James H Baxter, Yoram Orzach,
Charit Mishra

Wireshark Revealed:
Essential Skills for
IT Professionals

Learning Path

Get up and running with Wireshark to analyze your
network effectively

L1 Packt

Wireshark Revealed: Essential Skills
for IT Professionals

Table of Contents

Wireshark Revealed: Essential Skills for IT Professionals
Credits
Preface

What this learning path covers
What you need for this learning path
Who this learning path is for
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
1. Module 1

1. Getting Acquainted with Wireshark
Installing Wireshark
Installing Wireshark on Windows
Installing Wireshark on Mac OS X
Installing Wireshark on Linux/Unix

Performing your first packet capture
Selecting a network interface

Performing a packet capture
Wireshark user interface essentials
Filtering out the noise

Applying a display filter
Saving the packet trace
Summary

2. Networking for Packet Analysts
The OSI model — why it matters

Understanding network protocols
The seven OSI layers
Layer 1 — the physical layer

Layer 2 — the data-link layer
Layer 3 — the network layer

Internet Protocol
Address Resolution Protocol
Layer 4 — the transport layer
User Datagram Protocol
Transmission Control Protocol
Layer 5 — the session layer
Layer 6 — the presentation layer
Layer 7 — the application layer

Encapsulation
IP networks and subnets

Switching and routing packets
Ethernet frames and switches
IP addresses and routers

WAN links

Wireless networking

Summary
3. Capturing All the Right Packets

Picking the best capture point
User location

Server location
Other capture locations
Mid-network captures

Both sides of specialized network devices
Test Access Ports and switch port mirroring
Test Access Port
Switch port mirroring
Capturing packets on high traffic rate links
Capturing interfaces, filters, and options
Selecting the correct network interface
Using capture filters
Configuring capture filters
Capture options
Capturing filenames and locations
Multiple file options
Ring buffer
Stop capture options
Display options

Name resolution options

Verifying a good capture
Saving the bulk capture file
Isolating conversations of interest
Using the Conversations window

The Ethernet tab

The TCP and UDP tabs

The WLAN tab
Wireshark display filters

The Display Filter window

The display filter syntax

Typing in a display filter
Display filters from a Conversations or Endpoints window

Filter Expression Buttons
Using the Expressions window button

Right-click menus on specific packet fields

Following TCP/UDP/SSL streams

Marking and ignoring packets

Saving the filtered traffic

Summary

4. Configuring Wireshark

Working with packet timestamps
How Wireshark saves timestamps
Wireshark time display options

Adding a time column
Conversation versus displayed packet time options

Choosing the best Wireshark time display option
Using the Time Reference option
Colorization and coloring rules
Packet colorization
Wireshark preferences
Wireshark profiles
Creating a Wireshark profile
Selecting a Wireshark profile
Summary
5. Network Protocols
The OSI and DARPA reference models

Network layer protocols
Wireshark IPv4 filters
Wireshark ARP filters

Internet Group Management Protocol
Wireshark IGMP filters

Internet Control Message Protocol
ICMP pings
ICMP traceroutes
ICMP control message types
ICMP redirects

Wireshark ICMP filters

Internet Protocol Version 6
[Pv6 addressing
IPv6 address types
IPv6 header fields
IPv6 transition methods

Wireshark IPv6 filters

Internet Control Message Protocol Version 6

Multicast Listener Discovery
Wireshark ICMPv6 filters
Transport layer protocols

User Datagram Protocol
Wireshark UDP filters

Transmission Control Protocol

TCP flags
TCP options
Wireshark TCP filters
Application layer protocols
Dynamic Host Configuration Protocol
Wireshark DHCP filters
Dynamic Host Configuration Protocol Version 6
Wireshark DHCPv6 filters
Domain Name Service
Wireshark DNS filters
Hypertext Transfer Protocol
HTTP Methods
Host

Request Modifiers
Wireshark HTTP filters

Additional information
Wireshark wiki
Protocols on Wikipedia

Requests for Comments
Summary
6. Troubleshooting and Performance Analysis
Troubleshooting methodology
Gathering the right information
Establishing the general nature of the problem
Half-split troubleshooting and other logic
Troubleshooting connectivity issues
Enabling network interfaces
Confirming physical connectivity
Obtaining the workstation IP configuration
Obtaining MAC addresses
Obtaining network service IP addresses
Basic network connectivity

Connecting to the application services
Troubleshooting functional issues

Performance analysis methodology
Top five reasons for poor application performance
Preparing the tools and approach
Performing, verifying, and saving a good packet capture
Initial error analysis

Detecting and prioritizing delays
Server processing time events

Application turn's delay
Network path latency

Bandwidth congestion
Data transport
TCP StreamGraph
IO Graph
IO Graph — Wireshark 2.0
Summary

7. Packet Analysis for Security Tasks

Security analysis methodology
The importance of baselining
Security assessment tools
Identifying unacceptable or suspicious traffic
Scans and sweeps
ARP scans
ICMP ping sweeps
TCP port scans
UDP port scans
OS fingerprinting
Malformed packets
Phone home traffic
Password-cracking traffic
Unusual traffic
Summary
8. Command-line and Other Utilities
Wireshark command-line utilities

Capturing traffic with Dumpcap

Capturing traffic with Tshark
Editing trace files with Editcap

Merging trace files with Mergecap
Mergecap batch file
Other helpful tools
HttpWatch
SteelCentral Packet Analyzer Personal Edition
AirPcap adapters

Summary
2. Module 2

1. Introducing Wireshark
Introduction

Locating Wireshark

Getting ready
How to do it...

Monitoring a server

Monitoring a router

Monitoring a firewall
How it works...

There's more...
See also
Starting the capture of data
Getting ready
How to doit...
How to choose the interface to start the capture
How to configure the interface you capture data from
How it works...
There's more...
See also
Configuring the start window
Getting ready
Main Toolbar
Display Filter Toolbar
Status Bar
How to doit...
Configuring toolbars
Configuring the main window
Name Resolution

Colorizing the packet list
Auto scrolling in live capture
Using time values and summaries

Getting ready
How to do it...

How it works...

Configuring coloring rules and navigation techniques

Getting ready
How to do it...

How it works...
See also

Saving, printing, and exporting data

Getting ready
How to do it...

Saving data in various formats
How to print data
How it works...
Configuring the user interface in the Preferences menu

Getting ready
How to doit...
Changing and adding columns
Changing the capture configuration
Configuring the name resolution
How it works...
Configuring protocol preferences

Getting ready
How to do it...

Configuring of IPv4 and IPv6 Preferences
Configuring TCP and UDP
How it works...
There's more...
2. Using Capture Filters
Introduction
Configuring capture filters

Getting ready
How to do it...

How it works...
There's more...
See also
Configuring Ethernet filters
Getting ready
How to do it...
How it works...
There's more...
See also
Configuring host and network filters
Getting ready
How to do it...
How it works...
There's more...
See also
Configuring TCP/UDP and port filters
Getting ready
How to do it...
How it works...

There's more...
See also

Configuring compound filters

Getting ready
How to do it...

How it works...
There's more...
See also

Configuring byte offset and payload matching filters

Getting ready
How to do it...

How it works...
There's more...
See also
3. Using Display Filters
Introduction
Configuring display filters

Getting ready
How to do it...

Choosing from the filters menu
Writing the syntax directly into the display filter window
Choosing a parameter in the packet pane and defining it as a filter
How it works...
There's more...
What is the parameter we filter?

Adding a parameter column
Saving the displayed data
Configuring Ethernet, ARP, host, and network filters
Getting ready
How to doit...
Ethernet filters
ARP filters
IP and ICMP filters
Complex filters
How it works...
Ethernet broadcasts
IPv4 multicasts

IPv6 multicasts
See also
Configuring TCP/UDP filters

Getting ready

How to do it...

How it works...

There's more...

See also

Configuring specific protocol filters
Getting ready

How to do it...
HTTP display filters
DNS display filters
FTP display filters

How it works...

See also

Configuring substring operator filters
Getting ready

How to do it...
How it works...

Configuring macros
Getting ready

How to doit...
How it works...
4. Using Basic Statistics Tools
Introduction

Using the Summary tool from the Statistics menu
Getting ready

How to do it...
How it works...
There's more...
Using the Protocol Hierarchy tool from the Statistics menu
Getting ready
How to do it...
How it works...
There's more...
Using the Conversations tool from the Statistics menu

Getting ready
How to do it...

How it works...
There's more...
Ethernet conversations statistics
IP conversations statistics
TCP/UDP conversations statistics:
Using the Endpoints tool from the Statistics menu
Getting ready
How to do it...
How it works...
There's more...
Using the HTTP tool from the Statistics menu
Getting ready
How to do it...
How it works...
There's more...
Configuring Flow Graph for viewing TCP flows
Getting ready
How to do it...
How it works...
There's more...
Creating IP-based statistics
Getting ready
How to do it...
How it works...
There's more...
5. Using Advanced Statistics Tools
Introduction
Configuring 10 Graphs with filters for measuring network performance
issues

Getting ready
How to do it...

Filter configuration

X-Axis configuration

Y-Axis configuration
How it works...

There's more...
Throughput measurements with IO Graph
Getting ready
How to do it...
Measuring throughput between end devices
Measuring application throughput
How it works...
There's more...
Graph SMS usage — finding SMS messages sent by a specific
subscriber
Graphing number of accesses to the Google web page
Advanced 10 Graph configurations with advanced Y-Axis parameters
Getting ready
How to do it...
How to monitor inter-frame time delta statistics
How to monitor the number of TCP retransmissions in a stream
How to monitor a number of field appearances
How it works...
There's more...
Getting information through TCP stream graphs — the Time-Sequence
(Stevens) window
Getting ready
How to do it...
How it works...
There's more...
Getting information through TCP stream graphs — the Time-Sequence (tcp-
trace) window
Getting ready
How to do it...
How it works...
There's more...
Getting information through TCP stream graphs — the Throughput Graph
window
Getting ready
How to do it...
How it works...
There's more...

Getting information through TCP stream graphs — the Round Trip Time
window
Getting ready
How to do it...
How it works...
There's more...
Getting information through TCP stream graphs — the Window Scaling
Graph window
Getting ready
How to do it...
How it works...
There's more...
6. Using the Expert Infos Window
Introduction
The Expert Infos window and how to use it for network troubleshooting
Getting ready
How to do it...
How it works...
There's more...
See also
Error events and understanding them
Getting ready
How to do it...
How it works...
There's more...
See also
Warning events and understanding them
Getting ready
How to do it...
How it works...
There's more...
See also
Notes events and understanding them
Getting ready
How to do it...
How it works...
There's more...

See also
7. Ethernet, LAN Switching, and Wireless LAN
Introduction
Discovering broadcast and error storms
Getting ready
How to do it...
Spanning Tree Problems
A device that generates Broadcasts
Fixed pattern broadcasts
How it works...
There's more...
See also

Analyzing Spanning Tree Protocols
Getting ready
How to doit...
Which STP version is running on the network?
Are there too many topology changes?
How it works...
Port states
There's more...
Analyzing VLLANs and VL AN tagging issues

Getting ready
How to do it...

Monitoring traffic inside a VLAN
Viewing tagged frames going through a VLAN tagged port
How it works...
There's more...
See also
Analyzing wireless (Wi-Fi) problems
Getting ready
How to doit...
How it works...
8. ARP and IP Analysis
Introduction
Analyzing connectivity problems with ARP

Getting ready
How to do it...

ARP poisoning and Man-in-the-Middle attacks
Gratuitous ARP
ARP sweeps
Requests or replies, and who is the sender
How many ARPs

How it works...

There's more...

Using IP traffic analysis tools

Getting ready
How to do it...

IP statistics tools
How it works...
There's more...
Using GeolP to look up physical locations of the IP address

Getting ready

How to do it...

How it works...
There's more...

Finding fragmentation problems

Getting ready
How to do it...

How it works...
There's more...

Analyzing routing problems

Getting ready
How to do it...

How it works...
There's more...

Finding duplicate IPs

Getting ready
How to do it...

How it works...
There's more...

Analyzing DHCP problems

Getting ready
How to do it...

How it works...

There's more...
9. UDP/TCP Analysis
Introduction
Configuring TCP and UDP preferences for troubleshooting
Getting ready
How to do it...
UDP parameters
TCP parameters
How it works...
There's more...

TCP connection problems

Getting ready
How to do it...

How it works...
There's more...

TCP retransmission — where do they come from and why
Getting ready
How to doit...
Case 1 — retransmissions to many destinations
Case 2 — retransmissions on a single connection
Case 3 — retransmission patterns
Case 4 — retransmission due to a non-responsive application
Case 5 — retransmission due to delayed variations
Finding what it is
How it works...
Regular operation of the TCP Sequence/Acknowledge mechanism
What are TCP retransmissions and what do they cause
There's more...
See also

Duplicate ACKSs and fast retransmissions

Getting ready
How to do it...

How it works...
There's more...
TCP out-of-order packet events

Getting ready
How to do it...

When will it happen?
How it works...
TCP Zero Window, Window Full, Window Change, and other Window
indicators
Getting ready
How to do it...
TCP Zero Window, Zero Window Probe, and Zero Window
Violation
TCP Window Update
TCP Window Full
How it works...
There's more...
TCP resets and why they happen
Getting ready
How to do it...
Cases in which reset is not a problem
Cases in which reset can indicate a problem
How it works...
10. HTTP and DNS
Introduction

Filtering DNS traffic

Getting ready
How to do it...

How it works...
There's more...
Analyzing regular DNS operations
Getting ready
How to doit...
How it works...
DNS operation
DNS namespace
The resolving process
There's more...
Analysing DNS problems
Getting ready
How to doit...
DNS cannot resolve a name

DNS slow responses
How it works...
There's more...

Filtering HTTP traffic

Getting ready
How to do it...

How it works...
HTTP methods
Status codes
There's more...
Configuring HTTP preferences
Getting ready
How to do it...
Custom HTTP headers fields
How it works...
There's more...
Analyzing HTTP problems
Getting ready
How to do it...
Informational codes
Success codes
Redirect codes
Client errors
Server errors
How it works...
There's more...
Exporting HTTP objects
Getting ready
How to do it...
How it works...
There's more...
HTTP flow analysis and the Follow TCP Stream window
Getting ready
How to do it...
How it works...
There's more...

Analyzing HTTPS traffic — SSL/TLS basics

Getting ready
How to do it...

How it works...
There's more...

11. Analyzing Enterprise Applications' Behavior
Introduction
Finding out what is running over your network

Getting ready
How to do it...

There's more...

Analyzing FTP problems

Getting ready
How to do it...

How it works...
There's more...

Analyzing e-mail traffic and troubleshooting e-mail problems — POP,
IMAP, and SMTP

Getting ready
How to doit...
POP3 communications
SMTP communications
Some other methods and problems
How it works...
POP3
SMTP and SMTP error codes (REC3463)
There's more...

Analyzing MS-TS and Citrix communications problems

Getting ready
How to do it...

How it works...
There's more...
Analyzing problems in the NetBIOS protocols

Getting ready
How to do it...

General tests

Specific issues
How it works...

There's more...

Example 1 — application freezing
Example 2 — broadcast storm caused by SMB
Analyzing database traffic and common problems
Getting ready

How to doit...
How it works...
There's more...
12. SIP, Multimedia, and IP Telephony
Introduction

Using Wireshark's features for telephony and multimedia analysis
Getting ready

How to doit...
How it works...
There's more...
Analyzing SIP connectivity
Getting ready
How to doit...
1xx codes — provisional/informational
2xx codes — success
3xx codes — redirection
4xx codes — client error
5xx codes — server error
6xx codes — global failure
How it works...
There's more...
Analyzing RTP/RTCP connectivity
Getting ready
How to doit...
How it works...
RTP principles of operation
The RTCP principle of operation

There's more...
Troubleshooting scenarios for video and surveillance applications

Getting ready
How to do it...
How it works...

There's more...
Troubleshooting scenarios for IPTV applications
Getting ready
How to do it...
How it works...
There's more...
Troubleshooting scenarios for video conferencing applications
Getting ready
How to do it...
Troubleshooting RTSP
Getting ready
How to do it...
How it works...
There's more...
13. Troubleshooting Bandwidth and Delay Problems
Introduction

Measuring total bandwidth on a communication link

Getting ready
How to do it...

How it works...
There's more...
Measuring bandwidth and throughput per user and per application over a

network connection
Getting ready
How to do it...
How it works...
See also

Monitoring jitter and delay using Wireshark

Getting ready
How to do it...

How it works...
There's more...

Discovering delay/jitter-related application problems

Getting ready
How to do it...

How it works...
There's more...

14. Understanding Network Security
Introduction

Discovering unusual traffic patterns

Getting ready
How to do it...

How it works...
There's more...
See also

Discovering MAC- and ARP-based attacks
Getting ready
How to doit...
How it works...
There's more...

Discovering ICMP and TCP SYN/Port scans
Getting ready
How to doit...
How it works...
There's more...
See also

Discovering DoS and DDoS attacks
Getting ready
How to doit...
How it works...
There's more...

Locating smart TCP attacks
Getting ready
How to doit...
How it works...
There's more...
See also

Discovering brute-force and application attacks
Getting ready
How to doit...
How it works...
There's more...

A. Links, Tools, and Reading
Useful Wireshark links

tcpdump
Some additional tools

SINMP tools
SNMP platforms
The NetFlow, JFlow, and SFlow analyzers

HTTP debuggers

Syslog

Other stuff
Network analysers

Interesting websites
Books

3. Module 3
1. Welcome to the World of Packet Analysis with Wireshark

Introduction to Wireshark

A brief overview of the TCP/IP model

The layers in the TCP/IP model

An introduction to packet analysis with Wireshark
How to do packet analysis
What is Wireshark?
How it works

Capturing methodologies
Hub-based networks
The switched environment

ARP poisoning

Passing through routers
Why use Wireshark?

The Wireshark GUI
The installation process

Starting our first capture

Summar
Practice questions

2. Filtering Our Way in Wireshark
An introduction to filters
Capture filters

Why use capture filters
How to use capture filters

An example capture filter

Capture filters that use protocol header values

Display filters
Retaining filters for later use

Searching for packets using the Find dialog
Colorize traffic
Create new Wireshark profiles
Summary
Practice questions
3. Mastering the Advanced Features of Wireshark
The Statistics menu
Using the Statistics menu
Protocol Hierarchy
Conversations
Endpoints
Working with IO, Flow, and TCP stream graphs
IO graphs

Flow graphs
TCP stream graphs

Round-trip time graphs

Throughput graphs
The Time-sequence graph (tcptrace)

Follow TCP streams

Expert Infos
Command Line-fu

Summar
Exercise

4. Inspecting Application Layer Protocols
Domain name system
Dissecting a DNS packet
Dissecting DNS query/response
Unusual DNS traffic
File transfer protocol
Dissecting FTP communications
Passive mode
Active mode

Dissecting FTP packets
Unusual FTP

Hyper Text Transfer Protocol
How it works — request/response

Request

Response
Unusual HTTP traffic

Simple Mail Transfer Protocol
Usual versus unusual SMTP traffic
Session Initiation Protocol and Voice Over Internet Protocol

Analyzing VOIP traffic

Reassembling packets for playback
Unusual traffic patterns
Decrypting encrypted traffic (SSL/TLS)

Summar
Practice questions

5. Analyzing Transport Layer Protocols
The transmission control protocol
Understanding the TCP header and its various flags
How TCP communicates
How it works
Graceful termination
RST (reset) packets
Relative verses Absolute numbers
Unusual TCP traffic
How to check for different analysis flags in Wireshark
The User Datagram Protocol
A UDP header
How it works
The DHCP
The TETP
Unusual UDP traffic

Summar
Practice questions

6. Analyzing Traffic in Thin Air
Understanding IEEFE 802.11
Various modes in wireless communications
Wireless interference and strength
The IEEE 802.11 packet structure

RTS/CTS
Usual and unusual WEP — open/shared key communication
WEP-open key
The shared key
WPA -Personal
WPA -Enterprise

Decrypting WEP and WPA traffic

Summar
Practice questions

7. Network Security Analysis
Information gathering
PING sweep
Half-open scan (SYN)

OS fingerprinting
ARP poisoning
Analyzing brute force attacks

Inspecting malicious traffic
Solving real-world CTF challenges

Summary
Practice questions
8. Troubleshooting

Recovery features
The flow control mechanism
Troubleshooting slow Internet and network latencies
Client- and server-side latencies
Troubleshooting bottleneck issues

Troubleshooting application-based issues

Summar
Practice questions

9. Introduction to Wireshark v2
The intelligent scroll bar
Translation
Graph improvements
TCP streams
USBPcap

Summar
Practice questions

Bibliography

Index

Wireshark Revealed: Essential Skills
for IT Professionals

Wireshark Revealed: Essential Skills
for IT Professionals

Copyright © 2017 Packt Publishing All rights reserved. No part of this course
may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the
accuracy of the information presented. However, the information contained in
this course is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing, and its dealers and distributors will be held liable
for any damages caused or alleged to be caused directly or indirectly by this
course.

Packt Publishing has endeavored to provide trademark information about all of
the companies and products mentioned in this course by the appropriate use of
capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Published on: December 2017
Production reference: 1011217
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN - 978-1-78883-322-6

www.packtpub.com

http://www.packtpub.com

Credits

Authors

James H Baxter

Yoram Orzach

Charit Mishra

Reviewers

Sarath Lakshman

Bruno Vernay

Ms. Samia Yousif
Charles L. Brook
Praveen Darshan

Ritwik Ghoshal

Gilbert Ramirez

Anish Nath

Content Development Editor
Devika Battike

Graphics

Kirk D’penha
Production Coordinator

Aparna Bhagat

Preface

Wireshark is a popular and powerful tool used to analyze the amount of bits and
bytes that are flowing through a network. The packet captures displayed in
Wireshark give you an insight into the security and flaws of different protocols,
which will help you perform the security research and protocol debugging.

What this learning path covers

Module 1, Wireshark Essentials, introduces the Wireshark network analyzer to
IT professionals across multiple disciplines.

It starts off with the installation of Wireshark, before gradually taking you
through your first packet capture, identifying and filtering out just the packets of
interest, and saving them to a new file for later analysis. The subsequent chapters
will build on this foundation by covering essential topics on the application of
the right Wireshark features for analysis, network protocols essentials,
troubleshooting, and analyzing performance issues. Finally, this module focuses
on packet analysis for security tasks, command-line utilities, and tools that
manage trace files.

Upon finishing this module, you will have successfully added strong Wireshark
skills to your technical toolset and significantly increased your value as an IT
professional

Module 2, Network Analysis using Wireshark Cookbook, highlights the
operations of Wireshark as a network analyzer tool. This book provides you with
a set of practical recipes to help you solve any problems in your network using a
step-by-step approach.

“Network analysis using Wireshark Cookbook” starts by discussing the
capabilities of Wireshark, such as the statistical tools and the expert system,
capture and display filters, and how to use them. The book then guides you
through the details of the main networking protocols, that is, Ethernet, LAN
switching, and TCP/IP, and then discusses the details of application protocols
and their behavior over the network. Among the application protocols that are
discussed in the book are standard Internet protocols like HTTP, mail protocols,
FTP, and DNS, along with the behavior of databases, terminal server clients,
Citrix, and other applications that are common in the I'T environment.

In a bottom-up troubleshooting approach, the book goes up through the layers of
the OSI reference model explaining how to resolve networking problems. The
book starts from Ethernet and LAN switching, through IP, and then on to
TCP/UDP with a focus on TCP performance problems. It also focuses on WLAN

security. Then, we go through application behavior issues including HTTP, mail,
DNS, and other common protocols. The book finishes with a look at network
forensics and how to search and find security problems that might harm the
network.

Module 3, Mastering Wireshark, will help you raise your knowledge to an expert
level. At the start of this module, you will be introduced to its interface so you
understand all its functionalities. Moving forward, you will discover different
ways to create and use capture and display filters. Halfway through the book,
you’ll be mastering the features of Wireshark, analyzing different layers of the
network protocol, looking for any anomalies. As you reach to the end of the
book, you will be taught how to use Wireshark for network security analysis and
configure it for troubleshooting purposes.

What you need for this learning path

The primary requirement is as follows:

¢ You will need to install the Wireshark software that can be downloaded
from www.wireshark.org.

http://www.wireshark.org

Who this learning path is for

This book is aimed at I'T professionals who want to develop or enhance their
packet analysis skills. A basic familiarity with common network and application
services terms and technologies is assumed.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think
about this course—what you liked or disliked. Reader feedback is important for
us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and
mention the course’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt course, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the course in the Search box.

Select the course for which you’re looking to download the code files.
Choose from the drop-down menu where you purchased this course from.
Click on Code Download.

NoUAWN

You can also download the code files by clicking on the Code Files button on
the course’s webpage at the Packt Publishing website. This page can be accessed
by entering the course’s name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at :

https://github.com/PacktPublishing/Wireshark-Revealed-Essential-skills-for-1T-
professionals

We also have other code bundles from our rich catalog of books, videos, and
courses available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Wireshark-Revealed-Essential-skills-for-IT-professionals
https://github.com/PacktPublishing/

Errata

Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our courses—maybe a
mistake in the text or the code—we would be grateful if you could report this to
us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this course. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your course, clicking
on the Errata Submission Form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the
course in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on the
Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this course, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Part 1. Module 1

Wireshark Essentials

Get up and running with Wireshark to analyze network packets and
protocols effectively

Chapter 1. Getting Acquainted with
Wireshark

Since its creation in 1997 by Gerald Combs to troubleshoot network problems at
a small ISP, Wireshark (originally called Ethereal) has now become one of the
most popular tools available for packet-level analysis of network and application
protocols. This is mostly because it is an open source solution, which makes it
freely available to any technical professional, as well as its extensive range of
features, coverage of over 1000 protocols, and the continued support and
improvements made possible by contributions from over 800 developers around
the globe.

This introductory chapter will help you to quickly become proficient in
Wireshark by installing it on your system and doing something fun and useful
with it, before diving into more details and supporting concepts.

In this chapter, we will cover the following topics:

Installing Wireshark

Performing a packet capture

Wireshark user interface essentials

Using display filters to isolate traffic of interest
Saving a filtered packet trace file

The chapters that follow will build on and provide the supporting concepts for
these basic functions to allow you to develop the Wireshark skills that are most
applicable to your technical role and objectives.

Installing Wireshark

Wireshark can be installed on machines running 32- and 64-bit Windows (XP,
Win7, Win8.1, and so on), Mac OS X (10.5 and higher), and most flavors of
Linux/Unix. Installation on Windows and Mac machines is quick and easy
because installers are available from the Wireshark website download page.
Wireshark is a standard package available on many Linux distributions, and
there is a list of links to third-party installers provided on the Wireshark
download page for a variety of popular *nix platforms. Alternatively, you can
download the source code and compile Wireshark for your environment if a
precompiled installation package isn't available.

Wireshark relies on the WinPcap (Windows) or libpcap (Linux/Unix/Mac)
libraries to provide the packet capture and capture filtering functions; the
appropriate library is installed during the Wireshark installation.

Note

You might need administrator (Windows) or root (Linux/Unix/Mac) privileges to
install Wireshark and the WinPcap/libpcap utilities on your workstation.

Assuming that you're installing Wireshark on a Windows or Mac machine, you
need to go to the Wireshark website (https://www.wireshark.org/) and click on
the Download button at the top of the page. This will take you to the download
page, and at the same time attempt to perform an autodiscovery of your
operating system type and version from your browser info. The majority of the
time, the correct Wireshark installation package for your machine will be
highlighted, and you only have to click on the highlighted link to download the
correct installer.

Note

If you already have Wireshark installed, an autoupdate feature will notify you of
available version updates when you launch Wireshark.

https://www.wireshark.org/

Installing Wireshark on Windows

In the following screenshot, the Wireshark download page has identified that a
64-bit Windows installer is appropriate for this Windows workstation:

Download Wireshark

The current =table releaze of Wireshark iz 1.10.8.

Stable Release (1.10.8)

£ Windows Installer (64-bit)
Windows Installer (32-bit)
Windows U3 (32-bit)
Windows PortableApps (32-bit)
05 X 10.6 and later Intel 64-bit .dmg
05 X 10.5 and later Intel 32-bit .dmg

Source Code

Clicking on the highlighted link downloads a Wireshark-win64-1.10.8.exe file
or similar executable file that you can save on your hard drive. Double-clicking
on the executable starts the installation process. You need to follow these steps:

1. Agree to the License Agreement.

2. Accept all of the defaults by clicking on Next for each prompt, including
the prompt to install WinPcap, which is a library needed to capture packets
from the Network Interface Card (NIC) on your workstation.

3. Early in the Wireshark installation, the process will pause and prompt you
to click on Install and several Next buttons in separate windows to install
WinPcap.

4. After the WinPcap installation is complete, click through the remaining
Next prompts to finish the Wireshark installation.

Install WinPcap?
WinPcap is required to capture live network data. Should WinPcap be installed?

| Wireshark 1.10.8 (64-bit) Setup - &

Currently installed WinPcap version
WinPcap is currently not installed

Install
Install WinPcap 4.1.3
(Use Add/Remove Programs first to uninstall any undetected old WinPcap versions)

What is WinPcap?

Mullsoft Install System w2, 46

| < Back ” Install | | Cancel

Installing Wireshark on Mac OS X

The process to install Wireshark on Mac is the same as the process for Windows,
except that you will not be prompted to install WinPcap; libpcap, the packet
capture library for Mac and *nix machines, gets installed instead (without
prompting).

There are, however, two additional requirements that may need to be addressed
in a Mac installation:

e The first is to install X11, a windowing system library. If this is needed for
your system, you will be informed and provided a link that ultimately takes
you to the XQuartz project download page so you can install this package.

e The second requirement that might come up is if upon starting Wireshark,
you are informed that there are no interfaces on which a capture can be
done. This is a permissions issue on the Berkeley packet filter (BPF) that
can be resolved by opening a terminal window and typing the following
command:

bash-3.2$ sudo chmod 644 /dev/bpf*
If this process needs to be repeated each time you start Wireshark, you can

perform a web search for a more permanent permissions solution for your
environment.

Installing Wireshark on Linux/Unix

The requirements and process to install Wireshark on a Linux or Unix platform
can vary significantly depending on the particular environment. Wireshark is
usually available by default through the package management systems for your
specific Linux distribution. Guidance to install Wireshark on Linux can be found
in Chapter 2, Networking for Packet Analysts, or in the Wireshark user
documentation located at

www.wireshark.org/docs/wsug_html chunked/ChapterBuildInstall.html.

http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html

Performing your first packet capture

When you first start Wireshark, you are presented with an initial Start Page as
shown in the following screenshot:

M The Wireshark Network Analyzer [Wireshark1.10.8 (v110.8-2-g52a5244 from master-1.10)] (=
File Edit View Go Capture Analyze Statistics Telephoﬂz Tools Internals Help

coams ERXT I AaeraT L IEEeaaan EDB% B

Filter: |Z|Expre;;\on..‘ Clear Apply Save

The World's Most Popular Network Protocol Analyzer

_—
WI RES HARK Version 1.10.8 (v1.10.8-2-g52a5244 from master-1.10)

Capture L Ffiles ___J Onlne
_Interface List =) Open Website

6 Live fist of the capture interfaces Open 2 previousty captured file Visit the project’s website

[counts incoming packets)

Open Recent: a5 U . A
q ser's Guide
"' Start 'Sy o
The User's Guide {local version, if installed)

Choose one or mare interfaces to capture from, then Start
E_‘ Local Area Connection 5 @ Sample Captures @ Secu"ty
E’ Wil Nt Cotnectio '-:' 2 rich sssertment of example capture files on the wiki Vo i W e S i
@® Capture Options
" Start a capture with detziled options

Capture Help

How to Capture

Step by step to a successful capture sstup

Network Media
@ Specific infermation for capturing on-

Ethernet, WLAN,

| R.eac;yto load or cap{:ure [Mo Packets [Profile: Default

Don't get too fond of this screen. Although you'll see this every time you start
Wireshark, once you do a capture, open a trace file, or perform any other
function within Wireshark, this screen will be replaced with the standard
Wireshark user interface and you won't see it again until the next time you start
Wireshark. So, we won't spend much time here.

Selecting a network interface

If you have a number of network interfaces on your machine, you may not be
sure which one to select to capture packets, but there's a fairly easy way to figure
this out. On the Wireshark start page, click on Interface List (alternatively, click
on Interfaces from the Capture menu or click on the first icon on the icon bar).

The Wireshark Capture Interfaces window that opens provides a list and
description of all the network interfaces on your machine, the IP address
assigned to each one (if an address has been assigned), and a couple of counters,
such as the total number of packets seen on the interface since this window
opened and a packets/s (packets per second) counter. If an interface has an IPv6
address assigned (which may start with fe80: : and contain a number of colons)
and this is being displayed, you can click on the IPv6 address and it will toggle
to display the IPv4 address. This is shown in the following screenshot:

M Wireshark: Capture Interfaces EI@
Device Description P Packets Packets/s
@i B Local Area Connection Intel(R) 82567LM Gigabit Network Connection 1921681116 70933 2758 | Details|
;? Wireless Network Connection Microsoft 1921681111 1473 1 Qetailsl
Help Start Stop Options ‘ [Close]
Note

On Linux/Unix/Mac platforms, you might also see a loopback interface that can
be selected to capture packets being sent between applications on the same
machine. However, in most cases, you'll only be interested in capturing packets
from a network interface.

The goal is to identify the active interface that will be used to communicate with
the Internet when you open a browser and navigate to a website. If you have a
wired local area network connection and the interface is enabled, that's probably
the active interface, but you might also have a wireless interface that is enabled
and you may or may not be the primary interface. The most reliable indicator of

the active network interface is that it will have greater number of steadily
increasing packets with a corresponding active number of packets/s (which will
vary over time). Another possible indicator is if an interface has an IP address
assigned and others do not. If you're still unsure, open a browser window and
navigate to one of your favorite websites and watch the packets and packets/s
counters to identify the interface that shows the greatest increase in activity.

Performing a packet capture

Once you've identified the correct interface, select the checkbox on the left-hand
side of that interface and click on the Start button at the bottom of the Capture
Interfaces window. Wireshark will start capturing all the packets that can be
seen from that interface, including the packets sent to and from your
workstation. You'll see a bewildering variety of packets going by in the top
section (called the Packet List pane) of the screen; this is normal. If you don't
see this, try a different interface.

It's a bit amazing just how much background traffic there is on a typical network,
such as broadcast packets from devices advertising their names, addresses, and
services to and from other devices asking for addresses of stations they want to
communicate with. Also, a fair amount of traffic is generated from your own
workstation for applications and services that are running in the background, and
you had no idea they were creating this much noise. Your Wireshark's Packet
List pane may look similar to the following screenshot; however, we can ignore
all this for now:

4 Capturing from Local Area Connection [Wireshark 1108 (v1.10.8-2-g52a5244 from master-1.10]] -2 |
File Edit View Go Capture Analyze Statistics Telephonx Tools Intermals Help

OO AW I BERERE Ae DT L QRaen | #Em% B
Filter: E| Expression... Clear Apply Save
No. Time Source Destination Protocel Length Info -

388 23.840317000 Cisco_55:14:b4 Broadcast ARP 60 who has 192.168.1.1407 Tell 192.168.1.2

390 35.183312000 fTeB0::5c71:8Bbe6:45eff02::cC S5DP 208 M-S5EARCH * HTTP/1.1

391 36.055240000 192.168.1.116 173.194.46.81 S5l 55 continuation Data

392 36.104061000 173.194.46.81 192.168.1.116 TCP 66 https > 54514 [AcK] Seg=1 Ack=2 win=661 Len=C

393 26.303254000 192.168.1.116 208.85.40.20 TCP 55 [TcP segment of a reassembled PDU]

395 36.383778000 208.85.40.20 192.168.1.116 TCP 60 http > 54216 [ACK] Seq=1 Ack=2 Win=20136 Len= =
=- = ! E ;
Frame 1: 378 bytes on wire (3024 bits), 378 bytes captured (3024 bits) on interface 0
= Ethernet II, Src: HuaweiTe Be:84:f4 (78:f5:fd:Be:84:f4), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
= Internet Protocol version 4, Src: 192.168.1.112 (192.168.1.112), Dst: 192.168.1.255 (192.168.1.255)

& User Datagram Protocol, Src Port: 44727 (44727), Dst Port: ssdp (1900)
[+ Hypertext Transfer Protocol

0000 ff ff ff ff ff ff 78 f5 fd Be B4 f4 08 00 45 00 S, E: .
0010 01 6c 00 00 40 00 40 11 b4 cl cO a8 01 70 cO a8 58 e SRR A =g
0020 01 ff ae b7 07 6c 01 58 13 9b 4e 4f 54 49 46 59 1.% ..NOTIFY L=

0030 20 2a 20 48 54 54 50 2f 31 2e 31 0d 0a 53 65 72 * HTTR/ 1.1..Ser
0040 76 65 72 3a 20 4c 69 6e 75 78 2f 33 2e 30 2e 32 ver: Lin ux/3.0.2
0050 31 2d 70 65 72 66 20 55 50 6e 50 2f 31 2e 30 20 1-perf U PnP/1.0
0060 43 79 62 65 72 4c 69 6e 6b 4a 61 76 61 2f 31 2e CyberLin kJava/l.
0070 38 0d 0a 43 61 62 68 65 2d 43 6Ff 6e 74 72 6f 6c__ 8..Cache —Control z

&S] .‘j.? Local Area Connection: <live captur.e in prﬁgress:\ File: C:\Users\Ja) | Packets: 395 . Displayed: 395 (100.0%) Profile: Default

We're ready to generate some traffic that we'll be interested in analyzing. Open a
new Internet browser window, enter www.wireshark.org in the address box, and
press Enter.

When the https://www.wireshark.org/ home page finishes loading, stop the
Wireshark capture by either selecting Stop from the Capture menu or by
clicking on the red square stop icon that's between the View and Go menu
headers.

https://www.wireshark.org/

Wireshark user interface essentials

Once you have completed your first capture, you will see the normal Wireshark
user interface main screen. So before we go much further, a quick introduction to
the primary parts of this user interface will be helpful so you'll know what's
being referred to as we continue the analysis process.

There are eight significant sections or elements of the default Wireshark user

interface, as shown in the following screenshot:

M *Local Area Connection [Wireshark 1,108 (v110.8-2-5525244 from master-1.10]] 0 ==
File Edit View Go Capture Analyze Statistics Telephon! Tools Internals Help

VO AWE BEXSY ReEe*DT L aan @Emx @ @
Filter: Bﬁ(pression.‘. Clear Apply Save o

Mo, Time Source Destination Protocel Length Info

1 0.000000000 1092.168.1.116 239, 255.255. 250 'SSDP 175 M—SEARCH * HTTP/1.1
2 0.007393000 162.168.1.111 236.255. 255. 250 SSDP 175 M-SEARCH * HTTP/1.1
6 3 0.152016000° 192.168.1.121 236.255.255.250 55DP 139 M-SEARCH * HTTP/1.1
5 0.574804000 192.168.1.1 192.168.1.116 UDP 440 source port: 54729 pestination port: 49996
6 0.696472000 TeBO::5c71:8beb:45¢FF02::c 55DP 208 M-SEARCH * HTTP/1.1
7 0.984841000 Cisco_55:14:b4 Broadcast ARP 60 who has 192.168.1.1107 Tell 192.168.1.2
9 3.020849000 192.168.1.116 236.255.255. 250 SSDP 175 M-SEARCH * HTTP/1.1
10 3.028438000 1082.168.1.111 2306.255.255.250 SSDP 175 M-SEARCH * HTTP/1.1 -

] Frame 1: 175 bytes on wire (1400 bits), 175 bytes captured (1400 bits) on dinterface 0

4 Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85), Dst: IPvdmcast_7f:ff:fa (01:00:5e:7f:ff:fa)

| Internet Protocol version 4, src: 192.168.1.116 (192.168.1.116), Dst: 239.255.255.250 (239.255.255.250)
| User Datagram Protocol, Src Port: 49996 (49996), Dst Port: ssdp (1900)

Hypertext Transfer Protocol

0000 01 00 5e 7f ff fa 00 1c 25 90 db B> OB 0O 45 00 ..A..... . — E.
0010 00 al 2b 53 00 00 01 11 db e2 cO a8 01 74 ef ff ..45.... Tl
0020 ff fa c3 4c 07 6c 00 8 b2 b5 4d 2d 53 45 41 52 L.1.. ..M-SEAR o

43 48 20 2a 20 48 54 54 50 2f 31 2e 31 0Od Oa 48 R HIT P o
6f 73 74 3a 32 33 39 2e 32 35 35 2e 32 35 35 2e 0s5t:239. 255.255.
0050 32 35 30 3a 31 39 30 30 0Od 0a 53 54 3a 75 72 6e 250:1900 ..sT:urn
0060 3a 73 63 68 65 6d 61 73 2d 75 70 6e 70 2d of 72 ischemas -upnp-or
0070 67 3a 64 65 76 69 63 65 3a 4% 6e 74 65 72 6e 65 a:device :Interne 9

@ "_'r File: "C:\Users\James\AppData’Local\Temp\wireshark_pcapng_.. | Packets: 396 - Displayed: 396 (100.0%) . Dropped: 0 (0.0%) - Ignored: 1 ... | Profile: Default

Let's look at the eight significant sections in detail:

e Title: This area reflects the interface from where a capture is being taken or
the filename of an open packet trace file

e Menu: This is the standard row of main functions and subfunctions in
Wireshark

e Main toolbar (icons): These provide a quick way to access the most useful
Wireshark functions and are well worth getting familiar with and using

¢ Display filter toolbar: This allows you to quickly create, edit, clear, apply,
and save filters to isolate packets of interest for analysis

o Packet list pane: This section contains a summary info line for each

captured packet, as well as a packet number and relative timestamp
Packet details pane: This section provides a hierarchical display of
information about a single packet that has been selected in the packet list
pane, which is divided into sections for the various protocols contained in a
packet

Packet bytes pane: This section displays the selected packets' contents in
hex bytes or bits form, as well as an ASCII display of the data that can be
helpful

Status bar: This section provides an expert info indicator, edit capture
comments icon, trace file path name and size information, data on the
number of packets captured and displayed and other info, and a profile
display and selection section

Filtering out the noise

Somewhere in your packet capture, there are packets involved with loading the
Wireshark home page—but how do you find and view just those packets out of
all the background noise?

The simplest and most reliable method is to determine the IP address of the
Wireshark website and filter out all the packets except those flowing between
that IP address and the IP address of your workstation by using a display filter.
The best approach—and the one that you'll likely use as a first step for most of
your post-capture analysis work in future—is to investigate a list of all the
conversations by IP address and/or hostnames, sorted by the most active nodes,
and identify your target hostname, website name, or IP address from this list.

From the Wireshark menu, select Conversations from the Statistics menu, and
in the Conversations window that opens, select the IPv4 tab at the top. You'll
see a list of network conversations identified by Address A and Address B, with
columns for total Packets, Bytes, Packets A — B, Bytes A — B, Packets A — B,
and Bytes A — B.

Scrolling over to the right-hand side of this window, there are Relative Start
values. These are the times when each particular conversation was first observed
in the capture, relative to the start of the capture in seconds. The next column is
Duration, which is how long this conversation persisted in the capture (first to
last packet seen).

Finally, there are average data rates in bits per second (bps) in each direction
for each conversation, which is the network impact for this conversation. All
these are shown in the following screenshot:

.! Conversations: Local Area Connection EI@

| Ethernet: 1| Fibre Channel| FoDI| ve: 37 |16 2| x| éra | nce | e | scrp | Tce: 39| Token Ring | upe:s1 | use| wian|

IPvd Conversations

Address A4 4 AddressB 4 Packets 4 Bytes = Packets A—B 4 Bytes A—B 4 Packets A—B 4 Bytes A—B 4 RelStart 4 Dur -+
162159.241.165 1921681116 71 178219 32 13517 39 4312 16.255957000

(T

1011125 1921681116 29 10652 14 4701 15 5951 12105871000
1731944682 1921681116 18 7825 9 3 467 9 4 358 16477797000
311356533 1921681116 15 5174 10 24495 5 2679 16990433000
19216811 1921681116 46 5087 24 3345 22 1742 12106027000
1921681112 192.168.1.255 13 4877 13 4a77 0 0 0.000000000
5422516168 1921681116 15 1942 6 830 9 1112 16505575000
7412522139 192168.1.116 6 1555 3 584 3 971 2874266000
17295210718 1921AR1 116 3 SRR 2 538 1 941 1A NRTATINNN =

'l T — P

[/] Mame resolution [Limit to display filter

Help l [Copy Follow Strearn Graph A—B Graph B—A

We want to sort the list of conversations to get the busiest ones—called the Top
Talkers in network jargon—at the top of the list. Click on the Bytes column
header and then click on it again. Your list should look something like the
preceding screenshot, and if you didn't get a great deal of other background
traffic flowing to/from your workstation, the traffic from
https://www.wireshark.org/ should have the greatest volume and therefore be at
the top of the list.

In this example, the conversation between IP addresses 162.159.241.165 and
192.168.1.116 has the greatest overall volume, and looking at the Bytes A->B
column, it's apparent that the majority of the traffic was from the
162.159.241.165 address to the 192.168.1.116 address. However, at this point,
how do we know if this is really the conversation that we're after?

We will need to resolve the IP addresses from our list to hostnames or website
addresses, and this can be done from within Wireshark by turning on Network
Name Resolution and trying to get hostnames and/or website addresses resolved
for those IP addresses using reverse DNS queries (using what is known as a
pointer (PTR) DNS record type). If you just installed or started Wireshark, the
Name Resolution option may not be turned on by default.

https://www.wireshark.org/

This is usually a good thing, as Wireshark can create traffic of its own by
transmitting the DNS queries trying to resolve all the IP addresses that it comes
across during the capture, and you don't really want that going on during a
capture. However, the Name Resolution option can be very helpful to resolve IP
addresses to proper hostnames after a capture is complete.

To enable Name Resolution, navigate to View | Name Resolution | Enable for
Network Layer (click to turn on the checkmark) and make sure Use External
Network Name Resolver is enabled as well. Wireshark will attempt to resolve
all the IP addresses in the capture to their hostname or website address, and the
resolved names will then appear (replacing the previous IP addresses) in the
packet list as well as the Conversations window.

Note that the Name Resolution option at the bottom of the Conversations
window must be enabled as well (it usually is by default), and this setting affects
whether resolved names or IP addresses appear in the Conversations window (if
Name Resolution is enabled in the Wireshark main screen), as shown in the
following screenshot:

! *Local Area Connection [Wireshark 1,108 (v1.10.8-2-g52a5244 from raster-1.10]]
File Edit Yiew Go Capture Analyze Statistics Telephnnz Tocols Internals Help

& @ 4 v MainToolbar 'ﬁ i Gl El @l\

v Filter Toolbar

Filter: . Wikest Toalbar k IZI Expression... Clear

v Status Bar Protocel Length
v Packet List .
: B8.1.255 S5DP 3349
v Packet Detail |
aee=eE 8.1.255 SSDP 386
v Packet Bytes last ARP 60
Time Display Format L |E' S et 3
80 Mame Resolution L4 Resohve Mame
9 0.| ¢ Colorize Packet List Manually Resolve Mame
4 v Auto Scroll in Live Capture v Enable for MAC Layer
: ;:_Ezfr & ZoomIn Ctrl++ | ¥ Enablefor Transport Layer
= Interr] Zoom Qut Ctrl+- Enable for Metwork Layer
F User O @ Normal Size Ctrl+= | ¥ Use Bernal Metwork Mame Resolhver

At this point, you should see the conversation pair between wireshark.org and

your workstation at or near the top of the list, as shown in the following
screenshot. Of course, your workstation will have a different name or may only
appear as an IP address, but identifying the conversation to wireshark.org has

been achieved.

‘ Conversations: Local Area Connection

o] el

| Ethemet: 19| Fibre Channel | FoDI| vt 37 |1pvs: 2| px | x7a | nce | rsve | scre | Tep: 39| Token Ring | upP:st | use | wian|

Address A 1 Addresz B

IPvd Conversations

4 Packets 4 Bytes ¥ Packets A—B 4 Bytes A—B 4 Packets A—B 4 BytesA—B 1 -

wireshark.org Thinkpad LAN 71 17829 32 13517 39 4314 3
1011125 Thinkpad_LAMN 29 10652 14 4701 15 5951
www.google.com Thinkpad_LAN 18 7825 9 3467 9 4 358
31136533 Thinkpad_LAMN 15 5174 10 2445 5 2679
Cisco24973 Thinkpad_LAN 46 5087 24 3345 22 1742
1921681112 192.168.1.255 13 4677 13 4677 0 0
eue.collect-opnet.com Thinkpad_LAN 15 1942 6 830 9 1112
7412522139 Thinkpad_LAMN 6 1555 3 584 3 a7
172252107 18 Thinknad | A 151A) 525 1 a7
'l 1 r
[/] Mame resolution [Limit to display filter
Help l [Copy Follow Stream Graph A—B

Applying a display filter

You now want to see just the conversation between your workstation and
wireshark.org, and get rid of all the extraneous conversations so you can focus
on the traffic of interest. This is accomplished by creating a filter that only

displays the desired traffic.

Right-click on the line containing the wireshark.org entry and navigate to
Apply as Filter | Selected | A<->B, as shown in the following screenshot:

,‘ Conversations: Local Area Connection EI@

| Ethernet: 18| Fibre Channel| Fooi| va: 37 | pv6e 2| x| sx7a | ep | Rsvp| scTp| Tcp: 30| Token Ring | uDP: 51| UsE| Wian|

IPvd Conversations
Address A 4 |Address B 4 Packets 1 Bytes = Packets A—B 4 BytesA—B 41 P; »
wireshark.org : il : . i I_El
phtigsvrl Apply as Filter 4 Selected 4 A~B 4701
www.google.com Prepare a Filter 4 Mot Selected 4 A—B 3467
311356533 Find Packet 4 ... and Selected 4 A~B 7 495
Cisco24973 Colorize Conversation 4 .. or Selected 4 A — Any 3345
android-20del d3d81451787.cfl.r.com 102] ..and not Selected Y| A—Any 4677
eue.collect-opnet.com Thin .. or not Selected 4 A — Any L1
4| 1l = | Any —B 9
Any — B
[¥] Name resolution [T] Limit to display filter Any —B

Help I [Copy Follow Stream Graph A—B Graph B—A Close

Wireshark will create and apply a display filter string that isolates the displayed
traffic to just the conversation between the IP addresses of wireshark.org and
your workstation, as shown in the following screenshot. Note that if you create
or edit a display filter entry manually, you will need to click on Apply to apply
the filter to the trace file (or Clear to clear it).

Filter: | ip.addr==162159.241.165 && ip.addr==192.1681.116 IEI Expression... Clear Apply Save

Ma. Time Source Destinaticn Protocol Length Info
96 16. 255957000 Thinkpad_LAN wireshark.org 66 54578 > http [5YN]
97 16. 256085000 Thinkpad_LAN wireshark. org TCP 66 54579 > http [5YN]
98 16. 275410000 wireshark.org Thinkpad_LAN TCP 66 http > 54579 [5¥N,
99 16. 275474000 Thinkpad_LAN wireshark. org TCP 54 54579 > http [ACK]

This particular display filter syntax works with IP addresses, not with hostnames,
and uses an ip.addr== (IP address equals) syntax for each node along with the
&& (and) logic operator to build a string that says display any packet that
contains this IP address *and* that IP address. This is the type of
display filter that you will be using a great deal for packet analysis.

You'll notice as you scroll up and down in the Packet List pane that all the other
packets, except those between your workstation and wireshark.org, are gone.

They're not gone in the strict sense, they're just hidden—as you can observe by
inspecting the Packet No. column, there are gaps in the numbering sequence;
those are for the hidden packets.

Saving the packet trace

Now that you've isolated the traffic of interest using a display filter, you can save
a new packet trace file that contains just the filtered packets.

This serves two purposes. Firstly, you can close Wireshark, come back to it later,
open the filtered trace file, and pick up where you left off in your analysis, as
well as have a record of the capture in case you need to reference it later such as
in a troubleshooting scenario.

Secondly, it's much easier and quicker to work in the various Wireshark screens
and functions with a smaller, more focused trace file that contains just the
packets that you want to analyze.

To create a new packet trace file containing just the filtered/displayed packets,
select Export Specified Packets from the Wireshark File menu.

You can navigate to and/or create a folder to hold your Wireshark trace files, and
then enter a filename for the trace file that you want to save. In this example, the
filename is wireshark_website.pcapng. By default, Wireshark will save the
trace file in the pcapng format (which is the preferred format). If you don't
specify a file extension with the filename, Wireshark will provide the appropriate
extension based on the Save as type selection, as shown in the following
screenshot:

M Wireshark: Export Specified Packets @

Savein: Wireshark Trace Files ~ & : S b
I MName - Date modified Type Size
ke Mo items match your search.
Recent Places
Desktop
=al
Libraries
A
ThinkPadW500
a —
File name: wireshark_website pcapng - Save
Metwork
Save as type: Wireshark/... - pcapng (" pcapng:” pocapng.gz;” ntar;” ntar.gz) - | [Cancel J
e
Help

Packet Range

] - [] Compress with gzip
1 Captured | (@ Displayed

23 7

Selected packet 1

Marked packets

First ta last marked

(") Range: 0

Remove lgnored packets

Also, by default, Wireshark will have the All packets option selected, and if a
display filter is applied (as it is in this scenario), the Displayed option will be
selected as opposed to the Captured option that saves all the packets regardless
of whether a filter was applied. Having entered a filename and confirmed that all
the save selections are correct, you can click on Save to save the new packet
trace file.

Note that when you have finished this trace file save activity, Wireshark still has
all the original packets from the capture in memory, and they can still be viewed
by clicking on Clear in the Display Filter Toolbar menu. If you want to work
further with the new trace file you just saved, you'll need to open it by clicking

on Open in the File menu (or Open Recent in the File menu).

Summary

Congratulations! If you accomplished all the activities covered in this chapter,
you have successfully installed Wireshark, performed a packet capture, created a
filter to isolate and display just the packets you were interested in from all the
extraneous noise, and created a new packet trace file containing just those
packets so you can analyze them later. Moreover, in the process, you gained an
initial familiarity with the Wireshark user interface and you learned how to use
several of its most useful and powerful features. Not bad for a first chapter.

In the next chapter, we'll review some essential network concepts needed to
provide a solid foundation to perform packet-level analysis. The main goal of the
next chapter is to help you develop a mental model of networking that lends
itself well to packet-level analysis without getting too tangled up in unnecessary
details.

Chapter 2. Networking for Packet
Analysts

Packet analysis is all about analyzing how applications transfer useful data from
point A to point B over networks. So, an understanding of how networks
function is essential.

In this chapter, we will cover the following topics:

Why the seven-layer OSI model matters
IP networks and subnets

Switching and routing packets

Ethernet frames and switches

IP addresses and routers

e WAN links

e Wireless networking

The seven-layer OSI model will be mapped to the most common networking
terms, and we'll review frames, switching, IP addressing, routing, and a few
other networking topics of interest. The goal is to develop a mental model of
networking that lends itself well to packet-level analysis.

The OSI model — why it matters

The Open Systems Interconnections (OSI) reference model is an industry
recognized standard developed by the International Organization for
Standardization (ISO) to divide networking functions into seven logical layers
to support and encourage (relatively) independent development while providing
(relatively) seamless interconnectivity between each layer from different
hardware/software environments, platforms, and vendors. There's also a
somewhat simpler four-layer Defense Advanced Research Projects Agency
(DARPA) model that maps to the OSI model, but the OSI version is the most
commonly referred to. I'll reference both models when discussing the various
layers.

The following diagram compares the OSI and DARPA reference models:

OSI| model layers DARPA layers

Application Layer

Presentation Layer Application Layer

Session Layer

Transport Layer Transport Layer

Network Layer Internet Layer

Data Link Layer
Network Interface

Layer

Physical Layer

Unless you're in the business of writing protocols, there's no need to study any of
the seven layers in great depth, but it is helpful to understand them conceptually
because these layers are referred to by the industry and your IT peers.

More importantly, it's essential that you know where and how these layers and
their associated protocols are presented in Wireshark's Packet Details pane.
We'll cover the layers from this aspect to help you remember them and get the
most use from the discussion.

Understanding network protocols

Network protocols, like the OSI layers, are a set of industry standard rules and
designs used to exchange messages and data between computers and
applications. In any discussion about OSI layers, you are directly or indirectly
referring to the protocols associated with a given layer—the most commonly
known protocols are IP, UDP, TCP, HTTP, and so on—and the significant
functions they perform.

For example, you'll often hear the terms network layer and IP layer used
interchangeably, and it is assumed and understood that you are talking about the
layer and the associated protocol that contains and uses IP addresses to route
packets from point A to point B across the network. The discussions that follow
will tie the OSI and DARPA layers to their associated protocols.

The seven OSI layers

As we cover the OSI layers starting from layer 1 and working up to layer 7, I'll
outline how each layer's associated protocol(s) are displayed in Wireshark and/or
used in networking hardware. The mental model you develop from this approach
should be the most accurate and useful for packet analysis.

Layer 1 — the physical layer

The physical layer encompasses the electrical characteristics and mechanical
standards to get data bits transmitted from a computer's Network Interface
Card (NIC) to a switch port or between switch and router ports. The most
common standards, terms, and devices you'll encounter at this layer include the
following:

e Ethernet: This is a family of networking technologies for local area
networks (LANS).

e RJ-45: These are 8-pin modular connectors found on both ends of a copper
Ethernet cable that are plugged into the NIC on a computer and a wall jack
or switch port

e Cat 5 (Cat 5e or Cat 6) cables: These are Ethernet cables that use twisted-
pair copper wires. "Cat" stands for the category of cable and reflects its
quality and data speed capabilities.

e 100Base-T, 1000Base-T, and 1000Base-L.X: These represent a particular
Ethernet standard. 100Base-T is 100 Mbps over twisted-pair cable using
RJ-45 connectors, 1000Base-L X is 1000 Mbps over fiber, and so on.

¢ Single-mode and multimode fiber optic cables: These use pulses of light
from solid-state LEDs or lasers to transmit data bits.

The Ethernet standards used to connect NICs to switches are also used to
connect switches together and to connect switches to routers or other network
devices, although the cables and connectors used may vary depending on cable
type and speed.

There are other layer 1 standards in common use, including 802.11 Wireless,
Frame Relay, and ATM; the last two are used in long distance wide area
networks (WANSs).

Layer 2 — the data-link layer

The data-link layer organizes raw bits from the physical layer (typically
Ethernet) into frames, which is the first manifestation of what is generally called
a packet that you'll see in Wireshark. This layer is a dividing line between
physical networking, electrical/mechanical standards, and the logical structures
(protocols) used to format and transmit, receive, and decode packets of data in
the higher layers.

In the DARPA reference model, the physical and data-link OSI layers are
combined and called the network interface layer. The significant features and
functions of this layer (for Ethernet II frames) include:

e Media Access Control (MAC) addresses: These are the network addresses
used in LANSs. They are 6-byte network hardware addresses burned into
memory chips on NICs, switches, routers, or other network device
ports/interfaces:

o The first three bytes of a MAC address are assigned to and can be
associated with a specific manufacturer. Wireshark has a list of these
and can display MAC addresses as a combination of the manufacturer
code and the last three bytes. The manufacturer creates a unique last-
three-bytes address for every interface so that each MAC address is
unique across the globe. (Although, an NIC might be programmed to
use another arbitrary MAC address, which is done for MAC spoofing
for malicious attacks. But this is a very bad idea as another card may
be using the same address and can cause a loss of data and some very
confusing packet switching problems.)

o Ethernet frames include a destination and source MAC address. MAC
addresses are used to switch (not route—we'll make the distinction
shortly) frames between computers on the same LAN or between
computers and a router or other device port on a LAN.

» Type (or EtherType) field: This indicates the next higher protocol layer
(typically IP (0800) or ARP (0806)). Wireshark uses this to determine the next
protocol dissector to apply in packet decodes.

* Payload: This is the packet or datagram carried by the Ethernet frame.

