ireshark 2

uick Start
uide

By Charit Mishra

Wireshark 2 Quick Start Guide

Secure your network through protocol analysis

Charit Mishra

Packt

BIRMINGHAM - MUMBAI

Wireshark 2 Quick Start Guide

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Reshma Raman
Content Development Editor: Aditi Gour
Technical Editor: Shweta Jadhav

Copy Editor: Safis Editing

Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing

Indexer: Aishwarya Gangawane
Graphics: Jason Monteiro

Production Coordinator: Deepika Naik

First published: June 2018
Production reference: 1200618

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-278-9

www . packtpub.com

http://www.packtpub.com

. Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packtp
ub.com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Charit Mishra is an ICS/SCADA professional, working as a security architect
for critical infrastructure across several industries, including oil and gas, mining,
utilities, renewable energy, transportation, and telecom. He has been involved in
leading and executing complex projects involving the extensive application of
security standards, frameworks, and technologies. A postgraduate in computer
science, Charit's profile boasts of leading industry certifications such as OSCP,
CEH, CompTIA Security+, and CCNA R&S. Moreover, he regularly delivers
professional training and knowledge sessions on critical infrastructure security
internationally.

About the reviewer

Anish has a YouTube channel named Zariga Tongy where he loves to post
videos on security, hacking and other cloud related technology.

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page

Copyright and Credits

Wireshark 2 Quick Start Guide

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the color images

Conventions used

Get in touch

Reviews

1. Installing Wireshark
Introduction to Wireshark
Why use Wireshark?

The installation process

Troubleshooting common installation errors

A brief overview of the TCP/IP model

The layers in the TCP/IP model

Summary

2. Introduction to Wireshark and Packet Analysis
What is Wireshark?

How Wireshark works

An introduction to packet analysis with Wireshark

How to do packet analysis

Capturing methodologies

Hub-based networks

The switched environment

ARP poisoning

Passing through routers

The Wireshark GUI

Starting our first capture

Summary

3. Filtering Our Way in Wireshark

Introducing filters

Capture filters

Why use capture filters

How to use capture filters

An example capture filter

Display filters

Retaining filters for later use

Searching for packets using the
Find dialog

Colorize traffic

Create new Wireshark profiles

Summary

4. Analyzing Application Layer Protocols
Domain Name System (DNS)

Dissecting a DNS packet

Dissecting DNS query/response

File transfer protocol

Dissecting FTP communication packets

Hypertext Transfer Protocol (HTTP)

How request/response works

Request

Response

Simple Mail Transfer Protocol (SMTP)

Dissecting SMTP communication packets

Session Initiation Protocol (SIP) and Voice Over Internet Protocol(VOIP)

Reassembling packets for playback

Decrypting encrypted traffic (SSL/TLS)

Summary

5. Analyzing the Transport Layer Protocols TCP/UDP
The transmission control protocol

Understanding the TCP header and its various flags

How TCP communicates

How it works

How sequence numbers are generated and managed

RST (reset) packets

Unusual TCP traffic

The User Datagram Protocol

The UDP header

How it works

The DHCP

The TFTP

Unusual UDP traffic

Summary

6. Network Security Packet Analysis
Information gathering

PING sweep

Half-open scan (SYN)

0S fingerprinting

ARP poisoning

Analysing brute force attacks

Inspecting malicious traffic (malware)

Summary

7. Analyzing Traffic in Thin Air
Understanding IEEE 802.11

Various modes in wireless communications

Usual and unusual wireless traffic

WPA Enterprise

Decrypting wireless network traffic

Summary

8. Mastering the Advanced Features of Wireshark
The Statistics menu
Using the Statistics menu

Protocol Hierarchy

Conversations

Endpoints

Follow TCP Streams

Command line-fu

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Wireshark is the world's most popular free and open source protocol analyzer,
and it is commonly used by networking and security professionals for
troubleshooting, analysis, protocol development, and forensics. The primary
objective of Wireshark is to capture network traffic and display the packet data
in, as detailed a way as possible. It helps professionals view the content of
network traffic on a microscopic level.

This book is written from the standpoint of using Wireshark and learning how
network protocols function and provides a practical approach to conducting
protocol analysis, troubleshooting network anomalies, and examining security
issues. I have tried to depict common scenarios that you may come across in
day-to-day operations through practical demonstration wherever possible to help
you understand the concepts better. By reading this book, you will learn how to
install Wireshark, work with Wireshark GUI elements, and learn some advanced
features behind the scenes, such as the filtering options, the statistics menu, and
decrypting wireless and encrypting traffic. You can be the superhero of your
team who helps resolve connectivity issues, network administration tasks, and
computer forensics because Packets Are Life. If your routine job requires dealing
with computer networks and security, then this book will give you a strong head
start. Happy sniffing!

Who this book is for

This book is for students/professionals who have basic experience and
knowledge of the networking and who want to get up to speed with Wireshark in
no time. This book will take you from the installation to the usage of commonly
used tools/tricks. The book will get you comfortable with the GUI elements of
Wireshark and explain the fundamentals of the science behind protocol analysis.

What this book covers

chapter 1, Installing Wireshark, will provide you with an introduction to the
basics of the TCP/IP model and a step-by-step walk-through of the installation of
Wireshark on your favorite operating system.

chapter 2, Introduction to Wireshark and Packet Analysis, will help you
understand the basics and science behind packet analysis, as Wireshark come in
handy and proves to be a Swiss Army knife for professionals dealing with
network, security, and digital forensics. In this chapter, you will also understand
the trick of placing the sniffer in a strategic location to get most out of your
network.

chapter 3, Filtering Our Way in Wireshark, will help you identify and apply the
Wireshark filters, namely the capturing and displaying filters. Filtering provides
a powerful way to capture or see the traffic you desire; it's an effective way to
remove the noise from the stream of packets we desire to analyze.

chapter 4, Analyzing Application Layer Protocols, will help you understand the
approach and methodology for analyzing application layer protocols such as
HTTP, SMTP, FTP, and DNS through Wireshark. As we know, application layer
protocols typically interface between a client and a server. It is critical to
understand the structure and behavior of application layer protocols packets in
order to identify anomalies with efficiency.

chapter 5, Analyzing the Transport Layer Protocols TCP/UDP, will help you
understand the underlying network technology, enabling the movement of
network packets across routing infrastructures through the analysis of transport
layer protocols such as TCP and UDP. TCP and UDP are the basis of networking
protocol, and it is important to understand their structure and behavior.

chapter 6, Network Security Packet Analysis, will guide you through using
Wireshark to analyze security issues, such as analyzing malware traffic and
footprinting attempts in your network.

chapter 7, Analyzing Trdffic in Thin Air, will help you in understand the

methodology and approach involved in performing wireless packet analysis.
This chapter shows you how to analyze wireless traffic and pinpoint any
problems that may follow. We will also learn the cool trick of decrypting
wireless traffic using Wireshark.

chapter 8, Mastering the Advanced Features of Wireshark, will provide you with
insight into the advanced options and elements available in Wireshark, such as a
statistics menu, and will also provide a brief and summarized approach on how
to work with command-line packet sniffing applications, such as Tshark.

To get the most out of this book

¢ Basic understanding of networking protocols, OSI and TCP/IP model
e A computer system with a basic internet connection to follow the depicted
scenarios

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://www.packtpub.com/sites/default/f

iles/downloads/Wireshark2QuickStartGuide_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/Wireshark2QuickStartGuide_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "Mount the downloaded webstorm-10*.dng disk image
file as another disk in your system."

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Select System info from the Administration panel."”

0 Warnings or important notes appear like this.

9 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please viSit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Installing Wireshark

This chapter provides you with an introduction to the basics of the TCP/IP model
and a step-by-step walkthrough of how to install Wireshark on your favorite
operating system. You will be introduced to the following topics:

What is Wireshark?

A brief overview of the TCP/IP model

Installing and running Wireshark on different platforms
Troubleshooting common installation errors

Introduction to Wireshark

Wireshark is an advanced network and protocol analyser, it lets you visualize
network's activity in graphical form, and assists professionals in debugging
network-level issues. Wireshark enhances the ability of network and security
professionals by providing detailed insight into the network traffic. However,
Wireshark is also used by malicious users to sniff network traffic in order to
obtain sensitive data in the form of plain text.

Why use Wireshark?

Many people, including myself, are obsessed with the simplicity of the packet-
capturing features that Wireshark provides us with. Let's quickly go through a
few of the reasons why most professionals prefer Wireshark to other packet
sniffers:

User friendly: The interface of Wireshark is easy to use and understand,
tools & features are very well organized and represented.

Robustness: Wireshark is capable of handling enormous volumes of
network traffic with ease.

Platform independent: Wireshark is available for different flavors of
operating system, whether Windows, Linux, and Macintosh.

Filters: There are two kinds of filtering options available in Wireshark:

¢ You choose what to capture (capture filters)

¢ You choose what to display after you've captured (display filters)
Cost: Wireshark is a free and open source packet analyzer that is developed
and maintained by a dedicated community of professionals. Wireshark also
offers a few paid professional applications as well. For more details, refer to
Wireshark's official website https://www.wireshark.org/.
Support: Wireshark is being continuously developed by a group of
contributors that are scattered around the globe. We can sign up to
Wireshark's mailing list or we can get help from the online documentation,
which can be accessed through the GUI itself. Various other online forums
are also available for you to get the most effective help; go to Google Paid
Wireshark Support to learn more about the available support.

https://www.wireshark.org/

The installation process

The installation of Wireshark is very simple and easy to follow. Go through the
following steps to install it on your system:

1. The recipes and examples in this book will be for use on a Macintosh and
Windows PC; for other operating systems, the installation is the same.
Some OSes, such as Kali Linux, come with a preinstalled version of
Wireshark.

2. Once you have located the correct version of Wireshark for your platform
(Wireshark 2.6.1 Intel 64.dmg), install Wireshark by following the wizard.

3. Restart the computer after completion of the installation process to commit
the changes that were made.

4. Double-click the Wireshark icon on your desktop to the run the application:

AN O m

\I|Applyadisp!eyfi\ter...<&EJ> 3 - expression. +

Welcome to Wireshark
Capture

...usingthisliller:[: |Enteracapturefilter... v Allinterfaces shown +

Wi-Fi: en0
awdi0
Thunderbolt Bridge: bridge0
Thunderbolt 1: enl
p2p0
Loopback: lo0
@ Cisca remote capture: ciscodump
@ Random packet generator: randpkt
@J SSH remote capture: sshdump
@) UUDP Listener ramote capture; udpdump

TFLTTE

Learn

User's Guide - Wiki - Questions and Answers - Mailing Lists

You are running Wireshark 2.6.1 (v2.6.1-0-gB60a7803).

7 Ready to load or capture Na Packets Profile; Default
The Wireshark screen

Troubleshooting common installation
errors

Go through the following simple checklist to ensure that you are able to run
Wireshark successfully (make sure that all of these criterias are met):

You have downloaded Wireshark from known and trusted source only
You have administrative privileges to run Wireshark

The installation of Wireshark and the Winpcap driver has been completed
successfully without any exceptions

You are connected to the network that you want to capture network traffic
from

If you are trying to sniff using a virtual machine, ensure that you have set
your network adapter to bridged mode

Restart your machine to ensure the changes have been applied after
successful installation of Wireshark

Your NIC card supports promiscuous mode sniffing (when needed)

You can see all of the interfaces (wired, wireless, and logical) on the home
screen of Wireshark

The line graph followed by the interface name shows activity on the
Homescreen

Also, you have legal permissions to capture network traffic

A brief overview of the TCP/IP model

The world of network communication is governed by a set of protocols (rules
and regulations) in order to function as intended. Protocols govern the
transmission of network packets/segments/frames over a communication channel
between endpoints. In order to understand how network packets stick together,
forming a stream of traffic, we need to understand the basics of the networking
that is the TCP/IP model. The TCP/IP model was originally known as the DoD
model, a project that was regulated by the United States Department of Defense.
All of the communication that we witness over the internet and other networks
happens only through TCP/IP.

The TCP/IP model takes care of every part of packet's life cycle, namely, how a
packet comes to life, how a packet is generated, how information pertaining to
packet gets attached data payload (PDU), how it is routed through intermediary
nodes, linking with other packets and so on.

It is strongly recommended to do some self-study on TCP/IP and how it
functions, before you proceed ahead, as this book requires decent amount of
familiarity with protocols.

The layers in the TCP/IP model

The TCP/IP model comprises four layers, as shown in the following diagram.
Each layer has a specific purpose to fulfill and utilizes a set of protocols to
facilitate communications. Every protocol in every layer has a specific purpose:

Application Layer

*l

Transport Layer

‘-l

Internet Layer

*I

Link Layer

The first layer is the Application Layer, which directly interacts with users and
subsequent layers and protocols; it is primarily concerned with the representation
of the data in a understandable format to the user. The application layer also
keeps track of user sessions, monitoring who is connected; it uses a set of
protocols that helps to interface with users and other layers in the TCP/IP model.
Some popular protocols in the Application Layer are as follows:

Hypertext Transfer Protocol (HTTP)

File Transfer Protocol (FTP)

Simple Network Management Protocol (SNMP)
Simple Mail Transfer Protocol (SMTP)

The second layer is the Transport Layer. The purpose of this layer is to create
sockets (a combination of the port and IP address) in order to let two endpoints
communicate. Sockets facilitate the creation of multiple distinct connections
between two or more devices (more than one tab can be opened in Chrome).

An IP address is required for communication between devices in different
networks/segments (such as is used between two router interfaces or
communication over the internet). It can also be used in local area network
(LAN) communication, and is established over physical addresses (MAC). Apart

from the restricted range of port numbers, operating systems and applications
can choose a random port (other than ports 1 to 1e13) for communication.

The transport layer also serves as a backbone for the communication. The two
most critical protocols that work in this layer are the TCP and UDP:

e The TCP is a connection-oriented protocol, also called a reliable protocol.
Firstly, a dedicated communication channel is established between the
endpoints, which is then followed by data transmission. Equally partitioned
chunks are transmitted from the source, and the receiving end sends an
acknowledgement for every packet received. The side that is sending the
data resends the packet if an acknowledgement is not received within a
stated time frame.

e The UDP is a connectionless protocol and is often called an unreliable
communication form. In the UDP, no dedicated channel is established,
which also makes it a simpler and faster way of communication. There are
also no acknowledgement packets sent by the endpoints. For example, if
you are playing an online game, the loss of a few packets over the
communication channel is not going to hamper your gaming experience
because the number of packets coming through is huge, and a few missing
packets will not make much difference to the overall quality of the network
stream.

The third layer is the Internet Layer, which is primarily concerned with routing
and movement of data between networks. The primary protocol that works in
this layer is the IP (Internet Protocol). The IP provides the network packets
with the routing capability that they need in order to reach their destination.
Other protocols included in this layer are the ICMP and IGMP.

The fourth and final layer is the Link Layer (often called the network interface
layer). It interfaces with the physical network hardware. There are no protocols
specified in this layer by the TCP/IP; however, several protocols are
implemented, such as the Address Resolution Protocol (ARP) and the Point to
Point Protocol(PPP). This layer is concerned with how information travels
inside the communication channel (wired or wireless). The link layer is
responsible for establishing and terminating the connection, as well as
converting the signals from analog to digital and vice versa. Devices such as
bridges and switches operate in this layer.

As data progresses from the application layer to the link layer, several bits of
information are attached to the data in the form of headers or footers, which
allow different layers of the TCP/IP to communicate with each other. The
process of adding these extra bits is called data encapsulation, and in this
process, a protocol data unit (PDU) is created at the end of the networking
process (passing through the application to the link layer).

PDU consists of the data along with network addressing and protocol
information that gets attached as part of the header or footer. By the time PDU
reaches the bottom-most layer, it is embedded with all the required information
necessary for transmission. Once the PDU reaches the destination, the attached
header and footer PDU elements are ripped off one by one as it passes through
each layer of the TCP/IP model and progresses upward in the model.

The following diagram depicts the process of encapsulation:

Client Web Server

o

e Application | HTTP HTTP | Application *--u.,\
Y-Transport [TCP | HTTP HTTP | TCP | Transport +1_
¥ Network | 1P | TCP | HTTP HTTP | TP | IP | Network <\
‘FLink_Ethef-'let_IP TCP | HTTP _ HTTP | TCP | IP |Ethernet|Lir|t |
2 B

—— & [|Physica Link:': _—
\J U

Summary

In this chapter, we looked at the basic networking concepts that you need to
know, along with an introduction to Wireshark. Wireshark is a protocol analyzer
that is used worldwide by technology professionals to capture and analyze
network-level packets.

We also learned about the TCP/IP model. The TCP/IP model has four layers: the
application layer, transport layer, network layer, and the link layer. Data is
encapsulated as it passes from one layer to another; the resulting packet at the
bottom is called a complete PDU.

The TCP is a reliable protocol because acknowledgements are sent as part of its
process, whereas the UDP is an unreliable protocol because no
acknowledgements are sent.

To install Wireshark, you just need to visit http://www.wireshark.org and then
download the appropriate version for your operating system.

Troubleshooting your Wireshark can be done by ensuring that the network is
working fine, that you have the full rights required to install and run the
application, and that the installation had completed without any exceptions.

In the next chapter we will run our first Wireshark capture and get to feel the
protocol analysis experience.

http://www.wireshark.org

Introduction to Wireshark and
Packet Analysis

This chapter will help you to understand the basics and science behind packet
analysis. Wireshark comes in very handy and proves something of a Swiss knife
for professionals dealing with network, security, and digital forensic roles. You
will learn about the following topics in this chapter:

e Introduction to Wireshark
e How Wireshark works

e Capturing methodologies

¢ Understanding the GUI of Wireshark
e Starting our first capture

What is Wireshark?

Wireshark is a packet-sniffing application that is used by IT professionals for a
diverse set of requirements (including forensics, troubleshooting, and enhancing
network performance). You can download it for free from nttps://www.wireshark.org
/download.htm1, Where it is available for the majority of platforms, including Linux,
Macintosh, and Windows.

Packet sniffing is also referred to as tapping into the wire, which basically
involves reading pieces of information traveling in a communication channel.
Considerations such as placement of sniffer, protocols to be analyzed, and
communication channel type need to be assessed before capturing network
packets.

https://www.wireshark.org/download.html

How Wireshark works

Wireshark collects network traffic from the wire through the computer's network
interface, running in promiscuous mode (if needed), to inspect and display
information related to protocols, IP addresses, ports, headers, and packet length.
The following diagram is an illustration of how all the elements work together to
display packet-level information to the user (source: nttps://www.wireshark.org):

=

Wireshark
GUI (Qt / GTK) Protocol-Tree
Pesssssssssinsssnnisasnis i
Dissectors
Epan YT PP TSP P

Core Dissector-Plugins

Display-Flters

Capture = Wiretap Utilities

Durnpcap
capture engine |

'''''''''''''''''''''

Bus

g

Wireshark comes with the Winpcap/libcap driver, which enables NIC to the run
in promiscuous mode; the only time you don't have to sniff in promiscuous mode
is when the packets are directly, intentionally destined/generated to and/or from
your device.

On operating systems, you should have privileges to run Wireshark. There are
three processes that every protocol analyzer follows: collect, convert, and

https://www.wireshark.org

analyze. These are described as follows:

e Collect: Choose an interface to listen to traffic and capture network

packets.
e Convert: Increase the readability of non-human-readable data. Packets are

converted to easily understood information through a GUL.
e Analyze: Analyze network traffic pertaining to the packets, protocols, raw
data and more through the usage of statistical and graphical features.

As discussed in the previous chapter, protocols are the set of rules and
regulations that govern the process of communication between two network
devices and control the environment under which they operate.

An introduction to packet analysis
with Wireshark

Packet/traffic analysis deals with the study of network traffic, where the
objective is to understand the structure, movement, and behavior of packets.
Packet analysis is performed over live traffic or done over an already captured
stream of traffic.

Numerous issues arise in day-to-day networking infrastructures, and if you are
responsible for handling the network or security of your digital environment, you
need to equip yourself with troubleshooting and analytical tools. Most of the
issues escalate and are rectified at the packet level in networking. Issues arising
at the packet level can gradually end up disrupting critical business
communication, leading to loss of revenue. Even the best networking hardware
utilizing the most advanced and secure set of protocols and services can go
against you or behave abnormally. To perform a root cause analysis in such
situations, you might need to dig down to the packet level in order to understand
the anomaly. Packet analysis can be used for the following purposes:

e To analyze network issues by looking into the packets and their headers to
gain better insights.

e To detect and analyze network intrusion attempts through filtering patterns
and signatures.

e To detect network misuse by internal or external users by establishing
firewall rules in your security appliance and then monitoring those rules.

¢ To study and isolate exploited systems so that the affected system doesn't
become a pivot point.

e To monitor and analyze data in motion as it travels live in the wires of your
network.

e To have better control over the allowed and restricted categories of
information traveling in your network. For instance, say you want to create
a rule in the firewall that will block access to torrent sites (peer-to-peer file
sharing). Blocking access to them can be done from your manageable router

through access lists also, but the origin of such packets can be identified
and validated through traffic analysis.

e To gather and report network statistics by filtering packet trails.

e To learn who is on a live network and what they are doing (they may be
consuming network bandwidth or trying to connect to restricted websites),
and to learn whether someone is trying to bypass the network restrictions
you configured.

e To debug client/server communications so that all the requests and replies
communicated on your network can be audited.

e To identify applications that are sitting in the corner of your network and
consuming the bandwidth. They might be making your network insecure,
unresponsive, or visible to the public network.

e To debug network protocol implementations and any anomalies being
generated due to unintentional misconfigurations errors or human error.

¢ To identify abnormal/malicious traffic patterns that your network, then to
analyze, control/supervise, and make yourself ready for such events.

When performing packet analysis, the things to be considered are as follows:

The protocol(s) to be interpreted

Whether you need to capture traffic from all sources and all destinations
Placing your sniffer adequately

Capturing traffic pertaining to a particular port or service to avoid unwanted
noise

You should record and build use cases pertaining to the network traffic pattern
and behavior. Use cases may assist engineers in troubleshooting network issues.

Packet analyzers can interpret most networking protocols (such as IP and ICMP),
transport-layer protocols (such as TCP and UDP), and application-layer
protocols (such as DNS and HTTP).

How to do packet analysis

Network packets are captured in raw binary form, and passed through the
wiretap library and capture engine, and then to the core engine, with

its dissector plugins and filters. The translated data is then displayed in packet
frames through Graphical Toolkit (GTK).

Capturing methodologies

In order to capture the right set of a packets stream, you would need to know
where to place your protocol analyser. Depending on the requirements (source of
packets, number of packets, type of packets, and more), a protocol analyzer
needs to be placed at a certain point in the network. Also, a few configuration
changes in a network device may be necessary, such as switch configuration
changes (mirroring is done in network switches to capture packets from one or
more sources). The following sub sections discuss a few means of assessing the
best way of configuring protocol analyses in certain types of topology.

Hub-based networks

It is relatively easy to sniff in a hub-based network topology, because you've got
the freedom to place the sniffer at any place you want, as hubs are designed to
broadcast each and every packet to all connected devices.

However, due to such design deficiencies, hub-based network topologies face
issues in terms of overall performance. Network hubs do not have much
capability in terms of prioritizing or forwarding traffic to specific ports only.
They often become victims of collision-related problems. For instance, if more
than one device connected to a hub start sending data at the same time, there is a
high a probability that the packets will collide and fail to reach their destination.
The sending side will be informed of dropped packets, which will then be re-
sent, but it will cost the network and its administrator in time, improper
bandwidth utilization, and performance issues.

The switched environment

Due to relatively few restrictions present in switch-based infrastructures, packet
analysis becomes quite challenging. Like hubs, switches do not broadcast the
packets to every network port except the port the packet is received from. They
learn the physical addresses of devices through the ARP (address resolution
protocol) and populate a list of port numbers with corresponding MAC
addresses. Even so, through some hardware or configurational changes it is
possible to capture packets from other ports. The two most popular techniques
are hubbing out and port mirroring.

In order to capture the stream of packets coming from one or more ports,
configure port mirroring using the switch configuration console. Most intelligent
switches give the option to configure it through an easy-to-understand graphical
interface.

Let's make it simpler for you with a logical illustration. For instance, let's assume
that we have a 24—port switch and eight PCs, which are connected to different
switch ports. We can place our sniffer (Wireshark PC) in any of the free switch
ports and then configure port mirroring, which will copy all the traffic from the
desired device we want to sniff to the port of our choice. The following
screenshot shows the set of commands used in a Cisco Switch to configure port
mirroring:

So, let's understand it better: in the previous screenshot, I have configured what
to listen to all the packets originating from port fae/2 to port fae/4. Port fae/2 will
be the target machine and port fae/4 will be a Wireshark machine.

Once this is completely configured, we will be able to easily sniff and analyze
network packets flowing back and forth from port fae/2. This technique is one of

the easiest to configure; the only thing you need to know beforehand is how to
work with network devices.

The following diagram depicts a simple demonstration of port mirroring;:

PC running
wireshark

PC 1

—_— Switch Router
Port mirroring

Hubbing out is feasible when your switch doesn't support port mirroring. To use
the technique, you must actually unplug the target PC from the switched
network, then plug your hub to the switch, and then connect your analyzer and
target device to the hub so the target device becomes part of the same network.

Now the protocol analyzer and the target machine are part of the same broadcast
domain. The following diagram will make it easier for us to understand the
process precisely and in a simpler way:

Hubbing Out

Target T

* mirroring not possible protocol
Analyser

Hubbing out

ARP poisoning

Poisoning the ARP table entries of a device and then forwarding them through
your machine is one unethical way of capturing the traffic from the target
machine.

Let's say, for example, we have the default gateway at IP 192.168.1.1 and one
client machine configured at IP 192.168.1.2. Both of these devices are maintaining
local ARP cache entries. That enables them to send packets over the LAN. Now,
the Wireshark (use arpspoof Or ettercap to poison the ARP entries) machine at IP
192.168.1.3 Will poison the ARP cache entries by flooding the client and gateway
machine with multiple ARP packets, stating to the client PC that the default
gateway has been changed to IP 192.168.1.3 and stating the gateway that the client
is now at IP 192.168.1.3; this will make every packet go through the Wireshark
machine.

The command to view the ARP cache in your PC/router/server, which will
display MAC addresses associated for a particular IP address, is arp -a. Have a

look at the normal ARP entries:
Attacker

ARP Cache
'='= Client 192.69.1.2 | AA:BB:EE

==\ Server 192.68.1.1 I AABB:CC

Client

Narmal Senario
ARP Cache ARP Cache

IP MAC IP MAC
Server [192.68.1.1 | AA:BB:CC Client 192.69.1.2 | AA:BB:EE
Attacker [192.68.1.3 | AA:BBE:DD Attacker | 192.68.1.3 | AA:BB:DD

ARP poisoning (the normal scenario) Here is how the entries will look before the ARP is poisoned: Before ARP is Poisoned
192.68.1.1 - (Server) 192.68.1.2 - AA:BB:EE 192.68.1.3 - AA:BB:DD
192.68.1.2 - (Client) 192.68.1.1 - AA:BB:CC 192.68.1.3 - AA:BB:DD

192.68.1.3 - (Attacker) 192.68.1.1 - AA:BB:CC 192.68.1.2 - AA:BB:EE

Now that you've understood what the ARP is and how it works, we can try to poison the ARP Cache of both the default gateway and

the client with the attacker's MAC address. In simple terms, we will replace the client's MAC address in the default gateway's ARP
cache with the attacker's MAC address. We will do the same in the client's MAC address, replacing the default gateway's MAC address
with the attacker's MAC address. As a result, every packet destined to the client from the default gateway back and forth will be sent
through the attacker's machine. Below are the ARP entries from the client, the server, and the attacking machine after a successful
poisoning attack.

After ARP is Poisoned

192.68.1.1 - (Server)
192.68.1.2 - AA:BB:DD
192.68.1.3 - AA:BB:DD

192.68.1.2 - (Client)
192.68.1.1 - AA:BB:DD
192.68.1.3 - AA:BB:DD

192.68.1.3 - (Attacker)
192.68.1.1 - AA:BB:CC
192.68.1.2 - AA:BB:EE

The poisoned machines will not be able to determine whether their ARP has been modified unless checked proactively. The following
diagram depicts the ARP table entries of all three systems involved in the MiTM attack scenario:
ARP Cache
IP MAC
Client [192.69.1.2 [AA:BB:EE
Server | 192.68.1.1 | AA:BB:CC

R

Attacker

o
| |
Client ‘ || I3 || server
=\ —— =\
ARP Poisoning Scenario
ARP Cache ARP Cache
P MAC e ARG
Server | 19216811 | AA:BBDD Sever | 19216800 | AMBRDD
Attacker | 19216813 | AABBDD Attacker | 19216813 [ANBRDD

ARP poisoning (the poisoned scenario) Other than these two techniques, there is a variety of hardware available on the market
popularly known as taps, which can be placed between any two devices to sniff and analyze the traffic. Though this technique is
effective in capturing network traffic in some scenarios, it should only be practiced or deployed in an authorized and controlled

environment, because of its malicious nature.

Passing through routers

When dealing with routed environments, the important aspect of packet analysis
would be to place our sniffer at the suitable place from where we can capture the
desired traffic packets. Dealing with routed structures demands more skills in
terms of networking technologies, and certainly in terms of routers. Consider the
following hypothetical routed environment for the sake of understanding.

Router 1, router 2, and router 3 are working together; each of them handles
traffic for at least 2-3 PCs. Router 1 is acting as a root node while controlling
routing for its child networked nodes (router 2 and router 3).

Router 3 PCs are not able to connect to router 1 PCs. To resolve this issue, the
admin places a sniffer (protocol analyzer) inside the router 3 area, and starts
analyzing the traffic, but is not able to figure out the anomaly that is causing
downtime. The admin decides to change the protocol analyzer location and
moves to the router 1 area, and now follows similar steps for troubleshooting.
After a while, they figure out what the issue was and troubleshoot it successfully.

