

Android Security
Cookbook

Practical recipes to delve into Android's security
mechanisms by troubleshooting common vulnerabilities in
applications and Android OS versions

Keith Makan

Scott Alexander-Bown

BIRMINGHAM - MUMBAI

Android Security Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1171213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-716-7

www.packtpub.com

Cover Image by Joseph Kiny (joseph.kiny@gmail.com)

Credits
Authors

Keith Makan

Scott Alexander-Bown

Reviewers
Miguel Catalan Bañuls

Seyton Bradford

Nick Glynn

Rui Gonçalo

Elliot Long

Chris Pick

Acquisition Editors
Pramila Balan

Llewellyn F. Rozario

Lead Technical Editor
Ritika Dewani

Copy Editors
Alisha Aranha

Roshni Banerjee

Tanvi Gaitonde

Aditya Nair

Karuna Narayanan

Shambhavi Pai

Laxmi Subramanian

Technical Editors
Zainab Fatakdawala

Hardik B. Soni

Sebastian Rodrigues

Project Coordinator
Akash Poojary

Proofreaders
Lauren Harkins

Amy Johnson

Indexer
Rekha Nair

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

About the Authors

Keith Makan is a former computer science and physics student, and a passionate hobbyist
and security researcher. He spends most of his free time reading source code, performing
reverse engineering and fuzz testing, and developing exploits for web application technology.

Keith works professionally as an IT security assessment specialist. His personal research
has won him spots on the Google Application Security Hall of Fame numerous times. He has
developed exploits against Google Chrome's WebKit XSSAuditor, Firefox's NoScript Add-on,
and has often reported security flaws and developed exploits for WordPress plugins.

I would like to thank my mom, dad, and other family members for supporting
my crazy ideas and always being a great motivation to me.

Scott Alexander-Bown is an accomplished developer with experience in financial
services, software development, and mobile app agencies. He lives and breathes Android,
and has a passion for mobile app security.

In his current role as senior developer, Scott specializes in mobile app development, reverse
engineering, and app hardening. He also enjoys speaking about app security and has
presented at various conferences for mobile app developers internationally.

Most importantly, I'd like to thank my wife Ruth. Your love and
encouragement make everything I do possible. High five to my son Jake who
keeps me going with his laughter and cute smiles.

Additionally, I would like to thank the following people:

Keith, Barbara and Kirk Bown, and Mhairi and Robert Alexander for your
love and support.

Andrew Hoog and the viaForensics team for their support, insight, and
expertise in mobile security.

Mark Murphy, Nikolay Elenkov, Daniel Abraham, Eric Lafortune, Roberto
Tyley, Yanick Fratantonio, Moxie Marlinspike, the Guardian Project, and the
Android Security team whose blog articles, papers, presentations, and/or
code samples have been interesting and extremely useful when learning
about Android security.

Keith Makan for his enthusiasm, guidance, and for welcoming me aboard
the Android Security Cookbook ship.

The technical reviewers for their attention to detail and valuable feedback.

Finally, thanks to you, the reader—I hope you find this book useful and it
allows you to create more secure apps.

About the Reviewers

Miguel Catalan Bañuls is a young engineer whose only purpose is to try and make his
little contribution to changing the world. He is mainly a software developer, but is actually
a team leader.

He holds a degree in Industrial Engineering and is a partner at Geeky Theory. Also, he
is the vice president of the IEEE Student Branch of the Miguel Hernandez University
(UMH in Spanish).

I want to thank both my spouse and my parents for their patience and
understanding as they have to share me with my work.

Seyton Bradford is a software developer and an engineer with over 10 years experience in
mobile device security and forensics.

He currently works at viaForensics as a Senior Software Engineer focusing on app and mobile
device security.

He has presented his work across the globe and acted as a reviewer for academic journals.

I'd like to thank my family and friends for their support for my career and
work.

Nick Glynn is currently employed as a technical trainer and consultant delivering courses
and expertise on Android, Python, and Linux at home in the UK and across the globe. He has
a broad range of experience, from board bring-up, Linux driver development, and systems
development through to full-stack deployments, web app development, and security hardening
for both the Linux and Android platforms.

I would like to thank my family for their love, and my beautiful baby girl Inara
for always brightening my day.

Rui Gonçalo is finishing his Masters thesis at University of Minho, Braga, Portugal, in the field
of Android security. He is developing a new feature that aims at providing users with fine-grained
control over Internet connections. His passion for mobile security arose from attending lectures
on both cryptography and information systems security at the same university, and from several
events held by the most important companies in the field in Portugal. He provides the point
of view of an Android security beginner who sees this book as a must read for those keen to
become security experts.

I would like to thank the staff at Packt Publishing in charge of this book for
making me absolutely sure that mobile security will fulfill my needs in the
world of software.

Elliot Long grew up in Silicon Valley and has been creating mobile apps since 2005. He is
the co-founder of the mobile travel guide producer mycitymate SL/GmbH. Since 2009, he has
worked as Lead Android and BlackBerry Developer for Intohand Ltd.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Android Development Tools	 7

Introduction	 7
Installing the Android Development Tools (ADT)	 8
Installing the Java Development Kit (JDK)	 12
Updating the API sources	 16
Alternative installation of the ADT	 17
Installing the Native Development Kit (NDK)	 22
Emulating Android	 24
Creating Android Virtual Devices (AVDs)	 27
Using the Android Debug Bridge (ADB) to interact with the AVDs	 29
Copying files off/onto an AVD	 30
Installing applications onto the AVDs via ADB	 31

Chapter 2: Engaging with Application Security	 33
Introduction	 33
Inspecting application certificates and signatures	 34
Signing Android applications	 45
Verifying application signatures	 48
Inspecting the AndroidManifest.xml file	 49
Interacting with the activity manager via ADB	 59
Extracting application resources via ADB	 63

Chapter 3: Android Security Assessment Tools	 71
Introduction	 71
Installing and setting up Santoku	 73
Setting up drozer	 79
Running a drozer session	 87
Enumerating installed packages	 90
Enumerating activities	 95

ii

Table of Contents

Enumerating content providers	 98
Enumerating services	 100
Enumerating broadcast receivers	 103
Determining application attack surfaces	 104
Launching activities	 106
Writing a drozer module – a device enumeration module 	 108
Writing an application certificate enumerator	 112

Chapter 4: Exploiting Applications	 115
Introduction	 115
Information disclosure via logcat	 118
Inspecting network traffic	 123
Passive intent sniffing via the activity manager	 129
Attacking services	 135
Attacking broadcast receivers	 139
Enumerating vulnerable content providers	 141
Extracting data from vulnerable content providers	 144
Inserting data into content providers	 148
Enumerating SQL-injection vulnerable content providers	 150
Exploiting debuggable applications	 152
Man-in-the-middle attacks on applications	 158

Chapter 5: Protecting Applications	 165
Introduction	 165
Securing application components	 166
Protecting components with custom permissions	 168
Protecting content provider paths	 171
Defending against the SQL-injection attack	 174
Application signature verification (anti-tamper)	 177
Tamper protection by detecting the installer, emulator, and debug flag	 181
Removing all log messages with ProGuard	 184
Advanced code obfuscation with DexGuard	 189

Chapter 6: Reverse Engineering Applications	 195
Introduction	 195
Compiling from Java to DEX	 197
Decompiling DEX files	 200
Interpreting the Dalvik bytecode	 218
Decompiling DEX to Java	 227
Decompiling the application's native libraries	 231
Debugging the Android processes using the GDB server	 232

Chapter 7: Secure Networking	 237

iii

Table of Contents

Introduction	 237
Validating self-signed SSL certificates	 238
Using StrongTrustManager from the OnionKit library	 247
SSL pinning	 249

Chapter 8: Native Exploitation and Analysis	 257
Introduction	 257
Inspecting file permissions	 258
Cross-compiling native executables	 268
Exploitation of race condition vulnerabilities	 276
Stack memory corruption exploitation	 281
Automated native Android fuzzing	 289

Chapter 9: Encryption and Developing Device
Administration Policies	 301

Introduction	 301
Using cryptography libraries	 302
Generating a symmetric encryption key	 304
Securing SharedPreferences data	 308
Password-based encryption	 310
Encrypting a database with SQLCipher	 314
Android KeyStore provider	 317
Setting up device administration policies	 320

Index	 329

Preface
Android has quickly become one of the most popular mobile operating systems, not only to
users but also developers and companies of all kinds. Of course, because of this, it's also
become quite a popular platform to malicious adversaries.

Android has been around in the public domain since 2005 and has seen massive growth
in capability and complexity. Mobile smart phones in general now harbor very sensitive
information about their users as well as access to their e-mails, text messages, and social
and professional networking services. As with any software, this rise in capability and
complexity also brings about a rise in security risk; the more powerful and more complex
the software becomes, the harder they are to manage and adapt to the big bad world.

This applies especially to software on mobile smart phones. These hot beds of personal and
sensitive information present an interesting security context in which solve problems. From one
perspective, the mobile smart phone security context is very difficult to compare to the servers
on a network or in the "cloud" because, by their very nature, they are not mobile. They cannot
be moved or stolen very easily; we can enforce both software and physical security measures to
protect unauthorized access to them. We can also monitor them constantly and rapidly respond
to the security incidents autonomously. For the devices we carry around in our pockets and
handbags, and forget in taxi cabs, the playing field is quite different!

Android users and developers express a need to be constantly aware of their mobile security
risks and, because of this need, mobile security and risk assessment specialists and security
engineers are in high demand. This book aims to smoothen the learning curve for budding
Android security assessment specialists and acts as a tool for experienced Android security
professionals with which to hack away at common Android security problems.

What this book covers
Chapter 1, Android Development Tools, introduces us to setting up and running the tools
developers use to cook up Android applications and native-level components on the Android
platform. This chapter also serves as an introduction to those who are new to Android and would
like to know what goes into setting up the common development environments and tools.

Preface

2

Chapter 2, Engaging with Application Security, introduces us to the components offered by
the Android operating system, dedicated to protecting the applications. This chapter covers
the manual inspection and usage of some of the security-relevant tools and services used
to protect applications and their interaction with the operating system.

Chapter 3, Android Security Assessment Tools, introduces some of the popular as well as new
and upcoming security tools and frameworks used by Android security specialists to gauge the
technical risks that applications expose their users to. Here you will learn to set up, run, and
extend the hacking and reverse engineering tools that will be used in later chapters.

Chapter 4, Exploiting Applications, covers the casing exploitation techniques that target
the Android applications. The content in this chapter spans all the Android application
component types and details how to examine them for security risks, both from a source
code and inter-application context. It also introduces more advanced usage of the tools
introduced in Chapter 3, Android Security Assessment Tools.

Chapter 5, Protecting Applications, is designed to be the complete opposite of Chapter 4,
Exploiting Applications. Instead of talking purely about application flaws, this chapter talks
about application fixes. It walks readers through the useful techniques that developers can
use to protect the applications from some of the attacks, which are detailed in Chapter 4,
Exploiting Applications.

Chapter 6, Reverse Engineering Applications, helps the readers to learn to crack open the
applications and teaches them the techniques that Android reverse engineers use to examine
and analyze applications. You learn about the Dex file format in great detail, as well as how to
interpret Dex bytecode into useful representations that make reverse engineering easier. The
chapter also covers the novel methods that reverse engineers can use to dynamically analyze
applications and native components while they are running on an Android operating system.

Chapter 7, Secure Networking, helps the readers to delve into the practical methods that
application developers can follow to protect data while in transit across the network. With
these techniques, you will be able to add stronger validation to the Secure Sockets Layer
(SSL) communications.

Chapter 8, Native Exploitation and Analysis, is dedicated to covering the security assessment
and testing techniques focused on the native context of the Android platform. Readers will
learn to look for security flaws that can be used to root phones and escalate privileges on
the Android systems as well as perform low-level attacks against native services, including
memory corruption and race condition exploitation.

Chapter 9, Encryption and Developing Device Administration Policies, is focused heavily on how
to use encryption correctly and avoid some of the common anti-patterns to keep data within
your application secure. It recommends several robust and timesaving third-party libraries to
quickly yet securely enhance the security of your applications. To wrap up, we will cover how to
use the Android Device Administration API to implement and enforce enterprise security policies.

Preface

3

What you need for this book
Though there are some software requirements for the book, many of the walkthroughs in
the book discuss downloading and installing the required software before actually getting
down to using them to contribute to the topic being discussed.

That being said, here is a list of the software you will probably need to have before starting
with the walkthroughs:

ff The Android Software Development Kit (SDK)

ff The Android Native Development Kit (NDK)

ff The GNU C/C++ Compiler (GCC)

ff The GNU Debugger (GDB)

ff Python, preferably 2.7 but 3.0 should work fine

ff Virtual box

ff Ettercap (for Windows or Linux/Unix systems)

ff Dex2Jar

ff Objdump

ff Radamsa

ff JD-GUI

ff The Java Development Kit (JDK)

ff drozer, an Android security assessment framework

ff The OpenSSL command-line tool

ff The keytool command-line tool

Who this book is for
With some chapters dedicated to exploiting Android applications and others focused
on hardening them, this book aims to show the two sides of the coin, the attacker
and the defender.

Security researchers, analysts, and penetration testers will enjoy the specifics of how to
exploit the Android apps. Application developers with an appetite to learn more about security
will gain practical advice on how to protect their applications from attacks.

Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The system
image ID you selected from the previous step must be specified using the –t switch."

A block of code is set as follows:

from drozer import android
from drozer.modules import common, Module
class AttackSurface(Module,common.Filters, common.PackageManager):

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold as follows:

from drozer import android
from drozer.modules import common, Module
class AttackSurface(Module,common.Filters, common.PackageManager):

Any command-line input or output is written as follows:

sudo aptitude update //If you have aptitude installed

New terms and important words are shown in bold. Words that you see on the screen, in
menus, or dialog boxes, for example, appear in the text like this: "Once you've accepted the
licenses, you can collect your documentation and APIs by clicking on Install".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

Preface

5

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Android Development

Tools

In this chapter, we will cover the following recipes:

ff Installing the Android Development Tools (ADT)

ff Installing the Java Development Kit (JDK)

ff Updating the API sources

ff Alternative installation of the ADT

ff Installing the Native Development Kit (NDK)

ff Emulating Android

ff Creating Android Virtual Devices (AVDs)

ff Using the Android Debug Bridge (ADB) to interact with the AVDs

ff Copying files off/onto an AVD

ff Installing applications on the AVDs via ADB

Introduction
A very clever person once said that, "you should keep your friends close but your enemies
closer". Being a security professional means keeping an eye on what developers are doing,
have done, and are likely to do. This is because the decisions they make greatly affect the
security landscape; after all, if no one wrote bad software, no one would exploit it!

Android Development Tools

8

Given that this book is aimed at anyone interested in analyzing, hacking, or developing the
Android platform, the know thy enemy concept applies to you too! Android developers need to
stay somewhat up to date with what Android hackers are up to if they hope to catch security
vulnerabilities before they negatively affect the users. Conversely, Android hackers need to
stay up to date with what Android developers are doing.

The upcoming chapters will walk you through getting the latest and greatest development and
hacking tools and will get you to interact directly with the Android security architecture, both
by breaking applications and securing them.

This chapter focuses on getting the Android Development Tools (ADT) up and running and
discusses how to troubleshoot an installation and keep them up to date. If you feel you are
already well-acquainted with the Android development environment and tool chains, feel free
to skip this chapter.

Without further ado, let's talk about grabbing and installing the latest Android
Development Tools.

Installing the Android Development Tools
(ADT)

Given that there are many versions of the Android framework already deployed on mobile
platforms and a variety of handsets that support it, Android developers need tools that
give them access to many device- and operating system-specific Application Programming
Interfaces (APIs) available on the Android platform.

We're talking about not just the Android APIs but also handset-specific APIs. Each handset
manufacturer likes to invest in the developer mindshare in their own way by providing
exclusive APIs and services to their developers, for example, the HTC OpenSense APIs. The
ADT consolidates access to these APIs; provides all the necessary tools to debug, develop,
and deploy your Android apps; and makes it easy for you to download them and keep them
up to date.

How to do it...
The following steps will walk you through the process of downloading the ADT and getting
them up and running:

1.	 You'll need to head over to https://developer.android.com and navigate
to the ADT Download page or just visit https://developer.android.com/
sdk/index.html#download. You should see a page like the one in the following
screenshot:

Chapter 1

9

2.	 Once you're there, click on Download the SDK and the following screen
should appear:

Android Development Tools

10

3.	 Of course, you will need to accept the license agreement before downloading and
select the appropriate CPU type, or register size if you're not sure how to check your
CPU type.

On Windows, you need to complete the following steps:

1.	 Click on Start.

2.	 Right-click on My Computer.

3.	 Select Properties.

4.	 A window with your computer's system-specific information should pop up.
The information you are looking for should be under the System section,
labeled System type.

To check your system type on Ubuntu, Debian, or Unix-based distributions, perform
the following steps:

1.	 Open a terminal either by pressing Ctrl + Alt + T or simply launching it using
the graphical interface.

2.	 Execute the following command:
 	 uname -a

Chapter 1

11

3.	 Alternatively, you could use lscpu that should show you something like the
following screenshot:

4.	 When you're happy with the license agreement and you've selected the correct
system type, click on Download in the ADT Download page. Once the ZIP file has
been downloaded, it should look like the following screenshot on Windows:

The archive will have the same structure on the Linux- or Unix-based distributions.

Android Development Tools

12

Installing the Java Development Kit (JDK)
Android uses a customized version of the Java runtime to support its applications. This
means, before we can get going with Eclipse and developing Android applications, we actually
need to install the Java runtime and development tools. These are available in the Java
Development Kit (JDK).

How to do it...
Installing the JDK on Windows works as follows:

1.	 Grab a copy of the JDK from Oracle's Downloads page, http://www.oracle.com/
technetwork/java/javase/downloads/index.html. Click on DOWNLOAD.
The following screenshot shows the Downloads page:

Chapter 1

13

2.	 Make sure to select the appropriate version for your system type; see the previous
walkthrough to find out how to check your system type. The following screenshot
highlights the Windows system types supported by the Oracle Java JDK:

3.	 After downloading the JDK, run the jdk-[version]-[platform version].
exe file. For instance, you could have an EXE file named something like jdk-
7u21-windows-i586.exe. All you need to do now is follow the prompts until the
installation of all the setups is completed. The following screenshot is what the install
wizard should look like once it's launched:

Android Development Tools

14

Once the install wizard has done its job, you should see a fresh install of your JDK and JRE under
C:\Program Files\Java\jdk[version] and should now be able to launch Eclipse.

There's more…
Installing the Java Runtime and Development tools on Ubuntu Linux is somewhat simpler.
Seeing that Ubuntu has a sophisticated package and repository manager, all you need to do
is make use of it by firing off a few simple commands from the terminal window. You need to
execute the following steps:

1.	 Open a terminal, either by searching for the terminal application via your Unity, KDE,
or Gnome desktop or by pressing Ctrl + Alt + T.

2.	 You may need to update your package list before installation, unless you've already
done that a couple of minutes ago. You can do this by executing either of the
following commands:
sudo aptitude update //If you have aptitude installed

Or:
sudo apt-get update

You should see your terminal print out all the downloads it's performing from your
repositories as shown in the following screenshot:

Chapter 1

15

3.	 Once that's done, execute the following command:
sudo apt-get install openjdk-[version]-jdk apt-get

You will need to enter your password if you have been added to your sudoers file
correctly. Alternatively, you could borrow root privileges to do this by executing the
following command, assuming that you have the root user's password:
su root

This is displayed in the following screenshot:

Once your JDK is installed properly, you should be able to launch Eclipse and get going with
your Android development. When you launch Eclipse, you should see the following screenshot:

After successful installation, the toolbar in your Eclipse installation should look something like
the one in the following screenshot:

Android Development Tools

16

Updating the API sources
The SDK manager and related tools come bundled with the ADT package; they provide access
to the latest and most stable APIs, Android emulator images, and various debugging and
application testing tools. The following walkthrough shows you how to update your APIs and
other Android development-related resources.

How to do it...
Updating the APIs for your ADT works as follows:

1.	 Navigate to the SDK manager. If you're doing this all from Windows, you should find it
in the root of the ADT-bundle folder called SDK Manager.exe. Ubuntu users will
find it at [path to ADT-bundle]/sdk/tools/android.

2.	 All you need to do is launch the SDK manager. It should start up and begin retrieving
a fresh list of the available API and documentation packages.

3.	 You will need to make sure that you select the Tools package; of course, you could
also select any other additional packages. A good idea would be to download the last
two versions. Android is very backward compatible so you don't really need to worry
too much about the older APIs and documentation, unless you're using it to support
really old Android devices.

4.	 You will need to indicate that you accept the license agreement. You can either do
this for every single object being installed or you can click on Accept All.

Chapter 1

17

5.	 Once you've accepted the licenses, you can collect your documentation and APIs by
clicking on Install as shown in the following screenshot:

Alternative installation of the ADT
If the preceding methods for installing Eclipse and the ADT plugin don't work for some reason,
you could always take the old school route and download your own copy of Eclipse and install
the ADT plugin manually via Eclipse.

Android Development Tools

18

How to do it...
Downloading and plugging in the ADT works as follows:

1.	 Download Eclipse—Helios or a later version—from http://www.eclipse.org/
downloads/. Please make sure to select the appropriate version for your operating
system. You should see a page that looks like the following screenshot:

2.	 Download the ADT bundle for your platform version from the Android website,
http://developer.android.com/sdk/installing/installing-adt.
html. The following screenshot displays a part of the page on this website:

3.	 Make sure you have the Java JDK installed.

Chapter 1

19

4.	 If your JDK installation is good to go, run the Eclipse installer you downloaded in step 1.

5.	 Once Eclipse is installed and ready to go, plugin your ADT.

6.	 Open Eclipse and click on the Help button in the menu bar.

7.	 Click on Install New Software....

Android Development Tools

20

8.	 The Available Software dialog box will pop up. You need to click on Add….

9.	 The Add Repository dialog box will show up. You need to click on the Archive... button.

10.	 A file browser should pop up. At this point, you will need to navigate to the ADT ZIP file
that you downloaded in the previous steps.

11.	 After finding the ADT file, click on Open.

12.	 Then click on OK.

Chapter 1

21

13.	 You will be shown the available packages in the .zip archive. Click on Select All and
then on Next.

14.	 You will now need to accept the license agreement; of course, you reserve the right
not to. It's always a good idea to give it a read. If you're happy, select the I accept the
terms of the license agreements option and then click on Finish.

Android Development Tools

22

15.	 The software installation will now begin. You may get a warning stating that the
content is unsigned and the authenticity cannot be verified. Click on OK.

16.	 Restart Eclipse.

The Android SDK, the device emulator, and the supporting Eclipse functionality should be
ready to go now. See your Eclipse toolbar. It should have some new icons.

Installing the Native Development Kit (NDK)
If you want to do any low-level exploitation or development on your Android device, you will
need to make sure that you can write applications at a lower level on the Android platform.
Low level means development in languages like C/C++ using compilers that are built to suit
the embedded platform and its various nuances.

What's the difference between Java and the native/low-level programming languages? Well, this
topic alone could fill an entire book. But to state just the bare surface-level differences, Java
code is compiled and statically—meaning the source code is analyzed—checked before being
run in a virtual machine. For Android Java, this virtual machine is called the Dalvik—more on
this later. The natively developed components of Android run verbatim—as their source code
specifies—on the embedded Linux-like operating system that comes shipped with the Android
devices. There is no extra layer of interpretation and checking—besides the odd compiler
extensions and optimizations—that goes into getting the native code to run.

Chapter 1

23

The tool chains and documentation provided by the Android team to make native development
a painless experience for the Android developers is called the Native Development Kit (NDK).
The NDK contains all the tools that the Android developers need to compile their C/C++ code for
the Android devices and accommodates ARM-, MIPS-, and x86-embedded platforms. It includes
some tools that help the native developers analyze and debug the native applications. This
walkthrough discusses how to get the NDK up and running on your machine.

Before we get going, you will need to consult the system requirements list on http://
developer.android.com/tools/sdk/ndk/index.html#Reqs to make sure that you're
machine is good to go.

How to do it...
Getting the NDK on your machine is as simple as downloading it and making sure that it
actually runs. We can use the following steps:

1.	 Downloading the NDK is pretty straightforward. Go to http://developer.
android.com/tools/sdk/ndk/index.html to grab the latest copy and make
sure to select the appropriate version for your system type.

2.	 Unzip the NDK to a convenient location.

Android Development Tools

24

Emulating Android
The Android SDK comes with a pretty neat tool called the emulator, which allows you to
emulate the Android devices. The emulator is shipped with some of the most popular
handsets and lets you create an emulated handset of your own. Using this tool, you can flash
new kernels, mess around with the platform and, of course, debug apps and test your Android
malware and application exploits. Throughout the book we will use this tool quite a bit, so, it's
important that you get to know the Android emulator.

The emulator is pretty straightforward to use. When you want to launch a device, all you need
to do is open the Android Virtual Device (AVD) tool either from your SDK folder or straight
from Eclipse. Then, you can either set up a new device with its own memory card, CPU, and
screen size as well as other custom features or you can select one of the preconfigured
devices from a list. In this section, I'm going to cover exactly these things.

Just a quick disclaimer: the following screenshots were taken on a Windows 7 machine, but
the AVD manager and device emulator work exactly the same on both Windows and Linux
platforms, so Linux users will also be able to follow the walkthrough.

How to do it...
To emulate a device from Eclipse, use the following steps:

1.	 Click on the AVD manager icon on your toolbar.

Chapter 1

25

2.	 The AVD will pop up. You can either select a preconfigured featured device or you can
set up a device according to your own criteria. For this recipe, let's stick to configuring
our own devices.

3.	 Click on New….

4.	 The Create new Android Virtual Device (AVD) dialog box should pop up. You will need
to fill in some metrics for the new virtual devices and give it a name. You can enter
whatever you feel here as this recipe is just to get you to emulate your first device.

5.	 Once you're done, click on OK. The new device should show up in the AVD dialog box.

Android Development Tools

26

6.	 Click on the device you just created and click on Start….

At this point, the AVD will prompt you for the screen-size options; the default values aren't too
bad. Click on Launch when you're done, and in a few seconds your new AVD will start up.

Chapter 1

27

Creating Android Virtual Devices (AVDs)
Some of you may prefer working with your AVDs from the command-line interface for some
reason or other. Maybe you have some awesome scripts that you'd like to write to set up some
awesome AVDs. This recipe details how to create AVDs and launches them straight from the
command line.

How to do it…
Before you can create your own AVDs, you will need to specify some attributes for it; the most
important one being the system image that will be used. To do so, execute the following steps:

1.	 You can find a list of the system images available to you by using the following
command:
[path-to-sdk-install]/tools/android list targets

Or use the following command from the Windows terminal:
C:\[path-to-sdk-install]\tools\android list targets

As an example, enter the following into the command prompt:
C:\Users\kmakan\Documents\adt-bundle-windows-x86-20130219\sdk\
tools\android list targets

This command will list the system images available on your system. If you'd like more,
you'll need to install them via the SDK manager. The pieces of information that you're
looking for in this list are the target IDs because you'll need them to identify the
system image, which you will need to specify in the next step.

2.	 Create the AVD using the following command:
[path-to-sdk-install]/tools/android create avd –n [name of your
new AVD] –t [system image target id]

You will need to decide on a name for the AVD you've just created, which you will
specify using the –n switch. The system image ID you selected from the previous step
must be specified using the –t switch. If everything goes well, you should have just
created a brand new virtual machine.

3.	 You can launch your brand new AVD using the following command:

[path-to-sdk-install]/tools/emulator –avd [avd name]

Here, [avd name] is the AVD name you decided on in the previous step. If all goes
well, your new AVD should start right up.

Android Development Tools

28

There's more…
You probably want to know a little more about the commands. Regarding the emulator, it's
capable of emulating a device with different configurations.

Emulating a memory card or an external storage
You can specify that your virtual device also emulates some external storage using the –c
options when you create it, as shown in the following command:

android create –avd –n [avd name] –t [image id] –c [size][K|M]

For example, see the following command:

android create –avd –n virtdroid –t 1 –c 128

You will obviously need to supply the size of your new emulated memory card. You also need
to specify the unit by specifying either K for kilobytes or M for megabytes.

The partition sizes
Another very useful thing that you may want to do is specify how much space you'd like to
grant the internal storage partitions. You can do this by using the -partition-size switch,
which you specify when you invoke the emulator as shown in the following command:

emulator –avd [name] –partition-size [size in MBs]

You will also need to supply a size for the partitions. By default, the unit of measurement is
megabytes (MBs).

See also
There are many other options that you can make use of when it comes to the emulator. If
you're interested in learning more, check out the documents provided in the following links:

ff http://developer.android.com/tools/devices/managing-avds-
cmdline.html

ff http://developer.android.com/tools/help/android.html

Chapter 1

29

Using the Android Debug Bridge (ADB) to
interact with the AVDs

Interacting with the emulated Android device is one of the most important skills for both
a developer and an Android security engineer/auditor. The Android Debug Bridge (ADB)
provides the functionality needed to interact with the native-level components of an Android
device. It allows the developers and security engineers to read the contents of the filesystem
and interact with the package manager, application manager, kernel driver interfaces, and
initialization scripts to mention a few.

How to do it...
Interacting with a virtual device using the ADB works as follows:

1.	 You'll need to start an AVD first or, if you like, simply plug in your own Android device
via a USB to whatever machine you'd like to use—given that this machine has the SDK
installed. You can start the AVD using the following command:
emulator –avd [name]

2.	 We can list all the connected Android Devices by using the following command for a
Windows machine:
C;\\[path-to-sdk-install]\platform-tools\adb devices

Or, if you're using a Linux machine, use the following command:
[path-to-sdk-install]/platform-tools/adb devices

This command should give you a list of the connected devices, which is basically all
the devices that you will be able to connect to using ADB. You need to pay attention to
the device names in the list. You will need to identify the devices when you launch a
connection to them using ADB.

3.	 You can launch a shell connection to your Android device using the following command:

/sdk/platform-tools/abd shell –s [specific device]

Or, if you happen to know that the Android device you want to connect to is the only
emulated device, you can use the following command:
/sdk/platform-tools/adb shell –e

Or, if the device is the only USB-connected device, you can use the following
command:
/sdk/platform-tools/adb shell –d

Android Development Tools

30

The switches –d, -e, and -p apply to the other ADB commands and not just the shell.
If this works well, you should see a prompt string—the string displayed to identify the
command shell being used—similar to the following command:

root@android$

You should now have a full-fledged shell with some of the traditional Unix/Linux commands
and utilities at your finger tips. Try searching around on the filesystem and getting to know
where everything is kept.

There's more…
Now that you have a connected device, you'll need to know a little bit about navigating the
Android filesystem and making use of the commands. Here's a small list to get you started:

ff ls {path}: This will list the contents of the directory at the path

ff cat {file}: This will print the contents of a text file on the screen

ff cd {path}: This will change the working directory to the one pointed to by the path

ff cd ../: This changes the working directory to the one that's exactly one level higher

ff pwd: This prints the current working directory

ff id: This checks your user ID

See also
ff http://developer.android.com/tools/help/adb.html

Copying files off/onto an AVD
In your upcoming adventures with the Android platform, you may want to at some point copy
things off your Android devices, whether they are emulators or not. Copying files is pretty
simple. All you need is the following:

ff A connected device you'd like to have

ff A file you'd like to copy off/on

ff A place you'd like to put this file in

Chapter 1

31

How to do it...
To access files on your Android device using the ADB, you need to do the following:

1.	 It's actually pretty simple to do this. You'll need to fire off the following command from
your command-line interface:
adb {options} pull [path to copy from] [local path to copy to]

2.	 To copy files onto an AVD, you can use the following command:

adb {options} push [local path to copy from] [path to copy to on
avd]

Installing applications onto the AVDs via
ADB

There may be times when you need to install Application Packages (APKs) on your local
filesystem to an emulator or device that you own. Often Android-based security tools aren't
available on the Play Store—because they would expose unruly users to too much risk or be
abused by malware—and need to be installed manually. Also, you will probably be developing
applications and Android native binaries to demonstrate and verify exploits.

How to do it...
Installing an APK using ADB can be done in the following ways:

1.	 You will need to actually know where the APK is on your local machine, and when you
find it, you can substitute it with path as shown in the following command:
adb {options} install [path to apk]

2.	 You can also use the device-specific commands to narrow down the device you want
to install it onto. You can use the following command:

adb {-e | -d | -p } install [path to apk]

2
Engaging with

Application Security

In this chapter, we will cover the following recipes:

ff Inspecting application certificates and signatures

ff Signing Android applications

ff Verifying application signatures

ff Inspecting the AndroidManifest.xml file

ff Interacting with the activity manager via ADB

ff Extracting application resources via ADB

Introduction
In this chapter, we are going to see some components of the Android security architecture in
action by directly engaging with them, specifically those focused on protecting applications.
"You never really understand anything until you get your hands dirty." This is what this chapter
tries to inspire; actually getting down and dirty with some of the security mechanisms,
dissecting them, and really getting to know what they are all about.

We're going to cover just the bare minimum here, the tips and tricks that'll get you the
information you need from an application, should you ever want to reverse engineer it or
perform a pervasive hands-on security assessment for Android applications, or if you're just
purely interested in finding out more about application security.

Engaging with Application Security

34

Inspecting application certificates and
signatures

Application certificates are what developers use to declare their trust in the applications they
publish to the application market. This is done by declaring their identities and associating
them to their application(s) cryptographically. Application signatures make sure that no
application can impersonate another by providing a simple and effective mechanism to
determine and enforce the integrity of Android applications. It is a requirement that all
applications be signed with certificates before they are installed.

Android application signing is a repurposing of JAR signing. It works by applying a
cryptographic hash function to an application's contents. We will soon see exactly which of the
contents in the APK files are hashed. The hashes are then distributed with a certificate that
declares the developer's identity, associating it to the developer's public key and effectively,
his/her private key, since they are related semantically. The certificate is usually encrypted
using the developer's private key, which means it's a self-signed certificate. There is no trusted
third party to vouch for the fact that the developer actually owns the given public key. This
process yields a signature and is to be distributed or published with this public key.