* The frame check sequence: This is a 4-byte Cyclic Redundancy Check
(CRC) error-detection code calculated from all the bits in a frame and added to
the end of the frame. This is used to detect frames that have been corrupted
usually because of faulty cables, noise induced on the wires in a cable from
outside electrical signals, and so on. When a frame is received, this code is

recalculated based on the bits received and compared to the FCS field. The bad
frames are then discarded.

The following diagram illustrates the layout of the fields in an Ethernet frame:

cB d7 19 21 b7 ec 00 1c 25 99 db BS 08 00 IP, ARP, etc. 46 55 e8 de
Destination MAC Addr Source MAC Addr EtherType Payload CRC Checksum
MAC Header Datagram FCS
(14 bytes) (46 - 1500 bytes) (4 bytes)

Ethernet Type Il Frame
(64 - 1518 bytes)

A key point here—and this is important to understand—is that Ethernet frames
and their MAC addresses are only able to transmit frames between devices on
the local area network (LAN and IP subnet) they belong to.

Routers form the boundary between L ANs by virtue of their IP subnet
(subnetwork) addressing. All the devices belonging to the same IP subnet are
part of the same LAN, and getting packets to or from a different subnet requires
a router.

Once a frame enters a router port to get routed to a different/distant network, the
Ethernet frame with its MAC addresses and FCS is stripped off and discarded.
The payload inside the frame is routed to the port and it will leave on its way to
the next device, and another frame with a different MAC address and
recalculated FCS is created to encase the packet. This frame is then transmitted
to the next destination.

The network devices that work at this layer—usually switches—are commonly
referred to as layer 2 devices or layer 2 switches.

Finally, you should be aware that layer 2 switches can support several
networking enhancements such as Virtual LAN (VLAN) and Class of Service
(CoS) tagging, which is accomplished by adding a 4-byte 802.1Q field between
the MAC addresses and EtherType field. You might see these frames between
switches (but not on user ports).

VLAN is a layer 2 solution that allows administrative partitioning of various
ports on a switch into separate broadcast domains. Devices located on different
VLAN:Ss are effectively isolated from each other as if they were on separate
physical networks. VLANSs can be dispersed across multiple switches without
running separate cables for each VLAN if the switches support VLAN tagging.
Communication between devices on separate VLANSs generally requires using a
router.

In the following Wireshark packet details screenshot, the Ethernet II frame
Destination and Source MAC addresses, Type (indicating that the next layer
protocol is IP), and Frame check sequence are circled, as is the Frame
summary.

Note

Wireshark displays a summary of each frame that includes frame sizes, captured
timestamps and interframe times, and other useful information. This is metadata
calculated by Wireshark to aid in analysis and not a part of the captured frame.

The following screenshot highlights the significant fields of an Ethernet frame:

FfFrame 7: 674 bﬁies on wire (5392 bits),
= Ethernet II, Src: HonHaiPr_99:db:s85 (DoO:

674 bytes captured (5392 bits) on interface 0O
:db: 85}, Dst: CiscoCon_21:b7:ec (cB:d7:19:21:b7:ec)

Address: Ciscolon_21:b7:ec (cB8:d7:19:21:b7:ec)

pele dien swes swss aass = LG bit: Globally unique address (factory default)
....... D oiae iven wnai eees = TG Bit: Individual address: (unieast)
E1 Source: HonHaiPr_99:db:s85 (00:1c:25:99:db:85) |
Address: HonHaiPr_99:db:85 (00:1c:25:99:db:85)
ceDh hiih siee sees ae.. = LG bit: Globally unigque address (Tactory default)
....... O viuv vene saee sea. = IG bit: Individual address (unicast)

Type: IF (0x0800) |

#H{Frame check sequence: O0x0doaddoa |

Internet Protocol Version 4, Src: 192.163.1.116 (192.163.1.116), Dst: 162.159.241.165 (162.159.241.165)
] Transmission Control Protocol, Src Port: 54579 (54579), Dst Port: http (80), Seq: 1, Ack: 1, Len: 616
Hypertext Transfer Protocol

= FH =

Note

Any additional analysis provided by Wireshark in any area of the Packet Details
pane that is calculated or otherwise not part of actual packet contents will be
encased in brackets.

Layer 3 — the network layer

The network layer (called the Internet layer in the DARPA model) primarily
handles the routing of packets across and to other networks along the path from
source computers to destination hosts based on the destination IP address. The
two most common protocols seen at this layer are Internet Protocol and Address
Resolution Protocol.

Internet Protocol

The most common protocol in use at this layer is Internet Protocol Version 4
(IPv4), which includes several essential fields to accomplish the task of routing
packets across networks:

Differentiated Services (DiffServ): This field supports an enhancement to
the IP that is generally called Quality of Service (QoS) and allows
classification of certain types of traffic (voice, video, and so on) so that
these packets can receive priority handling in cases of network congestion.
Total length: This is the total length of the packet (minus the Ethernet
MAC header).

Identification (IP ID): This an incrementing number used to support
fragmentation.

Flags: These are used to support fragmenting (dividing a packet into two or
more smaller ones) in case the large packets have to be divided into several
smaller ones to traverse a packet-size-limited link. These flags along with
the IP ID field values allow proper reassembly of the fragmented packets
into the original.

Fragment offset: If the Flag field is 1 (more fragments), the value in this
field indicates the offset from the start of the original payload in bytes that
this fragment packet contains.

Time to Live (TTL): This is a "hop" or time counter that is decremented
every time a packet passes through a router. If the TTL reaches zero, the
packet is discarded. The primary purpose is to keep packets from living
forever and crashing the network in the case of an inadvertent path loop.
Protocol: This identifies the protocol in the IP packet's payload. Wireshark
uses this to determine the next protocol dissector to apply to packet
decodes.

Source and destination IP addresses: These are the IP addresses of the
sending machine and the ultimate destination machine. IP addresses are 4
bytes long and are represented as four octets (numbered 0 through 255

decimal) separated by periods.

In the following screenshot, the significant IPv4 fields are circled. These are the
fields you'll want to inspect and be comfortable with when doing packet analysis
at this layer.

[# Frame 7: 674 bytes on wire (5392 bits), 674 bytes captured (5392 bits) on interface 0O
Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85), Dst: CiscoCon_21:b7:ec (c8:d7:19:21:b7:ec)

B Internet Protocol version 4, Src: 192.168.1.116 (192.168.1.116), Dst: 162.159.241.165 (162.159.241.165)
version: 4
Header length: 20 bytes

BlDTfferentTated Services Field: Ox00 (DSCP Ox00: Default; ECN: 0x00: Not-ECT (Mot ECK-Capable Transport])l

0000 00.. = Differentiated Serwvices Codepoint: Default (0x00)

...... 00 = Explicit Congestion Notification: NOt-ECT (Not ECN-Capable Transport) (0x00)
Total Length: 660 |
Identification: 0Ox30a0 (12448)
ElfFlags: ox02 (Don't Fragment)

i [T = Reserved bit: Not set

1.. = Don't fragment: Set

..0. = More fragments: Not set
Fragment offset: O
Time to Tive: 128
Protocol: TCP (&)
[Header checksum: 0x0000 [validation disabled]
Source: 19%2.168.1.116 (192.165.1.116)
Destination: 162.15%.241.165 (162.159.241.185)
¥ Transmission Control Protocol, Src Port: 54579 (54579), Dst Port: http (80), Seq: 1, Ack: 1, Len: 616
+ Hypertext Transfer Protocol

+

E

Address Resolution Protocol

Another protocol you'll see at the network layer is Address Resolution Protocol
(ARP), which is used by a device to obtain the MAC address of another device
when it only knows that device's IP address.

In the following Wireshark packet details screenshot, note that the Ethernet
frame destination MAC address is Broadcast (ff:ff:ff:ff:ff:ff), Type is ARP
(0x0806), and the station has provided its own MAC and IP address in the ARP
protocol Sender fields (which other stations listen to and use to build a table of
MAC and IP addresses). It provides the IP address of the target device and puts
all zeros in the Target MAC Address field. The target device should return a
similar ARP packet addressed to the requestor with its MAC address in the
Sender field.

A station will send an ARP request only in the following situations:

e The station that requires a MAC address for a target device hasn't heard a

previous broadcast of that station's MAC address, or its ARP table has
timed out (ARP entries are only kept for a period).

e The station that requires a MAC address for a target device has calculated
(from the target's IP address and its own subnet mask) that the target device
should be on the same LAN. Otherwise, the station assumes the target
device is on a different network and sends its first session initiation packet
to the default gateway (router) MAC address based on the entry in the
sending station's default gateway configuration setting. The default gateway
will forward the packet to the appropriate egress port to route it to the
destination.

e The station that needs to send a packet to a distant network doesn't know
the MAC address of its default gateway (for example, just after a power-

up).

The following screenshot highlights the significant fields of an ARP packet:
[F Frame 35692: &0 bytes on wire (480 bits), &0 bytes captured (480 bits) on interface 0
E Ethernet II, Src: Cisco_55:14:b4 (00:27:0d:55:14:b4), Dst: Broadcast (FF:ff:fF:ff:TF:TF)
E Destination: Broadcast (FTF.ff:fF:fF:fF:FF)
F Source: Cisco 55:14:b4 (00:27:0d:55:14:b4)
Type: ARP (0x0806)
Padding: 0QOQOO0O0000000000:00000000:0 000000000000
Hardware type: Ethernet (1)
Protocol type: IP (0x0800)
Hardware size: &
Protocal size: 4
Opcode: request (1)
Sender MAC address: Cisco_55:14:b4 (00:27:0d:55:14:b4)
Sender IP address: 192.168.1.2 (192.168.1.2)
!rarget MAC address: 00:00:00_00:00:00 {00:00:00:00:00:00)
Target IP address: 192.168.1.107 (192.165.1.107)

Other protocols utilized at this layer include Internet Control Message
Protocol (ICMP), which is used to send network error messages between
devices, and Internet Group Management Protocol (IGMP), which is used by
hosts and adjacent routers to establish multicast (one-to-many) group
memberships for network applications such as streaming video and gaming.

Layer 4 — the transport layer

The transport layer, as it's called in both the OSI and DARPA models, is

responsible for transporting packets of data in unique sessions between
applications or a user and an application by means of port numbers. The
combination of a device or user's IP address and that device or user's assigned
port number (referred to as a socket) will be different from another devices or
users' IP address and port numbers (on the client side).

If the source host for a packet is a server, the source port is likely to be a well-
known number for standard applications and services, such as port 80 for HTTP.

The transport layer typically uses one of two protocols, User Datagram Protocol
or Transmission Control Protocol, with the latter being the more prevalent for
most applications.

User Datagram Protocol

The User Datagram Protocol (UDP) is a fairly simple protocol. It is considered
an unreliable transport as there's no guarantee of packet delivery or ordering, but
it has lower overhead and is used by time-sensitive applications such as voice
and video traffic, as well as by network services applications such as DNS.

The UDP header is only 8 bytes long and consists of the following:

e Source and Destination port number:These are 2 bytes each.

e Length: This is the length of the UDP header plus the payload. This is a 2-
byte field.

e Checksum: This is the 2-byte field used to check errors of the UDP header
and data. If no checksum was generated by the transmitter, this will be all
Zeros.

The following screenshot shows the fields contained in a UDP header:

¥ Frame 18: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits)
Ethernet II, Src: Polycom_82:92:20 (00:04:f2:82:92:20), Dst: Cisco_55:14:b5 (00:27:0d:55:14:b5)
Internet Protocol Version 4, Src: 10.1.1.100 (10.1.1.100), Dst: 208.732.144.71 (208.73.144.71)
= User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 24268 (24268)
Source port: 2222 (2222
Destination port: 24268 (24268)
Length: 180

[F Checksum: Oxbe4c
[+ Real-Time Transport Protocol

Transmission Control Protocol

Unlike UDP, the Transmission Control Protocol (TCP) provides reliable
delivery of data by detecting lost, duplicated, or out-of-order packets, requesting
retransmission of lost data, or rearranging packets in the right order before
delivering them to the application. TCP can also accept a large chunk of data
from an application and handle getting the data transported to the other end
reliably using multiple packets and reassembling them at the other end (as can
UDP, but not reliably; the application has to determine and recover from lost
packets).

The TCP header contents and length can vary depending on the options that may
be in use, but in its simplest implementation, it consists of:

¢ Source and Destination ports (2 bytes each): These are well-known
registered ports that are used (on servers) to access standard application
services such as HTTP, FTP, SMTP, databases, and so on. Port numbers
assigned to client/user sessions are usually in a higher number range and
assigned sequentially.

e Sequence number (4 bytes): This is a number that represents the first octet
in any given segment. Sequence numbers are initialized at the beginning of
new sessions as a random number, and then incremented as data bytes and
sent.

¢ Acknowledgment number (4 bytes): When the ACK flag bit is set, this
field contains the next sequence number expected from the sender, which in
turn acknowledges receipt of all the bytes received up to that point.

Note

The use of sequence and acknowledgment numbers are how the TCP
ensures reliable delivery of data by tracking the number and order of
received bytes.

Sequence and acknowledgment numbers are large and difficult for humans
to follow; Wireshark can convert and display these as relative values that
start with O at the beginning of a session to make it easier to inspect them
and relate the values to the number of bytes transmitted and received.

o Flags (9 bits): These bits are used to control connection setups,

terminations, and flow control mechanisms.

e Window size (2 bytes): This indicates the current size of the buffer on this
host used to store received data until it can be handed off to the receiving
application. This information lets the sending host adjust data flow rates in
case of network or host congestion.

The following screenshot highlights the significant fields of a TCP header:

[H Frame 7: 674 bytes on wire (5392 bits), 674 bytes captured (5392 bits) on interface 0O
[# Ethernet II, src: HonHaiPr_S9:db:s85 (00:1c:25:99:db:85), Dst: CiscoCon_21:b7:ec (c8:d7:19:21:Db7:ec)
[H Internet Protocol Version 4, Src: 192.168.1.116 (192.168.1.118), Dst: 162.155.241.165 (162.159.241.165)
‘= Transmission Contral Protocol, Src Port: 54579 (54579), Dst Port: http (80), Seg: 1, Ack: 1, Len: 616
Source port: 54579 (545790
Destination port: http (80)
[Stream index: 1]
|Sequence number: 1 | {relative sequence number)
[Next sequence number: 617 (relative sequence number)]
IAcknowIEdgment number: 1 |[re1at1ve ack number)
Header Tength: 20 bytes
Flags: Ox018 (PSH, ACK)
window size value: 16425
[Calculated window size: 16425]
[wWindow size scaling factor: -1 (unknown)]
Checksum: 0x58e8 [validation disabled]
F [SEQ/ACK analysis]
[Timestamps]
i+ Hypertext Transfer Protocol

]

Layer 5 — the session layer

The session layer handles setting up, controlling, and ending sessions within an
application between two computers. This is not necessarily the same thing as, for
example, a TCP connection, although the two will be related. The application
sessions can span and outlive multiple network connections. An example of a
networking protocol that operates at this layer is Network Basic Input/Output
System (NetBIOS).

Layer 6 — the presentation layer

The presentation layer converts incoming and outgoing data from one format to
another and handles encryption/decryption and/or compression if any of these
are required. The presentation layer is also responsible for the delivery and
formatting of information to the application layer for further processing or
display. An example of a presentation service would be the conversion of an
EBCDIC-coded text computer file to an ASCII-coded file.

Layer 7 — the application layer

The application layer, which may (or may not) perform separate functions from
the application itself, handles message formatting, human to machine interfaces,
and so on. This layer represents the services that directly support applications
such as software for file transfers, database access, e-mail, and so on.

In many widely used applications, no distinction is made between the
presentation and application layers. For example, HyperText Transfer Protocol
(HTTP), which is generally regarded as an application-layer protocol, has
presentation-layer aspects such as the ability to identify character encoding for
proper conversion, which is then done in the application layer.

In the DARPA model, the OSI layers 5-7 are combined into an application layer.
From a packet analysis standpoint, the particular manifestations and visibility (in
Wireshark) of the functions in the top layer(s) will vary depending on the
applications and specific protocols employed to support them.

The following diagram summarizes the OSI and DARPA layers and how various
networking protocols and services align with these layers and each other:

TCP/IP Protocol Suite

l

0S| model layers DARPA layers | I

Application Layer

Presentation Layer Application Layer HTTP SMB2 SMTP DNS RTP SNMP

Session Layer

Transport Layer Transport Layer TCP UDP

| 1avp | icmp ND [MLD
Network Layer Internet Layer ICMPv6

ARP IP (IPv4) IPv6

Data LII"IK Layer] _ e e e _

Network Interface ! R
Layer ! wireless || Frame Relay
i

LAN 1

P S e s V] -

Physical Layer

O AM

Encapsulation

You may have observed by now that packets encapsulate various protocols into
successive layers, just like peeling an onion. An Ethernet frame contains a
datagram payload; this datagram is a packet with an IP header and payload. The
IP packet payload consists of a TCP header and data segment, which in turn may
contain an HTTP header and payload. This encapsulation is easier to visualize
when working within Wireshark's Packet Details pane.

IP networks and subnets

Before moving on, a short review of typical IP subnetting terms and typical
applications should help clarify the terms used in this book and will act as a
refresher for those already versed in IP addressing.

A /24 designator placed after a network IP address in diagrams or device
configurations is a Classless Inter-Domain Routing (CIDR) designator that
indicates the following:

e The first 24 out of the 32 bits in the 4-byte IP address represents the
network portion of any IP address on this network. This network is
designated as 10.1.1.0 (the next /24 network would be 10.1.2.0, then
10.1.3.0, and so on).

e The last 8 bits of the 32-bit address can be used to give workstations, hosts,
and other devices an IP address, with the following exceptions:

o The first host address on this network is reserved as a network
designator to build routing tables: 10.1.1.0 (typically called the
loopback address)

o The last host address on this network is reserved as an IP broadcast
address: 10.1.1.255

The 8 bits binary is equal to 256 decimal, minus the preceding two exceptions.
This leaves 254 usable IP addresses for devices, starting with 10.1.1.1,
10.1.1.2,and soon up to 10.1.1.254.

e Another way of expressing subnet masks is in a dotted decimal format,
255.255.255.0, which again indicates that the first 24 bits of an IP address is the
network and the remaining 8 bits are for hosts.

o There are Class A, Class B, and Class C address ranges, as well as a subset of
IP ranges reserved as private addresses to use within organizations.

The following table shows the IP address ranges in the three major classes:

Class of IP address|{Starting IP address||[Ending IP address

1.0.0.0 126.255.255.255

B ||128.0.0 .0 ||191.255 .255.255 |

192.0.0.0 223.255.255.255

The following table shows the private IP address ranges:

Class of private IP addresses||Starting IP address||[Ending IP address
A 10.0.0.0 10.255.255.255
B 172.16.0.0 172.32.255.255
C 192.168.0.0 192.168.255.255

» Subnet masks can be configured to allow more or fewer hosts per subnet with
a corresponding tradeoff in having fewer or greater network addresses with
which to build multiple networks within larger organizations.

A deeper review of IP addressing and subnetting is beyond the scope of this
book. If you're not familiar with these concepts, some additional study would be
advisable as a solid understanding of IP subnetting is essential for most analysis
activities.

Switching and routing packets

So far, we've covered the topics required to discuss how packets of data get
routed from computer A to host B across LANs and/or WANs over distances that
may range from across a room to across the globe. The important concepts to
remember are that Ethernet frames work with switches and IP packets work with
routers to accomplish this feat, which we'll cover in the next section.

Ethernet frames and switches

To reiterate what was outlined in the layer 2 (the data-link layer) discussion,
Ethernet frames are switched from the entry port to the appropriate destination
port based on the destination MAC address. Network switches build tables of
which MAC addresses belong to each port, compare a frame's destination MAC
address to these tables, and switch the frame to the appropriate egress port if the
destination is on the same switch or out a trunk port to another switch or router
otherwise.

Note that the first time a switch sees a destination MAC address it doesn't

recognize, it sends the packet (which will usually be an ARP packet) out all the
ports until a device answers and it can add the new MAC address to its content
addressable memory (CAM) table that maps MAC addresses to specific ports.

Frames carrying packets destined for remote networks are sent to the default
gateway port MAC address. If you look at a list of MAC addresses in the
Ethernet tab of a Conversations table in Wireshark and see an address with a
drastically higher volume of traffic than the other stations, this is likely a default
gateway (router) port MAC address. This port is the pathway into/out of this
LAN from/to other networks.

On any given LAN, you'll see workstations, servers, and routers generating ARP
and Domain Name Service (DNS) requests:

e ARP: This is used to resolve IP addresses to MAC addresses
e DNS: This is used to resolve hostnames to IP addresses

In the following diagram, there are two user workstations and a server that are
connected together in a LAN residing on the 10.1.1.0/24 IP network. A router
is attached to this network, which has a WAN link to another location.

Router 1

Switch 1 MAC D WAN Link

Mgmt IP 10.1.1.5 Intf Fa/0 IP 10.1.1.1/24

@%

NETWORK /,
10.1.1.0/24 /

Switch 3
Mgmt IP 10.1.1.7

Switch 2 /
Mgmt IP 10.1.1.6 /

N

/ HOST ‘Venus'
MAC A MAC B MAC C
IP 10.1.1.30 IP 10.1.1.47 J \ IP 10.1.1.25

The following two scenarios leverage this drawing to show how MAC addresses
are utilized to switch Ethernet frames around local area networks:

e The workstation with MAC address B wants to use an application on the
server Venus, which is unknown to all the network devices as it was just
powered up. The workstation knows the IP address of Venus as the IP
address was preconfigured in the client application, but it doesn't know the
server's MAC address.

The workstation broadcasts an ARP packet with its own MAC and IP
address as the sender, the IP address of the Venus server, and all the zeros
for the MAC address in the Target fields. Venus responds to the
workstation with an ARP response that includes its MAC address of C in
the sender MAC address.

The workstation then sends a session initiation packet to the server using
the server's MAC address as the destination MAC in the Ethernet frame.

These Ethernet frames traversed switch 3, which learned both devices'
MAC addresses from observing the ARP conversations. The rest of the
switches in the LAN network learned workstation C's MAC address when it
broadcasted its ARP packet (because switch 3 sent this ARP packet out all
ports), but not the server's MAC as the server responded directly to C.

The workstation with MAC address A now wants to use an application on
the server Venus. It doesn't know the server's MAC address either, so it
sends an ARP request as well, which switch 2 broadcasts out all its ports, as
does switch 1 and switch 3 as the switches only look at MAC addresses and
the destination MAC address of any ARP request is ff:ff:ff:ff:ff:ff, so each
switch is obliged to send the broadcast frame out all ports.

However, when the server Venus responds to A's ARP packet, using A's
MAC address, each switch in the path has learned which ports it saw A's
MAC address come in on. So, each switch only sends Venus' response out
the appropriate port back to workstation A. The same is true for learned
non-broadcast frames. If a switch doesn't recognize a destination MAC
address of a nonbroadcast frame, these are sent out all ports the first time as
well.

As switch CAM tables get populated with MAC addresses and their
associated ports, the number of frames that must be sent to every device in
the LAN as well as the workload on all these devices is reduced
significantly.

IP addresses and routers

When packets need to leave the LAN to get to a remote IP network, routers are
required to route the packets based on their destination IP addresses. The
following scenario (still referring to the preceding screenshot) illustrates some of
the details involved in one possible situation.

Workstation A now wants to use an application on the server Mars, which
resides on a different network than in the previous scenarios. And in this case,
workstation A doesn't know the IP address of the server; it only needs its name.
Workstation A will send a DNS request packet to the DNS server IP address
configured in its network settings (the DNS server isn't shown here) with the
hostname Mars; the DNS server will return the IP address of Mars 10.1.2.25.
Workstation A calculates that this host isn't on its own network from a
comparison of its IP address and subnet mask with Mars' IP address, so it sends
the session initiation packet to router 1, which was configured as its default
gateway in its network settings. We'll assume that Workstation A already knows
the MAC address of router 1's port from a previous ARP exchange to find router
1's MAC address from the given IP address.

When the router receives A's frame, which was sent to the router port's MAC
address, it inspects the destination IP address inside the IP header and looks up
the appropriate port to forward the packet to. This routing process is supported
by routing table entries the router builds from route information broadcasted by
other routers; each router tells all the others what networks it knows a route to.

In this case, the Ethernet frame surrounding A's packet is stripped off and the
remaining payload (packet) is sent across the WAN link to router 2, which also
inspects the IP header destination IP address and looks up the correct port to
forward the packet to. Router 2 wraps the packet in a new Ethernet frame with
its own MAC address X as the source and the Mars server's Y address as the
destination MAC (assuming the router already has the server in its MAC table),
and transmits the packet out onto the LAN to get switched to the Mars server, as
shown in the following diagram:

Router 2

MAC X Switch 20
WAN Link Intf Fa/0 IP 10.1.1.1/24 Mgmt IP 10.1.1.5
NET UUORK Switch 25
10.1.1.0/24 Mgmt IP 10.1.2.10

HOST ‘Mamr%

MAC Y
IP 10.1.1.25

WAN links

Actually, network packets may traverse several routers and WAN links to reach
the destination network, and each router traversed is called a hop. In the context
of packet analysis, you should be aware that WAN links can introduce packet
delivery delays or latency due to the following four major factors:

¢ Physical speed-of-light propagation delay: This is the amount of time
required for electrical or light signals to travel across copper/fiber cables
over long distances.

¢ Network routing/geographical distance: The WAN link routes are never
in a straight line between points. They have to traverse major telephony
switching centers and route along railways, roads, and other opportunistic
paths.

¢ Serialization delay into and across WAN links: The WAN links are often
slower speed links, and it takes a finite amount of time to send packet data
across these links one bit at a time.

e Queuing delays: In network device buffers, including additional delays that
may be induced by Quality of Service policies, some packets receive
priority and others have to wait longer for their turn to be transmitted.

The effects of network delay incurred across LAN and WAN links can be seen
and measured in Wireshark packet traces by inspecting the elapsed times
between session setup packets.

Wireless networking

Wireless networks utilize a range of 802.11 specifications to provide
connectivity over 2.4 or 5 GHz frequency bands at a variety of speeds. The
significant differences between wireless frames and those found on wired
networks are as follows:

e Wireless networks employ carrier sense (every station is listening), multiple
access (shared medium), and collision avoidance (avoiding collisions
instead of just recovering from them) techniques, which reduce the
throughput

¢ In addition to data frames, which get forwarded to the wired network,
wireless frame types include the following:

o Management frames: This is used for authentication and association
tasks

o Control frames: This controls send/receive functions on the shared
media to help avoid collisions

Wireshark can be used to capture and analyze packets on Wireless networks.
However, in order to analyze the control and management frames, as well as
select the radio channels to capture on without having to associate with a
specific channel, specialized adapters are required. These adapters are available
from various networking vendors.

These wireless adapters and their drivers enable Wireshark to display a pseudo
header just below the frame header in the Packet Details pane, which includes
information about:

¢ Data rate: This is the maximum data transfer rate possible across the radio
channel

¢ Channel frequency: This is the RF channel frequency that the station is
using

e Channel type: This is the 802.11 protocol used, and the common types are
a, b, g,and n

¢ RF signal and noise levels: This is the received RF signal strength and
background noise levels; the larger the difference between these two the
better the signal can be decoded

Remember when analyzing wireless networks, the wireless access points utilize
a wired LAN connection to the rest of the network that may warrant a separate
analysis. The access point strips off the 802.11 header and encapsulates a packet
in an Ethernet frame before sending the packet off on the wired network.

The following screenshot illustrates the contents of a typical Radiotap Header
and IEEE 802.11 frame; note the Data Rate, Channel frequency, and
Signal/Noise values:

[Frame 1138: 2174 bytes on wire (17392 bits), 2174 bytes captured (173292 bits) on interface 0O

B Radiotap Header v0, Length 26
Header revision: 0O
Header pad: 0
Header length: 26
Present Tlags
MAC Timestamp: 664141796
¥ Flags: Ox50
Dpata Rate: 1z.0 Mb/s
Channel Trequency: 2437 [BG &]
Channel type: 802.11g {pure-g) ({O0x00c0)
55I signal: -7z deEm
55I woise: -5& dBm
Antenna: 0
55I signal: 14 dE
[l IEEE 802.11 unrecognized (Reserved frame), Flags: .p.P.....
Type/subtype: Unknown (0xz2d)
Frame Control Field: Oxd850
. 100 0010 1110 1100 = Duration: 17132 microseconds
Receiver address: 0f:14:3e:76:25:1e (O0F:14:3e:76:25:1e)
Destination address: 0F:14:3e:76:25:1e (OF:14:3e:76:25:1e)
Transmitter address: 49:T1:33:a85:cF:84 (49:T1:33:a5:cC7:84)
Source address: 49:T1:33:a5:c7:84 ([49:F1:33:a5:c7:584)
ESS Id: eb:05:45:d9:c8:95 (6b:05:45:d9:cB:195)
Fragment number: 13
Sequence number: 3176
Frame check sequence: Ox758Fob30 [incorrect, should be Ox0992cafi]
[Qos Control: Oxoeld

Note

There are numerous reference materials and books that you can read to learn
more about networking and network protocols. One of the classic sources is
TCP/IP Illustrated Volumes I, 11, and III, W. Richard Stevens, Addison-Wesley
Professional, available online or in book formats.

Summary

The important points covered in this chapter included how Ethernet frames are
switched to the appropriate switch ports on a LAN based on destination MAC
addresses that packets are routed across and to remote networks based on
destination IP addresses, and how the frames carrying packets destined for
remote networks based on the destination IP address are sent to the default
gateway's port MAC address.

We also covered how and why slower and/or longer distance WAN links can add
significant amounts of delay to packet transmissions, which slows application
data exchanges and increases user response times. We finished the chapter by
discussing how Wireshark can capture and analyze packets on 802.11 wireless
networks using specialized adapters.

In the next chapter, we'll cover in detail how to capture and filter packets using
Wireshark.

Chapter 3. Capturing All the Right
Packets

In order to analyze packets to troubleshoot connectivity, performance, or security
issues, you have to successfully capture all of the right packets and then identify
and filter out just the packets that pertain to the goal at hand.

In this chapter, we will cover the following topics:

Picking the best capture point

TAPs and switch port mirroring

Wireshark's capture interfaces, filters, and options
Verifying a good capture

Isolating the conversation(s) of interest
Using the Wireshark Conversations window
Wireshark's display filters

Filtering expression buttons

Following TCP/UDP/SSL streams

Marking and ignoring packets

Saving filtered traffic

You'll recognize that many of these activities are the same ones that we
accomplished in Chapter 1, Getting Acquainted with Wireshark, to perform a
capture and filter just the packets involved in loading a web page. In this chapter,
we'll expand and finish rounding out your skills in all these topics.

Picking the best capture point

Determining the best location to perform a packet capture depends on several
considerations:

e The nature of the issue being investigated

e The relative ability to perform a capture in a location that provides the
highest degree of usefulness to the analysis

e The amount of technical difficulty, risk, and time required to perform a
capture at a given location

User location

If you're troubleshooting a user complaint, the first capture point should be at the
user's workstation to gain a view from the user's perspective and verify/clarify
the situation that the user is reporting. From this vantage point, you can:

e Ensure that basic network services such as ARP and DNS are working
correctly

e Analyze the initial login process if the user authentication involves a
different device than the target application server

e Measure network round trip times from the user to the target host(s)

e Determine whether the TCP session setup handshake is appropriate for the
application being accessed

e Measure service response times (such as HTTP or SMB response times)

e Determine whether the user is experiencing packet loss and retransmissions,
out-of-order packets, or other network-related anomalies

e Capture any application error messages being sent to the user and the
requests that resulted in those errors

Capturing from a user's location is usually much simpler from a practical
standpoint and there is a lot less traffic to deal with, which makes capture sizes
smaller and filtering the packets of interest simpler. Disconnecting a user's
Ethernet cable for a few minutes to insert a TAP (we'll discuss these in the next
section) or installing Wireshark on the user's workstation does not typically
require special authorization or preparation as the risk to other users is
negligible.

Server location

If a capture from a complaining user's workstation isn't possible or practical, a
capture from the server end can still be useful, but it might be advantageous to
apply a capture filter to gather just the traffic to/from the user's workstation
(based on the user's IP address) to limit the capture file size. You can still
measure network round trip times, server response times, analyze TCP
handshake details, and detect retransmissions caused by packet loss, and perhaps
the login/authentication process from this location.

Capturing from a server location is also appropriate when analyzing backend
service response times. For example, if users interact with an application server
but that app server performs transactions with a backend database in order to
fulfill user requests and if there are complaints of slow response times, then an
analysis of application server-to-database server interactions can help isolate the
true source of the poor performance to one or the other host and the types of
requests that result in slow or erroneous responses.

Other capture locations

For the majority of packet captures, you'll likely be at user workstations or server
switch ports, but there will also be some cases where captures will need to be
performed at other locations.

Mid-network captures

Identifying the source of excessive packet loss or disordering over a network
path may require performing packet captures at various points along that path,
typically at distribution or core switch trunks, or interfaces to routers, firewalls,
and so on, to find the network segment where packet loss becomes apparent.

Both sides of specialized network devices

Today's modern networks often employ a number of network devices that can
actually alter the contents of packets flowing between clients and servers; in
some (occasional or last resort) cases, it may be necessary to capture on both
sides of these devices to isolate or prove a functional or configuration problem:

¢ Routers and gateways: These are also called Internet gateways in some
configurations and may be configured to perform a Network Address
Translation (NAT) function that alters and hides the user's actual IP
address from an outside network. This is done by substituting a public IP
address for the user's real address. This usually involves translating port
numbers as well so that a single public IP address can be used to support
multiple sessions; in which case, the solution is called Port Address
Translation (PAT). The end result of the PAT functionality is that a capture
from the client side and a capture at the server side of the same session
conversation will involve different IP addresses and port numbers.

The following diagram illustrates how a PAT device translates IP addresses
and ports from an internal private network to and from an externally visible
IP address and has translated the ports used for an individual user session:

SRC: 10.1.1.30 port 1025 — SRC: 155.57.1.12 port 2060
DST: 10.1.1.30 port 1025 +— DST: 155.57.1.12 port 2060

NAT / PAT device

10.1.1.1 155.57.1.12
NETWORK /

N,

10.1.1.0/24 f;

* Proxy servers and firewalls: Devices such as these can act as an intermediary
between clients wanting to use resources from other (usually external) servers.
These devices are most typically deployed between users inside a company and
outside (web) services accessed via the Internet. These devices are employed for
their security capabilities, allowing administrative control over what can be
accessed and the type of data content that can be relayed between the two
networks, malware scanning, and so on. From a packet analysis standpoint, you
should be aware that in addition to performing a NAT/PAT function, some
implementations of these devices may actually terminate a user session on one
side and initiate a completely different session between the device and the
outside host on the other side, on behalf of the user, such that the TCP handshake
and session parameters, [P addresses and port numbers, and packet sizes can all
differ on either side.

o IP tunnels using Generic Routing Encapsulation: These are used to connect
two IP networks that don't otherwise have a native routing path to each other.
The original packets are encapsulated inside packets with different IP addresses
appropriate for the network media that they will traverse. The most common use
of IP tunneling is to connect private corporate networks together through public
Internet connections or to connect Internet Protocol Version 6 (IPv6) networks
together over traditional IPv4 network paths. IP tunnels can be configured
between routers and high-end switches.

Although it may be necessary (to validate an issue to other support teams) or

more practical to capture at or near the interfaces to the devices described earlier,
it is usually easier and just as effective to perform the captures at user and/or
server locations. Unless you're part of a network support team, you won't have to
conduct an analysis in such an advanced and complicated environment.

Test Access Ports and switch port
mirroring

If you're capturing from a user location and cannot or do not wish to install
Wireshark on the user's machine or you're capturing at another location in the
network, you have two options to obtain a copy of the packets traversing the
network: Test Access Ports or switch port mirroring.

Test Access Port

A Test Access Port (TAP) is a device that copies all the packets flowing through
it to one or more monitor ports. A station with Wireshark installed on it can be
connected to one of the monitor ports to capture the packets.

You should select an aggregating TAP that supports the link speed of the
network ports being analyzed (usually 100 Mbps or 1 Gbps) and that will copy
and combine the packets flowing in both directions (transmit data from the user's
workstation and receive data from the network); the aggregating TAP funnels the
traffic to a single connection (transmit to the Wireshark station) so that you can
capture the traffic in both directions with a single network interface on the
Wireshark station. Be aware that since you're copying packets from two
directions into one pipe to the Wireshark station, it is possible to oversubscribe
the monitor port if traffic rates are extremely high. If this happens, the excess
packets will be dropped. Oversubscription usually isn't a concern at user
workstations, but it could be for switch trunks or other high traffic areas.

The following figure illustrates how a TAP is inserted between a user
workstation and that workstation's switch port, and how a Wireshark workstation
is attached to capture packets:

iy
I!i

SNGLEstrean | 55120487 [——
1

1

—

L BT-5

Switch port mirroring

Switch port mirroring, also known as a Switched Port Analyzer (SPAN) feature
or spanning a port, is the practice of configuring a network switch to perform the
same function as a TAP: to make a copy of the packets flowing in and out of a
specified port and send them to an otherwise unused monitor port where a
Wireshark station is attached to capture the packets.

The advantage of using port mirroring is that no connections need to be broken
to insert a TAP. The monitor port can be easily configured by a switch
administrator and just as easily disabled.

The potential issues with this option include the fact that not all switches support
port mirroring, and there is some evidence to suggest that using this feature can
affect the performance of the switch, at least for the port being monitored. The
possibility of oversubscribing the monitor port from excessive transmit plus
receiving traffic levels also exists for port mirroring, as is the case when using a
TAP, and this is likely when monitoring switch trunks to other switches, as these
will be carrying traffic for multiple users.

The following diagram is a simple illustration of a port mirroring scenario on a
switch. The packets to and from the workstation port are copied to the port
where the Wireshark station is connected.

Capturing packets on high traffic rate links

If you need to capture packets on a high traffic rate link such as a trunk link
between larger switches, Wireshark is probably not the best solution. It may not
be able to keep up with a busy link. Wireshark is actually a GUI tool that calls a
command-line executable called dumpcap, which captures the packets and
saves them to a disk file. Wireshark reads this file and presents the processed
packets to the user interface. An alternative to Wireshark is to use the dumpcap
or tcpdump executable directly (these are covered in Chapter 8, Command-line
and Other Utilities) or a high performance capture appliance offered by
numerous vendors.

Capturing interfaces, filters, and
options

Capturing packets with Wireshark consists of selecting the correct network
interface to capture packets from, applying any capture filters that may be
appropriate, and applying the correct options to accomplish the capture in the
desired manner. We'll cover these three topics in the following sections.

Selecting the correct network interface

As discussed in Chapter 1, Getting Acquainted with Wireshark, if you have
multiple network interfaces on your machine, you need to determine and select
the correct interface to capture packets. In Wireshark's Capture menu, click on
Interface or click on the first icon on the icon bar.

The Wireshark Capture Interfaces window provides a list and description of
the network interfaces on your machine, the IP addresses assigned, and the total
packets and packets per second counters for each interface. If an interface has an
IPv6 address assigned and this is being displayed, you can click on the address
to toggle and display the IPv4 address.

The following screenshot illustrates a typical Capture Interfaces window listing
a LAN and wireless interface along with their IP addresses and packet counters:

M Wireshark: Capture Interfaces IEI@
Device Description P Packets Packets/s
W! £ Local Area Connection Intel(R) 82567LM Gigabit Network Connection 1921681115 51340 112 |Details|
f#] Wireless Network Connection Microsoft 1921681111 5185 0 |Details|
Help | Start Stop Options ‘ [Close]

The Capture Interfaces window provides the following two options:

e Clicking on the Details button for any of the listed interfaces opens an
Interface Details window that provides a wide range of information that
can be useful to verify the interface's operation. The status of the Link and
Link Speed information is displayed in the Characteristics tab, and the
MAC address of the selected NIC is displayed in the 802.3 (Ethernet) tab.

e The rest of the capture options are configured in the Capture Options
window, which is opened by clicking on the Options button in the Capture
Interfaces window, or by selecting Options from the Capture menu, or by
clicking on the second icon in the icon bar.

The following screenshot illustrates a typical Capture Options window with a

number of options specified. You can refer to it for examples of the topics on
Capture Options.

M Wireshark: Capture Options || (=] @
Capture
Capture Interface Link-layer header Prom. Mode Snaplen [B] Buffer [MiB] Capture Filter

_ Local Area Connection

W] feso-299afaflicloB345ce Ethernet enabled default 2 ether host 00:08:15:00:08:15
1521681115

_ Wireless Network Connection =

[Tl feBo-Sc85:8117:1502-6325 Ethernet enabled default 2 3
1521681111

I 15

[7] Capture on all interfaces Managelnten‘acesl

[#] Use promiscuous mode on all interfaces

Capture Filter: | ether host 00:08:15:00:08:15 |Z| [Compile selected BPF5|

Capture Files Display Options

File: Browse... [#] Update list of packets in real time

Y] Use muttiple files Use pcap-ng format [¥] Automatically scroll during live capture
[7] Next file every 100 * | megabyte(s) [~]

[T Mext file every 1 ~ | minute(s) B LRk e ot dichin

[¥] Ring buffer with 5 = files Mame Resolution

[T] Stop capture after |1 o file(s) [7] Resohve MAC addresses

Stop Capture Automatically After... [P} Re=bve nehviark biycr neames

[|2 - packet(s) N
” |¥| Resolve transport-layer name
1 7 [megabyte(s)
e = minute(s) [¥] Use external network name resohver

| Help Start J l Close

As seen in the preceding screenshot, the Capture Options window displays the
available interfaces and their IP addresses and allows you to select one or more
of these interfaces to perform the capture. Wireshark can capture from multiple
interfaces simultaneously, as well as from virtual interfaces. The primary
advantage of starting with the Capture Interfaces window is the availability of
the packet counters to aid in identifying active interfaces, a feature not available

in the Capture Options window. Otherwise, if you know which interface you'll
want to use, you can skip using the Capture Interfaces window and start here.

Clicking on the Manage Interfaces button in the Capture Options window
brings up an Interface Management window. From the Local Interfaces tab,
you can select to hide interfaces that you do not wish to see displayed in the
Capture Interfaces and Capture Options windows.

There is an option to quickly enable Capture on all interfaces and a Use
promiscuous mode on all interfaces option that is enabled by default. In most
cases, this option should be left enabled so that the chosen interface(s) can
capture and save all the packets seen. Otherwise, only the packets that are being
sent to the Wireshark workstation's MAC address, broadcast, and/or multicast
packets will be seen and captured, which basically negates its usefulness as a
capture device. The Compile selected BPFs button provides a machine
language display of the compiled capture filter, but has no other functional
purpose.

Note
The Capture Filter field has a highlighting feature that indicates valid versus

invalid filter syntax. A green background indicates a good filter and a red
background indicates an invalid or incomplete filter.

Using capture filters

Capture filters are used to reduce the amount of traffic saved during a packet
capture. In practice, capture filters should be used sparingly, if used at all, to help
make sure that no packets that are important for an analysis are inadvertently
missed because they fall outside the capture filter parameters. Remember that
you can always filter out unwanted traffic from a capture, but you can't do
anything about missed packets once the capture is finished. If you're unsure
about a capture, perform the capture again with a more generous capture filter or
none at all.

One scenario where a capture filter is appropriate is when you want to let a
capture run for a long period of time. Then, you should filter out as much
extraneous traffic as possible to keep capture file sizes under control. However,
take care to make sure the capture filter you apply doesn't exclude any traffic
that may be useful for the analysis.

It's usually a good idea to do some trial captures when using capture filters to
verify that the filter is working as desired before doing the official capture that
you want to keep.

Configuring capture filters

Wireshark provides a Capture Filter window that makes it easy to select a
preconfigured capture filter, or you can configure your own based on your needs.

Click on the Capture Filter button in the Capture Options window to open the
Capture Filters window. From this window, you can select from a number of
useful preconfigured capture filters, create a new and unique capture filter for
your purposes, or delete unwanted or erroneous filters. Creating a new filter only
involves giving the filter a name, entering the capture filter syntax, clicking on
New to save the filter, and then finally clicking on OK. Alternatively, you can
click on an existing filter and then click on New, which will create a copy of that
filter at the bottom of the list that can then be modified for your purposes.

The following screenshot illustrates a typical Capture Filter window. In this
case, a capture filter that will only allow traffic to and from a specific Ethernet
MAC address has been selected:

M Wireshark: Capture Filter - Profile: Default El@
Edit Capture Filter

:
Ethernet type 0:0806 (ARP)

Mo Broadcast and no Multicast

Mo ARP

IP anly
IP address 192.168.0.1
IPX only
TCP only
UDP only
TCP or UDP port 80 (HTTP)
HTTP TCP port (80)

m

Properties
Filter name; | Ethernet address 00:08:15:00:08:15

Filter string: | ether host 00:08:15:00:08:15

oK l I Cancel

Wireshark's capture filters use a syntax that is known as the Berkley Packet
Filter (BPF) format, which has legacy roots in the Unix world and is still in use
today with packet-level drivers. Note that the syntax used to capture filters in
Wireshark differs significantly from the syntax used for display filters.

The default selection of capture filters from the Capture Filter window is
helpful in providing examples of capture filter syntax. Some additional examples
of capture filter syntax and examples of that syntax are outlined in the following

table:
Description Syntax Examples
Filter on an Ethernet MAC address ether host ether host

Filter to capture just the traffic from or to a MAC address

XX 1 XX:IXX:1XX:XX:xXX||00:1¢c:25:99:db:85

ether src or ether
dst

ether src
00:1c:25:99:db:85

Filter on an IP address or hostname Filter to capture just the
traffic between two IP addresses Filter traffic in one direction
only between two hosts

host
XXX o XXX . XXX . XXX

src host and dst
host

host
192.168.1.115

host
www.wireshark.org

host

192.168.1.115 and
host 10.1.1.125

Filter for HTTP traffic only

tecp, http, ip6, and
icmp6

src host
192.168.1.115 and
dst host
10.1.1.125

Filter based on a port number port, dst port, and|{Port s3

src port

Filter for DNS packets port 67

Filter for DHCP packets

Filter based on a protocol |arp, icmp, ip, upd, |[httpP

Capture filter logical operators

b !=: >, <, 25, <5, !:

not arp and port
not 53

Filter to exclude ARP and DNS packets not, &&, and, | |, or

53

I arp && port ! “

More information and examples of capture filters can be found on the Wireshark
wiki at http://wiki.wireshark.org/CaptureFilters and the protocol-specific capture
filter syntax is included in the reference information found at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/CaptureFilters
http://wiki.wireshark.org/ProtocolReference

Capture options

The Wireshark Capture Options window offers a variety of controls to
configure captures to suit a particular need.

Capturing filenames and locations

Clicking on the Browse button on the File option allows you to navigate to a
chosen directory in which you can store the capture files and enter a filename for
the capture files.

When the File option is used, Wireshark will append a file number and date-time
stamp to the filename you specify and will not provide a file extension. You
should specify a . pcapng extension in the filename. This is better illustrated with
an example.

The user provided directory and filename is
C:\Wireshark\long_capture.pcapng, and Wireshark will create and save
packets to files in the format
C:\Wireshark\long_capture_00001_20140724132952.pcapng.

If Wireshark is configured to capture to more than one file (this will be discussed
later), the file numbers and date-time stamps will be incremented accordingly as
the capture progresses, for example,
long_capture_00002_20140724133343.pcapng and
long_capture_00003_20140724133612.pcapng.

Multiple file options

Wireshark can be configured to save packets to multiple files to allow long-term
captures, and offers a number of options to control how this is accomplished.

Selecting the Use multiple files option causes the appropriate underlying
controls to become active as specific options are enabled. You can choose to start
a new (next) file when each file reaches a given size and/or after a configurable
period.

Note

Wireshark can become very sluggish or might even crash when working with
capture file sizes of much greater than 100 MB, so you should consider this as a
good maximum file size.

Ring buffer

The Ring buffer option works in conjunction with the Next File every option to
cause Wireshark to fill the specified number of files, and as the capture continues
to progress, it deletes the oldest files.

This feature is useful to keep a capture running while waiting for some
intermittent problem or an event to occur, after which the capture is manually
stopped. The ring buffer files provide historical capture data for a period just
prior to stopping the capture, without filling a hard drive with an excessive
number of large capture files.

Stop capture options

Wireshark has options to automatically stop a capture after a specified number of
packets, file size, or time period. If the Use multiple files option is enabled, an
option to stop the capture after a specified number of files can be employed.
Otherwise, the capture can be stopped after a specified number of packets, file
size, or time period has elapsed.

Display options

The Update list of packets in real time option specifies that Wireshark is to
periodically read the capture file as it is being written during the capture and
update the Packet List contents accordingly. Otherwise, the Wireshark user
interface will be grayed out during the capture.

The Automatically scroll during live capture option specifies that Wireshark
updates and displays the latest captured packets in the Packet List pane such
that the packets seem to scroll up as the list is updated. The Update list of
packets in real time option must be enabled for this option to function.

Both of these options have a processing time cost that could result in lost packets
and/or a sluggish display and should be disabled if capturing on a very busy link.
However, the ability to view and confirm that the expected packet flows are

occurring during the capture will be lost.

The Hide capture info dialog option (which is enabled by default) controls
whether a simple window is displayed during the capture that displays the packet
counts and percentages by protocol. Unless specifically needed, it is best to leave
this window hidden.

Name resolution options

If the Resolve MAC addresses option is enabled, it causes Wireshark to display
MAC addresses with an assigned manufacturer code in place of the first three
octets. For example, Wireshark will display CiscoCon_21:b7:ec instead of
€8:d7:19:21:b7:ec. The list of manufacturer's codes is kept in the manuf file of
the Wireshark installation directory.

The Resolve network-layer names option works in conjunction with Use
external network name resolver to determine if or how captured IP addresses
are resolved into their hostnames, as follows:

e The Resolve network-layer names option specifies that Wireshark should
attempt to resolve IP addresses into hostnames. If the Use external
network name resolver option is enabled, Wireshark will perform reverse
DNS lookups for each unique IP address. This causes Wireshark to generate
traffic of its own.

o If the Use external network name resolver option is disabled, Wireshark
will attempt to resolve the IP addresses using a hosts text file provided by a
user (which uses typical IP address <tab> hostname syntax) located in the
Wireshark installation directory when using a default profile or in the
appropriate profile directory when using a custom profile.

During a capture, it is better to leave the Resolve network-layer names option
disabled so that Wireshark isn't creating additional network traffic while trying
to resolve IP addresses during a capture. This feature can always be temporarily
enabled (by navigating to View | Name Resolution | Enable for network layer
from the menu) after the capture is finished.

If the Resolve transport-layer name option is enabled, it causes Wireshark to
display the human-readable, port- and protocol-specific services' names instead
of the port numbers in the Info display field in the Packet List pane. For

example, TCP port 80 will be displayed as HTTP. The list of port number
services is kept in the services file in the Wireshark installation directory.

The screenshot at the beginning of this section illustrates a Capture Option
window set to use the LAN interface, a filter to capture traffic only to and from a
specific Ethernet MAC address, to save up to five files of 100 MB each in a ring
buffer scenario, and to save those files in a provided directory with a specific
leading filename and extension. The Display Options and Name Resolution
options have been left in their default settings.

Once all the desired Capture Options have been selected, clicking on the Start
button will start the capture.

Having covered all the most useful Capture Options features, now is probably
the right time to tell you that for many of your captures, especially from a
relatively low traffic volume location such as from a user workstation, you don't
want or need to set any capture options (except the appropriate interface to
capture from) and can simply jump into starting a capture using all the defaults
by clicking on the third (green shark-fin shaped) icon on the icon bar or selecting
Start from the Capture menu. Not using a capture filter allows you to capture
all the relevant packets—without missing anything—and filter any unwanted
traffic out using display filters after the capture is done.

Verifying a good capture

After a capture is complete, you should scroll through and inspect the packets in
the Packet List pane to ensure that you're seeing the traffic you were expecting
—usually traffic to and from a specific host.

You should also ensure there were no dropped packets, which would be
displayed in the Packet Information section of the Status Bar at the bottom
center of the Wireshark user interface. Dropped packets indicate that Wireshark
or the selected NIC could not keep up with the traffic volume and had to discard
packets, which could of course affect the quality of your analysis. If dropped
packets occur, you may need to use a higher performance workstation to perform
the captures or select a lower traffic volume capture location.

Saving the bulk capture file

After completing and verifying a good capture, you should save the bulk (all
captured packets) capture file (assuming a single file capture) to your directory
of choice. You will later be filtering and saving a subset of packets to a smaller
file, but it is advantageous to be able to load the original capture file again at a
later time if during the analysis you discover that you might have inadvertently
filtered out more packets than you wanted.

Using the Save As option in the File menu, navigate to the directory of your
choice and give the file a name. If no file extension is specified, Wireshark will
append a file extension based on the Save as type option selected; the default is
the . pcapng format. However, you can save the file in several other popular
vendor-specific formats if you intend to share the capture file with someone who
is using a different protocol analysis tool.

If multiple files were saved using one of the multiple file and/or ring buffer
capture options, navigate to the File | File Set | List Files to select and open one
of the files.

Isolating conversations of interest

After you have completed a packet capture and saved a bulk capture file, you'll
be with an almost overwhelming number of packets of various types and
addresses in the Packet List pane. It's now time to par this down to just the
packets that pertain to the analysis task at hand.

The idea is to progressively eliminate unrelated packets; analyze the pertinent
conversations looking for anomalies; and again progressively filter, measure, and
analyze packet flow and application behavior until you have discovered and can
document the root cause of the issue.

There are two basic ways to isolate and inspect packets and conversations of
interest, and you'll likely use both of the following methods in most of your
analysis activities:

e Conversations: This window creates a list of conversation pairs by MAC
or IP address and/or TCP/UDP ports that can be sorted. It displays filters
that will isolate and display only the selected conversation packets can be
quickly applied from this window.

¢ Display Filters: These filters are based on MAC or IP addresses and/or
protocol-specific fields that limit the packets displayed in the Packet List
pane.

We'll discuss each of these methods in the following sections.

Using the Conversations window

The basics of using the Conversations window were covered during the first
capture in Chapter 1, Getting Acquainted with Wireshark. In this section, we'll
cover a few other handy features of the Conversations window.

The Ethernet tab

The Conversations window exhibits specific behaviors in the Ethernet tab,
depending on the available Name Resolution settings. If Enable for Network
Layer in the Name Resolution menu, which can be found in the View menu, is
enabled and Name Resolution is also enabled in the Conversations window,
then the IP address that is associated with a given device's MAC address is
displayed as an IP address instead of a MAC address. Toggling the Name
Resolution option in this scenario is useful for easily associating a devices' IP
address with its MAC address.

If the Enable for Network Layer option is not enabled, then the Name
Resolution option in the Conversations window controls whether the MAC
addresses are displayed with manufacturer prefixes or as the basic 6-octet MAC
address.

The TCP and UDP tabs

The TCP and UDP tabs of the Conversations window list all of the
conversations between devices based on IP addresses and ports. Considering that
network communications between a pair of devices, each with their associated IP
addresses, could include multiple sequential or simultaneous sessions with
differing port numbers, the TCP and UDP tabs (depending on the protocol in
use) make it much easier to inspect the number and relative size and
start/duration of these individual sessions.

As can be done in any of the other tabs in the Conversations window, a display
filter can be quickly prepared or applied using the right-click functionality.

A helpful practice when investigating TCP or UDP sessions is to apply a display
filter on just the IP addresses initially and then enabling the Limit to display
filter option at the bottom of the Conversations window. Upon returning to the
TCP or UDP tab, only the port-level sessions between the filtered host pair are
displayed, which makes investigating these sessions much easier than picking
them out from the entire list.

The following screenshot shows the multiple TCP sessions that were involved in
loading the https://www.wireshark.org/ home page after applying a display filter
(from the bulk capture file) and enabling the Limit to display filter option in the
Conversations window. It can be seen that the (top) conversation between port
54581 on the user workstation and port 80 (HTTP) carried the vast majority of
the traffic; the remaining ports carried much smaller amounts of traffic.

M Conversations: wireshark.org bulk capture.pcapng o |[= \@

| Ethernet: 1| Fibre Channel | FDDI| IPva: 1 | 1Pv6 | 1P% | e NCP | RSVP | SCTP| TCP:8 | Token Ring | upe| USE | wLAN
TCP Conversations - Filter: ip.addr==162159.241.165 &8 ip.addr==192168.1.116

Address A 4 Port A 4 AddressB 4 PortB 4 Packets 4 Bytes ¥ Packets A—B { Bytes A—B 4 Packets A—B 4 Bytes A—B 4 RelStart 4 Duration 4 bps A—B ¢

Thinkpad_LAM 54581 wireshark.org http 27 14065 11 2096 16 11969 16.476263000 08138 206040

Thinkpad_LAN 54579 wireshark.org http g 1640 4 843 4 792 16.256085000 02146 31616.7
Thinkpad_LAM 54578 wireshark.org http 6 354 228 126 16.255957000 13.8229 1319
Thinkpad_LAM 54582 wireshark.org http 6 354 228 126 16.476518000 13.6023 1340
Thinkpad_LAN 54583 wireshark.org http 6 354 228 126 16476743000 13.6022 1341
Thinkpad_LAN 54584 wireshark.org http 6 354 228 126 16476967000 13.6007 1341
Thinkpad_LAM 54585 wireshark.org http 6 354 228 126 16.477185000 13,6005 1341
Thinkpad_LAN 54586 wireshark.org http 6

O S A S
PR Ra R R R

354 228 126 16.477473000 13.6013 1341

[7] MNarme resolution [7] Limit to display filter

‘ Help | Copy Follow Stream | | Graph A—B ‘ | Graph B—A | ‘ Close

https://www.wireshark.org/

The WLAN tab

Since the Conversations window tabs are ordered alphabetically, the WLAN tab
comes at the end. This tab displays the wireless station MAC addresses, as well
as the Bytes, Packets, and other columns offered in the other tabs.

Wireshark display filters

Wireshark provides a very wide range of protocol-specific display filters that can
be extremely useful for analysis activities by allowing you to focus on specific
packets, based on criteria that you define. You can filter on just the traffic that
you want to see or filter undesired traffic out of view. Display filters are one of
the most helpful features of Wireshark, so they warrant becoming very familiar

with.

Display filters can be created in several ways:

By applying display filters from the Display Filter window

By typing in the display filter syntax (using autocomplete)

By applying display filters from the Conversations (or Endpoints)
window

By applying saved display filters from Filter Expression Buttons
Using the Expressions button for assistance creating filters

Using right-click menus on specific packet fields

Note

Remember that display filters use a proprietary Wireshark filter format,
which is protocol-dependent and significantly different from capture filter
syntax.

The Display Filter window

You can open the Display Filter window by selecting Display Filters from the
Analyze menu, by clicking on the Edit/apply display filter icon on the icon bar,
or by just clicking the Filters button next to the display filter textbox on the
display filter bar.

The Display Filter window looks and functions in a similar fashion to the
capture filters window, as shown in the following screenshot. You can create a
new custom display filter to be added to this window by entering a filter name
and the appropriate syntax and clicking on New or clicking an existing filter.
Click on New and modify/rename as per your requirements.

M Wireshark: Display Filter - Profile: Default o = |3
Edit Display Filter
IP only it

IP address 192.168.0.1
Mew IP address isn't 19216801, don't use != for this!
IPX only
TCP only
UDP only
Mon-DMNS
TCP or UDP port is 80 (HTTP)
Mo ARP and no DMNS
Non-HTTP and non-SMTP to/from 192.168.0.1 -

m

Properties
Filter narme; HTTP

Filter string: | http

]
ES

| appy || conce |

Display filters listed in this window were saved in a dfilters file in the
Wireshark installation directory for the default profile and in the appropriate
Personal configuration directory when custom profiles are in use.