The conclusion is that placing the sniffer in your networked infrastructure is
quite a critical decision and task.

After reading this, I hope we've a fair amount of knowledge on how protocol
analyses are done in certain topologies. Now, let's see what the Wireshark
interface looks like, and how we can initiate capturing network packets.

If you do not have Wireshark installed, you can get a free copy from https: //www.w
ireshark.org/download.html. TO walk through the demonstrations in this book, you
also need to be familiar with the interface.

https://www.wireshark.org/download.html

The Wireshark GUI

Before we discuss its awesome features, let's talk about some of critical events in
the Wireshark domain.

Wireshark was built during the late 1990s. Gerald Combs, a young college
graduate from Kansas City, developed Ethereal (the basic version of Wireshark),
and by the time Combs developed this awesome invention, he had landed
himself a job. After a few years of service, Combs decided to quit his job and
pursue his dreams by developing Ethereal further. Unfortunately, as per the legal
terms, Combs' invention was part of the company's proprietary software. Despite
this, Combs left the job and started working on the new version of Ethereal,
which he titled Wireshark. Since 2006, Wireshark has been in active
development and is being used worldwide. It supports more than 800 protocols
both corporate IT and ICS (industrial control system).

Before we go ahead and start the first capture, we need to get a bit familiar with
the options and menus available.

There are six main parts in the Wireshark GUI, which are explained as follows:

e Menu Bar: This represents tools in a generalized form, which are organized
in the Applications menu.

e Main Tool Bar: This consists of the frequently used tools/features that offer
efficient utilization of the software.

e Packet List Pane: This displays all the packets getting captured by
Wireshark.

e Packet Details Pane: This is used to view details pertaining to the selected
packet from the Packet List Pane. Detailed information regarding the
packets is divided into categories corresponding to each layer of the TCP/IP
model. This can be used to view source and destination IP addresses and
different protocols used for communication arranged in the bottom-to-top
approach (link layer to application layer).

e Bytes Pane: This shows the data in the packets in the form of hex bytes
and their corresponding ASCII values; it shows the values in the form
in which they travel in the wires.

e Status Bar: This displays details such as total packets captured.

The following screenshot will help you to identify different sections in the
application; please make sure that you get yourself acquainted with all of them
before proceeding further:

r'-—n o - i m master-1.12]] Menu Bar
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
S —— O —

; = — o =k = = = - e | A
Cedmd EEX2 nevwFrEE QAN @B B) Tool Bar
Fllter.l « |Expression... Clear Apply Save
No. ‘ Time |Source IDes’(ination IProtoco! ‘ Length| Info
10,000000000 172.20.10.7 17.178. 104, 38 TCP 1414 [TCP segment of a reassembled PDU]
2 0,000001000 172.20.16.7 17.178.104.38 TCP 1414 [TCP segment of a reassembled PDU]
30000001000 172.20.10.7 17.178.104.38 TLsv1.2 438 Application Data
41,666233000 17.176.104.38 172,26,10.7 TCeP 54 443-53067 [ACK) Sega a inz -
5 1,691123000 17.178. 104,38 172,20.10.7 Tep 1414 [TCP segment of a Packet List Pane
71,601257000 17.178,104.38 172.20.10.7 TLSV1. 2 57 Application Data
8 1,601323000 172.20.10.7 17.178.104. 38 TCP 54 53067-443 [ACK] Seq=3105 Ack=1361 Win=B149 Len=0
91,691392000 172.20.10.7 17,178,104, 38 TP 54 53067-443 [ACK] Seq=3105 Ack=1364 Win=8149 Len=0
10 6.283488000 83.166.169.231 172,20.10.7 TLSV1.2 97 Encrypted Alert
116283503000 172.20.10.7 83.166.169. 231 TP 66 53042-443 [ACK) Seq—l Ack=32 Win=4095 Len=) Tval=822128
[12'6,307258080 83.166.169.231 172.20.10.7 TR 166 44 I FIN, A Len=0 TSVal=2
13 6,307390000 172.20.10.7 83.166. 169, 231 TP 66 53042-443 [ACK] Seq-l Ack=33 Win=4096 Len=0 TSva'l-GZI!J.ZB
4 14°6,307491000 83.166.169.231 172.20.10.7 TLSVL, 2 97 Encrypted Alert
s .307496080 83166.169.231 172.20.10:7° TR 66 44353026 [FIN. ACKI 'S
(e
b Frame 5: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface o [ﬁ
iD Ethernet IT, Src: 4a:74:6eiba:dB:64 (d4a:74:6e:ba;do:64), Dst: Apple_bo:53iec (d8:bb:2cibo:s3iec) | Packet Details P
b Internet Protocol Version 4, Src: 17.178.104.38 (17.178.104,38), Dst: 172,20.10.7 (172,20.10.7) j FacketDetallsbane

1? Transmission Control Protocol, Src Port: 443 (443), Dst Port: 53067 (53067), Seq: 1, Ack: 3105, Len: 0

T T 0y ST T T TS P T o o T T TS T T N
010 00 28 30 ea 80 00 e 86 21 ca 11 b2 68 26 ac 14 .(....., !,..h&..
020 ©a 07 01 bb cf db 94 ec 4c 31 26 1a ae 08 50 10 K.. Ll&...P. bytes Pane
030 0d 39 ec 60 6O 60 90
J
= - = = = Status Bar | —; ——
ptﬁfl File: "/var/folders /ck/31tvm___ 3| Packets: 44 - Displayed: 44 (100.0%) - Dropped: 0 (0.0%) j {Profile: Default o

Within the toolbar area, we have a few useful tools. I would like to give you a
brief overview of some of them:

© . Choose an interface for listening
e @ : Customize the capture process (interface, filters, and so on)
o A|W & . Start/stop/restart the capturing process

e ' :Open asaved capture file

e ' :Save the current capture in a file
e © . Reload the current capture file

o % Close the current capture file

e “:Goto previous packet

e “:Gotonext packet

[

: Go to a specific packet number

[: Toggle color coding for the packets on/off
(= Toggle the auto scroll on/off

(+) [

e ~ % "W.Zoomi in, zoom out, and reset zoom to the default

o . Change the color coding as per requirements

® : Narrow down the window to capture packets
. Configure display filters to only see what is required

Even after selecting the interface, there can sometimes not be any packets listed
in the list pane; there can be multiple reasons for this, some of which are as
follows:

¢ You do not have any network activity

¢ Your interface is not able to capture the desired packets, due to privileges

¢ You do not have promiscuous mode activated or do not have an option for
promiscuous mode

Once you click on the Capture button in the tool pane, Wireshark will start
capturing and you will be able to see some traffic activity colored with different
codes, protocol names, packet numbers, IP addresses, and so on:

‘@ X! Capturing from Wi-Fi: en1 [Wireshark 1.12.6 (v1.12.8-0-gee1fce from master-1.12)]
File Edit View Go Capture Analyze Statistics Te!ephnny Tools Internals Help

e@AmA Bl XY A s BEEB aaaF @Bl % 8
Filter: I J Expression...

No. |Tirne |Sou rce |Dest:nauon |Pmtom|llength|lnfo

1 0.000000000 172.20.10.7 172.20.10.1 DNS 79 Standard query 0xa69f A gsple-ssl.apple.com
2 1.086453000 172,20.10.7 172.20.10.1 DNS 79 Standard query 0xa69f A gspl@-ssl.apple.com
3 1.089702000 172.206.10.1 172:26.18.7 DNS 196 Standard query response Oxa69f CNAME gspl8-ssl.ls-apple.com.
4.1.090606000 172.20.10.7 17.167.194. 205 TCP 78 520B6-443 [SYN] Seq=0 Win=65535 Len=0 M55=1460 W5=32 TSval=79§
5 1.125878000 172.20.10,1 172.20.10.7 DNS 198 Standard query response Dxa69f CNAME gspl@-ssl.ls-apple.com.s
61.747954000 17,167,194,205 172.20.10.7 T 6644352086 [SYN, ACK] Seq=0 Ack=L Win=8199’Len=0 MSS=1360 WS=1E
7 1.748066800 172,208,10.7 17.167.194. 285 TCP 54 52086443 [ACK] Seq=l Ack=l Win=262144 Len=0
8 1.749286000 172.20,10.7 17.167.194.205 SSL 244 Client Hello
9 3.079270000 17,167.194,205 172.20.10.7 TCP 1414 [TCP segment of a reassembled FDU]
16 3.079341000 172.20.10.7 17.167.194.205 TCP 54 52086-443 [ACK] Seq=191 Ack=1361 Win=260768 Len=0
11 3.079986800 17.167.194,205 172.20.10.7 TCP 1414 [TCP segment of a reassembled PDU]
12 3.080086000 172.208.10.7 17.167.194.205 TCP 54 52086-443 [ACK] Seq=191 Ack=2721 Win=260768 Len=0
13 3. 080365000 17.167,194.205 172.20.18.7 TCP 1414 [TCP segment of a reassembled PDU]
14 3.080372000 17.167.194.205 172.20.10.7 TLSvl 412 Server Hello, Certificate, Server Hello Daone
<€ —

|P Ethernet II, Src: 4a:74:6e:ba:d0:64 (4a:74:6e:ba:d0:64), Dst: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
\b Internet Protocol Version 4, Src: 172.20.10.1 (172,20.10.1), Dst: 172.20.10.7 (172.20.10.7)

|P User Datagram Protocol, Src Port: 53 (53), Dst Port: 52556 (52556)

| Domain MWame System (response)

JGLLL]
0010
|0020
|o030
|00

"

|

=

© ¥ [Frame (frame), 168 bytes i Packets: 52 - Displayed: 52 (100.0%) JProfile: Default

The Wireshark capture screen

Starting our first capture

As you've been introduced to the basics of Wireshark and since you have learned
how to install Wireshark, I feel you are ready to initiate your first capture. I will
be guiding you through the following series of steps to start/stop/save your first
Wireshark capture:

1. Open the Wireshark application.
2. Choose an interface to listen to.

Before you click on Start, we have the Options button, which gives us the
advantage of customizing the capture process; but for now, we will be using the
default configuration:

Wireshark - Capture Interfaces .

Input | Output = Options

Interface Traffic Link-layer Header Promist Snaplen (1 Buffe|
b vboxnetO [N madn__n Ethernet v default 2
» vmnetl AU Ethernet v default 2
b vmnet8 e a M) Ethernet v default 2
b vmnetl0 M\ Ethernet v default 2
any seitsnnsaosann Linux cooked v default 2
» Loopback: lo . a___ A Ethernet v default 2
bluetooth0 Bluetooth HCI UART transport layer plus pseudo-header default 2
nflog Linux netfilter log messages v default 2
nfqueue Raw IPv4 v default 2
usbmonl DLT -1 v default 2
usbmon2 DLT -1 v default 2
Cisco remote capture: cisco Remote capture dependent DLT
Random packet generator: randpkt Generator dependent DLT
SSH remote capture: ssh Remote capture dependent DLT
UDP Listener remote capture: udpdump Exported PDUs
[I 3
v| Enable promiscuous mode on all interfaces Manage Interfaces...
Capture filter for selected interfaces: | |E| a capture filter ... '] Compile BPFs

Start | Close Help

The capture customization screen

Below are the steps for the capture process:

1. Click on the Start button to initiate the traffic capture.
2. Open a browser.
3. Visit any website in your browser to generate some HTTP-based traffic:

e

www.wireshark.org

M | -
NEWS GetAcquainted GetHelp v Develop v Qur Sponsor SharkFest
WIRESHARK H ' & P F.

https://sharkfestus.wireshark.org.

The Wireshark website

4. Switch back to the Wireshark screen; if everything goes well, you should be
able to see numerous packets getting captured in your Wireshark GUI
inside the Packet List Pane.

5. To stop the capture, you can just click on the Stop capture button in the
toolbar. area, or you can click on Stop under the Capture menu bar:

one® X! Capturing from Wi-Fi: en1 [Wireshark 1.12.6 (v1.12.6-0-gee1fce6 from master-1.12)]

File Edit View Go Qapture Analyze Statistics Telephony Tools [nternals Help |
© ® 4 W | ©mertaces.. awhil o 74 [ER QQaa@ @0DE % 8 |

& Option
Filter: o Start ¢ r | Expression... I |
No. Time | Protocoll Lenglh! Info 2
& Restart Ctrl+R m
2 0.001059000/ & Capture Filters... deast AP 42 Who has 17.155.127,2237 Tell 172.20,10.1
3 1,228704000) 4 Ref hi £ dcast ARP 42 who has 17.155,127,2227 Tell 172.20.10.1
4 1,229683000 = Refresh Interfaces deast ARP 42 who has 17.155,127.2237 Tell 172.20.10.1
5 2.150384000 4da:74:6e:ba:do:64 Broadcast ARP 42 who has 17.155.127.2227 Tell 172.20.10.1
6 2.151348000 da:74:6e:ba:do:64 Broadcast ARP 42 who has 17.155,127.2237 Tell 172.20.10.1
7 4,300738000 da:74:6eiba:do: 64 Broadcast ARF 42 Who has 17.155,127.2227 Tell 172.20.10.1
8 4.301645000 da:74:6eiba:do: 64 Broadcast ARP 42 who has 17.155.127.2237 Tell 172.20.10.1
9 7.759507000 172.20.10.7 172.20.10.1 uoP 46 Source port: 65439 Destination port: 192
10 8.263903000 7 172.20.10.1 upe 46 Source port: 65439 Destination port: 192
11 ¢ 1 173 7 70 ination ur iable (Port unreachable)
12 13.906202000 172.20.10.7 172.20.10.1 DNS 76 Standard query 0x062a A www.google.co.in
13 13.906725000 172.20,10.7 172.20.10.1 DNS 75 Standard query 0xc591 A apis.google.com
14 13,906913000 172,20,10.7 172.20.10.1 DNS 79 Standard query Oxdab? A clientsS. google.com v
5] = ;] LR
b Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 8 A

P Ethernet II, Src: d4a:74:6e:ba:d0:64 (4a;74:6e:ba:d0:64), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
¥ Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocal type: IP (0x0800)

Hardware size: &

Protocol size: 4

Opcode: request (1)

sender MAC address: 4a:74:6e:ba:d0:64 (da:74:6e:ba:do:64)

Sanrdar TP addracer 177 90 10 1 1172 90 1A 1)
epee ff ff ff ff ff ff 4a 74 6Ge ba d0 64 08 86 00 01 at n..d....
0010 08 00 06 04 00 01 4a 74 6e ba do 64 ac 14 0a 01 PR | 3 TN . N

0020 00 00 Q0 00 00 00 11 9b 7fde Lol oL

© ® Wi-Fi: enl: <live capture in ... {Packets: 689 - Displayed: 689 {100.0%) TProfile: Default
Stopping capture

6. Now, the last step is to save the capture file for later use.
7. Save your file with the default.pcapng extension in your folder.

If you have read all the steps all the way up to this point, I would encourage you
to create your first capture file and save it in some workspace of your choice.

Summary

This chapter laid the foundation of basic networking concepts and gave an
introduction to the Wireshark GUI. Wireshark is a protocol analyzer that is used
worldwide by IT professionals to capture and analyze network-level packets.

The Wireshark GUI is user-friendly, robust, and platform-independent; even new
IT professionals can easily adopt the tool.

One important aspect of protocol analyzing is to place the sniffer at the right
place; every organization's infrastructure is different, so we might need
to apply different techniques in order to get the right packets to use.

Hubbing out, port mirroring, ARP poisoning, and tapping are some of those
useful techniques that can be used to monitor and analyze traffic in different
situations.

There are six main parts in the Wireshark tool window: Menu Bar, Main Tool
Bar, Packet List Pane, Packet Details Pane, Bytes Pane, and Status Bar.

Using the back/forward key during a packet analysis scenario can be really
useful. You should know about all the tools that are displayed in the main toolbar
area.

In the next chapter, you will learn how to work with the different kinds of filters
available in Wireshark.

Filtering Our Way in Wireshark

This chapter will assist you in identifying and applying the usage of Wireshark
filters—namely, the capture and display filters. Filtering provides a powerful
way to capture or see traffic; it is an effective way to segregate the desired traffic
stream from noise (traffic). The following are the topics we will cover in this
chapter:

e Introducing capture filters

Why and how to use capture filters
Introducing display filters

Why and how to use display filters
Colorizing traffic

Let's start our analyzer and apply some filters to understand the usage and
effectiveness of them. We will take a step-by-step walk through the process of
creating display and capture filters. Also, we will find utility, which is quite
effective when troubleshooting network issues.

Introducing filters

The two types of filters offered by Wireshark are capture filter and display filter,
which can be used over live traffic and/or with saved capture files. Filters
provide advanced capabilities in performing packet analysis, where a user is able
to separate the unwanted stream of packets from the stream of packets for
analysis.

Capture filters

Capture filters enable you to capture only traffic that you want to be captured,
eliminating an unwanted stream of packets. Capturing packets is a processor-
intensive task, and packet analyzers use a good amount of primary memory
while they are running.

Packets are only sent to the capture engine if they meet a certain criterion
(capture filter expressions). Capture filters do not facilitate advanced filtering
options, as in display filters.

The following is a screenshot of the Capture Options window dialog:

Wireshark + Capture Interfaces ()

Input | Qutput ~ Options

Interface Traffic Link-layer Header Promis¢ Snaplen (| Buffel
Wlp58s0 T L. Ethemet v default 2

b vboxnetd [ki Ethemet v default 2

b ymnetl AU, Ethemet v defaut 2

b vmnet8 s ML Ethemet v default 2

b ymnet10 s MWA__L Ethemet v default 2
any st nnnn, Linux cooked v default 2

b Loopback: lo I oA Ethemet v default 2
bluetooth0 Bluetooth HCI UART transport layer plus pseudo-header ¢ default 2
nflog Linux netfilter log messages v default 2
nfqueue Raw IPv4 v default 2
usbmonl DLT-1 v default 2
usbmon2 DLT-1 v default 2
Cisco remote capture: cisco Remote capture dependent DLT
Random packet generator: randpkt Generator dependent DLT
5SH remote capture: ssh Remote capture dependent DLT
UDP Listener remote capture: udpdump Exported PDUs

L]]

¥| Enable promiscuous mode on all interfaces Manage Interfaces...

Capture filter for selected interfaces: | ‘E‘ﬁ?:—'" a capture filter -] Compile BPFs

| Start Close Help

The Capture Options dialog
Let's take a walk through the options available in the Capture dialog window:

e Capture (under input tab): Its purpose is to choose which interface you wish
to listen on; multiple interfaces can also be selected to run in parallel. The
details for every interface are listed under separate columns, such as
Capture, Interface, the name of the interface, whether the promiscuous
mode is enabled or not, and so on. Under the Capture dialog, you will see a
checkbox to toggle the promiscuous mode, which enables you to listen to

traffic that is not generated from or headed to your machine.

e Manage Interfaces: Facilitates addition or removal of a new interface for
listening purposes. You can add even remote machine interfaces to listen
remotely.

e Capture Filter: Lists capture filters and also facilitates the addition of new
user-defined filters:

. ©

Manage Capture Filters
Input | Output | Options
2 : Ethernet address 00:00:5e:00:53:00: ether host 00:00:5e:00:53:00
Interface Ethernet type Ox0B06 (ARP): ether proto 0x0806 iffe|
wlp58s0 . . .
b uhownatl Mo Broadcast and no Multicast: not broadcast and not multicast
b vmnetl Mo ARP: not arp
P vmnetd 1
» vmnet10 I only:ip
any IPv4 address 192.0.2.1: host 192.0.2.1
» Loopback: lo i
bluetoatho IPVE only: ip6
nflog IPv6 address 2001:dbB::1: host 2001:db8::1
nfqueue ;
usbmonl IPX only: ipx
usbmon2 ; TCP only: tcp
Cisco remote capture: cisco
Random packet generator: randpk ~ UDP only: udp
=S remate;captiire:ssh TCP or UDP port 80 (HTTP): port 80
UDP Listener remote capture: udp
< HTTP TCF port (80): tcp port http ;
) 7 Mo ARP and no DNS: not arp and port not 53
¥| Enable promiscuous mode on all in i ...
Non-HTTP and non-SMTP to/from www.wireshark.org: not port 80 and not port 25 and host www.... -
Capture filter for selected interfaces: ||| [Enter a capture filter .. ~] Compile BPFs
| Start | Close Help

Default Capture Filters

The Berkley Packet Filtering (BPF) syntax is an industry standard used for
designing filters expressions and is supported by protocol analyzers such as
tcpdump, Which makes a filter's configuration file portable.

Wireshark - Capture Filters -

Name Filter -
Ethernet address 00:00:5e:00:53:00 ether host 00:00:5e:00:53:00

Ethernet type 0x0806 (ARP) ether proto 0x0806

Mo Broadcast and no Multicast not broadcast and not multicast

Mo ARP not arp

IPv4 only ip

IPvd address 192.0.2.1 host 192.0.2.1

IPvE only ip6

IPvE address 2001:db8::1 host 2001:db8::1

IPX only ipx

TCP only tcp

UDP only udp

TCP or UDP port 80 (HTTP) port 80 s
4]

+ | = |

oK Cancel | Help

The following are the steps to create your first capture filters expression;
consider a scenario where you have to capture packets originating from a web
server that is located at 10.10.10.157:

Open the Capture Options dialog.

Click on Capture Filter.

Click on New.

Write rFiltering Host inside the Filter name textbox.

A=

5. Write nost 16.10.10.157 inside the Filter String textbox:

Input Output Options

Interface Wireshark - Capture Filters %l Promisc Snaplen (| Buffe|
wip58s0 v default 2
» vboxnet0 v default 2
Name Filter -
» vmnetl v default 2
b imncld :;’:g 2ﬁ|dyress 192.0.2.1 il';)oﬁst 192.0.2.1 v detailt o
ES NS IPv6 address 2001:db8::1 host 2001:db8::1 fl delk 2
any 1PX onl iox v default 2
» Loopback: lo TCP o ?” tp v default 2
bluetooth0 el e i default 2
nficg UDP only udp v default 2
TCP or UDP port 80 (HTTP) port 80
nfqueue v default 2
HTTP TCP port (80) tcp port http
usbmonl v default 2
usbmon2 No ARP and no DNS not arp and port not 53 | v default 2
Cisco remcte o LNon-HTTP and non-SMTP to/from www.wireshark.ori not port 80 and not port 25 and host www.wi
Random packet s host 10.10.10.157 £
SSH remote cap >
UDP Listener ret
= i o = 1 Py [=
V| Enable promiscu OK Cancel Help Manage Interfaces...
Capture filter for selected interfaces: W [Enter a capture filter v Compile BPFs
Start Close Help

Creating a sample capture filter

6. Once done, click on OK; if you've entered everything correctly (mostly the
filter expression), the textbox followed by the Capture Filter button will be
displayed with a green background.

7. Capture Files (under output tab): Use this option to append stream of
packets to an existing trace file. The captured packets will be added to the
file of your choice. If you haven't chosen any, a temporary file will be
created. For more advanced way of saving packets to single/multiple files,
try the following:

e Create a new file automatically after: After capturing a certain amount
of data (KB, MB or GB), Wireshark will create a new file to save a
stream of packets. For instance, I want to create a new file after
Wireshark captures 2 MBs of data.

e Next File Every (time): After a certain amount of time (seconds,

minutes, or hours), Wireshark will create a new file to save a stream of
packets. For instance, I want to create a new file every five minutes.

¢ Ring buffer: Use this option to set a limit for creation of new files
based on the previously mentioned criteria. For example, you have
selected the Ring buffer option and set the number of files to s, and
you have configured that after every 5 MB, a new file should be
created.

According to this configuration, after every 5 MBs of data, a new file will be
created and the packets will be written to it. Once the limit that you specified in
the Ring Buffer is met, Wireshark will not create a new file; instead, it will start
saving to the first file and append all captured packets to it. The following
screenshot shows a similar kind of configuration:

Wireshark - Capture Interfaces =,

Input | Output | Options

Display Options Name Resolution
v | Update list of packets in real-time v | Resolve MAC Addresses
v | Automatically scroll during live capture Resolve network names
v | Show extra capture information dialog Resolve transport names
Stop capture automatically after...
1 | packets
1 || files
1 *| | kilobytes =
1 *||seconds -

Start Close Help

The Capture Files option

e Stop Capture Settings (options tab): This option lets you stop the capturing
process after a certain condition is triggered; we have four different kinds of
triggers. They are stated as follows:

Packet(s): Stop capturing after a certain count of packets is reached

File(s): Stop capturing after the creation of a certain number of files

Kilobytes(s): Stop capturing after capturing a certain amount of data

Seconds(s): Stop capturing after running for a certain period

What if we select more than one option at a time, as shown in the following

screenshot:

Stop capture automatically after...

1 * | packets

1 | files

1 *| |kilobytes =
1 |*||seconds -

The Stop Capture options

You can activate more than one option at a time; Wireshark will stop capturing
whichever condition is met first.

e Name Resolution (options tab): If selected, this feature can resolve the
Layer 2, 3, and 4 addresses to their corresponding names:

Mame Resolution

v | Resolve MAC Addresses
Resolve network names

Resolve transport names

Name Resolution

e Display Options (options tab): Use this option to customize how stream of
packets and related information will be show in the Packet List Pane and
the Protocol hierarchy window. Refer to the following screenshot:

Display Options

v | Update list of packets in real-time
v | Automatically scroll during live capture

v | Show extra capture information dialog

Display Options

o Update list of packets in real-time: Packet List Pane is updated instantly
as soon as a new packet is captured, and the pane will scroll automatically
to display the most recent packets

Why use capture filters

Capturing only traffic that meets a criterion is required when a large volume of
packets is flowing in network. Creating custom capture filters can come in handy
for analyzing a root cause our while troubleshooting network issues. Wireshark
discard packets that do not meet the capture filter expression and dropped
packets will not be passed to the capturing engine.

How to use capture filters

Use the Berkley Packet Filter (BPF) syntax to create capture filters through
capture filter dialog.

BPF is a combination of two arguments: identifiers and qualifiers, which are
explained as follows:

¢ Identifiers: Search criteria is your identifier. For example, capture filter
like host 192.168.1.1, where the value 192.168.1.1 is an identifier.
¢ Qualifiers: These are categorized into further three sections:

e Type: There are three types of type qualifiers: host, port, and net. A type
qualifier refers to the name or the number that your identifier refers to,
e.g. in your capture filter nost 192.168.1.1, host is the type qualifier.

e Direction: Sometimes, when you need to capture packets from a
source or destination, specify direction qualifiers along. For example,
in the src host 192.168.1.1 capture filter, src specifies to capture packets
originating from 192.168.1.1. Likewise, if you specify dst host
192.168.1.1, would capture packets only destined to host192.168.1.1.

e Proto: This qualifier is for filtering packets pertaining to a specific
protocol. For example, if you want to capture nttp traffic coming from
host 192.168.1.1, then expression will be src host 192.168.1.1 and tcp port
80

e Wireshark support usage of and or operators to concatenate more than one
expressions refer to following examples:

e Filter src host 192.168.1.1 and tcp port so States that all the packets
originating from 192.168.1.1 and going to port se should only be
captured.

e Filter src host 192.168.1.1 or tcp port se, States that every packet
originating from 192.168.1.1 or any packet associated with port se
should only be captured.

e Filter not port se states that any packet associated with port se should
not be captured.

An example capture filter

To access the default filters, go to Capture | Capture Filers or click on the
Capture Options button in the main toolbar and click on Capture Filter.

Refer to the following table for sample capture filters:

Filters

Description

host 192.168.1.1

All traffic associated with host 192.168.1.1

port sese

All traffic associated with port sese

src host 192.168.1.1

All traffic originating from host 192.168.1.1

dst host 192.168.1.1

All traffic destined to host 192.168.1.1

SIC port 53

All traffic originating from port s3

dst port 21

All traffic destined to port 21

src 192.168.1.1 and tcp
port 21

All traffic originating from 192.16s.1.1 and
associated with port 21

dst 192.168.1.1 OT dst All traffic destined to 192.168.1.1 or destined to

192.168.1.2
host 192.168.1.2

not port se All traffic not associated with port se

not src host 192.168.1.1 All traffic not originating from host 192.168.1.1

not port 21 and not port | Aj] traffic not associated with POt 21 OF POt 22

22

tcp All tcp traffic

Ipv6 All ipv6 traffic

tcp or udp All TCP or UDP traffic

host www.google.. com All traffic to and from Google's IP address

ether host All traffic associated with the specified MAC
07:34:AA:B6:78:89 add[‘eSS

http://www.google.com

Display filters

Display filters are flexible and powerful when compared to capture filters.
Display filters do not discard any packets; instead, the packets are hidden.
Discarding packets is not a very effective practice because, once the packets are
dropped, they cannot be recovered. Applying a display filter will limit the
packets to be displayed in the list pane of Wireshark.

A display filter can be used for a capture file and live traffic in the Filter dialog
box located above the Packet List Pane. Display filters support variety of
arguments such as IP, port, protocol, and so on.

Let's learn how to use the display filter expression dialog for creating filters.

[W]apply a display filter ... <Ctrl-/> d ~| Expression... +

The filter expression

1. Click on the Expression button to configure a display filter

Wireshark - Display Filter Expression (]

Field Name Relation

» [104apai ¢ IEC 60870-5-104-Apci =/ [is present

b 104asdu - IEC 60870-5-104-Asdu ==
29West - 29West Protocol 1=
2dparityfec - Pro-MPEG Code of Practice #3 release 2 FEC Protocol >
3COMXNS - 3Com XNS Encapsulation <
3GPP2 All - 3GPP2 All >=
BLOWPAN - IPv6 over Low power Wireless Personal Area Networks <=
802.11 Radio - 802.11 radio information contains
802.11 Radiotap - IEEE 802,11 Radiotap Capture header matches
802.11 RSNA EAPOL * IEEE 802.11 RSNA EAPOL key in

802.3 Slow protocols - Slow Protocols
9P - Plan 9 i i i

i N [select a field to start building a display filter.