An application's signature is unique and finding an application's certificate and signature is
a crucial skill. You may be looking for malware signatures on a device, or you may want to list
all of the applications that share a given public key.

Getting ready
Before we begin, you will need the following software installed on your machine:

ff Java JDK: This can be installed on either Unix/Linux distribution or Microsoft Windows
system, as shown in the previous chapter

ff Android SDK: This can be installed on your Linux Debian or Microsoft Windows
system, as shown in the previous chapter

ff WinZip (for Windows): This is available for download at http://www.winzip.com;
if you are running Windows 7, WinZip is not explicitly required

ff Unzip (for Debian/Ubuntu Linux systems): This can be installed by typing the following
command into your terminal:

sudo apt-get install unzip

Chapter 2

35

Assuming that we don't already have an application in mind—whose certificate you would like
to view—and given that you'd like to be able to completely replicate what is demonstrated
here, it'd be convenient to pull an app of an emulator. This recipe also details setting up the
emulator to do so.

Setting up an emulator, in the way it is done here, ensures that you will be able to get access
to exactly the same applications and emulated system, and ultimately, the same certificates,
making it easy to check that you're on the right track. Before you can emulate an Android
device, you will need to make sure the Android SDK tools are updated to include the latest API
levels and emulator images. If you're not sure how to upgrade your Android SDK, please refer
to the previous chapter.

So, to start off, lets fire up an Android Virtual Device (AVD) by performing the following steps:

1.	 Open a command-line interface and execute the following command:
[path-to-your-sdk-install]/android create avd –n [your avd
name] –t [system image target]

Or if you're using a Windows machine, type:

C:\[path-to-your-sdk-install]\android create avd –n [your avd
name] –t [system image target]

Engaging with Application Security

36

2.	 If all goes well, you should have just created an AVD. You can now go ahead and
launch it by executing the following command:
[path-to-your-sdk-install]/emulator –avd [your avd name] –no-
boot-anim

3.	 You should see an emulator pop up almost immediately. You will need to give it a
second to boot up. Once it's all booted and you can see the lock screen, it means you
can fire up ADB and pull some APK files off for us to dissect. You can pull an APK file
off by typing the following command:

adb pull /system/app/Contacts.apk

See the following screenshot for a practical example:

Chapter 2

37

You can find the Contacts app or others, should you need another example to work
with, by checking out the contents of the system/app/ directory, as shown in the
following screenshot:

You should have just copied over the Contacts app onto your local device. If any of
this is confusing, please refer to the previous chapter; it covers how to create an
emulator and copy devices from it.

How to do it…
You should have a local copy of the APK files that you wish to inspect on your hard drive.
We can now begin inspecting the application's certificate. To view an application's public
key certificate and signature, you will first need to unpack the APK file. This is pretty easy if
you know how to unzip an archive because APK files are in fact ZIP archives that have been
renamed. You can unzip the archive by performing the following steps:

1.	 If you're on a Windows machine, you may need to make sure that you have WinZip
installed. All you need to do is open the APK file using WinZip, and it should open like
any other ZIP archive. On Linux Debian machines, you will need to copy this file to a
file with a ZIP extension so that WinZip will happily unzip it for us:
cp Contacts.apk Contacts.zip

Engaging with Application Security

38

2.	 Unzip the archive to some memorable place; you can do that by firing off the following
command:
unzip Contacts.zip

After unzipping the archive, your directory should look like the following screenshot:

Chapter 2

39

3.	 Locate the folder called META-INF. This folder contains the signature file and the
actual CERT.RSA file which is the self-signed public key certificate; you can view
it using the keytool that comes bundled with the Java JDK that you should have
installed prior to attempting this recipe. Use the following command to print the
certificate:
keytool –printcert –file META-INF/CERT.RSA

What you have in front of you now is the certificate that declares the holder of the
public key.

4.	 To view the actual signatures related to the application content, locate a file called
CERT.SF under the META-INF folder. You can view this on Windows by opening it in
notepad or any other text editor that is available to you, or on Unix/Linux machines by
executing the following command:

cat [path-to-unzipped-apk]/META-INF/CERT.SF

Engaging with Application Security

40

You should have the signature file in front of you now. It includes the cryptographic
hashes of the resource files included in the application; see the following screenshot
for an example:

This file is used when the jarsigner tool tries to verify the content of the
application; it computes the cryptographic hash of the resources listed in the CERT.
SF file and compares it to the digests listed for each resource. In the previous
screenshot, the hash—SHA-1 Digests—have been base64 encoded.

Chapter 2

41

How it works…
The META-INF folder is a very important resource because it helps to establish the integrity
of the application. Because of the important role the contents of this folder plays in the
cryptographic security of an application's content, it is necessary to discuss the structure of
the folder and what should appear inside it and why.

Inside the META-INF folder, you should find at least the following things:

ff MANIFEST.MF: This file declares the resources very similar to the CERT.SF file.

ff CERT.RSA: This is the public key certificate, as discussed previously.

ff CERT.SF: This file contains all of the resources in the application that have been
accounted for in the application signature. It is added to accommodate JAR-specific
cryptographic signing.

ff CERT.RSA: This is a X.509 v3 certificate; the information in it is structured by keytool
in the following way:

�� Owner: This field is used to declare the holder of the public key, and it
contains some basic information about the country and organization
associated to this individual.

�� Issuer: This field is used to declare the issuer of the X.509 certificate that
associates the public key to the declared holder. The people or organizations
mentioned here are the ones that effectively vouch for the key holder. They
are the ones that establish the authenticity of the public key listed in the
certificate.

�� Serial number: This is used as an identifier for the issued certificate.

�� Valid from ... until: This field specifies the period for which this certificate
and its associated attributes can be verified by the issuer.

�� Certificate fingerprints: This field holds the digest sums of the certificate. It
is used to verify that the certificate has not been tampered with.

The digital signature is computed by encrypting the certificate with the trusted third parties'
private key. In most Android applications, the "trusted third party" is the developer. This
means that this signature is generated by encrypting the certificate using his/her own private
key—usually the one associated to the public key. This usage of the digital signature may be
functionally correct—it makes functional use of the digital signature mechanism—but it isn't
as robust as relying on a trusted third party like a Certificate Authority (CA). After all, anyone
can say that they developed the Twitter app by signing it with their own key, but no one can say
that they own VeriSign or Symantec's private key!

Engaging with Application Security

42

If the certificate is self-signed, the developer can exercise his/her creativity while filling
out the information associated to the certificate. The Android package manager makes no
effort to verify that the issuer, owner, or any other details of the certificate are valid or are
actual existing entities. For instance, the "owner" doesn't explicitly need to mention any valid
personal information about the developer, or the "Issuer" could be a completely fabricated
organization or individual. Though doing this is possible, it is strongly recommended against
because it makes an application very hard to trust; after all, a mobile application is often
stored and used on a very personal device, and people who become privy to the fabricated
details of a public key certificate may no longer trust such an application.

The best way to go about generating a trustworthy application certificate is through a qualified
CA by either requesting a signed public key certificate—after generating your own public
and private key pair—or requesting a CA to generate a public/private key pair with a public
key certificate, since they will often verify all of the information published in the certificate.
Symantec and other CAs and security vendors often offer a range of services to facilitate the
generation of trustworthy public key certificates, some of which are catered to supporting
Android application development.

The next recipe of this walkthrough contains some useful links on public key certificates for
you to check out.

There's more...
You can also view the full public key certificate using the OpenSSL library via the command-
line tool on Linux by performing the following steps:

1.	 Make sure you have OpenSSL installed; if not, you can install OpenSSL with the
following command:
apt-get install openssl

2.	 Once installed, you can view the certificate using the following command, provided
you are in the root of the unzipped APK directory:

openssl pcks7 –inform DER –in META-INF/CERT.RSA –noout
–print_certs –text

Chapter 2

43

You should see something like the following screenshot appear on your terminal
screen:

Engaging with Application Security

44

The second half of the previous screenshot is as follows:

The last section of the certificate in the previous screenshot is the actual digital
signature of the CA that issued the certificate.

See also
ff The RFC2459 – Internet X.509 Public Key Infrastructure Certificate and CRL Profile

document at http://datatracker.ietf.org/doc/rfc2459/?include_
text=1

ff The X.509 Certificates and Certificate Revocation Lists (CRLs) Oracle documentation
at http://docs.oracle.com/javase/6/docs/technotes/guides/
security/cert3.html

Chapter 2

45

Signing Android applications
All Android applications are required to be signed before they are installed on an Android
device. Eclipse and other IDEs pretty much handle application signing for you; but for you
to truly understand how application signing works, you should try your hand at signing an
application yourself using the tools in the Java JDK and Android SDK.

First, a little background on application signing. Android application signing is simply
a repurposing of the JAR signing. It has been used for years to verify the authenticity of Java
class file archives. Android's APK files aren't exactly like JAR files and include a little more
metadata and resources than JAR files; so, the Android team needed to gear the JAR signing
to suit the APK file's structure. They did this by making sure that the extra content included
in an Android application forms part of the signing and verification process.

So, without giving away too much about application signing, let's grab an APK file and get it
signed. Later in the walkthrough, we're going to try installing our "hand-signed" application on
an Android device as an easy way to verify that we have in fact signed it properly.

Getting ready
Before we can begin, you will need to install the following things:

ff Java JDK: This contains all of the necessary signing and verification tools

ff APK file: This is a sample APK to sign

ff WinZip: This is required for Windows machines

ff Unzip: This is required for Ubuntu machines

Given that you may be using an APK file that's already signed, you will need to first remove
the certificate and signature file from the APK file. To do this, you will need to perform the
following steps:

1.	 Unzip the APK file. It'd be waste to reiterate unpacking an APK file; so, if you need
help with this step, refer to the Inspecting application certificates and signatures
recipe.

2.	 Once the APK file has been unzipped, you'll need to remove the META-INF folder. The
Windows folks can simply open the unzipped APK folder and delete the META-INF
folder using the graphical user interface. This can be done from the command-line
interface by executing the following command on Unix/Linux systems:

rm –r [path-to-unzipped-apk]/META-INF

You should be ready to sign the application now.

Engaging with Application Security

46

How to do it...
Signing your Android application can be done by performing the following steps:

1.	 You'll first need to set up a keystore for yourself because it will hold the private key
that you will need to sign your applications with. If you already have a keystore set up,
you can skip this step. To generate a brand new keystore on Windows and Unix/Linux
distributions, you will need to execute the following command:
keytool –genkey –v -keystore [nameofkeystore] –alias
[your_keyalias] –keyalg RSA –keysize 2048 –validity
[numberofdays]

2.	 After entering this command, keytool will help you set up a password for your
keystore; you should make sure to enter something that you will actually remember!
Also, if you at all intend to use this keystore for practical purposes, make sure to keep
it in a very safe place!

3.	 After you've set up the password for your keystore, keytool will begin prompting you
for information that will be used to build your certificate; pay close attention to the
information being requested and please answer as honestly as possible—even though
this is not demonstrated in the following screenshot:

You should now have a brand new keystore set up with your new private key, public key,
and self-signed certificate stored safely inside and encrypted for your protection.

4.	 You can now use this brand new keystore to sign an application, and you can do that
by executing the following command:
jarsigner –verbose –sigalg MD5withRSA –digestalg SHA1 –
keystore [name of your keystore] [your .apk file] [your key
alias]

Chapter 2

47

5.	 You'll be prompted for the password to the keystore. Once you enter it correctly,
jarsigner will start signing the application in place. This means that it will modify
the APK file that you gave it by adding the META-INF folder with all of the certificate
and signature-related details.

And that's it. Signing an application is that easy. I've also inadvertently illustrated how
to re-sign an application, namely, replace the signatures that were distributed with
the application originally.

How it works...
To start off, let's have a look at the options supplied to keytool:

ff -genkey: This option tells keytool that you'd like to generate some keys

ff -v: This option enables verbose output; however, this command is optional

ff -keystore: This option is used to locate the keystore you'd like to use to store your
generated keys

ff -alias: This option is an alias for the key pair being generated

ff -keyalg: This option tells about the encryption algorithm used to generate the key;
you can make use of either RSA or DSA

ff -keysize: This option specifies the actual bit length of the key you're going to
generate

ff -validity: This option mentions the number of days for which the generated key
will be valid; Android officially recommends using a value above 10,000 days

What keytool actually does with the public and private keys is store the public key wrapped
inside an X.509 v3 certificate with it. This certificate is used to declare the identity of the
public key holder and can be used to affirm that the mentioned public key belongs to the
declared holder. This requires involvement from a trusted third party like a CA, but Android
does not require public keys to be affirmed in this way. For more on how these certificates are
used and structured, refer to the Inspecting application certificates and signatures recipe.

Engaging with Application Security

48

The options of jarsigner are described in detail after the following command:

jarsigner –verbose –sigalg MD5withRSA –digestalg SHA1 –keystore [name
 of your keystore] [your .apk file] [your key alias]

The following section explains the attributes of the preceding command:

ff -verbose: This is used to enable verbose output

ff -sigalg: This is used to supply the algorithm to be used in the signing process

ff -digestalg: This is used to supply the algorithm that will compute the signatures
for each of the resources in the .apk file

ff -keystore: This is used to specify the keystore that you want to use

ff [your .apk file]: This is the .apk file that you intend to sign

ff [your key alias]: This is the alias that you associated to the key/certificate pair

See also
ff The Jarsigner documentation at http://docs.oracle.com/javase/6/docs/

technotes/tools/windows/jarsigner.html

ff The Signing your applications – Android Developer page at http://developer.
android.com/tools/publishing/app-signing.html

ff The Keytool documentation at http://docs.oracle.com/javase/6/docs/
technotes/tools/solaris/keytool.html

Verifying application signatures
In the previous recipes, we walked through how applications are signed and how to generate
keys securely to sign them. This recipe will provide details on how application signatures
are verified. Being able to do this "by hand" is pretty important because it not only gives
you insight into how verification actually works, but also serves as a gateway to deeper
introspection of cryptographic application security.

Getting ready
To be able to perform this recipe, you will need the following:

ff The JDK

ff A sample signed application to verify

That's about all that you need for this one. Let's get going!

Chapter 2

49

How to do it...
To verify application signatures, you will need to perform the following steps:

1.	 The Java JDK has a tool called jarsigner that will be able to handle all of the hard
labor; all you need to do is execute the following command:
jarsigner –verify –verbose [path-to-your-apk]

2.	 All you need to do now is look for the jar verified string on your screen; this indicates
that the application signatures have been verified.

Inspecting the AndroidManifest.xml file
The application manifest is probably the most important source of information for Android
application security specialists. It contains all of the information regarding an application's
permissions and which components form part of an application, and it gives us quite some
details about how these components will be allowed to interact with the rest of the applications
on your platform. I'm going to use this recipe as a good excuse to talk about the application
manifest, how it's structured, and what each component in the sample manifest means.

Getting ready
Before you can get going, you will need to have the following software:

ff WinZip for Windows

ff The Java JDK

ff A handy text editor; usually Vi/Vim does the trick, but Emacs, Notepad++, and
Notepad are all cool; we don't need anything fancy here

ff The Android SDK (no surprise here!)

You may also need to go get something called apktool; it makes decoding the
AndroidManifest.xml file really easy. Well, actually, all that it really does is reformat the
output of another Android SDK tool. It's pretty easy to set it up; all that you need to do is
perform the following steps:

1.	 Download the tool; you can it find at http://android-apktool.googlecode.
com/files/apktool1.5.2.tar.bz2.

If you have the Android SDK installed, you can simply extract the apktool that you just
downloaded to the platforms-tools folder in your SDK folder, more specifically:
C:\\[path to your sdk]\sdk\platform-tools\

Engaging with Application Security

50

Or for Linux machines:
/[path to your sdk]/sdk/platform-tools/

Please make sure that you get the apktool.jar file and the apktool script in there
with everything else; don't put it in its own subfolder!

2.	 If you don't want to download the Android SDK, there are some dependencies that
you will need to download. They can be downloaded at http://code.google.
com/p/android-apktool/downloads/list.

Namely, if you're using a Windows machine, you should get the apktool at http://
android-apktool.googlecode.com/files/apktool-install-windows-
r05-ibot.tar.bz2.

And, if you're using a Linux Debian machine, you should get this one at http://
android-apktool.googlecode.com/files/apktool-install-linux-r05-
ibot.tar.bz2.

You will also need to make sure that all of the downloaded files are in the same
directory.

3.	 You should be able to fire it up, and you can test it out by trying to run it with the
following:

On Windows:
C:\[path-to-apktool]\apktool -help

And on Debian Linux:
/[path-to-apk-too]/apktool -help

If you've got all of that done, you'll be able to move on to the next step, that is,
actually dissecting an AndroidManifest.xml file.

How to do it...
To grab a copy of the AndroidManifest.xml file for a given application package, you need
to perform the following steps:

1.	 All that you'll need to do is point apktool at your APK file. We're going to be using the
Contacts.apk application that we pulled off of an emulator in one of the previous
recipes. Type the following into your command prompt and make sure your working
directory—the directory you are currently in with your terminal/command prompt—is
the one you extracted apktool into.

On Debian Linux:
/[path-to-apktool]/apktool d -f –s [apk file] decoded-data/

Chapter 2

51

On Windows:
C:\[path-to-apktool]/apktool d –f –s [apk file] decoded-data/

As an example, if you're using the Contacts.apk application and you want all of the
decoded files to be saved to a folder called decoded, you would type the following
command on a Linux machine:

~/adt-bundle-linux-x86_64/sdk/platform-tools/apktool d –f –s
Contacts.apk decoded

2.	 You can now view the application manifest. It should be under the folder you chose
to extract it to in the previous step, inside a file aptly named AndroidManifest.
xml. To view it, simply whip out your favorite text editor—Linux folks, you have almost
a million text-editing tools bundled into your operating system—and point it at the
AndroidManifest.xml file.

On Linux:
vi [path-to-your-decoded-data]/AndroidManifest.xml

Alternatively, you could just display it on your terminal screen by executing the
following command:
cat [path-to-your-decoded-data]/AndroidManifest.xml

On Windows:

C:\Windows\System32\notepad.exe [path-to-decoded-
data]\AndroidManifest.xml

Engaging with Application Security

52

3.	 You should see the manifest either on your terminal screen—if you're on a Linux
machine—or notepad should pop up with the manifest open. Some of you may not
understand what all of the garble on your screen is or how valuable this information
is, which is why the next recipe includes an explanation of all the important parts of
the application manifest structure:

So, you're probably staring at the garbled information listed in the
AndroidManifest.xml file. What it means and why all of this is important is stated
in the next recipe of the walkthrough. It provides a good background on how some of
the elements and their attributes work. I've only covered the background on the most
important elements with regard to security and application security assessment.

How it works...
To help you understand the application manifest, I'm going to show you the structure of a
manifest here and explain what the most important sections mean. If you want more details
on the Android manifest language, you should check out the See also section of this recipe.

The structure of the manifest is as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest>

 <uses-permission /> <permission /> <permission-tree />
 <permission-group /> <instrumentation /> <uses-sdk /> <uses-
 configuration /> <uses-feature /> <supports-screens />
 <compatible-screens /> <supports-gl-texture />

Chapter 2

53

 <application>
 <activity>
 <intent-filter>
 <action />
 <category />
 <data />
 </intent-filter>
 <meta-data />
 </activity>
 <activity-alias>
 <intent-filter> . . . </intent-filter>
 <meta-data />
 </activity-alias>
 <service>
 <intent-filter> . . . </intent-filter>
 <meta-data/>
 </service>
 <receiver>
 <intent-filter> . . . </intent-filter>
 <meta-data />
 </receiver>

 <provider>
 <grant-uri-permission />
 <meta-data />
 <path-permission />
 </provider>
 <uses-library />
 </application>
</manifest>

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

So, what on earth does this mean? Well, to start off, the first line has more to do with the kind
of file and Android manifest, and has almost nothing to do with what it does and is intended
for. If you couldn't tell from the .xml extension, it's an eXtensible Markup Language (XML)
file. This means that the Android manifest is an XML language. XML is a format for basically
making up any language you wish; some sources frankly describe it as a language for defining
markup languages. XML is designed to be a set of rules for describing just about anything!

Engaging with Application Security

54

So, when you see the following code, you know that whatever follows that line is an XML file in
XML Version 1 and it's encoded using UTF-8:

<?xml version="1.0" encoding="utf-8"?>

Moving on to the Android-specific part:

<manifest>

This element is the opening tag for the entries in the application manifest; it marks the
beginning and is called the root element of an XML document. The next tag declares that the
application requires a given permission:

<uses-permission android:name="string"/>

This is the string that usually shows up when you install the application, depending on what
kind of permission it is. The android:name attribute specifies the name of the permission;
so, for instance, if your application needs to use a device's camera service, it should have the
following code in its manifest:

<uses-permission android:name="android.permission.CAMERA">

The next element type is as follows:

<permission android:description="string resource"
 android:icon="drawable resource" android:label="string
 resource" android:name="string"
 android:permissionGroup="string"
 android:protectionLevel=["normal" | "dangerous" |
 "signature" | "signatureOrSystem"] />

This element is used to define permission; for instance, when a developer feels that for other
applications to interact with a particular application component, a special unique permission
is required. This element is quite interesting; let's look at its attributes:

ff android:description: This attribute is used to define the string that will be
displayed as the description of the permission when the user is prompted to grant the
permission.

ff android:icon: This attribute is used to define a descriptive icon to display when
the user is prompted to grant the permission.

ff android:label: This attribute is used as the name of the permission when the
user is prompted to grant the permission, for example, network access and read
SMSs.

ff android:name: This attribute is the actual name of the permission. This is the literal
string that will be looked for in an application's manifest to determine whether it has
this permission, for example, android.permission.Camera.

Chapter 2

55

ff android:protectionLevel: This attribute is the value used to indicate the level
of risk associated to this permission. The levels are classified as follows:

�� "dangerous": This level is usually assigned to any permission that allows
apps to access sensitive user data or operate system configuration data.
This is used to protect access to any function or data that can be used to
harm the user.

�� "normal": This level is used to indicate any permission that grants access
to data or services that incur no inherent risk.

�� "signature": This level is set when the permission is to be autonomously
granted to any application signed with the same certificate as the application
that defined the permission, namely, the application with the associated
<permission> tag in AndroidManifest.xml.

�� "signatureOrSystem": This level is set when the permission is to be
autonomously granted to any application signed with the same certificate as
the application that defined the permission.

You should pay close attention to the value used in the protectionLevel attribute,
especially those of you who need to perform application assessments professionally. Try to
think about whether the protection level that the developer decided on is appropriate. You
need to be able to make sure that the risk involved with this permission is clearly indicated to
the user.

Another crucial attribute of protectionLevel is that it determines which permissions are
displayed to the user before the application is installed. Users are always prompted to grant
permissions in dangerous protection levels, though normal permissions are only displayed
if explicitly requested by the user. The signature and signatureOrSystem permissions,
on the other hand, are not displayed to the users before the application is installed. What
this means is that if applications are granted risky permissions in the signature or
signatureOrSystem protection level, the user would be unaware of it. Please take this
into consideration when you are inspecting an application's manifest because it will help
determine how the application communicates risks to the user. On to the next element type!

<application>

This element is used to define the beginning of an application. What's important about this
element with regards to security is its attributes and how they can affect the components
defined inside this element. The attribute definitions have been omitted here for the sake of
brevity; you will need to refer to the official documentation available at http://developer.
android.com/guide/topics/manifest/application-element.html for more details.

Engaging with Application Security

56

An important property of this element is that some attributes simply define default values
for the corresponding attributes of the components defined inside the element; this means
that its components will be able to override them. A notable element of these overridable
attributes is the one called permission, which declares the permission that other
applications need to have in order to interact with it. This means that if an application sets a
given permission and one of its components sets a different permission as its attribute, the
component's permission will take precedence. This could introduce considerable risk if the
component overrides a dangerous permission with a normal one.

Other attributes cannot be overridden by their components. This depends on the value that
is set in the attribute and applied to every single component. The components include the
following attributes:

ff debuggable: This attribute specifies if a given component or group of components
are debuggable.

ff enabled: This attribute specifies if the android application framework will be able to
start up or run the components defined with this element; the default for this is true.
Only when this is set to false does it override the value for all components.

ff description: This attribute is simply a string used to describe the application.

ff allowClearUserData: This attribute is a flag that determines whether the users
will be able to clear data associated to the app; by default, it is set to true and
cannot be set as anything else by non-system apps on some platforms.

The following elements are definitions for application components and allow developers to
decide certain attributes for them:

<activity
 android:exported=["true" | "false"]
 android:name="string"
 android:permission="string"
 android:enabled=["true" | "false"]
 android:permission="string"
...other attributes have been omitted
>

Chapter 2

57

This element defines components that users will be able to interact with. It also allows
developers to define how other components will be able to interact with it. The attributes that
may directly affect application security have been declared in the previous code snippet; let's
talk about what they do and why they are important.

ff android:exported: This attribute is used to decide whether the components
of other applications will be able to interact with this element. All application
components—services, broadcast receivers, and content providers—have this
attribute in common.

What's interesting here is the default behavior of this attribute, if it is not explicitly
set for this element. Whether or not it will be "exported" partly depends on whether
intent filters are defined for the activity or not. If intent filters are defined and the
value is not set, the Android system assumes that the component intends to respond
to interaction from external application components and will allow them to interact
with it, given that the initiator of the interaction has the necessary permissions to
do so. If no intent filters are defined and the attribute value is not set, the Android
application framework will only allow explicit intents to be resolved against the
component.

There is another caveat. Because of the way in which older Android API levels work,
there are attributes that can override the default value; for applications that set
either android:minSdkVersion or android:targetSdkVersion to 16 or lower,
the default value is true. For applications that set android:minSdkVersion or
android:targetSdkVersion as equal to or higher than 17, the default value is
false.

This is very valuable information because it will help us determine an application's
attack surface—it determines how potentially malicious applications will interact with
its components—and quite literally determine the difference between a good security
assessment and an ineffective one.

ff android:name: This attribute specifies the class file that contains the Java code for
the component; I've added it here because you will need to know this value should
you want to launch explicit intents aimed at a given component. All component types
have this attribute in common.

ff android:permission: This attribute is used to specify the permission required to
interact with the component.

Engaging with Application Security

58

ff android:enabled: This attribute is used to indicate whether the system is allowed
to start/instantiate the component:

<service android:enabled=["true" | "false"]
 android:exported=["true" | "false"]
 android:icon="drawable resource"
 android:isolatedProcess=["true" | "false"]
 android:label="string resource"
 android:name="string"
 android:permission="string">

</service>

It is used to define the attributes of a service; some XML attributes are unique to
services, namely:

�� android:isolatedProcess: This attribute indicates if the service will run
in an isolated process with no permissions.

 <receiver android:enabled=["true" | "false"]
 android:exported=["true" | "false"]
 android:icon="drawable resource"
 android:label="string resource"
 android:name="string"
 android:permission="string"
 android:process="string" >
 </receiver>

This element declares the broadcast receiver component:
 <provider android:authorities="list"
 android:enabled=["true" | "false"]
 android:exported=["true" | "false"]
 android:grantUriPermissions=["true" | "false"]
 android:icon="drawable resource"
 android:initOrder="integer"
 android:label="string resource"
 android:multiprocess=["true" | "false"]
 android:name="string"
 android:permission="string"
 android:process="string"
 android:readPermission="string"
 android:syncable=["true" | "false"]
 android:writePermission="string" >
 </provider>

Chapter 2

59

It defines the components of the content provider type. Seeing that the
content providers are basically database-like components, they would need
to be able to define the controls for accessing their data structures and
content. The following attributes help them to do just that:

�� android:writePermission: This attribute specifies the name of the
permission components from other applications that this content provider is
in charge of. It is a must-have in order to change or augment data structures.

�� android:readPermission: This attribute specifies the name of the
permission components from other applications that this content provider
is in charge of. It is a must-have in order to read from or query the data
structures.

�� android:authorities: This attribute specifies a list of names identifying
the URI authorities. Usually, these are the Java classes that implement the
provider:

 <intent-filter android:icon="drawable resource"
 android:label="string resource"
 android:priority="integer" >
 </intent-filter>

See also
ff The AndoirdManifest.xml file page at http://developer.android.com/guide/

topics/manifest/manifest-intro.html

Interacting with the activity manager via
ADB

Getting to know the Android Debug Bridge (ADB) is quite crucial to any budding Android
security specialist. The ADB allows you to interact directly with the native services and
resources, such as the package manager, activity manager, and other various daemons
that are crucial to an Android system's operation used by the Android system. This recipe
will provide details on how to interact with the activity manager by demonstrating a few
commands that you can fire off.

Getting ready
Before we start, you will need the following things:

ff The Android SDK tools

ff Either a virtual device, see the Inspecting the AndroidManifest.xml file recipe to find
out how to create and launch one, or a physical Android device

Engaging with Application Security

60

How to do it…
To launch activities using the application manager, you need to perform the following steps:

1.	 Drop a shell on your Android device with the help of the following command:
adb shell

2.	 Find yourself an activity to launch; you can do this by searching through the list of
activities that are installed on the device. This can be done by using the package
manager.
pm list packages

A huge list of packages should start pouring down your screen; any one of them
should do just fine as an example:

3.	 Once you've selected the activity that you want to launch, execute the following
command:

am start [package name]

Chapter 2

61

There's more...
Besides just launching activities, you can also specify intents to send over to an activity by
making use of the intent argument accepted by the start command, as follows:

am start <INTENT> < --user UID | current >

The <INTENT> argument can be made up of a couple of arguments that allow you to describe
an intent in full detail.

ff -a [action]: This argument specifies the string label of the action to be specified.
It helps detail the intended purpose or "action" of the intent that is being sent.

ff -d [data uri]: This argument specifies the data URI to be attached to the intent.
It points to the data to be used by the application handling the intent.

ff -t [mime type]: This argument specifies the mime type of the data included with
the intent.

ff -c [category]: This argument specifies the category of the intent.

ff -n [component]: This argument specifies the component of the specified package
targeted with the intent. It is used to fine tune the targeting of the intent.

ff -f [flags]: This argument specifies the intent flags. It is used to describe how the
intent should be honored and allows you to control a given number of behaviors of
the application that is honoring the intent.

ff -e [extra key] [string value]: This argument adds a string value
associated to a given key. Certain intent definitions allow you to pass a dictionary of
string values to an application. These string values will be accessed when the intent
is being honored.

ff -e [extra key] [string value]: This argument has the same function as -e.

ff -ez [extra key] [boolean value]: This argument associates Boolean values
to a name.

ff -ei [extra key] [integer value]: This argument associates an integer value
to a name.

ff -el [extra key] [long value]: This argument associates a long number
value to a name.

ff -ef [extra key] [float value]: This argument associates a float number
value to a name.

ff -eu [extra key] [uri value]: This argument associates a URI to a name.

ff -ecn [extra key] [component name]: This argument associates a component
name—that will be converted into a ComponentName object—to a name.

ff -eia [extra key] [integer value, integer value,...]: This argument
allows you to associate an integer array to a name.

Engaging with Application Security

62

ff -efa [extra key] [float value, float value,...]: This argument is the
same as -eia, except that in this case, you would associate an array of float number
values to a name.

Not all of the intent arguments are compulsory. All that's needed for this command to be
logically sound is a component to target with the intent or an action value; these rules apply to
all intents targeted at applications.

The optional --user argument allows you to specify which user this application should run
as. If this argument is not supplied with the activity, it will run as the ADB user.

There are also flags that you can associate to the intent. For a full list of options, refer to the
Intent Specification – Android Developer labeled link in the See also section.

Using this would work something similar to the following command:

am start –n com.android.MyPackage/
com.android.MyPackageLaunchMeActivity
–e MyInput HelloWorld –a android.intent.MyPackageIntentAction
–c android.intent.category.MyPackageIntentCategory

You can also start services using the activity manager; you can do this using the
startservice command:

am startservice <package name>/<component name> <INTENT>

Using this would work as follows:

am startservice com.android.app/
com.android.app.service.ServiceComponent

you can also specify

Another function that the activity manager supports is stopping services and processes. This
comes in very handy when an app is hogging all of the system resources and slowing the
system down. Here's how you kill a process using the activity manager:

kill < --user UID | current > <package>

As with the previous commands, the UID argument is optional. Here, this argument allows you
to limit the kill command to packages running as a given user. If left unspecified, ADB will
try to kill the running processes of all users that are associated to the given package.

For more commands supported by the Android activity manager, see the Android Debug
Bridge – Android developer labeled link in the See also section.

Chapter 2

63

See also
ff The Android Debug Bridge – Android developer page available at http://

developer.android.com/tools/help/adb.html

ff The Intent Specification – Android Developer specifications available at http://
developer.android.com/tools/help/adb.html#IntentSpec

Extracting application resources via ADB
The following recipe shows you how to do some snooping on your Android applications.
Namely, find out what kind of data structures they are using to store important information
and what kind of information they are storing, for example, high scores, passwords, contacts,
and e-mails. Besides allowing you to set your high score to a negative number, this is an
effective way for you to influence application behavior from its backend. It also gives you a
perspective on how applications protect their users' data, for example, is the data encrypted?
How is it encrypted? Does the application protect the integrity of the user data? It also makes
for a very useful skill when reverse engineering and assessing application security.

Getting ready
Unfortunately for this one, you will need either a "rooted" phone or an emulator, because you
already have root access on emulated devices.

If you want to get access to the resources of other apps, you will need root permissions. If you
want to study the behavior of applications from the market, nothing prevents you from pulling
them off of your device using ADB and installing them on a virtual device.

You will also need to install the Android SDK.

