a big enough image (but then it is
out of focus.) That is why it is so wonderful that Android devices often have a macro lens, which is
designed to focus well at close range, and provide good magnifi cation.

The process for using focus is similar to that for zoom. When you switch to a new camera, you
enable focus if any supported focus modes exist:

 mlszFocusModes = cameraParameters.getSupportedFocusModes();
 mButtonFocus.setEnabled(mlszFocusModes.size() > 0);

You then sequence through the various focus modes supported on the camera in the onClick()
handler for mButtonFocus:

 Camera.Parameters cameraParameters = mCamera.getParameters();
 mnFocusMode = (mnFocusMode + 1) % mlszFocusModes.size();
 cameraParameters.setFocusMode(mlszFocusModes.get(mnFocusMode));
 mCamera.setParameters(cameraParameters);

Switching Cameras

The onClick() code for mButtonSwitch uses the switchCamera() method in the Preview class to
switch from one camera to the next. It also manages its internal state (which buttons are enabled
and so on). The important thing here is to stop camera preview before switching cameras, and to
release the previous camera before you open the next.
You should start the camera preview again only after setting the camera preview size and display
orientation. onClick() calls the advanceCamera() method in ManageCameraActivity to do this:

 protected void advanceCamera()
 {
 mCamera.stopPreview();
 mCamera.release();
 mDefaultCameraId = (mDefaultCameraId + 1) % mNumberOfCameras;
 mCamera = Camera.open(mDefaultCameraId);
 setCameraDisplayOrientation();
 }

Flash

The fl ash modes that may be available on an Android camera are shown in Table 12-1. Flash is usu-
ally not available in live capture so the code for controlling it in LiveCapturePlus, generally, does
not have any effect, but the process for controlling the fl ash is illustrated.

c12.indd 264c12.indd 264 5/10/2012 2:09:50 PM5/10/2012 2:09:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Camera Activity x 265

RuntimeExceptions WHEN SETTING CAMERA PARAMETERS

One quirk of fl ash — and some of the other camera parameters, such as white
balance — is that setting them may generate a RuntimeException, even though
you are using a “legal” mode. This is apparently because the camera is in a state
that is inconsistent with the requested parameter. This use of RuntimeException
seems to be largely undocumented. The decision to generate RuntimeExceptions
may be up to the camera manufacturer. This is the reason for catching (and
ignoring) the RuntimeException in the onClick listener. The application could
also report the failure to set the camera parameter to the user, or record that this
camera does not support the requested parameter and avoid its use in the future.

TABLE 12-1: Android Flash Modes

FLASH MODE DESCRIPTION

FLASH_MODE_AUTO Flash is used if required

FLASH_MODE_OFF Flash will never be used

FLASH_MODE_ON Flash will be fi red during snapshot

FLASH_MODE_RED_EYE If required, fl ash will be pre-fi red before capture to reduce red-eye,

then fi red during snapshot

FLASH_MODE_TORCH Flash is on continuously

Other Camera Parameters

Cameras support many other controllable parameters, which are also controlled in
LiveCapturePlus.

White Balance

The effect of ambient light on the colors of a captured image is striking — without white balance
compensation, an indoor scene illuminated with incandescent light looks orange — and one way to
compensate for that is by using the camera’s white balance function.

The settings supported in the CameraParameters class for white balance are shown in the following
list. LiveCapturePlus controls white balance in the same way as focus, fl ash, and zoom.

 ‰ WHITE_BALANCE_AUTO

 ‰ WHITE_BALANCE_CLOUDY_DAYLIGHT

 ‰ WHITE_BALANCE_DAYLIGHT

 ‰ WHITE_BALANCE_FLUORESCENT

 ‰ WHITE_BALANCE_INCANDESCENT

c12.indd 265c12.indd 265 5/10/2012 2:09:50 PM5/10/2012 2:09:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

266 x CHAPTER 12 USING THE CAMERA

 ‰ WHITE_BALANCE_SHADE

 ‰ WHITE_BALANCE_TWILIGHT

 ‰ WHITE_BALANCE_WARM_FLUOURESCENT

Except in specifi c situations where you know a lot about the scene, it is best to leave the default
white balance setting (WHITE_BALANCE_AUTO, if supported) because you usually don’t know what the
ambient light is. If you are really concerned about color you should use algorithmic white balance
to try to compensate for lighting changes that may not be detectable with the camera’s automatic
settings. Without compensation, colors can be skewed toward the color of the light, and, therefore,
diffi cult to recognize. Some such techniques are discussed later.

Advanced Focus and Metering Settings

More advanced cameras allow the defi nition of specifi c areas in the image to control focus and
exposure, in order to get the best possible image of an area of interest.

We will leave the choice of these settings to professional photographers, who make use of similar
settings when getting the best possible image of a scene. Your program will probably not have access
to the information needed to choose appropriate settings.

Scene Mode

Some cameras allow you to use “scene mode” to choose collections of preset values such as white bal-
ance, focus, metering, and fl ash. This allows you to take the best possible pictures whether you are
taking a portrait, in a dark theater, or at a party. The scene modes available in Android are as follows:

 ‰ SCENE_MODE_ACTION

 ‰ SCENE_MODE_AUTO

 ‰ SCENE_MODE_BARCODE

 ‰ SCENE_MODE_BEACH

 ‰ SCENE_MODE_CANDLELIGHT

 ‰ SCENE_MODE_FIREWORKS

 ‰ SCENE_MODE_LANDSCAPE

 ‰ SCENE_MODE_NIGHT

 ‰ SCENE_MODE_NIGHT_PORTRAIT

 ‰ SCENE_MODE_PARTY

 ‰ SCENE_MODE_PORTRAIT

 ‰ SCENE_MODE_SNOW

 ‰ SCENE_MODE_SPORTS

 ‰ SCENE_MODE_STEADYPHOTO

 ‰ SCENE_MODE_SUNSET

 ‰ SCENE_MODE_THEATRE

c12.indd 266c12.indd 266 5/10/2012 2:09:51 PM5/10/2012 2:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Simple Barcode Reader x 267

You see how to use scene mode later in the barcode example program. It is best to use an appropriate
scene mode, when available, for the type of image being captured if that is known, because you can
expect that the camera manufacturer made reasonable choices for the scene type. For example, SCENE_
MODE_FIREWORKS would turn off the fl ash and set for maximum exposure time. SCENE_MODE_PARTY
would turn fl ash to FLASH_MODE_RED_EYE and set focus settings to take portraits and group shots.

GPS

Images captured and stored in fi les in Android have embedded GPS coordinates, which is useful for
integration with map applications on the web. The setGps* calls enable you to control the GPS val-
ues written to the images.

Color Eff ects

For entertainment purposes, some cameras allow the color values in the image to be manipulated in
various ways, such as giving everything a sepia tone, or making it look like a photographic negative.
These modes are of little use for the purposes of this chapter.

CREATING A SIMPLE BARCODE READER

Now it’s time to have some fun and build an interesting image processing application. Image processing
is much easier when your application is trying to interpret something that “wants” to be interpreted,
and the most common thing that is designed to be interpreted with image processing techniques is a
barcode. BarcodeReaderActivity is a complete application that captures a camera preview image,
decodes it, and attempts to read an EAN-13 barcode (the most common kind of barcode) from it.

BarcodeReaderActivity includes four interesting features not previously discussed:

 ‰ Decoding the barcode

 ‰ Autofocus

 ‰ Processing — not just displaying — the camera preview image

 ‰ Detecting the barcode and extracting it for decoding

The following sections explore each of these features in turn.

Understanding Barcodes

You’ve seen barcodes on many products. The most common kind of barcode, the one-dimensional
barcode, consists of a number of vertical black and white stripes. EAN-13 barcodes, which are
offi cially called International Article Numbers (originally “International” was “European”), encode
13 decimal digits. They are a superset of the Universal Product Code (UPC) barcodes used in the
United States, so the example barcode reader will work for UPC codes, too. Such barcodes are
typically used to identify a product by number.

In EAN-13 barcodes, each of the 13 digits, except the fi rst (discussed later), is encoded with seven
vertical bars (referred to here and in code comments as elementary bars), each of which can be white
or black. There’s no spacing between bars, so two adjacent bars of the same color look like one wide

c12.indd 267c12.indd 267 5/10/2012 2:09:51 PM5/10/2012 2:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

268 x CHAPTER 12 USING THE CAMERA

bar. Each digit has two different encodings, one with even parity (that is, an even number of black
stripes) and one with odd parity.

For example, the digit 0, in odd parity, is encoded with the pattern 0001101, where 0 stands for a
white bar and 1 stands for a black bar. It is shown in Figure 12-2.

0 0 0 1 1 0 1

FIGURE 12-2: Odd parity barcode for zero

BarcodeReader keeps all the information describing EAN-13 barcodes in the Ean13Barcode1D
class. The digit codes for the different odd parity digits are stored in a HashMap, as shown in
Listing 12-9.

LISTING 12-9: Odd parity digit codes

 /* The odd parity left (character set A) barcodes for the ten
 digits are:
 0 = 3-2-1-1 = 0001101 = 0x0d
 1 = 2-2-2-1 = 0011001 = 0x19
 2 = 2-1-2-2 = 0010011 = 0x13
 3 = 1-4-1-1 = 0111101 = 0x3d
 4 = 1-1-3-2 = 0100011 = 0x23
 5 = 1-2-3-1 = 0110001 = 0x31
 6 = 1-1-1-4 = 0101111 = 0x2f
 7 = 1-3-1-2 = 0111011 = 0x3b
 8 = 1-2-1-3 = 0110111 = 0x37
 9 = 3-1-1-2 = 0001011 = 0x0b
 */
 mhOddLeft = new HashMap<Integer, Character>();
 mhOddLeft.put(0x0d, '0');
 mhOddLeft.put(0x19, '1');
 mhOddLeft.put(0x13, '2');
 mhOddLeft.put(0x23, '4');
 mhOddLeft.put(0x31, '5');
 mhOddLeft.put(0x2f, '6');
 mhOddLeft.put(0x3b, '7');
 mhOddLeft.put(0x37, '8');
 mhOddLeft.put(0x0b, '9');

VARIABLE NAMING CONVENTION

A brief note on the variable naming conventions used in this and later code:
the initial prefi x m means the variable is a member variable or fi eld, and the
following lowercase characters indicate the type of the variable, using n for int,
sz for string, b for byte, h for HashMap, and so on.

c12.indd 268c12.indd 268 5/10/2012 2:09:51 PM5/10/2012 2:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Simple Barcode Reader x 269

An EAN-13 barcode consists of two groups of six individual digit barcodes, one after the
other, with some additional decoration marking the beginning, middle, and end of the barcode.
Ean13Barcode1D describes the overall structure of the barcode in public static fi nal variables:

A three-bar pattern at the beginning and end, consisting of a black bar, a white bar, and a
black bar:

public static final int LEFT_WIDTH = 3; // number of elementary bars in the
 // left-side pattern
public static final int RIGHT_WIDTH = 3; // number of elementary bars in
 // the right-side pattern

A fi ve-bar pattern in the middle, consisting of alternating white and black bars, and
beginning and ending with black bars, that separates the two groups of six digits:

public static final int MID_WIDTH = 5; // number of elementary bars in the
 // middle pattern

The entire barcode is guaranteed to have some white space surrounding it. That is why,
when you are searching for the barcode in the image, you can look for some white space
followed by the black-white-black pattern at the beginning and end.

The following are three complications in EAN-13 barcodes:

 ‰ An implied fi rst digit, which is encoded in the parity of the digits in the left half of the pattern
(but the fi rst digit in the left half is always guaranteed to have odd parity).

 ‰ The last digit in the barcode is a check digit whose value is determined by a simple computa-
tion based on the other digits.

 ‰ The right half of the pattern is encoded exclusively with odd parity, and the white and black
bars are reversed.

The following sections look at how Ean13Barcode1D handles each of these complications.

Parity and Implied First Digit

When you are decoding the left half of the barcode, you detect and record the parity of each digit in
the decodeBarcode() method. At this point, bStripes is a binary encoding of the image (0 =
black, 1 = white) and nCurr is an index into bStripes for the position of the current stripe you are
interpreting:

 for (int nDigit = 0; nDigit < LEFT_DIGITS; nDigit++) {
 int nSum = 0;
 // build an index into digitCodes for this pattern
 for (int l = 0; l < DIGIT_WIDTH; l++) {
 nSum = nSum * 2 + bCompressed[nCurr++];
 }
 if (nDigit == 0) {
 // in EAN-13 the first digit always has odd parity
 if (mhOddLeft.containsKey(nSum)) {
 sbBarcode.append(mhOddLeft.get(nSum));
 nLeftParity = 1;
 } else {

c12.indd 269c12.indd 269 5/10/2012 2:09:51 PM5/10/2012 2:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

270 x CHAPTER 12 USING THE CAMERA

 // the first digit didn't match any of the codes
 return null;
 }
 } else {
 // determine the parity of the digit
 if (mhOddLeft.containsKey(nSum)) {
 sbBarcode.append(mhOddLeft.get(nSum));
 nLeftParity = (nLeftParity * 2) + 1;
 } else if (mhEvenLeft.containsKey(nSum)) {
 sbBarcode.append(mhEvenLeft.get(nSum));
 nLeftParity = nLeftParity * 2;
 } else {
 return sbBarcode.toString();
 }
 }
 }

decodeBarcode() works by fi rst building an index in the nSum integer that encodes the bit pattern
from the image, using 1 for a black stripe and 0 for a white stripe. The digit 0, encoded in odd par-
ity, will have the bit pattern 0001101, as shown in Figure 12-2, and will be encoded in nSum as the
hex value 0x0d. decodeBarcode() then looks up the encoded value in mhOddLeft (the odd parity
encoded digits) and mhEvenLeft (the even parity encoded digits). If the encoded value can’t be found
in either HashMap, it returns what it did fi nd.

When decodeBarcode() fi nds the encoded value it records the parity in the nLeftParity integer
value. After all the digits in the left pattern are read, nLeftPattern is used to fi nd the encoded
implied digit, which decodeBarcode() appends to the beginning of the barcode:

 if (mhFirstDigit.containsKey(nLeftParity)) {
 sbBarcode.insert(0, mhFirstDigit.get(nLeftParity));
 } else {
 return sbBarcode.toString();
 }

Once again, if decodeBarcode() can’t fi nd the encoded parity it returns what barcode it did fi nd.
The philosophy behind Ean13Barcode1D, as a demonstration program, is to return whatever por-
tion of the barcode that has been read, in order to give the user feedback on what is being read. This
makes for a better demonstration of barcode reading since the user can see some of the process of
barcode reading. In a “real” barcode reading program you would return the complete barcode only
after it has been read and the check digit verifi ed.

The Check Digit

The check digit is computed in the verifyCheckDigit() method, which is called from
decodeBarcode(), as shown in Listing 12-10.

LISTING 12-10: verifyCheckDigit

private static boolean verifyCheckDigit(String digits) {
 // compute check digit
 // add odd digits

c12.indd 270c12.indd 270 5/10/2012 2:09:51 PM5/10/2012 2:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Simple Barcode Reader x 271

 int nOddSum = 0;
 for (int i=1; i<digits.length()-1; i+=2) {
 nOddSum += Character.digit(digits.charAt(i), 10);
 }
 // add even digits
 int nEvenSum = 0;
 for (int i=0;i<digits.length()-1; i+=2) {
 nEvenSum += Character.digit(digits.charAt(i), 10);
 }
 // compute odd digit sum * 3 + even digit sum;
int nTotal = nOddSum*3 + nEvenSum;
 // check digit is this sum subtracted from the next higher
 // multiple of 10
 int checkDigit = (nTotal/10 + 1) * 10 - nTotal;
return Character.digit(
 digits.charAt(digits.length()-1), 10) == checkDigit;
}

The computation is specifi ed by the design of EAN-13 barcodes. Sums of the odd and even digits are
formed, and then the odd sum is multiplied by three and added to the even sum. The difference between
the next higher multiple of 10 and this total is then computed. This will be a digit from 0–9. This should
match the last digit in the barcode. If it does, ReadBarcode sets a checkmark in the barcode display:

 mTextViewResult.setText(szBarcode);
 mbFoundBarcode = Ean13Barcode1D.verifyCheckDigit(szBarcode);
 mCheckBoxResult.setChecked(mbFoundBarcode);

Right Half of the Barcode

The right half of the barcode is decoded similarly to the left half, with two differences: 1) In the
right half white and black bars are reversed; 2) The right half uses odd parity exclusively. This sim-
plifi es the code quite a bit; all you have to do is encode the white bars as 1 and the black bars as 0,
and then use the odd parity lookup table:

 // nCurr points to the end of the left digits
 nCurr += MID_WIDTH;
 for (int nDigit = 0; nDigit < RIGHT_DIGITS; nDigit++) {
 int nSum = 0;
 // build an index into digitCodes for this pattern
 for (int n = 0; n < DIGIT_WIDTH; n++) {
 nSum = nSum * 2 + (1 - bCompressed[nCurr++]);
}
 if (mhOddLeft.containsKey(nSum)) {
 sbBarcode.append(mhOddLeft.get(nSum));
 } else {
 // the first digit didn't match any of the codes
 return sbBarcode.toString();
 }
 }

Once again, if decodeBarcode() doesn’t fi nd a match, it just returns the partial match for display.

Now it’s time to take a step back to look at controlling the camera again, and discuss autofocus,
which is crucial to processing a barcode.

c12.indd 271c12.indd 271 5/10/2012 2:09:51 PM5/10/2012 2:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

272 x CHAPTER 12 USING THE CAMERA

Autofocus

To capture a good image of a barcode for processing, you must ensure it is in focus. Unlike camera
properties like preview size or fl ash, autofocus is not a property you simply set and forget, putting the
camera in autofocus mode indefi nitely. It is, instead, a command you send to the camera, which eventu-
ally completes. What is actually happening during autofocus is the camera is physically moving the lens
in and out and measuring the sharpness of the image it captures in certain defi ned areas (these areas
can be controlled, on some cameras, by setting the focus areas using setFocusAreas()). This goes on
for a while, after which the camera reports whether its measurements indicate it achieved good focus.

BarcodeReaderActivity initiates autofocus in its onResume() method, passing it mReadBarcode,
which implements Camera.AutoFocusCallback:

 mCamera.autoFocus(mReadBarcode);

ReadBarcode’s implementation of the callback is very simple:

 @Override
 public void onAutoFocus(boolean success, Camera camera) {
 if (!success) {
 // try again
 camera.autoFocus(this);
 } else {
 mnFocused = 5;
 }
 }

When the camera calls the callback, it has focused the camera or not, as shown in the state of the
success variable. The autofocus callback restarts autofocus if it failed. If it succeeded, it sets a
variable (mnFocused) that will count down the number of attempts it makes to read a barcode. The
assumption is that as the user moves the camera around, the barcode will stay in focus for a while,
so you make several attempts to read it, giving the user time to position the barcode reader just right.

onPreviewCallback() is discussed in more detail soon. But just to complete the discussion of auto-
focus, the last thing onPreviewCallback() does is to start autofocus again:

 } finally {
 if (--mnFocused == 0) {
 camera.autoFocus(this);
 }
 }

mnFocused is decremented so it tries recognize the barcode a few times before giving up and starting
autofocus again. (The camera will keep calling onCameraPreview() and you will keep processing
images so long as mnFocused is non-zero.)

So, the overall process works like this:

1. Start autofocus.

2. When autofocus completes: if it failed, start it again, otherwise make several attempts to
detect a barcode.

3. When it’s done trying to detect the barcode, restart autofocus.

c12.indd 272c12.indd 272 5/10/2012 2:09:51 PM5/10/2012 2:09:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Simple Barcode Reader x 273

STOPPING CALLBACKS

Whenever you release the camera you should manually stop all callbacks —
otherwise, it’s possible that the callback will be called after the camera is released
and you will get a hard-to-interpret RuntimeException. ManageCameraActivity
does this in its implementation of onPause:

 mCamera.autoFocus(null);
 mCamera.setErrorCallback(null);
 mCamera.setOneShotPreviewCallback(null);
 mCamera.setPreviewCallback(null);
 mCamera.setPreviewCallbackWithBuffer(null);
 mCamera.setZoomChangeListener(null);
 mCamera.release();
 mCamera = null;

Note that it is safe to set the callbacks to null without fi rst determining whether
they have been set to anything else.

Using the Camera Preview Image and Detecting the Barcode

Android calls onPreviewFrame() when a camera preview image is ready for processing. This is set
in the onResume() method of BarcodeReaderActivity:

 mCamera.setPreviewCallback(mReadBarcode);

Please keep in mind two things about onPreviewFrame():

 ‰ The camera preview size, camera orientation, and even camera can vary from call to
call, for example when the user changes the orientation of the device. So, it’s impor-
tant not to assume that the last preview image has anything in common with the current
preview image.

 ‰ All preview image formats are very simple layouts of pixels without compression. The pre-
view format is under control of the program that controls the camera, and it may be possible
to choose a format to make your work easier. However, only the NV21 format is supported
by all cameras, so unless you have a good reason to use a different format, you should use
NV21, which is the default format.

Let’s take a look at the NV21 format, because it is so important. It is based on the YUV color space,
which is a relic of the conversion from black and white to color television — the Y in YUV is the
original black and white television brightness value. U and V were added to the black and white sig-
nal so that color could be encoded. To be compatible with black and white televisions, the Y signal
was sent fi rst, and then the U and V signals were sent, the signal being structured so existing black
and white televisions would ignore the U and V signals and just show Y. Color televisions could
decode the U and V signals and use them, together with Y, to create a red, green, and blue (RGB)
color value, which they would then show.

c12.indd 273c12.indd 273 5/10/2012 2:09:52 PM5/10/2012 2:09:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

274 x CHAPTER 12 USING THE CAMERA

NV21 is structured much like those early color television signals. Y comes fi rst, then U and V, at
reduced resolution. (The resolution for U and V doesn’t have to be as high as for Y because the
human eye is less sensitive to changes in color than changes in brightness. By providing U and V at
reduced resolution, NV21 saves space with little to no observable loss in image quality.)

Figure 12-3 shows NV21 layout in detail. The format consists of an array of N×N U pixels, followed
by an N/2×N/2 array of pairs of V and U pixels, V coming fi rst in each pair. All pixels are stored as
8-bit unsigned bytes with minimum value 0x00 and maximum value 0xff.

N/2

N/2

VU

N

YN

N×N 2×(N/2)×(N/2) = N×N/2

U(N/2-1,N/2-1)V(N/2-1,N/2-1)U(0,1)V(0,1)U(0,0)V(0,0) ...Y(0,0) Y(0,1) Y(0,2) Y(N-1,N-2) Y(N-1,N-1)...

FIGURE 12-3: NV21 layout

In barcode reading you are not interested in color (using the color values from the camera preview
image is discussed in the next chapter), so you can ignore the VU matrix and treat the camera pre-
view image as an N×N unsigned byte array.

Take a look at the code in ReadBarcode’s implementation of onPreviewFrame() that makes use of
the input camera preview image. It begins by using the camera parameters to determine the dimen-
sions of the preview image:

 Parameters cameraParameters = camera.getParameters();
 int imageFormat = cameraParameters.getPreviewFormat();
 if (imageFormat == ImageFormat.NV21) {
 Size size = camera.getParameters().getPreviewSize();

In the barcode reading program you try to be as fl exible as possible, allowing the user to read the
barcode horizontally or vertically. This means you have to read the barcode either as a series of
columns or as a series of rows from the image. The code to read the image values horizontally
(column-wise) is straightforward:

 int i = 0;
 for (nCol = nStartCol; nCol < nEndCol; nCol++) {
 int nValue = 0xff & (int) data[nRowOffset + nCol];
 nValues[i++] = nValue;
 }

c12.indd 274c12.indd 274 5/10/2012 2:09:52 PM5/10/2012 2:09:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Simple Barcode Reader x 275

The only interesting thing about this code is the transformation of the input byte value into an integer
by a bitwise AND with the mask 0xff. The reason for this is that an image byte value runs from 0 (hex
0x00) (black) to 255 (hex 0xff) (white). Byte values in Java are signed, so if you were to use this value
as a byte value directly, any value greater than 128 (0x80) would be sign-extended into a negative num-
ber — in other words, brightness values greater than 128 would be misinterpreted. By performing a
bitwise AND with 0xff you remove the sign extension bits and convert the image byte into an unsigned
integer value. For example, if the image value was 0xff this would be interpreted in Java as the signed
byte value –1, and converted to the integer value –1, or 0xffffffff. Applying a bitwise AND of this with
0xff gives the integer value 0x000000ff, or 255, which is the value you want for computation.

You’ll get to the actual search for the barcode shortly. If the barcode is not found horizontally, you
repeat the search vertically, taking the image values by rows:

 i = 0;
 for (nRow = nStartRow; nRow < nEndRow; nRow++) {
 int nValue = 0xff & (int) data[nColOffset + nRow
 * width];
 nValues[i++] = nValue;
 }

You may have noticed the odd (unusable) calls to DebugImage in this method. Those are discussed next.

Debugging Image Processing Programs on Android

For the most part, Android’s excellent debugging tools — the emulator and the ability to step into
programs running on Android devices, examine variables, and so on — work very well for image
processing. However, it is almost impossible to debug an image processing program without control-
ling the images that are being processed. If you try to use the live images captured from a camera as
input to the program, it is just too hard to ensure reliable, consistent input data. Also, sometimes it
is necessary to input artifi cial images into image processing programs for testing. It is also very hard
to debug image processing programs using the emulator because no live camera is available.

To do this, you need a method to capture good test images and then substitute them during test
runs. onPreviewFrame() does this by using DebugImage. The methods in DebugImage enable you to
capture the camera preview image and reuse it, or even substitute an artifi cial camera preview image
for the one the camera would provide.

onPreviewFrame() uses two calls to DebugImage methods:

boolean bWrite = false, bRead = false;
if (bWrite) {
 DebugImage.writeGrayImage(data, width, height,
 "barcode.png");
}
if (bRead) {
 data = DebugImage.readGrayImage(width, height,
 "barcode.png");
}

The two methods from DebugImage (both static, making them easy to drop into a program) are:

boolean writeGrayImage(byte[] bData, int nWidth,
 int nHeight, String szFilename)

c12.indd 275c12.indd 275 5/10/2012 2:09:52 PM5/10/2012 2:09:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

276 x CHAPTER 12 USING THE CAMERA

and

byte[] readGrayImage(Integer nWidth, Integer nHeight, String szFilename)

You can use the writeGrayImage() method to write a gray image of your choice to the Android
fi lesystem. All you have to do is set a breakpoint before the conditional test of bWrite and set the
value to true, using the debugger, when you have a good test image (you could also do this by setting
the value to true in the application source, or through a debug button, of course). Once the image
is in the Android fi lesystem, you can upload it to a PC and examine it in detail, or even modify it to
produce optimal test data. You can substitute this image for the camera preview image simply by
setting the bRead value to true, either in the debugger or by editing the code.

It should be noted that these routines are anything but fast. They are intended to be used only for
debugging purposes. Reading and writing images using these routines is much slower than captur-
ing and displaying much higher-resolution images on a device, or writing them to the SD card. This
is because the Android routines for writing compressed images to the SD card have been optimized,
with hardware support.

Note that writeGrayImage() and readGrayImage() read and write only the gray component of the
NV21 camera preview image. The next chapter discusses dealing with the color components.

Now let’s return to discussing the detection and decoding of the barcode.

Detecting the Barcode

The EAN13Barcode1D class provides a method, searchForBarcode(), which searches for the
barcode in a one-dimensional array of image values. searchForBarcode() makes use of some
important image processing concepts to fi nd the barcode:

 ‰ Local thresholding

 ‰ Image processing at multiple resolutions

Look at how these concepts are applied in searchForBarcode().

The human eye does a remarkable job of compensating for variations in illumination, so that you
can look at a scene that is brightly lit, say, by the sun, yet still make out objects in shadow — even
though orders of magnitude more light is reaching the eye from an object in the sun than from an
object in shadow. It does such a good job, in fact, that you are unaware of how much variation there
is in a scene. But when you try to teach a computer to do image processing it becomes obvious what
an incredible job our eyes are doing. A camera captures images with a very narrow range of image
values (0 to 255), which are linearly distributed. When you look at an image captured by a camera,
even an image of a white sheet of paper, you will see remarkable variation in brightness as the result
of changes in illumination, even though the paper looks perfectly white to your eyes. You’ll need
to fi nd ways to ignore these unimportant variations in brightness in order to fi nd the things you’re
looking for.

Cameras like the ones used in Android devices compensate for brightness changes in a scene by
changing the exposure time of the sensor capturing the image — longer exposure gives more light
sensitivity. You may have noticed the camera taking a second or so to adjust this when changing

c12.indd 276c12.indd 276 5/10/2012 2:09:52 PM5/10/2012 2:09:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Simple Barcode Reader x 277

from photographing a brightly lit scene to a darker one. But this just affects the overall scene bright-
ness; you need to do more to deal with variations in brightness within the scene. For example, one
side of a barcode can be quite a bit brighter than the other side. If you were to use a constant defi ni-
tion of “white” and “black” across the barcode, you might well be unable to distinguish the bars on
one side or the other, because they would appear all white or all black.

searchForBarcode() uses a simple local averaging technique for comparing each pixel’s brightness
with the average brightness of the pixels around it to determine whether it is a white or black bar.
If the brightness is greater than the local average, it is white; if not, it is black. The local average is
computed effi ciently by fi rst computing the cumulative sum of the pixels in a row:

 int[] nCumulativeSum = new int[nValues.length];
 nCumulativeSum[0] = nValues[0];
 for (int i = 1; i < nValues.length; i++) {
 nCumulativeSum[i] = nCumulativeSum[i - 1] + nValues[i];
 }

nCumulativeSum[i] then contains the sum of pixels 0, 1, …, i. To compute the sum of any
series of pixels, say from i+1 to j, all you need to do is to compute the difference between
nCumulativeSum[j] and nCumulativeSum[i]. So to compute the average value of the pixels around
a given pixel i, all you have to do is take the difference between appropriate values in
nCumulativeSum and divide by the number of pixels in the average. This gives a simple, fast way to
compute the local threshold:

 int nPixelValue = nPixelSum / nPixCount;
 int nLocalAverage = (nCumulativeSum[nEnd] - nCumulativeSum[nStart])
 / (nEnd - nStart);
 if (nPixelValue > nLocalAverage) {
 bCompressed[j++] = 0;
 } else {
 bCompressed[j++] = 1;
 }

The other image processing concept that is being used in searchForBarcode() is processing the
data at multiple resolutions. You do not know how close the barcode is to the camera. To adjust
for this, you compress the image row into a series of white or black elementary bars (0 or 1 values),
using local thresholding, taking fi rst one pixel per elementary bar, then two pixels per elementary
bar, and so on. This is done in a straightforward fashion:

 // this is the number of pixels we look left and right to determine
 // the local average.
 final int LOCAL_THRESH = 32;
 for (int nPixelsPerBar = 1;
 nPixelsPerBar < nValues.length / TotalWidth;
 nPixelsPerBar++) {
 int nPixVal = 0, nPixCount = 0, j = 0;
 byte[] bCompressed = new byte[nValues.length];
 for (int i = 0; i < nValues.length; i++) {
 nPixVal += nValues[i];
 nPixCount++;
 if (nPixCount == nPixelsPerBar) {
 int nEnd = Math.min(nValues.length - 1,

c12.indd 277c12.indd 277 5/10/2012 2:09:52 PM5/10/2012 2:09:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

278 x CHAPTER 12 USING THE CAMERA

 i + LOCAL_THRESH);
 int nStart = Math.max(0, i - LOCAL_THRESH);
 … the code for computing bCompressed goes here …
 nPixVal = 0;
 nPixCount = 0;
 }
 }

The scan for the barcode start is very simple — you simply look for the pattern “00101” in the
bCompressed array (the black-white-black bar pattern at the beginning of the barcode will always
be preceded by some white space). On fi nding it, you look for the corresponding pattern (“10100”)
at the position corresponding to the barcode end. If you fi nd both patterns, you attempt to decode
the barcode.

Using all this code you can scan a barcode like the one in Figure 12-4.

FIGURE 12-4: Sample barcode

TRY THIS

Select the Barcode button and point the camera at the barcode in Figure 12-4.

Although this method shows some basic image processing concepts, is very fast, and works for well-
behaved barcode images, it is far from perfect. The barcode is assumed to be positioned so that its
white and dark elementary bars are all exactly the same integral width, and start, approximately,
at an integral position in the image. Neither of these assumptions may be true — especially the
assumption that the elementary bars are all the same width. When the paper the barcode pattern is
printed on is not perpendicular to the line of sight from the camera, the elementary bars at one end
of the barcode will be wider than the other. This is especially true because you expect the camera
to be quite close to the barcode when scanning. In other words, you need to take into account
perspective distortion of the barcode.

The best place to go for further understanding of how to process barcodes is the Zxing Google code
site (http://code.google.com/p/zxing/). The code there not only handles perspective distortion
and other image processing issues correctly and effi ciently, but it also handles a very wide variety of
barcodes, including both one-dimensional and two-dimensional codes. And it has implementations
of barcode scanning for Android, J2ME, and many other platforms. This code has become the open
source standard for barcode scanning — you’ve probably already used it on your Android device.

c12.indd 278c12.indd 278 5/10/2012 2:09:52 PM5/10/2012 2:09:52 PM

www.it-ebooks.info

http://code.google.com/p/zxing
http://www.it-ebooks.info/

Summary x 279

SUMMARY

In this chapter you learned how to build an Activity that controls the camera, including camera
selection, zoom, focus, and other hardware camera parameters. The Activity used the camera
preview to show the camera image, and you saw how to control the camera’s autofocus and how
to capture the preview image and use it in a simple barcode recognition program. You also learned
about the structure of the NV21 format, which is Android’s default preview image format, and the
design of EAN-13 barcodes.

The next chapter delves further into image processing, describing how image processing programs
are structured, and introduces JJIL, a library designed for image processing on mobile devices.
You’ll learn how to use JJIL to build image processing programs. The chapter concludes with an
Android logo recognition program, which shows how to start with the color preview image, turn
it into a form useful for processing, detect pixels of a certain color, extract regions of those pixels,
pick out the most likely Android logo by size and color, and display its position — all quickly
enough to track the logo as the user moves the device.

c12.indd 279c12.indd 279 5/10/2012 2:09:53 PM5/10/2012 2:09:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c12.indd 280c12.indd 280 5/10/2012 2:09:53 PM5/10/2012 2:09:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

13
Image-Processing Techniques

WHAT’S IN THIS CHAPTER?

 ‰ Explaining how image-processing programs work

 ‰ Using JJIL to do image processing

 ‰ Example image-processing pipelines

In Chapter 12 you learned how to access and control Android’s camera and to capture and
process images. But there is much more to image processing than merely knowing how
to capture images. Techniques have been developed over decades for dealing with a wide
variety of problems in image processing, and these techniques can be applied directly to
image processing in Android, with some care. This chapter shows you how to employ these
techniques, fi rst by describing the structure of image-processing programs in general, and then
by illustrating image-processing program development with example programs.

THE STRUCTURE OF IMAGE-PROCESSING PROGRAMS

Image-processing programs have a characteristic structure that is driven by the need to
transform large input images into a much smaller collection of meaningful results. The
designers of image-processing programs take advantage of this characteristic structure
in two ways: fi rst, by designing data and control structures that match this characteristic
structure, and, second, by developing algorithms that can be used again and again in different
image-processing programs.

The Image-Processing Pipeline

Image-processing programs are generally structured as an image-processing pipeline: that
is, they operate as a series of steps on images, starting with the input image, and at each

c13.indd 281c13.indd 281 5/11/2012 9:36:55 AM5/11/2012 9:36:55 AM

www.it-ebooks.info

http://www.it-ebooks.info/

282 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

stage transforming the image into a more useful — and often, smaller — image, or possibly into a
different data structure. For example, in an Android image-processing program you may start with
an input image in the NV21 color image format, transform that image into an RGB image, make
some measurement (for example, of white balance) on that image, apply that measurement to the
RGB image to produce a new RGB image (for example, using the white-balance measurement to do
color correction), and then do further processing to extract some object of interest.

With the image-processing pipeline it is possible to consider each step as a separate unit, to make
sure it is doing the right thing, and to swap in other steps to improve performance. In the color
correction example just mentioned, one white-balance measurement can be substituted for another
with little to no impact on the other stages except for, possibly, improved performance.

Common Image-Processing Operations

Broadly speaking, two different types of image-processing operations exist: those that take an image
as input and produce a new image, and those that take an image and produce a different type of
data structure. This section looks at the different kinds of each of these operations, taking them
roughly in the order from the simplest computations to the most complex. You will often see them
applied in this order in image pipelines because you want to apply the simplest operations early,
when the image is large, reserving the more complex operations for later, when the amount of data
has been reduced.

Image-to-Image Operations

Point operations apply a mathematical operation to the individual image pixels. Examples are:

 ‰ Thresholding: A simple threshold operation assigns 0 to values less than a certain value,
called the threshold, and 1 to values greater than the threshold. You used thresholding in
Chapter 12 to change the input image values (which ranged in value from 0 to 255) to binary
values for recognizing the barcode. Figure 13-1 shows a thresholding operation.

FIGURE 13-1: Thresholding an image

c13.indd 282c13.indd 282 5/11/2012 9:36:59 AM5/11/2012 9:36:59 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 283

 ‰ Histogram equalization: Histogram equalization is a way of improving image contrast.
A histogram is a frequency count of pixel values. Images with poor contrast tend to have
histograms that are “bunched up” in a small portion of the potential image values. An example
is shown in Figure 13-2. In the original image the strawberry has low contrast, with pixel
values only in the midrange, as the histogram shows. Histogram equalization reassigns pixel
values so the histogram is stretched out over the full range of pixel values. The resulting image
has much higher contrast, and it is easier to pick out features that may be of interest, such as
the seeds.

Histogram

Histogram

Histogram equalization

FIGURE 13-2: Histogram equalization

 ‰ Conversion: Conversion operations are point operations of a special kind: you take an image
of one type and convert it to another type without interpreting the contents of the image pix-
els in any other way. For example, you might convert an Android NV21 color image into an
RGB color image, or convert an RGB color image into a gray image. Conversion operations
are usually quite fast and can be implemented with table lookup or heavily optimized calcula-
tion. For example, the calculation used to convert the NV21 image, which represents colors
with YUV (input integer values nY, nU, and nV), to the RGB color space (output integer val-
ues nR, nG, and nB), used in calculation, is:

int nC = nY - 16;
 int nD = nU - 128;
 int nE = nV - 128;
 int nR = Math.max(0, Math.min(255, ((298 * nC + 409 * nE + 128) >> 8)));
 int nG = Math.max(0, Math.min(255, ((298 * nC - 100 * nD - 208 * nE + 128) >> 8)));
 int nB = Math.max(0, Math.min(255, ((298 * nC + 516 * nD + 128) >> 8)));

You learn more about the NV21 image later in this chapter.

 ‰ Reduction: I reduction operations you reduce the size of the image by a constant factor,
for example by averaging 2 ¥ 2 square pixel areas to halve the image width and height.
These operations are frequently optimized with mathematical tricks like the one used to
compute the local threshold in barcode detection in Chapter 12. The cumulative sum of
pixels was calculated so you could calculate the sum of pixels from i+1 to j just by sub-
tracting nCumulativeSum[i] from nCumulativeSum[j].

 ‰ Spatial transformation: Spatial transformation operations rearrange the positions of the pix-
els without changing their values, for example by rotating or stretching them. You can imple-
ment these operations effi ciently using table lookups.

c13.indd 283c13.indd 283 5/11/2012 9:36:59 AM5/11/2012 9:36:59 AM

www.it-ebooks.info

http://www.it-ebooks.info/

284 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

 ‰ Filtering: Filtering operations apply a two-dimensional mathematical fi lter to enhance some
feature of interest, or to fi lter out some unwanted artifact. These operations include edge
detection, smoothing, noise reduction, contrast enhancement, and so on. There is a vast lit-
erature on these operations, which lend themselves to mathematical as well as computational
analysis and optimization.

 ‰ Grouping: Grouping operations are an important step toward reducing the image into a
small collection of features, but they still produce an image as output. An example is con-
nected components, which labels an input binary image so that two pixels have the same
value only if there is a connected path between them in the input. These operations tend to
be relatively expensive, and are applied only after other, less expensive, operations have been
applied to reduce the image size.

Next you look at operations that transform an image into another type of data structure. This is a
key step in extracting useful information from an image. These operations do not naturally fall into
groups, so you will simply see some important examples.

Image-to-Object Operations

Perhaps the most important image-to-object operation is computing a histogram. A histogram is a
frequency count of pixel values. For gray byte images it is just an array of 256 integer values, with
value i equal to the number of occurrences of pixel value i. Histograms are used to enhance the con-
trast of an image and to choose appropriate values for thresholding.

An important operation for fi nding objects in an image is Hough transform. This operation
performs a spatial transformation of an image of a special kind, which is designed to locate objects
of a specifi c shape. The simplest, and original, Hough transform was designed to fi nd lines in
photographs from cloud chambers. Lines were parameterized in a two-dimensional array by slope
and y-intercept. Each pixel that passed a threshold test was mapped to all possible lines that could
pass through that point, and array elements corresponding to those lines were incremented. The
peaks in the array corresponded to the lines in the image. Hough transforms have been developed to
detect all sorts of shapes.

After labeling an image with connected components, the next step is usually to extract descriptions
of the connected regions with feature extraction. This algorithm produces a list of the connected
regions in the image and measures their area, center, perimeter, and possibly other useful features.
You can use these features to determine where a particular object you are looking for is located.

Because these image-processing operations are so important and do the same kinds of processing,
it makes sense to organize them with data and control structures that make them easy to use and
develop. I have built such a library, called Jon’s Java Imaging Library (JJIL), which is the subject of
the next section.

Jon’s Java Imaging Library (JJIL)

JJIL has been optimized specifi cally for image processing on devices where computation and
memory are in limited supply, such as Android devices. JJIL is open source and available at http://
code.google.com/p/jjil/ and includes all the image-processing operations described in the
preceding sections. This section explores the structure of JJIL.

c13.indd 284c13.indd 284 5/11/2012 9:37:00 AM5/11/2012 9:37:00 AM

www.it-ebooks.info

http://code.google.com/p/jjil
http://code.google.com/p/jjil
http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 285

Image

Two core concepts in JJIL are defi ned in jjil.core: Image and PipelineStage. An Image is an
object that stores image data and has a defi nite width and height. Images also support access to
their data as an array. A number of different types of images exist: gray (8-bit, 16-bit, and 32-bit
pixel); color (8-bit pixel); and complex (32-bit pixel). More specialized images also exist, such as
a sub-image type for taking a portion of an input image and keeping track of the location of that
portion.

All Image types support these methods:

 ‰ The constructor Image(int cWidth, int cHeight) creates a new image of the given width
and height.

 ‰ Image clone() returns a “deep” copy of the image, that is, one that actually creates a copy
of the image pixels. Note that images processed in pipeline stages are usually passed using a
“shallow” copy, allowing reuse of their pixels, for effi ciency in space.

 ‰ int getHeight() returns the image height.

 ‰ int getWidth() returns the image width.

Image types also support a method for accessing their pixels. To make this as effi cient as possible,
the image data can be accessed directly as a one-dimensional array. This method is called get-
Data(). For example, Gray8Image (an image supporting signed 8-bit image pixels) implements this
method:

byte[] getData()

PipelineStage

A PipelineStage is an image-to-image operation. It takes a single image as a parameter and pro-
duces another image as output. Other parameters must be supplied through the constructor or aux-
iliary methods. The input and output types of PipelineStage are both Image; this makes it easier
to compose multiple stages into a sequence (especially in the absence of generic types), but makes it
necessary to check parameter types at run time.

A PipelineStage must implement this method:

void push(Image imageIn)

It may also implement these methods, or it can use the default implementations:

boolean isEmpty()
Image getFront()

The semantics of these methods are:

 ‰ push(Image): Takes an Image as input. After verifying that it is of the right type (for exam-
ple, Gray8Image or RgbImage), do whatever processing is required for this input. The out-
put, if any, is saved so it can be retrieved using getFront() and the presence of an output, if
there is one, is set so it can be retrieved using isEmpty().

c13.indd 285c13.indd 285 5/11/2012 9:37:00 AM5/11/2012 9:37:00 AM

www.it-ebooks.info

http://www.it-ebooks.info/

286 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

 ‰ isEmpty(): Returns a boolean value indicating whether or not an output is available from
the PipelineStage. Each pipeline stage is allowed to return zero, one, or any other num-
ber of outputs given an input. The user of the PipelineStage must test for the presence
of an output using isEmpty() before attempting to retrieve it — otherwise, an exception is
generated when getFront() is called.

 ‰ getFront(): Returns the next Image resulting from processing an input using push().
When getFront() is called, the current image is “popped” from the PipelineStage’s
internal storage; calling getFront() again returns a new image, if there is one (which
can be determined using isEmpty()). If there is no image, IllegalStateException is
thrown. When more than one image is provided by a pipeline stage, each new image is
retrieved with a new call to getFront(), after using isEmpty() to detect the
image’s presence.

In addition to these public methods, PipelineStage implements a protected method to help the
implementer of PipelineStage-derived classes. This is:

setOutput(Image imageResult)

This method is used in the common case where a push() operation returns a single Image. The
implementer of push() calls setOutput(Image imageResult) to set the output of the push()
operation to imageResult, and then the default implementations of isEmpty() and getFront()
will correctly provide the image to the caller.

A complete example (from jjil.algorithm) of a simple PipelineStage is shown in the following
code. It implements a conversion operation, converting a signed byte image (a Gray8Image) into a
32-bit image (a Gray32Image):

 public class Gray82Gray32 extends PipelineStage {
 /** Creates a new instance of Gray82Gray32 */
 public Gray82Gray32() {
 }
/** Converts an 8-bit gray image into a 32-bit image by replicating,
 * changing the data range of the bytes from -128->127 to 0->255.
 *
 * @param image the input image.
 * @throws IllegalArgumentException if the input is not a
 * Gray8Image
 */
 public void push(Image image) throws IllegalArgumentException {
 if (!(image instanceof Gray8Image)) {
 throw new IllegalArgumentException(image.toString() + "" +
 " should be a Gray8Image, but isn't");
 }
 Gray8Image gray = (Gray8Image) image;
 byte[] grayData = gray.getData();
 Gray32Image gray32 = new Gray32Image(image.getWidth(), image.getHeight());
 int[] gray32Data = gray32.getData();
 for (int i=0; i<gray.getWidth() * gray.getHeight(); i++) {
 /* Convert from signed byte value to unsigned byte for
 * storage in the 32-bit image.
 */

c13.indd 286c13.indd 286 5/11/2012 9:37:00 AM5/11/2012 9:37:00 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 287

 int grayUnsigned = ((int)grayData[i]) - Byte.MIN_VALUE;
 /* Assign 32-bit output */
 gray32Data[i] = grayUnsigned;
 }
 super.setOutput(gray32);
 }
 }

This PipelineStage implements only the push() method. It relies on the default implementations
of isEmpty() and getFront().

The fi rst step in push() is to verify that the argument is of the right type. You must do this test at
run time because all PipelineStages take Image parameters:

if (!(image instanceof Gray8Image)) {
 throw new IllegalArgumentException(image.toString() + "" +
 " should be a Gray8Image, but isn't");
 }

After this test you can safely get a reference to the input parameter as a Gray8Image:

Gray8Image gray = (Gray8Image) image;

Having the Gray8Image reference enables you to access the data (pixels) in the image:

byte[] grayData = gray.getData();

You will need an output image to store the result. If the output was also a Gray8Image, the nor-
mal thing to do would be to reuse the input. (To save on memory, PipelineStages are allowed to
modify their input. Callers should not assume the input will not be modifi ed and must use clone()
to make a copy of the input if they need to keep the original data.) But this output is a Gray32Image,
not a Gray8Image. So, you must create a new image to hold the result:

Gray32Image gray32 = new Gray32Image(image.getWidth(), image.getHeight());

You can get a pointer to the output data just as you did with the input image:

int[] gray32Data = gray32.getData();

Now you will set the output pixels. The loop iterates over all pixels by treating them as one large
array (note that, because the input and output images are the same size, there is no possibility of
out-of-bounds access). You don’t need to do the arithmetic needed to treat the image as a two-
dimensional array because this is a point operation:

for (int i=0; i<gray.getWidth() * gray.getHeight(); i++) {

The actual conversion of an 8-bit signed value to a 32-bit integer adds an offset, so the minimum
value in the signed pixel (that is, –128) maps to 0. As a convention, image-processing algorithms
manipulate image data as unsigned integer values, with 0 representing black and 255 (in 8-bit image
data) representing white. It simplifi es some algorithms to map that special value to and from the
minimum byte value:

int grayUnsigned = ((int)grayData[i]) - Byte.MIN_VALUE;
/* Assign 32-bit output */
gray32Data[i] = grayUnsigned;

c13.indd 287c13.indd 287 5/11/2012 9:37:00 AM5/11/2012 9:37:00 AM

www.it-ebooks.info

http://www.it-ebooks.info/

288 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

Note that Byte.MIN_VALUE = –128, so the subtraction in the fi rst statement actually adds 128 to the
signed byte value after it is converted to integer.

The fi nal step in the algorithm is to provide the output to the caller. You do this using the protected
setOutput() method of PipelineStage:

super.setOutput(gray32);

You use the class as follows:

Gray8Image imGray8 = new Gray8Image(cWidth, cHeight);
/* ... initialize imGray8... */
Gray82Gray32 g8232 = new Gray82Gray32();
g8232.push(imGray8);
if (g8232.isEmpty()) {
 /* error, this should never happen */
}
Image imResult = g8232.getFront();
if (!(imResult instanceof Gray32Image)) {
 /* error, Gray82Gray32 returned wrong type */
}
Image imGray32 = (Gray32Image) imResult;
/* ... use imGray32 ... */

Now that you understand how to build image-to-image operations in JJIL, take a look at how
they are assembled into image-processing pipelines using two JJIL control structures, Sequence
and Ladder.

Sequence

A Sequence is just what its name implies, a sequence of image-to-image operations, in other words,
a sequence of PipelineStage operations. Sequence is itself a PipelineStage, so Images can be
passed through a series of image-processing algorithms simply by constructing the Sequence, and
then using push() on the Sequence.

An example is shown in the following code. This sequence (from a barcode-reading system) converts
a color image to gray by selecting the green component, crops the gray image, and then applies a
horizontal Canny edge-detection operation to the result:

Sequence seq = new Sequence();
seq.add(new RgbSelect2Gray(RgbSelect2Gray.GREEN));
seq.add(new GrayCrop(dTopLeftX, dTopLeftY, cWidth, cHeight));
seq.add(new CannyHoriz(cCannyWidth));
seq.push(imageInput.clone());
if (seq.isEmpty()) {
 /* error -- no output from Canny */
}
Image imageResult = seq.getFront();

Once a Sequence is constructed, it can be used over and over to process images. The logic in the
Sequence class’s implementation of push() handles isEmpty() and getFront() properly so that if
a PipelineStage produces more than one output, each output will be passed to later stages in the
Sequence, so that a Sequence can produce as many outputs as are provided by the PipelineStages
it is made from.

c13.indd 288c13.indd 288 5/11/2012 9:37:00 AM5/11/2012 9:37:00 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 289

Ladde r

Some image-processing pipelines are more complex than a simple linear order: they combine
multiple images to produce a result. Ladder provides a simple mechanism for combining two
PipelineStages (which may, of course, be Sequences) into a new PipelineStage. It takes the two
PipelineStage objects as well as a special class derived from the abstract class Ladder.Join. It is
constructed as follows:

 Ladder(PipelineStage pipeFirst, PipelineStage pipeSecond, Ladder.Join join)

The class inheriting from Ladder.join must implement this method:

 Image doJoin(Image imageFirst, Image imageSecond)

This method takes two images as parameters and combines them to produce a single image as an
output.

Ladder is itself a PipelineStage. Its push(), method works as shown in Figure 13-3.

First Pipeline Stage

Second Pipeline Stage

Input
Image

Output
ImagedoJoin

clone

FIGURE 13-3: Ladder

As Figure 13-3 illustrates, Ladder’s implementation of push(), fi rst copies the input image (using
clone()) so that each PipelineStage gets its own copy. This way, one PipelineStage can freely
alter the image data without affecting the other. After processing, the resulting Image objects are
combined using the doJoin() operation.

The two Sequences do not need to have the same number of steps. One can do a series of opera-
tions on its input, while the other might do something much simpler. Ladder handles isEmpty()
and push() properly in manipulating the outputs of its PipelineStages, but it does require that
an output Image be available from one PipelineStage whenever one is available from the other
PipelineStage, so the number of images resulting from a push(), operation on each pipeline must
be the same. Otherwise it could not call doJoin() at the appropriate time.

As a simple example of the use of Ladder, suppose you want to detect barcodes in an image but have
to do this on a device that does not have an autofocusing camera, like Android devices do. Somehow
you have to sharpen the blurry image for better recognition. You might begin by requiring the user
to scan the barcode horizontally, so the barcode edges are vertical, and then try to sharpen the verti-
cal edges in the image. One way to do this is to use Gaussian blurring. The idea behind this tech-
nique is to blur the image horizontally, and then subtract the blurred image from the original image.
The result is shown in Figure 13-4.

c13.indd 289c13.indd 289 5/11/2012 9:37:00 AM5/11/2012 9:37:00 AM

www.it-ebooks.info

http://www.it-ebooks.info/

290 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

Horizontal
Blur

Subtract

FIGURE 13-4: Enhancing an out-of-focus barcode

The code for this Ladder uses the GraySub class from jjil.algorithm, which implements doJoin()
by taking the difference of its two Gray8Image inputs. It also makes use of GaussHoriz, which per-
forms a horizontal blur operation on its Gray8Image, and copy(), a method which does a shallow
copy (that is, not creating new pixels; it is not necessary to replicate the pixels because Ladder’s push
operation does that) of the input to the output. It also uses Copy, a null PipelineStage (note the
case — this is different from the copy method mentioned previously), which just copies its input to its
output, so that the blurred image can be subtracted from the original:

 /* Create Copy PipelineStage */
 Copy c = new Copy();
 /* Create Gauss blur PipelineStage */
 GaussHoriz gh = new GaussHoriz(10);
 /* Create Join object */
 GraySub gs = new Gray8Sub();
 /* Create Ladder */
 Ladder lad = new Ladder(c, gh, gs);

Images can be deblurred using this Ladder simply by:

lad.push(imageIn);
if (lad.isEmpty()) {
/* error, no output */
}
Image imageOut = lad.getFront();

After using this Ladder for a while, you might notice that the output tends to be pretty dark. This is
because you are subtracting two images with nearly the same value, giving a result close to 0 (black).
A simple way to fi x this is to perform histogram equalization, using GrayHistEq from jjil.algo-
rithm. You just create a new Sequence, putting the Ladder fi rst, and then adding a histogram
equalization stage. The resulting code can be written as simply as:

/* Create Ladder */
Ladder lad = new Ladder(

c13.indd 290c13.indd 290 5/11/2012 9:37:01 AM5/11/2012 9:37:01 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 291

 new Copy(),
 new GaussHoriz(10),
 new GraySub());
/* Create Sequence */
Sequence seq = new Sequence(lad);
seq.add(new GrayHistEq());

The entire sequence can be executed simply by:

seq.push(imageIn);
if (seq.isEmpty()) {
 // error, no output
}
Image imageOut = seq.getFront();

Of course, once a Ladder like this is constructed, it can be used over and over to process images,
just as a Sequence can be.

Now that you understand the structure of JJIL, take a step back and see how you can integrate
image processing using JJIL into an Android application designed to detect the Android logo.

JJIL and Detecting the Android Logo

As a simple example, write a program to detect the Android logo in an image, keying off the color
of the logo and its compactness. Start with the simple ReadBarcode program you developed in
Chapter 12 and show how JJIL can be integrated into the onPreviewFrame() method to show the
position of the logo.

Start with a simple approach — too simple to work well, but it’s a start:

1. Take a color image.

2. Look for pixels that are close to green.

3. Find the largest connected region of these pixels.

4. You’ve found the logo. Draw a green rectangle around it.

I’ve built a simple framework for developing this image-processing program in DetectLogo, shown
in Figure 13-5. You’ll use it as the basis for other image-processing programs you develop. It shows
the camera preview image in the top window and provides another screen area for showing the pro-
cessed image and any results. You use a class derived from ImageView (called LogoView) to show the
image bitmap and any processed results — in this case, a green rectangle showing where you think
the logo is.

Take a quick look at some of the tools for debugging image-processing programs. Just as, in the
previous chapter, you provided a way to read and write gray images for debugging, here you pro-
vide a way to read and write color images in DebugImages.writeNv21Image and DebugImages.
readImage2Nv21. They do the conversion necessary between the YUV color space used in Android
and the RGB color space in which you do your processing. The actual code for converting between
RGB and Android’s YUV is given in jjil.android.AndroidColors.

c13.indd 291c13.indd 291 5/11/2012 9:37:01 AM5/11/2012 9:37:01 AM

www.it-ebooks.info

http://www.it-ebooks.info/

292 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

FIGURE 13-5: DetectLogo

Look at the image-processing pipeline in DetectLogo and see how each of the preceding steps are
implemented. The primary image processing is done in a pipeline you set up in the constructor:

RgbAbsDiffGray radg = new RgbAbsDiffGray(Color.GREEN);
Gray8Threshold g8t = new Gray8Threshold(-48, true);
mSeqThreshold = new Sequence(radg);
mSeqThreshold.add(g8t);

mSeqThreshold has two steps: use RgbAbsDiffGray to calculate the difference between the RGB
pixel color and a target color, in this case green (because the Android logo is green). This is output
as a Gray8Image where Byte.MIN_VALUE (that is, –128) represents zero difference, and Byte.MAX_
VALUE is the maximum difference. The next stage in the pipeline uses Gray8Threshold to threshold
this image at –48, passing (that is, setting to 255) all pixels less than the threshold and setting pixels
greater than the threshold to 0 (black). (The value –48 was chosen experimentally — it isolated the
green portions of the image.) The result is similar to that shown in the bottom half of Figure 13-5:
notice how the green parts of the Android logo as well as the green apples show up as blobs.

You process the input image just by pushing it into the pipeline:

mSeqThreshold.push(rgb);
Image imThresholded = mSeqThreshold.getFront();

Then you pass the resulting thresholded image to mG8cc, an object of type Gray8ConnComp, to com-
pute the connected components of the image:

mG8cc.push(imThresholded);

Connected components is a key step in fi nding the logo (as it is in many image-processing programs)
because it turns the image into a small collection of regions. Each blob of connected pixels in the

c13.indd 292c13.indd 292 5/11/2012 9:37:01 AM5/11/2012 9:37:01 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 293

input image ends up as a distinct item in the output of Gray8ConnComp. The outputs are also sorted
in size (number of connected pixels) so you can choose the largest connected region and get its
bounding rectangle very simply:

if (mG8cc.getComponentCount() > 0)
{
 Rect r = mG8cc.getComponent(0);

This bounding rectangle is passed to the LogoView object for display.

Before you get too far into the algorithm, try running the program as. You can run it in the book app
by clicking the Detect Logo button. You may notice two things: 1) It’s slow as molasses; 2) It doesn’t
work too well.

The fundamental problem with the speed of the program is that it is processing large images on a
computer with limited processing power. Smartphones are nowhere near a modern desktop com-
puter in terms of performance — nor should you expect them to be, given all the limitations the
designers had to deal with. But, in fact, they do have enough processing power for image processing.
If you look at the history of image processing, it was in the early 1980s that desktop PCs started
taking a major role in image processing for real-time systems — and smartphones do have process-
ing power comparable to, and in many cases greater than, what was available on a desktop PC in
the early 1980s. What’s the problem?

The problem, simply, is that the images you are processing are far too large for the task at hand.
When image processing was taken over by desktop PCs in the 1980s they were processing images of
size 512 ¥ 512 or even 256 ¥ 256 (which was all the electronic cameras then in use could produce).
The Android camera produces images many times larger than that. You have to limit the image size
to achieve the speed you need in an Android application.

Choose the Right Image Size

To detect the Android logo with a simple-minded approach, you do not need a high-resolution
image. In fact, because you aren’t looking at the internal structure of the logo, it does not matter
if the image is a bit blurry — and a high-resolution image actually slows you down. So you need to
reduce the image size as much as possible to process the image quickly.

You have a number of ways to do this. The most obvious, because you are using the image preview
function of the camera, is to set an appropriate preview size. Change the switchCamera() method
of DetectLogoActivity to the version used in ManageCameraFasterActivity:

 Camera.Parameters cameraParameters = mCamera.getParameters();
 List<Size> sizes = cameraParameters.getSupportedPreviewSizes();
 int width = Integer.MAX_VALUE, height = Integer.MAX_VALUE;
 for (int i=0; i<sizes.size(); i++) {
 Size s = sizes.get(i);
 if (s.width < width) {
 width = s.width;
 height = s.height;
 }
 }
 cameraParameters.setPreviewSize(width, height);
 mCamera.setParameters(cameraParameters);

c13.indd 293c13.indd 293 5/11/2012 9:37:01 AM5/11/2012 9:37:01 AM

www.it-ebooks.info

http://www.it-ebooks.info/

294 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

This code reads the preview sizes available for the camera and chooses the one with the smallest
width, which generally gives you the smallest image size available.