When you apply a display filter, the Status Bar at the bottom of the Wireshark
user interface screen reflects the total number of packets and the packets

displayed, as illustrated in the following screenshot:
Packets: 423 . Displayed: 71 (16.8%) - Load tirme: 0:00,030

The display filter syntax

The default selection of capture filters from the Display Filter window shown
previously provides examples of basic capture filter syntax. Additional examples
of display filter syntax are outlined in the following table:

Description Syntax Examples

Basic protocols arp, bootp, dns, dhcp6, eth, snmp, Same as syntax examples
smb, smb2, icmp, rtp, ip, ipv6, udp,
tcp, http, and sip

Display filter comparison eq, ==, ne, !=, gt, >, 1t, <, ge, >=, le, |lip.addr == 192.168.1.115 and !
operators <=, I, not, and, &&, or, | |, XOR, and AA[|(1p-addr == 192.168.1.125)

Protocol-specific extensions ||protocol-specific ip.addr, tcp.port, tcp.dstport,

tcp.analysis, udp.port, and
udp.srcport

Classless InterDomain A.B.C.D/CIDR notation ip.addr == 192.168.1.0/24 that
Routing (CIDR) notation on matches any IP address in the
IPv4 addresses 192.168.1.0 subnet

Note

Using the != operator on expressions such as eth.addr, ip.addr, tcp.port, and
udp.port and alike may not work as expected as there are usually two addresses
and ports in a packet, and the ! operator will not match both instances.

Use !(ip.addr == x.x.x.x) or a similar syntax for these types of filters.

More information and examples of display filters can be found on the Wireshark
wiki at http://wiki.wireshark.org/DisplayFilters and protocol-specific display
filter syntax is included in the reference information found at
http://wiki.wireshark.org/ProtocolReference.

http://wiki.wireshark.org/DisplayFilters
http://wiki.wireshark.org/ProtocolReference

Typing in a display filter

You can type a display filter syntax directly into the Filter textbox in the display
filter bar, and then click on Apply to apply the filter or Clear to clear a filter and
start over.

A helpful feature of typing the display filter syntax into the textbox is the
autocomplete function. Upon typing a protocol and then a period (.), the textbox
will display a list of available protocol-related extensions that can be selected
and then the appropriate comparison operator and value added before clicking on

Apply.

The textbox also has a color-coded background indicating the display filter
syntax status. If the syntax is incorrect or incomplete, the background is red and
a correct filter results in a green background. A yellow background is a warning
that the entered syntax may not work as expected.

Display filters from a Conversations or
Endpoints window

Creating a display filter to be applied from a Conversations window has already
been covered. The same functionality is available from an Endpoints window,
which can be opened by selecting Endpoint List from the Statistics menu and
one of the listed protocols.

Filter Expression Buttons

Filter Expression Buttons are buttons you can create that are based on display
filters; these can be used to quickly apply previously-saved display filters to your
capture data to identify network and application problems.

For example, to create a Filter Expression Button option that displays just TCP
SYN, SYN/ACK, FIN, or RST packets to analyze the TCP session setup
parameters, network round-trip delay times, and session terminations:

1. Type the following display filter string into the Filter textbox on the

Display Filter Bar:

(tcp.flags&02 && tcp.seq==0) || (tcp.flags&l2 && tcp.seq==0)
|| (tcp.flags.ack && tcp.seq==1 && !tcp.nxtseq > 0 && !tcp.ack
>1) || tcp.flags.fin == 1 || tcp.flags.reset ==

e Clicking on Apply will apply this filter to a capture that you have loaded so
that you can confirm that it is working properly.

e Then, click on Save and give the button a name, such as TCP Handshake (as
illustrated in the following screenshot). Then, click on OK:

M Wireshark: Save Filter El@

Save Filter as...

(tep flagsB02 BB tep.seq==| TCP Handshake

| bHep | [ok |[cancel |

The filter expression buttons you create will appear on the right-hand side of the
initial controls in the display filter bar, as illustrated in the following screenshot:

Filter: tep.nxtseq > 0 88 ltep.ack »1) || tep.flags.fin ==1 || tep.flags.reset ==1 Expression... Clear Apply Save Good Capture ARP Pkts DNS Pkts DNS Errors
P q P p.flag ptiag P

The filter expression button definitions are stored in the preferences file for the
profile you are using. You can edit the button display order, edit the name or

filter syntax, or delete the buttons in Wireshark's Preferences window.

Using the Expressions window button

To the right-hand side of the textbox on the display filter toolbar is the
Expression button. Clicking on this button opens a Filter Expression window
that allows you to select a protocol and the extension to that protocol, one of the
appropriate relation (comparison) operators, and assign a comparison value.
Click on OK to populate the display filter textbox with the resultant display
filter syntax and then click on Apply to apply the filter.

Right-click menus on specific packet fields

If you right-click on a specific field in the Packet List or Packet Details panes,
you can select the Apply as Filter or Prepare a Filter option and the required
submenu option to create display filter syntax, as illustrated in the following
screenshot. This is a very quick way of creating display filter syntax:

Apply as Filter > Selected

Prepare a Filter r Mot Selected
Conversation Filter L4 ... and 5elected
Colorize Conversation L4 ... Or Selected
SCTP L4 ... and not Selected
Follow TCP Stream ... or not Selected

If you are selecting a field and using the right-click functionality to create
display filter syntax, it is usually better to use the Prepare a Filter option, which
will allow you to edit the syntax before clicking on Apply to apply the filter.

Note

Clicking on a protocol field in the Packet Details pane results in that field and
the display filter syntax that reflects that field to be displayed in the bottom-left
Status bar field. This is very helpful for starting a display filter string that will
use a particular field.

Following TCP/UDP/SSL streams

Selecting a packet in a conversation, right-clicking, and selecting a Follow TCP
Stream, Follow UDP Stream, or Follow SSL Stream option (as appropriate)
from the menu provides a display window that contains a textual depiction of the
payload data from all of the packets in a conversation. This is an excellent way
to inspect the contents of a stream without having to select and inspect multiple
packets. Viewing the exchanges between the client and server can be very
helpful for troubleshooting purposes.

When a Follow Stream option is selected for a given packet, a display filter is
automatically created and applied to support creation of this window. The
following screenshot illustrates a Follow TCP Stream window. Also, note the
display filter syntax (tcp.stream eq 15) that was created and applied when this
stream was selected:

.! Follow TCP Stream (tcp.stream eq 15) = @

Stream Content

GET / HTTP/1.1
Host: www.wireshark.org

Connection: keep-aliwve

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/*;0=0.8
user-agent: Mozillass.0 (Windows NT 6.1; WOWe4) Applewebkit/537.36 (KHTML, T1ike Geckao)
Chrome/35.0.1916.153 safari/s37.36

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-uUs,en;q=0.8

m

Cookie: __cfduid=dd902204a3f4e4c45781c3d0d156356551401056698086;
___Utma=87653150.1222912745.1401056681.1404072442.1404077419.15; __ utmb=87653150.5.10.1404077419;
___utmc=87653150; __ utmz=87653150.1403815183.9, 6. utmcsr=google|utmccn=_(organic) |utmcmd=organic|

utmctr=_not%z0provided)

HTTP/1.1 200 OK

Server: cloudflare-nginx

Date: Sun, 29 Jun 2014 22:16:11 GMT
content-Type: text/html

Transfer-encoding: chunked

connection: keep-alive

X-Frame-options: SAMEORIGIN

X-Mod-Pagespeed: 1.7.30.5-3847

Vary: Accept-Encoding

X-51ogan: Be good. You never know who's running Wireshark nearby.
Cache-control: max-age=0, no-cache, no-store
CF-RAY: 14257cb0dsfbodif-ATL
Content-Encoding: gzip

.......... LS:es6eFue +Bu % EN AV e X0 b e e AT R T SR
£3. . JUMAZ . V= o cGaiien s I e 3 i i | B (R e e |
oV bW FolE e Z=XKW01 3 e b At e..|.~
2Y..DeMrb. .V...L.6.U5....Q...
B P | AR Porpne | 12| soe e et [| SO, TS ;TR PR o] | ERE ;L e ATl Seperte | g iR et
P e e et NKS4k...5....&...XAF7 [i uU.Bm.#.../
3] i IR Mo P WA e s i |2 i e, T e 6.0 T2
e 1 Tl FERR T e - B—...t.. 5 E T P T T T o Qi . Q i
LSl = S L R P W
Entire conversation (12566 bytes) [:]
| End || SaveAs || Pint |© asco ©) EBCDIC ©) HexDump © C Armrays © Raw

Help ‘ Filter Qut This Stream ‘ l Close \

Marking and ignoring packets

You can toggle Mark/Unmark Packet or Ignore/Unignore Packet from the
Wireshark Edit menu, or by right-clicking on a packet in the Packet List pane
and selecting Mark Packet (toggle) or Ignore Packet (toggle).

The menu displayed by right-clicking on a packet in the Packet List pane is
Mark Packet (toggle)
Ignore Packet (toggle)
(X Set Time Reference (toggle)
(© Time Shift...

¥ Packet Comment...

shown in the following screenshot:

Wireshark allows you to mark one or more packets in the Packet List pane to
make it easier to find those packets later by giving the packet entry a black
background with white font. This marking can be toggled on and off on a per-
packet basis. Marking a packet has no other effect on the display or packet
context.

You can also ignore one or more packets. However, when you invoke the ignore
function on a packet that packet entry disappears from the Packet List, Packet
Details, and Packet Bytes panes and it effectively ceases (temporarily) to be
part of the capture file. Note that ignoring packets can result in Wireshark
reporting re-transmissions or other error conditions caused by the missing
packet.

The ignored packets aren't actually deleted from the capture file as you can use
the Reload option in the View menu or click the Reload icon on the icon bar to
recover the ignored packets.

Saving the filtered traffic

During or after completing an analysis, you will want to save a set of filtered
packets into a new capture file. Saving a filtered subset of the bulk capture data
and opening the new, smaller file in Wireshark is helpful to reduce the
distracting background noise packets displayed when clearing display filters,
working with Conversations windows, and so on during your analysis. Finally,
upon completing your analysis, you will want a filtered capture file that
represents the analysis evidence and conclusion and can be quickly loaded for
review at a later time.

Use the Export Specified Packets option in the File menu to save a new capture
file consisting of just your filtered packets. Navigate to the desired directory;
enter a filename (Wireshark will provide the appropriate filename extension);
make the appropriate selections to save all the Displayed packets, Marked
packets, and/or to Remove Ignored packets; and then click on Save.
Remember to save the complete capture using the Save As option in the File
menu as well, because you may need this file again.

The following screenshot illustrates a typical Export Specified Packets window
and its selections:

ta

r | Wireshark: Export Specil':ier.:l Packets

Savein: | | Wireshark Trace Files - @ ¥ > M~
D MName . Date modified
ey

Mo items match your search.
Recent Places

uf
Libraries

A

ThinkPadW5s00

Type Size

= File name: wireshark_website pcapng - Save
Metwork
Save as type: Wireshark/... - pcapng {* pcapng;” pcapng.gz;” ntar;” ntar.gz) 'l [Cancel]
Help
Packet Range i B} [] Compress with gzip
) Captured | (@ Digplayed
423 i
(") Selected packet 1 1
Marked packets 0 1]
First ta last marked 0 1]
(71 Range: ! 1] a

| Riemove lgnored packets]]

Summary

The important points covered in this chapter included picking an optimal capture
point, selecting between TAPs and mirrored/SPAN ports, Wireshark's capture
filters and options, verifying a good capture, using Wireshark's Conversation
windows and display filters to isolate packets of interest, creating Filter
Expression Buttons, marking and ignoring packets, and saving the filtered traffic
for later or more detailed analysis.

In the next chapter, we'll cover the rest of Wireshark's basic packet analysis
features.

Chapter 4. Configuring Wireshark

Wireshark offers a number of features that can be configured to enhance the
accuracy and ease of performing packet analysis activities such as
troubleshooting a functional or performance problem. Selecting the best format
to measure the elapsed time between packets is an important factor. There are a
number of protocol-specific options that affect how Wireshark displays time-
related information that are useful as well. Coloring rules, preferences settings,
and profiles let you customize Wireshark for your particular style of analysis, as
well as the different environments that you might work in.

In this chapter, we will cover the following topics:

Working with packet timestamps
Colorization and coloring rules
Wireshark preferences
Wireshark profiles

These topics will wrap up our introduction to the most essential and useful
features and options of Wireshark.

Working with packet timestamps

Understanding how Wireshark handles time and using the right incarnation of
packet timestamp displays is crucial to properly analyze packet flows and
identify time-related anomalies.

How Wireshark saves timestamps

When packets are captured, Wireshark gives each packet a timestamp derived
from the system clock of the machine from where the capture takes place. This
timestamp is converted to Universal Coordinated Time (UTC) based on an
offset calculated from the time zone setting and any Daylight Savings Time
(DST) rules that apply for the capture machine, and then converted again to an
epoch number (the UTC-based number of seconds since January 1, 1970). This
is the time value that gets saved in the capture file for each packet. When
Wireshark reads the capture file, it turns the epoch number back to the familiar
date and time display, adjusted for the time zone and DST offsets for your
machine.

This means that if a packet capture is conducted on a machine in Los Angeles,
which has an offset from UTC of -8 hours, and you look at the same capture file
on a machine in Berlin, which is UTC +1 hour (an overall difference of 9 hours,
plus any DST differences), a packet that was captured at 10 a.m. local time in
Los Angeles will display a timestamp of 7 p.m. in Berlin.

Examples of the timestamp displays in different time zones are shown in the
following table:

Los Angeles|[|[L.ondon|{Berlin[|Bangalore
Capture file time (UTC) 10:00 10:00 ||10:00 [j10:00 ‘
Local offset to UTC -8 0 +1 +5:30 ‘
Displayed time (local time)l 02:00 10:00 [|11:00 [§17:30 ‘

If you're going to look at a packet capture someone has sent you and the absolute
time when an event occurred is important to the analysis, you'll need to know or
ask what time zone the capture was taken in, determine the offset between your
time zone and the capture location time zone, and mentally make the time
difference adjustment for the timestamps that Wireshark will display. Otherwise,
this difference won't matter as you're usually more interested in the elapsed time
or the time between specific events in the capture.

Wireshark time display options

There are a wide variety of packet time displays available for use in Wireshark.
By default, Wireshark provides a Time column in the Packet List pane
configured to display Seconds Since Beginning of Capture with microsecond
resolution (123.123456) for each packet.

However, the way in which time is displayed in this column can be changed by
selecting the desired format from the Time Display Format option in the View
menu, which is illustrated in the following screenshot:

Date and Time of Day: 1970-01-01 01:02:03.123456 Ctrl+Alt+1
Time of Day: 01:02:03.123456 Ctrl+Alt+2
Seconds Since Epoch (1970-01-01): 1234567890.123456 Ctrl+Alt+3
* Seconds Since Beginning of Capture: 123123456 Ctrl+Alt+4
Seconds Since Previous Captured Packet 1123456 Ctrl+Alt+5
Seconds Since Previous Displayed Packet: 1123456 Ctrl+Alt+6
UTC Date and Time of Day: 1970-01-01 01:02:03.123456 Ctrl+Alt+7
UTC Tire of Day: 01:02:03.123456 Ctrl+Alt+7

Automatic (File Fermat Precision)
Seconds: 0
Deciseconds: 0.1
Centiseconds: 012
Milliseconds: 0123

* Microseconds: 0123456
Manoseconds: 0.123456789

Display Seconds with hours and minutes

If the Seconds Since Beginning of Capture option is in use, the first packet in a
capture displays a time value of 0.000000; all other packets are timed in
reference to this first packet such that the elapsed time from the beginning of the
capture is displayed.

The time display menu options provide examples of their formats and are fairly
self-explanatory, except perhaps Seconds Since Previous Captured Packet and
Seconds Since Previous Displayed Packet. The Seconds Since Previous
Captured Packet option provides the elapsed time between each captured

packet, while the Seconds Since Previous Displayed Packet option displays the
elapsed time from the previous packet that is visible when a display filter is
applied.

The way the Displayed Packet option works is illustrated in the following
screenshot. You can see how the Captured Packet timestamps continue to
increment, while the Displayed Packet timestamps show the time since the last
displayed packet.

Captured Packet Displayed Packet
0.000000 0.000000
0.001000 0.001000
0.003000 0.002000
0.007000 0.004000

The time display precision options in the Time Display Format menu are also
shown with examples of the display format and are self-explanatory, except for
the Automatic (File Format Precision) setting, which requires a description.

Wireshark relies on the NIC driver and the capture devices' system clock for
packet timestamps. The accuracy of these timestamps in terms of the precision
and number of subsecond digits (milliseconds, microseconds, and nanoseconds)
will vary, but usually a millisecond resolution is available. This precision value
is saved in the capture file. The Automatic (File Format Precision) setting tells
Wireshark to display timestamps using this precision value.

The ability to use the Nanoseconds precision setting depends on having an NIC
driver that supports this level of precision. If you select this option and the
capture file doesn't contain the higher resolution, the last three digits of each

timestamp will be all zeroes.

Adding a time column

It is often helpful to have two (or more) time columns in the Packet List pane to
provide a variety of time display types without having to change the format of a
single time column back and forth. You can add a new time column using one of
two methods.

The following is the first method, the preferences settings method:

1.

ik W

Go to Preferences from the Edit menu, or click on the Preferences icon to
open the Preferences window.

Select Columns.

Click on Add to add a new entry at the bottom of the list.

Click on the Title area of the new entry and give the column a name.
Ensure that the new entry is highlighted, and select the desired time display
format from the drop-down Field type box.

Click and drag the new entry up the list to select its relative position in the
Packet List pane.

Finally, click on OK.

The selectable options in the Field type box for time display columns include
the following:

Absolute date, as YYYY-MM-DD, and time: This is the actual capture
date and time based on the time zone of the capture device.

Absolute date, as YYYY/DOY, and time: This is another format to
display the date and time based on the time zone of the capture device.
Relative time: This is the time from the first packet in a capture file. This is
similar to the Seconds Since Beginning of Capture option.

Relative time (conversation): This is the time from the first packet in the
trace file for a conversation (this doesn't work).

Delta time: This is the elapsed time from the previous packet to the current
packet.

Delta time (conversation): This is the time from the previous packet to the
current packet in a conversation (this doesn't work).

Delta time displayed: This is the time from the end of one packet to the
end of the next displayed packet only.

e Custom: The Relative time (conversation) and Delta time (conversation)
options, which are also listed in the preferences settings, no longer work in
the version of Wireshark currently available (v1.12) as of this writing. You
can accomplish the previously offered functionality with these options by
using the Custom option with display filter-style Field types instead. Select
the Custom Field type and enter either tcp.time_relative or
tcp.time_delta in the Field name field, leaving the Field occurrence
field with the default entry of 0.

An example of creating a functional Delta time (conv) time column using the
Custom option and the tcp.time_delta display filter is shown in the following
screenshot:

! Wireshark: Preferences - Profile: Classic || ==k @

El User Interface
Layout [The first list entry will be displayed as the leftmost column - Drag and drop entries to change column order]
S DiSF-I-‘.EyEdT\tlE Field type
1] 2
Font and Colors — hio Number
[Time (format as specified) Time (format as specified)
Capture
Dellatmeico: it [ten e deTEay
Filter Expressions ST B '?"I"mc't-cm' Cl_lstam{___cg_ defta)
.) frametime_delta Custom (frametime_delta)
MName Resclution L
Printing || Absolute date, as ¥Y¥YY-MM-DD, and time Absclute date, as YYVYY-MM-DD, and time
BT [¥] Stream index Custom (tcp.stream)
. e & Source Source address
[Statistics o
(] Destination Destination address
Fl Protocol Protocol
& Length Packet length (bytes)
¥ Info Information
Properties
| 4dd Field type: Custom E
Remove| | Field name: tcp.time_delta Field occurrence: 0
| Help DK] | Apply | [Cancel

For the tcp.time_relative and tcp.time_delta fields to work properly, you must
also enable Calculate conversation timestamps in the preferences settings
using the following steps:

1. In the Preferences window, select TCP from the Protocols menu.

2. Enable the Calculate conversation timestamps option.
3. Finally, click on OK.

An example of enabling Calculate conversation timestamps is depicted in the
following screenshot:

! Wireshark: Preferences - Profile: Classic = H =} |@
SRVLOC = N
I
ssCoP Show TCP summary in protocol tree: [}
S5H Validate the TCP checksum if possible:]

S5L

STANAG 5066 DTS
STAMNAG 5066 SIS Analyze TCP sequence numbers: V]

Allow subdissector to reassemble TCP streams: V]

StarTeam Relative sequence numbers: [
STP
SUA
SYNCHROPHASOR Track number of bytesin flight V]

T.38 f i

Calculate conversation timestamps: [V
TACACS+ 1

TALT Try heuristic sub-dissectors first: [

Scaling factor to use when not available from capture: | Mot known |z|

TCAP

TCP
TCPENCAP
TOMeE TCP Experimental Options with a Magic Number: ||
TDS

Ignore TCP Timestamps in summary: [

Do not call subdissectors for error packets:

Teredo
tetra
TFTP
TIME
TIPC
THS

m

Token-Ring
TPKT
TPNCP

| Hebp ok [sy || Conce

The following steps show you the second method, the right-click method of
adding a column:

1. Select an appropriate packet in the Packet List pane.

2. In the Packet Details pane, expand the Frame header, or if applicable,
expand the Transmission Control Protocol header.

3. Locate the desired time value field in the Frame or TCP sections (these are
surrounded by brackets). If you are selecting a time value in the TCP
section, you will need to expand the [Timestamps] section to see the
values.

4. Right-click on the desired time field and select Apply as Column from the
menu.

5. The new column will appear beside the Info column in the Packet List
pane. Click and drag the new column to the desired location.

6. You can right-click on the new column header, select Edit Column Details,
and give the column a shorter name if desired.

As previously discussed in the preferences settings method, you must enable
Calculate conversation timestamps in the TCP protocol option of the
preferences settings to view and use the time values in the TCP section.

Conversation versus displayed packet time options

The difference between time displays for a conversation versus a displayed
packet time option is perhaps subtle but important.

As illustrated previously, if you are using one of the displayed packet time
options, the time value shown for a given packet will be the elapsed time since
the previous packet was displayed in the Packet List pane. This time value
option has no useful value until you apply a display filter, after which you can
easily see the elapsed time between each packet being displayed with no other
mental math or adjustments necessary. This is very useful if you're sequentially
filtering, clearing, and viewing more than one conversation using, for example, a
tcp.stream==xx display filter setting.

If you are not using a display filter, however, there may be packets from multiple
conversations displayed in the Packet List pane. If you are using one of the
conversations time displays, the time value shown for a given packet will be the
elapsed time since the previous packet for that conversation, regardless of other
packets that may be interspersed and visible between the packet you're looking at
and the previous packet in that conversation. This allows a quick perusal of
conversation packet times without having to apply a display filter.

Choosing the best Wireshark time display
option

With so many time display options available, it may be difficult to know when
and where to use a given option. Choosing the optimal time display in a
Wireshark time column depends greatly upon the objectives of the analysis:

¢ If you need to know the specific date and time of day when an event
occurred in a capture, as might be the case if you're trying to find and
correlate packets with user-reported events or log entries, you should use
one of the Absolute time formats.

¢ If you're looking for an event that occurred some known period of time
after a capture started, use one of the Relative time formats.

¢ On the other hand, if you just need to measure the time between certain
packets, such as when measuring the time between a request and a
response, one of the Delta time formats will be the most helpful.

Using the Time Reference option

Another useful Wireshark feature is the Time Reference menu option, which
can be used to measure time from one packet to another in the midst of a capture
file. You can click on a specific packet and toggle this option on and off for that
packet using either the Set/Unset Time Reference option from the Edit menu,
or by right-clicking and selecting the Set Time Reference (toggle) option from
the pop-up menu. The packet will be marked with a *REF* designator in the
first time column, and any relative timestamps following the Time Reference
packet will be displayed relative to that packet.

The Time Reference setting is temporary; it isn't saved to a capture file and will
disappear if you reload the file.

Colorization and coloring rules

Colorization of packets displayed in the Packet List pane can be an effective
tool to identify and highlight packets of interest, especially the packets that
contain or indicate some kind of error condition.

Wireshark has predefined coloring rules that are enabled by default and which
can result in a kaleidoscope of colored packets in the Packet List pane. You can
enable or disable the coloring rules by selecting Colorize Packet List from the
View menu or by clicking on the Colorize Packet List icon in the icon bar if
this becomes overwhelming.

You can also view, enable/disable, add, delete, reorder, and edit the coloring
rules by selecting Coloring Rules from the View menu or by clicking on the
Edit Coloring Rules icon in the icon bar. There is a Clear button that removes
all the changes you may have made to the rules and restores them to default
settings if needed.

A Coloring Rules window is depicted in the following screenshot:

..! Wireshark: Colering Rules - Profile: Classic [-o|-E @
Edit Filter Crder
List is processed in order until match is found
Mew |

Mame String

Enable

Disable
Move
selected filter
up or down

ICMP icmp || icrmpvi
tep flags.reset eql

Down

ChAD - — - e T S HE
Clear | 7 — 5

Help | QK I ‘ Apply ‘ | Cancel

Coloring rules employ display filter formats with specific values to identify
packets that should be colored. The rules are compared to packets starting with
the top rule and working down through the list. Only the first rule that matches a
packet's condition is applied, so the ordering of the rules dictates which rule gets
applied if more than one rule matches a packet. If you create or modify a rule,
you have to check the ordering to make sure you get the desired behavior.

Clicking on a rule and then clicking on Edit allows you to modify the
foreground and background colors for that rule, as well as change the filter string
if desired.

You can also export/import coloring rules if you want to share them with others.
Coloring rules are stored in a file called colorfilters in one of your personal
configuration directories depending on the profile in use.

Packet colorization

You can also temporarily color a series of packets in a conversation by selecting
one of the conversation packets, selecting Colorize Conversation from the
View menu, and selecting a color from the adjoining menu, or by right-clicking
on a packet, selecting Colorize Conversation from the menu, selecting one of
the protocol-specific options, and then selecting the desired color. This
colorization will disappear when the capture file is reloaded, or you can select
Reset Coloring 1-10 from the View menu.

Wireshark preferences

In the Adding a time column section, we opened the Preferences window using
Preferences in the Edit menu or by clicking on the Preferences icon in the icon
bar to configure the time display column options. There are quite a number of
Preferences options that you should be aware of and may want to adjust to
customize your Wireshark environment:

Layout: This is used to select the ordering of the Packet List, Packet
Details, and Packet Bytes panes.

Columns: This is used to add, remove, and move columns in the Packet
List pane.

Capture: This is used to set the default capture options.

Filter Expressions: This is used to add, remove, or move the Filter
Expression buttons.

Name Resolution: This is used to set the MAC, transport, and network (IP)
resolution options.

Protocols: There are options that can be set for all of the protocols that
Wireshark supports; some of the most important and useful of these options
include:

o HTTP: This is used to add any additional TCP ports that should be
recognized as HTTP traffic in your environment.

o IEEE 802.11: This is used to add/edit the Wireless Decryption keys if
needed to decode an encrypted wireless session.

o IPv4: You may want to disable Validate IPv4 checksum if possible to
avoid inadvertent error messages caused by an NIC option called
checksum offloading, wherein checksums are checked after the packet
is sent to Wireshark.

o RTP: Enable Allow subdissector to reassemble RTP streams to
support decoding audio from VoIP captures.

o SMB: Enable Reassemble SMB Transaction payload to support
exporting file objects from an SMB stream in a packet capture.

o SSL: Wireshark can decrypt the SSL/TLS traffic if you have the
private key file. To add a key to Wireshark, go to the Preferences
window and click on the RSA keys list Edit button. Then, in the SSL
Decrypt window, click on New and complete the SSL Decrypt: New
fields (IP address of the SSL server; Port, which is usually 443 for

HTTP; Protocol, such as HTTP; and Key File, which is used to select
the path to an RSA private key (if the key file is a PKCS#12 keystore
(usually has a .pfx or .p12 extension), the Password field must be
completed)), and finally, click on OK to close each subsequent
window.

o TCP: This provides you with multiple options, as follows:

= Validate TCP checksum if possible: Disable this to avoid
inadvertent error messages caused by checksum offloading.

= Allow subdissector to reassemble TCP streams: Enable this to
support exporting file objects from a TCP stream.

= Relative sequence numbers: Enable this to make it easier to read
and track TCP sequence numbers in a capture file.

» Track number of bytes in flight: This is a value calculated and
displayed in the TCP protocol header in the Packet Details pane,
which is useful for performance analysis.

= Calculate conversation timestamps: This is the setting
discussed earlier that is needed to support the tcp.time_relative
and tcp.time_delta time displays.

There are numerous other preferences settings that may be pertinent to your
personal preference or analysis environment; you will have to investigate most
or all of these options. If you are unsure of a particular setting, you can get more
information by clicking on the Help button at the bottom of the Preferences
window.

The preferences settings are stored in a file called preferences in one of your
Personal configuration directories, depending on the profile in use.

Wireshark profiles

As we have covered the numerous Wireshark configuration options that are
saved in specific files, such as cfilters for Capture Filters, dfilters for
Display Filters, colorfilters for Coloring Rules, and preferences for
preferences settings, it was mentioned that these files were saved in one of your
Personal configuration directories, but I have left a full explanation of profiles
and these configuration directories until now so that you would better understand
what makes up a profile and why they are useful.

A profile is a collection of Wireshark configuration files customized for your
specific needs and tastes in capture and display filters, coloring rules, columns
and layouts, and so on for the particular environment you are working in. You
can create one or more profiles and quickly reconfigure Wireshark to work best
in differing environments by selecting the appropriate profile.

When you first install Wireshark, it operates with a default set of configuration
files that are located in the Global configuration directory, which is usually the
same as the System directory where the Wireshark program files reside. When
you change any of the default settings, the changes are saved in new
configuration files that are stored in a Personal configuration directory, the
location of which varies depending upon your installation. You can determine
and quickly open the Personal configuration directory for your installation
from Wireshark by clicking on the About Wireshark option in the Help menu
and clicking on the Folders tab. Within this tab is a list of all the directories that
Wireshark uses, as shown in the following screenshot:

2

M About Wireshark E=0 Ee 5
| Wiresharkl Authors| Folders Pluginsl License

Marme 4 Folder
"File" dialogs
Temp Chlsers'James\AppDatatLocal\ Temp

Personal configuration ChlUsers'\James Data'\Roaming'Wireshark

Global configuration Ch\Program Files'\Wireshark

System ChProgram Files'\Wireshark

Program ChProgram Files\Wireshark

Personal Plugins ChUsersiJames\AppDatat Roaming\Wiresharkplugins

Global Plugins ChProgram Files\Wiresharkpluginsl.12.0

GeolP path

4 1 [F

You can double-click on a Wireshark directory link to open a window to that
directory.

Double-clicking on the Personal configuration link in the Folders tab opens
the directory where (under a profiles subdirectory) your custom profile files
are stored. Each profile is stored in a separate subdirectory that reflects the name
you give a profile, as shown in the following screenshot:

Roaming » Wireshark » profiles »

Share with = Burn Mew folder

Mame

J Classic
PitlQ APA
PtlQ HTTP
Pl Performance
Pitl() SMB2
PltIQ WLAN

Each custom profile directory contains all the Wireshark configuration files
that determine how that profile controls Wireshark's features. You can copy and
share these custom profile directories with other Wireshark users; copying the
profile directory into their Personal configuration directory makes that profile
available for selection.

Creating a Wireshark profile

To create a new Wireshark profile, follow these steps:

1. Right-click on the Profile section (on the right-hand side pane) of Status
Bar at the bottom of the Wireshark user interface and click on New, or
navigate to Edit | Configuration Profiles | New in the menu bar.

2. In the Create New Profile window that appears, you can give the profile a
name. You can also choose to create the profile starting with the settings
from an existing profile by making a selection from the Create from drop-
down list or start from scratch. The Create New Profile window is shown

r.! Create Mew Profile El (=] @ﬂ

Create from: |Default |Z|

Profile name: | Troubleshooting|

[QK l | Cancel |

in the following screenshot:

e (Clicking on OK will save the new profile in its own directory by the same
name in your Profiles directory in the Personal configuration menu.

Selecting a Wireshark profile

You can select one of your custom profiles by selecting Configuration Profiles
from the Edit menu, clicking on one of the listed profiles, and clicking on OK.
A quicker method is just clicking on the Profile section of Status Bar and
selecting a profile from the pop-up menu, as shown in the following screenshot:

* [efault
Classic
PitlQ APA
PktlQ HTTP
Pl Performance
PitlQ SMB2
PltIQ WLAMN

Mew from Global

Profile; Default

Summary

The topics covered in this chapter included working with Wireshark's time
displays, colorization and coloring rules, selecting the appropriate Wireshark
preferences for a given analysis environment, and saving all of these settings in
profiles that can be selected as required.

In the next chapter, we'll cover a selection of network layer, transport layer, and
application layer protocols in common use in modern networks, which will help
you to prepare for more advanced packet analysis activities in the later chapters.

Chapter 5. Network Protocols

Effective packet analysis requires familiarity with the primary protocols in use in
modern networks. In this chapter, we will review the most common protocols in

their respective layers:

e Network layer protocols
e Transport layer protocols
e Application layer protocols

We'll cover the significant purpose and relevant fields to support network
connectivity and/or application functionality in each protocol, as well a sampling
of Wireshark capture and display filters for each protocol.

The OSI and DARPA reference
models

We reviewed the purpose of the OSI and DARPA reference models in Chapter 2,
Networking for Packet Analysts. The visual depiction of their layers is repeated
in the following diagram as a reference and summary of some of the primary
protocols and where they fit into their respective layers:

TCP/IP Protocol Suite

0SI model layers DARPA layers

Application Layer

Presentation Layer| | Application Layer HTTP SMB2 SMTP DNS RTP SNMP

Session Layer

Transport Layer Transport Layer TCP UDP
G ND | MLD
Network Layer Internet Layer ICMPv6
ARP IP (IPv4) IPv6
Data Link Laver o g, g e
Y Network Interface | : o 80211 : a2
Layer . Ethemet @ : wireless : : Frame Relay : : ATM

Physical Layer : : LAN

Network layer protocols

Network layer protocols, also known as Internet layer protocols in the DARPA
reference model, provide basic network connectivity and internetwork
communications services. In this layer, you will predominantly find the IP
protocol being used to get packets transported across the network, along with
ARP, IGMP, and ICMP.

We covered the IP and ARP protocol packet header structures and fields in
Chapter 2, Networking for Packet Analysts, so this information won't be
repeated. However, basic Wireshark capture and display filters are provided here
and also for the remaining protocols in the following sections:

Wireshark IPv4 filters
Capture filter(s): ip

Display filter(s): ip ip.addr==192.168.1.1 ip.src== ip.dst== ip.id >
2000

Wireshark ARP filters
Capture filter(s): arp

Display filter(s): arp arp.opcode==1 arp.src.hw_mac==00:1c:25:99:db:85

Internet Group Management Protocol

The Internet Group Management Protocol (IGMP) is used by hosts to notify
adjacent routers of established multicast (one-to-any) group memberships. In
other words, IGMP enables a computer that provides content (video feeds), for
example, to provide such content to a distributed group of users using one set of
the multicast address ranges (in the 224.0.0.0 to 239.255.255.255 class D
multicast range). This multicast capability depends on routers that are capable
and configured to support this service; clients must join the multicast group.
When a host wants to start a multicast, it sends an IGMP Membership Report
message to the 224.0.0.2 (all multicast routers) address that specifies the
multicast IP address for this particular group. Clients who wish to join or leave
this group (so they can receive the multicast content) send an IGMP join or leave
message to the router. The following table shows the various ranges for
addresses:

Starting address Ending address o .
Description

range range

224.0.0.0 224.0.0.255 These are reserved for special well-known multicast
addresses

224.0.1.0 238.255.255.255 These are globally-scoped (Internet-wide) multicast
addresses

239.0.0.0 239.255.255.255 These are locally-scoped and administered multicast
addresses

The following screenshot shows the significant fields in the IGMP protocol
header:

Source Destination Protocol Length Info

192.168.0.100 224.0.0.22 IGMPV3 54 membership rReport / Join group 224.0.1.60
192.168.0.100 224.0.0.22 IGMPY3 54 Membership Report / Join group 224.0.0.252
192.168.0.100 224.0.0.22 IGMPV3 54 Membership Report / Join group 239.255.255.250

192.168.0.100 224.0.0.22 / Membership Report

4

/ Leave group 239.255.255.250

e

® Frame 4: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface 0

E|Ethernet II, Src: 00:18:de:d0:27:d7 (00:18:de:d0:27:d7), Dst: IPv4mcast_16 (01:00:5e:00:00:16)
7 Destination: IPvdmcast_16 (01:00:5e:00:00:16)

® Source: 00:18:de:d0:27:d7 (00:1B:de:dD:27:d7)
Type: IP (0x0800)

= Internet Protocol version 4, Src: 192.168.0.100 (192.168.0.100), Dst: 224.0.0.22 (224.0.0.22)
version: 4

IHeader Length: 24 bytes I
@ Differentiated Services Field: Ox00 (DscP Ox00: Default; ECN: Ox00: NOT-ECT (Not ECN-Capable Transport))

Total Length: 40
Identification: Ox000f (15)
@ Flags: Ox00
Fragment offset: 0
Time to live: 1
|Pr0t0co1 IGMP (2) |
+ Header checksum 0x839e [v311dat10n disabled]

[Dest1nat1on GEOIP unknown]

nlOpt1ons (4 bytes), Router AWErtl
£ Internet Group Management Protoco
[TcMP_version: 3]
Type: Membership Report (0Ox22)
Header checksum: Oxe correct
Num Group Records: 1
B Group Record : 239.255.255.250 Change To Include Mode
IRecord Type: Change To Include Mode (3) I
Aux Data Len: O
Num src: 0
Multicast Address: 239.255.255.250 (239.255.255.250}'

The preceding significant fields in the IGMP protocol header include:

e Type: This is a type of IGMP message. Type 22 is IGMPv3 Membership
Report.

e Record Type: There are different types of Group Records. The value of
Record Type 3 is Change To Include Mode, which indicates that content
from the source device is to be forwarded to the in-group hosts by the
multicast router.

e Multicast Address: This is the multicast IP address for a specific group.

You should also note the following interesting fields in the previous protocol
layers:

e The Ethernet frame destination MAC address is one of a range of multicast
MAC addresses (01:00:5e:00:00:00 - 01:00:5e:7f:ff:ff)
e The Protocol field in the IP header specifies IGMP 2

e The IP layer destination IP Address is 224.0.0.22, which is a reserved
IGMPv3 multicast IP address

The IGMP protocol has multiple versions and is rather complex. Refer to the
protocol references provided at the beginning of this chapter for more
information.

Wireshark IGMP filters
Capture filter(s): igmp

Display filter(s): igmp igmp.type==0x22 igmp.record_type==4
igmp.maddr==244.0.1.60

Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is used by network devices
such as routers to send error messages indicating that a requested service is not
available, or a host or network router could not be reached. ICMP is a control
protocol. This means that although it is transported as IP datagrams, it does not
carry the application data—instead, it carries the information about the status of
the network itself.

ICMP pings

One of the most well-known uses of ICMP is to ping, wherein a device sends an
ICMP echo request (Type 8, Code 0) packet to a distant host (via that host's IP
address), which will (if the ICMP service isn't disabled or blocked by an
intermediate firewall) respond with an ICMP echo reply (Type 0, Code 0)
packet. Pings are used to determine whether the target host is available and can
be reached over the network. By measuring the time that expires between ping
requests and replies, we know the round trip time (RTT) delay time over the
network path.

ICMP traceroutes

A variation of ping functionality is used to perform a traceroute (also known as
traceroute), which is a list of the IP addresses of the router interfaces that packets
traverse to get from a sending device to a target host or device. The traceroutes
are used to determine or confirm the network path taken from a sending device
to a target host or device.

A traceroute is accomplished by sending the ICMP echo request packets to a
distant host just as in a normal ping, but with modifications to the Time-to-Live
(TTL) field in the IP header of each packet. The traceroute function takes
advantage of the fact that each router in a network path decrements the TTL
value in a packet by 1, so as the packet traverses, the routers in a path and the
TTL value will decrease accordingly along the way. If a router receives a packet
with a TTL value of 1, it will send an ICMP TTL exceeded in transit (Type 11,
Code 0) error message back to the sender (along with a copy of the request
packet it received) and otherwise discard (not forward) the packet.

The traceroute works by sequentially setting the TTL in multiple ICMP request
packets to 1, then to 2, then 3, and so on, which results in each router in the
network path sending TTL exceeded error messages back to the sender. Since
these returned messages are sent by the in-path router using the IP address of the
interface where the ICMP packet was received, the traceroute utility can build
and display a progressive list of router interface IP addresses in the path and the
RTT delay to each router.

ICMP control message types
A sampling of the most commonly seen types of ICMP control messages,

including their type and code (subtype) numbers, are provided in the following
table:

Code

Type

Description

o

This indicates echo reply (ping)

o

[my

This indicates destination network unreachable ‘
This indicates destination host unreachable ‘

~

This indicates fragmentation required and do not fragment bit set

[«))

This indicates destination network unknown

~

This indicates destination host unknown

o

This indicates redirect datagram for the network

[my

o

This indicates echo request (ping)

o

This indicates TTL expired in transit (seen in traceroutes)

This indicates redirect datagram for the host |

The Wireshark packet details fields for the ICMP packet illustrated in the

following screenshot depict a Time-to-live exceeded message as seen in a
typical traceroute capture:

F Frame 13: 70 bytes on wire (560 bits), 70 bytes captured (560 bits)
@ Ethernet II, Src: cB:dF:19:21:b7:ec (cB:d7:19:21:b7:ec), Dst: 00:1c:25:99:db:85 (00:1c:
@ Internet Protocol Version 4, |Src: 10.192.128.1 [(10.192.128.1), Dst: 192.168.1.115 (192.
'® Internet Control Message Protocol
Type: 11 (Time-to-live exceeded)
Code: O (Time to live exceeded in transit) |
Checksum: 0x2161 [correct]
= Internet Protocol Version 4, src: 192.168.1.115 (192.168.1.115), |Dst: 205.251.242.54
version: 4
Header Length: 20 bytes
@ Differentiated services Field: 0x00 (pscp 0x00: pefault; ECN: Ox00: NOT-ECT (NOT E(
Total Length: 56
Identification: O0x637d (25469)
F Flags: 0x02 (Don"t Fragment)
Fragment offset: 0O
E{Time to Tive: 1|
Protocol: ICMP (1)
E Header checksum: 0x93fa [validation disabled]
Source: 192.168.1.115 (192.168.1.115)
Destination: 205.251.242.54 (205.251.242.54)
[source GeoIP: unknown]
[Destination GeoIP: Unknown]
= Internet Control Message Protocol
Type: 8 {(Echo (ping) request)
Code: 0
checksum: O0xc739
Identifier (BE): 1 (Ox0001)
Identifier (LE): 256 (0x0100)
Sequence number (BE): 1124 (0x0464)
Sequence number (LE): 25604 (0x6404)

The following points are significant to analyze this packet:

e The source IP address seen in the IPv4 header summary is 10.192.128.1,
which is the IP address of the router interface sending the ICMP message to
the originator, 192.168.1.115

e The ICMP packet is Type 11, Code 0 (TTL exceeded in transit)

The second set of IPv4 and ICMP headers that follow the first IPv4 and ICMP
headers are copies of the original packet transmitted by the sender. This copy is
returned to allow determination of the packet that caused the ICMP message.
The significant points in the packet details of this ICMP message copy include:

e The target destination IP address, where the echo request packet was
intended to be sent (and would have been if the TTL value hadn't been

altered) is 205.251.242.51.

The TTL value was 1 when this packet reached the 16.192.128.1 router
interface. This packet cannot be forwarded, resulting in the TTL exceeded
message being sent back to the sender.

The original ICMP packet was a Type 8, Code 0 echo request message.
The Header Data section of the ICMP packet for the echo requests and
replies will include a 16-bit identifier and 16-bit sequence number, which
are used to match echo replies to their requests.

ICMP redirects

Another common use of ICMP is to redirect a client to use a different default
gateway (router) to reach a host or network than the gateway it originally tried to
use. In the ICMP Redirect packet depicted in the following screenshot, a
number of packet fields should be noted:

The source IP address of the ICMP redirect packet is 192.168.1.1, which
was the client's default gateway; this is the router sending the redirect
packet back to the client

The ICMP Type is 5 (Redirect) and Code is 1 (Redirect for host)

The gateway IP address that the router 192.168.1.1 is telling the client to
use to reach the desired target host is 192.168.1.2

The IP address of the target host was 16.1.1.125

The following screenshot shows the ICMP Redirect packets:

MNo. Time Source Destination Protocol Length Info
2529 4.927128 192.168.1.1 152.168.1.115 ICMP 174 Redirect (Redirect for host)

192.168.1.115 154 Redirect (Redirect for host)

.

m

Frame 2529: 174 bytes on wire (1392 bits), 174 bytes captured (1392 bits) on interface 0
Ethernet II, Src: cB8:d7:19:21:b7:ec (cB8:d7:19:21:b7:ec), Dst: 00:1c:25:99:db:85 (00:1c:25:99:db:85)

Internet Protocol Version 4, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.115 (192.168.1.115)
version: 4

Header Length: 20 bytes
pifferentiated Services Field: OxcO (DSCP 0x30: Class Selector 6; ECN: 0x00: NOTt-ECT (Not ECN-Capable Transport))
Total Length: 160
Identification: Ox78fa (30970)
Flags: 0Ox00
Fragment offset: 0
Time to live: 64
|Prot0co1: ICMP (1) |
i _Header checksum: Ox7cde [validation disabled]
|Source: 192.168.1.1 (192.168.1.1)
Destination: 192.168.1.115 (192.168.1.115)
[Source GeoIP: Unknown]
[Destination GeoIP: unknown]
El Internet control Message Protocol
Type: 5 (Redirect)
Code: 1 (Redirect for host)
Checksum: 0x0/64 | correct]
Gateway address: 192.168.1.2 (192.168.1.2)|
[INternet Protocol version 4, &rc: 102.168.1.115 (192.168.1.115), Dst: 10.1.1.125 (10.1.1.125) |
, Ack: 361772998

ransmission Control Protocol, Src Port: 49161 (49161), Dst Port: 445 (445), Seq: 330
etBIOS Session Service

sMB2 (Server Message Block Protocol version 2)

oEE

[

[

Wireshark ICMP filters
Capture filters(s): icmp

Display filter(s): icmp icmp.type==8 || icmp.type==0 (pings)
icmp.type==5

&& icmp.code==1 (host redirects)

Internet Protocol Version 6

The Internet Protocol Version 6 (IPv6) is the latest version of Internet
protocol, and although it is in its earliest stages of adoption, it is intended to
eventually replace IPv4—mostly to alleviate the shortage of IP addresses that
can be assigned to network devices. IPv4, with its 32-bit address space, provides
approximately 4.3 billion addresses, nearly all of which have been assigned to
companies and private interests worldwide.

IPv6 utilizes a 128-bit address space, which allows 2128 o approximately 3.4 x

1038 addresses; that number is
340,282,366,920,463,463,374,607,431,768,211,456 unique addresses.

IPv6 addressing

The 128 bits of an IPv6 address are represented in eight groups of 16 bits each,
written as four hexadecimal digits separated by colons (:). An example of an
IPv6 address is 2001:0db8:0000:0000:0000: ffe0:0042:8329.

For convenience, an IPv6 address may be abbreviated to shorter notations by
application of the following rules, wherever possible:

e One or more leading zeroes from any groups of hexadecimal digits are
removed; this is usually done to either all or none of the leading zeroes. For
example, the hexadecimal group 0042 can be converted to just 42.

e Consecutive sections of zeroes are replaced with a double colon (::). The
double colon may only be used once in an address, as multiple use would
render the address indeterminate. A double colon must not be used to
denote a single section of omitted zeroes.

An example of applying these rules to IPv6 addresses is as follows:

e Initial address: 2001:0db8:0000:0000:0000: ffeO:0042:8329
e After removing all leading zeroes: 2001:db8:0:0:0:ff00:42:8329
o After omitting consecutive sections of zeroes: 2001:db8: : ff00:42:8329

The 128 bits of an IPv6 address are logically divided into a network prefix and a
host identifier. The Class Inter-Domain Routing (CIDR) notation is used to

represent IPv6 network prefixes, for example, 2001:DB8:0:CD30: : /64 represents
network 2001:DB8:0000:CD30: :.

IPv6 address types

There are three basic types of IPv6 addresses:

e Unicast: These packets from one-to-one device use a single interface
address. Unicast addresses can be of one of the following three types:

o Global Unicast: This is routable to and over the Internet. Global
Unicast addresses generally start with 2xxx (such as 2000: : /3).

o Link-local: This is automatically assigned to an interface and used on
the local network link; this is not routable to the Internet, much like a
MAC address. Link-local Unicast addresses start with FE80®
(FE80::/10). They are automatically assigned to an interface when it is
initialized using an algorithm that uses a rearranged version of the
NIC's 48-bit MAC address in the IPv6 address and are used to
communicate on the local link. These addresses are not routable. IPv6
uses link-local addresses for neighbor discovery functions.

o Unique local: This is not routable to the Internet, but it is routable
within an enterprise (similar to [Pv4 private addresses). Unique local
Unicast addresses start with FCeo (FCo0: : /7). This block of addresses
is reserved for use in private IPv6 networks.

® Multicast: These are packets from one-to-many devices. Multicast addresses
start with FFxx. An example of a multicast address is FF01:0:0:0:0:0:0:101,
which can be shortened to FFe1: :101. There is no broadcast address in IPv6;
multicasts are used as a replacement. Some well-known multicast addresses are
shown in the following table:

Address Description |[|Scope
ff01:0:0:0:0:0:0:1)IA]] nodes Interface-local (spans only a single interface on a node useful only
address for loopback transmission of multicast packets)
ff02:0:0:0:0:0:0:1IA]] nodes Link-local (all nodes on the local network segment)
address

ff01:0:0:0:0:0:0:2fJA]] routers Interface-local
address

ff02:0:0:0:0:0:0:2/|A]] routers ||Link-local
address

ff05:0:0:0:0:0:0:2|A]] routers ||Site-local (spans a single site)
address

ff02:0:0:0:0:0: 1:2IDHCPVE Link-local
servers/agents

ff05:0:0:0:0:0:1:3IDHCPVS Site-local
servers/agents

* Anycast: These packets are from one to the nearest of a group of interfaces.
There is no special addresses scheme for Anycast addresses; they are similar to
Unicast addresses. An Anycast address is created automatically when a Unicast
address is assigned to more than one interface. Anycast addresses can be used to
set up a group of devices so that any one of the group devices can respond to a
request sent to a single IPv6 address.

Further discussion of IPv6 addressing would cover quite a number of additional
features, which are beyond the scope of this book. The reader is encouraged to
research IPv6 addressing further online and/or by reading Request For
Comments (RFC) 4291 (IP Version 6 Addressing Architecture).

IPv6 header fields

An example of an IPv6 protocol header is illustrated in the following screenshot:
B Internet Protocol version 6, Src: 2607:f0d0:2001:e:1::120 (2607:f0d0:2001:
Bi0110 = version: 6
Hf.... 0000 Q000
T Qo000 0000 0000 0000 Q000
Payload Tength: 428
Next header: TCP (6)
Hop 1imit: 50
Source: 2607:f0d0:2001:e:1::120 (2607:f0d0:2001:e:1::120)
Destination: 2002:1806:addc::1806:addc (2002:1806:addc::1806:addc)
[source GeoIP: Unknown]
[Destination GeoIP: Unknown]
= Transmission Control Protocol, Src Port: 80 (80), Dst Port: 52004 (52004),

Traffic class: Ox00000000
Flowlabel: 0x00000000

The IPv6 header fields are similar to many IPv4 headers and the fields include:

e Version: This is the IP version number, 6 for IPv6.

o Traffic class: This is similar to the IPv4 DiffServ field; it is used to identify
different classes or priorities of IPv6 packets.

e Flow label: These are used to identify sequences of packets that are labeled
as a set. An IPv6 flow is defined by the 20-bit Flow Label field and the
source and destination IPv6 address fields.

e Payload length: This is the length of the IPv6 payload, not including any
packet padding.

e Next header: This field indicates what's coming next in the packet. This is
equivalent to the IPv4 Protocol field. In the preceding example, the next
layer is a normal TCP (6) header.

e Hop limit: This field is roughly equivalent to the Time To Live field in
[Pv4; it is decremented by one by each device that forwards the [Pv6
packet. When the value reaches one, the packet cannot be forwarded.

¢ Source and Destination addresses: These are the 128-bit IPv6 source and
destination addresses.

[Pv6 supports extension headers that provide additional information fields and
that also extend the length of the IPv6 header. There is specific Next Header
code that indicates the presence of this added functionality.

IPv6 transition methods

As part of the transition to IPv6, the current TCP/IP devices support dual stacks
(IPv4 and IPv6 simultaneously) and the ability to encapsulate and tunnel IPv6
packets inside IPv4 packets so that they can be routed by IPv4 networks. The
three of the most popular encapsulation methods are:

e 6to4 tunneling: In this tunneling method, an IPv6 header follows an IPv4
header; the Protocol field of the IPv4 header will contain 41 (IPv6), and the
source IPv6 address in the IPv6 header will start with 2002.

e Teredo: In this tunneling method, an IPv6 header is encapsulated inside a
UDP packet. This method was developed to accommodate NAT devices
that do not handle protocol 41. Teredo tunneling can be identified in the
UDP packet header by a destination port of 3544.

e ISATAP: This tunneling method uses a locally assigned IPv4 address to
create a 64-bit interface identifier. For example, in ISATAP, the IPv4

address 24.6.173.220 becomes : :0:5EFE:1806:addc. ISATAP
encapsulates IPv6 headers within IPv4 as in 6to4 tunneling.

Wireshark IPv6 filters

Capture filter(s): ip6 host fe80::1 ip proto 41 (capture IPv6-over-IPv4
tunneled traffic)

Display filter(s): ipvé ipv6.addr == fe80::f61f:c2ff:fe58:7dcb
ipv6.addr == ff02::1

Internet Control Message Protocol Version 6

Internet Control Message Protocol Version 6 (ICMPvV6) is an integral part of
[Pv6, and the base protocol must be fully implemented by every IPv6 node.
ICMPv6 provides services for an IPv6 environment that are provided by other
distinct protocols in an IPv4 environment, such as Neighbor Solicitation to
replace ARP.

The following table contains some of the common ICMPv6 packet types:

ICMPv6 ICMPv6)

packet type |[[type Purpose

Echo request {|128 Ping request

Echo 129 Ping response
response

Multicast 130
listener query

Sent by multicast router to poll a network segment for group members

Multicast 131
listener report

Sent by a host when it joins a multicast group, or in response to a multicast
listener query sent by a router

Multicast 132
listener done

Sent by a host when it leaves a multicast group and might be the last member of
that group on the network segment

Router 133 Discover the local router(s)

solicitation

Router 134 Respond to Router Solicitation messages, as well as sending this packet after
advertisement initialization and periodically afterwards

Neighbor 135
solicitation

Used first for Duplicate Address Detection (using a source address of : :) and
then to obtain the MAC address of the local router; this function replaces ARP

Neighbor 136 Response to Neighbor Solicitation messages

advertisement

Redirect 137

message host

Redirect a device to the proper router to send packets to a specific network or “

An example of a Neighbor Solicitation ICMPv6 packet is shown in the following

screenshot;

Frame 1: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on interface 0
Ethernet II, Src: 00:18:de:d0:27:d7 (00:18:de:d0:27:d7), Dst: IPvimcast_ff:cB:e5:c8 ({

H FH

-] Internet Protocol version 6, src: :: (::), Dst: ff02::1:ffcB:e5c8 (ff02::1:ffcB:e5cB)
® 0110 = Version: 6
H 0000 QOO0 Traffic class: 0x00000000

S387aT80 ATAIATEL oS . 0000 0000 0000 0000 D000 = Flowlabel: Ox00000000
Payload length: 24

[Next header: Icmpvée (58) |

Hop limit: 255

source: :: (::) |

Destination: ff02::1:ffc8:e5c8 (ff02::1:ffcB:e5cB)|

[source GeoIP: unknown]

[Destination GeoIP: Unknown]

nternet Control Message Protocol w6

Type: Neighbor Solicitation

Code: 0O

Checksum: Ox8de8 [correct]

Reserved: 00000000

ITarget Address: feB0::85ed:bc2e:dfcB8:e5¢c8 (fe80::85ed:bc2e:dfcB:e5cB) I

The significant fields in this packet include:

e Next Header: This field contains 58, which indicates that the next protocol
header is to be ICMPv6.

e IPv6 Source Address: The presence of an unspecified address (
this is a Duplicate Address Detection packet.

e IPv6 Destination Address: This is basically a multicast address.

e ICMPv6 Type: This is a Neighbor Solicitation message using Type 135.

e ICMPv6 Code: This is the subtype for Neighbor Solicitation messages; this
will be 0.

e ICMPv6 Target Address: This is the address the host wants to use. If
another node on the network is already using this address, they will respond
accordingly.

Multicast Listener Discovery

:) indicates

Multicast Listener Discovery (MLD) is another component of the IPv6 suite
used by IPv6 routers to discover multicast listeners on a directly attached link.

MLD is part of the ICMPv6 protocol and it replaces IGMP on IPv4 networks.
Wireshark ICMPVv6 filters

Capture filter(s): icmp6

Display filter(s): icmpvé icmpv6.type==1135 && icmpv6.code==0 (Neighbor
Solicitation)

Transport layer protocols

The transport layer protocols include TCP and UDP used to transport application
protocols.

User Datagram Protocol

The User Datagram Protocol (UDP) is considered an unreliable transport. In
this, there's no guarantee of packet delivery or ordering, but it has a lower
overhead and is used by time-sensitive applications such as voice and video
traffic.

The following screenshot shows the fields contained in an UDP header:

Frame 18: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits)
Ethernet II, Src: Polycom_B82:92:20 (00:04:T2:82:92:20), Dst: Cisco_55:14:b5 (00:27:0d:55:14:b5)
Internet Protocol Version 4, Src: 10.1.1.100 (10.1.1.100), Dst: 208.73.144.71 (208.73.144.71)
= User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 24268 (24268)
Source port: 2222 (2222
Destination port: 24268 (24268)
Length: 180

Checksum: 0xb&4c
Real-Time Transport Protocol

The UDP header is only 8-bytes long, consisting of:

¢ Source and Destination port number: This is 2 bytes each.

e Length: This is the length of the UDP header plus the payload. This is a 2-
byte field.

e Checksum: This is a 2-byte field used to check for errors in the UDP
header and data. If no checksum was generated by the transmitter, this will
be all zeroes.

Wireshark UDP filters

Capture filter(s): udp udp port 2222

Display filter(s): udp udp.srcport == 161 (SNMP response) udp.length >
256

Transmission Control Protocol

The Transmission Control Protocol (TCP) provides a reliable delivery of data
by detecting lost, duplicated, or out-of-order packets, requesting retransmission
of lost data, or rearranging packets in the right order before delivering them to
the application. TCP can also accept a large chunk of data from an application
and handle getting the data transported to the other end reliably using multiple
packets and reassembling them at the other end.

The following screenshot highlights the significant fields of a basic TCP header:

B

Frame 7: &74 bytes on wire (5392 bits), 674 bytes captured
H Ethernet II, Src: HonHaiPr_99:db:85 (00:1c:25:99:db:85)
E Internet Protocol version 4, Src: 192.168.1.116 (192.168.1.116)
B Transmission Control Protocol, Src Port: 54579 (54579)
Source port: 54579 (54579)
Destination port: http (580)
[Stream index: 1]

|Sequence number: 1 | (relative sequence number)

[Next sequence number: &17 (relative sequence number)]

|Acknuw1edgﬂent number: 1 |{re1at1ve ack number)

Header length: 20 bytes
FHfFlags: 0x018 (PSH, ACK)
window size value: 16425
[Calculated window size: 16425]

[Window size scaling Tactor: -1 (unknown)]

FH Checksum: 0x58e8 [validation disabled]

FH [SEQ/ACK analysis]

FH [Timestamps]

[+ Hypertext Transfter Protocol

The TCP header contents and length can vary depending on options that may be
in use, but in its simplest implementation it consists of:

¢ Source port and Destination port: These are well-known and registered
ports are used (on servers) to access standard application services such as
HTTP, FTP, SMTP, databases, and so on. Port numbers assigned to
client/user sessions are usually in a higher number range and assigned
sequentially.

e Sequence number: This is a number that represents the first octet in any
given segment. Sequence numbers are initialized at the beginning of new
sessions as a random number, and then incremented as data bytes are sent.

e Acknowledgment number: When the ACK flag bit is set, this field
contains the next sequence number expected from the sender, which in turn
acknowledges receipt of all the bytes received up to that point.