Engaging with Application Security

64

How to do it…
Listing files on an Android device can be done in the following ways:

1.	 Drop a shell on your Android device with the help of the following command:
adb shell [options]

2.	 Navigate to the /data/data/ directory:
cd /data/data/

The directory should look similar to the following screenshot:

Chapter 2

65

If you list the file permissions, creation, modification, and other metadata, it should
look like the following screenshot:

Notice the owners and groups of the data directories, the first and second columns
from the left in the listing. The owners here are actual applications. Linux, by default,
runs each application as its own Linux user, which is essentially how the application
sandbox operates. When an app is given permission to a resource that it inherently
doesn't have access to, Linux puts it in the relevant user group.

Engaging with Application Security

66

3.	 Execute the following command if you wish to see all of the application resources and
metadata in one go:
ls –alR */

Chapter 2

67

But, typically, you wouldn't want your screen to be flooded with a massive directory
listing unless you're redirecting it to a file. You may want to display only the
databases:
ls –alR */databases/

Engaging with Application Security

68

Or, maybe display just the files or whatever that is saved in the /files/ directory for
each application:
ls –alR */files/

Or, you could even search for a given type of file, by specifying an extension; here are
a few examples:

ls –al */*/*.xml

ls –al */*/*.png

ls –al */*/*.mp3

4.	 Once you've found the files you're looking for, all that you need to do is copy them
onto your machine using a good old adb pull:

adb pull /data/data/[package-name]/[filepath]

There's more...
All we're really doing here is listing different file types. One of those types is sqlite3 databases,
the DB files that you would have seen in some of the directories. I'm sure you're dying to know
how to crack them open and have a look at what's inside. This is how it's done.

Before we get going, you will need to make sure that sqlite3 is installed; it comes shipped with
the Android SDK.

1.	 Extract the DB file to a location on your machine using the following command:
adb pull /data/data/[package-name]/databases/[database-
filename]

Chapter 2

69

2.	 Load up the .db file using sqlite3:

sqlite3 [database-filename]

Check out the following screenshot if you're looking for an example:

In this chapter, we covered some of the mechanisms that protect applications, some basic
protections that involve inter-application communication, application permissions, as well as
the cryptographic signatures, and filesystem-related access protections.

What you should take away from here are the tips and tricks needed to perform the security
mechanisms by hand. This allows you to assess the effectiveness of these mechanisms
independent of the Android devices enforcing them, and also allows you to interact directly
with them, hopefully allowing you to understand them better.

3
Android Security

Assessment Tools

In this chapter, we will cover the following recipes:

ff Installing and setting up Santoku

ff Setting up drozer

ff Running a drozer session

ff Enumerating installed packages

ff Enumerating activities

ff Enumerating content providers

ff Enumerating services

ff Enumerating broadcast receivers

ff Determining application attack surfaces

ff Launching activities

ff Writing a drozer module – a device enumeration module

ff Writing an application certificate enumerator

Introduction
We've covered all the Android development basics and introduced all the Android
Development Tools. Now it's time to start getting into the Android hacking and security
assessment tools.

Android Security Assessment Tools

72

This chapter introduces you to an exploitation and Android security assessment framework
called drozer—formally known as Mercury—developed by some of the people at MWR Labs.
Also covered in the chapter is a Debian-based Linux distribution called Santoku, which is
basically like BackTrack or Kali Linux of Mobile security assessment. Here we cover setting it
up and getting it running.

Before we begin setting up drozer and writing some sample scripts, something that's very
important for you to understand is a little about how drozer operates and how it solves some
problems in the Android security assessment game.

drozer comes in two parts: one is the "console" that runs on your local machine and the other
is the "server", which is basically an application installed on a target Android device. When
you're using the console to interact with the Android device, you are basically injecting Java
code into the drozer Agent that gets executed on the actual device.

Why design it this way? Well before drozer came along, writing application-vulnerability-focused
exploits meant having to compile an Android app, to exploit a given vulnerability, deploy it to
the target phone, and check if it worked. And then if it didn't, you would need to redo the entire
process! This practice is very tedious and can make Android security assessments feel like
a chore. drozer makes it easy to deploy and test exploits by passing commands to the device
on the fly by proxy of the drozer Agent, which means you never need to touch an Android
development environment or recompile an exploit app multiple times.

drozer is called a framework because it allows you to extend its functionality by writing your
own modules or plugins and adapting it to your needs. It is essentially the closest thing to the
Metasploit of mobile security assessment.

Another effect that the standard drozer framework has is that it is essentially an Android
application—one component of it—with no permissions, which means whatever exploits you
manage to pull off on an Android device will automatically be quite portable and require very
low privilege levels to succeed. The aim is to demonstrate how effective a "no-permission"
application can be at exploiting an Android device and the applications hosted on it.

And that's it as far as some basic background into drozer goes. As far as the rest of the
chapter is concerned, you may require some basic knowledge of the Python programming
language, since drozer's modules are developed in Python. It may also help if you know
something about Java Reflection and either know how to or have developed some Android
apps. If you've never developed anything serious or generally never programmed in Python,
don't fret—I'll make sure to walk through all the Python code and explain it carefully.

So without further ado, let's get going!

Chapter 3

73

Installing and setting up Santoku
The folks at viaForensics have developed a really cool Ubuntu-based distribution packed with
mobile security assessment tools, called Santoku. The following recipe shows you how to set
up your own installation. The reason I'm doing this first is because you may want to install and
run drozer inside your Santoku operating system installation.

Getting ready
To start off with, we're going to be doing some downloading. Grab a copy of the latest Santoku
image from https://santoku-linux.com/download.

How to do it...
Once you've downloaded the latest copy of Santoku, you can begin setting it up as follows:

1.	 To start off, you can write the Santoku image to a USB memory stick using either the
Ubuntu start-up disk creator or the Universal USB installer for Windows, available at
http://www.pendrivelinux.com/downloads/Universal-USB-Installer/
Universal-USB-Installer-1.9.4.7.exe.

2.	 Write the Santoku image you've downloaded to your USB disk.

3.	 Using the Universal USB installer, perform the following steps:

1.	 Start up the Universal USB installer and select Try Unlisted Linux ISO at
Step 1.

Android Security Assessment Tools

74

2.	 Click on Browse and select the path to your Santoku ISO as in the previous
screenshot.

3.	 At Step 3, select the USB flash drive you wish to write the image to.

4.	 Click on Create and sit back and relax while your install disk image is
prepared.

4.	 Restart your host machine with the USB device plugged in; open up the Boot Menu
and select to boot off of the USB disk.

5.	 Once it boots from the USB start-up disk, you should see the following screen:

6.	 At the boot screen, select install – start the installer directly.

Chapter 3

75

7.	 The installation should begin with the screen shown in the following screenshot:

8.	 Follow the rest of the install wizard prompts until installation begins. The process
is very easy to understand and should be familiar to anyone who has installed
Ubuntu before.

Android Security Assessment Tools

76

Once the installation is complete, you should be presented with a brand new Santoku
desktop as shown in the following screenshot:

There's more...
If you're going to install this on a VM, you'll need to grab a copy of VirtualBox. For Windows and
Unix/Linux users, this is available at https://www.virtualbox.org/wiki/Downloads.

Once you've downloaded and installed VirtualBox, you'll need to create a new VM by
performing the following steps:

1.	 Click on the New button located in the top left of the VirtualBox window.

2.	 The Create Virtual Machine dialog should pop up. Enter Santuko in the Name field,
or alternatively whatever you'd like to name your new VM.

3.	 Select Linux in the Type drop-down menu.

Chapter 3

77

4.	 Select Ubuntu in the Version drop-down menu and click on Next.

5.	 The Memory size dialog should show up now; the default setting is 512. This is
adequate; however, if you have a beefy RAM on your host machine, you are welcome
to be a bit more generous. Once you've decided on a memory size, click on Next.

6.	 The Hard Drive setup dialog will show up; select the Create virtual hard drive now
option and click on Next.

7.	 You will be presented with the Hard drive file type dialog; select the VDI (VirtualBox
Disk Image) option and click on Next.

8.	 The Storage on physical hard drive dialog should show up; select the Dynamically
allocated option; this is because you will likely install and download a whole bunch of
apps and tools onto this VM's hard disk. Click on Next.

9.	 The File location and size dialog should show up. You can accept the defaults here;
8 gigabytes is enough to store all the initial operating system data and utilities. If
you'd like more, you can configure the VM to take up a little more storage space; it's
all up to you. Once you've chosen an appropriate size, click on Next.

10.	 Your VM should be all set up now; you will need to configure a live CD for it to boot
from. To do this, click on Settings.

11.	 Once the Settings dialog shows up, click on Storage on the left-hand side pane of
the Settings dialog.

Android Security Assessment Tools

78

12.	 Under the Controller: IDE section, click on the Add CD/DVD Device button, which is
the first button next to the Controller: IDE section label.

13.	 A VirtualBox Question dialog will pop up; on this dialog, click on Choose disk. You
should be presented with a File dialog.

14.	 Navigate to and select the Santoku image you've downloaded.

15.	 You can now start your new Santoku Virtual Machine and begin installing it.

Chapter 3

79

Setting up drozer
Installing and setting up drozer is fairly straightforward; the set up process is demonstrated for
both Windows 7 and Unix/Linux types of systems.

How to do it...
Before we start hacking out some drozer scripts and get to know the exploitation and
enumeration modules, you will need to grab a copy of the drozer installer suited to your
system. Here's how you do that:

1.	 Head over to https://www.mwrinfosecurity.com/products/drozer/
community-edition/ to grab a copy of the drozer framework; of course, here I will
be talking about the community edition. If you wish to spend some cash on the non-free
edition, head over to https://products.mwrinfosecurity.com/drozer/buy.

Android Security Assessment Tools

80

Windows users should click on the drozer (Windows installer) option; it should start
downloading the drozer-installer-[version].zip file immediately.

Unix/Linux users would, depending on your distribution or OS flavor, choose either the
drozer (Debian/Ubuntu Archive) file or the drozer (RPM) package file.

2.	 Once you've downloaded the drozer version compatible with your system, you will
need to do the following, depending on your system:

For Windows users:

1.	 You will need to unzip/unpack the drozer-installer-[version].zip
file to a place/path you can easily remember.

Chapter 3

81

2.	 Once unzipped, run the file called setup.exe included in the ZIP archive.
An install wizard should start up as shown in the following screenshot:

3.	 Once the install wizard is set up, all you need to do is follow the prompts, pay
attention to the configuration dialogs, and also make sure to take note of
where drozer will be installed on your system; you will need to visit this path
often to use drozer. Once installation starts, you should see the following
dialog appear:

Android Security Assessment Tools

82

4.	 Once installation is complete, you should have drozer installed to the path
you've specified. By default, this is configured to be at the root of the C drive,
as shown in the following screenshot:

For Unix/Linux users:

The drozer framework is available in a package file format relevant to your system,
so either a DEB file for Debian users or an RPM file for Red Hat users. All you need
to do with this file is open it using your package manager, and it will handle the rest.
Debian users can make use of the following command to get drozer installed:

dpkg –I drozer-[version].deb

3.	 Once drozer is installed, you should try to run it. How you run it will partly depend on
your operating system.

For Windows users:

1.	 Open a command prompt and head over to the path you've installed your
drozer to. By default—as previously mentioned—this is the C:\drozer path.

2.	 Invoke drozer by executing the following command:
 C:\drozer\drozer

You should see the output similar to the following screenshot:

Chapter 3

83

3.	 As a diagnostic test, try invoking the drozer console. If there's anything
wrong, it should notify you of the errors before telling you that the device—
which is not attached here—is unavailable or refusing connections. Execute
the following command:

 C:\drozer\drozer console

Unless you've been clever enough to fix the error, you should see the output
similar to the one shown in the following screenshot:

This error means drozer cannot locate your Java installation.

4.	 Assuming you've already installed Java, you can add drozer to your system
PATH variable.

On Windows Augmenting your PATH variable is pretty straightforward; you start
by performing the following steps:

1.	 Open My Computer.

2.	 Click on System properties.

3.	 Under the Control Panel section of the screen, click on Advanced system
settings.

4.	 A User Access Control prompt should pop up. If you have administrator
access, simply click on OK or enter the administrator password.

Android Security Assessment Tools

84

5.	 On the System Properties dialog, click on the button labeled Environment
Variables....

6.	 Once the Environment Variables dialog pops up, under the section labeled
System variables, scroll down to the variable called Path and click on Edit….

Chapter 3

85

7.	 Another dialog should pop up, allowing you to edit the PATH variable. Add the
following string to the end of the value:

 ;C:\Program Files\Java\jre7

For Unix/Linux users:

1.	 You can invoke drozer by executing the following command from your
terminal window:
drozer

2.	 If all is well, you should see exactly the same output as the Windows drozer
edition.

3.	 If Java has not been added to your PATH variable, execute the following
command to get it added:
PATH=$PATH:`which java

To make this persistent, add the previous command line to the end
of your /home/[user]/.bashrc file.

There's more…
Before drozer can get up and running, you will need to install the drozer Agent on an Android
device. This is pretty simple; here's how you do it:

1.	 Assuming the device is connected to your host machine via USB, you can install the
drozer.apk file as follows:
adb install drozer.apk

Android Security Assessment Tools

86

2.	 For this to work, you need to make sure that Unknown Sources and USB Debugging
are both enabled for the target Android device.

On launching drozer, you should see the following:

3.	 To make using the drozer console from the command-line interface a little easier, you
could also add drozer itself to your system PATH variable.

For Windows users:

1.	 Access the Environment Variable dialog as described in the previous recipe.

2.	 Add the following string to your PATH variable:

 ;C:\drozer\drozer

If you are a Unix/Linux user, execute the following command from your terminal:

PATH=$PATH:`which drozer`

To make this persistent, add the previous command line to the end of your /home/
[user]/.bashrc file.

Chapter 3

87

If the DEB file fails to install, there is another way to get drozer installed that is relatively
painless. To get drozer installed without the DEB package, perform the following steps:

1.	 To start off, grab a copy of the Python development headers and packages by
executing the following command:
apt-get install python-dev

2.	 Grab a copy of the Python setup tools by executing the following command:
apt-get install python-setuptools

3.	 Install the 32-bit support libraries for your Debian system:
apt-get install ia32-libs-i386

4.	 Install the Python dependencies; the first one is protobuf, which you can install by
executing the following command:
easy_install –allow-hosts pypi.python.org protobuf==2.4.1

5.	 Once protobuf is installed, you'll need to install twisted for python, which you can
do by executing the following command:
easy_install twisted==10.2.0

6.	 What you need to do then is grab a copy of the drozer architecture independent
package available at https://www.mwrinfosecurity.com/system/
assets/571/original/drozer-2.3.2.tar.gz.

7.	 Once downloaded, unpack this into some directory of your choice. Once unpacked, it
should contain a file called drozer-[version]-py2.7.egg. You can then install
this EGG by executing the following command:

easy_install drozer-[version]-py2.7.egg

And that's it—drozer should be ready to rock!

Running a drozer session
So you've got drozer all set up and ready to go; you can start running some drozer sessions on
a sample Android device—preferably one with the drozer Agent installed on it.

The following recipe takes you through the basics of setting up a drozer session and how to
fire off some quick and easy modules via the drozer console.

Android Security Assessment Tools

88

How to do it...
Before proceeding with this recipe, you will need to have installed the drozer console on your
machine and drozer Agent on the target device. If all that's been sorted, you can move on to
running your drozer console session by performing the following steps:

1.	 Using ADB, set up some port forwarding, provided you have some kind of device
connected:
adb forward tcp:31415 tcp:31415

2.	 You'll need to make sure the drozer Embedded Server has been started. You will
need to start it via the application's interface on your device. Simply find the drozer
Agent on your device; it should have popped up somewhere among the other apps
on your device, but seeing that you likely just installed it, you would probably see a
notification about it and will be able to launch it from your notification menu.

3.	 Press the button labeled Embedded Server via the drozer Agent User interface. You
should be presented with the screen as shown in the following screenshot:

Chapter 3

89

4.	 Drag the button labeled Disabled to the right. It should say Enabled now and the
Enabled label under the Server Details section of the user interface should be
engaged, as shown in the following screenshot:

5.	 You can then connect the drozer console by executing the following command:

drozer console connect

drozer should then drop into console mode, allowing you to start firing off commands
and modules.

Android Security Assessment Tools

90

Enumerating installed packages
The drozer Agent is all set up and you've managed to fire up the drozer console; you can start
firing off some drozer modules and really engage with your device's security.

The following recipe details the basic usage of the drozer framework to perform novel tasks
such as enumerating the installed packages and filtering them based on package name.

How to do it...
Once you've got your drozer framework up and running, you may want to start scratching and
messing around on your Android device. One useful thing you may want to do is list all the
packages installed on your device. You can do this by firing off the following command from
your drozer console:

dz> run app.package.list

You should see something similar to the following start appearing on your screen:

Chapter 3

91

How it works...
Let's take a look at the drozer source code to find out exactly how it interfaces with the package
manager API to get all this useful information. I'm going to be explaining the code behind most
of the modules so you get to see how drozer works, and build you up to writing a drozer module
of your own later in this chapter! After all, that's what frameworks are about—building your own
mods and add-ons.

Beware non-Python users/developers! You may need a little Python background to be able
to read this source code; although, seeing that Python is pretty semantic even if you've never
written Python code, you should be able to follow pretty easily. An added benefit of drozer's
design is that they've basically mirrored the Android Java API to make module development
easy to pick up for Android developers. So, in summary, you don't need to run out and get a
book on Python just yet. If you've written Android apps before, this will be very easy to follow.
Anyway, enough talk—let's see some code!

The following code is available at https://github.com/mwrlabs/
drozer/blob/master/src/drozer/modules/app/package.py
(lines 99-121).

def add_arguments(self, parser):
 parser.add_argument("-a", "--package", default=None, help="the
 identifier of the package to inspect")
 parser.add_argument("-d", "--defines-permission", default=None,
 help="filter by the permissions a package defines")
 parser.add_argument("-f", "--filter", default=None,
 help="keyword filter conditions")
 parser.add_argument("-g", "--gid", default=None, help="filter
 packages by GID")
 parser.add_argument("-p", "--permission", default=None,
 help="permission filter conditions")
 parser.add_argument("-u", "--uid", default=None, help="filter
 packages by UID")

def execute(self, arguments):
 if arguments.package == None:
 for package in self.packageManager().getPackages
 (common.PackageManager.GET_PERMISSIONS |
 common.PackageManager.GET_CONFIGURATIONS |
 common.PackageManager.GET_GIDS |
 common.PackageManager.GET_SHARED_LIBRARY_FILES):
 self.__get_package(arguments, package)
 else:
 package = self.packageManager().getPackageInfo
 (arguments.package, common.PackageManager.GET_PERMISSIONS |
 common.PackageManager.GET_CONFIGURATIONS |
 common.PackageManager.GET_GIDS |

Android Security Assessment Tools

92

 common.PackageManager.GET_SHARED_LIBRARY_FILES)

 self.__get_package(arguments, package)

def get_completion_suggestions(self, action, text, **kwargs):
 if action.dest == "permission":
 return android.permissions

def __get_package(self, arguments, package):
 application = package.applicationInfo

The execute() method is called whenever you fire off the app.activity.info module
from your console. It's essentially the entry point to the real hard work the module does.

We see the call to the package manager, self.packageManager().getPackages(…);
this returns a list of package objects along with each package's permissions, configurations,
GID, and shared libraries. The script calls self.__get_package() on each package object
to print it out to the drozer console. The same is done for cases where a specific package is
supplied via the command-line arguments.

If you'd like to get your own copy of this code, you can grab it from the official drozer GitHub
repository, which is very easy to find if you Google hard enough. But to make your lives easier,
I've dropped a URL to the code repository in the See also section of this recipe.

There's more...
The dz> run app.package.list command is a wrapper to the Android package manager;
because of this, one of the cool things you can do is filter through applications based on their
name, as follows:

dz> run app.package.list –f [application name]

Here, [application name] is the name of the application or package you want to check
for. Here's an example:

dz> run app.package.list –f facebook

Another enumeration-type module in drozer you can use to extract information is app.
package.info, which will fetch the following information about a package:

ff Permissions

ff Configuration

ff Group IDs

ff Shared libraries

Chapter 3

93

You can use this module by firing off the following command from your drozer console:
dz> run app.package.info --help

When used this way, it will extract all the related information about all the packages on your
Android device.

Naturally, you might want to narrow down this information to a particular package:
dz> run app.package.info –-package [package name]

You could also use the shorthand for the switch, as follows:
dz> run app.package.info –a [package name]

Here's an example:
dz> run app.package.info –a com.android.browser

Android Security Assessment Tools

94

A quick explanation of the output shown in the previous screenshot is as follows:

ff Application Label: The displayed name of the application
ff Process Name: The name of the process that this application runs in
ff Version: The version of the application installed
ff Data Directory: The full path to the directory that will be used to store the user data

and application specifically associated to this application
ff APK Path: The path to the actual Android application package file on the device
ff UID: The user ID associated to the application; everything it does on the Android

system will be done using the access rights associated to this user ID, unless it gets
other applications and processes to do things on its behalf

ff GID: The system group IDs associated to this application's user ID; usually, these
are associated to an application based on a number of special permissions that are
granted to the application

ff Shared Libraries: The full path to the shared libraries used by this application
ff Shared User ID: The shared user ID this application is allowed to use
ff Uses Permissions: A list of the permissions granted to this application

Another example, in case you have a Nexus device, would be to run this against the Google
Services Framework as follows:

dz> run app.package.info –a com.google.android.gsf

The previous command should produce the output as shown in the following screenshot:

Chapter 3

95

Another cool thing you can do with the app.package.info module is find packages based
on permissions. You can do that by executing the following command:

dz> run app.package.info –p [permission label]

An example would be the following:

dz> run app.package.info –p android.permission.INTERNET

Why is this so cool? Well, you may want to know all the applications with a set of dangerous
permissions. I mean, do you know how many of your applications have the INTERNET
permission or any other dangerous permission? No? Exactly!

See also
ff The drozer GitHub repository at https://github.com/mwrlabs/drozer

ff The package.py drozer module at https://github.com/mwrlabs/drozer/
blob/master/src/drozer/modules/app/package.py

Enumerating activities
drozer also offers a useful module for enumerating information about the activity components
available on a target Android device. The following recipe demonstrates the use of this module.

How to do it...
You may at some point want to find out which activities are installed and exported on your
device. The drozer framework makes this pretty easy, here's how to do it:

Fire off the following command from your drozer console:

dz> run app.activity.info

This command will list all the activities that are exported on your device.

Android Security Assessment Tools

96

There's more...
You may want to get a little more information about the activities on your device; for example,
listing all applications that have a certain name or a certain string in their name, such as
"browser" or "facebook", which applications have what permissions, or even search for
unexported activities. Here's how to do that:

Search for activities based on name by executing the following command:

dz> run app.activity.info –-filter [activity name]

This will list all the activities with [activity name] in their name. Here's an example:

dz> run app.activity.info –-filter facebook

As with all Unix-style or Linux-style commands, there is a shortcut for this:

dz> run app.activity.info –f facebook

The previous command should produce the output as shown in the following screenshot:

Chapter 3

97

You can also specify which package you want to inspect for activities.

Search for activities in a given package as follows:

dz> run app.activity.info –-package [package name]

You could also use the shortcut for this command:

dz> run app.activity.info –a [package name]

Here's an example:

dz> run app.activity.info –a com.android.phone

The previous command should produce the output as shown in the following screenshot:

See also
ff The drozer activity modules source code at https://github.com/mwrlabs/

drozer/blob/master/src/drozer/modules/app/activity.py

Android Security Assessment Tools

98

Enumerating content providers
Much like enumerating activities and packages, drozer also provides some modules for listing
all of the content providers and some information on them. The following recipe talks about
how to do this using the app.provider.info module.

How to do it...
Let's get started enumerating content providers.

1.	 Execute the following command from your drozer terminal:
dz> run app.provider.info

2.	 This will return the following information about a content provider:

�� Authorities – the names of the classes implementing their SQLite frontends

�� Read permission

�� Write permission

�� Grant URI permissions

�� Paths

How it works...
Let's take a look at the code for the app.provider.info module.

The following code is available at https://github.com/mwrlabs/
drozer/blob/766329cacde6dbf1ba05ca5dee36b882041f
1b01/src/drozer/modules/app/provider.py.

def execute(self, arguments):
 if arguments.package == None:
 for package in self.packageManager().getPackages
 (common.PackageManager.GET_PROVIDERS |
 common.PackageManager.GET_URI_PERMISSION_PATTERNS):
 self.__get_providers(arguments, package)
 else:
 package = self.packageManager().getPackageInfo
 (arguments.package, common.PackageManager.GET_PROVIDERS |
 common.PackageManager.GET_URI_PERMISSION_PATTERNS)

 self.__get_providers(arguments, package)

Chapter 3

99

def get_completion_suggestions(self, action, text, **kwargs):
 if action.dest == "permission":
 return ["null"] + android.permissions

def __get_providers(self, arguments, package):
 providers = self.match_filter(package.providers, 'authority',
 arguments.filter)

 if arguments.permission != None:
 r_providers = self.match_filter(providers, 'readPermission',
 arguments.permission)
 w_providers = self.match_filter(providers, 'writePermission',
 arguments.permission)

The first notable part of the code is where the script makes a call to the package manager.
Here's what it looks like:

self.packageManager().getPackages
 (common.PackageManager.GET_PROVIDERS |
 common.PackageManager.GET_URI_PERMISSION_PATTERNS)

The script grabs a list of packages by making a call to the Android package manager and
throws it some flags that make sure it gets the providers back with their grant URI permission
patterns. Next we see that once the details about the content providers have been collected
by the package manager, the script makes a call to a function called __get_provider(),
which extracts information about the read and write permissions of the provider, if any. Using
some simple string matching via the match_filters() call, the __get_provider()
function basically looks for some string value in the section that defines the content provider's
permissions. This string value is marked by either readPermission for the permissions
required to read from the content provider or writePermission, which, surprisingly enough,
is required to write to the content provider. After this, it resets the provider object before
printing it out to the console.

There's more...
Much like the other .info modules in drozer, you can add filter information in the following ways:

ff Search based on package names:
dz> run app.provider.info –a [package name]

Or:
dz> run app.provider.info –-package [package name]

ff Search based on permissions:

dz> run app.provider.info –p [Permission label]

Or:

dz> run app.provider.info –-permission [permission label]

Android Security Assessment Tools

100

See also
ff The Content Providers webpage at http://developer.android.com/guide/

topics/providers/content-providers.html

Enumerating services
You may also want to know about the services that are installed on your device. drozer has a
module called app.service.info that extracts some useful information about services.

How to do it...
Execute the following command from your drozer console:

dz> run app.service.info –-package [package name]

Running this command with no arguments lists all the services installed on the target device.
It will look something like the following screenshot when run:

Chapter 3

101

You can also use the following filters to narrow down your search:

ff Search based on permissions:
dz> run app.service.info –p [permission label]

dz> run app.service.info –-permission [permission label]

ff Search based on service names:
dz> run app.service.info –f [Filter string]

dz> run app.service.info. –filter [filter string]

ff You can also choose to list unexported services, such as the following:
dz> run app.service.info –u

dz> run app.service.info –-unexported

ff And lastly, if you'd like information about the other switches and options, you can
always run the –help option as follows:

dz> run app.service.info –-help

The previous command should produce the output as shown in the following screenshot:

Android Security Assessment Tools

102

How it works…
The app.service.info module works like most of the other .info and .list type drozer
modules by making calls to the package manager through the API. Here's the call to the
package manager from drozer/master/src/drozer/modules/service.py:

def execute(self,arguments):
 if arguments.package == None:
 for package in self.packageManager().getPackageInfo
 (common.PackageManager.GET_SERVICES |
 common.PackageManager.GET_PERMISSIONS):
 self.__get_servcies(arguments, package)
 else:
 package = self.packageManager().getPackageInfo
 (arguments.package, common.PackageManager.GET_SERVICES |
 common.PackageManager.GET_PERMISSIONS)
 self.__get_services(arguments,package)

The script does a check to see whether a specific package was passed as an argument, which
is the first piece of code in the execute method:

if arguments.package == None:

If no argument or package name was defined, the script grabs a list of packages
and iterates through them by calling the self.__get_services() method, which
determines some package properties through string-matching the data returned from
the self.packageManager().getPackageInfo(arguments.package,common.
PackageManager.GET_SERVICES | common.PackageManager.GET_PERMISSIONS)
call; for example, when looking for services with a specified permission, it does the following:

services = self.match_filter(services, "permission",
 arguments.permission)

This is to extract a list of services with the required permission.

See also
ff The drozer service.py modules source at https://github.com/mwrlabs/

drozer/blob/master/src/drozer/modules/app/service.py

ff The Services – Android Developer webpage at http://developer.android.
com/guide/components/services.html

ff The Bound Services – Android Developer webpage at http://developer.
android.com/guide/components/bound-services.html

ff The Service – Android API Reference webpage at http://developer.android.
com/reference/android/app/Service.html

Chapter 3

103

Enumerating broadcast receivers
Broadcast receivers often hold useful information about an application's attack surface
and could offer attackers the opportunity to do many things, from performing arbitrary code
execution to proliferating information; because of this, they cannot be ignored during an
application-focused security assessment. The drozer developers were well aware of this fact
and provided modules to help gain information about broadcast receivers.

The following recipe demonstrates the app.broadcast.info module by detailing its
different invocation options.

How to do it...
The enumeration of broadcast receivers is performed using the following command:

dz> run app.broadcast.info

The output for the previous command should be similar to the following screenshot:

Android Security Assessment Tools

104

This app.broadcast.info module has all the cool features the other .info modules have
and some more broadcast-receiver-specific options.

You can specify a specific package from which to extract information on receivers; the
following command is an example:

dz> run app.broadcast.info –a [package]

The command that follows is another example:

dz> run app.broadcast.info –-package [package]

You can also search and list broadcast receivers based on their names; for example:

dz> run app.broadcast.info –f [filter]

Or use the longer form:

dz> run app.broadcast.info –-filter [filter]

Another option is to choose to include the unexported receivers:

dz> run app.broadcast.info –u

dz> run app.broadcast.info –-unexported

And lastly, you can choose whether to include the intent filters in the requested information;
for example:

dz> run app.broadcast.info –i

Or:

dz> run app.broadcast.info –-show-intent-filters

See also
ff The BroadcastReceivers – Android Reference webpage at http://developer.

android.com/reference/android/content/BroadcastReceiver.html

ff The drozer Source broadcast.py module at https://github.com/mwrlabs/
drozer/blob/master/src/drozer/modules/app/broadcast.py

Determining application attack surfaces
During your application security assessments, you may want to know what the attack
surface of a given application is. drozer has a really neat module that helps you determine
just that. In terms of this module, the attack surface for an application is simply the number
of exported components.

Chapter 3

105

How to do it...
Execute the following command from your drozer console:

dz> app.package.attacksurface [package name]

This command will list all the exported activities for a given package as determined by the
package manager API.

As an example, you could try running it against a sample package as follows:

How it works…
Let's take a look at the app.package.attacksurface module code. I think this is probably
one of the most interesting modules, and walking through its code should spark some ideas
on how to write automated testing tools in the form of applications. It will most certainly come
in handy when you want to do mass automated application scanning!

The code from drozer-master/src/mrw/droidhg/modules/package.py is as follows:

from drozer import android
from drozer.modules import common, Module
class AttackSurface(Module,common.Filters, common.PackageManager):

def execute(self,arguments):
 If arguments.package != None:
 Package = self.packageManger().getPackageInfo
 (arguments.package, common.PackageManager.GET_ACTIVITIES |
 common.PackageManager.GET_RECEIVERS |
 common.PackageManager.GET_PROVIDERS |
 common.PackageManager.GET_SERVICES)
 application = package.applicationInfo
 activities = self.match_filter(package.activities,
 'exported',True)
 receivers = self.match_filter(package.receivers, 'exported',
 True)
 providers = self.match_filter(package.proviers, 'exported',
 True)

Android Security Assessment Tools

106

 services = self.match_filter(package.services, 'exported',
 True)
 self.stdout.write("Attack Surface:\n")
 self.stdout.write(" %d activities exported\n" %
 len(activities))
 self.stdout.write(" %d broadcast receivers exported\n" %
 len(receivers))
 self.stdout.write(" %d content providers exported\n" %
 len(providers))
 self.stdout.write(" %d services exported\n" % len(services))
 if (application.flags & application.FLAG_DEBUGGABLE) != 0:
 self.stdout.write("is debuggable\n")
 if package.sharedUserId != None:
 self.stdout.write("Shared UID (%s)\n" %
 package.sharedUserId)
 else:
 self.stdout.write("Package Not Found\n")

A lot of code here, but what's great about this module is that it follows the same style as
the rest by interfacing the package manager. The module pulls information about services,
activities, broadcast receivers, and content providers from the package manager and simply
tries to determine whether they are exported according to the package manager. Determining
which of the components are exported, it simply enumerates them and prints a count of
the number of exported components on the screen. The thing the module does is it tries to
determine whether the app is debuggable and whether it uses a shared user ID, which is very
valuable information with regards to the attack surface. I'll explain why in the next chapter.

See also
ff The drozer Source broadcast.py module at https://github.com/mwrlabs/

drozer/blob/master/src/drozer/modules/app/package.py

Launching activities
Activities are the application components that facilitate user interaction. It may be useful during
an application security assessment to find out which applications can be launched without
permissions in case any of them provide access to sensitive data or cause an application to
crash if launched in the wrong context. Besides the obvious benefit of engaging with activities
via the drozer console, it makes for a good responsive introduction to engage with application
components because you can actually see your Android device respond to your commands from
the terminal. So, without further ado, let's get cracking with some activities!

Chapter 3

107

How to do it...
You will need to choose an activity to launch, but seeing that you cannot inherently know
where the launchable activities are or what they're called, I thought I'd include the process of
finding a launchable activity in this recipe.

1.	 Find some activities using the app.activity.info module:
dz> run app.activity.info –-package [package name]

You'll need to choose a package and an activity to use in the next step. Get used to
running this command a couple of times; you'll be using it quite a lot if you're going to
get into Android penetration testing.