Now DetectLogoFaster sets the camera preview size as small as possible, but it’s still too big.
Why? Well, with the device I’m using to test this code, the camera preview sizes available are
1280 ¥ 720, 960 ¥ 544, 800 ¥ 400, 640 ¥ 480, and 480 ¥ 320. Even a 480 ¥ 320 image has 153,600
pixels. That is a lot of pixels to process!

Another way to reduce the image size is with an image-processing operation, such as averaging.
You’ll do this in DetectLogoFaster. Take a look at the image-processing pipeline used there:

 RgbAbsDiffGray radg = new RgbAbsDiffGray(Color.GREEN);
 Gray8Reduce g8r;
 try {
 g8r = new Gray8Reduce(2,2);
 } catch (Error e) {
 return;
 }
 // then pass all pixels less than -84
 Gray8Threshold g8t = new Gray8Threshold(-84, true);
 // Now build the pipeline
 mSeqThreshold = new Sequence(radg);
 mSeqThreshold.add(g8r);
 mSeqThreshold.add(g8t);

You saw how image-processing pipelines are built using JJIL previously, so, briefl y, this pipeline
fi rst compares the color of each color pixel to green (of course, it’s green because you’re looking for
the Android logo, which is green) using RgbAbsDiffGray, which computes the absolute value of the
difference in color space between a specifi ed color and each pixel. This is returned as a signed byte
value, offset by –128. You then average this byte image, reducing its size by a factor of two horizon-
tally and vertically, using Gray8Reduce. You then threshold the image with a fi xed threshold (–84)
with Gray8Threshold. This turns the green pixels to white, making them easy to detect, and sets
everything else black, making it easy to ignore.

Now DetectLogoFaster is applying two techniques for increasing speed — selecting the closest
image size appropriate to the task, and reducing the image size computationally. But it is still not
fast enough. What else can you do?

It would be nice if the Android operating system gave us a good way to change the image size using
hardware acceleration — but it doesn’t, at least not now (hint, hint). You are left to your own devices.

Start by modifying the NV21 to the RgbImage conversion routine in Nv212RgbImage so that it
doesn’t create an RgbImage that is too big in the fi rst place. Remember that the NV21 image sub-
samples the V and U color planes at half the resolution of the Y luminance plane. Change getRg-
bImage() to return an image that is sampled at the resolution of the color planes, instead of the
luminance plane. getRgbImageReduced() does this:

 public static RgbImage getRgbImageReduced(byte[] data, int width, int height) {
 RgbImage rgb = new RgbImage(width / 2, height / 2);
 int nVuOffset = width * height;
 for (int i = 0; i < height; i += 2) {
 for (int j = 0; j < width; j += 2) {
 int nY = 0xff & data[i * width + j];
 nY += 0xff & data[i * width + j + 1];

c13.indd 294c13.indd 294 5/11/2012 9:37:02 AM5/11/2012 9:37:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 295

 nY += 0xff & data[(i + 1) * width + j];
 nY += 0xff & data[(i + 1) * width + j + 1];
 nY /= 4;
 int nV = 0xff & data[nVuOffset + (i / 2) * width + j];
 int nU = 0xff & data[nVuOffset + (i / 2) * width + j + 1];
 rgb.getData()[i / 2 * width / 2 + j / 2] = AndroidColors.yuv2Color(
 nY, nU, nV);
 }
 }
 return rgb;
 }

The inner loop starts by taking the four luminance pixels that it will average to produce one output
pixel and summing them in the variable nY. Dividing nY by four gives the average luminance value.
It then accesses the color planes to set nV and nU to the color values. It then calls yuv2Color() to
compute the RGB color value. By averaging the luminance value before calling yuv2Color(), the
code avoids three relatively expensive color calculations — in other words, by moving the image
reduction to the earliest stage possible, the total computation is reduced signifi cantly.

With these changes, DetectLogoFaster works with reasonable speed — the update time is a second
or less. However, if it was not fast enough, here are some other techniques to reduce the image size
and increase processing speed:

 ‰ Subsample without averaging: In getRgbImageReduced() you take the time to average the
four luminance pixels in each 2 ¥ 2 block. You could simply use one of the four pixels with-
out averaging. This may work in some situations, but the technique must be used with care
because you may introduce aliasing into the subsampled image.

Figure 13-6 shows how aliasing can lead to incorrect results when you reduce the size of
an image. The input image has a diagonal stripe pattern, with the stripes running from
the bottom left to the top right. When you reduce the image size by properly averaging the
input pixels, you get an image like that on the top right. The diagonal stripe pattern is still
present. When you don’t average the input pixels, you get an image like that on the bottom
right. Here, the diagonal stripe pattern has been replaced by a cross-hatch pattern. The orig-
inal image content has been replaced with something entirely different — some of the stripes
run in the opposite direction.

You don’t have to worry about this effect in the Android logo recognition program because
you are not worried about the internal structure of the logo, so any feature introduced by
subsampling won’t affect your program. But if you were looking in detail at an image fea-
ture, for example to recognize text, aliasing would play an important role.

With anti-aliasing

Without anti-aliasing

FIGURE 13-6: Aliasing

c13.indd 295c13.indd 295 5/11/2012 9:37:02 AM5/11/2012 9:37:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

296 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

 ‰ Crop: You can crop the image to a region of interest. This technique doesn’t apply to the
search for an Android logo in the image because you don’t know where it is, but it is a key
step in image processing where you can give direct feedback to the user on how to posi-
tion the camera, as you can in Android. In effect, the barcode scanning program works this
way — the user knows to position the camera so the barcode is in the middle of the image,
keeping you from searching all over the image for it.

A simple way to give the user this feedback is to add a partially transparent layer in front
of the camera preview image (that is, in front of the Preview object). (Remember, you can’t
actually draw on the camera preview image. You must add a layer in front of it to modify
how it looks on the Android screen.) You could obscure the parts of the image you didn’t
want to process and outline the area of interest.

Of course, if you do this, you’ll want to convert just the image pixels in the region of interest, which
means you need a different version of getRgbImage().

Now that DetectLogoFaster is fast enough, see what you can do to improve its importance, work-
ing in a new program called DetectLogoBetter.

Improving Reliability in Image Processing

The single most important thing image-processing engineers do to improve the reliability of
their programs is to control the environment. That is, they set up cameras, illumination, and the
objects they are taking pictures of so that the images vary as little as possible. Then, once the
image-processing program is optimized for this situation, the same optimization will apply to all
images in the future. Barcode detection uses this technique — the barcode symbol has been designed
to make image processing of the barcode as easy as possible.

Unfortunately, with Android, you don’t have much control over the imaging environment. Any
Android image-processing program has to deal as best as it can with variations in:

 ‰ Positioning of the camera

 ‰ The camera device itself

 ‰ Luminance

 ‰ Color balance

You’re already allowing the users to position the camera as they like, and supporting different
cameras, so take a look at some ways to handle luminance and color balance. You’ll do this in a new
version of DetectLogoFaster called DetectLogoBetter.

To deal with variations in luminance, you normalize the gray image so that the same threshold will
apply regardless of the input illumination. In this way a dark and a bright image of the same scene
will be recognized in the same way. You do this by adding a histogram equalization step to the code,
using Gray8HistEq:

mSeqThreshold = new Sequence(radg);
mSeqThreshold.add(g8r);
mSeqThreshold.add(new Gray8HistEq());
mSeqThreshold.add(g8t);

c13.indd 296c13.indd 296 5/11/2012 9:37:02 AM5/11/2012 9:37:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The Structure of Image-Processing Programs x 297

This enables you to set the threshold to a fi xed value and be reasonably confi dent that it will work.

The second thing you can do is to compensate for the color of the light in the scene. As you
saw in Chapter 12, you can set the camera’s white balance to automatically compensate for dif-
ferent kinds of light sources — incandescent, fl uorescent, daylight, and so on. But, generally
speaking, you do not want to burden the user with choosing the right setting to make your pro-
gram work — and anyway, not all Android cameras support white balance. What can you do
algorithmically?

Many techniques for automatic white balance exist, but, generally speaking, they come down to
two steps:

1. Examine the scene and make a guess at the luminance color by looking at the light areas of
the image. In most situations the brightest areas in the image are of something that is white,
so if it appears to have a color that must be due to the color of the light.

2. Modify the color values to compensate.

You’ll try a very simple approach to this in DetectLogoBetter. First, you fi nd the brightest pixel in
the image. Next, you adjust the color values before searching for the green pixels.

You use FindBrightestPoint to search for the brightest pixel. You compute the pixel brightness
simply by summing the red, green, and blue values for the pixel. You then fi nd the largest sum, sav-
ing the color of that pixel:

 int nLuminance = Integer.MIN_VALUE;
 for (int i = 0; i < rgb.getHeight(); i += mnSkipVert)
 {
 for (int j = 0; j < rgb.getWidth(); j += mnSkipHoriz)
 {
 int cColor = rgb.getData()[i * rgb.getHeight() + j];
 int nThisLuminance = RgbVal.getR(cColor) + RgbVal.getG(cColor)
 + RgbVal.getB(cColor);
 if (nThisLuminance > nLuminance)
 {
 nLuminance = nThisLuminance;
 mcBrightestColor = cColor;
 }
 }
 }

Note that FindBrightestPoint doesn’t actually test every pixel in the image — you skip a number
of pixels horizontally (mnSkipHoriz) and vertically (mnSkipVert). Scene illumination varies gradu-
ally from point to point so you will probably fi nd the brightest pixel — or one near enough — this
way, and you save a lot in computation. Typical values for mnSkipHoriz and mnSkipVert are 8,
which means one in every 64 pixels (a little more than one percent) is sampled. The law of large
numbers from statistics gives you a very good chance at making a reasonable guess even with such a
small sample.

Next, you change RgbAbsDiffGray to take an additional parameter, which you can set
after the pipeline is created, so you can set the white balance. The new PipelineState is

c13.indd 297c13.indd 297 5/11/2012 9:37:02 AM5/11/2012 9:37:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

298 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

RgbAbsDiffGrayWb. When you build the image-processing pipeline you’ll retain a reference to the
RgbAbsDiffGrayWb so you can set the white balance value before processing:

mRadg = new RgbAbsDiffGrayWb(Color.GREEN);
g8r = new Gray8Reduce(2, 2);
Gray8Threshold g8t = new Gray8Threshold(-96, true);
mSeqThreshold = new Sequence(mRadg);
mSeqThreshold.add(g8r);
mSeqThreshold.add(new Gray8HistEq());
mSeqThreshold.add(g8t);

You push the input RgbImage to mFbp, an object of type FindBrightestPoint, to get the
white-balance color. Then you set the white-balance color before processing by calling
the setWhiteBalance() method of mRadg:

mFbp.push(rgb);
int nBrightestColor = mFbp.getBrightestColor();
mRadg.setWhiteBalance(nBrightestColor);
...
mSeqThreshold.push(rgb);

To use the white-balance color you’ll compensate for the color of the illumination by modify-
ing the color of each RGB pixel so it has the color it would have if the illumination were white.
Figure 13-7 shows an example. Suppose the illumination was tinted orange, the way it would be
under incandescent light. Then the white balance RGB color might be, for example (255, 228,
190). Under this light, a green object the color of the Android logo, which has the offi cial RGB
color (164, 198, 57), would tend to have its green, and especially its blue, color muted. The effect
of light color on a surface is multiplicative. So, the Android logo might have the RGB color (165,
146, 42), as shown in Figure 13-7. The Android logo is no longer green, but more of an
olive brown.

Illumination

Original logo

Logo under orange light

FIGURE 13-7: Eff ect of light on the Android logo

c13.indd 298c13.indd 298 5/11/2012 9:37:02 AM5/11/2012 9:37:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Detecting Faces x 299

You compensate for this in RgbAbsDiffGrayWb by undoing the multiplicative effect of the
light — you divide by the color the light has, and multiply by the value it should have (that is, white):

int nR = (r * Byte.MAX_VALUE) / mBrightestR;
int nG = (g * Byte.MAX_VALUE) / mBrightestG;
int nB = (b * Byte.MAX_VALUE) / mBrightestB;

The last step in improving the performance of DetectLogoBetter is to take into account the
approximate shape of the Android logo — it is approximately rectangular. You check for this by
using an easy-to-compute number, namely the perimeter squared divided by the area. This dimen-
sionless number, which is commonly used in image processing for just this purpose, is a measure of
the compactness of a shape. A longer, thinner region will have a long perimeter compared to its area
and so will have a high value.

The implementation of this is straightforward, given the perimeter and pixel count measures from
Gray8ConnComp:

int perimeter = mG8cc.getPerimeter(i);
int area = mG8cc.getPixelCount(i);
int compactness = perimeter * perimeter / area;
if (compactness < nBestCompactness) {
 nBestCompactness = compactness;
 nBestComponent = i;
}

The result looks for a greenish blob that is more or less rectangular and larger than a certain minimum
size. This is a pretty fair description of the Android logo, from an image-processing point of view.

This is as far as you will go in improving the performance of DetectLogoBetter. If you wanted
to go further you would change the code to use the actual target color of the Android logo, rather
than the system Color.GREEN, and do a more careful job on white balance, rather than just taking
the brightest pixel as a guide to the luminance color. You could also take into account the detailed
shape of the Android logo by looking at each suspiciously green blob in the image — for example,
you could refer back to the original color image to examine the corresponding full-resolution image,
and look for the details you would expect to fi nd in the Android logo — the shape outline, the eyes,
and the arms.

DETECTING FACES

This chapter has focused on writing image processing programs starting with simple, general opera-
tions. But Android also includes some sophisticated image processing routines for face detection,
and you should also know about these.

Incidentally, please do not confuse face detection with face recognition. Android introduced some
proprietary code for face recognition in the Ice Cream Sandwich release of the operating system by
providing a Face Unlock program. You can train your device to recognize your face and unlock when it
sees you. This is not the same thing as face detection, and in any case there is, at this writing, no public

c13.indd 299c13.indd 299 5/11/2012 9:37:02 AM5/11/2012 9:37:02 AM

www.it-ebooks.info

http://www.it-ebooks.info/

300 x CHAPTER 13 IMAGE-PROCESSING TECHNIQUES

API for face recognition — you can’t train it to recognize more than one face, or make it do anything
other than unlock your device. These capabilities will undoubtedly come in future releases of Android.

In face detection you are simply determining whether there is a face somewhere in the image, and, if
so, where it is. The basic process for detecting faces uses the android.media.FaceDetector class.
To use this, you must fi rst create a FaceDetector object:

 FaceDetector fd = new FaceDetector(nWidth, nHeight, nFaces);

Here nWidth and nHeight are the size of the image to be processed, and nFaces gives the number of
faces that will be searched for. You can use the same FaceDetector object over and over so long as
the image size does not change.

To detect the faces you just call the findFaces() method in FaceDetector:

 int nFaces = fd.findFaces(bmp, faces);

Here bmp is the Bitmap image where you want to fi nd faces, and faces is an array of FaceDetect.
Face objects which will be set to the detected faces. nFaces is set to the number of faces detected.

The FaceDetect.Face object includes this useful information on detected faces:

 ‰ The confi dence of the detection, returned as a fl oating-point value. Any value above 0.3 is
considered “good.”

 ‰ The position of the midpoint of the eyes.

 ‰ The distance between the eyes.

 ‰ The orientation of the face.

Note that the actual size of the face is not returned — you have to estimate this from the distance
between the eyes. And the orientation of the face is returned in three dimensions, measured in terms
of the angles around the x, y, and z axes.

IMAGE-PROCESSING RESOURCES

Image processing is an engineering fi eld in itself, and Chapters 12 and 13 have served only as a
brief introduction, concentrating on techniques that may be most useful on a mobile platform.
Fortunately, many resources are available for free on the web:

 ‰ OpenCV (http://tech.groups.yahoo.com/group/OpenCV/) is the preeminent Internet
discussion group on image processing and computer vision. It includes an active mailing list
and a large (more than 500 algorithms) library of image-processing programs, as well as
image resources useful for testing, and a book (Learning OpenCV: Computer Vision with the
OpenCV Library) introducing computer vision with the library. OpenCV’s image-processing
library is written in C++, but it is still a useful starting point for Android programmers.

 ‰ Many online tutorials on image processing are available; for example, Alan Peters of
Vanderbilt University provides an 18-part lecture series at www.archive.org/details/
Lectures_on_Image_Processing, and Srinivasa Narasimhan and Tai-sing Lee of Carnegie
Mellon University provide their lecture notes at www.cs.cmu.edu/afs/cs.cmu.edu/
academic/class/15385-s06/lectures/ppts/.

c13.indd 300c13.indd 300 5/11/2012 9:37:03 AM5/11/2012 9:37:03 AM

www.it-ebooks.info

http://tech.groups.yahoo.com/group/OpenCV
http://www.archive.org/details
http://www.cs.cmu.edu/afs/cs.cmu.edu
http://www.it-ebooks.info/

Summary x 301

 ‰ Many image-processing journals are available online, for example Image Processing On Line
(www.ipol.im/).

Many good textbooks are also available that introduce the fi eld of image processing. These include:

 ‰ Digital Image Processing (3rd edition) by Rafael C. Gonzalez and Robert E. Woods.

 ‰ Fundamentals of Digital Image Processing by Anil K. Jain.

 ‰ Digital Image Processing by William K. Pratt.

SUMMARY

This chapter took you from a familiarity with the Android camera and Android programming
to a basic understanding of image processing using Android. The chapter introduced the
image-processing pipeline, which is the fundamental way image-processing programs are structured,
and described some important image-processing algorithms. Next, you saw how to capture and use
the Android color image. You saw how a simple program for detecting the Android logo was struc-
tured, and learned how to improve the program’s speed by limiting the size of the image to be pro-
cessed. Then you saw how to improve the program’s reliability by taking into account variations in
illumination and white balance, eventually using the shape of the logo to help guide detection. You
also learned about Android’s face detection feature. Finally, you were given a starting point to fi nd
out more about image processing, including the many free resources available on the web.

Images are not the only external data an Android device can sense. Devices can also use the micro-
phone to sense audio data. The next chapter shows you how to detect patterns in audio recordings,
just as this chapter showed you detect patterns in captured images.

c13.indd 301c13.indd 301 5/11/2012 9:37:03 AM5/11/2012 9:37:03 AM

www.it-ebooks.info

http://www.ipol.im
http://www.it-ebooks.info/

c13.indd 302c13.indd 302 5/11/2012 9:37:03 AM5/11/2012 9:37:03 AM

www.it-ebooks.info

http://www.it-ebooks.info/

14
Using the Microphone

WHAT’S IN THIS CHAPTER?

 ‰ Recording maximum amplitude and raw audio data

 ‰ Processing asynchronously

 ‰ Implementing a clapper

 ‰ Signal processing to determine volume and frequency

Many Android devices are also phones, and hence provide a microphone to the user. Apps can
use the microphone as a sensor to record audio and then analyze the resulting recording.

Many apps might benefi t from analyzing the audio recording. For example, an app could
detect a clap or a certain sound to help the user communicate a command. Instrument tuners
and other utilities are also possible.

This chapter describes how to use the MediaRecorder and AudioRecord APIs to record and
analyze audio to detect patterns. It describes some utility classes to help you use the APIs. To
demonstrate, this chapter shows how to create several versions of a clapper.

INTRODUCING THE ANDROID CLAPPER

The clapper, shown in Figure 14-1, is a device invented in 1986 that attaches to an electrical
socket and turns it on and off in response to a person’s claps. You can implement some-
thing similar on Android that improves upon the features of the original clapper. Instead of
activating an electrical outlet, though, your app may take another action instead.

c14.indd 303c14.indd 303 5/10/2012 2:10:39 PM5/10/2012 2:10:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

304 x CHAPTER 14 USING THE MICROPHONE

Table 14-1 shows the different implementations
of a clapper in this chapter. The clapper and loud
noise clappers perform in a similar way to the origi-
nal clapper: the user triggers them by making a loud
sound. The singing clapper improves the loud noise
clapper by triggering only if it hears a consistent
frequency, such as one that a user might make while
singing. By responding only to a consistent frequency,
the improved clapper ignores unwanted triggering
from sounds such as dogs barking, fi reworks going
off, and other loud noises.

The clapper implementations show how to use
MediaRecorder and AudioRecord and describe
signal processing techniques to estimate a signal’s
volume and frequency.

TABLE 14-1: Diff erent Implementations of a Clapper

NAME HOW TRIGGER DETECT WHEN

Clapper MediaRecorder Clap hands High maximum amplitude

Loud Noise AudioRecord Clap hands Sustained high amplitude

Singing AudioRecord Singing “oooooo” Consistent frequency such as what a

person might produce by singing the

same tone. Won’t be triggered by claps,

door slams, dogs barking, or people

talking.

TRY THIS

You can try the three clappers by accessing the “Clapper” button within the book’s
app. The app enables you to try each clapper, view logging output, and use some
provided sound samples to experiment.

USING MEDIARECORDER TO ANALYZE MAXIMUM AMPLITUDE

Of the two ways to collect audio information from Android, MediaRecorder is the most limited and
the simplest, yet it is also quite robust. The MediaRecorder handles many of the recording details,
such as acquiring audio data and calculating maximum amplitude, and hence makes it easy to use.

Maximum amplitude is quite useful for detecting patterns within an audio recording. To access it,
an app calls MediaRecorder.getMaxAmplitude(), which returns its value since the last call to it.

FIGURE 14-1: A clapper plugs into the wall and

controls turning on and off an electrical socket.

c14.indd 304c14.indd 304 5/10/2012 2:10:43 PM5/10/2012 2:10:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using MediaRecorder to Analyze Maximum Amplitude x 305

The value ranges from 0 to 32767 (the maximum value that can fi t in a short) and does not repre-
sent a specifi c unit. An app can use periodic calls to the method to record maximum amplitude
values over time. Also, an app needs to monitor maximum amplitude asynchronously so it can do
other tasks while recording and remain responsive to the user.

You can use the following set of three classes and interfaces to collect and analyze maximum
amplitude:

 ‰ MaxAmplitudeRecorder: Executes MediaRecorder, collects maximum amplitude, and
passes it to an AmplitudeClipListener.

 ‰ AmplitudeClipListener: Listens for new maximum amplitude and possibly stops
recording.

 ‰ RecordAmplitudeTask: An AsyncTask that executes MaxAmplitudeRecorder asynchro-
nously and updates the user interface before and after execution.

Recording Maximum Amplitude

First, an app needs the right permissions and hardware. Then, it can prepare the MediaRecorder for
use and start recording.

To record audio, an app needs following permission:

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

Optionally, an app can check if the device has a microphone by using the code in Listing 14-1.

LISTING 14-1: Checks if a device has a microphone

 public static boolean hasMicrophone(Context context)
 {
 return context.getPackageManager().hasSystemFeature(
 PackageManager.FEATURE_MICROPHONE);
 }

With the correct permissions and the presence of a microphone, an app can safely create and prepare
a MediaRecorder for use. Creating the MediaRecorder requires several steps in a particular order.
Listing 14-2 shows a utility method that creates it with the typical parameters.

LISTING 14-2: Creates and prepares a MediaRecorder for use

 public static MediaRecorder prepareRecorder(String sdCardPath)
 throws IOException
 {
 if (!isStorageReady())
 {
 throw new IOException("SD card is not available");
 }

continues

c14.indd 305c14.indd 305 5/10/2012 2:10:44 PM5/10/2012 2:10:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

306 x CHAPTER 14 USING THE MICROPHONE

 MediaRecorder recorder = new MediaRecorder();
 //set a custom listener that just logs any messages
 RecorderErrorLoggerListener recorderListener =
 new RecorderErrorLoggerListener();
 recorder.setOnErrorListener(recorderListener);
 recorder.setOnInfoListener(recorderListener);

 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 Log.d(TAG, "recording to: " + sdCardPath);
 recorder.setOutputFile(sdCardPath);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
 recorder.prepare();
 return recorder;
 }

Preparing a MediaRecorder proceeds through the following steps:

1. Check if an SD card is available. Because MediaRecorder requires a fi le to record audio
data and the path is on the SD card, the device must have its SD card available. If it is not
available, throw an IOException.

2. Create the MediaRecorder object.

3. Set the default OnError and OnInfo listeners that log output.

4. Set the audio source to MediaRecorder.AudioSource.MIC.

5. Set the output format to MediaRecorder.OutputFormat.THREE_GPP. The Android docu-
mentation recommends this format, but others are possible.

6. Set the output fi le. The MediaRecorder uses this fi le to store all recorded output. Even if
your app is not using the recorded fi le, MediaRecorder still needs this to hold temporary
data.

7. Set the audio encoder to MediaRecorder.AudioEncoder.AMR_NB. The output format of the
audio.

8. Call prepare(). After this call, the recorder is ready to start.

You can fi nd additional information about the audio formats at http://developer.android.com/
guide/appendix/media-formats.html#core.

While preparing a MediaRecorder, the code may generate several Exceptions. An
IllegalStateException may occur if the code executes the setup in the incorrect order. The
exception should never occur unless calling code misuses the setup routine. An IOException is also
possible if the SD card is not available.

Once an app obtains a properly initialized MediaRecorder it can start recording, check maximum
amplitude in a loop, and analyze the resulting amplitude. You can implement this process using
MaxAmplitudeRecorder, shown in Listing 14-3, and AmplitudeClipListener, shown in
Listing 14-4.

LISTING 14-2 (continued)

c14.indd 306c14.indd 306 5/10/2012 2:10:44 PM5/10/2012 2:10:44 PM

www.it-ebooks.info

http://developer.android.com
http://www.it-ebooks.info/

Using MediaRecorder to Analyze Maximum Amplitude x 307

MaxAmplitudeRecorder has a startRecording() which contains the recording loop. Before
running the loop, the code calls getMaxAmplitude(). The code does this because the fi rst getMax-
Amplitude() call returns zero and subsequent calls report its value since it was last called. Thus, by
calling getMaxAmplitude() once before the loop starts, the code ensures the fi rst value returned is
a useful one. The loop waits for a time (and possibly stops if external code indicated so while it was
waiting), records the getMaxAmplitude() value, passes it to an AmplitudeClipListener for analy-
sis, and stops recording if the AmplitudeClipListener returns true. Using this procedure the loop
periodically collects and analyzes maximum amplitude and ends if one of three conditions occur:

 ‰ The AmplitudeClipListener returns true.

 ‰ External code calls stopRecording(), which sets continueRecording to false.

 ‰ External code cancels the AsyncTask.

LISTING 14-3: Records the maximum amplitude periodically

public class MaxAmplitudeRecorder
{
 private static final String TAG = "MaxAmplitudeRecorder";

 private static final long DEFAULT_CLIP_TIME = 1000;
 private long clipTime = DEFAULT_CLIP_TIME;

 private AmplitudeClipListener clipListener;

 private boolean continueRecording;

 private MediaRecorder recorder;

 private String tmpAudioFile;

 private AsyncTask task;

 /**
 *
 * @param clipTime
 * time to wait in between maxAmplitude checks
 * @param tmpAudioFile
 * should be a file where the MediaRecorder can write
 temporary audio data
 *
 * @param clipListener
 * called periodically to analyze the max amplitude
 * @param task
 * stop recording if the task is canceled
 */
 public MaxAmplitudeRecorder(long clipTime, String tmpAudioFile,
 AmplitudeClipListener clipListener, AsyncTask task)
 {
 this.clipTime = clipTime;
 this.clipListener = clipListener;

continues

c14.indd 307c14.indd 307 5/10/2012 2:10:45 PM5/10/2012 2:10:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

308 x CHAPTER 14 USING THE MICROPHONE

 this.tmpAudioFile = tmpAudioFile;
 this.task = task;
 }

 /**
 * start recording maximum amplitude and passing it to the
 * {@link #clipListener}

 * @throws {@link IllegalStateException} if there is trouble creating
 * the recorder
 * @throws {@link IOException} if the SD card is not available
 * @throws {@link RuntimeException} if audio recording channel is occupied
 * @return true if {@link #clipListener} succeeded in detecting something
 * false if it failed or the recording stopped for some other reason
 */
 public boolean startRecording() throws IOException
 {
 Log.d(TAG, "recording maxAmplitude");

 recorder = AudioUtil.prepareRecorder(tmpAudioFile);

 // when an error occurs just stop recording
 recorder.setOnErrorListener(new MediaRecorder.OnErrorListener()
 {
 @Override
 public void onError(MediaRecorder mr, int what, int extra)
 {
 // log it
 new RecorderErrorLoggerListener().onError(mr, what, extra);
 // stop recording
 stopRecording();
 }
 });

 //possible RuntimeException if Audio recording channel is occupied
 recorder.start();
 continueRecording = true;
 boolean heard = false;
 recorder.getMaxAmplitude();
 while (continueRecording)
 {
 Log.d(TAG, "waiting while recording...");
 waitClipTime();
 //in case external code stopped this while read was happening
 if ((!continueRecording) || ((task != null) && task.isCancelled()))
 {
 break;
 }

 int maxAmplitude = recorder.getMaxAmplitude();
 Log.d(TAG, "current max amplitude: " + maxAmplitude);

 heard = clipListener.heard(maxAmplitude);

LISTING 14-3 (continued)

c14.indd 308c14.indd 308 5/10/2012 2:10:45 PM5/10/2012 2:10:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using MediaRecorder to Analyze Maximum Amplitude x 309

 if (heard)
 {
 stopRecording();
 }

 Log.d(TAG, "stopped recording max amplitude");
 done();

 return heard;
 }

 private void waitClipTime()
 {
 try
 {
 Thread.sleep(clipTime);
 } catch (InterruptedException e)
 {
 Log.d(TAG, "interrupted");
 }
 }

 /**
 * stop recorder and clean up resources
 */
 public void done()
 {
 Log.d(TAG, "stop recording on done");
 if (recorder != null)
 {
 try
 {
 recorder.stop();
 } catch (Exception e)
 {
 Log.d(TAG, "failed to stop");
 return;
 }
 recorder.release();
 }
 }

 public boolean isRecording()
 {
 return continueRecording;
 }

 public void stopRecording()
 {
 continueRecording = false;
 }
}

code snippet MaxAmplitudeRecorder.java

c14.indd 309c14.indd 309 5/10/2012 2:10:45 PM5/10/2012 2:10:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

310 x CHAPTER 14 USING THE MICROPHONE

LISTING 14-4: Listens for maximum amplitude

public interface AmplitudeClipListener
{
 /**
 * return true if recording should stop
 */
 public boolean heard(int maxAmplitude);
}

You can use MaxAmplitudeRecorder and AmplitudeClipListener to analyze maximum
amplitude over time. One important implementation detail is that the recording loop in
MaxAmplitudeRecorder should be run asynchronously, otherwise an app would be unresponsive
while it was waiting to record another maximum amplitude value. The next section describes how
to run MaxAmplitudeRecorder asynchronously using an AsyncTask.

Asynchronous Audio Recording

Most likely, an app needs to do something else while recording audio. For example, it may need
to keep the UI responsive. To implement this, an app needs to record audio asynchronously.
Additionally, an app needs to process the results of the recording when it is done. For both these
features, an app can use an AsyncTask such as RecordAmplitudeTask.

Listing 14-5 shows the code for RecordAmplitudeTask. When external code calls execute(), Android
calls doInBackground(). In that method, RecordAmplitudeTask creates a MaxAmplitudeRecorder
and runs it until the startRecording() method returns. Its onPostExecute() method receives the
recording result and updates the UI by setting the text of status and log TextViews

LISTING 14-5: Executes MaxAmplitudeRecorder, passes results to a AmplitudeClipListener, and

updates user interface before and after recording

public class RecordAmplitudeTask extends
 AsyncTask<AmplitudeClipListener, Void, Boolean>
{
 private static final String TAG = "RecordAmplitudeTask";

 private TextView status;
 private TextView log;
 private Context context;
 private String taskName;

 private static final String TEMP_AUDIO_DIR_NAME = "temp_audio";

 /**
 * time between amplitude checks
 */
 private static final int CLIP_TIME = 1000;

 public RecordAmplitudeTask(Context context, TextView status, TextView log,
 String taskName)

c14.indd 310c14.indd 310 5/10/2012 2:10:45 PM5/10/2012 2:10:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using MediaRecorder to Analyze Maximum Amplitude x 311

 {
 this.context = context;
 this.status = status;
 this.log = log;
 this.taskName = taskName;
 }

 @Override
 protected void onPreExecute()
 {
 // tell UI recording is starting
 status.setText(context.getResources().getString(
 R.string.audio_status_recording)
 + " for " + taskName);
 AudioTaskUtil.appendToStartOfLog(log, "started " + taskName);
 super.onPreExecute();
 }

 /**
 * note: only uses the first listener passed in
 */
 @Override
 protected Boolean doInBackground(AmplitudeClipListener... listeners)
 {
 if (listeners.length == 0)
 {
 return false;
 }

 Log.d(TAG, "recording amplitude");
 // construct recorder, using only the first listener passed in
 AmplitudeClipListener listener = listeners[0];
 String appStorageLocation =
 context.getExternalFilesDir(TEMP_AUDIO_DIR_NAME).getAbsolutePath()
 + File.separator + "audio.3gp";
 MaxAmplitudeRecorder recorder =
 new MaxAmplitudeRecorder(CLIP_TIME, appStorageLocation,
 listener, this);

 //set to true if the recorder successfully detected something
 //false if it was canceled or otherwise stopped
 boolean heard = false;
 try
 {
 // start recording
 heard = recorder.startRecording();
 } catch (IOException io)
 {
 Log.e(TAG, "failed to record", io);
 heard = false;
 } catch (IllegalStateException se)
 {
 Log.e(TAG, "failed to record, recorder not setup properly", se);
 heard = false;
 } catch (RuntimeException se)

continues

c14.indd 311c14.indd 311 5/10/2012 2:10:45 PM5/10/2012 2:10:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

312 x CHAPTER 14 USING THE MICROPHONE

 {
 Log.e(TAG, "failed to record, recorder already being used", se);
 heard = false;
 }

 return heard;
 }

 @Override
 protected void onPostExecute(Boolean result)
 {
 // update UI
 if (result)
 {
 AudioTaskUtil.appendToStartOfLog(log, "heard clap at "
 + AudioTaskUtil.getNow());
 }
 else
 {
 AudioTaskUtil.appendToStartOfLog(log, "heard no claps");
 }
 setDoneMessage();
 super.onPostExecute(result);
 }

 @Override
 protected void onCancelled()
 {
 AudioTaskUtil.appendToStartOfLog(log, "cancelled " + taskName);
 setDoneMessage();
 super.onCancelled();
 }

 private void setDoneMessage()
 {
 status.setText(context.getResources().getString(
 R.string.audio_status_stopped));
 }
}

code snippet RecordAmplitudeTask.java

Now that you know how to record maximum amplitude, the next section shows you how to analyze
the maximum amplitude to implement a clapper.

IMPLEMENTING A CLAPPER

The previous sections described how to record maximum amplitude. To use the described code, an
app needs to provide an AmplitudeClipListener. Listing 14-6 shows the implementation of one
that listens for a single clap. The heard() method checks maxAmplitude value against a threshold to
determine if it heard a clap.

LISTING 14-5 (continued)

c14.indd 312c14.indd 312 5/10/2012 2:10:45 PM5/10/2012 2:10:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing a Clapper x 313

Choosing a threshold is dependent on several factors. A low value makes an app very sensitive. It
makes it easy for the user to trigger but also increases accidental triggering. A high value makes the
app less sensitive, but might require the user to make a very loud sound to activate it.

The environment also can help determine what threshold is appropriate. If the user is in a noisy
place, the threshold should be high to minimize false triggering. On the other hand, if the user is in
a quiet place where he can’t make too much noise, a low value might be the only way to allow the
user to politely trigger it. Knowledgeable users may adjust the sensitivity depending on their circum-
stances. In my experience a value of 18000, which is slightly more than 50% of the maximum value,
is a good compromise between being too sensitive and making it easy for users to trigger the clap.

LISTING 14-6: Reports if maximum amplitude is above a certain threshold

public class SingleClapDetector implements AmplitudeClipListener
{
 private static final String TAG = "SingleClapDetector";

 /**
 * required loudness to determine it is a clap
 */
 private int amplitudeThreshold;

 /**
 * requires a little of noise by the user to trigger, background noise may
 * trigger it
 */
 public static final int AMPLITUDE_DIFF_LOW = 10000;
 public static final int AMPLITUDE_DIFF_MED = 18000;
 /**
 * requires a lot of noise by the user to trigger. background noise isn't
 * likely to be this loud
 */
 public static final int AMPLITUDE_DIFF_HIGH = 25000;

 private static final int DEFAULT_AMPLITUDE_DIFF = AMPLITUDE_DIFF_MED;

 public SingleClapDetector()
 {
 this(DEFAULT_AMPLITUDE_DIFF);
 }

 public SingleClapDetector(int amplitudeThreshold)
 {
 this.amplitudeThreshold = amplitudeThreshold;
 }

 @Override
 public boolean heard(int maxAmplitude)
 {
 boolean clapDetected = false;

 if (maxAmplitude >= amplitudeThreshold) continues

c14.indd 313c14.indd 313 5/10/2012 2:10:45 PM5/10/2012 2:10:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

314 x CHAPTER 14 USING THE MICROPHONE

 {
 Log.d(TAG, "heard a clap");
 clapDetected = true;
 }

 return clapDetected;
 }
}

An app can use MediaRecorder to collect maximum amplitude values over time. This value is quite
useful and easy to acquire. However, for more advanced audio analysis where an app needs access to
the raw audio signal and greater control over the recording process, an app must use AudioRecord,
which the next section describes.

ANALYZING RAW AUDIO

Sometimes the maximum amplitude value from the MediaRecorder is not enough for certain tasks.
First, MediaRecorder doesn’t have methods to directly retrieve the raw audio data, which makes
it inconvenient for immediate analysis. Second, MediaRecorder compresses the audio. This is not
a problem if an app is analyzing maximum amplitude. However, if an app is analyzing the raw
audio signal it might introduce some unwanted distortion. Thus, for analyzing audio data for infor-
mation beyond maximum amplitude, an app should use the data from AudioRecord instead of
MediaRecorder.

Using AudioRecord allows an app to collect the raw, uncompressed audio bytes. The bytes contain
recorded samples of the signal’s amplitude over time. You can apply many kinds of signal processing
algorithms to this data. This section shows how to implement two kinds of clappers that perform
two kinds of signal processing: one to determine volume and another to estimate frequency. Also,
this section utilizes several classes to help you utilize AudioRecord:

 ‰ AudioClipRecorder: Executes AudioRecord to record audio clips and pass resulting audio
data to an AudioClipListener.

 ‰ AudioClipListener: Listens for audio data and possibly stops recording.

 ‰ RecordAudioTask: An AsyncTask that executes AudioClipRecorder asynchronously and
updates the user interface before and after execution. Similar to code in Listing 14-5.

Listing 14-7 shows the complete AudioClipRecorder and Listings 14-8 and 14-10 show implemen-
tations of AudioClipListener for two clappers.

To understand how these classes work, you need to understand how to set the input parameters,
how the recording loop works, and how to analyze the resulting audio data.

LISTING 14-6 (continued)

c14.indd 314c14.indd 314 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Raw Audio x 315

Setting Audio Input Parameters

AudioRecord provides several parameters an app can set to achieve certain effects:

 ‰ Achieve a certain audio quality by setting sampling and encoding.

 ‰ Record for audio clips of a certain time length.

 ‰ Avoid buffer overfl ows.

Table 14-2 shows the various input parameters needed to create an AudioRecord.

TABLE 14-2: Input Parameters for AudioRecord

VALUE POSSIBLE VALUES DESCRIPTION

Encoding AudioFormat.ENCODING_PCM_16BIT or

AudioFormat.ENCODING_PCM_8BIT

Specifi es the size of each audio data

byte. 16 bit has a bigger range than

8 bit. One audio sample is called a

“frame” by the Android documentation.

Sampling

rate

According to the Android source code,

any value between 4000 and 48000 is

valid. Use 8000 for a low quality sound

used in telephones. Use 44100 for CD

recording quality. 44100 is the only value

guaranteed to work on all devices.

Number of samples to record per sec-

ond in Hz.

Buff erSize Greater than value returned from

AudioRecord.getMinBufferSize()

Number of bytes in the recording buf-

fer. If the buff er size is too small and

an app doesn’t read it fast enough,

buff er overfl ow occurs and an app

loses data. Apps usually set the buf-

fer higher than needed by a factor of

3 or 10, depending on the application.

Also, for 16-bit encoding, each sample

utilizes two bytes so apps may want to

increase the buff er size to hold enough

samples.

Channel AudioFormat

.CHANNEL_IN_MONO, AudioFormat.

CHANNEL_IN_STEREO, or other, more

specifi c mono or stereo CHANNEL from

AudioFormat.

The audio channels to record. Mono

uses a single audio stream and ste-

reo uses two. Using stereo doubles

the data collected. Unless your audio

analysis requires it, mono is suffi cient

for most uses.

c14.indd 315c14.indd 315 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

316 x CHAPTER 14 USING THE MICROPHONE

To illustrate how you might set these parameters, consider how you would set them to record
audio clips containing data for a certain amount of time. For example, if you want an app to col-
lect audio clips containing approximately 2 seconds of audio data with a sample rate of 8000Hz, an
encoding of AudioFormat.ENCODING_PCM_16BIT, and a single audio channel the parameter settings
would be:

 ‰ Encoding: AudioFormat.ENCODING_PCM_16BIT

 ‰ Sampling rate: 8000

 ‰ BufferSize: Sample rate * 2 * 2 * 3 = 192000

 ‰ Multiply sample rate by 2 because two seconds of samples would be 16000
samples.

 ‰ Multiply by 2 again because each sample is 2 bytes big and the buffer size is specifi ed
in bytes.

 ‰ Multiply by 3 to provide extra buffer space and avoid buffer overfl ow.

 ‰ Channel: AudioFormat.CHANNEL_IN_MONO

If an app needs to analyze the data as fast as possible it can use a minimum sized buffer. Some
example parameters might be:

 ‰ Encoding: AudioFormat.ENCODING_PCM_16BIT

 ‰ Sampling rate: 8000

 ‰ BufferSize: AudioRecord.getMinBufferSize()* 3. Use the minimum buffer size, but
increase it by 3 to prevent buffer overfl ows.

 ‰ Channel: AudioFormat.CHANNEL_IN_MONO

AudioClipRecorder has methods that help calculate the size of the recording buffer. In particular,
startRecordingForTime() makes the calculation necessary to achieve recording clips that contain
data for a certain amount of time.

Preparing AudioRecord

The two startRecording() methods in AudioClipRecorder determine the size of the record-
ing and read buffers and then create an AudioRecord that is ready for use. The methods proceed
through the following steps:

1. Determine minimum recording buffer and read buffer sizes:

 ‰ Use the minimum: startRecording() uses AudioRecord.getMinBufferSize() as
the recording buffer size and also as the read buffer size.

 ‰ Calculated: startRecordingForTime() calculates how many samples it needs
to create a read buffer that holds enough samples for the desired time. It uses

c14.indd 316c14.indd 316 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Raw Audio x 317

determineCalculatedBufferSize() to adjust the recording buffer size so that it
holds enough samples for a given encoding and is bigger than the minimum size.

2. Create AudioRecord within doRecording():

 ‰ Check if the recording buffer size is an error value. If so, do not proceed.

 ‰ Increase the size of the recording buffer by a factor.

 ‰ Set sample rate, encoding, channels, recording buffer.

3. Create read audio buffer:

 ‰ Allocates the read buffer as a short [readBufferSize].

Recording Audio

Once AudioClipRecorder properly creates an AudioRecord that is ready for use, doRecord-
ing() starts recording by setting the continueRecording state variable to true and executing
AudioRecord.startRecording(). Then it begins the following recording loop:

1. Read audio data: Execute AudioRecord.read(), which blocks until there is enough data to
fi ll the read buffer.

2. Possibly stop recording: Exit the loop if external code indicated that recording should stop
while the code was blocked. External code can indicate this by calling stopRecording() or
by cancelling the AsyncTask used to construct AudioClipRecorder.

3. Check for errors: Create a log if read() causes an error.

4. Do processing: The AudioClipRecorder, clipListener, does some processing based on
the data it received. Meanwhile AudioRecord continues to add to the recording buffer. If
clipListener takes too long, AudioRecord might fi ll the buffer and log a buffer overfl ow
error so it should fi nish quickly

5. Possibly stop recording: Stop the loop if AudioClipListener returns true.

Using OnRecordPositionUpdateListener

As an alternative, an app may also use an OnRecordPositionUpdateListener to process the audio
data. To use it, an app specifi es a number of samples, which the Android documentation calls
frames, to wait. When AudioRecord records that many samples, it calls the listener. The recording
loop must still call read() but it does not need to process results.

For example, an app might specify that AudioRecord should update
OnRecordPositionUpdateListener every 8000 samples by calling setPositionNotification
Period(8000) If the sample rate is 8000, this causes AudioRecord to call the listener about once
every second. Also, an app has to make sure that the recording buffer is big enough to hold 8000
samples. For this, AudioClipRecorder.startRecordingForTime() is useful.

c14.indd 317c14.indd 317 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

318 x CHAPTER 14 USING THE MICROPHONE

Listing 14-7 contains a setOnPositionUpdate() method that shows how to create and
set an OnRecordPositionUpdateListener. It also contains the complete source code for
AudioClipRecorder.

LISTING 14-7: Records audio with AudioRecord

public class AudioClipRecorder
{
 private static final String TAG = "AudioClipRecorder";

 private AudioRecord recorder;
 private AudioClipListener clipListener;

 /**
 * state variable to control starting and stopping recording
 */
 private boolean continueRecording;

 public static final int RECORDER_SAMPLERATE_CD = 44100;
 public static final int RECORDER_SAMPLERATE_8000 = 8000;

 private static final int DEFAULT_BUFFER_INCREASE_FACTOR = 3;

 private AsyncTask task;

 private boolean heard;

 public AudioClipRecorder(AudioClipListener clipListener)
 {
 this.clipListener = clipListener;
 heard = false;
 task = null;
 }

 public AudioClipRecorder(AudioClipListener clipListener, AsyncTask task)
 {
 this(clipListener);
 this.task = task;
 }

 /**
 * records with some default parameters
 */
 public boolean startRecording()
 {
 return startRecording(RECORDER_SAMPLERATE_8000,
 AudioFormat.ENCODING_PCM_16BIT);
 }

 /**
 * start recording: set the parameters that correspond to a buffer that
 * contains millisecondsPerAudioClip milliseconds of samples
 */

c14.indd 318c14.indd 318 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Raw Audio x 319

 public boolean startRecordingForTime(int millisecondsPerAudioClip,
 int sampleRate, int encoding)
 {
 float percentOfASecond = (float) millisecondsPerAudioClip / 1000.0f;
 int numSamplesRequired = (int) ((float) sampleRate * percentOfASecond);
 int bufferSize =
 determineCalculatedBufferSize(sampleRate, encoding,
 numSamplesRequired);

 return doRecording(sampleRate, encoding, bufferSize,
 numSamplesRequired, DEFAULT_BUFFER_INCREASE_FACTOR);
 }

 /**
 * start recording: Use a minimum audio buffer and a read buffer of the same
 * size.
 */
 public boolean startRecording(final int sampleRate, int encoding)
 {
 int bufferSize = determineMinimumBufferSize(sampleRate, encoding);
 return doRecording(sampleRate, encoding, bufferSize, bufferSize,
 DEFAULT_BUFFER_INCREASE_FACTOR);
 }

 private int determineMinimumBufferSize(final int sampleRate, int encoding)
 {
 int minBufferSize =
 AudioRecord.getMinBufferSize(sampleRate,
 AudioFormat.CHANNEL_IN_MONO, encoding);
 return minBufferSize;
 }

 /**
 * Calculate audio buffer size such that it holds numSamplesInBuffer and is
 * bigger than the minimum size

 *
 * @param numSamplesInBuffer
 * Make the audio buffer size big enough to hold this many
 * samples
 */
 private int determineCalculatedBufferSize(final int sampleRate,
 int encoding, int numSamplesInBuffer)
 {
 int minBufferSize = determineMinimumBufferSize(sampleRate, encoding);

 int bufferSize;
 // each sample takes two bytes, need a bigger buffer
 if (encoding == AudioFormat.ENCODING_PCM_16BIT)
 {
 bufferSize = numSamplesInBuffer * 2;
 }
 else
 {
 bufferSize = numSamplesInBuffer;
 }

continues

c14.indd 319c14.indd 319 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

320 x CHAPTER 14 USING THE MICROPHONE

 if (bufferSize < minBufferSize)
 {
 Log.w(TAG, "Increasing buffer to hold enough samples "
 + minBufferSize + " was: " + bufferSize);
 bufferSize = minBufferSize;
 }

 return bufferSize;
 }

 /**
 * Records audio until stopped the {@link #task} is canceled,
 * {@link #continueRecording} is false, or {@link #clipListener} returns
 * true

 * records audio to a short [readBufferSize] and passes it to
 * {@link #clipListener}

 * uses an audio buffer of size bufferSize * bufferIncreaseFactor
 *
 * @param recordingBufferSize
 * minimum audio buffer size
 * @param readBufferSize
 * reads a buffer of this size
 * @param bufferIncreaseFactor
 * to increase recording buffer size beyond the minimum needed
 */
 private boolean doRecording(final int sampleRate, int encoding,
 int recordingBufferSize, int readBufferSize,
 int bufferIncreaseFactor)
 {
 if (recordingBufferSize == AudioRecord.ERROR_BAD_VALUE)
 {
 Log.e(TAG, "Bad encoding value, see logcat");
 return false;
 }
 else if (recordingBufferSize == AudioRecord.ERROR)
 {
 Log.e(TAG, "Error creating buffer size");
 return false;
 }

 // give it extra space to prevent overflow
 int increasedRecordingBufferSize =
 recordingBufferSize * bufferIncreaseFactor;

 recorder =
 new AudioRecord(AudioSource.MIC, sampleRate,
 AudioFormat.CHANNEL_IN_MONO, encoding,
 increasedRecordingBufferSize);

LISTING 14-7 (continued)

c14.indd 320c14.indd 320 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Raw Audio x 321

 final short[] readBuffer = new short[readBufferSize];

 continueRecording = true;
 Log.d(TAG, "start recording, " + "recording bufferSize: "
 + increasedRecordingBufferSize
 + " read buffer size: " + readBufferSize);

 //Note: possible IllegalStateException
 //if audio recording is already recording or otherwise not available
 //AudioRecord.getState() will be AudioRecord.STATE_UNINITIALIZED
 recorder.startRecording();

 while (continueRecording)
 {
 int bufferResult = recorder.read(readBuffer, 0, readBufferSize);
 //in case external code stopped this while read was happening
 if ((!continueRecording) || ((task != null) && task.isCancelled()))
 {
 break;
 }
 // check for error conditions
 if (bufferResult == AudioRecord.ERROR_INVALID_OPERATION)
 {
 Log.e(TAG, "error reading: ERROR_INVALID_OPERATION");
 }
 else if (bufferResult == AudioRecord.ERROR_BAD_VALUE)
 {
 Log.e(TAG, "error reading: ERROR_BAD_VALUE");
 }
 else
 // no errors, do processing
 {
 heard = clipListener.heard(readBuffer, sampleRate);

 if (heard)
 {
 stopRecording();
 }
 }
 }
 done();

 return heard;
 }

 public boolean isRecording()
 {
 return continueRecording;
 }

continues

c14.indd 321c14.indd 321 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

322 x CHAPTER 14 USING THE MICROPHONE

 public void stopRecording()
 {
 continueRecording = false;
 }

 /**
 * need to call this when completely done with recording
 */
 public void done()
 {
 Log.d(TAG, "shut down recorder");
 if (recorder != null)
 {
 recorder.stop();
 recorder.release();
 recorder = null;
 }
 }

 /**
 * @param audioData
 * will be filled when reading the audio data
 */
 private void setOnPositionUpdate(final short[] audioData,
 final int sampleRate, int numSamplesInBuffer)
 {

 OnRecordPositionUpdateListener positionUpdater =
 new OnRecordPositionUpdateListener()
 {
 @Override
 public void onPeriodicNotification(AudioRecord recorder)
 {
 // no need to read the audioData again since it was just
 // read
 heard = clipListener.heard(audioData, sampleRate);
 if (heard)
 {
 Log.d(TAG, "heard audio");
 stopRecording();
 }
 }

 @Override
 public void onMarkerReached(AudioRecord recorder)
 {
 Log.d(TAG, "marker reached");
 }
 };
 // get notified after so many samples collected
 recorder.setPositionNotificationPeriod(numSamplesInBuffer);
 recorder.setRecordPositionUpdateListener(positionUpdater);

LISTING 14-7 (continued)

c14.indd 322c14.indd 322 5/10/2012 2:10:46 PM5/10/2012 2:10:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using Loud Noise Detection x 323

 }
}

code snippet AudioClipRecorder.java

Now that you know how to record some raw audio data, the next two sections show how to analyze
the data to implement different versions of the clapper.

USING LOUD NOISE DETECTION

One way to implement a clapper is to determine if the app heard a loud noise. LoudNoiseDetector
is an AudioClipRecorder that implements the required processing. Listing 14-8 shows its
implementation.

Specifi cally, LoudNoiseDetector performs two tasks:

 ‰ Calculate the current volume: LoudNoiseDetector calculates the root mean squared of the
recorded signal. Root mean squared computes a “quadratic mean” value. The advantage of
using root mean squared over fi nding the maximum value is that root mean squared takes
into account all data points. This makes the calculation robust against single or short-lived
time periods of high amplitude and allows only meaningful high amplitude signals to have
an effect.

 ‰ Determine if the recorded sound is loud is enough: LoudNoiseDetector compares the
current volume with a fi xed threshold such as 2000. The volume may range from 0 to 32767.
It is considerably harder, however, to reach the maximum range since all values within a
recording are taken into account. Therefore, in my experience, a value of 2000 seems to
work well.

LISTING 14-8: Determines if audio data contains a loud noise

public class LoudNoiseDetector implements AudioClipListener
{
 private static final String TAG = "LoudNoiseDetector";

 private double volumeThreshold;

 public static final int DEFAULT_LOUDNESS_THRESHOLD = 2000;

 public LoudNoiseDetector()
 {
 volumeThreshold = DEFAULT_LOUDNESS_THRESHOLD;
 }

 public LoudNoiseDetector(double volumeThreshold)
 {
 this.volumeThreshold = volumeThreshold;
 }

continues

c14.indd 323c14.indd 323 5/10/2012 2:10:47 PM5/10/2012 2:10:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

324 x CHAPTER 14 USING THE MICROPHONE

@Override
 public boolean heard(short[] data, int sampleRate)
 {
 boolean heard = false;
 // use rms to take the entire audio signal into account
 // and discount any one single high amplitude
 double currentVolume = rootMeanSquared(data);

 if (currentVolume > volumeThreshold)
 {
 Log.d(TAG, "heard");
 heard = true;
 }

 return heard;
 }

 private double rootMeanSquared(short[] nums)
 {
 double ms = 0;
 for (int i = 0; i < nums.length; i++)
 {
 ms += nums[i] * nums[i];
 }
 ms /= nums.length;
 return Math.sqrt(ms);
 }
}

The loud noise clapper, presented in this section, is slightly more robust than the clapper presented
earlier because it uses the entire recorded signal to determine volume. Despite this, it still uses vol-
ume to detect claps and any method that does so can lead to accidental triggering from extraneous
loud noises. The next section describes a more sophisticated signal-processing algorithm that makes
the clapper more robust.

USING CONSISTENT FREQUENCY DETECTION

Sounds other than a person’s clap could accidentally trigger the original clapper. For example, a dog
barking or fi reworks going off could accidentally activate it, which could result in the lights going
on in the middle of the night. This section describes ConsistentFrequencyDetector, which is an
AudioClipListener. ConsistentFrequencyDetector implements a method that creates a clapper
that triggers only if it hears an intentional sound and does not easily trigger if it hears other loud noises.

Instead of a loud noise, ConsistentFrequencyDetector detects a period of time that has a
consistent frequency. By doing so, ConsistentFrequencyDetector ignores talking, loud noises, and
triggers only if it hears a sustained tone that a person can easily create by singing.

To implement this approach, ConsistentFrequencyDetector analyzes the audio to estimate
frequency and records a history of previous frequencies so it can detect if it hears a consistent one.

LISTING 14-8 (continued)

c14.indd 324c14.indd 324 5/10/2012 2:10:47 PM5/10/2012 2:10:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using Consistent Frequency Detection x 325

Estimating Frequency

A simple way to analyze for frequency is the zero-crossing method. Listing 14-9 shows the code
for calculating frequency using this method. More accurate algorithms exist, such as autocorrela-
tion and Fast Fourier Transform, however ConsistentFrequencyDetector uses the zero-crossing
method because it does not need an exact frequency and the method is simple to implement.

The zero-crossing method counts how many times the audio signal crosses from positive to nega-
tive or from negative to positive. Two zero crossings indicate one cycle in the signal. Hence, the fre-
quency in Hz is how many pairs of zero crossings occur per second.

The algorithm for calculating zero crossing is as follows:

1. Calculate number of zero crossings.

2. Determine how many seconds of data the samples represent.

3. Determine the number of cycles.

4. Calculate frequency as number of cycles divided by seconds of data.

For example, if the sample size is 8000 and there are 16000 samples, the number of seconds
recorded is 2. If the number of crossings in the data is 2204, the number of cycles is 1102 and the
detected frequency is 551.

LISTING 14-9: Estimates frequency by using the zero-crossing method

public class ZeroCrossing
{
 public static int calculate(int sampleRate, short [] audioData)
 {
 int numSamples = audioData.length;
 int numCrossing = 0;
 for (int p = 0; p < numSamples-1; p++)
 {
 if ((audioData[p] > 0 && audioData[p + 1] <= 0) ||
 (audioData[p] < 0 && audioData[p + 1] >= 0))
 {
 numCrossing++;
 }
 }

 float numSecondsRecorded = (float)numSamples/(float)sampleRate;
 float numCycles = numCrossing/2;
 float frequency = numCycles/numSecondsRecorded;

 return (int)frequency;
 }
}

The zero-crossing method works well for sound waves that have very little noise. To highlight this
point, consider the sound wave in Figure 14-2. It shows a 440Hz sine wave, generated by a tone

c14.indd 325c14.indd 325 5/10/2012 2:10:47 PM5/10/2012 2:10:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

326 x CHAPTER 14 USING THE MICROPHONE

generator and recorded on an Android device. Because a tone generator created the sound, it has
very little noise.

It is possible to accurately determine the frequency of this signal with some additional informa-
tion. First, by looking at Figure 14-2 you can see that the signal repeats about every 100 samples.
Second, the app sampled at a rate of 44100Hz. With this information you can determine that 100
data points represents 0.0023 seconds. Then to determine how many times the signal repeats in 1
second, compute 1/0.0023. The result is equal to 435Hz, which is close to the recorded frequency
of 440Hz.

8000

6000

4000

2000

1 8 15 2
2

2
9 36 43 5
0 5
7

6
4 71 78 8
5

9
2

9
9

10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

2
0
4

2
11

2
18

2
2
5

2
32

2
39

2
46

2
5
3

2
6
0

2
6
7

2
74 2
8
1

2
8
8

2
9
5

30
2

30
9

31
6

32
3

33
0

33
7

34
4

A
m
p
lit
ud

e

0

–2000

–4000

–6000

–8000

FIGURE 14-2: 440Hz sine wave tone recorded on an Android phone

Real audio signals are rarely as clean as those generated from a tone generator. Figure 14-3
shows the audio data for a person singing a 440Hz tone. Even though the person is singing
the same tone as the tone generator, the signal is much more complex and does not vary as
regularly. It has too many zero-crossings for the zero-crossing method to determine the precise
frequency.

However, the frequency value from the zero-crossing method stays within the same, small range
while a person is singing the same tone. When a person is talking, the frequency varies greatly.
When a loud noise occurs, the frequency changes only briefl y. Thus, even though the zero-crossing
method cannot produce a precise measurement of frequency, it can still determine if the sound is
singing, which is what you need to implement the singing clapper.

c14.indd 326c14.indd 326 5/10/2012 2:10:47 PM5/10/2012 2:10:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Using Consistent Frequency Detection x 327

100

80

60

40

20

A
m
p
lit
ud

e

0

–20

–40

–60

–80

–100

1 9 17 2
5 33 41 49 5
7

6
5 73 8
1

8
9 9
7

10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

2
0
1

2
0
9

2
17

2
2
5

2
33 2
41

2
49 2
5
7

2
6
5

2
73 2
8
1

2
8
9

2
9
7

30
5

31
3

32
1

32
9

33
7

34
5

FIGURE 14-3: Audio from a person singing a 440Hz tone recorded on an Android phone

Implementing the Singing Clapper

As the previous section explained, the zero-crossing method is the audio processing technique you
need to implement the singing clapper, but several other steps are required to create a clapper that
triggers when the user sings a loud, consistent tone. Listing 14-10 shows the implementation of the
singing clapper by the ConsistentFrequencyDetector class. ConsistentFrequencyDetector per-
forms several steps:

 ‰ Keeps a history of previous frequencies.

 ‰ Calculates frequency for a given audio recording using the zero-crossings method.

 ‰ Detects when the history contains frequencies within a range threshold, such as 100.

 ‰ Ignores any recordings that are silence, because silence can have a consistent frequency itself.
Silence is any recording that has a root mean squared value below a threshold such as 2000.

Beyond the code in ConsistentFrequencyDetector, it is also useful for an app to confi gure
AudioClipRecorder to record audio for a specifi c amount of time. By doing so, the app can defi ne
the length of time it must hear a consistent frequency before triggering.