A21 - A21 Protocol

AAF - AVTP Audio Format

AALTL - ATM AALL

AAL3/4 - ATM AAL3/4

AARP - Appletalk Address Resolution Protocol

AASP - Aastra Signalling Protocol

ACAP - Applicatian Configuration Access Protocol

ACN - Architecture for Control Networks Value
ACP133 - ACP133 Attribute Syntaxes

ACR 122 - Advanced Card Systems ACR122

ACSE * IS0 8650-1 0S| Association Control Service e al ae
ACtrace - AudioCodes Trunk Trace

ADB - Android Debug Bridge

ADB C5 - Android Debug Bridge Client-Server

ADB Service - Android Debug Bridge Service

ADP - Aruba Discovery Protocol

ADwin * ADwin communication protocol

ADwin-Config - ADwin configuration protocol

Aeron + Aeron Protocol

AFP - Apple Filing Protocol

AFS (RX) - Andrew File System (AFS)

AgentX - AgentX

AH - Authentication Header

AIM - ACL Instant Messenger

AIM Administration - AIM Administrative

AlM Advertisements * AIM Advertisements

AIM BOS - AIM Privacy Management Service
AIM Buddylist - AIM Buddylist Service

AlM Chat - AIM Chat Service

AIM ChatNav * AIM Chat Navigation

AIM Directory - AlM Directory Search

AIM Email - AIM E-mail

AIM Generic - AIM Generic Service

AIM ICQ - AIM ICQ

AIM Invitation - AIM Invitation Service

AIM Location * AIM Location

AIM Messaging - AIM Messaging

AIM Popup - AIM Popup

AIM Signon - AIM Signon

AIM SSI - AIM Server Side Info

AIM SST + AIM Server Side Themes

AIM Stats - AIM Statistics

AIM Translate + AIM Translate

b AIM User Lookup - AIM User Laokup
&R R T Sp—

search:

2. For example, if you want to see only packets associated with ip:192.168.1.1,
then scroll down in the Field Name to find IPv4. Then, expand the section
and choose the ip.addr option.

3. From the Relation box next to it, choose the operator you wish to add in
your expression.

4. At last, write the IP you or in the Value (IPv4 address) box and click OK

Comparison and logical operators comes handy when creating filters complex
filters.

The following table lists the comparison operators that can be used to create
filters:

Operator Description

==/eq Equal to

1=/ne Not equal to

</1t Less than

<=/le Less than equal to
>/gt Greater than

>=/ge Greater than equal to

Following is the list of logical operators that are used to combine more than one
criterion together. The following table lists all of them:

Operator | Description

The AND logical operator is used when we want both parts of
the expression to state true. For example, the ip.src==192.168.1.1

AND/&&
and tcp filters would only display packets originated from ip
192.168.1.1 and associated with the tcp protocol.
The OR logical operator is used when we focus on one

oR/| | condition to be true at a time; For example, the port 53 Or port so

filters would display all packets associated with port 53 (ons)
along with all packets associated with port se (http) if any.

NOT/!

The NOT logical operator is used when we want to exclude
some packets from the list pane. For example, the :dns filter
would hide all the packets associated with the DNS protocol.

Retaining filters for later use

Retaining filters saves time and effort required to type complex display filters.
Wireshark facilitates retaining through saving custom filters. To create one for
yourself, following are the steps:

1. Go to Analyze | Display filters:

Wireshark - Display Filters %

MName Filter =
Ethernet address 00:00:5e:00:53:00 eth.addr == 00:00:5e:00:53:00
Ethernet type 0xD306 (ARP) eth.type == 0x0806
Ethernet broadcast eth.addr == ff:ff:ff:ff.ff:ff
MNo ARP not arp
IPva only ip
IPv4 address 192.0.2.1 ip.addr == 192.0.2.1
IPv4 address isn't 192.0.2.1 {don't use != for this!} !ip.addr == 192.0.2.1)
IPv6 only ipve
IPv6 address 2001:db8:1 ipv6.addr == 2001:db8::1
IPX only ipx
TCP only tcp
UDF only udp -
L] |]
+([—||%
oK Cancel Help
Adding Display Filters

2. Click on New (+), enter the values in the Filter name and Filter string fields.
For instance, we want to create a display filter for no are packets. Then, the
values will look like the following screenshot:

>

Wireshark - Display Filters X

Name Filter =
IPv6 only ipvB
IPv6 address 2001:db8::1 ipv6.addr == 2001:db8::1
IPX only ipx
TCP only tcp
UDP only udp
Non-DNS ludp.port == 53 || tcp.port == 53)
TCP or UDP port is 80 (HTTPR) tcp.port == 80 || udp.port == 80
HTTP http
No ARP and no DNS not arp and '{udp.port == 53}
Non-HTTP and non-SMTP to/from 192.0.2.1 ip.addr == 192.0.2.1 and not tcp.port in {80 2
larp]
-
] >
+ (= || B

oK | Cancel Help

Creating a new filter

Click on Apply. Now, your recently created filter will be listed at the
bottom of list, which can be used later.

Make sure that the Filter String box is shown with a green background,
which means that your expression is correct; if it is in red color, then
something is wrong, and if it is in yellow, this denotes that the results can
be unexpected.

Click on the Expression button next to the Filter string box, to create filters
through click and selecting what you require.

The Delete (-) button will delete an existing filter from the list.

The Cancel button will discard any unsaved changes and close the window.
The Ok button commits Save and closes the window.

Searching for packets using the Find
dialog

For searching packets that meets a criterion use the Find tool bar adjacent to
display filter. You can access the Find utility by navigating to Edit | Find packets
or using the shortcut Ctrl + F:

Packet list - Narrow & Wide - Case sensitive String | (10.10.10.157
The Find Packet dialog

You can also use the following filters for finding packets:

Display filter « | |larp

Let's see some more configurable options available:

¢ The display filter: Find packets based on specific IP /Port/ Protocol, for

example:
® ip.addr == 192.168.1.1 (based on an IP address)
e port sese (based on a port number)
¢ nttp (based on a protocol)

e The Hex value: If you have the hex value for a packet, then use this option.
For example, write in the physical address separated by colons, for
example:

® (QA:C4:22:90:45:00
® AA:BB:CC

e String: Enter the name of the DNS server, name of the machine, and any
name that you are looking for (enter any string or word), for example:

e (Cisco

e An administrator
e A web server

e Google

e Search In: Through this you can search in specific pane of Wireshark. For
instance, if you are looking for a packet which matches the value Google
(the ASCII value in the packet bytes pane will be matched). So, first choose
the String option and then choose the Packet bytes from the first drop

down.
¢ String Options: To enable and use this option, first select the String option
and then select Case-Sensitive and then if you want, choose the character

width as well.

To move back and forth between the matched packets, you can use Ctrl + N
(next) and Ctrl + B (previous).

Colorize traffic

For better and convenient viewing experience colorization of traffic is done to
distinguish between different stream of packets. Colorization helps in
differentiating between similar looking packets in ease.

To access the default colorizing profiles navigate to View | Coloring rules as
shown in the following screenshot:

Wireshark : Coloring Rules - Default (x]

Name Filter

eq 11 || icmpvé.type eg

smb || nbss || nbns || nbipx || ipxsap || netbios
http || tcp.port == 80 || http2
IPX ipx || spx

¥ DCERPC dcerpc

¥| Routing hsrp || eigrp || ospf || bap || cdp || vrrp || carp || gvrp || igmp || ismp

v TCP SYN/FIN tep.flags & 0x02 || tep flags.fin == 1 :

v TCP tp

| UDP udp

1 b
Double click to edit. Drag to move. Rules are processed in order until a match is found.

+| = B

0K Cancel Import... Export... Help

Coloring rules

All rules that are currently saved as part of your global configuration file to
colorize traffic are listed in this dialog. Every packet listed in the packet list pane
follows the rules defined in Coloring rules windows, which gives them a
distinctive look.

Let's use this feature and color the nttp error packets with a color combination of
our choice. Say, for instance, a web server is configured and up and running file
sharing purpose. Now, a client is trying to do directory listing and gets rte 404
error messages. These error messages are shown in the packet list pane and
colored using the default nttp coloring rule that makes these errors less visible to
us. To identify such packets quickly, colorize the urTe 404 error messages with a
black background and with a cyan foreground. Follow the steps to configure the
same.

1. Linux box is the client configured on IP 172.16.136.129, and Macintosh
running on 172.16.136.1 that is configured as a web server:

@ @ |& Kali-Linux-1.0.9-vm-486
n = A & @ ' 4

Applications Places @& [Z] SatJul 18, 01:17

XAMPP for OS X 5.5.24-0 - Iceweasel - (0| X
lceweasel ™ |[Z] XAMPP for OS X 5.5.24-0 |5 |
v E| ‘.V Google

a @v ¢ @

»

€ [@17216.136.1/xampp/

[FIMost Visited¥ % Exploit-DB [| Offensive Security | L...

XAMPP for Mac 0S X

Try out the new XAMPP welcome page

Security

Documentation
Components
Applications

Biorhythm
Guest Book

linatant A

T XAMPP for

We are working on a new Welcome page for XAMPP and we need your help! You can
you can see the current version at Dashboard, We are improving our current "FAQs" and

English / Deutschy
Francais / Nederlands
Polsld j Italiano f Norsk
Espafiol f 91X
Portugués (Brasil) j H=

adding new "How to" guides. We posted some suggestions for new guides at
ApacheFriends forum. if you have any comments or suggestions for the new welcome
page, please don't hesitate to post in the forum. Your feedback will help us improve

XAMPPL If you have any comments or suggestions for the new welcome page, please
don't hesitate to post in the forum. Your feedback will help us improve XAMPP!

Welcome to XAMPP for OS X 5.5.24-0!

The web server running on 172.16.136.1

2. Normal traffic from a Linux-accessing web server looks something shown
as follows:

No. | Time | Source | Destination |P!otoco| | Length| Info

1 0.000000000 172.16.136.129 172.16.136.1 TCP 60 55658-80 [SYN] Seq=0 Win=2920I
2 -950618696. 077286000 172.16.136.1 172.16.136.129 TcP 64 8055658 [SYN, ACK] Seq=0 Ack:
3 -2021440336.836621000 172.16.136.129 172.16.136.1 TcP 52 55658-80 [ACK] Seg=1 Ack=1 Wii
4 -1898165200, 561362000 172.16.136.1 172.16.136. 129 Tcp 52 [TCP Window Update] 80-55658
5 41863044.612094000 172.16.136.129 172.16.136.1 HTTP 355 GET /xampp/ HTTP/1.1

6 0.001038000 172.16.136.1 172.16.136.129 TcP 52 80-55658 [ACK] Seq=1 Ack=304 |
7 0.084997000 172.16.136.1 172.16.136.129 HTTP 940 HTTP/1.1 200 0K (text/html)
8 0.085422000 172.16.136.129 172.16.136.1 TcP 52 5565880 [ACK] Seq=304 Ack=88'
9 381882809, 099438000 172.16.136.129 172.16.136.1 HTTP 400 GET /xampp/head.php HTTP/1.1
10 0. 106560000 172.16.136.1 172.16.136.129 Tcp 52 80-55658 [ACK] Seq=889 Ack=65
11 -1437096632.910449000 172.16.136.129 172.16.136.1 TCP 60 55659-80 [SYN] Seq=B Win=2920i
12 -950618696. 095408000 172.16.136.1 172.16.136.129 TCP 64 80-55659 [SYN, ACK] Seq=0 Ack
13 - 136085583, 409139000 172.16.136.129 172.16.136.1 TcP 52 5565980 [ACK] Seg=1 Ack=1 Wi
14 -1321431987. 061550000 172.16.136.1 172.16.136.129 TCP 52 [TCP Window Update] 80-55659

3. Now that everything is up and running, we will try to do some directory
listing manually from client machine, to generate wrte 404 error messages.

Applications

Browse and run installed applications

Sat Jul 18, 01:25

lceweasel ¥ 1 & Object not found!

lceweasel

@ @17216136.1

Most Visited v

® Exploit-DB

{ ! Offensive Security | L...

Object not found!

The requested URL was not found on this server. If you
entered the URL manually please check your spelling

and try again.

If you think this is a server error, please contact the

webmaster.

Error 404

T Object not found! - lc...

v

{ iZeroBin »

1]

4. The traffic generated through this request is captured and can be seen in the
following screenshot:

No. | Time | Source | Destination | Protocol | Length I Info

92 675.958501000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=1 Ack=1
93 -1278177470.593326000 172.16,136.1 172.16.136.129 TCP 52 [TCP Window Update] 808-556
94 675, 958885000 172.16.136.129 172.16.136.1 HTTP 362 GET /xampp/abc.jpg HTTP/1.
95 238258651, 845389000 172.16.136.1 172.16.136.129 TCP 52 80-55667 [ACK] Seq=1 Ack=3
96 -456584943. 391379000 172.16.136.1 172.16.136.129 TCP 657 [TCP segment of a reassemb
97 675.981774800 172.16.136.1 172.16.136.129 TCP 483 [TCP segment of a reassemb
98 675.981788000 172.16,136.1 172.16.136. 129 TCP 282 [TCP segment of a reassemb
99 -511200557. 945281000 172.16.136.1 172.16.136.129 TCP 273 [TCP segment of a reassemb
100 -1437100881.841330000 172.16.136.1 172.16.136.129 HTTP /XML 60 HTTP/1.1 404 Not Found

101 -1177513788.717358000 172.16.136.129 172.16.136.1 TCP B2 5o007-80 TACK] Seq=31T Ack
102 -1177513788.717358000 172.16,136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack
103 675. 982078000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack
104 -1177513788.717358000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack

HTTP 404 Traffic

We can see, in the preceding captured traffic, that the client requested the
abc.jpg resource, which was not available; thus, the client received a 404

Not found error.

5. We figured out easily because there is just one client requesting a single
resource. Consider a production environment with thousands of clients. In
such cases, coloring a specific set of packets with a different rule is a game

changer.

6. Navigate to Edit Coloring Rules | New (+). Type HTTP 404 in the Name

box.

7. 'Type nttp.response.code==404 in the Filter box. Choose the Foreground Color
option as cyan, and choose the Background Color option as Black. Then,
click on OK:

Wireshark - Coloring Rules - Default o

Name Filter

v

v smb || nbss || nbns || nbipx || ipxsap || netbios

v http || tep.port == 80 || http2

¥ ipx || spx

¥ DCERPC dee

¥| Routing hsrp || eigrp || ospf || bgp || cdp || virp || carp || gvrp || igmp || ismp

¥ TCP SYN/FIN tep.flags & 0x02 || tep.flags.fin == 1

v TCP tep

¥ UDP udp

[] D

HTTP 404: “http.resp” is neither a field nor a protacol name.

il = Background
Cancel Import... Export... Help
No. |Time | Source | Destination | Protocol | Length‘ Info
94 675.958885000 172.16.136.129 172.16,136.1 HTTP 362 GET /xampp/abc.jpg HTTP/1.1
95 238258651, 845389000 172.16.136.1 172.16, 136,129 TCP 52 80-55667 [ACK] Seq=l Ack=31]
96 -456584943.391379000 172.16.136.1 172.16.136.129 TCP 657 [TCP segment of a reassemble
97 675.981774000 172.16.136.1 172.16. 136.129 TCP 483 [TCP segment of a reassemble
98 675.981788000 172.16.136.1 172.16.136.129 TCP 282 [TCP segment of a reassemble
99 -511200557.945281000 172.16.136.1 172.16,136.129 TCP 273 [TCP segment of a reassemble
101 -1177513788.717358000 172.16.136.129 172.16,136.1 TCP 52 55667-80 [Se
102 -1177513788.717358000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack=1
103 675.982078000 172.16.136. 129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack=l
104 -1177513788.717358000 172.16.136.129 172.16,136,1 TCP 52 55667-80 [ACK] Seq=311 Ack=]
105 -1437162184.138035000 172.16.136.129 172.16.136.1 TCP 52 55667-80 [ACK] Seq=311 Ack=l

After applying the new coloring rule

Coloring rules are applied to the packet list pane in a top-to-bottom manner.
With every packet, there is coloring rule information attached that can be listed
from Packet Details Pane under the Frame section, as shown as follows:

No. Time Source Destination

TTZTIUTT

TTZTIUTIIUTIE

100 -1437100881.841330000 172.16.13 172.16.136.129

~ Frame 100: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0
Interface id: 0 (pktap@)
Encapsulation type: Raw IP (7)
Arrival Time: Jan 1, 1970 22:31:42.296705000 IST
[Time shift for this packet: ©.000000000 seconds]
Epoch Time: 61302.296705000 seconds
[Time delta from previous captured frame: -925900323.896049000 seconds]
[Time delta from previous displayed frame: -925900323,896049000 seconds]
[Time since reference or first frame: -1437100881.841330000 seconds]
Frame Number: 100
Frame Length: 60 bytes (480 bits)
Capture Length: 60 bytes (480 bits)
[Frame is marked: False]
[Frame is ignored: Falsel
[Protocols in frame: raw:ip:tcp:http:data:data:data:data:data:data:data:data:data:data:data:data:data:data:data:data:data:data
[Number of per-protocol-data: 1]

. response. code==404]

Coloring info in a frame header

Create new Wireshark profiles

Profiles are like customized virtual environments, which saves significant
amount of time while auditing/troubleshooting a network.

To create a profile, follow these steps:

1. Right-click on the Profile column in Status Bar (bottom right corner of
window):

Profile: Default

2. Click on + in the pop-up dialog:

Wireshark - Configuration Profiles 2

Default
Bluetooth
Classic
Mew profile

+ ||= ||t Created from default settings

| OK | Cancel Help

3. Now, choose any profile you wish to use as a template (if any) and type the

name of the new profile.
4. And then, click on OK.

Now, in the status bar, you will see the new profile has been activated. The
changes that you will make in this profile stays here, for example, you create
capture/display filters, change protocol preferences, and change color
preferences, and so on.

Profile: New profile

Also, importing and exporting profiles is easy just copy and paste the Profile
configuration files in a Wireshark directory to use.

Summary

Filtering traffic lets you capture and see only stream of packets you want; there
are two types of filters: display filters and capture filters.

Display filters hide the packets; however, capture filters discard the packets that
do not meet user defined expression and discarded packets are not passed to the
capturing engine.

Capture filters use the BPF syntax, which is an industry standard and is used by
several other protocol analyzers.

Find utility is useful and can be accessed from the Edit menu in Wireshark. The
Find utility gives various vectors to search a packet(s) and related details.

Coloring preferences comes handy when filtering a set of traffic. Distinguishing
packets becomes easy, as the matched packets will be displayed with a unique
coloring scheme.

Profiles are like virtual scenarios that saves time and efforts. Changes made to a
profile with respect to display/capture filter and color/protocol/time preferences,
stays within the same.

Analyzing Application Layer
Protocols

This chapter will help you understand the approach and methodology for
analyzing application layer protocols such as HTTP, SMTP, FTP, and DNS
through Wireshark. Application layer protocols typically interfaces between a
client and server.

It is critical to understand the structure of application layer protocol packets in
order to identify anomalies efficienctly. We will be discussing the following
topics in detail throughout this lesson:

¢ Analysis of common application layer protocols
e Assembling VoIP packets
e Decrypting encrypted traffic

Domain Name System (DNS)

Imagine a world of internet where you have to type a random numerical value
(IP address) in your web browser's address bar, instead of a name, to visit a
website. Also, imagine that each numerical figure is different. Considering this,
how many numbers (IP addresses) can you memorize? 5? 10? Perhap, 50 at
max? So, now, you are confined to visiting just 50 websites.

For the sake of a limitless web experience, DNS comes to our rescue. DNS
stores a dataset (zone file) of website names mapped to their current IP
addresses, along with the names of the domains. Each entry in the zone file is
termed a resource record (combination of website name and its IP). DNS uses
TCP and UDP, both for different purposes, over the port s3 by default.

How does DNS work? So, as a client, when you try to visit a website from a
browser, your request (DNS query) is sent to an internal DNS server (if any) that
looks up the resource records it contains. If the DNS server knows the IP address
for the domain you are trying to visit, your PC will get a reply (DNS response)
containing the IP address of the website you desire to visit, else your query will
be forwarded to external DNS servers on the web (for example, google DNS
servers at s.s.s.s, 4.4.2.2, and So on.).

Dissecting a DNS packet

A DNS packet consists of multiple fields that are briefly discussed here:

e Transaction ID: This is a number that keeps track of a domain query and
it's corresponding response.
¢ Query/response: Every DNS packet is marked as a query or a response.
o Flag bits: Each query and response contains a different set of flag bits,
which are as follows:
¢ Response: The message is a query or a response.
e Opcode: This determines the type of query contained. The Opcode
ranges between o-1s. Refer to the following table:

0 1 2 3 4 5 6-15
Standard | Inverse Server

status Unassigned | Notify | Update | Unassigned
query query

request

e Truncated: This determines whether the packet is truncated if its size
is large (greater than 512 bytes).

e Recursion desired: The query sent by your client is supposed to go on
a recursive search procedure from one DNS server to another if the
resource record you are looking for is not present in the primary DNS.

e Recursion available: If this bit is set, then it means the recursion that
your client requested is available.

e Reserved (z): As defined by RFC 1035; reserved for future use, must
be set to zero for all queries and responses.

e Response code: The values in this field signifies the response. This
field is used to signify whether there are errors and the types of errors.
Here are the possible code values that you can receive:

Not
implemented

Name
error

No
error

Server
failure

Format
error

Refused

Questions: Number of queries present in the packet.

Answers: Number of answers sent in response to the query.

Authority RRs: Number of authority resource records sent as response.
Additional RRs: Number of additional resource records sent as response.
Query section: The query sent to the DNS server; it should be the same in
the response received.

e Answer section: Answer consists of the resource records that came in as

response.
e Type: Type of query sent. Refer to the following table for common query
types:
A NA MX SOA PTR AAAA AXFR IXFI
: Start of : Full Inc
Host Name | Mail Pointer | IPv6
zone zone zor
address | server | exchange . record | address
authority transfer | trai

e Additional info: This field includes additional info containing resource

records. It is not required to answer the query.

Dissecting DNS query/response

Let's consider a scenario to understand the way DNS works. A client sends a
query to a DNS server that possesses name resolution information. Using this
information, the client can start IP-based communication. Sometimes, the
information the client is looking for is not available with the DNS server it
requested. In such cases, the DNS server itself transfers the query to any
neighbor DNS it knows about, if recursion is desirable. Refer to the following
screenshot, where a request is sent to visit https://www.google.co.in. A request from
a client located at 192.168.1.103 is sent to the default gateway at 192.168.1.1. This
gateway will forward the query to a DNS server it knows about:

P Frame 9: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface ©
P Ethernet II, Src: Apple_b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte 07:73:6c (do:5b:a8:07:73:6c)
P Internet Protocol Version 4, Src!: 192,168.1.103 (192.168.1.103), Dst: 192.168.1.1 (192.168.1.1)
P User Datagram Protocol, Src Port: 65382 (65382), Dst Port: 53 (53)
b d
[Response In: 10]
Transaction ID: ©x2bda
P Flags: 0x0100 Standard query
Questions: 1
Answer RRs: ©
Authority RRs: ©
Additional RRs: ©
¥ Queries
= www.google.com: type A, class IN
Name: www.google.com
[Name Length: 14]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (0x0001)

DNS query

You may notice that DNS is using UDP as an underlying protocol. If you want to
know more about the DNS query being generated, just expand the Flags section.
This section will list various details, such as whether recursion is available,
whether recursion is desired, and what the response code is. Please refer to the
following screenshot:

https://www.google.co.in

v Flags: 0x0100 Standard query

... .«++ +++. = Response: Message 15 a query

.000 0... Opcode: Standard query (0)
Truncated: Message 1s not truncated
Recursion desired: Do query recursively
s e v wne wlBla e o 22V FegErved (8)

= Non-authenticated data: Unacceptable
Expanded flags section

- ©
.
TRTIT

(o)
|

The expanded Flags section tells us that the type of DNS packet is a query, the
packet data is not truncated, and recursion is desirable if available.

In response to this query, you will observe one packet with the same transaction
ID that denotes the association of a DNS query sent by the client. The response
for the query will usually consist of an IP address for the domain visited. The
requesting machine will be returned a single IP, or maybe multiple IPs available
to it. If the domain we are looking for is not available, then it's probable
CNAME:s will be returned in as favor.

Refer to the following screenshot to understand this:

P Frame 10: 154 bytes on wire (1232 bits), 154 bytes captured (1232 bits) on interface 0
I Ethernet II, Src: Zte _07:73:6¢c (do:5b:a8:07:73:6c), Dst: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
P Internet Protocel Version 4, Src; 192.168.1,1 (192.168.1,1), Dst: 192.168.1.103 (192.168.1.103)
P User Datagram Protocol, Src Port: 53 (53), Dst Port: 65382 (65382)
~
[Request In: 9]
[Time: ©,004678000 seconds)
Transaction ID: ©x2bda
P Flags: 0x8180 Standard query response, No error
Questions: 1
Answer RRs: 5
Authority RRs: @
Additional RRs: ©
P Queries
= Answers
P www.google.com: type A, class IN, addr 173.194.36.84
www.google.com: type A, class IN, addr 173,194, 36.83
www.google,com: type A, class IN, addr 173.194,36.82
www.google.com: type A, class IN, addr 173.194.36.80
www.google.com: type A, class IN, addr 173.194.36.81

T

DNS response

As I said, we could get multiple replies. If you notice the Answer RRs section,
we have received five replies for the ww.goog1e.com domain. For verification that
the response received belongs to the previous query only, just match the
Transaction ID.

https://www.google.com/

Expand any section in the Answers category to view more details. Refer to the
following screenshot:

= Answers
= waw.google. com: type &, class IN, addr 173.194.36.84

Name: www.google.com
Type: A (Host Address) (1)
Class: IN (@x0001)
Time to live: 13
Data length: 4
Address: 173.194.36.84 (173.194.36.84)

File transfer protocol

Since the internet came into existence, we have been working with the file
transfer protocol (FTP). FTP uses TCP over port 21 or 20 (by default) to initiate
and transfer files over a designated channel. There are only two types channel
command channel (port 21) and data channel (port 20). The command channel is
used to send and receive the commands and their responses. The data channel is
used to send and receive data between the client and the server. However, you
will observe random port numbers used to transfer TCP data segments from your
client machine.

Dissecting FTP communication
packets

There are two types of mode a client can use to communicate with a server:
active and passive. In earlier versions of FTP server applications, active mode
was enabled by default, but in the latest versions of FTP server applications,
passive mode is enabled by default. For understanding these modes in detail, let's
use the following scenario.

Let's say an FTP server is configured at IP 172.16.136.129 and a client at IP

172.16.136.1.

Typically, every request sent from the client is a specific command set, to which
the server responds with a numerical value followed by a text message. See the
following screenshot for reference followed by a short analysis:

4 0.018723000 172,16.136.129 172.16.136.1 FTP 88 Response: 220 Welcome to Charit's FTP se
5 555032032, 287455000 172,16.136.1 172.16.136. 129 TCP 52 56982-21 [ACK] Seq=1 Ack=37 Win=131728 L
6 -952210303,718297000 172,16.136.1 172.16.136.129 FTP 62 Request: USER abc
7 -143593220,746255000 172,16.136.129 172.16.136.1 TCP 52 21-56982 [ACK] Seq=37 Ack=1l Win=29696 L
8 4.629189000 172.16.136.129 172.16.136.1 FTP 86 Response: 331 Please specify the passwor
9 4.629206000 172,16.136.1 172.16.136.129 TCP 52 56982-21 [ACK] Seq=11 Ack=71 Win=131696

10 5.732635000 172.16.136.1 172.16.136.129 FTP 62 Request: PASS abc

11 -1086390884 . 249094000 172,16.136. 129 172.16.136.1 FTP 75 Response: 230 Login successful,

12 2070317539.792672000 172.16.136.1 172.16.136.129 TCP 52 56982-21 [ACK] Seq=21 Ack=94 Win=131672

The server requested the password, which the client provided. Once the server
receives and validates the password, the user will be logged in. In our case, the
password is correct, so the client receives 23e as a response code followed by a
Login Successful IMessage.

Commands issued from the client side can have arguments or no arguments, and
the data transmitted between the devices can be seen in the TCP header of the
packet, as shown here:

43 -544276953. 6832968000 172.16.136.1 172.16. FTP 58 Request: LIST

| ‘44 894485615,992341000 172.16,136.129 172.16.136.1 TCP 60 2057197 [SYNI SegH

| 145 894485615.992407060 172.16.136. 1 172.16.136. TCP 64 57197-20 [SYN, ACK]
46 894485615, 992662000 172.16.136. 129 172.16. TCP 52 20-57197 [ACK] Seg=
47 894485615. 992690000 172.16.136.1 172.16. TCP 52 [TCP Window Updatel
48 -540049189. 689031000 172.16.136.129 172.16. FTP 91 Response: 130 Here
49 894485615. 993039000 172.16.136.1 172.16. TCP 52 57196-21 [ACK] Seq:
R1 AQIAQRAQ IIAQIOAAA 172 1A 13R 1 177 1A 1@ 170 TrD £2 R7107 .0 [ACK1 Can-

L &

=
P Frame 50: 314 bytes on wire (2512 bits), 314 bytes captured (2512 bits) on interface @

P Raw packet data

I Internet Protocol Version 4, Src: 172.16.136.129 (172.16.136.129), Dst: 172.16.136.1 (172.16.136.1)
P Transmission Control Protocol, Src Port: 20 (20), Dst Port: 57197 (57197), Seq: 1, Ack: 1, Len: 262
FTP Data (drwxr-xr-x 2 1001 1002 4096 Aug 03 00:45 Desktop\r\n-rw-r--r-- 10

FTP-data returned

Frame 43 shows that the client issued the L1st command, which was processed by
the server, and that 262 bytes of data was returned. FTP-based communication
can be seen in plaintext through protocol analyzers, which is also a weakness
often exploited.