Note

The use of sequence and acknowledgment numbers is how TCP ensures
reliable delivery of data by tracking the number and order of received bytes.

Sequence and acknowledgment numbers are large and difficult for humans
to follow. Wireshark can convert and display these as relative values that
start with O at the beginning of a session to make it easier to inspect them
and relate the values to the number of bytes transmitted and received.

o Flags: These bits are used to control connection setups, terminations, and
flow control mechanisms.

e Window size: This field indicates the current size of the buffer on this host
used to store received data until it can be handed off to the receiving
application. This information enables the sending host to adjust data flow
rates in case of network or host congestion.

TCP flags

The following table lists the flags that are most commonly used in a TCP header:

Flag field name |[|Description

URG (urgent) This indicates the Urgent Pointer field (after the TCP header checksum) that should
be examined. This flag is normally 0; the Urgent Pointer field is only examined if
this bit is set.

ACK This is the acknowledgment packet.
(acknowledgment)
PSH (push) This indicates whether the sending node's TCP stack should bypass any buffering and

pass the data directly to the network and on to the receiving application.

RST (reset) This is used to close the connection explicitly.

SYN This is used to synchronize sequence numbers and used in a three-way TCP session

(synchronize) initiation handshake process.

FIN (finish) This is used when the transaction is finished. This does not mean that the connection
is to be closed explicitly, but is commonly seen at the end of sessions.

TCP options

The TCP also supports a number of additional options, several of which are in
common use in modern networks that you should be aware of. The snippet of a
TCP header illustrated in the following screenshot depicts several of the most
popular options:

window size value: 8192

[Calculated window size: 8192]
= Checksum: Oxcdbf [validation disabled]
[Good Checksum: False]
[Bad Checksum: False]
Urgent pointer: 0
| Options: (12 bytes), Maximum segment size

EHiMaximum segment size: 1460 bytes
Kind: Maximum Segment Size (2]
Length: 4
M55 value: 1460
= No-Operation (NOP)
E Type: 1
i Copy on fragmentation: Ko
i Class: Control (0)
...0 0001 = Number: No-Operation (NOP) (1)
Awindow scale: 2 (multiply by 4)
Kind: window Scale (3}
Length: 3
Shift count: 2
[Multiplier: 4]
No-Operation (NOP)
E Type: 1
i Copy on fragmentation: Ko
0. ... = Class: Control (0]
...0 0001 = Number: No-Operation (NOP) (1)

[

o

= No-Operation (NOP)
E Type: 1
i = Copy on Tragmentation: Mo

0. ... = Class: Control (0]
...0 0001 = Number: No-Operation (NOP) (1)
r:P SACK Permitted Option: True
Kind: SACK Permitted (4)
Length: 2
FH [Timestamps]

m

The TCP options highlighted in the preceding screenshot include:

e Maximum Segment Size: This option allows you to specify of the number
of bytes that can follow the TCP header. This option exists to allow
adjustment to accommodate VLAN tagging or Multiprotocol Label
Switching (MPLS).

e Window Scale: This option overcomes the inability of the Window Size
field in a standard TCP header to specify a window size greater than 65,535
bytes. Window scaling allows you to specify a factor to multiply the
advertised window size to achieve a larger window size. Both sides of a
session must be able to support this option for it to apply; this is determined
during the session setup.

e TCP SACK Permitted Option: This option indicates that this node
supports selective acknowledgments, which allows a node to acknowledge
ongoing and incoming data packets while still asking for a specific missing
packet. The recovery process only requires retransmission of the missing
packet(s), instead of the missing packet and all the packets that followed.
Both sides of a session must be able to support this option for it to apply, as
determined during session setup.

Wireshark TCP filters
Capture filter(s): tcp tcp port 80

Display filter(s): tcp tcp.port == 80 tcp.dstport == 8080 tcp.stream ==
2

Application layer protocols

The most common application layer protocols include DHCP used to obtain
client IP addresses and configuration information, DNS for hostname resolution,
HTTP, SMB, POP/SMTP, and FTP for the most common network services and
SIP, RTP, and RTCP for VoIP and video conferencing.

Extensive coverage of all the upper layer protocols is beyond the scope of this
book. A brief overview of DHCP and DNS will be provided, as these protocols
universally support network operations and HTTP as an example of one of the
most common application layer protocols. The reader is encouraged to research
any or all of these protocols further depending on their scope of interest and need
to meet the analysis tasks being addressed.

Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) allows a client to lease an IP
address from a pool managed by a DHCP server. The client can receive other
configuration options such as the default gateway, subnet mask, and one or more
DNS server addresses as well. DHCP is derived from an older BOOTP protocol;
Wireshark uses bootp in display filter syntax. DHCP works by the client sending
a broadcast packet using UDP source port 67 to UDP destination port 68. A
DHCEP server will respond to the requestor's IP address and using UDP source
port 68 to UDP destination port 67.

DHCEP servers don't necessarily have to reside on the same local network
segment as clients. A relay agent such as a router can forward DHCP requests
and respond to/from a different network where a DHCP server resides.

Wireshark DHCP filters

Capture filter(s): port 67 (DHCP is between ports 67 and 68; filtering on port 67
is sufficient to get both sides of the conversations)

Display filter(s): bootp bootp.option.value == 0 (DHCP Discover message)

Dynamic Host Configuration Protocol
Version 6

Dynamic Host Configuration Protocol Version 6 (DHCPvV6) is the IPv6
version of DHCP. Since IPv6 doesn't use broadcasts, DHCPv6 clients use the
multicast address for A11_DHCP_Relay_Agents_and_Servers (ff02::1:2) to
locate DHCPvV6 servers or relay agents.

Wireshark DHCPVvV6 filters

Capture filter(s): port 546 (DHCPV6 is between ports 546 and 547; either will
work) Display filter(s): dhcpvé dhcpve.msgtype == 1(DHCPv6 Solicit
message)

Domain Name Service

Domain Name Service (DNS) is used to convert host names, such as
www.wireshark.org to IP addresses. DNS can also be used to identify the
hostname associated with an IP address (an inverse or pointer (PTR) query) and
several other network information services. This is a good protocol to become
familiar with as it is used extensively to locate nodes both within an enterprise
and on the Internet using hostnames.

Wireshark DNS filters

Capture filter(s): port 53

Display filter(s): dns dns.flags.response == 0(DNS query)
dns.flags.response == 1(DNS response) dns.flags.rcode !'= 0(DNS
response contains an error)

http://www.wireshark.org

Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) is the application protocol used when
someone browses (unsecured) websites on the Internet, along with the secure
version (HTTPS). HTTP/1.1 is the current version—although HTTP/2.0 is
starting to appear in some environments. Be aware that some network devices
such as proxy servers and gateways may not support HTTP/2.0 yet.

An example of a HTTP packet delivering a GET request to a web server is

epicted in the following screenshot:
Frame 7: 451 bytes on wire (3608 bits), 451 bytes captured (3608 bits) on interface O
Ethernet II, Src: 00:1c:25:99:db:85 (00:1c:25:99:db:85), Dst: c8:d7:19:21:b7:ec (c8:d7:19
Internet Protocol Version 4, Src: 192.168.1.115 (192.168.1.115), Dst: 10.1.1.125 (10.1.1.
Transmission Control Protocol, Src Port: 60347 (60347), Dst Port: 8080 (8080), Seq: 1, Ac
Hypertext Transfer Protocol
E.iEET Jorion HTTP/1.1%r\n |

E [Expert Info (Chat/Sequence): GET jOorion HTTP/1.1\r\n]

[GET /Orion HTTP/1.1%r\n]

[Severity l1evel: Chat]
[Group: Seguence]
Request Method: GET
Request URI: /Orion
Request vVersion: HTTP/ 1.1
Host: pktiqsvril:s080%rhn
Cconnection: keep-alivehrin
Accept: text/html,application/xhtml+xml,application/xml;q=0.%,image/webp,*/*;q=0.58%r\n
User-agent: Mozilla/5.0 (wWindows NT 6.1; WOwWe4) Applewebkit/537.36 (KHTML, l1ike Gecko)
Accept-Encoding: gzip,deflate,sdchyr’n
Accept-Language: en-uUs,en;q=0.8%r%n
HiCookie: ASP.NET_SessionId=sidsruxjbm4eaed4dzdgg4zdhrin

Cookie pair: ASP.NET_SessionId=sidsruxjbm4eaed4d3dgg4zd
NN
[Full request URT: http:,// pktigswvri:8080,/0rion]
[HTTP request 1/46]
[Response in frame: 81
[Mext reqguest in frame: 9]

1

[

[
[

The most common features and fields of the HTTP protocol include HTTP
Methods, Host, and Request Modifiers.

In the preceding screenshot, the HTTP header includes:
e Request Method: GET

e Request URI: /Orion (a home page on the web server)
¢ Request Version: HTTP/1.1

HTTP Methods

Some of the more common HTTP Methods are listed and described in the
following table:

Method

Description ‘

GET This retrieves information defined by the Uniform Resource Identifier (URI) field

HEAD

This retrieves meta data related to the desired URI ‘

POST [IThis sends data to the HTTP server/application

OPTIONSHThis determines the options associated with a resource

PUT This sends data to the HTTP server/application

DELETE fIThis deletes the resource defined by the URI

CONNECTHThis is used to connect to a proxy device

Host

The Host field identifies the target host and port number of the resource being
requested. In the preceding screenshot, Host is pktigsvri on port 8086.

Request Modifiers

HTTP requests and responses use Request Modifiers to provide details for the
request. In the preceding screenshot, Request Modifiers includes:

¢ Connection: This indicates the preference for a persistent connection
(keep-alive).

e Accept: This is a list of data formats (text/html and application/xhtml
plus xml) accepted.

e User-agent: This is a list of browser and operating system parameters

(Mozilla/5.0 (Windows NT 6.1; WOWG64) AppleWebKit) for the requesting
device.

e Accept-encoding: This is a list of the acceptable HTTP compression
schemes (gzip, deflate, and sdch).

e Accept-language: The acceptable languages (en-US and en; g=0.8) where
g=0.8 is a relative quality factor that specifies the language the user would
prefer on a scale of 0 to 1.

e Cookie: This is a session ID cookie
(ASP.NET_SessionId=sidsruxjbm4eaed4d3dgg4zd) that was previously
stored on the user's browser in a cookie and is being provided to the
website.

The following table lists some of the more commonly used modifiers:

Request .

Modifier Description

Accept Acceptable content types

Accept- Acceptable character sets

charset

Accept- Acceptable encodings

encoding

Accept- Acceptable languages

language

Accept- Server can accept range requests

ranges

Authorization||Authentication credentials for HTTP authentication
Cache- Caching directives

control

Connection [|Type of connection preferred by the user agent
Cookie HTTP cookie (a small piece of data sent from the website and stored in a user's browser,

and/or sent back to the website the next time the user visits containing session information)

Content-
length

Length of the request body in bytes

|Content—type

Mime type of the body (used with POST and PUT requests)

Date Date and time the message was sent

Expect Defines server behavior expected by the client

[f-match Perform action if client-provided information matches
If-modified- |[Provide date/time of cached data; return 304 Not Modified if the cached data is still
since current

[f-range Request for range of missing information

[F- Only send if unmodified since the provided date/time
Junmodified-

since

Max- Limit the number of forwards through proxies or gateways
forwards

Proxy- Authorization credential for a proxy connection

authorization

Range Request only part of an entity

TE Transfer encodings accepted

User-agent ||A string containing browser and operating system information
Via The proxies traversed

Wireshark HTTP filters

Capture filter(s): tcp port http tcp port https

Display filter(s): http http.request.method == "GET" or
http.request.method == "POST" http.response.code > 399 (identifies
client or server error packets)

Additional information

Covering all the most common upper layer protocols or covering them to any
great depth is obviously more than what can be included in a book of this size. I
encourage you to spend some time studying those protocols that are of interest to
you for personal or job-related reasons. The return on your investment in time
will be well worth the effort.

Additional information for any of the protocols discussed in this chapter as well
as all those not covered can be found online.

Wireshark wiki

If you are inspecting a protocol within the Wireshark's Packet Details pane, you
can right-click on a protocol header or field within a header and select the Wiki
Protocol Page from the menu to go to the specific page on the Wireshark wiki
that contains information on that protocol. More information can be found at
http://wiki.wireshark.org/ProtocolReference.

You can also get a complete list of Wireshark display filters on specific protocols
by selecting a protocol header or a field within a header, right-clicking, and
selecting Filter Field Reference.

Protocols on Wikipedia
You can find general information on various protocols on Wikipedia. Start with

the Internet protocol. Additional links to the entire Internet protocol suite are
also provided at http://en.wikipedia.org/wiki/Internet_Protocol.

Requests for Comments

The Requests for Comment (RFC) documents contain detailed information for
all the Internet protocols. These documents are maintained by the Internet
Engineering Task Force (IETF) and are the final word on how the protocols
should be implemented and function (http://www.ietf.org/rfc.html). If you want
to search for a specific RFC by title or keyword, use the link http://www.rfc-
editor.org/search/rfc_search.php.

http://wiki.wireshark.org/ProtocolReference
http://en.wikipedia.org/wiki/Internet_Protocol
http://www.ietf.org/rfc.html
http://www.rfc-editor.org/search/rfc_search.php

Summary

The topics covered in this chapter included protocol and field coverage of the
network layer protocols IPv4, ARP, IGMP, ICMP, IPv6, and ICMPv6; the
transport layer protocols UDP and TCP; an overview of the application layer
protocols DHCP, DHCPv6, and DNS; and a more in-depth look at HTTP.

In the next chapter, we'll put all the topics covered so far to good use by using
Wireshark to troubleshoot the functionality and performance issues.

Chapter 6. Troubleshooting and
Performance Analysis

In this chapter, we will discuss the use of Wireshark for its primary purpose—
troubleshooting network and application connectivity, functionality, and
performance issues.

The topics that will be covered include:

Troubleshooting methodology
Troubleshooting connectivity issues
Troubleshooting functional issues
Performance analysis methodology
Top five reasons for poor application performance
Detecting and prioritizing delays
Server processing time events
Application turn's delay

Network path latency

Bandwidth congestion

Data transport issues

These topics cover the majority of problems you'll come across in your analysis
efforts.

Troubleshooting methodology

There are two fundamental reasons why you might be doing packet analysis:

e Troubleshooting a connectivity or functionality problem (a user can't
connect, an application doesn't work, or doesn't work right), which we'll
just call troubleshooting

¢ Analyzing a performance problem (the application works but is slow),
which we'll call performance analysis

A third gray area is an application that basically works but is slow and
occasionally times out, which could involve an underlying functional problem
that causes the performance issue, or just simply be a really poor performance.

Troubleshooting a connectivity or functional issue is just a matter of comparing
what normally works with what is going on, in the case you're working on.

A performance problem, on the other hand, requires determining where the
majority of the time for a particular transaction to complete is being spent,
measuring the delay and comparing that delay to what is normal or acceptable.
The source and type of excessive delay usually points to the next area to
investigate further or resolve.

In any case, you need to gather the information that allows you to determine
whether this is a connectivity, functional, or performance issue and approach the
problem according to its nature.

Gathering the right information

The most important thing you can do when approaching a problem is to
determine what the real problem is so you can work on the right problem or the
right aspect of the problem. In order to determine what the real problem is, or at
least get close, you'll need to ask questions and interpret the answers. These
questions could include the appropriate selections (depending on the complaint)
from the following list:

e Define the problem:

o What were you trying to do (connect to a server, log in, send/receive e-
mails, general application usage, upload/download file, and specific
transactions or functions)?

o Is nothing working or is this just a problem with a specific application
or multiple applications?

o What website/server/application were you trying / connecting to? Do
you know the hostname, URL, and/or IP address and port used to
access the application?

o What is the symptom/nature of the problem? Has this application or
function/feature worked before, or is this the first time you've ever
tried to use it?

Did you receive any error messages or other indications of a problem?

Is the issue consistent or intermittent? Depends? On what?

How long has this been happening?

Was there some recent change that did or could have had an impact?

What has been identified or suspected so far? What has been done to

address this? Has it helped or changed anything?

o Are there any other pertinent factors, symptoms, or recent changes to
the user environment that should be considered?

O O O O O

e Determine the scope of the issue:

o s this problem occurring for a single user or a group of users?

o Is this problem occurring within a specific office, region, or across the

whole company?

o Is this problem affecting different types of users differently?
o Collect system, application, and path information. For a more in-depth
analysis (beyond single user or small group issues), the applicable questions
from the following list might also need to be gathered and analyzed, as

appropriate to the complaint (some of this information may have to be obtained
from network or application support groups):

(e}

What is the browser type and version on the client (for web apps)? Is this
different from clients that are working properly?

What is the operating system type and version of the client(s) and server?
What is the proper (vendor) application name and version? Are there any
known issues with the application that match these symptoms (check the
vendor's bug reports).

What is the database type and server environment behind the application
server?

Are there other backend-supporting data sources such as an online data
service or Documentum and SharePoint servers involved?

What is the network path between the client and server? Are there firewalls,
proxy servers, load balancers, and/or WAN accelerators in the path? Are
they configured and working properly?

Can you confirm the expected network path (and any WAN links involved)
with a traceroute and verify the bandwidth availability?

Can you measure the round trip time (RTT) path latency from the user to
the application server with pings or TCP handshake completion times?

Establishing the general nature of the
problem

At this point, you should be able to identify the general nature of the problem
between one of the following three basic types:

e Determine whether this is a connectivity problem
o User(s) cannot connect to anything
o User(s) cannot connect to a specific server/application
e Determine whether this is a functionality or configuration problem
o User(s) can connect (gets a login screen or other response from the
application server) but cannot log in (or get the expected response)
o User(s) can connect and log in but some or all functions are failing (for
example, cannot send/receive e-mails)
e Determine whether this is a performance problem
o User(s) can connect, log in, and use the application normally; but it's
slow
o The application works normally but sometimes it stalls and/or times
out

Half-split troubleshooting and other logic

When I was doing component-level repair of electronic equipment early in my
career, I learned to use the "half-split" troubleshooting method, which worked
very well in almost every single case. Half-split troubleshooting is the process of
cutting the problem domain (in my case, a piece of radio gear) in half by
injecting or measuring signals roughly midway through the system. The idea is
to see which half is working right and which half isn't, then shifting focus to the
half that doesn't work, analyzing it halfway through, and so on. This process is
repeated until you narrow the problem down to its source.

In the network and application world, the same half-split troubleshooting
approach can be applied as well, in a general sense. If users are complaining that
the network is slow, try to confirm or eliminate the network:

e Are users close to the server experiencing similar slowness? How about
users in other remote locations?

e If a certain application is slow for a remote user, are other applications slow
for that user as well?

o If users can't connect to a given server, can they connect to other servers
nearby or at other locations?

By a process of logical examination of what does and doesn't work, you can
eliminate a lot of guesswork and narrow your analysis down to just a few
plausible possibilities.

It's usually much easier to determine the source of a connectivity or functionality
problem if you have an environment where everything is working properly to
compare with a situation that does not work. A packet capture of a working
versus a non-working scenario can be compared to see what is different and if
those differences are significant.

It is important not to make too many assumptions about a problem, even if the
issue you're working on looks the same as the one that you've fixed before.
Always verify the problem and the resolution that you should be able to apply
and remove a fix and see the problem disappear/reappear reliably. Otherwise,
you should question yourself about whether you've found the true source of the
issue or are just affecting the symptoms.

Unless a reported problem is obviously a system-wide or specific server issue, it
is better to conduct at least the initial analysis at or as close to the complaining
user's workstation as possible. This has the advantages of offering the ability to
perform the following actions:

e View and verify the actual problem that the user is reporting

e Measure round-trip times to the target server(s)

e Capture and view the TCP handshake process upon session initiation

e Capture and investigate the login and any other background processes and
traffic

e Look for indications of network problems (lost packets and
retransmissions) as they are experienced by the user's device

e Measure the apparent network throughput to the user's workstation during
data downloads

¢ Eliminate the need to use a capture filter; the amount of traffic to/from a
single workstation should not be excessive

A capture at a user workstation, server, or other device should be conducted with
the use of an aggregating Test Access Point (TAP) versus using a switch SPAN
port (as discussed in Chapter 3, Capturing All the Right Packets, or as a last
resort by installing Wireshark on the user's workstation or server (if authorized).

Troubleshooting connectivity issues

Single user or small group connectivity issues can be resolved by confirming
that the networking functions required for a user workstation to access local and
remote network resources are functioning properly. The basic requirements or
items to confirm include:

¢ Enabling the correct network interface(s) (workstation configuration)

e Confirming layer 1 (physical) connectivity

e Obtaining an IP address, subnet mask, and default gateway for each
interface (DHCP)

e Obtaining the MAC address of the default gateway or other local network
services (ARP)

¢ Obtaining the IP address of a network service (DNS)

e Connecting to a network service (TCP handshake or UDP response)

We'll briefly discuss each of these in order; while the first two steps will not
involve using Wireshark, they are a necessary part in a troubleshooting
approach. If the connectivity issue is affecting a group of users or a whole office,
the first step is probably not applicable.

Enabling network interfaces

While it may seem obvious that network interfaces need to be enabled, the
assumption that they are automatically enabled (especially for the wireless
connectivity) by default upon device boot up may be false.

On Windows, you can use the command-line utility ipconfig to view the status
and basic configuration (IP address, subnet mask, and default gateway) of
network interfaces; on Linux or MAC devices, the equivalent command is
ifconfig or ip.

Confirming physical connectivity

If a connectivity problem is isolated to a single user's workstation, the physical
connections are suspected. There are a few items to check, and the
troubleshooting steps that can be taken are as follows:

e If there is a problem with the Ethernet cable from the workstation to a wall
jack, you need to swap the cable with a different one.

o If there is a problem with the cabling from the user's wall jack to the switch
port, you need to temporarily plug the user's Ethernet cable into another
(known good) wall jack.

e If there is a problem with the switch, switch port, or port configuration, you
need to temporarily plug the user's port cable into another (known good)
port. Be aware that some network security policies call to disable switch
ports until they are needed or configuring the port to be associated with a
single, specific MAC address. If so, a port may not work when you plug
into it although there is nothing physically wrong with it.

Obtaining the workstation IP configuration

Unless the workstation was manually configured, it will need to get its IP
address, subnet mask, default gateway, and DNS server settings from a DHCP
server. If this does not appear to be working properly (after checking the
configuration using ipconfig (Windows) or ifconfig, (Linux or Mac OS X)),
you need to perform a packet capture during the workstation initialization/boot-
up process using a TAP or SPAN port and investigate the DHCP requests and
responses.

There are eight DHCP message types (not to be confused with the two Bootstrap
Protocol types, Boot Request and Boot Reply):

Message type o
umber Message type Description
1 DHCP Discover A client broadcast to locate an available DHCP server
2 DHCP Reply A server to client response to a DHCP Discover to offer
configuration parameters
3 DHCP Request A client message to a DHCP server to either one of the
following conditions:
e Request offered parameters from one server and decline
offers from other DHCP servers
e Confirm correctness of previously allocated address after
a reboot
o Extending the lease on an IP address
4 DHCP Decline Client message to DHCP server indicating the offered address is
not acceptable
5 DHCP Server to client with configuration parameters including a
Acknowledgment committed network address
6 DHCP Negative Server to client indicating client's address is incorrect or expired
Acknowledgement
7 DHCP Release Client to server releasing a network address and canceling a

lease

DHCP Informational [|Client to server asking for local configuration parameters only

For a workstation that is booting up and was previously working on the network,
you'll generally see the DHCP Request and Acknowledgment packets verifying
that the workstation can still use a previously leased address. On an entirely cold
start up, the first two DHCP packets will be DHCP Discover and DHCP Offer
packets, followed by the Request and ACK packets.

In a DHCPv6 environment, the typical packet sequence is DHCPv6 Solicit,
DHCPv6 Advertise, DHCPv6 Request, and DHCPv6 Reply.

The fields to verify in a DHCP Response packet (or similar fields in a DHCPv6
Advertise packet) include the following four fields:

¢ Your (client) IP Address: This is the offered IP address for this
workstation

e Subnet Mask: This is the subnet mask to use on this network

e Domain Name Server: This is the DNS server IP address

e Router: This is the IP address of the default gateway to use

This is minimum data required for any network communications; an example of
these fields being provided in a DHCP Reply packet is illustrated in the
following screenshot:

H Bootstrap Protocol (ACK)
Message type: Boot Reply (2)
Hardware type: Ethernet (0x01)
Hardware address Tength: &
Hops: O
Transaction ID: OX2Ba0655cC
Seconds elapsed: 4
E [Expert Info (Note/Protocal): Seconds elapsed appears ta O
[Seconds elapsed appears to be encoded as lTittle-endian]
[Severity lewel: Note]
[Group: Protocol]
Bootp Tlags: OxE8000 (Broadcast)
i aviv seas ==« = Broadcast flag: Broadcast
——l00 0000 0000 0000 s Beseryuad Tlags . Ox0000
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 192.168.1.3115 (192.168.1.115%)
Next server IP address: 192.168.1.1 (192.168.1.1)
Relay agent IP address: 0.0.0.0 {(0.0.0.0}
Client MAC address: D0:1c:25:99:db:85 (00:1c:25:99:db:85)
CTient hardware address padding: 00000000000000000000
Server host name: ecosystem.home.cisco. com
Boot Tile name not given
Magic cookie: DHCP
Option: (53) DHCP Message Type (ACK)
Length: 1
DHCP: ACK (51
option: (547 DHCP Server Identifier
Length: 4
DHCP Server Identifier: 192.168.1.1 (192.168.1.1)
option: (51) IP Address Lease Time
Length: 4
IF Address Lease Time: (86400s) 1 day
option: (58) Renewal Time value
Length: 4
Renewal Time value: (43200s) 12 hours
option: (53) Rebinding Time Value
Length: 4
Rebinding Time value: (75600s) Zi hours
option: (1) Subnet Mask
Length: 4
Subnet Mask: 255.255.255.0 (255.255.255.0)
Option: (28) Broadcast Address
Length: 4
Broadcast Address: 192.168.1.255 (192.168.1.255)
option: (81) Client Fully gQualified Domain Name
Length: 15
Fiags: 0Ox03
0000 = Reserved Tlags: 0Ox00
veae B... = Server DDNS: Some server updates
vaws «0.. = Encoding: ASCII encoding
+as «.1. = Server overrides: override
cens =xel = SEFVEr: SErVer
A-RR result: 255
PTR-RE. result: 255
CTient name: ThinkPadwsoo
=] Ooption: (&) Domain Name Server
Length: 4
Domain Name Serwver: 192.168.1.1 (19¢.165.1.1)
1 option: (3) Router
Length: 4
Router: 192.168.1.1 (192.168.1.1)
option: ({255) End
oprion End: 255

@

@

m

i}

L

L

L

]

o

@

] |

m

You can apply Wireshark display filters to isolate DHCP packets; the filter is
bootp, as this is the legacy name for DHCP:

e DHCP display filter: bootp bootp.option.dhcp == 5 (DHCP Message
Type 'ACK')

e DHCPv6 display filter: dhcpvé dhcpv6.msgtype == 2 (DHCPv6
"Advertise')

You can save the basic bootp and dhcpvé display filters as a Filter Expression
Button (FEB) after entering the filter string in the textbox on the Display Filter
toolbar, clicking on Save, and giving the button a name such as DHCP Pkts and
DHCPv6 Pkts respectively. Alternatively, you could combine both filters with an
or (]]) in one button, as shown in the following screenshot:

Filter | bootp || dhcpve EExp Clear Apply Save DHCPPkts DHCP Errors DHCPu6 Emors Good Capture ARP Pkts DNS Pkts

802.11 Channel: Channel Offset: FCS Filter: |All Frames Mone |z| Wireless Settings... Decryption Keys...
Rel Time (formatted) Delta Time Displ WS Stream # Pkt Length Source Address Destination Addr Protocol Info

fesgo::2e41:38fT:fe52:ec3a Tro2::1:2 DHCPVE Solicit XID: Ox49bb09 CID: 00030001082e5Taea4ls

You might want to save another FEB that displays an abnormal DHCP condition
packets using the following display filter string and call the DHCP Errors
button or a similar as follows:

bootp.option.dhcp == 4 || bootp.option.dhcp == | |
bootp.option.dhcp ==

Similar abnormal event display filters for DHCPv6 could include:
dhcpv6.msgtype == 8 || dhcpv6.msgtype == 9 || dhcpv6.msgtype == 10
You can research more about DHCP, DHCPv6, and the various DHCPv6

message types online or from other sources if you need to analyze these in more
detail.

Obtaining MAC addresses

A workstation will utilize the ARP protocol to obtain a MAC address for known
IP addresses of network services, such as its default gateway or the DNS server
if it's located on the same network segment. The ARP protocol and how it
typically functions has already been covered in Chapter 2, Networking for
Packet Analysts.

You may want to create an ARP FEB using the arp display filter syntax to make
it quick and easy to inspect those packets.

Obtaining network service IP addresses

A client workstation sends queries to a DNS server to obtain an IP address for a
given hostname; the DNS server responds with the information or asks other
DNS servers for the information on behalf of the client.

The format of the DNS query and response packet fields as displayed in the
Wireshark Packet Details pane is fairly intuitive. An example of a DNS
response packet containing a resolved IP address for time.windows.com, which
actually provided the IP address (137.170.185.211) for the alias
time.microsoft.akadns.com is shown in the following screenshot:

Frame 1116: 131 bytes on wire (1048 bits), 131 bytes captured (1048 bits) on int
E Ethernet II, Src: c8:d7:19:21:b7:ec (c8:d7:19:21:b7:ec), Dst: 00:24:9b:06:8F:T9
® Internet Protocol Version 4, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.125
[# uUser Datagram Protocol, Src Port: 53 (53], Dst Port: 59274 (59274)
[Regquest Tn: 133157
[Time: 0.000530000 seconds]
Transaction ID: Oxabf7r
Flags: 0x8180 Standard query response, Mo error
Questions: 1
Answer RRs: 2
Authority RRs: O
Additional RRs: O
Eiqueries
E time.windows.com: type A, class IN
Name: time.windows.com
[Name Length: 1&]
[Label Count: 3]
Type: A (Host Address) (1)
Class: IN (0Ox0001)
EljAnswers
E time.windows.com: type CNAME, class IN, cname time.microsoft.akadns.net
Name: time.windows.com
Type: CNAME (Canonical NaMmE Tor an alias) (5)
Class: IN (0Ox0001)
Time to live: 774
Data length: 27
CNAME: time.microsoft.akadns.net
E time.microsoft.akadns.net: type A, class IN, addr 137.170.185.211
Name: time.microsoft.akadns.net
Type: A (Host Address) (1)
Class: IN (0Ox0001)
Time to 1ive: 78
Data 1ength: 4
Address: 137.170.185.211 (137.170.185.211)

If a client workstation cannot obtain the IP address of a web service or
application server, a packet-level investigation of the request (which URL or
hostname is being requested), and what the response is from the DNS server (if
any) should be revealing. A comparison of a failing query with queries that work
properly for other hostnames or from other workstations should reveal the root
of the problem (if DNS is the problem). Failure to obtain an IP address can be
caused by an inoperable DNS server, improper hostname or URL, or a problem
with connectivity from the user to other parts of the network, which we'll check
next.

Basic network connectivity

A few simple tests can confirm that basic network connectivity is working, or
reveal a routing issue or another issue that needs to be addressed by the network
support team.

Capturing and analyzing the ICMP packets sent and received during the
following tests can be revealing; although, the test results themselves are often
telling enough:

e Ping the user's default gateway using the default gateway IP address
obtained from using ipconfig /all (Windows) or ip addr show (Linux)
to confirm that the user workstation has basic connectivity on the local
network.

¢ Ping the hostname or URL of the target server. If this fails (request timed
out message), try to ping other hosts or URLs. If necessary, inspect the
DNS and/or ICMP responses in a packet capture of these tests to determine
the nature of the failure. Otherwise, take note of the average round trip
times.

e If a ping works to the default gateway but pinging other targets fails, a
traceroute to a target server can reveal where in the network path
connectivity ceases to function or is blocked.

Note

The traceroute command-line utility in Windows is tracert, whereas for
traceroutes on Linux/Unix and Mac OS X machines, the command is
traceroute. To do a traceroute in Windows, open a Command Prompt
(CMD) window and type tracert <hostname or IP Address of
target>. In most other environments, open a terminal window and type
traceroute <hostname or IP address of target>.

If you can ping the target server and network connectivity is functioning, you
can move on to the next step in the troubleshooting process. If not, be aware that
some hosts may be configured to not respond to ICMP ping requests, and/or
ICMP is blocked by a firewall between the user and server for security reasons.
So, the inability to ping a device is not necessarily a sign of a network problem.
Traceroute results should help determine how far and to what extent network

connectivity is functioning in the path towards the target server; testing to other
targets should be revealing as well.

An example of pinging a default gateway, then a URL, and finally performing a
traceroute to the target URL is depicted in the following screenshot:

BN Command Prompt i“ﬂ@

CiZping 192.168.1.1

Pinging 1?2.168.1.1 with 32 bytesz of data:

Reply from 192.168.1.1: bytes=32 time<ims TTL=64
Reply from 192.168.1.1: bytes=32 time<ims TTL=64
Reply from 192.168.1.1: bytes=32 time<ims TTL=64
Reply from 192.168.1.1: bytes=32 time<ims TTL=64

Ping statistics for 192.168.1.1:

Packets: Sent = 4., Received = 4, Lost = 8 (@x loss>.
Approximate round trip times in milli-—seconds:

Hinimum = Bms, Maximum = Bms,. Average = Bms

m

C:sping www.wireshark.org

Pinging www.wireshark.org [162_.157.241.165]1 with 32 hytes
Reply from 162.159.241 .165: bytes=32 time=1?ms TTL=54
Reply from 162.159.241 .165: bytez=32 time=1?ms TTL=54
Reply from 162.159.241 .165: bytez=32 time=1?ms TTL=54
Reply from 162.159.241 .165: bytezs=32 time=28ms TTL=54

Ping statistics for 162.15%7_241_165:

Packets: Sent = 4. Received = 4, Lost = B (@x loss>.
Approximate round trip times in milli-seconds:

Hinimum = 19ms,. Maximum = 28ms. Average = 21ims

R
R
R
C:s>tracert wuw.wireshark.org

Tracing route to wuyw.wireshark.org [162.15%.241.1651
over a maximum of 38 hops:

ms ms Cisco24973 [192.168.1.11

ms ms 18.192.128.1

ms ms 72-31-193-94 _net.bhntampa.com [72.31.1
ms ms tend@-8-8-7 . orldid—=zserl.bhn.net [72.31.
ms ms T2-31-188—178 .net .bhntampa.com [Y2.31.
mns mns 18.bhu—etherl5 .orldf 1joddw—becrBBd.thone.
ms ms bu—etherlB . at Ingangd/w—hcrdl _thone.rr.
mns mns bu—ether2l.at Ilngangdbw—hcrBd._thone.rr.
ms ms ae—1-B.prA.atl12@.thone.rr.com [66.1687.
ms ms 66.189 .18.62

ms ms as13335 . xe—-7-8-7.ard.atll _ uz.nlaver.ne
ms ms 162 .157_241 165

Trace complete.

HER

Connecting to the application services

If network connectivity from a user workstation to a target server is functional
(as proven by the ability to ping the host), a problem connecting to a specific
application hosted on that server may be caused by a number of factors:

e The URL or port used by the client to access the application is wrong
e The port used to access the application is blocked by a firewall
e The application service is not turned up or is not working properly

The first of these factors is far more likely for a single user issue. Any of the last
two factors would prevent anyone in a group or the whole organization from
accessing the application. A packet-level analysis (from the client side) of a user
attempting to connect to an application that is blocked should result in ICMP
messages: Destination Host is Unreachable or Destination Port is
Unreachable, or there will be no response at all if ICMP messages are being
blocked by a firewall.

If the server is up, the application is reportedly operational but cannot be
accessed; a client-side capture does not offer any solid clues, but a packet
capture of the TCP session setup (if any) from or near the server end should be
revealing.

Troubleshooting functional issues

If a user is able to connect and set up a TCP session with an application server,
but the application does not function otherwise, or function correctly, then, there
are a number of areas that can be investigated. These areas can be investigated
using a combination of packet-level analysis, error reports, and configuration
comparisons with captures and configurations from other users' machines:

e User credentials: The most common reason for specific-user issues with
application functionality is the lack of proper credentials, authorization,
rights, and so on. This is the first thing to check whether other users are
working normally.

e Application settings on the user machine: Some applications require
specific configuration files to be placed on a user's machine in a specific
location. Applications may also require certain version levels of
application-specific utilities, Java, .NET frameworks, and so on. Usually, an
application will provide an error message indicating at least the general
nature of a configuration problem.

e Application reported errors: You can look for the error code within
response packets or on the user screen that may reveal the nature of
application errors:

o Status code greater than 400 in HTTP, FTP, or SIP response packets
o Error code in SMB response packets
o Other application-specific exceptions, error codes, and messages

o Differences in web browsers: Some web applications are designed to work
with specific browsers (Chrome, Internet Explorer, Firefox, Opera, and so on)
and may not work properly or at all on other browsers and there may not be any
error messages provided that indicate this is the case. A comparison of the
browser type and version with other working users may be revealing.

The causes of network connectivity and application functionality issues can vary
widely, so it is impossible to draw a clear roadmap for every possibility. The best
approach to successfully address these problems is not to make too many
assumptions without proving those assumptions correct with systematic, logical
troubleshooting steps, but try to find or create a scenario where the system, or at
least part of the system, works properly and compare the appropriate packet-
level details of the working environment to the one that doesn't work.

Performance analysis methodology

Analyzing an application's performance problem is basically a case of
identifying where the majority of the time for a particular task to complete is
being spent, and measuring/comparing that time to what is normal and/or
acceptable for that type of task.

Top five reasons for poor application
performance

Generally speaking, performance issues can be attributed to one of the following
five areas, in order of decreasing likelihood:

Server processing time delay
Application turns delay
Network path latency
Bandwidth congestion

Data transport (TCP) issues

Client processing time is usually a relatively small component of overall
response time—except perhaps for some compute-extensive desktop
applications, which leaves the focus on the network and server environments and
any performance-affecting application design characteristics.

Preparing the tools and approach

As was done when preparing to troubleshoot a connectivity or functionality
problem, you'll need to gather the right information about the application
environment and problem domain. You'll also want to determine which tools you
may need to use during the analysis: Wireshark, TAPs to facilitate packet
captures, and any other analysis tools.

You will also need to determine where to perform the first packet capture:

¢ A client-side capture is the best place to begin a performance analysis
effort. From this vantage point, you can view and verify what the user is
complaining about, view any error messages presented to the user or
evident in the packet capture, measure network round-trip times, and
capture the performance characteristics to study within a packet capture
without the need to use a capture filter so you know you won't miss
anything.

e A server-side capture may be needed because a client-side capture may not
be possible for a user that is at a long distance, or to analyze server-to-
server transactions to backend databases or other data sources.

e A packet capture at some intermediate point in the network path may be

needed to isolate the source of excessive packet loss/errors and the
associated retransmissions.

Remember that the use of an aggregating TAP is preferable over using SPAN
ports, or you can install Wireshark on the client workstation or server as a last
resort, but get the capture done any way you have to.

Performing, verifying, and saving a good packet capture

After performing the capture and saving the bulk capture file, confirm the
following:

1. Check the file to ensure there are no packets with the ACKed Unseen
Segment messages in the Wireshark Warnings tab in the Expert Info
menu, which means Wireshark saw a packet that was acknowledged but
didn't see the original packet; an indication that Wireshark is missing
packets due to a bad TAP or SPAN port configuration or excessive traffic
levels. In any case, if more than just a few of these show up, you'll want to
do the capture again after confirming the capture setup.

2. Next, you'll want to review the captured conversations in IPv4 in the
Conversations window and sort the Bytes column. The IP conversation
between the user and application server should be at or near the top so you
can select this conversation, right-click on it, and select A <-> B in the
Selected menu.

3. After reviewing the filtered data to ensure it contains what you expected,
select Export Specified Packets from the File menu and save the filtered
capture file with a filename that reflects the fact that this is a filtered subset
of the bulk capture file.

4. Finally, open the filtered file you just saved so you're working with a
smaller, faster file without any distracting packets from other conversations
that have nothing to do with your analysis.

Initial error analysis

At the onset of your analysis, you should take a look through the Errors,
Warnings, and Notes tabs of Wireshark's Expert Info window (Analyze |
Expert Info) for significant errors such as excessive retransmissions, Zero
Window conditions, or application errors. These are very helpful to provide
clues to the source of reported poor performance.

Although a few lost packets and retransmissions are normal and of minimal
consequence in most packet captures, an excessive number indicates that
network congestion is occurring somewhere in the path between user and server,
packets are being discarded, and that an appreciable amount of time may be lost
recovering from these lost packets.

Seeing a high count number of Duplicate ACK packets in the Expert Info Notes
window may be alarming, but can be misleading. In the following screenshot,
there was up to 69 Duplicate ACKs for one lost packet, and for a second lost
packet the count went up to 89 (not shown in the following screenshot):

M Wireshark: 1576 Expert Infos =N ol ™|

| Errors: 0 (0) | Warnings: 3 (31) | Notes: 97 (375) | Chats: 415 (1170) | Details: 1576 | Packet Comments: 0 |

Group 1 Protocol 4 Summary 1 Count bl

Sequence TCP Duplicate ACK (#65) 2

[Sequence TCP Duplicate ACK (#58) 2

* Sequence TCP Duplicate ACK (#067) 2

Sequence TCP Duplicate ACK [(#68) 2
Packet: 6209 1
Packet: 6492 1

[Sequence TCP Duplicate ACK (#70) 1

F Sequence TCP Duplicate ACK (#71) 1

=l Sequence TCP Duplicate ACK (#72) 1I |
Packet: 6315 1(=|

[Sequence TCP Duplicate ACK (#73) 1 4

* Sequence TCP Duplicate ACK (#74) 1

F Sequence TCP Duplicate ACK [(#75) 1:

[] Limit to display filter

However, upon marking the time when the first Duplicate ACK occurred in
Wireshark using the Set/Unset Time Reference feature in the Edit menu and
then going to the last Duplicate ACK in this series by clicking the packet number
in the Expert Info screen and inspecting a Relative time column in the Packet
List pane, only 30 milliseconds had transpired. This is not a significant amount
of time, especially if Selective Acknowledgment is enabled (as it was in this

example) and other packets are being delivered and acknowledged in the
meantime. Over longer latency network paths, the Duplicate ACK count can go
much higher; it's only when the total number of lost packets and required
retransmissions gets excessively high that the delay may become noticeable to a
user.

Another condition to look for in the Expert Info Notes window includes the
TCP Zero Window reports, which are caused by a receive buffer on the client
or server being too full to accept any more data until the application has time to
retrieve and process the data and make more room in the buffer. This isn't
necessarily an error condition, but it can lead to substantial delays in transferring
data, depending on how long it takes the buffer to get relieved.

You can measure this time by marking the TCP Zero Window packet with a time
reference and looking at the elapsed relative time until a TCP Window Update
packet is sent, which indicates the receiver is ready for more data. If this occurs
frequently, or the delay between Zero Window and Window Update packets is
long, you may need to inspect the host that is experiencing the full buffer
condition to see whether there are any background processes that are adversely
affecting the application that you're analyzing.

Note

If you haven't added them already, you need to add the Relative time and Delta
time columns in the Packet List pane. Navigate to Edit | Preferences |
Columns to add these. Adding time columns was also explained in Chapter 4,
Configuring Wireshark.

You will probably see the connection reset (RST) messages in the Warnings tab.
These are not indicators of an error condition if they occur at the end of a client-
server exchange or session; they are normal indicators of sessions being
terminated.

A very handy Filter Expression button you may want to add to Wireshark is a
TCP Issues button using this display filter string as follows:

tcp.analysis.flags && !tcp.analysis.window_update &&
l'tcp.analysis.keep_alive && !tcp.analysis.keep_alive ack

This will filter and display most of the packets for which you will see the
messages in the Expert Info window and provide a quick overview of any
significant issues.

Detecting and prioritizing delays

Since we're addressing application performance, the first step is to identify any
delays in the packet flow so we can focus on the surrounding packets to identify
the source and nature of the delay.

One of the quickest ways to identify delay events is to sort a TCP Delta time
column (by clicking on the column header) so that the highest delay packets are
arranged at the top of the packet list. You can then inspect the Info field of these
packets to determine which, if any, reflect a valid performance affecting the
event as most of them do not.

In the following screenshot, a TCP Delta time column is sorted in order of

descending inter-packet times:
Delta Time Disp * |W5 Stream # Info

3820 30.760486
952 13.110531
2141 614162
3738 . 811606
3202 . 812984
2211 . 843889
3504 795273
3691 . 908830
3519 . 048155
3516 . 602610

GET Jorion/js/breadcrumb. js.i18n. ashx?1=en-us
GET Jorion/js/jquery/jquery.cluetip.css.il8n.
GET Jorion/images/Gradient-Green.git HTTP/ 1.1
GET /ScriptResource. axd?d=MOTuTR1d406MEAS2—pm
POST JOrion/MetPerfMon/Mapservice. asmx,/GetMap
GET Jorion/vim/styles/extjsTix.cs5.118n.ashx?|
GET JOrion/MetPerfMon/ModePopup. aspx?NetObjec
HTTP/1.1 200 OK (PNG)[Unreassembled Packet]
GET fDPfanHEtPEPFHanNﬂdEDEtai1S.aSpK?NEtDb:
GET /JOrion/MetPerfMon/ModePopup. aspx?NetObjec

SIS Y AN I N ST N % L I AN

=R S [R YR, RN

Let's have a detailed look at all the packets:

e The first two packets are the TCP Keep-Alive packets, which do just what
they're called. They are a way for the client (or server) to make sure a
connection is still alive (and not broken because the other end has gone
away) after some time has elapsed with no activity. You can disregard
these; they usually have nothing to do with the user experience.

e The third packet is a Reset packet, which is the last packet in the

conversation stream and was sent to terminate the connection. Again, it has
no impact on the user experience so you can ignore this.

e The next series of packets listed with a high inter-packet delay were GETs
and a POST. These are the start of a new request and have occurred
because the user clicked on a button or some other action on the
application. However, the time that expired before these packets appear
were consumed by the user think time—a period when the user was reading
the last page and deciding what to do next. These also did not affect the
user's response time experience and can be disregarded.

¢ Finally, Frame # 3691, which is a HTTP/1.1 200 OK, is a response from
the server to a previous request; this is a legitimate response time of 1.9
seconds during which the user was waiting. If this response time had
consumed more than a few seconds, the user may have grown frustrated
with the wait and the type of request and reason for the excessive delay
would warrant further analysis to determine why it took so long.

The point of this discussion is to illustrate that not all delays you may see in a
packet trace affect the end user experience; you have to locate and focus on just
those that do.

You may want to add some extra columns to Wireshark to speed up the analysis
process; you can right-click on a column header and select Hide Column or
Displayed Columns to show or hide specific columns:

e TCP Delta (tcp.time_delta): This is the time from one packet in a TCP
conversation to the next packet in the same conversation/stream

e DNS Delta (dns.time): This is the time between DNS requests and
responses

e HTTP Delta (http.time): This is the time between the HTTP requests and
responses
Note

You should ensure that Calculate conversation timestamps is enabled in
the TCP option, which can be found by navigating to Edit | References |
Protocols, so that the delta time columns will work properly.

While you're adding columns, the following can also be helpful during a
performance analysis:

e Stream # (tcp.stream): This is the TCP conversation stream number. You
can right-click on a stream number in this column, and select Selected from
the Apply as a filter menu to quickly build a display filter to inspect a
single conversation.

e Calc Win Size (tcp.window_size): This is the calculated TCP window size.
This column can be used to quickly spot periods within a data delivery flow
when the buffer size is decreasing to the point where a Zero Window
condition occurred or almost occurred.

Server processing time events

One of the most common causes of poor response times are excessively long
server processing time events, which can be caused by processing times on the
application server itself and/or delays incurred from long response times from a
high number of requests to backend databases or other data sources.

Confirming and measuring these response times is easy within Wireshark using
the following approach:

1. Having used the sorted Delta Time column approach discussed in the
previous section to identify a legitimate response time event, click on the
suspect packet and then click on the Delta Time column header until it is
no longer in the sort mode. This should result in the selected packet being
highlighted in the middle of the Packet List pane and the displayed packets
are back in their original order.

2. Inspect the previous several packets to find the request that resulted in the
long response time. The pattern that you'll see time and again is:

1. The user sends a request to the server.

2. The server fairly quickly acknowledges the request (with a [ACK]
packet).

3. After some time, the server starts sending data packets to service the
request; the first of these packets is the packet you saw and selected in
the sorted Delta Time view.

The time that expires between the first user request packet and the third packet
when the server actually starts sending data is the First Byte response time. This
is the area where you'll see longer response times caused by server processing
time. This effect can be seen between users and servers, as well as between

application servers and database servers or other data sources.

In the following screenshot, you can see a GET request from the client followed
by an ACK packet from the server 198 milliseconds later (0.198651 seconds in
the Delta Time Displ column); 1.9 seconds after that the server sends the first
data packet (HTTP/1.1 200 OK in the Info field) followed by the start of a
series of additional packets to deliver all of the requested data. In this
illustration, a Time Reference has been set on the request packet. Looking at the
Rel Time column, it can be seen that 2.107481 seconds transpired between the
original request packet and the first byte packet:

Rel Time (formatted) Delta Time Displ W5 Stream #

Source Address Destination &Addr Info
192.168.1.115 10.1.1.125 GET jOrion/NetPerfMon/i

2.107481 1.208820 = 10.1.1.125 192.168.1.115 HTTF/1.1 200 OK (PNG)

2.107671 0. 000190 7 10.1.1.125 192.1658.1.115 B8080-+60351 [ACK] Seq=1

It should be noted that how the First Byte data packet is summarized in the Info
field depends upon the state of the Allow subdissector to reassemble TCP
streams setting in the TCP menu, which can be found by navigating to Edit |
Preferences | Protocols, as follows:

e If this option is disabled, the First Byte packet will display a summary of
the contents of the first data packet in the Info field, such as HTTP/1.1 200
OK shown in the preceding screenshot, followed by a series of data
delivery packets. The end of this delivery process has no remarkable
signature; the packet flow just stops until the next request is received.

o If the Allow subdissector to reassemble TCP streams option is enabled,
the First Byte packet will be summarized as simply a TCP segment of a
reassembled PDU or similar notation. The HTTP/1.1 200 OK summary
will be displayed in the Info field of the last data packet in this delivery
process, signifying that the requested data has been delivered. An example
of having this option enabled is illustrated in the following screenshot. This
is the same request/response stream as shown in the preceding screenshot. It
can be seen in the Rel Time column that the total elapsed time from the
original request to the last data delivery packet was 2.1097 seconds:

Rel Time (formatted) Delta Time Displ WS Stream # Source Address Destination Addr Info
2.109764 0. 0003900 2 10.1.1.125 192,168.1.115 [TCP segment of a reasq
2.109766 10.1.1.125 192.168.1.115 HTTP/1.1 200 OK (PNG)

Note

The Reassemble SMB Transaction payload setting in the SMB protocol
preferences will affect how SMB and SMB2 responses are summarized in the
Info field in like fashion to the related setting in the TCP protocol preferences.

In either case, the total response time as experienced by the user will be the time
that transpires from the client request packet to the end of the data delivery
packet plus the (usually) small amount of time required for the client application
to process the received data and display the results on the user's screen.

In summary, measuring the time from the first request to the First Byte packets is
the server response time. The time from the first request packet to the final data
delivery packet is a good representation of the user response time experience.

Application turn's delay

The next, most likely source of poor response times—especially for remote users
accessing applications over longer distances—is a relatively high number of
what is known as application turns. An app turn is an instance where a client
application makes a request and nothing else can or does happen until the
response is received, after which another request/response cycle can occur, and
SO On.

Every client/server application is subject to the application turn effects and every
request/response cycle incurs one. An application that imposes a high number of
app turns to complete a task—due to poor application design, usually—can
subject an end user to poor response times over higher latency network paths as
the time spent waiting for these multiple requests and responses to traverse back
and forth across the network adds up, which it can do quickly.

For example, if an application requires 100 application turns to complete a task
and the round trip time (RTT) between the user and the application is 50
milliseconds (a typical cross-country value), the app turns delay will be 5
seconds:

100 App Turns X 50 ms RTT network latency = 5 seconds

This app turns' effect is additional wait (response) time on top of any server
processing and network transport delays that is 5 seconds of totally wasted time.
The resultant longer time inevitably gets blamed on the network; the network
support teams assert that the network is working just fine and the application
team points out that the application works fine until the network gets involved.
And on it goes, so it is important to know about the app turns effects, what
causes them, and how to measure and account for them.

Web applications can incur a relatively high app turn count due to the need to
download one or more CSS files, JavaScript files, and multiple images to
populate a page. Web designers can use techniques to reduce the app turn and
download times, and modern browsers allow numerous connections to be used at
the same time so that multiple requests can be serviced simultaneously, but the
effects can still be significant over longer network paths. Many older, legacy
applications and Microsoft's Server Message Block (SMB) protocols are also
known to impose a high app turn count.

The presence and effects of application turns are not intuitively apparent in a
packet capture unless you know they exist and how to identify and count them.
You can do this in Wireshark for a client-side capture using a display filter:

ip.scr == 10.1.1.125 && tcp.analysis.ack_rtt > .008 &&
tcp.flags.ack ==

You will need to replace the ip.src IP address with that of your server, and
adjust the tcp.analysis.ack_rtt value to the RTT of the network path between
the user and server. Upon applying the filter, you will see a display of packets
that represent an application turn, and you can see the total app turns count in the
Displayed field in the center section of the Wireshark's Status Bar option at the
bottom of the user interface.

If you measure the total time required to complete a task (first request packet to
last data delivery packet) and divide that time into the time incurred for
application turns (number of app turns X network RTT), you can derive an
approximate app turn time percentage:

5 seconds app turns delay / 7.5 seconds total response time = 66%
of RT

Any percentage over 25 percent warrants further investigation into what can be
done to reduce either the RTT latency (server placement) or the number app
turns (application design).

Network path latency

The next leading cause of high response times is network path latency, which
compounds the effects of application turns as discussed in the preceding section,
as well as affecting data transport throughput and how long it takes to recover
from packet loss and the subsequent retransmissions.

You can measure the network path latency between a client and server using the
ICMP ping packets, but you can also determine this delay from a packet capture
by measuring the time that transpires from a client SYN packet to the server's
SYN, ACK response during a TCP three-way handshake process, as illustrated
in the following figure of a client-side capture:

CLIENT SIDE RTT

SYN .
\
RTT = 10 ms

\

In a server-side capture, the time from the SYN, ACK to the client's ACK (third
packet in the three-way handshake), also reflects the RTT. In practice, from any
capture point, the time from the first SYN packet to the third ACK packet is a
good representation of the RTT as well assuming the client and server response
times during the handshake process are small. Be aware that the server response
time to a SYN packet, while usually short, can be longer than normal during
periods of high loading and can affect this measurement.

High network path latency isn't an error condition by itself, but can obviously
have adverse effects on the application's operation over the network as

previously discussed.

Bandwidth congestion

Bandwidth congestion affects the application's performance by extending the
amount of time required to transmit a given amount of data over a network path;
for users accessing an application server over a busy WAN link, these effects can
become significant. A network support team should be able to generate
bandwidth usage and availability reports for the in-path WAN links to check for
this possibility, but you can also look for evidence of bandwidth congestion by
using a properly configured Wireshark IO Graph to view network throughput
during larger data transfers.

The following screenshot illustrates a data transfer that is affected by limited
bandwidth; the flatlining at the 2.5 Mbps mark (the total bandwidth availability
in this example), because no more bandwidth is available to support a faster
transfer is clearly visible:

M Wireshark 10 Graphs: Transfer 2.5 MB File SMB2 Svr 10x - WS 192x 2.5Mbps 100ms.pcapng = =h ==
— 5000000
— 2500000
| roTr7 rﬁﬁTl 0
Os 10s
F] | m | K
Graphs ¥ Axis
Graph 1| Color | Filter: Style: |Line = | [¥] Smooth || Tickinterval|1 sec EI
[Graph 2] Color [Filter: | ip.dst==1011125 Style: Line || @] Smooth || PXelsperticks 10 -]
""""""" IZI [] View as time of day
Graph 3| Cole -Fih:er: Style: Line ¥| Smooth
R = 2 _ ¥ Boas
Graph 4| Color | Filter: | | ip.src==1011.125 Style: |Line EI |¥| Smooth Unit: Bits/Tick E|
Graph 5| Color Style: Line 7] Smooth | Scale | Auto B
Smooth: |Mofilter E|

T

Copy | | Save] ’ Close]

You can determine the peak data transfer rate in bits-per-second (bps) from an
IO Graph by configuring the graph as follows:

X Axis Tick interval: 1 sec

Y Axis Unit: Bits/tick

Graph 2 Filter: ip.dst == <IP address of server>
Graph 4 Filter: ip.src == <IP address of server>

These settings result in an accurate bits-per-second display of network
throughput in client-to-server (red color) and server-to-client (blue color)
directions. The Pixels per tick option in the X Axis panel, the Scale option in
the Y Axis panel, and other settings can be modified as desired for the best
display without affecting the accuracy of the measurement.

Be aware that most modern applications can generate short-term peak bandwidth
demands (over an unrestricted link) of multiple Mbps. The WAN links along a
network path should have enough spare capacity to accommodate these short
term demands or response time will suffer accordingly. This is an important
performance consideration.

Data transport

There are a number of TCP data transport effects that can affect application
performance; these can be analyzed in Wireshark.

TCP StreamGraph

Wireshark provides TCP StreamGraphs to analyze several key data transport
metrics, including:

¢ Round-trip time: This graphs the RTT from a data packet to the
corresponding ACK packet.

e Throughput: These are plots throughput in bytes per second.

e Time/sequence (Stephen's-style): This visualizes the TCP-based packet
sequence numbers (and the number of bytes transferred) over time. An ideal
graph flows from bottom-left to upper-right in a smooth fashion.

e Time/sequence (tcptrace): This is similar to the Stephen's graph, but
provides more information. The data packets are represented with an I-bar

display, where the taller the I-bar, the more data is being sent. A gray bar is
also displayed that represents the receive window size. When the gray bar
moves closer to the I-bars, the receive window size decreases.

¢ Window Scaling: This plots the receive window size.

Note

The TCP StreamGraphs are unidirectional. You want to select a packet for
the direction that is transporting data to get the proper view.

These analysis graphs can be utilized by selecting one of the packets in a TCP
stream in the Packet List pane and selecting TCP StreamGraph from the
Statistics menu and then one of the options such as the Time-Sequence Graph

(tcptrace).

The selected graph and Control Window will appear from the Graph type tab
of the Control Window that you can select one of the other types of analysis

graphs, as shown in the following screenshot:

r! Graph 3 - Control - Wir... El [=] @ﬂ

| Zoom | Magnify | Origin | Cross : Graph typs |
Graph type:
Round-trip Time

Throughput
Time/Sequence (Stevens'-style)
@ Time/Sequence (tcptrace-style)

Window 5caling

Init on change

The Time/Sequence Graph (tcptrace) shown in the following screenshot plots
sequence numbers as they increase during a data transfer, along with the gray

receive window size line:

Seguence
number[B] Time/Sequence Graph (toptrace)

9000 —
8000 —
7000 —| |
000 — .
5000 — !