To set up AudioClipRecorder in this way, AudioClipRecorder has a startRecordingForTime()
method. Calling it with millisecondsPerAudioClip equal to 1000 sets up AudioRecord to pass

c14.indd 327c14.indd 327 5/10/2012 2:10:47 PM5/10/2012 2:10:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

328 x CHAPTER 14 USING THE MICROPHONE

about 1 second of data to ConsistentFrequencyDetector every time AudioClipRecorder calls it.
If ConsistentFrequencyDetector has a history size of 3, it means that the user must make a sing-
ing tone for 3 seconds in order to trigger the clapper.

LISTING 14-10: Analyzes audio data to detect a consistent frequency

public class ConsistentFrequencyDetector implements AudioClipListener
{
 private static final String TAG = "ConsistentFrequencyDetector";

 private LinkedList<Integer> frequencyHistory;

 private int rangeThreshold;
 private int silenceThreshold;

 public static final int DEFAULT_SILENCE_THRESHOLD = 2000;

 public ConsistentFrequencyDetector(int historySize, int rangeThreshold,
 int silenceThreshold)
 {
 frequencyHistory = new LinkedList<Integer>();
 // pre-fill so modification is easy
 for (int i = 0; i < historySize; i++)
 {
 frequencyHistory.add(Integer.MAX_VALUE);
 }
 this.rangeThreshold = rangeThreshold;
 this.silenceThreshold = silenceThreshold;
 }

 @Override
 public boolean heard(short[] audioData, int sampleRate)
 {
 int frequency = ZeroCrossing.calculate(sampleRate, audioData);
 frequencyHistory.addFirst(frequency);
 // since history is always full, just remove the last
 frequencyHistory.removeLast();
 int range = calculateRange();

 boolean heard = false;
 if (range < rangeThreshold)
 {
 // only trigger it isn't silence
 if (AudioUtil.rootMeanSquared(audioData) > silenceThreshold)
 {
 Log.d(TAG, "heard");
 heard = true;
 }
 else
 {
 Log.d(TAG, "not loud enough");
 }
 }

c14.indd 328c14.indd 328 5/10/2012 2:10:47 PM5/10/2012 2:10:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary x 329

 return heard;
 }

 private int calculateRange()
 {
 int min = Integer.MAX_VALUE;
 int max = Integer.MIN_VALUE;
 for (Integer val : frequencyHistory)
 {
 if (val >= max)
 {
 max = val;
 }

 if (val < min)
 {
 min = val;
 }
 }

 return max - min;
 }
}

code snippet ConsistentFrequencyDetector.java

This section showed how to use AudioRecord to record raw audio data and some signal processing
algorithms you can use to create improved versions of the clapper. The algorithms discussed were
just a few of the available algorithms you can use to analyze recorded audio. With an understanding
of how AudioRecord works, you can reuse the recording code discussed in this chapter to collect
the audio data you need to implement other signal processing algorithms and detect other features
within recorded audio.

SUMMARY

This chapter described how to use the microphone as an audio sensor. It showed how to record audio
using MediaRecorder and AudioRecord and described some utility classes. Using MediaRecorder,
an app can analyze the maximum amplitude of recorded audio during a period of time. Using
AudioRecord, an app can analyze the raw audio data and perform signal processing on it.

This chapter contained one potential application for audio processing: a clapper. It presented three
different implementations: one that used MediaRecorder to detect high maximum amplitudes, one
that used AudioRecord to detect sustained high amplitudes, and one that used AudioRecord to
detect a consistent singing tone. These examples highlight how to use the APIs, utility classes, and
some simple signal processing techniques.

Utilizing the microphone ends this part’s discussion of how to sense augmented and non-augmented
objects using the NFC scanner, camera, and microphone. With the right algorithms and API usage
techniques, Android devices can readily detect objects that are meant to be detected, such as NFC

c14.indd 329c14.indd 329 5/10/2012 2:10:48 PM5/10/2012 2:10:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

330 x CHAPTER 14 USING THE MICROPHONE

tags and bar codes. Also, Android devices are powerful enough to recognize some visual and audio
patterns, like an image of an Android logo or a singing tone, without the need to augment objects in
the world with clues. Being able to detect these things is a powerful feature of Android!

The next, and fi nal, part of this book tackles speech recognition. Like the sensors described in this
part, speech recognition enhances the awareness of an app. It allows an app to discern a specifi c
kind of information from audio recordings: spoken words.

c14.indd 330c14.indd 330 5/10/2012 2:10:48 PM5/10/2012 2:10:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PART IV
Speaking to Android

 � CHAPTER 15: Designing a Speech-enabled App

 � CHAPTER 16: Using Speech Recognition and Text-to-Speech APIs

 � CHAPTER 17: Matching What Was Said

 � CHAPTER 18: Executing Voice Actions

 � CHAPTER 19: Implementing Speech Activation

c15.indd 331c15.indd 331 5/10/2012 2:11:15 PM5/10/2012 2:11:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c15.indd 332c15.indd 332 5/10/2012 2:11:18 PM5/10/2012 2:11:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Designing a Speech-enabled App

WHAT’S IN THIS CHAPTER?

 ‰ Understanding Android’s speech capabilities

 ‰ Introducing the user interface screen fl ow

 ‰ Designing a voice user interface

 ‰ Soliciting feedback from users

People love using speech to command their phones for many reasons. One reason is that
they sometimes prefer dictation rather than awkwardly typing text into a small keyboard.
Another reason is that they need access to their devices while they are in the world. For
example, they are pleased when they can be driving and still compose messages to send to
their friends.

These reasons may seem anecdotal, but the proof is in the downloads. Some apps that use
speech are popular. Google Voice Actions, for example, is an app that enables users to
perform a wide variety of tasks from a single voice prompt. It has more than one million
downloads.

The downloads do not come easy, however. Allowing users to speak to their devices is chal-
lenging to design and implement. Android supports speech input and output with APIs for
speech recognition and Text-to-Speech (TTS). Using the APIs effectively is only part of the
task. The other part is designing and implementing a complete voice user interface (VUI) with
all its supporting components.

A VUI is a user interface that utilizes a user’s speech as input, pre-recorded or synthesized
speech for output, or both. A VUI consists of a set of voice actions, where each voice action
allows the user to perform a certain task.

15

c15.indd 333c15.indd 333 5/10/2012 2:11:18 PM5/10/2012 2:11:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

334 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

A well-designed and -implemented VUI minimizes the chance of speech recognition errors, has
intuitive commands, and enables all users to gracefully command their devices even if errors occur.
A poorly designed one contains obscure, hard-to-remember, and hard-to-recognize commands that
cause numerous errors.

The ultimate goal of designing a VUI is to prevent users from becoming frustrated and helping them
become expert users. This chapter shows you how.

Android provides APIs and user interface components to give you the building blocks you need to
construct VUIs. Your design task is to assemble them into a VUI that helps the users accomplish
certain tasks. First, you must decide what types of voice actions to include. You may decide to cre-
ate one-way commands or more complicated back-and-forth conversations between the app and
user, depending on how complex the task is. After you have chosen the voice actions, your next task
is to design the spoken dialogue. This entails deciding what the user can say and how the device
responds. Your design should consider how humans and machines process language. For humans,
the design should take care to provide the right spoken cues, and for machines, the design should
make sure that the app can easily understand what the human says. Finally, you can test your design
using various techniques that help you refi ne your VUI based on how users react to it. Overall, you
can use the suggestions in this chapter to design a tested, well-designed VUI that you can implement
using the techniques in Chapters 17–19.

KNOW YOUR TOOLS

Android has built-in APIs for speech recognition and TTS. The speech
recognition API allows devices to collect audio from users and convert
it to text. TTS allows the device to go in the reverse direction, convert-
ing text into audio. Speech recognition and TTS are available on most
devices. Devices with limited functionality, like the Nook, or devices
without Internet connectivity do not support one or both. In addition,
the necessary language data is not pre-installed on all devices, and some
could require confi guring. Still, a developer can assume that a majority
of devices support these APIs. To get speech recognition and TTS work-
ing on unsupported devices, developers must use third-party providers
such as iSpeech (www.ispeech.org/) or Nuance (www.nuance.com/for-
partners/by-solution/mobile-developer-program/index.htm).

Following is a list of speech recognition features:

 ‰ It utilizes a remote server to process audio recorded by the
device. This creates a small delay in the recognition and
makes it require Internet access to function.

 ‰ Android’s speech input dialog, shown in Figure 15-1, is the standard interface for collecting
speech, but it is possible to customize the speech collection process.

 ‰ Android packages the recognition result into a List<String> of potential speech-to-text
conversions with a confi dence score attached to each. Chapter 17 describes how to interpret
these conversions.

FIGURE 15-1: Speech input

dialog shown to the user while

collecting speech

c15.indd 334c15.indd 334 5/10/2012 2:11:21 PM5/10/2012 2:11:21 PM

www.it-ebooks.info

http://www.ispeech.org
http://www.nuance.com/for-partners/by-solution/mobile-developer-program/index.htm
http://www.nuance.com/for-partners/by-solution/mobile-developer-program/index.htm
http://www.nuance.com/for-partners/by-solution/mobile-developer-program/index.htm
http://www.it-ebooks.info/

Know Your Tools x 335

Following is a list of TTS features:

 ‰ Supports a limited set of languages.

 ‰ Each language has only one voice.

 ‰ Runs on the device without an Internet connection.

 ‰ Sometimes mispronounces words, but there is no way to change pronunciation. For exam-
ple, currently it speaks “environment” with an emphasis on the “ron” part of the word.
Fortunately, sometimes new releases of Android contain updates to the TTS functionality
that improve pronunciation.

TRY THIS

Try the Say the Magic Word button. Click the Speak button and attempt to say the
magic word “tree.”

Say the Magic Word shows you how speech recognition and TTS can work together
to create a simple app. It also highlights one limit of speech recognition: it is some-
times inaccurate.

In the Say the Magic Word screen, the user has to say the magic word “tree.”
Figure 15-2 shows a successful attempt on the left and a failed attempt on the right.
If the app fails to recognize the word, it will report what it thought the user said.
In the failed attempt from Figure 15-2, the app thought the user said “three.” Does
the magic word screen always understand you?

Figure 15-2: The Say the Magic Word screens make the user say “tree.”

In summary, Android devices can understand what users say and reply back. Most devices have
these capabilities. Chapter 16 describes the mechanics of using the APIs. The remainder of this
chapter describes how to design VUIs, while taking these capabilities into account.

c15.indd 335c15.indd 335 5/10/2012 2:11:21 PM5/10/2012 2:11:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

336 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

USER INTERFACE SCREEN FLOW

Android provides speech recognition and TTS, but an app needs other user interface elements to
implement a complete VUI. A VUI can have one or more voice actions. Each voice action requires
one or more turns to accomplish a task. A turn consists of a user action or utterance followed by a
system action and/or utterance. Figure 15-3 shows the screens the user sees when completing one
turn on an Android device.

1 2 3 4

FIGURE 15-3: Sequence of screens to complete one turn of user utterance and app response

During the turn, the user activates speech, speaks, waits, and then hears and sees the response. Not
all turns have these steps. (Some have only speech output, for example).

Figure 15-3, Screen 1, Activation: The app provides a way for the user to activate speech
recognition. In this case, it is a button, but other options are available that may work when
the user wants to operate the device eyes-free or hands-free.

Figure 15-3, Screen 2, Prompt: After the user clicks the button, the app indicates that it is
waiting for speech input by showing a Say the Magic Word dialog. The user then speaks.
The dialog is Android’s default speech recognition dialog that should look familiar to users.
There is customizable text within the dialog that the app can use as a prompt to remind the
users what they can say. Your design should contain the words for the prompt as well as the
words the user can say when presented with the dialog.

Figure 15-3, Screen 3, Processing: The speech API controls converting audio to text while
the user waits. To do this, the API records audio, sends it to Google servers, and returns
with a list of possible text recognitions. The app processes these possible recognitions to
determine which one the user actually said.

Figure 15-3, Screen 4, Take action: The app decides what it should do in response. For the
app in Figure 15-3, the app displays “Correct! You said the magic word: tree” and speaks it
using TTS. Part of your design involves crafting these responses.

As you can see, the user goes through a four-step process to complete a turn. Your voice actions may have
one or more of these turns. The next section describes some factors to consider when deciding.

c15.indd 336c15.indd 336 5/10/2012 2:11:23 PM5/10/2012 2:11:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Voice Action Types x 337

VOICE ACTION TYPES

Using speech recognition and TTS, developers can build various types of voice actions for VUIs
within their apps. Table 15-1 lists four types. Reader actions read text aloud, Listener actions only
record what the user says Commands are single turn actions, and multi-turn Commands can last mul-
tiple turns. An app may have a mixture of these voice actions.

TABLE 15-1: Types of Voice Actions with Diff erent Degrees of Complexity

ACTION TYPE TTS SPEECH STATELESS DESCRIPTION EXAMPLE TASK

TYPES AND

COMMAND WORDS

Reader Yes No Yes Reads text. E-mail reader,

GPS navigator

Listener No Yes Yes Transcribes everything

the user says as text.

E-mail writer

Command Maybe Yes Yes The user issues a com-

mand to the app via

speech using a single

turn. If the command

fails, the user must retry.

The app may speak text

in reply, but does not

ask follow-up questions.

Recipe reader:

“Next step”

E-mail reader:

“Read fi rst”

Multi-turn

Command

Yes Yes No The user issues a

speech command to the

app and the app may

reply with additional

requests for information.

Because the conversa-

tion between the user

and the app could have

multiple turns, the app

must maintain state.

To-do List

management

“User: Add

bread”

“App: which list?”

“User: grocery”

The main trade off between Reader, Listener, Command, and Multi-turn Command actions is
naturalness and power versus accuracy. The more words and phrases a user can use to accomplish
a goal, the more natural the action is. The more that the actions accomplish, the more powerful the
action is. The more accurate an action is, the easier it is for the app to understand the user. When
an app restricts the vocabulary and complexity of the speech input, it becomes more accurate at the
cost of naturalness and power.

The four action types cover various degrees of the trade off. A Reader action is always accurate,
because the user is using traditional input methods. A Listener is less accurate because speech rec-
ognition may not understand the user and transcribe the wrong text. However, a Listener is always
accurate in performing the correct function of transcribing everything the user says. A Command

c15.indd 337c15.indd 337 5/10/2012 2:11:23 PM5/10/2012 2:11:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

338 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

action is less accurate, because, like a Listener action, speech recognition may not understand the
spoken input. However, a Command action can also cause the app to perform the wrong task or fail
outright if the user does not say the correct command words. Despite this possibility of failure, spo-
ken words can be more natural than clicking a button, and a speech action may accomplish a lot in
just a few words. A Multi-turn Command action is even less accurate because it may take multiple
turns between user and app to accomplish a task. The more turns there are, the higher the chance of
a recognition error and task failure. However, a Multi-turn Command action can support complex
tasks that take multiple inputs to fully complete. Additionally, Multi-turn Command actions can be
more effi cient in some cases because they can ask follow-up questions if needed. Using a Command
would require the user to try again without any memory of previous attempts.

Beyond these are open-ended dialogue systems. Such systems are designed to be completely natural,
and hence can accept any customary speech input within a domain. They are powerful because they
are designed to allow the user to complete complex tasks using a variety of language. For example,
an airline scheduling system might start by asking, “How can I help you?” From there, users specify
the various constraints and desires for their travel in any order they please. The users use the same
language they would if they were speaking to a human. The system understands all user utterances
and tracks the parts of the travel the user has specifi ed. If any gaps exist, the system queries the user
for additional information. The resulting conversation could take many different paths, have a vari-
ety of vocabulary, and potentially be long. The design process is hence more involved than what is
described here.

For more information on the design of open-ended dialogue systems, consult
Randy Harris’s book Voice Interaction Design.

You can build many useful apps with Reader, Listener, Command, and Multi-turn Command
actions alone.

VOICE USER INTERFACE (VUI) DESIGN

Developing voice interfaces that are natural and powerful requires a well thought out and tested
design. This section focuses on the design techniques you need to design a VUI. After using these
techniques, your design will include a set of voice actions that have been tested on real users. Your
only remaining task will be to implement that design so that Android’s speech recognition
is accurate.

Apps enable users to perform various tasks traditionally using a graphical user interface (GUI) that
allows them to tap and view a screen. Any of these tasks could be potentially enhanced or replaced
by adding a VUI. In a VUI, the user is speaking, listening, and potentially not looking at a screen.

These two interaction methods are appropriate for different tasks and should be designed using dif-
ferent techniques. This section explores what methods work best for VUIs and contrasts them with
some methods that are better suited for GUIs. First, it examines whether or not to add voice actions
in the fi rst place.

c15.indd 338c15.indd 338 5/10/2012 2:11:23 PM5/10/2012 2:11:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Voice User Interface (VUI) Design x 339

Deciding Appropriate Tasks for Voice Actions

You have several considerations for determining if your task is appropriate for a voice action. The
decision partially depends on the properties of speech input and output.

Using speech input incurs several potentially tedious tasks for the user. It takes extra time to pro-
ceed through the process of activating speech recognition, speaking, and waiting for response. The
speech recognition can also fail and require the user to retry. However, in certain scenarios, the ben-
efi ts of speech input outweigh the burdens of using it.

Speech output is transient and easily forgotten. If a display is not available, users must remember
everything that the app says. Therefore, it is possible the users will forget what the app just said a
moment ago.

Given these properties, this section contains some recommendations about what tasks are suitable
for voice actions. For more recommendations, see http://java.sun.com/products/java-media/
speech/forDevelopers/jsapi-guide/UserInterface.html. First, you should consider a voice
action if your app addresses one of these two concerns:

 ‰ There is no other way to collect input or look at output: When the user’s hands or eyes are
busy, the only way to safely use the app may be speech input and output. These conditions
can happen when a user is performing certain activities such as driving, cooking, or fi ghting
a war.

 ‰ The user gains a large productivity increase compared to using a GUI: Voice actions can be
very powerful and let the user accomplish a lot with a single speech input. If the voice action
does not provide such a benefi t, the user will prefer to use the reliable and faster GUI alterna-
tive. For example, a powerful voice action might allow a user to say one utterance instead
of selecting items from fi ve different selection boxes, or to say one word to select an action
instead of scrolling down a long 100-item list.

If your app has a task that satisfi es one of these concerns, a VUI may be appropriate. However, your
app’s task may have additional requirements that make a VUI infeasible. Hence, you should consider
the following:

 ‰ Use speech input only if the user can tolerate occasional errors: Any speech input could result
in occasional errors. For some tasks, such as reading e-mail, errors are acceptable. If a read
e-mail command fails once in a while, the user can retry without too much distress. For other
tasks, such as an app for emergency rescue, errors are unacceptable. In a time-critical app for
emergency rescue, delaying an action by even a second could be life threatening.

 ‰ Use speech output for small amounts of information: Keep speech output short and do not
use it to convey large amounts of information. Speech output is not good at communicating
large amounts of information because users easily forget it. For example, to make certain
conclusions about a table of data, a user would need to analyze it. To communicate a table
of data, a VUI would need to speak every single data item. By the time the app speaks the last
data item, the user has likely forgotten it all, leaving the user unable to really do any analysis.
In contrast, a user would have no problem thinking about the spatially organized data in a
GUI all at once.

c15.indd 339c15.indd 339 5/10/2012 2:11:24 PM5/10/2012 2:11:24 PM

www.it-ebooks.info

http://java.sun.com/products/java-media
http://www.it-ebooks.info/

340 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

 ‰ Consider the environment: Speech input and output may not be appropriate for the environ-
ment. The expected environment for the app could cause speech input or output to function
poorly. In particular, a noisy environment could be problematic. It may not allow the user
to hear speech output. A noisy environment could also cause speech input to fail by allowing
any extraneous sounds to enter any speech recordings. Quiet environments could also be a
problem because they are not conducive to listening or speaking out loud.

Designing What the App and Users Will Say

After you have decided which tasks need voice actions, you must then decide what your users and
your app will say. The techniques described here give you some ideas about how to design the com-
mands and conversations.

Constrain Speech Input to Increase Accuracy

Apps cannot easily understand unconstrained speech. Human speech is highly variable and entails
a large vocabulary. Although this breadth makes speech extremely expressive, it also makes it dif-
fi cult for an app understand, and hence unable to take full advantage of humans’ ability to commu-
nicate. Even with the best natural language processing technology, apps are unable to understand
unbounded speech.

Developers should consider the complexity of allowed speech input when designing a VUI.
Constraining speech input will increase recognition accuracy at the cost of expressiveness. For
example, many ways exist to indicate an affi rmative response — yes, right, OK, sure, fi ne, sure
thing, you got it, and so on — but if you limit your app to “yes” it will be easier for the app to rec-
ognize. However, as a consequence, users will have to learn to only say “yes” and not the
other words.

Train Users to Know What They Can Say

In a VUI, users don’t know what they can say nor what the app can understand. This is especially
true when an app constrains the speech input to a few command words. Some users will expect an
app to understand anything they say, and others will be dumbfounded by a speech prompt. These
problems do not exist in a GUI, which has visual elements such as buttons and menus that allow
users to discover easily what they can do.

Therefore, a VUI must train the users to understand the boundaries of what it can and cannot
understand, especially if the app is hands-free and eyes-free. Existing apps accomplish this goal in
several ways.

One is to have different kinds of help screens that show you what the commands are or what you
might say. Figure 15-4 shows examples from three different speech apps: Google Voice Search,
Vlingo, and Edwin. Each has a different help screen. Google Voice Search shows users one com-
mand at a time, highlighting in bold what the command words are. Vlingo provides a list and high-
lights command words in blue, and Edwin provides sample phrases.

c15.indd 340c15.indd 340 5/10/2012 2:11:24 PM5/10/2012 2:11:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Voice User Interface (VUI) Design x 341

FIGURE 15-4: Three help screens from Google Voice Search, Vlingo, and Edwin show diff erent

ways to explain to users what they can say.

Another way to train users is to include suggestions within the speech. For example, the Voice
Commands app from Nuance leads the user through a series of short commands and then teaches
the user shortcuts after the command is done. For example, the user can say “check” and then say
“missed calls” to hear any missed calls. After hearing some results, the app says, “Next time just say
check missed calls.”

Another kind of training involves encouraging your users to use certain words or to speak in a
certain way. This is called “stealth training” and here is how it works. Say you have a VUI that
allows users to “check” or “uncheck” a box, but you prefer them to say “mark” and “clear” because
those words are more easily recognized. To accomplish this, the app still recognizes “uncheck.”
However, when the app responds it includes “clear” in the response by saying something like this:
“cleared item 1.” After hearing “cleared” several times, the user may start using “clear” instead of
“uncheck,” which is desirable because the app will recognize “clear” more times than it will recog-
nize “uncheck.”

Beyond training, an app can use prompts to let users know what they can say.

Prompt the Users so They Know What to Say

A prompt is text spoken or displayed to users. Several different kinds of prompts exist:

 ‰ Explicit prompts: If the possible input is highly constrained, an app can tell the users what
they can say directly and accept only those inputs. For example, the prompt “Say yes or no”
would accept only “yes” or “no.”

c15.indd 341c15.indd 341 5/10/2012 2:11:24 PM5/10/2012 2:11:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

342 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

 ‰ Implicit prompts: Prompts can use the conventions of speech to suggest what the user should
say in a reply. For example, a prompt such as “Would you like e-mail or voicemail?” would
encourage the user to say “e-mail” or “voicemail” in response.

 ‰ Tapered prompts: Sometimes users do not need prompting to determine what they can say.
Excessive prompting can make a VUI tedious and repetitive to use. To avoid this, an app
can use tapered prompts. For example, if the app has a series of questions it needs to ask the
user, the resulting dialogue could easily become repetitive. In tapered prompts, the app would
remove the repetitive parts as the conversation progresses and the user will still know what to
say. For example, if an app is prompting for an address, it might sound like this:

App: Please say your street.

User: 1 Main St.

App: Please say your state.

User: Massachusetts

App: Please say your zip code.

User: 01808

The conversation continuously says “Please say your X,” which is unnecessary the second
and third time. The following tapered prompts work as well and are shorter:

App: Please say your street.

User: 1 Main St.

App: Your state?

User: Massachusetts

App: Zip code?

User: 01808

Once users have learned what they can say, they must learn to trust that the app produces the cor-
rect outcomes in response. The next section describes how to build this trust by properly confi rming
actions and dealing with errors.

Confi rm Success and Help Users Recover from Errors

Speaking a voice command is risky because it could fail for many reasons. Errors are possible in a
VUI that almost never occur in GUIs. In a GUI, if the users want to hit a button, they almost always
are successful. For example, it is relatively rare to accidentally hit the OK button when you are try-
ing to hit the Cancel button on a typical GUI dialog. With a VUI, however, the number of possible
selections in a single dialog could be large. Given that and the uncertainty of the recognition accu-
racy, it can be far more common to accidentally select the wrong button.

Additionally, after something fails or is successful in a GUI, the screen can visually display the result
of the action. With an eyes-free VUI, users need another way to determine if their command was
successful.

For these two reasons, you need to provide a way for users to recover from any mistakes they or
the app make. At the same time, you don’t want to overwhelm users with too many confi rmations,

c15.indd 342c15.indd 342 5/10/2012 2:11:24 PM5/10/2012 2:11:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Voice User Interface (VUI) Design x 343

which can be arduous. You also need to allow users to confi rm that their voice command was suc-
cessful. Here are several suggestions:

 ‰ Confi rm visually: If available, display the result of the action on the screen.

 ‰ Use implicit confi rmation: For non-critical actions, the app should assume that the recogni-
tion was successful. It should implicitly confi rm the result of the action in its response. For
example, in response to “Add apple,” the app should respond “Added apple” so the user
knows that the app properly recognized “apple.” If the app says “Added pumpkin,” the user
will know it misrecognized “apple.” If the app just says “OK,” the user has no idea if the app
succeeded or failed.

 ‰ Explicit confi rmation isn’t always necessary. For example, if the system responded, “Would
you like to add Apple?” and then required the user to say yes or no, explicit confi rmation
would be burdensome and time consuming.

 ‰ By assuming that the users were successful, and implicitly confi rming, users can work effi -
ciently in full knowledge of the results of their actions, without any needless confi rmations.

 ‰ Use explicit confi rmation when necessary: For actions that can’t be undone, explicitly ask the
user to confi rm. For example, “Are you sure you want to delete X?”

 ‰ Allow for undo: When the app performs the wrong action, allow the user to undo it with
another command. This allows your app to continue most of the time and gives the user a
way to correct the app when it fails.

 ‰ Give the user a non-speech method for accomplishing the same task: It might be that the user
is getting frustrated or simply doesn’t have the time to fi gure out how to use speech. In such
cases, it is nice to have a method for manually operating the user interface even if it requires
a lot of work for the user. Users will be happy to know they can use a 100 percent effective
method if they need to.

 ‰ Use progressive assistance to help: Provide additional help the more times the system fails.
For example, on the fi rst failure an app can say “What?” then on the second say, “I don’t
understand” and on the third be explicit and say “Sorry, you can say, ‘send e-mail or cancel
to exit.’”

 ‰ Fall back to easier to recognize commands: If a user fails to execute a command, an app
could fall back to another speech command that is easy to recognize. For example, if a user
says “check voicemail” several times without success, the app could offer a list selection voice
action like “Would you like to check voicemail or e-mail?” Although the list may be more
cumbersome, the possible responses are fewer and hence will more likely lead to success.

Help Users Recover from Accidental Speech Activation

Recognition errors occur when an app doesn’t understand the user, but the app can also fail if the
user accidentally activates speech recognition. Accidental triggering can occur, especially if the
speech trigger is based on incoming sound. In such activation, the app starts speech input whenever
it hears a certain sound. The user could also accidentally hit a “Speak now” button.

When an accidental speech activation occurs, it puts the user in an awkward situation where the
app prompts the user for an input, but the user has nothing to say. To compensate, the VUI should
provide a spoken word, such as “cancel,” that allows the user to exit from the speech prompt in case
such an error occurs.

c15.indd 343c15.indd 343 5/10/2012 2:11:24 PM5/10/2012 2:11:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

344 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

In some cases it is possible to prevent recognition errors in the fi rst place by instructing the user on
how to properly speak to the speech recognizer.

Teach Users Proper Speech Hygiene

Any behavior that causes people to speak differently than they normally would causes the speech
recognizer to be less accurate. Unfortunately, these behaviors usually get worse when more errors
occur. However, some ways of speaking, though awkward, improve speech recognition and can
be useful when a user is having trouble. To help make users become experts at speaking to their
devices, they should learn the following techniques:

 ‰ Try to speak normally: When people get frustrated, they start over-pronouncing words.
They may over-emphasize one word like: “what’s NEXT?” and say “next” much louder
than normal. They might stretch out a particular vowel like “what’s neeeext?” They may
just yell the words. These distortions make it more diffi cult for the speech recognizer
because it is made to recognize normal speech. The unfortunate part of this is that the
angrier users get, the more recognition problems occur. The more problems that occur, the
more upset users get.

 ‰ If having trouble, leave a short pause between words: Leaving a short pause between words
helps recognition. It relieves the recognizer from having to determine where one word ends
and another begins, and it also lessens the distortion that occurs when you speak two words
together. It takes longer and is awkward to speak that way, but it is useful for cases when a
user is really having trouble.

TRY THIS

To see the effect of leaving short pauses between words, try using the keyboard
voice input. To access the voice input, open any text soft keyboard (for example, in
the mail program) and tap the microphone icon to the left of the space bar. Speak
“It’s not easy to wreck a nice beach” as you normally would. Then do it again, but
leave a short pause between words. Which did the device recognize best without
changing any words?

Use Menus Cautiously

Constraining speech input and handling and avoiding errors can help the user execute their voice
action reliably. However, the required sequence of a voice action’s turns can also affect the user’s
ability to execute it. When designing your app’s voice action you should consider that VUIs are tem-
poral, not spatial, which makes certain interaction patterns taxing. For example, navigating menus,
a common GUI technique, is poorly suited for VUIs because menus are meant to be seen and allow
the users to scan the sectioned contents to quickly fi nd what they want. In a VUI, the users have no
way to do so, and hence have to try to keep the menu hierarchy and sections all in their short-term
memory to know where to go.

c15.indd 344c15.indd 344 5/10/2012 2:11:25 PM5/10/2012 2:11:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Voice User Interface (VUI) Design x 345

If the VUI forces the user to “go back” or “go to step 5,” it is forcing the user to think spatially,
which is diffi cult. Any sequence of list selections may cause this to happen.

Conversations are better structured around building a shared understanding than navigating a menu
structure. The closer a VUI can get to that kind of interaction, the easier it will be to operate.

Hence, if possible, a VUI should not force the user into such hierarchies of list selections. However,
to do so requires opening up prompts for many different possible inputs. This may not be possible
because the more inputs a prompt can accept, the harder it will be to recognize.

For example, consider a pizza ordering VUI that sounds like this:

App: First select a size. You can select small, medium, or large.

User: Large

App: Select a topping. You can select mushrooms or pepperoni.

User: Mushrooms

App: Select a crust. You can select deep dish or normal.

User: Deep dish

App: Is the order complete?

User: Go back to start

… redo the whole conversation.

In this VUI, the user specifi es a certain part of his pizza order one step at a time. If the user gets to
the end and wants to change the size, he would have to “go back” twice to get back to the size selec-
tion step or “go back to start” to start again. Hopefully, the user remembers where two steps back
is. Another way to design this VUI is to sound like this:

User: Size large

App: OK, large.

User: Topping mushrooms.

App: OK, mushrooms.

User: Crust, deep dish.

App: OK, deep dish.

User: Size small.

App: OK, small.

In this other version, the app accepts any of the three pizza attributes from the prompt. Thus, the
users can specify their attributes one at a time and, in a similar manner, change one at the end in a
single step without having to “go back.” The drawback of this approach is that it is harder for the
app to recognize the user’s speech because more possible inputs exist at the prompt.

After the Design

Using the recommendations in this section, you can design voice actions that users desire, are easy
to learn, and can operate reliably. Before you release your app, you should consider testing your
design fi rst. Doing so can uncover unforeseen obstacles users encounter while trying to use your
VUI. The next section describes some ways to accomplish that goal.

c15.indd 345c15.indd 345 5/10/2012 2:11:25 PM5/10/2012 2:11:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

346 x CHAPTER 15 DESIGNING A SPEECH-ENABLED APP

TESTING YOUR DESIGN

When designing a VUI, users can help you to identify standard vocabulary and interaction patterns
and what users expect the app to understand. This section discusses three techniques that can help
gather information from users: natural dialogue studies, Wizard of Oz studies, and beta tests.

Learning the words and interaction patterns requires you to observe users speaking about the topic
and trying to interact with your app. For example, if you are adding a “compose” command to an
e-mail app, you want to know all the different words people use to initiate sending an e-mail. You
may discover that some people prefer to say “write” instead of “compose” and decide to include
“write” as an alternate way to activate the “compose” command. Also, you may discover that it is
easier for the speech recognizer to understand “write” instead of “compose” and decide to support
only “write” as the command.

One method of observing users is called a natural dialogue study. In this study, you ask a group of
people to carry on a dialogue about the subject you are interested in and record a transcript. You
can also examine any existing corpora. In the case of an e-mail app, you could have one person try
to ask another person to send an e-mail for them. For a cooking app, you might observe one person
helping another person follow a recipe.

The advantage of a natural dialogue study is that you can observe a greater variety of words and
interactions because the people involved are less infl uenced by any experimental environment.

Natural dialogue studies are helpful for learning generally about what people say, but don’t allow
you to test what people might say to the implemented app or how they will react to the app’s
responses. For this, you can use a Wizard of Oz study.

In a Wizard of Oz study, users interact with a realistic app, but any app responses are generated by
a human, also known as the wizard. The users are unaware that the responses are coming from a
human. They think the app is generating them.

Implementing this kind of study involves several details. First, the wizard should respond in such
a way that the users cannot tell that they are talking to a human. For example, to make the app
more realistic, the experiment may include a way for the wizard to deliver responses via machine-
generated speech. Second, to get an accurate glimpse at how the real app would function, the wizard
should try to behave like the machine would. The wizard should follow a script that best approxi-
mates what the app will be capable of. Also, the wizard should not give the app unreasonable
understanding capabilities. For example, if the user says something to the app that it would have no
way of understanding, such as a sarcastic statement, the wizard should respond with the app not
understanding.

Wizard of Oz studies offer a way to test your VUI while it is being designed and implemented.
You can gauge users’ reactions to the app’s utterances and you can discover additional desires
the user may have. For example, while performing such a study for Digital Recipe Sidekick’s voice-
controlled recipe reader, I noticed that users wanted to navigate the recipe steps in random order
instead of sequentially. Originally, I limited the user to hearing the steps one after another, but after
the study I allowed the user to navigate by step number as well.

c15.indd 346c15.indd 346 5/10/2012 2:11:25 PM5/10/2012 2:11:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

References x 347

Besides performing experiments, you can also observe the app performance by collecting transcripts
from beta tests or deployed app users. Such information allows you to fi ne-tune the VUI even fur-
ther. In particular, it helps to expose how effective your design is when increased recognition errors
exist due to live speech recognition occurring in various environments.

After completing some or all of these studies, you will have a good understanding of which com-
mands people want and what words they want to use to activate them. From here, you can use the
techniques discussed in the remaining chapters to implement them.

SUMMARY

This chapter outlined how to design a VUI that utilizes the speech recognition and TTS tools
that Android provides. Your design should include the tasks that need voice actions and the spoken
dialogue needed to accomplish them. If it takes into account the suggestions in this chapter, your
VUI will use voice actions only for appropriate tasks and be easy for users to use.

Your remaining task is to implement the voice actions you designed. This may involve adjusting the
design as you learn which words and interactions work best in practice. Specifi cally, you’ll need to
solve several challenges: implement code to operate the Android APIs (Chapter 16), implement code
that recognizes the spoken words from the user (Chapter 17), execute voice actions in a modular and
user-friendly way (Chapter 18), and select an appropriate speech activation method (Chapter 19).

REFERENCES

Harris, Randy Allen. 2005. Voice Interaction Design: Crafting the New Conversational Speech
Systems. San Francisco: Elsevier Inc.

http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-guide/

UserInterface.html (accessed October 10, 2011).

c15.indd 347c15.indd 347 5/10/2012 2:11:25 PM5/10/2012 2:11:25 PM

www.it-ebooks.info

http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-guide
http://www.it-ebooks.info/

c15.indd 348c15.indd 348 5/10/2012 2:11:25 PM5/10/2012 2:11:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

16
Using Speech Recognition and
Text-To-Speech APIs

WHAT’S IN THIS CHAPTER?

 ‰ Using the Text-To-Speech and Speech Recognition APIs

 ‰ Checking for device compatibility and language support

 ‰ Using reusable helper classes

 ‰ Using Text-To-Speech and Speech Recognition together

Speech recognition enables users to speak to their Android device and Text-To-Speech (TTS)
enables the device to speak back. This chapter explores how to use the speech recognition and
TTS APIs and how to properly handle the details of initializing and executing their
various functions. In addition, this chapter describes code you can reuse to handle common
procedures.

TEXT-TO-SPEECH

To use TTS, apps must perform the following steps:

1. Initialize the TextToSpeech object. Verify that the device supports the desired
language, download additional data if necessary, and wait for an asynchronous TTS
engine initialization process to complete.

2. Operate the TextToSpeech API to play speech, sounds, and silence.

3. Implement an Activity that handles managing the TextToSpeech life cycle as well as
any user interactions that are required during initialization or speaking.

c16.indd 349c16.indd 349 5/10/2012 2:12:03 PM5/10/2012 2:12:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

350 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

This chapter presents an implementation of TextToSpeech that involves several classes. The classes
implement two groups of functionality: initializing and using TTS. The design implements these
with three classes and an interface between two of them. Specifi cally, here are the classes and their
functions:

 ‰ TextToSpeechStartupListener: An interface containing methods for the possible outcomes
of the initialization procedure.

 ‰ TextToSpeechInitializer: A class to execute the initialization procedure and call back to
a TextToSpeechStartupListener.

 ‰ LanguageDataInstallBroadcastReceiver: Handles tracking when the user completes lan-
guage data installation.

 ‰ TextToSpeechDemo: An Activity to implement a simple usage of TextToSpeech to read a
short script. It manages the life cycle of the TextToSpeech object and implements any
necessary interactions with the user.

These classes enable you to reuse TextToSpeechInitializer and
LanguageDataInstallBroadcastReceiver within your own Activity, and possibly use
TextToSpeechDemo as a template.

Beyond these classes, three demonstration activities help show all of the TextToSpeech features.
They are located under the Text to Speech heading of the book’s companion app. They are:

 ‰ Demo: The TextToSpeechDemo Activity. As described in the previous list, it shows a
simple usage of TTS.

 ‰ Try Text to Speech: A playground where you can set all the different parameters of the
TextToSpeech object and observe how they affect the output.

 ‰ Diagnostics: Has a few functions that show detailed information about the TTS engine for
the particular device.

Initialization

Before an app can use TTS, it needs to create a TextToSpeech object. Preparing the object for
use requires one of two partially asynchronous procedures. The difference between the two pro-
cedures involves how the app checks for language support. One procedure, implemented with
TextToSpeechInitializer, uses on Locales and API calls to TextToSpeech. The other, imple-
mented with TextToSpeechInitializerByAction, uses voice descriptions and an Intent with the
ACTION_CHECK_DATA action. The procedure in TextToSpeechInitializer is simpler, but in some
cases you may need the procedure in TextToSpeechInitializerByAction. Both procedures check
for language support and use TextToSpeechStartupListener to return results.

TextToSpeechStartupListener contains methods that represent the various outcomes of the
initialization process. Listing 16-1 shows its code. When the initializer is successful, it calls

c16.indd 350c16.indd 350 5/10/2012 2:12:08 PM5/10/2012 2:12:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 351

onSuccessfullInit() to deliver a fully initialized TextToSpeech object that is ready to be used.
Along the way, the initializer may call any of the other methods to deal with contingences.

The code that uses TextToSpeech is a good place to implement TextToSpeechStartupListener.
For example, SayMagicWordDemo shown in Listing 16-22 later in this chapter, contains an example
implementation. SayMagicWordDemo is the main Activity and it uses TextToSpeech. By imple-
menting TextToSpeechStartupListener it can receive the TextToSpeech object when it is ready.
Also, SayMagicWordDemo can appropriately respond to any errors or initialization steps that require
user intervention.

LISTING 16-1: Callback interface to handle various initialization outcomes

public interface TextToSpeechStartupListener
{
 /**
 * tts is initialized and ready for use
 *
 * @param tts
 * the fully initialized object
 */
 public void onSuccessfulInit(TextToSpeech tts);

 /**
 * language data is required, to install call
 * {@link TextToSpeechInitializer#installLanguageData()}
 */
 public void onRequireLanguageData();

 /**
 * The app has already requested language data, and is waiting for it.
 */
 public void onWaitingForLanguageData();

 /**
 * initialization failed and can never complete.
 */
 public void onFailedToInit();
}

Initialization with Locale

Initializing TextToSpeech involves waiting for the asynchronous TTS engine startup to complete,
and then setting the TextToSpeech settings. Setting the language setting is complicated by requiring
a check fi rst and a potential language data download.

Figure 16-1 describes the procedure from TextToSpeechInitializer. The circles are initialization
steps and the squares represent four possible end states.

c16.indd 351c16.indd 351 5/10/2012 2:12:08 PM5/10/2012 2:12:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

352 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

new
TextToSpeech()

onInit() isLangAvailable()
Google

Play

TTS Data
installed

broadcast

Fail
(language not

available)
Ready

Data
install

in progress

Fail
(onInit() call

failed)

FIGURE 16-1: Asynchronous initialization procedure for creating and confi guring TTS

First, the app creates a new TextToSpeech and passes in an OnInitListener. Android immedi-
ately returns control to the app and begins an asynchronous initialization process. Meanwhile, any
calls to TextToSpeech, such as setLanguage(), will be ineffective. Therefore, to reliably initialize
TextToSpeech, your app should disable TTS functions while initialization is occurring and wait to
confi gure it until the initialization is complete.

Second, TextToSpeech fi nishes its asynchronous initialization and it calls OnInitListener.
onInit(). The code needs to execute two tasks during onInit().

The app must check the success variable passed in onInit(). If it is TextToSpeech.FAILURE, the
initialization failed and TTS cannot initialize.

Then, the device must check if it supports the desired language. If the device supports the language,
TextToSpeech is ready. If the device cannot ever support the language, it fails. If the device supports
the language but is missing language data, the user must download it via Google Play. If the user
has already begun downloading the language data, the app may end by reporting that data install is
in progress. When the user fi nishes installing the language data, the installer broadcasts android.
speech.tts.engine.TTS_DATA_INSTALLED.

Implementing TTS Initialization

TextToSpeechInitializer manages the initialization process just described. The initialization
process begins in its createTextToSpeech(), shown in listing 16-2, and continues in its setText-
ToSpeechSettings() method, shown in Listing 16-3. These methods execute asynchronously.
When complete, they make callbacks to one of the methods in TextToSpeechStartupListener.

If the external code determines language data is required, it may elect to install the data. If so, the
code in listings 16-5 and 16-6 show how to activate the language install only once by starting an
Intent, using a shared preference, and waiting for a broadcast result.

The following sections explore these steps in detail.

Starting TTS Initialization

First, the initialization code must create the TextToSpeech object. The createTextToSpeech()
method handles this. It takes the locale of the desired language as input so the initialization

c16.indd 352c16.indd 352 5/10/2012 2:12:08 PM5/10/2012 2:12:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 353

can set it later within the setTextToSpeechSettings() method. It also creates an anony-
mous OnInitListener class as the OnInitListener to handle the onInit() callback from
TextToSpeech.

LISTING 16-2: Creates a TextToSpeech object with an OnInitListener

 private void createTextToSpeech(final Locale locale)
 {
 tts = new TextToSpeech(context, new OnInitListener()
 {
 @Override
 public void onInit(int status)
 {
 if (status == TextToSpeech.SUCCESS)
 {
 setTextToSpeechSettings(locale);
 } else
 {
 Log.e(TAG, "error creating text to speech");
 callback.onFailedToInit();
 }
 }
 });
 }

setTextToSpeechSettings() either succeeds at confi guring TextToSpeech and reports success, or
makes a callback depending on whether the device can support the desired language.

Checking for Language Support using a Locale

setTextToSpeechSettings(), shown in Listing 16-3, checks for language availability. It does this
by checking the output from TextToSpeech.isLanguageAvailable(). Depending on the result, it
makes different callbacks to TextToSpeechInitializer.

TextToSpeech.isLanguageAvailable()takes a Locale as input and returns fi ve possible values. If
your app is not changing the default language, it should pass in Locale.getDefault(). Following is
a summary of the fi ve possible return values and what they mean.

 ‰ TextToSpeech.LANG_AVAILABLE: TTS is ready, and supports the language.

 ‰ TextToSpeech.LANG_COUNTRY_AVAILABLE: TTS is ready, and supports the language and
country.

 ‰ TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE: TTS is ready, and supports language, coun-
try, and variant.

 ‰ TextToSpeech.LANG_NOT_SUPPORTED: TTS has failed. The app cannot support the language.

 ‰ TextToSpeech.LANG_MISSING_DATA: TTS is not ready yet. The app needs make the user
download the language data fi rst.

c16.indd 353c16.indd 353 5/10/2012 2:12:08 PM5/10/2012 2:12:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

354 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-3: Sets TextToSpeech settings or callback to handle contingencies based on

language data availability

 private void setTextToSpeechSettings(final Locale locale)
 {
 Locale defaultOrPassedIn = locale;
 if (locale == null)
 {
 defaultOrPassedIn = Locale.getDefault();
 }
 // check if language is available
 switch (tts.isLanguageAvailable(defaultOrPassedIn))
 {
 case TextToSpeech.LANG_AVAILABLE:
 case TextToSpeech.LANG_COUNTRY_AVAILABLE:
 case TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE:
 Log.d(TAG, "SUPPORTED");
 tts.setLanguage(locale);
 callback.onSuccessfulInit(tts);
 break;
 case TextToSpeech.LANG_MISSING_DATA:
 Log.d(TAG, "MISSING_DATA");
 // check if waiting, by checking
 // a shared preference
 if (LanguageDataInstallBroadcastReceiver
 .isWaiting(context))
 {
 Log.d(TAG, "waiting for data...");
 callback.onWaitingForLanguageData();
 } else
 {
 Log.d(TAG, "require data...");
 callback.onRequireLanguageData();
 }
 break;
 case TextToSpeech.LANG_NOT_SUPPORTED:
 Log.d(TAG, "NOT SUPPORTED");
 callback.onFailedToInit();
 break;
 }
 }

code snippet TextToSpeechInitializer.java

Before continuing in this discussion, consider the possible reasons for requiring language data and
what happens when a device downloads it. On any given device, an app can get different values
from isLanguageAvailable() for each possible Locale. The values depend on how much, if any,
language data is installed on the device.

Figure 16-2 shows some output from the code in Listing 16-4. It contains the language, country, and
variant, separated by underscores for any Locale that the device supports partially or completely.
The text output after the Locale description describes any lack of device support. If the text says

c16.indd 354c16.indd 354 5/10/2012 2:12:08 PM5/10/2012 2:12:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 355

NOT_SUPPORTED it means that the device does not support the Locale at all. If it says MISSING_DATA
the device can support the Locale, if it had the TTS data.

If the device partially supports the Locale, the output describes which parts it supports. For
example, the output in Figure 16-2 shows that the device supports Spanish with an ES country, but
not a AR country. If the device supported the AR country, it would have printed es_AR COUNTRY_
AVAILBLE. Also, the output shows that the device does not support the POSIX variant of en_US_
POSIX, but does support the language and country. In either case, the device supports some form of
English and Spanish, if not exactly the one the Locale specifi es.

FIGURE 16-2: isLanguageAvailable() output for various Locales on a particular device

LISTING 16-4: Code required to describe which Locales a device supports

 public static String getLanguageAvailableDescription(TextToSpeech tts)
 {
 StringBuilder sb = new StringBuilder();
 for (Locale loc : Locale.getAvailableLocales())
 {
 int availableCheck = tts.isLanguageAvailable(loc);
 sb.append(loc.toString()).append(" ");
 switch (availableCheck)
 {
 case TextToSpeech.LANG_AVAILABLE:
 break;
 case TextToSpeech.LANG_COUNTRY_AVAILABLE:
 sb.append("COUNTRY_AVAILABLE");
 break;
 case TextToSpeech.LANG_COUNTRY_VAR_AVAILABLE:
 sb.append("COUNTRY_VAR_AVAILABLE");
 break;

continues

c16.indd 355c16.indd 355 5/10/2012 2:12:08 PM5/10/2012 2:12:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

356 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 case TextToSpeech.LANG_MISSING_DATA:
 sb.append("MISSING_DATA");
 break;
 case TextToSpeech.LANG_NOT_SUPPORTED:
 sb.append("NOT_SUPPORTED");
 break;
 }
 sb.append("\n");
 }
 return sb.toString();
 }

Downloading the language data adds support only for some languages. In the example from Figure
16-2, the device returns NOT_SUPPORTED for the fi Locale. NOT_SUPPORTED means that a device
will never support the given Locale, even if the user downloads the language data. The fr Locale
has a MISSING_DATA value. MISSING_DATA means that the device needs to download the language
data before saying “Bonjour” with the appropriate French accent.

TRY THIS

In the Diagnostics screen, click See Locales Status. The resulting dialog shows the
output from the code in Listing 16-4.

Handling the Language Check Result and Installing Language Data

Now, after the call to isLanguageAvailable(), the initialization could have failed in two ways:
via onInit()’s success integer or by isLanguageAvailable() returning LANG_NOT_SUPPORTED.
This leaves one contingency: the device needs to install language data. Most devices will not require
downloading the language data because it is pre-installed or because they have already run your
app’s initialization. However, you still must include code to download language data to handle the
devices that have installed data for only some languages or none at all.

If the device needs language data, the app has to send the user to Google Play to download and
install the SpeechSynthesis Data app. During installation, the app copies the necessary language
data to the SD card. Meanwhile, if the user starts the app again it is useful to inform the user to
wait until the installation is complete. Figure 16-3 shows the screens the user sees when needing to
download language data using the implementation this section describes.

First, in screen 1, the app fails a language check and prompts the user with a dialog.

Second, the user clicks Yes on screen 1 and the app sends the user to Google Play to download the
language data. Screen 2 shows Google Play page where the user has started the download.

Third, if the user returns to the app before the download is complete, the user sees screen 3. The
user will continue to see screen 3 until the installation notifi es the app. After completing the installa-
tion and restarting the app, the user will not see these three screens again and TextToSpeech will be
available for the app to use.

LISTING 16-4 (continued)

c16.indd 356c16.indd 356 5/10/2012 2:12:09 PM5/10/2012 2:12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 357

FIGURE 16-3 Screens a user could see while an app is initializing TextToSpeech

Android makes it easy for an app to move the user to Google Play via sending an Intent with a
TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA action. The action executes an android.
intent.action.VIEW action for market://search?q=pname:com.svox.langpack.installer.

To use the Intent external code responds to the onRequireLanguageData() callback. In that call-
back, the external code can optionally prompt the user, and decide whether or not to proceed with
installing the language data. If the app decides that it should install the language data it makes a
call to the TextToSpeechInitializer.installLanguage() method. Listing 16-5 shows how the
method sends an Intent with an ACTION_INSTALL_TTS_DATA action.

LISTING 16-5: Launch install language data

 public void installLanguageData()
 {
 // set waiting for the download
 LanguageDataInstallBroadcastReceiver.setWaiting(context, true);

 Intent installIntent = new Intent();
 installIntent.setAction(TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 context.startActivity(installIntent);
 }

Once an app sends the Intent, Android should take the user to Google Play where they can
start downloading the language data. However, your app should handle the case where the user
restarts your app before the device completes the data installation. This situation will cause your
app’s language data check to fail, and potentially trigger sending the user to Google Play again.

c16.indd 357c16.indd 357 5/10/2012 2:12:09 PM5/10/2012 2:12:09 PM

www.it-ebooks.info

market://search?q=pname:com.svox.langpack.installer
http://www.it-ebooks.info/

358 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

Sending the user to the Google Play again will not help the download happen faster nor help the
user start using your app. The result could be a loop that confuses and frustrates the user.

To handle this conundrum, the language installer broadcasts an Intent with TextToSpeech.
Engine.ACTION_TTS_DATA_INSTALLED when it completes installation. Your app can listen for this
Intent and notify the user to retry after the language is installed.

The code for this chapter handles this by using shared preferences. It sets a “waiting” shared prefer-
ence before sending the user to the Google Play. Then a BroadcastReceiver switches the preference
when the installation completes. When a user starts the data check, the app checks the “waiting”
shared preference and informs the user appropriately before resending the user to the Google Play.

Implementing this plan involves setting and checking the shared preference, a new
LanguageDataInstallBroadcastReceiver class, and code within two parts of
TextToSpeechInitializer. First, the installLanguageData() method from
Listing 16-5 sets the “waiting” preference before initiating the install. Second, the
LanguageDataInstallBroadcastReceiver class, shown in Listing 16-6, clears the “waiting” pref-
erence when it receives the appropriate broadcast. It requires the manifest entry, shown in Listing
16-7, to receive the correct broadcast. Third, the isLanguageAvailable() method from Listing
16-3 checks the preference using LanguageDataInstallBroadcastReceiver.isWaiting() and
reports the result to the TextToSpeechStartupListener.

LISTING 16-6: Broadcast listener to track when language data is installed

public class LanguageDataInstallBroadcastReceiver extends BroadcastReceiver
{
 private static final String TAG = "LanguageDataInstallBroadcastReceiver";

 private static final String PREFERENCES_NAME = "installedLanguageData";

 private static final String WAITING_PREFERENCE_NAME =
 "WAITING_PREFERENCE_NAME";

 private static final Boolean WAITING_DEFAULT = false;

 public LanguageDataInstallBroadcastReceiver()
 {
 }

 @Override
 public void onReceive(Context context, Intent intent)
 {
 if (intent.getAction().equals(
 TextToSpeech.Engine.ACTION_TTS_DATA_INSTALLED))
 {
 Log.d(TAG, "language data preference: " + intent.getAction());
 // clear waiting state
 setWaiting(context, false);
 }
 }

c16.indd 358c16.indd 358 5/10/2012 2:12:10 PM5/10/2012 2:12:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 359

 /**
 * check if the receiver is waiting for a language data install
 */
 public static boolean isWaiting(Context context)
 {
 SharedPreferences preferences;
 preferences =
 context.getSharedPreferences(PREFERENCES_NAME,
 Context.MODE_WORLD_READABLE);
 boolean waiting =
 preferences
 .getBoolean(WAITING_PREFERENCE_NAME, WAITING_DEFAULT);
 return waiting;
 }

 /**
 * start waiting by setting a flag
 */
 public static void setWaiting(Context context, boolean waitingStatus)
 {
 SharedPreferences preferences;
 preferences =
 context.getSharedPreferences(PREFERENCES_NAME,
 Context.MODE_WORLD_WRITEABLE);
 Editor editor = preferences.edit();
 editor.putBoolean(WAITING_PREFERENCE_NAME, waitingStatus);
 editor.commit();
 }
}

code snippet LanguageDataInstallBroadcastReceiver.java

LISTING 16-7: AndroidManifest.xml entry to activate the BroadcastReceiver

 <receiver
 android:name="root.gast.speech.tts.LanguageDataInstallBroadcastReceiver">
 <intent-filter>
 <action
 android:name="android.speech.tts.engine.TTS_DATA_INSTALLED"/>
 </intent-filter>
 </receiver>

Setting TTS Listener

A fi nal part of the setup is to optionally set an OnProgressUpdatedListener. TextToSpeech calls
the OnProgressUpdatedListener when it starts speaking, is done speaking, or when there is an
error. The methods contain an utteranceId parameter which is useful in various ways to help apps
know when speaking a certain utterance has completed. Subsequent sections in this chapter and
other chapters utilize it in various ways.

c16.indd 359c16.indd 359 5/10/2012 2:12:10 PM5/10/2012 2:12:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

360 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

At the moment, setting the listener is somewhat awkward. First, it is an abstract class that
an app must extend. This means your Activity cannot extend it. One way around this is to
use an anonymous class. Second, setting the listener can also produce some error codes that
an app may check. Third, an app needs to set the listener only after it is initialized. Fourth,
UtteranceProgressListener is a new class in Android 4.0.3. To be backward compatible, an app
needs insert a build version check. All this means it takes several lines of code to set the listener in a
way that is convenient to use and backward compatible.

Listing 16-22 shows code that sets the listener after successful initialization in its setTtsListener()
method. If the app’s API level is greater or equal to than 15, version 4.0.3 or greater, the app uses
UtteranceProgressListener. Otherwise, it uses an older OnUtteranceCompletedListener inter-
face. In either case, the resulting listener call an onDone() method.

Summary of Initialization Procedure

In summary, the classes described thus far implement a procedure that initializes the TextToSpeech
object using a Locale and callback to an interface implementation that decides how to process the
possible outcomes. Using the procedure, an app can reliably obtain an initialized TextToSpeech
object that is ready for use. The Testing TTS initialization note shows instructions for how to test
the initialization process on an emulator.

The next section discusses an alternate initialization procedure that uses the same code as this one
with a different method for checking language availability. The check uses the TextToSpeech.
Engine.ACTION_CHECK_TTS_DATA action. The next section also describes other uses of the action
besides initialization.

TESTING THE TTS INITIALIZATION

The initialization process is diffi cult to debug or test. It’s likely that your device has
the language data already installed. If so, your device will never need the initial-
ization procedure. Even if your device does not have the language data, once you
install it, there is no way to uninstall it via the Android user interface. Fortunately,
you can still test using an emulator.

The language data fi les reside inside a protected area of the Android operating
system. Therefore, you need to use an emulator to access it. Follow the procedure
outlined here to use adb to accomplish it.

Manual language data uninstallation procedure:

1. Start an emulator with version greater than 2

2. Execute: adb remount

3. Execute: adb shell rm -r /system/tts/lang_pico/*

Next, the emulator requires some additional steps because it cannot run Google
Play. Without Google Play the emulator must get the language data from some-
where else. You can simulate the install by performing a manual install of the data
using the following procedure.

c16.indd 360c16.indd 360 5/10/2012 2:12:10 PM5/10/2012 2:12:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 361

Manually installing language data procedure for an emulator:

1. Download com.svox.langpack.installer_1.0.1.apk from http://code.
google.com/p/eyes-free/downloads/list

2. Execute: adb install com.svox.langpack.installer_1.0.1.apk

This install behaves identically to installing from Google Play and installs the lan-
guage data to the SD card.

In summary, with some manual steps it is possible to test the TTS initialization
procedure using an emulator.

Check TTS Data Action

The TextToSpeech.Engine.ACTION_CHECK_TTS_DATA has two uses. First, you can use it to
check for supported languages. Second, you can use it to query for detailed information about the
TTS engine. Hence, it can be used as part of an alternative initialization procedure or to gather
information.

TRY THIS

Under Diagnostics, click data check to see the output from the ACTION_CHECK_TTS_
DATA action.

Voices

The action works on “voices” instead of Locales. A voice is a three-part string formatted as
lang-COUNTRY-variant where COUNTRY and variant are optional. For example, US English is
eng-USA. Variant is a completely unspecifi ed fi eld, but may take on values such as FEMALE.

The format of a voice is not the same as what you get from Locale.toString, and there is no
robust way to directly derive it from a Locale. Hence, either an app must do a best match between
the Locale’s ISO3Country and ISO3Language fi elds and all available voice strings beforehand, or
your app must know ahead of time which Locales will map easily.

Listing 16-8 performs a simple mapping from Locale to voice. However, it could result in a voice
called eng-AUS, which will not pass the language check because the available voice is called eng-USA
not eng-AUS.

LISTING 16-8: Converts Locale to a voice, only works for certain Locales

 public static String convertLocaleToVoice(Locale loc)
 {
 String country = loc.getISO3Country();
 String language = loc.getISO3Language();
 StringBuilder sb = new StringBuilder();

continues

c16.indd 361c16.indd 361 5/10/2012 2:12:11 PM5/10/2012 2:12:11 PM

www.it-ebooks.info

http://code
http://www.it-ebooks.info/

362 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 sb.append(language);
 if (country.length() > 0)
 {
 sb.append("-");
 sb.append(country);
 }
 return sb.toString();
 }

Using the ACTION_CHECK_TTS_DATA Action for Initialization

The ACTION_CHECK_TTS_DATA action differs from the Locale-based initialization in that it
does not need a Locale and does not need to check isLanguageDataAvailable(). Instead,
the app checks the result code from the action to determine whether or not the user needs to
download the language data. This results in a different control flow that is summarized in
Figure 16-4. TextToSpeechInitializerByAction implements the initialization procedure
using the action.

Data
install

in progress

TTS Data
installed

broadcast

new
TextToSpeech()

onInit() Ready

Google
Play

OnActivityResult()Intent

FIGURE 16-4: Initialization workfl ow using the ACTION_CHECK_TTS_DATA action

To start initialization, an app sends an Intent with the TextToSpeech.Engine.ACTION_CHECK_
TTS_DATA action and processes the result within OnActivityResult(). From there, an app contin-
ues the same way it did during the Locale-based initialization. It either creates a new TextToSpeech
object or if the app requires language data, it sends the user to Google Play. The only difference is
that this procedure does not require checking for language data after onInit() because the proce-
dure has already done that by checking the Intent results.