Reassembling the FTP data stream is easy because apart from the data, there is
nothing that is transmitted. There is no code or command that gets appended to
the packets. To reassemble the TCP stream of FTP packets, just right-click on the
selected packet and choose the Follow TCP Stream option to view.

Refer to the following screenshot:

Wireshark - Follow TCP Stream (tcp.stream eq 2) - wireshark_lo_20180601105508._...

220 (vsFTPd 3.0.3)

USER gpftp

331 Please specify the password.

PASS admin@123

238 Login successful.

SYST

215 UNIX Type: LB

PORT 127,0,0,1,171,213

208 PORT command successful. Consider using PASV.
LIST

158 Here comes the directory listing.

226 Directory send OK.

PWD

257 "/home/gpftp/ftphome" is the current directory

Packet 455. 9 client pkts, 9 server pkts, 15 turns, Click to select.

Entire conversation (331 bytes) v Show and save data as ASCII v | Stream |2 |5
Find: | Find Next
Filter Out This Stream Print Save as... Back Close Help

FTP stream

The entire communication between the client and the server that happened over
the data and command channels is translated into human-readable format. Text
in red is what the client sent, and text in blue is what the client received. It is
recommended to use secure versions of FTP in order to mitigate the
vulnerability.

Hypertext Transfer Protocol (HTTP)

Data on the web is transferred using the HTTP/HTTPS application layer
protocol. Normal communication in HTTP follows a request/response model,
where the communication between a client and a server is coordinated by a set of
rules. The client requests for a certain resource to the server and then receives a
status code that specifies the current status of the requested resource. If available
then, the resource is also sent along with the status code, else the client would
receive a not-available status code.

How request/response works

Web servers utilize HTTP to serve web pages to the requesting clients. At the
beginning of every HTTP session, the TCP three-way handshake takes place. It
creates a dedicated channel between the communicating hosts followed by HTTP
and data packets, which are sent in and received while the session is active. For
instance, say you are visiting a web server located at http://172.16.136.129 from a
client at 172.16.136.1. Using our client-server infrastructure, we will try to capture
the requests sent and responses received.

I will try to visit the home page located at the server mentioned earlier and will
capture the traffic generated for the whole session; that is, the requests sent and
responses received. Take the following steps to replicate the scenario.

Request

Following are the steps for the preceding scenario:

1. Open your browser and type the Uniform Resource Locator (URL) of any
website.

2. The website is located at nttp://172.16.132.129 (a local web server). Here is
the screenshot for your reference:

[] £ il 172.16.136.129 C * »

Charit's Web Server!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

3. The following screenshot depicts the packets captured as a result of visiting
the web server:

1 0.000000000 172.16,136,1 172.16.136.129 TCP 64 59781-80 [SYN] Seq=0 Win=65535 |
2 -1438998251. 586830000 172.16.136.129 172.16.136.1 TCP 60 8059781 [SYN, ACK] Seq=0 Ack=l
3 0.000146000 172.16.136.1 172.16.136.129 TCP 52 59781-80 [ACK] Seg=1 Ack=1 Win=
5 -1439017790.883535000 172,16,136,129 172.16.136.1 TCP 52 8059781 [ACK] Seq=1 Ack=416 Wit
6 548191280.817750000 172.16.136.129 172.16.136.1 HTTP 262 HTTP/1.1 304 Not Modified
7 0.078913000 172.16.136.1 172.16.136.129 TCP 52 5978180 [ACK] Seq=416 Ack=211\
8 5.073679000 172.16.136. 129 172.16.136.1 TCP 52 8059781 [FIN, ACK] Seq=211 Ack:
9 5.073739000 172.16.136.1 172.16.136.129 TCP 52 59781-80 [ACK] Seg=416 Ack=212 \
10 29.999840000 172.16.136.1 172.16.136.129 TCP 52 59781-80 [FIN, ACK] Seq=416 Ack:
11 30.000161008 172.16.136.129 172.16.136.1 TCP 52 8059781 [ACK] Seq=212 Ack=417 \

4. All these packets get generated as soon as you press Enter. As you can see,
the first three packets are TCP three-way handshake packets where our
client is requesting that the server creates a dedicated channel. However, if
the server daemon wasn't running or the server wasn't accepting our
requests, for some reason then we would have seen rst ack packets, like the
one shown here:

2 0.000315000 172.16.136.129 172,16.136.1 TCP 40 80-59783 [RST, ACK] Seg=l

5. This error states that the server is out of service or is not supposed to
respond to our requests (firewalled or restricted zone).

6. After the TCP packets, the first HTTP request sent by our client is observed.
Every request comprises a couple of elements that are sent to the server:

GET / HTTP/1.1\r\n
Host: 172.16.136.129\r\n
If-None-Match: "12625d-bc-51c6ab45063d1"\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
If-Modified-Since: Mon, 03 Aug 2015 16:31:40 GMT\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_10_3) AppleWebKit/600.6.3
Accept-Language: en-us\r\n
Accept-Encoding: gzip, deflate\r\n
Connection: keep-alive\r\n
HTTP request

¢ In the first line, there are three things passed on to the server as the
arguments, which are the HTTP method, the requested resource, and
the location / (root directory).

e The Host argument is required by the HTTP/1.1 protocol requests. The
value of this field is the web server's address that you typed in the
address bar of the browser.

e The accert parameter specifies what kind of content is acceptable by
the requesting client response.

e The 1f-modified-since parameter is sent from the client to the server,
which includes the date and time of your previous request made to the
server. If the server contents have been changed since your previous
request, then you will receive the new updated page. Otherwise, your
system will present you with the locally cached page.

e The user-agent specifies the browser-related information that you are
using. This information is to be used by the server to present you with
browser-compatible content.

e Parameters such as Accept-Language and Accept-Encoding are passed
on to the server to inform us of what type of content is acceptable to
the client.

¢ The Connection-alive parameter specifies whether the client wishes to
keep the connection working after this particular request has been
processed.

Response

1. After the fourth packet, the server acknowledges the client's request to get
to the web server's root directory. The server starts transmitting the resource

that the client requested.

2. The sixth packet in the list pane is what the client received, a status code
followed by a short message, including the content of the resource
requested. Refer to the following screenshot illustrating the HTTP response:

7 -1439018536.131505000 172.16.136.1 172.16.136.129
8 5.010003000 172.16.136.129 172.16.136.1
9 5.010052000 172.16.136.1 172.16.136.129
10 -1669050675,223075000 172.16.136.1 172.16.136.129
11 -1GRAAACAGTA IVATAAAAA 172 1A 13R 120 172 1A 136 1

TCP
TCP
TCP
TCP
TCP

52 59784-80
52 80-59784
52 59784-80
52 59784-80
57 AN_SQ7R4

[ACK]
[FIN,
[ACK]
[FIN,
rarki

Seq=416 Ack=211 W
ACK] Seq=211 Ack=
Seq=416 Ack=212 W
ACK] Seq=416 Ack=
Sen=212 Ark=417 W

M=
| ==

P HTTP/1.1 304 Not Modified\r\n
Date: Mon, 03 Aug 2015 17:32:35 GMT\r\n
Server: Apache/2.2.22 (Debian)\r\n
Connection: Keep-Alive\r\n
Keep-Alive: timeout=5, max=100\r\n
ETag: "12625d-bc-51c6ab45063d1"\r\n
Vary: Accept-Encoding\r\n
\r\n
[HTTP response 1/1]
[Time since request: 526547318.508758000 seconds]
[Request in frame: 4]

HTTP response

3. As a part of TCP communication, the client will acknowledge every packet
sent by the server, as seen in the seventh packet.
4. Let's dissect the response elements for packet number six:

e The first line consists of three arguments sent in response. They denote

the HTTP

protocol version in use, the status code (se4 in our case, which specifies
that the requested resource did not change since the time mentioned in
the pate parameter), and finally, a brief description of the status code

(not modified in our case).

¢ In the third line, the Server parameter mentions the name and version

of

the web server. We can see that Apache/2.2.22 is the server that

is located at 172.16.136.129.

e The fourth and fifth lines state that the server wishes to keep the
connection alive. The duration for which the server wishes to do so is
also mentioned in the next line of the parameters.

Simple Mail Transfer Protocol
(SMTP)

SMTP is used widely to send and receive emails over a small network. The
protocol uses the Sender-SMTP process to send emails and the Receiver-SMTP
process to receive emails. This makes SMTP a client-server-based protocol that
runs over port 2s.

Typically, an SMTP channel for mail transfer is created through a successful
TCP three-way handshake followed by a series of SMTP packets:

4

€

— —

PC 2: SMTP
Client
(192.168.1.104)

PC 1: SMTP
Ser

Server
(192.168.1.105)

In our lab, we have an SMTP server configured at IP 192.168.1.105 and a client at

IP 102.168.1.104. The client will request the server to sends an email to an address
known to the client. The server will respond to this request with numerical code,
followed by a brief response parameter.

Dissecting SMTP communication
packets

Using the Netcat client from a Kali Linux machine, I will connect to the SMTP
mail service running on a Windows machine. After a successful three-way
handshake, the server will respond with numerical codes with a short summary.
Follow these steps to the send an email using command line:

Open a connection with the mail server using netcat nc -nv 192.168.1.105 25.
Initialize an SMTP session with the HeLo testmail command.

Specify the from address using the marL rrom:<abcacharit.com> command.
Specify the recipient's address using the rcpts T0:<efg@charit.com> command.

A=

5. To enter data into the mail body, type pata, press Enter, and type . (full-stop;
this is a terminating character, and you can use any character of your
choice) Now, type the message you wish to send. Once you are finished
typing your mail, type a . (full stop) to mark the ending and press Enter.

6. Now, your message will be sent.

The process will generate a couple of packets that contain details about our
session. All of these commands mentioned will only work when the server is
configured to permit clear text message communication without any
authentication; refer to the following screenshot:

3

-41448, 227586000

4 4205130.997054000

5
6
7
8
|
10

11
12

1439081652, 143751000
-287363963. 384218000
1744899513, 488830000
1439081657. 529807000
1744901809. 636862000
1744899513, 488830000
1439081671. 468558000
1439081686.949708000

13 4206566. 333758000

14
15

1439081687. 064346000
1439081688, 805525000

16 4207044,779326000
17 2122359292, 356797000

18

20

22

1439081690. 221834000

1439081690, 454208000

168258645, 511998000

23 419451065, 438925000

24
25
26

28 850006670, 085950000

1439081690, 858935000
168257924, 091710000
1439081694, 129351000

192,

192,
192,
192,
192,
192,
192,
192,
192.
192,
192.
192.
192,
192,
192,
192,

192,
192,

192,
192,

192

192,

192,

168.
168.
168.
168,
168,
168.
168.
168.
168.
168.
168.
168.
168.
168.
168,
168,

168.

168.
168.
168.
. 168,
168.

168.

et R e e I

.104
. 105
.104
.104
105
.104
.104

105

.104
.104
.105
.104
. 104

105

. 104
. 104

. 105

.104
.105

104

.104
. 105

.104

192,
192,
192,
192,
192,
192,
192,
192.

192

192,
192,
192,
192,
192,
192,
192,

192,

192,
192,
192,
192,
192,

192.

168,
168,
168.
168,
168,
168.
168,
168.
.168.
168,
168.
168.
168,
168,
168,
168,

168,

168,
168.
168,
168.
168,

168,

. 105

. 105
. 104
. 105
. 105
. 104
. 105
. 105
. 104
. 105
.105
.l04
. 105

105

. 104
. 105
. 105

. 104

. 105
.104
. 105
. 105
. 104

TCP
SMTP
TCP
SMTP
SMTP
TCP
SMTP
SMTP
TCR
SMTP
SMTP
TCP
SMTP
SMTP
TCP
SMTP

TCP

SMTP
SMTP
TcP

SMTP
SMTP

TCP
SMTP session

52 57073-25 [ACK] Seq=1 Ack=1 Win=29696 Len:

90 S: 220 Charit's.com ESMTP server ready.
52 57073-25 [ACK] Seq=1 Ack=39 Win=29696 Ler
61 C: helo abc

82 S: 250 Charit's.com Hello, abc.

52 57073-25 [ACK] Seq=10 Ack=69 Win=29696 Le
79 C: mail from:<abc@charit.com>

81 S: 250 Sender OK - send RCPTs

52 57073-25 [ACK] Seq=37 Ack=98 Win=29696 L¢
78 C: rcpts to:<efg@charit.com=

91 S: 250 Recipient OK - send RCPT or DATA.
52 57073-25 [ACK] Seq=63 Ack=137 Win=29696 |
57 C: data

91 S: 354 0K, send data, end with CRLF.CRLF
52 57073-25 [ACK] Seq=68 Ack=176 Win=29696 |
55 C: DATA fragment, 3 bytes

52 25-57073 [ACK] Seq=176 Ack=71 Win=16314 |

54 C: DATA fragment, 2 bytes

75 S: 250 Data received OK.

52 57073-25 [ACK] Seq=73 Ack=199 Win=29696 |
57 C: DATA fragment, 5 bytes

95 S: 221 Charit's.com Service closing chanr

52 57073-25 [ACK] Seq=78 Ack=242 Win=29696 |

Packets from 1-3 are TCP-handshake packets. The handshake is happening
between the client and the server. In the fourth packet, the client receives a
message stating 220 as the response code. This means the server is available and
ready to respond to the client's request. In the sixth packet, the client initializes
the standard SMTP session using the veLo command, followed by the sender's and
recipient's email addresses, which were confirmed to be correct by the server,
with response code 250 in packets 10 and 13. Then there's the email body packet
using the pata command, which was successfully received by the server in packet
23. In the end, the user gracefully closes the connection by issuing the quzt
command, which the server confirmed in packet 26, thus sending rin, ack.

Session Initiation Protocol (SIP) and
Voice Over Internet Protocol(VOIP)

SIP is a part of the VOIP family, which is a signaling protocol used to create,
manage, and terminate VOIP sessions in a networking environment. Examples of
SIP include a two-way phone call or a conference call, or multimedia sessions
with multiple hosts. After the initiation of the session, the data is transferred
through the Real time Transport Protocol (RTP) over the dedicated channel.
Basically, the family of RTPs governs the transport and the flow control of all
multimedia items (RTCP controls the flow).

Wireshark can assemble a stream of RTP packets in order to play back the
conversation that happened between two parties (use it ethically!).

SIP runs over UDP and commonly uses port sese. SIP provides us with different
call-managing features, such as initiating calls, disconnecting calls, adding
someone to a conference call, and transferring calls, though SIP is not going to
help you maintain the quality of calls.

Let's discuss the typical VoIP infrastructure through the following diagram.
There are three nodes: two of them are clients and one is the IP telephony server,
which enables voice communication:

Client 1 <eecemmemceeeeeeeee= [] e = Client 2

(1) Invitg-----=-==nmsmmmmemee- .

e 100 Trving (3)
4) 180 Ringing

-------------- | 80 Ringing (5)
e (6) 200 Ok

1. Client 1 sends an Invite request to initiate the session using SIP.
2. The telephony server transfers the request to Client 2.

w

The telephony server acknowledges Client 1 with the 100 Trying packet.
4. Client 1 receives a 180 Ringing packet as soon as Client 2 starts ringing.
When Client 2 on the other side receives the call, it sends the 200 OK

packet, which is forwarded to Client 1.

5. Now the client sends the ACK packet to acknowledge the receipt of the
200 OK packet.

6. Now both parties are connected with a dedicated channel, over which the
RTP/RTCP packets start flowing back and forth.

7. To end the communication, there will be a BYE packet sent by one of the
communicating hosts, which is acknowledged by the other end.

8. All of the packets will be sent back and forth between client 1 and 2, due to
information only known to telephony server.

9. Once the channel created, all the packets will be sent and received directly

by the clients without the server's intervention.

For illustration purposes, I have configured a small VoIP telephony infrastructure
using Asterisk PBX that can be downloaded for free. So, our VOIP server is
located at 192.168.1.107, client 1 at 192.168.1.104, and client 2 at 192.168.1.107. I am
also using an X-lite calling application to call client 2 from client 1. The
following is a screenshot of traffic captured in the list pane of Wireshark:

5 0.001673000 192.168.1. 107 192,168.1.104 SIP 515 Status: 100 Trying |
172 0.085903000 192.168.1. 107 192.168.1.106 SIP/SDP 917 Request: INVITE sip:101@192.168.1.106:5621
177 0.087461000 192.168.1.107 192.168.1.104 SIP 531 Status: 180 Ringing |
178 0.652323000 192.168.1. 106 192.168.1.107 SIP 348 Status: 100 Trying |
179 0.959210000 192.168.1. 106 192.168.1.107 SIP 501 Status: 180 Ringing |
182 0.961010000 192.168.1.107 192.168.1.104 SIP 531 Status: 180 Ringing |
186 3.827648000 192.168.1. 106 192.168.1.107 SIP/SDP 782 Status: 200 0K |
188 3.829335000 192.168.1. 107 192.168.1.106 SIP 489 Request: ACK sip:101@192.168.1.106:56215;r
205 3.834786000 192.168.1.107 192,168.1.104 SIP/SDP 820 Status; 200 OK |
211 3.839764000 192.168.1. 104 192.168.1. 107 SIP 482 Request: ACK sip:101@192.168.1.107 |
1644 10.852745000 192.168.1. 104 192.168.1.107 SIP 641 Request: BYE sip:101@192.168.1.107 |
1645 10.853115000 192.168.1. 107 192.168.1.104 SIP 489 Status: 200 0K |
1652 10.854002000 192.168.1. 1607 192.168.1.106 SIP 527 Request: BYE sip:101@192.168.1.106:56215;r
1690 11.042924000 192.168.1. 106 192.168.1.107 SIP 467 Status: 200 OK |

SIP traffic

One thing you should consider is placing the analyzer as close as possible to the
telephony server so that it will be able to capture every last packet. While
capturing, if you cannot see any SIP packets, then you won't be able to capture
VOIP packets as well.

Reassembling packets for playback

Yes, it is possible to assemble the VOIP packets back to listen to either side, or
both sides, of communication. Let's suppose I want to listen to the message
client 1 at IP 192.168.1.104 sent to client 2 at IP 192.168.1.107. We can use the
Telephony menu in Wireshark to reassemble the packets and choose the VOIP
Calls option from the list. The following screenshot illustrates the resulting
dialog:

[NON] (x| sip.pcapng - VoIP Calls

Detected 2 VolIP Calls. Selected 1 Call.
Start Timr~ IStop Tim |lInitial Speal |From | To |Protoc- |Packet]State |Comments

0.085903 11.042924 192.168.1.107 "Support” <sip:21<sip:101@192.1€SIP 7 COMPLETE

Total: Calls: 2 Start packets: 0 Completed calls: 2 Rejected calls: 1
[%|prepare Filter = Flow 4)Player Ei Select All | ¥ Close |

VOIP Calls dialog Now choose which side of communication you want to listen to. Then click on the Player button and configure
Jitter (Jitter is the variance in packet rate at which the packets are being sent and received. If jitter is high, then there is a chance that
your network is dealing with congestion. Calls with high jitter values are not feasible to listen to) and Time as illustrated, and click on
Decode:
0@ [X| sip.pcapng - RTP Player

O View as time of day

Jitter buffer [ms] |50 : @® Jitter buffer O Use RTP timestamp O Uninterrupted mode @@Decode

Player dialog I did not change the default value and clicked directly on the Decode button, which reassembled all the VoIP packets for
the side of communication I chose, as shown in the following screenshot:
ece \| sip.pcapng - RTP Player

“

O From 192.168.1.104:63398 to 192.168.1.107:17880 Duration:6.88 Drop by Jitter Buff:0(0.0%) Out of Seq: 1(0.3%) Wrong Timestamp: 2(0.6%)

“

O From 192.168.1.107:17880 to 192.168.1.104:63398 Duration:7.02 Drop by Jitter Buff:0(0.0%) Out of Seq; 0(0.0%) Wrong Timestamp: 0(0.0%)

O View as time of day

Jitter buffer [ms] |50 |%| ® Jitter buffer © Use RTP timestamp © Uninterrupted mode < Decode | B> Play il Pause M Stop I ¥ Close |

RTP Player If you want to play the message, check the box just below the scrollbar and click on Play. Use this feature for ethical
purposes only.

Decrypting encrypted traffic
(SSL/TLS)

Yes, it is also possible to decrypt your online TLS traffic into a plaintext SSL
stream using Wireshark. Google Chrome and Firefox look for a log file, which
stores the TLS session keys. Follow these steps to decrypt a session of encrypted
traffic:

1. Create an environment variable with the name ssikevioeriLe that will point to
a text file. Your browser will look for this file every time it starts up. To
create environment variables, right-click on My Computer and go to
Advanced Settings | Environment Variables | New | Specify Name. Enter
ssLkevLocrILE and Value: C:/Users/username/sslkeylog. txt, and
click on OK.

2. T have created a blank text file, c:/users/username/sslkeylog. txt
(make your new environment variable point to this file).

3. Now open your browser and visit a website enabled with TLS/SSL.

For demonstration purpose, I have my own SSL web server located
at 192.168.1.106 Using a client located at 192.168.1.105:

Viwonneas =L
« C | Gt b //192.168.1.106

Test Page on My HTTPS Server

by Charit M.

4. After you visit any secure website enabled with SSL, your ssikeylog.txt will
be populated with some random numbers, as shown in the following
screenshot. If not, cross check your settings before moving on:

CLIENT_RANDOM 17999a56ea29e69bcb242b441blb519e
Ob3bl6e79b9a46bfdcb280fd4eb027e1786e3766¢7313F
1117b14

5. I captured the whole encrypted session traffic between the client and server.
Now go to Edit | Preferences | Protocol tree | SSL | (Pre)-Master-Secret log
filename. Enter /path/to/ssikeylog.txtand OK. Then right-click on the SSL

packet (make sure you select Decrypt packet data. The option should be
present in the bytes pane) and follow the SSL stream. Now you will see
something like the following screenshot:

“Wireless Network Connection
Ele Bt View Go Coptwre Awlyze Statistic Teephony Tools [temak Help

oe a4ma nxgaeseTL |EEQaan @B % B
s [epstram eq? -
No. Destation Prtocol Lergh Info

192.168.1.106

% .168.1.
1.90165200192,168.1.105

TisvL2 571 Client tello
1.90394300192.168.1.106 192.1¢ 3 54 443-1313 [ACK] Seg=1 Ack=518 Win=30720 Lt
1.90470100192.168.1.106 192,16 Tsvi.2 198 Alere (Lavel: waring.pesertpidon: Uricoantzad Name> . Serves HeTlo; Ehange Ciatier Spec, Fintsl
1.90538900192.168.1.105 192.168. TSV 2

1.90612600192.168.1.105 192,14 M FolowSSLStream, (R
1.90829400192.168.1.106 192,168
1.90911000192.168.1.106 192, 1

TSV.2 i

Stream Content

TTP/1.1 %

2.11329000 162.168.1.105
6.91896000192.168.1.106

192.1¢
192. 1

o1
cep-alive
e

Tisvi.2 e
o/l apBiTeation/xhtaléxnl;appTicat on/xel 4=0. 9, fnage/webp., =

iAccept 19:0.8
Upgrade-Tnsecure-Requests: 1
U5 -Agent: bozi113)5:0 (vindows NT 6.1 WoWS4) Applenebiit/S37.36 (KHTL, Tike Gecko) =

i (chrone744..0.2403.155"Safar 1/537

Frame 26: 602 bytes on wire (4816 bits), 602 bytes captured (4816 bits) A((Qp(Foesdingsgrioy aetaressith

5 Ethernet 11, Src: Apple_b9:S3:ec (d8:bb:2c:b9:53:ec), Dst: LiteonTe fa: cept-Language: en-US,en;

5 Internet Protocol Version 4, Src: 192.168.1.106 (192,168.1.106), 0st: U hurrors 1 200 o

4 Transmissfon Control protocol, Src Port: 443 (443), Dst port: 1313 (13Lf| DBater Won. 37 Aug 20

Apache/2.2. 25 oabian
Sat. 15 Aug 2013 03:48:32 i

a-51d5678b362ee”

@ secure Sockets Layer

vxry T ceept_inchain
CorterEncoding; gzip

correl gth;

KeeboATIver : lneogt=3, max=100
Comection: Keep-Alive

|| content-Type: text/html

00 20 68 50 Ta 5o bd d8 b 2¢ b9 33 ec 08 0 45 00
2 4c 1b 2e 40 00 40 06 99 Sa cO a8 OL 6a cO a8
03 65 01 bb 0 21 75 de a4 13 56 o nenis
00 1f 94 2f 00 00 17 03 03 01 69 63 F2 56 ee 40
se 8 bf iy 30 cf 3 es e fede n; 8o
7 a6 1d c7 85 e 3 a
20 5cdo 82 1d by 98 4d 83 7283 8 39 43 3b Fe LEOUE comeron 1am 1y
04 ca a5 67 86 b0 fe 8d c8 87 5b dc 47 db ac
u 03 6F 66 87 63 le bb 4e 68 85 e2 ci 7e a6 11
05 d4 42 2 <8 db c3 7d 89 8b de 48 55 al fe

Find Swve s Bt] Ascn) EBCDC HexDump Chmys ® Raw

gy e e [Pt ot s
P Pl | Packets: 38: Displayeds 16 (21%) S—

Decrypt SSL traffic

"
&
B

This is one of the easiest ways to decrypt SSL traffic with just a few clicks. One
more way is to feed the RSA private key of the server into the Wireshark SSL
preferences, which will give you the same result (I'm leaving it to you for your
research).

Summary

DNS is a protocol used to resolve website names to an IP address. Through
DNS, your machine is able communicate on an IP-based network.

FTP has been used to transfer files from one machine to another since the
internet came into existence and is still being used in today's modern networks.

Web browsers present and transfer web-based content back and forth using
HTTP. It is also commonly referred to as the request/response model, where a
host requests a certain resource and the server responds with a status code and
the resource if available.

SMTP is very commonly used to send emails. The SMTP command and its
corresponding arguments are passed over the wire in plaintext.

VoIP traffic is made up of two things: RTP for data transfer and SIP for session
creation. The signaling protocol creates and manages a session where RTP is
used to carry the voice itself.

Analyzing the Transport Layer
Protocols TCP/UDP

This chapter will help you understand the underlying technology enabling
movement of network traffic across routing infrastructures through analysis of
the transport layer protocols Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). TCP and UDP are the basis of networking protocols
and it is important to understand their structure and behavior.

The following are the topics that we will cover in this chapter:

The TCP header and how it communicates
Understanding the TCP flags

Checking for different analysis flags in Wireshark
Understanding UDP traffic

Unusual patterns of TCP and UDP traffic

We will also look at some common anomalies that occur in day-to-day network
operations.

The transmission control protocol

TCP is a connection-oriented protocol used by several application-layer
protocols to ensure data delivery without any loss of information during
transition, based on sequence and acknowledgment numbers. TCP ensures fail-
proof delivery of packets between nodes. TCP sits in between the network layer
and the application layer and uses the IP datagram to transfer data packets
between the sender and receiver.

The Three-Way Handshake process takes place before the data transfer
happens. A TCP connection is like a two-way communication process where not
only the sender is actively involved, but even the receiver sends
acknowledgments to make it a reliable form of connection.

Understanding the TCP header and
its various flags

The TCP header is normally 20 bytes long, but at times, due to the presence of
the options field, the TCP header size can vary up to 60 bytes. The following is an
illustration of a simplified TCP header:

Source port Destination port

Sequence number

Acknowledgement number

Data offset Flags Window size
Checksum Urgent pointer
Options

The following is a brief explanation for each of the TCP header fields:

¢ Source port: Used by the sending side to keep track of existing data
streams and new incoming connections.

¢ Destination port: Port number associated with the services offered by the
destination.

e Sequence and acknowledgment numbers: Each side uses a sequence
number to keep track of ordering of the packets. Acknowledgment numbers
are used by the sender and receiver to communicate the sequence number
that is either received or sent.

e Data offset: Indicates where the data packet begins and the length of the
TCP header. The size can vary due to the presence of the options field.

e Flags: There are various types of flag bits present; each of them has its own
significance. They initiate connections, carry data, and tear down
connections:

e SYN (synchronize): Packets that are used to initiate a connection.
e ACK (acknowledgment): Packets that are used to confirm that the

data packets have been received, also used to confirm the initiation
request and tear down requests

e RST (reset): Signify the connection is down or maybe the service is
not accepting the requests

e FIN (finish): Indicate that the connection is being torn down. Both the
sender and receiver send the FIN packets to gracefully terminate the
connection

e PSH (push): Indicate that the incoming data should be passed on
directly to the application instead of getting buffered

e URG (urgent): Indicate that the data that the packet is carrying should
be processed immediately by the TCP stack

e CWR (congestion window reduced): Used by either of the parties to
slow down transmission speed in an event of congestion to avoid
packet loss

e Window size: Indicates the amount of data that the sender can send. The
size is decided during the handshake process to communicate and match the
buffer size compatible for transmission.

e Checksum: Used by the receiving end to validate the integrity of the
segments.

e Urgent pointer: Often marked as 0, used in conjunction with URG flag to
mark immediate processing of a subset of message.

e Options: This field length can vary due to the presence of various options.
This field has three parts: the first part specifies the length of the option
field, the second part signifies the options being used, and the third contains
the options in use. One of the important options, maximum segment size
(MSS), is also part of this field.

e Data: The last part in the TCP header is the real data.

The preceding information gives us an overview regarding TCP headers and the
significance of various parts of the header. While analyzing TCP sessions, it
becomes quite important to know about these details.

