

Wireshark	2	Quick	Start	Guide

	

	

	

	

	

Secure	your	network	through	protocol	analysis

	

	

	

	

	

	

	

	

	

	

	

	

Charit	Mishra

	

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Wireshark	2	Quick	Start	Guide
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Vijin	Boricha
Acquisition	Editor:	Reshma	Raman
Content	Development	Editor:	Aditi	Gour
Technical	Editor:	Shweta	Jadhav
Copy	Editor:	Safis	Editing
Project	Coordinator:	Hardik	Bhinde
Proofreader:	Safis	Editing
Indexer:	Aishwarya	Gangawane
Graphics:	Jason	Monteiro
Production	Coordinator:	Deepika	Naik

First	published:	June	2018

Production	reference:	1200618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78934-278-9

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Charit	Mishra	is	an	ICS/SCADA	professional,	working	as	a	security	architect
for	critical	infrastructure	across	several	industries,	including	oil	and	gas,	mining,
utilities,	renewable	energy,	transportation,	and	telecom.	He	has	been	involved	in
leading	and	executing	complex	projects	involving	the	extensive	application	of
security	standards,	frameworks,	and	technologies.	A	postgraduate	in	computer
science,	Charit's	profile	boasts	of	leading	industry	certifications	such	as	OSCP,
CEH,	CompTIA	Security+,	and	CCNA	R&S.	Moreover,	he	regularly	delivers
professional	training	and	knowledge	sessions	on	critical	infrastructure	security
internationally.

	

About	the	reviewer
Anish	has	a	YouTube	channel	named	Zariga	Tongy	where	he	loves	to	post
videos	on	security,	hacking	and	other	cloud	related	technology.

	

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

	

Title	Page

	

Copyright	and	Credits

Wireshark	2	Quick	Start	Guide

	

Packt	Upsell

Why	subscribe?

	

PacktPub.com

	

Contributors

About	the	author

	

About	the	reviewer

	

Packt	is	searching	for	authors	like	you

	

Preface

Who	this	book	is	for

	

What	this	book	covers

	

To	get	the	most	out	of	this	book

Download	the	color	images

	

Conventions	used

	

Get	in	touch

Reviews

	

1.	 Installing	Wireshark

Introduction	to	Wireshark

Why	use	Wireshark?

The	installation	process

	

Troubleshooting	common	installation	errors

	

A	brief	overview	of	the	TCP/IP	model

	

The	layers	in	the	TCP/IP	model

	

Summary

	

2.	 Introduction	to	Wireshark	and	Packet	Analysis

What	is	Wireshark?

How	Wireshark	works

	

An	introduction	to	packet	analysis	with	Wireshark

How	to	do	packet	analysis

	

Capturing	methodologies

Hub-based	networks

	

The	switched	environment

	

ARP	poisoning

	

Passing	through	routers

	

The	Wireshark	GUI

	

Starting	our	first	capture

	

Summary

	

3.	 Filtering	Our	Way	in	Wireshark

Introducing	filters

	

Capture	filters

Why	use	capture	filters

	

How	to	use	capture	filters

	

An	example	capture	filter

	

Display	filters

	

Retaining	filters	for	later	use

	

Searching	for	packets	using	the

Find	dialog

Colorize	traffic

	

Create	new	Wireshark	profiles

	

Summary

	

4.	 Analyzing	Application	Layer	Protocols

Domain	Name	System	(DNS)

Dissecting	a	DNS	packet

	

Dissecting	DNS	query/response

	

File	transfer	protocol

Dissecting	FTP	communication	packets

	

Hypertext	Transfer	Protocol	(HTTP)

How	request/response	works

	

Request

	

Response

	

Simple	Mail	Transfer	Protocol	(SMTP)

Dissecting	SMTP	communication	packets

	

Session	Initiation	Protocol	(SIP)	and	Voice	Over	Internet	Protocol(VOIP)

Reassembling	packets	for	playback

	

Decrypting	encrypted	traffic	(SSL/TLS)

	

Summary

	

5.	 Analyzing	the	Transport	Layer	Protocols	TCP/UDP

The	transmission	control	protocol

Understanding	the	TCP	header	and	its	various	flags

	

How	TCP	communicates

How	it	works

	

How	sequence	numbers	are	generated	and	managed

	

RST	(reset)	packets

	

Unusual	TCP	traffic

	

The	User	Datagram	Protocol

The	UDP	header

	

How	it	works

The	DHCP

	

The	TFTP

	

Unusual	UDP	traffic

	

Summary

	

6.	 Network	Security	Packet	Analysis

Information	gathering

PING	sweep

	

Half-open	scan	(SYN)

	

OS	fingerprinting

	

ARP	poisoning

	

Analysing	brute	force	attacks

Inspecting	malicious	traffic	(malware)

	

Summary

	

7.	 Analyzing	Traffic	in	Thin	Air

Understanding	IEEE	802.11

Various	modes	in	wireless	communications

	

Usual	and	unusual	wireless	traffic

WPA	Enterprise

	

Decrypting	wireless	network	traffic

	

Summary

	

8.	 Mastering	the	Advanced	Features	of	Wireshark

The	Statistics	menu

Using	the	Statistics	menu

Protocol	Hierarchy

	

Conversations

	

Endpoints

	

Follow	TCP	Streams

	

Command	line-fu

	

Summary

	

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

	

Preface
	

Wireshark	is	the	world's	most	popular	free	and	open	source	protocol	analyzer,
and	it	is	commonly	used	by	networking	and	security	professionals	for
troubleshooting,	analysis,	protocol	development,	and	forensics.	The	primary
objective	of	Wireshark	is	to	capture	network	traffic	and	display	the	packet	data
in,	as	detailed	a	way	as	possible.	It	helps	professionals	view	the	content	of
network	traffic	on	a	microscopic	level.

This	book	is	written	from	the	standpoint	of	using	Wireshark	and	learning	how
network	protocols	function	and	provides	a	practical	approach	to	conducting
protocol	analysis,	troubleshooting	network	anomalies,	and	examining	security
issues.	I	have	tried	to	depict	common	scenarios	that	you	may	come	across	in
day-to-day	operations	through	practical	demonstration	wherever	possible	to	help
you	understand	the	concepts	better.	By	reading	this	book,	you	will	learn	how	to
install	Wireshark,	work	with	Wireshark	GUI	elements,	and	learn	some	advanced
features	behind	the	scenes,	such	as	the	filtering	options,	the	statistics	menu,	and
decrypting	wireless	and	encrypting	traffic.	You	can	be	the	superhero	of	your
team	who	helps	resolve	connectivity	issues,	network	administration	tasks,	and
computer	forensics	because	Packets	Are	Life.	If	your	routine	job	requires	dealing
with	computer	networks	and	security,	then	this	book	will	give	you	a	strong	head
start.	Happy	sniffing!

	

	

	

Who	this	book	is	for
This	book	is	for	students/professionals	who	have	basic	experience	and
knowledge	of	the	networking	and	who	want	to	get	up	to	speed	with	Wireshark	in
no	time.	This	book	will	take	you	from	the	installation	to	the	usage	of	commonly
used	tools/tricks.	The	book	will	get	you	comfortable	with	the	GUI	elements	of
Wireshark	and	explain	the	fundamentals	of	the	science	behind	protocol	analysis.

	

What	this	book	covers
Chapter	1,	Installing	Wireshark,	will	provide	you	with	an	introduction	to	the
basics	of	the	TCP/IP	model	and	a	step-by-step	walk-through	of	the	installation	of
Wireshark	on	your	favorite	operating	system.

Chapter	2,	Introduction	to	Wireshark	and	Packet	Analysis,	will	help	you
understand	the	basics	and	science	behind	packet	analysis,	as	Wireshark	come	in
handy	and	proves	to	be	a	Swiss	Army	knife	for	professionals	dealing	with
network,	security,	and	digital	forensics.	In	this	chapter,	you	will	also	understand
the	trick	of	placing	the	sniffer	in	a	strategic	location	to	get	most	out	of	your
network.

Chapter	3,	Filtering	Our	Way	in	Wireshark,	will	help	you	identify	and	apply	the
Wireshark	filters,	namely	the	capturing	and	displaying	filters.	Filtering	provides
a	powerful	way	to	capture	or	see	the	traffic	you	desire;	it's	an	effective	way	to
remove	the	noise	from	the	stream	of	packets	we	desire	to	analyze.

Chapter	4,	Analyzing	Application	Layer	Protocols,	will	help	you	understand	the
approach	and	methodology	for	analyzing	application	layer	protocols	such	as
HTTP,	SMTP,	FTP,	and	DNS	through	Wireshark.	As	we	know,	application	layer
protocols	typically	interface	between	a	client	and	a	server.	It	is	critical	to
understand	the	structure	and	behavior	of	application	layer	protocols	packets	in
order	to	identify	anomalies	with	efficiency.

Chapter	5,	Analyzing	the	Transport	Layer	Protocols	TCP/UDP,	will	help	you
understand	the	underlying	network	technology,	enabling	the	movement	of
network	packets	across	routing	infrastructures	through	the	analysis	of	transport
layer	protocols	such	as	TCP	and	UDP.	TCP	and	UDP	are	the	basis	of	networking
protocol,	and	it	is	important	to	understand	their	structure	and	behavior.

Chapter	6,	Network	Security	Packet	Analysis,	will	guide	you	through	using
Wireshark	to	analyze	security	issues,	such	as	analyzing	malware	traffic	and
footprinting	attempts	in	your	network.

Chapter	7,	Analyzing	Traffic	in	Thin	Air,	will	help	you	in	understand	the

methodology	and	approach	involved	in	performing	wireless	packet	analysis.
This	chapter	shows	you	how	to	analyze	wireless	traffic	and	pinpoint	any
problems	that	may	follow.	We	will	also	learn	the	cool	trick	of	decrypting
wireless	traffic	using	Wireshark.

Chapter	8,	Mastering	the	Advanced	Features	of	Wireshark,	will	provide	you	with
insight	into	the	advanced	options	and	elements	available	in	Wireshark,	such	as	a
statistics	menu,	and	will	also	provide	a	brief	and	summarized	approach	on	how
to	work	with	command-line	packet	sniffing	applications,	such	as	Tshark.

To	get	the	most	out	of	this	book
Basic	understanding	of	networking	protocols,	OSI	and	TCP/IP	model
A	computer	system	with	a	basic	internet	connection	to	follow	the	depicted
scenarios

	

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/f
iles/downloads/Wireshark2QuickStartGuide_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/Wireshark2QuickStartGuide_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

	

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

Installing	Wireshark
	

This	chapter	provides	you	with	an	introduction	to	the	basics	of	the	TCP/IP	model
and	a	step-by-step	walkthrough	of	how	to	install	Wireshark	on	your	favorite
operating	system.	You	will	be	introduced	to	the	following	topics:

What	is	Wireshark?
A	brief	overview	of	the	TCP/IP	model
Installing	and	running	Wireshark	on	different	platforms
Troubleshooting	common	installation	errors

	

	

Introduction	to	Wireshark
Wireshark	is	an	advanced	network	and	protocol	analyser,	it	lets	you	visualize
network's	activity	in	graphical	form,	and	assists	professionals	in	debugging
network-level	issues.	Wireshark	enhances	the	ability	of	network	and	security
professionals	by	providing	detailed	insight	into	the	network	traffic.	However,
Wireshark	is	also	used	by	malicious	users	to	sniff	network	traffic	in	order	to
obtain	sensitive	data	in	the	form	of	plain	text.

	

Why	use	Wireshark?
	

Many	people,	including	myself,	are	obsessed	with	the	simplicity	of	the	packet-
capturing	features	that	Wireshark	provides	us	with.	Let's	quickly	go	through	a
few	of	the	reasons	why	most	professionals	prefer	Wireshark	to	other	packet
sniffers:

User	friendly:	The	interface	of	Wireshark	is	easy	to	use	and	understand,
tools	&	features	are	very	well	organized	and	represented.
Robustness:	Wireshark	is	capable	of	handling	enormous	volumes	of
network	traffic	with	ease.
Platform	independent:	Wireshark	is	available	for	different	flavors	of
operating	system,	whether	Windows,	Linux,	and	Macintosh.
Filters:	There	are	two	kinds	of	filtering	options	available	in	Wireshark:

You	choose	what	to	capture	(capture	filters)
You	choose	what	to	display	after	you've	captured	(display	filters)

Cost:	Wireshark	is	a	free	and	open	source	packet	analyzer	that	is	developed
and	maintained	by	a	dedicated	community	of	professionals.	Wireshark	also
offers	a	few	paid	professional	applications	as	well.	For	more	details,	refer	to
Wireshark's	official	website	https://www.wireshark.org/.
Support:	Wireshark	is	being	continuously	developed	by	a	group	of
contributors	that	are	scattered	around	the	globe.	We	can	sign	up	to
Wireshark's	mailing	list	or	we	can	get	help	from	the	online	documentation,
which	can	be	accessed	through	the	GUI	itself.	Various	other	online	forums
are	also	available	for	you	to	get	the	most	effective	help;	go	to	Google	Paid
Wireshark	Support	to	learn	more	about	the	available	support.

	

	

https://www.wireshark.org/

The	installation	process
	

The	installation	of	Wireshark	is	very	simple	and	easy	to	follow.	Go	through	the
following	steps	to	install	it	on	your	system:

1.	 The	recipes	and	examples	in	this	book	will	be	for	use	on	a	Macintosh	and
Windows	PC;	for	other	operating	systems,	the	installation	is	the	same.
Some	OSes,	such	as	Kali	Linux,	come	with	a	preinstalled	version	of
Wireshark.

2.	 Once	you	have	located	the	correct	version	of	Wireshark	for	your	platform
(Wireshark	2.6.1	Intel	64.dmg),	install	Wireshark	by	following	the	wizard.

3.	 Restart	the	computer	after	completion	of	the	installation	process	to	commit
the	changes	that	were	made.

4.	 Double-click	the	Wireshark	icon	on	your	desktop	to	the	run	the	application:

The	Wireshark	screen

	

	

	

Troubleshooting	common	installation
errors
	

Go	through	the	following	simple	checklist	to	ensure	that	you	are	able	to	run
Wireshark	successfully	(make	sure	that	all	of	these	criterias	are	met):

You	have	downloaded	Wireshark	from	known	and	trusted	source	only
You	have	administrative	privileges	to	run	Wireshark
The	installation	of	Wireshark	and	the	Winpcap	driver	has	been	completed
successfully	without	any	exceptions
You	are	connected	to	the	network	that	you	want	to	capture	network	traffic
from
If	you	are	trying	to	sniff	using	a	virtual	machine,	ensure	that	you	have	set
your	network	adapter	to	bridged	mode
Restart	your	machine	to	ensure	the	changes	have	been	applied	after
successful	installation	of	Wireshark
Your	NIC	card	supports	promiscuous	mode	sniffing	(when	needed)
You	can	see	all	of	the	interfaces	(wired,	wireless,	and	logical)	on	the	home
screen	of	Wireshark
The	line	graph	followed	by	the	interface	name	shows	activity	on	the
Homescreen
Also,	you	have	legal	permissions	to	capture	network	traffic

	

	

A	brief	overview	of	the	TCP/IP	model
The	world	of	network	communication	is	governed	by	a	set	of	protocols	(rules
and	regulations)	in	order	to	function	as	intended.	Protocols	govern	the
transmission	of	network	packets/segments/frames	over	a	communication	channel
between	endpoints.	In	order	to	understand	how	network	packets	stick	together,
forming	a	stream	of	traffic,	we	need	to	understand	the	basics	of	the	networking
that	is	the	TCP/IP	model.	The	TCP/IP	model	was	originally	known	as	the	DoD
model,	a	project	that	was	regulated	by	the	United	States	Department	of	Defense.
All	of	the	communication	that	we	witness	over	the	internet	and	other	networks
happens	only	through	TCP/IP.

The	TCP/IP	model	takes	care	of	every	part	of	packet's	life	cycle,	namely,	how	a
packet	comes	to	life,	how	a	packet	is	generated,	how	information	pertaining	to
packet	gets	attached	data	payload	(PDU),	how	it	is	routed	through	intermediary
nodes,	linking	with	other	packets	and	so	on.

It	is	strongly	recommended	to	do	some	self-study	on	TCP/IP	and	how	it
functions,	before	you	proceed	ahead,	as	this	book	requires	decent	amount	of
familiarity	with	protocols.

The	layers	in	the	TCP/IP	model
The	TCP/IP	model	comprises	four	layers,	as	shown	in	the	following	diagram.
Each	layer	has	a	specific	purpose	to	fulfill	and	utilizes	a	set	of	protocols	to
facilitate	communications.	Every	protocol	in	every	layer	has	a	specific	purpose:

The	first	layer	is	the	Application	Layer,	which	directly	interacts	with	users	and
subsequent	layers	and	protocols;	it	is	primarily	concerned	with	the	representation
of	the	data	in	a	understandable	format	to	the	user.	The	application	layer	also
keeps	track	of	user	sessions,	monitoring	who	is	connected;	it	uses	a	set	of
protocols	that	helps	to	interface	with	users	and	other	layers	in	the	TCP/IP	model.
Some	popular	protocols	in	the	Application	Layer	are	as	follows:

Hypertext	Transfer	Protocol	(HTTP)
File	Transfer	Protocol	(FTP)
Simple	Network	Management	Protocol	(SNMP)
Simple	Mail	Transfer	Protocol	(SMTP)

The	second	layer	is	the	Transport	Layer.	The	purpose	of	this	layer	is	to	create
sockets	(a	combination	of	the	port	and	IP	address)	in	order	to	let	two	endpoints
communicate.	Sockets	facilitate	the	creation	of	multiple	distinct	connections
between	two	or	more	devices	(more	than	one	tab	can	be	opened	in	Chrome).

An	IP	address	is	required	for	communication	between	devices	in	different
networks/segments	(such	as	is	used	between	two	router	interfaces	or
communication	over	the	internet).	It	can	also	be	used	in	local	area	network
(LAN)	communication,	and	is	established	over	physical	addresses	(MAC).	Apart

from	the	restricted	range	of	port	numbers,	operating	systems	and	applications
can	choose	a	random	port	(other	than	ports	1	to	1013)	for	communication.

The	transport	layer	also	serves	as	a	backbone	for	the	communication.	The	two
most	critical	protocols	that	work	in	this	layer	are	the	TCP	and	UDP:

The	TCP	is	a	connection-oriented	protocol,	also	called	a	reliable	protocol.
Firstly,	a	dedicated	communication	channel	is	established	between	the
endpoints,	which	is	then	followed	by	data	transmission.	Equally	partitioned
chunks	are	transmitted	from	the	source,	and	the	receiving	end	sends	an
acknowledgement	for	every	packet	received.	The	side	that	is	sending	the
data	resends	the	packet	if	an	acknowledgement	is	not	received	within	a
stated	time	frame.
The	UDP	is	a	connectionless	protocol	and	is	often	called	an	unreliable
communication	form.	In	the	UDP,	no	dedicated	channel	is	established,
which	also	makes	it	a	simpler	and	faster	way	of	communication.	There	are
also	no	acknowledgement	packets	sent	by	the	endpoints.	For	example,	if
you	are	playing	an	online	game,	the	loss	of	a	few	packets	over	the
communication	channel	is	not	going	to	hamper	your	gaming	experience
because	the	number	of	packets	coming	through	is	huge,	and	a	few	missing
packets	will	not	make	much	difference	to	the	overall	quality	of	the	network
stream.

The	third	layer	is	the	Internet	Layer,	which	is	primarily	concerned	with	routing
and	movement	of	data	between	networks.	The	primary	protocol	that	works	in
this	layer	is	the	IP	(Internet	Protocol).	The	IP	provides	the	network	packets
with	the	routing	capability	that	they	need	in	order	to	reach	their	destination.
Other	protocols	included	in	this	layer	are	the	ICMP	and	IGMP.

The	fourth	and	final	layer	is	the	Link	Layer	(often	called	the	network	interface
layer).	It	interfaces	with	the	physical	network	hardware.	There	are	no	protocols
specified	in	this	layer	by	the	TCP/IP;	however,	several	protocols	are
implemented,	such	as	the	Address	Resolution	Protocol	(ARP)	and	the	Point	to
Point	Protocol(PPP).	This	layer	is	concerned	with	how	information	travels
inside	the	communication	channel	(wired	or	wireless).	The	link	layer	is
responsible	for	establishing	and	terminating	the	connection,	as	well	as
converting	the	signals	from	analog	to	digital	and	vice	versa.	Devices	such	as
bridges	and	switches	operate	in	this	layer.

As	data	progresses	from	the	application	layer	to	the	link	layer,	several	bits	of
information	are	attached	to	the	data	in	the	form	of	headers	or	footers,	which
allow	different	layers	of	the	TCP/IP	to	communicate	with	each	other.	The
process	of	adding	these	extra	bits	is	called	data	encapsulation,	and	in	this
process,	a	protocol	data	unit	(PDU)	is	created	at	the	end	of	the	networking
process	(passing	through	the	application	to	the	link	layer).

PDU	consists	of	the	data	along	with	network	addressing	and	protocol
information	that	gets	attached	as	part	of	the	header	or	footer.	By	the	time	PDU
reaches	the	bottom-most	layer,	it	is	embedded	with	all	the	required	information
necessary	for	transmission.	Once	the	PDU	reaches	the	destination,	the	attached
header	and	footer	PDU	elements	are	ripped	off	one	by	one	as	it	passes	through
each	layer	of	the	TCP/IP	model	and	progresses	upward	in	the	model.