4000 — 1

3000 —

2000 — i

- I

M TCP Graph 13: Transfer 2.5 ME File SME2 300ms 100M WAN.pcap 192.1681.115:49181 -> 10.1.1 125445 = | =

L L LI LI L LI L L L L LA L
] w n 12 13 14 15 1 17 18 12 a2 A

Time[s]

You can click and drag the mouse over a section of the graph to zoom into a
particular section, or press the + key to zoom in and the - key to zoom out.
Clicking on a point in any of the graphs will take you to the corresponding
packet in the Wireshark's Packet List pane.

IO Graph

You can also analyze a the effects of TCP issues on network throughput by
applying TCP analysis display filter strings to Wireshark's IO Graph, such as:
tcp.analysis.flags && !tcp.analysis.window_update

In the following screenshot of a slow SMB data transfer, it can be seen that the
multiple TCP issues (in this case, packet loss, Duplicate ACKs, and

retransmissions) in the red line correspond to a decrease in throughput (the black
line):

Wireshark IO Graphs: Tra

— 250000
.d.hd . m-‘.-ll-l.l._-u.ll.l-- |“‘ A B .—]-..u.-]-ll. | p
| T e
Os 205 40s 60s &0s 100s 1205 140s 160s
R 1 s
Graphs X Axis |
CUIor Style: |Line B [#] Smooth | | Tick interval: 1 sec E
Color | Filter: | | tep.analysis.flags 88& tcp.analysis.window_update Style: |FBar IZI [¥] Smooth I.)_i)jels pEgtick 3 IZ|
i || View as time of day
Graph 3 | Color | Filter: Style: | Line IZI || Smooth -
= ¥ Axis
Color Fitte Styles Line [=] (7] Smooth ||y Tgieaick [~]
Graph 5| Color Style: Line IZI [¥] Smooth | | Scale: | Auto |Z|
Smooth: | Mo filter |Z|
| Help l [Copy | | Save l [Close |

Clicking on a point in the IO Graph takes you to the corresponding packet in the
Wireshark's Packet List pane so you can investigate the issue.

IO Graph — Wireshark 2.0

Wireshark 2.0, also known as Wireshark Qt, is a major change in Wireshark's
version history due to a transition from the GTK+ user interface library to Qt to
provide better ongoing UI coverage for the supported platforms. Most of the
Wireshark features and user interface controls will remain basically the same,
but there are changes to the IO Graph.

These are shown in the following screenshot, which shows the same TCP issues
that were seen in the preceding screenshot:

Wireshark I0 Graphs: Transfer 2.5 MB File SMB2 SLOW.pcap

2r

24

Packets)s

PIITY AR T TPV P T T

S
Q
Time ()

Olick to select packet 1839 (B8 = 71

Name Display filter Colo Style ¥ Axis Y Field Smoothing
All packets B line Packets/s Mone

[¥] TCP emrors tep.analysis.flags BN Bar Packets/s None

| E] Mouse @ drags () zooms Interval [Time of day [T Log scale

[Save As...] [Cloze] [Help]

The new 10 Graph window features the ability to add as many lines as desired
(using the + key) and to zoom in on a graph line, as well as the ability to save
the graph as an image or PDF document.

Summary

The topics covered in this chapter included troubleshooting methodology, how to
use Wireshark to troubleshoot connectivity and functionality issues, performance
analysis methodology, and the top five causes of poor application performance
and how to use Wireshark to analyze those causes.

In the next chapter, we will review some of the common types and sources of
malicious traffic and introduce how a security professional can use Wireshark to
detect these threats.

Chapter 7. Packet Analysis for
Security Tasks

With the increasing threat of hackers, identity thieves, and corporate data theft,
you need to be able to analyze the security of your network at the packet level.

The topics that will be covered in this chapter include:

Security analysis methodology
Scans and sweeps

OS fingerprinting

Malformed packets

Phone home traffic

Password cracking traffic
Unusual traffic

Security analysis methodology

Security analysis at the packet level is based on detecting and analyzing suspect
traffic, that is, the traffic that does not match normal patterns because of the
presence of unusual protocol types or ports, or unusual requests, responses, or
packet frequency. Suspicious traffic may include reconnaissance (discovery)
sweeps, phone home behavior, denial of service attacks, botnet commands, or
other types of behavior from direct attacks or virus- or botnet-based agents.

Wireshark captures strategic points in the network to investigate suspicious
packets from specific hosts or on network segments and egress points can also
complement any Intrusion Detection System (IDS) systems that may be in
place to alert the IT staff about the suspicious traffic.

The importance of baselining

The ability to identify abnormal traffic patterns that bear investigation versus
traffic caused by poorly behaving applications, misconfigurations, or faulty
devices can be made much easier if you have a baseline of what is normal. A
baseline is a snapshot capture of typical conversations with your primary
applications and servers and the background traffic on the network segments that
they reside on. In a potential security breach situation, you can compare the
normal protocols, traffic patterns, and user sessions from a baseline with a
current capture, filter out the normal traffic, and then inspect the differences.

To allow the comparison of baselines in your security analysis, you need to
periodically capture and store packet trace files that cover a sufficient period of
time to provide a good sample of typical user and background traffic patterns
while keeping the file sizes manageable for use within Wireshark, for example,
100 MB to 1 GB per file. You can configure the Ring Buffer option within
Wireshark's Capture Options window to save a series of reasonably sized files
for longer captures or busier network segments.

Although your baselining needs and practices will depend on your environment,
some of the traffic aspects that you should inspect include:

e Broadcast and multicast types and rates:
o What devices and applications are using broadcasts and multicasts?
o What are the typical broadcast and multicast packet rates?

e Applications and protocols:

What applications are running over the network?

What protocols and ports are they using?

Application launch sequences and typical tasks

Are application sessions encrypted?

Are all users forced to use encryption? Any exceptions?

What are the login/logout sequences and dependencies?

Routing protocol(s) and routing updates

ICMP traffic

Boot-up sequences

Name resolution sessions

Wireless connectivity includes normal management, control, and data frame

O O O O O O

contents

e VoIP and video communications

e Idle time traffic is the host communicating with other hosts when there are
no users logged in

e What backup processes are running at night and for how long?

e Are there any suspect protocols or broadcasts/scans taking place?

As you inspect your baseline captures, it is helpful to view a summary of the
protocols being used by selecting Protocol Hierarchy from the Wireshark's
Statistics menu. In the following screenshot, for example, you can see that there
is some Internet Relay Chat (IRC) traffic, as well as the Trivial File Transfer
Protocol (TFTP) traffic, neither of which might be normal on your network and
could be an indication of rogue communications with outside entities:

M Wiresharle Protocol Hierarchy Statistics |E|IE|@
Display filter: none
Protocol % Packets Packets % Bytes Bytes Mbit/s End Packets End BytesEnd =
E Frame 99, 347 T 66835 0.004 0 0
El Ethernet 247 LB 66835 0.004 0 0
[= Internet Protocol Version 4 347 &% 66835 0.004 0 0
= Transmission Control Protocol W 222 ST % 34436 0.002 168 13926
= Distributed Cormputing Environment / Remote Procedure Call (DCE/RPC) W 17 B72% 6530 0.000 10 1200
Data f057% 2f026% 172 0000 2 172
Internet Relay Chat [629% 22034% s242 0.000 2 642 s
El Hypertext Transfer Protocol [383% 12Jo04% 6744 0.000 9 2286
Media Type [086% 364 4458 0.000 3 4458
El User Datagram Protocol Efrre 125 [EE4w 32309 0002 0 0
[= Trivial File Transfer Protocol W 119 1587 % 31616 0.002 68 3158
Data Besre s [HETw 2sese 0.002 51 28458
4 n 2
| Help LClose

Analyzing baselines of normal traffic levels and patterns is also an excellent way
of getting familiar with your network environment and its typical packet flows
and protocols, which better prepares you to spot abnormal traffic.

Security assessment tools

There are several popular tools that are used by security professionals to perform
security assessment and vulnerability testing. As these tools can generate the
same types of scans, fingerprinting, and other exploitive activities, as might be
used by hackers and malicious agents, they can be useful to a packet analyst to
analyze the packets that they generate with Wireshark to build familiarity with
how different types of activities appear in a packet trace and also to build display
filters to detect them.

One of the most popular tools is Network Mapper (Nmap), a free and open
source utility for network discovery and security auditing. Nmap runs on all
major computer operating systems and offers a command-line and GUI version
(Zenmap).

Note

You can find more information about Nmap at http://nmap.org and information
on other top security tools can be found at http://sectools.org.

http://nmap.org
http://sectools.org

Identifying unacceptable or
suspicious traffic

Wireshark can be used to identify unusual patterns or packet contents in the
network traffic including network scans, malformed packets, and unusual
protocols, applications, and or conversations that should not be running on your
network. The following is a general list of traffic types that may not be
acceptable and/or warrant investigation to validate their legitimacy in your
environment:

e MAC or IP address scans: These attempt to identify active hosts on the
network

e TCP or UDP port scans: These attempt to identify active applications and
services

IP address and port scans can be generated from network management
applications to build or maintain their list of devices and applications to
monitor/manage, but that's usually the only legitimate source of these types of
traffic.

e Clear text passwords: These are passwords that you can see in the
Wireshark's Packet Details or Packet Bytes fields. These are typical for
File Transfer Protocol (FTP) logins, but not typical or acceptable
elsewhere.

e Clear text data: This is the data in packet payloads that can be read. This is
typical for HTTP requests and responses and commonly seen in application
server to database requests and responses, but these database exchanges
should be between hosts on isolated, nonpublic network segments and
otherwise physically secure environments.

e Password cracking attempts: These are repeated, systematic attempts to
discover a working password, usually from a single device.

e Maliciously formed packets: These are packets with intentionally invalid
or improperly formatted data in protocol fields that are intended to exploit
vulnerabilities in applications.

¢ Phone home traffic: This is the traffic from a rogue agent that may be
resident on a server or workstation that periodically checks in with a remote
(usually off-network) host.

¢ Flooding or Denial of Service (DOS) attacks: This is the traffic that is
intentionally sent at a very high packet-per-second rate to one or more hosts
in an attempt to flood the host(s) or network with so much traffic that no
one else can access their services.

e Subversive activities: These include a number of techniques to prepare for
and facilitate the man-in-the-middle attacks where a device is tricked into
sending packets to a malicious host for the purpose of intercepting data.

This is only a sampling of types of malicious traffic that you might see on your
network; network security is an ever evolving exchange of increasingly
sophisticated attacks and subsequent countermeasures.

As you develop your security analysis skills, you might want to build a special
security profile in Wireshark that includes packet coloring rules based on display
filters to help identify suspicious or malformed packets, as well as a set of Filter
Expression Buttons that isolate and display various types of questionable traffic
you might be looking for.

Some examples of display filters to isolate and inspect suspicious packets
include:

Filter description Display filter string

Detect ICMP pings and possible ping sweep ~ [|1¢mp.type == 8 || icmp.type == 0

ICMP destination unreachable filter (included [[(icmp.type >= 3 && icmp.type <= 5) || icmp.type
redirects) == 11 || (icmpv6.type >= 1 && icmpv6.type <= 4)

Unusual ICMP echo requests (icmp.type == 8) && !(icmp.code == 0x00)

TCP handshakes useful for detecting TCP scanslf(tcp.flags&e2 && tcp.seq==0) || (tcp.flags&l2 &&

11 as i i 1 . tcp.seq==0) || (tcp.flags.ack && tcp.seq==1 &&
as well as Inspecting normat session ltcp.nxtseq > 0 & !tcp.ack >1) || tcp.flags.fin
setups/tear-downs/resets == 1 || tcp.flags.reset ==1

Detect Xmas scan (URG, FIN, and PUSH flags [|tcp-flags == 0x629
set)

Other suspicious TCP settings: TCP SYN/ACK [[((tcp.flags == 0x02) && (tcp.window_size <
1025)) || tcp.flags == 0x2b || tcp.flags == Ox00

w/ Win size greater than 1025, SYN, FIN, PSH,||! | tcp.options.mss_val < 1460
URG bits set, no TCP flags set, TCP max
segment size set to less than 1460

Internet Relay Chat (IRC) traffic (is this tcp.port == 194 || (tcp.port >= 6660 && tcp.port
. <= 6669) || tcp.port == 7000
normal in your network?)

High number of DNS answers (could be a list ||dns-count.answers > 5
of command and control servers)

Scans and sweeps

Malicious programs and rogue processes might investigate a network
environment for available ports and hosts using various scanning processes
before launching an exploit. Identifying the presence of these reconnaissance
processes may allow thwarting the attack before it is launched, as well as
tracking down and/or blocking the source of the malicious activity—especially if
that source is inside the company as some of them are.

ARP scans

ARP scans, also called as ARP sweeps, are used to discover active localhosts on
a network segment. An ARP sweep can be difficult to detect unless you apply a
display filter and observe a steady, incremental sweep from the same device, as

seen in the following screenshot:

Ma. Time

21 3.551628
22 3.551659
23 3.551687
24 3.551714
25 3.551742
26 3.551769
27 3.551797
28 3.551827
29 3.551855

Destination
Broadcast

eBroadcast
Broadcast
eroadcast
Broadcast
eBroadcast
Broadcast
eBroadcast
Broadcast
eroadcast

ARP
ARP
ARP
ARP
ARP
ARP
ARP
ARP
ARP

Protocol Length Info

who
who
who
who
who
who
who
who
who

has
has

172.
172.
FFE:
AF2.
172.
AF2.
172.
AF2.
172.

.47

57
67
72

B

92

. 107
% En L
127

Tell
Tell
Tell
Tell
Tell
Tell

EED
T2,
EEZS
IF2.
IF2.
172.

. 246
. 246
. 246
. 246
. 246
. 246

Tell 172.20.14.246
Tell 172.20.14. 246
Tell 172.20.14.246

As ARP packets cannot pass through a router, the source device conducting the
ARP sweep must be on the same network segment that the ARP packets are seen

on.

ICMP ping sweeps

ICMP ping sweeps are used to discover active hosts on local or remote network
segments (since ICMP uses IP and is routable) using ICMP Type 8 Echo
Requests and Type 0 Echo Replies for a range of IP addresses. You can easily
detect ping sweeps by using a display filter icmp.type == 8 || icmp.type ==
0.

TCP port scans

TCP port scans allow a malicious agent to discover which TCP ports are open on
a target host. Network ports are the entry points to a server or workstation; a
service that listens on a given port is able to service requests from a client.
Malicious agents can sometimes exploit vulnerabilities in server code to gain
access to sensitive data or execute malicious code on the machine, which is why
testing all active ports is necessary for a complete coverage of any security
validation.

Some of the most common ports used for TCP-based services include:

80 HTTP

443 HTTPS

8080 HTTP proxy

8000 HTTP alternate

21 FTP

22 SSH

23 Telnet

3389 Microsoft Remote Desktop
5900 VNC

25 SMTP

110 POP3

143 IMAP

3306 MySQL

1433 Microsoft SQL Server
1720 H.323

e 5060 SIP

A TCP port scan device will send a TCP SYN packet to a port on a target host,
which will respond with either SYN, or ACK if the port is open, or RST if the
port is closed. Similar to an ARP scan, a TCP scan can be detected by a series of
SYN packets from a single IP address to a target IP address over a range of port
numbers. A display filter can make detecting these types of scans easier:

ip.dest == <IP Address of target host> && tcp.flags.syn

UDP port scans

UDP port scans are like TCP scans, but they are run against typical UDP-based
services, the most common of which include:

53 DNS

161/162 SNMP

67/68 DHCP

5060 SIP

135 Microsoft Endpoint Mapper
137/139 NetBIOS Name Service

The preceding topics cover just a sampling of the most common scans used by
malicious agents. Security analysts should research this topic further to identify
all the types of scans that may be used to exploit their particular environment's
vulnerabilities.

OS fingerprinting

OS fingerprinting is a technique wherein a remote machine sends various types
of commands to a target device and analyzes the responses to attempt to identify
the target devices' operating system and version. Knowing which operating
system a device is running makes it possible to use exploits specific to that
operating system.

Nmap detects operating systems based on a series of port scans, ICMP pings,
and numerous other tests, and then runs a set of follow-up tests based on the
results to further define the OS version running.

In the following screenshot, you can see the test results verbiage from the GUI
version of Nmap (Zenmap) as it completes an OS detection scan, as well as its
best estimate of the operating system and version:

© Zenmap = [R5

Scan Teools Profile Help

Target: 1722001 | Profite Caneel
Command: | nmap -sV -0 -v172.2001
[Hosts ” Services MNmap Cutput PortsfHustsITopologylHostDetailsIScans|
reerm T nmap -sV -0 ~v172.200.1 -] = [Details
| 34 2F 2 HdEE WV RALOTUN VAL TUTUDRIU AN U AWK SN S W ALZOTNIU L WL grrereLvel 5
o st Ot ot b\ xBE e %20
SF:timeoutix28period
\rinThe\x28URL\x28that\x28vou
W2Barewx28trying\x2ae
SF:to\xZBaccess\x28is'\x28blockedy .
\rin<d/Font>\r\ngs
body=\rind/htmlswry

SF:n<!--%w28long\x28comment i\ x28to\x2@disable\ x2BMSIE
Wr2Band\x28Chrome'x28s
5F:o-called\x2@friendly\x2@error\x2@page \ x28-->\ring! --
Wx28longhx28comment

SF:Ww28to\x28disable\ x28MSIEVKZ2Band \ x28Chrome\x2@s0-
called'\x28friendly’ \x2@

SF:error\x28page\x28-->\r\n<! --\x28long\x28comment
WwZ2etox2@disable\w28MSI
SF:Evx2@and\x2@8Chrome'x28so-called\x28friendly\x28error
W28page\x28-->\ryn
SF:<!--'w2@8longhx2@commentix28to\x2@disable\ x2BMSIE
YW2Band\x28Chrome\x28s50
S5F:-called\x2@8friendly\x2@error\x28page’\x28-->\rin<!--
Wx28long\x28comment’,

SF:w2@tohx28disable’\ x28MSIE\x28and \ x28Chrome'\ x28s0-
call™}:

MAC Address: 88:;25:98:E5:84:82 (Super Micro Computer)
Warning: 055can results may be unreliable because we
_Euuld not find at least 1 open and 1 closed port

Device type: specialized|general purpose|firewall 1
Running (JUST GUESSING): Comau embedded (92%), FreeBsD |
7.%X (98%), IronPort AsyncO5 7.X (B6%)

05 CPE: cpe:/o:freebsd:freebsd:7 cpe:/ E|
o:ironport:asyncos:7

Appressive 05 guesses: Comau C4G robot control unit

(92%), FreeBsD 7.8-RELEASE-p5 (98%), IronPort AsyncOs |—
7.5.1 (86%), FreeBSD 7.8-STABLE (85%)

N T 3 “TI0 EXGCL Uo MaLches Tor NOSC LLest congitions mon-
ideal). o
FIltErHDStS [5 Fer et JeTRCR i bt e 55 M oAann VL A [g L g Iy Ao =9 A, AL AT

A Wireshark capture of the OS detection activity described earlier included as an
example of one of the OS fingerprinting scripts that are run, a bogus HTTP
request to the target device (172.20.0.1) for

/nice%20ports%2C/Tri%6Eity. txt%2ebak to see exactly what kind of error
response was generated, which is used to help pinpoint the OS version:

No. Time Source Destination Source Port Destination Port Protocol Length Info

16.260887 172.20.14.246 0.1 GET /nice%20ports%2C/Tri%6Eity. txt%2ebak HTTP/1.0
2694 16.262351 172.20.0.1 172.20.14.246 BOBO 2403 TEP 60 B0B0-2403 [ACK] Seg=1 Ack=54 Win=13080 Len=0
2695 16.262403 172.20.0.1 172.20.14.246 8080 2403 TCP 206 [TCP segment of a reassembled PDU]
2697 16.263793 172.20.0.1 172.20.14.246 BOEOD 2403 HTTP 990 HTTP/1.0 200 ok (text/html)

The exact format of the HTML response from the preceding request could be
used to identify the OS and/or web server version, as seen in the following
Wireshark packet details screenshot:

= Line-based text data: text/htm]l
<html=\rn
<head=\rn
<titlesError</titles\r\n
</head>\r\n
<body topmargin=1 leftmargin=1 marginheight=1 marginwidth=1 bgcolor="orange" text="black">\r\n
<font size="+2"=An error occurred.
 \r\n
\r\n
This http server can only serve URL requests for ufdbGuard
‘r\n
redirection messages and does not understand the URL.
‘r\n
URL: <tt=/niceX20ports¥2C,/Tri%eEity. txt%2ebak</tt> <br=rin
Most 1ikely the configuration of "redirect" statements is incorrect. It should include "/cgi-bin/urLblocked.cgi”. <br=%rin
</font=rn
</body="rn
</html=\rin
<!-- Tong comment to disable MSIE and chrome so-called friendly error page —-=\r\n

Analyzing packet captures of these kinds of OS fingerprinting requests and
responses will make it much easier to spot similar activities from malicious
entities.

Malformed packets

Maliciously malformed packets take advantage of vulnerabilities in operating
systems and applications by intentionally altering the content of data fields in
network protocols. These vulnerabilities may include causing a system crash (a
form of denial of service) or forcing the system to execute the arbitrary code.

An example of malformed packet vulnerability is Cisco Security Advisory cisco-
sa-20140611-ipv6, wherein vulnerability in parsing malformed IPv6 packets in a
certain series of routers could cause a reload (reboot) of a certain card that
carries network traffic, which could intermittently cause service outages.

Another example of this kind of vulnerability is in some unpatched Windows or
Linux systems that will crash if they receive a series of fragmented packets
where the fragments overlap each other.

The types and possibilities of malformed packets are endless, but vulnerabilities
are usually announced as they are discovered and some may provide packet
details. You can build display filters and/or build coloring rules in Wireshark to
detect these packets. It also helps to study and understand what range of values
the different protocol fields normally and legally contain, and what TCP and
other protocol sequences normally look like so you can spot suspicious contents
in packet flows.

Phone home traffic

Phone home traffic originates from a rogue application on a device that
periodically connects to a remote (usually off-network) host to receive updates
or commands or deliver data collected from the infected host. The majority of
phone home traffic will be the operating system and virus protection updates,
Dropbox or other external services, and similar authorized and appropriate
services, so it will take some effort to identify malicious traffic out of this mix.

It is important to understand the risk that phone home traffic can represent: many
botnet Distributed Denial of Service (DDoS) attacks are supported by a
"zombie army" of hijacked computers running software that may lie undetected
for some period of time except for periodic communications with their
Command and Control (C&C) servers awaiting instructions to attack a target.
In a similar fashion, keylogging traffic will send periodic reports of video
screenshots and keystroke data to the collecting host.

One way to identify potentially malicious phone home traffic is to capture and
inspect the DNS queries as these sessions start up, looking at two distinct areas:

e The hostname(s) of legitimate services are often reasonably recognizable.

e DNS queries for illegitimate applications contacting C&C servers will often
return a long list of aliases with IP addresses that are not all in the same
general range (that is, from all over the world). A display filter that helps
identify DNS responses with long response lists is dns.count.answers >
5.

It also helps to have a baseline that includes the idle period traffic and a sample
of known updates/services dialogs to compare a questionable capture to.

Password-cracking traffic

Password-cracking traffic can be detected by observing numerous error
messages from a target host directed to a client that repeatedly and
unsuccessfully attempts to log in. There are two general types of password
cracking attempts:

e Dictionary attacks work from a list of common words, names, and numbers

e Brute force attacks use a sequence of characters, numbers, and key values

Both of these types are often thwarted by login security measures that lock out
an account after a short number of failed login attempts.

Unusual traffic

While it is difficult to anticipate what methods a hacker may use in an attempt to
infiltrate a network or host, there are a few things that should probably never
happen on a normal, healthy network. Due to their usefulness in testing and
conveying error conditions, ICMP packets are a likely target for malicious
redirection. Since TCP is the predominant transport protocol in use for most
applications, you should look out for abnormalities in TCP headers or payloads
that could be a sign of malicious intent.

Some examples of abnormalities to look out for are discussed in the following
table:

Suspicious

Description
content

TCPbad [|An illegal or unlikely combination of TCP flags. The SYN, SYN/ACK, ACK, PSH, FIN, and
flags RST flags are normal when they're used in the appropriate places; anything otherwise
warrants investigation.

SYN The initial TCP SYN packet should never contain payload data; it is used to establish a
packet session only. Note, however, that the third ACK packet in the TCP can contain data.
contains

data

Suspicious ||References to the operating system or other non-application directories, strange executables,
datagram |Jor other payload data that doesn't seem to fit the purpose of the application being used to send
payload [Jthe data.

contents

Suspicious || The text used to fill in the payload of an ICMP Echo Request packet is usually a benign

ping sequential series of letters and numbers or similar meaningless text. If this text appears to
payload [|carry commands or meaningful data, it warrants investigation.
text

Clear text ||Seeing FTP used to transport sensitive business data, or Telnet to administer switches and
passwords [|routers, isn't malicious intent by a hacker. It's negligent practice by employees as both

in FTP or [|protocols, by design, transmit clear text login IDs and passwords over the network, making it
Telnet easy for even an unsophisticated hacker to capture them. There are Secure FTP (sftp) and
sessions ||Secure Shell (SSH) (Telnet alternative) solutions for all platforms available on the Web.

Summary

The topics covered in this chapter on security analysis included detecting scans
and sweeps to identify targets for planned attacks, operating system
fingerprinting, detecting malformed packets, and packets that are suspiciously
fragmented or sent out of order, phone home traffic from malicious agents,
identifying password cracking attempts, and identifying other abnormal packets
and payloads.

In the next chapter, we'll review several key command-line utilities provided in a
Wireshark installation, as well as a few additional packet analysis tools that can
complement your toolset.

Chapter 8. Command-line and Other
Utilities

Wireshark includes a number of command-line utilities to manipulate packet
trace files and offer GUI-free packet captures, and there are a few other tools that
can help round out your analysis toolset.

The topics that will be covered in this chapter include:

Capturing traffic with Dumpcap and Tshark
Editing trace files with Editcap

Merging trace files with Mergecap

Other helpful tools

Wireshark command-line utilities

When you install Wireshark, a range of command-line tools also gets installed,
including:

e capinfos.exe: This prints information about trace files

e dumpcap.exe: This captures packets and saves to a libpcap format file

e editcap.exe: This splits a trace file, alters timestamps, and removes
duplicate packets

e mergecap.exe: This merges two or more packet files into one file

e rawshark.exe: This reads a stream of packets and prints field descriptions

e text2pcap.exe: This reads an ASCII hex dump and writes a libpcap file

e tshark.exe: This captures network packets or displays data from a saved
trace file

The wireshark.exe file launches the GUI version you're familiar with, but you
can also launch Wireshark from the command line with a number of parameters;
type Wireshark -h for a list of options and/or create shortcuts to launch
Wireshark with any of those options.

Note
It is very helpful to add the Wireshark program directory to your system's PATH

statement so that you can execute any of the command-line utilities from any
working directory.

Capturing traffic with Dumpcap

The dumpcap . exe file is the executable that Wireshark actually runs under the
covers to capture packets and save them to a trace file in libpcap format. You can
run Dumpcap on the command line to circumvent using the Wireshark GUI and
use fewer resources. A list of command-line options is available by typing
dumpcap.exe -h.

Some of the most useful options are as follows:

e -D: This prints a list of available interfaces and exits

e -i <interface>: This specifies a name or index number of an interface to
capture on

e -f <capture filter>: This applies a capture filter in the Berkeley Packet
Filter (BPF) syntax

e -b filesize: This is the file size

e -w <outfile>: This is the name of the file where the files will be saved

An example of viewing a list of interfaces and then running Dumpcap to capture
a specific interface with an IP address capture filter (note the use of quotes
around the filter syntax) configured to use a three-file ring buffer with file sizes
of 100 MB and an output filename derived from capture.pcap is illustrated in
the following screenshot:

B8 Command Prompt - dumpeap -i 2 -f "host 192.168.1.115" -b filesize:100000 -b files:3 -w capture.pcap = @

Wireshark>dumpcap -D

. “DevicesNPFF_{EDSBFGFE-831D-4DED-AWBBF-57EI4BEDCECA} (Wirelessz Metwork Connection 2)
. “Device\NPF_{B76F88E?-5E81-41A7-A618—4741FCA61E43} (Local Area Connection)

. “DevicesNPF_{B865E114C-63A8-4853-A6CC-C6E1B4964655 (Wireless Metwork Connection

. “Device~NPF_{F6434682-A1EY-4BFD-AA1E-D2C2CA2CF1EA: (Bluetooth Metwork Connectionl

sUWireshark>dumpcap —i 2 —f "host 192.168.1.115%" -b filesize:180888 -b files:3 —w capture.pcap
*Local Area Connection’

Capturing on
ile: capture_ BBBH1_201460984151641 .pcap
Packets: 187812

You can get more information on Dumpcap options at

https://www.wireshark.org/docs/man-pages/dumpcap.html.

https://www.wireshark.org/docs/man-pages/dumpcap.html

Capturing traffic with Tshark

Tshark can be used to capture network packets and/or display data from the
capture or a previously saved packet trace file; packets can be displayed on the
screen or saved to a new trace file.

The same syntax used to perform a basic capture using Dumpcap will work with
Tshark as well, so we won't repeat that here. However, Tshark offers a very wide
range of additional features, with a corresponding large number of command-
line options that can, as in all Wireshark utilities, be viewed by typing tshark -
h in the command prompt.

A number of Tshark options are to view statistics; an example of the command
syntax and statistical results from a capture (after pressing Ctrl + C to end the
capture) is illustrated in the following screenshot:

BN Command Prompt ilE@

C:sWireshark>tshark —i 2 —f “host 172.168.1.115" —qg=z io.phs
Capturing on 'Local Area Connection’
4232 packets captured

m

frames:4932 hytes 4698335
frames:43 hytes:2004
frames:4889 hytes 4696331
frames:129 hytes:25427
frames:22 hytes:1839
frames:24 hytes:2208
frames:37? hytes:12266
frames:38 hytes:6330
frames:2 hytes:684
frames:12 hytes: 21006
frames:4756 hytes 14678720
frames:35 hytes: 22325
data—text—lines frames:12 hytes:5527
xml frames:2 hytes:1479
tep.segments frames:1 hytes:16308
Json frames:1 hytes:249
tep.segments frames:1 hytes:249
media frames:1 hytes:824
tep.segments frames:1 hytes:824
frames:62 hytes:37746
tep.segments frames:7 hytes:4954
szl frames:3 hytes:1126
bhytes:184

| 4 m b

You will find an extensive number of details and examples on using statistics
and other Tshark options at https://www.wireshark.org/docs/man-

pages/tshark.html.

https://www.wireshark.org/docs/man-pages/tshark.html

Editing trace files with Editcap

You can use Editcap to split a trace file that is too large to work with in
Wireshark into multiple smaller files, extract a subset of a trace file based on a
start and stop time, alter timestamps, remove duplicate packets, and a number of
other useful functions.

Type editcap -h in the command prompt for a list of options. The syntax to
extract a single packet or a range of packets by packet numbers is as follows:
editcap -r <infile> <outfile> <packet#> [- <packet#>]

You must specify <infile> and <outfile>. The -r specifies to keep, not delete,
the specified packet or packet range, for example:

editcap -r MergedTraces.pcapng packetrange.pcapng 1-5000

You can split a source trace file into multiple sequential files, each containing the
number of packets specified by the -c option:

editcap -c 5000 MergedTraces.pcapng SplitTrace.pcapng

You can eliminate duplicate packets in a file within a five-packet proximity:

editcap -d hasdupes.pcapng nodupes.pcapng

If you have two trace files that have a significant span of time between them, and
you want to merge them into one file but closer together, you can investigate all
of the packets within one IO Graph or a similar analysis function; you can first
use the -t option on one of the files to adjust the timestamps in that file by a
constant amount (in seconds). For example, to subtract 5 hours from a trace file's
timestamps, use the following command:

editcap -t -18000 packetrange.pcapng adj_packetrange.pcapng

Comparing the two traces in Wireshark reveals the following details:

¢ Packet #500 before adjustment: 2014-09-04 15:27:38.696897
e Packet #500 after adjustment: 2014-09-04 10:27:38.696897

You can get more information on and examples of Editcap options at
https://www.wireshark.org/docs/man-pages/editcap.html.

https://www.wireshark.org/docs/man-pages/editcap.html

Merging trace files with Mergecap

You can use Mergecap to merge two or more trace files into one file. The basic
syntax is as follows:

mergecap -w <outfile.pcapng> infilel.pcapng infile2.pcapng

For example:

mergecap -w merged.pacap sourcel.pcapng source2.pcapng
source3.pcapng

One useful option you sometimes may want to use in Mergecap (and several of
the other command-line utilities) is -s <snaplen>. This will truncate the packets
at the specified length past the start of each frame, resulting in a smaller file; a
typical value for <snaplen> is 128 bytes:

mergecap -w merged_trimmed.pcapng -s 128 sourcel.pcapng
source2.pcapng

Mergecap batch file

If the capture files you want to merge have a variety of naming formats, you can
create a MergeTraces.bat file containing the following Windows batch
commands:

@echo off

cls

echo MergeTraces.bat
echo.

echo Merges multiple packet trace files with a .pcapng extension
into one .pcapng file

echo.

echo Usage: Copy MergeTraces.bat into the directory with the .pkt
files and execute

echo The utility will generate a 'MergedTraces.pcap' file

echo and a 'MergedFileList.txt' file which lists the .pcapng files
processed.

echo.

echo.

echo IMPORTANT!! You must type 'CMD /V:ON' from this window which
enables

echo 'Delayed environment variable expansion' in order to properly
execute

echo this batch utility.

echo.

echo You must also add the path to Wireshark's mergecap.exe to your
path statement.

echo.

echo If you've not done this, Type Ctrl-C to exit; Otherwise
pause

echo.

echo Deleting old MergedFilelList.txt...

if exist "MergedFileList.txt" del MergedFilelList.txt

for %%f in (*.pcap-ng) do echo "%%f" >> MergedFilelList.txt

echo Deleting old MergedTraces.pcapng...

if exist "MergedTraces.pcapng" del MergedTraces.pcapng

echo Preparing to merge:

echo.

type MergedFilelList. txt

echo.

echo Merging..........

set FILELIST=

for %%f in (*.pcap-ng) do set FILELIST=!FILELIST! %%f

:: DEBUG

:: echo %FILELIST%

mergecap -w MergedTraces.pcapng %FILELIST%

echo.

if exist MergedTraces.pcapng @echo Done!

if NOT exist MergedTraces.pcapng @echo Error!! -- Check your
settings.

echo.

Copy the batch file into a directory containing just the packet trace files you
want to merge and execute it. The batch file will merge all the . pcapng files into
one file called MergedTraces.pcapng. This is much easier than trying to specify
a long list of unique source files in a command line, especially if the filenames
contain date-time stamps. If you need to work with the . pcap files, change all
instances of .pcapng to .pcap in the batch commands; you can also alter the
output filename as desired.

Note

You can also merge trace files by clicking-and-dragging the files into the
Wireshark desktop. The files will be merged in chronological order based on
their timestamps after selecting Merge from the Wireshark File menu. This
works reasonably well as long as the total file size doesn't exceed 1GB.

You can get more info and examples of Mergecap options at
https://www.wireshark.org/docs/man-pages/mergecap.html.

https://www.wireshark.org/docs/man-pages/mergecap.html

Other helpful tools

Wireshark is an extremely versatile and useful tool. However, there are some
things it doesn't do easily or at all, so we'll discuss a few other tools you may

want to include in your analysis toolset.

HttpWatch

HttpWatch is a packet-based performance analysis utility that integrates with
Internet Explorer and Firefox browsers to view a graphical depiction and
statistical values from HTTP interactions between the browser and websites.
This kind of utility makes it easy to discover and measure from the user's
perspective when significant delays are occurring and the source of those delays.

The following screenshot shows the HttpWatch visual and numerical analysis by
loading the www.wireshark.org home page:

Get Acquainted ~ Get Help ~ Develop ~
What's on your network?
Download]

% @ Record [Gtoy ECIear E View ~ |£= Summary Q Find = 7 Filter v| E Save * 4 v| il Toaols
Started Time Chart S Time Sent Received Method Result
=] 00:00:00.000 Wireshark - Go Deep.

+0.000 | ! 0,010] 0 GET
+o.010 [! 0.519 650 10920 GET
+0.517 | ; ! 0.001 0 0 GET
+0.721 | ! 0.009 0 0 GET
+0.732 | | 0.001 0 0 GET
+0.737 | | 0,002] 0 GET
+0.740 | | 0.001 0 0 GET
+0.742 | 0.002 o 0 GET
+0.744 | 0,002 0 0 GET
+0.746 | 0.002 0 0 GET
+0.748 | | 0,002 a 0 GET
+0.750 | | 0.003 o 0 GET
+0.780 1 ! 0.025 762 485 GET
+0.785 | ! 0.044 730 437 GET

You can get more information about HttpWatch from
http://www.httpwatch.com/. Also, a similar performance analysis utility is
Fiddler, which can be found at http://www.telerik.com/fiddler.

http://www.wireshark.org
http://www.httpwatch.com/
http://www.telerik.com/fiddler

SteelCentral Packet Analyzer Personal
Edition

SteelCentral Packet Analyzer (previously known as Cascade Pilot) is available in
Standard and Personal Edition versions. Unlike Wireshark, this utility is able to
open and analyze multigigabyte trace files; you can quickly isolate a
conversation of interest, right-click on it, and save that conversation in a separate
packet trace file or launch Wireshark directly and pass that conversation to it
from the same menu.

In addition, the utility offers a variety of network analysis screens called Views
that provide graphical displays and reports on a wide range of performance
perspectives. The following screenshot illustrates a set of MAC Overview
Views:

© Getting Started | © MAC Overview

4 b

| Filters (None)

|Traﬁc0\.'es Time- Bits

4 p

2.00M

1.80M —

1.60M

1.40M

120M —-

Bitsis

1.00M —

0.80Mm

0.60M

O.40M —

020M —

]
16:39:48

Lo

§

MIN 16:32:58

Top MAC Sources

q b il'_'mvarsaﬁl-m

s.a0m 439

1,100

&

00:21:60:86:0b:c2-

00-27:0d:55: 144

00:1c:25:99:db 86§

=
33:33:00:01:00:02

-
»
33:33:-00:00:000¢"
»

i
01:80:¢2:00:00:00"

Curent Sedection. 4/12 16.39:48 - 16:40.01 (13 5) @ 1 sec - Tolal Window. 4/12 16.39.48 - 16:40.01

- cBdT:19:21:6T a0

S~ COPNTRIDTR/PAGRIUDLD
-

T2ea8-04:21:08:04
L]

hY
01:00:5a: TR

TE;';:ﬂcnmarsur.iurs (100% of Bytes) & Q)

End Point: Bytes
_— 62452K
(
s 16.55K
50

Conversation: Bytes

623.07H
s §1 96K
&0

You can get more information on the SteelCentral Packet Analyzer products at

http://www.riverbed.com/products/performance-management-control/network-
performance-management/packet-analysis.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/packet-analysis.html

AirPcap adapters

If you are using Wireshark to analyze wireless networks, you will need a
wireless adapter that provides the ability to see all of the available channels and
provides a Radiotap Header, which offers additional information for each frame
such as radio channel and signal/noise strengths.

The prevalent wireless adaptor for use with Wireshark or SteelCentral Packet
Analyzer on Windows platforms is the Riverbed AirPcap adapter, which is
available from the Riverbed website. The AirPcap adapter plugs into a USB port
and includes drivers to integrate with Wireshark and provide the Radiotap
Header information. There are several product models that offer increasing
coverage of the various WLAN bands; AirPcap Nx offers the widest coverage.
The following image depicts two of the available adapters:

You can get more information on the Riverbed AirPcap adapters at

http://www.riverbed.com/products/performance-management-control/network-
performance-management/wireless-packet-capture.html.

http://www.riverbed.com/products/performance-management-control/network-performance-management/wireless-packet-capture.html

Summary

The topics covered in this chapter included several of Wireshark's command-line
utilities to capture packets and edit and merge packet trace files, as well as
several useful tools to compliment your analysis toolset.

This is the final chapter of this book on Wireshark. I hope you enjoyed reading
it, and mostly, I hope you use it as a foundation to become a Wireshark expert!

Part 2. Module 2

Network Analysis Using Wireshark Cookbook

Over 80 recipes to analyze and troubleshoot network problems using
Wireshark

Chapter 1. Introducing Wireshark

In this chapter you will learn:

Locating Wireshark

Starting the capture of data

Configuring the start window

Using time values and summaries

Configuring coloring rules and navigation techniques
Saving, printing, and exporting data

Configuring the user interface in the Preferences menu
Configuring protocols preferences

Introduction

In this chapter, we will cover the basic tasks related to Wireshark. In the Preface
of this book, we discussed network troubleshooting and the various tools that
can help us in the process. After reaching the conclusion that we need to use the
Wireshark protocol analyzer, it's time to locate it for testing in the network, to
configure it with basic configurations, and to adapt it to be user friendly.

While setting Wireshark for basic data capture is considered to be very simple
and intuitive, there are many options that we can use in special cases; for
example, when we capture data continuously over a connection and we want to
split the capture file into small files, when we want to see names of the devices
participating in the connection and not only IP addresses, and so on. In this
chapter we will learn how to configure Wireshark for these special cases.

Another important issue is where to locate Wireshark to capture data. Will it be
before a firewall or after it? On which side of the router should we connect it?
On the LAN side or on the WAN side? What should we expect to receive in each
one of them? All these issues and more will be covered in the Locating
Wireshark recipe in this chapter, along with recommendations on how to do it.

Another important issue that will be covered in this chapter is how to configure
time values, that is, how you would like Wireshark to present the arrival time of
captured packets. This is significantly important when we capture data of time-

sensitive applications, when it is important to see the timing of packets inside a

TCP connection or a UDP flow.

The next recipe will be on file manipulations, that is, how to save the captured
data, whether we want to save the whole of it or part of it, save only filtered data,
export that data into various formats, merge files (for example, when you want to
merge captured files on two different router interfaces), and so on.

One more issue that will be discussed in this chapter is how to configure
coloring rules. That is, how to configure Wireshark to present different packets
and protocols in different colors. While Wireshark by default has its coloring
scheme, we might want to configure it for special cases, for example, to give a
special color to a specific protocol that we monitor or to a specific error or event

that we expect. The Configuring coloring rules and navigation techniques recipe
discusses these issues.

The last two recipes of the chapter will cover the configuration of the Wireshark
preferences. These recipes discuss how to configure the user interface, that is, to
configure the Wireshark windows, the columns and what to see in each one of
them, text formats, and so on, along with specific protocol configurations; for
example, which TCP ports should be resolved by default as a proxy service,
whether or not to validate a protocol checksum, whether or not to calculate TCP
timestamps, how to decode fields in the protocol header, and so on.

Locating Wireshark

After understanding the problem and deciding to use Wireshark, the first step
would be to decide where to locate it. For this purpose, we need to have a precise
network diagram (at least the part of the network that is relevant to our test).

The principle is to locate the device that you want to monitor, connect your
laptop to the same switch that it is connected to, and configure a port mirror or
monitor to the monitored device. This operation enables you to see all traffic
coming in and out of the monitored device.

You can monitor a LAN port, WAN port, server or router port, or any other
device connected to the network.

Monitored
port

Monitoring
port

Wireshark

In the preceding diagram, the Wireshark software (installed on the PC on the
left) and the port mirror, also called port monitor (configured on the switch in the
direction as in the diagram), will monitor all the traffic coming in and out of
server S2. Of course, we can also install Wireshark directly on the server itself,
and by doing so, we will be able to watch the traffic directly on the server.

Some LAN switch vendors also enable other features such as:

¢ Monitoring a whole VLAN: We can monitor a server's VLAN, Telephony
VLAN, and so on. In this case you will see all the traffic on a specific
VLAN.

e Monitoring several ports to a single analyzer: We can monitor traffic on
servers S1 and S2 together.

¢ Filtering: Filtering means choosing and accordingly configuring whether to
monitor incoming traffic, outgoing traffic, or both.

Getting ready

To start working with Wireshark, go to the the Wireshark website, and download
the latest version of the tool.

An updated version of Wireshark can be found on the website at
http://www.wireshark.org/, under the Download heading. Download the latest
Wireshark stable release that is available at
http://www.wireshark.org/download.html.

Each Wireshark Windows package comes with the latest stable release of
WinPcap, which is required for live packet capture. The WinPcap driver is a
Windows version of the UNIX Libpcap library for traffic capture.

http://www.wireshark.org/
http://www.wireshark.org/download.html

How to do it...

Let's take a look at the typical network architecture and network devices, how
they work, how to configure them when required, and where to locate
Wireshark.

Where to locate

the Wireshark? Remote office
monitoring: On the Remote office
WAN side 5 monitoring:
? 00 On the LAN side 3
o
L1
T Internet access
monitoring: Before
the Firewall

After the Firewall

Internet monitoring:
WAN

TEanas aae WAN monitoring: Port
CELTAIED mirror to the monitored
router

Server monitoring: Port
mirror to the monitored
server

Let's have a look at the simple and common network architecture in the
preceding diagram.

Monitoring a server

This will be one of the most common requirements that we will have. It can be
done by either configuring the port monitor to the server (numbered as 1 in the
preceding diagram), or installing Wireshark on the server itself.

Monitoring a router

In order to monitor a router, we can monitor a LAN port (numbered as 2 and 6 in
the preceding diagram), or a WAN port (numbered as 5 in the preceding
diagram). To monitor a LAN port is easy—simply configure the port monitor to
the port you wish to monitor. In order to monitor a WAN port, you can connect a
switch between the router port and the Service Provider (SP) network, and
configure the port monitor on this switch, as in the following illustration.

Laptop with

Wireshark \\

SP Network : £ 7

(WAN) Switch j =

WAN Port

Connecting a switch between the router and the service provider is an operation
that breaks the connection; however, when you prepare for it, it should take less
than a minute.

When monitoring a router, don't forget—not all packets coming in to a router
will be forwarded. Some packets can be lost, dropped on the router buffers, or
routed back on the same port that they came in from.

Two additional devices that you can use are TAPs and Hubs.

e TAPs: Instead of connecting a switch on the link you wish to monitor, you
can connect a device called Test Access Point (TAP), which is a simple
three-port device that, in this case, will play the same role as that of the
switch. The advantage of a TAP over a switch is its simplicity and price.
TAPs also forward errors that can be monitored on Wireshark, unlike a

LAN switch that drops them. Switches, on the other hand, are much more
expensive, take a few minutes to configure, but provide you with additional
monitoring capabilities, for example, Simple Network Management
Protocol (SNMP). When you troubleshoot a network, it is better to have an
available managed LAN switch, even a simple one.

e Hubs: You can simply connect a hub in parallel to the link you want to
monitor, and since a hub is a half-duplex device, every packet sent between
the router and the SP device will be watched on your Wireshark. The
biggest con of this method is that the hub itself slows the traffic, and it
therefore influences the test. In many cases you also want to monitor 1
Gbps ports, and since there is no hub available for this, you will have to
reduce the speed to 100 Mbps, which again will influence the traffic.
Therefore, hubs are not commonly used.

Monitoring a firewall

When monitoring a firewall, it differs depending on whether you monitor the
internal port (numbered 3 in the diagram) or the external port (numbered 4 in the
diagram). On the internal port you will see all the internal addresses and all
traffic initiated by the users working in the internal network, while on the
external port you will see the external addresses that we go out with (translated
by NAT from the internal addresses); you will not see requests from the internal
network that were blocked by the firewall. If someone is attacking the firewall
from the Internet, you will see it (hopefully) only on the external port.

How it works...

To understand how the port monitor works, it is first important to understand the
way that a LAN switch works. A LAN switch forwards packets in the following

way:

1.

w

The LAN switch continuously learns about the MAC addresses of the
devices connected to it.

Now, if a packet is sent to a destination MAC, it will be forwarded only to
the physical port that the switch knows this MAC address is coming from.
If a broadcast is sent, it will be forwarded to all the ports of the switch.

If a multicast is sent and Cisco Group Management Protocol (CGMP) or
Internet Group Management Protocol (IGMP) is disabled, it will be
forwarded to all the ports of the switch (CGMP and IGMP are protocols that
enable multicast packets to be forwarded only to devices on a specific
multicast group).

If a packet is sent to a MAC address that the switch does not know about
(which is a very rare case), it will be forwarded to all the ports of the
switch.

Therefore, when you configure a port monitor to a specific port, you will see all
the traffic coming in and out of it. If you connect your laptop to the network,
without configuring anything, you will see only the traffic coming in and out of
your laptop, along with broadcasts and multicasts from the network.

There's more...

When capturing data, there are some tricky scenarios that you should be aware
of.

One such scenario is monitoring a VLAN. When monitoring a VLAN, you
should be aware of several important issues. The first issue is that even when
you monitor a VLAN, the packet must physically be transferred through the
switch you are connected to, in order to see it. If, for example, you monitor
VLAN-10 that is configured across the network, and you are connected to your
floor switch, you will not see the traffic that goes from other switches to the
servers on the central switch.

This is because when building a network, the users are usually connected to floor
switches in single or multiple locations in the floor, that are connected to the
building central switch (or two redundant switches). For monitoring all traffic on
a VLAN, you have to connect to a switch on which all traffic of the VLAN goes
through, and this is usually the central switch.

....................

|
: : Swil
VLANZO (VL20) ===========e--
VLAN3O (VL30) ————————
TRUNK. 1 TRUNK 2
Sw2 Sw3

ﬁL__IIT_iI:IIII:IL,__II:I *I:II:I:I-I:IL!__II;I

E B E B =R 2 E E =B
P1 P2 P3 P4 PS5 P& PT PE P9
VL10 VL30 VL20 VL30 WL30 VL10 VL20 VL30 VL30

In the preceding diagram, if you connect Wireshark to Switch SW2, and
configure a monitor to VLAN30, you will see all the packets coming in and out
of P2, P4, and P5, inside or outside the switch. You will not see packets
transferred between devices on SW3 and SW1, or packets between SW1 and
SW3.

Another issue when monitoring a VLAN is that you might see duplicate packets.
This is because when you monitor a VLAN, and packets are going in and out of
the VLAN, you will see the same packet when it is comes in, and then when it
goes out of the VLAN.

You can see the reason in the following illustration. When, for example, S4
sends a packet to S2, and you configure the port mirror to VLAN30, you will see
the packet once when sent from S4 passing through the switch and entering the
VLAN30, and then when leaving VLAN30 and coming to S2.

VLAN20
VLAN3O

VLAN30

See also

For information on how to configure the port mirror, refer to the vendor's
instructions. It can be called port monitor, port mirror, or SPAN (Switched
Port Analyzer from Cisco).

There are also advanced features such as remote monitoring (monitoring a port
that is not directly connected to your switch), advanced filtering (such as
filtering specific MAC addresses), and so on. There are also advanced switches
that have capture and analysis capabilities on the switch itself. It is also possible
to monitor virtual ports (for example, LAG or Ether channel groups). For all
cases, refer to the vendor's specifications.

Starting the capture of data

In this recipe, we will learn how to start capturing data, and what we will get in
various capture scenarios, after we have located Wireshark in the network.

Getting ready

After you install Wireshark on your computer, the only thing to do will be to
start the analyzer from the desktop, program files, or the quick start bar.

When you do so, the following window will be opened (Version 1.10.2):

‘Thewiresharkﬂetworkhnalyzer [Wireshark 1.10.2 (SVNRﬂSIPKﬁumMnk-'LID]]_'_’ - . -
File Edit View Go gapturel Analyze Statistics Tdephnnz Tools [nternals Help

Gloams|BEXR AesdT S QAaan #Bnx O
E&prﬁ;ion... Clear Apply Save [P

The World's Most Popular Network Protocol Analyzer

WI RE s HARK Version 1.10.2 (SVM Rev 51934 from ftrunk-1.10)

Interface List - Open
© =
Live bt of the capture interfaces Open 2 previously captuted file
(counts ingoming packess)
Open Recent:
‘ Start CA\Customers\Easy2gi ... 23-0CT-2013 --- 1025 --- Test 001.pcapng
T O s C:\Customers\Easy2qive\CCANGT TEST 05-11-2013.pcapng {12 MB
§* | Wireless Network Connection 2 - CA\TechnicalhIPvE\IPvi cap 001.pcap (9159 bytes)

CA\TechnicalIPWE\EIGRP pcap (71 kB)
CA\TechnicallPvE\connection setup.pcap (28 kB)
CATechnicalIPvB\COnnecting to network.pcapng (105 kB)
Capture Options C:A\TechnicalIPVvE\COnnecting to network 002 pcapna ™~
CATechnicaldPvG\6tod. peap (4327 bvtea

m

ﬂ‘ Wireless Network Connection

t? Local Area Connection ~

St a capture with detaded options

How to do it...

You can start the capture from the upper bar Capture menu, or from the quick-
launch bar with the capture symbol, or from the center-left capture window on
the Wireshark main screen. There are options that you can choose from.

How to choose the interface to start the capture

If you simply click on the green icon, third to the right, in Wireshark and start
the capture, Wireshark will start the capture on the default interface as
configured in the software (explained later in the chapter in the recipe
Configuring the user interface in the Preferences menu). In order to choose the
interface you want to capture on, click on the List the available capture
interfaces symbol, and the Wireshark Capture Interfaces window will open.

[The Wireshark Network Analyzer [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10)] |
File Edit View Go Capture Analyze Statistics Telcphnnx Jools Internals Helg

ele amaz BaxR2 aesadT L BEF C

Filterltist the available capture interfaces... B Expressior

The World's Most Popular Networ

__—
WI RES HARK Version 1.10.2 (SVN Rev 51934 from /trunk
B

Interface List

@ Live kst of the capture interfaces
(counts incoming packets)

The best way to see which interface is active is simply to look at the right of the
window of the interface on which you see the traffic running. There you will see
the number of total Packets seen by Wireshark, and the number of Packets/sec
in each interface.

o e S

Description P Packets Packets/s
]) Microsoft feB0:blac:bda7:6b8d:05e4 0 0 Details

@ 2] Microsoft £e80::c067:2c23:335:/8¢1 | 107 6

] §] Realtek PCle GBE Family Controller fe80:d154:fbc0:6dad:aaSh 0 0 Details

sop | (utions] |

In Wireshark Version 1.10.2 and above, you can choose one or more interfaces
for the capture. This can be helpful in many cases; for example, when you have
multiple physical NICs, you can monitor the port on two different servers, two
ports of a router, or other multiple ports at the same time. A typical configuration
is seen in the following screenshot:

TO ISP

Port mirror
on switch 1

Y Port mirror

' !Dn switch 2

Laptop/Desktop with Wireshark
and two physical interfaces

How to configure the interface you capture data from

To configure the interface you capture data from, choose Options from the

Choosing
the

interface .

Capturein
promiscuous
mode

Capture
filter

Capture
multiple
files

Stop
capture

Capture menu. The following window will appear:

Ml Wiresharic Capture Options EESEEr—
Capture
Capture Interface Link-Layer hesder Prom, Mode Snaplen [B] Buffer [MB] Capture Filter
Wirelews Network Connection 2
feli-blacbdaT Sobd 95ed Ethernet enabled default
aqoe
::gmmcm [enabled default =
S §
Local Area Connection
TS0 A154 M0 6a3 MISE Ethernet enabled default Mar‘lage
182331 10%
Interfaces
=
Capture on all interfaces | Manage wﬂf‘:“}

| Capture Filter:)
Capture Files
File

f Use multiple files

Help

[¥] Use premiscuaus mode on all interfaces
Display Options

Display
o+ Update st of packets in real time aptinns

| Automatically scroll during live capture

| Use pcap-ng format

[¥1 Hide capture info dislog

Mame Resoluticn

| Resohoe MAC addnesses

¥ Resolve transport-layer name

#| Use gxternal network name reschrer

Resolve petwark-layer names

(2] [Compile selected B9F]

Na

me

resolution

"

Lloze

In the preceding window you can configure the following parameters:

1. On the upper side of the window, choose the interface you want to capture
the data from.

2. On the left side of the window, you have the checkbox Use promiscuous
mode on all interfaces. When checked, Wireshark will capture all the
packets that the computer receives. Unchecking it will capture only packets

intended for the computer.

3. In some cases, when this checkbox is checked, Wireshark will not capture
data in the wireless interface; so if you start capturing data on the wireless

interface and see nothing, uncheck it.

. On the mid-left area of the window, you have the Capture Files field. You
can write a file name here, and Wireshark will save the captured file under
this name, with extensions 0001, 0002, and so on under the path you
specify. This feature is extremely important when capturing a large amount
of data; for example, when capturing data over a heavily-loaded interface,
or over a long period of time. You can tell the software to open a new file
after a specific interval of time, file size, or number of packets.

. On the bottom left of the window, you have the area marked as Stop
Capture Automatically in the preceding screenshot. In this area, you can
tell the software to stop capturing data after a specific interval of time, file
size, or number of packets.

. On the mid-right area of the window, you can change the Display option
and select the checkboxes Update list of packets in real time,
Automatically scroll during live capture, and Hide capture info dialog,
which close the annoying capture window (a pop up that appears the
moment you start capture). In most of the cases you don't have to change
anything here.

. On the bottom right of the window, you configure the resolving options for
MAC addresses, I[P DNS names, and TCP/UDP port numbers. The last
checkbox, Use external network name resolver, uses the system's
configured name resolver (in most of the cases, DNS), to resolve network
names.

How it works...

Here the answer is very simple. When Wireshark is connected to a wired or
wireless network, there is a software driver that is located between the physical
or wireless interface and the capture engine. In Windows we have the WinPcap
driver, in Unix platforms the Libpcap driver, and for wireless interfaces we have
the AirPcap driver.

There's more...

In cases where the capture time is important, and you wish to capture data on
one interface or more, and be time-synchronized with the server you are
monitoring, you can use Network Time Protocol (NTP) to synchronize your
Wireshark and the monitored servers with a central time source.

This is important in cases when you want to go through the Wireshark capture
file in parallel to a server logfile, and look for events that are shown on both. For
example, if you see retransmissions in the capture file at the same time as a
server or application error on the monitored server, you will know that the
retransmissions are because of server errors and not because of the network.

The Wireshark software takes its time from the OS clock (Windows, Linux, and
so on) For configuring the OS to work with a time server, go to the relevant
manuals of the operating system that you work with.

In Microsoft Windows7, configure it as follows:

1. Go the Control Panel.

2. Choose Clock, Language, and Region.

3. Under Date and Time, Choose Set the time and date and change to the
Internet time tab.

4. Click on the Change Settings button.

5. Change the server name or the IP address.

Note

In Microsoft Windows7 and later versions, there is a default setting for the time
server. As long as all devices are tuned to it, you can use it as any other time
server.

NTP is a network protocol used for time synchronization. When you configure
your network devices (routers, switches, FWs, and so on) and servers to the
same time source, they will be time synchronized to this source. The accuracy of
the synchronization depends on the accuracy of the time server that is measured
in levels or stratums. The higher the level, the more accurate it will be. Level 1 is
the highest. Usually you will have levels 2 to 4.

NTP was first standardized in RFC 1059 (NTPv1), and then in RFC 1119
(NTPv2); the common versions in the last years are NTPv3 (RFC1305) and
NTPv4 (RFC 5905).

You can get a list of NTP servers on various web sites, among them
http://support.ntp.org/bin/view/Servers/StratumOneTimeServers and

http://wpollock.com/AUnix2/NTPstratum1PublicServers.htm.

http://support.ntp.org/bin/view/Servers/StratumOneTimeServers
http://wpollock.com/AUnix2/NTPstratum1PublicServers.htm

See also

You can get more information about Pcap drivers at:

e For WinPcap visit: http://www.winpcap.org
e For Libpcap visit: http://www.tcpdump.org

http://www.winpcap.org
http://www.tcpdump.org

Configuring the start window

In this recipe we will see some basic configurations for the start window. We
will talk about configuring the main window, file formats, and viewing options.