LISTING 16-8 (continued)

c16.indd 362c16.indd 362 5/10/2012 2:12:11 PM5/10/2012 2:12:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 363

The responseCode describes the result of the check. If it returns TextToSpeech.Engine.
CHECK_VOICE_DATA_PASS, the device has all the language data and it can continue to create a new
TextToSpeech object.

If the Intent returns anything else, the device does not have adequate language data. For example,
if a device has the eng-USA and spa-ESP voices but is missing the deu-DEU voice, the data check
will return something other than TextToSpeech.Engine.CHECK_VOICE_DATA_PASS and fail.

If an app is interested in only specifi c voices, it may pass in an optional ArrayList of voice strings
for EXTRA_CHECK_VOICE_DATA_FOR to check for particular voices. For example, an app might use
this to check if the device supports only the eng-USA voice. Even if the app supports eng-USA but
doesn’t support deu-DEU, the data check will still succeed and return CHECK_VOICE_DATA_PASS.

TextToSpeechInitializerByAction implements the initialization procedure just described. It
starts by sending the TextToSpeech.Engine.ACTION_CHECK_TTS_DATA Intent with a possible
voice to check. Listing 16-9 shows TextToSpeechInitializer its startDataCheck() method. The
method takes in an Activity because it has to call startActivityForResult().

LISTING 16-9: Sends an Intent with ACTION_CHECK_TTS_DATA action with optional EXTRA_

CHECK_VOICE_DATA_FOR extra

 public void startDataCheck(Activity activity, String voiceToCheck)
 {
 Intent check = new Intent();
 check.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 Log.d(TAG, "launching speech check");
 if (voiceToCheck != null && voiceToCheck.length() > 0)
 {
 Log.d(TAG, "adding voice check for: " + voiceToCheck);
 // needs to be in an ArrayList
 ArrayList<String> voicesToCheck = new ArrayList<String>();
 voicesToCheck.add(voiceToCheck);
 check.putStringArrayListExtra(
 TextToSpeech.Engine.EXTRA_CHECK_VOICE_DATA_FOR,
 voicesToCheck);
 }
 activity.startActivityForResult(check,
 CommonTtsMethods.SPEECH_DATA_CHECK_CODE);
 }

When the Activity returns a result, the calling Activity must execute the handleOnActivityRe-
sult() method to complete the initialization. Listing 16-10 shows the handleOnActivityResult()
method. Notice that it sets the language without checking isLanguageAvailable(). It also assumes
that the calling Activity passed in the right Locale for the particular voice. The calling Activity
sets targetLocale in is the constructor for TextToSpeechInitializerByAction.

c16.indd 363c16.indd 363 5/10/2012 2:12:11 PM5/10/2012 2:12:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

364 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-10: Handles the result from ACTION_CHECK_TTS_DATA

 private Locale targetLocale;
 public void handleOnActivityResult(Context launchFrom,
 int requestCode, int resultCode, Intent data)
 {
 if (requestCode == CommonTtsMethods.SPEECH_DATA_CHECK_CODE)
 {
 switch (resultCode)
 {
 case TextToSpeech.Engine.CHECK_VOICE_DATA_PASS:
 // success, create the TTS instance
 Log.d(TAG, "has language data");
 tts = new TextToSpeech(launchFrom, new OnInitListener()
 {
 @Override
 public void onInit(int status)
 {
 if (targetLocale != null)
 {
 tts.setLanguage(targetLocale);
 }
 if (status == TextToSpeech.SUCCESS)
 {
 callback.onSuccessfulInit(tts);
 } else
 {
 callback.onFailedToInit();
 }
 }
 });
 break;
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_VOLUME:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_FAIL:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_BAD_DATA:
 case TextToSpeech.Engine.CHECK_VOICE_DATA_MISSING_DATA:
 Log.d(TAG, "no language data");
 callback.onRequireLanguageData();
 }
 }
 }

code snippet TextToSpeechInitializerByAction.java

Either this Intent-based process or the Locale-based initialization may be more convenient for
your app. The Intent-based process has the advantage that it allows your app to check language
data without creating a TextToSpeech object. It also allows your app to easily query for what voices
are available. An app could use the return values to propose with “which language would you like
to speak?” to the user, for example.

c16.indd 364c16.indd 364 5/10/2012 2:12:12 PM5/10/2012 2:12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 365

This approach has some drawbacks, however. First, the Intent-based process involves two asyn-
chronous processes. It must wait for the Intent to fi nish and then wait for the TextToSpeech to
initialize. This increases the procedure’s complexity. Second, it requires an Activity and han-
dling an onActivityResult(), which makes it awkward to separate out the functionality into
a separate class. Finally, the Intent-based process needs a Locale to set its language. Because
it already needs a Locale, it might as well use the Locale-based initialization instead of dealing
with voice strings.

Using the ACTION_CHECK_TTS_DATA Action to Gather TTS Engine Information

In addition to checking for language data, ACTION_CHECK_TTS_DATA returns additional informa-
tion about the TTS engine via various extras. The information is useful for debugging a TTS
engine and for learning what languages a device supports. The results may be different depend-
ing on the implementation. The Android documentation only specifi es the format of EXTRA_
AVAILABLE_VOICES and EXTRA_UNAVAILABLE_VOICES; the others are left for the TTS engine to
decide.

Table 16-1 summarizes the output types and shows some possible results for the default TTS engine
installed on Android.

TABLE 16-1: Extra information provided with ACTION_CHECK_DATA for the default TTS engine

RETURN MEANING EXAMPLE OUTPUT

EXTRA_AVAILABLE_VOICES Voices installed on the device

formatted as lang-country-variant

where country and variant are

optional.

eng-USA, spa-ESP,

eng-USA-FEMALE

EXTRA_UNAVAILABLE_

VOICES

Voices not supported by the

device.

deu-DEU, eng-GBR, fra-FRA,

ita-ITA

EXTRA_VOICE_DATA_

ROOT_DIRECTORY

The voice data location. /mnt/sdcard/svox

EXTRA_VOICE_DATA_FILES Lists data fi le names. de-DE_gl0_sg.bin,

de-DE_ta.bin, en-GB_

kh0_sg.bin, en-GB_ta.bin,

en-US_lh0_sg.bin

EXTRA_VOICE_DATA_

FILES_INFO

A list of voices, presumably cor-

related with the data fi les.

deu-DEU, deu-DEU, eng-GBR,

eng-GBR, ….

Figure 16-5 shows the output from a device using the “data status” button in the book’s app. The
output shows that the device fails the “data status” check because it has only four of six languages
installed and describes which voices are available and which are missing.

c16.indd 365c16.indd 365 5/10/2012 2:12:12 PM5/10/2012 2:12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

366 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

An app can use the ACTION_CHECK_TTS_DATA action to initial-
ize TTS and also to gather TTS implementation details. As
discussed previously, an app can also initialize TTS using just a
Locale. The code described in the previous sections helps you
to implement TTS initialization quickly so that you can focus
on using TTS. The next section describes how.

Speaking

After the initialization process the app can readily utilize the
TextToSpeech object to play speech, prerecorded audio, and
silence. This section describes its various methods and demon-
strates their usage within the TextToSpeechDemo Activity and
the Try Text to Speech button in the book’s app.

When speaking, the TextToSpeech object proceeds through the
following steps:

1. App calls speak(), playSilence(), or playEarcon().

2. Speaking begins.

3. Interrupt speaking if app calls stop(), report true if app
calls isSpeaking().

4. Speaking ends.

5. TextToSpeech possibly calls onDone() on its UtteranceProgressListener..

The fi rst step involves playing one of four possible types of audio. You can use various “speak” or
“play” methods. Table 16-2 describes the audio types TextToSpeech can play and the methods needed.

TABLE 16-2: Diff erent Kinds of Audio TextToSpeech Can Play

WHAT DESCRIPTION HOW TO CONFIGURE TTS API

Speech Synthesized speech from arbitrary

text input.

None speak(text)

Prerecorded

speech

Audio fi le to play when given certain

text input.

addSpeech(key,

audio fi le)

speak(key)

Earcons A sound typically used at the start of

an utterance to solicit attention. Does

not trigger onDone() on versions

of Android before 4.0.

addEarcon(name,

audio fi le)

playEarcon(name)

Silence A period of silence. None playSilence()

FIGURE 16-5: Output from the

ACTION_CHECK_TTS_DATA

c16.indd 366c16.indd 366 5/10/2012 2:12:12 PM5/10/2012 2:12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 367

TextToSpeech may not play the audio immediately, however. It manages a play queue and
plays each piece of audio one at a time as it receives it. The “speak” and “play” methods
add to the queue. An app can control the queue behavior by passing in a queueMode param-
eter. If the app passes QUEUE_ADD, TextToSpeech adds the audio to its queue. If the app uses
QUEUE.FLUSH, TextToSpeech stops anything that is currently playing and starts playing audio
immediately.

Figure 16-6 shows the result of speaking an earcon, then two silences, and fi nally the text “Heart”
in the book’s companion app.

The speak and play methods also take a
Map<String,String> as input. The values in the
Map represent additional parameters for the audio
playback. Android defi nes four possible keys for the
parameters, but specifi c TTS engines may have
additional parameters. The possible parameters are:

 ‰ KEY_PARAM_STREAM: Any of the STREAM constants
from AudioManager. TextToSpeech will send any
audio output to the specifi ed stream.

 ‰ KEY_PARAM_UTTERANCE_ID: ID to be passed to
onDone() when TTS fi nishes speaking it. If this key is
not present, TextToSpeech does not call onDone().

 ‰ KEY_PARAM_VOLUME: Value from 0 to 1 representing
the relative volume of spoken text compared to the
current stream.

 ‰ KEY_PARAM_PAN: Value from –1 to +1 representing
how far left or right to send the spoken text.

One note about streams: you may also set the global volume
stream for the Activity by executing an Activity’s set-
VolumeControlStream() method. For example, to make
an Activity output all sound to the “music” audio stream,
execute this line: setVolumeControlStream(AudioManager.
STREAM_MUSIC);

Earcons and prerecorded speech require “adding” before your app can use them. To add, you have
to call addSpeech() and addEarcon(). Both require a textual name to refer to in later calls to
speak() and playEarcon() and a reference to an audio resource or a path to an audio fi le. The
audio format must be a format that Android supports, for example, .wav and .mp3. Also, all audio
resources should be within the res directory, most likely within res/raw.

FIGURE 16-6: Output from the book’s

app showing how TextToSpeech

queued, started, and then completed

playing various audio

c16.indd 367c16.indd 367 5/10/2012 2:12:12 PM5/10/2012 2:12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

368 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

TRY THIS

The Try Text to Speech screen already has an earcon set. Clicking the earcon but-
ton plays a .wav fi le that sounds like a tone.

While TextToSpeech is playing audio, your app can interrupt or monitor the speaking process. If an
app calls stop(), TextToSpeech stops speaking. If your app calls isSpeaking(), it reports if the
app is currently speaking.

Another way an app can use TextToSpeech is to synthesize text
to a fi le. Instead of immediately speaking the passed-in text,
you can use the TextToSpeech engine to write it as a .wav fi le
via the synthesizeToFile() method.

TextToSpeech has some other parameters that an app might
want to set before speaking. These are speechRate and pitch,
outlined in the following list. An app can set these values after
TextToSpeech calls onInit().

 ‰ speechRate: How fast to speak. 1 is the normal value,
2 is twice as fast. 0.5 is half as fast.

 ‰ pitch: Pitch of the voice. 1.0 is the normal value.
Lower values make lower pitches; higher values make
higher pitches. The particular TextToSpeech engine
determines how much of a change this causes.

There is one last consideration to keep in mind. This consid-
eration only applies to devices running versions of Android
before 4.0. In those versions, the users are ultimately in control
of their TTS settings. They can confi gure certain TTS settings
and if they do, your app cannot override them. Figure 16-7
shows the “Text-to-speech settings” Activity for an Android
2.3 device.

If the user selects Always use my settings, the settings confi gured override any changes your app
makes. Under these conditions, even if your app calls setSpeechRate() or setLanguage(), the
TTS will use the user’s settings instead. The only action your app can do is to check if the user has
overridden the defaults. If so, TextToSpeech.areDefaultsEnforced() will return true.

FIGURE 16-7: TTS settings screen for

Android devices before 4.0

c16.indd 368c16.indd 368 5/10/2012 2:12:12 PM5/10/2012 2:12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 369

TRY THIS

The Try Text to Speech button allows you to experiment with all of the TTS
parameters. Here are some specifi c experiments to try:

See the speaking queue. The Speak, Earcon, and Silence buttons each add some-
thing to the queue. To demonstrate the queue, fi rst select some text to speak. Then,
click the various three buttons multiple times, and listen to TextToSpeech say them
one at a time. You can also view when the various clicks were queued by looking at
the bottom result output.

 ‰ Prerecorded speech: To hear prerecorded speech, select “android” from the list
of Text to speak. When you click Speak, you will hear a prerecorded low voice
saying “android” instead of the normal synthesized voice.

 ‰ Stop speaking: Select some long text to speak by selecting (whatisandroid.txt).
Then click the Speak button. While it is speaking the Stop Speaking button
will be enabled. If you click it, the app will halt speaking before it completes
the utterance.

 ‰ Change settings: Change TextToSpeech settings by clicking the Parameters menu
option. Test changing volume, pan, speechRate, pitch, and synthesizing to fi le. If
you check Synthesize to fi le and then click Speak, the app will output a .wav fi le
within \sdcard\Android\data\root.gast.playground\tts.

Speaking a Script

TextToSpeechDemo assembles the various TextToSpeech method calls together to speak the follow-
ing script:

 1. Alert user with an earcon.

 2. Wait 1000 milliseconds for the user to start listening. Otherwise the information starts too
soon without a pause.

 3. Speak information.

 4. Wait 500 milliseconds.

 5. Speak prerecorded speech to personalize the speech with the author’s voice.

The code to play this script is shown in Listing 16-10. Any required earcons or prerecorded speech
are .wav fi les included within the app’s resources.

c16.indd 369c16.indd 369 5/10/2012 2:12:13 PM5/10/2012 2:12:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

370 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

LISTING 16-10: Plays a demo script consisting of earcons, silence, and synthesized and

prerecorded speech

 private static final String LAST_SPOKEN = "lastSpoken";

 private void playScript()
 {
 Log.d(TAG, "started script");
 //setup

 //id to send back when saying the last phrase
 //so the app can re-enable the "speak" button
 HashMap<String, String> lastSpokenWord = new HashMap<String, String>();
 lastSpokenWord.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID, LAST_SPOKEN);

 //add earcon
 final String EARCON_NAME = "[tone]";
 tts.addEarcon(EARCON_NAME, "root.gast.playground", R.raw.tone);
 //add prerecorded speech
 final String CLOSING = "[Thank you]";
 tts.addSpeech(CLOSING, "root.gast.playground", R.raw.enjoytestapplication);

 //pass in null to most of these because we do not want a callback to
 //onDone
 tts.playEarcon(EARCON_NAME, TextToSpeech.QUEUE_ADD, null);
 tts.playSilence(1000, TextToSpeech.QUEUE_ADD, null);
 tts.speak(
 "Attention readers: Use the try button to experiment with" +
 " Text to Speech. Use the diagnostics button to see " +
 "detailed Text to Speech engine information.",
 TextToSpeech.QUEUE_ADD, null);
 tts.playSilence(500, TextToSpeech.QUEUE_ADD, null);
 tts.speak(CLOSING, TextToSpeech.QUEUE_ADD, lastSpokenWord);

 }

code snippet TextToSpeechDemo.java

First, the playScript() method code defi nes lastSpokenWord to hold an utterance ID. The
onDone() method, shown in Listing 16-11, uses the ID to know when to re-enable the Speak button.
For the other utterances, playScript() passes null for a parameter. Not specifying an utterance ID
causes TextToSpeech to not call onDone() at the end of those utterances.

LISTING 16-11: onDone reenables the view

 private void onDone(final String utteranceId)
 {
 Log.d(TAG, "utterance completed: " + utteranceId);
 runOnUiThread(new Runnable()
 {
 @Override

c16.indd 370c16.indd 370 5/10/2012 2:12:14 PM5/10/2012 2:12:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 371

 public void run()
 {
 if (utteranceId.equals(LAST_SPOKEN))
 {
 setViewToDoneSpeaking();
 }
 }
 });
 }

Next, playScript() adds a mapping for one earcon and one prerecorded speech instance. The
earcon is named “[tone]” and comes from a resource .wav fi le within the raw directory called tone.
The speech is named “[Thank you]” and references a resource called enjoytestapplication.

After adding the earcon and prerecorded speech, the code adds audio to the TextToSpeech queue.
First it plays the earcon with a call to playEarcon() by passing the “[tone]” name. Then, it plays
silence for 1000 milliseconds. Next, it calls speak() with some text. This causes TextToSpeech to
convert the text to audio and play it. Following that, the app plays silence again and ends with play-
ing prerecorded speech by passing in “[Thank you]” to speak().

TRY THIS

Click the Text-to-Speech “demo” button and click Speak to hear the script.

Thus far, you’ve examined two parts of the TextToSpeech API: initializing and speaking. You need
a few other pieces of code to create an app that can use TTS. Listing 16-12 shows the complete
code for TextToSpeechDemo that contains the additional code that you need. The code does the
following:

 ‰ Calls shutdown in the onDestroy() method

 ‰ Uses various dialogs to inform the user what is happening during initialization

 ‰ Turns on and off the Speak button based on whether or not the app is speaking

 ‰ Deactivates the Speak button while TextToSpeech is initializing

LISTING 16-12: Demonstrates initializing and using TTS to play a script

public class TextToSpeechDemo extends Activity implements
 TextToSpeechStartupListener
{
 private static final String TAG = "TextToSpeechDemo";
 private Button speak;
 private Button stopSpeak;

 private static final String LAST_SPOKEN = "lastSpoken";
continues

c16.indd 371c16.indd 371 5/10/2012 2:12:14 PM5/10/2012 2:12:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

372 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 private TextToSpeechInitializer ttsInit;
 private TextToSpeech tts;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.ttsdemo);
 hookButtons();
 init();
 }

 private void hookButtons()
 {
 speak = (Button) findViewById(R.id.btn_speak);
 speak.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 setViewToWhileSpeaking();
 playScript();
 }
 });

 stopSpeak = (Button) findViewById(R.id.btn_stop_speak);
 stopSpeak.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 setViewToDoneSpeaking();
 tts.stop();
 }
 });
 }

 private void init()
 {
 deactivateUi();
 ttsInit = new TextToSpeechInitializer(this, Locale.getDefault(), this);
 }

 @Override
 public void onSuccessfulInit(TextToSpeech tts)
 {
 Log.d(TAG, "successful init");
 this.tts = tts;
 activateUi();
 setTtsListener();

LISTING 16-12 (continued)

c16.indd 372c16.indd 372 5/10/2012 2:12:14 PM5/10/2012 2:12:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 373

 }

 /**
 * set the TTS listener to call {@link #onDone(String)} depending on the
 * Build.Version.SDK_INT
 */
 private void setTtsListener()
 {
 if (Build.VERSION.SDK_INT >= 15)
 {
 int listenerResult =
 tts.setOnUtteranceProgressListener(new UtteranceProgressListener()
 {
 @Override
 public void onDone(String utteranceId)
 {
 TextToSpeechDemo.this.onDone(utteranceId);
 }

 @Override
 public void onError(String utteranceId)
 {
 Log.e(TAG, "TTS error");
 }

 @Override
 public void onStart(String utteranceId)
 {
 Log.d(TAG, "TTS start");
 }
 });
 if (listenerResult != TextToSpeech.SUCCESS)
 {
 Log.e(TAG, "failed to add utterance progress listener");
 }
 }
 else
 {
 int listenerResult =
 tts.setOnUtteranceCompletedListener(
 new OnUtteranceCompletedListener()
 {
 @Override
 public void onUtteranceCompleted(String utteranceId)
 {
 TextToSpeechDemo.this.onDone(utteranceId);
 }
 });
 if (listenerResult != TextToSpeech.SUCCESS)
 {
 Log.e(TAG, "failed to add utterance completed listener");
 }
 }
 }

continues

c16.indd 373c16.indd 373 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

374 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 private void onDone(final String utteranceId)
 {
 Log.d(TAG, "utterance completed: " + utteranceId);
 runOnUiThread(new Runnable()
 {
 @Override
 public void run()
 {
 if (utteranceId.equals(LAST_SPOKEN))
 {
 setViewToDoneSpeaking();
 }
 }
 });
 }

 @Override
 public void onFailedToInit()
 {
 DialogInterface.OnClickListener onClickOk = makeOnFailedToInitHandler();
 AlertDialog a =
 new AlertDialog.Builder(this).setTitle("Error")
 .setMessage("Unable to create text to speech")
 .setNeutralButton("Ok", onClickOk).create();
 a.show();
 }

 @Override
 public void onRequireLanguageData()
 {
 DialogInterface.OnClickListener onClickOk =
 makeOnClickInstallDialogListener();
 DialogInterface.OnClickListener onClickCancel =
 makeOnFailedToInitHandler();
 AlertDialog a =
 new AlertDialog.Builder(this)
 .setTitle("Error")
 .setMessage(
 "Requires Language data to proceed, " +
 "would you like to install?")
 .setPositiveButton("Ok", onClickOk)
 .setNegativeButton("Cancel", onClickCancel).create();
 a.show();
 }

 @Override
 public void onWaitingForLanguageData()
 {
 // either wait for install
 DialogInterface.OnClickListener onClickWait =
 makeOnFailedToInitHandler();
 DialogInterface.OnClickListener onClickInstall =
 makeOnClickInstallDialogListener();

LISTING 16-12 (continued)

c16.indd 374c16.indd 374 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Text-To-Speech x 375

 AlertDialog a =
 new AlertDialog.Builder(this)
 .setTitle("Info")
 .setMessage(
 "Please wait for the language data to finish" +
 " installing and try again.")
 .setNegativeButton("Wait", onClickWait)
 .setPositiveButton("Retry", onClickInstall).create();
 a.show();
 }

 private DialogInterface.OnClickListener makeOnClickInstallDialogListener()
 {
 return new DialogInterface.OnClickListener()
 {
 @Override
 public void onClick(DialogInterface dialog, int which)
 {
 ttsInit.installLanguageData();
 }
 };
 }

 private DialogInterface.OnClickListener makeOnFailedToInitHandler()
 {
 return new DialogInterface.OnClickListener()
 {
 @Override
 public void onClick(DialogInterface dialog, int which)
 {
 finish();
 }
 };
 }

 private void playScript()
 {
 Log.d(TAG, "started script");
 // setup

 // id to send back when saying the last phrase
 // so the app can re-enable the "speak" button
 HashMap<String, String> lastSpokenWord = new HashMap<String, String>();
 lastSpokenWord.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID,
 LAST_SPOKEN);

 // add earcon
 final String EARCON_NAME = "[tone]";
 tts.addEarcon(EARCON_NAME, "root.gast.playground", R.raw.tone);

 // add prerecorded speech
 final String CLOSING = "[Thank you]";
 tts.addSpeech(CLOSING, "root.gast.playground",
 R.raw.enjoytestapplication);

continues

c16.indd 375c16.indd 375 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

376 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 // pass in null to most of these because we do not want a callback to
 // onDone
 tts.playEarcon(EARCON_NAME, TextToSpeech.QUEUE_ADD, null);
 tts.playSilence(1000, TextToSpeech.QUEUE_ADD, null);
 tts.speak("Attention readers: Use the try button to experiment with"
 + " Text to Speech. Use the diagnostics button to see "
 + "detailed Text to Speech engine information.",
 TextToSpeech.QUEUE_ADD, null);
 tts.playSilence(500, TextToSpeech.QUEUE_ADD, null);
 tts.speak(CLOSING, TextToSpeech.QUEUE_ADD, lastSpokenWord);

 }

 // activate and deactivate the UI based on various states

 private void deactivateUi()
 {
 Log.d(TAG, "deactivate ui");
 // don't enable until the initialization is complete
 speak.setEnabled(false);
 }

 private void activateUi()
 {
 Log.d(TAG, "activate ui");
 speak.setEnabled(true);
 }

 public void setViewToWhileSpeaking()
 {
 stopSpeak.setVisibility(View.VISIBLE);
 speak.setVisibility(View.GONE);
 }

 public void setViewToDoneSpeaking()
 {
 stopSpeak.setVisibility(View.GONE);
 speak.setVisibility(View.VISIBLE);
 }

 @Override
 protected void onDestroy()
 {
 if (tts != null)
 {
 tts.shutdown();
 }
 super.onDestroy();
 }

}

code snippet TextToSpeechDemo.java

LISTING 16-12 (continued)

c16.indd 376c16.indd 376 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 377

This section has explained how to initialize and use the TTS API to allow an app to speak. The next
section describes how to allow an app to listen using the speech recognition API.

SPEECH RECOGNITION

Using the speech recognition API involves sending an Intent with the various actions
and extras defined in RecognizerIntent. Even though code never instantiates a
RecognizerIntent, this section still refers to an Intent that has constants from it as a
RecognizerIntent. The RecognizerIntent can accomplish many tasks, and this section
describes its various use cases.

Also, this section describes a set of six classes that demonstrate and implement common speech rec-
ognition methods:

 ‰ SpeechRecognizingActivity: An abstract Activity to handle interpreting the onActivi-
tyResult() response and executing other boilerplate code.

 ‰ SpeechRecognizerUtil: Has common speech recognition methods.

 ‰ LanguageDetailsChecker: BroadcastReceiver to receive RecognizerIntent.ACTION_
GET_LANGUAGE_DETAILS result.

 ‰ OnLanguageDetailsListener: Interface for LanguageDetailsChecker to call after receiv-
ing language details.

 ‰ SpeechRecognitionResultsActivity: Example of an Activity that handles a receiving
recognition results in a PendingIntent.

 ‰ SayMagicWordDemo: Demo activity that uses speech recognition and TTS.

If your app either extends SpeechRecognizerActivity or uses the methods in
SpeechRecognizerUtil, your app’s remaining tasks are to confi gure the appropriate
RecognizerIntent, interpret recognition results, and deal with any errors. The subject of interpret-
ing the recognition results and creating complete speech commands is covered in Chapters 17 and
18. Chapter 19 describes different ways to help the user launch the RecognizerIntent besides using
a button. This chapter gets you started by showing you how to get your app to the point of receiving
recognition results.

Initializing

Before an app can use speech recognition it needs to perform two checks. First, it needs to check if
the device supports speech recognition. To check, an app must execute the code in Listing 16-13.

LISTING 16-13: Check to determine if a device supports speech recognition

 public boolean isSpeechAvailable(Context context)
 {
 PackageManager pm = context.getPackageManager();
 List<ResolveInfo> activities = pm.queryIntentActivities(

c16.indd 377c16.indd 377 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

378 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH), 0);

 boolean available = true;
 if (activities.size() == 0)
 {
 available = false;
 }
 return available;
 }

Second, an app can optionally check if Android supports
the desired language. If it does not, there is no way to fi x it.
Unfortunately, the RecognizerIntent makes it easy for an app
to set a language, but not to check if Android supports a lan-
guage. To perform a language check, your app must retrieve the
list of supporting languages and then perform string matching
between the list and the desired language’s Locale.

The fi rst part of the language check is to acquire the list of
supported languages and the recognizer’s preferred lan-
guage. To do this, your app can send an Intent with the
RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS action.
The recognizer uses the preferred language when the app does
not specify a language or when it doesn’t support the language
the app specifi es. Figure 16-8 shows the output from the lan-
guage check on one device.

The language check uses an asynchronous call and a
BroadcastIntent. LanguageDetailsChecker handles
the asynchronous nature of the call by calling back to an
OnLanguageDetailsListener when it receives the language
check results.

Listing 16-14 shows LanguageDetailsChecker.

LISTING 16-14: BroadcastReceiver to receive language details result

public class LanguageDetailsChecker extends BroadcastReceiver
{
 private static final String TAG = "LanguageDetailsChecker";

 private List<String> supportedLanguages;

 private String languagePreference;

 private OnLanguageDetailsListener doAfterReceive;

 public LanguageDetailsChecker(OnLanguageDetailsListener doAfterReceive)
 {
 supportedLanguages = new ArrayList<String>();

FIGURE 16-8: ACTION_GET_

LANGUAGE_DETAILS output

c16.indd 378c16.indd 378 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 379

 this.doAfterReceive = doAfterReceive;
 }

 @Override
 public void onReceive(Context context, Intent intent)
 {
 Bundle results = getResultExtras(true);
 if (results.containsKey(RecognizerIntent.EXTRA_LANGUAGE_PREFERENCE))
 {
 languagePreference =
 results.getString(RecognizerIntent.EXTRA_LANGUAGE_PREFERENCE);
 }
 if (results.containsKey(RecognizerIntent.EXTRA_SUPPORTED_LANGUAGES))
 {
 supportedLanguages =
 results.getStringArrayList(
 RecognizerIntent.EXTRA_SUPPORTED_LANGUAGES);
 }

 if (doAfterReceive != null)
 {
 doAfterReceive.onLanguageDetailsReceived(this);
 }
 }

 public String matchLanguage(Locale toCheck)
 {
 String matchedLanguage = null;
 // modify the returned languages to look like the output from
 // Locale.toString()
 String targetLanguage = toCheck.toString().replace('_', '-');
 for (String supportedLanguage : supportedLanguages)
 {
 // use contains, so that partial matches are possible
 // for example, if the Locale is
 // en-US-POSIX, it will still match en-US
 // and that if the target language is en, it will match something
 Log.d(TAG, targetLanguage + " contains " + supportedLanguage);
 if ((targetLanguage.contains(supportedLanguage))
 || supportedLanguage.contains(targetLanguage))
 {
 matchedLanguage = supportedLanguage;
 }
 }
 return matchedLanguage;
 }

 /**
 * @return the supportedLanguages
 */
 public List<String> getSupportedLanguages()
 {
 return supportedLanguages;
 }

continues

c16.indd 379c16.indd 379 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

380 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 /**
 * @return the languagePreference
 */
 public String getLanguagePreference()
 {
 return languagePreference;
 }

 public String toString()
 {
 StringBuilder sb = new StringBuilder();
 sb.append("Language Preference: ").append(getLanguagePreference())
 .append("\n");
 sb.append("languages supported: ").append("\n");
 for (String lang : getSupportedLanguages())
 {
 sb.append(" ").append(lang).append("\n");
 }
 return sb.toString();
 }
}

 code snippet LanguageDetailsChecker.java

Listing 16-15 shows the OnLanguageDetailsListener, which receives the result of the language check.

LISTING 16-15: Called by LanguageDetailsChecker with language data

public interface OnLanguageDetailsListener
{
 public void onLanguageDetailsReceived(LanguageDetailsChecker data);
}

Listing 16-16 shows the SpeechRecognizingActivity.checkForLanguage() method, which
checks for language support. It does the following:

 ‰ Defi nes OnLanguageDetailsListener that uses the language check result to tell if the device
supports a certain Locale. The OnLanguageDetailsListener passes the language check
result to the abstract languageCheckResult() method.

 ‰ Creates a LanguageDetailsChecker to receive the language check results and forward them
to the OnLanguageDetailsListener.

 ‰ Sends a Intent with the RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS action to be
received by the LanguageDetailsChecker.

LISTING 16-16: Executes the language check for a given Locale

 protected void checkForLanguage(final Locale language)
 {
 OnLanguageDetailsListener andThen = new OnLanguageDetailsListener()

LISTING 16-14 (continued)

c16.indd 380c16.indd 380 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 381

 {
 @Override
 public void onLanguageDetailsReceived(LanguageDetailsChecker data)
 {
 // do a best match
 String languageToUse = data.matchLanguage(language);
 languageCheckResult(languageToUse);
 }
 };
 Intent detailsIntent = new Intent(
 RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS);
 LanguageDetailsChecker checker = new LanguageDetailsChecker(andThen);
 sendOrderedBroadcast(detailsIntent, null, checker, null,
 Activity.RESULT_OK, null, null);
 }
 }

TRY THIS

Click Try Speech, then the Language Details menu option to see the output for
your device.

The “languages” returned by the action do not exactly conform to any standard. The API does not
specify the format for these “language” strings. As you can see in Figure 16-8, the supported lan-
guages in the RecognizerIntent.GET_LANGUAGE_DETAILS output have a mixed format. They tend
to follow a language-country format, very similar to what Locale.toString() provides, but not
exactly. For example, the list of languages contains strings such as cmn-Hans-CN and Pig-Latin,
which do not conform to any standard.

This leaves you with a problem. There is no direct way for an app to check if Android supports
recognizing the language for a particular Locale. Your app can send a Locale.toString() as a
parameter in the RecognizerIntent to specify a language preference. However, if your app man-
ages to send a Locale.toString() to Android that it doesn’t support, the recognizer will just use
the default. There is no programmatic way to know if Android is using the default or ignoring the
Locale.toString() your app passed in.

Fortunately, Android supports many languages, so most likely Google will support the language you
need. However, it doesn’t support all languages, such as Icelandic, whose Locale is is_IS. Until
Android provides additional APIs, your app needs some string matching code, such as the match-
Language() method in Listing 16-14, if it needs to perform the language check.

TRY THIS

In the Try Speech button, use the Set Language menu option to test different lan-
guage support. You can change the language to another such as es-US. Then, you
can select Vamos a la playa from the list of presets and attempt to speak the phrase.

Also, you can use the Test Locale menu option. It shows all available Locales and
passes them to the matchLanguage() method to determine if Android supports it.

c16.indd 381c16.indd 381 5/10/2012 2:12:15 PM5/10/2012 2:12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

382 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

Once an app has checked if a device can support speech recognition and optionally checked if
Android supports a particular language, it can then use speech recognition. The next section
describes how to do so by sending a RecognizerIntent.

Using the RecognizerIntent

To use speech recognition, apps must create and send a RecognizerIntent. The RecognizerIntent
class has an entangled list of extras and actions, which work only in certain combinations. The
various uses fall into several categories and cover three possible actions, each with its own usage of
extras. Table 16-2 describes the three possible actions in RecognizerIntent. The previous section
covered GET_LANGUAGE_DETAILS and this section focuses on the other two.

TABLE 16-3: The Three Diff erent Actions using in RecognizerIntent

ACTION SEND WITH DESCRIPTION

RECOGNIZE_SPEECH startActivityForResult() Starts speech recognition.

WEB_SEARCH startActivityForResult() Starts speech recognition but allows

Android to take an action on the results.

Typically, Android decides to perform a

web search.

GET_LANGUAGE_DETAILS sendBroadcast() Returns some information about the sup-

ported and preferred languages.

To perform interactive speech recognition and process the results an app can use ACTION_
RECOGNIZE_SPEECH. Table 16-4 shows the relevant extras.

TABLE 16-4: Extras for ACTION_RECOGNIZE_SPEECH

PURPOSE EXTRA

How to collect PROMPT

SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS

SPEECH_INPUT_MINIMUM_LENGTH_MILLIS

SPEECH_INPUT_POSSIBLY_COMPLETE_SILENCE_LENGTH_
MILLIS

What to return LANGUAGE_MODEL (required)

LANGUAGE

MAX_RESULTS

Where to send results RESULTS_PENDINGINTENT

RESULTS_PENDINGINTENT_BUNDLE

Results RESULTS

CONFIDENCE_SCORES

c16.indd 382c16.indd 382 5/10/2012 2:12:16 PM5/10/2012 2:12:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 383

To allow Android to take an action based on the speech instead of the app, an app can use ACTION_
WEB_SEARCH. Table 16-5 shows the relevant extras.

TABLE 16-5: Extras for ACTION_WEB_SEARCH

PURPOSE EXTRA

How to collect PROMPT

SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS

SPEECH_INPUT_MINIMUM_LENGTH_MILLIS

SPEECH_INPUT_POSSIBLY_COMPLETE_SILENCE_LENGTH_
MILLIS

What to return LANGUAGE_MODEL (required)

LANGUAGE

MAX_RESULTS

PARTIAL_RESULTS

ORIGIN

Where to send results WEB_SEARCH_ONLY

Results RESULTS

CONFIDENCE_SCORES

To execute the language details check, as described in the previous section, an app can use ACTION_
GET_LANGUAGE_DETAILS. Table 16-6 shows the relevant extras.

TABLE 16-6: Extras for ACTION_GET_LANGUAGE_DETAILS

PURPOSE EXTRA

How to collect (none)

What to return ONLY_RETURN_LANGUAGE_PREFERENCE

Where to send results (none)

Results LANGUAGE_PREFERENCE

SUPPORTED_LANGUAGES

The “how to collect” extras in Tables 16-4 and 16-5 control how Android records speech and
what it shows the user while doing so. The “what to return” extras change what values the recog-
nizer returns. The “where to send results” extras determine what receives the results. For ACTION_
RECOGNIZE_SPEECH, the extras enable the developer to specify a PendingIntent to receive the
recognition results. In ACTION_WEB_SEARCH, an app can optionally force Android to send the result
to the web browser. Finally, an app uses the “results” extras to extract data, such as the speech-to-
text conversations, returned from the RecogizerIntent.

c16.indd 383c16.indd 383 5/10/2012 2:12:16 PM5/10/2012 2:12:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

384 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

The Speech Recording Process

Once an app sends a RecognizerIntent, Android proceeds through a process of showing dialogs,
recording audio, and waiting for silence in order to record a speech utterance. As mentioned previ-
ously, the app can use extras in the Intent to control some aspects of how the recognizer executes
this process. The speech recording process involves the following steps:

1. App sends a RecognizerIntent.

2. User waits up to several seconds.

3. Speech prompt dialog appears with an optional prompt.

4. User starts speaking.

5. App records until a minimum time passes and it hears silence for long enough.

6. Speech prompt dialog changes to “Working” while app communicates with Google servers.

7. If an error occurs, the device plays a beeping sound, vibrates, and displays one of three retry
dialogs.

8. Android returns results to the app via onActivityResult().

The extras that affect the speech recording have several categories:

 ‰ Prompt: Adjusts the words the user sees in the fi rst prompt. In Figure 16-9, the prompt to the
left shows the prompt “Speak: My android and I went to the store.” To set the prompt, set
the following extra:

 ‰ PROMPT: Text to put in the Speech prompt dialog.

 ‰ Timing: The recognizer determines when to stop recording based on how much silence it
hears and a minimum recording time parameter. The “Working” prompt in Figure 16-9
shows a picture of the waveform the user recorded over time. The horizontal line in the
middle is bumpy when user was speaking and fl at when there was silence. Normally, an
app does not change the timing parameters. If it needs to, an app can set the following
extras:

 ‰ MINIMUM_LENGTH: Controls the minimum amount of time the recognizer records no
matter how much silence it hears. Box 1 in Figure 16-9 shows the minimum length
time.

 ‰ COMPLETE_SILENCE_LENGTH: Amount of silence needed before the recognizer stops
recording. In Figure 16-9, during box 2 there was silence, but not enough to stop
recording until during box 3.

 ‰ POSSIBLY_COMPLETE_SILENCE_LENGTH: Amount of silence needed before the recog-
nizer considers stopping recording. This extra works in a similar way to COMPLETE_
SILENCE_LENGTH. If your app specifi es both values, the recognizer uses the smaller
value as the amount of silence it needs.

c16.indd 384c16.indd 384 5/10/2012 2:12:16 PM5/10/2012 2:12:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 385

 ‰ Errors: Various errors can occur. Figure 16-9 shows the dialogs Android shows when they
do. The various errors are “No matches found,” “No speech heard,” and “Connection prob-
lem.” These conditions all return a resultCode of 0, whereas successful executions return
a resultCode of RESULT_OK. Android does not return the error codes referenced in the
RecognizerIntent documentation.

FIGURE 16-9: Figure showing fl ow of speech dialogs ending in four possible outcomes

1 2 3

Confi guring and Processing the Result

Beyond confi guring how the recognizer records speech, your app can also specify how the recog-
nizer should interpret the recorded speech and what it should return. The possible extras are:

c16.indd 385c16.indd 385 5/10/2012 2:12:16 PM5/10/2012 2:12:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

386 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 ‰ LANGUAGE_MODEL: A required extra having a value of LANGUAGE_MODEL_FREE_FORM or
LANGUAGE_MODEL_WEB_SEARCH. Each value causes the recognizer to use a certain “language
model.”

 ‰ The results from using either language model are very similar and the recognizer can
recognize any speech using either option. However, the results will differ slightly in
what possible speech-to-text conversions they return and in what order.

 ‰ Each language model is best suited to recognize the words for a certain manner of
speaking. You should select the model that you think most closely corresponds to
way your users speak in your app. Android’s speech input document advises that free
form is for dictation and web search is for shorter, search-like phrases. (http://
developer.android.com/resources/articles/speech-input.html)

 ‰ LANGUAGE: A voice string or a Locale.toString().

 ‰ MAX_RESULTS: The maximum number of possible speech-to-text conversions to return.

When the user completes a recognition, the recognizer returns some results within an Intent that
contains two possible extras:

 ‰ RESULTS: An ArrayList<String> that contains strings representing possible speech-to-text
conversions. It lists the strings in descending order of recognition confi dence. For example, if
you say “next step” the results could contain the following: “next step, next steps, next stat,
next that, next best, nah that, yes that, neck that, nex that.” The correct conversion happens
to be fi rst and other possibilities follow. Also, if your app sets RESULTS_PENDINGINTENT, and
the RESULTS extra is empty, it means that there was a recognition failure.

 ‰ CONFIDENCE_SCORES: An optional float [] from 0.0 to 1.0 or –1.0 representing recog-
nition confi dence. Each value corresponds to a speech-to-text conversion in the RESULTS
array in the same array position. A value of 0 means low confi dence and 1.0 means
high confi dence. If the value is –1, it means the confi dence value was unavailable. The
confi dence values are useful in helping the app make decisions about how to respond to
a user’s utterance when an app does not understand it. For example, if the confi dence
scores are low and the possible conversions do not match any expected values, it might
indicate that the app didn’t understand. If the confi dence scores are high and the possible
conversions do not match, it might indicate that the user said the wrong thing. Both sug-
gest different app responses. Chapter 19 goes into greater detail about how to use the
confi dence score.

RecognizerIntent Use Cases

You can use the RecognizerIntent in three ways, depending on what your app plans to do with
the results. To activate the different use cases, your app uses a combination of an action type and
potentially additional extras beyond the common ones already described.

Use case 1 is to return results to the calling Activity’s onActivityResult() method.

This is a basic use case in which an Activity sends a RecognizerIntent and receives the result.
Listing 16-17 shows code that constructs an Intent with two extras, LANGUAGE_MODEL and PROMPT.

c16.indd 386c16.indd 386 5/10/2012 2:12:17 PM5/10/2012 2:12:17 PM

www.it-ebooks.info

http://developer.android.com/resources/articles/speech-input.html
http://developer.android.com/resources/articles/speech-input.html
http://www.it-ebooks.info/

Speech Recognition x 387

LISTING 16-17: Creates a typical RecognizerIntent

 public static Intent getSimpleRecognizerIntent(String prompt)
 {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT, prompt);
 return intent;
 }

Use case 2 is to handle results with a PendingIntent.

Normally, the recognizer returns results to the caller of startActivityForResult(). However,
apps can make the recognizer send results along with a PendingIntent instead. To do so, an app
sets the following extras:

 ‰ RESULTS_PENDINGINTENT: A PendingIntent for the recognizer to send with the recognition
results.

 ‰ RESULTS_PENDINGINTENT_BUNDLE: A Bundle containing additional extras to pass with the
PendingIntent. If an app sets this extra, the Intent’s receiver receives the recognition result
extras as well as the contents of the bundle.

Using the PendingIntent could be useful to, for example, handle displaying search query results. In
this scenario, your app would start a RecognizerIntent with a PendingIntent that would launch
another Activity. The other Activity would interpret the recognition results and display a list of
matching database entries.

Listings 16-18 and 16-19 show how to use a PendingIntent to receive recognition
results and display them. The code in Listing 16-18 confi gures a RecognizerIntent
called intentToSend to send a PendingIntent along with data inside an extra named
WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT.

LISTING 16-18: Confi gures a PendingIntent to receive the recognition results along with

another extra

 Intent pendingIntentSource =
 new Intent(this, SpeechRecognitionResultsActivity.class);
 PendingIntent pi =
 PendingIntent.getActivity(this, 0, pendingIntentSource, 0);

 Bundle extraInfoBundle = new Bundle();
 // pass in what you are trying to say so the results activity can
 // show it
 extraInfoBundle
 .putString(
 SpeechRecognitionResultsActivity.
 WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT,
 whatYouAreTryingToSay.getText().toString());

continues

c16.indd 387c16.indd 387 5/10/2012 2:12:17 PM5/10/2012 2:12:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

388 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

// set the variables in the intent this is sending
 intentToSend.putExtra(RecognizerIntent.EXTRA_RESULTS_PENDINGINTENT, pi);
 intentToSend.putExtra(
 RecognizerIntent.EXTRA_RESULTS_PENDINGINTENT_BUNDLE,
 extraInfoBundle);

The code in Listing 16-19 is an Activity that receives the Intent, and displays the recognition
results and the WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT value. The Activity reports an
error dialog if the passed-in Intent does not contain EXTRA_RESULTS.

Figure 16-10 shows a possible result of running the code.

LISTING 16-19: Activity to receive the PendingIntent and display its contents

public class SpeechRecognitionResultsActivity extends Activity
{
 private static final String TAG = "SpeechRecognitionResultsActivity";

 /**
 * for passing in the input
 */
 public static String WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT =
 "WHAT_YOU_ARE_TRYING_TO_SAY_INPUT";

 private ListView log;

 private TextView resultsSummary;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.speechrecognition_result);
 Log.d(TAG, "SpeechRecognition Pending intent received");
 hookButtons();
 init();
 }

 private void hookButtons()
 {
 log = (ListView) findViewById(R.id.lv_resultlog);
 resultsSummary = (TextView) findViewById(R.id.tv_speechResultsSummary);
 }

 private void init()
 {
 if (getIntent() != null)
 {
 if (getIntent().hasExtra(WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT))
 {
 String whatSayFromIntent =

LISTING 16-18 (continued)

c16.indd 388c16.indd 388 5/10/2012 2:12:17 PM5/10/2012 2:12:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 389

 getIntent().getStringExtra(
 WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT);
 resultsSummary.setText(whatSayFromIntent);
 }

 String whatSayFromIntent =
 getIntent().getStringExtra(
 WHAT_YOU_ARE_TRYING_TO_SAY_INTENT_INPUT);
 resultsSummary.setText(whatSayFromIntent);

 if (getIntent().hasExtra(RecognizerIntent.EXTRA_RESULTS))
 {
 List<String> results =
 getIntent().getStringArrayListExtra(
 RecognizerIntent.EXTRA_RESULTS);
 ArrayAdapter<String> adapter =
 new ArrayAdapter<String>(this,
 R.layout.speechresultactivity_listitem,
 R.id.tv_speech_activity_result, results);
 log.setAdapter(adapter);
 }
 else
 {
 // if RESULT_EXTRA is not present, the recognition had an
 // error
 DialogInterface.OnClickListener onClickFinish =
 new DialogInterface.OnClickListener()
 {
 @Override
 public void onClick(DialogInterface dialog,
 int which)
 {
 finish();
 }
 };
 AlertDialog a =
 new AlertDialog.Builder(this)
 .setTitle(
 getResources().getString(
 R.string.d_info))
 .setMessage(
 getResources()
 .getString(
 R.string.
 speechRecognitionFailed))
 .setPositiveButton(
 getResources().getString(R.string.d_ok),
 onClickFinish).create();
 a.show();
 }
 }
 }
}

code snippet SpeechRecognitionResultsActivity.java

c16.indd 389c16.indd 389 5/10/2012 2:12:17 PM5/10/2012 2:12:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

390 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

Use case 3 is to let the Android device decide what to do with the
results. Most likely, it will decide to start a web search.

Your app can tell the Android to initiate an action of its choosing
based on recognition results, by using the ACTION_WEB_SEARCH
action instead of ACTION_RECOGNIZE_SPEECH. Typically, the rec-
ognizer sends the user to the web browser with the recognized
speech. However, the Android documentation says that it may
“trigger another type of action.” Your app can disable other
actions and force the user to go to a web browser by including the
WEB_SEARCH_ONLY extra.

Android does trigger other actions based on what the user says.
For example, if the user says “e-mail programming is fun,”
Android opens an e-mail prompt with the text “programming is
fun.” If the user just says “programming is fun,” Android sends
“programming is fun” to the web browser. Figure 16-11 shows
both results.

You can use a few other extras with ACTION_WEB_SEARCH. If you
set the ORIGIN fi eld, the recognizer will include the value as the
referring URL in the resulting HTML request.

FIGURE 16-11: Two results from executing ACTION_WEB_SEARCH,

when speaking “e-mail programming is fun” (left) or “Programming is

fun” (right).

FIGURE 16-10: Displays the recogni-

tion results sent in a PendingIntent

c16.indd 390c16.indd 390 5/10/2012 2:12:17 PM5/10/2012 2:12:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 391

You can also set the PARTIAL_RESULTS extra in the hopes of getting partial results while the user
speaks. However, it may not work in all cases because as the Android documentation states: “The
server may ignore a request for partial results in some or all cases.” In my experience, the server
does a lot of ignoring.

In summary, by using the three use cases an app can have some control over what happens with the
recognition results. Using the typical use case, an Activity sends a RecognizerIntent and then
processes the results itself. However, an app can also forward the results to a PendingIntent by
specifying one and to Android by using ACTION_WEB_SEARCH. The next section looks at some code
that helps you to implement these use cases.

TRY THIS

Use the Try Speech button to adjust the various parameters and observe how
closely Android recognizes your speech. Here are some experiments to try:

 ‰ Diffi cult-to-recognize phrases: Try selecting “Cumin seeds” or “It’s not easy
to wreck a nice beach” presets, and then trying to speak those words. Observe
how closely the results match what you said.

 ‰ Timing: Try setting the three timing parameters, to see how long it allows you
to pause your speech and how long the speech recording lasts.

 ‰ Web search: Check off Web Search in the settings. Then speak something.

 ‰ PendingIntent: Check “Pending intent for results.” Then speak something and
observe how the recognizer launches another Activity to show the results.

Implementation

Executing speech recognition requires a fair amount of boilerplate code. This section
describes the reusable code you need within two classes. SpeechRecognizingActivity and
SpeechRecognitionUtil combine the pieces described in this section to make a reusable library.
Also, SayTheMagicWordDemo demonstrates how to use these new classes.

SpeechRecognitionUtil contains common speech-recognition-related methods such as initializa-
tion. SpeechRecognizingActivity is an abstract class that executes the initialization, sends the
RecognizerIntent, and extracts data from the recognition results.

The easiest way to use these two classes is to extend SpeechRecognizingActivity. If your app
can do so, almost all boilerplate code will be in the abstract class. If it cannot, your app can use
SpeechRecognizingActivity as a template.

c16.indd 391c16.indd 391 5/10/2012 2:12:18 PM5/10/2012 2:12:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

392 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

SPEECH RECOGNIZING AND SPEAKING ACTIVITY

If your app needs to use speech recognition and TTS, it may extend
SpeechRecognizingAndSpeakingActivity, which extends
SpeechRecognizingActivity to include TTS. It also handles prompting the user
during initialization if required. The source code for this book includes this handy
class for your use.

Listing 16-20 contains part of SpeechRecognitionUtil. It has two methods for initialization,
among other convenient methods. isSpeechAvailable() determines if the device supports speech.
getLanguageDetails() sends an Intent with the ACTION_GET_LANGUAGE_DETAILS action and
calls back to an OnLanguageDetailsListener implementation with the result.

LISTING 16-20: A utility class that contains some common speech recognition methods

public class SpeechRecognitionUtil
{
 /**
 * checks if the device supports speech recognition
 * at all
 */
 public static boolean isSpeechAvailable(Context context)
 {
 PackageManager pm = context.getPackageManager();
 List<ResolveInfo> activities = pm.queryIntentActivities(
 new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH), 0);

 boolean available = true;
 if (activities.size() == 0)
 {
 available = false;
 }
 return available;
 }

 /**
 * collects language details and returns result to andThen
 */
 public static void getLanguageDetails(Context context,
 OnLanguageDetailsListener andThen)
 {
 Intent detailsIntent = new Intent(
 RecognizerIntent.ACTION_GET_LANGUAGE_DETAILS);
 LanguageDetailsChecker checker = new LanguageDetailsChecker(andThen);
 context.sendOrderedBroadcast(detailsIntent, null, checker, null,
 Activity.RESULT_OK, null, null);
 }
}

c16.indd 392c16.indd 392 5/10/2012 2:12:18 PM5/10/2012 2:12:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 393

Listing 16-21 contains the abstract SpeechRecognizingActivity class. It has four methods that the
extending class must implement to handle various callbacks from initialization and receiving
recognition results. It has two methods the extending class may call.

For initialization, SpeechRecognizingActivity executes the speech availability check during
onCreate(). If the device doesn’t support speech recognition, SpeechRecognizingActivity calls
speechNotAvailable(). If the extending Activity requests a language check via the checkFor-
Language() method, SpeechRecognizingActivity calls languageCheckResult() with the result.

For executing, SpeechRecognizingActivity provides a recognize() method to send a passed-in
RecognizeIntent. Using recognize() ensures that onActivityResult() can properly process the
recognition result. When onActivityResult() receives recognition results, it either calls receive-
WhatWasHeard() with the results, or recognitionFailure() if there was a recognition problem.

SpeechRecognizingActivity also provides different methods for direct speech recognition using
SpeechRecognizer instead of RecognizerIntent. The next section describes how to use those.

LISTING 16-21: Abstract Activity to handle common speech recognition processes

public abstract class SpeechRecognizingActivity extends Activity implements
 RecognitionListener
{
 private static final String TAG = "SpeechRecognizingActivity";

 /**
 * code to identify return recognition results
 */
 public static final int VOICE_RECOGNITION_REQUEST_CODE = 1234;

 public static final int UNKNOWN_ERROR = -1;

 private SpeechRecognizer recognizer;

 // private VoiceAction active;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 boolean recognizerIntent =
 SpeechRecognitionUtil.isSpeechAvailable(this);
 if (!recognizerIntent)
 {
 speechNotAvailable();
 }
 boolean direct = SpeechRecognizer.isRecognitionAvailable(this);
 if (!direct)
 {
 directSpeechNotAvailable();
 }
 }

continues

c16.indd 393c16.indd 393 5/10/2012 2:12:19 PM5/10/2012 2:12:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

394 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 protected void checkForLanguage(final Locale language)
 {
 OnLanguageDetailsListener andThen = new OnLanguageDetailsListener()
 {
 @Override
 public void onLanguageDetailsReceived(LanguageDetailsChecker data)
 {
 // do a best match
 String languageToUse = data.matchLanguage(language);
 languageCheckResult(languageToUse);
 }
 };
 SpeechRecognitionUtil.getLanguageDetails(this, andThen);
 }

 /**
 * execute the RecognizerIntent, then call
 * {@link #receiveWhatWasHeard(List, List)} when done
 */
 public void recognize(Intent recognizerIntent)
 {
 startActivityForResult(recognizerIntent,
 VOICE_RECOGNITION_REQUEST_CODE);
 }

 /**
 * Handle the results from the RecognizerIntent.
 */
 @Override
 protected void
 onActivityResult(int requestCode, int resultCode, Intent data)
 {
 if (requestCode == VOICE_RECOGNITION_REQUEST_CODE)
 {
 if (resultCode == RESULT_OK)
 {
 List<String> heard =
 data.
 getStringArrayListExtra
 (RecognizerIntent.EXTRA_RESULTS);
 float[] scores =
 data.
 getFloatArrayExtra
 (RecognizerIntent.EXTRA_CONFIDENCE_SCORES);
 if (scores == null)
 {
 for (int i = 0; i < heard.size(); i++)
 {
 Log.d(TAG, i + ": " + heard.get(i));
 }
 }
 else
 {
 for (int i = 0; i < heard.size(); i++)

LISTING 16-21 (continued)

c16.indd 394c16.indd 394 5/10/2012 2:12:19 PM5/10/2012 2:12:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 395

 {
 Log.d(TAG, i + ": " + heard.get(i) + " score: "
 + scores[i]);
 }
 }

 receiveWhatWasHeard(heard, scores);
 }
 else
 {
 Log.d(TAG, "error code: " + resultCode);
 recognitionFailure(UNKNOWN_ERROR);
 }
 }
 super.onActivityResult(requestCode, resultCode, data);
 }

 /**
 * called when speech is not available on this device, and when
 * {@link #recognize(Intent)} will not work
 */
 abstract protected void speechNotAvailable();

 /**
 * called when {@link SpeechRecognizer} cannot be used on this device and
 * {@link #recognizeDirectly(Intent)} will not work
 */
 abstract protected void directSpeechNotAvailable();

 /**
 * call back the result from {@link #checkForLanguage(Locale)}
 *
 * @param languageToUse
 * the language string to use or null if failure
 */
 abstract protected void languageCheckResult(String languageToUse);

 /**
 * result of speech recognition
 *
 * @param heard
 * possible speech to text conversions
 * @param confidenceScores
 * the confidence for the strings in heard
 */
 abstract protected void receiveWhatWasHeard(List<String> heard,
 float[] confidenceScores);

 /**
 * @param code
 * If using {@link #recognizeDirectly(Intent) it will be
 * the error code from {@link SpeechRecognizer}
 * if using {@link #recognize(Intent)}
 * it will be {@link #UNKNOWN_ERROR}.
 */
 abstract protected void recognitionFailure(int errorCode);

continues

c16.indd 395c16.indd 395 5/10/2012 2:12:19 PM5/10/2012 2:12:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

396 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 //direct speech recognition methods follow

 /**
 * Uses {@link SpeechRecognizer} to perform recognition and then calls
 * {@link #receiveWhatWasHeard(List, float[])} with the results

 * check {@link SpeechRecognizer.isRecognitionAvailable(context)} before
 * calling this method otherwise if it isn't available the code will report
 * an error
 */
 public void recognizeDirectly(Intent recognizerIntent)
 {
 // SpeechRecognizer requires EXTRA_CALLING_PACKAGE, so add if it's not
 // here
 if (!recognizerIntent.hasExtra(RecognizerIntent.EXTRA_CALLING_PACKAGE))
 {
 recognizerIntent.putExtra(RecognizerIntent.EXTRA_CALLING_PACKAGE,
 "com.dummy");
 }
 SpeechRecognizer recognizer = getSpeechRecognizer();
 recognizer.startListening(recognizerIntent);
 }

 @Override
 public void onResults(Bundle results)
 {
 Log.d(TAG, "full results");
 receiveResults(results);
 }

 @Override
 public void onPartialResults(Bundle partialResults)
 {
 Log.d(TAG, "partial results");
 receiveResults(partialResults);
 }

 /**
 * common method to process any results bundle from {@link SpeechRecognizer}
 */
 private void receiveResults(Bundle results)
 {
 if ((results != null)
 && results.containsKey(SpeechRecognizer.RESULTS_RECOGNITION))
 {
 List<String> heard =
 results.getStringArrayList(SpeechRecognizer.RESULTS_RECOGNITION);
 float[] scores =
 results.getFloatArray(SpeechRecognizer.CONFIDENCE_SCORES);
 receiveWhatWasHeard(heard, scores);
 }
 }

LISTING 16-21 (continued)

c16.indd 396c16.indd 396 5/10/2012 2:12:19 PM5/10/2012 2:12:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 397

 @Override
 public void onError(int errorCode)
 {
 recognitionFailure(errorCode);
 }

 /**
 * stop the speech recognizer
 */
 @Override
 protected void onPause()
 {
 if (getSpeechRecognizer() != null)
 {
 getSpeechRecognizer().stopListening();
 getSpeechRecognizer().cancel();
 getSpeechRecognizer().destroy();
 }
 super.onPause();
 }

 /**
 * lazy initialize the speech recognizer
 */
 private SpeechRecognizer getSpeechRecognizer()
 {
 if (recognizer == null)
 {
 recognizer = SpeechRecognizer.createSpeechRecognizer(this);
 recognizer.setRecognitionListener(this);
 }
 return recognizer;
 }

 // other unused methods from RecognitionListener...
}

code snippet SpeechRecognizingActivity.java

Listing 16-22 shows SayMagicWordDemo, which uses both TTS and speech recognition. It contains
the code similar to TextToSpeechDemo, only instead of playing a script the Activity records speech
and speaks a response back to the user.

The class extends SpeechRecognizingActivity. Therefore, most of the speech recogni-
tion details are in SpeechRecognizingActivity. To execute the speech recognition, the
acquireGuess() method confi gures an Intent and calls recognize() to send it. Then,
SpeechRecognizingActivity calls receiveWhatWasHeard() with the results. receiveWhat-
WasHeard() processes the recognition result by executing a simple if statement.

In SayMagicWordDemo, TTS and speech recognition have one simple interaction. By activating and
deactivating the Speak button, SayMagicWordDemo does not allow speech recognition to start until

c16.indd 397c16.indd 397 5/10/2012 2:12:19 PM5/10/2012 2:12:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

398 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

TTS fi nishes speaking. This is an important feature an app needs if it is using both TTS and speech
recognition, because it could lead to the app talking to itself.