How TCP communicates

To understand and analyze the packets in real time, I have configured a server
that runs at 172.16.136.129 and a client that runs at 172.16.136.1, as shown in the

i}

v

Client:172.16.136.1 Server:172.16.136.129

following diagram: Client Server

Using Wireshark, we will capture the three-way handshake process, which
happens before the actual data transfer, as well as the teardown process (graceful
termination).

How it works

The following screenshot depicts the various packets that are being generated
while a client is trying to visit the web page hosted on nttp://172.16.136.129:

Use the following display filter to ease analysis:

[|ip.addr==172.16.136.129 and ip.addr==172.15.136.1|

282 -895706969.756684000 172.16.136.1 172.16.136.129 TCP 64 52138-80 [SYN] Seq=0 Win=65535 Len=0
283 -1439969339.488273000 172.16.136.129 172.16.136.1 TCP 60 80-52138 [SYN, ACK] Seq=0 Ack=1 Win=Z
284 15.671376000 172.16.136.1 172.16,136.129 TCP 52 52138-80 [ACK] Seq=1 Ack=1 Win=131744
285 15.672063000 172.16.136.1 172.16.136.129 HTTP 375 GET / HTTP/1.1

286 1228372207.391617000 172.16.136.129 172.16.136.1 TCP 52 80-52138 [ACK] Seq=1 Ack=324 Win=307:
287 15.672711000 172.16.136.129 172.16.136.1 HTTP 503 HTTP/1.1 200 OK (text/html)

288 15.672725000 172.16.136.1 172.16,136,129 TCP 52 52138-80 [ACK] Seq=324 Ack=452 Win=1:
289 -895706969.777480000 172.16.136.1 172.16. 136,129 TCP 64 52139-80 [SYN] Seq=0 Win=65535 Len=0
290 15.747286000 172.16.136.129 172.16.136.1 TCP 60 8052139 [SYN, ACK] Seq=0 Ack=1 Win=:
291 714245694, 355758000 172.16.136.1 172.16.136.129 TCP 52 52139-80 [ACK] Seg=1 Ack=1 Win=13174¢
292 378319958, 968279000 172.16.136.1 172.16.136.129 HTTP 359 GET /favicon.ico HTTP/1.1

293 1580695018.460033000 172.16.136.129 172.16.136.1 TCcP 52 8052139 [ACK] Seg=1 Ack=308 Win=307:
295 15.754902000 172.16.136.1 172.16.136.129 TCP 52 52139-80 [ACK] Seq=308 Ack=505 Win=1:
299 20.679013000 172.16.136.129 172.16.136.1 TCP 52 80-52138 [FIN, ACK] Seq=452 Ack=324
300 609634608, 344347000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=324 Ack=453 Win=1:
301 20.761722000 172.16.136.129 172.16.136.1 TCP 52 80-52139 [FIN, ACK] Seq=505 Ack=308 W
302 -1931345972.395708000 172.16.136.1 172.16.136.129 TCP 52 5213980 [ACK] Seq=308 Ack=506 Win=1:

A three-way handshake process is taking place in the packets 2s2, 283, and 284 to
create a dedicated channel. The client initiated the creation by sending a syn
packet in the 252 packet with the SEQ set to o. Since the server was open for
communication, the server responded with a svv/ack packet with ack set to 1 and
seq set to o, followed by a confirmation sent from the client side in the packet
number 284 with seq=1 and ack=1.

After the successful completion of channel creation, the client sends a cer request
to access the contents of the web-root directory. The server acknowledges this in
the packet number 287 and sends the requested content with the 200 ok status
message, which is acknowledged by the client in the next packet.

After all the data transfer takes place, when the client has nothing left to request,
or when the server has nothing left to send, the client sends rin/ack packets to
properly terminate the connection. The server acknowledges this and sends its
own rin/ack packets, which are acknowledged by the client in the packet number
s02. This way of termination is often referred to as the teardown process. Refer to
the following screenshot, which illustrates this process:

299 20.679013000 172.16.136.129 172.16.136.1 TCP 52 B0-52138 [FIN, ACK] Seq=452 Ack=324
300 609634608, 344347000 172.16.136.1 172.16.136.129 TCP 52 52138-80 [ACK] Seq=324 Ack=453 Win=1
301 20.761722000 172.16.136.129 172.16.136.1 TCP 52 BO-52139 [FIN, ACK] Seq=505 Ack=308
302 -1931345972, 395708000 172.16.136.1 172.16.136.129 TCP 52 52139-80 [ACK] Seq=308 Ack=506 Win=1
; 172.16.136.1

Time 172.16.136.129 Comment

-895706969.7566 | ;5 SYN Seq =10

-1439969339.488 | ., ., < SYN, ACK . Seq =0 Ack = 1

15.671376000 . 503 Seq=1Ack =1

15.672063000 o =z seq=1Ack =1

1228372207.3916 | o, - Loy seq = 1 Ack = 524

15.672711000 (52138)" o) Seq = 1 Ack = 324

15.672725000 (52138)F 50y Seq = 324 Ack = 452

-895706969.7774 | (o555 ——2YN_») Sea=0

15.747286000 f o, oo 50) iseq -0 Ack - 1

714245694.35575° ., .0 e iseq - lAck—1

378319958.96827 | oy, 10, ESH ACK . Seq = L Ack — 1

1580695018.4600 = AGKEE e seq = 1 Ack = 308

-459410977.0383 PoH ACK seq =1 Ack = 308

15.754902000 paisn—— A Seq = 308 Ack = 505

20.679013000 (sa13ayeEINACK o Seq = 452 Ack = 324

609634608.34434 .., .. a0y Seq = 324 Ack = 453

20.761722000 (52139)" “(50) Seq = 505 Ack = 308

-1931345972.395

(52139) (£:10]

Seq = 308 Ack = 506

How sequence numbers are generated
and managed

You must be wondering who assigns sequence number to packets and how. The
device that initiates connection uses Initial Sequence Numbers (ISN) that are
generated by the host's operating system. It can be any random number that has
no significance with respect to the data. The sequence number we see in the
packet one is zero is a relative referencing technique used by Wireshark.

Starting from packet 1, where seq=0 (the relative sequence number in real is
704809601), which is received by the server and in return replies with its own seq=0
and ack=1 for the client's seq=0. At the end of this three-way handshake, the client
replies with seq=1 and ack=1 without any further increments as no data is being
transferred during the process.

Then, by the fourth packet, the client sends a cet request with seq=1 and ack=1
where the data payload length equals 323 (refer to the following screenshot),
which the server receives and acknowledges with seq=1 and ack=324. Did you see
what just happened? The server replied by adding a total data payload length

into ack to denote that the data was successfully received:
P Frame 285: 375 bytes on wire (3000 bits), 375 bytes captured (3000 bits) on interface ©
P Raw packet data
PP Internet Protocol Version 4, Src: 172.16.136.1 (172.16.136.1), Dst: 172.16.136.129 (172.16.136.129)
~ Transmission Control Protocol, Src Port: 52138 (52138), Dst Port: 80 (80), Seq: 1, Ack: 1, Len: 323
Source Port: 52138 (52138)
Destination Port: 80 (80)
[Stream index: 7]
[TCP Segment Len: 323]
Sequence number: 1 (relative sequence number)
[Next sequence number: 324 (relative sequence number)]

RST (reset) packets

Often, there will be situations such as the server daemon is not
available/running, the server is not able to process your request due to overload,
you are restricted to interact with the server, or the port you are trying to connect
to is not ready/open for connections. The rst packet basically denotes the abrupt
rejection of a connection request.

In our scenario, the server daemon is not running and the client is trying to
communicate; as a result, it receives rst packets in return for every svn request
sent. The client tries visiting the web page just once, but Wireshark captures
more than one svv and rst packet because every browser performs a different
number of attempts over a non-responding or a closed socket at a preconfigured
interval. Hence, in our case, I am using the Apple Safari browser, which made
three attempts to connect in a span of 3-4 minutes. Refer to the following
screenshot, which illustrates the packets captured in the process:

77 -1440231980.381381000 172.16.136.1 172.16.136. 129 TCP 64 55792-80 [SYN] Seq=0 Win=65535 L

8 13.744839000 172.16.136 . ‘ 40 80-55792 ACK] Seq=1 Ack=1
79 13,745349000 172.16.136.1 172.16,136.129 TCP 64 55793-80 [SYN] Seq=0 Win=65535 1
13,745481000 172.16.136 172.16.136. TCP 40 80-55793 [RST, ACK] Seq=1 Ack=1

.682014000 172.16.136. 40 BO-55794 ACK] Seg=1 Ack=1

o @ [172.16.136.129 o * L fat A A

Safari Can’t Connect to the Server

e Safari ¥ tey t
Se oala ca connect 10 e

Unusual TCP traffic

Lost connection or unsuccessful connection attempt scenarios are the most
common forms of unusual TCP traffic. You might also observe several other
scenarios, such as high latencies due to long-distance communications. To make
the analysis convenient and easy to troubleshoot, use the time column by sorting
it to figure out large time gaps between the packets at the top of the list pane.

Another example can be where a malicious device is running a port scan on your
network and your firewall responds with rst packets to avoid such
reconnaissance attacks, or it might also be possible that the port closed. Refer to
the following screenshot, where I've tried scanning a node over network using
nmap, and it seems quite visible (due to a lot of packets generated from one source

destined for random port numbers), and hence is easy to track:

17 42.896242000 172.16.136.129 172.16.136.1 ;m= 44 52604993 [SYN] Seg=1
18 -1440527712.212734000 172.16.136.1 172.16.136.129 40 993-52604 [RST, ACK]

20 42.896542000
szanfass 2‘{458&&1&6 17z

e e oS LR b
.136.129

172.16,136,.129 40 21-52604 [RST, H' h] =
172.16,136.1 TCP 44 52604-113 [SYN] Seg=1
172.16.136.129 40 113-52604 [RST, AI K1
172.16.136,1 44 52604-554 [SYN] Seg=1
172.16.136.129 C 40 554-52604 [RST, ACK]
172.16,136.1 TCP 44 52604143 [SYN] Seg=1
172.:16.136..129 CP 40 143-52604 [RST, ACK]
17216136, 1 TGE 44 52&8&4111 tstm]_: Seq=1
172. lb 136.129 [RST, ACK]
g 109, 4617 136 : (E'S'ﬁﬂifE Seq=1
Ja 42, 80}'384000 1]’2.1&3 136.129 m "56 ‘?“60—1 [RST, ACK]
31 -1440529409, 461758000 1?2 1’5 13’5 129 172.16,136.1 TG 44 526048888 [SYN] Seg=
2 172.16.136.129 40 B8888-52604 [RST, ACK]
172.16,136.1 TCP 44 52604-3389 [SYN] Seg=
172.16.136.:129 40 3389-52604 [RST, ACK]

2E an AnaTadano ATAa aEe aDe aAan EE LY P Y =rol Aa chaeaas A3 Tewml Cam_an

£
[=

Frame 19: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) on interface O

Raw packet data

Internet Protocol VWersion 4, Src: 172.16.136.129 (172.16.136.129), Dst: 172.16.136.1 (172.16.136.1)

Transmission Control Protocol, Src Port: 52604 (52604}, Dst Port: 21 (21), Seq: 1024978624, Len: O
Source Port: 52604 (52604)

Observe rrame 19, where the port scan initiated sents a syn packet in order to check
whether the port is open or closed. As a result, port 21 (rrp) was closed; hence the
server sent an rst packet. There can be various scenarios other than the one
discussed previously. If you hold a strong basic working knowledge of TCP and
IP, then it would be quite easy for you to point out unusual forms of traffic.

The User Datagram Protocol

As defined in RFC 768, a UDP is a connectionless protocol, which is great for
transmitting real-time data between hosts and is often termed as an unreliable
form of communication. The reason is, UDP doesn't care about the delivery of
packets, and any lost packets are not recovered because the sender is never
informed about the dropped or discarded packets. However, many protocols such
as DNS, TFTP, SIP, and so on. rely only on this.

The protocols that use UDP as a transport mechanism should rely upon other
techniques to ensure data delivery and error-checking. A point to note is that
UDP provides faster transmission of packets as it does not perform three-way
handshake or graceful termination as observed in the TCP. UDP is referred to as
a transaction-oriented protocol and not a message-oriented protocike a Tol 1CP.

The UDP header

The size of a usual UDP header is 8 bytes; the data that is added with the header
can be theoretically 65,535 (practically 65,507) bytes long. A UDP header is
quite small when compared to a TCP header; it has just four common fields:
Source Port, Destination Port, Packet Length, and Checksum. Refer to the UDP
header shown here:

Source Port Destination Port
Packet Length Checksum 8 bytes
Application Data

e Source port: Port number used by the sending side to receive any replies if
needed. Most of the time, in a TCP and UDP, the port number chosen to be
the part of the socket is ephemeral.

¢ Destination port: Port number used by the receiving side, where all data is
transmitted to.

e Packet length: Specifies the length of the packet, starting from the header to
the end of the data; the minimum length you will observe will be 8 bytes,
that is the length of the UDP header.

e Checksum: Data integrity ensures that what is sent from the sender side is
the same as what receiver got. Sometimes, while working with a UDP, you
will see that the checksum value is o in the packet received. This means that
the checksum is not required to be validated.

How it works

Let's analyze protocols such as DHCP, DNS, and TFTP, which use UDP as a
delivery protocol.

I have configured a default gateway at 192.168.1.1 and a client at 192.168.1.106.
Wireshark running between them will capture the UDP transactions. The
following is a reference architecture diagram:

Default Gateway IP: Client IP 192.168.1.106

192.168.1.1

The DHCP

The protocol that manages IP addresses assigned to nodes and makes them
network communication compatible is the Dynamic Host Configuration
Protocol (DHCP). It is an automated way of assigning and managing IP
addresses to requesting devices.

To generate DHCP packets from a client machine assigned with an IP address, I
will try to release the current IP. Refer to the following screenshot:

- - p— : .‘I
> Frame 2: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface G
P Ethernet II, Src: Apple_b9:53:ec (d8:bb:2c:b9:53:ec), Dst: Zte_07:73:6c (dB:5b:a8:07:73:6¢c)
[

= User Datagram Protocol, Src Port: 68 (68), Dst Port: 67 (67) ljij
Source Port: 68 (68)
Destination Port: 67 (67)
Length: 308 | 4
P Checksum: 0x¥re= [validation disabled]
[Stream index: 0]

In the list pane, we can see a DHCP release packet that was sent explicitly by the
client (I used the dnciient -v -r command on the Linux Terminal to release the IP
address).

The DHCP server port number is 67 and the DHCP client port number is es by
default. There is a fourth field that I have highlighted, the packet length field,
which specifies the length of the packet, starting from the first byte until the end
of data in the packet. However, out of 308 bytes, 8 bytes show the length of the
UDP header and the remaining 300 bytes represent the application data.

The TFTP

The Trivial File Transfer Protocol (TFTP) is a lightweight version of the FTP
that is used to transfer files between devices. Unlike the FTP protocol, TFTP
does not ask users for any credentials. TFTP uses UDP as a transport
mechanism.

Most commonly, TFTP is used in LAN environments and, when dealing with
manageable devices such as switches and routers, network administrators use
TFTP servers to take back up of configuration files and to update the firmware.

TFTP server is running at IP 192.168.1.106 and a TFTP client at IP 192.168.1.104.
There is a text file abc.txt stored on the TFTP server, which the TFTP client will
download. Refer to the following diagram:

TFTP Server: 192.168.1.106 TFTP Client: 192.168.1.104

The traffic generated between two hosts is successfully captured and the packets
corresponding to it are shown in the following screenshot

Filter:‘tftp jExpression... Clear App Save

No. |Time Source |Destinati0n |Pr0t0(0I|Length‘Inf0
59 15, 986825000 192.168. 1. 106 192.168.1.104 TFTP 75 Option Acknowledgement, tsize
60 15,989415000 192.168. 1. 104 192.168.1. 106 TFTP 46 Acknowledgement, Block: ©
61 15.989907000 192.168.1.106 192.168.1. 104 TFTP 49 Data Packet, Block: 1 (last)
62 15.992283000 192,168, 1, 104 192.168.1, 106 TFTP 46 Acknowledgement, Block: 1

[

P Ethernet II, Src: LiteonTe_fa:5e:b4 (20:68:9d:fa:5e:b4), Dst: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
P Internet Protocol Version 4, Src: 192.168.1.104 (192.168.1.104), Dst: 192.168.1. 106 (192.168.1,106)
< User Datagram Protocol, Src Port: 51118 (51118), Dst Port: 69 (69)
Source Port: 51118 (51118)
Destination Port: 69 (69)
Length: 55
P Checksum: ©xc621 [validation disabled]
[Stream index: 5]
< Trivial File Transfer Protocol
[Source File: abc.txtl] 3
Opcode: Read Request (
Source File: abc.txt
Type: octet
P Option: blksize\@00 = 512\000
P Option: timeout\068 = 10\000
P Option: tsize\000 = 0\000

Now, let's see what each pointer signifies:

1.

2.

Depicts transfer of the packets is initiated as soon as the client requests the
abc.txt file. The request frame can be seen in the list pane.

As discussed, a TFTP uses a UDP for a transport mechanism. The related
details for the request are shown in the details pane, which states that the
request was initiated from an ephemeral port number from the client
destined to port e9 on the server (s9 is a default port to the TFTP protocol).
The request was specific to the anc.txt file that is also present in the details
pane in the TFTP protocol section.

Some applications use a UDP as a transport protocol and have their own built-in
feature to ensure delivery. You must be wondering about the acknowledgment
packets that are shared between the two hosts. As we discussed, a UDP is an
unreliable form of communication, so why are we seeing acks in a UDP? The
reason is that the TFTP server we are requesting has a built-in reliability feature.

Unusual UDP traffic

The following are a few traffic patterns that may be found suspicious in some
environments.

Scenario 1: In a scenario where the UDP service is not running/available, what
will the traffic look like then? Refer to the following screenshot:

Filter: |tftp v | Expression... Clear / Save
No. |Time |Source |Destinati0n |Pr0t0c0I|Length|Inf0
9 3.109903000 192, 168.1. 106 192.168.1. 104 TFTP 61 Error Code, Code: File not found,

The client requested an invalid resource that the server couldn't locate and hence
returned with an error code and the summary message rile not found (seen in the
list pane).

Scenario 2: Sometimes, it is possible that the server daemon may not be running
and the client may request a certain resource. In such cases, the client would
receive the tcup destination unreachable error with the error code s. Refer to the

following
screenshot:
Filter:|tftp v |Expression... Clear App Save
No. |Time Source |Destinati0n |Pr0t0c0I|Length|Inf0
5 6.170384000 192, 168.1. 104 192, 168.1. 186 TFTP 89 Read Request, File: abc.txt, Transfer type

P Frame 6: 117 bytes on wire (936 bits), 117 bytes captured (936 bits) on interface 0
P Ethernet IT, Src: Apple_b9:53:ec (d8:bb:2c:b9:53:ec), Dst: LiteonTe_fa:5e:b4 (20:68:9d:fa:5e:h4)
P Internet Protocol Version 4, Src: 192.168.1.106 (192.168.1.106), Dst: 192.168.1.104 (192.168.1.104)
= Internet Control Message Protocol
Type: 3 (Destination unreachable{751

Code: 3 (Port unreachable)
Checksum: 0x81l68 [correct]
[Internet Protocol Version 4, Src: 192.168.1.104 (192.168.1.104), Dsi; 192.168.1.106 (192.168.1.106)
~ User Datagram Protocol, Src Port: 51183 (51183), Dst Port: 69 (sg}i 3‘
Source Port: 51183 (51183)
Destination Port: 69 (69)
Length: 55
P Checksum: Oxc5e® [validation disabled]
[Stream index: 1]
<~ Trivial File Transfer Protocol
l5ource File: abc. Txt]
Opcode: Read Request (1)
Source File: abc.txt
Type: octet
P Option: blksize\000 = 512\000
P Option: timeout\008 = 104000
P Option: tsize\00O0 = 04000

Let's discuss what each pointer signifies in more detail:

1. The server returned with an 1cvp destination unreachable message when the
TFTP server daemon was not functional

2. The client received an error code of type 3

3. The request was sent to port 9, which was currently nonfunctional

4. The requested resource shown under the TFTP protocol section

Scenario 3: Unusual DNS requests are also often seen when a client initiates a
request to look for name servers associated with an address. It would look like
the one shown in the following screenshot:

No. |Time |Source ‘Destination ‘Pr0t0c0I|Length|Inf0

1 0.000000000 192.168.1. 106 192.168.1.1 DNS ESB Standard guery OxB8a40 PTR ©.0.0.8. in-addr.arpa

P Frame 2: 80 bytes on wire (640 bits), BO bytes captured (640 bits) on interface 8
P Ethernet II, Src: Zte_07:73:6c (d0:5b:a8:07:73:6c), Dst: Apple_b9:53:ec (dB:bb:2c:b9:53:ec)
I Internet Protocol Version 4, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.186 (192.168.1.106)

b

~ Domain Name System (response) E
[Request In: 1]

[Time: ©.804784000 seconds]

Transaction ID: 0x8a40

Flags: 0x8183 Standard query response, No such namel?l
Questions: 1

Answer RRs: @

Authority RRs: ©

Additional RRs: @

P Queries

-

Now we will see what each pointer signifies:

1. As seen in the list pane, the client at 192.168.1.106 initiated a request to look
for the address s.0.0.0 and received a response in rrame 2 No such Name

2. The request was sent to the default gateway that holds the DNS cache

3. The gateway responded with a no such name error

There can be multiple scenarios where you will see unusual traffic related to
UDP. Based on your usual network activity, it is advisable to create a traffic
pattern to identify anomalies in DNS, DHCP, TFTP, and so on. UDP protocols.

9 Learn about malicious DNS traffic to protect your digital infrastructure.

Summary

TCP is a reliable form of communication that facilitates three-way handshakes
that and a teardown process ensures the connection is reliable and interactive.

A TCP header is 20 bytes long and consists of various fields such as source and
destination port, seq and ack numbers, offset, window size, flag bits, checksum,
and options.

The seq and ack numbers are used by TCP-based communications to keep track of
data sent across.

A UDP is a connectionless protocol that is a nonreliable means of
communication over IP, where the lost and discarded packets are never
recovered. A UDP does provide

faster transmission and easier creation of sessions.

A UDP header is 8 bytes long and has very few fields, such as source and
destination port, packet length, and checksum. Common protocols such as
DHCP, TFTP, DNS, and RTP mostly use a UDP as a transport mechanism.

Network Security Packet Analysis

Wireshark is an efficient utility packed with an advanced set of features that
assist security professionals in performing passive analysis of network traffic to
identify and point out malicious packets and anomalies.

This chapter will guide you through how to use Wireshark to analyze security
issues, such as analyzing malware traffic and footprinting attempts. We will
cover the following topics:

e Analyzing port scanning, footprinting, and attack/exploitation network
traffic

Dissecting malicious ARP traffic

Analyzing brute force attacks

Inspecting malicious traffic

Creating display and capture filter signatures for malicious traffic

Using real-life scenarios simulated in a virtual network infrastructure, we will
capture and understand malicious traffic patterns and replicate attacks such as
information gathering and exploitation attempts. We will start from information
gathering activity followed by an exploitation through a malicious .exe file. Then
we will move on to understanding ARP poisoning traffic commonly used for
performing man-in-the-middle (MiTM) attacks.

Information gathering

The probability and success factor of every attack depends on information
gained through passive and active scanning of the network. Footprinting and
reconnaissance are synonyms for the term information gathering.

The following diagram depicts the virtual/physical infrastructure we will be
using for our analysis and for replicating the attacks:

Mobile @ Access Point KALI LINUX
Devices @

QN =
WIN 7 ((‘S
[]

‘ SNIFFER §

The access point is located at 192.168.1.1 and it allocates the IP address to
connected devices using DHCP; the attacking box (Kali) is configured with a
manual IP address 192.168.1.106.

PING sweep

Let's begin with our first scenario, where an attacker is trying to perform a ping
sweep attack over the subnet his machine is a part of (assumption: The attacker
is an internal employee). Refer to the following screenshot, which displays
displays the traffic captured as a result of running a bash script (ping sweep
scan); the script pings each IP, starting from 192.168.1.100 t0 192.168.1.116:

No.

|Time

| Source

| Protocol‘ Lengthl Info

1 0.000000000
2 0.004128000
3 0.008476000
4 0,012705000
5 0.023785000
6 0.027774000
7 0.031652000
8 0.0835462000
9 0.040423000
10 0.047374000
11 0.122601000
12 0.124975%000
13 0.125118000

15 0.131304000
16 0.438404000
17 0.528177000

Apple_b9:53:ec
Apple_b9:53:ec
Apple_b9:53:ec
Apple_b9:53:ec
192.168.1.106
192.168.1.104
Apple_b9:53:ec
192.168,1.106
192.168.1.106
192,168, 1. 106

LiteonTe_fa:5e:b4Broadcast

Apple_b9:53:ec
192.168.1.100

192,168, 1.101
Apple_b9:53:ec
Zte_07:73:6¢

| Destination
Broadcast ARP
Broadcast ARP
Broadcast ARP
Broadcast ARP
192.168.1.105 ICMP
192,168.1.106 ICMP
Broadcast ARP
192.168.1.102 ICMP
192.168.1.101 ICMP
192.168.1.100 ICMP
ARP
LiteonTe_fa:5e:b4 ARP
192.168.1.106 ICMP
192.168. 1, 106 ICMP
Zte_07:73:6¢c ARP
Apple_b9:53:ec ARP
Ping sweep

42 who has 192.
42 who has 192.
42 who has 192.
42 who has 192.
98 Echo (ping)
98 Echo (ping)
42 who has 192.
98 Echo (ping)
98 Echo (ping)
98 Echo (ping)
42 who has 192.

168.1.1107 Tell 192.168.1,106
168.1.109?7 Tell 192.168.1.106
168.1.1087 Tell 192.168.1,106
168.1.107? Tell 192.168.1.106
request 1d=0x11a8, seq=1/256, ttl=64
reply id=0x11a3, seq=1/256, ttl=64
168.1.103? Tell 192.168.1.106
request 1d=0x1199, seq=1/256, ttl=64
request 1d=0x1194, seq=1/256, ttl=64
request 1d=0x118f, seq=1/256, ttl=64
168.1.1067 Tell 192.168.1.105

42 192.168.1.106 is at dB:bb:2c:b9:53:ec

98 Eche (ping)

98 Echo (ping)
42 who has 192.
42 192.168.1.1

reply id=0x118f, seq=1/256, ttl=64

reply 1d=0x1194, seq=1/256, ttl=64
168.1.1? Tell 192.168.1.106
is at d0:5b:aB:07:73:6¢

Starting from packets 1-4, ARP requests are observed because of the ICMP ping
command issued on Kali and, as it is fresh network, configuration devices would
need to build their ARP cache table for internal LAN communication. In packet
5, the ping request is sent to 192.168.1.105, and the reply for it is received in packet
14, which means the device is available. A similar pattern of traffic is captured
and observed for the other IPs in the DHCP range. Due to frequent ARP and
ICMP packets observed for a series of IPs one after another, we can conclude
that it is a port scanning activity on the LAN network.

Half-open scan (SYN)

Now let's scan a specific device in the range of IP addresses and target the
machine running at IP 192.168.1.105. The primary way to gather information
pertaining to a specific device would be a port scan in order to check for any
open services that target device offers. By services, I mean HTTP daemons, mail
server daemons, FTP server, SMB, and so on.

You might be wondering what a half-open scan is. Look at the process of a TCP
three-way handshake we discussed in the previous chapter, where the client
initiates the connection by sending a svn packet and if the server is available
client receives the svn, ack packet, and in return, the client sends an ack packet to
the server for completing the handshake process.

Now, what would happen if the ack packet sent in the last step of the TCP
handshake is never sent to the server? The server will wait for a period of time
before terminating the handshake process, and the connection to the specific
TCP service would never be completed. That's why this type of scan is called a
half-open scan.

I have executed a half-open scan from the Kali box at IP 192.168.1.106 to target the
Win7 box at IP 192.168.1.105 using Nmap with -sS switch. Nmap is an open
source port scanning tool available for most platforms and can be downloaded
for free from http://nmap.org. The traffic generated because of the syn scan we
executed is captured and shown in the following screenshot (use display filters
for viewing packets pertaining to a specific host as follows):

http://nmap.org

Filter: |ip.addr==192.168.1.105 jExpression... Clear ~pply Save

No. Time Source Destination Protocol | Length| Info
13 §.312790080 192, 168. 1. 106 192.168.1. 185 TCP 58 3480653 [SYN] Seq=1408496563 Win=1024 Len=0 MS5=1460

19 9.31375%000 192.168,1, 106 192.168.1.105 58 34806-80 [SYN] Seq=1408496563 Win=1024 Len=0 MSS=1460

Half—on scan
The key points/patterns to note in the above listed packets are as follows:

e There are numerous svn packets generated from IP 192.168.1.106 destined for
IP 192.168.1.105 over random ports within a very little amount of time. It is
highly unlikely that an internal machine will initiate multiple connection
instances within such short time frame (look at the time column).

¢ In the packets starting from 13 to 22, a svn request is being sent so
frequently over random and well-known port numbers within milliseconds.

e Also, the host at IP 192.168.1.106 Nnever sent back a ack packet in response to
syn, ack received.

OS fingerprinting

Being aware of the operating system running on the target takes the information
gathering process to the next level. If the make and version of operating system
running is known to the attacker, it gives an extra edge in terms of exploitation
through targeting specific vulnerabilities.

How do you think identifying the remote machine's OS works? I will tell you the
secret. Every OS has a different way of implementing the TCP stack. So, a
packet when received from the remote machine will have certain fields in it,
such as TTL, fragment offset, and window size. By comparing the values in the
packet with the database, tools are able to predict the OS with greater accuracy.
For example, if you try to ping a Windows machine, the TTL value returned
would be 128, and if you ping a Linux machine, the TTL value would be 64
most of the time. Simple, isn't it?