The	following	diagram	depicts	the	process	of	encapsulation:

Summary
In	this	chapter,	we	looked	at	the	basic	networking	concepts	that	you	need	to
know,	along	with	an	introduction	to	Wireshark.	Wireshark	is	a	protocol	analyzer
that	is	used	worldwide	by	technology	professionals	to	capture	and	analyze
network-level	packets.

We	also	learned	about	the	TCP/IP	model.	The	TCP/IP	model	has	four	layers:	the
application	layer,	transport	layer,	network	layer,	and	the	link	layer.	Data	is
encapsulated	as	it	passes	from	one	layer	to	another;	the	resulting	packet	at	the
bottom	is	called	a	complete	PDU.

The	TCP	is	a	reliable	protocol	because	acknowledgements	are	sent	as	part	of	its
process,	whereas	the	UDP	is	an	unreliable	protocol	because	no
acknowledgements	are	sent.

To	install	Wireshark,	you	just	need	to	visit	http://www.wireshark.org	and	then
download	the	appropriate	version	for	your	operating	system.

Troubleshooting	your	Wireshark	can	be	done	by	ensuring	that	the	network	is
working	fine,	that	you	have	the	full	rights	required	to	install	and	run	the
application,	and	that	the	installation	had	completed	without	any	exceptions.

In	the	next	chapter	we	will	run	our	first	Wireshark	capture	and	get	to	feel	the
protocol	analysis	experience.

http://www.wireshark.org

Introduction	to	Wireshark	and
Packet	Analysis
	

This	chapter	will	help	you	to	understand	the	basics	and	science	behind	packet
analysis.	Wireshark	comes	in	very	handy	and	proves	something	of	a	Swiss	knife
for	professionals	dealing	with	network,	security,	and	digital	forensic	roles.	You
will	learn	about	the	following	topics	in	this	chapter:

Introduction	to	Wireshark
How	Wireshark	works
Capturing	methodologies
Understanding	the	GUI	of	Wireshark
Starting	our	first	capture

	

	

What	is	Wireshark?
	

Wireshark	is	a	packet-sniffing	application	that	is	used	by	IT	professionals	for	a
diverse	set	of	requirements	(including	forensics,	troubleshooting,	and	enhancing
network	performance).	You	can	download	it	for	free	from	https://www.wireshark.org
/download.html,	where	it	is	available	for	the	majority	of	platforms,	including	Linux,
Macintosh,	and	Windows.

Packet	sniffing	is	also	referred	to	as	tapping	into	the	wire,	which	basically
involves	reading	pieces	of	information	traveling	in	a	communication	channel.
Considerations	such	as	placement	of	sniffer,	protocols	to	be	analyzed,	and
communication	channel	type	need	to	be	assessed	before	capturing	network
packets.

	

	

	

https://www.wireshark.org/download.html

How	Wireshark	works
Wireshark	collects	network	traffic	from	the	wire	through	the	computer's	network
interface,	running	in	promiscuous	mode	(if	needed),	to	inspect	and	display
information	related	to	protocols,	IP	addresses,	ports,	headers,	and	packet	length.
The	following	diagram	is	an	illustration	of	how	all	the	elements	work	together	to
display	packet-level	information	to	the	user	(source:	https://www.wireshark.org):	

Wireshark	comes	with	the	Winpcap/libcap	driver,	which	enables	NIC	to	the	run
in	promiscuous	mode;	the	only	time	you	don't	have	to	sniff	in	promiscuous	mode
is	when	the	packets	are	directly,	intentionally	destined/generated	to	and/or	from
your	device.

On	operating	systems,	you	should	have	privileges	to	run	Wireshark.	There	are
three	processes	that	every	protocol	analyzer	follows:	collect,	convert,	and

https://www.wireshark.org

analyze.	These	are	described	as	follows:

Collect:	Choose	an	interface	to	listen	to	traffic	and	capture	network
packets.
Convert:	Increase	the	readability	of	non-human-readable	data.	Packets	are
converted	to	easily	understood	information	through	a	GUI.
Analyze:	Analyze	network	traffic	pertaining	to	the	packets,	protocols,	raw
data	and	more	through	the	usage	of	statistical	and	graphical	features.

As	discussed	in	the	previous	chapter,	protocols	are	the	set	of	rules	and
regulations	that	govern	the	process	of	communication	between	two	network
devices	and	control	the	environment	under	which	they	operate.

An	introduction	to	packet	analysis
with	Wireshark
	

Packet/traffic	analysis	deals	with	the	study	of	network	traffic,	where	the
objective	is	to	understand	the	structure,	movement,	and	behavior	of	packets.
Packet	analysis	is	performed	over	live	traffic	or	done	over	an	already	captured
stream	of	traffic.

Numerous	issues	arise	in	day-to-day	networking	infrastructures,	and	if	you	are
responsible	for	handling	the	network	or	security	of	your	digital	environment,	you
need	to	equip	yourself	with	troubleshooting	and	analytical	tools.	Most	of	the
issues	escalate	and	are	rectified	at	the	packet	level	in	networking.	Issues	arising
at	the	packet	level	can	gradually	end	up	disrupting	critical	business
communication,	leading	to	loss	of	revenue.	Even	the	best	networking	hardware
utilizing	the	most	advanced	and	secure	set	of	protocols	and	services	can	go
against	you	or	behave	abnormally.	To	perform	a	root	cause	analysis	in	such
situations,	you	might	need	to	dig	down	to	the	packet	level	in	order	to	understand
the	anomaly.	Packet	analysis	can	be	used	for	the	following	purposes:

To	analyze	network	issues	by	looking	into	the	packets	and	their	headers	to
gain	better	insights.
To	detect	and	analyze	network	intrusion	attempts	through	filtering	patterns
and	signatures.
To	detect	network	misuse	by	internal	or	external	users	by	establishing
firewall	rules	in	your	security	appliance	and	then	monitoring	those	rules.
To	study	and	isolate	exploited	systems	so	that	the	affected	system	doesn't
become	a	pivot	point.
To	monitor	and	analyze	data	in	motion	as	it	travels	live	in	the	wires	of	your
network.
To	have	better	control	over	the	allowed	and	restricted	categories	of
information	traveling	in	your	network.	For	instance,	say	you	want	to	create
a	rule	in	the	firewall	that	will	block	access	to	torrent	sites	(peer-to-peer	file
sharing).	Blocking	access	to	them	can	be	done	from	your	manageable	router

through	access	lists	also,	but	the	origin	of	such	packets	can	be	identified
and	validated	through	traffic	analysis.
To	gather	and	report	network	statistics	by	filtering	packet	trails.
To	learn	who	is	on	a	live	network	and	what	they	are	doing	(they	may	be
consuming	network	bandwidth	or	trying	to	connect	to	restricted	websites),
and	to	learn	whether	someone	is	trying	to	bypass	the	network	restrictions
you	configured.
To	debug	client/server	communications	so	that	all	the	requests	and	replies
communicated	on	your	network	can	be	audited.
To	identify	applications	that	are	sitting	in	the	corner	of	your	network	and
consuming	the	bandwidth.	They	might	be	making	your	network	insecure,
unresponsive,	or	visible	to	the	public	network.
To	debug	network	protocol	implementations	and	any	anomalies	being
generated	due	to	unintentional	misconfigurations	errors	or	human	error.
To	identify	abnormal/malicious	traffic	patterns	that	your	network,	then	to
analyze,	control/supervise,	and	make	yourself	ready	for	such	events.

When	performing	packet	analysis,	the	things	to	be	considered	are	as	follows:

The	protocol(s)	to	be	interpreted
Whether	you	need	to	capture	traffic	from	all	sources	and	all	destinations
Placing	your	sniffer	adequately
Capturing	traffic	pertaining	to	a	particular	port	or	service	to	avoid	unwanted
noise

You	should	record	and	build	use	cases	pertaining	to	the	network	traffic	pattern
and	behavior.	Use	cases	may	assist	engineers	in	troubleshooting	network	issues.

Packet	analyzers	can	interpret	most	networking	protocols	(such	as	IP	and	ICMP),
transport-layer	protocols	(such	as	TCP	and	UDP),	and	application-layer
protocols	(such	as	DNS	and	HTTP).

	

	

	

How	to	do	packet	analysis
Network	packets	are	captured	in	raw	binary	form,	and	passed	through	the
wiretap	library	and	capture	engine,	and	then	to	the	core	engine,	with
its	dissector	plugins	and	filters.	The	translated	data	is	then	displayed	in	packet
frames	through	Graphical	Toolkit	(GTK).

Capturing	methodologies
In	order	to	capture	the	right	set	of	a	packets	stream,	you	would	need	to	know
where	to	place	your	protocol	analyser.	Depending	on	the	requirements	(source	of
packets,	number	of	packets,	type	of	packets,	and	more),	a	protocol	analyzer
needs	to	be	placed	at	a	certain	point	in	the	network.	Also,	a	few	configuration
changes	in	a	network	device	may	be	necessary,	such	as	switch	configuration
changes	(mirroring	is	done	in	network	switches	to	capture	packets	from	one	or
more	sources).	The	following	sub	sections	discuss	a	few	means	of	assessing	the
best	way	of	configuring	protocol	analyses	in	certain	types	of	topology.

	

Hub-based	networks
	

It	is	relatively	easy	to	sniff	in	a	hub-based	network	topology,	because	you've	got
the	freedom	to	place	the	sniffer	at	any	place	you	want,	as	hubs	are	designed	to
broadcast	each	and	every	packet	to	all	connected	devices.

However,	due	to	such	design	deficiencies,	hub-based	network	topologies	face
issues	in	terms	of	overall	performance.	Network	hubs	do	not	have	much
capability	in	terms	of	prioritizing	or	forwarding	traffic	to	specific	ports	only.
They	often	become	victims	of	collision-related	problems.	For	instance,	if	more
than	one	device	connected	to	a	hub	start	sending	data	at	the	same	time,	there	is	a
high	a	probability	that	the	packets	will	collide	and	fail	to	reach	their	destination.
The	sending	side	will	be	informed	of	dropped	packets,	which	will	then	be	re-
sent,	but	it	will	cost	the	network	and	its	administrator	in	time,	improper
bandwidth	utilization,	and	performance	issues.

	

	

	

The	switched	environment
Due	to	relatively	few	restrictions	present	in	switch-based	infrastructures,	packet
analysis	becomes	quite	challenging.	Like	hubs,	switches	do	not	broadcast	the
packets	to	every	network	port	except	the	port	the	packet	is	received	from.	They
learn	the	physical	addresses	of	devices	through	the	ARP	(address	resolution
protocol)	and	populate	a	list	of	port	numbers	with	corresponding	MAC
addresses.	Even	so,	through	some	hardware	or	configurational	changes	it	is
possible	to	capture	packets	from	other	ports.	The	two	most	popular	techniques
are	hubbing	out	and	port	mirroring.

In	order	to	capture	the	stream	of	packets	coming	from	one	or	more	ports,
configure	port	mirroring	using	the	switch	configuration	console.	Most	intelligent
switches	give	the	option	to	configure	it	through	an	easy-to-understand	graphical
interface.

Let's	make	it	simpler	for	you	with	a	logical	illustration.	For	instance,	let's	assume
that	we	have	a	24—port	switch	and	eight	PCs,	which	are	connected	to	different
switch	ports.	We	can	place	our	sniffer	(Wireshark	PC)	in	any	of	the	free	switch
ports	and	then	configure	port	mirroring,	which	will	copy	all	the	traffic	from	the
desired	device	we	want	to	sniff	to	the	port	of	our	choice.	The	following
screenshot	shows	the	set	of	commands	used	in	a	Cisco	Switch	to	configure	port
mirroring:

So,	let's	understand	it	better:	in	the	previous	screenshot,	I	have	configured	what
to	listen	to	all	the	packets	originating	from	port	fa0/2	to	port	fa0/4.	Port	fa0/2	will
be	the	target	machine	and	port	fa0/4	will	be	a	Wireshark	machine.

Once	this	is	completely	configured,	we	will	be	able	to	easily	sniff	and	analyze
network	packets	flowing	back	and	forth	from	port	fa0/2.	This	technique	is	one	of

the	easiest	to	configure;	the	only	thing	you	need	to	know	beforehand	is	how	to
work	with	network	devices.

The	following	diagram	depicts	a	simple	demonstration	of	port	mirroring:

Port	mirroring

Hubbing	out	is	feasible	when	your	switch	doesn't	support	port	mirroring.	To	use
the	technique,	you	must	actually	unplug	the	target	PC	from	the	switched
network,	then	plug	your	hub	to	the	switch,	and	then	connect	your	analyzer	and
target	device	to	the	hub	so	the	target	device	becomes	part	of	the	same	network.

Now	the	protocol	analyzer	and	the	target	machine	are	part	of	the	same	broadcast
domain.	The	following	diagram	will	make	it	easier	for	us	to	understand	the
process	precisely	and	in	a	simpler	way:

Hubbing	out

ARP	poisoning
Poisoning	the	ARP	table	entries	of	a	device	and	then	forwarding	them	through
your	machine	is	one	unethical	way	of	capturing	the	traffic	from	the	target
machine.

Let's	say,	for	example,	we	have	the	default	gateway	at	IP	192.168.1.1	and	one
client	machine	configured	at	IP	192.168.1.2.	Both	of	these	devices	are	maintaining
local	ARP	cache	entries.	That	enables	them	to	send	packets	over	the	LAN.	Now,
the	Wireshark	(use	arpspoof	or	ettercap	to	poison	the	ARP	entries)	machine	at	IP
192.168.1.3	will	poison	the	ARP	cache	entries	by	flooding	the	client	and	gateway
machine	with	multiple	ARP	packets,	stating	to	the	client	PC	that	the	default
gateway	has	been	changed	to	IP	192.168.1.3	and	stating	the	gateway	that	the	client
is	now	at	IP	192.168.1.3;	this	will	make	every	packet	go	through	the	Wireshark
machine.

The	command	to	view	the	ARP	cache	in	your	PC/router/server,	which	will
display	MAC	addresses	associated	for	a	particular	IP	address,	is	arp	-a.	Have	a
look	at	the	normal	ARP	entries:	

ARP	poisoning	(the	normal	scenario)	Here	is	how	the	entries	will	look	before	the	ARP	is	poisoned:	Before	ARP	is	Poisoned

192.68.1.1	-	(Server)	192.68.1.2	-	AA:BB:EE	192.68.1.3	-	AA:BB:DD

192.68.1.2	-	(Client)	192.68.1.1	-	AA:BB:CC	192.68.1.3	-	AA:BB:DD

192.68.1.3	-	(Attacker)	192.68.1.1	-	AA:BB:CC	192.68.1.2	-	AA:BB:EE

	

Now	that	you've	understood	what	the	ARP	is	and	how	it	works,	we	can	try	to	poison	the	ARP	Cache	of	both	the	default	gateway	and

the	client	with	the	attacker's	MAC	address.	In	simple	terms,	we	will	replace	the	client's	MAC	address	in	the	default	gateway's	ARP
cache	with	the	attacker's	MAC	address.	We	will	do	the	same	in	the	client's	MAC	address,	replacing	the	default	gateway's	MAC	address
with	the	attacker's	MAC	address.	As	a	result,	every	packet	destined	to	the	client	from	the	default	gateway	back	and	forth	will	be	sent
through	the	attacker's	machine.	Below	are	the	ARP	entries	from	the	client,	the	server,	and	the	attacking	machine	after	a	successful
poisoning	attack.

After	ARP	is	Poisoned	

192.68.1.1	-	(Server)	

192.68.1.2	-	AA:BB:DD	

192.68.1.3	-	AA:BB:DD	

192.68.1.2	-	(Client)	

192.68.1.1	-	AA:BB:DD

192.68.1.3	-	AA:BB:DD	

192.68.1.3	-	(Attacker)	

192.68.1.1	-	AA:BB:CC	

192.68.1.2	-	AA:BB:EE	

The	poisoned	machines	will	not	be	able	to	determine	whether	their	ARP	has	been	modified	unless	checked	proactively.	The	following
diagram	depicts	the	ARP	table	entries	of	all	three	systems	involved	in	the	MiTM	attack	scenario:	

ARP	poisoning	(the	poisoned	scenario)	Other	than	these	two	techniques,	there	is	a	variety	of	hardware	available	on	the	market
popularly	known	as	taps,	which	can	be	placed	between	any	two	devices	to	sniff	and	analyze	the	traffic.	Though	this	technique	is
effective	in	capturing	network	traffic	in	some	scenarios,	it	should	only	be	practiced	or	deployed	in	an	authorized	and	controlled

environment,	because	of	its	malicious	nature.

Passing	through	routers
When	dealing	with	routed	environments,	the	important	aspect	of	packet	analysis
would	be	to	place	our	sniffer	at	the	suitable	place	from	where	we	can	capture	the
desired	traffic	packets.	Dealing	with	routed	structures	demands	more	skills	in
terms	of	networking	technologies,	and	certainly	in	terms	of	routers.	Consider	the
following	hypothetical	routed	environment	for	the	sake	of	understanding.

Router	1,	router	2,	and	router	3	are	working	together;	each	of	them	handles
traffic	for	at	least	2-3	PCs.	Router	1	is	acting	as	a	root	node	while	controlling
routing	for	its	child	networked	nodes	(router	2	and	router	3).

Router	3	PCs	are	not	able	to	connect	to	router	1	PCs.	To	resolve	this	issue,	the
admin	places	a	sniffer	(protocol	analyzer)	inside	the	router	3	area,	and	starts
analyzing	the	traffic,	but	is	not	able	to	figure	out	the	anomaly	that	is	causing
downtime.	The	admin	decides	to	change	the	protocol	analyzer	location	and
moves	to	the	router	1	area,	and	now	follows	similar	steps	for	troubleshooting.
After	a	while,	they	figure	out	what	the	issue	was	and	troubleshoot	it	successfully.

The	conclusion	is	that	placing	the	sniffer	in	your	networked	infrastructure	is
quite	a	critical	decision	and	task.

After	reading	this,	I	hope	we've	a	fair	amount	of	knowledge	on	how	protocol
analyses	are	done	in	certain	topologies.	Now,	let's	see	what	the	Wireshark
interface	looks	like,	and	how	we	can	initiate	capturing	network	packets.

If	you	do	not	have	Wireshark	installed,	you	can	get	a	free	copy	from	https://www.w
ireshark.org/download.html.	To	walk	through	the	demonstrations	in	this	book,	you
also	need	to	be	familiar	with	the	interface.

https://www.wireshark.org/download.html

The	Wireshark	GUI
Before	we	discuss	its	awesome	features,	let's	talk	about	some	of	critical	events	in
the	Wireshark	domain.

Wireshark	was	built	during	the	late	1990s.	Gerald	Combs,	a	young	college
graduate	from	Kansas	City,	developed	Ethereal	(the	basic	version	of	Wireshark),
and	by	the	time	Combs	developed	this	awesome	invention,	he	had	landed
himself	a	job.	After	a	few	years	of	service,	Combs	decided	to	quit	his	job	and
pursue	his	dreams	by	developing	Ethereal	further.	Unfortunately,	as	per	the	legal
terms,	Combs'	invention	was	part	of	the	company's	proprietary	software.	Despite
this,	Combs	left	the	job	and	started	working	on	the	new	version	of	Ethereal,
which	he	titled	Wireshark.	Since	2006,	Wireshark	has	been	in	active
development	and	is	being	used	worldwide.	It	supports	more	than	800	protocols
both	corporate	IT	and	ICS	(industrial	control	system).

Before	we	go	ahead	and	start	the	first	capture,	we	need	to	get	a	bit	familiar	with
the	options	and	menus	available.

There	are	six	main	parts	in	the	Wireshark	GUI,	which	are	explained	as	follows:

Menu	Bar:	This	represents	tools	in	a	generalized	form,	which	are	organized
in	the	Applications	menu.
Main	Tool	Bar:	This	consists	of	the	frequently	used	tools/features	that	offer
efficient	utilization	of	the	software.
Packet	List	Pane:	This	displays	all	the	packets	getting	captured	by
Wireshark.
Packet	Details	Pane:	This	is	used	to	view	details	pertaining	to	the	selected
packet	from	the	Packet	List	Pane.	Detailed	information	regarding	the
packets	is	divided	into	categories	corresponding	to	each	layer	of	the	TCP/IP
model.	This	can	be	used	to	view	source	and	destination	IP	addresses	and
different	protocols	used	for	communication	arranged	in	the	bottom-to-top
approach	(link	layer	to	application	layer).
Bytes	Pane:	This	shows	the	data	in	the	packets	in	the	form	of	hex	bytes
and	their	corresponding	ASCII	values;	it	shows	the	values	in	the	form
in	which	they	travel	in	the	wires.

Status	Bar:	This	displays	details	such	as	total	packets	captured.