2.	 When you've found the activity you're looking for, you can send it some launch intents
and watch it pop up on your Android device's screen. Here's how you do that:

dz> run app.activity.start –-action [intent action] –-category
[intent category] –-component [package name] [component name]

Here, [intent action] is the action attribute of the intent filter set by the target
activity and [intent category] is the category attribute of the intent filter set by
the target activity, which you can get from the command in Step 1.

Here's an example you can try out:

dz> run app.activity.start –-action android.intent.action.MAIN –-
category android.intent.category.LAUNCHER –-component
com.android.browser com.android.browser.BrowserActivity

How it works...
Let's take a look at the drozer source code to find out exactly how it manages to launch some
activities.

The following code is available at https://github.com/mwrlabs/
drozer/blob/master/src/drozer/modules/app/activity.py
(lines 166-174).

.... #some code has been omitted for brevity
def execute(self,arguments)
 intent = android.Intent.fromParser(arguments)

 if len(intent.flags) == 0:
 intent.flags.append('ACTIVITY_NEW_TASK')

 if intent.isValid():

Android Security Assessment Tools

108

 self.getContext().startActivity(intent.buildIn(self))
 else:
 self.stderr.write('invlaid intent: one of action or component
 must be set')

...#some code has been omitted for brevity

So, what we see here is that drozer simply bundles user-supplied arguments into an intent
after pulling it through the argument parser; it then sends over this intent after checking if the
intent is valid. This works the same way an intent would from an Android application.

There's more…
You can go about finding activities to launch using the app.activity.forintent module.

This nifty module lets you search for activities based on a given intent action and category;
here's how to do that:

dz> run app.activity.forintent –-action [intent action] –category
[intent category]

Here's an example:

dz> run app.activity.forintent –-action android.intent.action.VIEW –-
category android.intent.category.DEFAULT

See also
ff The Intent filter reference material at http://developer.android.com/

reference/android/content/Intent.html

ff The Intents and Intent Filters – Android Developer webpage at http://developer.
android.com/guide/components/intents-filters.html

ff The Activites – Android Developer webpage at http://developer.android.
com/guide/components/activities.html

Writing a drozer module – a device
enumeration module

This recipe explains how you can actually develop drozer modules by demonstrating the
practical steps that make up drozer module development. The following device information
enumerator grabs information about some of the hardware and the OS build.

Chapter 3

109

How to do it...
Let's get started writing a drozer device enumeration module:

1.	 Open a text editor and type in the following code:
from drozer.modules import Module
class Info(Module):
 name = "Get Device info"
 description = "A module that returns information about the
 device and hardware features"
 examples = "run ex.device.info"
 date = "10-11-13"
 author = "Keith Makan"
 license = "GNU GPL"
 path = ["ex","device"]
 def execute(self,arguments):
 build = self.new("android.os.Build")
 self.stdout.write("Getting device info...\n")
 self.stdout.write("[*] BOARD : %s\n" % (build.BOARD))
 self.stdout.write("[*] BOOTLOADER : %s\n" %
 (build.BOOTLOADER))
 self.stdout.write("[*] BRAND : %s\n" % (build.BRAND))
 self.stdout.write("[*] CPU_ABI : %s\n" % (build.CPU_ABI))
 self.stdout.write("[*] CPU_ABI2 : %s\n" % (build.CPU_ABI2))
 self.stdout.write("[*] DEVICE : %s\n" % (build.DEVICE))
 self.stdout.write("[*] DISPLAY : %s\n" % (build.DISPLAY))
 self.stdout.write("[*] FINGERPRINT : %s\n" %
 (build.FINGERPRINT))
 self.stdout.write("[*] HARDWARE : %s\n" % (build.HARDWARE))
 self.stdout.write("[*] MANUFACTURER : %s\n" %
 (build.MANUFACTURER))
 self.stdout.write("[*] MODEL : %s\n" % (build.MODEL))
 self.stdout.write("[*] TAGS : %s\n" % (build.TAGS))

2.	 Save that file as ex.device.info.

3.	 Create a directory for all your future drozer modules and save the ex.device.info
file in it.

4.	 Fire up the drozer console and execute the following command:
dz> module repository create [path-to-your-module-dir]/repo

5.	 Then execute the following command:
dz> module install [path-to-your-module-dir]/ex.device.info

Android Security Assessment Tools

110

6.	 drozer should have installed your new module if there were no syntax errors or faults.
You can now execute it using the following command:

dz> run ex.device.info

The output for the previous command should be similar to the output in the following
screenshot:

The next few recipes are all about writing some useful modules to extend your drozer
framework; in each, I'll demonstrate some key module development skills that you'll find
useful later in the book.

How it works...
To start off with this explanation, I thought I'd discuss the code you just wrote for your new
drozer module and how on earth it manages to extract information about your device.

Well, first of all, I'd like to talk about the structure of a drozer module. Every module you write
will start with the following line:

import drozer.modules import Module
class Info(Module)

Chapter 3

111

The first line is essentially an inclusion of some code from the modules library and it gives
drozer modules access to all the magic methods and attributes they need to operate. The
second line is called the header of a class declaration and marks the beginning of an object
definition in Python. You may notice the (Module) part of the header; this is how the Info
class manages to adopt the attributes of the Module class, and semantically this works a lot
like inheritance in Java.

The next couple of lines are as follows:

name = ""
description = ""

license = ""

These are just variables drozer uses to associate some metadata to the module and to make
documentation a bit more standardized and easy to perform—nothing technical to see here.
Moving on:

def execute(self, arguments):

This particular piece of code is called a function header and marks the beginning of the
definition of a Python function. What's special about this function is that it's the method that
gets called to do all the hard work for the module, analogous to the Main method in a Java
class. Let's talk about the arguments the execute method expects to be passed:

ff self: This is an instance of the class being defined. Its parsed to each function in
the class so that they have access to the class instance.

ff arguments: This is a dictionary of the arguments parsed to the drozer module from
the console.

And then lastly we have the following piece of code:

build = self.new("android.os.Build")

Well, besides dereferencing the self object and using some magic method called new, we
see a string value of android.os.Build being passed as an argument. This string is the
name of a Java class in the Android Java API, and the new method uses something called Java
Reflection to instantiate the Build class that holds all the information we want to print to the
screen.

The rest of the code looks something like the following:

self.stdout.write("[*] BOARD : %s\n" % (build.BOARD))

The preceding code simply prints out the device information.

Android Security Assessment Tools

112

See also
ff The Build Class reference – Android Developer webpage at http://developer.

android.com/reference/android/os/Build.html

ff The Writing a Module webpage at https://github.com/mwrlabs/drozer/
wiki/Writing-a-Module

Writing an application certificate
enumerator

In this recipe, I'm going to show you how to write a certificate enumerator, which does nothing
more than pull application certificates as hexadecimal digests and dump them on your
screen. The reason I've included this is because, firstly, it demonstrates how you interface
with the package manager and pull some information the other modules in this section don't.
Secondly, it may be useful to get your hands on an application signature when you're looking
for all apps that have been signed with the same public key, which is useful because often
developers and malware authors will use the same key for most of their applications. It will
also allow you to identify apps that may share resources and autonomously grant each other
permissions; how this happens will be discussed in detail in the next section.

How to do it...
1.	 Open up your favorite text editor and enter the following code:

from drozer.modules import Module, common
from drozer import android
import M2Crypto
import subprocess
from OpenSSL import crypto
class Info(Module,common.Filters,common.PackageManager):
 name = "Print the Signer certificate for an application"
 description = "this module allows you to print the signer x509
 certificate for a given applicaiton"
 examples = "run ex.cert.info -p com.android.browser"
 author = "Keith Makan"
 date = "11-11-2013"
 license = "GNU GPL"
 path = ["ex","cert"]
 def add_arguments(self, parse):
 parse.add_argument("-p","--package",default=None,help="The
 Package Name")
 def execute(self,arguments):
 pm = self.packageManager()

Chapter 3

113

 if arguments.package == None:
 for info in pm.getPackages
 (common.PackageManager.GET_SIGNATURES):
 self.stdout.write("[*] certificate info for {%s}\n" %
 (info.packageName))
 self.__print_certs(info)
 elif arguments.package != None:
 self.stdout.write("[*] certificate info for {%s}\n" %
 (arguments.package))
 info = pm.getPackageInfo(arguments.package,
 common.PackageManager.GET_SIGNATURES)
 self.__print_certs(info)
 else:
 self.stdout.write("[!] cannot process arguments : '%s'\n" %
 (repr(arguments)))
 def __print_certs(self,info):
 sigs = info.signatures[0].toCharsString()
 sigs = sigs + '\n'
 temp_cert = open("/tmp/cert.crt","w")
 end = 2
 #converting to DER file
 for start in range(0,len(sigs)-2,2):
 temp_cert.write(chr(int(sigs[start:end],16)))
 end +=2
 temp_cert.flush()
 temp_pem = open("/tmp/cert.pem","w")
 temp_pem.flush()
 temp_pem.close()
 certtext = subprocess.check_output(["openssl","x509","-
 inform","DER","-in","/tmp/cert.crt","-
 outform","PEM","-
 out","/tmp/cert.pem","-text"])
 temp_pem = open("/tmp/cert.pem","r")
 pem_cert_string = temp_pem.read()
 temp_pem.close()
 x509cert = crypto.load_certificate
 (crypto.FILETYPE_PEM,pem_cert_string)
 m2crypto_crt = M2Crypto.X509.load_cert_string
 (pem_cert_string,1)
 self.stdout.write("[*] Version : %s\n" %
 (x509cert.get_version()))
 self.stdout.write("[*] Issuer : %s\n" %
 (self._print_x509Name(x509cert.get_issuer())))
 self.stdout.write("[*] Subject : %s\n" %
 (self._print_x509Name(x509cert.get_subject())))
 self.stdout.write("[*] Algorithm : %s\n" %

Android Security Assessment Tools

114

 (x509cert.get_signature_algorithm()))
 self.stdout.write("[*] NotBefore : %s\n" %
 (x509cert.get_notBefore()))
 self.stdout.write("[*] NotAfter : %s\n" %
 (x509cert.get_notAfter()))
 self.stdout.write("[*] Key Length : %s\n" %
 (x509cert.get_pubkey().bits()))
 self.stdout.write("[*] Public Key : \n%s\n" %
 (self._print_key(m2crypto_crt)))
 self.stdout.write("\n")
 #self.stdout.write("\n%s\n" % (certtext))
 def _print_x509Name(self,xname):
 return ''.join(["%s=%s " % (i[0],i[1]) for i in
 xname.get_components()])
 def _print_key(self,m2cert):
 return m2cert.get_pubkey().get_rsa().as_pem()

2.	 Save it to your module repo; if you don't have one, simply create a file somewhere
on your machine where you'll save all your modules. You can install the module by
executing the following command from your drozer console:

dz> module install [path to your module code]

And when this is all done, you can run the module using the following command:
run external.cert.info –p com.google.android.gsf

You should see something like the following screenshot on your screen:

4
Exploiting Applications

In this chapter, we will cover the following recipes:

ff Information disclosure via logcat

ff Inspecting the network traffic

ff Passive intent sniffing via the activity manager

ff Attacking services

ff Attacking broadcast receivers

ff Enumerating vulnerable content providers

ff Extracting data from vulnerable content providers

ff Inserting data into content providers

ff Enumerating SQL-injection vulnerable content providers

ff Exploiting debuggable applications

ff Man-in-the-middle attacks on applications

Introduction
So far, we've covered some of the basic development and security assessment tools, and we
even covered some examples of extending and customizing these tools. This chapter will focus
on the use of these tools to analyze the Android applications to identify vulnerabilities and
develop exploits for them. Although, given the arbitrary nature of application functionality and
the almost limitless creativity Android application developers can exercise, it's not hard to see
that assessing the security of Android applications must be considered an art. What this means
for you as a security auditor, analyst, consultant, or hobbyist is that you can be sure that there
will never be a fully autonomous method to analyze the security of the Android application.
Almost always, you'd need to rely on your creativity and analysis to deliver a concrete
assessment of an Android application's security.

Exploiting Applications

116

Before we start banging away at some apps, it's important to frame the Android application
security problem, define some goals, and enumerate the application attack surface. In the
next few sections, we will discuss some of the generic goals of application security and
the controls that should be in place to help achieve these goals. The reason discussing
application security goals is so important is because it helps to make sure that you've got the
right mindset and principles in place when accessing the security of an application. Also, it
makes auditing application security as simple as verifying the existence of these controls and
then developing ways to exploit either the lack or the inadequacy of the mentioned controls.

So what are the goals of application security?

Protecting user data
Applications are often entrusted with very sensitive data related to users, some examples are
as follows:

ff Passwords

ff Authentication tokens

ff Contacts

ff Communication records

ff IP addresses or domain names to sensitive services

Each application's data is cached if it is so inclined, and may often explicitly save the user
content in the databases, XML files, or any other disk storage format; they have the freedom
to use any file format or storage mechanism they need. It's important to assess the security
of these data stores with the same diligence that is applied to assessing and auditing online
or cloud-based databases and information storage mechanisms, especially because the
information stored in an application can influence the security of websites and other cloud
services. For example, if an attacker proliferates authentication credentials to a cloud service
from an application, he/she immediately has access to the actual cloud service. Think about
online banking apps as well, and the two factor authentication tokens these apps store and
how they are stored—the SMS inbox? Really!

Applications need to enforce many of the controls that online databases use independent
of those provided by the Android operating system; namely, the controls that ensure the
following properties:

ff Confidentiality

ff Integrity

ff Availability

ff Nonrepudiation

ff Authentication

Chapter 4

117

We will discuss how to ensure these controls in the later chapters. For now, all that you need
to concentrate on is understanding the risks which the user incurs when these controls are
not enforced.

Protecting applications from one another (isolation
and privilege separation)

Applications are protected via the Android sandbox, which is just another way of saying that
each application is assigned a user ID and only inherently has access to its own resources.
This is the story of application isolation as far as the Linux portion of Android is concerned.
Android introduced some of its own protection mechanisms to keep apps from abusing each
other's components and data; the most notable being the Android permissions framework,
which operates at the application level and is enforced by the application middleware. It
exists to translate the Linux access control mechanism to application level and vice versa.
Speaking more practically, this means that every time an application is granted a permission,
it may mean that the related UID is assigned a corresponding GID. For example, android.
permission.INTERNET, which is mapped to the inet group. Any application granted this
permission will be placed in the inet group.

Applications often consist of many instances of the classic application components, services,
content providers, activities, and broadcast receivers. To protect these components from
malicious or any unintentional harmful influence, it's imperative that application developers
communicate and mitigate the risk their applications introduce to the user with regard to
the services and data they can access. The application developers should also respect the
integrity of these resources. These two principles of secure development can be enforced by
the permissions framework by ensuring that they only request the necessary permissions and
are not overzealous in the permissions they expect to be granted. The key here is making sure
that developers practice the principle of least privilege. Protection from malicious apps can
be enforced partly by ensuring that the correct permissions are required to access a given
application's components and data, and only the necessary services and components are
made available to the rest of the system at large, that is, don't export components when you
don't need to.

When analyzing the isolation an application enforces for its data and components, it's important
to take into context the permissions required to access them. How easy is it to get these
permissions granted? Are permissions required to access a given component assigned the
correct protection level? A bad example would be an app that facilitates searching and retrieving
a user's bank statements with only the android.permission.SEARCH permission.

Exploiting Applications

118

Protecting communication of sensitive information
It's not enough that application developers protect the data their applications store,
they also need to be mindful of the way this information is communicated. For instance,
consider an application that stores a user's data securely but allows it to be communicated
to unauthorized parties. All the data storage security in the world means nothing if
communication isn't done securely!

Communication can be done in the following ways:

ff Inter-component communication: Applications often need to send information
between their respective components, for example, between a broadcast receiver
and an activity. Seeing that this communication may be facilitated via intents and
intent filters, and given the nonexclusive nature of intent filters, it's possible that
unauthorized applications may intercept this communication in various ways.

ff Inter-application communication: Data communication between applications
should be done in a way that will prevent unauthorized applications from tampering,
intercepting, or gaining access to it.

ff Extra-device communication: It's possible that apps will make use of NFC, Bluetooth,
GMS, or Wi-Fi communication mediums to transmit sensitive data. Application
developers must take the proper precautions to ensure the confidentiality, integrity,
and non-repudiation of data communicated this way.

So, when auditing an application for communication faults, it's important to look for controls
that provide the following:

ff Authentication between both the receiving and initiating application

ff Access control preventing unauthorized parties/applications from gaining access to
the communicated data or controlling the flow of communication

So hopefully, you actually read the introduction and have a good grasp of the controls that are
expected from secure applications; because in the next sections, I'll walk through how to verify
whether these controls are in place or not, and how to take advantage of the lack of these
controls.

Information disclosure via logcat
Android applications may leak sensitive information either inherently or as a result of harmful
influence. When this happens, it's called an Information disclosure vulnerability. This recipe
talks about how to check an application for potential leaks of sensitive information by
inspecting the Android logcat, which is used by the application developers as a debugging
tool. We will also talk about how you can take advantage of one of Android's built-in
benchmarking tools to help make logcat inspection a little more rewarding.

Chapter 4

119

Getting ready
Before we begin, you will need the following:

ff An emulator or an Android device set up and connected to your machine via ADB, this
will require USB Debugging to be enabled on your Android device

ff The Android Debug Bridge (ADB)

Before beginning with this recipe, you should have already downloaded and updated your
Android SDK. You should have either set up your PATH variables appropriately, or you should
be in the working directory that contains the appropriate tools/binaries.

How to do it...
To start off, let's enable debugging via the ADB. On either Windows or Linux execute the
following command:

adb logcat

This will only work if you are in the correct working directory, which is [path-to-sdk]/
sdk/platform-tools/ for Linux users or [path-to-sdk]\sdk\platformtools\ for
Windows users.

This will output the logging information of some of the software- and hardware-level events.
Naturally, we would like to focus this on the events and applications we are inspecting for
security vulnerabilities. Luckily, logcat is capable of filtering through the log information. Here's
a breakdown of all the options:

adb logcat [options] [filter]

Where [options] can be any one of the following—I've omitted some of them to keep things
short and to the point:

ff -v <format>: This option sets the format of the output; this could be either brief,
process, tag, thread, raw, time, threadtime, or long

ff -d: This option dumps the logfile and exits

And [filter] is a list of the tag:priority command, which is discussed as follows:

ff tag: It is the string that identifies a log component. Log components are the strings
that log outputs. For instance, if the log output looks like the following:
E/ClockAlarmWidget(6590): [AlarmWidgetIdManager]
 getListItem()

Exploiting Applications

120

ClockAlarmWidget, the part that is highlighted in the previous code would be the
log component tag. The part preceding the / is called the priority. Here, the priority is
Error, and it is indicated by an E.

ff priority: It can be any one of the following:

�� V, verbose: It enables verbose logging

�� D, debug: It enables debug logging

�� I, Info: It enables logging for informational purposes

�� W, Warn: It enables logging for all warning information

�� E, Error: It enables logging for errors

For instance, if you want to monitor the logs for Error level priority log components and
higher, you would use the following command:

adb logcat *:E

The * indicates that we want the Error level priority for all log component tags.

Another way you could filter through the log quite effectively is to dump the logcat output
to a text file and search through it using either grep, which comes with most Linux/Unix
distributions, or a text editor like Notepad++ for Windows users. A link to the download page
of Notepad++ and grep are available in the See also section of this recipe. For Windows
users, there's a Microsoft version of grep called WinGrep if you really want to do some
powerful regular expression-based matching. A link to the WinGrep download page has also
been made available in the See also section of this recipe.

Once you've decided how you want to search the text, it really doesn't matter how you do this
as long as you know how to find what you're looking for in the logs. You can dump the output
of the logfile by executing the following command:

adb logcat > output.txt

This works the same way via the Linux terminal or Windows command prompt. You can also
"pipe"—which means feeding the output of one program into the input of another—this directly
into another program like this. This works in either the Windows command prompt or the Linux
terminal.

adb logcat | [other program]

If your using grep, you would do it by executing the following command:

adb logcat | grep [pattern]

Where [pattern] would be the text pattern you're searching, for example:

adb logcat | grep ApplicationManager

Chapter 4

121

I really don't want to write a full tutorial on how to use grep here. If you want to make use
of some of the more powerful features of either grep or WinGrep, please see the See also
section of this recipe.

Here are some examples you may find useful; monitor the logfile for web-related information:

adb logcat | grep [Cc]ookie

adb logcat | grep "http[s]*"

adb logcat | grep "ftp[s]*"

I know these are not very strict examples, but they are just strict enough to match
web addresses.

The previous logs were generated by the Google Play Store app on a Samsung Galaxy S3
mobile phone.

You could also try to catch some sign-on or authentication-type token strings being leaked
through the logfile:

adb logcat | grep –i "[\w\s_-]*token[\w\s_-]*"

When looking for valuable information in the logfile, it's generally a good idea to look for
information that you would otherwise need permissions to get hold of or directly cause you to
gain knowledge of information protected by other apps. For instance, if an app logs the cookie
values returned after a user logs into his/her LinkedIn profile, would this be dangerous?

Exploiting Applications

122

Yes! Effectively you have just bypassed the need to know his/her LinkedIn password, or
the need to have your app be granted rights to some of the authentication functions in the
LinkedIn application. During the hours you will probably spend reading the logfile, you should
try to focus on finding this kind of information.

Case and point! The cookies being logged here are being disclosed harmfully by the Android
LinkedIn app on a Galaxy S3 mobile phone. Another real-world example of this vulnerability
can be found at Discovering a Major Security Hole in Facebook's Android SDK. The link for the
same is provided in the See also section.

There's more...
Of course applications are often developed to respond to hardware or software events, either
via broadcast receivers or intents from other applications or system services. And naturally,
you would like to know how applications respond to these events, or whether their behavior
becomes potentially harmful in response to these kind of events. Then the question is, how do
you create/send these events to the application you're testing without pressing your volume
up button, locking and unlocking your screen, and pressing buttons yourself? The answer
is the Android Monkey testing framework. It's designed to send system- and hardware-level
events to an application, so that developers can gauge how well their application handles
these events. It operates somewhat as a device event "fuzzing" framework for applications.

Before explaining how to use it, it's important to mention that it's probably not a good idea to
run the Monkey tester against applications installed on either your or someone else's personal
Android device. This is because the way these applications respond to the Monkey tester may
cause some damage to the applications being "monkey'd", cause loss of application data, or
even crash your phone. Unless you have the proper permission or acceptance that you may
lose or corrupt some data stored by the application(s) you are testing, you should only do this
on an emulated or security testing-dedicated device.

One way to use this framework is to have a device connected via the ADB, and executing the
following command via your command prompt or terminal:

adb shell monkey –p [package] –v [event count]

Chapter 4

123

Where [package] is the name of the package/application to which you want to send these
events, and [event count] is the number of random events you want to send. Here's an
example of how to use it against the Flipboard app:

adb shell monkey –p Flipboard.app –v 10

This will send 10 randomly-selected events to the Flipboard app, and report back on the
application's behavior.

See also
ff The Android Debug Bridge – Enabling logcat logging webpage at https://

developer.android.com/tools/help/adb.html#logcat

ff The Vogella Tutorials – Monkey Testing webpage at http://www.vogella.com/
articles/AndroidTesting/article.html

ff The Notepad++ software at http://notepad-plus-plus.org/download/
v6.3.3.html

ff The Android Developer – logcat webpage at https://developer.android.com/
tools/help/logcat.html

ff The WinGrep software at http://www.wingrep.com/download.htm

ff The Discovering a Major Security Hole in Facebook's Android SDK webpage at
http://blog.parse.com/2012/04/10/discovering-a-major-security-
hole-in-facebooks-android-sdk/

ff The Android Developer – Reading and Writing Logs webpage at http://
developer.android.com/tools/debugging/debugging-log.html

Inspecting network traffic
As we know, applications can make use of the networking services available on an Android
device, and many applications are developed as frontends to cloud-based services. What
this means is that understanding how it communicates with the Internet services is a very
important part of the security risk profile—the collection of risks an application exposes its
users and its device to.

In this recipe, I'm going to show you some novel methods that you can use to monitor network
traffic directly from an Android device using the ever popular Wireshark.

Exploiting Applications

124

Getting ready
Before we can get cracking, there are a couple of tools you will need to install both on your
local machine and the Android device. Here are the tools you'll need to get:

ff Wireshark: It is available for download at the Wireshark site http://www.
wireshark.org, Wireshark supports both Linux/Unix and Windows machines. You
should make sure this is installed on your host machine before starting. Installing
Wireshark is pretty straightforward; the Wireshark folks have even provided some
very useful documentation for both Windows and Unix/Linux distributions, which
is available at http://www.wireshark.org/docs/wsug_html_chunked/
ChapterBuildInstall.html.

ff Netcat: It is available for download for Linux/Unix users at http://netcat.
sourceforge.net/download.php, and for Windows users at http://
joncraton.org/blog/46/netcat-for-windows/. Linux/Unix users may not
need to explicitly download Netcat as it comes packaged with many Linux/Unix
distributions.

ff TCPdump for Android: It is available for download at http://www.strazzere.
com/android/tcpdump.

How to do it…
Once you've got all the tools set up and ready to go, you can monitor the traffic of your Android
device by performing the following steps:

1.	 Assuming your Android device is rooted, you should create a directory to host your
TCPdump binary as follows:

On the Android device, execute the following commands via ADB in the order they
appear:
su

mkdir /data/tcpdump/

chmod 755 /data/tcpdump/

And then on the local machine, in the folder where you've downloaded the TCPdump
version for Android, execute the following commands:

adb push tcpdump /data/tcpdump/.

adb shell chmod 755 /data/tcpdump/tcpdump

2.	 Once the TCPdump Android version is uploaded to the device and marked as
executable. You should make sure Netcat is available on the Android device by trying
to run the following command:
nc

Chapter 4

125

This is merely a sanity check, most Android versions come shipped with Netcat by
default. If not, there is an Android version available from the Google Source Android
GitHub repository with an NDK Makefile at https://android.googlesource.
com/platform/external/netcat/+/master. To find out how to use this
Makefile, refer the Cross-compiling native executables recipe in Chapter 8, Native
Exploitation and Analysis.

3.	 To make sure that everything works, after you've managed to confirm that both
TCPdump and Netcat are installed on your Android device, you can actually dump
some network traffic and try executing the following command:
./data/tcpdump/tcpdump –w - | nc –l –p 31337

You should see the following appear on your screen if everything is working well:

To see some actual output you might try opening an app that makes requests to the
Web or using some networking APIs.

4.	 If everything works fine, you should be able to start feeding the TCPdump output to
the Wireshark installed on your local device. To do this, you first need to set up some
port forwarding via ADB, which is done by executing the following command:
adb forward tcp:12345 tcp:31337

Exploiting Applications

126

5.	 Once the port forwarding is set up, you should be able to use Netcat on your local
machine by executing the following command:
netcat 127.0.0.1 12345

6.	 This means all the traffic is being forwarded correctly. You should be able to pipe the
output into Wireshark, which will interpret it and facilitate deep packet inspection
and other useful things. To pipe the output into Wireshark, execute the following
command on your local machine:
adb forward tcp:12345 tcp:31337 && netcat 127.0.0.1 12345 |
wireshark –k –S –i –

After a few seconds, if everything works properly, you should see Wireshark launch.
The following shows up on your screen:

How it works...
In this recipe we used Netcat, Wireshark, and TCPdump to extract network traffic directly from
an Android device for analysis and deep-packet inspection. Given that very little explanation
was given for the command-line arguments and combinations of tools in the walkthrough, this
recipe details how and why each one of the actions were performed.

In Step 1, the following commands where executed in order to create a directory to host the
TCPdump installation on the Android device:

su; mkdir /data/tcpdump/; chmod 755 /data/tcpdump/

The su command which stands for Substitute User (SU) allows us to assume root
privileges—this is the behavior of su when no arguments are supplied. The root privileges
we assume using su include being able to modify and view any directory or file on the
Android file system. This was needed since we created the tcpdump directory inside the /
data/ folder.

Chapter 4

127

After executing su, we executed the mkdir command with an argument of /data/
tcpdump/, which created the tcpdump/ directory under the /data/ folder.

Following this is the chmod command—which is an abbreviation of change mode—with an
argument of 755. It modifies the access mode for the /data/tcpdump folder and allows
users with lower privileges to access the tcpdump path. This is needed because we will be
using the adb push command to store the tcpdump binary under this path.

After creating the tcpdump folder, we execute the following commands:

adb push tcpdump /data/tcpdump/.

adb shell chmod 755 /data/tcpdump/tcpdump

These ensure that the tcpdump binary is stored under the tcpdump path. The first command
passes the push command to adb with an argument of tcpdump, which is the TCPdump
version for Android. You will notice that a dot is supplied as the name for the tcpdump binary
under the /data/tcpdump folder; this is a shorthand that ensures whichever file is being
copied keeps its filename after being copied. This is evident since we copied a file called
tcpdump from the local machine, which also ended up being called tcpdump on the Android
device.

Following the push command is the adb shell command with an argument of chmod
755 /data/tcpdump/tcpdump, which changes the access mode for the tcpdump binary,
allowing users with lower privileges to execute it.

In step 2, we used the nc command—which is an abbreviation of Netcat. This tool serves as a
Swiss army knife for interacting with networking services. In this recipe, we will use it to read
data from and into a network connection. Running nc without any arguments prints the usage
specification. This allowed us to make sure nc was running properly and is actually installed
on our Android device.

In step 3, we used tcpdump with the argument of –w, which allows us to specify a file to write
out to, and the second argument ensures that the output is written to the terminal screen.
As part of the command we executed, we also specified the following: | nc –l –p 31337.
The | character, which is called a pipe in operating system terminology, feeds the output of
the preceding program to the program after the pipe as input. Netcat is invoked using the –l
argument which causes Netcat to listen for connections on the port supplied as an argument
to the –p command-line switch. In this context, all this means that the raw binary network
traffic from tcpdump is fed to Netcat as input; which means it will output this raw traffic from
port number 31337.

Exploiting Applications

128

In step 4, we use ADB's port forwarding feature. It allows us to couple a port on the Android
device (supplied as the second argument tcp:12345) with a port on the local machine
(supplied as the first argument tcp:31337). You will notice that we couple port 12345 to
port 31337 and tell Netcat in the previous step to listen for connection on port 31337. This
is so that we can interact with the Netcat instance via port 31337 on our local machines. To
summarize in simpler terms, port 31337 on the Android device becomes port 12345 on our
local machines.

In step 5, we launched Netcat with the arguments 127.0.0.1, which is the address of our
local machine (termed the loopback address), and 12345, which is a port that we forwarded
in the previous step. This tells Netcat to connect to port 12345 on our local machine; and
since port 12345 is coupled to port 31337 on the Android device, it actually means we are
interacting with port 31337 by proxy of port 12345 locally. The result of this is that we can
grab the network traffic piped into Netcat on the Android device from our local machines.

In Step 6, we combined all the commands relevant to our local machines in order to ensure
that Wireshark gets the raw binary network traffic and interprets it for us. We launched
Wireshark with the following arguments:

ff –k: This argument, according to the Wireshark manual, does the following:

�� Starts the capture session immediately. If the -i flag was specified, the
capture uses the specified interface.

�� Otherwise, Wireshark searches the list of interfaces, choosing the first non-
loopback interface if there are any non-loopback interfaces and choosing the
first loopback interface if there are no non-loopback interfaces.

�� If there are no interfaces, Wireshark reports an error and doesn't start the
capture.

ff –S: This argument specifies the snapshot length, which is the number of bytes to
capture per packet. If no argument is given as length, the full packet is captured.

ff –i: This argument specifies the input from which to capture packets. Here we
supplied the – symbol again, which tells Wireshark to read the input from standard
input. We do this because the input for Wireshark is funneled to it via the pipe from
Netcat.

For a more interesting use of this idea, you could try building tools that analyze Android traffic
for active threats by running an Intrusion Detection System (IDS) or other security-focused
network monitoring tools like Snort on some network traffic generated by an Android device.
This idea would make for a very interesting malware and vulnerability analysis.

Chapter 4

129

See also
ff The Analyzing Android Network Traffic webpage at http://mobile.tutsplus.

com/tutorials/android/analyzing-android-network-traffic/

ff The Wireshark User's Guide at http://www.wireshark.org/docs/wsug_html_
chunked/

ff The Wireshark DisplayFilters webpage at http://wiki.wireshark.org/
DisplayFilters

ff The Wireshark CaptureFilters webpage at http://wiki.wireshark.org/
CaptureFilters

ff The TCPdump man page at http://www.tcpdump.org/tcpdump_man.html

Passive intent sniffing via the activity
manager

A good way to proliferate information about application and their components is to eavesdrop
on inter-application communication. One way you could do this is by requesting information
about the most recent intents from the activity manager.

This is pretty straightforward and, as it turns out, can be done via drozer (which was
introduced in Chapter 3, Android Security Assessment Tools) if you're willing to do some
Python scripting. The folks at iSec Partners have developed an Android application that is
capable of doing this, and most of the inspiration for the drozer module discussed in the
following recipe comes from their app. To find out how to get your hands on this app see the
See also section of this recipe.

Getting ready
Before we actually write this module, we need to modify the drozer Agent a little so it has the
required permissions to actually request information about intents from the activity manager.
The simplest way to do this is to augment the permissions requested by drozer via its
AndroidManifest.xml file. Here, I'll show you how to do this using Eclipse.

1.	 First you need to grab a copy of the drozer Agent and its dependencies from the
following sites:

�� The drozer Agent webpage at https://github.com/mwrlabs/drozer-
agent

�� The jdiesel (fuels the drozer) webpage at https://github.com/
mwrlabs/jdiesel

�� The TLS Support webpage at https://github.com/mwrlabs/mwr-tls
�� The Android utilities for drozer webpage at https://github.com/

mwrlabs/mwr-android

Exploiting Applications

130

2.	 Once you have these downloaded and saved them in the same folder, you can open
Eclipse and import each of them as Android projects. For each of them, once Eclipse
is opened, navigate to File | Import.