Getting ready

Start Wireshark, and you will get the start window. There are several parameters
you can change here in order to adapt the capture window to meet your
requirements:

Toolbars configuration
Main window configuration
Time format configuration
Name resolution

Colorize packet list

Auto scroll in live capture
Zoom

Columns configuration
Coloring rules

First, let's have a look at the toolbars that are used by the software:

M canot test 05-11-2013. 002.pcapng [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10)]
File Edit View Go Capture Analyze :_ isti Telephony Tools [ntemals Help
© @ 4 ¥ MainToolbar ? '_}_ ED!D Q Gl @l B | ¥ m
- v FEilter Toolbar =

| il v Wireless Toolbar -J R L T o Mot e

80211 Chan| ¥ Status Bar | None E| Wireless Settings... /Decryption

Ihlp. v Packet List — E_)est:natfun = = P

B0 o s 88.11 10.100.151.3 -

1851 |+ pactaiees 1513 T2 8RBRIT

I§§'2‘ Time Display Format 2 }?l' '?’ 172.88.8%

r,‘ canot test 05-11-2013. 002,pcapng [Wireshark 1,102 (SVN Rey 51934 from /trunk-1.10)] . ¥ | - [
i“EiIe Edit View Go Capture Analyze Statistics Telephony Tools |nternals Help — —— - —

@AMy BB AeaT L QAaqQ @ W®M%E H |MainToolbar | |

Fite [+] Bpression... Clesr Apply Seve (Filter Toolbar _| |
BO211 Channel Channel Offset FCS Filters | All Frames Mone j Wireless Settings... Decryption Keys... Wireless Toolbar !Turned off bv default]_
|Mo. Time Source Destination Protocol Info -
(850 /9. /20888000 1/2.88.88.11 10.100.151.3 HTTP HTTP/L1l.1 200 OK (applicat
851 79 763978000 10 100 181 3 172 22 9 11 Ten AQ024 e
0030 67 68 69 6a 6b 6¢c 6d 6e 6f 70 71 72 73 74 75 76 ghijkimn opgrstuv

10040 77 61 62 63 64 65 66 67 68 69 6a 6b 6C 6d 62 6T wabcdefg hijklmno -
O | File: "ChCustomers\Easy2give\canot test 05... | Packets: B099 - Displayed: 8099 (100.0%) - Loa.. | Profile: Default | _gia'i'usﬂ'-l"oolbar .: -

For operations with the other toolbars as follows, which are covered in the
coming subsections in this recipe:

e Main Toolbar

e Display Filter Toolbar
e Status Bar

Main Toolbar

In the main toolbar you have the icons shown in the following screenshot:

Edit coloring
roles Edit

preferences

Capture File Move through Zoom and
Operations Operations Packets Operations resize

i ~ i A \ r i~ R I L
coama BRXR A+ F2 ([EE QaQan §88 % B

AW

Reload t ;
N — Colorize Getting

: Edit capture
- packet list filter help
Edit/apply
Auto scroll packet list display filter

in live capture

The five leftmost symbols are for capture operations, then you have symbols for
file operations, zoom and "go to packet" operations, colorize and auto-scroll,
zoom and resize, filters, preferences, and help.

Display Filter Toolbar

In the filter toolbar, you have the following fields:

‘ Save filter ‘

| Choose the expression definition
from a predefined list
I Fiter: * Espresson... Chear Apply Sa':lc I
Manually type the filter 7 |
expression Clear filter Applyfilter to
definition capture file

Status Bar

In the status bar on the lower side of the Wireshark window, you can see the data
shown in the following screenshot:

File name and location Total number of packets Profile
— - A
~ Ty b |
IO -b;’ File: "D\ TechnicalWireshark\CAP-PCAP Flles\7 - PZGZ Slow DE.pcap” 2545 KB 00:258:52 Packets: 6494 Displayed: 6494 Marked: 0 Load time: 0:00, 609 Profile: Default

— Add a comment to the capture file

—— Error level: colored according to the highest error level

In the preceding screenshot you can see the following:

e Errors in the expert system

e The option to add a comment to the file

e The name of the captured file (during capture, it will show you a temporary
name assigned by the software)

¢ Total number of captured packets, displayed packets (those which are
actually displayed on the screen), and marked packets (those that you have
marked).

How to do it...

In this part we will go step by step and configure the main menu.

Configuring toolbars

Usually for regular packet capture, you don't have to change anything. This is
different when you want to capture wireless data over the network (not only
from your laptop); you will have to enable the wireless toolbar, and this will be
done by clicking on it under the view menu, as shown in the following
screenshot:

M canot test 05-11-2013. 002 peapng [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-110)]

Fle Edit View Go Capture Analyze Stafistics Telephony Took Intemsls Help

© @® 4 v MainToolbar r‘??_:’.QQQE &6
v _Filter Toolbar ¥ = ——
e | v Wireless Toolbar l| [+] Bression... clesr appty save
“han ¥ Status Bar l None: :ﬂ Wireless Settings.. Decrypl
[Mo. v Packet List Destination
850 v Packet Details IE&.ll 10.100.151.3
"Ml canot test 05-11-2013. 002 peapng [Wirekhatk 1,102 (SVN Rev 51034 from /trurik-1.10)) "N (ESRol™ ="K
File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help
codams BEXR A+»0T2EE QqanD $2B % B
Filter Z[Expression... Cigar Apply Save [PV
180211 Channel: Channel Offset FCS Filter: | All Frames None B Wireless Settings... Decryption Keys... |
No. Time . Source . Destination o Protocol Info T -
850 /9. /20888000 1/2.88.85.11 10.100.151.3 HTTP HTTP/1l.1 200 OK (applicat

Configuring the main window

To configure the main menu for capturing, you can configure Wireshark to show
the following windows:

a7 pzszsmmpmp [Wireshark 1107 (5VN Rev 51934 from /trunk-1.10)] (0
Elle Edit '-"uh\r ﬁn Capture Anslyze Etahmc: Tﬁ!phnnz Tocls [nternals Help
|°@‘VMIIHIDDH:IEI’ 'lnaaﬂa daEmE B

| « Filter Toolbar !“E 5 T
F:Iter Wireless Toalbar L&pm:non_._ Clear Apply Save 1PV
|“u v Status Bar e Demaln
|1955 [+ Packetit = 4:6f:d5 COP/VTP/DTP/PA
11956 v Packet Details - .20.88 192.168.10.80
|1957 ¥ Packet Bytes i .10.80 192.168.20.88
Ml 7 - P22 S Ollpap MLM_m
'fi-fuw;ﬁo:iﬁ#m*?nm-lmwmu«:
(e ama BEEXS \Neesa T X HE) @ & 0ol E W 3
| Finen '-'-"!m\ Teae dppty v | VA
S T — SouE | e Dotnion v g A Ml]
1955 435.735268 Cisco_G4: Ef dS COP/VTP/DTP/PAGP/UDLD CDP De
1956 437.816008 192.168.20.88 192.168.10.80 TCP v
_|..< 1957 437.851104 192.168.10.80 192.168.20.88 TCP wv
1958 437.852750 192.168.20.88 192.163.10.80 TP wf
1959 437.911372 192.168.10.80 192.168.20.88 TEP wv
\ 1960 437.922318 192.168.20.88 192.168.10.80 TCP v |
% -
« Frame 1945: 111 bytes on wire (888 bits), 111 bytes captured (888 bits)
Ethernet II, Src: Hewlett-_3e:54:e7 (00:0b:cd:3e:54:e7), Dst: Cisco_4f:4
— |vInternet Protocol Version 4, src: 192.168.20.88 (192.168.20.88), Dst: 19
« Transmission Control Protocol, Src Port: vfo (1056), Dst Port: wv-csp-ud
«pata (57 bytes) *
. |
0000 OO0 60 47 4f 4a ec 00 Ob cd 3e 54 &7 08 00 45 00 s B0 WP T
0010 OO0 61 24 75 40 00D 80 06 36 29 cD a8 14 58 c0O a8 .aSu@... 6)...X..
0020 Oa 50 04 20 Oe 85 5¢c Ba 73 9a f5 33 b6 7b 50 18 o DA W S |
0030 f9 84 8e Vb 00 00 00 39 OO0 00 06 00 OO0 00 OO0 00 ...{... i ok
0040 03 68 Ob 01 00 00 00 00 00 00 00 00 00 00 90 00 .h...oiv iiiii..

1
ho) "' File: "CA\Tochnieal Wirethad' CAP- PLCAF GenerahT - PIGT Slow DR peap” 2606 kB 002852 Pachorts: 8474 - Deplayed: &S 1000K] - Lead tme: 00025 Profie Dedault
o ==

In most of the cases you will not need to change anything here. In some cases,
you can cancel the packet bytes when you don't need to see them, and you will
get more "space" for the packet list and details.

Name Resolution

Name Resolution is the translation of layer 2 (MAC addresses), layer 3 (IP
addresses), and layer 4 (Port numbers) into meaningful information.

I Mhcrosoft: \Device NP _[SSDFELFT-0FDB-S03-E0A8-CSB0MCASSR0A) Wireshark LEL [5VH Rew &30

fle [ot View Go Copture Onshoe Statistics Telephomy Tools |ntern: um

B & @ ~ MuinTeolbar
¥ Filtes Toolbar

L e SR [v] Evpression_ Cleas
Mo

1403 :
1404 @ ¥ Pecketlit

1405 Packet Details
¢ v Packet Byter

T v statos Bar

€, Zeomin
2\ Zoom Qut
4 Mermal Sice

[Resize Afl Columns.

Destination IP address resolved to
DNS name: Packtpub.com {L3]

MIC fram Hon Hal
Pracision Ind. Lo, Ltd,

83,

1415 13:06:57,228166000
141A 13-NA-87 22RAA1TNAN

R2 1AA 1RQ 23R 1N N N 1

B4 httn ~ R1GR2 TETN Arw] San=37408 Ark=473 win=AR7R?

¢ Frame 1414: 54 byte

¢ Transmission Control Protocol,

= Ethernet II, Src: HonHa1Pr c? Be ?3 (60:d8: 19 c? 8e:73), Dst: D-LinkIn f4:7b
¢+ Internet Protoco1 Version 4, Src: DSL6740U.Home (10.0.0.1),

aptured (432 bits) on intgrface 0
a2 (14:d6:4d:f4:7b:a2)
Dst: packtpub.com (83.166.169.228)

Ssrc Port: 61953 (61953), Dst Port: http (80), Seq: 473, Ack: 36476, Len: 0
{ eyt

TCP part number 80 presented as http L4]

In the preceding screenshot, we see the MAC address 60:d8:19:c7:8e:73 (from
Hon Hai Precision Ind., used by Lenovo), the website (that is, Packtpub.com),
and the HTTP port number (that is 80).

Colorizing the packet list

Usually you start a capture in order to establish a baseline profile of what normal
traffic looks like on your network. During the capture, you look at the captured
data and you might find a TCP connection, IP or Ethernet connectivity that are
suspects, and you want to see them in another color.

To do so, right-click on the packet that belongs to the conversation you want to
color, choose Ethernet, IP, or TCP/UDP (the appearance of TCP or UDP will
depend on the packet), and choose the color for the conversation.

In the example you see that we want to color a Transport Layer Security
(TLS) conversation.

http://Packtpub.com

Destination -:ol I.eﬂ Infe =

199 11:10:51.226639 209.85.227.17 192.168.2.104 TLSv1 1330 Application Data, Appl-
100 11:10:51.226899 192.168.2.104 _ : 54 telnetcpcd > https [AC

Mark Packet (toggle)
Ignore Packet (toggle)

AL 377 17 ' P T e e S T

TAESHTENSETE A7 (E Set Time Reference (toggle) T
= Frame 103: 416 bytes _ ::::if;‘mmcﬁmm 416 bytes captured (3328 bits)
1 Ethernet II, Src: Inm i c:bf:a2:d8:9a), Dst: EdimaxTe_6e:2f:7d (00:0e:2e:
1 Internet Protoco] ve| MenuallyResolve Address 2.104 (192.168.2.104), Dst: 209.85.227.17 (209.¢
2 Transmission Control| ApplyasFiter rnetcelera (3701), Dst Port: https (443), Seq: 1,
% Secure Sockets Layer PrepareaFilter ;
| Conversation Filter >
I Colorize Conversation] I Ethernet L3 l
I SCTP O i * . .
= Follow TCP Stream [e] W Colert TE
0000 00 Qe 2e 6e 2f 7| rolowuop sresm T *| & Color2 . e
0010 01 92 c3 d2 40 O FollowsSt Stream PN-CHA Shrves * | @ Color3 U
0020 e3 11 Oe 75 01 b 10— L
0030 fa fO de 39 00 0 % Lho 01 6f 63 ..Mt ! -
@ 3| File “C:\Technical\Wireshark\CAP-PC 2§ Decode As.. K.. | Packetd 1470 Displayedt] = Color3 == Choose color
_— o Color§ 9
Ethernet: MAC addressto MAC address session dow ; E::E;
1p: IP address to IP address session B s
TCP: TCP portto TCP portsession | cowitn
MNew Coloring Rule...

For canceling the coloring rule:

1. Go to the View menu.
2. In the lower part of the menu, choose Reset Coloring 1-10 or simply click
on Ctrl + Space bar.

Auto scrolling in live capture
To configure Wireshark to auto-scroll the packets as it captures them, do the
following:

1. Go to the View menu.
2. Mark the Auto Scroll in Live Capture item.
3. Zoom

For zooming in and out:

1. Go to the View menu.
2. Click on Zoom In or press Ctrl + + to zoom in.

3. Click on Zoom Out or press Ctrl + - to zoom out.

Using time values and summaries

Time format configuration is about how the time column (second from the left
on default configuration) will be presented. In some scenarios, there is a
significant importance given to this; for example, in TCP connections that you
want to see time intervals between packets, when you capture data from several
sources and you want to see the exact time of every packet, and so on.

Getting ready

To configure the time format, go to the View menu, and under Time Display
Format you will get the following window:

'L‘ "Witeless Network Conriection [Wireshark L1022 (SVN Rev 5103 fromianec 110, T [E=ey =
| Ele Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help
©/@! i v Msin Toolbar T2 EEeaapn #@B% & '
| |« Filter Toolbar) B = ~
Filter: | Wireless Toolbar B Expression... 'Clear Apply Save ‘IPVE
Mo, v Status Bar Destination Protocol Info
Z2UUb / Y4.1172.245 8 I JoT 2 s & B TLSVL Application Data
20068 ¥ Packetlit 0.1 173.194.112. 245 TCP 21111 > https [AcK]
120069 © §"::;j"“ 94.112.245 10.0.0.1 TLSvl Application Data
120070 = 94 .112.245 10 0.0 1 TLSvl Application Data
200 71] Time Display Format * Date and Time of Day: 1970-01-01 01:02:03.123456 Ctrl+Alt+1 TCP 29419 = h ttp s [ACK] il
Mame Resolytion ’ Time of Day: 01:02:03123456 Crl=Alts2 2
ggg;g ¥ Colorize Packet List Seconds Since Epach (1970-01-01): 1234567890.123456 Cirl+Alt+3 ARP T{;o ohgs]_%g = 0 -0. 1324 .
| v AutoScroflin Liye Capture » Seconds Since Beginning of Capture: 12312345 cutennes [PRP 8 15 at v
S | @ zoomn Ctiles | Seconds Since Previous Captured Packet: 1123456 Crls Alt+5 . . :
@ Fran o zoomout i | Seconds Since Previous Displayed Packet: 1123456 aenit-s [96 bits) on interface 0
s Etheé & nommalsie Ctris = UTC Date and Time of Day: 1970-01-01 01020312345 Cul-A-7 [st: D-Link_16:09:78 (34:08:!
“1In tE [] Resize All Columns Shift Ctri=R ELC eyt cuteed 106.76.242.159 (106.76.24,
= MMESE Disployed Columns »| * Automatic (File Format Precision) t
Expand Subtrees Shift=Right Sec?nds: 9
| BpandAl CtrlsRight | Deciseconds: 01 - | al
0000 = Collspsea CtloLefe | Centseconds: 012 I |
- Milliseconds: 0123 = -
88%8 Colorize Conversation » el ;&.@ I || gL
feset Coloring 1-10 Ctrl+Space Manoseconds: 0.123456780 PR AT :

00 30 ¥, Coloring Rules...
Display Seconds with hours and minutes

Show Packet in Mew Window

[| & Reload Ctri«R L _ - .
@ | File:! - - ng_S5DFELF7-OFDE-46E3-8D48-C | Packets: 20073 - Displayed: 20073 (100.0%) « Dropped: 0 (0.0%) Profile: Default]II

How to do it...

You can chose from the following options:

Date and Time of Day (the first two options): This will be good to
configure when you troubleshoot a network with time-dependent events, for
example, when you know about an event that happens at specific times, and
you want to look at what happens on the network at the same time.

Seconds Since Epoch: Time in seconds since January 1, 1970. Epoch is an
arbitrary date chosen as a reference time for a system, and January 1, 1970
was chosen for Unix and Unix-like systems.

Seconds Since Beginning of Capture: The default configuration.

Seconds Since Previous Captured Packet: This is also a common feature
that enables you to see time differences between packets. This can be useful
when monitoring time-sensitive traffic (when time differences between
packets is important), such as TCP connections, live video streaming, VoIP
calls, and so on.

Seconds Since Previous Displayed Packet: This is a useful feature that
can be used when you configure a display filter, and only a selected part of
the captured data is presented (for example, a TCP stream). In this case, you
will see the time difference between packets that can be important in some
applications.

UTC Date and Time of Day: Provides us with relative UTC time.

The lower part of the submenu provides the format of the time display. Change it
only if a more accurate measurement is required.

You can also use Ctrl + Alt + any numbered digit key on the keyboard for the
various options.

How it works...

This is quite simple. Wireshark works on the system clock and presents the time
as it is in the system. By default you see the time since the beginning of capture.

Configuring coloring rules and
navigation techniques

Coloring rules define how Wireshark will color protocols and events in the
captured data. Working with the coloring rules will help you a lot with network
troubleshooting, since you are able to see different protocols in different colors,
and you can also configure different colors for different events.

Coloring rules enable you to configure new coloring rules according to various
filters. It will help you to configure different coloring schemes for different
scenarios and save them in different profiles. In this way you can configure
coloring rules for resolving TCP issues, rules for resolving Sip and Telephony
problems, and so on.

Tip
You can configure Wireshark Profiles in order to save Wireshark configuration;

for example, predefined colors, filters, and so on. To do so, navigate to
Configuration Profiles from the Edit menu.

Getting ready

To start with the coloring rules, proceed as follows:

1. Go to the View menu.

2. On the lower part of the menu, choose Coloring Rules. You will get the
following window:

[l Wireshark: Coloring Rules - Profile: Default lﬂlﬁ
Edit Filter Order
() List is processed in order until match is found
| New -
L= J| | ~ Name String
name ip.addr==192.168.3.2 && ip.addr==207.145.244.70

HSRP State Change

Icmp
TCPRST
SCTP ABORT

hsrp.state = hsrp.state != 16

icmp || icmpv6
tcp.flags.reseteql
sctp.chunk_type eq ABORT

Move
selected filter
up or down

Cancel

How to do it...

We will now move on to the coloring rules: Click on the New button, and you
will get the following window:

[l Wireshark: Coloring Rules - Profile: Default - o|B] X
Edit Filter Order
| i List is processed in order until match is found
New =
.)| | » Name String
Edit name filter
MNTP ntp
Enal =| name ip.addr==192.168.3.2 &8 ip.addr==207.145.244.70
|
| Disable | -
‘ 8 Move |
[Delete | selected filter | |
— 4 up or down “
Manage
1 |
|Import...
| Export... |
L J i
[| X “
Clear
— 4 Name: | [E0G 1
h i
Help String: | filter _E_;__q_:ressnon.._. i

Display Colors Status

.Foreground Color... ;Background Color.‘.._ Disabled

oK | | Cancel l

In order to configure a new coloring rule, follow these steps:

1. In the Name field, fill in the name of the rule. For example, fill in NTP for
the Network Time Protocol.

2. In the String field, fill in the filter string, that is, what you want the rule to
show (we will talk about display filters in Chapter 3, Using Display
Filters). You can click on the expression button and get a list of
preconfigured filters.

3. Click on the Foreground Color button and choose the foreground color for
the rule. This will be the foreground color of the packet in the packet list.

4. Click on the Background Color button and choose the background color
for the rule. This will be the background color of the packet in the packet

list.

5. Click on the Edit button if you want to edit an existing rule. You can also
either click on the Import button to import an existing coloring scheme, or
click on the Export rule for exporting the current scheme.

Tip

There is an importance to the order of the coloring rules. Make sure the order
that the coloring rules are in is the order of implementation. For example,
application layer protocols should come before TCP or UDP, so that Wireshark
colors them in their color and not the regular TCP or UDP color.

How it works...

Like many operations in Wireshark, you can configure various operations on the
data that is filtered. The coloring rules mechanism simply applies a coloring rule
to a predefined filter.

See also

You can find various types of coloring schemes at
http://wiki.wireshark.org/ColoringRules, along with many other examples, in a

simple Internet search.

http://wiki.wireshark.org/ColoringRules

Saving, printing, and exporting data

In this recipe we will talk about file operations such as save, export, print, and
others.

Getting ready

Start Wireshark or open a saved file.

How to do it...

We can save a whole file, and export specific data in various formats and file
types. In the following paragraphs we will see how to do it.

To save a whole file with captured data, perform the following steps:

1. In the File menu, click on Save (or press Ctrl + S) for saving the file with
its own name.

2. In the File menu, click on Save as (or press Shift + Ctrl + S) for saving the
file with a new name.

For saving a part of a file, for example, only the displayed data:

1. Navigate to Export Specified Packets under the File menu. You will get
the following window:

Savein: |, CAP-PCAP Fles ~ O E-
(] -
= Name Date modified Type Size -
o . peapr 23/07/2012 22:42 File folder
Recent Places 2 - Fighting game 20/01/2007 12:04 Wireshark capture... 185 KB a
- I 3 - Active Syn Scanning 26/09/2011 08:01 Wireshark capture... 64 KB
™ 4 - Double vision 26/09/2011 08:12 Wireshark capture... 1KB
Desktop ' 5 - Bad download 26/09/2011 08:12 Wireshark capture... 5,547 KB
R =% 6 - Ping Warm Atack 26/09/2011 08:16 Wireshark capture... 3,770 KB
= ws 7 - PZGZ Slow DB 26/09/2011 08:19 Wireshark capture... 2,546 KB
Libraries ™% 8 - TCP Lost Connection 26/09/2011 08:21 Wireshark capture... 5KB
T% 9 - Syn Attach 26/09/2011 08:22 Wireshark capture... 3KB
«k T% 10 - Nessus Scanner 26/09/2011 08:26 Wireshark capture... 178 KB
Computer =% 11 - Slow MAIL Server 26/09/2011 08:29 Wireshark capture... 2KB
-~ ™ 12 - Window Frozen 26/09/2011 08:32 Wireshark capture... 41 KB -
N‘L'k . rreyen =
etworl
Save as type: [Wresi-nak)tepd.npf... -libpcap (" pcap;” pcap.gz;” cap;”.cap.gz;”.dmp;”.dmp.gz) v‘ [Cancel]
Packet Range \
) Captured @ Displayed
©) All packets 1€[76
Selected packet 1 1

Marked packets
First to last marked

_| Range: 0

\ Remove Ignored packets ‘/

» At the bottom-left side of the window, you will see that you can choose which
part of the data you want to save.

e For saving all the captured data, select All packets and Captured.

» For saving only the displayed data, choose All packets and Displayed.

» For saving only selected packets from the file (a selected packet is simply a
packet that you clicked on), choose Selected packet.

» For saving marked packets (that is, packets that were marked by right-clicking
on it in the packet list window, and choosing the Marked packet toggle from the
menu), choose Marked packet.

» For saving packets between two marked packets select the First to last
marked option.

» For saving a range of packets, select Range and specify the range of packets
you want to save.

* In the packet list window, you can manually choose to ignore a packet. In the
Export window you can choose to ignore these packets and not save them.

In all the options mentioned, you can choose the packets from the entire captured
file, or from the packets displayed on the screen (packets displayed on the packet
list after a displayed filter has been applied).

Saving data in various formats

You can save the data captured by Wireshark in various formats, for further
analysis with other tools.

You can save the file in the following formats:

e Plain text (*.txt): export packet data into a plain text ASCII file.

e PostScript (*.ps): export packet data into PostScript format.

e Comma Separated Values: Packet Summary (*.csv): export packet
summary into CSV file format, to use it with spreadsheet programs (such as
Microsoft Excel).

e C Arrays to Packet Bytes (*.c): export packet bytes into C-Arrays so that
it can be imported by C programs.

e PSML or XML Packet Summary (*.psml): export packet data into
PSML, an XML-based format including only the packet summary. Further
details about this format can be found at http://www.nbee.org/doku.php?
id=netpdl:psml_specification.

e PDML - XML Packet Details (*.pdml): export packet data into PDM, an
XML-based format including the packet details. Further details about this
format can be found at http://www.nbee.org/doku.php?

id=netpdl:pdml_specification.

To save the file, select Export Packet Dissections from the File menu, and you
will get the following window:

http://www.nbee.org/doku.php?id=netpdl:psml_specification
http://www.nbee.org/doku.php?id=netpdl:pdml_specification

FLESTeie o S A

Savein:). CAP-PCAP Flles - Q2 A
| = Name - Date modified Type
| “~p B peapr 23/07/201222:42 File folder
]

Recent Places

Desktop
J.J:_EJ
Libraries
Compﬁter
@ < | m | s
Network e I = i
Saveastype: [Plain text ("bd) v [Concel |
@d e \ ﬂacket Fomat \
(7) Captured @) Displayed [¥] Packet summary line
@ All packets 180 74 [¥] Packet details:
I ' Selected packet 1 As displayed -
() Marked packets 1 :
() First to last marked 1 [C Packet Bytes
® Range: 0 [] Each packet on a new page
\j Remove Ignored packets '/ \ /

In the preceding screenshot, in the marked box on the left-hand side, you choose
the packets you want to save. The process is the same as in the previous recipe.
In the marked box on the right-hand side, you choose the format of the file to be
saved.

How to print data

In order to print data, click on the Print button from the File menu, and you will
get the following window:

Wi e R o

[”] Output to file: wireshark.out Browse...

Packet Range Packet Format

Captured w V| Packet summary line

@ All packets 3121 466 V| Packet details:

_ Selected packet only) All collapsed
Marked packets only

@ As displayed
) All expanded
] Packet bytes

From first to last marked packet

) Specify a packet range:

Remove Ignored packets "] Each packet on a new page

Print Cancel

In the Wireshark Print window, you have the following choices:

¢ In the upper window, you choose the file format to be printed
¢ In the lower-left window, you choose the packet to print (like in the Export
window)
¢ In the lower-right window, you choose the format of the printed data, and
the data panes to print from the Wireshark window:
o The Packet Summary pane
o The Packet Details pane
o The Packet Byte pane

How it works...

The data can be printed in a text format, postscript (for postscript-aware
printers), or to a file. After configuring this window and clicking on print, the
regular printing window will appear and you can choose the printer.

Configuring the user interface in the
Preferences menu

There are a large number of parameters you can change in the Preferences
window, including what data is presented, where files are saved by default, what
is the default interface that Wireshark captures data from, and many more.

What we will refer to in this chapter are the common parameters that when
changed will help us with various capture scenarios.

Getting ready

For configuring User Interface, we will choose the Preferences option from the
Edit menu. You will get the following window:

Ml Wireshark: Preferences - Profile:

Layeut
Columns
Font and Calor
Capture
Filter Expressions
Mame Resolution
Printing
Protoocks
 Statistics

Save window position: ¥
Save window sizes [

Save manmized state F

Layout

Columns

Font and Colors
Capture
Filter Expressions
Name Resolution
Printing

+ Protocols

\ Statistics

jory

.Mw;:(s start in:

ading preview dat
ill b stopped after

We will look at the configuration of the following parameters:

e Columns
e Capture
e Name Resolution

How to do it...

In this section we will see how to change parameters that will help in working
with Wireshark.

Changing and adding columns
The default columns that we see in the packet pane are the number, time, source

and destination addresses, protocol, length, and information columns, as shown
in the following screenshot:

: 4] Protocol Protocol
MName Resolution =
¥l Length Packet length (b
Filter Expressions i eng acket length (bytes)

FrE—T R
=l UserInterface Columns
Layout [The first list entry will be displayed as the leftmest column - Drag and drop entries to change column order]
Colimns Displa_yed Title Field type
¥ Ne. Number
Font
¥ Time Time (format as specified)
Colors o
¥l Source Source address
Capture =
s] Destination Destination address
Printing

e ¥ Info Information
Statistics
Protocols
I Pre L rti
|
(Ladd Field type: Information E
;;Bemm Field name: Field occurrence:
Help l OK l [Apply l l Cancel
Properties
Field type: Custom E'
Field name: Field occurrence: 0

To add a new column to the packet pane:

1. You can choose one of the predefined parameters to be added as a new
column from the Field type. Among these parameters are time delta, IP
DSCP value, port numbers, and others.

2. A very important feature comes up when you fill in Custom in the field

type. In this case, you can fill in any filter string for Field name. You can,
for example, add the following:
1. Add the string tcp.window_size to view the TCP window size (that
influences performance).
2. Add the string ip. tt1 to view the IP TTL (Time-To-Live) parameter
of every packet.
3. Add rtp.marker to view every instance of a marker set in an RTP
packet.
4. As we will see in the later chapters, this feature will assist us a lot for
fast resolutions of network problems.

Changing the capture configuration

There are some parameters that can be configured before capturing data. In the
Preferences window choose the Capture menu, and the following window will

come up:
= User Interface Capture
Layout Default interface: Microsoft: \Device\NPF_{55DFELF7-0FDB-46E3-8 D48-CSE_3
Columns f
Interfaces: Edit...]
Font
Colors Capture packets in promiscuous mode: (V]
m Capture packets in pcap-ng format:
Printing
Name Resolution Update list of packets in real time: [V]
Filter Expressions Automatic scrolling in live capture: [V]
Statistics .
B Protocols Hide capture info dialog: [V
Help ’ QK] I Apply l [Cancel l |

For changing the default interface that the capture will start from, just click on
the Edit button, and mark the interface you would like to be the default. Of
course you can change it every time you start a new capture, this is only the
default.

Configuring the name resolution

Wireshark supports Name Resolution in three layers:

e Layer 2: by resolving the first part of the MAC addresses to the vendor
name. For example, 14:da:e9 will be presented as AsusTeckC (ASUSTeK
Computer Inc.).

e Layer 3: by resolving IP addresses to the DNS names. For example,
157.166.226.46 will be resolved to www.edition.cnn.com.

e Layer 4: by resolving TCP/UDP port numbers to port names. For example,
port 80 will be resolved as HTTP, and port 53 as DNS.

e

Name Resolution

= UserInterface
Layout Enable MAC name resolution: [V/]

Columns

Font

Enable network name resolution: [| Name Resolution

Enable transport name resolution: V]
Colors

Capture Enable concurrent DNS name resolution: [V]
Printing

Maximum concurrent requests: | 500

Filter Expressions Enable OID resolution: []

RESUSICS Suppress SMl errors: ||
Protocols

GeolP database directories [Edit... l
A
I‘ Help [0K] [Apply [Cancel]

Geo IP feature, for graphical presentation

Tip

In TCP and UDP, there is a meaning only to the destination port that the client
initially opens the session to. The source port that the connection is opened from
is a random number (higher than 1024), and therefore there is no meaning to its
translation to a port name.

The Wireshark default is to resolve layer-2 MAC addresses and layer-4
TCP/UDP port numbers. Resolving IP addresses can slow down Wireshark due
to a large amount of DNS queries that it uses; therefore, use it carefully.

http://www.edition.cnn.com

How it works...

Very simple. This is the configuration menu for the Wireshark. Here you can
configure parameters as described in this recipe, along with some other
parameters. You can refer to Wireshark manuals at www.wireshark.org for
further information.

http://www.wireshark.org

Configuring protocol preferences

Configuring protocol preferences provides us with capabilities to change the way
that Wireshark captures and presents common protocols. In this recipe we will
learn how to configure the most common protocols.

Getting ready

1. Go to Preferences under the Edit menu, and you will see the following

- Protocols

=l User Interface
! Layout E
Columns

Font

Colors

Capture

Printing

Name Resolution

Filter Expressions

B Protocols

Zdparitylec
6LoWPAN

SN711 Dadimbnem

window:

o Click on the + sign on the left side of the protocols, and a protocol list will be
opened. Under the protocol list you will find the common and lesser-common
protocols. In this part we will talk about the common configurations, and we'll
get into protocol details in the protocols chapters that is, Chapter 7, Ethernet,
LAN Switching, and Wireless LAN, to Chapter 14, Understanding Network
Security.

How to do it...

In this recipe, we will talk about the following basic protocols (basic means that
they are used everywhere, not that they are simple):

e [Pv4 and IPv6
e TCP and UDP

Configuring of IPv4 and IPv6 Preferences

When you choose to configure the IPv4 or IPv6 parameters, you will get the
following window:

IFUC -

Internet Protocol Version 4
PMI/ATCA]

Decode IPv4 TOS field as DiffServ field: [V

Reassemble fragmented IPv4 datagrams: [V

ISAKMP
15CSI

ISDN

ISMACRYP Support packet-capture from IP TSO-enabled hardware: |V
iISNS
ISUP
ITDM - Interpret Reserved flag as Security flag (RFC 3514):

Show IPv4 summary in protocol tree: V|

_"" Validate the IPv4 checksum if possible: V|

Enable GeolP lookups: [V

The parameters that you may change are:

e Decode IPv4 ToS field as DiffServ Field: the original IP protocol came out
with a field called Type Of Service (ToS), for enabling the IP quality of
service through the network. In the early 90s the Differentiated Services
(DiffServ) standard changed the way that an IP device looked on this field.
Unchecking this checkbox will show this field as in the original IP standard.

¢ Enable GeolP lookups: GeolP is a database that enables Wireshark to
present IP addresses as geographical locations. Enabling this feature in [Pv4
and IPv6 will enable this presentation. This feature involves name
resolutions and can therefore slow down packet capture in real time.

Configuring TCP and UDP

In UDP, there is not much to change. A very simple protocol, with a very simple

configuration. In TCP on the other hand, there are some parameters that can be
changed.

<Tp = Transmission Control Protocol
SUA = Show TCP summary in protocol tree: |/
SYNCHROPHASOR Validate the TCP checksum if possible:
T.38

Allow subdissector to reassemble TCP streams: |V
TACACS+
TALI Analyze TCP sequence numbers: |/
S Relative sequence numbers: v
TCP e
TCPENCAP Track number of bytes in flights |/
D5 Calculate conversation timestamps:
Teredo

Try heuristic sub-dissectors first:

tetra
TFTP Ignore TCP Timestamps in summary:
T - Do not call subdissectors for error packets:
TIDr

Most of the changes you can do in the TCP preferences are in the way that
Wireshark dissects the captured data.

e Validate the TCP checksum if possible: in some NICs, you may see many
"checksum errors". This is due to the fact that TCP Checksum offloading is
often being implemented on some NICs. The problem here might be that
the NIC actually adds the checksum AFTER Wireshark captures the packet,
so if you see many TCP checksum errors, the first thing to do will be to
disable this checkbox and verify that this is not the problem.

¢ Analyze TCP Sequence numbers: this checkbox must be checked for
Wireshark to provide TCP analysis, which is one of its main and most
important features.

e Relative Sequence Numbers: when TCP opens a connection, it starts from
a random sequence number. When this checkbox is checked, the Wireshark
will normalize it to "0", so what you will see are not the real numbers, but
numbers starting from "0" and increasing. In most of the cases the relative
numbers are much easier to handle.

¢ Calculate conversations timestamps: When checking this checkbox, the
TCP dissector will show you the time since the beginning of the connection

in every packet. This can be helpful in cases of very fast connection when
times are critical.

How it works...

Using the Protocols feature from the Preferences menu adds more analysis
capabilities to the Wireshark software. Just be careful here to not add too many
capabilities that will slow down the packet capture and analysis.

There's more...

You can get more information on GeolP at
http://wiki.wireshark.org/HowToUseGeolP.

http://wiki.wireshark.org/HowToUseGeoIP

Chapter 2. Using Capture Filters

In this chapter, we will cover the following topics:

Configuring capture filters

Configuring Ethernet filters

Configuring hosts and networks filters

Configuring TCP/UDP and port filters

Configuring compound filters

Configuring byte-offset and payload matching filters

Introduction

In the first chapter we talked about how to install Wireshark, how to configure it
for basic operations, and where to locate it in the network. In this chapter and the
next one we will talk about capture filters (Chapter 2, Using Capture Filters) and
display filters (Chapter 3, Using Display Filters).

It is important to distinguish between these two types of filters:

e Capture filters are configured before we start to capture data, so only data
that is approved with the filters will be captured. All other data will be lost.
These filters are described in this chapter.

e Display filters are filters that filter data after it has been captured. In this
case, all data is captured, and you configure what data you wish to display.
These filters are described in Chapter 3, Using Display Filters.

Tip

Capture filters are based on the tcpdump syntax presented in the
libpcap/wWinPcap library, while the display filters syntax was presented some
years later. Therefore, keep in mind that the display and capture filters have
different syntaxes!

In some cases, you need to configure Wireshark to capture only a part of the data
that it sees over the interface, for example, cases such as:

e When there is a large amount of data running over the monitored link, and
you want to capture only the data you care about

e When you want to capture data only going in and out of a specific server on
a VLAN that you monitor

e When you want to capture data only of a specific application or applications
(for example, you suspect that there is a DNS problem in the network, and
you want to analyze only DNS queries and responses that go to and from
the Internet)

There are many other cases in which you want to capture only specific data and
not all that runs on your network. When using the capture filters, only predefined
data will be captured, and all other packets will be ignored, so you will get only
the desired data.

Tip

Be careful when using capture filters. In many cases in networking, there are
dependencies between different applications and servers that you are not always
aware of; so, when you use Wireshark with capture filters for troubleshooting a
network, make sure that you don't filter out some of the connections that will
cause some problems to disappear. A common and simple example of this is to
filter only traffic on TCP port 80 for monitoring suspected slow HTTP
responses, while the problem could be due to a slow or non-responsive DNS
server that you will not see.

In this chapter we will describe how to configure simple, structured, byte offset,
and payload matching capture filters.

Configuring capture filters

We recommend that before configuring a capture filter, you will carefully design
what you want to capture, and prepare your filter for this. Don't forget—what
doesn't pass the filter, will be lost.

There are some Wireshark predefined filters that you can use, or you can
configure it yourself as described in the next recipe.

Getting ready

For configuring capture filters, open Wireshark, and follow the steps in the
recipe.

How to do it...

For configuring capture filters before starting with the capture, go through the
following steps:

1. For configuring a capture filter, click on the Show the capture options...

button, second from the left, as shown in the following screenshot:
The Wireshark ork Analyzer [Wireshark 1.10.2 (SV 934 from /trunk-1.10]

}.—-—1 BEXS AesDT L

Filter: |Show the capture options... B Expression.

The World's Most Popular Network F

W | R E S H A R K Version 1.10.2 (SVN Rev 51934 from ftrunk-1.1(

e Interface List = (0]

o The Wireshark: Capture Options window will open as you see in the
following screenshot:

Capture
I
Capture Interface Link-layer header Prom. Mode Snaplen [B] Buffer [ME] Capture Filter -
Wireless Network Connection 2
feS0-blacb4aT-6b8d 354 Ethernet enabled default 2
0000
mrm =5 Network Connection Ethernet enabled default 2 E ||
Local Area Connection
feBi-d154-focibdalaaso Ethernet enabled default 2
0000
F m b
|| Capture on all interfaces [i'dnnag: laataras
I7] Use promiscuous mode on all interfaces

¢ Double-click on the interface on which you want to configure the capture filter
(you can verify which interface is the active one, as described in Chapter 1,
Introducing Wireshark).

o The Edit Interface Settings window will open up, as in the following

screenshot;

Interface: Microsoft: \Device\NPF_{55DFE1F7-0FDB-46E3-8D48-C5804 C455B8A}

IP address: | £.80..c067:2c23:335:f8el
; 10004

Link-layer header type: | Ethemet || Remote Settings |
Capture packets in promiscuous mode ,
] Limit each packetto 65535 - bytes
Buffer size: 1 %| megabyte(s)

Capture Filter:|

Fill in the capture
filter string here

Help

* Now, we can configure the capture filters by simply writing the filter string in
the Wireshark: Capture Filter window, or click on the Capture Filter: button;
the following window will open:

- Capture Filter
Ethernet type 00806 (ARP)

Mo Broadcast and no Multicast

Mo ARP

IP only

IP address 192.168.04

IPX only

TCP only

UDP only

TCP or UDP port 80 (HTTP)

HTTP TCP port (80) i Type in the

Properties
Filter narm:’

Filter string:

Help

How it works...

The Wireshark: Capture Filter window enables you to configure filters
according to Berkeley Packet Filter (BPF). After writing a filter string, you can
click on the Compile BPF button, and the BPF compiler will check your syntax,
and if it's wrong you will get an error message.

In addition to this, when you type a filter string in the capture filter text box, and
the filter string is correct, it will become green, and if not, it will become red.

The BPF filter only checks if the syntax is right. It does not check if the
condition is correct. For example, if you type the string host without any
parameter, you will get an error and the string will become red, but if you type
host 192.168.1.1000, it will pass and the window will become green.

Tip

BPF is a syntax coming from the paper The BSD Packet Filter: A New
Architecture for User-level Packet Capture by Steven McCanne and Van
Jacobson from the Lawrence Berkeley Laboratory at Berkeley University from
December 1992. The document can be seen at:

http://www.tcpdump.org/papers/bpf-usenix93.pdf.

Capture filters are made out of a string containing a filtering expression. This
expression selects the packets which will be captured and which packets will be
ignored. Filter expressions consist of one or more primitives. Primitives usually
consist of an identifier (name or number) followed by one or more qualifiers.
There are three different kinds of qualifiers:

e Type: These qualifiers say what kind of thing the identifier name or number
refers to. Possible types are host for host name or address, net for network,
port for TCP/UDP port, and so on.

¢ Dir (direction): These qualifiers specify a particular transfer direction to
and/or from ID. For example src indicates source, dst indicates
destination, and so on.

¢ Proto (protocol): These are the qualifiers that restrict the match to a
particular protocol. For example, ether for Ethernet, ip for Internet
Protocol, arp for Address Resolution Protocol, and so on.

http://www.tcpdump.org/papers/bpf-usenix93.pdf

Identifiers are the actual condition that we test. Identifier can be the address
10.0.0.1, port number 53, or network address 192.168.1 (this is an identifier for
network 192.168.1.0/24).

For example, in the filter tcp dst port 135, we have:

e dst is the dir qualifier
e port is the type qualifier
e tcp is the Proto qualifier

There's more...

You can configure different capture filters on different interfaces:
a Wireshark; Capture Options

-Captur

1
|Capture Interface Link-layer header Prom. Mode Snaplen [B] Buffer [MB] Capture Filter - |

Microsoft: \Device\NPF_{B1BEE691-3B38-4CA1-9D66-6...
feBl-blac:b4aT-6bEd-S5e4 Ethernet enabled default

0000

Microsoft: \Device\NPF_{55DFE1F7-0FDB-46E3-8D48-C...
fe80-c067-2c23:235:f81 Ethernet enabled default i
10006

Realtek PCle GBE Family Controller: \Device\NPF_{752D...

SRR Ethernet enabled default 1

This can be used when you capture traffic on two interfaces of a device, and
want to check for different packets on the two sides.

The capture filters are stored in a file named cfilters under the Wireshark
directory. In this file you will find the predefined filters, along with the filters
you have configured, and you will be able to copy the file to other computers.
The location of this directory will change depending on how Wireshark is
installed and on what platform.

See also

1. The Wireshark Capture Filters are based on the tcpdump program. You can
find the reference at http://www.tcpdump.org/tcpdump_man.html.

2. You can also find helpful information on the Wireshark manual pages at
http://wiki.wireshark.org/CaptureFilters.

http://www.tcpdump.org/tcpdump_man.html
http://wiki.wireshark.org/CaptureFilters

Configuring Ethernet filters

When talking about Ethernet filters, we refer to Layer-2 filters that are MAC
address-based filters. In this recipe we will refer to these filters and what we can

do with them.

Getting ready

The basic Layer 2 filters are:

ether
ether
ether
ether
ether
ether

host <Ethernet host>: To get the Ethernet address

dst <Ethernet host>: To get the Ethernet destination address

src <Ethernet host>: To get the Ethernet source address
broadcast: To capture all Ethernet broadcast packets

multicast: To capture all Ethernet multicast packets

proto <protocol>: To filter only the protocol type indicated in the

protocol identifier
vlan <vlan_id>: To pass only packets from a specific VLAN that is
indicated in the identifier field

For negating a filter rule, simply type the word not or ! in front of the primitive.
For example:

Not ether host <Ethernet host>or ! Ether host <Ethernet host> will
capture packets that are not from/to the Ethernet address specified in the
identifier field.

How to do it...

Let's look at the following diagram, in which we have a server, PCs, and a router,
connected to a LAN switch. Wireshark is running on the laptop connected to the
LAN switch, with port mirror to the entire switch (to VLAN1).

The /24 notation in the drawing refers to a subnet mask of 24 bits, that is,
11111111.11111111.11111111.00000000 in binary or 255.255.255.0 in decimal.

To Remote
Offices

Laptop with
Wireshark

10.0.0.254/24
00:15:32:ae:dd:c1

PC2: 10.0.0.2/24 PC3: 10.0.0.3/24
00:15:99:7f:63:03 00:24:d6:ah:98:b6

o —

\

S1: 10.0.0.10/24
60:d8:19:c7:8e:73

Follow the instructions in the Configuring capture filters recipe, and configure
filters as follows:

1. To capture packets only from/to a specific MAC address, for example of
PC3 in the preceding image, configure ether host 00:24:d6:ab:98:b6.

2. To capture packets going to a destination MAC address, for example of PC3
in the preceding image, configure ether dst 00:24:d6:ab:98:b6.

3. To capture packets coming from a source MAC address, for example of

PC3 in the preceding image, configure ether src 00:24:d6:ab:98:Db6.

. To capture broadcast packets, configure ether broadcast or ether dst
ff:ff:ff:ff:ff:ff.

. To capture multicast packets, configure ether multicast.

. To capture a specific Ether Type (number in Hexadecimal value), configure
ether proto 0800.

How it works...

The way capture filters work with source host and destination host is simple—
the capture engine simply compares the condition with the actual MAC
addresses, and passes only what is relevant.

A broadcast address is an address in which the destination address is all 1's, that
is, ff:ff:ff:ff:ff:ff:ff, therefore when you configure a broadcast filter, only
these addresses will pass the filter. Broadcast addresses can be:

e L[.3 IPv4 broadcast that is converted to L2 broadcast; for example, IP packet
to 10.0.0.255 (class C subnet, as in the previous illustration), which will be
converted to L2 broadcast in the destination MAC field.

¢ A network-related broadcast; for example, IPv4 ARP (Address Resolution
Protocol) that sends a broadcast as a part of network operation.

Tip

Network-related broadcasts are broadcasts that are sent for the regular operation
of the network. Among these are ARPs, routing updates, discovery protocols,
and so on.

In a multicast filter, there are IPv4 and IPv6 multicasts:

e In IPv4, a multicast MAC address is transmitted when the MAC address
starts with the string 01:00:5e. Every packet with a MAC address that
starts with this string will be considered a multicast.

e In IPv6, a multicast address is transmitted when the MAC address starts
with the string 33:33. Every packet with a MAC address that starts with this
string will be considered a multicast.

Ethernet protocol refers to the ETHER-TYPE field in the Ethernet packet that
indicates what will be the upper Layer protocol. Common values here are 6800
for IPv4, 86dd for IPv6, and 0806 for ARP.

There's more...

¢ To configure filter for a specific VLAN, use vlan <vlan number>
e To configure filter on several VLANS, use vlan <vlan number> and vlan
<vlan number> and vlan <vlan number>...

See also

There are around a hundred ETHER-TYPE codes, most of them not in use. You
can refer to http://www.mit.edu/~map/Ethernet/Ethernet.txt for additional codes,
or simply browse the Internet for Ethernet code.

http://www.mit.edu/~map/Ethernet/Ethernet.txt

Configuring host and network filters

When talking about host and network filters, we refer to Layer 3 filters that are
IP address-based filters. In this recipe we will refer to these filters and what we

can do with them.

Getting ready

The basic Layer 3 filters are:

ip or ip6: To capture IP or IPv6 packets.

host <host>: To get host name or address.

dst host <host>: To get destination host name or address.
src host <host>: To get source host name or address.

Tip
Host can be an IP address or a host name related with this number. You can

type, for example, a filter host www.packtpub.com that will show you all
packets to/from the IP address related to the Packt website.

gateway <Host name or address>: It captures traffic to or from the
hardware address but not to the IP address of the host. This filter captures
traffic going through the specified router. This filter requires a host name
that is used and can be found by the local system's name resolution process
(for example, DNS).

net <net>: All packets to or from the specified IPv4/IPv6 network.

dst net <net>: All packets to the specified IPv4/IPv6 destination network.
src net <net>: All packets to the specified [Pv4/IPv6 destination network.
net <net> mask <netmask>: All packets to/from the specific network and
mask. This syntax is not valid for the IPv6 network.

dst net <net> mask <netmask>: All packets to/from the specific network
and mask. This syntax is not valid for the IPv6 network.

src net <net> mask <netmask>: All packets to/from the specific network
and mask. This syntax is not valid for the IPv6 network.

net <net>/<len>: All packets to/from the <net> network with <len>
length in bits.

dst net <net>/<len>: All packets to/from the <net> network with <len>
length in bits.

dst net <net>/<len>: All packets to/from the <net> network with <len>
length in bits.

broadcast: All broadcast packets.

multicast: All multicast packets.

ip proto <protocol code>: It captures packets while the IP protocol field

http://www.packtpub.com

equals to the <protocol> identifier. There can be various protocols, such as,
TCP (Code 6), UDP (Code 17), ICMP (Code 1), and so on.

ip6 proto <protocol>: It captures IPv6 packets with protocol as indicated
in the type field. Note that this primitive does not follow the IPv6 extension
headers chain.

Tip

In IPv6 header, there is a field in the header that can point to an optional
extension header, which points to the next extension header, and so on. In
the current version, Wireshark capture filter does not follow this structure.

icmp[icmptype]==<identifier>: It captures ICMP packets, while the
identifier is ICMP codes, such as icmp-echo and icmp-request.

How to do it...

Follow the instructions mentioned in the Configure capture filters recipe, and
configure filters as follows:

1.

10.

For capturing packets to/from host 16.10.10.1, configure host
10.10.10.1.

For capturing packets to/from host at www.cnn.com, configure host

www . cnn . com.

For capturing packets to host 10.10.10.1, configure dst host
10.10.10.1.

For capturing packets from host 10.10.10.1, configure src host
10.10.10.1.

For capturing packets to/from network 192.168.1.0/24, configure net
192.168.1 0or net 192.168.1.0 mask 255.255.255.0 or net
192.168.1.0/24.

For capturing all data without broadcasts or without multicasts, configure
not broadcast or not multicast.

For capturing packets to/from the IPv6 network 2001::/16, configure net
2001::/16.

For capturing packets to IPv6 host 2001::1, configure host 2001::1.
For capturing only ICMP packets, configure ip proto 1.

For filtering only ICMP Echo's pings, you can use ICMP messages or
message codes. configure icmp[icmptype]==icmp-echo or
icmp[icmptype]==8.

http://www.cnn.com

How it works...

For host filtering, when you type a host name, Wireshark will translate the name
to an IP address, and capture packets that refer to this address. For example, if
you configure a filter host www.cnn.com, it will be translated by a name
resolution service (mostly DNS) to an IP address, and will show you all packets
going to and from this address. Note that in this case, if CNN website will
forward you to other websites on other addresses, only packets to the first
address will be captured.

http://www.cnn.com

There's more...

Some more useful filters:

e ip multicast: IP multicast packets
e ip broadcast: IP broadcast packets

e ip[2:2] == <number>: IP packet size

e ip[8] == <number>: TTL (Time To Live) value

e ip[9] == <number>: Protocol value

e (ip[12:4] = ip[16:4]): IP source equal to IP destination address

e ip[2:2]==<number>: Total length or IP packet
e ip[9] <number>: Protocol identifier

These filters are further explained in the Configuring byte offset and payload
matching filters recipe at the end of this chapter. The principle, as illustrated in
the following diagram, is that the first number in the brackets defines how many
bytes are from the beginning of the protocol header, and the second number
indicates how many bytes to watch.

4 Bytes

12
12 ytes p— ip[12:4]= = 192.168.1. 1+
1 Byle \ Destinaticn |P address equal 192.168.1.1
1 B Bytes i . i
- + ip[&:1] 1-TTL value equal 1
i I'-IIII\I;I
Total F | Frag Destination IP !
WVER | IHL Length Packet 1D L loffsat TTL | Pro H.CS Source IP Address e I"Llll". Data

o o

1 Byle

1t
IR

See also

For more filters, refer to the tcpdump manual pages at
http://www.tcpdump.org/tcpdump_man.html.

http://www.tcpdump.org/tcpdump_man.html

Configuring TCP/UDP and port
filters

In this recipe we will present Layer 4 TCP/UDP port filters and how we can use
them with capture filters.

Getting ready

The basic Layer 4 filters are:

e port <port>: When the packet is a Layer 4 protocol, such as TCP or UDP,
this filter will capture packets to/from the port indicated in the identifier

field
e dst port <port>: When the packet is a Layer 4 protocol, such as TCP or

UDP, this filter will capture packets to the destination port indicated in the

identifier field
e src port <port>: When the packet is a Layer 4 protocol, such as TCP or

UDP, this filter will capture packets to the source port indicated in the
identifier field

The port-range matching filters are:

® tcp portrange <pl>-<p2>or udp portrange <pi>-<p2>: TCP or UDP
packets in the port range of p1 to p2

® tcp src portrange <pl>-<p2>or udp src portrange <pil>-<p2>: TCP
or UDP packets in the source port range of p1 to p2

e tcp dst portrange <pl>-<p2>or udp src portrange <pil>-<p2>: TCP
or UDP packets in the destination port range of p1 to p2

How to do it...

Follow the instructions in the Configuring capture filters recipe, and configure
filters as follows:

1.

w

To capture packets to port 80 (HTTP), configure dst port 86 or dst port
http.

To capture packets to or from port 5060 (SIP), configure port 5060.

To capture packets to or from port 5060 (SIP), configure port 5060.

To capture the start (SYN flag) and end (FIN flag) packets of all TCP
connections, configure tcp[tcpflags] & (tcp-syn|tcp-fin) != o.

Tip

In tcp[tcpflags] & (tcp-syn|tcp-fin) != 0, it is important to note that
this is a bitwise and operation, not a logical and operation. For example,
010 or 101 equals 111, and not 000.

To capture all TCP packets with RST (Reset) flag set to 1, configure
tcp[tcpflags] & (tcp-rst) != 0.
Length filters are configured in the following way:
o less <length>: It captures only packets with length less than or equal
to length identifier. This is equivalent to 1en <= <length>.
o greater <length>: It captures only packets with length greater than
or equal to length identifier. This is equivalent to <len >= length>.

For example,
O tcp portrange 2000-2500
© udp portrange 5000-6000

Port range filters can be used for protocols that work in a range of ports rather
than specific ones.

How it works...

Layer 4 protocols, mostly TCP and UDP, are the protocols that connect between
end applications. The end node on one side (for example, a web client) sends a
message to the other side (for example, a web server), requesting to connect to it.
The codes of the processes that send the request and the processes that receive
the request are called port numbers. Further discussion on this issue is provided
in Chapter 9, UDP/TCP Analysis.

Both in TCP and UDP, the port numbers indicate the application codes. The
difference between them is that TCP is a connection-oriented, reliable protocol,
while UDP is a connectionless unreliable protocol. There is an additional Layer
4 protocol called Stream Control Transport Protocol (SCTP) that you can
refer to as an advanced version of TCP, which also uses port numbers.

TCP flags are sent in packets in order to establish, maintain, and close
connections. A signal is set when a specific bit in the packet is set to 1. The most
common flags that are in use are:

e SYN: A signal sent in order to open a connection

FIN: A signal sent in order to close a connection

ACK: A signal sent to acknowledge received data

RST: A signal sent for immediate close of a connection

PSH: A signal sent for pushing data for processing by the end process
(application)

Using capture filters you can filter packets to/from specific applications, along
with filtering packets with specific flags turned on.

There's more...

Some problematic scenarios (mostly attacks...) are:

e tcp[13] & 0x00 = 0: No flags set (null scan)

e tcp[13] & 0x01 = 1: FIN set and ACK not set
e tcp[13] & 0x03 = 3: SYN set and FIN set

e tcp[13] & 0x05 = 5: RST set and FIN set

e tcp[13] & 0x06 = 6: SYN set and RST set

e tcp[13] & 0x08 = 8: PSH set and ACK not set

In the following diagram you can see how it works. tcp[13] is the number of
bytes from the beginning of the protocol header, when the values 0,1,3,5,6, and 8
refer to the flag locations.

1 Byte
13 Bytes = lep[13]==<Number> ; \
\ \
H Window Urgent
Src. Port| Dst. Port| Sequence Number | Acknowledge Number | IR |Figs| oo ™ |Checksum Paintar \\Dpts. \\Data
J — Wi WA
L_T_' _'__.,-o-'-""--_f ill!'.‘\.
1 Byte Rl

Flag |Cwr|Ecn|Urg|Ack|Psh|Rst [Syn| Fin

Binary valve [128]64[32]16] 8421 |

|123|E4E32|16| 8 I 4 | 2 | i | tep[13] & Ox00 = no flags set
|:|_23|34[32|13| 8 | 4 | 2 | 1 | tcp[13] & Ox01 = (1)FIN set and ACK not set
tcp[13] & Ox03 = (14+2)=5Y¥N set and FIN set
28|64 82196 81 4] 2 | 1 | 1cp(13] & 0x05 = (1-+4)RST set and FIN set
[2EEa S EEEY 2 2N 1 | tcp(13] & 0x06 = (2+4)SYN set and RST set
28lealazliel 8] 2|21 tep[13] & Ox08 = (8)PSH set and ACK not set

128|664 |32(16| 8 |4 [2 (1

See also

A deeper description of UDP and TCP is provided in Chapter 9, UDP/TCP
Analysis.

Configuring compound filters

Structure filters are simply made for writing filters out of several conditions. It
uses simple conditions, such as not, and, and or for creating structured

conditions.

Getting ready

Structured filters are written in the following format:

[not] primitive [and]|or [not] primitive ...]

The following modifiers are commonly used in the Wireshark capture filters:

® | Or not
e && or and
e || oror

How to do it...

To configure structured filters, you simply write the conditions according to
what we learned in the previous recipes, with conditions to meet your
requirements.

Some common filters are:

1. For capturing only unicast packets, configure not broadcast and not
multicast.

2. For capturing HTTP packets to www.youtube.com, configure host
www .youtube.com and port 80.

3. A capture filter for telnet that captures traffic to and from a particular host,
configures tcp port 23 and host 192.180.1.1.

4. For capturing all telnet traffic not from 192.168.1.1, configure tcp port
23 and not src host 192.168.1.1.

http://www.youtube.com

How it works...

Some examples for structured filters:

For capturing data to tcp port 23 (Telnet) from source port range of 5000-6000,
configure tcp dst port 23 and tcp src portrange 5000-6000.

There's more...

Some interesting examples are as follows:

® host www.mywebsite.com and not (port 80 or port 23)
® host 192.168.0.50 and not tcp port 80
® host 10.0.0.1 and not host 10.0.0.2

See also

For more examples, you can take a look at:

e http://www.packetlevel.ch/html/tcpdumpf.html
e http://www.packetlevel.ch/html/txt/tcpdump.filters

http://www.packetlevel.ch/html/tcpdumpf.html
http://www.packetlevel.ch/html/txt/tcpdump.filters

Configuring byte offset and payload
matching filters

Byte offset and payload matching filters come to provide us with a flexible tool
for configuring self-defined filters (filters for fields that are not defined in the
Wireshark dissector and filters for proprietary protocols). By understanding the
protocols that we work with and understanding their packet structure, we can
configure filters that will watch a specific string in the captured packets, and
filter packets according to it. In this recipe we will learn how to configure these
types of filters, and we will also see some common and useful examples of the
subject.