LISTING 16-22: Demonstration Activity using TTS and speech recognition

public class SayMagicWordDemo extends SpeechRecognizingActivity implements
 TextToSpeechStartupListener
{
 private static final String TAG = "SayMagicWordDemo";
 private Button speak;
 private TextToSpeechInitializer ttsInit;
 private TextToSpeech tts;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.magicworddemo);
 hookButtons();
 init();
 }

 private void hookButtons()
 {
 speak = (Button) findViewById(R.id.btn_speak);
 speak.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 acquireGuess();
 }
 });
 }

 private void init()
 {
 deactivateUi();
 ttsInit = new TextToSpeechInitializer(this, Locale.getDefault(), this);
 }

 @Override
 public void onSuccessfulInit(TextToSpeech tts)
 {
 Log.d(TAG, "successful init");
 this.tts = tts;
 activateUi();
 setTtsListener();
 }

 /**
 * set the TTS listener to call {@link #onDone(String)} depending on the
 * Build.Version

c16.indd 398c16.indd 398 5/10/2012 2:12:20 PM5/10/2012 2:12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 399

 */
 private void setTtsListener()
 {
 final SayMagicWordDemo callWithResult = this;
 if (Build.VERSION.SDK_INT >= 15)
 {
 int listenerResult =
 tts.setOnUtteranceProgressListener(
 new UtteranceProgressListener()
 {
 @Override
 public void onDone(String utteranceId)
 {
 callWithResult.onDone(utteranceId);
 }

 @Override
 public void onError(String utteranceId)
 {
 Log.e(TAG, "TTS error");
 }

 @Override
 public void onStart(String utteranceId)
 {
 Log.d(TAG, "TTS start");
 }
 });
 if (listenerResult != TextToSpeech.SUCCESS)
 {
 Log.e(TAG, "failed to add utterance progress listener");
 }
 }
 else
 {
 int listenerResult =
 tts.setOnUtteranceCompletedListener(
 new OnUtteranceCompletedListener()
 {
 @Override
 public void onUtteranceCompleted(String utteranceId)
 {
 callWithResult.onDone(utteranceId);
 }
 });
 if (listenerResult != TextToSpeech.SUCCESS)
 {
 Log.e(TAG, "failed to add utterance completed listener");
 }
 }
 }

 public void onDone(String utteranceId)
 {

continues

c16.indd 399c16.indd 399 5/10/2012 2:12:20 PM5/10/2012 2:12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

400 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 Log.d(TAG, "utterance completed: " + utteranceId);
 runOnUiThread(new Runnable()
 {
 @Override
 public void run()
 {
 activateUi();
 }
 });
 }

 @Override
 public void onFailedToInit()
 {
 DialogInterface.OnClickListener onClickOk =
 makeOnFailedToInitHandler();
 AlertDialog a =
 new AlertDialog.Builder(this).setTitle("Error")
 .setMessage("Unable to create text to speech")
 .setNeutralButton("Ok", onClickOk).create();
 a.show();
 }

 @Override
 public void onRequireLanguageData()
 {
 DialogInterface.OnClickListener onClickOk =
 makeOnClickInstallDialogListener();
 DialogInterface.OnClickListener onClickCancel =
 makeOnFailedToInitHandler();
 AlertDialog a =
 new AlertDialog.Builder(this)
 .setTitle("Error")
 .setMessage(
 "Requires Language data to proceed," +
 " would you like to install?")
 .setPositiveButton("Ok", onClickOk)
 .setNegativeButton("Cancel", onClickCancel).create();
 a.show();
 }

 @Override
 public void onWaitingForLanguageData()
 {
 // either wait for install
 DialogInterface.OnClickListener onClickWait =
 makeOnFailedToInitHandler();
 DialogInterface.OnClickListener onClickInstall =
 makeOnClickInstallDialogListener();

 AlertDialog a =
 new AlertDialog.Builder(this)

LISTING 16-22 (continued)

c16.indd 400c16.indd 400 5/10/2012 2:12:20 PM5/10/2012 2:12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 401

 .setTitle("Info")
 .setMessage(
 "Please wait for the language data " +
 "to finish installing and try again.")
 .setNegativeButton("Wait", onClickWait)
 .setPositiveButton("Retry", onClickInstall).create();
 a.show();
 }

 private DialogInterface.OnClickListener makeOnClickInstallDialogListener()
 {
 return new DialogInterface.OnClickListener()
 {
 @Override
 public void onClick(DialogInterface dialog, int which)
 {
 ttsInit.installLanguageData();
 }
 };
 }

 private DialogInterface.OnClickListener makeOnFailedToInitHandler()
 {
 return new DialogInterface.OnClickListener()
 {
 @Override
 public void onClick(DialogInterface dialog, int which)
 {
 finish();
 }
 };
 }

 private void acquireGuess()
 {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT,
 "What is the magic word?");

 recognize(intent);
 }

 public void speechNotAvailable()
 {
 DialogInterface.OnClickListener onClickOk =
 makeOnFailedToInitHandler();
 AlertDialog a =
 new AlertDialog.Builder(this)
 .setTitle("Error")
 .setMessage(
 "This device does not support " +
 "speech recognition. Click ok to quit.")

continues

c16.indd 401c16.indd 401 5/10/2012 2:12:20 PM5/10/2012 2:12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

402 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 .setPositiveButton("Ok", onClickOk).create();
 a.show();
 }

 @Override
 protected void directSpeechNotAvailable()
 {
 // not using it
 }

 protected void languageCheckResult(String languageToUse)
 {
 // not used
 }

 /**
 * determine if the user said the magic word and speak the result
 */
 protected void receiveWhatWasHeard(List<String> heard,
 float[] confidenceScores)
 {
 String magicWord = "tree";
 String mostLikelyThingHeard = heard.get(0);
 String message = "";
 if (mostLikelyThingHeard.equals(magicWord))
 {
 message =
 "Correct! You said the magic word: " + mostLikelyThingHeard;
 }
 else
 {
 message = "Wrong! The magic word is not: " + mostLikelyThingHeard;
 }

 AlertDialog a =
 new AlertDialog.Builder(this).setTitle("Result")
 .setMessage(message).setPositiveButton("Ok", null)
 .create();
 a.show();

 deactivateUi();
 HashMap<String, String> params = new HashMap<String, String>();
 params.put(TextToSpeech.Engine.KEY_PARAM_UTTERANCE_ID, "anyid");
 tts.speak(message, TextToSpeech.QUEUE_ADD, params);
 }

 protected void recognitionFailure(int errorCode)
 {
 AlertDialog a =
 new AlertDialog.Builder(this)
 .setTitle("Error")
 .setMessage(

LISTING 16-22 (continued)

c16.indd 402c16.indd 402 5/10/2012 2:12:20 PM5/10/2012 2:12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Speech Recognition x 403

 SpeechRecognitionUtil
 .diagnoseErrorCode(errorCode))
 .setPositiveButton("Ok", null).create();
 a.show();
 }

 // activate and deactivate the UI based on various states

 private void deactivateUi()
 {
 Log.d(TAG, "deactivate ui");
 // don't enable until the initialization is complete
 speak.setEnabled(false);
 }

 private void activateUi()
 {
 Log.d(TAG, "activate ui");
 speak.setEnabled(true);
 }

 @Override
 protected void onDestroy()
 {
 tts.shutdown();
 super.onDestroy();
 }

}

code snippet SayMagicWordDemo.java

Thus far, this chapter has covered how to send a RecognizerIntent by using the
recognize() method. There is an alternative method to using speech recognition that
uses the SpeechRecognizer class instead of RecognizerIntent. In addition to support-
ing RecognizerIntent, the code just described in this section also supports the alternative,
SpeechRecognizer approach via a recognizeDirectly() method. The next section describes
using it in detail and the code that SpeechRecognizingActivity uses to implement the
recognizeDirectly() method.

Direct Speech Recognition Using SpeechRecognizer

The previous sections discussed how to send a RecognizerIntent to execute speech recognition.
Sending a RecognizerIntent simplifi es the code you need to write because it delegates the speech rec-
ognition process to a receiving Activity. However, this process can be insuffi cient for some apps.

Alternately, an app can use the SpeechRecognizer API to access lower-level information and get
tighter control while the device is executing speech recognition. This book calls using the API
“direct speech recognition.”

In particular, direct speech recognition is useful when:

c16.indd 403c16.indd 403 5/10/2012 2:12:20 PM5/10/2012 2:12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

404 x CHAPTER 16 USING SPEECH RECOGNITION AND TEXT-TO-SPEECH APIS

 ‰ You want to show a different or no dialog while recording speech.

 ‰ You want your app to respond while recognition is taking place.

 ‰ You want your app to run speech recognition in the background while the user is doing
something else.

 ‰ You want to better diagnose errors from the speech recognizer.

 ‰ You want access to some low-level details of the speech processing.

TRY THIS

In the Try Speech screen you can try SpeechRecognizer by switching on the
Use SpeechRecognizer parameter inside the Speech Parameters menu option.
You can see how SpeechRecognizer gives the same output as sending a
RecognizerIntent. One visible difference is that instead of showing a dialog, the
app makes a toast to alert the user that speech recognition is occurring.

To use SpeechRecognizer an app needs to perform several steps. Listing 16-21, shown in the previ-
ous section, shows how SpeechRecognizingActivity does it. The necessary steps are as follows.

For setup:

 ‰ Check if SpeechRecognizer is available by calling SpeechRecognizer.
isRecognitionAvailable().

 ‰ Create a SpeechRecognizer by calling SpeechRecognizer.createSpeechRecognizer().

 ‰ Destroy SpeechRecognizer when done with it.

 ‰ Set a RecognitionListener.

For execution:

 ‰ Set a RecognizerIntent.EXTRA_CALLING_PACKAGE.

 ‰ Call startListening() with a confi gured RecognizerIntent.

 ‰ Optionally, alert the user that speech recognition is occurring.

The fi rst part of setting up is to create a SpeechRecognizer object using SpeechRecognizer
.createSpeechRecognizer(). SpeechRecognizingActivity creates a SpeechRecognizer once
and maintains a single instance. It also cleans up the object during onPause().

The second part of setting up is to check whether the device supports using SpeechRecognizer. To
do this an app needs to call SpeechRecognizer.isRecognitionAvailable(). The method checks
for whether the app can respond to the RecognitionService.SERVICE_INTERFACE action. This
action is different from the ACTION_RECOGNIZE_SPEECH action that apps need to check before send-
ing the RecognizerIntent. Typically, if a device supports ACTION_RECOGNIZE_SPEECH, it will also

c16.indd 404c16.indd 404 5/10/2012 2:12:20 PM5/10/2012 2:12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary x 405

support RecognitionService.SERVICE_INTERFACE. Google Voice and other speech recognizers
support both. However, it is possible that a user could activate a speech recognizer that does not
support one or the other.

SpeechRecognizingActivity calls SpeechRecognizer.isRecognitionAvailable() when it
checks ACTION_RECOGNIZE_SPEECH during onCreate(). It calls directSpeechNotAvailable() if
it fails.

To execute SpeechRecognizer an app registers a RecognitionListener and calls startListen
ing() with a confi gured RecognizerIntent. An app can confi gure the RecognizerIntent by
setting the various available extras such as EXTRA_SPEECH_INPUT_MINIMUM_LENGTH_MILLIS as pre-
viously described in this chapter.

As SpeechRecognizer collects speech, it calls the RecognitionListener with various callbacks.
The callbacks give your app access to low-level details such as onBufferReceived(), which pro-
vides raw sound bytes. The callbacks also have state callbacks such as onBeginningOfSpeech() and
onEndOfSpeech(), and report errors via onError(). None of these functions are available when
sending the RecognizerIntent. The RecognitionListener receives results via onPartialRe-
sults() or onResults(). In contrast, when sending the RecognizerIntent, an app receives results
in the onActivityResult() method.

To implement this, SpeechRecognizingActivity contains a convenient recognizeDirectly()
method and implements part of the RecognitionListener interface. When executing, recognize
Directly() sets the calling package and starts speech recognition. Then, SpeechRecognizer calls
back to SpeechRecognizingActivity when recognition is complete, partially complete, or when
there is an error. SpeechRecognizingActivity responds by forwarding results to the abstract
receiveWhatWasHeard() method in both cases.

SUMMARY

This chapter showed you the mechanics of using the TTS and speech recognition APIs. It covered
how to initialize and check for language support and provided you with reusable code to help you
use the APIs in various ways. This chapter also contained a complete Activity that uses both tech-
nologies together.

Knowing how to use the APIs is not enough to implement voice actions, however. An app also has
to process the list of recognitions and confi dences to arrive at what the user most likely said so that
your app can take the appropriate action. It also has to organize the voice action implementation to
support multiple commands at a single prompt and to execute a sequence of voice actions if neces-
sary. By using the approaches described in Chapters 17–19, and the mechanics learned in this chap-
ter, you will be able fully implement sophisticated voice actions in your apps.

c16.indd 405c16.indd 405 5/10/2012 2:12:21 PM5/10/2012 2:12:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c16.indd 406c16.indd 406 5/10/2012 2:12:21 PM5/10/2012 2:12:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

17
Matching What Was Said

WHAT’S IN THIS CHAPTER?

 ‰ Matching using word spotting

 ‰ Matching against command words in persistent storage

 ‰ Matching single and multi-part commands

The previous chapter showed how to use the speech recognition and TTS APIs. The chapter
provided code that extracts speech recognition results from onActivityResult() and passes
them to the following method:

 abstract protected void receiveWhatWasHeard(
 List<String> heard, float[] confidenceScores);

Your implementation of the abstract receiveWhatWasHeard() method has to decide if your
app heard any commands. To do this your implementation must iterate over the recognition
results and try to match them with command words. You could implement receiveWhat-
WasHeard() using a Set<String> that succeeds if any heard strings are in the Set. However,
that does not allow you to implement all the types of commands you may want, nor does it
allow you to handle all the speech recognition issues that can decrease accuracy.

This chapter reviews the issues involved in reliably matching commands with the user’s
utterances. Also, this chapter presents a word spotting algorithm for matching and an imple-
mentation of it that can match various command types. Word spotting works well for simple
commands and the type of information Android returns.

PARTS OF A VOICE COMMAND

Designing commands requires determining what kinds of text the command needs to recognize
to activate it and supply information, how many different parts a command has, and whether or
not the parts need to come in a particular order. When executing, the app must match the com-
mand words to the users’ utterances.

c17.indd 407c17.indd 407 5/10/2012 2:13:03 PM5/10/2012 2:13:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

408 x CHAPTER 17 MATCHING WHAT WAS SAID

Here are the different kinds of command words your command may contain:

 ‰ Static: Words your app knows before deployment. For instance, names of commands like
“add” or “delete.”

 ‰ Dynamic: Words your app doesn’t know before deployment, but still require matching
against, such as names of items a user added to a list.

 ‰ Free text: Portion of an utterance the user specifi es as input — something like the name of
new item.

As stated, you know static words before deployment but do not know dynamic words. If your app
allows users to enter items in a list, a possible voice command may be to query for those items. In
that case, your voice command could be “fi nd <something in list>,” where <something in list> con-
tains dynamic words and fi nd is a static word. In such a command, the app must match <something
in list> with any list items the user may have entered and also match the static word fi nd.

Two differences between dynamic and static words infl uence which type of words to include in your
command and how to implement them. First, dynamic words are harder to recognize than static
words. With static words, you can carefully choose words that are easier for your app to under-
stand. With dynamic words, you have no such luxury. The words can contain any text, some of
which may be hard to recognize.

A second difference is that matching the two types of words may require different storage and query
mechanisms. Static words often have few enough words to fi t in memory, whereas dynamic com-
mands may have many words and require queries to persistent storage.

Free text could be another part of a voice command. Imagine a voice command where the user
speaks “add <something to add>” to add a new item to a list. In this case <something to add> could
be any text. To capture the free text, your app has to select any words after “add” as being the new
item text. Thus, capturing free text involves bounding a user’s utterance by position so your app
knows what part is the free text.

Instead of trying to locate the free text within a user’s utterance by position, another, more robust
way to handle free text is to make the entire command free text. To implement the add command,
for instance, you could make a two-step command where the user uses the speech recognition
prompt twice. The fi rst time, the user says “add.” The second time, the user speaks the free text.
The drawback of this approach is that it takes much more time for the user to specify the entire
command.

Each of the types of command words just discussed — static words, dynamic words, and free
text — can be combined together to create commands that have multiple parts. For example, “add”
is a single-part command, but “add <something to add>” is a multi-part command. A command
with only one part is easier to recognize because it only has one part to match. In contrast, a multi-
part command incurs additional diffi culties, such as collisions that increase recognition mistakes.

Multi-part commands can be ordered or unordered based on whether they require one word to
come before another. Requiring the user to speak the words in a certain order adds additional
requirements on the user’s speech and additional processing by your app. The result is a command
that is more expressive and can accomplish more, but one that may be harder to understand than
single-part or unordered commands.

c17.indd 408c17.indd 408 5/10/2012 2:13:08 PM5/10/2012 2:13:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Word Spotting x 409

To address these challenges, an app needs an algorithm that allows it to accurately recognize expres-
sive commands with multiple parts if necessary. The next section describes how to use a word spot-
ting algorithm to do so.

WORD SPOTTING

To recognize static and dynamic command words, apps can use a word-spotting algorithm. A word
spotting algorithm scans text for particular whole command words, ignoring all other words. For
example, if the command word is “add,” a word-spotting algorithm would fi nd it within utter-
ances such as “add” or “I’d uh like to add maybe” but not “I am addicted to Android” even though
“addicted” contains “add” as a substring.

Word spotting is a robust way to determine if a user said a particular command. A user’s speech
may not be grammatically correct, have extra words, or contain words in the wrong order. With
word spotting, these abnormalities don’t matter as long as the correct word exists in the spoken
utterance.

One issue with word spotting is that it cannot comprehend the semantic meaning of what the user
said. For example, word spotting algorithms can’t understand negation. If the user says “do not
add” the word spotting algorithm might spot the “add” word and assume the user wanted to add
something when he or she really wanted the opposite.

Another potential issue is that any command words become keywords that can’t be used elsewhere
in the command. For example, your app might have a two-part command like “add <item>” and
another command “remove <item>” where “add” and “remove” are both command words. If the
user tries to remove an item named “add,” he might say “remove add.” However, the word spotting
algorithm might detect “add” fi rst and assume the user meant “add” instead of “remove.” You can
modify the basic word spotting algorithm to handle such errors by handling ordered commands,
though doing so complicates processing.

In summary, word spotting is good at scanning for command words within a user’s utterance. It is
robust against added words, incorrect word order, and grammatically incorrect speech. Word spot-
ting cannot understand any complex semantic meanings, and multi-part commands introduce addi-
tional potential for misrecognitions.

The two classes in Listings 17-1 and 17-2 show code that does word spotting by detecting single,
static command words using an in-memory Set object. WordMatcher, shown in Listing 17-1, han-
dles representing the command words in a Set<String> and then checking the Set.

LISTING 17-1: Utility class for matching words to a predefi ned Set

public class WordMatcher
{
 private Set<String> words;

 public WordMatcher(String... wordsIn)
 {
 this(Arrays.asList(wordsIn));

continues

c17.indd 409c17.indd 409 5/10/2012 2:13:08 PM5/10/2012 2:13:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

410 x CHAPTER 17 MATCHING WHAT WAS SAID

 }

 public WordMatcher(List<String> wordsIn)
 {
 words = new LinkedHashSet<String>(wordsIn);
 }

 public Set<String> getWords()
 {
 return words;
 }

 public boolean isIn(String word)
 {
 return words.contains(word);
 }

 public boolean isIn(String [] wordsIn)
 {
 boolean wordIn = false;
 for (String word : wordsIn)
 {
 if (isIn(word))
 {
 wordIn = true;
 break;
 }
 }
 return wordIn;
 }
}

code snippet WordMatcher.java

The code in Listing 17-2 contains a receiveWhatWasHeard() method that creates a WordMatcher
and uses it to check against the possible recognitions in heard.

LISTING 17-2: Using WordMatcher to interpret recognition results for an “add” command

 protected void receiveWhatWasHeard(List<String> heard,
 float[] confidenceScores)
 {
 WordMatcher command = new WordMatcher("add");
 for (String said : heard)
 {
 if (command.isIn(said.split("\\s")))
 {
 Log.d(TAG, "heard add");
 break;
 }
 }
 }

LISTING 17-1 (continued)

c17.indd 410c17.indd 410 5/10/2012 2:13:08 PM5/10/2012 2:13:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Word Spotting x 411

Indexing to Improve Word Spotting

Word spotting can only work as well as the speech recognizer can successfully understand the user’s
speech. The recognizer is limited because it cannot understand all words. Also, the recognizer’s
chance of successful recognition is complicated by the fact that the recognizer is biased toward
recognizing certain words more readily than others. The only control your app has over how the
recognizer is biased is to select the most appropriate LANGUAGE_MODEL parameter. Usually, the
recognizer’s bias helps because it makes Android understand what users commonly say. However,
sometimes an app needs to understand uncommon words.

The recognizer’s bias and accuracy of recognizing words can lead to words that an app cannot
recognize at all or has a diffi cult time recognizing. If the user expects the app to recognize words
that the app is incapable of recognizing, the user may enter a never-ending frustrating loop of the
app not understanding and the user not knowing why.

You can avoid such hard-to-understand words if you use static command words that you know
beforehand. However, you cannot know dynamic commands beforehand and hence your app could
eventually encounter a rare word. If you want your app to work in those cases, you need to index
the command words so your app can match them regardless.

Unfortunately, the only way to determine which words are hard to understand is trial and error.
Android does not publish the necessary information, and what’s more, the recognizer’s performance
is likely to change over time.

Certain types of words are hard to understand:

 ‰ Rare words: Words people use infrequently. For example, Android almost never understands
the word “cumin.” Figure 17-1 shows an attempt to speak “cumin” and what Android
recognized. As you can see in Figure 17-1, the app was unable to match “cumin” exactly,
though the ampersand symbol (&) near the sixth result shows that by using indexing, the app
was able to match “cumin” with “canon.”

 ‰ Invented words: Users may speak invented words or abbreviations and expect the app
to understand. The recognizer recognizes many phrases and even appears to reply with
phonetic interpretations of words it does not know. Still, sometimes the speech recognizer
either does not understand certain words or does not exactly understand in the way you
expect. This situation can be easier to encounter than you might expect. For example,
the common abbreviation “decaf” is diffi cult for the recognizer to understand, and
when it does it returns “decaff” with an extra f. That slight variation of adding an f
would cause WordMatcher from Listing 17-1 to fail. To get a correct match, you need
StemmedWordMatcher or SoundsLikeWordMatcher instead, which this chapter
describes later.

 ‰ Homophones: Homophones are two words that sound the same although they’re spelled
differently. Your app may have to do more processing if it is searching for a word that is
a homophone and the meaning it requires is rare. Fortunately, Android usually returns all
versions of a homophone. For example, when speaking “thyme” the recognizer returns
“time, timer, times, thyme.” As you can see, the correct word appears in the returned
values. However, the correct word is used less frequently so it is at the end of the list.

c17.indd 411c17.indd 411 5/10/2012 2:13:08 PM5/10/2012 2:13:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

412 x CHAPTER 17 MATCHING WHAT WAS SAID

Android doesn’t always return all homophones, however. For example, if you speak
“feint” the recognizer returns “faint” and never returns “feint.” The same is true
for “raze.”

 ‰ Poorly recorded words: The user could speak poorly or introduce some other audio
interference. In such cases, the recognized words may resemble the command words, but will
not be exactly alike.

As described earlier, some kinds of words and conditions
prevent the recognizer from understanding what the user is
saying. In some cases, the problems can be overcome if the user
tries again. In other cases, no matter how many times the user
tries, the recognizer simply will not work. Additionally, you
may prefer that your app make a best guess at what users said,
rather than cause them to retry.

The only way to recognize the unrecognizable or to make a
best guess is to reduce the command words to more general
forms by indexing them. Indexing can cause two slightly
different words to map to the same general form. The result
is that words that don’t have the exactly same string can still
match. For example, a simple indexing scheme might be to
reduce all words to their fi rst letter. Such a scheme would index
“apple, apples, and appeal” as “a,” which would allow an app
to consider them the same.

Using indexing involves considering the following trade-
off: Allowing matches on indexed forms of words decreases
recognition failure, but potentially increases recognizing the
wrong commands. Users may be tolerant of or annoyed by
the app responding incorrectly sometimes. The response you
get from users is dependent on the voice command’s task. For
example, if the result of the command is to change something that is hard to undo, users will not
want to tolerate failure and indexing may not be appropriate. However, if the result of the com-
mand is just speaking a short phrase, it is possible users can easily ignore the spoken text and not get
annoyed by any incorrect responses.

You could use many kinds of string manipulation to index. Two particularly useful methods are
stemming and phonetic indexing.

Stemming

Stemming is a language-dependent type of language processing that reduces words to their roots by
removing suffi xes. For example, a stemmer reduces all these words to the same root: “walk, walks,
walked, walking.” Although the recognizer sometimes includes word variations, such as “walk and
walks,” in its recognition results, it may not provide the variations your app needs.

Fortunately, stemmer code is freely available for a variety of languages. Many implementations
provide the standard Porter stemmer, but some provide better-performing stemmers. Third-party

FIGURE 17-1: Recognition and pho-

netic matching results from speaking

“cumin”

c17.indd 412c17.indd 412 5/10/2012 2:13:08 PM5/10/2012 2:13:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Word Spotting x 413

libraries like Lucene’s analyzers project (http://lucene.apache.org/core/old_versioned_
docs/versions/3_5_0/api/contrib-analyzers/) have stemmers for many languages, and SQLite
has a stemmer option for its Full Text Search (FTS) mechanism. Listing 17-3 shows code that uti-
lizes Lucene’s org.tartarus. snowball.ext.EnglishStemmer to implement a WordMatcher.

WHICH LUCENE STEMMER TO USE

org.tartarus.snowball.ext.EnglishStemmer is available as a small jar in the
Lucene snowball contrib project. You can download it from http://archive.
apache.org/dist/lucene/java/3.0.3/. In later versions of Lucene the same class
is available as part of the Lucene analyzers contrib project. The drawback of using
analyzers is that it is larger in size than the snowball jar from 3.0.3. However, using
later versions of Lucene allows you to use different stemmer implementations, such
as KStemmer, and other text indexing methods such as EnglishPossessiveFilter.
Therefore, it may be worth it to include the larger analyzer jar in your app.

LISTING 17-3: Compares words by their stems

//Note: org.tartarus is part of the lucene snowball contrib project in 3.0.3 and
//analyzers contrib project in versions 3.1.0 and greater
import org.tartarus.snowball.ext.EnglishStemmer;

public class StemmedWordMatcher extends WordMatcher
{
 public StemmedWordMatcher(String... wordsIn)
 {
 this(Arrays.asList(wordsIn));
 }

 public StemmedWordMatcher(List<String> wordsIn)
 {
 super(encode(wordsIn));
 }

 private static List<String> encode(List<String> input)
 {
 List<String> encoded = new ArrayList<String>();
 for (String in : input)
 {
 encoded.add(stem(in));
 }
 return encoded;
 }

 @Override
 public boolean isIn(String word)
 {
 return super.isIn(stem(word));

continues

c17.indd 413c17.indd 413 5/10/2012 2:13:08 PM5/10/2012 2:13:08 PM

www.it-ebooks.info

http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/contrib-analyzers
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/contrib-analyzers
http://archive
http://www.it-ebooks.info/

414 x CHAPTER 17 MATCHING WHAT WAS SAID

 }

 /**
 * run the stemmer from Lucene
 */
 private static String stem(String word)
 {
 EnglishStemmer stemmer = new EnglishStemmer();
 stemmer.setCurrent(word);
 boolean result = stemmer.stem();
 if (!result)
 {
 return word;
 }
 return stemmer.getCurrent();
 }
}

code snippet StemmedWordMatcher.java

Stemming helps an app match words even when the recognizer makes a mistake and recognizes
a different form of the desired words. For example, if the recognizer recognizes a singular verb,
using a stemmer allows an app to match the recognized singular form with the plural form.
Another kind of mistake the recognizer can make is to recognize a word that sounds like the word
the user said instead of the actual word. To match words in such cases, an app needs to use pho-
netic indexing.

Phonetic Indexing

Phonetic indexing allows your app to determine word similarity based on how the words sound
instead of what characters they have. Phonetic indexing is particularly applicable to processing rec-
ognizer results because when the recognizer fails to precisely understand what the user says, it often
returns words that sound like the word the user said instead. For example, if the user tries to say
“apple,” but the recognizer makes a mistake and recognizes “appeal” instead, phonetic indexing
would allow your app to still match “apple” with “appeal.”

There is a suite of algorithms that perform phonetic indexing in various ways. You can fi nd imple-
mentations at http://commons.apache.org/codec/ and www.tangentum.biz/en/products/
phonetix/index/html. Apache’s implementation has the following phonetic matching algorithms:
Soundex, Refi nedSoundex, Metaphone, DoubleMetaphone, and Caverphone. Phonetix has alternate
implementations. The implementations are somewhat language dependent, and all are rule-based.

Soundex is the simplest phonetic indexing algorithm. Other algorithms are more complicated and
came after Soundex was developed. This section explains Soundex to give you a sense for how these
algorithms work.

Soundex was designed to help compare names for the U.S. census, but it can also help to compare
any two strings. The algorithm reduces any string to a four-character code consisting of a letter
followed by three numerical digits. You can fi nd more details here: www.archives.gov/research/
census/soundex.html.

LISTING 17-3 (continued)

c17.indd 414c17.indd 414 5/10/2012 2:13:09 PM5/10/2012 2:13:09 PM

www.it-ebooks.info

http://commons.apache.org/codec
http://www.tangentum.biz/en/products
http://www.archives.gov/research
http://www.it-ebooks.info/

Word Spotting x 415

Soundex executes the following rules to compute a code:

1. The fi rst letter is the fi rst letter of the string.

2. Replace the remaining letters with the letter-to-number mapping shown here, ignoring a, e, h,
i, o, u, w, and y:

 ‰ 1: B, F, P, V

 ‰ 2: C, G, J, K, Q, S, X, Z

 ‰ 3: D, T

 ‰ 4: L

 ‰ 5: M, N

 ‰ 6: R

3. Treat double letters as one letter. For example, “ss” would be 2.

4. Include only one code if two side-by-side letters have the same code.

5. Use the code for the fi rst consonant if two consonants with the same code are separated by
“H” or “W.”

6. Use the code for the second consonant if two consonants with the same code are separated a
vowel.

7. Stop when there is one letter and three numbers. If the fi nal code has fewer than three num-
bers, add additional 0s until there are three numbers.

You can tweak the Soundex algorithm to increase the number of matches in exchange for increased
false matches. For example, you may decide to report a match if the Soundex code only partially
overlaps by one or more characters. Another possibility is to compute the variable-length Soundex
codes by not stopping after computing a four-character code.

For example, tweaking helps match the word “cumin” with “human.” The Soundex code for cumin
is C550 and the Soundex code for human is H550. If code drops the fi rst letter of the Soundex code,
it can match the two words.

Listing 17-4 shows a modifi ed SoundListWordMatcher to utilize Apache Commons Codec to com-
pare based on Soundex codes.

LISTING 17-4: WordMatcher variation that uses Soundex comparisons

import org.apache.commons.codec.language.Soundex;
public class SoundsLikeWordMatcher extends WordMatcher
{
 protected static Soundex soundex;

 static
 {
 soundex = new Soundex();
 }
 continues

c17.indd 415c17.indd 415 5/10/2012 2:13:09 PM5/10/2012 2:13:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

416 x CHAPTER 17 MATCHING WHAT WAS SAID

 public SoundsLikeWordMatcher(String... wordsIn)
 {
 this(Arrays.asList(wordsIn));
 }

 public SoundsLikeWordMatcher(List<String> wordsIn)
 {
 super(encode(wordsIn));
 }

 @Override
 public boolean isIn(String word)
 {
 return super.isIn(encode(word));
 }

 protected static List<String> encode(List<String> input)
 {
 List<String> encoded = new ArrayList<String>();
 for (String in : input)
 {
 encoded.add(encode(in));
 }
 return encoded;
 }

 private static String encode(String in)
 {
 return soundex.encode(in);
 }
}

Listing 17-5 shows code that tests SoundsLikeWordMatcher. The tests show that Soundex allows
the code to determine that the homophones for beat, faint, and thyme sound the same.

LISTING 17-5: Test code for SoundsLikeMatcher

public class TestSoundsLikeWordMatcher extends TestCase
{
 public void testSoundsLikeMatcher()
 {
 SoundsLikeWordMatcher wd =
 new SoundsLikeWordMatcher("beat", "faint", "thyme");
 assertTrue(wd.isIn("beat"));
 assertTrue(wd.isIn("faint"));
 assertTrue(wd.isIn("thyme"));
 assertTrue(wd.isIn("beet"));
 assertTrue(wd.isIn("feint"));
 assertTrue(wd.isIn("time"));
 assertFalse(wd.isIn("thy"));

LISTING 17-4 (continued)

c17.indd 416c17.indd 416 5/10/2012 2:13:09 PM5/10/2012 2:13:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Word Spotting x 417

 assertFalse(wd.isIn("trine"));
 }
}

Listing 17-6 shows an extension that allows for partial matches needed to more easily recognize
“cumin” using Soundex.

LISTING 17-6: Allows for partial matches if two words sound alike

public class SoundsLikeThresholdWordMatcher extends SoundsLikeWordMatcher
{
 private int minimumCharactersSame;

 public SoundsLikeThresholdWordMatcher(int minimumCharactersSame,
 String... wordsIn)
 {
 super(wordsIn);
 this.minimumCharactersSame = minimumCharactersSame;
 }

 @Override
 public boolean isIn(String wordCheck)
 {
 boolean in = false;
 String compareTo = soundex.encode(wordCheck);
 for (String word : getWords())
 {
 if (sameEncodedString(word, compareTo))
 {
 in = true;
 break;
 }
 }
 return in;
 }

 private boolean sameEncodedString(String s1, String s2)
 {
 int numSame = 0;
 for (int i = 0; i < s1.length(); i++)
 {
 char c1 = s1.charAt(i);
 char c2 = s2.charAt(i);
 if (c1 == c2)
 {
 numSame++;
 }
 }
 return (numSame >= minimumCharactersSame);
 }
}

c17.indd 417c17.indd 417 5/10/2012 2:13:09 PM5/10/2012 2:13:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

418 x CHAPTER 17 MATCHING WHAT WAS SAID

TRY THIS

The Try Speech button provides a playground where you can experiment with
speech recognition. Select or type in some words, click Speak, and view the recogni-
tion results. The app marks any successful matches in the right column.

Can you succeed in getting the recognizer to recognize “cumin” or “cumin seeds”?

You can also change various parameters by clicking “speech parameters” within
the menu. Change the Matching Method to Phonetic or Stem, and retry speaking.
Does this improve the matches?

The menu also contains a Compute Index option that allows you to view the
Soundex code and stem for any word.

MATCHING COMMAND WORDS IN PERSISTENT STORAGE

Sometimes voice commands contain dynamic words stored in persistent storage. If the list of words
in the command is small enough to fi t in memory, you can use an in-memory approach, such as a
WordMatcher. Otherwise, your app must query the persistent storage and rely on it to index and
match the words.

This section explores using two persistent storage mechanisms: Android’s SQLite database, and
Lucene, a text search engine. Using the SQLite database is convenient for Android because it is a
part of the Android operating system and an app may have its data stored in it for other purposes.
By using the Full Text Search (FTS) option, you can add a search capability that you can use for
matching.

Lucene is a search engine that has slightly different features than FTS, and accomplishes the same
goal. If your app can handle the complexity of maintaining a Lucene index of the command words,
it may be a better option. Lucene has more confi guration options and also allows you to scale across
multiple languages.

SQLite Full Text Search

FTS allows your app to search all the text within its SQLite database. You can use FTS to fi nd
the best match between a user’s utterance and one or more columns in your database. This sec-
tion shows you how to create an FTS index and then how to best query it for matching users’
utterances.

Android’s SQLite database supports FTS, but to use it you need to fi rst create a VIRTUAL TABLE.
Listing 17-7 shows how to create such a table. The code creates a table with two fi elds: a text fi eld
for a food name indexed by a Porter stemmer and a numerical calorie fi eld.

c17.indd 418c17.indd 418 5/10/2012 2:13:09 PM5/10/2012 2:13:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Command Words in Persistent Storage x 419

LISTING 17-7: Creating a virtual FTS table

 private static final String TABLE_FOOD = "foodlist";
 public static final String COLUMN_FOOD = "food";
 public static final String COLUMN_CALORIE = "calorie";

 public void createTables(SQLiteDatabase db)
 {
 db.execSQL("CREATE VIRTUAL TABLE " +
 TABLE_FOOD +
 " USING fts3(tokenize=porter," +
 COLUMN_FOOD + " TEXT, " +
 COLUMN_CALORIE + " REAL);");
 }

Once your app has created the database, it can utilize the various FTS commands in addition to the
normal SQLite queries. The examples in this discussion assume there is a food database with the
following data:

 ‰ Red Concord Grapes

 ‰ red grape

 ‰ grape leaves

 ‰ orangegrapefruit juice

 ‰ Grapes

 ‰ Grape

 ‰ Grapefruit

 ‰ Red Grapefruit

Using the LIKE Operator

Before explaining how FTS works, it is useful to understand the alternative, using normal SQLite
and its LIKE operator. In SQLite you can use LIKE to make pattern-matching comparisons between
strings and a pattern. The pattern consists of text and two possible operators. If you include the
percent symbol (%), SQLite matches text plus zero or more characters in the string. If you include an
underscore (_), it matches any single character in the string.

For example, query Q1 matches any item that starts with “grape,” namely grape leaves, Grapes,
Grape, and Grapefruit:

Q1: SELECT * from Food WHERE food LIKE 'grape%'

Query Q2 matches all the data because grape is part of all the strings:

Q2: SELECT * from Food WHERE food LIKE '%grape%'

c17.indd 419c17.indd 419 5/10/2012 2:13:10 PM5/10/2012 2:13:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

420 x CHAPTER 17 MATCHING WHAT WAS SAID

The problem with the LIKE operator is that it performs a string comparison between the pattern
and the whole text within each database fi eld instead of comparing the pattern with each whole
word. This can result in matching strings within words such as matching the grape pattern with
Grapefruit. Such matches are not helpful for matching with users’ utterances. Another weakness of
the LIKE operator is that it returns results in no particular order.

Using the FTS MATCH Operator

FTS executes a text search query to fi nd matching rows in the database. It matches on individual,
whole search terms. Additionally, FTS has other functions that return information you can use to
rank results from a search query.

Query Q1 could be written in FTS as the prefi x query Q3 with slightly different results:

Q3: SELECT * from Food WHERE food MATCH 'grape*'

Instead of LIKE, FTS uses MATCH. Query Q3 matches everything except orangegrapefruit juice
because all other rows contain a word that starts with grape. You can make several variations
to your MATCH expression to change how strict it is at matching. Some possible variations are as
follows:

 ‰ Term query: Without adding any additional syntax, a query might look like Q4:

Q4: SELECT * from Food WHERE food MATCH 'red grape'

Q4 searches for text fi elds that have the words “red” and “grape” in it. Therefore, it
matches red grape and Red Concord Grapes, but not Red Grapefruit.

 ‰ Phrase query: Phrase queries allow the query to match multiple words in a row with no
words in between. To specify a phrase query you surround the phrase you want to match
with quotes.

Phrase queries are stricter than term queries. If the user happens to add a word within a
command like “red uh grape,” FTS will be unable to match with “red grape.”

Q5 matches red grape, but not Red Grapefruit nor Red Concord Grapes:

Q5: SELECT * from Food WHERE food MATCH "red grape"

 ‰ Prefi x query: Prefi x queries match strings with variable endings. If you add an asterisk (*) at
the end of your pattern, FTS matches any token that has the initial characters before
the *. For example, query Q6 matches red grape, Red Grapefruit, and Red Concord Grapes.
It matches Red Grapefruit because the grape* pattern indicates that as long as the string
starts with grape, match it. It doesn’t match grape leaves because it doesn’t contain a word
that starts with red:

Q6: SELECT * from Food WHERE food MATCH 'red* grape*'

 ‰ Restrict column: Instead of searching all columns, you can search for specifi c columns in your
database by specifying “column:” before each of the search terms. For example, Q7 searches
only the food column:

Q7: SELECT * from Food WHERE food MATCH 'food:grape'

 ‰ OR operator: Normally match uses the AND operator between tokens. If you use OR instead the
query can return partial matches. Partial matches could be useful for making a best guess at

c17.indd 420c17.indd 420 5/10/2012 2:13:10 PM5/10/2012 2:13:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Command Words in Persistent Storage x 421

what the user said. Query Q8 returns Red Concord Grapes, red grape, grape leaves, Grapes,
Grape, and Red Grapefruit. It doesn’t match orangegrapefruit juice because the matches must
contain red or grape. It matches the other words because they contain either red or grape.

Q8: SELECT * from Food WHERE food MATCH 'red OR grape'

Additionally, as the queries this section describes show, FTS queries are case-insensitive. The only
way to change this is to change the tokenizer that FTS uses. However, the tokenizers available by
default in Android’s SQLite are both case-insensitive. Therefore, to create a case-sensitive FTS
tokenizer you either need to somehow modify the default Android SQLite to add a new tokenizer,
written in C, or use your own SQLite version.

Implementing FTS

To implement FTS for speech recognition, your app needs two pieces of code. First, it needs code
to query the main SQLite database. Second, it needs code to match query results with a user’s
utterances.

Listing 17-8 shows the FtsIndexedFoodDatabase class. It has all the code to create, access, and
query the database. For querying, the class contains the following retrieveBestMatch() method:

public List<Food> retrieveBestMatch(String input,
 boolean prefix, boolean or,
 boolean phrase)

retrieveBestMatch() allows an app to specify the different types of queries described earlier. The
method creates a query with input text. Then, the method modifi es the query in various ways to add
query operators according to the method parameters. For example, if you set the or parameter to
true, the method turns the query from an AND query into an OR query by adding add the OR operator
between each input word.

In addition to allowing an app to specify a query, retrieveBestMatch() also ranks the query results
so that the best match appears fi rst. To do this, the method requests a special FTS return value called
offsets for each query. The information in offsets allows the code to determine which terms in the
query were matched. retrieveBestMatch() uses the number of matched terms to rank the results.

LISTING 17-8: Queries an FTS indexed food database.

public class FtsIndexedFoodDatabase
{
 private static final String TAG = "FtsIndexedFoodDatabase";
 private static final int DATABASE_VERSION = 1;
 private static final String DATABASE_NAME = "FoodDatabaseFts";
 private static final String TABLE_FOOD = "foodlist";

 public static final String COLUMN_FOOD = "food";
 public static final String COLUMN_CALORIE = "calorie";

 private static FtsIndexedFoodDatabase instance;

 private DatabaseHelper databaseHelper;
 private SQLiteDatabase database;

continues

c17.indd 421c17.indd 421 5/10/2012 2:13:10 PM5/10/2012 2:13:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

422 x CHAPTER 17 MATCHING WHAT WAS SAID

 private FtsIndexedFoodDatabase(Context context)
 {
 databaseHelper = new DatabaseHelper(context.getApplicationContext());
 database = databaseHelper.getWritableDatabase();
 }

 public static synchronized FtsIndexedFoodDatabase getInstance(
 Context context)
 {
 if (instance == null)
 {
 instance =
 new FtsIndexedFoodDatabase(context.getApplicationContext());
 }

 return instance;
 }

 public List<MatchedFood> retrieveBestMatch(String input)
 {
 return retrieveBestMatch(input, false, false, false);
 }

 /**
 * return a list of best matching Foods ordered by best match
 */
 public List<MatchedFood> retrieveBestMatch(String input, boolean prefix,
 boolean or, boolean phrase)
 {
 final String[] columns =
 { COLUMN_FOOD, COLUMN_CALORIE, "offsets(foodlist) as offsets" };

 // sort the food by a score
 TreeMap<Integer, List<MatchedFood>> scoredMatches =
 new TreeMap<Integer, List<MatchedFood>>();

 input = input.trim();
 // handle different types
 if (prefix)
 {
 // add start at end of the input words
 input = input.replaceAll("\\s", "* ");
 input = input + "*";
 }
 if (or)
 {
 input = input.replaceAll("\\s", " OR ");
 }
 if (phrase)
 {
 input = "\"" + input + "\"";
 }
 Log.d(TAG, "query: " + input);

LISTING 17-8 (continued)

c17.indd 422c17.indd 422 5/10/2012 2:13:10 PM5/10/2012 2:13:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Command Words in Persistent Storage x 423

 String query = COLUMN_FOOD + " MATCH ?";
 Cursor cursor =
 database.query(TABLE_FOOD, columns, query,
 new String[] { input }, null, null, null);
 try
 {
 if (cursor.getCount() > 0)
 {
 cursor.moveToFirst();
 while (cursor.isAfterLast() == false)
 {
 String food =
 cursor.getString(cursor.getColumnIndex(COLUMN_FOOD));
 float cal =
 cursor.getFloat(cursor
 .getColumnIndex(COLUMN_CALORIE));
 String offsets =
 cursor.getString(cursor.getColumnIndex("offsets"));
 // each matching term consists of 4 integers separated by
 // spaces
 // offsetTokens[0]: db column number, unused
 // offsetTokens[1]: term number of matching term
 // offsetTokens[2,3]: byte values, unused
 // for more info, see: http://sqlite.org/fts3.html#offsets

 // add 1 because the last integer has no space after it
 // divide by 2 because each integer takes up two characters
 // divide by 4 because each matching term has 4 integers
 int numMatches = ((offsets.length() + 1) / 2) / 4;
 // find which tokens matched
 String[] offsetTokens = offsets.split("\\s");
 int firstMatchTerm = Integer.valueOf(offsetTokens[1]);
 int lastMatchTerm =
 Integer.valueOf(offsetTokens[offsetTokens.length - 3]);
 Log.d(TAG, "food found: " + food + " num matches: "
 + numMatches + " offsets: " + offsets);
 MatchedFood found =
 new MatchedFood(firstMatchTerm, lastMatchTerm,
 new Food(food, cal));
 List<MatchedFood> foodsAt;
 if (!scoredMatches.containsKey(numMatches))
 {
 foodsAt = new ArrayList<MatchedFood>();
 scoredMatches.put(numMatches, foodsAt);
 }
 else
 {
 foodsAt = scoredMatches.get(numMatches);
 }
 foodsAt.add(found);

 cursor.moveToNext();
 }
 }
 } finally

continues

c17.indd 423c17.indd 423 5/10/2012 2:13:10 PM5/10/2012 2:13:10 PM

www.it-ebooks.info

http://sqlite.org/fts3.html#offsets
http://www.it-ebooks.info/

424 x CHAPTER 17 MATCHING WHAT WAS SAID

 {
 cursor.close();
 }

 List<MatchedFood> match = new ArrayList<MatchedFood>();
 for (List<MatchedFood> foodLists : scoredMatches.descendingMap()
 .values())
 {
 match.addAll(foodLists);
 }
 Log.d(TAG, match.size() + " matches.");
 for (MatchedFood matchedFood : match)
 {
 Log.d(TAG, matchedFood.getFood().toString());
 }
 return match;
 }

 public boolean isEmpty()
 {
 Cursor cursor = database.rawQuery("SELECT * FROM " + TABLE_FOOD, null);
 boolean isEmpty = (cursor.getCount() == 0);
 cursor.close();
 return isEmpty;
 }

 public void loadFrom(InputStream csvFile) throws IOException
 {
 BufferedReader is =
 new BufferedReader(new InputStreamReader(csvFile, "UTF8"));
 String line;

 line = is.readLine();
 while (line != null)
 {
 String[] parts = line.split(",");
 String food = parts[0];
 float cals = Float.valueOf(parts[1]);
 insertFood(food, cals);
 Log.d(TAG, "inserted: " + food + " " + cals);
 line = is.readLine();
 }
 }

 public long insertFood(String food, float calorie)
 {
 ContentValues contentValues = new ContentValues();
 contentValues.put(COLUMN_FOOD, food);
 contentValues.put(COLUMN_CALORIE, calorie);
 return database.insert(TABLE_FOOD, null, contentValues);

LISTING 17-8 (continued)

c17.indd 424c17.indd 424 5/10/2012 2:13:10 PM5/10/2012 2:13:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Command Words in Persistent Storage x 425

 }

 public int removeFood(String food)
 {
 return database.delete(TABLE_FOOD, COLUMN_FOOD + " = ?",
 new String[] { food });
 }

 public void close()
 {
 synchronized (FtsIndexedFoodDatabase.class)
 {
 databaseHelper.close();
 instance = null;
 database = null;
 }
 }

 public Cursor getAllFood()
 {
 Cursor cursor = database.rawQuery("SELECT * FROM " + TABLE_FOOD, null);
 return cursor;
 }

 public void clean(Context context)
 {
 databaseHelper.dropTables(database);
 databaseHelper.createTables(database);
 instance = new FtsIndexedFoodDatabase(context.getApplicationContext());
 }

 private static final class DatabaseHelper extends SQLiteOpenHelper
 {
 public DatabaseHelper(Context context)
 {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db)
 {
 createTables(db);
 }

 @Override
 public void
 onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)
 {
 dropTables(db);
 createTables(db);
 }

continues

c17.indd 425c17.indd 425 5/10/2012 2:13:10 PM5/10/2012 2:13:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

426 x CHAPTER 17 MATCHING WHAT WAS SAID

 public void dropTables(SQLiteDatabase db)
 {
 db.execSQL("DROP TABLE IF EXISTS " + TABLE_FOOD + ";");
 }

 public void createTables(SQLiteDatabase db)
 {
 db.execSQL("CREATE VIRTUAL TABLE " + TABLE_FOOD
 + " USING fts3(tokenize=porter," + BaseColumns._ID
 + " INTEGER PRIMARY KEY AUTOINCREMENT, " + COLUMN_FOOD
 + " TEXT, " + COLUMN_CALORIE + " REAL);");
 }
 }
}

code snippet FtsIndexedFoodDatabase.java

To execute FtsIndexedFoodDatabase, an app needs to implement a receiveWhatWasHeard()
method that queries the database with each potential recognition until it fi nds a match or fails.
Listing 17-9 shows the necessary code.

LISTING 17-9: Use FTS to match a food query

 protected void receiveWhatWasHeard(List<String> heard,
 float[] confidenceScores)
 {
 FtsIndexedFoodDatabase food = FtsIndexedFoodDatabase.getInstance(this);

 for (String said : heard)
 {
 if (food.retrieveBestMatch(said).size() > 0)
 {
 Log.d(TAG, "heard a food");
 break;
 }
 }
 }

As this section showed, FTS is a useful tool for matching speech recognition results. It has a stem-
mer and different query options that allow it to fl exibly match possible user utterances with values
within a SQLite database. However, it is not the only persistent storage mechanism available. The
next section describes Lucene, a search engine library that was built specifi cally for searching and
ranking text, and is of particular use for matching.

Word Searching with Lucene

FTS provides a search capability for a SQLite database, but it is somewhat limited in its index-
ing and searching capabilities. In contrast, Lucene is a search engine library that was specifi cally

LISTING 17-8 (continued)

c17.indd 426c17.indd 426 5/10/2012 2:13:11 PM5/10/2012 2:13:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Command Words in Persistent Storage x 427

designed for searching text. Because of this, Lucene provides a variety of options for matching
textual user utterances with parts of a voice command.

Lucene is expandable, offers a wider array of indexing and query types than FTS, and has built-in
search result ranking methods. Lucene has text Filters
that perform indexing functions such as converting
query text to lowercase, stemming, and removing certain
irrelevant characters and words. The source code from
this book contains a Lucene Filter that converts a
query to its phonetic representation.

Lucene also has some additional query operators
than FTS. For example, FTS allows an app to perform
prefi x queries via a * operator. Lucene also supports
prefi x queries, however queries can also treat the opera-
tor as a wildcard and place it anywhere within a
search string, not just at the end. Queries can also use
the ? operator to require only one wildcard character
instead of multiple characters. Other types of queries
are possible from the Lucene library and third
parties.

To use Lucene your app needs to create an index and then search it. The index can be an in-memory
index or can reside on the SD card. Figure 17-2 shows a block diagram of the needed classes to
implement a food dialogue.

Listing 17-10 shows code that creates an index and then executes some searchers within a unit test.
Listings 17-11 and 17-12 show the food-related classes.

LISTING 17-10: Creates an index and executes some queries

public void testRunLuceneQuery()
 {
 boolean overwrite = false;
 String outputDir = "testDir";
 boolean phonetic = true;
 boolean doStem = true;
 FoodIndexBuilder builder =
 new FoodIndexBuilder(getContext()
 .getExternalFilesDir(outputDir).getAbsolutePath(),
 overwrite, phonetic, doStem);
 builder.addFood("Apple", 100.0f);
 FoodSearcher searcher = null;
 try
 {
 searcher = builder.get();
 } catch (IOException e)
 {
 Log.e(TAG, "error", e);

Lucene
Index
Builder

Food
Index
Builder

Lucene
Index
Searcher

Food
Searcher

App

Translator

FIGURE 17-2: Utility and domain classes

needed to create and search an index for

the food dialogue. The arrows represent

dependencies between classes.

continues

c17.indd 427c17.indd 427 5/10/2012 2:13:11 PM5/10/2012 2:13:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

428 x CHAPTER 17 MATCHING WHAT WAS SAID

 }
 assertTrue(searcher.findMatching("Apple").size() > 0);
 assertTrue("stem", searcher.findMatching("Apples").size() > 0);
 assertTrue("sounds like", searcher.findMatching("Appeal").size() > 0);
 assertFalse("not close enough",
 searcher.findMatching("peel").size() > 0);
 }

First, the test code creates a FoodIndexBuilder. FoodIndexBuilder allows for several options. You
change the path to store the index on disk. If you pass a value of true for the overwrite parameter,
the class overwrites the existing index; otherwise, if the index already exists, FoodIndexBuilder
does nothing. If you pass null, FoodIndexBuilder uses an in-memory index.

Once created, the code adds some Food objects to the index. Behind the scenes,
FoodIndexBuilder uses FoodDocumentTranslator to translate the Food objects to Lucene
Documents. FoodIndexBuilder uses a class called RecognitionIndexer to preprocess any
text and optionally performs the two indexing strategies discussed earlier, stemming and
phonetic indexing. When complete, the test calls get to commit all changes and create a
FoodIndexSearcher.

FoodIndexSearcher contains methods to search the index for Food objects. To initialize,
FoodIndexSearcher uses methods in LuceneSearcher to load the previously built indexes from
whichever Lucene Directory FoodIndexBuilder used. From there, the test can execute some
searches.

LISTING 17-11: Builds a Food index

public class FoodIndexBuilder
{
 private static final String TAG = "FoodIndexBuilder";

 private LuceneIndexBuilder builder;

 private Analyzer analyzer;

 public FoodIndexBuilder(boolean phonetic, boolean doStem)
 {
 analyzer = new RecognitionIndexer(phonetic, doStem);
 builder =
 new LuceneIndexBuilder(new RecognitionIndexer(phonetic, doStem));
 }

 public FoodIndexBuilder(String outputDir, boolean overwrite,
 boolean phonetic, boolean doStem)
 {
 analyzer = new RecognitionIndexer(phonetic, doStem);
 builder =
 new LuceneIndexBuilder(outputDir, overwrite,
 new RecognitionIndexer(phonetic, doStem));
 }

LISTING 17-10 (continued)

c17.indd 428c17.indd 428 5/10/2012 2:13:11 PM5/10/2012 2:13:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Command Words in Persistent Storage x 429

 public void addFood(String name, float calories)
 {
 Document doc =
 FoodDocumentTranslator.toDocument(new Food(name, calories));
 builder.addDocument(doc);
 Log.d(TAG, "added: " + doc);
 }

 public FoodSearcher get() throws IOException
 {
 builder.doneWriting();
 return new FoodSearcher(builder.getDirectory(), analyzer);
 }
}

LISTING 17-12: Searches a previously built Food index

public class FoodSearcher
{
 private static final String TAG = "FoodSearcher";

 private static final int MAX_NUM_RESULTS = 10000;

 private LuceneIndexSearcher searcher;

 private Analyzer analyzer;

 public FoodSearcher(Directory dir, Analyzer analyzer) throws IOException
 {
 // load the index
 searcher = new LuceneIndexSearcher(dir);
 this.analyzer = analyzer;
 }

 /**
 * if any documents match return true
 */
 public boolean matches(String target)
 {
 return findMatching(target).size() > 0;
 }

 public List<Food> findMatching(String target)
 {
 try
 {
 //Note: this creates a query using the Lucene query syntax
 //by default it OR's all terms in the query
 QueryParser parser =
 new QueryParser(LuceneParameters.VERSION,
 FoodDocumentTranslator.FOOD_NAME, analyzer);
 Query query = parser.parse(target);

continues

c17.indd 429c17.indd 429 5/10/2012 2:13:11 PM5/10/2012 2:13:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

430 x CHAPTER 17 MATCHING WHAT WAS SAID

 return executeQuery(query);
 } catch (ParseException e)
 {
 Log.e(TAG, "error", e);
 return new ArrayList<Food>();
 }
 }

 private List<Food> executeQuery(Query query)
 {
 Log.d(TAG, "searching...");

 List<Food> result = new ArrayList<Food>();

 TopDocs rs = null;
 try
 {
 Log.d(TAG, "query: " + query);
 rs = searcher.getSearcher().search(query, null, MAX_NUM_RESULTS);
 Log.d(TAG, "found this many documents: " + rs.totalHits);
 } catch (IOException e)
 {
 Log.e(TAG, "failed to search", e);
 return result;
 }

 // retrieve search docs
 List<Document> docs = searcher.getDocs(rs, searcher.getSearcher());

 // convert to food objects
 for (Document document : docs)
 {
 result.add(FoodDocumentTranslator.getFood(document));
 }

 return result;
 }
}

code snippet FoodSearcher.java

Once an app has created a Lucene index, it needs to use it to match a user’s utterances. Listing 17-13
shows the necessary code to implement a food lookup query using Lucene.

LISTING 17-13: Uses Lucene index to match a food query

 protected void receiveWhatWasHeardLuceneFood(List<String> heard,
 float[] confidenceScores)
 {
 // create the food index only once
 if (luceneSearcher == null)

LISTING 17-12 (continued)

c17.indd 430c17.indd 430 5/10/2012 2:13:11 PM5/10/2012 2:13:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Multi-part Commands x 431

 {
 // don't overwrite, but do stemming
 FoodIndexBuilder builder =
 new FoodIndexBuilder(getExternalFilesDir("foodindex")
 .getAbsolutePath(), false, false, true);
 try
 {
 // read the foods file and add foods to the builder
 loadLuceneIndex(builder);
 } catch (IOException e)
 {
 Log.e(TAG, "unable to load index", e);
 }

 try
 {
 luceneSearcher = builder.get();
 } catch (IOException e)
 {
 Log.e(TAG, "error", e);
 }
 }

 for (String said : heard)
 {
 if (luceneSearcher.findMatching(said).size() > 0)
 {
 Log.d(TAG, "heard a food");
 break;
 }
 }
 }

TRY THIS

This section shows how the matching techniques perform on test cases. However,
it’s interesting to see how the techniques perform in response to actual speech. Try
the Food Dialogue Matcher Playground button to test out the persistent matching.
Use the Matching Preferences menu option to change various settings. When you
click the Lookup button, you can say a fruit or vegetable it knows about and the
app will report its number of calories.

MULTI-PART COMMANDS

The techniques described thus far assume there is only one command word within a user’s utterance
to match. Although it complicates things, sometimes it is necessary to for an app accept a multiple
command words create more expressive commands. Each command word makes up a part of a
multi-part command.

This section discusses the issues involved in making code that matches multiple command words
within a single possible utterance and presents some possible solutions. It considers two approaches:

c17.indd 431c17.indd 431 5/10/2012 2:13:11 PM5/10/2012 2:13:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

432 x CHAPTER 17 MATCHING WHAT WAS SAID

ignoring collisions and considering ordering. To illustrate implementing multi-part commands, this
section discusses how to implement several example multi-part commands shown in Table 17-1. The
example commands contain free text, static, and dynamic words to match.

TABLE 17-1: Multi-part Commands

VOICE COMMAND FORM DESCRIPTION

Add Add <new food name> User speaks “add” and then some free text

for the name of the new food to add.

Remove Remove <food name> User speaks “remove” and then a known

food name.

Compare <food name 1> <food name 2> User speaks two foods and the system

reports which food has more calories.

Ignoring Potential Collisions

Collisions occur when a word in the user’s utterance matches more than one command word. If
such collisions are rare for your particular voice command, it is safe to ignore them. For example, if
you have a command that requires two parts, “add” and “list,” it is unlikely that the word-spotting
algorithm would confuse the two so it is fi ne for your code to scan the input twice, once for each
command word. However, for dynamic words, it is easy to see how a user’s utterance could match
more than one. For example, if a user utters “green” he or she might be referring to either “green
onion” or “green bean.”

Listing 17-14 shows the implementation for matching “remove.” First the code uses a WordMatcher
to match “remove,” then the code uses FtsIndexedFoodDatabase to look up any food. This code
assumes that “remove” is not likely to be part of a food word, and thus, will not disrupt the food
name lookup.