The	following	screenshot	will	help	you	to	identify	different	sections	in	the
application;	please	make	sure	that	you	get	yourself	acquainted	with	all	of	them
before	proceeding	further:	

Within	the	toolbar	area,	we	have	a	few	useful	tools.	I	would	like	to	give	you	a
brief	overview	of	some	of	them:

:	Choose	an	interface	for	listening
:	Customize	the	capture	process	(interface,	filters,	and	so	on)

:	Start/stop/restart	the	capturing	process
:	Open	a	saved	capture	file

:	Save	the	current	capture	in	a	file
:	Reload	the	current	capture	file
:	Close	the	current	capture	file
:	Go	to	previous	packet

:	Go	to	next	packet

:	Go	to	a	specific	packet	number

:	Toggle	color	coding	for	the	packets	on/off

:	Toggle	the	auto	scroll	on/off
:	Zoom	in,	zoom	out,	and	reset	zoom	to	the	default

:	Change	the	color	coding	as	per	requirements
:	Narrow	down	the	window	to	capture	packets
:	Configure	display	filters	to	only	see	what	is	required

Even	after	selecting	the	interface,	there	can	sometimes	not	be	any	packets	listed
in	the	list	pane;	there	can	be	multiple	reasons	for	this,	some	of	which	are	as
follows:

You	do	not	have	any	network	activity
Your	interface	is	not	able	to	capture	the	desired	packets,	due	to	privileges
You	do	not	have	promiscuous	mode	activated	or	do	not	have	an	option	for
promiscuous	mode

Once	you	click	on	the	Capture	button	in	the	tool	pane,	Wireshark	will	start
capturing	and	you	will	be	able	to	see	some	traffic	activity	colored	with	different
codes,	protocol	names,	packet	numbers,	IP	addresses,	and	so	on:	

The	Wireshark	capture	screen

Starting	our	first	capture
As	you've	been	introduced	to	the	basics	of	Wireshark	and	since	you	have	learned
how	to	install	Wireshark,	I	feel	you	are	ready	to	initiate	your	first	capture.	I	will
be	guiding	you	through	the	following	series	of	steps	to	start/stop/save	your	first
Wireshark	capture:

1.	 Open	the	Wireshark	application.
2.	 Choose	an	interface	to	listen	to.

Before	you	click	on	Start,	we	have	the	Options	button,	which	gives	us	the
advantage	of	customizing	the	capture	process;	but	for	now,	we	will	be	using	the
default	configuration:

The	capture	customization	screen

Below	are	the	steps	for	the	capture	process:

1.	 Click	on	the	Start	button	to	initiate	the	traffic	capture.
2.	 Open	a	browser.
3.	 Visit	any	website	in	your	browser	to	generate	some	HTTP-based	traffic:

The	Wireshark	website

4.	 Switch	back	to	the	Wireshark	screen;	if	everything	goes	well,	you	should	be
able	to	see	numerous	packets	getting	captured	in	your	Wireshark	GUI
inside	the	Packet	List	Pane.

5.	 To	stop	the	capture,	you	can	just	click	on	the	Stop	capture	button	in	the
toolbar.	area,	or	you	can	click	on	Stop	under	the	Capture	menu	bar:

Stopping	capture

6.	 Now,	the	last	step	is	to	save	the	capture	file	for	later	use.
7.	 Save	your	file	with	the	default.pcapng	extension	in	your	folder.

If	you	have	read	all	the	steps	all	the	way	up	to	this	point,	I	would	encourage	you
to	create	your	first	capture	file	and	save	it	in	some	workspace	of	your	choice.

Summary
This	chapter	laid	the	foundation	of	basic	networking	concepts	and	gave	an
introduction	to	the	Wireshark	GUI.	Wireshark	is	a	protocol	analyzer	that	is	used
worldwide	by	IT	professionals	to	capture	and	analyze	network-level	packets.

The	Wireshark	GUI	is	user-friendly,	robust,	and	platform-independent;	even	new
IT	professionals	can	easily	adopt	the	tool.

One	important	aspect	of	protocol	analyzing	is	to	place	the	sniffer	at	the	right
place;	every	organization's	infrastructure	is	different,	so	we	might	need
to	apply	different	techniques	in	order	to	get	the	right	packets	to	use.

Hubbing	out,	port	mirroring,	ARP	poisoning,	and	tapping	are	some	of	those
useful	techniques	that	can	be	used	to	monitor	and	analyze	traffic	in	different
situations.

There	are	six	main	parts	in	the	Wireshark	tool	window:	Menu	Bar,	Main	Tool
Bar,	Packet	List	Pane,	Packet	Details	Pane,	Bytes	Pane,	and	Status	Bar.

Using	the	back/forward	key	during	a	packet	analysis	scenario	can	be	really
useful.	You	should	know	about	all	the	tools	that	are	displayed	in	the	main	toolbar
area.

In	the	next	chapter,	you	will	learn	how	to	work	with	the	different	kinds	of	filters
available	in	Wireshark.

Filtering	Our	Way	in	Wireshark
	

This	chapter	will	assist	you	in	identifying	and	applying	the	usage	of	Wireshark
filters—namely,	the	capture	and	display	filters.	Filtering	provides	a	powerful
way	to	capture	or	see	traffic;	it	is	an	effective	way	to	segregate	the	desired	traffic
stream	from	noise	(traffic).	The	following	are	the	topics	we	will	cover	in	this
chapter:

Introducing	capture	filters
Why	and	how	to	use	capture	filters
Introducing	display	filters
Why	and	how	to	use	display	filters
Colorizing	traffic

Let's	start	our	analyzer	and	apply	some	filters	to	understand	the	usage	and
effectiveness	of	them.	We	will	take	a	step-by-step	walk	through	the	process	of
creating	display	and	capture	filters.	Also,	we	will	find	utility,	which	is	quite
effective	when	troubleshooting	network	issues.

	

	

	

Introducing	filters
The	two	types	of	filters	offered	by	Wireshark	are	capture	filter	and	display	filter,
which	can	be	used	over	live	traffic	and/or	with	saved	capture	files.	Filters
provide	advanced	capabilities	in	performing	packet	analysis,	where	a	user	is	able
to	separate	the	unwanted	stream	of	packets	from	the	stream	of	packets	for
analysis.

	

Capture	filters
Capture	filters	enable	you	to	capture	only	traffic	that	you	want	to	be	captured,
eliminating	an	unwanted	stream	of	packets.	Capturing	packets	is	a	processor-
intensive	task,	and	packet	analyzers	use	a	good	amount	of	primary	memory
while	they	are	running.

Packets	are	only	sent	to	the	capture	engine	if	they	meet	a	certain	criterion
(capture	filter	expressions).	Capture	filters	do	not	facilitate	advanced	filtering
options,	as	in	display	filters.

The	following	is	a	screenshot	of	the	Capture	Options	window	dialog:

The	Capture	Options	dialog

Let's	take	a	walk	through	the	options	available	in	the	Capture	dialog	window:

Capture	(under	input	tab):	Its	purpose	is	to	choose	which	interface	you	wish
to	listen	on;	multiple	interfaces	can	also	be	selected	to	run	in	parallel.	The
details	for	every	interface	are	listed	under	separate	columns,	such	as
Capture,	Interface,	the	name	of	the	interface,	whether	the	promiscuous
mode	is	enabled	or	not,	and	so	on.	Under	the	Capture	dialog,	you	will	see	a
checkbox	to	toggle	the	promiscuous	mode,	which	enables	you	to	listen	to

traffic	that	is	not	generated	from	or	headed	to	your	machine.
Manage	Interfaces:	Facilitates	addition	or	removal	of	a	new	interface	for
listening	purposes.	You	can	add	even	remote	machine	interfaces	to	listen
remotely.
Capture	Filter:	Lists	capture	filters	and	also	facilitates	the	addition	of	new
user-defined	filters:

Default	Capture	Filters

The	Berkley	Packet	Filtering	(BPF)	syntax	is	an	industry	standard	used	for
designing	filters	expressions	and	is	supported	by	protocol	analyzers	such	as
tcpdump,	which	makes	a	filter's	configuration	file	portable.

The	following	are	the	steps	to	create	your	first	capture	filters	expression;
consider	a	scenario	where	you	have	to	capture	packets	originating	from	a	web
server	that	is	located	at	10.10.10.157:

1.	 Open	the	Capture	Options	dialog.
2.	 Click	on	Capture	Filter.
3.	 Click	on	New.
4.	 Write	Filtering	Host	inside	the	Filter	name	textbox.

5.	 Write	host	10.10.10.157	inside	the	Filter	String	textbox:

Creating	a	sample	capture	filter

6.	 Once	done,	click	on	OK;	if	you've	entered	everything	correctly	(mostly	the
filter	expression),	the	textbox	followed	by	the	Capture	Filter	button	will	be
displayed	with	a	green	background.

7.	 Capture	Files	(under	output	tab):	Use	this	option	to	append	stream	of
packets	to	an	existing	trace	file.	The	captured	packets	will	be	added	to	the
file	of	your	choice.	If	you	haven't	chosen	any,	a	temporary	file	will	be
created.	For	more	advanced	way	of	saving	packets	to	single/multiple	files,
try	the	following:

Create	a	new	file	automatically	after:	After	capturing	a	certain	amount
of	data	(KB,	MB	or	GB),	Wireshark	will	create	a	new	file	to	save	a
stream	of	packets.	For	instance,	I	want	to	create	a	new	file	after
Wireshark	captures	2	MBs	of	data.
Next	File	Every	(time):	After	a	certain	amount	of	time	(seconds,

minutes,	or	hours),	Wireshark	will	create	a	new	file	to	save	a	stream	of
packets.	For	instance,	I	want	to	create	a	new	file	every	five	minutes.
Ring	buffer:	Use	this	option	to	set	a	limit	for	creation	of	new	files
based	on	the	previously	mentioned	criteria.	For	example,	you	have
selected	the	Ring	buffer	option	and	set	the	number	of	files	to	5,	and
you	have	configured	that	after	every	5	MB,	a	new	file	should	be
created.

According	to	this	configuration,	after	every	5	MBs	of	data,	a	new	file	will	be
created	and	the	packets	will	be	written	to	it.	Once	the	limit	that	you	specified	in
the	Ring	Buffer	is	met,	Wireshark	will	not	create	a	new	file;	instead,	it	will	start
saving	to	the	first	file	and	append	all	captured	packets	to	it.	The	following
screenshot	shows	a	similar	kind	of	configuration:

The	Capture	Files	option

Stop	Capture	Settings	(options	tab):	This	option	lets	you	stop	the	capturing
process	after	a	certain	condition	is	triggered;	we	have	four	different	kinds	of
triggers.	They	are	stated	as	follows:

Packet(s):	Stop	capturing	after	a	certain	count	of	packets	is	reached
File(s):	Stop	capturing	after	the	creation	of	a	certain	number	of	files
Kilobytes(s):	Stop	capturing	after	capturing	a	certain	amount	of	data
Seconds(s):	Stop	capturing	after	running	for	a	certain	period

What	if	we	select	more	than	one	option	at	a	time,	as	shown	in	the	following

screenshot:

The	Stop	Capture	options

You	can	activate	more	than	one	option	at	a	time;	Wireshark	will	stop	capturing
whichever	condition	is	met	first.

Name	Resolution	(options	tab):	If	selected,	this	feature	can	resolve	the
Layer	2,	3,	and	4	addresses	to	their	corresponding	names:

Name	Resolution

Display	Options	(options	tab):	Use	this	option	to	customize	how	stream	of
packets	and	related	information	will	be	show	in	the	Packet	List	Pane	and
the	Protocol	hierarchy	window.	Refer	to	the	following	screenshot:

Display	Options

Update	list	of	packets	in	real-time:	Packet	List	Pane	is	updated	instantly
as	soon	as	a	new	packet	is	captured,	and	the	pane	will	scroll	automatically
to	display	the	most	recent	packets

Why	use	capture	filters
Capturing	only	traffic	that	meets	a	criterion	is	required	when	a	large	volume	of
packets	is	flowing	in	network.	Creating	custom	capture	filters	can	come	in	handy
for	analyzing	a	root	cause	our	while	troubleshooting	network	issues.	Wireshark
discard	packets	that	do	not	meet	the	capture	filter	expression	and	dropped
packets	will	not	be	passed	to	the	capturing	engine.

	

How	to	use	capture	filters
	

Use	the	Berkley	Packet	Filter	(BPF)	syntax	to	create	capture	filters	through
capture	filter	dialog.

BPF	is	a	combination	of	two	arguments:	identifiers	and	qualifiers,	which	are
explained	as	follows:

Identifiers:	Search	criteria	is	your	identifier.	For	example,	capture	filter
like	host	192.168.1.1,	where	the	value	192.168.1.1	is	an	identifier.
Qualifiers:	These	are	categorized	into	further	three	sections:

Type:	There	are	three	types	of	type	qualifiers:	host,	port,	and	net.	A	type
qualifier	refers	to	the	name	or	the	number	that	your	identifier	refers	to,
e.g.	in	your	capture	filter	host	192.168.1.1,	host	is	the	type	qualifier.
Direction:	Sometimes,	when	you	need	to	capture	packets	from	a
source	or	destination,	specify	direction	qualifiers	along.	For	example,
in	the	src	host	192.168.1.1	capture	filter,	src	specifies	to	capture	packets
originating	from	192.168.1.1.	Likewise,	if	you	specify	dst	host
192.168.1.1,	would	capture	packets	only	destined	to	host192.168.1.1.
Proto:	This	qualifier	is	for	filtering	packets	pertaining	to	a	specific
protocol.	For	example,	if	you	want	to	capture	http	traffic	coming	from
host	192.168.1.1,	then	expression	will	be	src	host	192.168.1.1	and	tcp	port
80

Wireshark	support	usage	of	and	or	operators	to	concatenate	more	than	one
expressions	refer	to	following	examples:

Filter	src	host	192.168.1.1	and	tcp	port	80	states	that	all	the	packets
originating	from	192.168.1.1	and	going	to	port	80	should	only	be
captured.
Filter	src	host	192.168.1.1	or	tcp	port	80,	states	that	every	packet
originating	from	192.168.1.1	or	any	packet	associated	with	port	80
should	only	be	captured.
Filter	not	port	80	states	that	any	packet	associated	with	port	80	should
not	be	captured.

	

	

An	example	capture	filter
To	access	the	default	filters,	go	to	Capture	|	Capture	Filers	or	click	on	the
Capture	Options	button	in	the	main	toolbar	and	click	on	Capture	Filter.

Refer	to	the	following	table	for	sample	capture	filters:

Filters Description

host	192.168.1.1 All	traffic	associated	with	host	192.168.1.1

port	8080 All	traffic	associated	with	port	8080

src	host	192.168.1.1 All	traffic	originating	from	host	192.168.1.1

dst	host	192.168.1.1 All	traffic	destined	to	host	192.168.1.1

src	port	53 All	traffic	originating	from	port	53

dst	port	21 All	traffic	destined	to	port	21

src	192.168.1.1	and	tcp
port	21

All	traffic	originating	from	192.168.1.1	and
associated	with	port	21

dst	192.168.1.1	or	dst
192.168.1.2

All	traffic	destined	to	192.168.1.1	or	destined	to
host	192.168.1.2

not	port	80 All	traffic	not	associated	with	port	80

not	src	host	192.168.1.1 All	traffic	not	originating	from	host	192.168.1.1

not	port	21	and	not	port
22

All	traffic	not	associated	with	port	21	or	port	22

tcp All	tcp	traffic

Ipv6

tcp	or	udp

host	www.google.com

ether	host
07:34:AA:B6:78:89

All	ipv6	traffic

All	TCP	or	UDP	traffic

All	traffic	to	and	from	Google's	IP	address

All	traffic	associated	with	the	specified	MAC
address

http://www.google.com

Display	filters
Display	filters	are	flexible	and	powerful	when	compared	to	capture	filters.
Display	filters	do	not	discard	any	packets;	instead,	the	packets	are	hidden.
Discarding	packets	is	not	a	very	effective	practice	because,	once	the	packets	are
dropped,	they	cannot	be	recovered.	Applying	a	display	filter	will	limit	the
packets	to	be	displayed	in	the	list	pane	of	Wireshark.

A	display	filter	can	be	used	for	a	capture	file	and	live	traffic	in	the	Filter	dialog
box	located	above	the	Packet	List	Pane.	Display	filters	support	variety	of
arguments	such	as	IP,	port,	protocol,	and	so	on.

Let's	learn	how	to	use	the	display	filter	expression	dialog	for	creating	filters.

The	filter	expression

1.	 Click	on	the	Expression	button	to	configure	a	display	filter

2.	 For	example,	if	you	want	to	see	only	packets	associated	with	ip:192.168.1.1,
then	scroll	down	in	the	Field	Name	to	find	IPv4.	Then,	expand	the	section
and	choose	the	ip.addr	option.

3.	 From	the	Relation	box	next	to	it,	choose	the	operator	you	wish	to	add	in
your	expression.

4.	 At	last,	write	the	IP	you	or	in	the	Value	(IPv4	address)	box	and	click	OK

Comparison	and	logical	operators	comes	handy	when	creating	filters	complex
filters.

The	following	table	lists	the	comparison	operators	that	can	be	used	to	create
filters:

Operator Description

==/eq Equal	to

!=/ne Not	equal	to

</lt Less	than

<=/le Less	than	equal	to

>/gt Greater	than

>=/ge Greater	than	equal	to

	

Following	is	the	list	of	logical	operators	that	are	used	to	combine	more	than	one
criterion	together.	The	following	table	lists	all	of	them:

Operator Description

AND/&&

The	AND	logical	operator	is	used	when	we	want	both	parts	of
the	expression	to	state	true.	For	example,	the	ip.src==192.168.1.1
and	tcp	filters	would	only	display	packets	originated	from	ip
192.168.1.1	and	associated	with	the	tcp	protocol.

OR/||

The	OR	logical	operator	is	used	when	we	focus	on	one
condition	to	be	true	at	a	time;	For	example,	the	port	53	or	port	80
filters	would	display	all	packets	associated	with	port	53	(DNS)
along	with	all	packets	associated	with	port	80	(http)	if	any.

NOT/!

The	NOT	logical	operator	is	used	when	we	want	to	exclude
some	packets	from	the	list	pane.	For	example,	the	!dns	filter
would	hide	all	the	packets	associated	with	the	DNS	protocol.

Retaining	filters	for	later	use
Retaining	filters	saves	time	and	effort	required	to	type	complex	display	filters.
Wireshark	facilitates	retaining	through	saving	custom	filters.	To	create	one	for
yourself,	following	are	the	steps:

1.	 Go	to	Analyze	|	Display	filters:

Adding	Display	Filters

2.	 Click	on	New	(+),	enter	the	values	in	the	Filter	name	and	Filter	string	fields.
For	instance,	we	want	to	create	a	display	filter	for	NO	ARP	packets.	Then,	the
values	will	look	like	the	following	screenshot:

Creating	a	new	filter

3.	 Click	on	Apply.	Now,	your	recently	created	filter	will	be	listed	at	the
bottom	of	list,	which	can	be	used	later.

4.	 Make	sure	that	the	Filter	String	box	is	shown	with	a	green	background,
which	means	that	your	expression	is	correct;	if	it	is	in	red	color,	then
something	is	wrong,	and	if	it	is	in	yellow,	this	denotes	that	the	results	can
be	unexpected.

5.	 Click	on	the	Expression	button	next	to	the	Filter	string	box,	to	create	filters
through	click	and	selecting	what	you	require.

6.	 The	Delete	(-)	button	will	delete	an	existing	filter	from	the	list.
7.	 The	Cancel	button	will	discard	any	unsaved	changes	and	close	the	window.
8.	 The	Ok	button	commits	Save	and	closes	the	window.

Searching	for	packets	using	the	Find
dialog
For	searching	packets	that	meets	a	criterion	use	the	Find	tool	bar	adjacent	to
display	filter.	You	can	access	the	Find	utility	by	navigating	to	Edit	|	Find	packets
or	using	the	shortcut	Ctrl	+	F:

The	Find	Packet	dialog

You	can	also	use	the	following	filters	for	finding	packets:

Let's	see	some	more	configurable	options	available:

The	display	filter:	Find	packets	based	on	specific	IP	/Port/	Protocol,	for
example:

ip.addr	==	192.168.1.1	(based	on	an	IP	address)
port	8080	(based	on	a	port	number)
http	(based	on	a	protocol)

The	Hex	value:	If	you	have	the	hex	value	for	a	packet,	then	use	this	option.
For	example,	write	in	the	physical	address	separated	by	colons,	for
example:

0A:C4:22:90:45:00

AA:BB:CC

String:	Enter	the	name	of	the	DNS	server,	name	of	the	machine,	and	any
name	that	you	are	looking	for	(enter	any	string	or	word),	for	example:

Cisco
An	administrator
A	web	server
Google

Search	In:	Through	this	you	can	search	in	specific	pane	of	Wireshark.	For
instance,	if	you	are	looking	for	a	packet	which	matches	the	value	Google
(the	ASCII	value	in	the	packet	bytes	pane	will	be	matched).	So,	first	choose
the	String	option	and	then	choose	the	Packet	bytes	from	the	first	drop

down.
String	Options:	To	enable	and	use	this	option,	first	select	the	String	option
and	then	select	Case-Sensitive	and	then	if	you	want,	choose	the	character
width	as	well.

To	move	back	and	forth	between	the	matched	packets,	you	can	use	Ctrl	+	N
(next)	and	Ctrl	+	B	(previous).

Colorize	traffic
For	better	and	convenient	viewing	experience	colorization	of	traffic	is	done	to
distinguish	between	different	stream	of	packets.	Colorization	helps	in
differentiating	between	similar	looking	packets	in	ease.

To	access	the	default	colorizing	profiles	navigate	to	View	|	Coloring	rules	as
shown	in	the	following	screenshot:

Coloring	rules

All	rules	that	are	currently	saved	as	part	of	your	global	configuration	file	to
colorize	traffic	are	listed	in	this	dialog.	Every	packet	listed	in	the	packet	list	pane
follows	the	rules	defined	in	Coloring	rules	windows,	which	gives	them	a
distinctive	look.