Getting ready

To configure byte offset and payload matching filters, start Wireshark and follow
the instructions in the Configuring capture filters recipe in the beginning of this

chapter.

How to do it...

1. String matching filters comes to check a specific string in the packet header.
It comes in the following format:

proto [Offset: bytes]

With this filter we can create filters for strings over IP, TCP, and UDP.
e For IP string-matching filters you can create the following filter:

ip [Offset:Bytes]

» For matching application data, that is, to look into the application data that is
carried by TCP or UDP, the most common uses of it are: tcp[0ffset:Bytes] Or
udp[Offset:Bytes].

How it works...

The general structure of offset filter is:

proto [Offset in bytes from the start of the header : Number of
bytes to check]

Common examples for string matching filters are:
1. For filtering destination TCP ports between 50 and 100, configure
(tcp[2:2] > 50 and tcp[2:2] < 100).

Here we count two bytes from the beginning of the TCP header, and check
the next two bytes to be lower than 100 and higher than 50.

2 Bytes
2 Eh_.-‘[esb,- A— (tcp[2:2]=50 and tcp[2:2]<100) :
3 i
Source |Destination H Window Urgent | \\ I”n
Acknowledge Number Fi 1\ v \
Port Port Sequence Number ge L|R|F1E8| e [Checksum| g e \ {:lpts 'n,nData

| W
I"r"

1 Byte

2. For checking TCP window size smaller then 8192, configure tcp[14:2] <
8192.

Here we count two bytes from the beginning of the TCP header, and check
the next two bytes (the window size) to be less than 8192.

2 Bytes
14 Bytes of A tepll14:2]<8192
3 i
Source |Destination H Window Urgent | \\ X
Acknowledge Number Fi i\ v \
Port Port Sequence Number ge L |R|Fes Size Checksum Pointer | \ {:lpts 'n,nData

| W
I"r"

1 Byte

There's a nice string-matching capture filter generator in
http://www.wireshark.org/tools/string-cf.html

http://www.wireshark.org/tools/string-cf.html

There's more...

You can also see additional filters in the tcpdump man pages:

1. To print all IPv4 HTTP packets to and from port 80, (that is to print only
packets that contain data, not, for example, SYN, FIN or ACK-only
packets), configure the following filter: tcp port 80 and (((ip[2:2] -
((1ip[0]&0OxT)<<2)) - ((tcp[12]&OXxf0O)>>2)) = 0).

2. To print the start and end packets (the SYN and FIN packets) of each TCP
conversation that involves a non-local host, configure tcp[tcpflags] &
(tcp-syn|tcp-fin) != 0 and not src and dst net <localnet>.

3. To print IP broadcast or multicast packets that were not sent via Ethernet
broadcast or multicast, configure ether[0] & 1 = 0 and ip[16] >= 224.

4. To print all ICMP packets that are not echo requests/replies (that is, not ping
packets), configure icmp[icmptype] != icmp-echo and icmp[icmptype]
I= icmp-echoreply.

See also

e There is a string calculator at http://www.wireshark.org/tools/string-cf.html.

It doesn't always provide working results, but it might be a good place to
start from.
¢ Another interesting blog can be found on

http://www.packetlevel.ch/html/txt/byte_offsets.txt.

http://www.wireshark.org/tools/string-cf.html
http://www.packetlevel.ch/html/txt/byte_offsets.txt

Chapter 3. Using Display Filters

In this chapter you will learn the following:

Configuring display filters

Configuring Ethernet, ARP, host, and network filters
Configuring TCP/UDP filters

Configuring specific protocol filters

Configuring substring operator filters

Configuring macros

Introduction

In this chapter we will learn how to work with display filters. Display filters are
filters that we apply after capturing data (filtered by capture filters or not), and
when we wish to display only part of the data.

Display filters can be implemented in order to locate various types of data:

e Parameters such as the IP address, TCP or UDP port numbers, URLSs, and
server names

e Conditions such as "packet length shorter than..." and the TCP port range

e Phenomena such as TCP retransmissions, duplicate and other types of
ACKSs, various protocol error codes, and flag existence

e Various applications parameters such as Short Message Service (SMS)
source and destination numbers and Server Message Block (SMB) server
names

Any data that is sent over the network can be filtered, and when filtered, you can
create statistics and graphs according to it.

As we will describe in the recipes in this chapter, there are various ways to
configure display filters: from predefined menus, from the packet pane, or by
writing the syntax directly.

Tip

While using display filters, don't forget that all the data was already captured and
the display filters only decide what to display. Therefore, after filtering data, the
capture file still contains the original data that was captured. You may later save
the complete data or only the displayed data.

Configuring display filters

In order to configure display filters, you can choose one of the several options:

e Choosing from the filters menus

e Writing the syntax directly into the display filter window (while working
with Wireshark; after a while this will become your favorite)

e Choosing a parameter in the packet pane and defining it as a filter

e Using tshark or wireshark with command line ; this will be discussed in

Appendix

This chapter discusses the first three options.

Getting ready

In general, a display filter string takes the form of a series of primitive
expressions connected by conjunctions (and, or, or something else) and

optionally preceded by not: [not] Expression [and|or] [not]
Expression...

While Expression can be any filter expression, such as ip.src==192.168.1.1
for the source address, tcp.flags.syn==1 for TCP SYN flag presence, and
tcp.analysis.retransmission for TCP retransmissions, and|or are
conjunctions that can be used in any combinations of expression, including
brackets, multiple brackets, and any lengths of strings.

There are several conditions to these. They can be one of the following:

C-like "

Shortcut||Description Example
Synta
== eq Equal ip.addr == 192.168.1.10r ip.addr eq 192.168.1.1
t= ne Not equal lip.addr==192.168.1.1, ip.addr != 192.168.1.1, Oor

ip.addr ne 192.168.1.1
> gt Greater than frame.len > 64
< 1t Less than frame.len < 1500
>= ge Greater than or equal [[frame.len >= 64
to

<= le Less than or equal to [|frame.len <= 1560

is A parameter is http.response

present [|present

contains [|Contains a string http.host contains cisco

matches [[A string matches the http.host matches www.cisco.com

You can insert a space character between parameters and operators or leave it
without spaces.

condition || ||

Wireshark colorizes the display filter area in yellow whenever you use the =
operator for combined expressions such as eth.addr, ip.addr, tcp.port, and
udp. port, but this will not work due to the following reason.

When you type a filter expression such as ip.addr != 192.168.1.100, you will
see The packet contains the field ip.addr with a value different from
192.168.1.100. Because an IP datagram contains both a source and a destination
address, the expression will evaluate to true whenever at least one of the two
addresses differs from 192.168.1.100. For this reason you should write !
(ip.addr == 192.168.1.100); this will display Show me all the packets for
which it is not true that a field ip.addr have the value of 1.2.3.4.

There are several operators. They can be as follows:

All the packets that are neither ARP nor ICMP.

C-like Shortcut]|Description|[Example
Syntax
&& and Logical ip.src==10.0.0.1 and tcp.flags.syn==1
AND .
All SYN flags sent from IP address 10.0.0.1 practically and all
connections opened (or tried to be opened) from 10.0.0.1.
| or Logical OR ip.addr==10.0.0.1 or ip.addr==10.0.02
All the packets going in or out the two IP addresses.
! not Logical not arp and not icmp
NOT

How to do it...

To configure display filters, you can choose any one of the methods mentioned
earlier.

Choosing from the filters menu

For choosing from the filters menu, navigate to the display filter pane on the
upper side of the window and click on the Expression... button as you see in the
following screenshot:

| Wireshark -— 23-10-2008 - CAP-02 - YORAM-FS pcap hark ¢ 51934 fr
File Edit View Go Capture Analyze Statistics Tl:lq:hom_.r Tools Intcrnals Hdp

coamy BEX2 Acer»T L2 EE QA @
Filter: E Expression...| Clear Apply Save

Time Source sHhation Protq

65350 153.110592 10.101.11.5-40.101.3.7 T
65351 153.110601 10.1 0.101.3.7 SW
"5354 153.111436 10.1) ™[10.101.3.7 Td

10.1U1.1Tm3 pQEIDIE I 7T

To open display

When you click on the Expression... button, the following window will open:

i Wireshark: Filter Expression - Profile: e S

Field name Relation Value (Protocol
104apci - IEC 60870-5-104-Ap<i == Predefined values:
#l 104asdu - IEC 60870-5-104-Asdu I=
2dparityfec - Pro-MPEG Code of Practice #3 relea >
3COMXNS - 3Com XNS Encapsulation <
3GPPZ All - 3GPP2 All »=
6LoWPAN - IPvE over IEEE 802.15.4 <z
80211 MGT - IEEE 802.11 wireless LAN managers contains
802.11 Radiotap - IEEE 802.11 Radiotap Capture ht matches
802.3 Slow protocols - Slow Protocols
9P - Plan9 9P
A-bis OML - G5M A-bis OML
AALL - ATM AALL . Range (offset:length)

i i} ¥

[ok][gonce |

There are five important panes in the filters menu:

¢ Field name: In this pane you configure the filter parameter. You can go to
the protocol by typing its name, and get to the protocol parameter by
clicking on the + sign to the left of the list.

One example for this would be: type ipv4 to get to the IPv4 protocol, click
on the + sign to expand the protocol parameters (or press Enter twice) and
choose ip.addr to filter a specific IP address.

Another example would be to type tcp to get to the TCP protocol, click on
the + sign to the left of the protocol parameter and choose tcp.port for the
source or destination port number.

¢ Relation: This is the pane from where you choose the operator. You can
choose == for equal, != for not equal, and so on.

An example for this would be: type sip to get to the SIP protocol, choose

sip.Method, and choose == from the Relation pane. Type invite in the
Value (Protocol) pane. This will filter all the SIP INVITE methods.
e Value: Here you enter the value of the field that you have chosen before.

An example for this would be: type tcp to get to the TCP protocol, click on
the + sign to go to the protocol parameter, choose tcp.flags.syn for the TCP
SYN flag, and enter 1 in the Value field.

¢ Predefined values: When the value of the field you chose is not Boolean,
there might be a list of options in this field.

An example for this would be: under TCP, there is an option named
tcp.option_kind. This option is related to TCP options (for more details,
refer to Chapter 9, UDP/TCP Analysis). You will get a list of values that are
possible.

¢ Range (offset: length): This field provides you the length of the string in
the offset:length format.

Writing the syntax directly into the display filter window

After you get used to the display filters syntax, you may find it easier to type the
filter string directly into the filter window:

u Wireshark --- 23-10-2008 --- CAP-02 --- YORAM-FS.pcap [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10] i
File Edit View Go Capture Analyze Statistics Teltphoni Tools [nternals Help

coamz BrXR@ AesoTa@Eacan @
Filter: T‘ Expression.. Clear Apply Save

Time Source Destination Proto

6'5350 15371105920 10102 1 1T5 07101 28357 TG
D331 153.110001 10.301.11.5 10:101.3.7 5N
~~354°153.111436 10 101 11.5 10 101 3.7 1r

In this case, when you write a filter string into the window, the window will light
up in one of the following three colors:

e Green: This is when the filter is correct and you can apply it.
¢ Red: This indicates a wrong string. Fix the string before you apply it.
¢ Yellow: Whenever you use the != operator, the display filter area will turn

yellow. It doesn't mean your filter will not work, it is just a warning that it
may not work.

Choosing a parameter in the packet pane and defining it as a filter

This is a very convenient option. You can choose any field from the packet detail
pane in the captured file; right-click on it and you will get a few options, as

illustrated in the following screenshot:
| ~Wireies: Network Connection [Wireshark 1.10.2 (SVN R
Eile Edit Yiew Go Capture Anakyze Statistics Tel!phnnz Toacals

Expand Subtree

- Ethernet II, Src: HonHaiPr
»Internet Protocol Versign
s Transmission Control Prdtcg
- Hypertext Transfer Protdcc.
- GET /ga.js HTTP/1.1\r\
- [Expert Info (Chat/Se-u:
[Message: GET /ga.js|H
[SEVEr1ty Tevel:

HTTP/1.1
Host: www.google-analytics

Request Ve rsion:

O AN BERRXD LD T o % H

Filter Caollapse All
INo. Time Source Apply as Column Protocol Info

<2 Ll . WLVUITT 4AV. V.V, J Apply a5 Filter _s;lgﬂe-d- = ——t B
44 12.620403 10.0.0.5y et e T
45 12.638406 194.90.[19 Colorize with Fiter - and Selected tp >
46 12.638557 194.90.19 e sen e p/1

5L Stream

Copy

Export Selected Packet Bytes..

Wiki Protocel Page

Filter Field Reference
Protocol Help
Protocol Preferences

Decode As...
Disable Protocol...
Etwlv! Mame

.com\r\n

P/1.1\r\n]

- and not Selected
- OF not Selected

.0.0. 5), Dst: 1
(47757), Dst H

A couple of options are as follows:

e Apply as Filter: This will set a filter according to the field you choose and

apply it to the captured data.

e Prepare a Filter: This will prepare a filter but not apply it. It will be
applied when you click on the Apply button on the right-hand side of the

filter window.

In both the options, you can choose to configure a filter:

e Selected: This will choose the selected field and parameter
e Not Selected: This will choose the the field and parameter that are not
selected

For example, right-clicking on the field http.request.method and choosing
Selected will come with the filter string http.request.method == GET; while,
choosing Not Selected will come with the string ! (http.request.method ==
"GET").

You can also choose the options ... and selected, ... or selected, ... and not
selected, or ... or not selected for structured filters.

How it works...

The display filter is a proprietary Wireshark language. There are many places
where display filters can be used that will be discussed in the later chapters.
Additional filters will be introduced in the upcoming recipes of this chapter.

You can always use the autocomplete feature to complete filter strings. For
example, if you type in tcp.f, as shown in the following screenshot, the
autocomplete feature lists possible display filter values that can be created
beginning with tcp.f, that is, TCP flags (SYN, FIN, RST, and so on).

u “Wireless Network Connection meﬁﬂ mnevﬂgilfmmmm

File Edit View Go Capture Analyze 3Statistics Telephony Tools Internals Hs

oo AmZ RS AT 2 EFEF

Filter: tcp| B Expressio
No. tcp.flags : Destin|
) tep.flags.ack e
44 tcp.flags.cwr lg
4 5 tcp.flags.ecn = 7 10
46 tcp.flags.fin 7 10
4 7 tcp.flags.ns 68 10
4 8 te p.: :ags.push 1(\
4 g tcp.flags.res I =

tcp.flags.reset

50 1Z2.9/7/9UY /7 .2354.45.90

There's more...

Now we will cover some additional helpful features.
What is the parameter we filter?
Anytime you mark a specific field in the packet details pane, you will see the

correlating filter string in the status bar at the bottom-left corner of the
Wireshark window.

Lhanr s mnmng svas s crs daings asapr g

Inmm (EIEETIGEEEE 4c 72 b9 03 03 53 08 00 45 00 PGAMMELr
0010 00 47 05 79 00 00 80 11 Oc 05 Oa 0a Oa 17 0a 0a .G.Yy.|..
0020 Oa fe dl e8 00 35 00 33 1a Od 95 49 01 00 00 01 b3
0030 00 00 00 00 00 00 06 74 65 72 65 64 6f 04 69 70 s
0040 76 36 09 6d 69 63 72 6f 73 6f 66 74 03 63 6f 6d v6.mifro

atalal T T T T e Y T T

Destination Hardware Addresq (eth.dst) |

Adding a parameter column

You can also right-click on a parameter in the packet pane and choose Apply as
Column. This will add a column with the specific parameter. For example, you
can choose the parameter tcp.window_size_value and add it as a column to the
packet list pane, so you will be able to watch the TCP window size online. This
influences TCP performance, as we will learn in Chapter 9, UDP/TCP Analysis.

Saving the displayed data

To save the displayed data, you can navigate to File | Export Specified
Packets... and choose which packets to save.

Packet Range
© Captured @ Displayed

@ Al packets 21188 217
) Selected packet 1 1
Marked packets 0 0
First to last marked 0 0
() Range: 0 0
|| Remove Ignored packets 0 0

Configuring Ethernet, ARP, host, and
network filters

In this recipe we will discuss how to configure filters of layers 2 and 3, that is,
Ethernet- and IP-based filters respectively. We will also discuss Address
Resolution Protocol (ARP) filters.

Getting ready

In layer 2 we will configure Ethernet-based filters, while in layer 3 we will
configure IP-based filters. In Ethernet we have filters based on the Ethernet
frame and the MAC address, while in IP we have filters based on the IP packet
and address.

The common frame delta filters are as follows:

e frame.time_delta: This is used for the time delta between the current and
previously captured frames; this will be used in statistical graphs displayed
in Chapter 5, Using Advanced Statistics Tools

e frame.time_delta_displayed: This is used for the time delta between
current and previously displayed frames; this will be used in statistical
graphs displayed in Chapter 5, Using Advanced Statistics Tools

Since the time between frames can influence TCP performance significantly, we
will use the frame.time_delta parameters in statistical graphs for monitoring
TCP performance.

The common layer 2 (Ethernet) filters are as follows:

e eth.addr == <MAC Address>: This is used to display a specific MAC

address
® eth.src == <MAC Address>: This is used to get the source MAC address

e eth.dst == <MAC Address>: This is used to get the destination MAC

address
e eth.type == <Protocol Type (Hexa)>: This is used to get the Ethernet

protocol types

The common ARP filters are as follows:

® arp.opcode == <value>: This is used for ARP requests/responses
® arp.src.hw_mac == <MAC Address>: This is used to capture the ARP
address of the sender

The common layer 3 (IP) filters are as follows:

e ip.addr == <IP Address>: This is used to get the source or destination IP

address

ip.src == <IP Address>: This is used to get the source IP address

ip.dst == <IP Address>: This is used to get the destination IP address
ip.ttl == <value>, ip.ttl < value>, orip.ttl > <value>: This is used
to get IP TTL (Time To Live) values

ip.len = <value>, ip.len > <value>, or ip.len < <value>: This is used
to get IP packet length values

ip.version == <4/6>: This is used to get the IP protocol version (Version
4 or Version 6)

How to do it...

Here we will see some common examples for layer 2 and 3 filters.

address
Here x =0to f (Hex)and y =

0 to 128.

This covers all the addresses that start with the 16 bits

fe80.

Address format [|[Syntax Example
Ethernet (MAC) eth.addr == eth.addr == 00:50:7f:cd:d5:38
address XX §XX P XX P XX XX 1 XX
Here, x =0to f.
eth.addr == XX-XX-XX-XX- eth.addr == 00-50-7f-cd-d5-38
XX - XX
Here, x =0to f.
eth.addr == eth.addr == 0050.7fcd.d538
XXXX o XXXX . XXXX
Here x = 0 to f.
Broadcast MAC [[Eth.addr ==
ffff.ffff.ffff
address
IPv4 host ip.addr == Xx.X.X.X Ip.addr == 192.168.1.1
address
Here, x = 0 to 255.
IPv4 network ip.addr == x.X.X.x/y ip.addr == 192.168.200.0/24
address))
Here x = 0 to 255, y = 0 to 32. ||This covers all the addresses in the network
192.168.200.0 mask 255.255.255.0.
IPv6 host ipv6.addr == ipv6.addr == fe80::85ab:dc2e:ab12:e6c7
address XIXIXIXIXIXIXIX
ipv6.addr == Xx::X:X:X:X
Here in the format of nnnn, n
=0 to f (Hex).
IPv6 network ipv6.addr == x::/y ipv6.addr == fe80::/16

The table refers to ip.addr and ipvé6.addr filter strings. The value for any field
that has an IP address value can be written the same way.

Ethernet filters

These are classified into two categories:

To display only packets sent from or to specific MAC addresses, use
something like these: eth.src == 10:0b:a9:33:64:18 and eth.dst ==
10:0b:a9:33:64:18

To display only broadcasts, use Eth.dst == ffff.ffff.ffff

ARP filters

These are classified into two categories:

To display only ARP requests, use arp.opcode == 1
To display only ARP responses, use arp.opcode == 2

IP and ICMP filters

To display only packets from a specific IP address, use something like this:
ip.src == 10.1.1.254
To display only packets that are not from a specific address, use something
like this: tip.src == 64.23.1.1
To display only packets between two hosts, use something like these:
ip.addr == 192.168.1.1 and ip.addr == 200.1.1.1
To display only packets that are sent to multicast IP addresses, use
something like this: ip.dst == 224.0.0.0/4
To display only packets coming from the network 192.168.1.0/24 (mask
255.255.255.0), use ip.src==192.168.1.0/24
To display only IPv6 packets to/from specific addresses, use something like
the following:

0 ipv6.addr == ::1

0 ipv6.addr == 2008:0:130F:0:0:09d0:666A:13ab

o ipv6.addr == 2006:0:130f::9c2:876a:130b

°© ipv6.addr == ::

Complex filters

To check for packets sent from the network 10.0.0.0/24 to a website that

contains the word packt, use ip.src == 10.0.0.0/24 and http.host
contains "packt"

To check for packets sent from the network 10.0.0.0/24 to websites that end
with .com, use ip.addr == 10.0.0.0/24 and http.host matches
"\.com$"

To check for all the broadcasts from the source IP address 10.0.0.0, use
ip.src == 10.0.0.0/24 and eth.dst == ffff.ffff.ffff

To check for all the broadcasts that are not ARP requests, use not arp and
eth.dst == ffff.ffff.ffff

To check for all the packets that are not ICMP, use 'arp || !icmp, and to
check for all the packets that are not ARP, use not arp or not icmp

How it works...

Here are some explanations to the filters we saw in the How to do it... section of
this recipe.

Ethernet broadcasts

In Ethernet, broadcasts are packets that are sent to addresses with all 1s in the
destination field and this is why, to find all broadcasts in the network, we insert
the filter eth.dst == ffff.ffff.ffff.

IPv4 multicasts

IPv4 multicasts are packets that are sent to an address in the address range
224.0.0.0 to 239.255.255.255 that is in binary of the address range
11100000.00000000.00000000.00000000 to
11101111.11111111. 11111111, 11111111.

If you look at the binary representation, a destination multicast address is an
address that starts with three 1s and a 0, and therefore, a filter to IPv4 multicast
destinations will be ip.dst == 224.0.0.0/4. That is, an address that starts with
four 1s (224), and a subnet mask of 4 bits (/4) will indicate a network address
ranger from 224 to 239 that will filter multicast addresses.

IPv6 multicasts

[Pv6 multicasts are packets that are sent to an address that starts with ff (first two
hex digits = ff), then one-digit flags, and scope. Therefore when we write the
filter ipv6.dst == ff00::/8, it means to display all the packets in IPv6 that are
sent to an address that starts with the string ff, that is, IPv6 multicasts.

See also

e For more information on Ethernet, refer to Chapter 7, Ethernet, LAN
Switching, and Wireless LAN

Configuring TCP/UDP filters

TCP and UDP are the main protocols in layer 4 that provide connectivity
between end applications. Whenever you start an application from one side to
another, you start the session from a source port, usually a random number equal
or higher than 1,024, and connect to a destination port, which is a well-known or
registered port that waits for the session on the other side. These are the port
numbers that identify the application that works over the session.

Other types of filters refer to other fields in the UDP and TCP headers. In UDP
we have a very simple header with very basic data, while in TCP we have a more
complex header that we can get much more information from.

In this recipe we will concentrate on the possibilities while configuring TCP and
UDP display filters.

Getting ready

As done earlier, we should plan precisely what we want to display and prepare
the filters accordingly.

For TCP or UDP port numbers use the following display filters:

® tcp.port == <value>or udp.port == <value>: This is used for specific
TCP or UDP ports (source or destination)

e tcp.dstport == <value> or udp.dstport == <value>: This is used for
specific TCP or UDP destination ports

® tcp.srcport == <value> or udp.srcport == <value>: This is used for

specific TCP or UDP destination ports

In UDP, the header structure is very simple: source and destination ports, packet
length, and checksum. Therefore, the only significant information here is the
port number.

TCP on the other hand is more complex and uses connectivity and reliability
mechanisms that can be monitored by Wireshark. Using tcp.flags,
tcp.analysis, and other smart filters will help you resolve performance
problems (retransmissions, duplicate ACKs, zero windows, and so on), protocol
operation issues such as resets, half-opens, and so on.

Common display filters in this category are as follows:

e tcp.analysis: This is used for TCP analysis criteria such as
retransmission, duplicate ACKs, or window issues. Examples for this filter
are as follows (you can use the autocomplete feature to get the full list of
available filters):

o tcp.analysis.retransmission: This is used to display packets that
were retransmitted.

o tcp.analysis.duplicate_ack: This is used to display packets that
were acknowledged several times.

o tcp.analysis.zero_window: This is used to display packets when a
device on the connection end sends a zero-window message (that tells
the sender to stop sending data on this connection, until window size
increases again).

Tip

The tcp.analysis filters do not analyze the TCP header; they provide
a protocol analysis through the Wireshark expert system.

e tcp.flags: These are used to find out if a flag(s) is set or not. Examples of
this filter are as follows:
o tcp.flags.syn == 1: This is used to check if the SYN flag is set.
o tcp.flags.reset == 1: This is used to check if the RST flag is set.
o tcp.flags.fin == 1: This is used to check if the FIN flag is set.

Tip

For TCP flags, the tcp.flags filter will be used to find out whether a
specific flag is set or not.

® tcp.window_size_value < <value>: This is used to look for small TCP
window sizes that are in some cases indications for slow devices.

How to do it...

Some examples for filters in TCP/UDP filters:

e To filter all the packets to the HTTP server, use tcp.dstport == 80

e To filter all the packets from the network 10.0.0.0/24 to the HTTP server,
use ip.src==10.0.0.0/24 and tcp.dstport == 80

e For all the retransmissions in a specific TCP connection, use tcp.stream
eq 16 && tcp.analysis.retransmission

To isolate a specific connection, place the mouse on a packet in the connection
you want to watch, right-click on it, and choose Follow TCP Stream. A TCP
stream is the data that is transferred between the two ends of the connection from
the connection establishment to the connection tear down. The string
tcp.stream eq <value> will appear in the display filter window. This is the
stream you can work on now. In the preceding example, it came out as stream
16, but it can be any stream number (starting the count from stream 1 in the
capture file).

Retransmissions are TCP packets that are sent again. It can be due to several
reasons, as explained in Chapter 9, UDP/TCP Analysis.

Tip

While monitoring phenomena such as retransmissions, duplicate ACKs, and
others that influence performance, it is important to remember that these
phenomena refer to a specific TCP connection.

Other examples of the types of TCP filters are as follows:

e To transfer all the window problems in a specific connection:
O tcp.stream eq 0 && (tcp.analysis.window_full ||
tcp.analysis.zero_window)
O tcp.stream eq 0 and (tcp.analysis.window_full or
tcp.analysis.zero_window)
¢ To transfer all the packets from 10.0.0.5 to the DNS server: ip.src ==
10.0.0.5 && udp.port == 53
e To transfer all the packets or protocols in TCP (for example HTTP) that

contains the string cacti (case sensitive): tcp contains "cacti"

To check all the packets that are retransmitted from 10.0.0.3: ip.src ==
10.0.0.3 and tcp.analysis.retransmission

To transfer all the packets to any HTTP server: tcp.dstport == 80

To check all the connections opened from a specific host (if in a form of
scan, can be a worm!): ip.src==10.0.0.5 && tcp.flags.syn==1 &&
tcp.flags.ack==0

To check all the cookies sent from and to a client: ip.src==10.0.0.3 &&
(http.cookie || http.set_cookie)

How it works...

The following are illustrations of the IP and TCP header structures respectively.
UDP is quite simple; it has only source and destination port numbers, length, and
checksum. In the following diagram we see the IP header structure:

.. e Total datagram
(length (in bytes)
32 bits » =

/,/H\.fer ToS Length
I Fragment / "Wﬁf
16-bit identifier flgs et cmmm
e __ﬂ__Time to Upper R /
Max. no. remaining //’ live / layer i
hops (decemented)
‘at each router) /32 bit source IP address
/ 32 bit destination IP address
Options (if any)
Data E.g. timestamp
(Variable length record route taken,
typically a TCP @adfy list of
or UDP segment) routers to visit

Some important factors in the IP packet are as follows:

e Ver: The version is either 4 or 6.

e Header length (HL): The header length is 20 to 24 bytes, with options.

e Type of Service (ToS): This is usually implemented with Differentiated
Services (DiffServ) and provides priority to preferred services.

Tip

IP standard (RFC 791 from September 1981) has named this field Type of

Service (ToS) and defined its structure. The standards for Differentiated
Services were published later (RFCs 2474, 2475 from December 1998 and
others) and are used for the implementation of the ToS byte in majority of
the applications.

Length: This field indicates the total datagram length in bytes.

16-bit identifier, flgs, and Fragment offset: Every packet has it's own
packet ID. When fragmented along with the flags and offset, these will
enable the receiver to reassemble it.

Time to live (TTL): This starts with 64, 128, or 256 (depending on the
operation system that sends the packet), when every router on the way
decrements the value by one. This comes to prevent packets from traveling
endlessly through the network. The router that sees 1 in the packet
decrements it to O and drops the packet.

Upper layer: This field consists of upper-layer protocols such as TCP, UDP
and ICMP.

Checksum: This field represents the packet checksum. The idea here is that
the sender uses an error-checking mechanism to calculate a value over the
packet. This value is set in the checksum field while the receiver of the
packet calculates it again. If the sent value is not equal to the received
value, it will be considered as a checksum error.

32-bit source and destination IP addresses: As the names suggest, these
are source and destination IP addresses.

Options: This field is usually not in use in IPv4. In the following diagram
you see the TCP header:

ACHK: ACK# valid

&

32 bits

v

URG - Urgent data
(generally not used)

%rce port #

=

dest port#

SN

-~
sequence number

\ acknowledgment number
- -__\-‘_‘-

e iy

| |
Res [N "C|E UA|P R‘S F

PSH-Push data

vt/

rovr window size

ptr urgent da
Y

Source and
Destination Port
Numbers

Numbering of sent
data

Ack numbers to

confirm data arrival

of bytes rovr is

FIN-End session

ow /}»@/ 745 (Variable length \ willing to accept
; \ | Incase of URG
RST-gggg?mlﬂﬂ pointer, indicates
. the data location
application
data S
SYNC—Start (Variable length) Options
session

Some important factors in the TCP packet are as follows:

¢ Source and destination ports: These are the applications codes on either

end.

e Sequence number: This field counts the bytes that the sender sends to the

receiver.

¢ Acknowledgement number: This field indicates the ACK's received bytes.
We will discuss this in detail in Chapter 9, UDP/TCP Analysis.

e HL: This is the header length field and it indicates whether we use the
Options field or not.

e Res: This field is reserved for future flags.

e Flags: This field indicates flags to start a connection (SYN), close a
connection (FIN), reset a connection (RST), and push data for fast
processing (PSH). We will discuss this in detail in Chapter 9, UDP/TCP

Analysis.

e Rcvr window size: This field indicates the buffer that the receiver has

allocated to the process.

e Checksum: This field indicates the packet checksum.

e Options: Timestamps and receiver window enhancement (RFC 1323), and
MSS extension. Maximum Segment Size (MSS) is the maximum side of
the TCP payload. It is indicated in this field. Further discussion on this will
be done in Chapter 9, UDP/TCP Analysis.

There's more...

The TTL field in IP is quite a helpful field. While checking a TTL value, it
explicitly indicates how many routers the packet has passed. Since operating
system defaults are 64, 128, or 256, and the maximum number of hops that a
packet will cross through the Internet are 30 (in private networks it is much less).
For example, if we see a value of 120, the packet has passed 8 routers, and a
value of 52 indicates that the packet has passed 12 routers.

See also

e For further information on the TCP/IP protocol stack, refer to Chapter 9,
UDP/TCP Analysis

Configuring specific protocol filters

In this recipe we will have a look at the instructions and examples to configure
display filters for common protocols such as DNS, HTTP, and FTP.

The purpose of this recipe is to learn how to configure filters that will help us in
network troubleshooting. We will learn about network troubleshooting in the
upcoming chapters.

Getting ready

To perform this recipe, you will need a running Wireshark software capture;
there are no other prerequisites.

How to do it...

In this recipe we will see the display filters for some common protocols.

HTTP display filters

The following are some common HTTP display filters:

To display all the HTTP packets going to <"host name">, use
http.request.method == <"Request methods'">

To display packets with the HTTP GET method, use http.request.method
== "GET"

To display the URI requested by client, use http.request.method ==
<"Full request URI">; for example, http.request.uri ==
"/v2/rating/mail.google.com"

To display the URI requested by the client that contains a specific string (all
requests to Google in the preceding example), use http.request.uri
contains "URI String"; for example, http.request.uri contains
"mail.google.com"

To check all the cookie requests sent over the network (note that cookies are
always sent from the client to the server), use http.cookie

To check all the cookie set commands sent from the server to the client, use
http.set_cookie

To check all the cookies sent by Google servers to your PC, use
(http.set_cookie) && (http contains "google")

To check all the HTTP packets that contain a ZIP file, use http matches
"\.zip" && http.request.method == "GET"

DNS display filters

Here, we will look at some common DNS display filters.

To display DNS queries and responses, use:

dns.flags.response == @ for DNS queries
dns.flags.response == 1 for DNS response

To display only DNS responses with four answers or more, use
dns.count.answers >= 4.

FTP display filters

Some common FTP display filters are as follows:

e To fetch FTP request commands, use ftp.request.command ==
<"requested command"> - ftp.request.command == "USER"

e To fetch FTP commands from port 2, use ftp, and to fetch FTP data from
port 20 or any other configured port, use ftp-data

How it works...

The Wireshark regular expression syntax for display filters uses the same syntax
as regular expressions in Perl.

Some common modifiers are as follows:

e A: This is used to match the beginning of the line

e $: This is used to match the end of the line

e |: This is used for alternation purposes

(): This is used for grouping purposes

*: This is used to match either 0 or more times

+: This is used to match 1 or more times

?: This is used to match 1 or 0 times

{n}: This is used to match exactly n times

{n, }: This is used to match at least n times

e {n,m}: This is used to match at least n but not more than m times

You can use these modifiers to configure more complex filters. Have a look at
the following examples:

e To look for HTTP GET commands that contain ZIP files, use

http.request.method == "GET" && http matches "\.zip" && !
(http.accept_encoding == '"gzip, deflate")

e To look for HTTP GET commands that contain ZIP files, use
http.request.method == "GET" && http matches "\.zip" && !
(http.accept_encoding == '"gzip, deflate")

¢ To look for HTTP messages that contain websites that end with .com, use
http.host matches "\.com$"

See also

e The Perl regular expression syntax list can be found at
http://www.pcre.org/, and the manual pages can be found at

http://perldoc.perl.org/perlre.html

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Configuring substring operator filters

Offset filters are filters in which you actually say, "Go to field x in the protocol

"

header and check if the next y bytes equal to....".

These filters can be used in many cases in which a known string byte appears
somewhere in the packet and you want to display packets that contain it.

Getting ready

To step through this recipe, you will need a running Wireshark software and a
running capture; there are no other prerequisites. The general representation for
offset filters is: Protocols[x:y] == <value> Here, x refers to the bytes from the
beginning of the header and y refers to the number of bytes to check.

How to do it...

Examples for filters that use substring operators are as follows:

e Packets to IPv4 multicast addresses: eth.dst[0:3] == 01:00:5e (RFC
1112, section 6.4 allocates the MAC address space of 01-00-5E-00-00-00 to
01-00-5E-FF-FF-FF for multicast addressing)

e Packets to IPv6 multicast addresses: eth.dst[0:3] == 33:33:00 (RFC
2464, section 7 allocates the MAC address space that starts with 33-33 for
multicast addressing)

How it works...

Wireshark enables you to look into protocols and search for specific bytes in it.
This is specifically practical for well-known strings in protocols, such as
Ethernet in the given example.

Configuring macros

Display filter macros are used to create shortcuts for complex display filters,
which you can configure once and use later.

Getting ready

To configure display filter macros, navigate to Analyze | Display Filter Macros
| New.

You will get the following window:

(8l OopiayFite Mocrs - Poie w0 (=5 @ 520

|]

' MName Text I
l = I

How to do it...

1. In order to configure a macro, you give it a name and fill the textbox with
the filter string.
2. In order to activate the macro, you simply write
$(macro_name:parameterl;paramater2;parameter3 ..).
3. Let's configure a simple filter name, test01, which takes the following
parameters as values:
© ip.src == <value>
© tcp.dstport == <value>

This will be a filter that looks for packets from a specific source network that go
out to the HTTP port.

A macro that takes these two parameters will be: ip.src==$1 &&
tcp.dstport==$2.

o Now, in order to get the filter results for the parameters ip.src == 10.0.0.4
and tcp.dstport == 80, we should write the string ${test01:10.0.0.4;80} in
the display window bar.

How it works...

Macros work in a simple way; you write a filter string with the sign $ ahead of
every positional parameter. While running the macros, it will accept the
parameters in order.

Chapter 4. Using Basic Statistics
Tools

In this chapter you will learn:

Using the Summary tool from the Statistics menu

Using the Protocol Hierarchy tool from the Statistics menu
Using the Conversations tool from the Statistics menu
Using the Endpoints tool from the Statistics menu

Using the HTTP tool from the Statistics menu

Configuring Flow Graph for viewing TCP flows

Creating IP-based statistics

Introduction

One of Wireshark's strengths is the statistical tools. While using Wireshark, we
have various types of tools starting from simple tools for listing end nodes and
conversations to the more sophisticated tools such as Flow and 10O graphs.

In the next two chapters we will learn how to use these tools. In this chapter we
will look at the simple tools that provide us with basic network statistics; that is,
who talks to whom over the network, which are the "chatty" devices, what
packet sizes run over the network, while in the next chapter we'll get into tools
such as IO and Stream graphs, which provide us with much more information
about the behavior of the network.

There are some tools that we will not talk about; those that are quite obvious (for
example, Packet sizes), and those that are less common (such as ANSP,
BACnet, and others).

To use the Statistics tool, start Wireshark and choose Statistics from the main
menu.

Using the Summary tool from the
Statistics menu

In this recipe we will learn how to get general information about the data that
runs over the network.

Getting ready

Start Wireshark, click on Statistics.

How to do it...

To use the Summary tool from the Statistics menu, follow the ensuing steps:

1. From the statistics menu, choose Summary
Tteslrnm PC CO

File Edit View Go Capture Ana Kb ; . _ Help
O® A m 2 4] Ew&ummaw Elaaai
Y

Filter Show address resolution pression... Clear Apply Save

No. Time Protocol Hierarchy Destination

1 0 000000 [Conversations
2 0 000023 B Endpoints

e Packet Lengths...

sofaware R=

What you will get is the Summary window (displayed in the following two
screenshots).

2. As shown in the following screenshot, in the upper side of the window, you
will see:

o File: This part of the window provides file data, such as file name and
path, length, and so on

o Time: This part on the window displays the start time, end time, and
duration of capture

o Capture: This part of the window shows on which interface the file
was captured and also displays a remark window

File =
Name: C:\Customers\TMS\testrom pc-com-roomirect to glilot 4-JUL-2012.pcapng 4
Length: 105206898 bytes '

Format: Wireshark/... - pcapng File name &

Encapsulation: Ethernet format I
oo Capture time &

First packet: 2012-07-04 15:06:33 d .

Last packet: 2012-07-04 15:10:19 uration

Elapsed: 00:03:45 =
4 OS & Wireshark

Capture version
0S: 64-bit Windows 7 Service Pack 1, build 7601
Capture application: Dumpcap 1.8.0 (SVN Rev 43431 from /trunk-1.8) Captu re interface and
Capture file comments information
Interface Dropped Packets Capture Filter Link type Packet size limit ‘
\Device\NPF_{52AF9A3B-700A-4499-9400-CF4CF60A4A4B} unknown none Ethernet 65535 bytes

e In the lower part of the window is the Display window, where you will get a

summary of the capture file statistics; this includes:

o The number of packets that were captured: their total number and
percentage

o The number of packets displayed (after passing the Display Filter)

o The number of packets that are marked

Display

Display filter: none

Ignored packets: 0 (0.000%)
Traffic 4 Captured 4 Displayed 4 Displayed % 4 Marked 4 Marked %
Packets 104645 104645 100.000% 0 0.000%
Between first and last packet 225.452 sec
Avg. packets/sec 464.157
Avg. packet size 971.401 bytes
Bytes 101652223 101652223 100.000% 0 0.000%
Avg. bytes/sec 450882.842
Avg. MBit/sec 3.607

[

I [Cancel

m

How it works...

This menu simply collects all the captured data, and when a filter is defined, it
presents the filtered data. When the question is, "how do I use Wireshark simply
to know what is the average packets or bytes per second?", this is your answer.

There's more...

From the Summary window, you can get the average packets/second and
bits/second of the entire captured file and also for the displayed data.

Using the Protocol Hierarchy tool
from the Statistics menu

In this recipe, we will learn how to get protocol hierarchy information of the data
that runs over the network.

Getting ready

Start Wireshark, click on Statistics.

How to do it...

To use the Protocol Hierarchy tool from the statistics menu, go through the
following steps:

1. From the statistics menu, choose Protocol Hlerarchy
!tcstmmpc-com-lmmdto 4-JUL-2 -ha 'SVN Re .
Eile Edit View Go Qapture Anal'yze §tat|st|cs Telephuqx To-uls [n'ternals Help

0O ® 4 W ,..szwmmnw
Comments Summary

Filter:
MNo.

. Clear Apply Save

-
vell_b0:8b:9
sofaware_8?

I:Flnng.d-'

Time Protocol Hierarchy

1 0.000000 =
2 0.000023 B Endpoints
2

A CINCAN Packet Lengths...

2. What you will get here is data about the protocol distribution in the
captured file. You will get the protocol distribution of the captured data, as
shown in the following screenshot:

| Display filter: none
Protocol % Packets Packets % Bytes Bytes Mbit/sEnd Packets End Bytes End Mbit/s
© Frame 7612 JEUNTE 5727292 0.148 0 0 0000
= Ethernet 7612 3727292 0148 0 0 0000
& Internet Protocol Version 4 6168 3525863 0.140 0 0 0000
User Datagram Protocol I 533 % 406] 213 % 101615 0.004 0 0 0.000

& Transmission Control Protocol [JEERIER 5762 VIR 3424248 0136 4571 2674809 0.106
® Hypertext Transfer Protocol] 1274 % 970 Jf1669% 622012 0025 519 327407 0013

Secure Sockets Layer] 290 % 21] 342% 127427 0.005 221 127427 0.005
Internet Protocol Version 6 l 8.85 % 674] 4.54 % 169053 0.007 0 0 0.000
Address Resolution Protocol l 1012 % 770 | 087 % 32376 0.001 770 32376 0.001

* You will get the following fields in the Protocol Hierarchy window:
o Protocol: This field specifies the protocol name
o % Packets: This field specifies the percentage of protocol packets from the
total captured packets
o Packets: This field specifies the number of protocol packets from the total
captured packets

o % Bytes: This field specifies the percentage of protocol bytes from the total
captured packets

o Bytes: This field specifies the number of protocol bytes from the total
captured packets

o Mbit/s: This field specifies the bandwidth of this protocol in relation to the
capture time

o End Packets: This field specifies the total number of packets in this
protocol (for the highest protocol in the decode file)

o End Bytes: This field specifies the absolute number of bytes of this
protocol (for the highest protocol in the decode file)

o End Mbit/s: This field specifies the bandwidth of this protocol relative to
the capture packets and time (for the highest protocol in the decode file)

Tip

The End Packets, End Bytes, and End Mbits/s columns are those in which the
protocol in this line is the last protocol in the packet (that is, when the protocol
comes at the end of the packet, and there is no higher layer information). These
can be, for example, TCP packets with no payload (for example, SYN packets),
which do not carry any upper layer information. That is why you see a 0 count
for Ethernet and IPv4 and UDP end packets because there are no frames where
these protocols are the last protocol in the frame.

How it works...

In simple terms, it calculates statistics over the captured data. Some important
things to notice are:

e The percentage always refers to the same layer protocols. For example, we
see in the previous example that IPv4 has 81.03 percent of the packets, IPv6
has 8.85 percent of the packets, and ARP has 10.12 percent of the packets; a
total of 100 percent of the protocols over layer-2.

¢ On the other hand, we see that TCP has 75.70 percent of the data, and
within TCP, only 12.74 percent of the packets are HTTP, and there is nearly
nothing more. This is because Wireshark counts only the packets with the
HTTP headers. It doesn't count for example, the acknowledge packets or
data packets that doesn't have HTTP header.

There's more...

In order to ensure that Wireshark will also count the data packets, for example,
the data packets of HTTP within the TCP packet, disable the Allow sub-
dissector option to reassemble the TCP streams. You can do this from the
Preferences menu or by right-clicking on the TCP in the Packet Details pane.

Using the Conversations tool from the
Statistics menu

In this recipe, we will learn how to get information about conversations that runs
over the network.

Getting ready

Start Wireshark, click on Statistics.

How to do it...

To use the Conversations feature from the Statistics menu, follow the ensuing
steps:

1. From the StatIStICS menu, ChOOSE CODVEI“SEIUOHS

om /trunk-1.10)]

CC AMI BB XY wmmuy

Comments Summary
Filter: Show address resolution
No. Time Protocol Hierarchy

l 0 g 000000 B Conversations
2 0.000023 el
" 0.570600 e 10 Graph

sofaware R’
Broadca~

2. The following window will come up:

: IPv4 TCP
rm-e Conversations Conversations
E:tlans Statistics Statistics

ics
B --- 02-11-2003.cop | / T { i e B

re Channel| FoD1 | vt 42| 1pve | 5] 514] uce | Rsve| scre | Tcp: 10] Token fing | upe:as | use] wian |

Ethernet Conversations

4 AddressB 4 P g 4 Bytes 4 Packets A~B 4 Bytes A—B 4 Packets A~B 4 B

A—B 4 Rel Start 4 Duration 4 bps A~B 4 bps A-B 4

bl Broadcast 452 4 0 0 0000000000 1793140
Spanning-tree-(for-bridges)_00 4 4 6240 0 . G1848 2076418 24041 N/A
¢ Broadcast IPv6 1 92 0 0.0000 M/A MAA
L2 Broadcast 5 488 1] 50.3526 25.97 MN/A (]
110 Ibm_42:c2:4d Conversations | 518 7| Conversations |so.2se7 299 29
Ibm_9d:3f:3e Fpe 7 518 7 Fpar) 80.2584 2299 2299
Ibm_42:c2:4d Statistics 7 518 7 Statistics 80.2596 2299 2299
Cisco_25:5c:c0 420 35246 a7 16 658 203 18588 9191118000 197.8080 673.70 751.76
7 Broadcast 4 452 4 452 1] 0 9593395000 1793142 20,17 MN/A
82 Broadcast 4 452 4 452 0 0 10786073999 1793138 2017 MN/A
Ibm_42:c2:4d 14 1036 T 518 7 518 11669913099 1802597 2299 2299
d Thm 47:c2:dd 14 103R T 518 7 518 172471846999 180.7996 2799 7299

on [] Limitto display filter

Copy | Fallow Stresm | | Graph A—B [Graph B—A ‘ Close

* You can choose between layer 2 Ethernet statistics, layer 3 IP statistics, or
layer 4 TCP or UDP statistics.
* You can use these statistics tools:

o On layer 2 (Ethernet): To find and isolate broadcast storms or
o On layer 3 or 4 (TCP/IP): To connect in parallel with the Internet router
port and check who is loading the line to the ISP

Tip

If you see that there is a lot of traffic going out to port 80 (HTTP) on a
specific IP address on the Internet, you just have to copy the address to your
browser and see access to which website is most "popular”" with your users.

If you don't get anything, simply go to a standard DNS resolution website
(just Google DNS lookup) and find out which is the traffic that loads your
Internet line.

* You can also limit the conversations statistics to a display filter by selecting
the Limit to display filter checkbox located down in the down to the left of the
window. In this way, statistics will be presented on all the packets passing the
display filter.

e For viewing the IP addresses as names, you can select the Name resolution
checkbox. For viewing the name resolution, you will have to first enable it by
navigating to View | Name Resolution | Enable for Network layer.

e For TCP or UDP, you can mark a specific packet in the Packet list and then
select Follow TCP Stream or Follow UDP Stream (depending on whether it is
a UDP or TCP packet) from the menu that appears on the screen. This will
define a display filter that will show you the specific stream of data.

How it works...

A network conversation is the traffic between two specific endpoints. For
example, an IP conversation is all the traffic between two IP addresses and TCP
conversations represent all the TCP connections.

There's more...

There are many network problems that will simply "pop up" while using the
Conversations list.

Ethernet conversations statistics

In the Ethernet conversations statistics, look for the following problems:

e Large amount of broadcasts: you might be viewing a broadcast storm (a
minor one. In a major one, you might not see anything.)

Tip

What usually happens in a severe broadcast storm is that due to thousands,
and even tens of thousands, of packets sent and received per second by
Wireshark, the software simply stops showing us the data and the screen
freezes. Only when you disconnect Wireshark from the network will you
see it.

e If you see a lot of traffic coming from a specific MAC address, look at the first
part of the conversation; this is the vendor ID that will give you a hint about the
troublemaker.

Tip

Even though the first half of a MAC address identifies the vendor, it does not
necessarily identify the PC itself. This is because the MAC address belongs to
the Ethernet chip vendor that is installed on the PC or laptop board and is not
necessarily from the PC manufacturer. If you are unable to identify the address
where the traffic is arriving from, you can ping the suspect and get its MAC
address by ARP, find the MAC address in the switches, and if you have a
management system, use a simple find command to locate it.

IP conversations statistics

In the IP conversations statistics, look for the following problems:

e Look for IP addresses with a lot of traffic going in or out of them. If it is a
server you know (and probably you remember the server's address or
address range), then it is OK; but it might also be that someone scanned the

network, or just a PC that generated too much traffic.

¢ Look for scanning patterns (presented in detail in Chapter 14,
Understanding Network Security). It can be a good scan, such as an SNMP
software that sends a ping to discover the network, but usually the scans in
the network are not good.

¢ You can see a typical scan pattern in the following screenshot:

M Conversations: Example 010 — Ping mmathckup- R _ Ed m@mﬂ
Ethernet: 27| Fibre € n':r.r!c:‘ FODI| IPwd: 26331 E“.\':% IPK:1| TJ[:'j'.E'| |’.:.'.'.9| :'Z'Tf‘] TCP: ZT| Token "||g| UDP:1| '..’Z.f.'] WLAN
IPvd Conversations

Address A “ Address B 1 Packets 1 Bytes 1 Packets A=B 1 Bytes A—=B 4 Packets A—B 1 Bytes A—B 4 Rel Start 4 Duration ¢ bpsA—B 4 bpsA—B ~
192168.110.58 1921704109 1 106 1 106 0 0 6516829999 0.0000 /A

192.168.110.58 1921704110 1 106 1 106 0 0 6532452000 0.0000 N/A

192.168.110.58 1921704111 1 106 1 106 0 0 6548123999 0.0000 NFA {l
192168.110.58 1921704112 Scanning 1 106 1 106 0 0 6563518000 0.0000 N/A [
192168.110.58 1921704113 Pattern 1 106 1 106 0 0 6579247000 0.0000 N/A \
192.168.110.58 192.170.4.114 1 106 1 106 0 0 6.594953000 0.0000 N/A

192168.110.58 L. 192.1704.115 1 106 1 106 0 0 6610591999 0.0000 N/ '
192168.110.58 1921704116 : | 106 L 106 0 0 6626286999 0.0000 N/A U
192168.110.58 1921704117 1 106 1 106 0 0 6.642038999 0.0000 N/A fl
192.168.110.58 1921704118 1 106 1 106 0 0 6.657572000 0.0000 N/A

192.168.110.58 1921704119 v 1 106 1 106 0 0 6673092999 0.0000 NFA

192168.110.58 1921704120 1 106 1 106 0 0 6689980000 0.0000 N/A

192168.110.58 1921704121 L 106 1 106 0 0 6.704381999 0.0000 N/A

192168.110.58 J 1921704122 1 106 1 106 0 0 6719971000 0.0000 N/A o

« i ’
¥ Name resolution Limit to display filter

In this example, there is a scan pattern. A single IP address, 192.168.110.58,
sends ICMP packets to 192.170.3.44, 192.170.3.45, 192.170.3.46, 192.170.3.47,
and so on (in the screenshot we see only a very small part of the scan). In this
case we had a worm that infected all PCs on the network, and the moment it
infects a PC, it starts to generate ICMP requests and sends them to the network;
such narrow band links (for example, WAN connections) can easily be blocked.

TCP/UDP conversations statistics:

e Look for devices with too many open TCP connections. 10 to 20
connections per PC are reasonable, hundreds are not.

e Look and try to find unrecognized port numbers. It might be OK, but it can
mean trouble. In the following screenshot, you can see a typical TCP scan:

Etheme 1 <ere Channet| Foos| 1m+-pa [v | 1px [7 [ice | rsve| scrp| TCP: 4603 | Token Ring | uDe: 382] use | wian]
r B T L.) TCP Conversations.
AddressA 4 PotA 4 AddressB 4 PoB & Packets 4 Bytes 4 Packets A~B 4 Bytes A~E 4 Packets A-B 4 BytesA-B 4 RelStat 4 Dumtion 4 bpsA—B 4 bpsA-B
10001 7 63033 8121823024 1 3 14 3 184 0 0 583042429000 5.0048 172.35
10001 63038 81.218.230.244 1 2 1% 3 194 a 0 533.144870000 89973 17250
10001 51753 194.90.9.45 3 2 12 1 8 1 54 834332011000 0mmn N/&
10001 62650 811823024 3 3 194 3 184 0 0 75347188000 89947 17255
10001 62655 E121823024 3 3 104 3 194 0 0 STSA029000 89939 17256
10001 | single Glu82024 4 [o3 194 3 184 0 0 SISISE00 93 17219
10001 | 1p ource E12820244 4 3 104 3 184 0 0 S1585225000 902 1720
Pattern
10001 L s 15490948 6 2 112 1 8 1 54 604.94 2105000 0.0197 N/&
10001 62444 8121823044 6 3 14 3 1% 0 0 571290318000 89983 17248
10001 62849 81.218.230.244 6 3 194 3 194 1] 0 571.392000000 9.0027 17239
10001 62358 811823024 7 3 194 3 194 0 0 569654217000 5.0063 17232
10001 6263 8121823024 7 3 104 3 184 0 0 560754861000 89967 17251
10001 61613 8121823024 9 3 198 3 184 0 0 SSB66707000 90042 17236
10001 61618 8121823024 9 3 194 3 194 0 0 SS4966022000 9000 17237
10001 s1753 1948091 13 1 58 1 s 0 0 5357286000 00000 NA
on1 = __srw__1smnas 1 1 % 1 5 0 0 S45TX0 0000 NA
‘ m_
[7] Mame resolution || Limit to display filter
Followteam | _GrpnA<a | [Gueh—a | |

Using the Endpoints tool from the
Statistics menu

In this recipe we will learn how to get statistics on endpoints information of the
captured data.

Getting ready

Start Wireshark, click on Statistics.

How to do it...

To view the endpoint statistics, follow these steps:

1. From the statistics menu, click on Endpoints.

—
M Scanning test AUG 2013 --- 004.pcapng [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10)]"
File Edit View Go Capture Analyze Statistics Tdephuunz Tools [nternals Help

©® AWML B MR DY summay QQQ
Comments Summary

Show address resolution
Time Protocol Hierarchy Destination

No.
3484 152.464604 s 239255

3485 152.731289 . 194.90
ORGSR 194_9r

Filter: ression.. Clear 4

Endpoints

2. The following window will come up:

M Endpoints: 25-1-2012 test Lpcapng SRR - oG i)
Ethernet: 21 | Fibre Channc—l| FDDI | IPM:191| M6| IPX{ JXTAI NCPl RSVP| SCTPl TCP: ?428] Token Ringl UDP:22| USBl WLAN
Ethernet Endpoints
Address 4 Packets ¢ Bytes ¥ TxPackets ¢ TxBytes ¢ RxPackets ¢ RxBytes uJl|

Cisco_99:1c:00 274 765 54 615100 145945 21 265611 128820 33349489
Hewlett-_52:9b:c3 171752 33852935 79800 21 342899 91952 12510036 |&
HewlettP_75:80:d7 68 789 13 238 227 32540 6447319 36 249 6790908 |__
HewlettP_75:65:5f 15871 4679858 7819 3759623 8052 920 235
Hewlett-_4e:9d:67 19050 3364 268 9395 2492044 9655 872224
Tp-LinkT_82:29:ce 3880 2496065 1795 833948 2085 1662117
Broadcast 594 53 666 0 0 594 53 666
Wistronl_ae:77:69 213 45313 213 45313 0 0=

[¥] Name resolution [Limit to display filter

Help]I Copy Map '

3. In this window, you will be able to see layers 2 and 3 and 4 endpoints,
which are Ethernet, IP, and TCP or UDP.

How it works...

It simply gives statistics on all the endpoints that Wireshark has discovered. It
could be any of the situations here:

e Few Ethernet endpoints (these are MAC addresses) with many IP end nodes
(these are IP addresses): This will be the case where, for example, we have
a router that sends/receives packets from many remote devices, and what
we will see is the MAC address of the router and many IP addresses
coming/going through it.

e Few IP end nodes with many TCP end nodes: this will be the case for many
TCP connections per host. It can be a regular operation of a server with
many connections, and it can also be a kind of attack that comes through
the network (for example, an SYN attack).

There's more...

Here you see an example for a capture file taken from a network center, and
what we can get from it.

In the following screenshot, we see an internal network with four HP servers and
a single Cisco router. We can see this from the first part of the MAC address that
is resolved to vendor names:

F |
M Endpoints: 25-1-2012 test 1.pcapng o|8 =
Ethernet: 21 | Fibre Channel | D) | 1pvé: 191 | 1Pve: 6] 1px [sx74 | ncp | Rsve | scTp | Tcp: 7428 Token Ring | uDP: 22] use] wian
Ethernet Endpoints

Address 4 Packets ¢ Bytes ~ TxPackets 4 TxBytes 4 RxPackets 4 RxBytes 4 a
Cisco_99:1c:00 274 765 54 615100 145945 21 265611 128 820 33 349489
Hewlett-_52:9b:c3 171752 33852935 79800 21342899 91 952 12510036 |=
HewlettP_75:80:d7 68 789 13 238 227 32540 6447319 36 249 6 790 908
HewlettP_75:65:5f 15871 4679858 7819 3759623 8052 920 235
Hewlett-_4e:9d:67 19050 3364 268 9395 2492044 9655 872224
Tp-LinkT_82:29:ce 3880 2496065 1795 833948 2085 1662117 '
Broadcast 594 53 666 0 0 594 53 666
Wistron]_ae:77:69 273 45313 273 45313 0 0ls

[¥] Name resolution ["] Limit to display filter

) (o [e

When we choose to see the endpoints under IPv4: 191, we see many endpoints
coming from the networks 192.168.10.0, 192.168.30.0, and also other networks.

IPv4 Endpoints
Address A_Packets ¢ Bytes 4 TxPackets 4 TxBytes 4 RxPackets 4 RxBytes ¢ Latitude ¢ Longitude
192.168.30.50 2194 374650 1173 173137 1021 201513
192.168.30.41 2380 389499 1273 193784 1107 195715
192.168.12.19 634 150487 333 48 842 301 101645
192.168.30.47 2140 421646 1144 174119 996 247527
192.168.30.52 1466 223536 788 107 200 678 116336
192.168.30.30 2018 320600 1082 162276 936 158324

192.168.10.15 349 56918 192 30936 25982
192.168.20.159 469 66 504 245 25833 224 40671

192.168.30.25 2486 369426 1325 184463 184 963
192.168.30.99 1301 191873 688 89799 613 102074
192.168.30.12 1444 255848 778 125194 666 130654
192.168.30.100 9342 2041336 4969 703223 4373 1338113
192.168.30.49 2108 160 618 985 175049

Name resolution [T Limit to display fitter

| Hep || copy

Using the HTTP tool from the
Statistics menu

In this recipe we will learn how to use HTTP statistical information of the data
that runs over the network.

Getting ready

Start Wireshark, click on Statistics.

How to do it...