Using the nmap command nmap -0 192.168.1.109,192.168.1.104, let us fingerprint a
machine's OS for IP 192.168.1.109 and 192.168.1.104 and capture the generated
traffic.

We won't just rely on nmap's output to confirm the OS; we will also try to dissect
packets from Wireshark for more clarity. Refer to the following screenshots to
compare the outputs:

Fth:|ip‘ar\dr==192‘168.1.104 j[xpmssm... Clear Save Filter |iprsrt==192,lﬁﬁrlrlﬁ9 jf\w"e“iﬂﬂr Clear Save
No. |Time Bl [pestination |rotocol | Length|info No. |Time Souree | Destination | rotocol|Length| Info
o 4
e 10TaL LangTn: 44
Identification: Bx48c6 (18630) Identification: 0x045¢ (1116)
b Flags: 0x02 (Don"t Fragment) b Flags: 0x00

Fragment offset: © Fragment offset: @
Time te Vive: 64 Tiee to live: 123
7 T)

ol: TCP (6}

checksum: Ox6dct [correct] checksum: Gxh248 [correc £l
b 192.168.1.104 (192.163.1.104) So1 : 192.168.1.109 (192.168.1.109)
Destination: 102.168.1.106 [192.168.1.106) Destination: 192.168.1.106 (192.168.1.108)
(Source GealP; Unknown] [Source GeoIP: Unknown]
[Dastination GeoI?: Unknown] [Destination GealP: Uaknown]
= Transmission Control Protocal, Src Port: 3689 (3689), Dst Port: 36142 (36142), Seq: 2282552026, Ack: 2031158175, Len: [~ TransaiE Control Protocol, Src Port: 135 (1351, Dst Port: 62841 (62841), Seq: 4083218279, Ack: 4123706

135 [135)
t: 62841 (62841)
25)

Saurce Port: 3689 (3589) Pt
Destination Port: 36142 (36142)
[Strean index: 1007)

en: 0]
en mher: 4083218279
Acknowledgment number: 4123706089
Header Length: 24 bytes
P ... 0000 DOO1 0010 = Flags: Dx012 (SYN, ACK)
size value: 64240

mher: 2282552026
nusker: 2031158175
Length: 44 bytes
DGO 0081 0016 = Flags: 03812 (SYN, ACK)

Winds
i< d ize:; 4240]
b ch £ [validation disabled]

§ bytes), Maximm segment size
No-Gperation (WP), Window scale, Mo-Operation (NOF), No-Operation (NOP), b Mazas it i

segre
b [SEQ/ACK analysis)

Filter: [ip.addr==192.168.1.104 | expression... Clear save Filter: [ip.src==192.168.1.109 = |Expression... Clear save
Source IU('sllnauurl ‘ Plolotol‘ Length | Info

No. |Time Source rDESlllldllﬂl'l ll'mmml‘ Lenglh‘lnfu Na. |‘|‘lma

e LengTn: a3
ication: 0x48¢6 (18630) fication; 0x045¢ (1116
%02 (Don"t Fragment]

Fragnent offset: §

Time te Vive: 64

Pratocel: TCP (6}

I Header checksum: fu6def [correct]

Source: 192.168.1,104 (192.169.1, 104)

Destination: 102.168.1.106 [192.168.1.106)

(Source GaalP: Unknawn]
on GeolP: Unknown]

Control Protocal, Src Port: 3689 (3689), Dst Port: 36142 (36142), Seq: 2282552026, Ack: 2031158175, Len:

1.109 (192.168.1.109)
192.168.1.106 {192_168.1.106)
TP Unknown]
on GealP: Uaknown]
Control Protocol, Src Port: 135 (135, Dst Port: 67841 (62841), Seq: 40BIZ18279, Ack: 4123706
135 (135)
Port: 62841 (62841)
25)

& 3689 (3689)

n Port: 36142 (36142)
dex: 10071

[TCP Segment Len: @] g
Sequence numher: 2282552026

40
edgrent number: 4123706089

Acknowledgment nusber: 2031153175 i Length: 24 bytes
Header Length: dd bytes o 00 D001 D010 = Flags: Bx012 (SYN, ACK)
006 0001 0018 = Flags: 0x012 (SYN, ACK) i size value: 64248
size value: 65535 i win 4
lated window size: 655351 b ch %7£ T o disabled]
b checksum: 0xBce7 [validation disabled] Urgent pointer: @
Urgent pointer: § = Options: [4 bytes), Maximum segment size
= Options: (24 bytes), Maximm seqrent size, No-Operation (NOP), Window scale, No-Operation (NOP), Wo-Operation (NOP), b vaximim segrent size: 1466 bytes
b b TSEQ/ACK analysis]

Check the highlighted TTL field value, which is equal to 4 for a Linux box and
128 for a Windows box. Also look at the maximum segment size value at the
bottom where the value for a Linux box is 1460 and 1446 for a Windows box.

Tools such as nmap store all these baseline values, which are then compared
with scan results internally to identify the remote OS. A few key points to note to
identify such malicious traffic are as follows:

e Traffic generated from the scans targeting to identify remote OS would be
similar to the svn scan (half-open) traffic, where the incomplete TCP
handshakes and 1cwe request/replies were observed.

e Also, if a lot of rst or rsT, ack packets are sent from a critical server to a
specific host in a network, then it is something worth investigating further.

ARP poisoning

Whenever any device intends to communicate with another device, the
requesting device sends a broadcast to the whole subnet. Then, the device to
which the IP address belongs replies with its MAC address using a unicast
packet. Through this approach, devices in local area network communicate with
each other. A MAC address (physical address) table stores MAC address with its
corresponding port number/IP address.

Use the arp -a command to populate the ARP table entries on your machine. The
same command on a majority of platforms.

The following are some details pertaining to the local network we will be using
for understating:

Device IP address MAC address
Router (default gateway) 192.168.1.1 D0:5B:A8:07:73:6C
Apple (victim) 192.168.1.103 D8:BB:2C:B9:53:EC
Windows server (victim) 192.168.1.109 00:0C:29:B3:CB:B6
Kali Linux (attacker) 192.168.1.106 00:0C:29:5D:A7:F7

For instance, if the Apple machine wishes to communicate with the Windows
machine located at 192.168.1.109, Apple will send a broadcast asking for the
Windows MAC address stating who has 192.168.1.109? Tell 192.168.1.103. Lhen, as

soon as the Windows machine gets to know about the request, the ARP reply
unicast packet stating 192.168.1.109 is at ee:0c:29:83:c8:86 Will be sent.

ARP poisoning is an attack form to poison/infect/corrupt the local ARP cache of
the victim. Refer to the following diagram:

Gateway

Apple Windows |

-v‘;% H > -'m

Traffic being intercepted by Attacker

> <

Kali — (Attacker)

IP forwarding is preconfigured using the command echo '1'/proc/sys/net/ipv4/ip_forward ON a
Kali box to send trdffic back and forth between the Apple and Windows box.

Perform the following steps in order to replicate a MiTM attack in an lab
environment:

1. The following screenshot shows the ARP table entry for both the client and
server, before the attacker poisons the ARP cache for the victim machines:

¢ Command Prompt ! QQL&

:\Documents and Settings\Administrator>arp —a

Interface: 192.168.1.189 ——— Bx1808083
Internet Address Physical Address Type
192.168.1.1083 d8-bhbh—2¢c-h%?-53-ec dynamic
192.168.1.166 BA-0c—-29-5d-a?-f?7 dynamic

:N\Documents and Settings\Administrator>

Anonymous:~ NotFound$ arp -a
? (172.16.136.1) at 0:50:56:¢0:0:1 on vmnetl ifscope permanent [ethernet]
? (172.16.158.1) at 0:50:56:¢0:0:8 on vmnet8 ifscope permanent [ethernet]
? (192.168.1.1) at d@:5b:a8:7:73:6¢ on enl ifscope [ethernet]
7 (192.168.1.100) at f@:c1:f1:63:41:95 on enl ifscope [ethernet]
? (192.168.1.106) at @:c:29:5d:a7:f7 on enl ifscope [ethernet]

Windows server cache ¢ (192.168.1.109) at 8:c:29:b3:cb:b6 on enl ifscope [ethernet]

Apple cache

2. The attacker is using the command-line utility arpspoof to poison the ARP
entries through forged ARP reply packets:

arpspoof -1i etﬁﬁ -t 152 158 1 1nﬂ 192.168.1.
: p reply
reply
p reply 1
reply
reply

eth® -t 192.168.1.
;arp rnplv 192.168.1
Tarp ly 192.168.
: arp reply 192.168.
2: arp re 192.168.
:arp reply .168.
:arp 192
2: arp
038 2, arp |op1y
ARP reply packets sent to Apple device on behalf of the Windows server

3. The traffic generated because of the preceding command looks like the
following:

24 5,016999000 Vmware_Sd:a7:{7 Vmware_b3:ch:h6 ARP 42 192.168.1.103 1s at 00:0c:29:5d:a7:f7

6 4.001992000 Vmware Sd:a7:f7 dg:bb:2c:h9:53:ec ARP 42 192.168.1.109 1s at 00:0c:29:5d:a7:7

4. The packets sent from the Kali box forced the Apple and Windows
machines to update their local ARP cache holding legit MAC addresses
with the attacker's MAC address ooe:oc:29:5p:A7:F7:

¢\ Command Prompt 1 =10 x|

A

C:\Documents and Settings“\Administratorarp -a

Interface: 192.168.1.109 --— Bx108603

Internet Address Physical Address Type
192.168.1.183 B0-Bc—-29-5d—-a7?-f? dynamic
192.168.1.186 B0-Bc—29-5d-a?-£f? dynamic

G:\Documents and Settings“\Administrator>

Anonymous:~ NotFound$ arp -a
(172.16.136.1) at 0:50:56:¢0:0:1 on vmnetl ifscope permanent [ethernet]
(172.16.158.1) at 0:50:56:¢0:0:8 on vmnet8 ifscope permanent [ethernet]
(192.168.1.1) at d@:5b:a8:7:73:6¢c on enl ifscope [ethernet]
(192.168.1.100) at f@:c1:f1:63:41:95 on enl ifscope [ethernet]

7 (192.168.1.106) at @:c:29:5d:a7:f7 on enl ifscope [ethernet]
Poisoned window's cache ? (192.168.1.109) at @:c:29:5d:a7:f7 on enl ifscope [ethernet]

Poisoned Apple's cache

b B B BRELS |

5. Now all the traffic sent between the Apple and Windows boxes will be
forwarded through Kali. For verification purposes, I turned off the
Windows server machine and tried sending ICMP packets from the Apple
box:

Anonymous i~ NotFound$ ping 192.168.1.109

PING 192.168.1.109 (192.168.1.109): 56 data bytes

92 bytes from 192.168.1.106: Redirect Host(New addr: 192.168.1.109)
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

4 5 00 0054 8554 @ 0000 3f 01 7230 192.168.1.103 192.168.1.109

The preceding output ensures that the packets are being forwarded through
192.168.1.106, hence making our ARP poisoning attack a success.

Create static ARP entries in critical machines to protect them from ARP

spoofing attack; refer to the following screenshot for configuring static entries in
a Windows box:
C:\Documents and Settings\Administratorarp -s 192.168.1.183 d8-bb-2c-h?-53-ec

C:\Documents and Settings\Administratorr>arp —a

Interface: 192.168.1.189 —- Bx160003
Internet Address Physical Address Type
192.168.1.183 d8-hh-2c-h?-53-ec static

Adding a static entry to local ARP cache

Analysing brute force attacks

You must be aware of the popularity of brute force attacks. The chances of
success are not very high, but also it is not impossible due to the lack of complex
passwords configured in corporate machines. Brute force attack is a way to
guess login passwords configured in devices using a tool that automates
password guessing process.

To analyze malicious traffic of such nature, I will attempt to perform brute force
over a preconfigured FTP service. FTP is used to transfer files efficiently with
the assurance of integrity and confirmed delivery of the data in modern and
critical network infrastructures.

For testing and our analysis purposes, I have configured one FTP server at
192.168.1.108 over @ Windows 7 machine and the attacker is at IP 192.168.1.106 OvVer
a Kali machine.

Let's replicate and analyze the attack and normal FTP traffic pattern. Perform the
following steps if you want to replicate it, but for educational purposes only:

1. Configure the FTP client and the FTP server using whatever platform suits
your needs best and make sure the link between the FTP server and the
client is working.

2. Now, first, we will try log in to the FTP server using a legitimate user and
will record the traffic. Later, we will use the Follow TCP stream option in
Wireshark to view the traffic details in easy-to-understand plain text format.

3. Refer to the following screenshot where I initiated the connection between
from FTP the client. I then supplied the wrong credentials in the first
attempt, and then used the correct ones in the second attempt:

[NON] Charit — root@kali: ~ — ssh — 80x25

root@kali:~# nc -nv 192.168.1.108 21

(UNKNOWN) [192.168.1.108]1 21 (ftp) open

220-FileZilla Server version 0.9.32 beta

220-written by Tim Kosse (Tim.Kosse@gmx.de)

220 Please visit http://sourceforge.net/projects/filezilla/

user charit

331 Password required for charit

pass abc

530 Login or password incorrect!

user charit

331 Password required for charit

pass charit

230 Logged on

help

214-The following commands are recognized:
USER PASS QUIT CwD PWD PORT PASV TYPE
LIST REST Cbup RETR STOR SIZE DELE RMD
MKD RNFR RNTO ABOR SYST NOOP APPE NLST
MDTM XPWD XCUP XMKD XRMD NOP EPSV EPRT
AUTH ADAT PBSZ PROT FEAT MODE OPTS HELP
ALLO MLST MLSD SITE P@SW STRU CLNT MFMT

214 Have a nice day.

quit

221 Goodbye

4. After I successfully logged in, I issued the ne1p command to view a list of
commands available followed by a quit to terminate the connection.

5. Wireshark captured the traffic between the FTP client and server; let's use
the follow TCP stream option (right-click in list pane | follow | TCP Stream)
to see the details:

Stream Content

220-FileZilla Server version 0.9.32 beta
220-written by Tim Kosse (Tim.Kosse@gmx.de)
220 Please visit http://sourceforge.net/projects/filezilla/
user charit

331 Password required for charit

pass abc

530 Login or password incorrect!

user charit

331 Password required for charit

pass charit

230 Logged on

help

214-The following commands are recognized:
USER PASS QUIT CwD PWD PORT PASV TYPE
LIST REST CDUP RETR STOR SIZE DELE RMD
MKD RNFR RNTO ABOR SYST NOOP APPE NLST
MDTM XPWD XCUuP XMKD XRMD NOP EPSV EPRT

AUTH ADAT PBSZ PROT FEAT MODE OPTS HELP
ALLO MLST MLSD SITE P@sw STRU CLNT MFMT
214 Have a nice day.
quit
321 Goodbye

FTP assembled stream

6. Now, as we have analyzed the normal traffic patterns, let's see what would
malicious FTP packets (such as the brute force attack attempts) would look
like. I am THc-hydra to perform a brute force attack using a basic dictionary
file.

7. Issue the hydra -1 <username> -P <password file> ftp://<you target's IP address>
command. Refer to the following screenshot:

:## hydra -1 charit -P pass.txt ftp://192.168.1.103
Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only

Hydra (http://www.thc.org/thc-hydra) starting at 2015-09-12 18:16:00
[DATA] 11 tasks, 1 server, 11 login tries (1:1/p:11), ~1 try per task
[DATA] attacking service ftp on port 21

(I (M) host: ICENIGENIMEGE ‘1ogin: ENEEE password: EEREE
1 of 1 target successfully completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2015-09-12 18:16:04

8. The traffic generated was captured and, instead of displaying all the traffic,
I have used a display filter ftp.request.command==pass in order to view only
packets pertaining to the FTP password command. The following
screenshot shows what display filter I used to query malicious repetitive

packets.

Filter: |ftp.request.command == "PASS" v | Expression... Clear Save

No. ‘Time ‘ Source ‘ Destination ‘ ProtocollLengthllnfo
60 1.169458000 192.168.1.106 192.168.1.103 FTP 76 Request: PASS 007
61 1.169645000 192.168.1.106 192.168.1.103 FTP 76 Request: PASS mno
62 1.169830000 192.168. 1. 106 192.168. 1,103 FTP 79 Request: PASS charit
63 1.170013000 192.168.1.106 192.168.1.103 FTP 77 Request: PASS root
128 3,500600000 192.168.1.106 192.168.1.103 FTP 76 Request: PASS5 123
131 3.501315000 192.168.1.106 192.168. 1,103 FTP 76 Request: PASS efg
132 3.501529000 192.168.1.106 192.168. 1.103 FTP 76 Request: PASS abc
133 3.502078000 192.168.1.106 192.168.1.103 ETP 78 Request: PASS admin
134 3.502479000 192.168.1. 106 192.168.1.103 FTP 78 Request: PASS chris
136 3.503548000 192.168.1.106 192.168.1.103 FTP 76 Request: PASS mno

FTP Brute Force attack traffic pattern

9. Itis easily identifiable that the preceding traffic is malicious due to the FTP
pass command issued by a single IP over a very short period (refer to the
time column).

To identify such malicious or sensitive traffic, create a different coloring scheme
(discussed in chapter 3, Analysing Transport Layer Protocols TCP/UDP). Refer
to the following screenshot:

Filter
List is processed in order until match is found
Name String

Coloring scheme for malicious traffic

Using a display filter and colorzing traffic option, you can analyze such
malicious traffic in a network infrastructure.

Inspecting malicious traffic
(malware)

Malware is one of the most common forms of client-side attacks in any network.
The outcome of malware infections can be very damaging, ranging from denial
of service attacks to remote code execution. Critical infrastructure industries
such as Oil and Gas, Energy, Transport, and Manufacturing are one of the
favorite targets for malware due to a lack of security controls and general
awareness in place. Refer to the following screenshot, where we will try to
replicate a malware-based infection in a lab:

1. Client visits legitimate — IP:192.168.1.106

Client Compromised

website

IP:192.168.1.107

Malware location

and C&C center
IP:192.168.1.100

Malware is capable of performing tasks once installed on the victim's machine,
such as information disclosure, executing commands, and/or corrupting systems,
even if the best security solutions are installed in the infrastructure.

Follow these steps if you want to replicate the scenario in your own virtual lab:

¢ You require three machines connected to the same LAN. Make sure they
are able to ping to each other, to ensure connectivity.

e On the IP address 192.168.1.106 Stays a legitimate website, which the
client at IP 192.168.1.107 usually visits. However, this time, the client is not
aware of the infection that causes redirection to another web server
(assumption: the web server is compromised and taken over by the

attacker). Refer to the following screenshot of the legitimate server:

®

® ® 192.168.1.106 —

& (& 192.168.1.106 o7

Charit's Apache Web Server

Legitimate website

¢ To simulate the redirection, I have configured my Apache server running on
192.168.1.106 t0 redirect HTTP requests to IP 192.168.1.100 and download the
efg.exe from there.

e When client visits the website running at 192.16s.1.10s, it gets redirected to a
new web server, which directly asks the client to run a file named efg.exe.
Refer to the following screenshot:

File Download - Security Warning x|

Do you want to run or save this file?

=== Mame: efg.exe
[Type: Application, 1.25 MB

From: 192.168.1.100

Bun Save

. While files fram the Internet can be useful, this file type can
b potentially harm vour computer. If you do not trust the source, do not
un or save this software. What's the risk?

Client gets redirected to IP 192.168.1.100 and is asked to run the application.

e The publisher of the application is not verified, so the client operating
system is not able to verify it. This results in an unknown publisher error.
Refer to the following screenshot:

Internet Explorer - Security Warning B il

The publisher could not be verified. Are you sure you want to run this
software?

Mame: efg.exe

Publisher: Unknown Publisher

should only run software from publishers you trust, How can I decide what

@ This file does not have a valid digital signature that verifies its publisher, You
software to run?

Unknown publisher error

¢ Once the client hits Run, the malware will be executed, thus creating a
connection back to the command and control center (attacker).

e We have a captured the traffic while the attack was in process. Let's take a
look at it. Instead of showing just the traffic, I assembled the TCP stream
first between the client and the legitimate server.

e To understand the way our malware works, we need to look into the packet

details. Refer to the following screenshot, which shows the assembled TCP
stream:

| NoN | X! Follow TCP Stream (tcp.stream eq 0)
Stream Content

|GET / HTTP/1.1

Accept: 1mage/gif, 1image/x-xbitmap, 1image/jpeg, 1image/pjpeg, */*

Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.4322)
Host: 192.168.1.106

Connection: Keep-Alive

HTTP/1.1 301 Moved Permanently

Date: Mon, 14 Sep 2015 10:40:42 GMT

|Server: Apache/2.2.22 (Debian)

lLocation: http://192.168.1.100/efqg.exe
Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 248

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=iso-8859-1

e ey LG e T R S R B T e o o e e e i U S e

T TRBSFCLL 20k

e o e A L = i O o, e e do e tuts sl R G|

B B e Ao e s O S i o7 At e s 1) e) el R e ey |

Entire conversation (846 bytes) v |

"< Find I [l save As | & Print iO ASCIl O EBCDIC O Hex Dump O C Arrays @ Raw

i Help B4 Filter Out This Stream ¥ Close ‘

TCP stream between the client and real (compromised) server

e As is clearly visible, the client visits the web server, and the request is being

forwarded with HTTP redirection to the new address nctp://192.16s.1.100/efg. exe
e After a couple of packets were exchanged between the client and server, the

client received a 200 ok status message, suggesting successful download of
the executable application efg.exe

EE 2R ANO0RATAT 160 1) AN 160 e T ACO LUTTD A a /| TR A
‘ 1430 0, 42000 182, L0t 1 192,100, 1 LU/ il 1438 A1 IF 1 20U UK pOLICATLON/ X Mmsao! :‘_I‘_|.|'I‘

The following screenshot depicts the request sent by the client machine to
download the executable from the new web address:

208 X/ Follow TCP Stream (tcp.stream eq 1)
Stream Content

GET sefg.exe HTTP/1.1 4
Accept: image/gif, 1mage/x-xbitmap, image/jpeg, image/pjpeg, */* m
Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.® (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.4322)
Connection: Keep-Alive

Host: 192.168.1.100

HTTP/1.1 200 OK

Date: Mon, 14 Sep 2015 10:40:40 GMT

Server: Apache/2.2.12 (Win32) DAV/2 mod_ssl/2.2.12 OpenS5L/6.9.8k mod_autoindex_color
PHP/5.3.0 mod_perl/2.0.4 Perl/v5.10.0
Last-Modified: Mon, 14 Sep 2015 10:40:40 GMT
ETag: W/"2a00000000ff0e-142200-51fhb4c11c8780"
Accept-Ranges: bytes

Content-Length: 1319424

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: application/x-msdownload

MZ.

program cannot be run in DOS mode

v

oY =] L
Entire conversation (1309951 bytes) i |

‘. Find | EHSave As | & Print |O ASCIl O EBCDIC O Hex Dump O CArrays @ Raw

i Help ¥ Filter Out This Stream | $¢ Close \

Figure 7.20: Malware signature

The cer request was initiated by the client in search of efg.exe, to which the server
responded with a 200 ok status message. Later, you can see the known malware
signature starting with the characters nz followed by some random character.

A quick Google search reveal that it is an executable file. Wikipedia states 16/32
bit DOS executable files can be identified by the letters vz at the beginning of the
file

in ASCII. Refer to the following screenshot:

DOS [edi
Main articles: DOS MZ execulable and New Executable

16-bit DOS MZ executable
The original DOS executable file format. These can be identified by the letters "MZ" at the beginning of the file in ASCII.

Moving on with our investigation, let's export the efg.exe file. Perform the
following steps to download the file:

1. Go to File | Export Objects | HTTP:

Activities [Wireshark ~

j#1:4 Edit View Go Capture Analyze Statistics Telephony Wireless

Open Ctrl+0 s e =
Open Recent »
Merge...
Import from Hex Dump... ion Protoc
l Close Ctrl+w
6.8.1 TCP
Save Ctrl+s 051 Ep
| Savehs. Ctrl+Shift+S
. 0.0.1 FTP
File Set rB.e.1 TCP
2 6.0 .1 FTP
Export Specified Packets... 0.0.1 Tcp
Export Packet Dissections »0.0.1 FTP
0.08.1 TCP
0.68.1 FTP
. 6.0.1 TCP
Export PDUs to File... 0.0.1 TP
Export SSL Session Keys... 0.0.1 Tce
an FTR
Export Objects TCP
. FTP
Print... Ctrl+P ETP
: TCP
Quit Chrl+Q FTp
461 16.990187883 127.0.0.1 127 FTP
467 16.990215635 127.0.0.1 127 FTP
468 16.990222676 127.0.0.1 127 TCP
499 18.135472767 127.0.0.1 127.8.0.1 ETP

The next screen would look as the following screenshot:

@ @ %/ Wireshark: HTTP object list
Packet num |Hostname |Content Type |Size |Fi|ename]
8 192.168.1.106 text/html 315 bytes /
22 192.168.1.106 text/html 315 bytes /
i Help [save As | [Save All | % cancel I
Exporting HTTP objects

2. Now, select the conversation that states the name of the file along with it
and click on Save As.

3. An OptiOIl is to upload this file to websites such as http://www.virustotal.com,
which will scan the file through multiple antivirus programs. Refer to the
following screenshot:

http://www.virustotal.com

) total

VirusTotal is a free service that analyzes suspicious files and URLs and facilitates
the quick detection of viruses, worms, trojans, and all kinds of malware.

O File @ URL Q Search

efg.exe Choose File

Maximum file size: 128MB

By clicking 'Scan it!', you consent to our Terms of Service and allow VirusTotal to
share this file with the security community. See our Privacy Policy for details.

Uploadingefg.exeto virustotal.com

4. Click Scan and wait for the results:

il total

SHA256: 3e6703d07ef1ee085a498fcBbd7a621942e678af87bfa1e81cd1509416a19bf b

File name: efg.exe

Detection ratio: 31/56 '(0 0

31 out of 56 type of antivirus software detected the executable file as malicious.

5. You can also manually examine the conversation between the infected
client and the command and control center by looking at the nhex dump.
Refer to the following screenshot:

Stream Content

R RO L i & S e SN P e e e e N R S

000A1978 46 69 6¢c 65 54 69 6d 65 54 6f 4c 6f 63 61 6c 46 FileTime TolocalF
000A1988 69 6c 65 54 69 6d 65 00 ec 01 47 65 74 46 69 6¢c ileTime. ..GetFil
000A1998 65 49 6e 66 6f 72 6d 61 74 69 6f 6e 42 79 48 61 eInforma tionByHa
000A19A8 6e 64 6c 65 00 00 8d 03 50 65 65 6b 4e 61 6d 65 ndle.... PeekName
000A19B8 64 50 69 70 65 00 fb ©1 47 65 74 46 75 6c 6¢c 50 dPipe... GetFullP
DOOA19C8 61 74 68 4e 61 6d 65 57 00 00 bf 01 47 65 74 43 athNameWGetC
000A19D8 75 72 72 65 6e 74 44 69 72 65 63 74 6f 72 79 57 urrentDi rectoryW
OOOA19E8 00 00 d4 02 48 65 61 70 53 69 7a 65 00 00 53 04Heap Size..S.
000AL9F8 53 65 74 45 6e 64 4f 66 46 69 6c 65 00 00 73 01 SetEndOf File..s.
000ALAO8 49 6d 70 65 72 73 6f 6e 61 74 65 4c 6f 67 67 65 Imperson atelogge
000A1A18 64 4f 6e 55 73 65 72 00 1f 00 41 64 6a 75 73 74 dOnUser. ..Adjust
000A1A28 54 6f 6b 65 6e 50 72 69 76 69 6c 65 67 65 73 00 TokenPri vileges.
000A1A38 96 01 4c 6f 6f 6b 75 70 50 72 69 76 69 6¢c 65 67 ..Lookup Privileg
000A1A48 65 56 61 6c 75 65 41 00 00 00 00 00 00 00 00 00 eValueA.
O00ALAS8 600 00 00 00 0O 00 0O OO 00 00 0O 0O 00 00 00 00 e

Hexdump in TCP stream dialog

It seems that the attacker machine is issuing some command to gather
information regarding the victim machine. The highlighted content on the right-
hand side of the window states Stl‘il’lgS such as cet File Information, Get full PC name,
Get Current directory, Adjust token Privileges, and so on.

Familiarity with such traffic patterns is critical, and it is advisable to set up filters
capture filters in Wireshark to perform passive analysis to identify malicious
traffic. For sure, IDS/IPS systems in your environment would be able to detect it
automatically but in critical infrastructure networks (Oil and Gas, Energy, and so
on), it is highly unlikely to have such security solutions deployed. In those
scenarios, Wireshark is your best buddy and, most importantly, it comes for
free!!

Summary

Use Wireshark to keep your network secure by defending against common forms
of infiltration attempts. Analyzing the packets from a security perspective will
give you a new insight into how to deal with malicious users.

Activities such as port scanning, footprinting, and various active information
gathering attempts are the basis of attacking methodologies that can be taken
advantage of to bypass your security infrastructure. Create filters and signatures
to identify malicious traffic patterns.

Guessing passwords to gain unauthorized access is called a brute force attack.
Through Wireshark, you can filter and identify such malicious forms of traffic.

Wireshark can help you in analyzing malware behavior, and using the behavior
analyzed, you would be able to create the necessary signatures for your IDS/IPS
security solutions.

The next chapter will enable network professionals to perform wireless packet
analysis and teach them how to decrypt and read traffic from the air.