Let's	use	this	feature	and	color	the	http	error	packets	with	a	color	combination	of
our	choice.	Say,	for	instance,	a	web	server	is	configured	and	up	and	running	file
sharing	purpose.	Now,	a	client	is	trying	to	do	directory	listing	and	gets	HTTP	404
error	messages.	These	error	messages	are	shown	in	the	packet	list	pane	and
colored	using	the	default	http	coloring	rule	that	makes	these	errors	less	visible	to
us.	To	identify	such	packets	quickly,	colorize	the	HTTP	404	error	messages	with	a
black	background	and	with	a	cyan	foreground.	Follow	the	steps	to	configure	the
same.

1.	 Linux	box	is	the	client	configured	on	IP	172.16.136.129,	and	Macintosh
running	on	172.16.136.1	that	is	configured	as	a	web	server:

The	web	server	running	on	172.16.136.1

2.	 Normal	traffic	from	a	Linux-accessing	web	server	looks	something	shown
as	follows:

3.	 Now	that	everything	is	up	and	running,	we	will	try	to	do	some	directory
listing	manually	from	client	machine,	to	generate	HTTP	404	error	messages.

4.	 The	traffic	generated	through	this	request	is	captured	and	can	be	seen	in	the
following	screenshot:

HTTP	404	Traffic

We	can	see,	in	the	preceding	captured	traffic,	that	the	client	requested	the
abc.jpg	resource,	which	was	not	available;	thus,	the	client	received	a	404
Not	found	error.

5.	 We	figured	out	easily	because	there	is	just	one	client	requesting	a	single
resource.	Consider	a	production	environment	with	thousands	of	clients.	In
such	cases,	coloring	a	specific	set	of	packets	with	a	different	rule	is	a	game
changer.

6.	 Navigate	to	Edit	Coloring	Rules	|	New	(+).	Type	HTTP	404	in	the	Name

box.
7.	 Type	http.response.code==404	in	the	Filter	box.	Choose	the	Foreground	Color

option	as	Cyan,	and	choose	the	Background	Color	option	as	Black.	Then,
click	on	OK:

8.	 Click	OK	and	you	will	see	the	new	rule	in	action:

After	applying	the	new	coloring	rule

Coloring	rules	are	applied	to	the	packet	list	pane	in	a	top-to-bottom	manner.
With	every	packet,	there	is	coloring	rule	information	attached	that	can	be	listed
from	Packet	Details	Pane	under	the	Frame	section,	as	shown	as	follows:

Coloring	info	in	a	frame	header

Create	new	Wireshark	profiles
Profiles	are	like	customized	virtual	environments,	which	saves	significant
amount	of	time	while	auditing/troubleshooting	a	network.

To	create	a	profile,	follow	these	steps:

1.	 Right-click	on	the	Profile	column	in	Status	Bar	(bottom	right	corner	of
window):

2.	 Click	on	+	in	the	pop-up	dialog:

3.	 Now,	choose	any	profile	you	wish	to	use	as	a	template	(if	any)	and	type	the
name	of	the	new	profile.

4.	 And	then,	click	on	OK.

Now,	in	the	status	bar,	you	will	see	the	new	profile	has	been	activated.	The
changes	that	you	will	make	in	this	profile	stays	here,	for	example,	you	create
capture/display	filters,	change	protocol	preferences,	and	change	color
preferences,	and	so	on.

Also,	importing	and	exporting	profiles	is	easy	just	copy	and	paste	the	Profile
configuration	files	in	a	Wireshark	directory	to	use.

Summary
Filtering	traffic	lets	you	capture	and	see	only	stream	of	packets	you	want;	there
are	two	types	of	filters:	display	filters	and	capture	filters.

Display	filters	hide	the	packets;	however,	capture	filters	discard	the	packets	that
do	not	meet	user	defined	expression	and	discarded	packets	are	not	passed	to	the
capturing	engine.

Capture	filters	use	the	BPF	syntax,	which	is	an	industry	standard	and	is	used	by
several	other	protocol	analyzers.

Find	utility	is	useful	and	can	be	accessed	from	the	Edit	menu	in	Wireshark.	The
Find	utility	gives	various	vectors	to	search	a	packet(s)	and	related	details.

Coloring	preferences	comes	handy	when	filtering	a	set	of	traffic.	Distinguishing
packets	becomes	easy,	as	the	matched	packets	will	be	displayed	with	a	unique
coloring	scheme.

Profiles	are	like	virtual	scenarios	that	saves	time	and	efforts.	Changes	made	to	a
profile	with	respect	to	display/capture	filter	and	color/protocol/time	preferences,
stays	within	the	same.

Analyzing	Application	Layer
Protocols
	

This	chapter	will	help	you	understand	the	approach	and	methodology	for
analyzing	application	layer	protocols	such	as	HTTP,	SMTP,	FTP,	and	DNS
through	Wireshark.	Application	layer	protocols	typically	interfaces	between	a
client	and	server.

It	is	critical	to	understand	the	structure	of	application	layer	protocol	packets	in
order	to	identify	anomalies	efficienctly.	We	will	be	discussing	the	following
topics	in	detail	throughout	this	lesson:

Analysis	of	common	application	layer	protocols
Assembling	VoIP	packets
Decrypting	encrypted	traffic

	

	

Domain	Name	System	(DNS)
Imagine	a	world	of	internet	where	you	have	to	type	a	random	numerical	value
(IP	address)	in	your	web	browser's	address	bar,	instead	of	a	name,	to	visit	a
website.	Also,	imagine	that	each	numerical	figure	is	different.	Considering	this,
how	many	numbers	(IP	addresses)	can	you	memorize?	5?	10?	Perhap,	50	at
max?	So,	now,	you	are	confined	to	visiting	just	50	websites.

For	the	sake	of	a	limitless	web	experience,	DNS	comes	to	our	rescue.	DNS
stores	a	dataset	(zone	file)	of	website	names	mapped	to	their	current	IP
addresses,	along	with	the	names	of	the	domains.	Each	entry	in	the	zone	file	is
termed	a	resource	record	(combination	of	website	name	and	its	IP).	DNS	uses
TCP	and	UDP,	both	for	different	purposes,	over	the	port	53	by	default.

How	does	DNS	work?	So,	as	a	client,	when	you	try	to	visit	a	website	from	a
browser,	your	request	(DNS	query)	is	sent	to	an	internal	DNS	server	(if	any)	that
looks	up	the	resource	records	it	contains.	If	the	DNS	server	knows	the	IP	address
for	the	domain	you	are	trying	to	visit,	your	PC	will	get	a	reply	(DNS	response)
containing	the	IP	address	of	the	website	you	desire	to	visit,	else	your	query	will
be	forwarded	to	external	DNS	servers	on	the	web	(for	example,	google	DNS
servers	at	8.8.8.8,	4.4.2.2,	and	so	on.).

Dissecting	a	DNS	packet
A	DNS	packet	consists	of	multiple	fields	that	are	briefly	discussed	here:

Transaction	ID:	This	is	a	number	that	keeps	track	of	a	domain	query	and
it's	corresponding	response.
Query/response:	Every	DNS	packet	is	marked	as	a	query	or	a	response.
Flag	bits:	Each	query	and	response	contains	a	different	set	of	flag	bits,
which	are	as	follows:

Response:	The	message	is	a	query	or	a	response.
Opcode:	This	determines	the	type	of	query	contained.	The	Opcode
ranges	between	0-15.	Refer	to	the	following	table:

0 1 2 3 4 5 6-15

Standard
query

Inverse
query

Server
status
request

Unassigned Notify Update Unassigned

Truncated:	This	determines	whether	the	packet	is	truncated	if	its	size
is	large	(greater	than	512	bytes).
Recursion	desired:	The	query	sent	by	your	client	is	supposed	to	go	on
a	recursive	search	procedure	from	one	DNS	server	to	another	if	the
resource	record	you	are	looking	for	is	not	present	in	the	primary	DNS.
Recursion	available:	If	this	bit	is	set,	then	it	means	the	recursion	that
your	client	requested	is	available.
Reserved	(z):	As	defined	by	RFC	1035;	reserved	for	future	use,	must
be	set	to	zero	for	all	queries	and	responses.
Response	code:	The	values	in	this	field	signifies	the	response.	This
field	is	used	to	signify	whether	there	are	errors	and	the	types	of	errors.
Here	are	the	possible	code	values	that	you	can	receive:

0 1 2 3 4 5

No
error

Format
error

Server
failure

Name
error

Not
implemented Refused

Questions:	Number	of	queries	present	in	the	packet.
Answers:	Number	of	answers	sent	in	response	to	the	query.
Authority	RRs:	Number	of	authority	resource	records	sent	as	response.
Additional	RRs:	Number	of	additional	resource	records	sent	as	response.
Query	section:	The	query	sent	to	the	DNS	server;	it	should	be	the	same	in
the	response	received.
Answer	section:	Answer	consists	of	the	resource	records	that	came	in	as
response.
Type:	Type	of	query	sent.	Refer	to	the	following	table	for	common	query
types:

A NA MX SOA PTR AAAA AXFR IXFR

Host
address

Name
server

Mail
exchange

Start	of
zone
authority

Pointer
record

IPv6
address

Full
zone
transfer

Incremental
zone
transfer

Additional	info:	This	field	includes	additional	info	containing	resource
records.	It	is	not	required	to	answer	the	query.

Dissecting	DNS	query/response
Let's	consider	a	scenario	to	understand	the	way	DNS	works.	A	client	sends	a
query	to	a	DNS	server	that	possesses	name	resolution	information.	Using	this
information,	the	client	can	start	IP-based	communication.	Sometimes,	the
information	the	client	is	looking	for	is	not	available	with	the	DNS	server	it
requested.	In	such	cases,	the	DNS	server	itself	transfers	the	query	to	any
neighbor	DNS	it	knows	about,	if	recursion	is	desirable.	Refer	to	the	following
screenshot,	where	a	request	is	sent	to	visit	https://www.google.co.in.	A	request	from
a	client	located	at	192.168.1.103	is	sent	to	the	default	gateway	at	192.168.1.1.	This
gateway	will	forward	the	query	to	a	DNS	server	it	knows	about:

DNS	query

You	may	notice	that	DNS	is	using	UDP	as	an	underlying	protocol.	If	you	want	to
know	more	about	the	DNS	query	being	generated,	just	expand	the	Flags	section.
This	section	will	list	various	details,	such	as	whether	recursion	is	available,
whether	recursion	is	desired,	and	what	the	response	code	is.	Please	refer	to	the
following	screenshot:

https://www.google.co.in

Expanded	flags	section

The	expanded	Flags	section	tells	us	that	the	type	of	DNS	packet	is	a	query,	the
packet	data	is	not	truncated,	and	recursion	is	desirable	if	available.

In	response	to	this	query,	you	will	observe	one	packet	with	the	same	transaction
ID	that	denotes	the	association	of	a	DNS	query	sent	by	the	client.	The	response
for	the	query	will	usually	consist	of	an	IP	address	for	the	domain	visited.	The
requesting	machine	will	be	returned	a	single	IP,	or	maybe	multiple	IPs	available
to	it.	If	the	domain	we	are	looking	for	is	not	available,	then	it's	probable
CNAMEs	will	be	returned	in	as	favor.

Refer	to	the	following	screenshot	to	understand	this:

DNS	response

As	I	said,	we	could	get	multiple	replies.	If	you	notice	the	Answer	RRs	section,
we	have	received	five	replies	for	the	www.google.com	domain.	For	verification	that
the	response	received	belongs	to	the	previous	query	only,	just	match	the
Transaction	ID.

https://www.google.com/

Expand	any	section	in	the	Answers	category	to	view	more	details.	Refer	to	the
following	screenshot:

File	transfer	protocol
Since	the	internet	came	into	existence,	we	have	been	working	with	the	file
transfer	protocol	(FTP).	FTP	uses	TCP	over	port	21	or	20	(by	default)	to	initiate
and	transfer	files	over	a	designated	channel.	There	are	only	two	types	channel
command	channel	(port	21)	and	data	channel	(port	20).	The	command	channel	is
used	to	send	and	receive	the	commands	and	their	responses.	The	data	channel	is
used	to	send	and	receive	data	between	the	client	and	the	server.	However,	you
will	observe	random	port	numbers	used	to	transfer	TCP	data	segments	from	your
client	machine.

	

Dissecting	FTP	communication
packets
There	are	two	types	of	mode	a	client	can	use	to	communicate	with	a	server:
active	and	passive.	In	earlier	versions	of	FTP	server	applications,	active	mode
was	enabled	by	default,	but	in	the	latest	versions	of	FTP	server	applications,
passive	mode	is	enabled	by	default.	For	understanding	these	modes	in	detail,	let's
use	the	following	scenario.

Let's	say	an	FTP	server	is	configured	at	IP	172.16.136.129	and	a	client	at	IP
172.16.136.1.

Typically,	every	request	sent	from	the	client	is	a	specific	command	set,	to	which
the	server	responds	with	a	numerical	value	followed	by	a	text	message.	See	the
following	screenshot	for	reference	followed	by	a	short	analysis:	

The	server	requested	the	password,	which	the	client	provided.	Once	the	server
receives	and	validates	the	password,	the	user	will	be	logged	in.	In	our	case,	the
password	is	correct,	so	the	client	receives	230	as	a	response	code	followed	by	a
Login	Successful	message.

Commands	issued	from	the	client	side	can	have	arguments	or	no	arguments,	and
the	data	transmitted	between	the	devices	can	be	seen	in	the	TCP	header	of	the
packet,	as	shown	here:	

FTP-data	returned

Frame	43	shows	that	the	client	issued	the	LIST	command,	which	was	processed	by
the	server,	and	that	262	bytes	of	data	was	returned.	FTP-based	communication
can	be	seen	in	plaintext	through	protocol	analyzers,	which	is	also	a	weakness
often	exploited.

Reassembling	the	FTP	data	stream	is	easy	because	apart	from	the	data,	there	is
nothing	that	is	transmitted.	There	is	no	code	or	command	that	gets	appended	to
the	packets.	To	reassemble	the	TCP	stream	of	FTP	packets,	just	right-click	on	the
selected	packet	and	choose	the	Follow	TCP	Stream	option	to	view.

Refer	to	the	following	screenshot:

FTP	stream

The	entire	communication	between	the	client	and	the	server	that	happened	over
the	data	and	command	channels	is	translated	into	human-readable	format.	Text
in	red	is	what	the	client	sent,	and	text	in	blue	is	what	the	client	received.	It	is
recommended	to	use	secure	versions	of	FTP	in	order	to	mitigate	the
vulnerability.

Hypertext	Transfer	Protocol	(HTTP)
Data	on	the	web	is	transferred	using	the	HTTP/HTTPS	application	layer
protocol.	Normal	communication	in	HTTP	follows	a	request/response	model,
where	the	communication	between	a	client	and	a	server	is	coordinated	by	a	set	of
rules.	The	client	requests	for	a	certain	resource	to	the	server	and	then	receives	a
status	code	that	specifies	the	current	status	of	the	requested	resource.	If	available
then,	the	resource	is	also	sent	along	with	the	status	code,	else	the	client	would
receive	a	not-available	status	code.

	

How	request/response	works
	

Web	servers	utilize	HTTP	to	serve	web	pages	to	the	requesting	clients.	At	the
beginning	of	every	HTTP	session,	the	TCP	three-way	handshake	takes	place.	It
creates	a	dedicated	channel	between	the	communicating	hosts	followed	by	HTTP
and	data	packets,	which	are	sent	in	and	received	while	the	session	is	active.	For
instance,	say	you	are	visiting	a	web	server	located	at	http://172.16.136.129	from	a
client	at	172.16.136.1.	Using	our	client-server	infrastructure,	we	will	try	to	capture
the	requests	sent	and	responses	received.

I	will	try	to	visit	the	home	page	located	at	the	server	mentioned	earlier	and	will
capture	the	traffic	generated	for	the	whole	session;	that	is,	the	requests	sent	and
responses	received.	Take	the	following	steps	to	replicate	the	scenario.

	

	

	

Request
	

Following	are	the	steps	for	the	preceding	scenario:

1.	 Open	your	browser	and	type	the	Uniform	Resource	Locator	(URL)	of	any
website.

2.	 The	website	is	located	at	http://172.16.132.129	(a	local	web	server).	Here	is
the	screenshot	for	your	reference:

3.	 The	following	screenshot	depicts	the	packets	captured	as	a	result	of	visiting
the	web	server:

4.	 All	these	packets	get	generated	as	soon	as	you	press	Enter.	As	you	can	see,
the	first	three	packets	are	TCP	three-way	handshake	packets	where	our
client	is	requesting	that	the	server	creates	a	dedicated	channel.	However,	if
the	server	daemon	wasn't	running	or	the	server	wasn't	accepting	our
requests,	for	some	reason	then	we	would	have	seen	RST	ACK	packets,	like	the
one	shown	here:

5.	 This	error	states	that	the	server	is	out	of	service	or	is	not	supposed	to
respond	to	our	requests	(firewalled	or	restricted	zone).

6.	 After	the	TCP	packets,	the	first	HTTP	request	sent	by	our	client	is	observed.
Every	request	comprises	a	couple	of	elements	that	are	sent	to	the	server:

HTTP	request

In	the	first	line,	there	are	three	things	passed	on	to	the	server	as	the
arguments,	which	are	the	HTTP	method,	the	requested	resource,	and
the	location	/	(root	directory).
The	Host	argument	is	required	by	the	HTTP/1.1	protocol	requests.	The
value	of	this	field	is	the	web	server's	address	that	you	typed	in	the
address	bar	of	the	browser.
The	ACCEPT	parameter	specifies	what	kind	of	content	is	acceptable	by
the	requesting	client	response.
The	If-modified-since	parameter	is	sent	from	the	client	to	the	server,
which	includes	the	date	and	time	of	your	previous	request	made	to	the
server.	If	the	server	contents	have	been	changed	since	your	previous
request,	then	you	will	receive	the	new	updated	page.	Otherwise,	your
system	will	present	you	with	the	locally	cached	page.
The	user-agent	specifies	the	browser-related	information	that	you	are
using.	This	information	is	to	be	used	by	the	server	to	present	you	with
browser-compatible	content.
Parameters	such	as	Accept-Language	and	Accept-Encoding	are	passed
on	to	the	server	to	inform	us	of	what	type	of	content	is	acceptable	to
the	client.
The	Connection-alive	parameter	specifies	whether	the	client	wishes	to
keep	the	connection	working	after	this	particular	request	has	been
processed.

	

	

Response
	

1.	 After	the	fourth	packet,	the	server	acknowledges	the	client's	request	to	get
to	the	web	server's	root	directory.	The	server	starts	transmitting	the	resource
that	the	client	requested.

2.	 The	sixth	packet	in	the	list	pane	is	what	the	client	received,	a	status	code
followed	by	a	short	message,	including	the	content	of	the	resource
requested.	Refer	to	the	following	screenshot	illustrating	the	HTTP	response:

HTTP	response

3.	 As	a	part	of	TCP	communication,	the	client	will	acknowledge	every	packet
sent	by	the	server,	as	seen	in	the	seventh	packet.

4.	 Let's	dissect	the	response	elements	for	packet	number	six:

The	first	line	consists	of	three	arguments	sent	in	response.	They	denote
the	HTTP
protocol	version	in	use,	the	status	code	(304	in	our	case,	which	specifies
that	the	requested	resource	did	not	change	since	the	time	mentioned	in
the	Date	parameter),	and	finally,	a	brief	description	of	the	status	code
(not	modified	in	our	case).
In	the	third	line,	the	Server	parameter	mentions	the	name	and	version
of
the	web	server.	We	can	see	that	Apache/2.2.22	is	the	server	that
is	located	at	172.16.136.129.

The	fourth	and	fifth	lines	state	that	the	server	wishes	to	keep	the
connection	alive.	The	duration	for	which	the	server	wishes	to	do	so	is
also	mentioned	in	the	next	line	of	the	parameters.

	

	

Simple	Mail	Transfer	Protocol
(SMTP)
SMTP	is	used	widely	to	send	and	receive	emails	over	a	small	network.	The
protocol	uses	the	Sender-SMTP	process	to	send	emails	and	the	Receiver-SMTP
process	to	receive	emails.	This	makes	SMTP	a	client-server-based	protocol	that
runs	over	port	25.

Typically,	an	SMTP	channel	for	mail	transfer	is	created	through	a	successful
TCP	three-way	handshake	followed	by	a	series	of	SMTP	packets:

In	our	lab,	we	have	an	SMTP	server	configured	at	IP	192.168.1.105	and	a	client	at
IP	192.168.1.104.	The	client	will	request	the	server	to	sends	an	email	to	an	address
known	to	the	client.	The	server	will	respond	to	this	request	with	numerical	code,
followed	by	a	brief	response	parameter.

Dissecting	SMTP	communication
packets
Using	the	Netcat	client	from	a	Kali	Linux	machine,	I	will	connect	to	the	SMTP
mail	service	running	on	a	Windows	machine.	After	a	successful	three-way
handshake,	the	server	will	respond	with	numerical	codes	with	a	short	summary.
Follow	these	steps	to	the	send	an	email	using	command	line:

1.	 Open	a	connection	with	the	mail	server	using	netcat	nc	-nv	192.168.1.105	25.
2.	 Initialize	an	SMTP	session	with	the	HELO	testmail	command.
3.	 Specify	the	from	address	using	the	MAIL	FROM:<abc@charit.com>	command.
4.	 Specify	the	recipient's	address	using	the	RCPTS	TO:<efg@charit.com>	command.