LISTING 17-14: Matches remove

 public Food removeExistingFood(String toMatch)
 {
 Food removed = null;
 WordMatcher dc = new WordMatcher("remove");
 String[] tokens = toMatch.split("\\s");
 if (dc.isIn(tokens) && tokens.length > 1)
 {
 FtsIndexedFoodDatabase food =
 FtsIndexedFoodDatabase.getInstance(null);
 List<MatchedFood> match =
 food.retrieveBestMatch(toMatch, false, true, false);
 if (match.size() > 0)
 {
 Food toRemove = match.get(0).getFood();
 Log.d(TAG, "matched remove " + toRemove);

c17.indd 432c17.indd 432 5/10/2012 2:13:12 PM5/10/2012 2:13:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Multi-part Commands x 433

 removed = toRemove;
 }
 }

 return removed;
 }

Listing 17-15 shows an implementation of “compare.” It executes FtsIndexedFoodDatabase and
then selects the top two matches. It assumes the food names are not easily confused with each other
and don’t usually have overlapping words.

LISTING 17-15: Matches compare

 public String compareCalories(String toMatch)
 {
 String comparison = null;
 FtsIndexedFoodDatabase food = FtsIndexedFoodDatabase.getInstance(null);
 //do or match
 List<MatchedFood> match = food.retrieveBestMatch(toMatch, false, true, false);
 if (match.size() > 1)
 {
 Food firstMatch = match.get(0).getFood();
 Food secondMatch = match.get(1).getFood();
 Log.d(TAG, "matched compare: " + firstMatch + " with " + secondMatch);
 comparison = makeComparisonResultString(firstMatch, secondMatch);
 }
 return comparison;
 }

Finally, Listing 17-16 shows the code for “add.” First, the code uses a WordMatcher to match “add”;
if it matches, the code takes all the text after the fi rst string to be the free text. It then uses the free
text as the name of the food to add. The code makes an assumption that “add” will always be the
fi rst word in the user’s utterance.

LISTING 17-16: Matches add

 public Food addFreeText(String toMatch)
 {
 Food toAdd = null;
 WordMatcher dc = new WordMatcher("add");
 String [] tokens = toMatch.split("\\s");
 if (dc.isIn(tokens) && tokens.length > 1)
 {
 //after the first space
 String freeText = toMatch.substring(toMatch.indexOf(" "));
 Log.d(TAG, "matched add " + freeText);
 toAdd = new Food(freeText);
 }
 return toAdd;
 }

Although the assumptions made by these implementations may make them seem less than optimal,
they perform robustly on real speech inputs. The implementations have the benefi ts of word spotting

c17.indd 433c17.indd 433 5/10/2012 2:13:12 PM5/10/2012 2:13:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

434 x CHAPTER 17 MATCHING WHAT WAS SAID

in that it is resistant to inserted words and the order in which they come. These benefi ts could mean
easy input for the user.

Considering Ordering

The previous section showed implementations of multi-part commands that did not require the app
to consider order. The approach ignores the potential for collisions and makes assumptions that
could lead to some failed recognitions. This section explores several approaches for considering
order. The approaches require some processing and more constraint on user input.

Matching multi-part commands considering ordering requires your app to introduce a new object,
WordList. The source for WordList is in Listing 17-17. WordList splits the string into tokens and
then getStringAfter() allows the matching methods to retrieve strings after a certain index in
the source string. getStringWithout() allows code to retrieve versions of the string without cer-
tain words.

LISTING 17-17: Extracts parts of an utterance by position

public class WordList
{
 private String [] words;

 private String source;

 public WordList(String source)
 {
 this.source = source;
 words = source.split("\\s");
 }

 public String getStringAfter(int wordIndex)
 {
 int startAt = wordIndex + 1;
 if (startAt >= words.length)
 {
 return "";
 }

 StringBuilder sb = new StringBuilder();
 for (int i = startAt; i < words.length; i++)
 {
 sb.append(words[i]).append(" ");
 }
 return sb.toString();
 }

 public String getStringWithout(int indexToRemove)
 {
 if (indexToRemove >= words.length)
 {
 return "";

c17.indd 434c17.indd 434 5/10/2012 2:13:12 PM5/10/2012 2:13:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Multi-part Commands x 435

 }

 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < words.length; i++)
 {
 if (i != indexToRemove)
 {
 sb.append(words[i]).append(" ");
 }
 }
 return sb.toString();
 }
}

You also need some additional methods inside of WordMatcher to help identify the position
of any matches. Listing 17-18 shows the necessary methods and Listing 17-1 shows the rest of
WordMatcher.

LISTING 17-18: Additional methods in WordMatcher to identify the location of matches

 public int isInAt(String [] wordsIn)
 {
 int which = NOT_IN;
 for (String word : wordsIn)
 {
 which = isInAt(word);
 if (which != NOT_IN)
 {
 break;
 }
 }
 return which;
 }

 public int isInAt(String wordCheck)
 {
 int which = NOT_IN;
 int ct = 0;
 for (String word : words)
 {
 if (word.equals(wordCheck))
 {
 which = ct;
 break;
 }
 ct++;
 }
 return which;
 }

Using these two utilities you can implement position-aware matching. Listing 17-19 shows “add,”
Listing 17-20 shows “remove,” and Listing 17-21 shows “compare calories.”

c17.indd 435c17.indd 435 5/10/2012 2:13:12 PM5/10/2012 2:13:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

436 x CHAPTER 17 MATCHING WHAT WAS SAID

Matching “remove” and “add” requires the same fi rst step. First the code recognizes “add” or
“remove.” Then the code processes the remaining text after “add” or “remove” word. For “add,” the
code collects all the remaining string as free text and uses that as the new food name. For “remove,”
the code matches the remaining string with the food database and identifi es the best matching as
the food to remove. For example, while processing a user utterance of “remove red grapes” the code
would recognize “remove” and then pass the remaining “red grapes” string to the food database.

Selecting the text after the command word allows the code to ignore any words the user may have
added before the static command word. For example, the user might say something like, “apple
remove grapes.” This could happen if the speech prompt appeared while the user was saying some-
thing else. The non-ordered approach could potentially have a problem and remove apple instead
of grapes because apple appears just as many times as grapes and it appears fi rst. In contrast, using
the ordered approach, the code can ignore any words before the command word and hence correctly
ignore apple and consider only grapes.

For comparing foods, the code needs to identify two foods within the same search string. Without order-
ing, incorrect matches could result. For example, if the user executed a compare command by saying
“apple avocado,” it is possible that the FTS query could return two kinds of apple instead of apple and
avocado. To handle this, the code in Listing 17-21 executes the query twice. The code removes the fi rst
matched word before the second query. For the input “apple avocado,” removing the fi rst match, apple,
allows the code to recognize apple during the fi rst query and avocado during the second.

LISTING 17-19: Creates a new Food to add using the free text after the command “add” as the

food name

 public Food addFreeText(String toMatch)
 {
 Food toAdd = null;
 WordList wordList = new WordList(toMatch);
 WordMatcher dc = new WordMatcher("add");
 int matchIndex = dc.isInAt(wordList.getWords());
 if (matchIndex >= 0)
 {
 String freeText = wordList.getStringAfter(matchIndex);
 if (freeText.length() > 0)
 {
 Log.d(TAG, "matched add " + freeText);
 toAdd = new Food(freeText);
 }
 }
 return toAdd;
 }

LISTING 17-20: Selects a food to remove as the one mentioned after the command “remove”

 public Food removeExistingFood(String toMatch)
 {
 Food removed = null;
 WordList wordList = new WordList(toMatch);

c17.indd 436c17.indd 436 5/10/2012 2:13:12 PM5/10/2012 2:13:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Multi-part Commands x 437

 WordMatcher dc = new WordMatcher("remove");
 int matchIndex = dc.isInAt(wordList.getWords());
 if (matchIndex >= 0)
 {
 String freeText = wordList.getStringAfter(matchIndex);
 FtsIndexedFoodDatabase food =
 FtsIndexedFoodDatabase.getInstance(null);
 List<MatchedFood> match =
 food.retrieveBestMatch(freeText, false, true, false);
 if (match.size() > 0)
 {
 Food toRemove = match.get(0).getFood();
 Log.d(TAG, "matched remove " + toRemove);
 removed = toRemove;
 }
 }
 return removed;
 }

LISTING 17-21: Compares two foods by running two queries

 public String compareCalories(String toMatch)
 {
 String comparison = null;
 FtsIndexedFoodDatabase food = FtsIndexedFoodDatabase.getInstance(null);
 List<MatchedFood> match =
 food.retrieveBestMatch(toMatch, false, true, false);
 if (match.size() > 0)
 {
 MatchedFood matchedFood = match.get(0);
 Food firstMatch = matchedFood.getFood();

 // remove the first term of the matched string so
 // that the food won't be matched again
 WordList wordList = new WordList(toMatch);
 String withoutFirstMatch =
 wordList.getStringWithout(matchedFood
 .getFirstMatchTermIndex());
 List<MatchedFood> matchSecond =
 food.retrieveBestMatch(withoutFirstMatch, false, true,
 false);
 if (matchSecond.size() > 0)
 {
 Food secondMatch = matchSecond.get(0).getFood();
 Log.d(TAG, "matched compare: " + firstMatch + " with "
 + secondMatch);
 comparison =
 makeComparisonResultString(firstMatch, secondMatch);
 }
 }
 return comparison;
 }

c17.indd 437c17.indd 437 5/10/2012 2:13:12 PM5/10/2012 2:13:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

438 x CHAPTER 17 MATCHING WHAT WAS SAID

TRY THIS

Select the Food Dialogue Matcher Playground button. You can say any of the three
commands described in this section after you click the Edit and Compare button.
You can use the Matching Preferences menu option to experiment with using
ordered and unordered matching.

USING A GRAMMAR

Word spotting is not the only matching algorithm. One alternative you might consider is to use
a grammar instead. Grammars are useful for scenarios beyond the ones this chapter describes.
This section briefl y describes how you might use a grammar and provides links for additional
information.

One type of grammar you might use is JSGF (Java Speech Grammar Format) (http://java.sun.
com/products/java-media/speech/forDevelopers/JSGF/). A project like Sphinx (http://
cmusphinx.sourceforge.net/2011/05/building-pocketsphinx-on-android/) contains code to
work with JSGF grammars.

Using a JSGF grammar, you could defi ne an add command with the following rule:

<addcommand> = <add> <apple | pear | grape>

The preceding grammar specifi es a rule named “addcommand” that matches the word “add”
followed by “apple,” “pear,” or “grape.” Using a grammar with the rule allows an app to match
when the user wanted to add one of the three specifi ed foods.

The JSGF grammar is very fl exible. You can expand it further using wildcard operators to allow it
to handle words inserted between expected command words. You can create a set of composable,
reusable rules. You can weight certain words as being more important than others. You can tag
certain rules to help code identify results.

The advantage of a using a grammar is that it can handle complex speech patterns. If you are try-
ing to implement a multi-part command that has many parts and many variants, or want to have
many voice commands available from one prompt, a grammar may be a better approach than
word spotting. For simple commands, like the ones this chapter has discussed, restricting the user
to follow the grammar’s specifi cations and the processing overhead of using a grammar may not
be worth it.

SUMMARY

After executing speech recognition, Android returns a list of strings representing what the user
might have said. This chapter described various ways to determine if those strings match desired
command words. To implement this matching, your app may need to use in-memory matching,
query persistent storage, match multiple command parts, or determine in what order the parts
appeared.

c17.indd 438c17.indd 438 5/10/2012 2:13:12 PM5/10/2012 2:13:12 PM

www.it-ebooks.info

http://java.sun.com/products/java-media/speech/forDevelopers/JSGF
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF
http://cmusphinx.sourceforge.net/2011/05/building-pocketsphinx-on-android
http://cmusphinx.sourceforge.net/2011/05/building-pocketsphinx-on-android
http://www.it-ebooks.info/

Summary x 439

To handle in-memory matching, this chapter described using an in-memory class that used a Set to
represent static keywords. To handle querying persistent storage, this chapter described how to use
Android’s built-in FTS search or Lucene. To handle ordered and unordered, multi-part commands,
this chapter showed you some possible implementation approaches. To capture free text and to han-
dle multi-part commands with increased accuracy, this chapter showed you how to match command
words according to the order in which the words appeared in a user’s utterance. Also, this chapter
described how to make it easier to match by using two indexing strategies: stemming and phonetic
indexing.

The techniques in this chapter described how to match recognition results to create voice com-
mands. These voice commands represent single functions a user can activate. The next chapter
describes techniques to combine these commands together to create voice actions that can have mul-
tiple functions and span multiple turns. In addition, it describes the software components you need
to execute voice actions in a user-friendly, modular way.

c17.indd 439c17.indd 439 5/10/2012 2:13:13 PM5/10/2012 2:13:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c17.indd 440c17.indd 440 5/10/2012 2:13:13 PM5/10/2012 2:13:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

18
Executing Voice Actions

WHAT’S IN THIS CHAPTER?

 ‰ Software components for defi ning and executing voice actions

 ‰ AlertDialog for voice actions

 ‰ Multi-turn voice actions

 ‰ A best guess to minimize recognition failure

 ‰ Diagnosing recognition failure

Chapter 17 described matching in detail. Android’s speech recognizer rarely returns a single
result. Instead it returns a list of possible strings that represent what the user might have said.
Matching involves comparing those strings with the desired command words your voice user
interface (VUI) expects.

If your VUI is simple enough, you can implement matching in the way that Chapter 17 does
directly within the receiveWhatWasHeard() method. However, to include features that
improve usability and to organize multi-turn voice actions, you can benefi t from some addi-
tional code that this chapter describes.

The code in this chapter helps organize your VUI into VoiceAction objects and execute them.
The code also provides some methods for improving the usability of your VUI by showing
how your app can make a best guess and respond when recognition fails. To illustrate these
concepts, the code in this chapter creates an improved version of the food dialogue example
that Chapter 17 introduced.

c18.indd 441c18.indd 441 5/10/2012 2:13:46 PM5/10/2012 2:13:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

442 x CHAPTER 18 EXECUTING VOICE ACTIONS

FOOD DIALOGUE VUI DESIGN

The food VUI design, implemented in Chapter 17, had several fl aws:

 ‰ It did not use any indexing, so the app failed to understand commands failed more often than
necessary.

 ‰ It didn’t have any multi-turn voice actions, so users could never add calories for any new
food, nor could they cancel a remove operation.

 ‰ The app never spoke any replies after any command, so, for example, users would have no
way of knowing if they successfully added or removed a food.

 ‰ If recognition failed the code simply reported “I don’t understand” instead of attempting to
diagnose why or make a best guess.

To address these shortcomings, the refi ned food VUI design consists of two voice actions: Food
Lookup and Food Edit. Users activate either by a button press. Table 18-1 describes the turns for the
commands within the voice actions.

TABLE 18-1: VUI Design for Multi-turn Food Dialogue

VOICE ACTION COMMAND TURNS

Food Lookup FoodLookup Turn 1: User says “<foodname>.” App replies “<foodname>

has X calories.”

Food Edit AddFood Turn 1: User says “add <new food name>.”

Turn 2: App says “How many calories for <new food name>?”

User says a number or “cancel.” App replies: “Added <new

food name> with <calories>” or “cancelled” if the user said

“cancel.”

Food Edit RemoveFood Turn 1: User says “remove <foodname>.”

Turn 2: App says “Are you sure you want to remove <food-

name>?” User says “Yes” or “No” or “Cancel.” App replies

“removed <foodname> or “canceled” if the user said “cancel.”

In addition, the VUI adds several features needed for a more user-friendly conversation:

 ‰ Uses implicit prompting: To make users aware of the result of their voice action, the design
uses implicit prompting in the remove and add commands to report what food was removed
or added.

 ‰ Provides feedback if recognition fails: If the app can’t match what the user said with any
expected inputs, it makes a best guess. If it cannot guess, it tries to diagnose why recognition
failed and provides feedback to the user.

 ‰ Allows for cancel: At any speech prompt, it allows the user to say “cancel” to end the dialog.

c18.indd 442c18.indd 442 5/10/2012 2:13:48 PM5/10/2012 2:13:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Defi ning and Executing Voice Actions x 443

The remaining sections in this chapter show you how to implement this VUI design.

TRY THIS

Use the Multi-turn Food Dialogue button to explore how the VUI works.

DEFINING AND EXECUTING VOICE ACTIONS

In a GUI, apps have various APIs to help them create Dialogs with buttons, show them, and
respond when the user clicks. With VUIs, none of that exists. Additionally, Dialogs run on the UI
thread, which keeps them from interfering with each other. Similarly, VUIs must make sure that
voice actions do not interfere with each other’s audio input and output. The app must make sure not
to be listening and speaking at the same time, or else it may talk to itself. This section describes the
missing code you need to defi ne and execute voice action.

Executing a voice action refers to the fi ve-step process shown in Figure 18-1.

Activate
Speak
Prompt
(optional)

Listen
Speak

Response
(optional)

Action

FIGURE 18-1: Flow through the various steps in executing a voice action.

The fi ve steps involved in executing a voice action are:

 1. Activate: User starts the voice action. A simple way the user can do this is by pressing a but-
ton, but Chapter 19 describes other options.

 2. Speak Prompt: Optionally speak something.

 3. Listen: Start speech recognition.

 4. Speak Response: Optionally say something in response.

 5. Action: Do something, then possibly begin another speak
prompt or listen step.

Executing voice actions requires several classes. Figure 18-2
shows how they relate. A VoiceActionExecutor controls speak-
ing prompts, listening, and activating one active VoiceAction at a
time. A VoiceAction uses one or more VoiceActionCommands to
interpret recognition results. If the VoiceActionCommands match
the recognition results, they may take any necessary actions or
speak any responses. An app activates VoiceActionExecutor in
an app specifi c way, such as by presenting the user with a “push to
talk” button.

VoiceActionExecutor

1

1..*

VoiceAction

VoiceActionCommand

FIGURE 18-2: Relationship

between voice action-related

classes

c18.indd 443c18.indd 443 5/10/2012 2:13:48 PM5/10/2012 2:13:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

444 x CHAPTER 18 EXECUTING VOICE ACTIONS

A VoiceAction is analogous to a GUI Dialog and a VoiceActionCommand is analogous to a
Button in a GUI Dialog. VoiceActionExecutor has the equivalent of a Dialog’s show() method
for VoiceActions. Listing 18-1 shows the VoiceAction and VoiceActionCommand interfaces and
Listing 18-2 shows the implementation of VoiceActionExecutor.

All of these components are required to implement a VUI. For example, implementing the Food Edit
voice action involves confi guring a VoiceAction and executing it using a VoiceActionExecutor.
The confi gured VoiceAction uses one implementation of a VoiceActionCommand for each
possible command the user may say: add food, remove food, or cancel. If any of the three
VoiceActionCommands match the recognition results, they take appropriate action.
Next, this section describes the VoiceActionExecutor implementation. Later sections in this
chapter explore how to implement VoiceAction and VoiceActionCommands.

VoiceActionExecutor controls executing speech recognition and speaking for a single active
VoiceAction with several methods. To make VoiceActionExecutor work, the code using
VoiceActionExecutor must pass it results from receiveWhatWasHeard(). The execute() and
reExecute() methods allow apps to start and restart VoiceActions. If a VoiceActionCommand
needs to speak something, it can conveniently call speak(). While speaking a prompt,
VoiceActionExecutor ensures that the app is not listening and speaking at the same time. To imple-
ment this it passes EXECUTE_AFTER_SPEAK as the utteranceId to its TTS using the following code:

 tts.speak(voiceAction.getSpokenPrompt(), TextToSpeech.QUEUE_FLUSH,
 TextToSpeechUtils.makeParamsWith(EXECUTE_AFTER_SPEAK));

TTS calls the onDone()method after it is done speaking and VoiceActionExecutor forwards it to
onDoneSpeaking(). When onDoneSpeaking() receives an utteranceId equal to EXECUTE_AFTER_
SPEAK, it can start speech recognition again because it knows that the app has completed speaking
the speech prompt.

LISTING 18-1: Interfaces for VoiceAction and VoiceActionCommand

public interface VoiceAction
{
 /**
 * match String in heard, optionally take action and
 * call OnNotUnderstoodListener if cannot match.
 * @param heard recognition results
 * @param confidenceScores score for each String in heard
 */
 boolean interpret(List<String> heard, float[] confidenceScores);

 /**
 * return the text to show as a prompt when executing

 * if there is no prompt, then return null or an empty string
 */
 public String getPrompt();

 public void setPrompt(String prompt);

 /**
 * the prompt to speak before presenting the recognition dialog
 */

c18.indd 444c18.indd 444 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Defi ning and Executing Voice Actions x 445

 public String getSpokenPrompt();

 public void setSpokenPrompt(String prompt);

 public boolean hasSpokenPrompt();

 /**
 * to call when interpret cannot understand
 */
 public void setNotUnderstood(OnNotUnderstoodListener notUnderstood);

 public OnNotUnderstoodListener getNotUnderstood();

 /**
 * ignore any responses below this minimum confidence
 */
 public float getMinConfidenceRequired();

 /**
 * confidence greater than this means
 * {@link OnNotUnderstoodListener#REASON_NOT_A_COMMAND}
 */
 public float getNotACommandConfidenceThreshold();

 public void setNotACommandConfidenceThreshold(
 float notACommandConfidenceThreshold);

 /**
 * confidence less than this means
 * {@link OnNotUnderstoodListener#REASON_INACCURATE_RECOGNITION}
 */
 public float getInaccurateConfidenceThreshold();

 public void setInaccurateConfidenceThreshold(
 float inaccurateConfidenceThreshold);
}
public interface VoiceActionCommand
{
 boolean interpret(WordList heard, float [] confidenceScores);
}

LISTING 18-2: Executes VoiceActions

public class VoiceActionExecutor
{
 private static final String TAG = "VoiceActionExecutor";

 private VoiceAction active;

 private SpeechRecognizingActivity speech;

 /**
 * parameter for TTS to identify utterance
 */
 private final String EXECUTE_AFTER_SPEAK = "EXECUTE_AFTER_SPEAK";

 private TextToSpeech tts;

 public VoiceActionExecutor(SpeechRecognizingActivity speech)

continues

c18.indd 445c18.indd 445 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

446 x CHAPTER 18 EXECUTING VOICE ACTIONS

 {
 this.speech = speech;
 active = null;
 }

 /**
 * set the tts when it is ready to complete initialization
 */
 public void setTts(TextToSpeech tts)
 {
 this.tts = tts;
 if (Build.VERSION.SDK_INT >= 15)
 {
 tts.setOnUtteranceProgressListener(new UtteranceProgressListener()
 {
 @Override
 public void onDone(String utteranceId)
 {
 onDoneSpeaking(utteranceId);
 }

 @Override
 public void onError(String utteranceId)
 {
 }

 @Override
 public void onStart(String utteranceId)
 {
 }
 });
 }
 else
 {
 tts.setOnUtteranceCompletedListener(new OnUtteranceCompletedListener()
 {
 @Override
 public void onUtteranceCompleted(String utteranceId)
 {
 onDoneSpeaking(utteranceId);
 }
 });
 }
 }

 /**
 * external handleReceiveWhatWasHeard must call this
 */
 public void handleReceiveWhatWasHeard(List<String> heard,
 float[] confidenceScores)
 {
 active.interpret(heard, confidenceScores);

LISTING 18-2 (continued)

c18.indd 446c18.indd 446 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Defi ning and Executing Voice Actions x 447

 }

 private void onDoneSpeaking(String utteranceId)
 {
 if (utteranceId.equals(EXECUTE_AFTER_SPEAK))
 {
 doRecognitionOnActive();
 }
 }

 /**
 * convenient way to just reply with something spoken
 */
 public void speak(String toSay)
 {
 tts.speak(toSay, TextToSpeech.QUEUE_FLUSH,
 TextToSpeechUtils.EMPTY_PARAMS);
 }

 /**
 * execute the current active {@link VoiceAction} again speaking
 * extraPrompt before
 */
 public void reExecute(String extraPrompt)
 {
 if ((extraPrompt != null) && (extraPrompt.length() > 0))
 {
 tts.speak(extraPrompt, TextToSpeech.QUEUE_FLUSH,
 TextToSpeechUtils.makeParamsWith(EXECUTE_AFTER_SPEAK));
 }
 else
 {
 execute(getActive());
 }
 }

 /**
 * change the current voice action to this and then execute it, optionally
 * saying a prompt first
 */
 public void execute(VoiceAction voiceAction)
 {
 if (tts == null)
 {
 throw new RuntimeException("Text to speech not initialized");
 }

 setActive(voiceAction);

 if (voiceAction.hasSpokenPrompt())
 {
 tts.speak(voiceAction.getSpokenPrompt(), TextToSpeech.QUEUE_FLUSH,
 TextToSpeechUtils.makeParamsWith(EXECUTE_AFTER_SPEAK));
 }
 else

continues

c18.indd 447c18.indd 447 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

448 x CHAPTER 18 EXECUTING VOICE ACTIONS

 {
 doRecognitionOnActive();
 }
 }

 private void doRecognitionOnActive()
 {
 Intent recognizerIntent =
 new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 recognizerIntent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);
 recognizerIntent.putExtra(RecognizerIntent.EXTRA_PROMPT, getActive()
 .getPrompt());
 speech.recognize(recognizerIntent);
 }

 private VoiceAction getActive()
 {
 return active;
 }

 private void setActive(VoiceAction active)
 {
 this.active = active;
 }
}

code snippet VoiceActionExecutor.java

This section described how you could defi ne a VUI in terms of VoiceActions and
VoiceActionCommands. It also described VoiceActionExecutor and how it executes VoiceActions
with it. Now that you’ve seen how to run VoiceActions, the next two sections describe ways to
implement them.

EXECUTING VOICEACTIONCOMMANDS

A VoiceAction is responsible for matching the recognition results. If it cannot match the results it
calls back to an OnNotUnderstoodListener, described later in listing 18-12.

You can use MultiCommandVoiceAction to implement a VoiceAction. Listing 18-3 shows its
implementation. The implementation uses AbstractVoiceAction, which contains simple getter and
setter implementations that the VoiceAction interface requires. MultiCommandVoiceAction has to
perform several functions.

First, MultiCommandVoiceAction uses a given List of VoiceActionCommands to match the recogni-
tion results. It iterates over each one for each possible recognition result until one matches. When
multiple VoiceActionCommands can match a particular utterance, the VoiceAction enforces a
policy, that the fi rst one that matches takes effect.

Second, MultiCommandVoiceAction must handle when no VoiceActionCommands match, by calling
back to an OnNotUnderstoodListener. Later sections in this chapter explain different ways to
minimize how many times this occurs and how to handle it when it does.

LISTING 18-2 (continued)

c18.indd 448c18.indd 448 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Executing VoiceActionCommands x 449

Third, repeated tokenizing of the recognition results to split the single string into individual words
can be ineffi cient. Therefore, MultiCommandVoiceAction uses a helper class, WordList, to perform
the tokenizing once. The previous chapter presented WordList in Listing 17-17.

LISTING 18-3: Executes one or more VoiceActionCommands

public class MultiCommandVoiceAction extends AbstractVoiceAction
{
 private static final String TAG = "MultiCommandVoiceAction";

 private List<VoiceActionCommand> commands;

 public MultiCommandVoiceAction(List<VoiceActionCommand> commands)
 {
 this.commands = commands;
 }

 @Override
 public boolean interpret(List<String> heard, float[] confidenceScores)
 {
 boolean understood = false;

 //Android version 4.0 and less devices will have null
 boolean hasConfidenceScores = (confidenceScores != null);

 // halt after understood something
 for (int i = 0; i < heard.size() && !understood; i++)
 {
 String said = heard.get(i);

 //only check confidence if the app supports it
 boolean exceedsMinConfidence = true;
 if (hasConfidenceScores)
 {
 exceedsMinConfidence =
 (confidenceScores[i] > getMinConfidenceRequired());
 }

 if (exceedsMinConfidence)
 {
 WordList saidWords = new WordList(said);
 for (VoiceActionCommand command : commands)
 {
 understood = command.interpret(
 saidWords, confidenceScores);
 if (understood)
 {
 Log.d(TAG, "Command successful: "
 + command.getClass().getSimpleName());
 break;
 }
 }

continues

c18.indd 449c18.indd 449 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

450 x CHAPTER 18 EXECUTING VOICE ACTIONS

 }
 }

 if (!understood)
 {
 if (hasConfidenceScores)
 {
 Log.d(TAG, "VoiceAction unsuccessful: " + getPrompt());
 // interpret confidence so as to provide a reason to
 // notUnderstood

 // check only the highest confidence score, which should be the
 // first
 float highestConfidenceScore = confidenceScores[0];
 if (highestConfidenceScore < 0.0)
 {
 getNotUnderstood().notUnderstood(heard,
 OnNotUnderstoodListener.REASON_UNKNOWN);
 }
 else
 {
 if (highestConfidenceScore <
 getInaccurateConfidenceThreshold())
 {
 getNotUnderstood()
 .notUnderstood(
 heard,
 OnNotUnderstoodListener.
 REASON_INACCURATE_RECOGNITION);
 }
 else if (highestConfidenceScore > =
 getNotACommandConfidenceThreshold())
 {
 getNotUnderstood().notUnderstood(heard,
 OnNotUnderstoodListener.REASON_NOT_A_COMMAND);
 }
 else
 {
 getNotUnderstood().notUnderstood(heard,
 OnNotUnderstoodListener.REASON_UNKNOWN);
 }
 }
 }
 else
 {
 getNotUnderstood().notUnderstood(heard,
 OnNotUnderstoodListener.REASON_UNKNOWN);
 }
 }

 return understood;

LISTING 18-3 (continued)

c18.indd 450c18.indd 450 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing an AlertDialog for Voice Actions x 451

 }

 protected void add(VoiceActionCommand command)
 {
 commands.add(command);
 }
}

code snippet MultiCommandVoiceAction.java

MultiCommandVoiceAction allows you to execute a given set of VoiceActionCommands that you
develop. However, some kinds of VoiceActions are useful across multiple applications. It is helpful
to have a utility class that helps implement those.

While developing GUI Dialogs, a developer does not always create new views, with new buttons in
it, for every Dialog he or she wants to show. Instead there is an AlertDialog class that helps create
common Dialogs. The next section describes how to extend MultiCommandVoiceAction to imple-
ment a class that is similar to an AlertDialog, but designed for voice actions. The class helps you
implement common voice actions.

IMPLEMENTING AN ALERTDIALOG FOR VOICE ACTIONS

AlertDialogs are a useful class in GUIs because they make it easy to create many kinds of Dialogs
you need in your app. It is also useful to have the same kind of class with VoiceActions. For this
purpose, you can use VoiceAlertDialog, which extends MultiCommandVoiceAction, along with
the MatcherCommand helper class and OnUnderstoodListener.

Instead of the buttons that an AlertDialog has, VoiceAlertDialog has spoken command
words. Instead of indicating results with an OnClickListener, it uses an OnUnderstoodListener.

To use a VoiceAlertDialog an app specifi es OnUnderstoodListeners for positive, negative, or
neutral words. Also, an app may modify the following parameters:

 ‰ Change the positive, negative, and neutral command words.

 ‰ Use “relaxed” matching that uses indexing such as stemmers and phonetic matching to make
it easier to match what the user said. Chapter 17 explains how these work in more detail.

 ‰ Add new commands beyond positive, negative, and neutral.

Using these classes you might create a voice command using the following code, taken from the
RemoveFood VoiceActionCommand:

 final VoiceAlertDialog confirmDialog = new VoiceAlertDialog();
 // positive, try all possible ways to find it
 confirmDialog.addRelaxedPositive(new OnUnderstoodListener()
 {
 @Override
 public void understood()

c18.indd 451c18.indd 451 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

452 x CHAPTER 18 EXECUTING VOICE ACTIONS

 {
 Log.d(TAG, "REMOVE!: " + foodToRemove);
 FtsIndexedFoodDatabase.getInstance(context).removeFood(
 foodToRemove.getName());
 String toSayRemoved =
 String.format(
 context.getResources().getString(
 R.string.food_remove_complete),
 foodToRemove.getName());
 executor.speak(toSayRemoved);
 }
 });
 String toSay =
 String.format(
 context.getResources().getString(
 R.string.food_remove_confirm_prompt),
 foodToRemove.getName());
 confirmDialog.setPrompt(toSay);
 confirmDialog.setSpokenPrompt(toSay);

The code creates a voice-controlled confi rmation dialog that responds when the user responds posi-
tively, by saying “yes” or “ok.” It also changes what would be the “title” fi eld in a Dialog by using
the setPrompt() and setSpokenPrompt() methods.

Listing 18-4 shows the implementation of VoiceAlertDialog. Listing 18-5 shows the implementa-
tion of MatcherCommand and OnUnderstoodListener.

LISTING 18-4: Implements a yes/no/cancel VoiceAction

public class VoiceAlertDialog extends MultiCommandVoiceAction
{
 // use match levels to indicate when you want less
 // to allow less strict matches
 public static final int MATCH_LEVEL_STRICT = 0;
 public static final int MATCH_LEVEL_STEM = 1;
 public static final int MATCH_LEVEL_PHONETIC = 2;
 public static final int MATCH_LEVEL_PHONETIC_LESS_STRICT = 3;

 private String[] yesWords = new String[] { "yes", "ok" };
 private String[] noWords = new String[] { "no" };
 private String[] neutralWords = new String[] { "cancel", "done" };

 public VoiceAlertDialog()
 {
 super(new ArrayList<VoiceActionCommand>());
 }

 /**
 * get the command words from resources
 */

c18.indd 452c18.indd 452 5/10/2012 2:13:49 PM5/10/2012 2:13:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing an AlertDialog for Voice Actions x 453

 public VoiceAlertDialog(Context context)
 {
 super(new ArrayList<VoiceActionCommand>());
 yesWords =
 context.getResources().getStringArray(
 R.array.voiceaction_yeswords);
 noWords =
 context.getResources().getStringArray(
 R.array.voiceaction_nowords);
 neutralWords =
 context.getResources().getStringArray(
 R.array.voiceaction_neutralwords);
 }

 /**
 * add your own command to the dialog here if it consists of words
 */
 public void add(OnUnderstoodListener listener, String... words)
 {
 add(new MatcherCommand(new WordMatcher(words), listener));
 }

 public void addPositive(OnUnderstoodListener listener)
 {
 add(listener, yesWords);
 }

 public void addNegative(OnUnderstoodListener listener)
 {
 add(listener, noWords);
 }

 public void addNeutral(OnUnderstoodListener listener)
 {
 add(listener, neutralWords);
 }

 public void addRelaxedPositive(OnUnderstoodListener listener)
 {
 addRelaxedAll(listener, yesWords);
 }

 public void addRelaxedNegative(OnUnderstoodListener listener)
 {
 addRelaxedAll(listener, noWords);
 }

 public void addRelaxedNeutral(OnUnderstoodListener listener)
 {
 addRelaxedAll(listener, neutralWords);

continues

c18.indd 453c18.indd 453 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

454 x CHAPTER 18 EXECUTING VOICE ACTIONS

 }

 /**
 * add some command words, but allow for less strict matching
 */
 public void addRelaxedAll(OnUnderstoodListener listener, String... words)
 {
 add(listener, MATCH_LEVEL_STRICT, words);
 add(listener, MATCH_LEVEL_STEM, words);
 add(listener, MATCH_LEVEL_PHONETIC, words);
 add(listener, MATCH_LEVEL_PHONETIC_LESS_STRICT, words);
 }

 /**
 * allow matching at different levels of confidence
 */
 private void add(OnUnderstoodListener listener, int matchType,
 String... words)
 {
 WordMatcher matcher;
 switch (matchType)
 {
 case MATCH_LEVEL_STEM:
 matcher = new StemmedWordMatcher(words);
 break;
 case MATCH_LEVEL_PHONETIC:
 matcher = new SoundsLikeWordMatcher(words);
 break;
 case MATCH_LEVEL_PHONETIC_LESS_STRICT:
 matcher = new SoundsLikeThresholdWordMatcher(3, words);
 break;
 case MATCH_LEVEL_STRICT:
 default:
 matcher = new WordMatcher(words);
 break;
 }
 add(new MatcherCommand(matcher, listener));
 }
}

code snippet VoiceAlertDialog.java

LISTING 18-5: Helper class and interface needed to implement VoiceAlertDialog

public class MatcherCommand implements VoiceActionCommand
{
 private WordMatcher matcher;

 private OnUnderstoodListener onUnderstood;

 public MatcherCommand(WordMatcher matcher,

LISTING 18-4 (continued)

c18.indd 454c18.indd 454 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Multi-Turn Voice Actions x 455

 OnUnderstoodListener onUnderstood)
 {
 this.matcher = matcher;
 this.onUnderstood = onUnderstood;
 }

 @Override
 public boolean interpret(WordList heard, float[] confidence)
 {
 boolean understood = false;
 if (matcher.isIn(heard.getWords()))
 {
 understood = true;
 if (onUnderstood != null)
 {
 onUnderstood.understood();
 }
 }
 return understood;
 }

 public OnUnderstoodListener getOnUnderstood()
 {
 return onUnderstood;
 }
}

public interface OnUnderstoodListener
{
 public void understood();
}

The VoiceAlertDialog class is a convenient way to implement many voice actions. You can use it
or the MultiCommandVoiceAction class, described previously, to construct single turn dialogues.
The next section discusses combining voice actions together to produce multiple turn dialogues.

IMPLEMENTING MULTI-TURN VOICE ACTIONS

Some voice actions require multiple turns. For example, a voice action may require a second turn
to allow the user to confi rm before proceeding. Beyond soliciting confi rmation some voice actions
require multiple turns in order for the users to input all the information they need.

This section examines how to implement such multi-turn voice actions for food dialogue’s Edit
Food voice action. In the dialogue’s fi rst turn, users activate either the AddFood or RemoveFood
VoiceActionCommands and specify part of the input each command needs. The VoiceActionCommands
then start a second turn to gather the remaining needed input by executing a VoiceAction.

Implementing Multi-Turn AddFood

Adding food requires two pieces of information: a name and a number of calories. The user uses
two turns to specify the information one piece at a time. AddFood, shown in Listing 18-6, imple-
ments the fi rst turn.

c18.indd 455c18.indd 455 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

456 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-6: Matches add command words then starts a new turn to ask for a number

of calories.

public class AddFood implements VoiceActionCommand
{
 private static final String TAG = "AddFood";

 private WordMatcher match;
 private VoiceActionExecutor executor;

 private FtsIndexedFoodDatabase foodFts;
 private Context context;

 public AddFood(Context context, VoiceActionExecutor executor,
 FtsIndexedFoodDatabase foodFts, boolean relaxed)
 {
 String[] commandWords =
 context.getResources().getStringArray(R.array.food_add_command);
 Log.d(TAG, "add with words: " + Arrays.toString(commandWords));

 if (relaxed)
 {
 // match "add" if 3 of the 4 soundex characters match
 // allows it to match add (code: A3OO) with bad (code: B300)
 match = new SoundsLikeThresholdWordMatcher(3, commandWords);
 }
 else
 {
 // match only if the use says "add" exactly
 match = new WordMatcher(commandWords);
 }
 this.context = context;
 this.executor = executor;
 this.foodFts = foodFts;
 }

 @Override
 public boolean interpret(WordList heard, float[] confidenceScores)
 {
 boolean understood = false;

 //match first part: "add"
 int matchIndex = match.isInAt(heard.getWords());
 if (matchIndex >= 0)
 {
 //match second part: the food name
 String freeText = heard.getStringAfter(matchIndex);
 if (freeText.length() > 0)
 {
 String foodToAdd = freeText;

 // first command

c18.indd 456c18.indd 456 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Multi-Turn Voice Actions x 457

 VoiceActionCommand askForCalories =
 new AskForCalories(context, executor, foodFts,
 foodToAdd);
 String calPromptFormat =
 context.getString(R.string.food_add_calories_prompt);
 String calPrompt = String.format(calPromptFormat, foodToAdd);

 // second command
 CancelCommand cancel = new CancelCommand(context, executor);

 // match either command, cancel first
 MultiCommandVoiceAction responseAction =
 new MultiCommandVoiceAction(Arrays.asList(cancel,
 askForCalories));

 // speak and display the same prompt when executing
 responseAction.setPrompt(calPrompt);
 responseAction.setSpokenPrompt(calPrompt);

 // retry if did not understood
 responseAction.setNotUnderstood(new WhyNotUnderstoodListener(
 context, executor, true));

 understood = true;
 executor.execute(responseAction);
 }
 }

 return understood;
 }
}

code snippet AddFood.java

The fi rst turn involves the user activating the command by saying “add” and specifying part of the
required information by saying a food name. If AddFood’s interpret() method can’t fi nd either, it
returns false and fails. Otherwise, it starts a a second turn with a MultiCommandVoiceAction that
has two VoiceActionCommands. One is a CancelCommand to allow the user to stop the turn and the
other is an AskForCalories to query the user a number of calories.

This VoiceAction has two features that help improve usability. First, it speaks the prompt: “How
many calories for <foodname>?” The prompt accomplishes two things: it lets the user know what to
say next, and it implicitly confi rms that the app understood which food the user wanted to add.

Second, if users do not recognize the name of the food used in the calorie prompt, they can cancel
because they know that the voice recognition failed.

Listing 18-7 shows the code for AskForCalories. AskForCalories matches any numbers in the rec-
ognition result, completes adding food to the database, and speaks a prompt to notify the user when
it is done.

c18.indd 457c18.indd 457 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

458 x CHAPTER 18 EXECUTING VOICE ACTIONS

LISTING 18-7: Matches the number of calories and adds the new Food

public class AskForCalories implements VoiceActionCommand
{
 private String foodToAdd;
 private FtsIndexedFoodDatabase foodFts;
 private VoiceActionExecutor executor;
 private Context context;

 public AskForCalories(Context context, VoiceActionExecutor executor,
 FtsIndexedFoodDatabase foodFts, String foodToAdd)
 {
 this.context = context;
 this.executor = executor;
 this.foodFts = foodFts;
 this.foodToAdd = foodToAdd;
 }

 @Override
 public boolean interpret(WordList heard, float[] confidenceScores)
 {
 boolean understood = false;
 // look for a number within "heard"
 for (String word : heard.getWords())
 {
 if (isNumber(word))
 {
 String responseFormat =
 context.getResources().getString(
 R.string.food_add_result);
 String response =
 String.format(responseFormat, foodToAdd, word);
 // insert food
 foodFts.insertFood(foodToAdd, Float.parseFloat(word));
 executor.speak(response);
 understood = true;
 }
 }
 return understood;
 }

 private boolean isNumber(String word)
 {
 boolean isNumber = false;
 try
 {
 Integer.parseInt(word);
 isNumber = true;
 } catch (NumberFormatException e)
 {
 isNumber = false;
 }
 return isNumber;
 }
}

c18.indd 458c18.indd 458 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Multi-Turn Voice Actions x 459

Implementing Multi-Turn RemoveFood

Users remove a food by saying “remove” and the name of a food. RemoveFood recognizes this by
matching the “remove” command word and using the database to match the spoken food name.
Because the user cannot undo removing a food, RemoveFood starts a VoiceAlertDialog so the user
can confi rm before deleting.

Listing 18-8 shows the RemoveFood implementation.

LISTING 18-8: Matches remove command words and confi rms before taking action

public class RemoveFood implements VoiceActionCommand
{
 private static final String TAG = "RemoveFood";

 private WordMatcher match;

 private Context context;
 private VoiceActionExecutor executor;
 private FtsIndexedFoodDatabase foodFts;
 private boolean relaxed;

 public RemoveFood(Context context, VoiceActionExecutor executor,
 FtsIndexedFoodDatabase foodFts, boolean relaxed)
 {
 String[] commandWords =
 context.getResources().getStringArray(
 R.array.food_remove_command);
 if (relaxed)
 {
 // match "remove" if 3 of the 4 soundex characters match
 match = new SoundsLikeThresholdWordMatcher(3, commandWords);
 }
 else
 {
 //exact match
 match = new WordMatcher(commandWords);
 }
 this.context = context;
 this.executor = executor;
 this.foodFts = foodFts;
 this.relaxed = relaxed;
 }

 public boolean interpret(WordList heard, float[] confidence)
 {
 Food toRemove = null;

 //match "remove"
 int matchIndex = match.isInAt(heard.getWords());

 //match the food to remove
 if (matchIndex >= 0)
 { continues

c18.indd 459c18.indd 459 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

460 x CHAPTER 18 EXECUTING VOICE ACTIONS

 String freeText = heard.getStringAfter(matchIndex);
 List<MatchedFood> match;
 if (relaxed)
 {
 // for relaxed add prefix matching
 match = foodFts.retrieveBestMatch(freeText, true, true, false);
 }
 else
 {
 match = foodFts.retrieveBestMatch(freeText, false, true, false);
 }
 if (match.size() > 0)
 {
 toRemove = match.get(0).getFood();
 }
 }

 //start another VoiceAction
 //to confirm before removing
 if (toRemove != null)
 {
 final Food foodToRemove = toRemove;
 final VoiceAlertDialog confirmDialog = new VoiceAlertDialog();
 // add listener for positive response
 // use relaxed matching to increase chance of understanding user
 confirmDialog.addRelaxedPositive(new OnUnderstoodListener()
 {
 @Override
 public void understood()
 {
 Log.d(TAG, "REMOVE!: " + foodToRemove);
 FtsIndexedFoodDatabase.getInstance(context).removeFood(
 foodToRemove.getName());
 String toSayRemoved =
 String.format(
 context.getResources().getString(
 R.string.food_remove_complete),
 foodToRemove.getName());
 executor.speak(toSayRemoved);
 }
 });

 //prompt for the confirm VoiceAction
 String toSay =
 String.format(
 context.getResources().getString(
 R.string.food_remove_confirm_prompt),
 foodToRemove.getName());
 confirmDialog.setPrompt(toSay);
 confirmDialog.setSpokenPrompt(toSay);

 // if the user says anything else besides the yes words cancel
 confirmDialog.setNotUnderstood(new OnNotUnderstoodListener()
 {

LISTING 18-8 (continued)

c18.indd 460c18.indd 460 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Best Guess x 461

 @Override
 public void notUnderstood(List<String> heard, int reason)
 {
 String toSayCancelled = context.getResources().getString(
 R.string.voiceaction_cancelled_response);
 executor.speak(toSayCancelled);
 }
 });
 executor.execute(confirmDialog);
 }
 return (toRemove != null);
 }
}

Use Android resources to defi ne all prompts and command words. Also, use the
String.format syntax to construct any prompts. By doing so you can utilize
Android’s resources mechanism to support multiple languages, even if they have
different grammatical structure.

AddFood and RemoveFood are two VoiceActionCommands that implement the Food Edit voice
action. When successfully used, the commands allow the user to manipulate the food database.
However, this chapter has not yet described what the app can do to help the user succeed. The next
two sections show how to reduce the chances of failure and how to respond if failure occurs so that
it does not occur repeatedly.

MAKING A BEST GUESS

If an app cannot match what the user said exactly, perhaps it could make a best guess. When the
guess is correct, the app will appear to work as normal. When incorrect, the user will have to wait
as the app incorrectly responds. As long as the app guesses correct more times than not and incor-
rect responses don’t annoy the user too much, continuing to make a best guess is a good idea. An
app can make a best guess by relaxing match strictness or by using domain knowledge to make an
educated guess.

Relaxing Match Strictness

To highlight how relaxing match strictness works consider the FoodLookup
VoiceActionCommand. FoodLookup is an example of a VoiceActionCommand that is likely to
have trouble understanding what the user said. It needs to match dynamic command words,
which consist of any foods in the food database. There could be a large number of foods in the
database and some could be hard to understand. Therefore, FoodLookup must do extra work
to fi nd a match. If it relies on matching that is too strict, the user will have to retry often due to
FoodLookup not understanding.

To improve the chances of a match, FoodLookup performs multiple database searches, each with
more relaxed search criteria. The more relaxed the criteria, the more the correct result relies on the
database’s ranking mechanism. Additionally, the database indexes use FTS’s stemmer for all food

c18.indd 461c18.indd 461 5/10/2012 2:13:50 PM5/10/2012 2:13:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

462 x CHAPTER 18 EXECUTING VOICE ACTIONS

names. Chapter 17 describes using the FTS database and stemmers. Both these strategies allow
FoodLookup to make a best guess and increase the number of times that it understands the user.
Listing 18-9 shows the code.

LISTING 18-9: Searches for a match with relaxed criteria if necessary

public class FoodLookup implements VoiceActionCommand
{
 private static final String TAG = "FoodLookup";

 private VoiceActionExecutor executor;
 private FtsIndexedFoodDatabase foodFts;
 private Context context;

 public FoodLookup(Context context, VoiceActionExecutor executor,
 FtsIndexedFoodDatabase foodFts)
 {
 this.context = context;
 this.executor = executor;
 this.foodFts = foodFts;
 }

 public boolean interpret(WordList heard, float[] confidence)
 {
 boolean success = false;

 boolean or = false;
 boolean prefix = false;
 boolean phrase = true;

 String said = heard.getSource();
 List<MatchedFood> foods =
 foodFts.retrieveBestMatch(said, prefix, or, phrase);

 // phrase query
 if (foods.size() == 0)
 {
 or = false;
 prefix = false;
 phrase = true;
 foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);
 }

 // word query
 if (foods.size() == 0)
 {
 or = false;
 prefix = false;
 phrase = false;
 foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);
 }

 // word or query
 if (foods.size() == 0)
 {
 or = true;
 prefix = false;

c18.indd 462c18.indd 462 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Best Guess x 463

 phrase = false;
 foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);
 }

 // word, prefix, or query
 if (foods.size() == 0)
 {
 or = true;
 prefix = true;
 phrase = false;
 foods = foodFts.retrieveBestMatch(said, prefix, or, phrase);
 }

 if (foods.size() > 0)
 {
 Food heardFood = foods.get(0).getFood();
 String resultFormat =
 context.getResources().getString(
 R.string.food_lookup_result);
 String toSay =
 String.format(resultFormat, heardFood.getName(),
 heardFood.getFormattedCalories());
 Log.d(TAG, "heard a food " + heardFood);
 success = true;
 executor.speak(toSay);
 }
 return success;
 }
}

code snippet FoodLookup.java

FoodLookup performs a series of queries in the following order:

1. Phrase query: Matches the entire recognition phrase with the foods in the database.

2. Word query: Relaxes the phrase requirement, but all words must still match.

3. Word or query: Turns the query from an AND to an OR query.

4. Word, prefi x, or query: Adds prefi x matching.

Beyond these relaxations, the code could use the same queries on phonetic forms of the words. This
would require creating and populating a new database fi eld or using Lucene’s indexing mechanism.

The result of these multiple database searches is a VoiceActionCommand that makes a best guess at
what the user says using functions available from the database.

Relaxing Strictness Between Commands

FoodLookup shows an example of a single command that relaxes its search criteria. When an app
has a VoiceAction with multiple commands, you may prefer that it try all possible commands with
strict criteria and then try again with more relaxed criteria only if necessary. That way, each com-
mand has an equal chance to match before resorting to relaxed matching. To implement this, your

c18.indd 463c18.indd 463 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

464 x CHAPTER 18 EXECUTING VOICE ACTIONS

app can create multiple versions of a VoiceCommandAction, each with different levels of relaxed
matching, and call them in order.

Listing 18-10 shows code that creates the Food Edit voice action. It includes two instances
of addCommand and removeCommand with different values of relaxed. The commands
that have relaxed set to true use less strict matching criteria. Including both in the list of
VoiceActionCommands causes the voiceAction to match strict add and remove fi rst. If it cannot
match the strict versions, it then tries the relaxed versions.

LISTING 18-10: Creates a VoiceAction that uses two levels of matching strictness

private VoiceAction makeFoodEdit()
 {
 FtsIndexedFoodDatabase foodDb =
 FtsIndexedFoodDatabase
 .getInstance(MultiTurnFoodDialogActivity.this);

 // match it with two levels of strictness
 boolean relaxed = false;

 VoiceActionCommand cancelCommand = new CancelCommand(this, executor);
 VoiceActionCommand removeCommand =
 new RemoveFood(this, executor, foodDb, relaxed);
 VoiceActionCommand addCommand =
 new AddFood(this, executor, foodDb, relaxed);

 relaxed = true;
 VoiceActionCommand removeCommandRelaxed =
 new RemoveFood(this, executor, foodDb, relaxed);
 VoiceActionCommand addCommandRelaxed =
 new AddFood(this, executor, foodDb, relaxed);

 VoiceAction voiceAction =
 new MultiCommandVoiceAction(Arrays.asList(cancelCommand,
 addCommand, removeCommand, addCommandRelaxed,
 removeCommandRelaxed));
 // don't retry
 voiceAction.setNotUnderstood(new WhyNotUnderstoodListener(this,
 executor, false));
 final String EDIT_PROMPT =
 getResources().getString(R.string.food_edit_prompt);
 // no spoken prompt
 voiceAction.setPrompt(EDIT_PROMPT);

 return voiceAction;
 }

Making an Educated Guess

Beyond relaxing matching criteria, your app may be able to make an intelligent guess if it takes
into account the other information it knows. For example, a calendar app might guess what the

c18.indd 464c18.indd 464 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Best Guess x 465

user meant based on the current date. How you use such information is dependent on your app.
However, it may allow your app to make an educated guess at what the user said when your app has
no other way of guessing.

For example, in Digital Recipe Sidekick’s voice-controlled recipe reader I utilized knowledge of the
user’s current progress in the recipe to determine how to respond in ambiguous situations. One
example of this is what I call the “green beans problem.”

The “green beans problem” occurs when the app does not know what kind of beans the user is refer-
ring to in a recipe that has multiple bean types. For example, minestrone soup has three kinds of
beans: kidney beans, white beans, and green beans. If a user says “beans,” to which bean does it refer?

The app could report three answers — one for each bean type — but it could do better because the
app knows which step in the recipe the user is most likely on. For example, if the app thinks the user
is cooking a step that contains green beans, it can guess that the user meant “green beans” and not
the other two.

In the food dialogue example you might use knowledge of what foods a user dislikes to make an
educated guess during a food lookup. For example, if the recognizer only recognized “green,”
the food database would return “Green Beans,” “Green Cabbage,” and “Green Onion” and
FoodLookup would pick the fi rst to speak to the user. If the app knows that the user does not like
beans or onions, it can guess that the user meant cabbage. You could use code such as the code
below to fi lter food lookup results if there are more than one. The code returns the fi rst food, unless
it is part of the foods that the user dislikes or if the user dislikes all the recognized foods.

 private static final Set<String> foodsDislike;

 static
 {
 foodsDislike = new HashSet<String>();
 foodsDislike.add("Green Onion");
 foodsDislike.add("Green Beans");
 }

 public static Food pickMostLikelyFood(List<Food> possibleFoods)
 {
 if (possibleFoods.size() == 0)
 {
 return null;
 }

 Food mostLikely = possibleFoods.get(0);
 for (Food food : possibleFoods)
 {
 if (!foodsDislike.contains(food.getName()))
 {
 mostLikely = food;
 break;
 }
 }
 return mostLikely;
 }

c18.indd 465c18.indd 465 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

466 x CHAPTER 18 EXECUTING VOICE ACTIONS

A best guess can be a way to disambiguate when there are multiple possible matches and to respond
when matching is diffi cult. However, there are scenarios when a best guess is not possible such as
when recognition failure occurs because of external factors. The next section describes how to diag-
nose and respond in those situations.

RESPONDING WHEN RECOGNITION FAILS

If an active voice action cannot match any of the recognition results, it fails. In such cases, your app
should report failure to the user while providing feedback, if possible, about why it thinks it could
not understand. The feedback can help the user be more successful in the future. Without it, a user
may continue to make the same mistakes repeatedly and become frustrated.

It is important that an app be conservative when diagnosing why recognition failed. It should send
feedback only if it is sure the app will be correct. The trouble is that if an app continually reports
feedback to users, they will eventually ignore it, or even worse, become annoyed and uninstall
your app.

An app might make several responses when recognition failure occurs:

 ‰ “That is not a command”: The user said something accurate, but it wasn’t a command.

 ‰ “I didn’t hear you well”: The user spoke, but the recognizer was not able to clearly recognize
what the user said.

 ‰ “I don’t understand, please try again”: The app cannot determine reliably why it did not
understand what the user said. Optionally, the app can show the speech prompt again imme-
diately without requiring the user to reactivate speech recognition.

To handle recognition failure, MultiCommandVoiceAction diagnoses why and
WhyNotUnderstoodListener reports feedback to the user. MultiCommandVoiceAction diag-
noses the cause of the failure by examining the highest confi dence score from the EXTRA_
CONFIDENCE_SCORES recognizer output and using the thresholds shown in Table 18-2. You saw
MultiCommandVoiceAction in Listing 18-3. Listing 18-11 shows WhyNotUnderstoodListener.
Listing 18-12 shows the OnNotUnderstoodListener interface.

TABLE 18-2: Which Confi dence Scores Result in which Diagnosis and Feedback

DIAGNOSIS CONFIDENCE RANGE FEEDBACK

Inaccurate recognition 0.0 to 0.3 I did not understand because I did not hear

you well.

Don’t understand 0.3 to 0.9 I did not understand.

Not a command 0.9 to 1.0 <most likely recognition> is not a command.

c18.indd 466c18.indd 466 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Responding When Recognition Fails x 467

LISTING 18-11: Determines how to reply if recognition failed

public class WhyNotUnderstoodListener implements OnNotUnderstoodListener
{
 private Context context;
 private boolean retry;
 private VoiceActionExecutor executor;

 public WhyNotUnderstoodListener(Context context,
 VoiceActionExecutor executor, boolean retry)
 {
 this.context = context;
 this.executor = executor;
 this.retry = retry;
 }

 @Override
 public void notUnderstood(List<String> heard, int reason)
 {
 String prompt;
 switch (reason)
 {
 case OnNotUnderstoodListener.REASON_INACCURATE_RECOGNITION:
 prompt =
 context.getResources().getString(
 R.string.voiceaction_inaccurate);
 break;
 case OnNotUnderstoodListener.REASON_NOT_A_COMMAND:
 String firstMatchingWord = heard.get(0);
 String promptFormat =
 context.getResources().getString(
 R.string.voiceaction_not_command);
 prompt = String.format(promptFormat, firstMatchingWord);
 break;
 case OnNotUnderstoodListener.REASON_UNKNOWN:
 default:
 prompt =
 context.getResources().getString(
 R.string.voiceaction_unknown);
 break;
 }

 if (retry)
 {
 String retryPrompt =
 context.getResources().getString(
 R.string.voiceaction_retry);
 prompt = prompt + retryPrompt;
 executor.reExecute(prompt);

continues

c18.indd 467c18.indd 467 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

468 x CHAPTER 18 EXECUTING VOICE ACTIONS

 } else
 {
 executor.speak(prompt);
 }
 }
}

LISTING 18-12: Called when a VoiceAction fails to match

public interface OnNotUnderstoodListener
{
 /**
 * no explanation
 */
 public static final int REASON_UNKNOWN = 0;
 /**
 * Recognition was inaccurate, perhaps because of poor audio quality
 */
 public static final int REASON_INACCURATE_RECOGNITION = 1;
 /**
 * Recognition was accurate, but no match was found
 */
 public static final int REASON_NOT_A_COMMAND = 2;

 /**
 * didn't understand the user's utterance for a particular reason
 * and provide some contextual information to construct useful feedback
 */
 public void notUnderstood(List<String> heard, int reason);
}

The following sections describe each diagnosis in greater detail.

Determining Not a Command

If users say something that has high recognition confi dence, they may be saying something that is
not a command. The high confi dence means they are likely speaking clearly enough for the recog-
nizer to understand. This means that if the voice action didn’t match what the user said, the cause
is not likely due to inaccurate recognition. Instead it is likely because the user is saying the wrong
words.

Also, because the user is speaking clearly, the recognizer will likely return similar results when
the user retries. This can lead to a frustrating situation where the user repeats the same command
over and over with the speech recognizer recognizing it each time. Because the user is speaking
something that is not a real command, the app will never recognize it.

To avoid this trouble, your app should tell users that they are saying something that is not a com-
mand. Two possible ways to provide feedback are:

LISTING 18-11 (continued)

c18.indd 468c18.indd 468 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary x 469

 ‰ Correct the user: An app could tell users what they said is not a command. To do so, it must
pick one of the possible recognitions as the text of what the user meant to say, and then pro-
ceed to say that the recognized text is not a command. The problem is that, often, the fi rst
recognition result is not what the user was trying to say. In such cases, the feedback will not
contain the words that the user said.

 ‰ Instruct the user: An app could tell the user what the possible commands are. This avoids
the problem with correcting the user, but could lead to a long lecture that users will fi nd
annoying.

Using either of these two feedback approaches, if the recognizer recognizes “broccoli” as “brooklyn,
rocklin, or rockledge” in that order, the app can either respond “Brooklyn is not a command” or
“Please say a food name.”

To determine if a user spoke a word that is not a command, MultiCommandVoiceAction
checks if the highest confi dence the recognizer returned is greater than 0.9. If it is,
WhyNotUnderstoodListener tells the user that the fi rst possible recognition is not a command.

Determining Inaccurate Recognition

Inaccurate recognition could occur for several reasons. Inaccurate recognition could result if the
app received poor-quality audio. It also could occur because the user did not use proper speech
hygiene — by yelling or over-pronouncing, for example. Another reason could be that the user is
in a noisy environment and the interference from the environment reduced the recognizer’s accu-
racy. Whatever the reason, telling the user that inaccurate recognition was the cause of failure may
improve success in subsequent tries because if the user speaks more correctly the next time, recogni-
tion accuracy will improve.

To check for inaccurate recognition, MultiCommandVoiceAction checks if the highest confi dence
the recognizer returned is below a threshold of 0.3.