To view the HTTP statistics follow these steps: From the Statistics menu, select

HTTP. The following wmdow w111 appear

[_‘ Scanning test AUG 20] . L
File Edit View Go Capture Analy:e §tart1mcs Telephony Tonts Internal; Help

0O AW 2 BED XS summy QaAQam @

Filter: s::::::r::i:::;:znn ression... Clear Apply Save
Time Protocol Hierarchy Destination

3484 152 . 464604 ®rcomeston: P LD BD D ed

3485 152 ?31289 HTTF" b Packet Counter (1

T SR el)
3487 152.748530 [g Bl €

3 488 1 5 3 . 24 ?47 1 UDP Multicast Streams

In the HTTP submenu, we have the following:

e Packet Counter (marked as 1 in the preceding screenshot): This
provides us with the number of packets to each website. This will help us to

identify how many requests and responses we have had.
¢ Requests (marked as 2 in the preceding screenshot): This is used to see

request distribution to websites.
¢ Load Distribution (marked as 3 in the preceding screenshot): This is
used to see load distribution between websites.

We will perform the following steps to view the Packet Counter statistics:

1. Navigate to Statistics | HTTP | Packet Counter.
2. The following filter window will open:

T |
(M Wireshark: HTTP/Packet Counter Stats Tree: Wireless Network Connection [
e ———————— e ——— e

|Creatc Stat Cancel]

3. In this window, you configure a filter to see the statistics that are applied to

these filters. If you want to see statistics over the whole captured file, leave
it blank. This will show you statistics over IP, that is, all the HTTP packets.
4. Click on the Create Stat button, and you will get the followmg window:

:Hmmmcm
I Topic / Item Count Rate (ms) Percent
I =l Total HTTP Packets 3461 0.015396
= HTTP Request Packets 468 0.002082 13.52%
[POST 25 0.000111 534%
wre T 360 0.001601 76.92%
Requests NOTIFY 71 0.000316 1517%
__ SEARCH 12 0.000053 256%
= HTTP Response Packets 340 0.001512 9.82%
[~ 722 broken 0 0000000 0.00%
Loz Informational 0 0.000000 0.00%
HTTP ® 2ec Success 250 0.001112 73.53%
Responses # 3wc Redirection 88 0.000391 25.88%
&woc Client Error 2 0.000009 0.59%
L Swoc Server Error 0 0.000000 0.00%

Other HTTP Packets 2653 0.011802 76.65%

Close

In order to see the HTTP statistics for a specific node, you can configure a
filter for it using a display filter format.

We will perform the following steps to view HTTP Requests statistics:

1. Navigate to Statistics | HTTP | Requests. The following window will
appear:

2. Choose the filter you need. For all data, leave blank.
3. Click on the Create Stat button and the following window will come up:

O TP Reuests withierip S O e
Topic / Item Count Rate (ms) Percent =
E HTTP Requests by HTTP Host 69 0.001243
notifyl®.dropbox.com 3 0.000054 4.35%
prdynamicyield.com 1 0.000018 1.45%
ping.chartbeat.net 4 0.000072 5.80%
E 239.255.255.250:1900 24 0000432 34.78%
& www.cnn.com 1 0.000018 1.45% =
E edition.cnn.com 3 0.000090 7.25%
! 1 0.000018 20.00%
PR {elernent/ssifintl/breaking_news/3.0/banner.htmifesilD=csil 1 0,000018 20.00%
various URLs in a
specific web site fennintl_adspaces/3.0/homepage/main/botl.120h90.ad 1 0,000018 20.00%
(Edition.cnn.com) fennintl_adspaces/3.0/homepage/spon88id]l_worldbizad 1 0.000018 20.00%
ffavicon.ico 1 0000018 2000% —
cdn.optimizely.com 1 0000018 145%
i2.cdntumer.com 2 0.,000036 290%
www.facebook.com 2 0.0000356 290%
log3.optimizely.com 1 0.000018 145%
ads.cnn.com 4 0000252 20.29%

4. To get statistics for a specific HTTP host, you can set a filter http.host
contains <host_name> or http.host==<host_name> (depends on whether
you need a hostname with a specific name or a hostname that contains a
specific string), and you will see statistics to this specific host.

5. For example, by configuring the filter http.host contains ndi-com.com,
you will get the statistics for the website www.ndi-com.com (shown in the

http://www.ndi-com.com

[M Wireshark: HTTP/Requests Stat.. | = | B | 52)

http.host contains ndi-com.com

Create Stat [Cancel]

following screenshot):
6. What you will get is:

Topic / Item CountRate (ms) Percent
=} HTTP Requests by HTTP Host 74 0.002539

|a www.ndi-com.com | 0.002539 100.00%

/ Statistics created 0.000034 1.35%
fscript/common.js on this HTTP host 0.000034 1.35%

fscript/checkform.js 0.000206 8.11%

/lofslidernews/js/jquery.easing.js

E——— 0000034 1.35%
ffavicon.ico 0.000069 2.70%

fimages/Logo.png 0.000034 1.35%

To see Load Distribution on the Web or a specific website:

1. Navigate to Statistics | HTTP | Packet Counter.

3. Choose the filter you need. For all data, leave it blank.
4. Click on the Create Stat button and the following window will come up:

HTTP ==
Requests

UL S
Responses

_‘I‘Epic / Item
E HTTP Requests by Server
& HTTP Requests by Server Address
& HTTP Requests by HTTP Host
-El- HTTP Responses by Server Address
™ £ 199.47.218151

OK

B 107.21.115.253

OK
® 232383189
® 10004

® 157.166.241.10

2391211
® 827137.254

__ @ 157.166.249.13

& B

= oL = = O R W W

Count Rate (ms) Percen ~

0.001243

0.001243 100.00°
0.001243 100.00"
0.000883

0.000054 6.12%
0.000054 100.00"
0.000018 2.04%
0.000018 100.00"
0.000072 8.16%
0.000108 12.24%
0.000018 2.04%
0.000018 2.04%
0.000090 10.20%
0.000072 8.16% _

4

] »

How it works...

When we open a website, it usually sends requests to several URLs. In this
example, one of the websites we opened was www.cnn.com, which took us to
edition.cnn.com, where we have sent several requests: to the root URL, to the
breaking_news URL, and to two other locations on the home page.

http://www.cnn.com
http://edition.cnn.com

There's more...

For deeper HTTP analysis, you can use purpose-specific tools. One of the most
common ones is Fiddler. You can find it at http://www.fiddler2.com/fiddler2/

Fiddler is a software tool developed for HTTP troubleshooting and therefore it
provides more data with a better user interface for HTTP.

http://www.fiddler2.com/fiddler2/

Configuring Flow Graph for viewing
TCP flows

In this recipe we will learn how to use the Flow Graph feature.

Getting ready

Open Wireshark and from the Statistics menu choose Flow Graph. The
following window will open:

-Choose packets
() All packets
© Displayed packets

-Choose flow type

@ General flow

© ICP flow

-Choose node address type-
@ Standard source/destination addresses
() Network source/destination addresses

oK Cancel

How to do it...

You can choose several options in the Flow Graph window, such as:

e What to view:
o Choose All packets: for viewing all captured packets
o Choose Displayed packets: for viewing only filtered packets

e Flow type:
o General flow will show all captured or displayed packets (for what you
choose before).
o TCP flow will show only TCP flags, sequence, and ACK numbers. This
graph provides a very partial picture of the flow.

How it works...

Simply by creating simple statistics from the captured file: nothing special to say
here.

There's more...

Understanding TCP problems is sometimes quite complex. The best way to do it
most of the time is to use graphical software that have better graphical interface,
or simply take a piece of paper along with different colored pens and draw it
yourself.

A friendly software that can do the job is the Cascade Pilot package by the
developers of Wireshark which can be found at

http://www.riverbed.com/us/products/cascade/wireshark _enhancements/cascade

You can see an example of a self-made graph in the following image:

212.143.162.136 192.168.2.100
Frame 555,5EQ 725,
L 9.938940
Frame 600, , ACK 1349
< 10137339
Frame 601, SEQ 1643, ACK 1349
2] 10.138715
Frame 602, SEQ 1349, ACK 3095
< 10.138.757
Frame 603, SEQ 3095, ACK 1349
. 10.138860
Frame 604, SEQ 1349, ACK 3105
< 10.138.757
Frame 639, SEQ 191, ACK 1349
» 10.589888

After preparing a few graphs, you will know them like the back of your hand.

http://www.riverbed.com/us/products/cascade/wireshark_enhancements/cascade_pilot_personal_edition.php

Creating IP-based statistics

In this recipe we will learn how to create some IP-based statistics. We will
discuss the following statistics tools:

e [P Addresses
e [P Destinations
e [P Protocols Types

Getting ready

Open Wireshark and click on the Statistics menu.

How to do it...

To get IP addresses statistics, perform the following steps:

1. Navigate to Statistics | IP Addresses.
2. In the window that comes up, select the filter you want to use by clicking
on the Filter button:

M Wireshark: IP Addresses Stats Tree: Wireless Network Connection | (5= o(=ls - Sww
—————— et .

Create Stat L Cancel J

e If you want to see statistics of the whole captured file, leave it blank and all

the IP packet statistics will be shown.

o If you want to see only statistics up to a specific IP address, type the filter in
the display filter syntax. For example, the filter ip.addr==10.0.0.2 will show
you only IP packets sent to or from this address.

‘ Wireshark: IP Addresses Stats Tree: Wireless Metwork Connection [-:m = g

I —

ip.addi==10002

Create 5tat ’ Cancel]

o After typing in the filter, you will get the following statistics:

M 1P Addresses with filter: ip.addr==10.0.0.2 SR
——

Topic / Item Count Rate (ms) Percent
= IP Addresses 61710 0024383
10.0.0.2 61710 0.024383 100.00%

|
|
17319478125 266 0.000105 0.43% ‘
77.234.43.96 26 0.000010 0.04% —
1731928527 17 0.000007 0.03%
10.0.0.158 157 0.000062 0.25%

ToxOT I U0

1948019699 16 0.000006 0.03%
199.7.458.72 14 0.000006 0.02%
82.166.201137 569 0000225 0.92%
82.166.201.187 12 0.000005 0.02% ot

Close

To get IP and TCP/UDP destination statistics, perform the following steps:

1. Navigate to Statistics | IP Destinations.

2. In the following window, choose the filter you want to use:

‘ Wireshark: IP Destlnatluns Stats Tree: Wireless Metwaork Cunnechon‘ EI_I&
P ————

’ Create 5tat] ’ Cancel]

3. This window will show you all those IP addresses to whose destination IPs
it has sent packets, and on what protocols.
4. You will get the following statistics:

Topic / ltem
= IP Destinations

772344182
10.0.086
1000138

Count Rate (ms) Percent

0.027558

0.012757 46.29%
0.011333 88.83%
0.008546 75.41%
0.002725 24.04%
0.000062 0.55%
0.001424 1117%
0.001022 71.74%
0.000124 8.70%
0.000062 4.35%
0.000031 217%
0.000186 13.04%
0.000619 2.25%
0.000124 0.45%
0.001022 3.71%

5. In this statistics table, you can see that host 10.0.0.5 has sent TCP packets
to port 80, 443, and 5222, and UDP packets to ports 53 and some others.

This is one of the tools that brings up suspected issues; for example, when you
see a suspected port with too many packets sent to it, start looking for a reason.
To get IP protocol types:

1. Navigate to Statistics | IP Protocol Types.

3. You will get the statistics of the protocols that run over IP that are mostly
TCP and UDP.

rotoco r
IFF | Types with filte

Topic / Item Count Rate (ms) Percent
= IP Protocol Types 61925 0.024468

TCP 60650 0023964 97.94%
uop 1265 0.000500 2.04%
MOME 10 0.000004 0.02%

Close

How it works...

Simply by creating statistics over the captured file.

There's more...

There are various options in Wireshark that give you quite similar statistics;
these are Conversations, Protocol Hierarchy, and Endpoint, which were
discussed at the beginning of this chapter. You can use them in conjunction with
the methods we learned in this recipe.

Chapter 5. Using Advanced Statistics
Tools

In this chapter we will learn the following:

Configuring 10 Graphs with filters for measuring network performance
issues

Throughput measurements with IO Graph

Advanced 10 Graph configurations with advanced Y-Axis parameters
Getting information through TCP stream graphs — the Time-Sequence
(Stevens) window

Getting information through TCP stream graphs — the Time-Sequence (tcp-
trace) window

Getting information through TCP stream graphs — the Throughput Graph
window

Getting information through TCP stream graphs — the Round Trip Time
window

Getting information through TCP stream graphs — the Window Scaling
Graph window

Introduction

In Chapter 4, Using Basic Statistics Tools, we discussed the basic statistics tools
such as lists of end users, conversations, capture summary, and more. In this
chapter we will look at the advanced statistical tools such as the IO Graph, TCP
stream graphs, and in brief, the UDP multicast streams as well.

The tools we will talk about here enable us to have a better look at the network.
Here we have two major tools:

e The IO Graph tool enables us to view statistical graphs for any predefined
filter; for example, the throughput on a single IP address, the load between
two or more hosts, the application throughput, the TCP phenomena
distribution, and more

e We will have a deeper look at a single TCP connection using the TCP
stream graphs, with the ability to isolate TCP problems and their causes

In this chapter we will learn how to use the tools, and in the next chapters we
will use them to isolate and solve networking problems.

Configuring 10 Graphs with filters
for measuring network performance
issues

In this recipe we will learn how to use the IO Graph tool and how to configure it
for network troubleshooting.

Getting ready

Under the Statistics menu, open the 10 Graph tool by clicking on 10 Graph.
You can do this during an online file capture or on a file you've captured before.
While using the IO Graph tool on a live capture, you will get live statistics on
the captured data.

How to do it...

Run the IO Graph tool and you will get the following window:

M Wireshark 10 Graphs: Snif2 - FW to Interet connection.cap _
OF”

| 100s 120s 140s 160s 180s 2005
i - 117 T
| Graphs @ X Axis o
| [Graph 1] Color | Fitter Style: Line || (@] Smooth || Tickintenvak1sec [~
| Colorlﬁlter: Style: Line E| 7| Smooth ?ﬂ'li per tick: 5 |=
~ i View as time of day
Graph 3 Filter: Style: |Line B {¥| Smooth .
_ . _ Y Aouis o
GMEE_J Color | Filter: Style: Line E | Smooth Unit: Packets/Tick "
Graph 5 Filter: Style: Line E] [¥] Smooth || Scale: Auto 2
Smooth: Nofiter ||
belp || Conr | seve || Gose |

On the upper part of the window, you will get the graph highlighted as area 1.
On the lower-left part, highlighted as area 2, you will get the filters that enable
you to configure display filters, which will enable specific graphs. On the right-
hand side of the window, highlighted as areas 3 and 4, you will get the X-Axis
and Y-Axis configuration. Let's see what we can configure and how to do it.

Filter configuration

1. In the filter window, fill in a filter in the display-filter format. Only the
packets that pass this filter will be taken into account for this graph. You
have five optional filters to configure here.

2. Choose the type of graph you want to present: Line, Impulse, FBar, or

Dot.
3. Click on the Graph button. This is required in order to activate the filter
graph. Don't forget it.

X-Axis configuration

1. Choose a value to enter in Tick interval:. The scale can be between 0.001
seconds and 10 minutes.

Tip

If, for example, we get a peak of 1,000 packets/second when the tick
interval X Axis is configured with 1-second intervals, it means that in the
last second we've got 1,000 packets. When we change the tick interval for
X Axis to 0.1-second intervals, the peak will be different because now we
see how many packets were captured in the last 0.1 second.

2. Choose the Pixels per tick: value to configure the pixels per tick interval.
3. Mark the View as time of day button for choosing the time of day format
instead of time since the beginning of capture.

Y-Axis configuration

1. Choose the value for Unit: from Packets/Tick, Bytes/Tick, Bits/Tick, or
Advanced... for choosing the Y-Axis scale.

2. Choose Scale: for the Y Axis. You can choose it to be Linear or change it
to Logarithmic. You can also leave it as Automatic or change it to manual
values when required.

3. Choose a value for Smooth: if you want to see a running average; that is, in
every tick interval you will see the average of the past ticks. You can
choose values from 4 to 1,024 to smooth the graph.

How it works...

The IO Graphs feature is one of the important Wireshark tools that enable us to
monitor online performance along with offline capture file analysis.

While you are using this tool, it's important to configure the right filter with the
right X-Axis and Y-Axis parameters.

Let's have a look at the next two graphs, in which a PC with an IP address of
10.0.0.2 is browsing the Internet. In these two IO graphs, we have configured
two filters:

e The first graph is the upload (upstream) traffic graph, which indicates all
the traffic from the IP address 10.0.0.2; this is the filter ip.src==160.0.0.2,
colored in red.

e The second graph is the download (downstream) traffic graph, which
indicates all the traffic to the IP address 10.0.0.2; this is the filter
ip.dst==10.0.0.2, colored in green.

4 Wireshark IO Graphs: Wireless Network Connection R See—— . =

® Green — Download =

Red - Upload 2000
Simple browsing Watching video stream
Packets Per
Second 1000
Buffering
Al i N 8
| L" '\ AR A A | "‘x\ .f\ /' A
L \fl‘/*.f‘-, — J e e : L\,p‘ — A AN AN AN T
260s 280s 300s 320s 340s 360s 380s 400s 420s 440s
m »
i Traffic from PC (10.0.0.2) to the X s
§I‘aphl| CO|0(ILFihEF‘-! Internet {Upload} Style: | Line ZI ¥| Smooth | Tick interval: 1 sec B
Graph 2] Color Filter | ipsre==10002 Style: Line | =] [@] Smooth || PHeEpertick 15 =]
e View as time of day
Graph3 [Fitter:| ip.dst==1000.2 Style: |Line Z] 7 smooth |
e is
| Graph 4|Cclc>ritFiltEr:| Traffic from Internet to the PC Style: | Line ZI ¥| Smooth Unit JPacke(s.ﬂ’Tick :I
(Graph 5| ol [Filtex E (10.0.0.2) {Download}] Style: Line 3 7] Smooth e |Auto -
Smooth: |No filter 3

Y-Scale: Packets/Tick

Help J Copy |

Save [Close

In the first graph, we see that we've measured the traffic when the X Axis is
configured to a tick interval of one second and the Y-Axis scale is
configured to packets/tick. The result that we've got is that while browsing
(on the left-hand side of the graph) or while watching a movie (on the right-
hand side of the graph), the upload and download traffic is nearly identical.

Green = Download &

Red - Upload
Simple browsing Watching video stream
n ! Bits Per .
| 5 Second 0000000
| Buffering
T T T T T T T T T T T T T T T T T T T 0
260s 280s 3005 320s H0s 360s 380s 400s 420s 4405

] [m '

[Traffic from PC to the Internet - 1 xrAlirs
-Gl'lphl Celor -E (Upload) Style: Line El [¥] Smooth | Tickinterval: 1 sec E
[Graph 2| Color Filter: | ipsrc==1000.2 Stle Line | ¥ Smooth | Prelspertice |3
@ : ip.dst==10.00.2 T EI?Srnomh (7] View as time of day
} e _'P == Style: Line) i

Color Fitee | Traffic from Internet to the PC Style: |Line El) smooth || i [RitsrTick
olar (Download) | Style: Line [=] @) smooth Auto
Help

Smooth: |No filter

Copy

In the second graph, we see the traffic in bits/sec. Here, we see the
bandwidth required from the network while using it to connect to the
Internet; that is, an asymmetrical bandwidth when most of the traffic is in
the download direction.

There's more...

Let's have a look at another example here. This is an example of a file download

in FTP when 10.0.52.164 downloads a file. Again, you can see that in order to

get the traffic on the network, we changed Unit: under Y-Axis to Bits/Tick.
Packets/Tick is also important and we will see implementations for it in the

applications chapters (chapters 7-14) later in the book.

Ml Wireshark 10 Graphs: download-goodpcap o [B)

< | i | »

Y-Axis in

Packets/Sec

Y-Axis in
Bits/Sec

— 5000000

-Graphs | X Axis |
Graph 1| Color . Style: Line E [¥] Smooth || Tick intervali 1 sec] E F
1 - I | Pi ick: - | 2500000
- Gk m ip.src==10.0.52164 Style: Line E BGmootly|| b pertick 5 | r
: = | [7] View as time of day 1
h3] Col |ip.dst==100.52.164 Style: |Line E [¥] Smooth || — - i
= = Y Bxis— | F
Graphit Colorm | Sty Line E[@ smooth | iy | packets/Tick [7]) L :
Graph 5| Colar _ Style: Line B [¥] Smooth || Scale: ;HULU e t)| L 2t|)
| Smooth: | Mo filter E 2 =

Help

Copy

e

APl L | WU | FHLEE:

Graph 2 Colorm ip.src==100.52.164 | styte:|Line
- Fitter ip.dst==10052.164 | styte:|Line
Color @ Style: Line
olor Style: | Line

Help Copy

IZl Smooth

IZK [¥] Srnooth

El [¥] Smooth ||

IZI [¥] Smooth
IZI Smooth

Smooth:

| K Ais -

Tick interval: 1 sec
Pixels per tick:
[T View as time of day

¥ Axis
Unit: | Bits/Tick
- r—v
Scale: pataiaeg
No fl Iter ﬁ

Close
L

Throughput measurements with 10
Graph

IO Graph is a convenient tool for measuring the throughput of a network. Using
it, we can measure the traffic and throughput of any predefined filter. In this
recipe we will see some examples for measuring the throughput of a network.

Getting ready

Connect your laptop with Wireshark to a network with a port mirror to the link
you want to measure, as you learned in Chapter 1, Introducing Wireshark. Start a

new capture or open an existing file, and open the IO Graphs tool from the
Statistics menu.

While measuring the throughput, we can measure the throughput on a
communication line between end devices (PC to server, phone to phone, PC to
the Internet, and so on) or to a specific application.

Line/Port ||

User \ \
1 1
v

|Connection| \ D
[
L1

The process of isolating network problems starts from measuring traffic over a
link between end devices on single connections and seeing where it comes from.

Some typical measurements are host-to-host traffic, all the traffic to a specific
server, all the traffic to a specific application on a specific server, all the TCP
performance phenomena on a specific server, and more.

How to do it...

In this recipe, we will provide some basic filters for measuring traffic in the
network.

Measuring throughput between end devices

To measure the throughput between end devices, simply configure a display
filter between their IP addresses.

For example, to see the traffic between 10.2.10.101 and 10.2.10.240, configure
the filter: ip.add req 10.2.10.240 and ip.add req 10.2.10.240.

You can either type the filter in the IO Graph's Filter: box or perform the
following steps:

1. Place the cursor on a packet in a specific connection.

2. Right-click on it and navigate to Conversation filter | IP. The filter string
will appear in the upper display filter box.

3. Copy the filter string from the upper display filter box to one of the 10
Graph Filter: boxes.

4. Click on the filter bow button in the IO Graphs window to activate it.

eshark 1.10.2 [SVN Rev 51934

from ftrunk- 1100}

File Edit View Go
oPama BRR

fhe. Time

516 2019211

Copture Analyze Statistics Telephony Tools t:mols |

Filter: | ip.addr==10.210.101 and ip.addr==10.2.10.240

=1

+oF2 EEQacn aBmk
E&prus‘nun_. Clear Apply

Destination

2K e
Save STP
Source

Protocel Info

10.2.10.101

TLsvlApplication Data, Application Data

;I.U . 2_“10 .240
517 13.019256 "\ WiresharkiO Graphs: Snifferd¥oram pcapna BN ~ oot S|
518 13.019281 - o] 1000 |
E21 12 N2NAARR
: : Graph 1 (black) — total traffic 500
© Frame 372: 203 Graph 2 (red) —filtered traffic
: Ethernet II, s
- Internet Proto
- Transmission C oLy ' ‘
7 Secure SOCketS 54035 660z 6305 003 720 7405 7605
| | Graphs ¥ Axis
Total traffic- no _Fihcn' Style: |Line E V] Smooth | Tickintenvaklsec [~
filter configured Col [-Fil‘tzr:] ip.addr==102.10.101 and ip.addr==10.2.10.240 Style: Line E 7] Smooth | | Fixets pertick: 5 |=]
S —— View as time of da
[GIM{_F;M::I Style: |Line E| V] Smooth VAsz : &
Traffic between H AGraph 4| Color [Fter Style: Line || [Smooth ||yt (packets/Tick =
10.2.10.101 and [Guph.;’ fo |Ei Style: Line E] Smooth || Seale Auto ;
10.2.10.240 Smooth: | Mo filter =
Help ‘ Copy Save | | Close |

Measuring application throughput

In order to configure the performance measurement of a specific application, you
can configure a filter that contains specific port numbers or a specific
connection.

There are several ways to isolate an application graph. Here's one of them:

1. In the captured data, click on any packet that belongs to the traffic stream.
In TCP it will be a specific connection; in UDP it will be just a stream
between two IP/Port pairs.

Right-click on it and choose Follow TCP stream or Follow UDP stream.
You will get tcp.streameq<number> or udp.streameg<number>. <number>
is simply the number of the stream in the capture file.

Copy the string to the filter window in the IO Graphs window and you will
get the graph of the specific stream.

! SnifferdYoram.pcapng [Wmshaﬂ: :
FEile Edit View Go Capture Analyze Statlstlcs Telephony Tocls Intemals Help

coamE BBEXR Aa+s»aT L EFF aacan #aB®% @

E Expression.. Clear Apply Save STP

No. e Source Destination Protocol Info

22 .533057 10.2.10.103 10.2.10.240 TLSv1 Apg

23 2223419 20200 108 d0 2 10 280 sl ane
24 . 5 3 3481 ‘ Wireshark IO Graphs: SnifferdYoram.pcapng F-

T T]
660s 680s 700s 720s 740s 760s
4 |—-

-Graphs 1 X Axis

| | Sheles line _‘ Il Tick interval; 1 sec El

Color tcp stream qu Style: | Line j [¥] Smooth | ol
T = — .L' o = umewastlmeofday

raj ilter: e |Line mooth | - |
T =] TS e 7] A |
Graph 4 CUI‘" | St_yle:_Line j [¥] Smoath Unit: Packets.,"'l'lck
Graph 5| Color Style: | Line] [7] Smooth || Scale: [Auto

| Smooth Nofllter
Help L Lopy Save Llose

If you want a graph for specific data on the stream, add information to the filter.
For example (in the previous illustration):

® tcp.streameq 2 and tcp.analysis.retransmissions will give all the
TCP retransmissions on the specific stream (indicating, for example, a slow
network, errors, or packet loss)

e tcp.streameq 2 and tcp.analysis.zero_window will give all the TCP

zero window phenomena on the specific stream (indicating a slow end
device)

How it works...

The power of the IO Graph tool comes from the fact that you can configure any
display filter and see it as a graph in various shapes and configurations. Any
parameter in a packet can be filtered and monitored in this way.

There's more...

Some examples for parameters that can be monitored are explained in this
section.

Graph SMS usage — finding SMS messages sent by a specific
subscriber

1.

To configure the filter, choose SMPP (Short Message Peer to Peer
protocol) packets with the command Submit_sM. This is the SMPP
command that sends the SMS.

Type smpp.destination_addr == "phone number" in the filter. The filter
smpp.destination_addr == "972527098241" was configured in the
example.

Graphing number of accesses to the Google web page

1.

2.

Open the 10 Graphs window. You can do it during the capture to view
online statistics or open a saved capture file.

Configure the filter http.host contains "<name>", in our case,
http.host contains '"google".

In the packet list you will see (while configuring the same filter) the
information shown in the following screenshot:

(] Capturing from Wireless Network Connection [Wireshark 1.10.2 (SVN Rev 51934 from /trunk-1.10)]

File Edit View Go Capture Analyze Statistics Tglephon! Tools Intemals Help
codE: BEXR2 A¢e» T2 IEE Qaal @®B % B

Filter: | http.host contains "google” E]Expression... Clear Apply Save STP

Time Source Destination Protocol Info

Mo.
1997 86.079418 710.0.0.2 173.194.41.178 HTTP GET / HTTP/1.]

2003 86.273157 10.0.0.2 173.194.41.159 HTTP GET /?gws_rd=¢
2441 109.367327 |10.0.0.2 173.194.41.86 HTTP GET /mail/ HTl
2516 109.751931 | Ivimesnce 2 62.0.54.113 OCSP Request
2618 _110.262810 [1°=™"' 2 62.0.54.113 OCSP Request
3218 118.429471 |iv.v.u.2 62.0.54.113 OCSP Request
3937 130.241357 |10.0.0.2 62.0.54.113 OCSP Request
43146 130.747239 |10:0.0.2 62.0.54.113 OCSP Requer

¢ In the IO Graphs window, you will see the following graph:

fhﬂp-host contains "google” -:]Stylz: FBar Tick interval =]
Graph 2 | Color [Filter: ' : Style: Line El 7] Smooth Pixels per tick: 5 =

;] View as time of d
|Graph3| o' | Filter: Style: Line EI @] Smooth |-~ =
. 5=
Graph 4| Color |Filter Style: Line [=] @1 Smooth |0 [ﬁacwick —
[Graph Sl Color |F1Iter] | Style: | Line E [¥] Smooth | | Scale: TAuto
Smooth: Mo filter -

. Hep || Copy [seve | §'°’°?:]

In the packet capture pane, you can see that we've had two accesses to Google
after around 86 seconds, the next two after around 109 seconds, and so on.

Advanced 10 Graph configurations
with advanced Y-Axis parameters

In standard measurements with the IO Graph tool, we measure the performance
of the network in units of packets/second, bytes/second, or bits/second. There are
some types of data that cannot be measured with these parameters, and this is the
reason we have the Advanced... feature in the Y-Axis options.

Getting ready

Choosing the Advanced... feature from the Unit: drop-down menu under Y-Axis
opens a wider IO Graphs window, and provides the following options:

SUM (*): This draws a graph with the summary of a parameter in the tick
interval

COUNT FRAMES (*): This draws a graph that counts the occurrence of
the filtered frames in the tick interval

COUNT FIELDS (*): This draws a graph that counts the occurrence of the
filtered field in the tick interval

MAX (*): This draws a graph with the maximum of a parameter in the tick
interval

MIN (*): This draws a graph with the minimum of a parameter in the tick
interval

AVG (*): This draws a graph with the average of a parameter in the tick
interval

LOAD (*): This is used for response time graphs

How to do it...

To start using the IO Graphs window with the Advanced feature, perform the
following steps:

1.
2.

Start the IO Graphs window from the Statistics menu.
In the Unit: drop-down menu under Y-Axis, choose the Advanced...
option. You will get the following window:

M Wireshark 10 Graphs: Wireless Network Connection =~ = -w - f} [ﬂ@@

10us

=1
-3
A

T — T — T T T T 1 T T
Os 20s 40s 60s 80s 100s 1205 1405 160s 180s

'

Graphs X Axis

{Graphl Color | Filter: Calc; SUM(™) |z| tyle: Line lz| ¥] Smoocth || Tick interval: 1 sec 3

[Graph 2] color Filter | Cale: SUM() B tyle: |Line E F] Smooth || F&els pertick: 5_|a]

L] L 2 View as time of day

‘ Graph 3] Filter: Cale: SUM(™) IEI tyle: Line :zl ¥ Smooth —=

—_— = is

‘E;ﬂil Color FE‘ Calc: SUM(™) B tyle: Line B ¥| Smooth Unit:

}\Graph SJ‘ leIter{ Calc: SUM() E| tyle: Line E| 7| Smooth | | Scale: Auto =

Smooth: | No filter EJ

i Help ‘ \ Lopy | Save] [Close |

* You will see new drop-down menus with the string SUM(*).

e Choose SUM(*)/COUNT FRAMES (*)/COUNT FIELDS
(*)/MAX(*)/MIN(*)/AVG(*)/ LOAD(*), and configure the appropriate filters.
In the next recipes we will see some useful examples.

How to monitor inter-frame time delta statistics

The time delta between frames can influence TCP performance, and there are
cases in which we would like to correlate these with the performance we get
from the network.

Let's look at the following capture file:

Ml SnifferdYoram.pcapng [Wireshark 1.10.2 (SUN Rev 51934 from /trunk-110)]
Eile Edit View Go Capture Analyze 3Statistics Telephony Tools [nternals Help

codamE BERAXR Ae»oTLI[EE QQAQAD @E#BM % | B

Filter: | ip.sre==10.2.10105 E|Expresiiun.., Clear Apply Save STP

No. Time Source

6520 116.974756 | 10.2.10.105 10.
6521 116.974798 | 10.2.10.105 10.
6522 116.974819 | 10.2.10.105 10.
65320 1 T6 1075 25 A AT EdaTaias 10.
6540 117.015011 [Packetsarrival 10,
6542 117.015590 | time 10.
7031 130.915192 | 10.Z2.10.105 10.
7033 130.915744 | 10.2.10.105 10.
7034 130.919789 | 10.2.10.105 10.
7035 130.919834J 10.2.10.105 10.

Destination Protocol Info

— 1 e —_——gerrm e = =

.10.240 TCP [Tcp segment of i
.10.240 TCP [TcP segment of i
.10.240 TCP [TcP segment of i
.10.240 TLSvl Application Data
.10.240 TCP https > 65277 [Af
.10.240 TCP https > 65277 [Af
.10.240 TCP https > 65295 [Af
.10.240 TCP https > 65295 [Af
.10.240 TLSvl Application Data
.10.240 TLSvl Application Data

PRNMNMNMNMNNNMN NN
=
o

Here, we see packets sent from the source IP 10.2.10.105 as configured in the
display filter.

To view the time variance between frames, configure the following parameters:

e To view the maximum frame.time_delta value, configure ip.src ==
10.2.10.105 in the field beside Filter: and choose MAX(*) and type
frame.time_delta in the fields beside Calc:

e To view the average frame.time_delta value, configure ip.src ==
10.2.10.105 in the field beside Filter: and choose AVG(*) and type
frame.time_delta in the fields beside Calc:

e To view the minimum frame.time_delta value, configure ip.src ==
10.2.10.105 in the field beside Filter: and choose MIN(*) and type
frame.time_delta in the fields beside Calc:

The graph that we will get is as follows:

M Wireshark 10 Graphs: SnifferdYoram.pcapng

1] — 50ms
The black impulse
indicates the _\
maximum
The red dots
1 indicates the

The green £ average |

dots indicates — 25ms

the minimum L
B o] ™ S GRS N s NN S N SN RN i AN RN R TR N | R A I) RO PR N S
605 80s 100s 120s 140s 160s 180s 2005 2205
a4 n ’
Graphs K Avis

Color | Fifter: | ip.src == 1021005 Calc MAX() ~ | frame.time_delta] styie: imputse [] (7] Smooth || Tickintevaki1sec [+]

Color IF!Iter. [ip.src ==10.210.105 Cale: AVG(™) - | frame.time_delta] Style:| Dot 3 [¥] Smooth Picels per tick:] |L|.
Fitter: 10210105 Calcl MIN f del Style: D [»] 9] smootn bl '

Filter: || ip.src == ' e - metime_delta : | Dot -l t!
Graph 3\ ilter: [rp sre a (™) | v | fra ime._] tyle: | Do moo! T

Graph 4| Color [fji‘ter: Cale: SUM() | Style: | Line 3 ¥} Smooth || o, Nehiramead. E

||| | Graph 5 IF!her: Calc: SUM(™) IE! Style: Line 3 4] Smooth || Scale: 50000 H

| Smooth: Mo filter E|
s 1o] e o]
4 ———— e———— e——— = —— — == =

What we see in the screenshot is a graph of the minimum, average, and
maximum time delta between frames. What do we do with it and how do we use
it for network debugging? This will be covered in Chapter 10, HTTP and DNS.

How to monitor the number of TCP retransmissions in a stream

TCP events can be of many types: retransmissions, sliding window events,
ACKs (or lack of them), and others. To see the number of TCP events over time,
we can use the IO Graph tool with the Advanced... feature and the COUNT(*)

parameter.

To do this, perform the following steps:

1. Open IO Graphs from the Statistics menu.
2. Under Y-Axis, choose Advanced... for Unit:.
3. Configure the filters as follows:
o [P source and destination filters in the fields beside the Filter: buttons
o TCP events in the fields to the left of Style:
o Choose COUNT FRAMES (*) in the Calc: field and type
tcp.analysis.retransmissions in the filter field

In this example, filters were configured to monitor TCP retransmissions on three
different TCP streams.

(P Wireshark 10 Graphs: X
e e e e e e e R e e e e e e e b i e e e e a e Se s e s e Se e e se e e s e e e e o 10
| High retransmissions rate (10 per
[1 retransmissions/second | /_ second) on the connection between
192.1.1.2and 192.1.1.121
""lZretransmlss'lnns;’semnd | S e R e e e e s b e L B e o
III] I‘J‘IJ{I"II I'I'"I'IJ-.'II """"" T— | I | 1
I ! T T T T | R = T T = 2 T T | e ! T T T T T
4205 4405 4605 4805 5005 520 5405 5604 5805 6005 6205 6405
« =
Graphs X Bodis
Graph 1| Color | Filter: Cale: SUM(™) 3 Style: | Line v | [¥] Smocth || Tick intervak 1 sec I=]
Color .F|||¢r: ip.addr==1921.1.2 and ip.addr==1921.1.121 Calc: COUNT FRAMES(™) 3 tepanalysis.retransmission Style: | FBar T‘ ¥ Smooth Pixels per tick: 3 L
- T ot View a5 time of day
[Fitter:| | ip.addr==192.112 and ip.addr==1921683.2 Cale: COUNT FRAMES(") | tep.analysis.retransmission SoteFBar[+] 9] Smoothn |~ E
; ! L = is
Graph4| Coler |Filter: | ip.addr==192.1.12 and ip.addr==19211123 Cale: COUNT FRAMES(") alcp.malysis.re!unsmiuicn Style: |FBar x| @ smooth (| o [advanced.. =]
Graph5) :FlTler:. Cale: SUM(™) =] Style:|line || @] Smocth || Scale: |10 =1
Smooth: Nofier ||
| Help | Copy Save Close

In the graph of the preceding screenshot, you can see that retransmissions from
each TCP stream are presented in different colors.

How to monitor a number of field appearances

In various network protocols (mostly on those running over TCP), variations in
time between frames (that is, the frame-time delta filter) can influence the
performance significantly. One of the tools for viewing these changes in the IO
Graphs window is the Advanced... configuration.

To do it, perform the following steps:

1. Right-click on a packet in the suspicious TCP stream and navigate to
Conversation filter | TCP. A filter will appear in the main filter box.
2. Open 10 Graph from the Statistics menu.
Under Y-Axis, choose Advanced... for Unit:.
4. Configure the filters as follows:
o Copy the filter definition from the upper filter box on the right-hand
side to the IO Graph filter box on the left-hand side
o On the left-hand side, type the filter frame.time_delta
o Choose AVG(*) to see the average delta.

o Choose the appropriate X-Axis resolution.

w

Here is an example. In the following screenshot, we see a packet list with time
variations between frames (a second time column was added in order to see the

real time and time variations):

|l Enmoltﬂ&ﬂ-—l-ﬁtl?ﬁl}wnhlﬁ.pup [Wireshark 1102 (VN Fire 51534 from Jtrus
e E1 Gow 'Go ;,w, fravze Suavtties Telphony Took faternals LE' addr eq 95.35. iﬂﬂ.ﬂﬁandgaddregiS 217.49.22)

fiokes e

o@® 4 WL s X e T D 7| and (tep.port eq 20293 and tcp. port eg 44832)
Filter: ¢rp-lddrrq1$J‘I.7192?2'md'.!cpkwr!cq.’ﬂﬁ‘{wﬂltp-pul‘th'l-l&l?:ll_i.'_:.-.-u —r——trrr— |

M. Twre Daita Tipie Source De-tl AEtion Protocel Info

1214 | 0.060641000 || 495.047401 | 15.217.49.22 95.35.100.216 FTP-DATA FTP

1215] 0.173069000 || 495.220470 | 95.35.100.216 15.217.49.22 TCP 202
1216 0.185921000 || 495.406391 | 15.217.49.22 95.35.100.216 FTP-DATA FTP
12171 0.118770000 1l 495.525161 | 95.35.100.216 15.217.49.22 Tcp 202
1223] 29.243810000|] 524.768971 | 15.217.49.22 95.35.100.216 FTP-DATA FTP
1224] 0.107967000 || 524.876938 | 95.35.100.216 15.217.49.22 TcP 202

1225 0.441966000 || 525.318904 | 15.217.49.22 95.35.100.216 FTP-DATA FTP
1226| 0.089007000 || 525.407911 | 15.217.49.22 95.35.100.216 FETP-DATA ETP

=TT T T I I IYUOY JEULZITOIU | LJ.cLi . 99,242 I5.33.1UU.Z1b FIP-DAIA FIP
1235 0.000286000 526.238136 95. 35 100 216 15.217.49.22 TCP 202

_ ¥
1248] 0.110962000 |1 535.947338 | 95. 35 100

oS S 100210 N e
15.217.49.22 95.35.100.216 FTP-DATA
95.35.100.216 15.217.49.22 TCP

W A am AN AF AE A As T — e -

1253
1257
1258

- -mEa

0.000354000
10.941129000
0.142565000

P W e e W W n W W Wl

545.887247
556.828376
556.970941

[l st B S 1 T T W

You see that there are some large time variations between frames; for example,
29.24 seconds in the frame 1,223, 9.12 seconds in the frame 1,247, and more.

In the IO Graphs window configured as described earlier, you will see the
following:

| Ml Wireshark 10 Graphs: Example ¢

29.24 Seconds pick
(frame 1223, time 524)
PR — = 9.12 Seconds pick S R RS R —— T
(frame 1247, time 535) |-} e e)

- e - - cemma .- - .F. 9.955|l:al1d!pl'l:k - mmaa - semmmaaen
e e e ke e i G
1 T T T T T -' T T T T T r - s
500s 5205 5405 5605 580s 7005
Tl +
X Axis

(tcp.port eq 20293 and tep.port eq 44832)] Calc{Max() - time_delta_displayed] stylefrBar |+ @ Smooth | Tickintervali1 sec
Cale SUM() - | styleLine | = | [@] Smootn | Pelspertice (3
} = - =] View as time of day
Cale: SUM(™) > Style: | Line > | [¥] Smooth —
! = | = _ ¥ Auis
Cale: SUM(™) ; Style: Line ; [¥! Smooth Unit: Advanced... |+
Cale: SUM(™) ot Style: Line * | [¥] Smooth | | Scale: 50000000 -
(ip.addr eq 95.35.100.216 and ip.addr eq 15.217.49.22) Smooth: [Nofiter iz

[— and (tcp.port eq 20293 and tcp.port eq 44832)
J

As you see here, there are variations in time between frames. Later in this book,
we will learn to see what causes these problems and how to solve them.

How it works...

The 10 Graph tool is one of the strongest and most efficient tools of Wireshark.
While the standard IO Graph statistics can be used for basic statistics, the
Advanced... feature can be used for in-depth monitoring of response times, TCP
analysis of a single stream or several streams, and more.

When we configure a filter on the left, we will filter the traffic between hosts,
traffic in a connection, traffic on a server, and so on. The Advanced... feature
provides us with more details on traffic. Here are a few examples:

¢ On the left you see the TCP stream; on the right you see the time delta
between frames in the stream

¢ On the left you see the video/RTP stream; on the right you see the
occurrence of a marker bit

There's more...

You can always click on I0 Graph, and it will bring you to the reference packet
in the packet pane.

Getting information through TCP
stream graphs — the Time-Sequence
(Stevens) window

One of the tools in Wireshark that enables us to dig deeper into applications
behavior is the TCP stream graphs. These graphs, as we will see in the following
recipes, enable us to get the filling of the application behavior along with the
possibility to locate problems in it.

Getting ready

Open an existing capture or start a new capture. Click on a specific packet in the
capture file. Even though you can use this feature on a running capture, it is not

meant for online statistics; so it is recommended that you start a capture, stop it,

and then use this tool.

How to do it...

To view TCP stream graph statistics, perform the following steps:
1. Click on the packet of the stream you want to monitor.
Tip

The TCP Stream shows a directional graph, so when you click on a packet,
it should be in the direction you want to view the statistics on. If, for
example, you download a file and want to view the download statistics,
click on a packet in the download direction.

2. From the Statistics menu navigate to TCP StreamGraph | Time-Sequence
Graph (Stevens). The following window will open up:

-H TCP Graph 6: Microsoft: \Device\MPF_{55DFE1F7-0FDE-46E EQM{SMSSE{} 91.185.206.240:8000 -> 10.0.0.3:59346] = | B x4
Sequence
number{B] 4+ [
|
] Sequence Numbers
1 | (Counts the bytes) Connection |
2500000 — details |
] [
2000000 —
1500000 —
i Bytes/Second
1000000 — Graph
500000 —
) Time (Seconds)
] L
1 r 4
o I L . v] — T T T [T 1T T
e 100 150 200
Time[s]

The graph actually shows the advance of byte transfer over time. In this
example we see a continuous diagonal line, which is an indication of a good
file transfer.

To measure the throughput of a file transfer, simply calculate the bytes
transferred in a unit of time as shown in the following screenshot:

1 Sequence Numbers
1300000 (Counts the bytes)

Time (Seconds)

L
[

e |

We see that the transfer rate is 1,200,000 bytes in 100 seconds, that is,
12,000 bytes/seconds or 95 Kbits/sec.

. Clicking on a point in the graph using the scrollbar will magnify the graph
around the point that you clicked on.

. Right-clicking on a point in the graph will take us to the packet pane in the
captured file.

. For changing graph parameters, we have a small window opened parallel to
the graph as shown in the following screenshot:

Horizontal:

Vertical:

Horizontal step:

Vertical step:
Keep them the same
Preserve their ratio

-Zoom lock:
@ none () horizontal () vertical

Close

6. For changing from zoom in to zoom out, click on the in or out button.

How it works...

The Time-Sequence Graph (Stevens) is a simple graph that counts the TCP
sequence numbers over time. Since TCP sequence numbers count the bytes sent
by TCP, these are actually application bytes (including application headers) sent
from one side to another.

This graph (as we will learn in the TCP and applications chapters) can give us a
good indication of the application's behavior. For example, a diagonal line means
a good file transfer, while a diagonal line with interrupts shows a problem in
transfer. A diagonal line with a high gradient indicates fast data transfer, while a
low gradient indicates a low rate of transfer (depends on the scale of course).

There's more...

Left-clicking on a point in the graph will take you to the packet in the packet
pane. When you see a problem, zoom into it, left-click on it, and check what
went wrong with the packets.

While viewing a graph, it is important to know what the application is. A graph
that indicates a problem in one application can be a perfect network behavior for
another application.

Getting information through TCP
stream graphs — the Time-Sequence
(tcp-trace) window

TCP time-sequence graphs based on the UNIX tcpdump command provide us
with additional data on the connection that we monitor. In addition to the
standard sequence/seconds in Time-Sequence (Stevens), we also get information
on the ACKs that were sent, retransmissions, window size, and more details that
enables us to analyze problems on the connection.

Getting ready

Open an existing capture or start a new capture. Click on a specific packet in the
capture file. Even though you can use this feature on a running capture, it is not

meant for online statistics; so it is recommended that you start a capture, stop it,

and then use this tool.

How to do it...

To view TCP stream graph statistics, perform the following steps:

1. Click on a packet in the stream you want to monitor.

Tip

The TCP stream shows a directional graph, so when you click on a packet,
it should be in the direction you want to view the statistics on. If, for
example, you download a file and want to view the download statistics,
click on a packet in the download direction.

2. From the Statistics menu navigate to TCP StreamGraph | Time-Sequence

Graph (tcp-trace). The following

window will open up:

500000 —

Data Graph

ﬁ TCP Graph 2: Example 080 --- HSUPA Dcrwnload.pca{15.21?49.22:44832 -» 95.35.100.216:20293 . o P e £3
B — — - —
Sequence
number[B]
- Window S
Who is talking (What Size Graph ——
1 connection we are _’__.l" -
i monitoring) & R
— f
i !
| 1000000 — . ‘J
l - : !
| - A
| 7 ,r'
. B . '!r"
1 2
i

Time[s]

The graph shows the advance of byte transfer over time in the lower black
graph and the window size in the upper gray graph. When there is space
between the two, it means that there is some TCP buffering left and TCP
will transfer bytes. Once they get closer and touch each other, it would be a
window-full phenomenon that does not enable further data transfer.

3. We obtain the following screenshot when we zoom into a specific area:

Sequence
number{B]

1100000 —

1050000 —

1000000 —

00000 —

Illlllllilll[\III|I1II|[IIIE|II1I|IIII|EIIII]IIIil\EI
1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

Timels]

4. We obtain the following captured packets when we zoom into a particular
area in the graph:

Al Example 050 -— HSUPA Downlosd peap_(Wireshark T10.2 (SVI Rev 51934 from Jtrunk-14
File Edit View Go Capture Analyze Statistics Ter!phnni Tocks ntemals Help

e dmd BEEXE Aer*d T2 IERaQl @B 8% 8

Filter: tcpstream eq8 ."] Expression... Clear Apply Save STP

Source Destination Protocel Info

M. Time
2234 1272.884906 15.217.49.22 95.35.100.216 FTP-DATA FTP Data: 1398 bytes
2235 04 95.35.100.216 15.217.49.22 T 20293 > 44832 [ACK] !

2238 1273.464842 15.217.49.22 95.35.100.216 FTP-DATA FTP Data: 1398 bytes
. = _ 49,)

TCP 20293 > 44832 [ACK]

You can see that in the packet capture, there is a frame in time 1,273

(seconds after the beginning of the capture), a break, a packet in time 1,386,
a break, and a packet in 1499.

In the TCP stream graph you see the breaks in transmission, and we can
look for its reason when we are back to the packets pane.

How it works...

The Time sequence (TCP-trace) graph is taken from the UNIX tcpdump
command, which also checks the window size published by the receiver (this is
the buffer size allocated by the receiver to the process), along with retransmitted
packets and ACKs.

Working with this graph provides us with a lot of information, which we will use
later for network debugging. The phenomena from a window that is being filled
faster than expected to a lot of retransmissions and others will become visual
with this graph that will help us to solve them.

There's more...

The more we zoom in, the more details we will get as shown in the following

screenshot:
Y
Every bar }{
indicates a packet ’I}

TCP
Retransmission

TCP Duplicate
Ack's

A bar is an indication of a packet that carries data between the initial and final
sequence numbers. The bar that is not in the regular graph and looks like it runs
away from it is a retransmission and the gray bar is a duplicate ACK. We will
learn about these phenomena in Chapter 9, UDP/TCP Analysis.

Getting information through TCP
stream graphs — the Throughput
Graph window

The Throughput Graph window of the TCP stream graphs enables us to look at
the throughput of a connection and check for instabilities.

Getting ready

Open an existing capture or start a new capture. Click on a specific packet in the
capture file. Even though you can use this feature on a running capture, it is not

meant for online statistics; so it is recommended that you start a capture, stop it,

and then use this tool.

How to do it...

To view TCP stream graph statistics, perform the following steps:

1. Click on a packet in the stream you want to monitor.
2. From the Statistics menu, navigate to TCP StreamGraph | Throughput

Graph. The following window will open up:
[l TCP Graph 4: Example 080 -— HSUPA Download.pcap 15.217.49.22:44832 -> 95.35.100216:20293

Throughput

[8/s] T Throughput

(Bytes/Second)
50000
Higher
throughput
3 . ; i ! " L]
o . H . I H
: - ‘ 1 .
Lower
throughput Time (Seconds)
L]
’.J ‘T‘...-'lﬂ"..l T "IE' T..ﬁl |': = .:[- — '-|..“ ™
500 1000 1500

Time[s]

In the graph, we see that the throughput is not stable and varies between around
20,000 bytes/sec to 1000 bytes/sec. This can be due to an unstable file transfer
(which is the case in this FTP download over the HSUPA cellular connection), or
just an application that works this way (for example, browsing the Internet).

How it works...

The throughput graph simply counts the TCP sequence numbers over time and
since sequence numbers are actually the application's data, this gives us the
application throughput in bytes per second.

There's more...

A stable file transfer should look almost like a solid line, as shown in the

following graph:

Throughput

[Bye]
| T Throughput

Theaughput Graph

(Bytes/Second)

hpil-l-'l

1MB/8Mb per second

A stable throughput around

—/

- . pRE R § e e P A

~

Time (Seconds)

I.F:r

6 7 8 § W0 1 12 13 14 15 16 17 8 19 AN 2a x» 23

Here, MB is mega bytes and Mb is mega bits.

Getting information through TCP
stream graphs — the Round Trip Time
window

The Round Trip Time window of the TCP stream graphs enables us to look at
the round trip between sequence numbers and the time they were acknowledged.
Along with other graphs, it provides us with a look at the performance of the
connection.

Getting ready

Open an existing capture or start a new capture. Click on a specific packet in the
capture file. Even though you can use this feature on a running capture, it is not

meant for online statistics, so it is recommended that you start a capture, stop it,

and then use this tool.

How to do it...

To view the TCP stream graph statistics, perform the following steps:

1. Click on a packet in the stream you want to monitor.
2. From the Statistics menu navigate to TCP StreamGraph | Round Trip
Time Graph. The following window will open up:

BTT 4]

I 1P Graph L Enompse 080 - MSUPA Downboed pcap 1321740 2244812 - » 5.33.000.216.20293

Instability .
RTT (Round Trip Time)
1
[Seconds] l
Instability
Instability 1
Instability
Stable RTT :
. = Sequence number
-‘-&“— -I" — R -I B -— | 4
SO0 £ X000
Tt 0 Mabard |

In the preceding graph, we see that most of the sequence numbers were
acknowledged in a short time; however, there is some instability that will

influence the TCP performance.

How it works...

What we see in the graph is a plot of TCP sequence numbers versus the time that
took to acknowledge them. Actually, this is the time between a sent packet and
the ACK received for that packet.

There's more...

When you see a graph that shows instabilities, it's not necessarily a problem. It
can also be that this is how the application works. You can see that it took time
to acknowledge a packet because there is a problem, or because a server is
waiting for a response, or because a client is browsing a web server and the user
is waiting between clicks on new links.

Getting information through TCP
stream graphs — the Window Scaling
Graph window

The Window Scaling Graph of the TCP stream graph enables us to look at the
window size published by the receiving side, which is an indication of the
receiver's ability to process data. Along with the other graphs, it provides us with
a look at the performance of the connection.

Getting ready

Open an existing capture or start a new capture. Click on a specific packet in the
capture file. Even though you can use this feature on a running capture, it is not

meant for online statistics, so it is recommended that you start a capture, stop it,

and then use this tool.

How to do it...

To view TCP stream graph statistics, perform the following steps:

1. Click on a packet in the stream you want to monitor.

2. From the Statistics menu navigate to TCP StreamGraph | Window

: N EEREE R 231 A
: :ili-:fZE::I} i d 3
s Erieg gty T
HTclranyl Mg
A - L. H R
f oty i .
. ® . it g
S0000 — L] . = - .'l :II Y
i Vol i .
- : * il T
. _-:: e
Stable Window : : T
e D ‘1+ Instability
1 " qf
: H' -
20000 —1 . 2 1,
= i T!.
lm_‘ agEow
Instability Instabilities Instabilities
| Time (Seconds) "

In this graph, we see the instability caused by one of the sides. This can be an
indication of a slow server or client that cannot process all the data it receives
and therefore, by reducing the received window size, it tells the other side to

send less data.

How it works...

The software here simply watches the window size on the connection and draws
it. In Chapter 9, UDP/TCP Analysis, we will get into the details.

There's more...

When the window size decreases, the application throughput should decrease as
well. The window size is completely controlled by the two ends of a connection,
for example, a client and a server; variations in the window size do not have
anything to do with network performance.

Chapter 6. Using the Expert Infos
Window

In this chapter we will talk about the following;:

e The Expert Infos window and how to use it for network troubleshooting
e Error events and understanding them

e Warnings events and understanding them

e Notes events and understanding them

Introduction

One of Wireshark's strongest capabilities is the ability to analyze network
phenomena and suggest to us a probable cause for it. Along with other tools, it
gives us detailed information on network performance and problems. In this
chapter, we will learn about the Expert System. It is a tool that provides us with a
deeper analysis of network phenomena, including events and problems. Later in
this book, we will provide detailed recipes on how to use the Expert Infos
window along with other tools to find and resolve network problems.

In the first recipe, we will learn how to work with the Expert Infos window. In
the next recipes, we will learn about the probable causes for the majority of
events that you can expect.

The Expert Infos window and how to
use it for network troubleshooting

The Expert Infos window provides us with a list of events and network
problems discovered by Wireshark. In this recipe, we will learn how to start the
Expert Infos window and how to refer to the various events.

Getting ready

Start Wireshark, and start a live capture or open an existing file.

How to do it...

To start the Expert Infos window, perform the following steps:

Navigate to the Analyze menu and click on Expert Info. The following window
will open:

3 ™

Errors: O (0) |Warnings: 9 (186) | Notes: 144 (1174) | Chats: 530 (1797) | Details: 3157 | Packet Comments: 0 |

Group 1 Protocol 1 Summary 1 Count 1

Now you can choose any one of the upper bars: Errors:, Warnings:, Notes:,
Chats:, Details:, or Packet Comments:.

Tip

The number at the right-hand side of the bar shows the number of events in this
category.

The upper bars give you the following information:

e Errors: These are serious problems, mostly malformed packets or missing
fields in a protocol header. These can be malformed packets of various
types such as malformed SPOOLSS, GTP, or others. These can also be bad
checksum errors such as IPv4 bad checksum.

In the following screenshot you can see malformed TCP and SSL packets:

Errors: 2 (5) | Warnings: 1 (1) | Notes: 6 (309) | Chats: 598 (2938) | Details: 3253 | Packet Comments: 0
Group 1 Protocol 4 Summary 1 Count
= Malformed 55L Malformed Packet (Exception occurred)

Packet: 36
Packet: 41

= Malformed TCP Mew fragment overlaps old data (retransmission?)
Packet: 272
Packet: 6888

In the following screenshot, you can see another type of error, which is a
protocol (in this case the BOOTP/DHCP) option error, that is, when
Wireshark identifies a missing field in the packet:

Wireshark: 8 Expert Infos

Errors: 2 (6) | Wamings: 0 (0) | Notes: 0 (0) | Chats: 2 (2) | Details: 8 | Packet Comments: 0 |
Group 4 Protocol 4 Summary
= Protocol BOOTP/DHCP file overload end option missing

Packet: 3500

Packet: 3750

Packet: 3988

= Protocol BOOTP/DHCP sname overload end option missing
Packet: 3500

O W e e e W)

Packet: 3750

[e)

-

Warnings: A warning indicates a problem in the application or in
communication, things such as TCP zero window, TCP window full,
previous segment not captured, out-of-order segment, and others that are
unnatural to the protocol behavior. You can see an example of this in the

following screenshot:

Errors: 0 (0} | Warnings: 7 (8621) | Notes: 28 (10947) | Chats: 10 (2124) | Details: 21692 | Packet Comments: 0 | l

Group 4 Protocol 4 Summary 4 Count 1 -

[# Reassemble TDS Unreassembled Packet (Exception eccurred) T

B Sequence TCP Previous segment not captured (common at capture start) 7

Reassemnble COTP Unreassemnbled Packet (Exception occurred) 2

[# Reassemble T.125 Unreassembled Packet (Exception eccurred) 2

E Seguence TCP Window is full 3(E
Packet: 54491 I
Packet: 59575 1
Packet: 62004 1

[Sequence TCP Zero window 12 fa :

|

e Notes: A note is when Wireshark indicates an event that may cause a
problem, but is still within the normal behavior of the protocol. TCP
retransmission, for example, will be displayed here because even though it
is a critical problem that slows down the network, it is still under the
normal behavior of TCP. Other events here are duplicate ACK, fast
retransmission, and so on.

e Chats: This tab provides information about the usual workflow, for
example, TCP connection start (SYN), connection end (FIN), connection
reset (RST), HTTP Post, HTTP codes, and so on.

e Details: This tab provides all the events in an ordered list. In older versions
of Wireshark, this was directly under the Analyze menu.

e Packet Comments: You can manually add a comment to every packet.
This column will show all the comments in the capture file.

To add a comment to a packet, right-click on it and choose Packet Comment....
A window will open in wh