	

5.	 To	enter	data	into	the	mail	body,	type	DATA,	press	Enter,	and	type	.	(full-stop;
this	is	a	terminating	character,	and	you	can	use	any	character	of	your
choice)	Now,	type	the	message	you	wish	to	send.	Once	you	are	finished
typing	your	mail,	type	a	.	(full	stop)	to	mark	the	ending	and	press	Enter.

6.	 Now,	your	message	will	be	sent.

The	process	will	generate	a	couple	of	packets	that	contain	details	about	our
session.	All	of	these	commands	mentioned	will	only	work	when	the	server	is
configured	to	permit	clear	text	message	communication	without	any
authentication;	refer	to	the	following	screenshot:

SMTP	session

Packets	from	1-3	are	TCP-handshake	packets.	The	handshake	is	happening
between	the	client	and	the	server.	In	the	fourth	packet,	the	client	receives	a
message	stating	220	as	the	response	code.	This	means	the	server	is	available	and
ready	to	respond	to	the	client's	request.	In	the	sixth	packet,	the	client	initializes
the	standard	SMTP	session	using	the	HELO	command,	followed	by	the	sender's	and
recipient's	email	addresses,	which	were	confirmed	to	be	correct	by	the	server,
with	response	code	250	in	packets	10	and	13.	Then	there's	the	email	body	packet
using	the	DATA	command,	which	was	successfully	received	by	the	server	in	packet
23.	In	the	end,	the	user	gracefully	closes	the	connection	by	issuing	the	QUIT
command,	which	the	server	confirmed	in	packet	26,	thus	sending	FIN,	ACK.

Session	Initiation	Protocol	(SIP)	and
Voice	Over	Internet	Protocol(VOIP)
SIP	is	a	part	of	the	VOIP	family,	which	is	a	signaling	protocol	used	to	create,
manage,	and	terminate	VOIP	sessions	in	a	networking	environment.	Examples	of
SIP	include	a	two-way	phone	call	or	a	conference	call,	or	multimedia	sessions
with	multiple	hosts.	After	the	initiation	of	the	session,	the	data	is	transferred
through	the	Real	time	Transport	Protocol	(RTP)	over	the	dedicated	channel.
Basically,	the	family	of	RTPs	governs	the	transport	and	the	flow	control	of	all
multimedia	items	(RTCP	controls	the	flow).

Wireshark	can	assemble	a	stream	of	RTP	packets	in	order	to	play	back	the
conversation	that	happened	between	two	parties	(use	it	ethically!).

SIP	runs	over	UDP	and	commonly	uses	port	5060.	SIP	provides	us	with	different
call-managing	features,	such	as	initiating	calls,	disconnecting	calls,	adding
someone	to	a	conference	call,	and	transferring	calls,	though	SIP	is	not	going	to
help	you	maintain	the	quality	of	calls.

Let's	discuss	the	typical	VoIP	infrastructure	through	the	following	diagram.
There	are	three	nodes:	two	of	them	are	clients	and	one	is	the	IP	telephony	server,
which	enables	voice	communication:

1.	 Client	1	sends	an	Invite	request	to	initiate	the	session	using	SIP.
2.	 The	telephony	server	transfers	the	request	to	Client	2.

3.	 The	telephony	server	acknowledges	Client	1	with	the	100	Trying	packet.
4.	 Client	1	receives	a	180	Ringing	packet	as	soon	as	Client	2	starts	ringing.

When	Client	2	on	the	other	side	receives	the	call,	it	sends	the	200	OK
packet,	which	is	forwarded	to	Client	1.

5.	 Now	the	client	sends	the	ACK	packet	to	acknowledge	the	receipt	of	the
200	OK	packet.

6.	 Now	both	parties	are	connected	with	a	dedicated	channel,	over	which	the
RTP/RTCP	packets	start	flowing	back	and	forth.

7.	 To	end	the	communication,	there	will	be	a	BYE	packet	sent	by	one	of	the
communicating	hosts,	which	is	acknowledged	by	the	other	end.

8.	 All	of	the	packets	will	be	sent	back	and	forth	between	client	1	and	2,	due	to
information	only	known	to	telephony	server.

9.	 Once	the	channel	created,	all	the	packets	will	be	sent	and	received	directly
by	the	clients	without	the	server's	intervention.

For	illustration	purposes,	I	have	configured	a	small	VoIP	telephony	infrastructure
using	Asterisk	PBX	that	can	be	downloaded	for	free.	So,	our	VOIP	server	is
located	at	192.168.1.107,	client	1	at	192.168.1.104,	and	client	2	at	192.168.1.107.	I	am
also	using	an	X-lite	calling	application	to	call	client	2	from	client	1.	The
following	is	a	screenshot	of	traffic	captured	in	the	list	pane	of	Wireshark:

SIP	traffic

One	thing	you	should	consider	is	placing	the	analyzer	as	close	as	possible	to	the
telephony	server	so	that	it	will	be	able	to	capture	every	last	packet.	While
capturing,	if	you	cannot	see	any	SIP	packets,	then	you	won't	be	able	to	capture
VOIP	packets	as	well.

Reassembling	packets	for	playback
Yes,	it	is	possible	to	assemble	the	VOIP	packets	back	to	listen	to	either	side,	or
both	sides,	of	communication.	Let's	suppose	I	want	to	listen	to	the	message
client	1	at	IP	192.168.1.104	sent	to	client	2	at	IP	192.168.1.107.	We	can	use	the
Telephony	menu	in	Wireshark	to	reassemble	the	packets	and	choose	the	VOIP
Calls	option	from	the	list.	The	following	screenshot	illustrates	the	resulting
dialog:	

VOIP	Calls	dialog	Now	choose	which	side	of	communication	you	want	to	listen	to.	Then	click	on	the	Player	button	and	configure
Jitter	(Jitter	is	the	variance	in	packet	rate	at	which	the	packets	are	being	sent	and	received.	If	jitter	is	high,	then	there	is	a	chance	that
your	network	is	dealing	with	congestion.	Calls	with	high	jitter	values	are	not	feasible	to	listen	to)	and	Time	as	illustrated,	and	click	on

Decode:	

Player	dialog	I	did	not	change	the	default	value	and	clicked	directly	on	the	Decode	button,	which	reassembled	all	the	VoIP	packets	for
the	side	of	communication	I	chose,	as	shown	in	the	following	screenshot:	

RTP	Player	If	you	want	to	play	the	message,	check	the	box	just	below	the	scrollbar	and	click	on	Play.	Use	this	feature	for	ethical
purposes	only.

Decrypting	encrypted	traffic
(SSL/TLS)
Yes,	it	is	also	possible	to	decrypt	your	online	TLS	traffic	into	a	plaintext	SSL
stream	using	Wireshark.	Google	Chrome	and	Firefox	look	for	a	log	file,	which
stores	the	TLS	session	keys.	Follow	these	steps	to	decrypt	a	session	of	encrypted
traffic:

1.	 Create	an	environment	variable	with	the	name	SSLKEYLOGFILE	that	will	point	to
a	text	file.	Your	browser	will	look	for	this	file	every	time	it	starts	up.	To
create	environment	variables,	right-click	on	My	Computer	and	go	to
Advanced	Settings	|	Environment	Variables	|	New	|	Specify	Name.	Enter
SSLKEYLOGFILE	and	Value:	C:/Users/username/sslkeylog.txt,	and
click	on	OK.

2.	 I	have	created	a	blank	text	file,	C:/Users/username/sslkeylog.txt
(make	your	new	environment	variable	point	to	this	file).

3.	 Now	open	your	browser	and	visit	a	website	enabled	with	TLS/SSL.
For	demonstration	purpose,	I	have	my	own	SSL	web	server	located
at	192.168.1.106	using	a	client	located	at	192.168.1.105:

4.	 After	you	visit	any	secure	website	enabled	with	SSL,	your	sslkeylog.txt	will
be	populated	with	some	random	numbers,	as	shown	in	the	following
screenshot.	If	not,	cross	check	your	settings	before	moving	on:

5.	 I	captured	the	whole	encrypted	session	traffic	between	the	client	and	server.
Now	go	to	Edit	|	Preferences	|	Protocol	tree	|	SSL	|	(Pre)-Master-Secret	log
filename.	Enter	/path/to/sslkeylog.txtand	OK.	Then	right-click	on	the	SSL

packet	(make	sure	you	select	Decrypt	packet	data.	The	option	should	be
present	in	the	bytes	pane)	and	follow	the	SSL	stream.	Now	you	will	see
something	like	the	following	screenshot:

Decrypt	SSL	traffic

This	is	one	of	the	easiest	ways	to	decrypt	SSL	traffic	with	just	a	few	clicks.	One
more	way	is	to	feed	the	RSA	private	key	of	the	server	into	the	Wireshark	SSL
preferences,	which	will	give	you	the	same	result	(I'm	leaving	it	to	you	for	your
research).

Summary
DNS	is	a	protocol	used	to	resolve	website	names	to	an	IP	address.	Through
DNS,	your	machine	is	able	communicate	on	an	IP-based	network.

FTP	has	been	used	to	transfer	files	from	one	machine	to	another	since	the
internet	came	into	existence	and	is	still	being	used	in	today's	modern	networks.

Web	browsers	present	and	transfer	web-based	content	back	and	forth	using
HTTP.	It	is	also	commonly	referred	to	as	the	request/response	model,	where	a
host	requests	a	certain	resource	and	the	server	responds	with	a	status	code	and
the	resource	if	available.

SMTP	is	very	commonly	used	to	send	emails.	The	SMTP	command	and	its
corresponding	arguments	are	passed	over	the	wire	in	plaintext.

VoIP	traffic	is	made	up	of	two	things:	RTP	for	data	transfer	and	SIP	for	session
creation.	The	signaling	protocol	creates	and	manages	a	session	where	RTP	is
used	to	carry	the	voice	itself.

Analyzing	the	Transport	Layer
Protocols	TCP/UDP
	

This	chapter	will	help	you	understand	the	underlying	technology	enabling
movement	of	network	traffic	across	routing	infrastructures	through	analysis	of
the	transport	layer	protocols	Transmission	Control	Protocol	(TCP)	and	User
Datagram	Protocol	(UDP).	TCP	and	UDP	are	the	basis	of	networking	protocols
and	it	is	important	to	understand	their	structure	and	behavior.

The	following	are	the	topics	that	we	will	cover	in	this	chapter:

The	TCP	header	and	how	it	communicates
Understanding	the	TCP	flags
Checking	for	different	analysis	flags	in	Wireshark
Understanding	UDP	traffic
Unusual	patterns	of	TCP	and	UDP	traffic

We	will	also	look	at	some	common	anomalies	that	occur	in	day-to-day	network
operations.

	

	

	

The	transmission	control	protocol
	

TCP	is	a	connection-oriented	protocol	used	by	several	application-layer
protocols	to	ensure	data	delivery	without	any	loss	of	information	during
transition,	based	on	sequence	and	acknowledgment	numbers.	TCP	ensures	fail-
proof	delivery	of	packets	between	nodes.	TCP	sits	in	between	the	network	layer
and	the	application	layer	and	uses	the	IP	datagram	to	transfer	data	packets
between	the	sender	and	receiver.

The	Three-Way	Handshake	process	takes	place	before	the	data	transfer
happens.	A	TCP	connection	is	like	a	two-way	communication	process	where	not
only	the	sender	is	actively	involved,	but	even	the	receiver	sends
acknowledgments	to	make	it	a	reliable	form	of	connection.

	

	

	

Understanding	the	TCP	header	and
its	various	flags
	

The	TCP	header	is	normally	20	bytes	long,	but	at	times,	due	to	the	presence	of
the	Options	field,	the	TCP	header	size	can	vary	up	to	60	bytes.	The	following	is	an
illustration	of	a	simplified	TCP	header:

The	following	is	a	brief	explanation	for	each	of	the	TCP	header	fields:

Source	port:	Used	by	the	sending	side	to	keep	track	of	existing	data
streams	and	new	incoming	connections.
Destination	port:	Port	number	associated	with	the	services	offered	by	the
destination.
Sequence	and	acknowledgment	numbers:	Each	side	uses	a	sequence
number	to	keep	track	of	ordering	of	the	packets.	Acknowledgment	numbers
are	used	by	the	sender	and	receiver	to	communicate	the	sequence	number
that	is	either	received	or	sent.
Data	offset:	Indicates	where	the	data	packet	begins	and	the	length	of	the
TCP	header.	The	size	can	vary	due	to	the	presence	of	the	options	field.
Flags:	There	are	various	types	of	flag	bits	present;	each	of	them	has	its	own
significance.	They	initiate	connections,	carry	data,	and	tear	down
connections:

SYN	(synchronize):	Packets	that	are	used	to	initiate	a	connection.
ACK	(acknowledgment):	Packets	that	are	used	to	confirm	that	the

data	packets	have	been	received,	also	used	to	confirm	the	initiation
request	and	tear	down	requests
RST	(reset):	Signify	the	connection	is	down	or	maybe	the	service	is
not	accepting	the	requests
FIN	(finish):	Indicate	that	the	connection	is	being	torn	down.	Both	the
sender	and	receiver	send	the	FIN	packets	to	gracefully	terminate	the
connection
PSH	(push):	Indicate	that	the	incoming	data	should	be	passed	on
directly	to	the	application	instead	of	getting	buffered
URG	(urgent):	Indicate	that	the	data	that	the	packet	is	carrying	should
be	processed	immediately	by	the	TCP	stack
CWR	(congestion	window	reduced):	Used	by	either	of	the	parties	to
slow	down	transmission	speed	in	an	event	of	congestion	to	avoid
packet	loss

Window	size:	Indicates	the	amount	of	data	that	the	sender	can	send.	The
size	is	decided	during	the	handshake	process	to	communicate	and	match	the
buffer	size	compatible	for	transmission.
Checksum:	Used	by	the	receiving	end	to	validate	the	integrity	of	the
segments.
Urgent	pointer:	Often	marked	as	0,	used	in	conjunction	with	URG	flag	to
mark	immediate	processing	of	a	subset	of	message.
Options:	This	field	length	can	vary	due	to	the	presence	of	various	options.
This	field	has	three	parts:	the	first	part	specifies	the	length	of	the	option
field,	the	second	part	signifies	the	options	being	used,	and	the	third	contains
the	options	in	use.	One	of	the	important	options,	maximum	segment	size
(MSS),	is	also	part	of	this	field.
Data:	The	last	part	in	the	TCP	header	is	the	real	data.

The	preceding	information	gives	us	an	overview	regarding	TCP	headers	and	the
significance	of	various	parts	of	the	header.	While	analyzing	TCP	sessions,	it
becomes	quite	important	to	know	about	these	details.

	

	

	

How	TCP	communicates
To	understand	and	analyze	the	packets	in	real	time,	I	have	configured	a	server
that	runs	at	172.16.136.129	and	a	client	that	runs	at	172.16.136.1,	as	shown	in	the

following	diagram:	

Using	Wireshark,	we	will	capture	the	three-way	handshake	process,	which
happens	before	the	actual	data	transfer,	as	well	as	the	teardown	process	(graceful
termination).

How	it	works
The	following	screenshot	depicts	the	various	packets	that	are	being	generated
while	a	client	is	trying	to	visit	the	web	page	hosted	on	http://172.16.136.129:

Use	the	following	display	filter	to	ease	analysis:

A	three-way	handshake	process	is	taking	place	in	the	packets	282,	283,	and	284	to
create	a	dedicated	channel.	The	client	initiated	the	creation	by	sending	a	SYN
packet	in	the	282	packet	with	the	SEQ	set	to	0.	Since	the	server	was	open	for
communication,	the	server	responded	with	a	SYN/ACK	packet	with	ACK	set	to	1	and
SEQ	set	to	0,	followed	by	a	confirmation	sent	from	the	client	side	in	the	packet
number	284	with	SEQ=1	and	ACK=1.

After	the	successful	completion	of	channel	creation,	the	client	sends	a	GET	request
to	access	the	contents	of	the	web-root	directory.	The	server	acknowledges	this	in
the	packet	number	287	and	sends	the	requested	content	with	the	200	OK	status
message,	which	is	acknowledged	by	the	client	in	the	next	packet.

After	all	the	data	transfer	takes	place,	when	the	client	has	nothing	left	to	request,
or	when	the	server	has	nothing	left	to	send,	the	client	sends	FIN/ACK	packets	to
properly	terminate	the	connection.	The	server	acknowledges	this	and	sends	its
own	FIN/ACK	packets,	which	are	acknowledged	by	the	client	in	the	packet	number
302.	This	way	of	termination	is	often	referred	to	as	the	teardown	process.	Refer	to
the	following	screenshot,	which	illustrates	this	process:

How	sequence	numbers	are	generated
and	managed
You	must	be	wondering	who	assigns	sequence	number	to	packets	and	how.	The
device	that	initiates	connection	uses	Initial	Sequence	Numbers	(ISN)	that	are
generated	by	the	host's	operating	system.	It	can	be	any	random	number	that	has
no	significance	with	respect	to	the	data.	The	sequence	number	we	see	in	the
packet	one	is	zero	is	a	relative	referencing	technique	used	by	Wireshark.

Starting	from	packet	1,	where	SEQ=0	(the	relative	sequence	number	in	real	is
704809601),	which	is	received	by	the	server	and	in	return	replies	with	its	own	SEQ=0
and	ACK=1	for	the	client's	SEQ=0.	At	the	end	of	this	three-way	handshake,	the	client
replies	with	SEQ=1	and	ACK=1	without	any	further	increments	as	no	data	is	being
transferred	during	the	process.

Then,	by	the	fourth	packet,	the	client	sends	a	GET	request	with	SEQ=1	and	ACK=1
where	the	data	payload	length	equals	323	(refer	to	the	following	screenshot),
which	the	server	receives	and	acknowledges	with	SEQ=1	and	ACK=324.	Did	you	see
what	just	happened?	The	server	replied	by	adding	a	total	data	payload	length
into	ACK	to	denote	that	the	data	was	successfully	received:	

RST	(reset)	packets
Often,	there	will	be	situations	such	as	the	server	daemon	is	not
available/running,	the	server	is	not	able	to	process	your	request	due	to	overload,
you	are	restricted	to	interact	with	the	server,	or	the	port	you	are	trying	to	connect
to	is	not	ready/open	for	connections.	The	RST	packet	basically	denotes	the	abrupt
rejection	of	a	connection	request.

In	our	scenario,	the	server	daemon	is	not	running	and	the	client	is	trying	to
communicate;	as	a	result,	it	receives	RST	packets	in	return	for	every	SYN	request
sent.	The	client	tries	visiting	the	web	page	just	once,	but	Wireshark	captures
more	than	one	SYN	and	RST	packet	because	every	browser	performs	a	different
number	of	attempts	over	a	non-responding	or	a	closed	socket	at	a	preconfigured
interval.	Hence,	in	our	case,	I	am	using	the	Apple	Safari	browser,	which	made
three	attempts	to	connect	in	a	span	of	3-4	minutes.	Refer	to	the	following
screenshot,	which	illustrates	the	packets	captured	in	the	process:	

Unusual	TCP	traffic
Lost	connection	or	unsuccessful	connection	attempt	scenarios	are	the	most
common	forms	of	unusual	TCP	traffic.	You	might	also	observe	several	other
scenarios,	such	as	high	latencies	due	to	long-distance	communications.	To	make
the	analysis	convenient	and	easy	to	troubleshoot,	use	the	time	column	by	sorting
it	to	figure	out	large	time	gaps	between	the	packets	at	the	top	of	the	list	pane.

Another	example	can	be	where	a	malicious	device	is	running	a	port	scan	on	your
network	and	your	firewall	responds	with	RST	packets	to	avoid	such
reconnaissance	attacks,	or	it	might	also	be	possible	that	the	port	closed.	Refer	to
the	following	screenshot,	where	I've	tried	scanning	a	node	over	network	using
nmap,	and	it	seems	quite	visible	(due	to	a	lot	of	packets	generated	from	one	source
destined	for	random	port	numbers),	and	hence	is	easy	to	track:	

Observe	Frame	19,	where	the	port	scan	initiated	sents	a	SYN	packet	in	order	to	check
whether	the	port	is	open	or	closed.	As	a	result,	port	21	(FTP)	was	closed;	hence	the
server	sent	an	RST	packet.	There	can	be	various	scenarios	other	than	the	one
discussed	previously.	If	you	hold	a	strong	basic	working	knowledge	of	TCP	and
IP,	then	it	would	be	quite	easy	for	you	to	point	out	unusual	forms	of	traffic.

The	User	Datagram	Protocol
	

As	defined	in	RFC	768,	a	UDP	is	a	connectionless	protocol,	which	is	great	for
transmitting	real-time	data	between	hosts	and	is	often	termed	as	an	unreliable
form	of	communication.	The	reason	is,	UDP	doesn't	care	about	the	delivery	of
packets,	and	any	lost	packets	are	not	recovered	because	the	sender	is	never
informed	about	the	dropped	or	discarded	packets.	However,	many	protocols	such
as	DNS,	TFTP,	SIP,	and	so	on.	rely	only	on	this.

The	protocols	that	use	UDP	as	a	transport	mechanism	should	rely	upon	other
techniques	to	ensure	data	delivery	and	error-checking.	A	point	to	note	is	that
UDP	provides	faster	transmission	of	packets	as	it	does	not	perform	three-way
handshake	or	graceful	termination	as	observed	in	the	TCP.	UDP	is	referred	to	as
a	transaction-oriented	protocol	and	not	a	message-oriented	protocike	a	Tol	lCP.