Not Understanding

If the confi dence scores are in between the thresholds for the inaccurate recognition and not a com-
mand diagnoses, the app cannot determine why the recognition failed and must report failure for
an unknown reason. One way to potentially help users recover is to restart the voice action. Trying
again automatically can be useful when it takes considerable time to activate speech. Also, if users
are in the middle of a multi-turn voice action, restarting the current turn is useful because they
might get frustrated if failure causes them to have to start all over. On the other hand, a speech
recognition prompt that refuses to stop asking can make users upset. To avoid this situation, you
should include a way for users to cancel the voice action.

SUMMARY

This chapter armed you with all the code you need to utilize the matching techniques you learned in
Chapter 17 to create a modular, user-friendly VUI. Using the techniques this chapter describes, your
app can defi ne and execute multi-turn voice action. To improve usability when the speech recognizer

c18.indd 469c18.indd 469 5/10/2012 2:13:51 PM5/10/2012 2:13:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

470 x CHAPTER 18 EXECUTING VOICE ACTIONS

recognizes poorly, this chapter showed you how an app can make a best guess and give useful
feedback about why recognition failed. This chapter also highlighted how you can further improve
usability by adding other features to your VUI such as allowing the user to cancel.

In designing a VUI, one usability issue remains to be addressed by this part: how to activate speech
recognition. Using a button to start a voice action can be limiting for some tasks. To use Android’s
TTS and speech recognition capabilities in a wider variety of scenarios, it is sometimes useful to not
require the user to touch a button to activate it. Fortunately, there are many other ways an app can
activate speech, beyond just a button press. Chapter 19 describes several techniques you can use to
create hands-free and eyes-free VUIs.

c18.indd 470c18.indd 470 5/10/2012 2:13:52 PM5/10/2012 2:13:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

19
Implementing Speech Activation

WHAT’S IN THIS CHAPTER?

 ‰ Activating speech using Android’s sensors and continuous speech

recognition

 ‰ Persistently running speech activation using a Service

The fi rst thing a user must do to use speech recognition is to tell the app to start recogniz-
ing. One way the user could do it, which the previous chapters relied on, is to press a button.
However, pressing a button assumes the user is looking at the screen and can touch it. This
is not always the case. For certain tasks, like sending e-mail while driving, users need to acti-
vate speech recognition hands-free and eyes-free. In such cases, an app needs different speech
activation techniques beyond just a button. Fortunately, Android’s sensors provide you with a
wide variety of ways to implement speech activation.

In addition to deciding how your app implements speech activation, you must decide when the
user can activate it. Your users may need to activate speech only while using the app, or they
may need to activate speech at any time, even if the app is not running.

This chapter presents four speech activation implementations, summarized in Table 19-1, that
use the sensor techniques discussed in other chapters of this book. It also describes how to run
speech activation persistently using a Service.

TABLE 19-1: Four Diff erent Ways to Use Android Sensors for Speech Activation

NAME TECH HOW

Movement Physical Sensors Move phone with suffi cient acceleration

Clap Microphone Make a single clap or loud noise

Speak Hello Direct Speech Recognition Say “hello”

NFC Scan NFC Scan an NFC with a certain MIME type

c19.indd 471c19.indd 471 5/10/2012 1:58:54 PM5/10/2012 1:58:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

472 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

TRY THIS

You can try different speech activation approaches by using the Try Speech button
and changing the activation method to other options. You can also use the Write
Speech Activation Tag menu option to write an NFC that activates speech when
you scan it.

IMPLEMENTING SPEECH ACTIVATION

To implement speech activation, an app needs to listen and then start speech recognition if it
detects an activation. This section describes the issues involved in starting speech recognition in
response to a detected activation. It describes four speech activator implementations that use the
Android sensors and concepts from previous chapters. This section also describes how to use these
 implementations within an Activity.

The speech activators described in this chapter enable the user to activate speech in various ways.
Each requires a slightly different implementation. Most of the speech activators use the callback
mechanism specifi ed by the SpeechActivator interface, and some use a sensor-specifi c callback
such as MovementDetectionListener. Listing 19-1 shows the SpeechActivator interface. The
behavior of SpeechActivator is:

 ‰ External code calls detectActivation().

 ‰ SpeechActivator starts listening for a single speech activation.

 ‰ If external code calls stop(), the SpeechActivator stops listening and calls
SpeechActivationListener.activated(false).

 ‰ If the SpeechActivator detects an activation, it calls SpeechActivationListener.
activated(true) and stops.

 ‰ If SpeechActivator has an error or otherwise stops it calls SpeechActivationListener.
activated(false).

LISTING 19-1: Interface for a class that listens for speech activation

public interface SpeechActivator
{
 /**
 * listen for speech activation, when heard, call a {@link SpeechActivationListener}
 * and stop listening
 */
 public void detectActivation();

 /**
 * stop waiting for activation.
 */
 public void stop();
}

c19.indd 472c19.indd 472 5/10/2012 1:58:59 PM5/10/2012 1:58:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 473

Starting Speech Recognition

After a SpeechActivator detects an activation, the app must begin the speech recognition process.
However, not all users will be able to see the screen when this occurs. This presents a diffi culty:
the app must make users aware that their speech activation was successful and that the app is now
recording speech. This diffi culty is complicated by two time delays that occur between when the
user activates speech and when the app starts recording. Additionally, the time delays have different
lengths depending on the device and its current workload.

The fi rst time delay occurs after the user successfully activates speech and before the app speaks a
prompt. The prompt is useful to tell users that their speech activation was successful and that the
app is about to start speech recognition, but it is not required. Until users hear the prompt, they do
not have any way to know that their activation was successful. This could result in users activating
speech multiple times while waiting to hear the prompt. To avoid multiple activations, code that
calls the SpeechActivator implementations must respond to only one activation at a time.

The second time delay occurs after the app decides to start the speech recognizer. It occurs after
the app fi nishes speaking the prompt and before recognition starts. The delay can result in the user
speaking before the app is listening. Unfortunately, it is not easy to address this problem. Here are
two ways an app might do it:

 ‰ Train the user to wait a short amount of time after the prompt completes before speaking.

 ‰ Make your voice commands long enough so that if the user happens to speak only part of the
command, your app can still recognize it.

Delays inserted within voice commands are periods of awkward inactivity that are not intuitive for
the user because they do not occur in normal speech. For example, a person might greet someone
else by saying, “Hi, how are you?” When interacting with an app, a user might say, “Hi, send an
e-mail” where “Hi” activates the speech recognition and “send an e-mail” is the voice command.
However, when interacting with an Android device, the user has to say “Hi, (one second pause) send
an e-mail” to give the app enough time to detect a speech activation and start speech recognition.
This dialogue between the user and the app can be even slower if there is a prompt. Using a prompt,
the dialogue would be:

User: Hi

(one second pause)

App: Say a command

(one second pause)

User: Send an e-mail

The dialogue is awkward because if the user were interacting with another person, neither of the
two pauses would exist. Prompts are usually necessary to help remind users what they can say, so
most likely your app must have both of these pauses and the awkward speech pattern it causes.

Your code has to bring users through the process of activating speech, waiting through the
app’s delays, and fi nally, recording speech for recognition. Apps could handle this in various
ways. SpeechActivationLauncher, shown in Listing 19-2, is an example of one way to do it.

c19.indd 473c19.indd 473 5/10/2012 1:58:59 PM5/10/2012 1:58:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

474 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

SpeechActivator implementations can use it to trigger speech recognition from an Intent.
SpeechActivationLauncher relies on a prompt to tell the user that speech recognition is about to
occur and shows recognition results by forwarding them to SpeechRecognitionResultsActivity.
The implementation uses the abstract SpeechRecognizingAndSpeakingActivity to handle using
speech recognition and TextToSpeech.

SpeechRecognitionLauncher processes an incoming Intent with several steps:

 1. Wait for TextToSpeech initialization.

 2. Say a prompt.

 3. When the prompt completes, TextToSpeech calls onDone(). onDone() starts speech
recognition.

 4. When Android fi nishes recognizing speech it calls onActivityResult(), which forwards the
recognition results to SpeechRecognitionResultsActivity for display.

 5. onActivityResult() calls finish() to remove the SpeechActivationLauncher
Activity from the user’s view.

LISTING 19-2: Speaks a prompt and then sends results to SpeechRecognitionResultsActivity

for display

public class SpeechRecognitionLauncher extends
 SpeechRecognizingAndSpeakingActivity
{
 private static final String TAG = "SpeechRecognitionLauncher";

 private static final String ON_DONE_PROMPT_TTS_PARAM = "ON_DONE_PROMPT";

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 }

 @Override
 public void onSuccessfulInit(TextToSpeech tts)
 {
 super.onSuccessfulInit(tts);
 prompt();
 }

 private void prompt()
 {
 Log.d(TAG, "Speak prompt");
 getTts().speak(getString(R.string.speech_launcher_prompt),
 TextToSpeech.QUEUE_FLUSH,
 TextToSpeechUtils.makeParamsWith(ON_DONE_PROMPT_TTS_PARAM));
 }

 /**

c19.indd 474c19.indd 474 5/10/2012 1:58:59 PM5/10/2012 1:58:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 475

 * super class handles registering the UtteranceProgressListener
 * and calling this
 */
 @Override
 public void onDone(String utteranceId)
 {
 if (utteranceId.equals(ON_DONE_PROMPT_TTS_PARAM))
 {
 Intent recognizerIntent =
 new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 recognizerIntent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);
 recognizerIntent.putExtra(RecognizerIntent.EXTRA_PROMPT,
 getString(R.string.speech_launcher_prompt));
 recognize(recognizerIntent);
 }
 }

 @Override
 protected void
 onActivityResult(int requestCode, int resultCode, Intent data)
 {
 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == VOICE_RECOGNITION_REQUEST_CODE)
 {
 if (resultCode == RESULT_OK)
 {
 Intent showResults = new Intent(data);
 showResults.setClass(this,
 SpeechRecognitionResultsActivity.class);
 startActivity(showResults);
 }
 }

 finish();
 }

 @Override
 protected void receiveWhatWasHeard(List<String> heard,
 float[] confidenceScores)
 {
 // satisfy abstract class, this class handles the results directly
 // instead of using this method
 }
}

code snippet SpeechRecognitionLauncher.java

Implementing Speech Activation within an Activity

Using a SpeechActivator in an Activity requires several features to make it work in the way
users expect. The Activity has to run SpeechActivator asynchronously so the user can per-
form other tasks and it must not allow the user to accidently activate speech recognition twice.

c19.indd 475c19.indd 475 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

476 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

Additionally, the Activity has to manage lifecycle events to handle when the user switches away
from the Activity while it is running a SpeechActivator. If this occurs, the Activity needs
to stop the SpeechActivator while the user is away and restart it when he or she returns. The
SpeechActivatorStartStop class, shown in Listing 19-3, implements the required code.

First, SpeechActivatorStartStop ensures the user cannot accidently activate speech recogni-
tion twice by allowing only one SpeechActivator to run at a time. It also makes sure that
it does not execute its complete activated() method multiple times for a single intended
activation. SpeechActivatorStartStop accomplishes these by using the isListening-
ForActivation state variable. The code checks it before starting a SpeechActivator in the
startActivator() method and before responding to an activation in the activated() method.
SpeechActivatorStartStop needs the check within activated() to make it more robust to
errors that could occur due to the asynchronous nature of running the SpeechActivator. The
check ensures that if a SpeechActivator happens to call activated() twice before it stops itself,
SpeechActivatorStartStop will still respond only once. Also, the check handles the race condi-
tion that can occur when the SpeechActivator is in the process of calling activated() while the
app has intended to stop it. This could occur, for example, when a user hits the Home button and
pressing the Home button makes enough sound to trigger a sound based SpeechActivator. In this
example, the SpeechActivator may call activated() while the SpeechActivatorStartStop is in
the middle of shutting down.

Second, SpeechActivatorStartStop starts and stops an active SpeechActivator accord-
ing to the appropriate Activity lifecycle events. It does this by remembering whether or not
the SpeechActivator was running when it was paused or destroyed. The onPause() method
stores this state within the wasListeningForActivation variable. onResume() restarts the
SpeechActivator depending on the value of wasListeningForActivation. If Android destroys
SpeechActivatorStartStop, the onSaveInstanceState() and onRestoreInstanceState()
methods work to save and restore the wasListeningForActivation value so that onResume() can
suffi ciently restart the SpeechActivator if necessary.

LISTING 19-3: Activity to execute a SpeechActivator

public class SpeechActivatorStartStop extends Activity implements
 SpeechActivationListener
{
 private static final String TAG = "SpeechActivatorStartStop";

 /**
 * store if currently listening
 */
 private boolean isListeningForActivation;

 /**
 * if paused, store what was happening so that onResume can restart it
 */
 private boolean wasListeningForActivation;

 private SpeechActivator speechActivator;

c19.indd 476c19.indd 476 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 477

 /**
 * for saving {@link #wasListeningForActivation}
 * in the saved instance state
 */
 private static final String WAS_LISTENING_STATE = "WAS_LISTENING";

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.speechactivationstart_stop);

 isListeningForActivation = false;
 speechActivator = new MovementActivator(this, this);

 // start and stop buttons
 Button start = (Button) findViewById(R.id.btn_start);
 start.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 startActivator();
 }
 });

 Button stop = (Button) findViewById(R.id.btn_stop);
 stop.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 stopActivator();
 }
 });
 }

 private void startActivator()
 {
 if (isListeningForActivation)
 {
 Toast.makeText(this, "Not started: already started",
 Toast.LENGTH_SHORT).show();
 Log.d(TAG, "not started, already started");
 // only activate once
 return;
 }

 if (speechActivator != null)
 {
 isListeningForActivation = true;
 Toast.makeText(this, "Started movement activator",
 Toast.LENGTH_SHORT).show();
 Log.d(TAG, "started");

continues

c19.indd 477c19.indd 477 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

478 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

 speechActivator.detectActivation();
 }
 }

 private void stopActivator()
 {
 if (speechActivator != null)
 {
 Toast.makeText(this, "Stopped", Toast.LENGTH_SHORT).show();
 Log.d(TAG, "stopped");
 speechActivator.stop();
 }
 isListeningForActivation = false;
 }

 @Override
 public void activated(boolean success)
 {
 Log.d(TAG, "activated...");

 //don't allow multiple activations
 if (!isListeningForActivation)
 {
 Toast.makeText(this, "Not activated because stopped",
 Toast.LENGTH_SHORT).show();
 return;
 }

 if (success)
 {
 Toast.makeText(this, "Activated, no longer listening",
 Toast.LENGTH_SHORT).show();
 //start speech recognition here
 }
 else
 {
 Toast.makeText(this, "activation failed, no longer listening",
 Toast.LENGTH_SHORT).show();
 }

 isListeningForActivation = false;
 }

 @Override
 protected void onPause()
 {
 super.onPause();
 Log.d(TAG, "ON PAUSE stop");
 // save before stopping
 wasListeningForActivation = isListeningForActivation;
 stopActivator();
 }

LISTING 19-3 (continued)

c19.indd 478c19.indd 478 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 479

 @Override
 protected void onResume()
 {
 super.onResume();
 Log.d(TAG, "ON RESUME was listening: " + wasListeningForActivation);
 if (wasListeningForActivation)
 {
 startActivator();
 }
 }

 // Note: onDestroy not needed since the activator was
 // stopped during onPause()

 // if the activity was destroyed these two methods are needed
 // to restore wasListening
 @Override
 protected void onSaveInstanceState(Bundle outState)
 {
 outState.putBoolean(WAS_LISTENING_STATE, isListeningForActivation);
 Log.d(TAG, "saved state: " + isListeningForActivation);
 super.onSaveInstanceState(outState);
 }

 @Override
 protected void onRestoreInstanceState(Bundle savedInstanceState)
 {
 wasListeningForActivation =
 savedInstanceState.getBoolean(WAS_LISTENING_STATE);
 Log.d(TAG, "restored state: " + wasListeningForActivation);
 super.onRestoreInstanceState(savedInstanceState);
 }
}

SpeechActivatorStartStop shows how to run a SpeechActivator within an Activity. The next
several sections discuss how to implement various SpeechActivators.

Activating Speech Recognition with Movement Detection

To activate speech recognition using movement, users move their device with suffi cient acceleration.
Movement requires hands to operate, but users do not have to touch the screen. Therefore, speech
activation using movement can be faster than activating using a button because it does not require a
user’s eyes to fi nd the button on the screen. The user can just pick up the device and move it.

To implement movement detection, you need several classes:

 ‰ MovementActivator (Listing 19-4): Implements SpeechActivator.

 ‰ MovementDetectionListener (Listing 19-5): Callback from AccelerationEventListener.

 ‰ MovementDetector (see Chapter 8): Starts and stops the sensors just as in
DetermineMovementActivity from Chapter 8.

 ‰ AccelerationEventListener (see Chapter 8): Processes the sensor data to determine if
movement occurred.

c19.indd 479c19.indd 479 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

480 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

Executing these classes requires several steps:

1. External code calls MovementActivator.detectActivation().

2. MovementActivator starts MovementDetector.

3. MovementDetector starts an AccelerationEventListener.

4. When AccelerationEventListener detects movement, it calls back to
MovementActivator via its MovementDetectionListener interface.

5. MovementActivator stops detecting movement and calls back to its
SpeechActivationListener.

LISTING 19-4: Detects speech activation based on movement

public class MovementActivator implements SpeechActivator,
 MovementDetectionListener
{
 private MovementDetector detector;

 private SpeechActivationListener resultListener;

 public MovementActivator(Context context,
 SpeechActivationListener resultListener)
 {
 detector = new MovementDetector(context);
 this.resultListener = resultListener;
 }

 @Override
 public void detectActivation()
 {
 detector.startReadingAccelerationData(this);
 }

 @Override
 public void stop()
 {
 detector.stopReadingAccelerationData();
 }

 @Override
 public void movementDetected(boolean success)
 {
 stop();
 resultListener.activated(success);
 }
}

LISTING 19-5: Callback for when AccelerationEventListener detects movement

public interface MovementDetectionListener
{
 public void movementDetected(boolean success);
}

c19.indd 480c19.indd 480 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 481

Activating Speech Recognition with the Microphone

To activate speech recognition using the microphone, an app can use the clapper (described in
Chapter 14) to detect when the user makes a single clap or makes another loud noise. The clapper is
a reliable way to activate speech because it is easy for the user to activate. However, it can be vulner-
able to false triggering because other unintended loud noises may trigger it.

The clapper must run asynchronously to continuously check the MediaRecorder to see if any
loud sounds occurred. Therefore, you need two classes: ClapperActivator to implement the
SpeechActivator interface, and ClapperSpeechActivationTask to execute the clapper asynchro-
nously using an AsyncTask. When the task completes, it calls the SpeechActivationListener call-
back. Listings 19-6 and 19-7 show both implementations.

LISTING 19-6: Detects speech activation by starting a ClapperSpeechActivationTask

public class ClapperActivator implements SpeechActivator
{
 private static final String TAG = "ClapperActivator";

 private ClapperSpeechActivationTask activeTask;
 private SpeechActivationListener listener;
 private Context context;

 public ClapperActivator(Context context, SpeechActivationListener listener)
 {
 this.context = context;
 this.listener = listener;
 }

 @Override
 public void detectActivation()
 {
 Log.d(TAG, "started clapper activation");
 activeTask = new ClapperSpeechActivationTask(context, listener);
 activeTask.execute();
 }

 @Override
 public void stop()
 if (activeTask != null)
 {
 activeTask.cancel(true);
 }
}

LISTING 19-7: Reports speech activation when it hears a single clap

public class ClapperSpeechActivationTask extends AsyncTask<Void, Void, Boolean>
{
 private static final String TAG = "ClapperSpeechActivationTask";

continues

c19.indd 481c19.indd 481 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

482 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

 private SpeechActivationListener listener;

 private Context context;

 private MaxAmplitudeRecorder recorder;

 private static final String TEMP_AUDIO_DIRECTORY = "tempaudio";

 /**
 * time between amplitude checks
 */
 private static final int CLIP_TIME = 1000;

 public ClapperSpeechActivationTask(Context context,
 SpeechActivationListener listener)
 {
 this.context = context;
 this.listener = listener;
 }

 @Override
 protected void onPreExecute()
 {
 super.onPreExecute();
 }

 @Override
 protected Boolean doInBackground(Void... params)
 {
 boolean heard = detectClap();
 return heard;
 }

 /**
 * start detecting a clap, return when done
 */
 private boolean detectClap()
 {
 SingleClapDetector clapper =
 new SingleClapDetector(SingleClapDetector.AMPLITUDE_DIFF_MED);
 Log.d(TAG, "recording amplitude");
 String audioStorageDirectory =
 context.getExternalFilesDir(TEMP_AUDIO_DIRECTORY)
 + File.separator + "audio.3gp";

 // pass in this so recording can stop if this task is canceled
 MaxAmplitudeRecorder recorder =
 new MaxAmplitudeRecorder(CLIP_TIME, audioStorageDirectory,
 clapper, this);

LISTING 19-7 (continued)

c19.indd 482c19.indd 482 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 483

 // start recording
 boolean heard = false;
 try
 {
 heard = recorder.startRecording();
 } catch (IOException io)
 {
 Log.e(TAG, "failed to record", io);
 heard = false;
 } catch (IllegalStateException se)
 {
 Log.e(TAG, "failed to record, recorder not setup properly", se);
 heard = false;
 } catch (RuntimeException se)
 {
 Log.e(TAG, "failed to record, recorder already being used", se);
 heard = false;
 }
 return heard;
 }

 @Override
 protected void onPostExecute(Boolean result)
 {
 listener.activated(result);
 super.onPostExecute(result);
 }

 @Override
 protected void onCancelled()
 {
 Log.d(TAG, "cancelled");
 super.onCancelled();
 }
}

code snippet ClapperSpeechActivationTask.java

Activating Speech Recognition with
Continuous Speech Recognition

To activate speech recognition using continuous speech recognition, the app continuously listens for
the user to speak a certain target word, such as “hello.” Continuous speech recognition is valuable
because saying a certain word is a very specifi c sound. All other sounds and noise will not cause
false triggers. However, it may be hard for users to trigger because they must speak the target words
such that the app hears it clearly. If users are using the app eyes-free or hands-free, they may be far
from the device or the device may be in their pocket. If so, the audio recording quality might be
poor and the speech recognizer could have a hard time recognizing target words.

c19.indd 483c19.indd 483 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

484 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

Implementation requires using direct speech recognition to record speech without showing the
speech recognizer dialog. Chapter 16 provides more details about implementing direct speech rec-
ognition using SpeechRecognizer. However, to use direct speech recognition for speech activation,
an app needs to extend the example from Chapter 16 further so that the recognition occurs continu-
ously until the app hears a certain word rather than stopping after one recording.

Listing 19-8 shows the code for WordActivator, which implements speech activation using continu-
ous speech recognition. The code has several features to help match recognized speech with target
words and to keep it running:

 ‰ Uses indexed matching: SoundsLikeWordMatcher matches any recognition result that
sounds like the target word.

 ‰ Keeps restarting: The receiveWhatWasHeard() method restarts the speech recognizer if no
matches occur. Because the recognizer runs only for a fi xed amount of time before stopping
and returning results, receiveWhatWasHeard() needs to restart recognition in order to make
it run continuously.

 ‰ Restarts on certain errors: WordActivator cannot recover from some SpeechRecognizer
errors, but when others occur the speech recognizer can continue. These errors may happen
when the user does not speak well or does not speak at all. Therefore, the onError() method
restarts speech recognition when the recognizer fi nds no matches or when the recognizer
times out.

LISTING 19-8: Detects speech activation by continuously listening for target words

public class WordActivator implements SpeechActivator, RecognitionListener
{
 private static final String TAG = "WordActivator";

 private Context context;
 private SpeechRecognizer recognizer;
 private SoundsLikeWordMatcher matcher;

 private SpeechActivationListener resultListener;

 public WordActivator(Context context,
 SpeechActivationListener resultListener, String... targetWords)
 {
 this.context = context;
 this.matcher = new SoundsLikeWordMatcher(targetWords);
 this.resultListener = resultListener;
 }

 @Override
 public void detectActivation()
 {
 recognizeSpeechDirectly();
 }

 private void recognizeSpeechDirectly()

c19.indd 484c19.indd 484 5/10/2012 1:59:00 PM5/10/2012 1:59:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 485

 {
 Intent recognizerIntent =
 new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 recognizerIntent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);
 // accept partial results if they come
 recognizerIntent.putExtra(RecognizerIntent.EXTRA_PARTIAL_RESULTS, true);
 SpeechRecognitionUtil.recognizeSpeechDirectly(context,
 recognizerIntent, this, getSpeechRecognizer());
 }

 public void stop()
 {
 if (getSpeechRecognizer() != null)
 {
 getSpeechRecognizer().stopListening();
 getSpeechRecognizer().cancel();
 getSpeechRecognizer().destroy();
 }
 }

 @Override
 public void onResults(Bundle results)
 {
 Log.d(TAG, "full results");
 receiveResults(results);
 }

 @Override
 public void onPartialResults(Bundle partialResults)
 {
 Log.d(TAG, "partial results");
 receiveResults(partialResults);
 }

 /**
 * common method to process any results bundle from {@link SpeechRecognizer}
 */
 private void receiveResults(Bundle results)
 {
 if ((results != null)
 && results.containsKey(SpeechRecognizer.RESULTS_RECOGNITION))
 {
 List<String> heard =
 results.getStringArrayList(SpeechRecognizer.RESULTS_RECOGNITION);
 float[] scores =
 results.getFloatArray(SpeechRecognizer.CONFIDENCE_SCORES);
 receiveWhatWasHeard(heard, scores);
 }
 else
 {
 Log.d(TAG, "no results");
 }
 }

continues

c19.indd 485c19.indd 485 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

486 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

 private void receiveWhatWasHeard(List<String> heard, float[] scores)
 {
 boolean heardTargetWord = false;
 // find the target word
 for (String possible : heard)
 {
 WordList wordList = new WordList(possible);
 if (matcher.isIn(wordList.getWords()))
 {
 Log.d(TAG, "HEARD IT!");
 heardTargetWord = true;
 break;
 }
 }

 if (heardTargetWord)
 {
 stop();
 resultListener.activated(true);
 }
 else
 {
 // keep going
 recognizeSpeechDirectly();
 }
 }

 @Override
 public void onError(int errorCode)
 {
 if ((errorCode == SpeechRecognizer.ERROR_NO_MATCH)
 || (errorCode == SpeechRecognizer.ERROR_SPEECH_TIMEOUT))
 {
 Log.d(TAG, "didn't recognize anything");
 // keep going
 recognizeSpeechDirectly();
 }
 else
 {
 Log.d(TAG,
 "FAILED "
 + SpeechRecognitionUtil
 .diagnoseErrorCode(errorCode));
 }
 }

 /**
 * lazy initialize the speech recognizer
 */
 private SpeechRecognizer getSpeechRecognizer()

LISTING 19-8 (continued)

c19.indd 486c19.indd 486 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Speech Activation x 487

 {
 if (recognizer == null)
 {
 recognizer = SpeechRecognizer.createSpeechRecognizer(context);
 }
 return recognizer;
 }

 // other unused methods from RecognitionListener...
}

code snippet WordActivator.java

Activating Speech Recognition with NFC

The user can scan a custom NFC tag to trigger speech recognition from within the app and from
outside the app. Scanning an NFC tag is a fast way to activate speech recognition because the user
does not have to start the app to trigger the speech recognition prompt.

Unlike the other speech activation techniques in this section, using an NFC tag does not require a
SpeechActivator implementation. Instead, an app writes and reads tags that have application/
root.gast.speech.activation as a MIME type.

To use the custom MIME type for speech activation, an app needs a manifest entry to defi ne the
MIME type, a receiving Activity, an Activity that helps the user write a tag with the MIME type
in it, and an Activity that can activate speech when the user scans the tag.

The manifest requires one entry to defi ne an Activity that receives any NFCs that have the cus-
tom MIME type. Listing 19-9 shows how to specify SpeechActivationNfcTagReceiver as the
receiving Activity for any tags with an application/root.gast.speech.activation
MIME type.

LISTING 19-9: Manifest entry to defi ne new MIME type and to specify an Activity to receive

the speech activation tag

<activity android:name=
 "root.gast.playground.speech.activation.SpeechActivationNfcTagReceiver">
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="application/root.gast.speech.activation"/>
 </intent-filter>
</activity>

Android starts SpeechActivationNfcTagReceiver, shown in Listing 19-10, when the user scans
an NFC tag with the right MIME type. One started, it activates speech recognition by starting
SpeechRecognitionLauncher.

c19.indd 487c19.indd 487 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

488 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

LISTING 19-10: Receives the speech activation NFC tag and starts SpeechRecognitionLauncher

public class SpeechActivationNfcTagReceiver extends Activity
{
 private static final String TAG = "SpeechActivationNfcTagReceiver";

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // manifest filters the intent to make sure it is the
 // correct type so it is safe to launch
 launchSpeech();
 }

 private void launchSpeech()
 {
 Log.d(TAG, "Launching speech activation");
 Intent i = new Intent(this, SpeechRecognitionLauncher.class);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 this.startActivity(i);
 }
}

To help users create the NFC tag, an app can use a modifi ed version of the inventory Activity from
Chapter 11. The Activity enables users to write a tag when they click a button. To reuse the imple-
mentation, you need to modify the code to write a tag with custom MIME type and no other data
using the following method:

private NdefMessage createNdefFromJson()
 {
 String mimeType = "application/root.gast.speech.activation";
 byte[] mimeBytes = mimeType.getBytes(Charset.forName("UTF-8"));
 byte[] id = new byte[0];
 byte[] data = new byte[0];
 NdefRecord record =
 new NdefRecord(NdefRecord.TNF_MIME_MEDIA, mimeBytes, id, data);
 NdefMessage m = new NdefMessage(new NdefRecord[] { record });

 return m;
 }

Thus far, this chapter has covered how to implement various kinds of SpeechActivators and run
them within an Activity. Running within an Activity may not always be convenient. The next sec-
tion discusses how to use the same SpeechActivator implementations to execute speech activation
in a more persistent way that outlives any particular Activity.

IMPLEMENTING PERSISTENT SPEECH ACTIVATION

The previous section described how to use the SpeechActivator implementations to implement
speech activation asynchronously within a single Activity. However, in some cases, it is useful for

c19.indd 488c19.indd 488 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Persistent Speech Activation x 489

an app to listen for speech activation while it is not running or while the user switches Activities
within the same app. To implement this, an app can use a Service.

Using a Service for Persistent Speech Activation

A speech activation Service needs to perform two functions. First, it must start and stop speech
activation and communicate the resulting activation to the app. Second, it needs to make the user
aware when it is active or not.

SpeechActivationService, shown in Listing 19-11, implements a speech activation
Service. External code uses Intents to start and stop the service and receives results using a
BroadcastReceiver, such as the one in Listing 19-12. While SpeechActivationService is actively
listening for activation, it displays a notifi cation. If the user clicks the notifi cation, it stops the service.

SpeechActivationService has the following features:

 ‰ It keeps the service running: Android may stop a Service at any time. If Android stops the
SpeechActivationService, it could cause the user to try to activate speech when the app
is not listening. This could be especially confusing if the user is not looking at the device and
is unaware that the app stopped listening. SpeechActivationService has two features that
help reduce potential confusion. First, to make it less likely that Android stops the service,
SpeechActivationService uses startForeground() to give it the same priority as an active
Activity. Second, to make the service automatically restart if it is stopped without user inter-
vention, the service returns the START_REDELIVER_INTENT setting from onStartCommand().

 ‰ It allows only one activation at a time: It is possible that external code may start the service
multiple times, but only one SpeechActivator should run at a time. To prevent multiple
SpeechActivators from running, SpeechActivationService uses isStarted to know if
a SpeechActivator is currently running. Also, if SpeechActivationService receives an
Intent to start a SpeechActivator type it is currently running, it ignores the Intent. If the
Intent indicates a different SpeechActivator type than the one that is currently running,
SpeechActivationService stops the current SpeechActivator before starting the new one.

 ‰ It allows users to stop the service: By clicking on the notifi cation, the users can stop the
service. To implement this feature, SpeechActivationService needs to receive a special
Intent extra. The makeServiceStopIntent() method creates the necessary Intent to stop
the service. The Notification sends it when clicked.

LISTING 19-11: Persistently listens for speech activation

public class SpeechActivationService extends Service implements
 SpeechActivationListener
{
 private static final String TAG = "SpeechActivationService";
 public static final String ACTIVATION_TYPE_INTENT_KEY =
 "ACTIVATION_TYPE_INTENT_KEY";
 public static final String ACTIVATION_RESULT_INTENT_KEY =
 "ACTIVATION_RESULT_INTENT_KEY";
 public static final String ACTIVATION_RESULT_BROADCAST_NAME =

continues

c19.indd 489c19.indd 489 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

490 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

 "root.gast.playground.speech.ACTIVATION";

 /**
 * send this when external code wants the Service to stop
 */
 public static final String ACTIVATION_STOP_INTENT_KEY =
 "ACTIVATION_STOP_INTENT_KEY";

 public static final int NOTIFICATION_ID = 10298;

 private boolean isStarted;

 private SpeechActivator activator;

 @Override
 public void onCreate()
 {
 super.onCreate();
 isStarted = false;
 }

 public static Intent makeStartServiceIntent(Context context,
 String activationType)
 {
 Intent i = new Intent(context, SpeechActivationService.class);
 i.putExtra(ACTIVATION_TYPE_INTENT_KEY, activationType);
 return i;
 }

 public static Intent makeServiceStopIntent(Context context)
 {
 Intent i = new Intent(context, SpeechActivationService.class);
 i.putExtra(ACTIVATION_STOP_INTENT_KEY, true);
 return i;
 }

 /**
 * stop or start an activator based on the activator type and if an
 * activator is currently running
 */
 @Override
 public int onStartCommand(Intent intent, int flags, int startId)
 {
 if (intent != null)
 {
 if (intent.hasExtra(ACTIVATION_STOP_INTENT_KEY))
 {
 Log.d(TAG, "stop service intent");
 activated(false);
 }
 else
 {

LISTING 19-11 (continued)

c19.indd 490c19.indd 490 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Persistent Speech Activation x 491

 if (isStarted)
 {
 // the activator is currently started
 // if the intent is requesting a new activator
 // stop the current activator and start
 // the new one
 if (isDifferentType(intent))
 {
 Log.d(TAG, "is differnet type");
 stopActivator();
 startDetecting(intent);
 }
 else
 {
 Log.d(TAG, "already started this type");
 }
 }
 else
 {
 // activator not started, start it
 startDetecting(intent);
 }
 }
 }

 // restart in case the Service gets canceled
 return START_REDELIVER_INTENT;
 }

 private void startDetecting(Intent intent)
 {
 activator = getRequestedActivator(intent);
 Log.d(TAG, "started: " + activator.getClass().getSimpleName());
 isStarted = true;
 activator.detectActivation();
 startForeground(NOTIFICATION_ID, getNotification());
 }

 private SpeechActivator getRequestedActivator(Intent intent)
 {
 String type = intent.getStringExtra(ACTIVATION_TYPE_INTENT_KEY);
 // create based on a type name
 SpeechActivator speechActivator =
 SpeechActivatorFactory.createSpeechActivator(this, this, type);
 return speechActivator;
 }

 /**
 * determine if the intent contains an activator type
 * that is different than the currently running type
 */
 private boolean isDifferentType(Intent intent)
 {
 boolean different = false;

continues

c19.indd 491c19.indd 491 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

492 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

 if (activator == null)
 {
 return true;
 }
 else
 {
 SpeechActivator possibleOther = getRequestedActivator(intent);
 different = !(possibleOther.getClass().getName().
 equals(activator.getClass().getName()));
 }
 return different;
 }

 @Override
 public void activated(boolean success)
 {
 // make sure the activator is stopped before doing anything else
 stopActivator();

 // broadcast result
 Intent intent = new Intent(ACTIVATION_RESULT_BROADCAST_NAME);
 intent.putExtra(ACTIVATION_RESULT_INTENT_KEY, success);
 sendBroadcast(intent);

 // always stop after receive an activation
 stopSelf();
 }

 @Override
 public void onDestroy()
 {
 Log.d(TAG, "On destroy");
 super.onDestroy();
 stopActivator();
 stopForeground(true);
 }

 private void stopActivator()
 {
 if (activator != null)
 {
 Log.d(TAG, "stopped: " + activator.getClass().getSimpleName());
 activator.stop();
 isStarted = false;
 }
 }

 private Notification getNotification()
 {
 // determine label based on the class
 String name = SpeechActivatorFactory.getLabel(this, activator);
 String message =

LISTING 19-11 (continued)

c19.indd 492c19.indd 492 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Persistent Speech Activation x 493

 getString(R.string.speech_activation_notification_listening)
 + " " + name;
 String title = getString(R.string.speech_activation_notification_title);

 PendingIntent pi =
 PendingIntent.getService(this, 0, makeServiceStopIntent(this),
 0);

 Notification notification;
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB)
 {
 Notification.Builder builder = new Notification.Builder(this);
 builder.setSmallIcon(R.drawable.icon)
 .setWhen(System.currentTimeMillis()).setTicker(message)
 .setContentTitle(title).setContentText(message)
 .setContentIntent(pi);
 notification = builder.getNotification();
 }
 else
 {
 notification =
 new Notification(R.drawable.icon, message,
 System.currentTimeMillis());
 notification.setLatestEventInfo(this, title, message, pi);
 }

 return notification;
 }

 @Override
 public IBinder onBind(Intent intent)
 {
 return null;
 }
}

code snippet SpeechActivationService.java

LISTING 19-12: Receives activation broadcast and if it was successful starts the

SpeechRecognitionLauncher

public class ShowResultsSpeechActivationBroadcastReceiver extends
 BroadcastReceiver
{
 private static final String TAG =
 "ShowResultsSpeechActivationBroadcastReceiver";

 @Override
 public void onReceive(Context context, Intent intent)
 {
 if (intent.getAction().equals(
 SpeechActivationService.ACTIVATION_RESULT_BROADCAST_NAME))

continues

c19.indd 493c19.indd 493 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

494 x CHAPTER 19 IMPLEMENTING SPEECH ACTIVATION

 {
 if (intent
 .getBooleanExtra(
 SpeechActivationService.ACTIVATION_RESULT_INTENT_KEY,
 false))
 {
 Log.d(TAG,
 "ShowResultsSpeechActivationBroadcastReceiver taking action");
 // launch something that prompts the user...
 Intent i = new Intent(context, SpeechRecognitionLauncher.class);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(i);
 }
 }
 }
}

TRY THIS

You can turn the service on and off for different activation methods using the
Activation Service Control button.

SUMMARY

Speech activation begins the speech recognition process. To implement it, an app needs to allow the
user to start a SpeechActivator, detect when a speech activation occurs, and start the speech rec-
ognizer when it does.

An app can allow the user to activate speech only within an Activity or allow the user to activate it
at any time using a Service. This chapter described how to implement both scenarios.

An app can detect speech activation in many ways. To implement certain voice actions, especially ones
that operate hands-free or eyes-free, an app has to allow the user to activate speech using other means
than a button. This chapter described four alternative techniques that use the device’s sensors instead.

Besides implementation details, starting speech recognition also involves intelligently handling the
time delays that occur between when the app detects speech activation and when the app starts
recording speech. The delays can make speech activation awkward to use. Prompts and user training
are possible ways to help the user be successful despite the delays.

The discussion of speech activation in this chapter concludes the part of this book that describes
how to use speech recognition and Text-To-Speech to implement Voice User Interfaces (VUI).
The chapters in this part showed that implementing VUIs involves much more than starting a
RecognizerIntent. It requires proper design to create usable VUIs, matching techniques to reliably
interpret the recognizer’s responses, and supporting code to organize voice action execution and
handle speech activation. This part described the strategies and code libraries you need to wisely
and quickly implement VUIs in your app. Use them to let your users enjoy the benefi ts of speaking
to their Android.

LISTING 19-12 (continued)

c19.indd 494c19.indd 494 5/10/2012 1:59:01 PM5/10/2012 1:59:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

495

INDEX

 A

absolute altitude
DetermineAltitudeActivity, 170–177
formula, 87

absolute elevation measurement, pressure
sensors, 88

AbstractVoiceAction, 448, 449
acceleration data. See also device movement

detection
accelerometer data, 148–149

device lying on its back, 149
high-pass fi lter applied, 149

description, 148
linear acceleration sensor data, 150
moving device, 150–152

along X axis, 151–152
along Y and Z axes, 152

running/plotting, 148
total acceleration, 153

AccelerationEventListener, 153–159, 479,
480. See also device movement detection

accelerometers, 92–93
device movement detection (sample app),

148–149
device orientation determination (example

app), 123–124, 130–132
getSensorList(), 69
high-pass fi ltering on data, 113
linear acceleration sensors compared to, 150
MEMs, 92–93
resolution, 93
sensor units, 93
standard sensor, 65

accessory mode, AOA, 190
accessory_filter.xml, 206–207
accidental speech activation, VUI design,

343–344

accuracy
battery life/accuracy, location providers, 17
sensor precision/accuracy, 104

accuracy, Criteria class, 14
action, voice execution step, 336, 443
ACTION_CHECK_TTS_DATA, 360, 361–366
ACTION_GET_LANGUAGE_DETAILS, 377, 378,

380, 381, 383, 392
ACTION_INSTALL_TTS_DATA, 357
ACTION_RECOGNIZE_SPEECH, 382, 383, 390,

404, 405
ACTION_TTS_DATA_INSTALLED, 358
ACTION_WEB_SEARCH, 383, 390, 391
activate, voice execution step, .336, 443
Activation Service Control button, 494
active RFID tags, 220
Activity

camera, 256–261
speech activation implementations, 472,

475–479, 494
Activity class, NFC inventory tracking system,

236–250
Adafruit Industries, 227
“add” command, WordMatcher, 410
“add” multi-part voice command, 432–433, 436
addEarcon(), 366, 367
AddFood, 442, 445, 455–459, 461
addProximityAlert(), 51, 52, 53, 56, 58
Address class, 48–49
addSpeech(), 366, 367
ADKs (Android Development Kits), 191–196

AOA support, 189, 191
list, 192–193

advanceCamera(), 264
advanced focus, camera, 266
A-GPS, 5–6
AlertDialogs, 451–455
aliasing, subsampled image, 295

bindex.indd 495bindex.indd 495 5/10/2012 2:17:20 PM5/10/2012 2:17:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

496

aliasing errors – Arduinos

aliasing errors, 196
altitude. See also DetermineAltitudeActivity

absolute altitude
DetermineAltitudeActivity, 170–177
formula, 87

GPS-based, 169–170
relative altitude

DetermineAltitudeActivity, 177–180
formula, 87

altitudeRequired, Criteria class, 14
ambient temperature sensors, 89
AmplitudeClipListener, 305, 306, 307, 310,

311, 312, 313
analogRead(), 200
Android Accessory Protocol, 192, 193, 202, 205
Android APIs

peer-to-peer, 252–253
Android Beam feature, 233, 252, 253
Android code, AOA temperature sensor

AndroidManifest.xml, 207–208
BaseActivity.java, 209–215
overview, 205–206
xml/accessory_filter.xml, 206–207

Android Development Kits. See ADKs
Android intent fi lter system, 229–230
Android logo detection program, 291–299

debugging tools, 291
DetectLogo, 291–292
DetectLogoActivity, 293
DetectLogoBetter, 296–299
DetectLogoFaster, 294–296
image size reduction, 293–296
improve reliability in image processing,

296–299
onPreviewFrame(), 291
processing speed increase, 293–296
ReadBarcode, 291
simple framework, 291–293

Android Market, 25, 191. See also Google Play
Android Open Accessory. See AOA
Android Sensor API. See Sensor API
AndroidAccessory, 202, 203, 204, 206
android.hardware.GeomagneticField, 95
AndroidManifest.xml

AOA temperature sensor, 207–208
current location app, 15
NFC inventory tracking system (example

app), 233–236

Sensor List, 72–73
TextToSpeech object initialization, 359

android.nfc.NfcAdapter.

CreateNdefMessageCallback, 252
android.permission.ACCESS_COARSE_

LOCATION, 15, 17
android.permission.ACCESS_FINE_LOCATION,

15, 17, 56
angles, device coordinate system, 91–92
angular three-vectors, 91, 92
angular velocity, 94
antennas, RFID tags, 220
AOA (Android Open Accessory), 189–216

AOA sensors compared to native device
sensors, 196

barriers to development, 190
defi ned, 189
electrical power requirements, 190
history, 189–190
limitations, 196–197
NFC technology, 230
supported Android devices, 190–191
taking to consumer market, 215
USB host compared to USB accessory, 190

AOA and temperature sensor (example), 197–215
Android code

AndroidManifest.xml, 207–208
BaseActivity.java, 209–215
overview, 205–206
xml/accessory_filter.xml, 206–207

Arduino sketch, 199–205
Arduino software, 198–199
communication between Arduino and

Android, 208–215
implementation, 198–215
Microchip MCP9701/9701A temperature

sensor, 197, 198
requirements, 198

Apache 2.0 license, 192, 233
Apache Commons Codec, 415
Apache phonetic matching algorithms, 414
Apple’s MFi, 190
appropriate tasks, voice actions, 339–340
Arduinos, 191–196. See also AOA and

temperature sensor
AOA, 189
compatible products, 193
defi ned, 191

bindex.indd 496bindex.indd 496 5/10/2012 2:17:20 PM5/10/2012 2:17:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

497

Arduino_Temp_Sensor.pde – broadcast receivers

fi rmware, 195
form factors, 191
hardware components, 194
IDE, 198–199
Mega ADK, 191, 192, 193, 198, 215, 216
microcontroller board, 194
sketch, 195, 199–205
software components, 195–196

Arduino_Temp_Sensor.pde, 199, 201
Arduino_Temp_Sensor_with_AOA.pde,

204–205
AskForCalories, 457–458
aspect ratios, 260
asynchronous audio recording, MediaRecorder,

310–312
ATmega2560 chip, 215
AudioClipListener

ConsistentFrequencyDetector,
324–329

loud noise clapper, 304, 314, 323–324
purpose, 314
singing clapper, 304, 327–329

AudioClipRecorder

complete code listing, 318–323
purpose, 314

AudioRecord

doRecording(), 317
input parameters, 315–316
MediaRecorder compared to, 304, 314
OnRecordPositionUpdateListener,

317–323
preparing, 316–317
raw audio signal analysis, 314–323
RecordAudioTask, 314
recording audio, 317–323
startRecording(), 316–317
startRecordingForTime(), 316–317

averaging, smoothness compared to response
time, 111

B

balance fi lter, 117–118
bandpass fi lter, 113
band-reject fi lter, 113
barcode reader program, 267–278

autofocus, 272–276
BarcodeReaderActivity, 267, 272, 273

barcodes, 267–278
camera preview image, 273–275
Ean13Barcode1D, 268, 269, 270, 271, 276
ReadBarcode, 271, 274, 291
searchforBarcode(), 276–278

barcodes
detecting, 276–278
EAN-13 barcodes

check digit, 270–271
complications, 269–271
components, 269
elementary bars, 267–268
implied fi rst digit, 269–270
right half of barcode, 271

QR, 227–228
understanding, 267–276
Zxing Google code site, 278

barometers. See pressure sensors
BaseActivity, 205, 208
BaseActivity.java, 209–215
Basic Accessory Demo app, 190–191
battery consumption

location providers
accuracy/battery life, 17
limiting, 44

proximity alerts, 55–56
reducing location update frequency, 43–44
tracking device movement (app), 27, 43–44

Beam feature, Android, 233, 252, 253
bearingAccuracy, Criteria class, 14
bearingRequired, Criteria class, 14
Ben-Tsvi, Ytai, 193
best guess, matching, 461–466

make educated guess, 464–466
relax match strictness, 461–463
relax strictness between commands, 463–464

beta tests, VUI design, 347
Big Ben, geocoding, 49
binary sensors, 67
black box approach, sensors, 65
Bluetooth

AOA API compared to, 191
NFC compared to, 227–228, 251

breadboards, 194, 198
broadcast receivers, 28–34

extending, 29–30
multiple, one intent, 33
registering, with Android, 30–32

bindex.indd 497bindex.indd 497 5/10/2012 2:17:20 PM5/10/2012 2:17:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

498

BroadcastReceiver class diagram – continuous sensors

manifest-based, 30–31
manual, 31–32

services compared to, 34–35
BroadcastReceiver class diagram, 33
Broadcom Topaz, 225
BufferSize, AudioRecord, 315–316

C

camera preview image, NV21 format, 273–274,
276, 279, 282, 283, 294

camera usage, 255–279. See also image processing
Activity, 256–261
advanced focus, 266
aspect ratios, 260
autofocus, 272–276
camera preview display, 258–261
capturing images, 255–256
choosing camera, 257
color effects, 267
controlling camera parameters, 256–267
fl ash modes, 264–265
focus, 264, 266
GPS values, 267
image sensor, 262
LiveCapture, 256, 257, 258, 261
LiveCapturePlus, 261, 262, 263, 264, 265
macro lens, 264
opening camera, 258
orientation, display/camera, 261–263
releasing camera, 258
RuntimeException, 258, 260, 261, 265, 273
scene modes, 266–267
SimpleCaptureActivity, 255–256
switching cameras, 264
white balance, 265–266
zoom button, 263

CameraParameters class, 265
CameraPreview Activity, 256
CancelCommand, 457
cancellation, food dialogue multi-turn VUI

design, 442
cancel/yes/no voice action, 452–454
Cantonese, 216
capturing images, 255–256
card emulation, NFC, 229
Carnegie Mellon University, 300
Caverphone, 414

cell tower IDs, 9–10
Change Location Provider Settings button, 25
Channel, AudioRecord, 315–316
check digit, EAN-13 barcodes, 270–271
choosing camera, 257
Circuits@Home website, 193–194
Clapper

description, 304
implementation, 312–314

ClapperActivator, 481
clappers, 303–304

consistent frequency detection, 324–329
loud noise clapper

AudioClipListener, 304, 314, 323–324
description, 304

singing clapper
AudioClipListener, 304, 327–329
description, 304
implementation, 327–329
zero-crossing method, 325–327

speech activation implementation with
microphone, 471, 481–483

types, 304
ClapperSpeechActivationTask, 481–483
clearing proximity alerts, 52
collisions, 432–434
color balance, image-processing programs,

297–299
color effects, camera, 267
color space, YUV, 273, 283, 291, 295
Colton, Shane, 117
Command voice action, 337–338
command words. See voice commands
communication, between Arduino and Android,

208–215
“compare” multi-part voice command,

432–433, 437
compass. See magnetic fi eld sensors
confi dence scores, 382, 383, 386, 394, 396, 450,

466, 469
CONFIDENCE_SCORES, 382, 383, 386, 394,

396, 466
consistent frequency detection, 324–329
ConsistentFrequencyDetector, 324–329
constrain speech input, VUI design, 340
consumer market, AOA and, 215–216
contactless technologies, 219. See also NFC; RFID
continuous sensors, 67

bindex.indd 498bindex.indd 498 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

499

continuous speech recognition – device movement detection

continuous speech recognition, 471, 483–487
continuously tracking device location data, 27,

43–44. See also tracking device movement
controlling environment, image processing,

296–299
conversion operations, image processing, 283
coordinate systems, 90–92
Coriolis force, 94
costAllowed, Criteria class, 14
createNdefFromJson(), 244–245, 252
createTextToSpeech(), 352
Creative Commons, 192
Criteria class

attributes, 14
described, 13–14
location components high-level overview, 13

cropping, 296
cumin, 391, 411, 412, 415, 417, 418
current location (example app)

AndroidManifest.xml, 15
Change Location Provider Settings button, 25
implementing, 18–26
location components, 12–15
location settings activity screen, 25–26
requesting location updates, 23–25
screen, 12

currentGpsAltitude, 170, 179
CurrentLocationActivity, 18, 21–23, 24, 25
custom MIME type intent fi lters, 234–235
CyanogenMod, 190

D

debugging
Android logo detection program, 291
image-processing programs, 275–276
NFC tags, with apps, 232–233

DebugImage, 275–276
DebugImages.readNv21Image, 291
DebugImages.writeNv21Image, 291
decodeBarcode(), 269–270
delete_aiding_data, 7
deprecated sensors

Sensor.TYPE_ORIENTATION, 67, 90, 98, 122
Sensor.TYPE_TEMPERATURE, 66, 89–90

DESFire, NXP, 225, 226
detectActivation(), 472, 480
DetectLogo, 291–292

DetectLogoActivity, 293
DetectLogoBetter, 296–299
DetectLogoFaster, 294–296
determine device orientation. See device

orientation determination
DetermineAltitudeActivity (example app),

161–187
altimeter functionality, 161
complete implementation, 180–186
constants, 166
GPS-based altitude, 169–170
implementation details, 163–177
layout, 163–166
member data, 166
MSLP values, 171–174
onCreate(), 166–167
onLocationChanged(), 169
onResume(), 168
onToggleClick(), 178, 179
overview, 162–163
pressure sensor

absolute altitude, 170–177
relative altitude, 177–180

screen, 162
DetermineMovementActivity, 153–156, 479
DetermineOrientationActivity

complete implementation, 136–143
determineOrientation(), 134–135
initialization steps, 127–128
layout, 125–127
onCreate(), 127–128
onSensorChanged(), 132–133
UpdateSelectedSensor(), 128–130

device coordinate system, 90–92
device movement detection (example app),

147–159
acceleration data

accelerometer data, 148–149
description, 148
linear acceleration sensor data, 150
moving device, 150–152
running/plotting, 148
total acceleration, 153

AccelerationEventListener, 153–159
DetermineMovementActivity, 153–156
functionality overview, 147–148
high-pass fi lter algorithm, 158–159
implementation, 153–159

bindex.indd 499bindex.indd 499 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

500

device orientation determination – Fast Fourier Transform

sensor selection, 148, 153
toggle button handler, 153–154
TTS facility, 147

device orientation determination (example app),
121–146
DetermineOrientationActivity

complete implementation, 136–143
determineOrientation(), 134–135
initialization steps, 127–128
layout, 125–127
onCreate(), 127–128
onSensorChanged(), 132–133
UpdateSelectedSensor(), 128–130

implementation details, 125–143
main screen, 122
NorthFinder app, 143–145
preview, 121–122
processing sensor data

accelerometer and magnetic fi eld data,
130–132

gravity sensor data, 130
rotation vector data, 132–135

sensor choices
accelerometer and magnetometer,

123–124
gravity sensor, 123
gravity sensor and magnetometer, 124
rotation vector, 124–125

TTS facilities, 121, 122, 135–143, 146
device orientation/movement, sensing, 90–102
Diagnostics, 350, 356, 361
digit codes, odd parity, 268
digital image processing. See image processing
Digital Image Processing (Gonzalez &

Woods), 301
Digital Image Processing (Pratt), 301
Digital Recipe Sidekick’s voicecontrolled recipe

reader, 346, 465
direct speech recognition

continuous speech recognition compared to,
471, 483–487

SpeechRecognizer, 403–405, 484
disableForegroundDispatch(), 237–238
disableForegroundNdefPush(), 252
display/camera orientation, 261–263
distanceBetween(), 43
DIY power generator, 220, 221
doRecording(), 317

DoubleMetaphone, 414
drift, 105
dropped data, 105
dynamic command words, 408
dynamic range, 67

E

EAN-13 barcodes
check digit, 270–271
complications, 269–271
components, 269
elementary bars, 267–268
implied fi rst digit, 269–270
right half of barcode, 271

Ean13Barcode1D, 268, 269, 270, 271, 276
earcons, 366, 367, 369
Eclipse, 36, 195
educated guess, matching, 464–466
Electric Sheep, SparkFun, 192
electrical power requirements, AOA, 190
electromagnetic induction, 221
elementary bars, 267–268
enableForegroundDispatch(), 237–238, 240
enableForegroundNdefPush(), 252
Encoding, AudioRecord, 315–316
EnglishPossessiveFilter, 413
environment, sensing, 84–90
equalization, histogram, 283
errors. See sensor data errors
Errors extra, speech recording, 385
Evernote, 229–230, 253
explicit prompts, 341
extending broadcast receivers, 29–30
eXtensible Address Language (xAL)

specifi cation, 49
extras

RecognizerIntent actions, 382–383
speech recording, 384–385

eyes-free/hands-free VUIs, 336, 340, 470, 471,
483, 494

F

face detection, 299–300
face recognition, 299–300
Face Unlock program, 299
Fast Fourier Transform, 325

bindex.indd 500bindex.indd 500 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

501

feature extraction – getParameters

feature extraction, 284
FeliCa, Sony, 225, 226
FileInputStream, 208
FileOutputStream, 208
fi ltering location data, 40–43
fi ltering operations, image processing, 284
FilteringLocationBroadcastReceiver, 33,

40–43
fi lters, 107–115

balance, 117–118
bandpass, 113
band-reject, 113
high-pass, 111–113
inverse low-pass, 112–113
Kalman, 114–115, 118
low-pass, 107–111
notch, 113

finish(), 474
fi rmware, Arduino, 195
fl ash modes, camera, 264–265
focus, camera, 264

advanced, 266
autofocus, 272–276

food database
data, 419
FTS implementation, 421–426
FTS MATCH operator, 420–421
LIKE operator, 419–420

Food Dialogue Matcher Playground button,
431, 438

food dialogue multi-turn VUI design
AddFood, 442, 445, 455–459, 461
FoodLookup, 442, 461–463, 465
RemoveFood, 442, 451, 455, 459–461
turns, for voice action commands, 442
voice actions, 442

food dialogue VUI design
classes for implementing, 427
fl aws, 442
word searching with Lucene, 427–431

Food Edit voice action, 442, 444, 461, 464
Food Lookup voice action, 442, 465
FoodDocumentTranslator, 428
FoodIndexBuilder, 428
FoodIndexSearcher, 428
FoodLookup, 442, 461–463, 465
force_extra_injection, 8
force-meters, 93

force_time_injection, 7
foreground dispatching, 237–241
form factors

Arduino, 191
NFC tags, 226

free text, 408
Fruit Ninja, 228, 253
FTS (Full Text Search), 418–426. See also

matching
implementing, 421–426
MATCH operator, 420–421
virtual table, 418–419

Fundamentals of Digital Image Processing
(Jain), 301

G

GaussHoriz, 290
Gaussian blurring, 289
generateRotationMatrix(), 131–132
generic tags, NFC intent fi lters, 241
GeocodeActivity, 46, 47, 49, 50, 55
Geocoder class, 46–48
Geocoder.fromLocationName(), 48
Geocoder.getFromLocation(), 48
Geocoder.getFromLocationName(), 48
Geocoder.getLocationFromName(), 48
Geocoder.isPresent(), 48
geocoding, 46–50, 61. See also proximity alerts

Big Ben, 49
defi ned, 46
reading geocoded response, 48–50
reverse, 46, 48
Statue of Liberty, 48
Taj Mahal, 49

GeoNames METAR web service response, 175–176
GeoNames web service, 174
getData(), 285
getDefaultDisplay().getRotation(), 261
getDefaultSensor(), 68, 168
getDistance(), 58–59
getFront(), 286
getLanguageDetails(), 392
getMaxAmplitude(), 304, 307, 308
getMaxZoom(), 263
getNumberOfCameras(), 257
getOptimalPreviewSize(), 260
getParameters(), 261

bindex.indd 501bindex.indd 501 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

502

getProviders – image processing

getProviders(), 24
getRgbImage(), 294
getRgbImageReduced(), 294–295, 296
getSensorList(), 68, 69
getStringAfter(), 434
getStringWithout(), 434
getZoomRatios(), 263
Gingerbread, 230, 231, 232, 252
global coordinate system, 90–91
Global Positioning System. See GPS
Gonzalez, Rafael, C., 301
Google. See also AOA

high-pass fi lter algorithm, 158–159
location service, 8–10
map library components, 36–40
Navigator, 11
Zxing Google code site, 278

Google Play
Android intent fi lter system, 229
AOA-compatible Android device, 195, 198
Fruit Ninja, 228
NFC, 228
SpeechSynthesis Data app, 356
TextToSpeech.Engine.ACTION_INSTALL_

TTS_DATA, 357
TTS initialization, 352, 360
‹uses-feature declaration›, 72
“waiting” shared preference, 358

GPS (Global Positioning System), 4–8
A-GPS, 5–6
altitude, DetermineAltitudeActivity,

169–170
battery consumption/accuracy, 17
camera parameter, 267
controlling, 7–8
how it works, 4–5, 16
improvements, 5–6
limitations, 5, 6
pressure sensors compared to, 162
satellite constellation, 4
S-GPS, 6

grammar matching algorithm, 438
gravity sensors, 67, 108

described, 92–93
device orientation determination (example

app), 123, 124, 130
Gray8ConnComp, 293
Gray8Threshold, 292

GraySub, 290
grouping operations, image processing, 284
GUIs, VUIs compared to, 342, 344, 443
gyroscopes

description, 94
integrating gyroscope readings,

orientation, 117
integration error, 106
MEMs, 94, 196
Sensor.TYPE_GYROSCOPE, 66, 94

H

Hall effect, 94–95
hands-free/eyes-free VUIs, 336, 340, 470, 471,

483, 494
hard-to-understand words, 411–412
Harris, Randy, 338, 347
hasAltitude(), 13, 169
Hashable mobile app, 228, 253
heard(), 312
high-pass fi lter algorithm, 158–159
high-pass fi lters, 111–113
histograms

defi ned, 283, 284
equalization, 283

homophones, 411–412, 416
horizontalAccuracy, Criteria class, 14
Hough transforms, 284
“how to collect” extras, 382–383
human error, 105
hysteresis, 96

I

Ice Cream Sandwich, 231, 232, 233, 241,
252, 299

Image objects, 285
image processing, 255–301

camera usage, 255–279
Activity, 256–261
advanced focus, 266
aspect ratios, 260
autofocus, 272–276
camera preview display, 258–261
capturing images, 255–256
choosing camera, 257
color effects, 267

bindex.indd 502bindex.indd 502 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

503

Image Processing On Line – input parameters

controlling camera parameters, 256–267
fl ash modes, 264–265
focus, 264, 266
GPS values, 267
image sensor, 262
LiveCapture, 256, 257, 258, 261
LiveCapturePlus, 261, 262, 263,

264, 265
macro lens, 264
opening camera, 258
orientation, display/camera, 261–263
releasing camera, 258
RuntimeException, 258, 260, 261,

265, 273
scene modes, 266–267
SimpleCaptureActivity, 255–256
switching cameras, 264
white balance, 265–266
zoom button, 263

controlling environment, 296–299
conversion operations, 283
cropping, 296
Digital Image Processing (Gonzalez &

Woods), 301
Digital Image Processing (Pratt), 301
fi ltering operations, 284
Fundamentals of Digital Image Processing

(Jain), 301
grouping operations, 284
histograms

defi ned, 283, 284
equalization, 283

history, 293
image-to-image operations

building, JJIL, 284–288
described, 282–284

image-to-object operations, 284
operations, 282–284
point operations, 282–283
reduction operations, 283
resources, 300–301
spatial transformation operations, 283
textbooks, 301
thresholding operations, 282

Image Processing On Line, 301
image sensor, camera, 262
image-processing journals, 301image-processing

pipelines

defi ned, 281–282
Ladder, 289–291
Sequence, 288

image-processing programs
Android logo detection program, 291–299

debugging tools, 291
DetectLogo, 291–292
DetectLogoActivity, 293
DetectLogoBetter, 296–299
DetectLogoFaster, 294–296
image size reduction, 293–296
improve reliability in image processing,

296–299
onPreviewFrame(), 291
processing speed increase, 293–296
ReadBarcode, 291
simple framework, 291–293

barcode reader program, 267–278
autofocus, 272–276
BarcodeReaderActivity, 267, 272, 273
barcodes, 267–278
camera preview image, 273–275
Ean13Barcode1D, 268, 269, 270,

271, 276
ReadBarcode, 271, 274, 291
searchforBarcode(), 276–278

color balance, 297–299
debugging, 275–276
face detection, 299–300
luminance variations, 296–297
structure, 281–291

image-to-image operations
building, JJIL, 284–288
described, 282–284

image-to-object operations, 284
implicit prompts, 342
implied fi rst digit, EAN-13 barcodes, 269–270
inaccurate recognition determination, 469
indexing strategies, 411–417

phonetic indexing, 414–417
stemming, 412–414

induction, electromagnetic, 221
inertial sensors, 90–102
initialization process

speech recognition API, 377–382
TTS API, 349, 350–366

in-memory matching, 408, 409–410, 418, 439
input parameters, AudioRecord, 315–316

bindex.indd 503bindex.indd 503 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

504

installLanguageData – linear acceleration sensors

installLanguageData(), 358
integration error, 106
intent fi lters

NFC interactions, 229–230
NFC inventory tracking system, 233–236,

238–240
custom MIME type, 234–235
declaration, manifest fi le compared to
Activity class, 238–239

for generic tags, 241
implementing, in
NFCInventoryActivity.java,
239–240

URI-based, 235–236
intents. See also RecognizerIntent

intent’s extras bundle, 29
LocationListener approach compared

to, 18
one intent, multiple broadcast receivers, 33
PendingIntent, 15, 32–33, 52–53

International Civil Aviation Organization, 174
Invensense, 101, 115, 116, 118
invented words, 411
inventory tracking system. See NFC inventory

tracking system
inverse low-pass fi lter, 112–113
IOIO, SparkFun, 193
iPhone/iPad/iPod Touch, MFi, 190
isConnected(), 202
isEmpty(), 286
isLocationDisplayed(), 40
isRouteDisplayed(), 40
isWaiting(), 358
isZoomSupported(), 263
ItemizedOverlay, 38–40

J

Jain, Anil K., 301
Java Speech Grammar Format (JSGF), 438
JJIL (Jon’s Java Imaging Library)

Android logo detection program, 291–299
debugging tools, 291
DetectLogo, 291–292
DetectLogoActivity, 293
DetectLogoBetter, 296–299
DetectLogoFaster, 294–296
image size reduction, 293–296

improve reliability in image processing,
296–299

onPreviewFrame(), 291
processing speed increase, 293–296
ReadBarcode, 291
simple framework, 291–293

Image objects, 285
Ladder, 289–291
PipelineStage, 285–288

example, 286–288
getFront(), 286
isEmpty(), 286
push(), 285, 287
setOutput(), 286, 288

structure, 284–291
jjil.android.AndroidColors, 291
Jon’s Java Imaging Library. See JJIL
JSGF (Java Speech Grammar Format), 438
JSON format, GeoNames web service, 174

K

Kalman fi lters, 114–115, 118
Kickstarter.com, 216
KStemmer, 413

L

Ladder, 289–291
LANGUAGE, 382, 386
language support, TTS API initialization, 353–356
LanguageDataInstallBroadcastReceiver,

350, 354, 357, 358–359
LanguageDetailsChecker, 377, 378–380, 381, 392
LANGUAGE_MODEL, 382, 383, 386, 411
LANGUAGE_PREFERENCE, 383
lastGpsAltitudeTimestamp, 169
Learning OpenCV: Computer Vision with the

OpenCV Library, 300
Lee, Tai-sing, 300
light sensors, 65, 84–85
LIKE operator, 419–420
LilyPad Arduino form factor, 191
linear acceleration sensors

accelerometer compared to, 150
description, 92–93
device movement detection (example app), 150
high-pass fi lter, 111–112

bindex.indd 504bindex.indd 504 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

505

list – manifest-registered broadcast receivers

list, sensor, 72–83
listen, voice execution step, 336, 443
Listener voice action, 337–338
LiveCapture, 256, 257, 258, 261
LiveCaptureActivity, 257
LiveCapturePlus, 261, 262, 263, 264, 265
Locale-based initialization, 353–362
location app. See current location
Location class, 13
location data. See also tracking device movement

continuously tracking, 27, 43–44
fi ltering, 40–43
receiving, 28–35
viewing, 35–40

location providers, 3–10. See also GPS
battery life

accuracy/battery life, 17
limiting location providers, 44

choosing, 3–4, 10, 15–17
defi ned, 3
network location providers, 8–10, 16, 17
passive location providers, 16–17
permissions, 17
summary list, 17

location services, 3–61
defi ned, 3
tools, 12–15

location settings activity, 25–26
location updates

receiving, 18
requesting, 23–25
requesting, with PendingIntent, 32–33

LocationBroadcastReceiver, 29, 33, 41,
53–54

Location.hasAltitude(), 13, 169
LocationListener interface

description, 15
implementing, 18–20

service, 34–35
intents compared to, 18
location components high-level overview, 13
receiving location updates, 18
removing, 25

LocationManager class
addProximityAlert(), 51, 52, 53, 56, 58
description, 12–13
location components high-level overview, 13
obtaining reference to, 20–23

registering with, 24–25
sendExtracommand(), 7
setting proximity alert, 50–53

LocationManager.KEY_LOCATION_CHANGED, 29
LocationManager.KEY_PROVIDER_ENABLED, 29
LocationManager.KEY_PROXIMITY_ENTERING,

29, 54
LocationManager.KEY_STATUS_CHANGED, 29
LocationManager.

requestLocationUpdates(), 30, 33, 43, 44,
55, 56

LocationProvider class, 13
loop()and setup(), 195, 199, 200, 201, 202, 204
loud noise clapper

AudioClipListener, 304, 314, 323–324
description, 304

LoudNoiseDetector, 323–324
low friction interactions, 219, 228
low power/proximity based, NFC, 228
low-pass fi lters, 107–111
Lucene search engine library

analyzers project, 413
org.tartarus.snowball.ext.