3.	 Click on the Android folder, then go to Existing Android Code into Workspace and
click on Next.

Chapter 4

131

4.	 At this point, Eclipse will ask you to specify a folder to import from. You'll need to add
one of the folders you downloaded in step 1. To select a folder, click on Browse... and
a file selection dialog will pop up.

5.	 Using the File dialog, navigate to the file path where you've downloaded the drozer
Agent and dependencies. You'll need to add each one of them this way.

Make sure you import each of the folders this way. Until you do so, Eclipse will not be
able to build the drozer Agent successfully.

6.	 Once you've imported all the projects, you'll need to edit the drozer Agent's
AndroidManifest.xml. You do this by double-clicking on the AndroidManifest.
xml file in the drozer-agent project folder in Eclipse (make sure that you select
the AndroidManifest.xml tab before editing so you can edit the XML directly).
Then, enter the following line:
<uses-permission android:name="android.permission.GET_TASKS"/>

Exploiting Applications

132

The AndroidManifest.xml file should look like the following screenshot if you've
performed the step correctly:

And that's it! You've just added an extra permission to the drozer Agent. Now you can
export the drozer Agent as an APK file, upload it to your device, and get cracking.

Please note you may need to uninstall the drozer Agent currently installed on your
device before installing the modified one.

How to do it...
So that's the drozer Agent done and dusted. We can now move onto developing the intent
sniffer module.

1.	 Navigate to your drozer module repository; if you haven't set one up please refer to
the Writing a drozer module – a device enumeration module recipe in Chapter 3,
Android Security Assessment Tools, to see how this is done. Once you are in your
module repository, create a file called ex.sniffer.intents and type the following
into it (the following code will be available in this book's code repository):
from drozer.modules import Module,common
from drozer.modules import android
class Intents(Module, common.PackageManager):
 name = "Dump recent intents to the console"
 description = "This module allows you to see the most recent
 intents that were sent, via the ActivityManager"
 examples = "run ex.sniffer.intents"
 author = "[your name]"
 date = "[the date]"
 license = "GNU GPL"
 path = ["ex","sniffer"]
 def execute(self,arguments):
 self.stdout.write("[*] initializing intent sniffer…\n")
 context = self.getContext()
 activityService = context.getSystemService("activity")
 self.stdout.write("[*] got system service ..\n")

Chapter 4

133

 recentTasks = activityService.getRecentTasks(1000,1)
 self.stdout.write("[*] recentTasts Extracted..\n")
 list_length = recentTasks.size()
 self.stdout.write("[*] Extracted %s tasks ..\n" %
 (list_length))
 for task in range(list_length):
 cur_task = recentTasks.get(task)
 cur_taskBaseIntent = cur_task.baseIntent
 self.stdout.write("\t[%d] %s\n" %
 (task,cur_taskBaseIntent.toString()))

2.	 Once that's done, install the module into drozer by executing the following command:
dz> module install [path-to-module-repo]/ex.sniffer.intent

3.	 Then run it by executing the following command:
dz> run ex.sniffer.intents

You should see something similar to the following screenshot:

Exploiting Applications

134

How it works...
The intent sniffer script is actually quite simple. Here I'll break down what it's doing and how it
manages to actually sniff some intents.

The intent sniffer makes a call to Context.getSystemService() and passes it the
identifier for the ACTIVITY_SERVICE flag, which is simply a string with the value of "activity".
This returns an instance of the ActivityManager class, which allows the script to interact
with the activity manager and make calls like ActivityManager.getRecentTasks().
This method takes in two arguments, the first is an integer which is the maximum number of
the RecentTaskInfo objects the script wants to receive from the activity manager, and the
second is a flag specifying the kind of recent activities. In this example, the script is written
to request the full list without omitting any of the tasks. The reason I've written the script this
way is because the intent that was sent to start each recent task comes bundled with the
RecentTaskInfo object as a field called RecentTaskInfo.baseIntent. The script can
then use it to extract some useful information about the intent, such as the component name,
flags, actions, and categories. To keep things quick and easy here, the script then logs a call
to the Intent.toString() method, which simply formats the information about the intent
as string and returns it.

Of course, you are welcome to do more intelligent parsing of the intent information. You could
even try working out a way to determine which package made the original call. Though this is
very difficult, it would be quite a rewarding drozer module to pull off.

See also
ff The Intent Sniffer Android application at https://www.isecpartners.com/

tools/mobile-security/intent-sniffer.aspx

ff The Context.getSystemService(String name) command at http://
developer.android.com/reference/android/content/Context.
html#getSystemService%28java.lang.String%29

ff The ActivityManager.RecentTaskInfo reference at http://developer.android.
com/reference/android/app/ActivityManager.RecentTaskInfo.html

ff the Intent reference at http://developer.android.com/reference/
android/content/Intent.html

Chapter 4

135

Attacking services
Services may not seem very dangerous, and they stick to working in the background. But they
are developed to support the other application components, and could potentially perform
very sensitive operations such as logging into an online profile, resetting a password, or even
facilitating some potentially dangerous processes by serving as a proxy to the system services
of the host device. Either way, they must not be overlooked during an application assessment.

When is a service vulnerable? Well, a service is exploitable when you can use its functionality
to abuse the user, escalate the privileges of another application/user, or use it to extract
sensitive information. This means that you need to be able to interact with the service, which
means it must be exported, or respond/accept input from message formats like intents,
files, or the network stack. Another thing to consider is what kind of permission is required to
interact with the service—whether it's a potentially dangerous service, performs very sensitive
operations, or could be abused to cause a Denial of Service (DoS) condition (that is, when an
attacker bars access to a service by forcing it to stop working or denying users its service) in
the application or even the device! Not to mention what a bad situation the application and its
user will be in should the potentially dangerous service not require any permissions at all!

Try thinking about the permissions required and whether they are appropriate in terms of their
protection level. A good way to decide whether the protection level is appropriate is to think
what other kinds of apps would likely be granted these permissions. If the service belongs to a
banking application, you should expect things like custom permissions protecting the service
and not just the generic dangerous-level permissions. This is because they aren't suited for all
the potentially dangerous operations, something that a banking application would be capable
of. You need to take into context the kind of information the user will use to verify granting
these permissions to other apps, that is, the permission label and description. You should also
apply this same train of thought when inspecting other application components for security
flaws, since the permissions framework will be used in exactly the same way.

This recipe will detail how to find vulnerable services, which will roughly include enumerating
exported services, detailing how to launch them via the drozer framework, and will also show
you how to craft some custom intents to start them.

Before we get going, it would be useful to show you what a potentially dangerous situation
looks like for a service from the perspective of the AndroidManifest.xml file. Here's a
snippet of an app from the OWASP GoatDroid project. Try reading through this, and think
about the possible dangers and risks for this setup:

<service android:name=".services.LocationService" >
 <intent-filter>
 <action android:name="org.owasp.goatdroid.fourgoats.
 services.LocationService" />
 </intent-filter>
</service>
</application>

Exploiting Applications

136

 <uses-permission android:name="android.permission.SEND_SMS" />
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.
 ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.
 ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

I've highlighted some of the important areas here. You should notice that the service called
.services.LocationService, which probably facilitates determining the user's location
via the GPS services or Geolocation API, doesn't require any permissions to start! Given that
the application itself would be granted both android.permission.ACCESS_COARSE_
LOCATION and android.permission.ACCESS_FINE_LOCATION this means that there's
a great chance that attackers may be able to make unauthorized use of this service should
they be close enough to this service (which could be physical access to the device, or via a
malicious application installed on the user's device).

The previous sample was taken from the OWASPS GoatDroid project, see the See also section
for a link to the GitHub repository.

So that's what the vulnerability looks like from the code source, or rather the developer/
reverse engineer's perspective. Let's get down to actually using drozer to attack some
vulnerable services and give you the attacker's perspective of this vulnerability.

How to do it...
Here's how you go about finding some vulnerable services:

1.	 Given a sample application, find out which services are exported. You can do this via
drozer by executing the following command:
 dz> run app.service.info –-permission null

As I've explained in the previous chapter, this command finds services that don't
require any permissions.

Chapter 4

137

2.	 Once you've found a bunch of services, you can launch them using the following
command:
dz> run app.service.start –-action [ACTION] –-category
[CATEGORY] –-data-uri [DATA-URI] –-component [package name]
[component name] –-extra [TYPE KEY VALUE] –-mimetype
[MIMETYPE]

As a simple example, this is how you would launch one of the services in the com.
linkedin.android application:
dz> run app.service.start –-component com.linkedin.android
com.linkedin.android.authenticator.AuthenticationService

It's always a good idea to have logcat running while you're stopping and starting these
services, in case they might divulge some sensitive information about the way they
operate and leak some authentication credentials or other useful data.

Of course, if you want to send the service some data via an intent, you would need to
know what the intent filters look like for the service you are targeting. And, if you haven't
already guessed, the easiest way to know this is by inspecting the application manifest.
If you need a recap on how to do this, refer to the Inspecting the AndroidManifest.xml
file recipe in Chapter 2, Engaging with Application Security.

3.	 Essentially, the piece of XML you're looking for would look something like the
following code snippet:
<service android:name=".authenticator.
 AuthenticationService" android:exported="true">
 <intent-filter>
 <action android:name="android.accounts.
 AccountAuthenitcator" />
 </intent-filter>
 <meta-data android:name="android.
 accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />
</service>

The previous code snippet is taken from the AndroidManifest.xml file of the
Android LinkedIn application.

4.	 To fire off intents to this service, you can execute the following command via the
drozer console:
dz> run app.service.start –-component com.linkedin.android
com.linkedin.android.authenticator.AuthenitactionService –-
action anroid.accounts.AccountAuthenitcator

Exploiting Applications

138

As a side note, some services may interface native libraries and actually pass data accepted
from intents to C/C++ data structures like the stack or heap-based variables. When auditing
the security of a service that requires data to be passed via an intent, you should always try
to identify any potential memory corruption vulnerabilities caused by the intent data. Keep
this in mind when inspecting other application component types for vulnerabilities, since any
application component may facilitate these kinds of vulnerabilities.

There are some default system services that behave quite strangely when handcrafted
intents are sent to them. Consider the following example of an intent send to com.android.
systemui:

dz> run app.service.start –-component com.android.systemui
com.android.systemui.PhoneSettingService

This is the result on the Samsung Galaxy S3:

This is a classic example of a DoS vulnerability. The System UI service does not anticipate
intents with empty metadata or extra data fields. As a result, when an intent with no extra
data is sent, it causes a null pointer exception and the entire service comes tumbling down.
This vulnerability may not seem too harsh seeing that it's just a UI service. But if a key security
mechanism or the UI component of a security-relevant service relies on the system UI service
to be running in order for it to operate (for example, maybe the lock screen or the settings
application), this simple dataless intent can cascade into a very complex, quite high-risk
vulnerability.

To help you picture the danger here, imagine a malicious application installed on your phone
that repeatedly sends harmful intents to your system UI service. This causes it to crash over
and over again, filling your screen with pop ups and warnings, and effectively disallows your
interaction with the user interface of your phone. It would make quite a nasty bug, and it
wouldn't require any permissions to install!

Chapter 4

139

See also
ff The Vulnerability Summary for CVE-2011-4276 webpage at http://web.nvd.

nist.gov/view/vuln/detail?vulnId=CVE-2011-4276&cid=6

ff The OWASP – GoatDroid webpage at https://github.com/jackMannino/
OWASP-GoatDroid-Project/blob/master/

Attacking broadcast receivers
Broadcast receivers respond to hardware- and software-level events; they get notifications
for these events via intents. Often, broadcast receivers may use information sent via intents
to perform sensitive operations and do so in a way that can be maliciously influenced by the
data being broadcast or received.

When exploiting a broadcast receiver, the challenge is determining whether or not the input
is trusted and how badly. For this, you may need to effectively fuzz the intent filter definitions
for the broadcast receivers in your target application or read the actual code, if you manage to
get your hands on it, to find out what kind of data the receiver operates on and how.

As with the previous recipes, here we are going to see a sample of a classic vulnerable
broadcast receivers. The following sample, too, is from the OWASP GoatDroid project:

 <receiver
 android:name=".broadcastreceivers.SendSMSNowReceiver"
 android:label="Send SMS" >
 <intent-filter>
 <action android:name=
 "org.owasp.goatdroid.fourgoats.SOCIAL_SMS" />
 </intent-filter>
</receiver>
</application>

 <uses-permission android:name="android.permission.SEND_SMS" />
 <uses-permission android:name=
 "android.permission.CALL_PHONE" />
 <uses-permission android:name=
 "android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name=
 "android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />

</manifest>

The key issue in the code is that this application will be granted the android.permission.
SEND_SMS permission while leaving its .SendSMSNowReceiver vulnerable receiver, without
the protection of appropriate permissions and exposed to other applications.

Exploiting Applications

140

This is not all there is to these kinds of vulnerabilities; there is another part. Just because
the receiver leaves other applications to interact with it doesn't necessarily mean that
it's exploitable; to verify whether its exploitable, you can actually try firing off some of the
commands discussed later in the recipe and—if possible—read some of the source code for
the receiver.

The following is the code that determines how the receiver handles the org.owasp.
goatdroid.fourgoats.SOCIAL_SMS actions:

public void onReceive(Context arg0, Intent arg1) {
 context = arg0;
 SmsManager sms = SmsManager.getDefault();

 Bundle bundle = arg1.getExtras();
 sms.sendTextMessage(bundle.getString("phoneNumber"), null,
 bundle.getString("message"), null, null);
 Utils.makeToast(context, Constants.TEXT_MESSAGE_SENT,
 Toast.LENGTH_LONG);
}

The key issue in the code is that the receiver takes values straight from the bundle object
without first checking the calling application or the values being supplied and plugs it into a
sendTextMessage call. This basically means any application will be able to send arbitrary,
uncontrolled SMSs.

Okay, so that's what a classic broadcast receiver vulnerability looks like; let's look at how one
exploits these vulnerabilities practically, using drozer.

How to do it...
To send an intent to a broadcast receiver, you execute the following command:

dz> run app.broadcast.send –-action [ACTION] –-category [CATEGORY]
–-component [PACKAGE COMPONENT] –data-uri [DATA_URI] –extra [TYPE KEY
VALUE] –flags [FLAGS*] –mimetype [MIMETYPE]

For example, in the introduction section of this recipe, we saw a receiver that could
accept phone numbers and text messages. To attack that receiver, you would fire-off
the following command:

dz> run app.broadcast.send –-action org.owasp.goatdroid.fourgoats.
SOCIAL_SMS –-component org.owasp.goatdroid.fourgoats org.owasp.
goatdroid.fourgoats.broadcastreceivers.SendSMSNowReceiver –-extra string
phoneNumber 1234567890 –-extra string message PWNED

Executing the previous command would send a text message containing the message PWNED
to a phone number of 1234567890.

Chapter 4

141

How it works…
In this recipe, we abused the inadequate permissions protecting the org.owasp.
goatdroid.fourgoats.broadcastreceivers.SendSMSNowReceive broadcast
receiver. The lack of permissions protecting this component allows attackers with no
SEND_SMS permission to actually send SMSs. The danger of this is that malicious attackers
can develop applications that target this receiver to send SMSs to a premium service or leak
information from the device.

In fact, many Android Trojans and Android-based malware make use of this pattern to steal
money from their victims; there are hundreds of practical examples of this. For good resources
on some of them, see the See also section. Hopefully, this will make you aware of how
dangerous inadequate permissions are for broadcast receivers like these.

See also
ff The SMS Trojans: all around the world article by Denis Maslennikov at Securelist

(https://www.securelist.com/en/blog/208193261/)

ff The Android Trojan Horse project by Jeremy Klein and Parker Spielman (http://
www.cs.wustl.edu/~jain/cse571-11/ftp/trojan/index.html)

ff The First Android SMS Trojan Found in the Wild article by Tim Wyatt at Lookout
(https://blog.lookout.com/blog/2010/08/10/security-alert-first-
android-sms-trojan-found-in-the-wild/)

Enumerating vulnerable content providers
Content providers often hold a lot of valuable information, such as users' phone numbers
or Twitter passwords, and you may want to find out whether or not it's possible for malicious
attackers to get their hands on this information. The best way to find out whether a content
provider is vulnerable to attack is by trying to attack it yourself.

For you to be able to attack a content provider, as with many application-level attacks, it
usually comes down to sending a malicious intent to an application. When it comes to content
providers, your intent will be honed towards its target by the URI string it contains, since this
URI identifies which content provider should handle the intent.

So then there's just one problem—how do we find out which URIs to use? One simple
solution would be to guess them, but that could take ages! drozer has a module called app.
provider.info that solves this problem for you.

This recipe details a few drozer modules that you can use to find content providers that may
be vulnerable to attack.

Exploiting Applications

142

How to do it...
To find some content providers that will most likely be vulnerable to attack, you will need to do
the following:

1.	 Finding content providers that require no permissions is really easy with drozer; all
you need to do is execute the following command from your drozer console:
dz> run app.provider.info –-permission null

The preceding command lists all the content providers that don't require any read/
write permissions.

2.	 Once you've found an appropriate content provider, you may want to enumerate the
URIs it has authority over; you can do this using the following command:
dz> run app.provider.finduri [package]

In the preceding command, [package] is the full name of the package you want to
extract information about.

3.	 The following command is an example you can try out:

dz> run app.provider.finduri com.android.providers.downloads

So what you've just done is find a possible entry point into the data that a given package
saves in its content provider. The next recipe discusses how to extract this data.

Chapter 4

143

How it works...
The .finduri module is pretty straightforward; it actually uses a very "sneaky" method
to enumerate the possible content URIs. What it basically does is open the DEX file for the
application and scan the unparsed file for any string literals resembling the valid content
URI-format strings. The reason this is so effective is that application developers usually save
these as static strings in the source of the application. The following is the actual source
code for the Python script. It is extracted from https://github.com/mwrlabs/drozer/
blob/master/src/drozer/modules/common/provider.py.

 def findContentUris(self, package):

 self.deleteFile("/".join([self.cacheDir(), "classes.dex"]))

 content_uris = []
 for path in self.packageManager().getSourcePaths(package):
// This is where the script requests the application path from the
// package manager, which will determine where the actual .apk file
// is stored.
 strings = []

 if ".apk" in path:
 dex_file = self.extractFromZip("classes.dex", path,
 self.cacheDir())
// In this line you can see the script extract the "classes.dex"
// file from the .apk file

 if dex_file != None:
 strings = self.getStrings
 (dex_file.getAbsolutePath())

 dex_file.delete()

 # look for an odex file too, because some system
 packages do not
 # list these in sourceDir
 strings += self.getStrings(path.replace(".apk",
 ".odex"))
 elif (".odex" in path):
 strings = self.getStrings(path)

 content_uris.append((path, filter(lambda s: ("CONTENT://"
 in s.upper()) and ("CONTENT://" != s.upper()), strings)))
// In this you can see the script actually search for the literal
//"CONTENT://" or "content://" in the extracted .dex file.

return content_uris

Exploiting Applications

144

See also
ff drozer Master repository – Provider.py (https://github.com/mwrlabs/drozer/

blob/master/src/drozer/modules/app/provider.py)

ff drozer Master – Common/Provider.py (https://github.com/mwrlabs/drozer/
blob/master/src/drozer/modules/common/provider.py)

ff Android Developer – URI permissions (http://developer.android.com/
guide/topics/security/permissions.html#uri)

ff CVE-2013-231 – MovatwiTouch content provider vulnerability (http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2013-2318&cid=3)

ff Marakana – Android content provider tutorial (http://marakana.com/s/
post/1375/android_content_provider_tutorial)

Extracting data from vulnerable content
providers

If some of the content provider's URIs require no read permissions and/or GrantURI is set to
true, you may be able to extract data from it using some of the drozer tools. Also, in certain
situations, the way read/write permissions are issued and enforced also exposes the data in
a content provider to attacks.

This recipe will covers some simple tricks that you can use to get a feel of the kind of
information stored in the provider. This recipe follows from the previous one and assumes
you've already enumerated some content URIs and determined that either none or insufficient
permissions are required to interact and query the related URIs.

How to do it...
Once you've found a URI, you'd query using the commands detailed in the previous recipe,
namely:

run app.provider.info –-permission null

run app.provider.finduri [package]

The preceding commands will give you some pretty useful URIs to target; you can then execute
the following command to extract some data:

dz> run app.provider.query [URI]

The following is a simple example; the drozer help documents about a lot of the content-
provider-related scripts use this very example:

dz> run app.provider.query content://settings/secure

Chapter 4

145

Here's an example from a sample vulnerable content provider. In this example, the attacker
uses drozer-extracted information about a user's banking transactions; see the following
screenshot for the output from the query command:

Some content providers support the querying of files, especially those of file-manager-type
applications. If the content provider makes no restrictions over the kinds of files and paths
that applications are allowed to read from, it means that the attacker may be able to either
perform the path traversal of directories outside the files that the content provider actually
intends to offer or in many cases, allow attackers to extract files from sensitive directories on
the victim's device. To extract files, you can use the following command:

dz> run app.provider.download [URI]

In the preceding command, URI would be the URI to the file that you want to extract from
the content provider. If there is no protection or filtering of input performed in the actual
implementation of the part of the content provider that handles these kinds of queries, you
could inject file paths and abuse the lack of protection to enumerate files and files' contents
in other areas of the device's filesystem; you would do this by trying different file paths as
follows:

dz> run app.provider.download content://[valid-URI]/../../[other file
path] [local-path]

In the preceding command, [valid-URI] would be a URI that the vulnerable content
provider has authority over or has been registered to handle, [other file path] would be
the path to the file you wish to extract, and [local-path] would be a file path to the place
you would like this file to be "downloaded". The following is an example:

dz> run app.provider.download content://vulnerabledatabase/../../../
system/etc/hosts /tmp/hostsFileExtracted.txt

Exploiting Applications

146

For those of you who have any experience in hacking/auditing web applications, this is quite
similar to path traversal and local file inclusion vulnerabilities in web applications. It also
exposes Android applications to many of the same risks. A couple of practical examples of this
vulnerability have been reported against very popular applications; see the See Also... section
of the recipe for examples.

If your content provider sets path level permissions using the PATTERN_LITERAL matching
type, the Android permissions framework will only enforce checks to protect your content
provider if the paths requested match yours exactly! The following screenshot an example:

This current example is taken from MWR labs' Sieve Android app, which was developed with
certain vulnerabilities built into it; see the See also section for a link to the download page.

In the previous screenshot, we can see that this app uses PATTERN_LITERAL-type matching
to protect the Keys path, which means that if we try to query it using drozer, the result will be
as follows:

run app.provider.query content://com.mwr.example.sieve.DBContentProvider/
Keys

The following screenshot shows the output from previous command:

Chapter 4

147

The preceding screenshot shows how a permission denial is caused because drozer doesn't
have the required permissions to interact with the provider. But, if we simply append / to the
path, it will still be valid, the result is as follows:

run app.provider.query content://com.mwr.example.siever.
DBContentProvider/Keys/

The following screenshot shows the output of the preceding command:

A forward slash was added to the path, so the PATTERN_LITERAL check failed to find the
content://com.mwr.example.sieve.DBConentProvider/Keys path and found the
content://com.mwr.example.sieve.DBConentProvider/Keys/ path instead. This
means that the application querying the content provider would then need permissions for the
/Keys/ path, which was not defined and thus required no permissions, allowing the query
to be resolved without a hitch. In the previous screenshot, we can see that in this instance,
a malicious application would be able to extract details of a user's login pin for the Sieve
password manager application.

See also
ff The Path traversal vulnerability on Shazam (Android) application article (http://

blog.seguesec.com/2012/09/path-traversal-vulnerability-on-
shazam-android-application/)

ff The Path traversal vulnerability in Adobe Reader (Android) application article
(http://blog.seguesec.com/2012/09/path-traversal-vulnerability-
on-adobe-reader-android-application/)

ff The WinZip for Android Content Handling Directory Traversal Vulnerability article
(http://vuln.sg/winzip101-en.html)

ff The Android 2.3.4 Browser Local File Inclusion at CVE Details; CVE-2010-4804
(http://www.cvedetails.com/cve/CVE-2010-4804/)

ff drozer Sieve – A password manager app that showcases some common Android
vulnerabilities (https://www.mwrinfosecurity.com/system/assets/380/
original/sieve.apk)

Exploiting Applications

148

Inserting data into content providers
Like any database-orientated application, content providers may also facilitate the ability to
insert data into their SQLite databases or file stores; should any content provider not restrict
this functionality using the appropriate write permissions, an attacker may be able to insert
data into the SQLite database maliciously. This tutorial discusses how you can perform
this kind of attack; in the next chapter, we will look at the actual code that causes these
vulnerabilities and discuss some remedies.

How to do it...
Before we go inserting data into the content providers, we need to know what the schema
or column set up for the database looks like; you can enumerate this information using the
following command from your drozer console:

dz> run app.provider.columns [URI]

In the preceding command [URI] is the URI you wish to find out about. For instance, if you
want to run it against Sieve, you would execute the following command:

dz> run app.provider.columns content://com.mwr.example.seive.
DBContentProvider/Passwords

The preceding command will produce the output shown in the following screenshot:

The reason enumerating the columns of a database is useful is that it may help you structure
your future attacks against the content provider; you may need to know a little about the
schema to be able to know which columns and rows you might be interested in extracting from
and inserting into.

Once you know a little about the database's structure and which column names you may need
to be able to structure your queries correctly, you can insert data into a content provider using
the following command:

dz> run app.provider.insert [URI] [--boolean [name] [value]] [--integer
[name] [value]] [--string [name] [value]]...

In the preceding command, [URI] is the URI pointing to the related database and
--boolean, --integer, and --string is a flag you should provide to mark a given piece of
data as a given data type. This module supports the following data types:

--boolean –-double –-float –-integer –-long –-string –short

Chapter 4

149

Each of them require the [name] value, which indicates the column name, and [value],
which indicates the actual value you wish to insert.

The following code is an example:

dz> run app.provider.insert –-int _id 12 –-int from_account 31337
–-int to_account –-int amount 31337 content://com.example.
vulnerabledatabase.contentprovider/statements

The following is a fictitious example. The content://com.example.
vulnerabledatabase.contentprovider/statement URI probably doesn't exist on your
device, unless you've explicitly developed some app that handles it.

The following a working example against Sieve:

dz> run app.provider.insert content://com.mwr.example.sieve.
DBContentProvider/Passwords –-int _id 3 –-string username injected
–-string service injected –-string password woopwoop –-string email
myspam@gmail.com

Once you query Sieve's Passwords URI and perform the previous command, the following data
is returned:

We can clearly see that for _id 3 the data we just injected actually appears in the database.
This means we've just managed to corrupt the data in the Passwords database with some
forged data. In a practical context, this could allow attackers to change a user's passwords or
delete them, which could deny users access to the related accounts; more specifically, in a
password-management application such as Sieve—used here as an example—attackers would
be able to bar users' access to their stored passwords and maybe even their Gmail, Twitter, or
LinkedIn accounts.

A little side note about the example: we injected the password string woopwoop merely as
a marker to make sure we can inject password data—its merely a string that's pretty easy to
recognize; if you're going to test this password, it probably would not work. To actually inject a
working password, you need to inject the base64 encoded value of the password.

Exploiting Applications

150

Enumerating SQL-injection vulnerable
content providers

Just like web applications, Android applications may use untrusted input to construct SQL
queries and do so in a way that's exploitable. The most common case is when applications do
not sanitize input for any SQL and do not limit access to content providers.

Why would you want to stop a SQL-injection attack? Well, let's say you're in the classic
situation of trying to authorize users by comparing a username supplied by querying a
database for it. The code would look similar to the following:

public boolean isValidUser(){
u_username = EditText(some user value);
u_password = EditText(some user value);
//some un-important code here...
String query = "select * from users_table where username = '" + u_
username + "' and password = '" + u_password +"'";
SQLiteDatabase db
//some un-important code here...
Cursor c = db.rawQuery(p_query, null);
return c.getCount() != 0;
}

What's the problem in the previous code? Well, what happens when the user supplies
a password '' or '1'='1'? The query being passed to the database then looks like
the following:

select * from users_table where username = '" + u_username + "' and
password = '' or '1'='1'"

The preceding bold characters indicate the part that was supplied by the user; this query
forms what's known in Boolean algebra as a logical tautology; meaning no matter what table
or data the query is targeted at, it will always be set to true, which means that all the rows
in the database will meet the selection criteria. This then means that all the rows in users_
table will be returned and as result, even if a nonvalid password ' or '1'=' is supplied, the
c.getCount() call will always return a nonzero count, leading to an authentication bypass!

Given that not many Android developers would use the rawQuery call unless they need
to pull off some really messy SQL queries, I've included another code snippet of a SQL-injection
vulnerability that occurs more often in real-world applications. So when auditing Android
code for injection vulnerabilities, a good idea would be to look for something that resembles
the following:

public Cursor query(Uri uri, String[] projection, String
selection,String[] selectionArgs, String sortOrder) {
 SQLiteDBHelper sdbh = new StatementDBHelper(this.getContext());

Chapter 4

151

 Cursor cursor;
 try {
//some code has been omitted
 cursor = sdbh.query
 (projection,selection,selectionArgs,sortOrder);
 } finally {
 sdbh.close();
 }
 return cursor;
}

In the previous code, none of the projection, selection, selectionArgs, or
sortOrder variables are sourced directly from external applications. If the content provider
is exported and grants URI permissions or, as we've seem before, does not require any
permissions, it means that attackers will be able to inject arbitrary SQL to augment the way
the malicious query is evaluated.

Let's look at how you actually go about attacking SQL-injection vulnerable content providers
using drozer.

How to do it...
In this recipe, I'll talk about two kinds of SQL-injection vulnerabilities: one is when the select
clause of a SQL statement is injectable and the other is when the projection is injectable.
Using drozer, it is pretty easy to find select-clause-injectable content providers:

dz> run app.provider.query [URI] –-selection "1=1"

The previous will try to inject what's called a logical tautology into the SQL statement being
parsed by the content provider and eventually the database query parser. Due to the nature
of the module being used here, you can tell whether or not it actually worked, because it
should return all the data from the database; that is, the select-clause criteria is applied to
every row and because it will always return true, every row will be returned!

You could also try any values that would always be true:

dz> run app.provider.query [URI] –-selection "1-1=0"

dz> run app.provider.query [URI] –-selection "0=0"

dz> run app.provider.query [URI] –-selection "(1+random())*10 > 1"

The following is an example of using a purposely vulnerable content provider:

dz> run app.provider.query content://com.example.vulnerabledatabase.
contentprovider/statements –-selection "1=1"

Exploiting Applications

152

It returns the entire table being queried, which is shown in the following screenshot:

You can, of course, inject into the projection of the SELECT statement, that is, the part before
FROM in the statement, that is, SELECT [projection] FROM [table] WHERE [select
clause].

See also
ff The SQL As Understood By SQLite article at the SQLite Language Reference guide

(http://www.sqlite.org/lang.html)

ff The SQL-injection article at https://www.owasp.org/index.php/SQL_
Injection

Exploiting debuggable applications
Applications can be marked as debuggable to make functionality testing and error tracking
a lot easier by allowing you to set breakpoints during app execution. To do this, view the VM
stack and suspend and resume threads while the app is running on the device.

Unfortunately, some applications on the Google Play store are still flagged as debuggable. This
may not always be the end of the world, but if the app hopes to protect any authentication
data, passwords addresses, or any values stored in the applications memory, having it marked
as debuggable means that attackers will be able to gain access to this data very easily.

This recipe discusses how to leak variable values from a debuggable application. Attackers
may also be able to trigger remote-code execution via the app and run some code within the
applications context.

The example being used here is the Android Wall Street Journal app and at the time of writing,
it was one of the applications on the Google Play store that were published as debuggable.

Chapter 4

153

How to do it...
The first thing you'll need to do is determine whether or not the application is debuggable.
This is fairly simple, because whether or not an application is debuggable depends directly
on its application manifest. The debuggable field in the application element of the Android
application manifest. To enumerate and exploit debuggable applications you will need to
perform the following steps:

1.	 To check whether or not an application is debuggable, you can either extract the
manifest or execute the following command from your drozer console:
dz> run app.package.debuggable

This will list all the packages that are set as debuggable and display the permissions
they've been granted. The following screenshot shows a list of the packages:

You may be asking yourself whether or not a simple vulnerability like this actually
occurs in the real world? Well, yes, it actually still does! The following screenshot
shows a relatively well known app that's been published to the Google Play market as
debuggable:

Exploiting Applications

154

This example shows an output from the .debuggable module indicating that the
Wall Street Journal Reader app is debuggable.

2.	 Once you've identified a good target, you should launch it using a command as
follows:
dz> run app.activity.start –-component com.example.readmycontacts
com.example.readmycontacts.MainActivity

3.	 Once it's running, you can use ADB to get the Java Debug Wire Protocol Port which
has been opened for that instance of the VM for debugging; the following is how you
do that:
adb jdwp

You should see something like the following:

4.	 The number returned by ADB is the port you can use to connect to the VM, but
before you can do that from your machine, you need to forward that port via adb; the
following is how you do that:
adb forward tcp:[localport] jdwp:[jdwp port on device]

For the example in the screenshot, you would execute the following command
to forward the port:

5.	 You can now access the VM running this app from your machine. From this point on,
you can rely on the Java Debugger to connect to the VM; you do this by running the
following command:
jdb –attach localhost:[PORT]

The [PORT] port you would use would be the one forwarded in the previous step; in
this example, that would be 31337. Connecting via jdb would work as follows:

jdb –attach localhost:31337

Chapter 4

155

The following screenshot shows the output of the preceding command:

6.	 Then you would be connected to the VM running this app on the Android device; you
can then do things such as extract information about the classes compiled with the
application; this is done by executing the following command from within your jdb
session:
classes

This would produce output similar to the following:

7.	 You can also enumerate the methods per class by firing off the following command:
> methods [class-path]

In the preceding command, [class-path] is the full class path of the class would
like to know about.