	

	

	

The	UDP	header
	

The	size	of	a	usual	UDP	header	is	8	bytes;	the	data	that	is	added	with	the	header
can	be	theoretically	65,535	(practically	65,507)	bytes	long.	A	UDP	header	is
quite	small	when	compared	to	a	TCP	header;	it	has	just	four	common	fields:
Source	Port,	Destination	Port,	Packet	Length,	and	Checksum.	Refer	to	the	UDP
header	shown	here:

Source	port:	Port	number	used	by	the	sending	side	to	receive	any	replies	if
needed.	Most	of	the	time,	in	a	TCP	and	UDP,	the	port	number	chosen	to	be
the	part	of	the	socket	is	ephemeral.
Destination	port:	Port	number	used	by	the	receiving	side,	where	all	data	is
transmitted	to.
Packet	length:	Specifies	the	length	of	the	packet,	starting	from	the	header	to
the	end	of	the	data;	the	minimum	length	you	will	observe	will	be	8	bytes,
that	is	the	length	of	the	UDP	header.
Checksum:	Data	integrity	ensures	that	what	is	sent	from	the	sender	side	is
the	same	as	what	receiver	got.	Sometimes,	while	working	with	a	UDP,	you
will	see	that	the	checksum	value	is	0	in	the	packet	received.	This	means	that
the	checksum	is	not	required	to	be	validated.

	

	

How	it	works
Let's	analyze	protocols	such	as	DHCP,	DNS,	and	TFTP,	which	use	UDP	as	a
delivery	protocol.

I	have	configured	a	default	gateway	at	192.168.1.1	and	a	client	at	192.168.1.106.
Wireshark	running	between	them	will	capture	the	UDP	transactions.	The
following	is	a	reference	architecture	diagram:

The	DHCP
The	protocol	that	manages	IP	addresses	assigned	to	nodes	and	makes	them
network	communication	compatible	is	the	Dynamic	Host	Configuration
Protocol	(DHCP).	It	is	an	automated	way	of	assigning	and	managing	IP
addresses	to	requesting	devices.

To	generate	DHCP	packets	from	a	client	machine	assigned	with	an	IP	address,	I
will	try	to	release	the	current	IP.	Refer	to	the	following	screenshot:

In	the	list	pane,	we	can	see	a	DHCP	release	packet	that	was	sent	explicitly	by	the
client	(I	used	the	dhclient	-v	-r	command	on	the	Linux	Terminal	to	release	the	IP
address).

The	DHCP	server	port	number	is	67	and	the	DHCP	client	port	number	is	68	by
default.	There	is	a	fourth	field	that	I	have	highlighted,	the	packet	length	field,
which	specifies	the	length	of	the	packet,	starting	from	the	first	byte	until	the	end
of	data	in	the	packet.	However,	out	of	308	bytes,	8	bytes	show	the	length	of	the
UDP	header	and	the	remaining	300	bytes	represent	the	application	data.

The	TFTP
The	Trivial	File	Transfer	Protocol	(TFTP)	is	a	lightweight	version	of	the	FTP
that	is	used	to	transfer	files	between	devices.	Unlike	the	FTP	protocol,	TFTP
does	not	ask	users	for	any	credentials.	TFTP	uses	UDP	as	a	transport
mechanism.

Most	commonly,	TFTP	is	used	in	LAN	environments	and,	when	dealing	with
manageable	devices	such	as	switches	and	routers,	network	administrators	use
TFTP	servers	to	take	back	up	of	configuration	files	and	to	update	the	firmware.

TFTP	server	is	running	at	IP	192.168.1.106	and	a	TFTP	client	at	IP	192.168.1.104.
There	is	a	text	file	abc.txt	stored	on	the	TFTP	server,	which	the	TFTP	client	will
download.	Refer	to	the	following	diagram:

The	traffic	generated	between	two	hosts	is	successfully	captured	and	the	packets
corresponding	to	it	are	shown	in	the	following	screenshot

Now,	let's	see	what	each	pointer	signifies:

1.	 Depicts	transfer	of	the	packets	is	initiated	as	soon	as	the	client	requests	the
abc.txt	file.	The	request	frame	can	be	seen	in	the	list	pane.

2.	 As	discussed,	a	TFTP	uses	a	UDP	for	a	transport	mechanism.	The	related
details	for	the	request	are	shown	in	the	details	pane,	which	states	that	the
request	was	initiated	from	an	ephemeral	port	number	from	the	client
destined	to	port	69	on	the	server	(69	is	a	default	port	to	the	TFTP	protocol).

3.	 The	request	was	specific	to	the	abc.txt	file	that	is	also	present	in	the	details
pane	in	the	TFTP	protocol	section.

Some	applications	use	a	UDP	as	a	transport	protocol	and	have	their	own	built-in
feature	to	ensure	delivery.	You	must	be	wondering	about	the	acknowledgment
packets	that	are	shared	between	the	two	hosts.	As	we	discussed,	a	UDP	is	an
unreliable	form	of	communication,	so	why	are	we	seeing	ACKs	in	a	UDP?	The
reason	is	that	the	TFTP	server	we	are	requesting	has	a	built-in	reliability	feature.

Unusual	UDP	traffic
The	following	are	a	few	traffic	patterns	that	may	be	found	suspicious	in	some
environments.

Scenario	1:	In	a	scenario	where	the	UDP	service	is	not	running/available,	what
will	the	traffic	look	like	then?	Refer	to	the	following	screenshot:

The	client	requested	an	invalid	resource	that	the	server	couldn't	locate	and	hence
returned	with	an	error	code	and	the	summary	message	File	not	found	(seen	in	the
list	pane).

Scenario	2:	Sometimes,	it	is	possible	that	the	server	daemon	may	not	be	running
and	the	client	may	request	a	certain	resource.	In	such	cases,	the	client	would
receive	the	ICMP	destination	unreachable	error	with	the	error	code	3.	Refer	to	the
following
screenshot:

Let's	discuss	what	each	pointer	signifies	in	more	detail:

1.	 The	server	returned	with	an	ICMP	destination	unreachable	message	when	the
TFTP	server	daemon	was	not	functional

2.	 The	client	received	an	error	code	of	type	3
3.	 The	request	was	sent	to	port	69,	which	was	currently	nonfunctional
4.	 The	requested	resource	shown	under	the	TFTP	protocol	section

Scenario	3:	Unusual	DNS	requests	are	also	often	seen	when	a	client	initiates	a
request	to	look	for	name	servers	associated	with	an	address.	It	would	look	like
the	one	shown	in	the	following	screenshot:

Now	we	will	see	what	each	pointer	signifies:

1.	 As	seen	in	the	list	pane,	the	client	at	192.168.1.106	initiated	a	request	to	look
for	the	address	8.0.0.0	and	received	a	response	in	Frame	2	No	such	Name

2.	 The	request	was	sent	to	the	default	gateway	that	holds	the	DNS	cache
3.	 The	gateway	responded	with	a	No	such	name	error

There	can	be	multiple	scenarios	where	you	will	see	unusual	traffic	related	to
UDP.	Based	on	your	usual	network	activity,	it	is	advisable	to	create	a	traffic
pattern	to	identify	anomalies	in	DNS,	DHCP,	TFTP,	and	so	on.	UDP	protocols.

Learn	about	malicious	DNS	traffic	to	protect	your	digital	infrastructure.

Summary
TCP	is	a	reliable	form	of	communication	that	facilitates	three-way	handshakes
that	and	a	teardown	process	ensures	the	connection	is	reliable	and	interactive.

A	TCP	header	is	20	bytes	long	and	consists	of	various	fields	such	as	source	and
destination	port,	SEQ	and	ACK	numbers,	offset,	window	size,	flag	bits,	checksum,
and	options.

The	SEQ	and	ACK	numbers	are	used	by	TCP-based	communications	to	keep	track	of
data	sent	across.

A	UDP	is	a	connectionless	protocol	that	is	a	nonreliable	means	of
communication	over	IP,	where	the	lost	and	discarded	packets	are	never
recovered.	A	UDP	does	provide
faster	transmission	and	easier	creation	of	sessions.

A	UDP	header	is	8	bytes	long	and	has	very	few	fields,	such	as	source	and
destination	port,	packet	length,	and	checksum.	Common	protocols	such	as
DHCP,	TFTP,	DNS,	and	RTP	mostly	use	a	UDP	as	a	transport	mechanism.

Network	Security	Packet	Analysis
	

Wireshark	is	an	efficient	utility	packed	with	an	advanced	set	of	features	that
assist	security	professionals	in	performing	passive	analysis	of	network	traffic	to
identify	and	point	out	malicious	packets	and	anomalies.

This	chapter	will	guide	you	through	how	to	use	Wireshark	to	analyze	security
issues,	such	as	analyzing	malware	traffic	and	footprinting	attempts.	We	will
cover	the	following	topics:

Analyzing	port	scanning,	footprinting,	and	attack/exploitation	network
traffic
Dissecting	malicious	ARP	traffic
Analyzing	brute	force	attacks
Inspecting	malicious	traffic
Creating	display	and	capture	filter	signatures	for	malicious	traffic

Using	real-life	scenarios	simulated	in	a	virtual	network	infrastructure,	we	will
capture	and	understand	malicious	traffic	patterns	and	replicate	attacks	such	as
information	gathering	and	exploitation	attempts.	We	will	start	from	information
gathering	activity	followed	by	an	exploitation	through	a	malicious	.exe	file.	Then
we	will	move	on	to	understanding	ARP	poisoning	traffic	commonly	used	for
performing	man-in-the-middle	(MiTM)	attacks.

	

	

	

Information	gathering
The	probability	and	success	factor	of	every	attack	depends	on	information
gained	through	passive	and	active	scanning	of	the	network.	Footprinting	and
reconnaissance	are	synonyms	for	the	term	information	gathering.

The	following	diagram	depicts	the	virtual/physical	infrastructure	we	will	be
using	for	our	analysis	and	for	replicating	the	attacks:	

The	access	point	is	located	at	192.168.1.1	and	it	allocates	the	IP	address	to
connected	devices	using	DHCP;	the	attacking	box	(Kali)	is	configured	with	a
manual	IP	address	192.168.1.106.

PING	sweep
Let's	begin	with	our	first	scenario,	where	an	attacker	is	trying	to	perform	a	ping
sweep	attack	over	the	subnet	his	machine	is	a	part	of	(assumption:	The	attacker
is	an	internal	employee).	Refer	to	the	following	screenshot,	which	displays
displays	the	traffic	captured	as	a	result	of	running	a	bash	script	(ping	sweep
scan);	the	script	pings	each	IP,	starting	from	192.168.1.100	to	192.168.1.110:

Ping	sweep

Starting	from	packets	1-4,	ARP	requests	are	observed	because	of	the	ICMP	ping
command	issued	on	Kali	and,	as	it	is	fresh	network,	configuration	devices	would
need	to	build	their	ARP	cache	table	for	internal	LAN	communication.	In	packet
5,	the	ping	request	is	sent	to	192.168.1.105,	and	the	reply	for	it	is	received	in	packet
14,	which	means	the	device	is	available.	A	similar	pattern	of	traffic	is	captured
and	observed	for	the	other	IPs	in	the	DHCP	range.	Due	to	frequent	ARP	and
ICMP	packets	observed	for	a	series	of	IPs	one	after	another,	we	can	conclude
that	it	is	a	port	scanning	activity	on	the	LAN	network.

Half-open	scan	(SYN)
Now	let's	scan	a	specific	device	in	the	range	of	IP	addresses	and	target	the
machine	running	at	IP	192.168.1.105.	The	primary	way	to	gather	information
pertaining	to	a	specific	device	would	be	a	port	scan	in	order	to	check	for	any
open	services	that	target	device	offers.	By	services,	I	mean	HTTP	daemons,	mail
server	daemons,	FTP	server,	SMB,	and	so	on.

You	might	be	wondering	what	a	half-open	scan	is.	Look	at	the	process	of	a	TCP
three-way	handshake	we	discussed	in	the	previous	chapter,	where	the	client
initiates	the	connection	by	sending	a	SYN	packet	and	if	the	server	is	available
client	receives	the	SYN,	ACK	packet,	and	in	return,	the	client	sends	an	ACK	packet	to
the	server	for	completing	the	handshake	process.

Now,	what	would	happen	if	the	ACK	packet	sent	in	the	last	step	of	the	TCP
handshake	is	never	sent	to	the	server?	The	server	will	wait	for	a	period	of	time
before	terminating	the	handshake	process,	and	the	connection	to	the	specific
TCP	service	would	never	be	completed.	That's	why	this	type	of	scan	is	called	a
half-open	scan.

I	have	executed	a	half-open	scan	from	the	Kali	box	at	IP	192.168.1.106	to	target	the
Win7	box	at	IP	192.168.1.105	using	Nmap	with	-sS	switch.	Nmap	is	an	open
source	port	scanning	tool	available	for	most	platforms	and	can	be	downloaded
for	free	from	http://nmap.org.	The	traffic	generated	because	of	the	SYN	scan	we
executed	is	captured	and	shown	in	the	following	screenshot	(use	display	filters
for	viewing	packets	pertaining	to	a	specific	host	as	follows):

http://nmap.org

Half-open	scan

The	key	points/patterns	to	note	in	the	above	listed	packets	are	as	follows:

There	are	numerous	SYN	packets	generated	from	IP	192.168.1.106	destined	for
IP	192.168.1.105	over	random	ports	within	a	very	little	amount	of	time.	It	is
highly	unlikely	that	an	internal	machine	will	initiate	multiple	connection
instances	within	such	short	time	frame	(look	at	the	time	column).
In	the	packets	starting	from	13	to	22,	a	SYN	request	is	being	sent	so
frequently	over	random	and	well-known	port	numbers	within	milliseconds.
Also,	the	host	at	IP	192.168.1.106	never	sent	back	a	ACK	packet	in	response	to
SYN,	ACK	received.

OS	fingerprinting
Being	aware	of	the	operating	system	running	on	the	target	takes	the	information
gathering	process	to	the	next	level.	If	the	make	and	version	of	operating	system
running	is	known	to	the	attacker,	it	gives	an	extra	edge	in	terms	of	exploitation
through	targeting	specific	vulnerabilities.

How	do	you	think	identifying	the	remote	machine's	OS	works?	I	will	tell	you	the
secret.	Every	OS	has	a	different	way	of	implementing	the	TCP	stack.	So,	a
packet	when	received	from	the	remote	machine	will	have	certain	fields	in	it,
such	as	TTL,	fragment	offset,	and	window	size.	By	comparing	the	values	in	the
packet	with	the	database,	tools	are	able	to	predict	the	OS	with	greater	accuracy.
For	example,	if	you	try	to	ping	a	Windows	machine,	the	TTL	value	returned
would	be	128,	and	if	you	ping	a	Linux	machine,	the	TTL	value	would	be	64
most	of	the	time.	Simple,	isn't	it?

Using	the	nmap	command	nmap	-O	192.168.1.109,192.168.1.104,	let	us	fingerprint	a
machine's	OS	for	IP	192.168.1.109	and	192.168.1.104	and	capture	the	generated
traffic.

We	won't	just	rely	on	nmap's	output	to	confirm	the	OS;	we	will	also	try	to	dissect
packets	from	Wireshark	for	more	clarity.	Refer	to	the	following	screenshots	to
compare	the	outputs:

Check	the	highlighted	TTL	field	value,	which	is	equal	to	64	for	a	Linux	box	and
128	for	a	Windows	box.	Also	look	at	the	maximum	segment	size	value	at	the
bottom	where	the	value	for	a	Linux	box	is	1460	and	1440	for	a	Windows	box.
Tools	such	as	nmap	store	all	these	baseline	values,	which	are	then	compared
with	scan	results	internally	to	identify	the	remote	OS.	A	few	key	points	to	note	to
identify	such	malicious	traffic	are	as	follows:

Traffic	generated	from	the	scans	targeting	to	identify	remote	OS	would	be
similar	to	the	SYN	scan	(half-open)	traffic,	where	the	incomplete	TCP
handshakes	and	ICMP	request/replies	were	observed.
Also,	if	a	lot	of	RST	or	RST,	ACK	packets	are	sent	from	a	critical	server	to	a
specific	host	in	a	network,	then	it	is	something	worth	investigating	further.

ARP	poisoning
Whenever	any	device	intends	to	communicate	with	another	device,	the
requesting	device	sends	a	broadcast	to	the	whole	subnet.	Then,	the	device	to
which	the	IP	address	belongs	replies	with	its	MAC	address	using	a	unicast
packet.	Through	this	approach,	devices	in	local	area	network	communicate	with
each	other.	A	MAC	address	(physical	address)	table	stores	MAC	address	with	its
corresponding	port	number/IP	address.

Use	the	arp	-a	command	to	populate	the	ARP	table	entries	on	your	machine.	The
same	command	on	a	majority	of	platforms.

The	following	are	some	details	pertaining	to	the	local	network	we	will	be	using
for	understating:

Device IP	address MAC	address

Router	(default	gateway) 192.168.1.1 D0:5B:A8:07:73:6C

Apple	(victim) 192.168.1.103 D8:BB:2C:B9:53:EC

Windows	server	(victim) 192.168.1.109 00:0C:29:B3:CB:B6

Kali	Linux	(attacker) 192.168.1.106 00:0C:29:5D:A7:F7

	

For	instance,	if	the	Apple	machine	wishes	to	communicate	with	the	Windows
machine	located	at	192.168.1.109,	Apple	will	send	a	broadcast	asking	for	the
Windows	MAC	address	stating	Who	has	192.168.1.109?	Tell	192.168.1.103.	Then,	as

soon	as	the	Windows	machine	gets	to	know	about	the	request,	the	ARP	reply
unicast	packet	stating	192.168.1.109	is	at	00:0C:29:B3:CB:B6	will	be	sent.

ARP	poisoning	is	an	attack	form	to	poison/infect/corrupt	the	local	ARP	cache	of
the	victim.	Refer	to	the	following	diagram:	

IP	forwarding	is	preconfigured	using	the	command	echo	'1'/proc/sys/net/ipv4/ip_forward	on	a
Kali	box	to	send	traffic	back	and	forth	between	the	Apple	and	Windows	box.

Perform	the	following	steps	in	order	to	replicate	a	MiTM	attack	in	an	lab
environment:

1.	 The	following	screenshot	shows	the	ARP	table	entry	for	both	the	client	and
server,	before	the	attacker	poisons	the	ARP	cache	for	the	victim	machines:

Windows	server	cache	
Apple	cache

2.	 The	attacker	is	using	the	command-line	utility	arpspoof	to	poison	the	ARP
entries	through	forged	ARP	reply	packets:

ARP	reply	packets	sent	to	the	Windows	server	on	behalf	of	the	Apple	device

ARP	reply	packets	sent	to	Apple	device	on	behalf	of	the	Windows	server

3.	 The	traffic	generated	because	of	the	preceding	command	looks	like	the
following:

4.	 The	packets	sent	from	the	Kali	box	forced	the	Apple	and	Windows
machines	to	update	their	local	ARP	cache	holding	legit	MAC	addresses
with	the	attacker's	MAC	address	00:0C:29:5D:A7:F7:

Poisoned	window's	cache	
Poisoned	Apple's	cache

5.	 Now	all	the	traffic	sent	between	the	Apple	and	Windows	boxes	will	be
forwarded	through	Kali.	For	verification	purposes,	I	turned	off	the
Windows	server	machine	and	tried	sending	ICMP	packets	from	the	Apple
box:

The	preceding	output	ensures	that	the	packets	are	being	forwarded	through
192.168.1.106,	hence	making	our	ARP	poisoning	attack	a	success.

Create	static	ARP	entries	in	critical	machines	to	protect	them	from	ARP
spoofing	attack;	refer	to	the	following	screenshot	for	configuring	static	entries	in
a	Windows	box:	

Adding	a	static	entry	to	local	ARP	cache

Analysing	brute	force	attacks
You	must	be	aware	of	the	popularity	of	brute	force	attacks.	The	chances	of
success	are	not	very	high,	but	also	it	is	not	impossible	due	to	the	lack	of	complex
passwords	configured	in	corporate	machines.	Brute	force	attack	is	a	way	to
guess	login	passwords	configured	in	devices	using	a	tool	that	automates
password	guessing	process.

To	analyze	malicious	traffic	of	such	nature,	I	will	attempt	to	perform	brute	force
over	a	preconfigured	FTP	service.	FTP	is	used	to	transfer	files	efficiently	with
the	assurance	of	integrity	and	confirmed	delivery	of	the	data	in	modern	and
critical	network	infrastructures.

For	testing	and	our	analysis	purposes,	I	have	configured	one	FTP	server	at
192.168.1.108	over	a	Windows	7	machine	and	the	attacker	is	at	IP	192.168.1.106	over
a	Kali	machine.

Let's	replicate	and	analyze	the	attack	and	normal	FTP	traffic	pattern.	Perform	the
following	steps	if	you	want	to	replicate	it,	but	for	educational	purposes	only:

1.	 Configure	the	FTP	client	and	the	FTP	server	using	whatever	platform	suits
your	needs	best	and	make	sure	the	link	between	the	FTP	server	and	the
client	is	working.

2.	 Now,	first,	we	will	try	log	in	to	the	FTP	server	using	a	legitimate	user	and
will	record	the	traffic.	Later,	we	will	use	the	Follow	TCP	stream	option	in
Wireshark	to	view	the	traffic	details	in	easy-to-understand	plain	text	format.