EnglishStemmer, 413–414
stemmers, 413
word searching, 426–431

luminance variations, 296–297
lux values, 84

M

MAC address, 8, 9
macro lens, 264
Made for iPhone/iPad/iPod Touch (MFi), 190
Magic Word screen, 335, 336
magnetic fi eld sensors, 94–97

device orientation determination (example
app), 123–124, 130–132

MEMs, 95
standard sensor, 65
units/range/resolution, 95–97

magnetometers. See magnetic fi eld sensors
Make Magazine, 216
ManageCameraActivity, 262, 264, 273
ManageCameraFasterActivity, 293
Mandarin, 216
manifest fi les. See AndroidManifest.xml
manifest-registered broadcast receivers, 30–31

bindex.indd 505bindex.indd 505 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

506

manually-registered broadcast receivers – microphone

manually-registered broadcast receivers, 31–32
MapActivity, 40
MapView, 37
MATCH operator, FTS, 420–421
matching (voice commands with user’s utterances),

407–439
best guess, 461–466

make educated guess, 464–466
relax match strictness, 461–463
relax strictness between commands,

463–464
collisions, 432–434
defi ned, 441
FTS, 418–426

implementing, 421–426
MATCH operator, 420–421
virtual table, 418–419

grammar matching algorithm, 438
hard-to-understand words, 411–412
indexing strategies, 411–417

phonetic indexing, 414–417
stemming, 412–414

in-memory, 408, 409–410, 418, 439
Lucene search engine library

analyzers project, 413
org.tartarus.snowball.ext.

EnglishStemmer, 413–414
stemmers, 413
word searching, 426–431

multi-part voice commands, 431–437
“add,” 432–433, 436
“compare,” 432–433, 437
example commands, 432–433
ordered, 408, 434–437
“remove,” 432–433, 436–437
unordered, 408

querying persistent storage, 418, 439
voice command parts, 407–409
word spotting algorithm, 409–417

MaxAmplitudeRecorder, 305, 306, 307–311
maximum amplitude recording, MediaRecorder,

305–310
MAX_RESULTS, 382, 383, 386
MCP9701/9701A temperature sensor, 197, 198
mean sea-level pressure. See MSLP
MediaRecorder, 304–314

AmplitudeClipListener, 305, 306, 307,
310, 311, 312, 313

asynchronous audio recording, 310–312
AudioRecord compared to, 304, 314
Clapper, 304, 312–314
MaxAmplitudeRecorder, 305, 306, 307–311
maximum amplitude values, 305–314
preparing, 305–307
RecordAmplitudeTask, 305, 310–312

Mega ADK Arduino, 191, 192, 193, 198, 215, 216
MEMs (microelectromechanical sensors)

accelerometers, 92–93
defi ned, 66
gyroscopes, 94, 196
magnetic fi eld sensors, 94–97
magnetometers, 95
pressure sensors, 86–89

menu usage, VUI design, 344–345
Metaphone, 414
MetarAsyncTask, 171, 174, 176, 177
MetarAsyncTask.doInBackground(), 174, 175,

176, 177
MFi (Made for iPhone/iPad/iPod Touch), 190
Microchip MCP9701/9701A temperature sensor,

197, 198
Microchip PIC24F Accessory Development

Starter, 192–193
Microchip Technology, 190, 191, 192
microcontroller board, Arduino, 194
microelectromechanical sensors. See MEMs
microphone, 303–330. See also clappers

as audio sensor, 303, 329–330
AudioRecord

doRecording(), 317
input parameters, 315–316
MediaRecorder compared to, 304, 314
OnRecordPositionUpdateListener,

317–323
preparing, 316–317
raw audio signal analysis, 314–323
RecordAudioTask, 314
recording audio, 317–323
startRecording(), 316–317
startRecordingForTime(), 316–317

MediaRecorder, 304–314
AmplitudeClipListener, 305, 306,

307, 310, 311, 312, 313
asynchronous audio recording, 310–312
AudioRecord compared to, 304, 314
Clapper, 304, 312–314

bindex.indd 506bindex.indd 506 5/10/2012 2:17:21 PM5/10/2012 2:17:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

507

MIFARE Classic tags – NFC inventory tracking system

MaxAmplitudeRecorder, 305, 306,
307–311

maximum amplitude values, 305–314
preparing, 305–307
RecordAmplitudeTask, 305, 310–312

speech activation implementation, 471,
481–483

MIFARE Classic tags, 226, 227, 249
MIFARE UltraLights, 224, 225
MIME type

intent fi lters, 234–235
speech activation with NFC, 487–488

minimum API level, NFC inventory tracking
system, 233

minimum delay, 67
Modern Device Freeduino USB Host Board, 192
motion detector. See device movement detection
MovementActivator, 479, 480
MovementDetectionListener, 472, 479, 480
MovementDetector, 479, 480. See also device

movement detection
MPLAB, 192
MSLP (mean sea-level pressure), 87–88, 171–174
MultiCommandVoiceAction, 448–451
multi-part voice commands, 431–437

“add,” 432–433, 436
“compare,” 432–433, 437
example commands, 432–433
ordered, 408, 434–437
“remove,” 432–433, 436–437
unordered, 408

multiple resolutions, searchforBarcode(),
277–278

Multi-turn command voice action, 337–338
multi-turn food dialogue VUI design. See food

dialogue multi-turn VUI design
multi-turn voice actions

AddFood, 442, 445, 455–459, 461
food dialogue VUI design, 442
FoodLookup, 442, 461–463, 465
implementing, 455–461
RemoveFood, 442, 451, 455, 459–461

N

naming convention, variables, 268
Narasimhan, Srinivasa, 300
native device sensors, AOA sensors compared to, 196

natural dialogue studies, 346
Navigator, Google, 11
NDEF (NFC Data Exchange Format),

223–224
NDEF messages, 223, 243–244
NDEF records, 223, 243–244
NDEF-compatible NFC tags

described, 224, 225
NFC inventory tracking system

parsing/reading NDEF tags, 245–246
preparing to write to tag, 246–248
reacting to NDEF tags, 241–242
writing to tag, 248–250

NdefMessage, 243–244
NdefRecord, 243–244
near fi eld communication. See NFC
network location providers, 8–10, 16, 17
Network Time Protocol (NTP) server, 6, 7
NFC (near fi eld communication), 219–254

advantages, 227–230
Android intent fi lter system, 229–230
AOA, 230
applications, ideas for, 253–254
Bluetooth compared to, 227–228, 251
card emulation, 229
described, 222
disadvantages, 227–230
examples, 219
low power/proximity based, 228
PN532 NFC/RFID controller breakout board,

227, 230
QR barcodes compared to, 227–228
required hardware, 230
RFID compared to, 220–222
security, 224, 226, 229
singular scanning, 229
small short data bursts, 228
speech activation implementation, 471,

487–488
NFC controller chip, PN65N, 222, 229
NFC Data Exchange Format (NDEF), 223–224
NFC inventory tracking system (example app),

230–253
Activity class, 236–250
Android APIs, 233–250
AndroidManifest.xml, 233–236
debugging NFC tags with apps, 232–233
enable NFC in settings, 231–232

bindex.indd 507bindex.indd 507 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

508

NFC N-Mark logo – OnRecordPositionUpdateListener

foreground dispatching, 237–241
future considerations, 251–253
intent fi lters, 233–236, 238–240

custom MIME type, 234–235
declaration, manifest fi le compared to
Activity class, 238–239

for generic tags, 241
implementing, in
NFCInventoryActivity.java,
239–240

URI-based, 235–236
main activity screen, 231
minimum API level, 233
NDEF tags

parsing/reading NDEF tags, 245–246
preparing to write to tag, 246–248
reacting to NDEF tags, 241–242
writing to tag, 248–250

permissions, 233
scenario, 230
summary review, 250–251
updating NFC tag (screen), 231

NFC N-Mark logo, 251
NFC sharing, peer-to-peer, 251–252
NFC TagInfo, 232–233
NFC tags, 224–227

choosing, 224–227
online retailers, 227
storage size, price, security, 224, 226
write protection, 226

MIFARE Classic, 226, 227, 249
MIFARE UltraLights, 224, 225
NDEF-compatible, 224, 225

NFC TagWriter, 232
NfcAdapter, 237
NFCInventoryActivity.java, 239–240
NfcManager, 237
N-Mark logo, NFC, 251
noise, 105
NorthFinder app, 143–145
not a voice command determination, 468–469
notch fi lter, 113
no/yes/cancel voice action, 452–454
NTP (Network Time Protocol) server, 6, 7
NV21 format, camera preview image, 273–274,

276, 279, 282, 283, 294
NXP DESFire, 225, 226

NXP Semiconductors, 222, 224, 226, 227, 232,
238, 251

NXP SmartFX, 225

O

obtaining reference to LocationManager, 20–23
odd parity digit codes, 268
onAccuracyChanged(), 76, 129, 157
onActivityResult(), 255, 362, 365, 377, 384,

386, 393, 405, 407, 474
onCameraPreview(), 256, 272
onClickListener, 263, 451
onCreate()

DetermineAltitudeActivity, 166–167
DetermineOrientationActivity, 127–128
obtaining reference to LocationManager,

20–21
PendingIntent used by proximity alert,

52–53
onDestroy(), 34, 371
onDone(), 360, 366, 367, 370, 444, 474
onDraw(), 261
onEnteringProximity(), 54
onExitingProximity(), 54
onFaceDown(), 135–136
onFaceUp(), 135–136
onInit(), 352, 353, 356, 362, 368
onInitListener, 352, 353
OnLanguageDetailsListener, 377, 378, 380,

392, 394
onLayout(), 260
online retailers, NFC tags, 227
onLocationChanged(), 19, 41, 42, 58–59, 60,

162, 169, 177, 179
onLookupLocationClick(), 46
ONLY_RETURN_LANGUAGE_PREFERENCE, 383
onMeasure(), 260
OnNotUnderstoodListener, 448, 450, 466
onPause(), 25, 32, 44, 76, 239, 476
onPreviewCallback(), 272
onPreviewFrame(), 273, 274, 275, 291
onProgressUpdatedListener, 359
onProviderDisabled(), 19–20
onProviderEnabled(), 19–20
onReceive(), 30, 31, 35, 53
OnRecordPositionUpdateListener, 317–323

bindex.indd 508bindex.indd 508 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

509

onRestoreInstanceState – pressure sensors

onRestoreInstanceState(), 476
onResume()

BarcodeReaderActivity, 272
broadcast receiver, 32
DetermineAltitudeActivity, 168
LocationManager, 24
SpeechActivator, 476

onSaveInstanceState(), 476
onSensorChanged(), 132–133, 157–158
onSetProximityAlertClick(), 51
onStartCommand(), 34, 56–58, 59, 489
onStatusChanged(), 20
onSuccessfullInit(), 351
onToggleClick(), 178, 179
OnUtteranceCompletedListener, 360
OpenCV discussion group, 300
open-ended dialogue systems, 338
OpenGL, 97, 121, 143, 145
opening camera, 258
ordered multi-part voice commands, 408, 434–437
org.tartarus.snowball.ext.

EnglishStemmer, Lucene, 413–414
orientation determination. See device orientation

determination
OverlayItem, 37

P

parsing/reading NDEF tags, 245–246
PARTIAL_RESULTS, 383, 391, 485
passive location provider, 16–17
passive RFID tags, 220
payload identifi er, 223
payload length, 223
payload type, 223
PC performance, smartphones compared to, 293
peer-to-peer Android APIs, 252–253
peer-to-peer NFC sharing, 251–252
PendingIntent, 15, 32–33, 52–53
permissions

android.permission.ACCESS_COARSE_

LOCATION, 15, 17
android.permission.ACCESS_FINE_

LOCATION, 15, 17, 56
location providers, 17
NFC inventory tracking system, 233
proximity alerts, 56

persistent speech activation implementation,
489–494

persistent storage mechanisms. See also
matching

FTS, 418–426
implementing, 421–426
MATCH operator, 420–421
virtual table, 418–419

Lucene search engine library
analyzers project, 413
org.tartarus.snowball.ext.

EnglishStemmer, 413–414
stemmers, 413
word searching, 426–431

Peters, Alan, 300
Phonetix, 414
PIC24F chip, 192
PIC32 chip, 192
pin headers, 194
PipelineStage, 285–288

example, 286–288
getFront(), 286
isEmpty(), 286
push(), 285, 287
setOutput(), 286, 288

playEarcon(), 366, 367, 371
playScript(), 370, 371
PN65N NFC controller chip, 222, 229
PN532 NFC/RFID controller breakout board,

227, 230
point operations, image processing,

282–283
PointOverlayItem, 37–38
poorly recorded words, 412
Porter stemmer, 412
powerOn(), 202
powerRequirement, Criteria class, 14
Pratt, William K., 301
precision/accuracy, sensor, 104–105
prerecorded speech, 366, 367, 369, 370–371
pressure sensors, 86–89. See also
DetermineAltitudeActivity

absolute altitude, formula, 87
DetermineAltitudeActivity

absolute altitude, 170–177
relative altitude, 177–180

GPS compared to, 162

bindex.indd 509bindex.indd 509 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

510

Preview – RecognizerIntent

MEMs, 86–89
MSLP, 87–88
range, 88
relative altitude, formula, 87
standard sensor, 65
units, 88
use cases, 88–89

Preview, 258–261
preview display, camera, 258–261
prompts, 341–342

food dialogue multi-turn VUI design, 442
Prompt extra, speech recording, 384
voice execution step, 336, 443

proprietary sensor fusion, 115–118
ProtoShield, with breadboard, 198
proximity alert (example app)

alternate effi cient implementation, 26–61
GeocodeActivity screen, 46
ProximityAlertService, 56–61

getDistance(), 58–59
onLocationChanged(), 58–59
onStart(), 57–58

structure, 45–53
proximity alerts, 45–61

clearing, 52
geocoding, 46–50, 61

Big Ben, 49
defi ned, 46
reading geocoded response, 48–50
reverse, 46, 48
Statue of Liberty, 48
Taj Mahal, 49

limitations, 55–56
PendingIntent, 52–53
permissions, 56
responding to, 53–55
setting, 50–53

proximity based/low power, NFC, 228
proximity sensors, 65, 85–86
ProximityAlertActivity, 50–51, 55,

56, 58
ProximityAlertBroadcastReceiver,

54–55
ProximityAlertService, 56–61

getDistance(), 58–59
onLocationChanged(), 58–59
onStart(), 57–58

push(), 285, 287

Q

QR barcodes, 227–228. See also NFC
quaternions, 65, 91, 97–98, 125
querying persistent storage. See also matching

FTS, 418–426
implementing, 421–426
MATCH operator, 420–421
virtual table, 418–419

Lucene search engine library
analyzers project, 413
org.tartarus.snowball.ext.

EnglishStemmer, 413–414
stemmers, 413
word searching, 426–431

Quirky.com, 216

R

radio frequency identifi cation. See RFID
random error, 105
range, sensor, 70–71
rare words, 411
rates, sensor, 69
raw audio signal analysis, 314–323
raw sensors, 66–67
reacting to NDEF tags, 241–242
read(), 203, 204, 205, 317
ReadBarcode, 271, 274, 291. See also barcode

reader program
Reader voice action, 337–338
readGrayImage(), 276
reading/parsing NDEF tags, 245–246
receiveWhatWasHeard(), 397, 405, 407, 410,

426, 441, 444, 484
receiving location data, 28–35
receiving location updates, 18
recognition failure

food dialogue multi-turn VUI design, 442
food dialogue VUI design, 442
indexing, 412
RecognizerIntent, 386
responses for, 466–468

RecognitionIndexer, 428
recognizeDirectly(), 403, 405
RecognizerIntent

ACTION_GET_LANGUAGE_DETAILS,
377, 378, 380, 381, 383, 392

bindex.indd 510bindex.indd 510 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

511

RecordAmplitudeTask – sensors

ACTION_RECOGNIZE_SPEECH, 382, 383, 390,
404, 405

actions
extras, 382–383
types, 382

ACTION_WEB_SEARCH, 383, 390, 391
confi guring/processing speech results,

385–396
speech recognition implementation, 391–403
speech recording process, 374–385
SpeechRecognizer compared to, 403–405
use cases, 386–391

RecordAmplitudeTask, 305, 310–312
RecordAudioTask, 304
recording audio. See AudioRecord
reducing location update frequency, battery life,

43–44
reduction operations, image processing, 283
Refi nedSoundex, 414
registering broadcast receivers, with Android,

30–32
manifest-based, 30–31
manual, 31–32

registerReceiver(), 30, 31
relative altitude

DetermineAltitudeActivity, 177–180
formula, 87

relative elevation measurement, pressure sensors,
89

relative humidity sensors, 65, 89
relax match strictness, 461–463
relax strictness between commands, 463–464
relays, 194
releasing camera, 258
“remove” multi-part voice command, 432–433,

436–437
RemoveFood, 442, 451, 455, 459–461
requesting location updates, 23–25
requestLocationUpdates(), 30, 33, 43, 44, 55,

56
requestSingleLocation(), 23
resolution, sensor, 67, 70–71, 93
response time, smoothness compared to, 111
RESULTS, 382
“results” extras, 382–383
RESULTS_PENDINGINTENT, 382, 386, 387, 388
RESULTS_PENDINGINTENT_BUNDLE, 382,

387, 388

retailers, NFC tags, 227
reverse geocoding, 46, 48
re-zeroing, 107
RFID (radio frequency identifi cation)

described, 220–222
examples, 219
NFC compared to, 220–222
PN532 NFC/RFID controller breakout board,

227, 230
RgbAbsDiffGray, 292, 294, 297
right half of barcode, EAN-13 barcodes, 271
right-hand rule, 92, 94, 98
rotation matrices, 91–92, 97, 98, 99, 100, 116,

123, 124, 130, 131, 132, 133, 134
rotation vector sensors

described, 97
device orientation determination (example app)

rotation vector data, 132–135
sensor choices, 124–125

NorthFinder app, 143–145
RuntimeException, 258, 260, 261, 265, 273

S

sampling frequency, 67
Sampling rate, AudioRecord, 315–316
satellite constellation, GPS, 4
saturation, 67
Say the Magic Word, 335, 336
SayMagicWordDemo, 351, 377, 397, 398–403
scene modes, camera, 266–267
SD card, 194, 276, 305, 306, 308, 356, 361, 427
searchforBarcode(), 276–278
Secure Element, 229
security, NFC, 224, 226, 229
SecurityException, 15, 56
Seeed Studio Seeeduino, 192
semiconductors. See Microchip Technology; NXP

Semiconductors
sendBroadcast(), 382
sendExtracommand(), 7
sensors (physical sensors), 65–216. See also

accelerometers; gyroscopes; specifi c sensors
accuracy/precision, 104
ambient temperature, 89
AOA sensors compared to native device

sensors, 196
binary, 67

bindex.indd 511bindex.indd 511 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

512

Sensor API – Serial.printin

black box approach, 65
continuous, 67
deprecated

Sensor.TYPE_ORIENTATION, 67, 90,
98, 122

Sensor.TYPE_TEMPERATURE, 66, 89–90
gravity, 67, 92–93, 108, 123, 124, 130
inertial, 90–102
light, 65, 84–85
linear acceleration, 92–93, 150
MEMs

accelerometers, 92–93
defi ned, 66
gyroscopes, 94, 196
magnetic fi eld sensors, 94–97
magnetometers, 95
pressure sensors, 86–89

precision/accuracy, 104
range, 70–71
rates, 69
raw, 66–67
relative humidity, 65, 89
resolution, 67, 70–71, 93
sensing device orientation/movement, 90–102
sensing environment, 84–90
smartphones

AOA temperature sensor, 190
magnetic fi eld sensors, 97
PC performance compared to, 293
physical sensors, 65
proximity sensors, 85

speech activation implementation, 471,
479–480

synthetic, 66–67
temperature, 89–90
terms/concepts, 66–68

Sensor API, Android, 68–84
Sensor class, 68–69
sensor data errors, 103–119

addressing, 107–118
recovery, VUI design, 342–343
types, 105–106

sensor fusion
defi ned, 101, 107
graphical representation, 115
simple compared to proprietary, 115–118

Sensor List (example app), 72–84
AndroidManifest.xml, 72–73

screens, 72
SensorDisplayFragment, 76–83
SensorListActivity, 73–74
SensorSelectorFragment, 74–76

sensor units
accelerometer, 93
gravity sensor, 93
gyroscope sensor, 94
linear acceleration sensors, 93
magnetic fi eld sensors, 95
pressure sensors, 88

SENSOR_DELAY_FASTEST, 69
SENSOR_DELAY_GAME, 69
SENSOR_DELAY_NORMAL, 69
SENSOR_DELAY_UI, 69
SensorDisplayFragment, 76–83
SensorEvent, 71
SensorEvent.accuracy, 71
SensorEventListener, 71
SensorEvent.sensor, 71
SensorEvent.timestamp, 71
SensorEvent.values, 69, 71, 76, 130, 158
Sensor.getMaximumRange(), 70–71
Sensor.getResolution(), 67, 70–71
SensorListActivity, 73–74
SensorManager, 68
SensorManager.getAltitude(), 86–87, 161–

162, 169, 170–171, 187
SensorManager.getInclination(), 101
SensorManager.getOrientation(), 68, 91,

98–101, 116, 123, 124, 131, 134, 147
SensorSelectorFragment, 74–76
Sensor.TYPE_ACCELEROMETER, 66, 92–93
Sensor.TYPE_AMBIENT_TEMPERATURE, 67, 89
Sensor.TYPE_GRAVITY, 67, 92–93, 108
Sensor.TYPE_GYROSCOPE, 66, 94
Sensor.TYPE_LIGHT, 66, 84–85
Sensor.TYPE_LINEAR_ACCELERATION, 67,

92–93, 111
Sensor.TYPE_ORIENTATION, 67, 90, 98, 122
Sensor.TYPE_PRESSURE, 66, 86–89, 114
Sensor.TYPE_PROXIMITY, 66, 85–86
Sensor.TYPE_ROTATION_VECTOR, 67, 97
Sensor.TYPE_TEMPERATURE, 66, 89–90
Sequence, 288
Serial.begin(), 200
Serial.print(), 200
Serial.printin(), 200

bindex.indd 512bindex.indd 512 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

513

service set identifi er – SpeechActivationListener

service set identifi er (SSID), 9
services

persistent speech activation, 489–494
tracking location movement app, 34–35

Set Language menu option, 381
Set object, in-memory matching, 408, 409–410,

418, 439
setCamera(), 260
setCameraDisplayOrientation(), 262–263
setFocusAreas(), 272
setLanguage(), 352, 368
setNdefPushMessage(), 252
setNdefPushMessageCallback(), 252
setOnPositionUpdate(), 318
setOutput(), 286, 288
setParameters(), 261
setPrompt(), 452
setSpokenPrompt(), 452
setTextToSpeechSettings(), 352, 353
setTtsListener(), 360
setup() and loop(), 195, 199, 200, 201,

202, 204
setWhiteBalance(), 298
S-GPS, 6
shared preference, 352, 354, 358
shields, 194
silences, 366, 367
simple moving average, low-pass fi lters, 108–110
simple moving median, low-pass fi lters, 111
simple sensor fusion, 115–118
SimpleCaptureActivity, 255–256
singing clapper

AudioClipListener, 304, 327–329
description, 304
implementation, 327–329
zero-crossing method, 325–327

singular scanning, NFC, 229
sketch, Arduino, 195, 199–205
SLP METAR string, 176
small short data bursts, NFC, 228
SmartFX, NXP, 225
smartphones

AOA temperature sensor, 190
magnetic fi eld sensors, 97
PC performance compared to, 293
physical sensors, 65
proximity sensors, 85
sensor fusion, 116

smoothing parameter, low-pass fi lter, 111
smoothness, response time compared to, 111
Sony FeliCa, 225, 226
Soundex phonetic indexing algorithm,

414–416, 417
SoundsLikeWordMatcher, 411, 416–417, 484
SparkFun Electric Sheep, 192
SparkFun IOIO, 193
spatial transformation operations, image

processing, 283
speak(), 366, 367, 371, 444
speak response (optional), voice execution

step, 443
speaking, TTS API, 366–377
speech activation implementations, 471–494

Activity, 472, 475–479, 494
continuous speech recognition, 471, 483–487
microphone, 471, 481–483
movement detection (physical sensor), 471,

479–480
MovementDetectionListener, 472,

479, 480
NFC, 471, 487–488
Service for persistent speech activation,

489–494
starting speech recognition, 473–475, 494
summary list, 471
summary of process, 472, 494
time delay handling, 473–475, 494

speech hygiene, VUI design, 344
speech recognition, 333–494. See also speech

activation implementations
direct speech recognition

continuous speech recognition compared
to, 471, 483–487

SpeechRecognizer, 403–405, 484
features, 334
popularity, 333
starting, 473–475, 494

speech recognition API, 377–405
initialization process, 377–382
TTS and speech recognition, demonstration

activity, 398–403
speech recording process,
RecognizerIntent, 384

SpeechActivationLauncher, 473–474
SpeechActivationListener, 472, 480,

481–482

bindex.indd 513bindex.indd 513 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

514

SpeechActivationNfcTagReceiver – TextToSpeech.LANG_COUNTRY_AVAILABLE

SpeechActivationNfcTagReceiver, 487–488
SpeechActivationService, 489–493
SpeechActivator. See also speech activation

implementations
Activity, 472, 475–479, 494
behavior, 472
interface, 472

SpeechActivatorStartStop, 476, 479
SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_

MILLIS, 382, 383
SPEECH_INPUT_MINIMUM_LENGTH_MILLIS, 382,

383, 405
SPEECH_INPUT_POSSIBLY_COMPLETE_SILENCE_

LENGTH_MILLIS, 382, 383
SpeechRecognitionLauncher, 474–475, 487–

488, 493–494
SpeechRecognitionResultsActivity, 377,

387–389, 474–475
SpeechRecognitionUtil, 377, 391, 392, 393
SpeechRecognizer, 403–405. See also
RecognizerIntent

SpeechRecognizingActivity, 377, 380, 391,
392, 393–398, 403, 404, 405

SpeechRecognizingActivity.

checkForLanguage(), 380
SpeechRecognizingAndSpeakingActivity, 474
SpeechSynthesis Data app, 356
speedAccuracy, Criteria class, 14
speedRequired, Criteria class, 14
SQLite FTS. See FTS
SSID (service set identifi er), 9
startActivator(), 476
startActivityForResult(), 255, 363, 382, 387
startReadingAcceleration(), 154, 155
startRecording(), 316–317
startRecordingForTime(), 316–317
static command words, 408, 411
Statue of Liberty, geocoding, 48
StemmedWordMatcher, 411, 413–414
stemming, 412–414
stopReadingAccelerationData(), 156
storage size, NFC tags, 224, 226
subsampled image, aliasing, 295
success confi rmation, VUI design, 342–343
SUPPORTED_LANGUAGES, 383
surfaceChanged(), 260
surfaceCreated(), 259
surfaceDestroyed(), 259

SurfaceHolder, 259–260
SurfaceView, 258–259
switchCamera(), 260, 263, 264, 293
switching cameras, 264
synthesizeToFile(), 368
synthetic sensors, 66–67
systematic error, 105

T

TagAge.net, 227
TagInfo, 232–233
Tagstand, 227
TagWriter, 232
Taj Mahal, geocoding, 49
tapered prompts, 342
tasks, voice actions, 339–340
temperature sensors, 89–90. See also AOA and

temperature sensor
testing

TTS initialization, 360–361
VUI design, 346–347

TextToSpeech, 358
classes, 350
object initialization, 349, 350–366
SayMagicWordDemo, 351, 377, 397,

398–403
Text-To-Speech. See TTS
TextToSpeech.areDefaultsEnforced(), 368
TextToSpeechDemo, 350, 366, 369–370, 371–

376, 397
TextToSpeech.Engine.ACTION_CHECK_TTS_

DATA, 360, 361–366
TextToSpeech.Engine.ACTION_INSTALL_TTS_

DATA, 357
TextToSpeech.Engine.ACTION_TTS_DATA_

INSTALLED, 358
TextToSpeech.FAILURE, 352
TextToSpeechInitializer, 350, 351, 352, 353,

354, 372, 398
TextToSpeechInitializerByAction, 350, 362,

363, 364
TextToSpeechInitializer.

installLanguage(), 357
TextToSpeech.isLanguageAvailable(), 353,

354, 355, 356, 358, 363
TextToSpeech.LANG_AVAILABLE, 353
TextToSpeech.LANG_COUNTRY_AVAILABLE, 353

bindex.indd 514bindex.indd 514 5/10/2012 2:17:22 PM5/10/2012 2:17:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

515

TextToSpeech.LANG_COUNTRY_VAR_ AVAILABLE – turns

TextToSpeech.LANG_COUNTRY_VAR_

AVAILABLE, 353
TextToSpeech.LANG_MISSING_DATA, 353
TextToSpeech.LANG_NOT_SUPPORTED, 353
TextToSpeechStartupListener, 350, 351, 352,

358, 371, 398
three-vectors, angular, 91, 92
threshold, maximum amplitude, 313–314
thresholding

defi ned, 282
searchforBarcode(), 276–277

time delays
sensor error, 105
speech activation implementations,

473–475, 494
time to fi x fi rst (TTFF) values, 16, 18, 26, 176
Timing extra, speech recording, 384
toggle button handler, device movement detection,

153–154
Topaz, Broadcom, 225
Torrone, Phillip, 216
toString(), 49–50
total acceleration, 153
Touchanote, 229, 253
tracking device movement (example app), 27–44

Android application components, 27
battery consumption, 27, 43–44
broadcast receivers, 28–34
continuously tracking device location data,

27, 43–44
fi ltering location data, 40–43
functionality overview, 27
Google map library components, 36–40
main screen, 28
receiving location data, 28–35
services, 34–35
viewing location data, 35–40

TrackLocationActivity, 31, 32, 35, 36, 37, 40
TrackLocationBroadcastReceiver, 30, 31, 33
TrackLocationOverlay, 38–40
train users, VUI design, 340–341
triangulation, 5, 10
Try Speech button

RecognizerIntent use cases, 391
Set Language menu option, 381
speech activation approaches, 472
speech recognition experiments, 418

Try Text to Speech, 350, 366, 368, 369

TTFF (time to fi x fi rst) values, 16, 18, 26, 176
TTS (Text-To-Speech)

device movement detection (example
app), 147

device orientation determination (example
app), 121, 122, 135–143, 146

features, 335
TTS API, 349–377

initialization process, 349, 350–366
LanguageDataInstallBroadcastReceiver,

350, 354, 357, 358–359
speaking, 366–377
steps for usage, 349
TextToSpeech.areDefaultsEnforced(),

368
TextToSpeechDemo, 350, 366, 369–370,

371–376, 397
TextToSpeech.Engine.ACTION_CHECK_

TTS_DATA, 360, 361–366
TextToSpeech.Engine.ACTION_INSTALL_

TTS_DATA, 357
TextToSpeech.Engine.ACTION_TTS_

DATA_INSTALLED, 358
TextToSpeech.FAILURE, 352
TextToSpeechInitializer, 350, 351, 352,

353, 354, 372, 398
TextToSpeechInitializerByAction, 350,

362, 363, 364
TextToSpeechInitializer.

installLanguage(), 357
TextToSpeech.isLanguageAvailable(),

353, 354, 355, 356, 358, 363
TextToSpeech.LANG_AVAILABLE, 353
TextToSpeech.LANG_COUNTRY_

AVAILABLE, 353
TextToSpeech.LANG_COUNTRY_VAR_

AVAILABLE, 353
TextToSpeech.LANG_MISSING_DATA, 353
TextToSpeech.LANG_NOT_SUPPORTED, 353
TextToSpeechStartupListener, 350, 351,

352, 358, 371, 398
TTS and speech recognition, demonstration

activity, 398–403
turns

completion, user interface screen fl ow, 336
multi-turn voice actions

AddFood, 442, 445, 455–459, 461
food dialogue VUI design, 442

bindex.indd 515bindex.indd 515 5/10/2012 2:17:23 PM5/10/2012 2:17:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

516

Uno Arduino form factor – VUI designs

FoodLookup, 442, 461–463, 465
implementing, 455–461
RemoveFood, 442, 451, 455, 459–461

U

Uno Arduino form factor, 191
unordered multi-part voice commands, 408
unregisterReceiver(), 31
UpdateSelectedSensor(), 128–130
UpdateViewBroadcastReceiver, 33
UPM, 227
URI-based intent fi lters, 235–236
USB host/USB accessory, AOA, 190
UsbAccessory, 208
UsbManager, 205, 208
useHighPassFilter, 154
user implicit prompting, food dialogue multi-turn

VUI design, 442
user interface screen fl ow, VUI, 336
user’s utterances. See matching; VUI designs
‹uses-feature declaration›, 72
UtteranceProgressListener, 360, 366,

377, 399

V

Vanderbilt University, 300
variable naming convention, 268
velocity fi lter, 43
verifyCheckDigit(), 270–271
verticalAccuracy, Criteria class, 14
viewing location data, 35–40
virtual FTS table, 418–419
VIRTUAL TABLE, 418–419
voice actions, 441–470

AlertDialogs, 451–455
appropriate tasks, 339–340
execution

steps, 336, 443
voice action-related classes, 443–444

Food Edit, 442, 444, 461, 464
Food Lookup, 442, 465
multi-turn

AddFood, 442, 445, 455–459, 461
food dialogue VUI design, 442
FoodLookup, 442, 461–463, 465

implementing, 455–461
RemoveFood, 442, 451, 455, 459–461

open-ended dialogue systems, 338
turn completion, 336
types, 337–338
yes/no/cancel, 452–454

voice commands. See also matching
multi-part, 431–437

“add,” 432–433, 436
“compare,” 432–433, 437
example commands, 432–433
ordered, 408, 434–437
“remove,” 432–433, 436–437
unordered, 408

not a voice command determination,
468–469

parts, 407–409
Voice Interaction Design (Harris), 338, 347
voice user interfaces. See VUIs
VoiceAction

interface (code), 444–445
voice action-related classes relationship,

443–444
VoiceActionCommands

AddFood, 442, 445, 455–459, 461
executing, 448–451
FoodLookup, 442, 461–463, 465
interface (code), 444–445
RemoveFood, 442, 451, 455, 459–461
voice action-related classes relationship,

443–444
VoiceActionExecutor

implementation (code), 445–448
voice action-related classes relationship,

443–444
VoiceAlertDialog, 451–455, 459–460
VUI designs, 338–347

beta tests, 347
food dialogue multi-turn VUI design

AddFood, 442, 445, 455–459, 461
FoodLookup, 442, 461–463, 465
RemoveFood, 442, 451, 455, 459–461
turns, for voice action commands, 442
voice actions, 442

food dialogue VUI design
classes for implementing, 427
fl aws, 442
word searching with Lucene, 427–431

bindex.indd 516bindex.indd 516 5/10/2012 2:17:23 PM5/10/2012 2:17:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Book Title <Chapter No> V1 - MM/DD/2010

517

VUIs – Zxing Google code site

goal, 334
hands-free/eyes-free, 336, 340, 470, 471,

483, 494
natural dialogue studies, 346
testing, 346–347
voice action tasks, 339–340
what app/users will say, 340–345

accidental speech activation, 343–344
confi rm success, 342–343
constrain speech input, 340
error recovery, 342–343
menu usage, 344–345
prompt users, 341–342
speech hygiene, 344
train users, 340–341

Wizard of Oz studies, 346
VUIs (voice user interfaces)

defi ned, 333
GUIs compared to, 338, 344, 443
user interface screen fl ow, 336

W

“waiting” shared preference, 352, 354, 358
wasListeningForActivation, 476
weather sensing, pressure sensors, 89
WEB_SEARCH_ONLY, 383, 390
weighted smoothing, low-pass fi lters, 108
“what to return” extras, 382–383
“where to send results” extras, 382–383
white balance, 265–266
“Why Every Maker Should Learn Chinese,” 216
Wi-Fi access points, 8–9
Wizard of Oz studies, 346
Woods, Robert E., 301
words, hard-to-understand, 411–412. See also

voice commands
word searching, with Lucene, 426–431
word spotting algorithm, 409–417
WordActivator, 484–487

WordList, 434, 449
WordMatcher

“add” command, 410
“add” multi-part command, 433
additional methods, 435
Lucene’s org.tartarus.snowball.ext.
EnglishStemmer, 413–414

matching words to predefi ned Set, 409–410
“remove” multi-part command, 432–433
Soundex comparisons, 415–416
SoundsLikeWordMatcher, 411,

416–417, 484
StemmedWordMatcher, 411, 413–414

write(), 203, 205
write protection, NFC tags, 226
write to NDEF tags, 246–250
writeGrayImage(), 276

X

X axis, acceleration data, 151–152
xAL (eXtensible Address Language)

specifi cation, 49
xml/accessory_filter.xml, 206–207

Y

Y axis, acceleration data, 152
yes/no/cancel voice action, 452–454
YUV color space, 273, 283, 291, 295

Z

Z axis, acceleration data, 152
zero offset, 105
zero-crossing method, singing clapper, 325–327
zoom button, camera, 263
Zxing Google code site, 278

bindex.indd 517bindex.indd 517 5/10/2012 2:17:23 PM5/10/2012 2:17:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.with this 15 d

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox46 to get started.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

badvert-colour.indd 518badvert-colour.indd 518 4/28/2012 3:12:36 PM4/28/2012 3:12:36 PM

www.it-ebooks.info

http://www.safaribooksonline.com/wrox46
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Related Wrox Books
Professional Android 4 Application Development
ISBN: 978-1-1181-0227-5
This book provides in-depth coverage of the Android SDK, allowing existing Android devel-
opers to take advantage of new features, while providing the fundamentals needed for new
Android developers to get started.

Professional Android Programming with Mono for Android and
.NET/C#
ISBN: 978-1-1180-2643-4
Aimed at providing readers with a thorough, reliable resource that guides them through the
field of Android application programming, this must-have book shows how to write applica-
tions using Mono with C# that run on the Android family of devices.

Ivor Horton’s Beginning Java, Java 7 Edition
ISBN: 978-0-470-40414-0
Whether you’re a beginner or an experienced programmer switching to Java, you’ll learn
how to build real-world Java applications using Java SE 7.

Join the discussion @ p2p.wrox.com
U P D A T E D F O R A N D R O I D 4

Reto Meier

Android™ 4
Application Development

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Wallace B. McClure, Nathan Blevins, John J. Croft IV, Jonathan Dick, Chris Hardy

Professional
Android™ Programming
with Mono for Android and .NET/C#

www.it-ebooks.info

http://www.it-ebooks.info/

	Professional Android™ Sensor Programming
	Contents���������������
	Introduction�������������������
	Part I: Location Services��������������������������������
	Chapter 1: Introducing the Android Location Service��
	Methods Used to Determine Location���
	GPS Provider�������������������
	How It Works�������������������
	GPS Improvements�����������������������
	Limitations������������������
	Controlling GPS����������������������

	Network Provider�����������������������
	Using Wireless Network Access Points���
	Using Cell IDs���������������������

	Summary��������������

	Chapter 2: Determining a Device’s Current Location���
	Know Your Tools����������������������
	LocationManager����������������������
	LocationProvider�����������������������
	Location���������������
	Criteria���������������
	LocationListener�����������������������

	Setting up the Android Manifest��������������������������������������
	Determining the Appropriate Location Provider��
	GPS Location Provider����������������������������
	Network Location Provider��������������������������������
	Passive Location Provider��������������������������������
	Accuracy versus Battery Life�����������������������������������

	Receiving Location Updates���������������������������������
	Receiving Location Updates with a LocationListener���
	Receiving Location Updates with a Broadcast Intent���

	Implementing the Example App�����������������������������������
	Implementing LocationListener������������������������������������
	onLocationChanged()��������������������������
	onProviderDisabled() and onProviderEnabled()���
	onStatusChanged()������������������������

	Obtaining a Handle to LocationManager��
	Requesting Location Updates����������������������������������
	Cleaning up After Yourself���������������������������������
	Launching the Location Settings Activity���

	Summary��������������

	Chapter 3: Tracking Device Movement��
	Collecting Location Data�������������������������������
	Receiving Location Updates with a Broadcast Receiver���
	Extending BroadcastReceiver����������������������������������
	Registering the BroadcastReceiver with Android���
	Requesting Location Updates with a PendingIntent���
	One Intent, Multiple Receivers�������������������������������������

	Why Not Use a Service?�����������������������������

	Viewing the Tracking Data��������������������������������
	Google Map Library Components������������������������������������
	MapView��������������
	OverlayItem������������������
	ItemizedOverlay����������������������
	MapActivity������������������

	Filtering Location Data������������������������������
	Continuous Location Tracking and Battery Life��
	Reducing Location Update Frequency���
	Limiting Location Providers����������������������������������

	Summary��������������

	Chapter 4: Proximity Alerts����������������������������������
	App Structure��������������������
	Geocoding����������������
	android.location.Geocoder��������������������������������
	Reading the Geocoded Response������������������������������������

	Setting a Proximity Alert��������������������������������
	Responding to a Proximity Alert��������������������������������������

	Proximity Alert Limitations����������������������������������
	Battery Life�������������������
	Permissions������������������

	More Efficient Proximity Alert�������������������������������������
	ProximityAlertService����������������������������

	Summary��������������

	Part II: Inferring Information from Physical Sensors���
	Chapter 5: Overview of Physical Sensors��
	Definitions������������������
	Android Sensor API�������������������������
	SensorManager��������������������
	Sensor�������������
	Sensor Rates�������������������
	Sensor Range and Resolution����������������������������������
	SensorEventListener��������������������������
	SensorEvent������������������
	Sensor List������������������
	The Manifest File������������������������
	SensorListActivity�������������������������
	SensorSelectorFragment�����������������������������
	SensorDisplayFragment����������������������������

	Sensing the Environment������������������������������
	Sensor.TYPE_LIGHT������������������������
	Sensor.TYPE_PROXIMITY����������������������������
	Sensor.TYPE_PRESSURE���������������������������
	Absolute Altitude������������������������
	Relative Altitude������������������������
	Mean Sea-Level Pressure (MSLP)�������������������������������������
	Where to Find MSLP�������������������������
	Sensor Units�������������������
	Sensor Range�������������������
	Common Use Cases�����������������������

	Sensor.TYPE_RELATIVE_HUMIDITY������������������������������������
	Sensor.TYPE_AMBIENT_TEMPERATURE��������������������������������������
	Sensor.TYPE_TEMPERATURE������������������������������

	Sensing Device Orientation and Movement��
	Coordinate Systems�������������������������
	Global Coordinate System�������������������������������
	Device Coordinate System�������������������������������
	Angles�������������
	Sensor.TYPE_ACCELEROMETER, .TYPE_GRAVITY, and .TYPE_LINEAR_ACCELERATION��
	Sensor Units and Resolution����������������������������������

	Sensor.TYPE_GYROSCOPE����������������������������
	Sensor Units�������������������
	Sensor Range�������������������

	Sensor.TYPE_MAGNETIC_FIELD���������������������������������
	Sensor Units, Range, and Resolution��

	Sensor.TYPE_ROTATION_VECTOR����������������������������������
	SensorManager.getOrientation()�������������������������������������
	SensorManager.getInclination()�������������������������������������
	Sensor Fusion Schemes����������������������������

	Summary��������������

	Chapter 6: Errors and Sensor Signal Processing���
	Definitions������������������
	Accuracy and Precision�����������������������������
	Types of Errors����������������������
	Human Error, Systematic Error, and Random Error��
	Noise������������
	Drift������������
	Zero Offset (or “Offset,” or “Bias”)���
	Time Delays and Dropped Data�����������������������������������
	Integration Error������������������������

	Techniques to Address Error����������������������������������
	Re-zeroing�����������������
	Filters��������������
	Sensor Fusion��������������������

	Filters��������������
	Low-Pass���������������
	Weighted Smoothing�������������������������
	Simple Moving Average (SMA)����������������������������������
	Choosing the Smoothing Parameter���������������������������������������
	Averaging: Smoothness vs. Response Time��
	Simple Moving Median (SMM)���������������������������������

	High-Pass����������������
	Inverse Low-Pass Filter������������������������������

	Bandpass���������������
	Introducing Kalman Filters���������������������������������

	A Better Determination of Orientation by Using Sensor Fusion���
	Sensor Fusion: Simple vs. Proprietary��
	Proprietary Sensor Fusion��������������������������������
	Simple Sensor Fusion: The Balance Filter���

	Summary��������������

	Chapter 7: Determining Device Orientation��
	Previewing the Example App���������������������������������
	Determining Device Orientation�������������������������������������
	Gravity Sensor���������������������
	Accelerometer and Magnetometer�������������������������������������
	Gravity Sensor and Magnetometer��������������������������������������
	Rotation Vector����������������������
	Implementation Details�����������������������������
	Processing Gravity Sensor Data�������������������������������������
	Processing Accelerometer and Magnetic Field Data���
	Processing Rotation Vector Data��������������������������������������
	Notifying the User of Orientation Changes��

	NorthFinder������������������
	Summary��������������

	Chapter 8: Detecting Movement������������������������������������
	Acceleration Data������������������������
	Accelerometer Data�������������������������
	Linear Acceleration Sensor Data��������������������������������������
	Data While Device Is in Motion�������������������������������������
	Total Acceleration�������������������������

	Implementation���������������������
	DetermineMovementActivity��������������������������������
	AccelerationEventListener��������������������������������

	Summary��������������

	Chapter 9: Sensing the Environment���
	Barometer vs. GPS for Altitude Data��
	Example App Overview���������������������������
	Implementation Details�����������������������������
	GPS-Based Altitude�������������������������
	Barometric Pressure–Based Altitude���

	Relative Altitude������������������������

	Summary��������������

	Chapter 10: Android Open Accessory���
	A Short History of AOA�����������������������������
	USB Host Versus USB Accessory������������������������������������
	Electrical Power Requirements������������������������������������
	Supported Android Devices��������������������������������

	The Android Development Kit (ADK)��
	Hardware Components��������������������������
	Software Components��������������������������

	AOA Sensors versus Native Device Sensors���
	AOA Beyond Sensors�������������������������
	AOA Limitations����������������������
	AOA and Sensing Temperature����������������������������������
	Implementation���������������������
	Requirements�������������������
	Getting Started with the Arduino Software��
	Arduino Sketch���������������������
	Android Code�������������������
	Communication between Arduino and Android��

	Taking an Android Accessory to the Consumer Market���
	Summary��������������

	Part III: Sensing the Augmented, Pattern-Rich External World���
	Chapter 11: Near Field Communication (NFC)���
	What Is RFID?��������������������
	What Is NFC?�������������������
	The NDEF Data Format���������������������������
	How and Where to Buy NFC Tags������������������������������������
	NDEF-compatible NFC Tags�������������������������������
	Storage Size versus Price versus Security Trade-off��
	Write Protection�����������������������
	Form Factor������������������
	Retailers����������������

	General Advantages and Disadvantages of NFC��
	Low Power and Proximity Based������������������������������������
	Small, Short Data Bursts�������������������������������
	Singular Scanning������������������������
	Security���������������
	Card Emulation���������������������
	Android-specific Advantage: Intents��
	Required Hardware������������������������

	Building an Inventory Tracking System��
	The Scenario�������������������
	The NFC Inventory Demonstration App��
	Enabling NFC in the Settings�����������������������������������
	Debugging Your Tags with Apps������������������������������������

	Android APIs�������������������
	In Your AndroidManifest.xml File���������������������������������������
	Permissions and Minimum API Level��
	Intent Filters���������������������
	Custom MIME Type Intent Filters��������������������������������������
	URI-based Intent Filters�������������������������������

	In Your Main Activity Class����������������������������������
	NfcManager�����������������
	NfcAdapter�����������������
	Foreground Dispatching�����������������������������
	Foreground NDEF Push���������������������������
	Reacting to an NDEF Tag������������������������������
	NdefMessage and NdefRecord���������������������������������
	Parsing and Reading NDEF Tags������������������������������������
	Getting Ready to Write to a Tag��������������������������������������
	Writing to the Tag�������������������������

	Putting it All Together������������������������������

	Future Considerations����������������������������
	NFC N-Mark�����������������
	Peer-to-Peer NFC Sharing�������������������������������
	Peer-to-Peer Android APIs��������������������������������

	Go Forth and NFC!������������������������
	Summary��������������

	Chapter 12: Using the Camera�����������������������������������
	Using the Camera Activity��������������������������������
	Controlling the Camera with Your Own Activity��
	Claiming and Releasing a Camera��������������������������������������
	The Preview View�����������������������

	Controlling the Camera�����������������������������
	Orientation������������������
	Zoom�����������
	Focus������������
	Switching Cameras������������������������
	Flash������������
	Other Camera Parameters������������������������������

	Creating a Simple Barcode Reader���������������������������������������
	Understanding Barcodes�����������������������������
	Parity and Implied First Digit�������������������������������������
	The Check Digit����������������������
	Right Half of the Barcode��������������������������������

	Autofocus����������������
	Using the Camera Preview Image and Detecting the Barcode���
	Debugging Image Processing Programs on Android���

	Detecting the Barcode����������������������������

	Summary��������������

	Chapter 13: Image-Processing Techniques��
	The Structure of Image-Processing Programs���
	The Image-Processing Pipeline������������������������������������
	Common Image-Processing Operations���
	Image-to-Image Operations��������������������������������
	Image-to-Object Operations���������������������������������

	Jon’s Java Imaging Library (JJIL)��
	Image������������
	PipelineStage��������������������
	Sequence���������������
	Ladder�������������

	JJIL and Detecting the Android Logo��
	Choose the Right Image Size����������������������������������
	Improving Reliability in Image Processing��

	Detecting Faces����������������������
	Image-Processing Resources���������������������������������
	Summary��������������

	Chapter 14: Using the Microphone���������������������������������������
	Introducing the Android Clapper��������������������������������������
	Using MediaRecorder to Analyze Maximum Amplitude���
	Recording Maximum Amplitude����������������������������������
	Asynchronous Audio Recording�����������������������������������

	Implementing a Clapper�����������������������������
	Analyzing Raw Audio��������������������������
	Setting Audio Input Parameters�������������������������������������
	Preparing AudioRecord����������������������������
	Recording Audio����������������������
	Using OnRecordPositionUpdateListener���

	Using Loud Noise Detection���������������������������������
	Using Consistent Frequency Detection���
	Estimating Frequency���������������������������
	Implementing the Singing Clapper���������������������������������������

	Summary��������������

	Part IV: Speaking to Android�����������������������������������
	Chapter 15: Designing a Speech-enabled App���
	Know Your Tools����������������������
	User Interface Screen Flow���������������������������������
	Voice Action Types�������������������������
	Voice User Interface (VUI) Design��
	Deciding Appropriate Tasks for Voice Actions���
	Designing What the App and Users Will Say��
	Constrain Speech Input to Increase Accuracy��
	Train Users to Know What They Can Say��
	Prompt the Users so They Know What to Say��
	Confirm Success and Help Users Recover from Errors���
	Help Users Recover from Accidental Speech Activation���
	Teach Users Proper Speech Hygiene��
	Use Menus Cautiously���������������������������

	After the Design�����������������������

	Testing Your Design��������������������������
	Summary��������������
	References�����������������

	Chapter 16: Using Speech Recognition and Text-to-Speech APIs���
	Text-To-Speech���������������������
	Initialization���������������������
	Initialization with Locale���������������������������������
	Check TTS Data Action����������������������������

	Speaking���������������
	Speaking a Script������������������������

	Speech Recognition�������������������������
	Initializing�������������������
	Using the RecognizerIntent���������������������������������
	The Speech Recording Process�����������������������������������
	Configuring and Processing the Result��
	RecognizerIntent Use Cases���������������������������������
	Implementation���������������������

	Direct Speech Recognition Using SpeechRecognizer���
	Summary��������������

	Chapter 17: Matching What Was Said���
	Parts of a Voice Command�������������������������������
	Word Spotting��������������������
	Indexing to Improve Word Spotting��
	Stemming���������������
	Phonetic Indexing������������������������

	Matching Command Words in Persistent Storage���
	SQLite Full Text Search������������������������������
	Using the LIKE Operator������������������������������
	Using the FTS MATCH Operator�����������������������������������
	Implementing FTS�����������������������

	Word Searching with Lucene���������������������������������

	Multi-part Commands��������������������������
	Ignoring Potential Collisions������������������������������������
	Considering Ordering���������������������������

	Using a Grammar����������������������
	Summary��������������

	Chapter 18: Executing Voice Actions��
	Food Dialogue VUI Design�������������������������������
	Defining and Executing Voice Actions���
	Executing VoiceActionCommands������������������������������������
	Implementing an AlertDialog for VoiceActions���
	Implementing Multi-Turn Voice Actions��
	Implementing Multi-Turn AddFood��������������������������������������
	Implementing Multi-Turn RemoveFood���

	Making a Best Guess��������������������������
	Relaxing Strictness Between Commands���
	Making an Educated Guess�������������������������������

	Responding When Recognition Fails��
	Determining Not a Command��������������������������������
	Determining Inaccurate Recognition���
	Not Understanding������������������������

	Summary��������������

	Chapter 19: Implementing Speech Activation���
	Implementing Speech Activation�������������������������������������
	Starting Speech Recognition����������������������������������
	Implementing Speech Activation within an Activity��
	Activating Speech Recognition with Movement Detection��
	Activating Speech Recognition with the Microphone��
	Activating Speech Recognition with Continuous Speech Recognition���
	Activating Speech Recognition with NFC���

	Implementing Persistent Speech Activation��
	Using a Service for Persistent Speech Activation���

	Summary��������������

	Index������������
	Advertisements