Exploiting Applications

156

8.	 The following is a screenshot demonstrating the previous command against an
application package called com.example.readmycontacts. Here we are
extracting information about the .MainActivity class, which is the class called to
launch the activity.

9.	 You can even dig a little deeper and list the "fields" or class attribute names and
values for a given class; this is done by executing the following command from within
JDB:

> fields [class name]

For instance:

> fields com.example.readmycontacts.MainActivity

Why would you, as an Android application hacker, be interested in reading values from the
fields in a class file? Well, because developers may often explicitly store sensitive details
inside a class file instead of fetching them from the cloud; so you can expect values, such as
passwords, API tokens, single-sign-on tokens, default usernames, and generally any data used
for authentication or other sensitive operations saved inside a class's fields.

Chapter 4

157

For some Android operating systems, specifically any unpatched Gingerbread device and
any lower version. This vulnerability could mean that malicious applications may be able to
execute the arbitrary command in the context of another application. Why only Gingerbread
and lower? Well before the update of the Dalvik virtual machine to Gingerbread, the Dalvik
caused debuggable applications to try to connect to the Java Debug Wire Protocol port even
when ADB was not running; this means that malicious applications capable of opening
networking sockets on the targeted device would be able to accept connections from
debuggable applications and, because of how Java Debugging works, be able to execute
arbitrary code. For more details on this behavior, visit the link to the Debuggable Apps
in Android Market article in the See also section as well as the links to the Dalvik Virtual
Machine code for different versions.

There are a lot more things you can do with the Java debugger; for those of you who want to
learn a little more about it, I've included some useful links in the See also section.

See also
ff The Jdb – The Java Debugger article at http://docs.oracle.com/

javase/1.5.0/docs/tooldocs/windows/jdb.html

ff The Java Platform Debugger Architecture article at http://docs.oracle.com/
javase/1.5.0/docs/guide/jpda/index.html

ff The Android:debuggable – Android Developer Reference guide at http://
developer.android.com/guide/topics/manifest/application-
element.html#debug

ff The Debuggable Apps in Android Market article at MWRLabs (http://labs.
mwrinfosecurity.com/blog/2011/07/07/debuggable-apps-in-
android-market/)

ff The Exploit (& Fix) Android "Master Key" article by Saurik at http://www.saurik.
com/id/17

ff The Debugging Java Programs using JDB article at http://www.packtpub.com/
article/debugging-java-programs-using-jdb

ff JdwpAdb.c – Kitkat release, Android Source Code repository (https://android.
googlesource.com/platform/dalvik/+/kitkat-release/vm/jdwp/
JdwpAdb.cpp)

ff JdwpAdb.c – Éclair Passion release, Android Source Code repository (https://
android.googlesource.com/platform/dalvik/+/eclair-passion-
release/vm/jdwp/JdwpAdb.c)

ff JdwpAdb.c – Gingerbread release, Android Source Code repository (https://
android.googlesource.com/platform/dalvik/+/gingerbread-release/
vm/jdwp/JdwpAdb.c)

Exploiting Applications

158

Man-in-the-middle attacks on applications
Mobile phone users often use public Wi-Fi networks to access the Internet in coffee shops,
libraries, and anywhere they are available. Unfortunately, due to how certain applications are
developed, they can still fall victim to man-in-the-middle (MITM) attacks. For those of you
who don't know about MITM attacks, they are essentially attacks that allow adversaries to
intercept your communication with the devices on your network; if you'd like to know more
about the danger and technical specifics of these attacks in nonmobile contexts, check out
some of the links in the See also section.

Why should we care about MITM attacks on mobile phones? Well, depending on how badly
the content from an "insecure" channel to network-based resources is trusted, attackers may
be able to do anything, from fingerprinting the applications running on your device to detailing
every place where you've been, approximately where you live and work, and even take control
of some applications on your mobile device and maybe even your entire phone—if its rooted
insecurely or can be rooted. There are numerous practical examples of vulnerabilities in very
popular applications, which can be exploited using man-in-the-middle attacks; check out the
links in the See also section for some of them.

This recipe demonstrates how to perform an MITM attack on an Android phone and one
simple exploit that can be used during an MITM attack, namely DNS poisoning.

One small caveat here is that Ettercap, the tool being used to perform the MITM attack,
doesn't officially provide any Windows support. Though, if you don't have an Ubuntu or Debian
Linux machine, you can set one up, simply download a CD/DVD image for Ubuntu and run it
from a virtual machine using Oracle's Virtualbox, or VMware works quite well for this too. To
find out how to install a virtual machine, see the There's more… section of the Installing and
setting up Santuko recipe in Chapter 3, Android Security Assessment Tools. If you're really
keen on using Ettercap on your Windows machines, you can check out the download links to
the unofficial Windows binaries in the See also section.

Getting ready
To make this whole process a lot simpler, I'm going show you guys how to download an
awesome tool that makes MITM attacks really easy. You can download Ettercap using the
following command:

sudo aptitude install ettercap-graphical

Chapter 4

159

The following screenshot shows the output of the preceding command:

Once it's downloaded and set up, you can get going with the MITM attack.

How to do it...
Let's get started with the following steps:

1.	 Before we start setting up the MITM attack, you will need to set up the DNS Spoof
plugin for Ettercap; the only thing you need to do is add some useful addresses to the
DNS configs script for Ettercap that is saved in /usr/share/ettercap/etter.
dns on Linux machines.

Exploiting Applications

160

The etter.dns file should look a little something like the following:

After editing this file, it should look like the following:

The address 192.168.10.102 should be replaced with the Internet address of
your machine, since you'd like to spoof the DNS server using your machine, which
basically means your machine will act as the DNS server.

Chapter 4

161

2.	 Once the DNS plugin has been set up properly, you can start an MITM attack by
executing the following command from your terminal or command prompt:
ettercap –T –I [interface] –M ARP:remote –P dns_spoof /[address of
target] /[address of gateway]/

In the preceding command, [interface] is the network interface you're using
to connect to the network; it could be either an Ethernet or wireless interface.
[address of target] is the Internet address of your Android device; you can find
this on your Android phone under Settings | Wi-Fi | [name of network] | IP Address.
[address of gateway] is the Internet address of the default gateway for this
network. This attack fools your mobile phone into thinking that the machine you are
attacking from is the actual gateway by abusing the lack of authentication of the
Address Resolution Protocol (ARP).

3.	 For example, if your gateway's IP address is 192.168.10.1 and your Android
device's IP is 192.168.10.106, the following is how you would set up the MITM
attack:
sudo ettercap –T –i wlan0 –M ARP:remote –P dns_spoof
/192.168.10.1/ /192.168.10.106/

You can interchange the last two addresses; the order doesn't matter as long as they
are both there. After executing this command, you should see the following appear on
your terminal:

Exploiting Applications

162

4.	 After a while, you should see something similar to the following screenshot of the
traffic being logged by Ettercap:

5.	 Once you start some apps using this "poisoned" network, you'll be able to see some
strange things happen on your attacker machine; for instance, you'll be able to see
the DNS requests being sent by your Android apps; The following screenshot shows
the DNS requests sent by the Flipboard app:

This output was generated by Wireshark.

Chapter 4

163

6.	 If you have a web server configured on your machine, you'll be able to serve some
content to your Android phone by pretending to be websites such as LinkedIn and
Google; the following are some screenshots demonstrating this:

Here's another example; a request to www.google.com has been intercepted in the following
screenshot:

Clearly, these are not LinkedIn and Google webpages; in fact, the page returned here is from
a local machine to the network. This may be a very mundane demonstration, though it covers
the hard part of the attack, which is establishing the MITM context in which an attacker is
capable of controlling the responses an application issues to the Internet.

Exploiting Applications

164

What you can do from here, once you have established your MITM context, is either exploit the
mobile browser using something such as Metasploit and its browser_autopwn module or use
some social engineering by mirroring these sites using a tool—the Social Engineering Toolkit
works great for this. See the See also section for links to information about these great tools.

Besides the run-of-the-mill MITM attacks, there are classes of MITM attacks
specific to Android, namely, those targeting applications that use an unsecured
addJavaScriptInterface WebKit and related API calls. For more on this vulnerability, see
the links to the Adventures with Android WebViews article and the Attacks on WebView in the
Android System in the See also section.

See also
ff The Attacks on WebView in the Android System paper by Tongbo Luo, Hao Hao,

Wenliang Yifei Wang, and Heng Yin (http://www.cis.syr.edu/~wedu/
Research/paper/webview_acsac2011.pdf)

ff The WebView addJavaScriptInterface Remote Code Execution paper at
MWR InfoSecurity (https://labs.mwrinfosecurity.com/system/
assets/563/original/mwri_webview-addjavascriptinterface-code-
execution_2013-09-23.pdf)

ff The Adventures with Android WebViews article at MWR labs (https://labs.
mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-
webviews/)

ff Ettercap Windows Binaries (http://sourceforge.net/projects/ettercap/
files/unofficial%20binaries/windows/)

ff The Ettercap homepage (http://ettercap.github.io/ettercap/index.
html)

ff The Metasploit Browser Autopwn article at Penetration Testing Lab (http://
pentestlab.wordpress.com/2012/04/23/metasploit-browser-
autopwn/)

ff The Cain and Abel homepage (http://www.oxid.it/cain.html)

ff An Ethernet Address Resolution Protocol, Internet Standard STD 37 (http://
tools.ietf.org/html/rfc826)

5
Protecting Applications

In this chapter, we will cover the following recipes:

ff Securing application components

ff Protecting components with custom permissions

ff Protecting content provider paths

ff Defending against the SQL-injection attacks

ff Application signature verification (anti-tamper)

ff Tamper protection by detecting the installer, emulator, and debug flag

ff Removing all log messages with ProGuard

ff Advanced code obfuscation with DexGuard

Introduction
So far, we've seen how to set up and customize an environment to discover and take
advantage of vulnerabilities in the Android apps. In this chapter, we are going to discuss
several protection techniques to make it more difficult for reverse engineers and attackers.

One of the common mistakes while developing applications is unintentionally leaving
application components exposed. We'll focus on how to prevent the components from being
exposed and accessible to other apps. We will also see how to restrict access with custom
permissions if sharing data is required.

Intrusion or tamper detection is the cornerstone of all good defense systems, and to
this end, we'll try to detect if an attack is in progress and whether our app is running
in a compromised state.

Protecting Applications

166

Rounding up the chapter, we will cover two recipes to make a reverse engineer's job even
more difficult. We will see how to use code obfuscation and customize ProGuard configuration
to remove all logging messages from the app and hide-sensitive API calls.

The topic of protecting data in transit across the network is covered in Chapter 7, Secure
Networking, and how to keep data safe at rest with encryption is covered in Chapter 9,
Encryption and Developing Device Administration Policies.

Securing application components
Application components can be secured both by making proper use of the
AndroidManifest.xml file and by forcing permission checks at code level. These two
factors of application security make the permissions framework quite flexible and allow you
to limit the number of applications accessing your components in quite a granular way.

There are many measures that you can take to lock down access to your components, but
what you should do before anything else is make sure you understand the purpose of your
component, why you need to protect it, and what kind of risks your users face should a malicious
application start firing off intents to your app and accessing its data. This is called a risk-based
approach to security, and it is suggested that you first answer these questions honestly before
configuring your AndroidManifest.xml file and adding permission checks to your apps.

In this recipe, I have detailed some of the measures that you can take to protect generic
components, whether they are activities, broadcast receivers, content providers, or services.

How to do it...
To start off, we need to review your Android application AndroidManifest.xml file.
The android:exported attribute defines whether a component can be invoked by other
applications. If any of your application components do not need to be invoked by other
applications or need to be explicitly shielded from interaction with the components on the rest
of the Android system—other than components internal to your application—you should add
the following attribute to the application component's XML element:

<[component name] android:exported="false">
</[component name]>

Here the [component name] would either be an activity, provider, service, or receiver.

Chapter 5

167

How it works…
Enforcing permissions via the AndroidManifest.xml file means different things to
each of the application component types. This is because of the various inter-process
communications (IPC) mechanisms that can be used to interact with them. For every
application component, the android:permission attribute does the following:

ff Activity: Limits the application components which are external to your application
that can successfully call startActivity or startActivityForResult to those
with the required permission

ff Service: Limits the external application components that can bind (by calling
bindService()) or start (by calling startService()) the service to those with
the specified permission

ff Receiver: Limits the number of external application components that can send
broadcasted intents to the receiver with the specified permission

ff Provider: Limits access to data that is made accessible via the content provider

The android:permission attribute of each of the component XML elements overrides
the <application> element's android:permission attribute. This means that if you
haven't specified any required permissions for your components and have specified one in
the <application> element, it will apply to all of the components contained in it. Though
specifying permissions via the <application> element is not something developers do too
often because of how it affects the friendliness of the components toward the Android system
itself (that is, if you override an activity's required permissions using the <application>
element), the home launcher will not be able to start your activity. That being said, if you are
paranoid enough and don't need any unauthorized interaction to happen with your application
or its components, you should make use of the android:permission attribute of the
<application> tag.

When you define an <intent-filter> element on a component, it will
automatically be exported unless you explicitly set exported="false".
However, this seemed to be a lesser-known fact, as many developers were
inadvertently opening their content providers to other applications. So,
Google responded by changing the default behavior for <provider>
in Android 4.2. If you set either android:minSdkVersion or
android:targetSdkVersion to 17, the exported attribute on
<provider> will default to false.

Protecting Applications

168

See also
ff The <service> tag in the Android Developers Reference guide at

https://developer.android.com/guide/topics/manifest/service-
element.html

ff The <receiver> tag in the Android Developers Reference guide at
https://developer.android.com/guide/topics/manifest/receiver-
element.html

ff The <activity> tag in the Android Developers Reference guide at https://
developer.android.com/guide/topics/manifest/activity-element.
html

ff The <application> tag in the Android Developers Reference guide at
https://developer.android.com/guide/topics/manifest/
application-element.html

ff The AndroidManifest.xml file in the Android Developers Reference guide at
http://developer.android.com/guide/topics/manifest/manifest-
intro.html

ff The Context class in the Android Developers Reference guide at http://
developer.android.com/reference/android/content/Context.html

ff The Activity class in the Android Developers Reference guide at http://
developer.android.com/reference/android/app/Activity.html

Protecting components with custom
permissions

The Android platform defines a set of default permissions, which are used to secure system
services and application components. Largely, these permissions work in the most generic
case, but often when sharing bespoke functionality or components between applications it
will require a more tailored use of the permissions framework. This is facilitated by defining
custom permissions.

This recipe demonstrates how you can define your own custom permissions.

How to do it…
Let's get started!

1.	 Before adding any custom permissions, you need to declare string resources for
the permission labels. You can do this by editing the strings.xml file in your
application project folder under res/values/strings.xml:
<string name="custom_permission_label">Custom Permission</string>.

Chapter 5

169

2.	 Adding normal protection-level custom permissions to your application can be done
by adding the following lines to your AndroidManifest.xml file:
<permission android:name="android.permission.CUSTOM_PERMISSION"
 android:protectionLevel="normal"
 android:description="My custom permission"
 android:label="@string/custom_permission_label">

We'll cover what the android:protectionLevel attribute means in the How it
works… section.

3.	 Making use of this permission works the same as any other permission; you need to
add it to the android:permission attribute of an application component. For an
activity:
<activity ...
 android:permission="android.permission.CUSTOM_PERMISSION">
</activity>

Or a content provider:
<provider ...
 android:permission="android.permission.CUSTOM_PERMISSION">
</provider>

Or a service:
<service ...
 android:permission="android.permission.CUSTOM_PERMISSION">
</service>

Or a receiver:

<receiver ...
 android:permission="android.permission.CUSTOM_PERMISSION">
</receiver>

4.	 You can also allow other applications to request this permission by adding the
<uses-permission/> tag to an application's AndroidManifest.xml file:

<uses-permission android:name="android.permission.CUSTOM_
PERMISSION"/>

Protecting Applications

170

Defining a permission group
Custom permissions can be grouped logically to assign semantic meaning to an application
requesting a given permission or a component requiring certain permissions. Grouping
permissions is done by defining a permissions group and assigning your permissions to these
groups whenever they are defined, as demonstrated previously. Here's how you define a
permission group:

1.	 Add a string resource for the label of the permission group, as done before. This is
done by adding the following line to the res/values/strings.xml file:
<string name="my_permissions_group_label">Personal Data Access</
string>

2.	 Then, add the following line to the AndroidManifest.xml file of your application:
<permission-group
 android:name="android.permissions.personal_data_access_group"
 android:label="@string/my_permissions_group_label"
 android:description="Permissions that allow access to personal
data"
/>

3.	 You will then be able to assign the permissions you define to groups as follows:

<permission ...
 android:permissionGroup="android.permission.personal_data_acess_
group"
/>

How it works...
The preceding walkthrough demonstrated how to define custom permissions by making use
of the <permission> element of the AndroidManifest.xml file, and how to define a
permission group by making use of the <permission-group> element of the manifest.
Here, we break down and detail the nuances of each of these elements and their attributes.

The <permission> element is pretty easy to understand. Here's a breakdown of the attributes:

ff android:name: This defines the name of the permissions, which is the string value
that will be used to reference this permission

ff android:protectionLevel: This defines the protection level of the permission
and controls whether users will be prompted to grant the permission. We've
discussed this in a previous chapter, but here's a recap of the protection levels:

�� normal: This permission is used to define nondangerous permissions, these
permissions will not be prompted and may be granted autonomously

�� dangerous: This permission is used to define permissions that expose the
user to considerable fiscal, reputational, and legal risk

Chapter 5

171

�� signature: This permission is granted autonomously to applications that
are signed with the same key as the application that defines them

�� signatureOrSystem: This permission is automatically granted to any
application that forms a part of the system image or is signed with the same
key as the application that defines them

If you are interested in only sharing components across apps that you have developed, use
the signature permission. Examples of this would be a free app with an unlocker app
as a separate paid download, or an app with several optional plugins which wish to share
functionality. Dangerous permission will not be granted automatically. On installation, the
android:description attribute may be displayed to the user for confirmation. This is
useful if you want to flag to users when another app can access your app's data. The normal
permission is automatically granted on install, and it will not be flagged to the user.

See also
ff The <permission> tag in the Android Developers Reference guide at http://

developer.android.com/guide/topics/manifest/permission-element.
html

ff The <uses-permission> tag in the Android Developers Reference guide at
http://developer.android.com/guide/topics/manifest/uses-
permission-element.html

ff The <permission-group> tag in the Android Developers Reference guide at
http://developer.android.com/guide/topics/manifest/permission-
group-element.html

ff The Manifest.permission class in the Android Developers Reference guide
at https://developer.android.com/reference/android/Manifest.
permission.html

Protecting content provider paths
Content providers are probably the most exploited application components, given that they often
hold the data most critical to user authentication. They often hold a lot of sensitive data about
users and their affinity to SQL-injection attacks and information leakage. This walkthrough will
detail some measures that you can take to protect your content providers' general information
leakage caused by common errors in how permissions are configured for content providers. We'll
also cover guarding database and content providers against SQL-injection attacks.

This recipe will discuss how to add certain configurations to your AndroidManifest.xml file
to protect access to your content provider, down to the URI path level. It also discusses some
of the security risks in misusing the grant URI mechanism, so as to not expose too much of
your content provider paths to unauthorized or potentially malicious applications.

Protecting Applications

172

Uniform resource identifiers (URIs) are used with content providers to identify specific
datasets, for example, content://com.myprovider.android/email/inbox.

How to do it...
The first step in securing any component is to make sure you've registered the permissions
for it properly. Securing a content provider means not only providing permissions for general
interaction with the content provider, but also for the related URI paths.

1.	 To secure your content provider with a permission that governs both read and write
permissions for all of the paths related to your authority, you can add the following
provider element of your android manifest:
<provider android:enabled="true"
 android:exported="true"
 android:authorities="com.android.myAuthority"
 android:name="com.myapp.provider"
 android:permission="[permission name]">
</provider>

Here, [permission name] is the permission other applications must have in order
to read or write to any of the content provider paths. Adding permissions at this level
is a really good step to make sure that you have left nothing to chance when it comes
to protecting the paths.

2.	 Naturally, content providers will have a couple of content paths they want to serve
content from. You can add read and write permissions to them as follows:
<provider
 android:writePermission="[write permission name]"
 android:readPermission="[read permission name]">
</provider>

The preceding android:writePermission and android:readPermission tags
are used to declare that whenever an external application wants to perform any read-
related (query) or write-related (update and insert) operations, they must have
the specified permissions to do so.

It's a common mistake to think that granting write access implicitly
grants read access, too. However, this should not be the default
behavior. Android happily follows the best practice and requires
permission declaration for both read and write access separately.

Chapter 5

173

Here's a real-world example of this in action taken from the Android Google Chrome app:
<provider android:name="com.google.android.apps.chrome.
ChromeBrowserProvider"
 android:readPermission="com.android.browser.permission.READ_
 HISTORY_BOOKMARKS"
 android:writePermission="com.android.browser.permission.WRITE_
 HISTORY_BOOKMARKS"
 android:exported="true"
 ...

You can also add more granular permissions to each of your paths by making use of
the <path-permission> element of the AndroidManifest.xml schema; here's
how you do that:
<provider ...>
<path-permission android:path="/[path name]"
 android:permission="[read/write permission name]"
 android:readPermission="[read permission name]"
 android:writePermission="[write permission name]">
</provider>

You may be wondering what would happen if you were to use both levels of
permissions. At the <provider> and <path-permission> levels, would an
application need to have all of the permissions registered at both levels? The answer
is no, the path level read, write, and read/write permissions take precedence.

3.	 Another thing worth mentioning is the grant URI mechanism. You can configure this
at the provider level to apply to all paths, or at the path level, which will only affect the
related paths. Although, why you would specify permissions at path level and grant URI
at provider level a bit odd, since effectively, this would mean no permissions are set!
It is fully recommended that developers not make use of the grant URI permission at
the provider level at all, and rather use it per path. So, if and only if you need to make
sure any application can query, insert, or update on a certain path while still having
permissions protecting your other paths, you would do this as follows:

<provider ...>
<grant-uri-permission android:path="[path name]" />
</provider>

You can also specify a range of paths to grant URI permission for using the
pathPrefix or pathPattern attributes. pathPrefix will ensure that the grant
URI mechanism will apply to all paths starting with a given prefix. pathPattern
will ensure that the grant URI mechanism will apply to all paths that match a given
pattern. For example:
<grant-uri-permission android:path="[path name]"
 android:pathPrefix="unsecured"/>

Protecting Applications

174

This will apply grant URI permissions to all the paths starting with the "unsecured"
string, for example:

�� content://com.myprovider.android/unsecuredstuff

�� content://com.myprovider.android/unsecuredsomemorestuff

�� content://com.myprovider.android/unsecured/files

�� content://com.myprovider.android/unsecured/files/music

For the previous example, the grant URI permission would kick in if any of these paths
are queried, updated, inserted, or deleted.

See also
ff The <provider> tag in the Android Developers Reference guide at

http://developer.android.com/guide/topics/manifest/provider-
element.html

ff The <path-permission> tag in the Android Developers Reference guide at
http://developer.android.com/guide/topics/manifest/path-
permission-element.html

Defending against the SQL-injection attack
The previous chapter covered some of the common attacks against content providers, one of
them being the infamous SQL-injection attack. This attack leverages the fact that adversaries
are capable of supplying SQL statements or SQL-related syntax as part of their selection
arguments, projections, or any component of a valid SQL statement. This allows them to
extract more information from a content provider than they are not authorized.

The best way to make sure adversaries will not be able to inject unsolicited SQL syntax
into your queries is to avoid using SQLiteDatabase.rawQuery() instead opting for a
parameterized statement. Using a compiled statement, such as SQLiteStatement, offers
both binding and escaping of arguments to defend against SQL-injection attacks. Also, there is
a performance benefit due to the fact the database does not need to parse the statement for
each execution. An alternative to SQLiteStatement is to use the query, insert, update,
and delete methods on SQLiteDatabase as they offer parameterized statements via their
use of string arrays.

When we describe parameterized statement, we are describing an SQL statement with
a question mark where values will be inserted or binded. Here's an example of parameterized
SQL insert statement:

INSERT VALUES INTO [table name] (?,?,?,?,...)

Here [table name] would be the name of the relevant table in which values have to
be inserted.

Chapter 5

175

How to do it...
For this example, we are using a simple Data Access Object (DAO) pattern, where all of the
database operations for RSS items are contained within the RssItemDAO class:

1.	 When we instantiate RssItemDAO, we compile the insertStatement object with
a parameterized SQL insert statement string. This needs to be done only once and
can be re-used for multiple inserts:
public class RssItemDAO {

private SQLiteDatabase db;
private SQLiteStatement insertStatement;

private static String COL_TITLE = "title";
private static String TABLE_NAME = "RSS_ITEMS";

private static String INSERT_SQL = "insert into " + TABLE_NAME +
" (content, link, title) values (?,?,?)";

public RssItemDAO(SQLiteDatabase db) {
 this.db = db;
 insertStatement = db.compileStatement(INSERT_SQL);
}

The order of the columns noted in the INSERT_SQL variable is important, as it
directly maps to the index when binding values. In the preceding example, content
maps to index 0, link maps to index 1, and title to index 2.

2.	 Now, when we come to insert a new RssItem object to the database, we bind each
of the properties in the order they appear in the statement:
public long save(RssItem item) {
 insertStatement.bindString(1, item.getContent());
 insertStatement.bindString(2, item.getLink());
 insertStatement.bindString(3, item.getTitle());
 return insertStatement.executeInsert();
}

Notice that we call executeInsert, a helper method that returns the ID of the
newly created row. It's as simple as that to use a SQLiteStatement statement.

Protecting Applications

176

3.	 This shows how to use SQLiteDatabase.query to fetch RssItems that match
a given search term:

public List<RssItem> fetchRssItemsByTitle(String searchTerm) {
 Cursor cursor = db.query(TABLE_NAME, null, COL_TITLE + "LIKE ?",
new String[] { "%" + searchTerm + "%" }, null, null, null);

 // process cursor into list
 List<RssItem> rssItems = new ArrayList<RssItemDAO.RssItem>();
 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 // maps cursor columns of RssItem properties
 RssItem item = cursorToRssItem(cursor);
 rssItems.add(item);
 cursor.moveToNext();
 }
 return rssItems;
}

We use LIKE and the SQL wildcard syntax to match any part of the text with a title
column.

See also
ff The SQLiteDatabase class in the Android Developers Reference guide at

https://developer.android.com/reference/android/database/
sqlite/SQLiteDatabase.html

ff The SQLiteStatment class in the Android Developers Reference guide at
https://developer.android.com/reference/android/database/
sqlite/SQLiteStatement.html

ff The Query Parameterization Cheat Sheet OWASP community page at https://www.
owasp.org/index.php/Query_Parameterization_Cheat_Sheet

ff SQLite expression at http://www.sqlite.org/lang_expr.html

Chapter 5

177

Application signature verification
(anti-tamper)

One of the cornerstones of Android security is that all apps must be digitally signed.
Application developers sign apps using a private key in the form of a certificate. There's
no need to use a certificate authority, and in fact, it's more common to use self-signed
certificates.

Certificates are usually defined with an expiration date, and the Google Play store requires a
validity period ending after October 22, 2033. This highlights the fact that our app signing key
stays consistent throughout the life of the app. One of the primary reasons is to protect and
prevent app upgrades unless the signatures of the old and upgraded .apk files are identical.

So, if this verification already happens, why add a check for signature consistency?

Part of the process of an attacker modifying your application's .apk file breaks the digital
signature. This means that, if they want to install the .apk file on an Android device, it will
need to be resigned using a different signing key. There could be various motivations for
this, anything from software piracy to malware. Once the attacker has modified your app,
they could look to distribute via one of the many alternative apps stores or via more direct
approaches, such as e-mail, website, or forum. So, the motivation for this recipe is to protect
our app, brand, and users from this potential risk. Fortunately, at runtime, Android apps
can query PackageManager to find app signatures. This recipe shows how to compare the
current app signature against the one you know that it should be.

Getting ready
This recipe uses the Keytool command-line program and assumes you have already created a
.keystore file that contains your private signing key. If not, you can create your app signing
key using the Android tools export wizard in Eclipse, or by using the Keytool program with the
following command in a terminal window:

keytool -genkey -v -keystore your_app.keystore

-alias alias_name -keyalg RSA -keysize 2048 -validity 10000

Protecting Applications

178

How to do it...
To start with, you need to find your certificate's SHA1 signature/fingerprint. We'll hardcode this
into the app and compare against it at runtime.

1.	 Using Keytool from a terminal window, you can type the following:
keytool -list -v -keystore your_app.keystore

You'll be prompted for your keystore password.

Keytool will now print the details of all of the keys contained in the keystore. Find your
app key and under the certificate fingerprints heading, you should see a SHA1 in a
hexadecimal format. Here's a sample SHA1 value of a certificate that uses a sample
keystore 71:92:0A:C9:48:6E:08:7D:CB:CF:5C:7F:6F:EC:95:21:35:85:BC
:C5:

2.	 Copy your SHA1 hash from the terminal window into your app, and define it as a static
string in your Java .class file.

Chapter 5

179

3.	 Remove the colons and you should end up with something like this:
private static String CERTIFICATE_SHA1 =
"71920AC9486E087DCBCF5C7F6FEC95213585BCC5";

A quick and easy way to remove the colons is to copy and paste the hash to the
following website and press the validate button:

http://www.string-functions.com/hex-string.aspx

4.	 Now, we need to write the code to get the current signature of the .apk file at
runtime:
public static boolean validateAppSignature(Context context) {
 try {
 // get the signature form the package manager
 PackageInfo packageInfo = context.getPackageManager()
 .getPackageInfo(context.getPackageName(),
 PackageManager.GET_SIGNATURES);
 Signature[] appSignatures = packageInfo.signatures;

 //this sample only checks the first certificate
 for (Signature signature : appSignatures) {

 byte[] signatureBytes = signature.toByteArray();

 //calc sha1 in hex
 String currentSignature = calcSHA1(signatureBytes);

 //compare signatures
 return CERTIFICATE_SHA1.equalsIgnoreCase(currentSignature);
 }

 } catch (Exception e) {
 // if error assume failed to validate
 }
 return false;
}

5.	 We are storing the SHA1 hash of the signature; now, as we have the certificate, we
need to generate the SHA1 and convert to the same format (hexadecimal):
private static String calcSHA1(byte[] signature)
 throws NoSuchAlgorithmException {
 MessageDigest digest = MessageDigest.getInstance("SHA1");
 digest.update(signature);
 byte[] signatureHash = digest.digest();
 return bytesToHex(signatureHash);
}

Protecting Applications

180

public static String bytesToHex(byte[] bytes) {
 final char[] hexArray = { '0', '1', '2', '3', '4', '5', '6',
 '7', '8','9', 'A', 'B', 'C', 'D', 'E', 'F' };
 char[] hexChars = new char[bytes.length * 2];
 int v;
 for (int j = 0; j < bytes.length; j++) {
 v = bytes[j] & 0xFF;
 hexChars[j * 2] = hexArray[v >>> 4];
 hexChars[j * 2 + 1] = hexArray[v & 0x0F];
 }
 return new String(hexChars);
}

6.	 We now compare the hash of the certificate we signed, the app that we hardcoded in
to the app, and the hash of the current signing certificate. If these are equal, we can
be confident that the app has not been signed again:

CERTIFICATE_SHA1.equalsIgnoreCase(currentSignature);

If all is well and the .apk running is a version we have signed, the
validateAppSignature() method will return true. However, if someone has edited the
.apk file and signed it again, currentSignature will not match CERTIFICATE_SHA1. So,
validateAppSignature() will return false.

Remember to either ensure that the hash is stored in upper case,
or compare using the String.equalsIgnoreCase() method.

There's more...
This technique should be considered sufficient to thwart current automated app repackagers.
However, it is worth understanding the limitations. Due to the fact that the hash of the signing
certificate is hardcoded within the .apk file, it is possible for a skilled reverse engineer to
dissect the .apk file and replace the SHA1 with the hash of a new certificate. This allows the
verifyAppSignature call to pass ok. Additionally, the method call to verifyAppSignature
could be removed completely. Both of these options require time and reverse-engineering skills.

We cannot talk about signing without mentioning the bug 8219321, otherwise known as the
Master Key exploit publicized by Bluebox security at Blackhat USA 2013. This bug has since
been patched by Google and OEMs. A complete breakdown and analysis of this can be found
at http://www.saurik.com/id/17.

Chapter 5

181

Responding to tamper detection
Of course, this is completely subjective and really depends on your application. The obvious
and simple solution would be to check for tampering on startup, and if detected, exit the app
optionally with a message to the user explaining why. Additionally, it is likely you will want to
know about compromises. So, sending a notification to your servers would be appropriate.
Alternatively, if you don't have a server and are using an analytics package such as Google
Analytics, you could create a custom "tamper" event and report it.

To deter software pirates, you could disable premium app features. For games, disabling the
multiplayer or deleting the game progress/high scores would be an effective deterrent.

See also
ff The Advance code obfuscation with DexGuard recipe later in this chapter, which

provides a useful complement to tamper protection, making it more difficult for
a reverse engineer to find, understand, and importantly remove the tamper check

ff The Signing Your Applications page at the Android Developers site (https://
developer.android.com/tools/publishing/app-signing.html)

ff The gist of the signature-check code at https://gist.github.com/scottyab/
b849701972d57cf9562e

ff The Signature class in the Android Developers Reference guide at https://
developer.android.com/reference/android/content/pm/Signature.
html

ff The PackageManager class in the Android Developers Reference guide at
https://developer.android.com/reference/android/content/pm/
PackageManager.html

ff The Exploit (& Fix) Android "Master Key" blog article describing the Master Key exploit
at http://www.saurik.com/id/17

ff The Keytool Oracle documentation at http://docs.oracle.com/javase/6/
docs/technotes/tools/windows/keytool.html

Tamper protection by detecting the installer,
emulator, and debug flag

In this recipe, we will look at three additional checks that may indicate a tampered,
compromised, or hostile environment. These are designed to be activated once you are ready
for release.