3.	 Refer	to	the	following	screenshot	where	I	initiated	the	connection	between
from	FTP	the	client.	I	then	supplied	the	wrong	credentials	in	the	first
attempt,	and	then	used	the	correct	ones	in	the	second	attempt:

4.	 After	I	successfully	logged	in,	I	issued	the	help	command	to	view	a	list	of
commands	available	followed	by	a	quit	to	terminate	the	connection.

5.	 Wireshark	captured	the	traffic	between	the	FTP	client	and	server;	let's	use
the	follow	TCP	stream	option	(right-click	in	list	pane	|	follow	|	TCP	Stream)
to	see	the	details:

FTP	assembled	stream

6.	 Now,	as	we	have	analyzed	the	normal	traffic	patterns,	let's	see	what	would
malicious	FTP	packets	(such	as	the	brute	force	attack	attempts)	would	look
like.	I	am	THC-hydra	to	perform	a	brute	force	attack	using	a	basic	dictionary
file.

7.	 Issue	the	hydra	-l	<username>	-P	<password	file>	ftp://<you	target's	IP	address>
command.	Refer	to	the	following	screenshot:

8.	 The	traffic	generated	was	captured	and,	instead	of	displaying	all	the	traffic,
I	have	used	a	display	filter	ftp.request.command==PASS	in	order	to	view	only
packets	pertaining	to	the	FTP	password	command.	The	following
screenshot	shows	what	display	filter	I	used	to	query	malicious	repetitive
packets.

FTP	Brute	Force	attack	traffic	pattern

9.	 It	is	easily	identifiable	that	the	preceding	traffic	is	malicious	due	to	the	FTP
pass	command	issued	by	a	single	IP	over	a	very	short	period	(refer	to	the
time	column).

To	identify	such	malicious	or	sensitive	traffic,	create	a	different	coloring	scheme
(discussed	in	Chapter	3,	Analysing	Transport	Layer	Protocols	TCP/UDP).	Refer
to	the	following	screenshot:

Coloring	scheme	for	malicious	traffic

Using	a	display	filter	and	colorzing	traffic	option,	you	can	analyze	such
malicious	traffic	in	a	network	infrastructure.

Inspecting	malicious	traffic
(malware)
Malware	is	one	of	the	most	common	forms	of	client-side	attacks	in	any	network.
The	outcome	of	malware	infections	can	be	very	damaging,	ranging	from	denial
of	service	attacks	to	remote	code	execution.	Critical	infrastructure	industries
such	as	Oil	and	Gas,	Energy,	Transport,	and	Manufacturing	are	one	of	the
favorite	targets	for	malware	due	to	a	lack	of	security	controls	and	general
awareness	in	place.	Refer	to	the	following	screenshot,	where	we	will	try	to
replicate	a	malware-based	infection	in	a	lab:

Malware	is	capable	of	performing	tasks	once	installed	on	the	victim's	machine,
such	as	information	disclosure,	executing	commands,	and/or	corrupting	systems,
even	if	the	best	security	solutions	are	installed	in	the	infrastructure.

Follow	these	steps	if	you	want	to	replicate	the	scenario	in	your	own	virtual	lab:

You	require	three	machines	connected	to	the	same	LAN.	Make	sure	they
are	able	to	ping	to	each	other,	to	ensure	connectivity.
On	the	IP	address	192.168.1.106	stays	a	legitimate	website,	which	the
client	at	IP	192.168.1.107	usually	visits.	However,	this	time,	the	client	is	not
aware	of	the	infection	that	causes	redirection	to	another	web	server
(assumption:	the	web	server	is	compromised	and	taken	over	by	the

attacker).	Refer	to	the	following	screenshot	of	the	legitimate	server:

Legitimate	website

To	simulate	the	redirection,	I	have	configured	my	Apache	server	running	on
192.168.1.106	to	redirect	HTTP	requests	to	IP	192.168.1.100	and	download	the
efg.exe	from	there.
When	client	visits	the	website	running	at	192.168.1.106,	it	gets	redirected	to	a
new	web	server,	which	directly	asks	the	client	to	run	a	file	named	efg.exe.
Refer	to	the	following	screenshot:

Client	gets	redirected	to	IP	192.168.1.100	and	is	asked	to	run	the	application.

The	publisher	of	the	application	is	not	verified,	so	the	client	operating
system	is	not	able	to	verify	it.	This	results	in	an	unknown	publisher	error.
Refer	to	the	following	screenshot:

Unknown	publisher	error

Once	the	client	hits	Run,	the	malware	will	be	executed,	thus	creating	a
connection	back	to	the	command	and	control	center	(attacker).
We	have	a	captured	the	traffic	while	the	attack	was	in	process.	Let's	take	a
look	at	it.	Instead	of	showing	just	the	traffic,	I	assembled	the	TCP	stream
first	between	the	client	and	the	legitimate	server.
To	understand	the	way	our	malware	works,	we	need	to	look	into	the	packet
details.	Refer	to	the	following	screenshot,	which	shows	the	assembled	TCP
stream:

TCP	stream	between	the	client	and	real	(compromised)	server

As	is	clearly	visible,	the	client	visits	the	web	server,	and	the	request	is	being

forwarded	with	HTTP	redirection	to	the	new	address	http://192.168.1.100/efg.exe
After	a	couple	of	packets	were	exchanged	between	the	client	and	server,	the
client	received	a	200	OK	status	message,	suggesting	successful	download	of
the	executable	application	efg.exe

The	following	screenshot	depicts	the	request	sent	by	the	client	machine	to
download	the	executable	from	the	new	web	address:

Figure	7.20:	Malware	signature

The	GET	request	was	initiated	by	the	client	in	search	of	efg.exe,	to	which	the	server
responded	with	a	200	OK	status	message.	Later,	you	can	see	the	known	malware
signature	starting	with	the	characters	MZ	followed	by	some	random	character.

A	quick	Google	search	reveal	that	it	is	an	executable	file.	Wikipedia	states	16/32
bit	DOS	executable	files	can	be	identified	by	the	letters	MZ	at	the	beginning	of	the
file
in	ASCII.	Refer	to	the	following	screenshot:

Moving	on	with	our	investigation,	let's	export	the	efg.exe	file.	Perform	the
following	steps	to	download	the	file:

1.	 Go	to	File	|	Export	Objects	|	HTTP:

The	next	screen	would	look	as	the	following	screenshot:

Exporting	HTTP	objects

2.	 Now,	select	the	conversation	that	states	the	name	of	the	file	along	with	it
and	click	on	Save	As.

3.	 An	option	is	to	upload	this	file	to	websites	such	as	http://www.virustotal.com,
which	will	scan	the	file	through	multiple	antivirus	programs.	Refer	to	the
following	screenshot:

http://www.virustotal.com

Uploadingefg.exeto	virustotal.com

4.	 Click	Scan	and	wait	for	the	results:

31	out	of	56	type	of	antivirus	software	detected	the	executable	file	as	malicious.

5.	 You	can	also	manually	examine	the	conversation	between	the	infected
client	and	the	command	and	control	center	by	looking	at	the	hex	dump.
Refer	to	the	following	screenshot:

Hexdump	in	TCP	stream	dialog

It	seems	that	the	attacker	machine	is	issuing	some	command	to	gather
information	regarding	the	victim	machine.	The	highlighted	content	on	the	right-
hand	side	of	the	window	states	strings	such	as	Get	File	Information,	Get	full	PC	name,
Get	Current	directory,	Adjust	token	Privileges,	and	so	on.

Familiarity	with	such	traffic	patterns	is	critical,	and	it	is	advisable	to	set	up	filters
capture	filters	in	Wireshark	to	perform	passive	analysis	to	identify	malicious
traffic.	For	sure,	IDS/IPS	systems	in	your	environment	would	be	able	to	detect	it
automatically	but	in	critical	infrastructure	networks	(Oil	and	Gas,	Energy,	and	so
on),	it	is	highly	unlikely	to	have	such	security	solutions	deployed.	In	those
scenarios,	Wireshark	is	your	best	buddy	and,	most	importantly,	it	comes	for
free!!

Summary
Use	Wireshark	to	keep	your	network	secure	by	defending	against	common	forms
of	infiltration	attempts.	Analyzing	the	packets	from	a	security	perspective	will
give	you	a	new	insight	into	how	to	deal	with	malicious	users.

Activities	such	as	port	scanning,	footprinting,	and	various	active	information
gathering	attempts	are	the	basis	of	attacking	methodologies	that	can	be	taken
advantage	of	to	bypass	your	security	infrastructure.	Create	filters	and	signatures
to	identify	malicious	traffic	patterns.

Guessing	passwords	to	gain	unauthorized	access	is	called	a	brute	force	attack.
Through	Wireshark,	you	can	filter	and	identify	such	malicious	forms	of	traffic.

Wireshark	can	help	you	in	analyzing	malware	behavior,	and	using	the	behavior
analyzed,	you	would	be	able	to	create	the	necessary	signatures	for	your	IDS/IPS
security	solutions.

The	next	chapter	will	enable	network	professionals	to	perform	wireless	packet
analysis	and	teach	them	how	to	decrypt	and	read	traffic	from	the	air.

Analyzing	Traffic	in	Thin	Air
	

Most	devices	today	are	installed	with	wireless	capabilities	and	it	is	critical	to
understand	the	structure	and	pattern	of	wireless	traffic	within	your	network.	This
chapter	will	assist	in	understanding	the	methodology	and	steps	involved	in
performing	wireless	packet	analysis.

The	following	are	the	topics	we	will	cover	in	this	chapter:

Understanding	IEEE	802.11
Modes	in	wireless	communication
Capturing	wireless	traffic
Analyzing	normal	and	unusual	traffic	patterns
Decrypting	encrypted	wireless	traffic

Wireless	network	traffic	analysis	is	similar	to	wired	network	analysis;	the
objective	of	the	topics	discussed	here	is	to	learn	about	wireless	technologies	and
protocol	strengths	and	weaknesses,	along	with	suspicious	wireless	traffic.

	

	

	

Understanding	IEEE	802.11
At	the	Institute	of	Electrical	and	Electronics	Engineers	(IEEE),	several
groups	of	technical	professionals	as	a	committee	are	working	on	projects,	and
one	of	these	is	802,	which	is	responsible	for	developing	Local	Area	Networks
(LAN)	standards.	Specifically,	802.11	contains	WLAN	standards.

There	are	a	couple	of	802.11	standards,	for	an	outmost	coverage	of	standards	we
will	discuss	the	multiple	of	them	such	as	802.11b,	802.11a,	802.11g,	and
802.11n:

802.11:	Supports	a	network	bandwidth	of	1-2	Mbps.	This	is
the	reason	why	many	802.11-compatible	devices	have	become	obsolete.
802.11b:	This	specification	uses	a	signaling	frequency	of	2.4	Ghz	like	the
802.11	standard.	Technically,	a	maximum	of	11	Mbit	transmission	rate	can
be	achieved	over	a	2.4	Ghz	band	using	b	specification.

The	802.11b	band	is	divided	into	14	overlapping	channels,	where	every
channel	has	22	Mhz	widths.	In	one	instance,	there	can	be	a	maximum	of
three	non-overlapping	channels	operating	at	the	same	time.	This	space
separation	is	necessary	and	required	to	let	the	channels	operate
individually.

Most	appliances,	such	as	microwave,	cordless	phones,	and	so	on.	work
over	a	2.4	Ghz	spectrum,	which	may	cause	significant	interference	and
congestion	in	802.11b	WLAN	packets	transmission.

802.11a:	This	is	based	on	Orthogonal	Frequency	Division	Multiplexing
(OFDM)	that	was	released	in	1999	and	supports	a	maximum	transmission
rate	up	to	54	Mbps	5	Ghz	spectrums.	This	specification	was	developed	as	a
second	standard	to	802.11	standards.	It	is	commonly	used	in	business
environments;	because	of	its	high	cost,	the	a	specification	is	not	best	suited
for	home	environments.	There	is	no	channel	overlap	that	happens	in
802.11a.	A	higher	regulated	frequency	helps	in	preventing	the	interferences
caused	by	devices	that	work	on	2.4	Ghz	spectrums.
802.11g:	Released	in	2002,	this	specification	combines	the	best	features	of

802.11a	and	802.11b.	It	uses	a	signaling	frequency	of	2.4	Ghz,	and
bandwidth	up	to	54	Mbps.	It	also	supports	backward	compatibility,	which
means	that	all	802.11g	access	points	will	support	network	adapters	using
802.11b	and	vice	versa.
802.11n:	To	improve	further	on	the	range	and	the	transfer	rates,	wireless
specification	n	was	introduced	based	on	technology	Multiple-Input
Multiple-output	(MIMO).	The	final	version	of	this	specification,	released
in	2007,	stated	a	transfer	rate	up	to	600	Mbps.	It	can	be	configured	with	2.4
or	5	Ghz;	it	can	use	both	frequencies	at	the	same	time,	thus	enabling
backward	compatibility	with	network	adapters.	A	maximum	of	four
antennas	can	be	used	with	the	MIMO	technology.

Various	modes	in	wireless
communications
Wireless	networks	uses	the	Carrier	Sense	Multiple	Access	and	Collision
Avoidance	(CSMA/CA)	protocol	to	manage	the	stations	sending	data,	where
every	host	that	wants	to	send	data	is	supposed	to	listen	to	the	channel	first,	that
is,	if	it	is	free,	then	the	host	can	go	ahead	and	send	the	packet;	if	not,	then	the
host	has	to	wait	for	its	turn.	This	is	because	the	same	medium	is	being	shared	by
every	host,	thus	avoiding	collisions.

The	802.11	architecture	is	composed	of	several	components	such	as	a	station
(STA),	a	wireless	Access	Point	(AP),	Basic	Service	Set	(BSS),	Extended
Service	Set	(ESS),	Independent	Basic	service	set	(IBSS),	and	Distribution
System	(DS).

There	are	four	common	modes	of	association	between	the	STA	and	the	AP,
which	are	as	follows:

Infrastructure/managed	mode:	A	wireless	network	where	a	wireless
client	establishes	a	connection	with	an	access	point	to	access	data	and
network	resources.	An	AP	is	defined	with	a	Service	Set	Identifier	(SSID),
which	is	the	access	point's	name	used	for	identification	purposes	within	a
certain	range	(for	security	reasons,	sometimes,	broadcasting	an	SSID	can	be
disabled,	which	will	prevent	your	wireless	network	from	being	discovered).
For	example,	when	we	scan	for	available	nearby	Wi-Fi	networks	around,
we	will	be	shown	multiple	network	names	to	choose	from.	Another	useful
term	to	know	is	Base	Service	Set	Identifier	(BSSID),	that	is,	the	access
point's	MAC	address.

By	default,	every	access	point	is	supposed	to	broadcast	the	SSID	and
transmit	a	beacon	frame	10	times	in	a	second	to	let	clients	know	that	AP
is	ready	to	accept	connections.	Refer	to	the	following	diagram:

Ad	Hoc	mode:	In	Ad	Hoc	mode,	a	peer-to-peer	network	is	formed	where
two	clients	connect	to	each	other.	The	packets	sent	and	received	by	the
wireless	clients	are	not	relayed	to	the	access	point.	Refer	to	the	following
diagram:

Master	mode:	When	the	NIC	(network	interface	card)	adapter	is	capable	to
act	as	an	access	point	for	clients	through	usage	of	special	drivers	then	it
becomes	a	master	node.	Modern	operating	systems	and	hardware	are
enabled	with	such	a	feature,	where	the	host	device	can	act	as	an	access
point	by	sharing	its	wired	connection.	Refer	to	the	following	diagram:

Monitor	mode:	This	mode	enables	a	network	adapter	to	listen	to	wireless
network	traffic;	when	the	monitor	mode	is	activated,	your	device	will	stop
transmitting	and	receiving	any	packets	and	it	will	just	sniff	live	traffic	in	a
passive	way.	In	short,	wireshark	running	with	an	interface	enabled	with
monitor	mode	can	sniff	traffic	without	being	a	part	of	the	network.	This
mode	is	often	termed	as	the	Radio	Frequency	Monitor	Mode	(RFMON).
Refer	to	the	following	diagram:

Usual	and	unusual	wireless	traffic
In	2003,	Wi-Fi	Protected	Access	(WPA)	was	launched	by	Wi-Fi	Alliance	as	a
measure	to	make	WLAN	communication	stronger	than	the	previous	protocol,
WEP.	The	key	size	used	by	WEP	is	40/104	bits,	whereas	WPA	uses	a	key	size	of
256	bits	and	also	facilitates	integrity	checks.	In	WEP,	the	traditional	CRC	was
implemented,	but	WPA	introduced,	the	popular	Michael	64-bit	Message
integrity	check	(MIC).

WPA	uses	the	RC4	algorithm	to	build	a	session	based	on	dynamic	encryption
keys	(you	would	never	end	up	using	the	same	key	pair	between	two	hosts).	Refer
to	the	following	illustration	of	how	the	cipher	text	is	formed	that	is	transmitted
over	the	medium:

The	process	starts	by	appending	the	IV	and	the	dynamically	generated	256-bit
key.	Followed	by	encryption	using	RC4	algorithm,	the	resulting	encrypted	key
stream	is	then	appended	with	the	data	and	voila!	We	have	the	final	cipher	text.

Refer	to	the	following	diagram	depicting	the	authentication	process	in	WPA:

The	following	is	a	summary	of	steps	involved	for	the	preceding	diagram:

1.	 First,	the	Master	Key	Exchange	(PSK)	takes	place,	followed	by
transmission	of	a	nonce	value	to	STA	(initiation	of	connection).

2.	 The	STA	will	use	the	AP's	nonce	value	and	its	own	nonce	to	calculate	the
Pairwise	Transient	Key	(PTK)	to	send	along	with	the	Pre-Shared	Key
(PSK)	established	in	the	previous	step.	The	resulting	value	will	be	sent	to
the	AP	to	calculate	the	PTK	and	append	the	MIC	with	the	Receive
Sequence	Counter	(RSC).

3.	 Now,	the	STA	will	first	verify	the	MIC	in	the	message	to	ensure	the
integrity	and	then	install	the	keys.

4.	 A	response	will	be	sent	to	the	AP	regarding	the	status.	If	the	status	shows
success,	the	AP	then	installs	the	same	keys	(dynamic	keys)	that	will	be	used
in	further	communication.

The	following	screenshot	depicts	the	four	authentication	packets	involved	in	a
successful	WPA	Enterprise	handshake	process:

Getting	into	more	detail,	let's	observe	the	flags	involved	in	all	of	the	preceding
four	authentication	packets	in	the	handshake	process:

Here	is	the	description	of	the	preceding	authentication	packets:

Packet	1:	The	pairwise	master	key	(pre-shared	key)	and	the	ACK	bit	are	set
(because	of	the	association	request/response	exchanged	earlier),	which	is
sent	by	the	AP	to	the	STA	to	initiate	the	connection	along	with	the	nonce
value	chosen	randomly.
Packet	2:	The	pairwise	master	key	and	the	MIC	flag	is	set,	which	the	STA
sent	to	the	AP	to	acknowledge	the	request,	along	with	its	own	nonce	value
appended	to	the	AP's	nonce	and	the	MIC	for	integrity	check.
Packet	3:	The	pairwise	master	key,	install,	key	ACK,	and	MIC	flags	are	set,
which	AP	sent	to	STA.	Next,	the	STA	will	fulfill	the	challenge	in	order	to
get	authenticated.
Packet	4:	The	pairwise	master	key	and	the	MIC	flag	are	set,	which
the	STA	sends	to	AP	to	complete	the	connection	process.

Based	on	our	understanding	of	a	successful	authentication	process,	now	let's	try
to	observe	the	packet	pattern	in	the	case	of	unsuccessful	authentication.	The	only
difference	in	this	scenario	is	that	the	STA	is	not	aware	of	the	pre-shared	key.

Refer	to	the	following	screenshot:

WPA	Failed	authentication

The	preceding	screenshot	depicts	the	chain	of	packets	transmitted	between	the
STA	and	AP,	due	to	an	incorrect	pre-shared	key	being	sent	by	STA.	These
packets	may	be	witnessed	in	an	event	of	a	brute	force	attack	against	the	AP.

WPA	Enterprise
In	order	to	standardize	and	harden	the	authentication	process	and	introduce	a	few
elements	of	accountability	and	non-repudiation,	WPA	offers	the	configuration	of
an	external	server	to	validate	and	authorize	STAs.	This	centralized	authentication
and	validation	unit	is	termed	as	a	RADIUS/TACACS	server.	Before	the	four-
way	handshake	takes	place,	the	RADIUS	server	and	the	access	point	are
supposed	to	go	through	a	MSK.	Let's	have	a	look	at	the	following	diagram:

Post	the	exchange	of	the	master	key,	the	pairwise	master	key	is	created	and
passed	on	to	the	AP,	which	will	further	complete	the	four-way	handshake
process.

As	a	part	of	graceful	termination,	the	wireless	stations	use	disassociation	packets
in	order	to	notify	the	access	point	that	the	STA	is	now	going	offline	and	the
resources	allocated	can	be	released.	The	following	screenshot	lists	the	packets
observed	during	the	disassociation	phase:

The	disassociation	packet

The	wireless	stations	use	the	deauthentication	frames	to	notify	the	access	point	that
the	STA	is	leaving.	As	we	can	observe	in	the	preceding	screenshot,	first,	the	STA
sends	a	disassociation	frame	and	receives	ACK	(318,319)	from	AP.