Analyzing Traffic in Thin Air

Most devices today are installed with wireless capabilities and it is critical to
understand the structure and pattern of wireless traffic within your network. This
chapter will assist in understanding the methodology and steps involved in
performing wireless packet analysis.

The following are the topics we will cover in this chapter:

Understanding IEEE 802.11

Modes in wireless communication

Capturing wireless traffic

Analyzing normal and unusual traffic patterns
Decrypting encrypted wireless traffic

Wireless network traffic analysis is similar to wired network analysis; the
objective of the topics discussed here is to learn about wireless technologies and
protocol strengths and weaknesses, along with suspicious wireless traffic.

Understanding IEEE 802.11

At the Institute of Electrical and Electronics Engineers (IEEE), several
groups of technical professionals as a committee are working on projects, and
one of these is 802, which is responsible for developing Local Area Networks
(LAN) standards. Specifically, 802.11 contains WLAN standards.

There are a couple of 802.11 standards, for an outmost coverage of standards we
will discuss the multiple of them such as 802.11b, 802.11a, 802.11g, and
802.11n:

802.11: Supports a network bandwidth of 1-2 Mbps. This is

the reason why many 802.11-compatible devices have become obsolete.
802.11b: This specification uses a signaling frequency of 2.4 Ghz like the
802.11 standard. Technically, a maximum of 11 Mbit transmission rate can
be achieved over a 2.4 Ghz band using b specification.

The 802.11b band is divided into 14 overlapping channels, where every
channel has 22 Mhz widths. In one instance, there can be a maximum of
three non-overlapping channels operating at the same time. This space
separation is necessary and required to let the channels operate
individually.

Most appliances, such as microwave, cordless phones, and so on. work
over a 2.4 Ghz spectrum, which may cause significant interference and
congestion in 802.11b WLAN packets transmission.

802.11a: This is based on Orthogonal Frequency Division Multiplexing
(OFDM) that was released in 1999 and supports a maximum transmission
rate up to 54 Mbps 5 Ghz spectrums. This specification was developed as a
second standard to 802.11 standards. It is commonly used in business
environments; because of its high cost, the a specification is not best suited
for home environments. There is no channel overlap that happens in
802.11a. A higher regulated frequency helps in preventing the interferences
caused by devices that work on 2.4 Ghz spectrums.

802.11g: Released in 2002, this specification combines the best features of

802.11a and 802.11b. It uses a signaling frequency of 2.4 Ghz, and
bandwidth up to 54 Mbps. It also supports backward compatibility, which
means that all 802.11g access points will support network adapters using
802.11b and vice versa.

802.11n: To improve further on the range and the transfer rates, wireless
specification n was introduced based on technology Multiple-Input
Multiple-output (MIMO). The final version of this specification, released
in 2007, stated a transfer rate up to 600 Mbps. It can be configured with 2.4
or 5 Ghz; it can use both frequencies at the same time, thus enabling
backward compatibility with network adapters. A maximum of four
antennas can be used with the MIMO technology.

Various modes in wireless
communications

Wireless networks uses the Carrier Sense Multiple Access and Collision
Avoidance (CSMA/CA) protocol to manage the stations sending data, where
every host that wants to send data is supposed to listen to the channel first, that
is, if it is free, then the host can go ahead and send the packet; if not, then the
host has to wait for its turn. This is because the same medium is being shared by
every host, thus avoiding collisions.

The 802.11 architecture is composed of several components such as a station
(STA), a wireless Access Point (AP), Basic Service Set (BSS), Extended
Service Set (ESS), Independent Basic service set (IBSS), and Distribution
System (DS).

There are four common modes of association between the STA and the AP,
which are as follows:

¢ Infrastructure/managed mode: A wireless network where a wireless
client establishes a connection with an access point to access data and
network resources. An AP is defined with a Service Set Identifier (SSID),
which is the access point's name used for identification purposes within a
certain range (for security reasons, sometimes, broadcasting an SSID can be
disabled, which will prevent your wireless network from being discovered).
For example, when we scan for available nearby Wi-Fi networks around,
we will be shown multiple network names to choose from. Another useful
term to know is Base Service Set Identifier (BSSID), that is, the access
point's MAC address.

By default, every access point is supposed to broadcast the SSID and
transmit a beacon frame 10 times in a second to let clients know that AP
is ready to accept connections. Refer to the following diagram:

Client Wireless Access
Point

e Ad Hoc mode: In Ad Hoc mode, a peer-to-peer network is formed where
two clients connect to each other. The packets sent and received by the
wireless clients are not relayed to the access point. Refer to the following

diagram:

Wireless Client
Wireless Client 2

_ -5

e Master mode: When the NIC (network interface card) adapter is capable to
act as an access point for clients through usage of special drivers then it
becomes a master node. Modern operating systems and hardware are
enabled with such a feature, where the host device can act as an access
point by sharing its wired connection. Refer to the following diagram:

A -

Wireless Client Wireless Client
working as AP

e Monitor mode: This mode enables a network adapter to listen to wireless
network traffic; when the monitor mode is activated, your device will stop
transmitting and receiving any packets and it will just sniff live traffic in a
passive way. In short, wireshark running with an interface enabled with
monitor mode can sniff traffic without being a part of the network. This
mode is often termed as the Radio Frequency Monitor Mode (RFMON).
Refer to the following diagram:

<€

Wireless Client

Wireless Access
Point

Wiraless Client with
monitor mode enabled

Usual and unusual wireless traffic

In 2003, Wi-Fi Protected Access (WPA) was launched by Wi-Fi Alliance as a
measure to make WLAN communication stronger than the previous protocol,
WEDP. The key size used by WEP is 40/104 bits, whereas WPA uses a key size of
256 bits and also facilitates integrity checks. In WEP, the traditional CRC was
implemented, but WPA introduced, the popular Michael 64-bit Message
integrity check (MIC).

WPA uses the RC4 algorithm to build a session based on dynamic encryption
keys (you would never end up using the same key pair between two hosts). Refer
to the following illustration of how the cipher text is formed that is transmitted
over the medium:

IV+KEY =M RC4 |=— [0]|0]|1]|1| \\
@ Kev stream
Seed Plain Text m—— i{1] Cli a
=
[==1

Cipher Text 1 . _1. 1i 1

The process starts by appending the IV and the dynamically generated 256-bit
key. Followed by encryption using RC4 algorithm, the resulting encrypted key
stream is then appended with the data and voila! We have the final cipher text.

Refer to the following diagram depicting the authentication process in WPA:

! | [Four Way Handshake] Q

>
PSK Farmed | PSK Formed |

'™ Calculate PTK
Client nonee v
AP nan
Ce +MIC 4 b
Calculate PTK *RSC . GTi
{and GTK if
required)

Install Kevs

Install Kewvs

The following is a summary of steps involved for the preceding diagram:

1. First, the Master Key Exchange (PSK) takes place, followed by
transmission of a nonce value to STA (initiation of connection).

2. The STA will use the AP's nonce value and its own nonce to calculate the
Pairwise Transient Key (PTK) to send along with the Pre-Shared Key
(PSK) established in the previous step. The resulting value will be sent to
the AP to calculate the PTK and append the MIC with the Receive
Sequence Counter (RSC).

3. Now, the STA will first verify the MIC in the message to ensure the
integrity and then install the keys.

4. A response will be sent to the AP regarding the status. If the status shows
success, the AP then installs the same keys (dynamic keys) that will be used
in further communication.

The following screenshot depicts the four authentication packets involved in a
successful WPA Enterprise handshake process:

Filter: [eapol

No. Time Source

Destination

¥ |Expression... Clear Apply Save

Protocol| Length|Info

257 8.730625000

Zte _07:73:6¢

Apple_b9:53:ec

EAPOL 173 Key (Message 1

259 8,733391000 Apple_b9:53:ec Zte_07:73:6¢ EAPOL 197 Key (Message 2 of 4)
265 8.736180000 Zte_07:73:6¢ Apple_b9:53:ec EAPOL 203 Key (Message 3 of 4)
267 8.737817000 Apple_b9:53:ec Zte_07:73:6¢C EAPOL 173 Key (Message 2 of 4)

b Frame 257: 173 bytes on wire (1384 bits), 173 bytes captured (1384 bits) on interface ©

b Radiotap Header v@, Length 36

b IEEE B02.11 QoS Data, Flags:F.C

b

¥ 802.1X Authentication

Version: B802.1X-2001 (1)

Type: Key (3)

Length: 95

Key Descriptor Type: EAPOL WPA Key (254)
Key Information: ©0x008a

Key Length: 16

Replay Counter: ©

WPA Key Nonce:
Key IV: 000000 0
WPA Key RSC: 0000000000000000

WPA Key ID: 0000000000000000

WPA Key MIC:
WPA Key Data Length: ©

~

S5ec313cec318318d18dfedffdffboo47fb8ad7518aeas5152. . .

Getting into more detail, let's observe the flags involved in all of the preceding
four authentication packets in the handshake process:

v 802.1X Authentication < 802.1X Authentication
Version: 8602,1X-2001 (1) Version: 802, 1X-2001 (1)
Type: Key (3) Packet 1 Type: Key (3) Packet 2
Length: 95 Length: 119
Key Descriptor Type: EAPOL WPA Key (254) Key Descriptor Type: EAPOL WPA Key (254)
= Key Information: 0x008a v Key Information: 0x010a
010 = Key Descriptor Version: AES .010 = Key Descriptor Version: AES
R | = Key Type: Pairwise Key «o. 1... = Key Type: Pairwise Key
.00 ,..,. = Key Index: 0 .-80 = Key Index: @
.0.. = Install: Not set .. .0.. = Install: Not set
cose Loy vuu. = Key ACK: Set <ve 0... ..., = Key ACK: Not set
..® = Key MIC: Not set weel i vl = Key MIC: Set
B e woweo= Secure: 'Not set ++0. ..u. ... = Secure: Not set
0.. ... +... =Error: Not set .0.. ... +... = Error: Not set
coi By wies v e Requests Not:set vve Bis wies oo = Request: Not set
@ ... «vur ... = Encrypted Key Data: Not sed ..® = Encrypted Key Data: Not set
,..0 = SMK Message: Not set .0 =SMK Message: Not set
= 802.1X Authentication < 802.1X Authentication
Version: 8602.1X-2001 (1) Version: B802.1X-2001 (1)
Type: Key (3) Packet 3 Type: Key (3) Packet 4
Length: 125 Length: 95
Key Descriptor Type: EAPOL WPA Key (254) Key Descriptor Type: EAPOL WPA Key (254)
v Key Information: Ox0lca < Key Information: Ox010a
.010 = Key Descriptor Version: AES .. .010 = Key Descriptor Version: AES
vvv. 1... = Key Type: Pairwise Key .. 1... = Key Type: Pairwise Key
.00 .,.. = Key Index: 0 .00 | = Key Index: ©
.1.. = Install: Set .0, = Install: Not set
ven lese wvee = Key ACK: Set var Bouy ooy = Key ACK: Not set
1 = Key MIC: Set verdl v viee =Kay MIC: Sat
..0. = Secure: Not set vaBe ooy e = Sacure: Not set
... = Error: Not set ve «8.0 vius 4. = Error: Not set
voe BL = Request: Not set vense B4y wivi 4ie = Request: Not set
...@ = Encrypted Key Data: Not set vea® oivs wuus wuw. = Encrypted Key Data: Not set
.0 ... o0 o... = S5MK Message: Not set B oive sivs 4... = SMK Message: Not set

Here is the description of the preceding authentication packets:

e Packet 1: The pairwise master key (pre-shared key) and the acx bit are set
(because of the association request/response exchanged earlier), which is
sent by the AP to the STA to initiate the connection along with the nonce
value chosen randomly.

e Packet 2: The pairwise master key and the mic flag is set, which the STA
sent to the AP to acknowledge the request, along with its own nonce value
appended to the AP's nonce and the wic for integrity check.

e Packet 3: The pairwise master key, install, key ack, and mic flags are set,
which AP sent to STA. Next, the STA will fulfill the challenge in order to
get authenticated.

e Packet 4: The pairwise master key and the mic flag are set, which
the STA sends to AP to complete the connection process.

Based on our understanding of a successful authentication process, now let's try
to observe the packet pattern in the case of unsuccessful authentication. The only
difference in this scenario is that the STA is not aware of the pre-shared key.

Refer to the following screenshot:

Filter: Ieapol ;' Expression... Clear ‘ Save
No. ITime

|Source |Destination I.ProtocolJ LengthA| Info

386204000

141 6.393312000 Apple_63:41:95 Zte_07:73:6¢c EAPOL 199 Key of 4)

(Message 2
155 7.392817000 Zte_07:73:6c Apple_63:41:95 EAPOL 173 Key (Message 1 of 4)
157 7.395444000 Apple_63:41:95 Zte_07:73:6¢c EAPOL 199 Key (Message 2 of 4)
169 8.401006000 Zte_07:73:6¢C Apple_63:41:95 EAPOL 173 Key (Message 1 of 4)
171 8.403683000 Apple_63:41:95 Zte_07:73:6¢C EAPOL 199 Key (Message 2 of 4)
182 9.409178000 Zte_07:73:6¢c Apple_63:41:95 EAPOL 173 Key (Message 1 of 4)
184 9.411794000 Apple_63:41:95 Zte_07:73:6¢C EAPOL 199 Key (Message 2 of 4)

€
.

P Frame 132: 173 bytes on wire (1384 bits), 173 bytes captured (1384 bits) on interface ©
b Radiotap Header wv@, Length 36
P IEEE 862.11 QoS Data, Flags:F.C
P
< 802.1X Authentication
Version: 802.1X-2001 (1)
Type: Key (3)
Length: 95
Key Descriptor Type: EAPOL WPA Key (254)
P Key Information: 0x008a
Key Length: 16
Replay Counter: ©
WPA Key Nonce: 8d2896bd4al2509584af2578d43a5e2c0e9b74db592636¢8. . .
Key IV: 00000000000000000000000000000000
WPA Key RSC: 0000000000000000
WPA Key ID: 0000000000000000
WPA Key MIC: 00000000000000000000000000000000
WPA Key Data Length: ©

WPA Failed authentication

The preceding screenshot depicts the chain of packets transmitted between the
STA and AP, due to an incorrect pre-shared key being sent by STA. These
packets may be witnessed in an event of a brute force attack against the AP.

WPA Enterprise

In order to standardize and harden the authentication process and introduce a few
elements of accountability and non-repudiation, WPA offers the configuration of
an external server to validate and authorize STAs. This centralized authentication
and validation unit is termed as a RADIUS/TACACS server. Before the four-
way handshake takes place, the RADIUS server and the access point are
supposed to go through a MSK. Let's have a look at the following diagram:

AP RADIUS

Master Key Exchange
i ___________ ¥ ____.E ____________________)

< PMK

é,‘uiLiFji’/
Way
m

Wi~

Post the exchange of the master key, the pairwise master key is created and
passed on to the AP, which will further complete the four-way handshake
process.

As a part of graceful termination, the wireless stations use disassociation packets
in order to notify the access point that the STA is now going offline and the
resources allocated can be released. The following screenshot lists the packets
observed during the disassociation phase:

Destination Protocol| Length|Info

318 15.825217000 Apple_b9:53:ec Zte_07:73:6c 802.11 66 Disassociate, SN
319 15.825244000 Apple_bO:53:ecTRR) 802.11 50 Acknowledgement,

«E&

D Frame 318: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface ©
P Radiotap Header vO, Length 36

v IEEE 802.11 Disassociate, Flags: C

Type/Subtype: Disassociate (0x000a)

Frame Control Field: 0xa000

.000 0001 0011 1010 = Duration: 314 microseconds
Receiver address: Zte_07:73:6c (d0:5b:a8:07:73:6c)
Destination address: Zte_07:73:6c (d0:5b:a8:07:73:6¢)
Transmitter address: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
Source address: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)

BSS Id: Zte_07:73:6c (do:5b:a8:07:73:6c)

Fragment number: ©

Sequence number: 1979

P Frame check sequence: 0x989e716b [correct]

-

v
v Fixed parameters (2 bytes)
Reason code: Disassociated because sending STA is leaving (or has left) BSS (0x0008)

The disassociation packet

The wireless stations use the deauthentication frames to notify the access point that
the STA is leaving. As we can observe in the preceding screenshot, first, the STA
sends a disassociation frame and receives ack (31s,319) from AP.

There can be several scenarios where an wireless client would send a
disassociation frame. Refer to the following screenshot to understand this:

Destination Protocol|Length|Info
467 21.434381000 Apple_b9:53:ec Zte_07:73:6cC 66 Deauthentication,
468 21.434398000 Apple_b9:53:ec (RA) 802,11 50 Acknowledgement, |

<@

D Frame 467: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface ©
D Radiotap Header v@, Length 36
v IEEE 802.11 Deauthentication, Flags: C
Type/Subtype: Deauthentication (0x000c)
D Frame Control Field: 0xc000
.000 0001 0011 1010 = Duration: 314 microseconds
Receiver address: Zte_07:73:6c (do0:5b:a8:07:73:6c)
Destination address: Zte_07:73:6c (do:5b:a8:07:73:6c)
Transmitter address: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
Source address: Apple_b9:53:ec (d8:bb:2c:b9:53:ec)
BSS Id: Zte_07:73:6c (d0:5b:a8:07:73:6c)
Fragment number: ©
Sequence number: 1986

P Frame check sequence: 0x9171b952 [correct]
-

Vv Fixed parameters (2 bytes)
Reason code: Previous authentication no longer valid (0x0002) .

The deauthentication packet

In the preceding list of packets, first, the STA sends a deauthentication frame to the
access point, which gets acknowledged in the next packets (467,468).

Decrypting wireless network traffic

Wireshark also facilitates decryption of wireless traffic through embedding a
pre-shared key under the 802.11 protocol section. The following screenshot
depicts normal wireless traffic being sniffed from a nearby access point:

No. |Time |Source | Destination | Protocol| Length| Info
2 0.000004 Tp-LinkT_2a:84:4e MS-NLB-PhysServer-10_alg802, 11 145 QoS Data, SN=197, FN=0, Flags=.p....F.
3 0.101892 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2641, FN=0, Flags=...P...T
4 4,038400 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 111 QoS Data, SN=345, FN=0, Flags=.p..... T
54.039428 Tp-LinkT_2a:84:4e MS-NLB-PhysServer-10_al802. 11 139 QoS Data, SN=198, FN=0, Flags=.p....F.
6 4.141316 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802,11 26 QoS Null function (No data), SN=2642, FN=0, Flags=...P...T
7 5.038400 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 111 QoS Data, SN=346, FN=0, Flags=.p..... T
8 5.039430 Tp-LinkT_2a:84:4e MS-NLB-PhysServer-10_al802, 11 139 QoS Data, SN=199, FN=0, Flags=.p....F.
9 5.141316 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2643, FN=0, Flags=...P...T
10 6.039426 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 111 QoS Data, SN=347, FN=0, Flags=.p.....T
11 6.040452 Tp-LinkT_2a:84:4e MS-NLB-PhysServer-10_al802.11 139 QoS Data, SN=200, FN=0, Flags=.p....F.
12 6.142340 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2644, FN=0, Flags=...P...T
13 8.039426 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 111 QoS Data, SN=348, FN=0, Flags=.p..... T
14 8.040964 Tp-LinkT_2a:84:4e MS-NLB-PhysServer-10_alg02.11 139 QoS Data, SN=201, FN=0, Flags=.p....F.
15 8.143876 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2645, FN=0, Flags=...P...T
16 12.042496 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802,11 111 QoS Data, SN=349, FN=0, Flags=.p.....T

WLAN traffic before decryption

In order to decrypt the preceding listed packets, we need to configure the IEEE
802.11 section as follows:

1. Go to Edit | Preferences, expand the Protocol section, select IEEE 802.11
and configure it as follows:

Wireshark - Preferences

HPFEEDS “ ' IEEE 802.11 wireless LAN

HSRP v Reassemble fragmented 802.11 datagrams
HTTP2 Ignore vendor-specific HT elements

1AX2 v| Call subdissector for retransmitted 802.11 frames
ICAP Assume packets have FCS

ICEP v Validate the FCS checksum if possible

ICP Ignore the Protection bit
1ICQ '
* e
IEEE 802.15.4 I Yes - without IV
IEEE 802.1AH) Yes - with IV
IFCP
ILP v Enable decryption
IMAP -
IMF Decryption keys Edit...
INAP
Infiniband SOP
Interlink
IPDC
IPDR/SP
iParf2
IPMI -

0K Cancel Help

2. Click on the Edit button next to Decryption Keys.
3. Click on New and add the WEP/WPA key to enable decryption. After all
the changes have been made, click on OK:

HPFEEDS [«

HSMS ' - .
i WEP and WPA Decryption Keys

HTTP
HTTP2 Key type Key
IAPP
1AX2

B wpa-pwd
ICAP |
ICEP wpa-psk

ICMP 1
ICP

1CQ

IEEE 802.15.4
IEEE 802.1AH
iFCP

ILP

IMAP

IMF

INAP
Infiniband SDP
Interlink

IPDC

IPDR/SP

iPerf2 -
IPMI e SO W)l

] b
5 | oK Cancel

i — L - .

Now you will be shown the decrypted traffic as follows:

No. lTime |Source Destination |ProtocoI|Length|Info

0.000004 3 192.168.0.100 ICMP 145 Destination unreachable (Network unreachable)

3 0,101892 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2641, FN=0, Flags=,..P...T
4 4,038400 192.168.0, 100 192.168.0.1 DNS 111 Standard query Oxeed6 A ctldl.windowsupdate.com

54 139 Destination unreachable (Network unreachable)

6 4.141316 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2642, FN=0, Flags=. T
7 5.038400 192,168,0,100 192.168.0.1 DNS 111 Standard query Oxeed6 A ctldl.windowsupdate,com

85) Destination unreachable (Network unreachable)

9 5.141316 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2643, FN=0, Flags=...P...T
10 6.039426 192.168.0, 100 192.168.0.1 DNS 111 Standard query Oxeed6 A ctldl.windowsupdate.com

1 6.040452 192.168.0 32.168.0 139 Destination unreachable (Network unreachable)
12 6.142340 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802,11 26 QoS Null function (No data), SN=2644, FN=0, Flags=,.
13 8.039426 192,168,0, 100 192.168,0.1 DNS 111 Standard query Oxeed6 A ctldl.windowsupdate.com
040964] 2.168.0 139 Destination unreachable (Network unreachable)

15 B.143876 MS-NLB-PhysServer-10_Tp-LinkT_2a:84:4e 802.11 26 QoS Null function (No data), SN=2645, FN=0, Flags=...P...T
16 12.042496 192,168.6. 100 192.168.0.1 DNS 111 Standard query ©xeed6 A ctldl.windowsupdate.com

WLAN traffic after decryption

Summary

The IEEE 802.11 standard works over radio frequencies for communication
purposes. CSMA/CD facilitates the collision-free environment required for a
high-performance wireless networks.

There are commonly three types of frames observed while doing wireless traffic
analysis: management, control, and data frames. Management frames control the
establishment of the connection, control frames manage the transmission of
packets, and data frames consist of the actual data.

Enterprise authentication protocol (EAP) in LAN becomes EAPOL, which is
used in 802.11 infrastructures (RADIUS/ AAA) for the exchange of master keys.

EAP is used to let the exchange of master keys take place. As defined in RFC
3748, EAP is an authentication framework that supports multiple kinds of
authentication methods, and to execute EAP, you do not require an IP because it
runs over a data-link layer.

Access points broadcast beacon frames that wireless clients listen for. Also,
wireless clients may send a probe request to get connected to the access point,
followed by authentication carried out by the access point or third-party
authentication service.

Using Wireshark, it is possible to decrypt wireless communications by adding
wireless network keys within IEEE 802.11 protocol section.

Mastering the Advanced Features of
Wireshark

In this chapter, we will look under the hood of the advanced options available in
Wireshark and work with a command-line version of packet sniffer. Here, we
will be covering the following topics:

e Analyzing the network using the Statistics menu
e Using TCP Stream

e Using the Protocol Hierarchy Option

¢ Using command-line tools for protocol analysis

With Wireshark, a variety of statistics about the network packets, protocols and
endpoints can be viewed and analyzed. Understanding and awareness of
advanced features such as protocol hierarchy, conversations, endpoints, and so
on, assists in performing tasks pertaining to troubleshooting, optimizing, and
forensics activity through viewing and analyzing network related information
specifics in detail.

The Statistics menu

Wireshark provides various tools that assist in collecting network stats, which
help users in analyzing information ranging from general information to specific
protocol-related information.

Using the Statistics menu

Details with respect to the packets captured, filters applied, marked packets, and
various other stats can be checked in the Statistics menu; refer to the following
screenshot for reference (source: nttp://wireshark.org):

M cdd-httppeap — m] X
File Edit View Go Capture Analyze = Ststistics Telephony Wireless Tools Help
@ Q& Capture File Properties R H
Resolved Addresses ~ | Expression.. +
e Time: Source Protocel Hierarchy ngth Info ’i‘
i 1 8.886868 208.121.1.131 Cenversations 1454 [TCP segment of a reassembled PDU] |
Endpoints

3 8.925738 200.121.1.131 Packet L, 5 1454 [TCP segment of a reassembled PDU]
4 9.025749 172.1 Ackes Lenis 54 [TCP Window Update] [TCP ACKed unseen s.4 [ACK] Seq=1 Ack=11201 Win=63800 Len=0
170 Graph

Service Response Time ¢
.182939

1454 [TCP segment of a reassembled PDU] =
DHCP (BOOTP] Statistics
ONC-RPC Programs 1454 [TCP segment of a reassembled PDU]

W 13
.154162 2diiest 1454 [TCP segment of a reassembled POU]
ANCP
13 8.179996 28@.121.1.131 BAChet » | 1454 [TCP segment of a reassembled PDU]
Collectd hd
Frame 1: 1454 bytes on wire (1163 DNS (11632 bits)
Ethernet II, Src: Vmware_c8:86:81 Flow Graph frware 42:12:13 (889:8c:29:42:12:13)
Internet Protocol Version 4, Src: 10.122
Transmission Control Protocol, Sri HART-IP fort: 8@ (8@), Seq: 1, Ack: 1, Len: 1488
HPFEEDS
HTTP 4
HTTP2
Sametime
TCP Stream Graphs r
UDP Multicast Streams
|Pv4 Statistics L3
IPvG Statistics 4
@s Bc 29 42 12 13 8@ 5@ 56 cB @2 @1 B8 BB 45 B8 s fBam i Mo vouoE ~
@5 ad @1 41 @@ 82 63 @6 d3 98 c8 79 @1 83 ac 1@ e p——
@@ 7a 29 3a BB 58 a7 5c B4 48 e2 e2 ee bf 5@ 18 P LH P
ff ff 77 67 0@ 86 3@ 54 73 57 77 51 74 45 79 4e . BT sWwQEEYN
45 61 33 78 78 74 44 63 51 4f 2f 6b 75 31 41 52 Ea3xptDc Q0/kulAR
52 66 47 59 67 53° 32 41 34 47 59 35 31 56 33 32 RfGYgS2A 4GYS1IV32 v

[4 || Packets: 3083 - Displayed: 3083 (100.0%) Load time: 0:0,100 || Profile: Defauit

http://wireshark.org

Protocol Hierarchy

The Protocol Hierarchy window provides details pertaining to the distribution of
protocols seen in network traffic. Each of the rows represents stats pertaining to
one protocol; refer to the following screenshot:

e0e % Wireshark: Protocol Hierarchy Statistics
Display filter: none
Protocol]% Packets |Packets J% Bytes |Bytes IMbitjs IEnd Packets IEnd Bytes IEnd Mbit/s | -
- 100.00 %
< Ethernet EEEs % 1720 4% 771877 0.000 0 0 0.000
= Internet Protocol Version 4 | 48. 483 1681 [0 % 769855 0.000 0 0 0.000
= Transmission Control Protocol EE63% 1125 .48 % 448453 0.000 651 190306 0.000
Data | 774 % 267|6.95% 105716 0.000 267 105716 0.000
= Secure Sockets Layer l 5.16 % 178 I 8.88% 135024 0.000 171 127524 0.000
Secure Sockets Layer 0.20 % 71049 % 7500 0.000 7 7500 0.000
Malformed Packet 0.44 % 15 0.80 % 12152 0.000 15 12152 0.000
= Hypertext Transfer Protocol 0.41 % 14 0.35 % 5255 0,000 9 2480 0.000
Media Type 0.03 % 1 001% 159 0.000 1 159 0.000 ¥
Line-based text data 0.09 % 3| 0.10% 1501 0.000 3 1501 0.000
eXtensible Markup Language 0,03 % 1/ 0.07 % 1115 0.000 1 1115 0.000
= User Datagram Protocol Piss2% 535 FJ1.03% 319932 0.000 0 0 0.000
Data 029 % 10 0.03 % 460 0.000 10 460 0.000
NetBIOS Name Service 0.09 % 3 002% 276 0.000 3 276 0.000
Domain Name Service \ 3.92 % 135 0.90 % 13741 0.000 135 13741 0.000
QUIC (Quick UDP Internet Connections) [J11.22 % 387[H0.08 % 305455 0.000 387 305455 0.000
Internet Control Message Protocol 0.61 % 21] 0.10 % 1470 0.000 21 1470 0.000
= Internet Protocol Version 6 0.26 % 9 0.05% 762 0.000 0 0 0.000
Transmission Control Protocol 0.09 % 3 0.02% 270 0.000 3 270 0.000

v

IiHelp HK Close ‘

Protocol Hierarchy window

If you want to check the protocol distribution for a specific host, then before you
open the Protocol Hierarchy window, apply a Display filter, for example,
ip.addr==172.20.10.1. Now, when you open the hierarchy window again the filter
will be visible at the top of the Protocol Hierarchy window just below the title

[JoN] \. Wireshark: Protocol Hierarchy Statistics.
Display filter: ip.addr==172.20.10.1

Protocol |% Packets |Packets |% Bytes |Bytes |Mblr/s |End Packets ‘End Bytes |End Mbit/s ‘
=

< Ethernet | 50.0E3 164 K9 % 15531 0.000 0 0 0,000

< Internet Protocol Version 4 ﬁxoo % 164 £9 % 15531 0.000 0] 0.000

~ User Datagram Protocol lﬂu % 145 m7 % 14201 0.000 0 0 0.000

Data | 3.05% 10 1.60% 460 0.000 10 460 0.000

Domain Name Service EHi6% 135 [EER/7 % 13741 0.000 135 13741 0.000

Internet Control Message Protocol | 5.79 % 19| 462 % 1330 0.000 19 1330 0.000

< Raw packet data | 50.0E 164 1 % 13235 0.000 0 0 0.000

< Internet Protocol Version 4 oo % 164 1 % 13235 0.000 0 0 0.000

~ User Datagram Protocol mn % 145 m31 % 12171 0.000 0 0 0.000

Data | 3.05% 10 1.11% 320 0.000 10 320 0.000

Domain Name Service K16 % 135 [EH¥20 % 11851 0.000 135 11851 0.000

Internet Control Message Protocol | 5.79 % 19| 3.70% 1064 0.000 19 1064 0.000

bar; e Xlose |

Protocol Hierarchy window after applying display filter Using the Protocol Hierarchy window, display filters can be generated and
applied too. Just right-click on the protocol you wish to use and then choose the desired option, as shown in the following screenshot:

Selected
Not Selected

Apply as Filter »

Prepare a Filter »

Find Frame » ... and Selected
*

Colorize Procedure ... or Selected

... and not Selected
... or not Selected

The Protocol Hierarchy window will be worth checking in an event where the
malware-related activity needs to be assessed and analyzed.