Protecting Applications

182

How to do it...
These tamper checks can be located anywhere in your app, but it makes the most sense to
allow them to be called from multiple places at a separate class or parent class.

1.	 Detect if Google Play store was the installer:
 public static boolean checkGooglePlayStore(Context context) {
 String installerPackageName = context.getPackageManager()
 .getInstallerPackageName(context.getPackageName());
 return installerPackageName != null
 && installerPackageName.startsWith("com.google.android");
 }

2.	 Detect if it runs on an emulator:
public static boolean isEmulator() {
 try {

 Class systemPropertyClazz = Class
 .forName("android.os.SystemProperties");

 boolean kernelQemu = getProperty(systemPropertyClazz,
 "ro.kernel.qemu").length() > 0;
 boolean hardwareGoldfish = getProperty(systemPropertyClazz,
 "ro.hardware").equals("goldfish");
 boolean modelSdk = getProperty(systemPropertyClazz,
 "ro.product.model").equals("sdk");

 if (kernelQemu || hardwareGoldfish || modelSdk) {
 return true;
 }
 } catch (Exception e) {
 // error assumes emulator
 }
 return false;
}

private static String getProperty(Class clazz, String
propertyName)
 throws Exception {
 return (String) clazz.getMethod("get", new Class[] { String.
class })
 .invoke(clazz, new Object[] { propertyName });
}

Chapter 5

183

3.	 Detect if the app has the debuggable flag enabled—something that should only be
enabled during development:

public static boolean isDebuggable(Context context){
 return (context.getApplicationInfo().flags & ApplicationInfo.
 FLAG_DEBUGGABLE) != 0;
 }

How it works...
Detecting if the installer was the Google Play store is a simple check that the package
name of the installer app matches that of the Google Play store. Specifically, it checks if
the installer's package starts with com.google.android. It is a useful check if you are
distributed solely through the Google store.

The Java Reflection API makes it possible to inspect classes, methods, and fields at runtime;
and in this case, allows us to override the access modifiers that would prevent ordinary
code from compiling. The emulator check uses reflection to access a hidden system class,
android.os.SystemProperties. A word of warning: using hidden APIs can be risky, as
they can change between Android versions.

When debuggable is enabled, it is possible to connect via the Android Debug Bridge and
preform detailed dynamic analysis. The debuggable variable is a simple property of the
<application> element in the AndroidManifest.xml file. It is perhaps one of the
easiest and most targeted properties to alter in order to perform dynamic analysis. In step 3,
we saw how to check the value of the debuggable flag on the application info object.

There's more...
See the Application signature verification (anti-tamper) recipe for suggestions on what to do if
you detect tampering. Once released to the Play store, on detecting that the app is running on
an emulator or is being debugged, it is reasonable to assume that the app is under analysis
and/or attack. Therefore, in these scenarios, it would be justified to take more aggressive
actions to frustrate attackers, such as wiping app data or the shared preferences. Although,
if you are going to wipe user data, ensure this is noted in your license agreement to avoid any
potential legal issues.

Protecting Applications

184

See also
ff The Advance code obfuscation with DexGuard recipe, which provides a useful

complement to tamper protection, making it more difficult for a reverse engineer
to find, understand, and importantly remove these tamper checks

ff The SystemProperties.java class from the Android source code at
https://github.com/android/platform_frameworks_base/blob/
master/core/java/android/os/SystemProperties.java

ff The PackageManager class in the Android Developers Reference guide at
https://developer.android.com/reference/android/content/pm/
PackageManager.html

ff The ApplicationInfo class in the Android Developers Reference guide at
https://developer.android.com/reference/android/content/pm/
ApplicationInfo.html

Removing all log messages with ProGuard
ProGuard is an open source Java code obfuscator that is supplied with the Android SDK. For
those unfamiliar with obfuscators, they remove any information from the code that is not
needed for execution, for example, unused code and debugging information. Also, identifiers
are renamed from an easy-to-read, descriptive, and maintainable code you've written into an
optimized, shorter, and very difficult-to-read one. Before, an object/method call might look
something like this: SecurityManager.encrypt(String text);, but after obfuscation,
it could look like: a.b(String c);. As you can see, it gives no clue about its purpose.

ProGuard also reduces the amount of code by removing unused methods, fields, and
attributes, and makes it execute quicker by using machine-optimized code. This is ideal for a
mobile context, as this optimization can drastically reduce the size of the exported .apk file.
This is especially useful when only using a subset of third-party libraries.

There are other Java obfuscators available, but due to the fact that ProGuard is part of the
Android SDK, many third-party development libraries contain custom ProGuard configuration
to ensure they function correctly.

Chapter 5

185

Getting ready
First, we'll enable ProGuard on an Android application:

1.	 If you're developing your application using Eclipse with the Android ADT plugin, you'll
need to locate your workspace and navigate to the folder containing your application
code. Once you've found it, you should see a text file called project.properties:

To enable ProGuard, you need to make sure the following line is uncommented:
proguard.config=${sdk.dir}/tools/proguard/proguard-android.
txt:proguard-project.txt

This assumes that you have the default folder structure for the Android SDK, since
the previous configuration includes a static path, namely /tools/proguard/
proguard-android.txt. If you don't have the correct folder structure or you're not
using the Android Developer's Toolkit plugin for Eclipse, you can fetch the proguard-
android.txt file and place it one folder above your application's working folder. In
this case, you can configure this directory as follows:

proguard.config=proguard-android.txt:proguard-project.txt

2.	 Android Studio configuration requires the following lines in your buildType release
to your Gradle build file:
android {
...
 buildTypes {
 release {
 runProguard true
 proguardFile file('../proguard-project.txt)
 proguardFile getDefaultProguardFile('proguard-android.
 txt')
 }
 }
}

Protecting Applications

186

3.	 It's important to keep the reference to the proGuard-android.txt file, as it
contains Android-specific exclusions and without them, the app will likely not run.
Here's an extract from the proguard-android.txt file instructing ProGuard to
keep methods in activities that could be used in the XML attribute onClick:

-keepclassmembers class * extends android.app.Activity {
 public void *(android.view.View);
}

How to do it...
Once ProGuard is enabled for your project, there are two simple steps to ensure all logging
messages are removed.

1.	 To enable ProGuard to successfully find all of the log statements, we must use a
wrapper class to wrap the Android log:
public class LogWrap {

 public static final String TAG = "MyAppTag";

 public static void e(final Object obj, final Throwable cause) {
 Log.e(TAG, String.valueOf(obj));
 Log.e(TAG, convertThrowableStackToString(cause));
 }

 public static void e(final Object obj) {
 Log.e(TAG, String.valueOf(obj));
 }

 public static void w(final Object obj, final Throwable cause) {
 Log.w(TAG, String.valueOf(obj));
 Log.w(TAG, convertThrowableStackToString(cause));
 }

 public static void w(final Object obj) {
 Log.w(TAG, String.valueOf(obj));
 }

 public static void i(final Object obj) {
 Log.i(TAG, String.valueOf(obj));
 }

 public static void d(final Object obj) {
 Log.d(TAG, String.valueOf(obj));
 }

Chapter 5

187

 public static void v(final Object obj) {
 Log.v(TAG, String.valueOf(obj));
 }

 public static String convertThrowableStackToString(final
Throwable thr) {
 StringWriter b = new StringWriter();
 thr.printStackTrace(new PrintWriter(b));
 return b.toString();
 }
}

2.	 In your application code, use LogWrap instead of the standard android.util.Log.
For example:
try{
 …
 } catch (IOException e) {
 LogWrap.e("Error opening file.", e);
}

3.	 Insert the following custom ProGuard configuration into the project's
proguard-project.txt file:
-assumenosideeffects class android.util.Log {
 public static boolean isLoggable(java.lang.String, int);
 public static int v(...);
 public static int i(...);
 public static int w(...);
 public static int d(...);
 public static int e(...);
}

4.	 Enable ProGuard Optimize by adding the optimize configuration file to the project:
proguard.config=${sdk.dir}/tools/proguard/proguard-android-
optimize.txt:proguard-project.txt

5.	 Build your application in release mode to apply ProGuard:

�� Use the Android Tools export wizard in Eclipse

�� In a terminal window at the root of your project, type the following
commands:

For Ant: ant release

For Gradle: gradle assembleRelease

Protecting Applications

188

How it works...
When you build an application in release mode, the build system will check the proguard.
config property when it is uncommented and use ProGuard to process the application's
bytecode before packaging it into the application (.apk).

When ProGuard is processing bytecode, the assumeNoeffects attribute allows it to
completely remove these lines of code—in this case, all of the relevant methods from
android.util.Log. Using the optimize configuration and log wrapper, we let ProGuard
safely identify all of the calls to the various android.util.Log methods. An added benefit
of enabling Optimize is that optimizing the code enhances the obfuscation factor, making it
even harder to read.

There's more...
Let's take a closer look at some of the outputs from ProGuard and the limitations.

ProGuard output
These are the output files from applying ProGuard to Android .apk:

ff mapping.txt: As the name suggests, this contains the mappings between the
obfuscated class, field names, and original names, and is essential to use the
companion tool ReTrace to deobfuscate stack traces/bug reports produced by the
obfuscated apps

ff Seeds.txt: This lists the classes and members that are not obfuscated

ff Usage.txt: This lists the code that was stripped from the .apk file

ff Dump.txt: This describes the internal structure of all of the class files in the .apk file

It's also worth noting that the output files for each build are
overwritten with ProGuard. It's essential to save a copy of the
mappings.txt file for every application release; otherwise,
there is no way to convert stack traces.

Limitations
Obfuscating an application with ProGuard increases the time and skill level needed to reverse
engineer, understand, and exploit an application. However, reversing is still possible; so, it
certainly should not be the only piece of securing an application, but rather a part of the
overall security approach.

Chapter 5

189

See also
ff The Advanced code obfuscation with DexGuard recipe, which talks about ProGuard's

sibling DexGuard for deeper Android-specific obfuscation

ff The ProGuard tool's web page on Android Developers site at http://developer.
android.com/tools/help/proguard.html

ff The ProGuard official site at http://proguard.sourceforge.net/index.htm

ff The ProGuard example configurations at http://proguard.sourceforge.net/
index.html#manual/examples.html

Advanced code obfuscation with DexGuard
DexGuard is a commercial optimizer and obfuscator tool written by Eric Lafortune (who
developed ProGuard). It is used in the place of ProGuard. Rather than targeting Java,
DexGuard is specialized for Android resources and Dalvik bytecode. As with ProGuard, one of
the key advantages for developers is that source code remains maintainable and testable,
while the compiled output is both optimized and hardened.

In general terms, it is more secure to use DexGuard, given that it is optimized for Android and
provides additional security features. In this recipe, we are going to implement two of those
features, API hiding and string encryption, on the previous recipe's signature verification check:

ff API hiding: This uses reflection to disguise the calls to sensitive APIs and code. It
is ideal for hiding the key areas attackers will look to compromise. For example, the
license check detection will be targeted by software pirates, so it's an area to focus
on hardening effort. When decompiled, reflection-based calls are a lot more difficult
to decipher.

ff String encryption: This encrypts strings within your source code to hide them from
reverse engineers. This is particularly useful for API keys and other constants that are
defined in your code.

We use API hiding to convert specific method calls into reflection-based calls. This is
particularly useful for sensitive methods that we want to hide from attackers, in this case, the
verify signature method. The reflection call is made up of class and method signatures stored
as a string. We can further enhance it by using a complementing string-encryption feature to
encrypt those reflection strings. This provides a robust way of protecting sensitive areas of the
applications, for example, tamper detection, license checking, and encryption/decryption.

DexGuard requires a developer license, which is available at
http://www.saikoa.com/dexguard.

Protecting Applications

190

Getting ready
Assume Android SDK Tools (Version 22. or higher) and DexGuard have been downloaded
and extracted to an accessible directory. The examples will use /Users/user1/dev/lib/
DexGuard/ and are based on DexGuard Version 5.3. Here, we'll cover installing DexGuard
into Eclipse and integrating into both the Ant and Gradle build systems. Once installed, your
application will benefit from an increased security level over ProGuard. However, we're going to
enable some customized configuration to protect the sensitive areas of the application:

Installing the DexGuard Eclipse plugin
1.	 Copy the plugin JAR file (com.saikoa.dexguard.eclipse.

adt_22.0.0.v5_3_14.jar) from DexGuard's /eclipse directory to the /
dropins directory of your Eclipse installation.

2.	 When you start/restart Eclipse, the DexGuard plugin will be automatically installed.

3.	 If all has been successful, when you right-click on an Android project, you should
notice a new option in the Android tools menu:

Export Optimize and Obfuscate Application package (DexGuard)

4.	 Your project will now be compiled and built in to an .apk file as usual; however,
behind the scenes, DexGuard will be used to optimize and obfuscate the application.

Enabling DexGuard for the Ant build system
Enabling Ant is simple. Specify the DexGuard directory in the local.properties
configuration file in your Android project.

1.	 If you don't have a local.properties file, create one. To do this, add the following
line:
dexguard.dir=/Users/user1/dev/lib/DexGuard/

2.	 Copy Custom_rules.xml from the DexGuard directory ant to the root of your
Android project.

Enabling DexGuard for the Gradle build system
To enable DexGuard for the Gradle build system, modify the build.gradle file of your project:

buildscript {
 repositories {
flatDir { dirs '/=/Users/user1/dev/lib/DexGuard/lib' }
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:0.5.1'
 classpath ':dexguard:'
 }

Chapter 5

191

}
apply plugin: 'dexguard'

android {

 buildTypes {

 release {
 proguardFile plugin.getDefaultDexGuardFile('dexguard-
 release.pro')
 proguardFile 'dexguard-project.txt'
 }
 }
}

How to do it...
Once set up, we can enable and configure API hiding and string encryption:

1.	 In the root directory of your Android project, create a new file called dexguard-
project.txt.

2.	 Configure DexGuard to encrypt sensitive strings. In this example, we're using a
common pattern for including immutable constants in an interface and the certificate
hash used in the previous recipe, as these constants could easily be read after
decompilation even when obfuscated with ProGuard.

3.	 Encrypt a specific string in the Constants interface:
-encryptstrings interface com.packt.android.security.Constants {
public static final java.lang.String CERTIFICATE_SHA1;
}

Alternatively, you can encrypt all of the strings in an interface or class. Here's an
example of encrypting all strings defined in MainActivity.java:

-encryptstrings class com.packt.android.security.MainActivity

4.	 In an effort to respond to the limitations noted in the Application signature
verification (anti-tamper) recipe, we will demonstrate a related method, in addition to
the fact that hiding the method calls to the verifyAppSignature method make it
very difficult for an attacker to figure out where the tamper detection is taking place:
-accessthroughreflection class com.packt.android.security.Tamper {
 boolean verifyAppSignature (Context);
}
-accessthroughreflection class android.content.pm.PackageManager {
 int checkSignatures(int, int);

Protecting Applications

192

 int checkSignatures(java.lang.String, java.lang.String);
 android.content.pm.PackageInfo getPackageInfo(java.lang.
String, int);
}
-accessthroughreflection class android.content.pm.Signature {
 byte[] toByteArray();
 char[] toChars();
 java.lang.String toCharsString();
}

5.	 The final step is to build/export in release mode to ensure the DexGuard protection
is applied to the resulting .apk file:

�� Eclipse: Right-click on your project and then select Android Tools | Export
Optimized and Obfuscated Application Package … (DexGuard)

�� Ant: Run the ant release command in the terminal window in the project
root

�� Gradle: Run the gradle releaseCompile command in the terminal
window in the project root

There's more...
Here's the head-to-head comparison with ProGuard:

ProGuard DexGuard

Shrinking X X

Optimization X X

Name obfuscation X X

String encryption X

Class encryption X

Reflection X

Asset encryption X

Resource XML obfuscation X

Conversion to Dalvik X

Packaging X

Signing X

Tamper detection X

Chapter 5

193

Tamper detection is a longtime favorite, which uses a utility library and works on some of the
same principles as the other recipes in this chapter. It is favorable because it is very easy to
implement, as it is just one line of code.

Upgrading to DexGuard from ProGuard is seamless, as any custom configurations defined for
ProGuard are fully compatible. Another benefit of this compatibility is the existing community
of ProGuard support and expertise.

See also
ff The Official DexGuard website at http://www.saikoa.com/dexguard

6
Reverse Engineering

Applications

In this chapter, we will cover the following recipes:

ff Compiling from Java to DEX

ff Decompiling DEX files

ff Interpreting the Dalvik bytecode

ff Decompiling DEX to Java

ff Decompiling the application's native libraries

ff Debugging the Android processes using the GDB server

Introduction
The previous chapter discussed the flaws in the applications; they can be exploited and
discovered without the need to know exactly how they have been developed. Though there
were detailed explanations on some common source code that caused this specific issue,
we didn't need to read the source code to know that a SQL injection was possible. Largely,
our first step in the direction of a successful exploit was to analyze the behavior of an
application from a context that is ignorant of the actual details surrounding its behavior.
The reverse engineering discussed in this chapter aims to uncover every single detail
of an application's inner workings in order to exploit it.

Reverse Engineering Applications

196

Reverse engineering, when applied to computer software, is the process of learning how
something works and developing ways to make use of, or abuse, this information. For example,
reading the source code of a kernel driver may lead to finding a potential memory-corruption
flaw, such as improper bounds checking for buffers. Knowing this may allow you to develop
an exploit, given the context in which this vulnerability exists. Reverse engineering is the most
essential skill of any security specialist and is at the heart of all true development exploits.
When exploits and vulnerabilities are developed somewhere in the chain of events that lead
to successful exploitation, reverse engineering has occurred.

Android applications are not different from other computer software types, and thus, they
can be reverse engineered, too. In order to reverse engineer an application, one needs to
understand how they are built, what goes where, and why. Not having this information leads to
endless, sleepless nights of fuzz testing and brute forcing, which in most cases, will ultimately
end in frustration. This chapter discusses a few recipes that you can use for extracting
information about the inner workings of an application, and discusses some novel tricks that
malware developers and security auditors use to abuse and reverse engineer applications.

Before we get cooking with the recipes, there's just one question that begs to be asked; why
would you reverse engineer an Android application?

Here are a few ways to answer that:

ff To read the source code: Often, many vulnerabilities stay hidden from attackers,
simply because they don't manifest themselves during the "black-box" assessment
of an application. This does not mean they are not vulnerable to exploitation; to
quote, "the absence of evidence is not the evidence of absence!" Reading the source
code of an application is the most effective way to learn its weaknesses and will,
more often than not, result in the discovery of more vulnerabilities than a pure
black-box analysis. Reading the source code is still the only concrete way to
understand an application; you cannot trust anything but the source code;
in other words, documentation is a lie until the source code proves otherwise!

ff To leak information: Some vulnerabilities in applications don't stem directly from the
behavior of the code but from the kind of information stored in the application, for
example, static private keys and passwords, e-mail addresses, sign-on tokens, URIs,
and other sensitive content. Cracking open an application grants you access to all
of its secrets.

Chapter 6

197

ff To analyze defense mechanisms: Often, the common vulnerabilities in applications
are protected in the most ridiculous ways. Though mitigating common attack paths,
whether or not an application is protected from certain attacks depends purely
on its source code and configuration. Often, without the source code and internal
configuration, it may be extremely difficult, or at times impossible, to uncover how it
protects itself. Reading the source code of a large number of apps in the same category
can give you quite in-depth and knowledgeable insight into the best and worst ways to
protect applications, for example, login apps. Reading a lot of source code from these
may teach you how developers create defenses against authentication brute-force
attacks, credential sniffing attacks, and other login app-specific defenses.

ff To analyze attack techniques: You may be interested in finding out which application
and system level exploits the latest and greatest Android malware. The only way to truly
find this out, and put yourself on the cutting edge of Android security research, is to
reverse engineer Android applications.

With these goals in mind, let's get going with the recipes.

Compiling from Java to DEX
The recipe following this one breaks down the DEX file format; but before delving into the
DEX file, it would be useful to first get to know the process of interpreting/compiling a Java
program into a DEX program. One of the key reasons for demonstrating compilation from Java
to DEX is because the file used in the example here will be used to explain the DEX file format
in the next recipe.

Getting ready
Before we get going, there are a couple of things you will need:

ff Java Development Kit: We need this to be able to compile Java code into the class files

ff Android SDK: We need some of the tools in this package to be able to transform Java
class files into DEX files

ff Text editor: We need a text editor so that we can write a sample Java program to
convert to a DEX program

Once you've got all of these things, we can begin preparing a sample DEX file.

Reverse Engineering Applications

198

How to do it...
To compile a Java program into a DEX program, you will need to do the following:

1.	 Open your text editor and create a file using the following code:
public class Example{
 public static void main(String []args){
 System.out.printf("Hello World!\n");
 }
}

2.	 Save the previous file as Example.java and then compile the code by typing the
following into your terminal or command prompt:
javac –source 1.6 –target 1.6 Example.java

3.	 If you've got your CLASS file ready, you can now whip out a tool called dx, found under:

[SDK path]/sdk/platform-tools/dx

If you've got Version 4.4 of the SDK, you can find it under:

/sdk/built-tools/android-[version]/dx

Chapter 6

199

4.	 To prepare a DEX file, you need to execute the following command:

[SDK path]/sdk/platform-tools/dx –-dex –-output=Example.dex
Example.class

Once this is done, you should have a file called Example.dex in your current
directory; this is the DEX version of Example.class.

How it works...
In step 1, we did what Java developers do every day and what describes Java objects; our
object was called Example.

In step 2, we compiled Example.java into a class file. What happens here is that the Java
compiler grabs the nice semantic code we've written and parses it into a bunch of stack-based
instructions for the Java Virtual Machine.

In step 3, we took the CLASS file, with its Java metadata and stack-based instructions, and
prepared a collection of resources, data structures, and register-based instructions that the
Dalvik VM understands as a DEX file. Here's a breakdown of the dx commands we used:

ff -dex: This command tells dx that you'd like to create a DEX file

ff -output=Example.dex: This directive lets dx know that we want the output of the
proceedings to go into a file named Example.dex

ff Example.class: This is the input file, namely, the class file we compiled in step 2

Reverse Engineering Applications

200

Decompiling DEX files
DEX files, or Dalvik Executable files, are the Android equivalent of Java's CLASS files. They
include the compiled format of the Java code that defines an Android application's behavior,
and as an Android security specialist to be, you would naturally be interested in knowing how
these files work and what exactly they are for. Decompiling the DEX files is an essential part
of the security assessments for many applications; they provide a good source of information
on the behavior of an Android application and can often glean details of an application's
development that a pure source code perspective cannot. A good understanding of the
DEX file format and how to interpret it may lead to the identification of new vulnerabilities
or development and improvement of exploits against the Android platform and Dalvik VM.
Malware may soon start exploiting the way DEX files are interpreted, to hide details pertaining
to its behavior. And the only security enthusiast that will be privy to the new Android malware
obfuscation techniques, and have the necessary skills to thwart them, will be the enlightened
few who truly know how DEX files work. This recipe includes a detailed breakdown of the DEX
file format and describes how each field in the DEX file is used and interpreted. It then moves
on to discuss how to decompile a DEX file back into the Java source code for easy reading and
reverse engineering.

Understanding the DEX file format
This recipe is dedicated to breaking down and describing each important section of the
DEX file. It walks through each field, and works straight from the Dalvik source code used
to interpret the DEX files.

The next few paragraphs provide information about where the different sections of the DEX
file occur, such as where to find references to printable strings and where the actual DEX code
for each compiled class are to be found. DEX files have a fairly simple and easy-to-understand
format. The structure of the DEX files is as follows:

struct DexFile {
/* directly-mapped "opt" header */
 const DexOptHeader* pOptHeader;

/* pointers to directly-mapped structs and arrays in base DEX */
 const DexHeader* pHeader;
 const DexStringId* pStringIds;
 const DexTypeId* pTypeIds;
 const DexFieldId* pFieldIds;
 const DexMethodId* pMethodIds;
 const DexProtoId* pProtoIds;
 const DexClassDef* pClassDefs;
 const DexLink* pLinkData;
/*

Chapter 6

201

 * These are mapped out of the "auxiliary" section, and may not
 be
 * included in the file.
*/
 const DexClassLookup* pClassLookup;
 const void* pRegisterMapPool; //
 RegisterMapClassPool

/* points to start of DEX file data */
 const u1* baseAddr;

/* track memory overhead for auxiliary structures */
 int overhead;

/* additional app-specific data structures associated with the DEX
 */
 //void* auxData;
};

The previous code is available at https://github.com/android/
platform_dalvik/blob/master/libdex/DexFile.h.

The DEX file header
The very first section of a DEX file is called the the DEX file header. The following is the
definition of the DEX file header according to libdex in the Dalvik VM:

struct DexHeader {
 u1 magic[8]; /* includes version number */
 u4 checksum; /* adler32 checksum */
 u1 signature[kSHA1DigestLen]; /* SHA-1 hash */
 u4 fileSize; /* length of entire file */
 u4 headerSize; /* offset to start of next section */
 u4 endianTag;
 u4 linkSize;
 u4 linkOff;
 u4 mapOff;
 u4 stringIdsSize;
 u4 stringIdsOff;
 u4 typeIdsSize;
 u4 typeIdsOff;
 u4 protoIdsSize;
 u4 protoIdsOff;
 u4 fieldIdsSize;
 u4 fieldIdsOff;

Reverse Engineering Applications

202

 u4 methodIdsSize;
 u4 methodIdsOff;
 u4 classDefsSize;
 u4 classDefsOff;
 u4 dataSize;
 u4 dataOff;
};

The data types u1 and u4 are merely aliases for unsigned integer types. Here are the type
definitions in the Common.h header file of the Dalvik VM itself:

 typedef uint8_t u1; /*8 byte unsigned integer*/
 typedef uint16_t u2; /*16 byte unsigned integer*/
 typedef uint32_t u4; /*32 byte unsigned integer*/
 typedef uint64_t u8; /*64 byte unsigned integer*/
 typedef int8_t s1; /*8 byte signed integer*/
 typedef int16_t s2; /*16 byte signed integer*/
 typedef int32_t s4; /*32 byte signed integer*/
 typedef int64_t s8; /*64 byte signed integer*/

The previous code is available at https://github.com/android/
platform_dalvik/blob/master/vm/Common.h.

So, that gets the preliminaries out of the way. You now have a basic idea of what a DEX file
looks like, and a basic grasp of where everything goes. The next few paragraphs break down
exactly what each of the sections are for and how the Dalvik VM makes use of them.

To start off, the first field in a DEX file is defined as follows:

 u1 magic[8]; /* includes version number */

magic[8] holds a "marker", commonly referred to as a magic number, which holds a
collection of characters unique to the DEX files. The magic number for the DEX files is dex\
n035, or in hexadecimals, 64 65 78 0a 30 33 35 00.

Chapter 6

203

Here's a screenshot of classes.dex showing the magic number in hexadecimals:

The next field is defined as follows:

 u4 checksum; /* adler32 checksum */

The following screenshot shows the Adler32 checksum as it would appear in the DEX file:

This 4-byte field is a checksum of the entire header. A checksum is the result of a collection of
exclusive ORs (XORs) and addition operations performed on the bits that make up the header.
It is checked to make sure no corruption or erroneous change occurred to the contents of the
DexHeader file. It's so important to make sure that nothing has corrupted this header because
it determines how the rest of the DEX file is interpreted and acts as a roadmap for the rest of
interpretation. Due to this, Dalvik uses the DexHeader file to locate the rest of the components
of the DEX file.

The next field is a 21-byte Secure Hashing Algorithm (SHA) signature, defined as follows:

 u1 signature[kSHA1DigestLen]; /* SHA-1 hash length = 20*/

Reverse Engineering Applications

204

The following screenshot shows the SHA digest as it would appear in the DEX file:

kSHA1DigestLen is defined as 20, if you haven't already guessed. This is because the block
length of SHA1 is standardized as 20. This digest, according to a small comment in the Dalvik
code, is used to uniquely identify the DEX file and is computed in the section of the DEX file
after the signature. The section of the DEX file on which this SHA digest is computed is where
all the address offsets and other size parameters are specified and what they refer to.

Following the SHA digest field is the fileSize field, which is defined as follows:

 u4 fileSize;/* length of entire file */

The following screenshot shows the fileSize field as it would appear in the DEX file:

The fileSize field is a 4-byte field which holds the length of the entire DEX file. This field
is used to help calculate offsets and locate certain sections easily. It also helps to uniquely
identify the DEX file because it forms part of the section of the DEX file that is fed into the
secure hashing operation:

 u4 headerSize;/* offset to start of next section */

Chapter 6

205

The following screenshot shows the headerSize field as it would appear in the DEX file:

headerSize holds the length of the entire DexHeader structure in bytes and as the
comment suggests, it's used to help calculate its position in the file that marks the start
of the next section.

The following field in the DEX file is the endianness tag, which is defined as follows:

 u4 endianTag;

The following screenshot shows the endianTag field of a sample classes.dex file:

The endianTag field holds a static value that is the same across all DEX files. The value
of this field, 12345678, is used to make sure the file is being interpreted with the right
"endianness" or bit order. Some architectures prefer their most significant bit to the left and
others prefer it to the right; this is referred to as the endianness of an architecture. This field
helps identify which one the architecture uses, by allowing the Dalvik VM to read the value
and check which order the numbers in the field appear in.

Reverse Engineering Applications

206

The linkSize and linkOff fields are next; they are used when multiple class files are
compiled into one DEX File:

 u4 linkSize;
 u4 linkOff;

The map section offset is next and is defined as follows:

 u4 mapOff;

The next field, stringIdsSize, is defined as follows:

 u4 stringIdsSize;

The stringIdsSize field holds the size of the StringIds section and is used in the same
style as the other size fields to help calculate the starting position of the StringIds section,
with respect to the start of the DEX file.

The next field, stringIdsOff, is defined as follows:

 u4 stringIdsOff;

This field holds the offset in bytes to the actual stringIds section. It helps the Dalvik compiler
and the virtual machine to jump into this section without doing any rigorous computation or
having to re-read the file over and over again to find the stringIds section. Following the
StringIdsOff field are the same offset and size fields for the type, prototype, method,
class, and data ID sections—each of these attributes has size and offset fields exactly like the
stringIds and stringIdsOff fields. These serve the same purpose as the stringIdsOff
and stringIdsSize field, except that they aim and facilitate efficient and simple mechanisms
to access the related sections. As mentioned earlier, this means it would come down to either
re-reading the file multiple times or doing a few simple additions and subtractions on a relative
starting address. Here are the definitions for the size and offset fields:

 u4 typeIdsSize;
 u4 typeIdsOff;
 u4 protoIdsSize;

Chapter 6

207

 u4 protoIdsOff;
 u4 fieldIdsSize;
 u4 fieldIdsOff;
 u4 methodIdsSize;
 u4 methodIdsOff;
 u4 classDefsSize;
 u4 classDefsOff;
 u4 dataSize;
 u4 dataOff;

All of these size and offset fields hold values that are to be interpreted as, or hold values that
need to form a part of, the computation on addresses that defer positions inside a DEX file.
This is the primary reason why all of them have the same type definition, namely, an unsigned
4-byte integer field.

The StringIds section
The StringIds section is purely composed out of a collection of addresses—or identification
numbers with respect to the Dalvik nomenclature—relative to the start of the DEX file to be
used for finding the starting positions of the actual static strings defined in the Data section.
According to libdex in the Dalvik VM, the fields in the StringIds section are defined as
follows:

struct DexStringId {
 u4 stringDataOff; /* file offset to string_data_item */
};

All of these definitions say that every string ID is simply an unsigned 4-byte field, which
is no surprise since they are all offset values like those found in the DexHeader section.
Here's a screenshot of the StringIds section from a sample classes.dex file:

In the preceding screenshot, the values that are highlighted are the addresses previously
referred to, or values from the StringIDs section. If you were to grab one of the values, read
them with the correct endianness, and skip down the DEX file to the section with the offset of
this value, you would end up in a section that looks like the following screenshot:

Reverse Engineering Applications

208

As you can see, the sampled value that reads 00 00 01 8a, because of the endianness of
the file format, actually points to a string in the DEX file. The following screenshot shows us
what's at offset 0x018a in the DEX file:

As you can see, location 0x018a contains the value 3c 69 6e 69 74 3e 00, which is
actually the hexadecimal equivalent of <init>.

This is basically the same process the compilers, decompilers, and the Dalvik VM go through
when they look up string values. Here's an extract of the code from libdex that does just
that:

DEX_INLINE const char* dexGetStringData(const DexFile* pDexFile,
 const DexStringId* pStringId) {
 const u1* ptr = pDexFile->baseAddr + pStringId->stringDataOff;

 // Skip the uleb128 length.
 while (*(ptr++) > 0x7f) /* empty */ ;

 return (const char*) ptr;
}

The preceding code is available at https://github.com/
android/platform_dalvik/blob/master/libdex/
DexFile.h (lines 614-622).

The preceding code returns a pointer to a string in the DEX file, given a structure that
represents the DEX file—the definition of which was detailed earlier on—and the ID of the
string represented by a DexStringId structure. The code simply dereferences the base
address of the file and adds the stringId value, which, as described earlier, is the offset of
the string data inside the DEX file. A few points may be missing from the preceding code, for
instance, how the actual file data relates to what's going on in this code and how each of the
arguments are prepared. Because of this, I've included a snippet of code here that shows how
the arguments are parsed and how the file data is used. It is as follows:

void dexFileSetupBasicPointers(DexFile* pDexFile, const u1* data)
 {
 DexHeader *pHeader = (DexHeader*) data;

 pDexFile->baseAddr = data;
 pDexFile->pHeader = pHeader;
 pDexFile->pStringIds = (const DexStringId*) (data + pHeader-
 >stringIdsOff);
...some code has been omitted for brevity
}

Chapter 6

209

The preceding code is available at https://github.com/
android/platform_dalvik/blob/master/libdex/
DexFile.cpp (lines 269-274).