There	can	be	several	scenarios	where	an	wireless	client	would	send	a
disassociation	frame.	Refer	to	the	following	screenshot	to	understand	this:

The	deauthentication	packet

In	the	preceding	list	of	packets,	first,	the	STA	sends	a	deauthentication	frame	to	the
access	point,	which	gets	acknowledged	in	the	next	packets	(467,468).

Decrypting	wireless	network	traffic
Wireshark	also	facilitates	decryption	of	wireless	traffic	through	embedding	a
pre-shared	key	under	the	802.11	protocol	section.	The	following	screenshot
depicts	normal	wireless	traffic	being	sniffed	from	a	nearby	access	point:

WLAN	traffic	before	decryption

In	order	to	decrypt	the	preceding	listed	packets,	we	need	to	configure	the	IEEE
802.11	section	as	follows:

1.	 Go	to	Edit	|	Preferences,	expand	the	Protocol	section,	select	IEEE	802.11
and	configure	it	as	follows:

2.	 Click	on	the	Edit	button	next	to	Decryption	Keys.
3.	 Click	on	New	and	add	the	WEP/WPA	key	to	enable	decryption.	After	all

the	changes	have	been	made,	click	on	OK:

Now	you	will	be	shown	the	decrypted	traffic	as	follows:

WLAN	traffic	after	decryption

Summary
The	IEEE	802.11	standard	works	over	radio	frequencies	for	communication
purposes.	CSMA/CD	facilitates	the	collision-free	environment	required	for	a
high-performance	wireless	networks.

There	are	commonly	three	types	of	frames	observed	while	doing	wireless	traffic
analysis:	management,	control,	and	data	frames.	Management	frames	control	the
establishment	of	the	connection,	control	frames	manage	the	transmission	of
packets,	and	data	frames	consist	of	the	actual	data.

Enterprise	authentication	protocol	(EAP)	in	LAN	becomes	EAPOL,	which	is
used	in	802.11	infrastructures	(RADIUS/	AAA)	for	the	exchange	of	master	keys.

EAP	is	used	to	let	the	exchange	of	master	keys	take	place.	As	defined	in	RFC
3748,	EAP	is	an	authentication	framework	that	supports	multiple	kinds	of
authentication	methods,	and	to	execute	EAP,	you	do	not	require	an	IP	because	it
runs	over	a	data-link	layer.

Access	points	broadcast	beacon	frames	that	wireless	clients	listen	for.	Also,
wireless	clients	may	send	a	probe	request	to	get	connected	to	the	access	point,
followed	by	authentication	carried	out	by	the	access	point	or	third-party
authentication	service.

Using	Wireshark,	it	is	possible	to	decrypt	wireless	communications	by	adding
wireless	network	keys	within	IEEE	802.11	protocol	section.

Mastering	the	Advanced	Features	of
Wireshark
	

In	this	chapter,	we	will	look	under	the	hood	of	the	advanced	options	available	in
Wireshark	and	work	with	a	command-line	version	of	packet	sniffer.	Here,	we
will	be	covering	the	following	topics:

Analyzing	the	network	using	the	Statistics	menu
Using	TCP	Stream
Using	the	Protocol	Hierarchy	Option
Using	command-line	tools	for	protocol	analysis

With	Wireshark,	a	variety	of	statistics	about	the	network	packets,	protocols	and
endpoints	can	be	viewed	and	analyzed.	Understanding	and	awareness	of
advanced	features	such	as	protocol	hierarchy,	conversations,	endpoints,	and	so
on,	assists	in	performing	tasks	pertaining	to	troubleshooting,	optimizing,	and
forensics	activity	through	viewing	and	analyzing	network	related	information
specifics	in	detail.

	

	

	

The	Statistics	menu
Wireshark	provides	various	tools	that	assist	in	collecting	network	stats,	which
help	users	in	analyzing	information	ranging	from	general	information	to	specific
protocol-related	information.

Using	the	Statistics	menu
Details	with	respect	to	the	packets	captured,	filters	applied,	marked	packets,	and
various	other	stats	can	be	checked	in	the	Statistics	menu;	refer	to	the	following
screenshot	for	reference	(source:	http://wireshark.org):

http://wireshark.org

Protocol	Hierarchy
The	Protocol	Hierarchy	window	provides	details	pertaining	to	the	distribution	of
protocols	seen	in	network	traffic.	Each	of	the	rows	represents	stats	pertaining	to
one	protocol;	refer	to	the	following	screenshot:	

Protocol	Hierarchy	window

If	you	want	to	check	the	protocol	distribution	for	a	specific	host,	then	before	you
open	the	Protocol	Hierarchy	window,	apply	a	Display	filter,	for	example,
ip.addr==172.20.10.1.	Now,	when	you	open	the	hierarchy	window	again	the	filter
will	be	visible	at	the	top	of	the	Protocol	Hierarchy	window	just	below	the	title

bar:	

Protocol	Hierarchy	window	after	applying	display	filter	Using	the	Protocol	Hierarchy	window,	display	filters	can	be	generated	and
applied	too.	Just	right-click	on	the	protocol	you	wish	to	use	and	then	choose	the	desired	option,	as	shown	in	the	following	screenshot:	

The	Protocol	Hierarchy	window	will	be	worth	checking	in	an	event	where	the
malware-related	activity	needs	to	be	assessed	and	analyzed.

Conversations
To	analyze	network	communication	pertaining	to	two	specific	endpoints,
Conversation	option	can	be	used	(available	under	Statistics	menu).	To	access	it,
click	on	Statistics	|	Conversations.	The	window	will	list	the	network	layers	to
assess	at	the	top,	and	endpoint	addresses	(IP	or	MAC)	in	rows:	

Conversations	window	For	instance,	if	we	need	to	identify	the	endpoint	which	is	generating	the	most	traffic	in	the	network,	go	to	the
IPv4	tab	and	sort	the	Bytes	column	in	descending	order:	

Busiest	devices	In	the	preceding	screenshot,	the	first	row	depicts	how	many	packets	and	bytes	have	been	sent	and	received	by	the
endpoints.	For	creating	a	display	filter	through	conversation	dialog,	right-click	on	a	row	and	then	create	the	desired	expression.	I	chose

the	first	option,	A<->B,	which	would	only	display	packets	associated	with	Address	A	and	Address	B:	

The	newly	created	filter	expression	will	be	shown	in	the	Display	Filter	dialog,	as
shown	in	the	following	screenshot:	

The	Conversations	dialog	assists	in	collecting	and	analyzing	details	in	the
granular	form	associated	with	specific	endpoints,	which	comes	in	handy	while
troubleshooting	and	auditing	networking	infrastructures.

Endpoints
Devices	that	communicate	over	a	network	are	referred	to	as	endpoints.
Endpoints	in	a	local	area	network	communicate	using	a	physical	address	that	is
MAC	address.	In	a	switched	environment,	communication	takes	place	using
physical	addresses;	switches	store	MAC	address	table	and	work	on	layer	2	of
TCP/IP	model.

Let's	say,	for	example,	that	we	are	observing	the	heavy	flow	of	network	traffic
from	certain	endpoints,	which	is	kind	of	unusual	based	on	our	playbook	data
(usual	traffic	pattern).	To	identify	the	exact	endpoint	from	which	the	superfluous
flow	of	network	traffic	is	generated,	the	Endpoints	dialog	comes	to	the	rescue.
To	access	it,	click	the	Endpoints	option	under	the	Statistics	menu.	The	Endpoints
windows	look	quite	like	the	Conversations	windows	we	observed	previously.

By	default,	the	Ethernet	tab	will	be	shown	(which	lists	the	layer-2	MAC	address)
in	most	cases.	Along	with	the	protocol,	you	must	observe	a	number	that	states
the	number	of	endpoints	captured	for	that	specific	protocol.	In	our	case,	we	are
seeing	3,	and	the	same	number	of	rows	are	visible	in	the	Main	pane.

In	the	Main	pane,	many	more	specific	details	can	be	seen	for	every	endpoint,
such
as	the	total	number	of	packets	transferred,	total	number	of	bytes	transferred,	and
total	bytes	and	packets	received	and	transmitted	for	an	individual	endpoint:	

Endpoints	window	Now,	if	you	want	to	analyze	other	protocols,	then	simply	click	on	any	tab	of	your	choice.	I	clicked	on	the	IPv4	tab
and	sorted	the	main	pane	using	the	Packets	column,	as	shown	in	the	following	screenshot.

By	just	looking	at	the	Endpoints	dialog,	I	can	now	easily	figure	out	that	the	most	data	was	transferred	from	IP	172.20.10.7.	This	could
be	one	single	IP	talking	to	some	server	or,	more	likely,	a	server	talking	to	multiple	machines	on	our	network	at	a	moderate	rate:	

Endpoints	dialog—IPv4	tab	To	create	a	display	filter	through	the	Endpoints	window,	right-click	on	the	row	with	the	most	packets
transferred	and	choose	Selected	under	Apply	as	Filter,	as	shown	in	the	following	screenshot:	

You	see	a	display	filter	for	the	same	in	the	Display	Filter	dialog	above	the	List
pane,	like	the	one	shown	here:	

This	facilitates	us	to	quickly	analyze	traffic	for	a	certain	endpoint	and	hence
increases	the	speed	of	analysis	for	users.	Once	you	click	on	Clear,	you	will	be
presented	with	the	same	Endpoints	dialog.	At	the	bottom	of	the	window,	you
will	see	two	checkboxes	and	a	few	buttons.	The	purpose	of	each	is	listed	below:

Name	Resolution:	Resolves	the	name	of	each	of	the	Ethernet
addresses	listed	in	the	Ethernet	tab.	But	in	some	scenarios,	it	might
affect	the	performance	of	the	application	adversely,	for	example,
when	trying	to	resolve	the	unique	IP	addresses	from	a	huge	capture	file.
Limit	to	display	filter:	Limits	the	results	of	the	Endpoint	window	on	the
basis	of	a	display	filter	that	is	applied	through	the	Wireshark	main	window.
Copy:	Copies	the	content	of	the	current	Endpoints	window	tab	in	a
CSV	format	(comma-separated	values).
Map:	Maps	the	selected	endpoint's	geographical	location	in	your	browser.

Follow	TCP	Streams
Wireshark	provides	the	feature	of	reassembling	a	stream	of	plain	text	protocol
packets	into	a	human-readable	format:

Follow	TCP	Stream	window

For	instance,	assembling	an	HTTP	session	will	display	the	GET	requests	sent
from	the	client	and	the	responses	received	from	the	server.	There	is	specific
color	coding	that	is	followed	by	the	request	and	response	messages	shown	in	the
Follow	TCP	Stream	dialog.	Client	requests	are	shown	in	red,	and	any	text	in	blue
denotes	the	response	received	from	the	server.	If	the	protocol	is	HTTP,	FTP,
Telnet,	and	so	on,	then	the	conversation	will	be	shown	in	plain	text;	if	a	secure
version	of	the	application	layer	protocol	is	used,	then	some	content	of	the	request
and	response	messages	will	be	encrypted.

At	the	bottom	of	the	Follow	TCP	stream	dialog,	a	drop-down	menu	is	present
from	where	content	in	the	Follow	TCP	stream	window	can	be	filtered	to	view
only	content	pertaining	to	either	side	of	the	communication.	Also,	instead	of	just
viewing	the	data	in	RAW	format,	you	can	choose	between	ASCII,	EBCDIC,	Hex
dump,	and	C	arrays	format,	as	desired.

To	view	the	TCP	stream,	follow	these	steps:

1.	 Open	the	capture/trace	file

2.	 Apply	the	Display	filter	if	required
3.	 Select	any	packet	from	the	List	pane
4.	 Right-click	on	the	selected	packet	and	click	on	Follow	TCP	Stream

Command	line-fu
With	the	default	installation	of	Wireshark,	a	command-line	version	of	protocol
analyser	called	Tshark	also	gets	installed.	There	are	a	good	number	of	CUI-based
sniffing	tools	available,	including	Capinfos,	Dumpcap,	Editcap,	Mergecap,
Rawshark,	Reordercap,	Text2pcap,	and	Tshark.

The	most	common	and	widely	used	command-line	tool	for	protocol	analysis
purposes	is	Tshark,	which	can	capture	live	traffic	and	analyze	saved	capture
files.	Tshark	uses	the	pcap	library	to	capture	and	translate	the	packets.	Just	like
Wireshark's	filtering	option	are	available	in	Tshark	too.	Applications	like	Tshark
prove	themselves	worthy,	with	benefits	such	as	low	memory	requirement,	easy
installation,	and	simple	command	sets	to	run	the	sniffer.

Let's	consider	a	scenario	to	understand	the	usage	and	advantages	of	command-
line	sniffers.	Say,	for	instance,	we	have	an	Apache	web	server	and	an	FTP	server
running	on	a	Windows	box	located	at	IP	172.16.136.128,	and	a	Macintosh	client
running	at	172.16.136.1:

We	will	start	with	the	basics	and	eventually	move	toward	the	usage	of	advanced
features	such	as	filters	and	usage	of	a	few	of	the	available	statistics	options.

Let's	try	the	tool	with	usage	of	different	features	it	facilitates:

The	first	thing	to	confirm	is	how	many	interfaces	are	available	for	capturing
packets.	Use	the	following	command	to	check	tshark	-D:

Interfaces	available

If	no	interface	is	specified	for	capturing	network	traffic,	tshark	will	choose
the	first	interface	from	the	list.	Interfaces	can	be	chosen	by	their	names	and
by	the	sequence	number	they	appear	in.

For	our	scenario,	we	will	be	using	pktap0	that	will	listen	to	the	traffic
between	the	client	and	the	server.	The	command	to	initiate	the	capture
process	is	tshark	-i	pktap0:

In	order	to	generate	some	traffic	between	the	client	and	the	server,	I	have
executed	the	command-line	utility	curl	from	the	client	to	visit	the	web	page
at	IP	172.16.136.128:

As	a	result	of	the	preceding	command,	we	will	see	some	activity	on	the
Tshark	console:

Packets	captured	at	pktap0
If	you	want	to	stop	the	capture	process	at	any	point,	press	Ctrl	+	C.

If	you	wish	to	save	captured	network	packets	to	a	file,	specify	the	-w	switch,
as	follows:

As	a	result	of	the	preceding	command,	the	raw	network	data	will	be	stored
in	a	text	file	named	http.txt.	Following	is	the	content	saved	in	the	text	file:

Raw	data	stored	in	the	text	file

To	save	the	captured	data	in	a	readable	form,	just	use	the	redirection
operator	">>"	to	a	file:

As	a	result	of	issuing	the	preceding	command,	packets	are	captured	and
redirected	to	the	text	file	http2.txt.	Following	is	the	content	saved	in	the	text	file,
that	lists	the	packets	captured	between	the	two	hosts	172.16.136.128	and	172.16.136.1
over	port	80:

	

We	just	learnt	the	two	different	ways	to	save	network	packets	to	a	file.

Tshark	facilitates	three	types	of	filtering	options:	Capture,	Display,	and
Read.	We	have	discussed	the	Capture	and	Display	filters	in	earlier	chapters,
so	let's	discuss	the	read	filter.	The	read	filter	is	able	to	filter	traffic	from	live
as	well	as	save	captured	files.	Through	read	filters	a	particular	set	of
packets	can	be	decoded	or	written	to	a	file.
Using	the	Read	filter	is	a	processor-intensive	task,	and	issues	like	packet
loss	could	be	observed,	and	capture	filters	are	preferred	over	read	filters.
For	the	capture	filter	the	-f	switch	is	used;	-R	is	used	for	the	read	filter;	and	-
Y	is	used	for	the	display	filter.	Let's	learn	the	usage	of	the	capture	filter
using	-f	switch:

Usage	of	a	switch	is	case-sensitive.

Use	double	quotes	around	the	filter	expression,	if	the	desired	expression	has
space	character	like	shown	in	preceding	screenshot	for	example
"port<space>20".
Now,	let's	learn	the	usage	of	the	display	filter	over	a	previously	saved
capture	file	http.pcap,	and	filter	all	HTTP	packets	originating	from	the	web
server	at	IP	172.16.136.128:

Tshark	display	filter

In	order	to	collect	the	HTTP	protocol,	only	statistics	from	the	http.pcap	file
use	the	command	tshark	-r	<file-name>	-q	-z	<expression>:

The	-q	switch	keeps	it	silent	over	the	standard	output	(this	is	generally	used
while	working	with	statistics	in	Wireshark)	and	the	-z	switch	is	used	for
activating	various	statistics	options.	Both	switches	are	often	used	in
conjunction.

If	you	want	to	check	how	many	hosts	were	observed	while	capturing	the
network	traffic,	use	the	following	command:

Tshark	is	a	powerful	yet	simple	command-line	sniffer	which	is	similar	to	tcpdump.
It	enables	capturing	of	network	packets	with	ease	and	less
configuration/installation	required.

Summary
The	Conversations	window	lists	information	pertaining	to	communication
between	two	hosts.

The	Endpoints	dialog	lists	details	pertaining	to	the	devices	connected	to	the
network.

Wireshark	Summary	is	an	informational	feature,	which	offers	a	granular	form	of
data,	filters,	and	the	trace	file.

The	Protocol	Hierarchy	window	lists	information	in	a	tabular	format	pertaining
to	distribution	of	protocols	used	by	the	network	endpoints.

Use	the	Follow	TCP	Stream	option	in	Wireshark	to	read	the	plain	text	data	from
captured	packets.	There	are	different	viewing	options	available	such	as	ASCII,
and	Hex.

A	command-line	tool	gets	installed	when	you	install	Wireshark.	The	most
common	tool	used	is	Tshark,	which	works	in	a	similar	way	to	Wireshark	and
tcpdump.	It	uses	the	pcap	library	that	is	used	by	other	major	protocol	analyzers.

With	Tshark,	you	can	listen	to	live	networks	or	work	with	an	already	saved
capture	file.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:	

Mastering	Wireshark	2
Andrew	Crouthamel

ISBN:	978-1-78862-652-1

Understand	what	network	and	protocol	analysis	is	and	how	it	can	help	you
Use	Wireshark	to	capture	packets	in	your	network
Filter	captured	traffic	to	only	show	what	you	need
Explore	useful	statistic	displays	to	make	it	easier	to	diagnose	issues
Customize	Wireshark	to	your	own	specifications
Analyze	common	network	and	network	application	protocols

Network	Analysis	using	Wireshark	2	Cookbook	-	Second	Edition
Nagendra	Kumar	Nainar,	Yogesh	Ramdoss,	Yoram	Orzach

https://www.packtpub.com/networking-and-servers/mastering-wireshark-2
https://www.packtpub.com/networking-and-servers/network-analysis-using-wireshark-2-cookbook-second-edition

ISBN:	978-1-78646-167-4

Configure	Wireshark	2	for	effective	network	analysis	and	troubleshooting
Set	up	various	display	and	capture	filters
Understand	networking	layers,	including	IPv4	and	IPv6	analysis
Explore	performance	issues	in	TCP/IP
Get	to	know	about	Wi-Fi	testing	and	how	to	resolve	problems	related	to
wireless	LANs
Get	information	about	network	phenomena,	events,	and	errors
Locate	faults	in	detecting	security	failures	and	breaches	in	networks

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Wireshark 2 Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Installing Wireshark
	Introduction to Wireshark
	Why use Wireshark?
	The installation process
	Troubleshooting common installation errors

	A brief overview of the TCP/IP model
	The layers in the TCP/IP model
	Summary

	Introduction to Wireshark and Packet Analysis
	What is Wireshark?
	How Wireshark works

	An introduction to packet analysis with Wireshark
	How to do packet analysis

	Capturing methodologies
	Hub-based networks
	The switched environment
	ARP poisoning
	Passing through routers
	The Wireshark GUI
	Starting our first capture

	Summary

	Filtering Our Way in Wireshark
	Introducing filters
	Capture filters
	Why use capture filters
	How to use capture filters
	An example capture filter
	Display filters
	Retaining filters for later use

	Searching for packets using the Find dialog
	Colorize traffic

	Create new Wireshark profiles
	Summary

	Analyzing Application Layer Protocols
	Domain Name System (DNS)
	Dissecting a DNS packet
	Dissecting DNS query/response

	File transfer protocol
	Dissecting FTP communication packets

	Hypertext Transfer Protocol (HTTP)
	How request/response works
	Request
	Response

	Simple Mail Transfer Protocol (SMTP)
	Dissecting SMTP communication packets
	Session Initiation Protocol (SIP) and Voice Over Internet Protocol(VOIP)
	Reassembling packets for playback

	Decrypting encrypted traffic (SSL/TLS)

	Summary

	Analyzing the Transport Layer Protocols TCP/UDP
	The transmission control protocol
	Understanding the TCP header and its various flags
	How TCP communicates
	How it works
	How sequence numbers are generated and managed
	RST (reset) packets

	Unusual TCP traffic

	The User Datagram Protocol
	The UDP header
	How it works
	The DHCP
	The TFTP

	Unusual UDP traffic

	Summary

	Network Security Packet Analysis
	Information gathering
	PING sweep
	Half-open scan (SYN)
	OS fingerprinting

	ARP poisoning
	Analysing brute force attacks
	Inspecting malicious traffic (malware)

	Summary

	Analyzing Traffic in Thin Air
	Understanding IEEE 802.11
	Various modes in wireless communications

	Usual and unusual wireless traffic
	WPA Enterprise

	Decrypting wireless network traffic
	Summary

	Mastering the Advanced Features of Wireshark
	The Statistics menu
	Using the Statistics menu
	Protocol Hierarchy

	Conversations
	Endpoints
	Follow TCP Streams
	Command line-fu

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