Conversations

To analyze network communication pertaining to two specific endpoints,
Conversation option can be used (available under Statistics menu). To access it,
click on Statistics | Conversations. The window will list the network layers to
assess at the top, and endpoint addresses (IP or MAC) in rows:

[] @ % Conversations: sample2.pcapng
Ethernet: 3|1 e Channe! |00 |1pva: 29 [ipve: 2 |1k | A e | |scre|Tep: 27| 1ol o |upe: 75 | |wian|
Ethernet Conversations
Address A | Address B |Packets |Bytes |Packets A~B |Bytes A~B |Packets A—B |Bytes A—B
Apple_b9:53:ec Broadcast 3 276 3 276 0
4a:74:6e . ba:d0:64 Broadcast 30 1260 30 1260 0
« & Bl -

Name resolution O Limit to display filter

iiHelp Copy | 1) A~ raph As | K Close

Conversations window For instance, if we need to identify the endpoint which is generating the most traffic in the network, go to the
IPv4 tab and sort the Bytes column in descending order:

[] [] % Conversations: sample2.pcapng
Ethernet: 3| el|ronr 1va: 29 [1pve: 2 |1 [T A [vee | rsve | |Tcp: 27| Ring |upe: 75 |Use [wLAN|
IPv4 Conversations

Address A IAddress B |Packets - | Bytes | Packets A—B | Bytes A—B | Packets A~B | Bytes A—B
172.20.10.7 216.58.220.46 430 256 350 204 27 884 226 228 461
172.20.10.1 172.20.10.7 366 31 160 102 17 970 194 13 19
172.20.10.7 173.194.126.120 364 296 096 144 28 864 220 267 23
54.231.136.106 172.20.10.7 276 220 766 158 212 544 118 8 22
172.20.10.7 216.58.196.99 186 128 678 82 14 340 104 114 33
172.20.10.7 216.58.196.110 130 83634 58 13 692 72 69 94,

Busiest devices In the preceding screenshot, the first row depicts how many packets and bytes have been sent and received by the
endpoints. For creating a display filter through conversation dialog, right-click on a row and then create the desired expression. I chose
the first option, A<->B, which would only display packets associated with Address A and Address B:

Apply as Filter b | Selected
Prepare a Filter 4 Mot Selected A=E
Find Frame k| .. and Selected A~B
Colorize Procedure 13 ... or Selected A — Any
... and not Selected A — Any
... or not Selected A+~ Any
Any B
Any ~ B
Any —+ B

The newly created filter expression will be shown in the Display Filter dialog, as

shown in the following screenshot:
Filter ||p.addr-m1?.143.162.203 && ip.addr--l?z..j Expression... Clear Save

The Conversations dialog assists in collecting and analyzing details in the
granular form associated with specific endpoints, which comes in handy while
troubleshooting and auditing networking infrastructures.

Endpoints

Devices that communicate over a network are referred to as endpoints.
Endpoints in a local area network communicate using a physical address that is
MAC address. In a switched environment, communication takes place using
physical addresses; switches store MAC address table and work on layer 2 of
TCP/IP model.

Let's say, for example, that we are observing the heavy flow of network traffic
from certain endpoints, which is kind of unusual based on our playbook data
(usual traffic pattern). To identify the exact endpoint from which the superfluous
flow of network traffic is generated, the Endpoints dialog comes to the rescue.
To access it, click the Endpoints option under the Statistics menu. The Endpoints
windows look quite like the Conversations windows we observed previously.

By default, the Ethernet tab will be shown (which lists the layer-2 MAC address)
in most cases. Along with the protocol, you must observe a number that states
the number of endpoints captured for that specific protocol. In our case, we are
seeing 3, and the same number of rows are visible in the Main pane.

In the Main pane, many more specific details can be seen for every endpoint,
such

as the total number of packets transferred, total number of bytes transferred, and
total bytes and packets received and transmitted for an individual endpoint:

[] [] \| Endpoints: sample2.pcapng

Ethernet: 3| [FoDi|1pva: 32 [1pve: 3|1 | T a e |rsve |sc e | Tep: a9 |upp: 90| Uk | |
Ethernet Endpoints
Address |P6(kels JBytes | Tx Packets |Tx Bytes ‘ Rx Packets ‘ Rx Bytes |

Apple_b9:53:ec 1690 770617 870 133603 820 637 014
Broadcast 33 1536 0 0 33 1536

Name resolution 0O Limit to display filter
Htelp | “icopy | @biap | X Close |

Endpoints window Now, if you want to analyze other protocols, then simply click on any tab of your choice. I clicked on the IPv4 tab
and sorted the main pane using the Packets column, as shown in the following screenshot.

By just looking at the Endpoints dialog, I can now easily figure out that the most data was transferred from IP 172.20.16.7. This could
be one single IP talking to some server or, more likely, a server talking to multiple machines on our network at a moderate rate:

i

=8 | Endpoints: sample2.pcapng

Ethernet: 3| | 1Pva: 32 |1pv6: 3 |1Px | e A [nee| | |Tcp: 49| |upp: 90|15k |
IPv4 Endpoints

Address |§Packet's' - i Bytes ‘ Tx Packets | Tx Bytes | Rx Packets |Rx Bytes |Latitude | Longitude
172.20.10.7 3404 1518 822 1752 255 718 1652 1263104 -
17.143.162.208 900 229 312 366 172 714 534 56 598 - -
216.58.220.46 430 256 350 226 228 466 204 27 884 -
172.20.10.1 366 31 160 172 17 970 194 13 190 - -
173.194.126.120 364 296 096 220 267 232 144 28 864 - -
54.231.136.106 276 220766 158 212 544 118 8 222 - -
216.58.196.99 186 128678 104 114 338 82 14 340 - -
216.58.196.110 130 83 634 T2 69 942 58 13692 - -
17.178.104.39 114 45 990 52 29 624 62 16 366 - -
216.58.196.97 104 34 162 44 19 058 60 15 104 - -
17.151.236.24 90 28 432 40 20 386 50 8 046 - -
216.58.196.109 80 35 144 36 17 770 44 17 374 - -
216.58.196.98 72 28 854 32 16 536 40 12 318 - -
17.167.194.236 60 14 250 28 10 820 32 3 430 - -
& = = M

4

Name resolution O Limit to display filter

HHelp Copy | @Map |

¥ Close |

Endpoints dialog—IPv4 tab To create a display filter through the Endpoints window, right-click on the row with the most packets
transferred and choose Selected under Apply as Filter, as shown in the following screenshot:

Apply as Filter »

Prepare a Filter
Find Frame
Colorize Procedure

» Not Selected

» ... and Selected

» ... or Selected

... and not Selected
... or not Selected

You see a display filter for the same in the Display Filter dialog above the List
pane, like the one shown here:

Filter: |ip.addr-—-=l?2.2l).10.?

;! Expression... Clear

Save

This facilitates us to quickly analyze traffic for a certain endpoint and hence
increases the speed of analysis for users. Once you click on Clear, you will be
presented with the same Endpoints dialog. At the bottom of the window, you
will see two checkboxes and a few buttons. The purpose of each is listed below:

¢ Name Resolution: Resolves the name of each of the Ethernet
addresses listed in the Ethernet tab. But in some scenarios, it might
affect the performance of the application adversely, for example,
when trying to resolve the unique IP addresses from a huge capture file.

¢ Limit to display filter: Limits the results of the Endpoint window on the
basis of a display filter that is applied through the Wireshark main window.

e Copy: Copies the content of the current Endpoints window tab in a
CSV format (comma-separated values).

e Map: Maps the selected endpoint's geographical location in your browser.

Follow TCP Streams

Wireshark provides the feature of reassembling a stream of plain text protocol
packets into a human-readable format:

e0e X/ Follow TCP Stream (tcp.stream eq 8)
Stream Content

GET /GIAG2.crt HTTP/1.1 a
Host: pki.google.com m
Accept: #/%

Accept-Language: en-us

Connection: keep-alive

Accept-Encoding: gzip, deflate

User-Agent: ocspd/1.0.3

HTTP/1.1 200 0K

Vary: Accept-Encoding

Content-Type: application/x-x509-ca-cert
Last-Modified: Fri, 08 May 2015 18:51:37 GMT
Date: Sat, 25 Jul 2015 11:26:50 GMT

Expires: Sat, 25 Jul 2015 12:26:50 GMT
X-Content-Type-Options: nosniff

Server: sffe

X-XSS-Protection: 1; mode=block

Age: 117

Cache-Control: public, max-age=3600
Alternate-Protocol: 80:quic,p=0
Accept-Ranges: none

Transfer-Encoding: chunked

3F4
B...0.. ccciiaaaivd

Entire conversation a2 bytes)]

JEind | @save as | Gprint [0 ASCI O EBCDIC © Hex Dump © CArrays @ Raw

I Help BFilter Out This Stream ‘ H Close |

Follow TCP Stream window

For instance, assembling an HTTP session will display the GET requests sent
from the client and the responses received from the server. There is specific
color coding that is followed by the request and response messages shown in the
Follow TCP Stream dialog. Client requests are shown in red, and any text in blue
denotes the response received from the server. If the protocol is HTTP, FTP,
Telnet, and so on, then the conversation will be shown in plain text; if a secure
version of the application layer protocol is used, then some content of the request
and response messages will be encrypted.

At the bottom of the Follow TCP stream dialog, a drop-down menu is present
from where content in the Follow TCP stream window can be filtered to view
only content pertaining to either side of the communication. Also, instead of just
viewing the data in RAW format, you can choose between ASCII, EBCDIC, Hex
dump, and C arrays format, as desired.

To view the TCP stream, follow these steps:

1. Open the capture/trace file

2. Apply the Display filter if required
3. Select any packet from the List pane
4. Right-click on the selected packet and click on Follow TCP Stream

Command line-fu

With the default installation of Wireshark, a command-line version of protocol
analyser called Tshark also gets installed. There are a good number of CUI-based
sniffing tools available, including Capinfos, Dumpcap, Editcap, Mergecap,
Rawshark, Reordercap, Text2pcap, and Tshark.

The most common and widely used command-line tool for protocol analysis
purposes is Tshark, which can capture live traffic and analyze saved capture
files. Tshark uses the pcap library to capture and translate the packets. Just like
Wireshark's filtering option are available in Tshark too. Applications like Tshark
prove themselves worthy, with benefits such as low memory requirement, easy
installation, and simple command sets to run the sniffer.

Let's consider a scenario to understand the usage and advantages of command-
line sniffers. Say, for instance, we have an Apache web server and an FTP server
running on a Windows box located at IP 172.16.136.128, and a Macintosh client

running at 172.16.136.1:

e —————

—_— e —

PC 1: Macintosh (172.16.136.1) PC 2: Windows XP
(172.16.136.128)

We will start with the basics and eventually move toward the usage of advanced
features such as filters and usage of a few of the available statistics options.

Let's try the tool with usage of different features it facilitates:

e The first thing to confirm is how many interfaces are available for capturing
packets. Use the following command to check tshark -b:

Anonymous :Desktop NotFound§ tshark -D
. en@ [(Ethernet)
« fw@d (FireWire)
bridged (Thunderbolt Bridge)

« Utund

. pktapd

. enl (Wi=Fi)

. en2 (Thunderbolt 1}
. lo# (Loopback)

Interfaces available

If no interface is specified for capturing network traffic, tshark will choose
the first interface from the list. Interfaces can be chosen by their names and
by the sequence number they appear in.

For our scenario, we will be using pktapoe that will listen to the traffic
between the client and the server. The command to initiate the capture
Process is tshark -i pktape:

Anonymous:Desktop NotFound$ tshark -i pktap®
Capturing on 'pktap@’

In order to generate some traffic between the client and the server, I have
executed the command-line utility cur1 from the client to visit the web page
at IP 172.16.136.128:

Anonymous : Desktop NotFound$ curl http://172.16.136.128

As a result of the preceding command, we will see some activity on the
Tshark console:

Anonymous:Desktop NotFound$ tshark =i pktapd

Capturing on ‘pktapd’
1 2.000008 172.16.136.1 -> 172.16.136.128 TCP 64 51816-88 [SYN] Seq=8 Win=65535 Len=8 HSS=1468 WS
2 =T4A5883619.604183 172.16.136.128 -> 172.16.136.1 TCP 64 BO-51816 [5YN, ACK] Seq=d Ack=1 Win=64240
3 ~733373297. 962554 172.16.136.1 -> 172.16.136.128 TCP 52 51816-88 [ACK] Seqel Ack=1 Win=131744 Len
4 -1B30TE6245.431008 172.16.136.1 > 172.16.136.128 HTTP 138 GET / HTTR/1.1
5 -1B30766245.129806 172.16.136.1 -> 172.16.136.128 WTTP 138 [TCP Retransmission] GET /7 HTTP/1.1
6 -1664501840.066843 172.16.136.128 -> 172.16.136.1 TCP 52 B8-51816 [ACK] Seqel Ack=79 Win=64162 Le
7 =-392509417.306438 172.16.136.128 ~> 172.16.136.1 TCP 52 [TCP Dup ACK G6#1] B8-51816 [ACK] Seqel Ac
B -2027256734.439159 172.16.136.128 -> 172.16.1358.1 HTTP 345 HTTP/1.1 382 Found
8 -179068134.420122 172.16.136.1 -> 172.16.136.128 TCP 52 51816-80 [ACK] Seq=79 Ack=294 Win=131456
18 -2067155579.763355 172.16.136.1 => 172.16.136.128 TCP 52 51816-88 [FIN, ACK] Seqe79 Ack=294 Win=1
11 -1830766248.828112 172.16.136.128 -»> 172.16.136.1 TCP 52 B8-51816 [ACK] Seqe2f4 Ack=82 Winw=B64162
12 -392509283.614170 172.16.136.1 —> 172.16.136.128 TCP 52 [TCP Dup ACK 18#1] 51816-808 [ACK] Seq=80
13 -1830766248. 686849 172.16.136.128 -> 172.16.136.1 TCP 52 B88-51816 [FIN, ACK] Seq=294 Ack=88 Win=6
14 =392569681.317465 172.16.136.1 -> 172.16.136.128 TCP 52 51816-80 [ACK] Seqe8d Ack=295 Win=131456

Packets captured at pktapO
8 If you want to stop the capture process at any point, press Ctrl + C.

e If you wish to save captured network packets to a file, specify the -w switch,
as follows:

Anonymous:Desktop NotFound$ tshark —i pktap® -w http.txt

Capturing on 'pktap@’
11

e As aresult of the preceding command, the raw network data will be stored
in a text file named nttp.txt. Following is the content saved in the text file:

Anonymous:Desktop NotFound$ cat http.txt
TH=+77777777.Mac 05 X 10.10.3, build 140136 (Darwin 14.3.8)4Dumpcap |

D136 (Darwin 14.3.8)" " T7T@@ERTI@@kI?TIRTRTIPRILTRRIRY
T77x" "dAT7T_@RE@T@T}, 7777 IPTL TSI 171 7a77
2RqrITITTIPTIfITeNT

TPTATI AT TOTPET T@@HT TR T YR LPRIF? TR Th

TTTxGET / HTTP/1.1

User-Agent: curl/7.37.1

Host: 172.16.136.128

Accept: =/x

Raw data stored in the text file

e To save the captured data in a readable form, just use the redirection
operator ">>" to a file:

Anonymous:Desktop NotFound$ tshark =i pktapd
Capturing on ‘pktapd’

0.000000 172.16.136.1 -> 172.16.136.128 TCP 64 51816-88 [5YN] Seq=8 Win=65535 Len=@ MS5=1460 WS
~T45883619.664183 172.16.136.128 > 172.16.136.1 TCP 64 BO-51816 [SYN, ACK] Seqe@ Ack=1 Win=64240
=733373297. 062554 172.16.136.1 -> 172.16.136.128 TCP 52 51816-828 [ACK] Seqel Ack=1l Win=131744 Len
~1B30766245.431008 172.16.136.1 -= 172.16.136.128 HTTP 138 GET / HTTP/1.1
~1B30766245.129806 172.16.136.1 -> 172.16.136.128 HTTP 138 [TCP Retransmission] GET / HTTP/1.1
=1664501040. 066843 172.16.136.128 -> 172.16.136.1 TCP 52 B8-51816 [ACK] Seqel Ack=79 Win=64162 Le
=-362505417.306438 172.16.136.128 -> 172.16.136.1 TCP 52 [TCP Dup ACK G6#1] B8-51816 [ACK] Seqel Ac
-202T256734.439159 172.16.136.128 -> 172.16.138.1 HTTP 345 HTTP/ 1.1 382 Found
~179068134, 420122 172.16.136.1 -> 172.16.136.128 TCP 52 51816-80 [ACK] Seq=79 Ack=294 Win=131456
=206T155579. 763355 172.16.136.1 => 172.16.136.128 TCP 52 51816-88 [FIN, ACK] Seq=T79 Ack=294 Win=1
~1836766248.820112 172.16.136.128 -» 172.16.136.1 TCP 52 B80-51816 [ACK] Seqe2i4 Ack=B2 Win=64162
~392509283.614170 172.16.136.1 -> 172.16.136.128 TCP 52 [TCP Dup ACK 18#1) 5181688 [ACK] Seq=80
=1B30766248. 686849 172.16.136.128 > 172.16.136.1 TCP 52 8851816 [FIN, ACK] Seq=294 Ack=88 Win=§
=392569681.317465 172.16.136.1 -> 172.16.136.128 TCP 52 51816-88 [ACK] Seqe=88 Ack=295 Win=131456

B
Cot - - R

P
L)

(e
=

As a result of issuing the preceding command, packets are captured and
redirected to the text file nttp2.txt. Following is the content saved in the text file,
that lists the packets captured between the two hosts 172.16.136.128 and 172.16.136.1
over port so:

Anonymous :Desktop MotFound$ cat http2.txt
1 9.000000 172.16,136.1 => 172.16.136.128 TCP 64 51821-88 [SYN] Seq=8 Win=65535 Len=0 MS5=1468 WS=3
2 -1B307T67469, 040043 172.16.136.128 -> 172.16.136.1 TCP 64 B0-51821 [SYN, ACK] Seq=8 Ack=1 Win=64240
3 -~1830767469. 040009 172.16.136.1 => 172.16.136.128 TCP 52 51821-88 [ACK] Seqel Ackel Win=131744 Len=d
=2016764535. 847514 172.16.136.1 > 172.16.136.128 HTTP 138 GET / HTTP/1.1
~2027256734. 427691 172.16.136.128 -> 172.16.136.1 WTTP 345 HTTP/1.1 302 Found

=~1838767469.037172 172.16.136.1 =>» 172.16.136.128 TCP 52 51821-88 [ACK] Seq=79 Ack=294 Win=131456 L
=1830767469.837084 172.16.136.1 == 172.16.136.128 TCP 52 5182180 [FIN, ACK] Seq=T9 Ack=294 Win=1314
~1035145502, 773838 172.16.136.128 -> 172.16.136.1 TCP 52 88-51821 [ACK] Seq=204 Ack=80 Win=64162 Le
=1830767460.8365949 172.16.136.1 -» 172.16.136.128 TCP 52 [TCP Dup ACK T#1] 51821-88 [ACK] Seq=88 Ac
~1935145592. 773838 172.16.136.128 -> 172.16.136.1 TCP 52 88-51821 [FIN, ACK] Seqe294 Ack=88 Win=G414
=1838767469. 036578 172.16.136.1 -> 172.16.136.128 TCP 52 51821-88 [ACK] Seq=88 Ack=295 Win=131456 Lg

We just learnt the two different ways to save network packets to a file.

e Tshark facilitates three types of filtering options: Capture, Display, and
Read. We have discussed the Capture and Display filters in earlier chapters,
so let's discuss the read filter. The read filter is able to filter traffic from live
as well as save captured files. Through read filters a particular set of
packets can be decoded or written to a file.

e Using the Read filter is a processor-intensive task, and issues like packet
loss could be observed, and capture filters are preferred over read filters.
For the capture filter the -r switch is used; -r is used for the read filter; and -
v is used for the display filter. Let's learn the usage of the capture filter
using -f switch:

8 Usage of a switch is case-sensitive.

Anonymous:Desktop MotFound$ tshar pktapd “port
Capturing on 'pktap@’
1 2.200000 172.16.136.1 -> 172.16.136.128 TCP 64 51852-28 [SYN] Seq=0 W

2 9.000151 172.16.136.128 —= 172.16.136.1 TCP 64 20-51852 [SYN, ACK] Sed
3 -1438261061.117554 172.16.136.1 —> 172.16.136.128 TCP 52 51852-28 [ACK]
4 -565845755.905104 172.16.136,128 -= 172,.16.136.1 FTP-DATA 94 FTP Data:
5 9.330476 172.16.136.1 —> 172.15.136.128 TCP 52 51852-20 [ACK] Seq=l Adl
6 -1438260168.782253 172.16.136.128 -> 172.16.136.1 FTP-DATA 97 FTP Data:
7 =T776735048.749363 172.16.136.1 —> 172.16.136.128 TCP 52 51852-28 [ACK] 4

e Use double quotes around the filter expression, if the desired expression has
space character like shown in preceding screenshot for example
"port<space>20"".

e Now, let's learn the usage of the display filter over a previously saved
capture file nttp.pcap, and filter all HTTP packets originating from the web
server at 1p 172.16.136.128:

Anonymous :Desktop NotFound$ tshark =r http.pcap =Y "ip.srce=172.16.136.128 and http*
31 -2027256734.408549 172.16.136.128 —> 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
42 =202T256734. 408549 172.16.136.128 -> 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
71 -1899318681.567223 172.16.136.128 -> 230.255.255.258 S50F 151 M-SEARCH = HTTR/1.1
76 -16993168681.5972213 172.16.136.128 -» 230.255.255.258 S50P 161 M-SEARCH = HTTP/1.1

B1 -1899318681.597223 172.16.136.128 -> 239.255.255.258 550F 161 M-SEARCH = HTTP/1.1
98 -1859318681.597223 172.16.136.128 -> 239.355.255.258 SS5DP 161 M-SEARCH = HTTP/ 1.1

467 -202T256734. 400549 172.16.136.128 -> 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
619 -2027256734.408549 172.16.136.128 -> 172.16.136.1 HTTP 345 HTTP/1.1 382 Found
653 =-2027256734.408549 172.16.136.128 -> 172.16.136.1 HTTP 345 HTTF/1.1 382 Found
1925 =1B3@772787.988137 172.16.136.128 => 172.16.136.1 HTTP 345 HTTP/1.1 382 Found

Tshark display filter

e In order to collect the HTTP protocol, only statistics from the nttp.pcap file
use the command tshark -r <file-name> -q -z <expression>:

AnonysousiDesktop MotFounds tshark —r hitp.pocep —g -7 hitp,tree

HTTPF/Packet Counter:
Topic / Item o Aversge Hin val Hax val Rate (ms) Percent

Tatal HTTP Packets
HTTP Reguest Packsts
GET
SEARCH
HTTP Response Packets
Ixx: Aedirection
382 Found
1 broken
Ssrver Error
cxi Client Error
Succens
i Imformaticnal
Othar HTTP Packets

L X B N B N N-N-N-

e The -q switch keeps it silent over the standard output (this is generally used
while working with statistics in Wireshark) and the -z switch is used for
activating various statistics options. Both switches are often used in
conjunction.

e If you want to check how many hosts were observed while capturing the
network traffic, use the following command:

Anonymous :Desktop MotFound$ tshark -r http.pcap —q -z hosts
TShark hosts output

&

Host data gathered from http.pcap

172.16.158.1 Anonymous. local
172.16.136.1 Anonymous. local

Tshark is a powerful yet simple command-line sniffer which is similar to tcpdump.
It enables capturing of network packets with ease and less
configuration/installation required.

Summary

The Conversations window lists information pertaining to communication
between two hosts.

The Endpoints dialog lists details pertaining to the devices connected to the
network.

Wireshark Summary is an informational feature, which offers a granular form of
data, filters, and the trace file.

The Protocol Hierarchy window lists information in a tabular format pertaining
to distribution of protocols used by the network endpoints.

Use the Follow TCP Stream option in Wireshark to read the plain text data from
captured packets. There are different viewing options available such as ASCII,
and Hex.

A command-line tool gets installed when you install Wireshark. The most
common tool used is Tshark, which works in a similar way to Wireshark and
tcpdump. It uses the pcap library that is used by other major protocol analyzers.

With Tshark, you can listen to live networks or work with an already saved
capture file.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Wireshark 2

Mastering Wireshark 2
Andrew Crouthamel

ISBN: 978-1-78862-652-1

Understand what network and protocol analysis is and how it can help you
Use Wireshark to capture packets in your network

Filter captured traffic to only show what you need

Explore useful statistic displays to make it easier to diagnose issues
Customize Wireshark to your own specifications

Analyze common network and network application protocols

Nagendra Kumar Nainar, Yogesh Ramdoss,
Yoram Orzacl

Network Analysis
Using Wireshark 2

Cookbook

Network Analysis using Wireshark 2 Cookbook - Second Edition
Nagendra Kumar Nainar, Yogesh Ramdoss, Yoram Orzach

https://www.packtpub.com/networking-and-servers/mastering-wireshark-2
https://www.packtpub.com/networking-and-servers/network-analysis-using-wireshark-2-cookbook-second-edition

ISBN: 978-1-78646-167-4

Configure Wireshark 2 for effective network analysis and troubleshooting
Set up various display and capture filters

Understand networking layers, including IPv4 and IPv6 analysis

Explore performance issues in TCP/IP

Get to know about Wi-Fi testing and how to resolve problems related to
wireless LANs

Get information about network phenomena, events, and errors

e Locate faults in detecting security failures and breaches in networks

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on the
site that you bought it from. If you purchased the book from Amazon, please
leave us an honest review on this book's Amazon page. This is vital so that other
potential readers can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Wireshark 2 Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Installing Wireshark
	Introduction to Wireshark
	Why use Wireshark?
	The installation process
	Troubleshooting common installation errors

	A brief overview of the TCP/IP model
	The layers in the TCP/IP model
	Summary

	Introduction to Wireshark and Packet Analysis
	What is Wireshark?
	How Wireshark works

	An introduction to packet analysis with Wireshark
	How to do packet analysis

	Capturing methodologies
	Hub-based networks
	The switched environment
	ARP poisoning
	Passing through routers
	The Wireshark GUI
	Starting our first capture

	Summary

	Filtering Our Way in Wireshark
	Introducing filters
	Capture filters
	Why use capture filters
	How to use capture filters
	An example capture filter
	Display filters
	Retaining filters for later use

	Searching for packets using the Find dialog
	Colorize traffic

	Create new Wireshark profiles
	Summary

	Analyzing Application Layer Protocols
	Domain Name System (DNS)
	Dissecting a DNS packet
	Dissecting DNS query/response

	File transfer protocol
	Dissecting FTP communication packets

	Hypertext Transfer Protocol (HTTP)
	How request/response works
	Request
	Response

	Simple Mail Transfer Protocol (SMTP)
	Dissecting SMTP communication packets
	Session Initiation Protocol (SIP) and Voice Over Internet Protocol(VOIP)
	Reassembling packets for playback

	Decrypting encrypted traffic (SSL/TLS)

	Summary

	Analyzing the Transport Layer Protocols TCP/UDP
	The transmission control protocol
	Understanding the TCP header and its various flags
	How TCP communicates
	How it works
	How sequence numbers are generated and managed
	RST (reset) packets

	Unusual TCP traffic

	The User Datagram Protocol
	The UDP header
	How it works
	The DHCP
	The TFTP

	Unusual UDP traffic

	Summary

	Network Security Packet Analysis
	Information gathering
	PING sweep
	Half-open scan (SYN)
	OS fingerprinting

	ARP poisoning
	Analysing brute force attacks
	Inspecting malicious traffic (malware)

	Summary

	Analyzing Traffic in Thin Air
	Understanding IEEE 802.11
	Various modes in wireless communications

	Usual and unusual wireless traffic
	WPA Enterprise

	Decrypting wireless network traffic
	Summary

	Mastering the Advanced Features of Wireshark
	The Statistics menu
	Using the Statistics menu
	Protocol Hierarchy

	Conversations
	Endpoints
	Follow TCP Streams
	Command line-fu

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