The character array dereferenced by the pointer called data is the actual content of the
DEX file. The preceding code snippets should demonstrate quite effectively how each of the
DexHeader fields are used to find different positions in the DEX file; certain parts of the code
are highlighted to show this.

The TypeIds section
Next is the TypeIds section. This section holds information about how to find the string
labels for each type. Before we get into how this works, let's look at how TypeIds are defined:

struct DexTypeId {
 u4 descriptorIdx; /* index into stringIds list for type
 descriptor */
};

The preceding code is available at https://github.com/
android/platform_dalvik/blob/master/libdex/
DexFile.h (lines 270-272).

As described by the comment, this value holds an ID, or rather, an index of something in the
StringIds section, which is the string label of the type being described. Here's an example
that takes a sample value—the first one defined—from the TypeIds section:

The value, as before, is read as 03. As done earlier, we need to respect the file's endianness,
which is an index to a value in the StringIds section, specifically, the fourth defined string
ID in the StringIds section. It is as follows:

The fourth defined value is 0x01af, which in turn dereferences this offset in the data section:

Reverse Engineering Applications

210

In the previous screenshot, we can see the value LExample, which may seem a little strange
since we clearly defined our class as Example. What does L mean? Well, this string is
actually a description of the type as per the Dalvik type descriptor language, which is quite
similar to Java's method, type, and class signatures. In fact, it works exactly the same way.
A full breakdown of the type, method, and other descriptions or signatures for Dalvik can be
found at http://source.android.com/devices/tech/dalvik/dex-format.html.
In our case, the L value preceding the class name indicates that Example is a class or the
description name of an object. When the Dalvik compilers and VM lookup and build types,
they follow the same basic procedure. Now that we understand how this section works, we
can move on to the next section, namely, the ProtoIds section.

The ProtoIds section
The ProtoIds section holds a collection of prototype IDs that are used to describe methods;
they contain information about the return types and parameters for each method. The
following is the command that you see in the libdex files:

struct DexProtoId {
 u4 shortyIdx; /* index into stringIds for shorty
 descriptor */
 u4 returnTypeIdx; /* index into typeIds list for return
 type */
 u4 parametersOff; /* file offset to type_list for
 parameter types */
};

The structure is pretty easy to understand. The unsigned 4-byte field called shortyIdx holds
an index to a string ID defined in the StringIds section that gives a short description of
the prototype; this description works almost the same way type descriptions do for Dalvik.
returnTypeIdx, if you haven't guessed, holds an index which dereferences a value in the
TypeIds section. This is the description of the return type. Lastly, parametersOff holds the
address offset of the list of parameters for the method. Here's a sample ProtoIds section
from Example.dex. This is what the ProtoIds section looks like in our example DEX file:

Chapter 6

211

The FieldIds section
The FieldIds section, much like the others, is composed of a collection of fields that
reference StringIds and TypeIds, but is specifically targeted at describing the fields
in a class. Here's the official definition of a DEX file's FieldIds from libdex:

struct DexFieldId {
 u2 classIdx; /* index into typeIds list for defining
 class */
 u2 typeIdx; /* index into typeIds for field type */
 u4 nameIdx; /* index into stringIds for field
 name */
};

The preceding code is available at https://github.com/
android/platform_dalvik/blob/master/libdex/
DexFile.h#L277.

We can see three fields that make up the description of a type here, namely, the class it
belongs to (identified by the class ID in the classIdx field), the type of the field (string,
int, bool, and so on, detailed in the TypeId and dereferenced from the value saved in
the typeIdx variable), and the name of the type, namely, the definition according to the
specification we discussed earlier. This value is, as with all of the string values, stored in
the data section and dereferenced from the StringIds section with the value stored in
nameIdx. Here's a screenshot of our FieldIds section:

Let's move on to the next section, that is, the MethodIds section.

The MethodIds section
The fields for each method ID are defined as follows:

struct DexMethodId {
 u2 classIdx; /* index into typeIds list for defining
 class */
 u2 protoIdx; /* index into protoIds for method
 prototype */
 u4 nameIdx; /* index into stringIds for method name */
};

Reverse Engineering Applications

212

The preceding code is available at https://github.com/
android/platform_dalvik/blob/master/libdex/
DexFile.h#L286.

The class to which the method belongs is dereferenced by the value stored in the classIdx
field. This works exactly in the same way as the TypeIds section. Also, each method has
a prototype reference attached to it. This is stored in the protoIdx variable. And lastly,
the nameIdx variable stores a reference to the characters that make up the definition
of the method. Here's an example definition of a method from our Example.dex file:

([Ljava/lang/String;)V

The best way to understand the previous definition is to read it from right to left. Breaking the
definition down, it reads as follows:

ff V: This indicates a void type, which is the return type of the method.

ff (): This denotes which type specification for the method parameters will follow.

ff java/lang/String;: This is the identifier for the String class. Here, the first and
only argument is a string.

ff L: This indicates that the type following this character is a class.

ff [: This indicates that the type following this character is an array of the specified type.

So,putting this information together, the method returns a void and accepts an array of
objects from the String class.

Here's a screenshot of the MethodIds section from our example:

The ClassDefs section
The ClassDefs section is defined as follows:

struct DexClassDef {
 u4 classIdx; /* index into typeIds for this class */
 u4 accessFlags;
 u4 superclassIdx; /* index into typeIds for superclass */
 u4 interfacesOff; /* file offset to DexTypeList */
 u4 sourceFileIdx; /* index into stringIds for source file
 name */
 u4 annotationsOff; /* file offset to
 annotations_directory_item */

Chapter 6

213

 u4 classDataOff; /* file offset to class_data_item */
 u4 staticValuesOff; /* file offset to DexEncodedArray */
};

These fields are pretty straightforward to understand, starting with the classIdx field, which,
as the comment suggests, holds an index in the TypeIds section indicating the type of file.
The AccessFlags field holds a number indicating how other objects are to access this class
and also describes some of its purpose. Here's how the flags are defined:

enum {
 ACC_PUBLIC = 0x00000001, // class, field, method, ic
 ACC_PRIVATE = 0x00000002, // field, method, ic
 ACC_PROTECTED = 0x00000004, // field, method, ic
 ACC_STATIC = 0x00000008, // field, method, ic
 ACC_FINAL = 0x00000010, // class, field, method, ic
 ACC_SYNCHRONIZED = 0x00000020, // method (only allowed on
 natives)
 ACC_SUPER = 0x00000020, // class (not used in
 Dalvik)
 ACC_VOLATILE = 0x00000040, // field
 ACC_BRIDGE = 0x00000040, // method (1.5)
 ACC_TRANSIENT = 0x00000080, // field
 ACC_VARARGS = 0x00000080, // method (1.5)
 ACC_NATIVE = 0x00000100, // method
 ACC_INTERFACE = 0x00000200, // class, ic
 ACC_ABSTRACT = 0x00000400, // class, method, ic
 ACC_STRICT = 0x00000800, // method
 ACC_SYNTHETIC = 0x00001000, // field, method, ic
 ACC_ANNOTATION = 0x00002000, // class, ic (1.5)
 ACC_ENUM = 0x00004000, // class, field, ic (1.5)
 ACC_CONSTRUCTOR = 0x00010000, // method (Dalvik only)
 ACC_DECLARED_SYNCHRONIZED =
 0x00020000, // method (Dalvik only)
 ACC_CLASS_MASK =
 (ACC_PUBLIC | ACC_FINAL | ACC_INTERFACE | ACC_ABSTRACT
 | ACC_SYNTHETIC | ACC_ANNOTATION | ACC_ENUM),
 ACC_INNER_CLASS_MASK =
 (ACC_CLASS_MASK | ACC_PRIVATE | ACC_PROTECTED | ACC_STATIC),
 ACC_FIELD_MASK =
 (ACC_PUBLIC | ACC_PRIVATE | ACC_PROTECTED | ACC_STATIC |
 ACC_FINAL
 | ACC_VOLATILE | ACC_TRANSIENT | ACC_SYNTHETIC | ACC_ENUM),
 ACC_METHOD_MASK =
 (ACC_PUBLIC | ACC_PRIVATE | ACC_PROTECTED | ACC_STATIC |
 ACC_FINAL

Reverse Engineering Applications

214

 | ACC_SYNCHRONIZED | ACC_BRIDGE | ACC_VARARGS | ACC_NATIVE
 | ACC_ABSTRACT | ACC_STRICT | ACC_SYNTHETIC | ACC_CONSTRUCTOR
 | ACC_DECLARED_SYNCHRONIZED),
};

The superClassIDx field also holds an index to a type in the TypeIds section and is used
to describe the type of the super class. The SourceFileIDx field points into the StringIds
section and allows the Dalvik to look up the actual source for this class. Another important
field for the classDef structure is the classdataOff field, which points to an offset inside
the Dalvik file that describes some more very important properties of the class, namely, where
the code is found and how much code there is. The classDataOff field points to an offset
holding one of these structures:

/* expanded form of class_data_item. Note: If a particular item is
 * absent (e.g., no static fields), then the corresponding pointer
 * is set to NULL. */
struct DexClassData {
 DexClassDataHeader header;
 DexField* staticFields;
 DexField* instanceFields;
 DexMethod* directMethods;
 DexMethod* virtualMethods;
};

The DexClassDataHeader file holds some metadata about the class, namely, the size of
the static fields, instance fields, the direct methods, and the virtual methods. Dalvik uses this
information to calculate important parameters that determine the size of the memory each
method has access to, and also forms part of the information needed to check the bytecode.
An interesting group of fields here is DexMethod, which is defined as follows:

struct DexMethod {
 u4 methodIdx; /* index to a method_id_item */
 u4 accessFlags;
 u4 codeOff; /* file offset to a code_item */
};

This group holds the actual references to the code that makes up the classes. The code
offsets are saved in the codeOff field; the methodId and accessFlags fields also form
part of the structure along with this.

Now that we've discussed how most things fit together in an average DEX file, we can move
on to decompiling them with some automated tools.

Chapter 6

215

Getting ready
You need to make sure you have a couple of tools set up before we begin with the
decompilation, namely, the Android SDK.

How to do it…
Now that you understand the DEX file format and structure, you can decompile it using the
dexdump utility by following the ensuing steps:

The Android SDK includes a tool called dexdump and it's saved under the sdk/build-
tools/android-[version]/dexdump folder of the SDK. To decompile a DEX file, all you
need to do is pass it as an argument to dexdump. Here's how you do that:

[SDK-path]/build-tools/android-[version]/dexdump classes.dex

Here, [SDK-path] would be the path to your SDK, and classes.dex would be the DEX file
you want to parse. For our example, you would execute the following command to the file we
compiled into Java code in one of the previous sections:

[SDK-path]/build-tools/android-[version]/dexdump Example.dex

The output for our example, would look as follows:

Reverse Engineering Applications

216

There's more...
The Android SDK has another tool called dx that is capable of breaking down the DEX file
in a way more native to the DEX file format. You'll see why soon enough:

Unfortunately, dx only operates on the CLASS files and works by compiling them into DEX files
and then performing the specified operations. So, if you have a CLASS file you'd like to work
on, you can execute the following command to see the semantic structure and contents of the
corresponding DEX file:

dx –dex –verbose-dump –dump-to=[output-file].txt [input-file].class

dx can be found under the sdk/build-tools/android-[version]/ path of the Android
SDK package:

Chapter 6

217

For our example, namely, Example.class, the output would look as follows:

000000: 6465 780a 3033|magic: "dex\n035\0"
000006: 3500 |
000008: 3567 e33f |checksum
00000c: b7ed dd99 5d35|signature
000012: 754f 9c54 0302|
000018: 62ea 0045 3d3d|
00001e: 4e48 |
000020: 1003 0000 |file_size: 00000310
000024: 7000 0000 |header_size: 00000070
000028: 7856 3412 |endian_tag: 12345678
00002c: 0000 0000 |link_size: 0
000030: 0000 0000 |link_off: 0
000034: 7002 0000 |map_off: 00000270
000038: 1000 0000 |string_ids_size: 00000010
00003c: 7000 0000 |string_ids_off: 00000070
000040: 0800 0000 |type_ids_size: 00000008
000044: b000 0000 |type_ids_off: 000000b0
000048: 0300 0000 |proto_ids_size: 00000003
00004c: d000 0000 |proto_ids_off: 000000d0
000050: 0100 0000 |field_ids_size: 00000001
000054: f400 0000 |field_ids_off: 000000f4
000058: 0400 0000 |method_ids_size: 00000004
00005c: fc00 0000 |method_ids_off: 000000fc
000060: 0100 0000 |class_defs_size: 00000001
000064: 1c01 0000 |class_defs_off: 0000011c
000068: d401 0000 |data_size: 000001d4
00006c: 3c01 0000 |data_off: 0000013c
 |
 |

The column to the left of the output details the file offsets and their contents in hexadecimal.
The column to the right holds the semantic value and a breakdown of how each offset and
value are interpreted.

Please note that some of the output has been omitted for the sake of brevity; only the section
containing everything from the DexHeader file has been included.

See also
ff The Dex File Format – RetroDev webpage at http://www.retrodev.com/

android/dexformat.html

Reverse Engineering Applications

218

ff The Smali Decompiler – Google Code webpage at https://code.google.com/p/
smali/

ff Decompiling Android by Godfrey Nolan, Apress

ff The Practicing Safe Dex document at http://www.strazzere.com/papers/
DexEducation-PracticingSafeDex.pdf

ff The Android Dalvik Kernel Source Code Repository webpage at https://github.
com/android/platform_dalvik/tree/master/libdex

ff The Dalvik Executable Format – Android Open Source Project document at
http://source.android.com/devices/tech/dalvik/dex-format.html

Interpreting the Dalvik bytecode
You may know by now that the Dalvik VM is slightly different in structure and operation
as compared to the Java VM; its file and instruction formats are different. The Java VM is
stack-based, meaning bytecode (the code format is named this way because instructions
are each a byte long) works by push and popping instruction on and off a stack. The Dalvik
bytecode is designed to resemble the x86 instructions sets; it also uses a somewhat C-style
calling convention. You'll see in a moment how each calling method is responsible for setting
up the arguments before making calls to another method. For more details on the design and
general caveats of the Dalvik code format, refer to the entry named General Design—Bytecode
for the Dalvik VM, Android Open Source project in the See also section.

Interpreting bytecode means actually being able to understand how the instruction format
works. This section is dedicated to provide you with the references and tools you need to
understand the Dalvik bytecode. Let's dig into the bytecode format and find out how it works
and what it all means.

Understanding the Dalvik bytecode
Before jumping into bytecode specifics, it's important to establish some context. We need
to understand a little about how a bytecode is executed. This will help you understand the
attributes of the Dalvik bytecode and determine the difference between knowing what
a piece bytecode is and what a piece of bytecode means in a given context of execution,
which is a very valuable skill.

Chapter 6

219

The Dalvik machine executes methods one-by-one, branching between methods where
necessary, for instance, when one method invokes another. Each method can then be thought
of as an independent instance of the Dalvik VM's execution. Each of the methods have a private
space of memory called a frame that holds just enough space to accommodate the data
needed for the method's execution. Each frame also holds a reference to the DEX file; naturally,
the method needs this reference in order to reference TypeIds and object definitions. It also
holds reference to an instance of the program counter, which is a register that controls the
flow of execution and can be used to branch off into other execution flows. For instance, while
executing an "if" statement, the method may need to jump in and out of different portions of
code, depending on the result of a comparison. Frames also hold areas called registers, which
are used to perform operations such as adding, multiplying, and moving values around, which
may sometimes mean passing arguments to other methods, such as object constructors.

A bytecode consists of a collection of operators and operands, with each operator performing
a specific action on the operands supplied to it. Some of the operators also summarize
complex operations, such as invoking methods. The simple and atomic nature of these
operators is the reason they are so robust, easy to read and understand, and supportive
of a complex high-level language such as Java.

An important thing to note about Dalvik, as with all intermediate code representations,
is the order of the operands for the Dalvik bytecode. The destination of the operation
always appears before the source for the relevant operators, for instance, take an
operation such as the following:

move vA,vB

This means that the contents of register B will be placed in register A. A popular jargon for this
order is "Destination-then-Source"; this means the destination of the result of the operation
appears first, followed by the operand that specifies the source.

Operands can be registers, of which each method, an instance of independent execution,
has a collection of registers. Operands may also be literal values (signed/unsigned integers
of a specified size) or instances of a given type. For non-primitive types such as strings, the
bytecode dereferences a type defined in the TypeIds section.

There are a number of instruction formats that dictate how many registers and number of
type instances can be used as arguments for given opcodes. You can find these specifics at
http://source.android.com/devices/tech/dalvik/instruction-formats.html.
It's well worth your time to read through these definitions, because each opcode in the Dalvik
instruction set and its specifics is merely an implementation of one of the opcode formats. Try
to understand the format IDs because they make for very useful short-hand while reading the
instruction formats.

After covering some of the basics, and trusting that you've at least skimmed the opcodes
and opcode formats, we can move on to dumping some bytecode in a way that makes it
semantic to read.

Reverse Engineering Applications

220

Getting ready
Before we start, you will need the Smali decompiler, which is called baksmali. As an added
convenience, we will now go over how to set up your path variable so that you can use
the baksmali scripts and a JAR file from anywhere on your machine without referencing it
canonically every single time. Here's how you set it up:

1.	 Grab a copy of the baksmali JAR file at https://code.google.com/p/smali/
downloads/list, or from the newer repository at https://bitbucket.org/
JesusFreke/smali/download. Look specifically for the baksmali[version].
jar file—where [version] is the latest available version.

2.	 Save it in some conveniently-named directory, because to have the two files you need to
download will need to be in the same directory makes things a whole lot easier.

3.	 Download the baksmali wrapper script; it allows you to avoid invoking the java –
jar command explicitly every time you need to run the baksmali JAR. You can grab
a copy of the script at https://code.google.com/p/smali/downloads/list,
or from the newer repository at https://bitbucket.org/JesusFreke/smali/
downloads. Save it in the same directory as the baksmali JAR file. This step does not
apply to Windows users, since it's a bash script file.

4.	 Change the name of the baksmali jar file to baksmali.jar, omitting the version
number so that the wrapper script you've downloaded in step 2 will be able to find it.
You can change the name using the following command on a Linux or Unix machine:
mv baksmali-[version-number].jar baksmali.jar

You can also do this using whatever window manager your operating system uses;
as long as you change the name to baksmali.jar, you're doing it right!

5.	 You then need to make sure that the baksmali script is executable. You can do this by
issuing it the following command if you're using a Unix or Linux operating system:
chmod +x 700 baksmali

6.	 Add, the current folder to your default PATH variable.

And you're all done! You can now decompile the DEX files! See the following section to
find out how.

Chapter 6

221

How to do it...
So, you've got baksmali all downloaded and set up, and you'd like to decompile some DEX files
into the nice semantic syntax of smali; here's how you do that.

Execute the following command from your terminal or command prompt:

baksmali [Dex filename].dex

This command will output the contents for the DEX file as though it's an inflated JAR file, but
instead of class files, all of the source files will be .smali files containing a slight translation
or dialect of the semantic Dalvik bytecode called smali:

Reverse Engineering Applications

222

Let's take a look at the smali file generated by baksmali and walk through what each bytecode
instruction means. The code is as follows:

.class public LExample;

.super Ljava/lang/Object;

.source "Example.java"

direct methods
.method public constructor <init>()V
 .registers 1

 .prologue
 .line 1
 invoke-direct {p0}, Ljava/lang/Object;-><init>()V

 return-void
.end method

.method public static main([Ljava/lang/String;)V
 .registers 4

 .prologue
 .line 3
 sget-object v0, Ljava/lang/System;->out:Ljava/io/PrintStream;

 const-string v1, "Hello World!\n"

 const/4 v2, 0x0

 new-array v2, v2, [Ljava/lang/Object;

 invoke-virtual {v0, v1, v2}, Ljava/io/PrintStream;-
 >printf(Ljava/lang/String;[Ljava/lang/Object;)Ljava/io/
 PrintStream;

 .line 4
 return-void
.end method

Chapter 6

223

Please note that because baksmali, the Android Dalvik VM, and the Java language are
constantly being improved, you may see slightly different results to the previous code sample.
Don't panic if you do; the preceding sample code is intended to merely be an example for you
to learn from. You will still be able to apply the information in this chapter to the code your
baksmali generates, whose first few lines are as follows:

.class public LExample;

.super Ljava/lang/Object;

.source "Example.java"

These are merely some metadata on the actual class being decompiled; they mention the class
name, the source file, and the super class (the class that this method inherits from). You may
notice from the code of Example.java that we never explicitly inherit from another class,
though when decompiled, Example.java seems to have a parent: how is this possible? Well,
because all Java classes inherit from java.lang.Object implicitly.

Moving on, the next bunch of lines are a little more interesting. They are the smali code for the
constructor of Example.java:

direct methods
.method public constructor <init>()V
 .registers 1

 .prologue
 .line 1
 invoke-direct {p0}, Ljava/lang/Object;-><init>()V

 return-void
.end method

The first line, .method public constructor <init>()V, is a declaration of the method
to follow. It says that the method called init returns a void type and has public access flags.

The next line that contains the piece of code, namely:

.registers 1

Says that this method only makes use of one register. The method will know this because the
number of registers it needs are decided before it is run. I'll shortly mention the one register it
needs. Following this is a line that looks like the following code:

.prologue

Reverse Engineering Applications

224

This declares that the method prologue follows, which is something every Java method has.
It makes sure to call the inherited forms of the method, if there are any. This explains why the
next line, containing the following code, seems to invoke another method called init:

invoke-direct {p0}, Ljava/lang/Object;-><init>()V

But this time it dereferences it from the java.lang.Object class. The invoke-direct
method here accepts two arguments: the p0 register and a reference to the method that
needs to be called here. This is indicated by the Ljava/lang/Object;-><init>()V label.
The description of the invoke-direct opcode is stated as follows:

"invoke-direct is used to invoke a non-static direct method (an instance method that is
non-overridable by nature and is either a private instance method or a constructor)."

An extract is available at http://source.android.com/
devices/tech/dalvik/dalvik-bytecode.html.

So in summary, all it's doing is calling a non-static direct method that is the constructor of the
java.lang.Object class.

Let's move on to the next line of the smali code:

return-void

It does exactly what it seems to, and that is, return a void type and exit the current method
to return the flow of execution to whichever method invoked it.

The definition of this opcode as per the official website is "Return from a void method."

Nothing really complex about that. The next line, as with other lines beginning with the
period (".") character, is a piece of metadata, or a footnote added by the smali decompiler,
to help add some semantic information about the code. The .end method line marks the
end of this method.

The code for the main method follows. Here, you will see some code forms that will appear
over and over again, namely, the code generated when arguments are passed to the methods
and when they are invoked. Since Java is object-oriented, a lot of what you're doing when
your code is calling another object's methods is passing arguments and converting from one
object type to another. So, a good idea would be to learn to identify when this is happening by
decompiling some Java code that does this to the smali code. The code for the main method
is as follows:

.method public static main([Ljava/lang/String;)V
 .registers 4

 .prologue

Chapter 6

225

 .line 3
 sget-object v0, Ljava/lang/System;->out:Ljava/io/PrintStream;

 const-string v1, "Hello World!\n"

 const/4 v2, 0x0

 new-array v2, v2, [Ljava/lang/Object;

 invoke-virtual {v0, v1, v2}, Ljava/io/PrintStream;-
 >printf(Ljava/lang/String;[Ljava/lang/Object;)Ljava/io/
 PrintStream;

 .line 4
 return-void
.end method

According to the first line .method public static main([Ljava/lang/String;)V,
the method accepts an array of the type java.lang.String and returns a void, indicated
by the following:

([Ljava/lang/String;)V

Proceeding to the method name, it also says that the main method is static and has public
access flags.

After the method header, we see the following piece of code, which shows that an sget-
object operation is being formed:

sget-object v0, Ljava/lang/System;->out:Ljava/io/PrintStream;

The description of this opcode as per the official website is "Perform the identified object
static field operation with the identified static field, loading or storing into the value register."

According to the official documentation, the sget-object operation accepts two arguments:

ff A register that Dalvik will use to store the result of the operation

ff An object reference to store in the mentioned register

So, what this really does is fetch an instance of an object and store it in a register. Here, this
register is the first register called v0. The next line looks as follows:

const-string v1, "Hello World!\n"

Reverse Engineering Applications

226

The previous code shows the const-string instruction in action. What it does is fetch a
string and save it in the register indicated by the first argument. This register is the second
register in the main method's frame called v1. The definition of the const-string opcode
as per the official website is "Move a reference to the string specified by the given index into
the specified register."

If it's not obvious enough, the string being fetched here is "Hello World\n".

Moving on, the next line is also part of the const opcode family and is being used here
to move a 0 value into the third register named v2:

const/4 v2, 0x0

This may seem a little random, but in the next line you'll see why it needs the 0 value in
the v2 register. The code for the next line is as follows:

new-array v2, v2, [Ljava/lang/Object;

What the new array does is construct an array of a given type and size and save it in the first
register from the left. Here this register is v2, so after this opcode has been executed, v2
will hold an array of type java.lang.Object which has a size of 0; this is the value of the
v2 register in the second argument of the opcode. This also makes the previous operation,
of moving a 0 value in to v2 before the execution of this opcode, clear. The definition of this
opcode, as per the official website is "Construct a new array of the indicated type and size.
The type must be an array type."

The next line contains a very common opcode; make sure you know how this family of
opcodes works because you're going to see a lot of it. Moving on, the next line is as follows:

invoke-virtual {v0, v1, v2}, Ljava/io/PrintStream;-
 >printf(Ljava/lang/String;[Ljava/lang/Object;)Ljava/io/
 PrintStream;

The definition of the invoke-virtual opcode as per the official website is
"invoke-virtual is used to invoke a normal virtual method (a method that is
not private, static, or final, and is also not a constructor)."

The arguments for the invoke-virtual method work as follows:

invoke-kind {vC, vD, vE, vF, vG}, meth@BBBB

Where vC, vD, vE, vF, and vG are the argument registers used to pass arguments to the
method being invoked, which is dereferenced by the last argument meth@BBBB. This means
it accepts a 16-bit method reference since each B field indicates a field of size 4 bits. In
summary, what this opcode does in terms of our code for Example.smali is it invokes
a method called java.io.PrintStream.printf, which accepts an array of the type
java.lang.Object and a java.lang.String object and returns an object of the
type java.io.PrintStream.

Chapter 6

227

And that's it! You've just interpreted some smali code. It takes a bit of practice to get used to
reading smali code. If you'd like to know more, check out the references in the See also section.

See also
ff The General Design—Bytecode for the Dalvik VM Android Open Source Project

at http://source.android.com/devices/tech/dalvik/dalvik-
bytecode.html

ff The Introduction and Overview—Dalvik Instruction Formats Android Open
Source Project at http://source.android.com/devices/tech/dalvik/
instruction-formats.html

ff The Analysis of Dalvik Virtual Machine and Class Path Library document at
http://imsciences.edu.pk/serg/wp-content/uploads/2009/07/
Analysis-of-Dalvik-VM.pdf

Decompiling DEX to Java
The DEX code, as we know, is compiled from Java, which is a pretty semantic, easy-to-read
language, and I'm sure some of you are wondering by now whether it's possible to decompile
the DEX code back into Java? Well, the good news is that this is possible, of course,
depending on the quality of the decompiler you are using and the complexity of the DEX code.
This is because unless you understand how the DEX code actually works, you will always be
at the mercy of your DEX decompiler. There are many ways to thwart the popular decompilers
such as reflection and non-standard DEX opcode variants, so if you're hoping that this recipe
means you can call yourself an Android reverse engineer even though you are unable to read
the DEX code, you are mistaken!

With that said, most DEX code in Android applications are pretty stock standard, and
decompilers, such as the one we are about to use, can handle an average DEX file.

Getting ready
Before we start, you will need to grab a few tools from the Internet.

ff Dex2Jar: This is a tool that grabs the DEX files from the APK files and outputs a JAR
containing the corresponding class files; you can get this at http://code.google.
com/p/dex2jar/. Visit this URL and download the version appropriate for your
operating system.

ff JD-GUI: This is a Java class file decompiler; you can get this at http://jd.benow.
ca/. It has support for Linux, Mac, and Windows.

Reverse Engineering Applications

228

How to do it...
To decompile a sample DEX file into some Java code, you will need to perform the
following steps:

1.	 Let's assume we are starting from either an APK or DEX file. In that case, you would
start out by interpreting the DEX files into the Java CLASS files. Here's how you do
that with Dex2jar:
dex2jar [Dex file].dex

Or for our running example, you would execute the following statement:
dex2jar Example.dex

The output should look something like the following screenshot:

If you've executed this correctly, you should have a file called Example_dex2jar.
jar in your working or current directory:

2.	 So now that we have our class files, we need to work them back into the Java code.
JD-GUI is the tool that we will be using to sort this out. To launch JD-GUI, all you
need to do is execute the JD-GUI executable that comes with the JD-GUI tool.
Here's how you do it from Linux; execute the following command from your terminal:
jd-gui

Chapter 6

229

It should spawn a window that looks like the following screenshot:

3.	 Once this window shows up, you can open a class file by clicking on the folder icon;
the following file selection dialog box should show up:

Reverse Engineering Applications

230

Once this dialog box is open, you should navigate to the path with the Example.
class file we parsed from the Example.dex file. If you manage to find it, JD-GUI
will display the code as follows:

4.	 You can use JD-GUI to save the source files; all you need to do is click on the File
menu on the toolbar, select Save All Sources, and then provide a directory to save it in:

Chapter 6

231

Decompiling the application's native
libraries

Android native libraries are pretty easy to decompile; they are, after all, just C/C++ object files
and binaries compiled from the ARM platform. So decompiling them is as simple as finding
a decompiler like the "ever-popular" objdump decompiler for Linux that accommodates ARM
binaries, and, as it turns out, this problem has been solved for us by the Android NDK.

Before we get into the details of this process, you need to make sure you have the right tools.

Getting ready
Getting ready for this recipe is as easy as making sure you have a fresh copy of the Android
NDK package; you can grab a copy at http://developer.android.com/tools/sdk/
ndk/index.html.

How to do it...
Decompiling a native library is as simple as invoking one of the tools provided with the Android
NDK toolchain known as objdump; it has been prebuilt to include all of the plugins that allow
objdump to interpret the endianness and code structures specific to the ARM binaries.

To decompile an Android native library, you need to execute the following command from your
terminal or command prompt:
arm-linux-androideabi-objdump –D [native library].so

Here's an example:

Where arm-linux-androideabi-objdump is located under the toolchains/arm-
linux-androideabi-[version]/prebuilt/[arch]/bin/ folder of the Android NDK,
where [arch] would be the architecture or build version relevant to your machine. I'm using
a Linux x86_64 machine in this example.

To make use of the information in the output of objdump, you need to understand the
opcode formats and instructions for the ARM platform and a little about the ELF format.
I've included some good references to follow up in the See also section, including a link to
an Android application called Sieve, which is used to demonstrate some of the commands
used in this recipe.

Reverse Engineering Applications

232

See also
ff The ELF for the ARM Architecture document at http://infocenter.arm.com/

help/topic/com.arm.doc.ihi0044e/IHI0044E_aaelf.pdf

ff The ARM7TDMI Technical Reference Manual document at http://www.atmel.
com/Images/DDI0029G_7TDMI_R3_trm.pdf

ff The ARM Processor Architecture webpage at http://www.arm.com/products/
processors/instruction-set-architectures/index.php

ff The Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification
Version 1.2 document available at http://refspecs.linuxbase.org/elf/
elf.pdf

ff Sieve – A password manager app, showcasing some common Android vulnerabilities
at https://www.mwrinfosecurity.com/system/assets/380/original/
sieve.apk

Debugging the Android processes using the
GDB server

Debugging processes via some GDB-like tool is what most memory corruption, buffer overflow,
and malware analysis jockeys do every day. Inspecting memory and performing dynamic
analysis of an application process is something fundamental to any reverse engineer no
matter what platform you're focused on; this, of course, includes Android. The following recipe
shows you how to debug a process running on an Android device using GDB.

Getting ready
In order to pull off this recipe, you'll need to grab the following:

ff The Android NDK package available at http://developer.android.com/
tools/sdk/ndk/index.html

ff The Android SDK package

Chapter 6

233

How to do it...
To debug a live Android process using gdbserver, you will need to perform the following steps:

1.	 The first step is to make sure that you either have a rooted Android device or an up-and-
running emulator. I'm not going to detail the entire process of setting up an emulator
here, but if you're not clear on the details of getting an emulated Android device up
and running, refer to the Inspecting application certificates and signatures recipe in
Chapter 2, Engaging with Application Security. If you're already aware of how to create
an emulated Android device, you can launch it using the following command:
[SDK-path]/sdk/tools/emulator –no-boot-anim –memory 128 –
partition-size 512

2.	 Once the emulator or target device is up and running, you should access the device
using an ADB shell. You can do this by executing the following command:
abd shell

You also need to make sure that you have root permissions. Emulators grant root
permissions by default, though, if you're doing this on an actual device, you may need
to execute the su substitute user command first.

3.	 You then need to mount the system directory as read-write so that we can pop a copy
of gdbserver into it. Here's how you remount the directory, while in your adb shell,
execute the following command:
mount

Reverse Engineering Applications

234

This should output some information about where each block device is mounted; we
are interested in the /system directory. Take note of the /dev/ path printed in the
line mentioning /system. In the previous example, the device called /dev/block/
mtdblock0 is mounted at /system.

4.	 Remount the directory using the following command:
mount –o rw,remount [device] /system

5.	 You're now ready to pop a copy of the gdbserver into the device. Here's how you do
this from your non-Android machine:
adb push [NDK-path]/prebuilt/android-arm/gdbserver/gdbserver
/system/bin

6.	 Once gdbserver is on the target device, you can launch it by attaching it to a
running process; but before you can do that, you'll need to grab a sample Process
ID (PID). You can do that by launching the ps command on the target device in the
following manner:
ps

Chapter 6

235

The ps command will list a summary of information of the current running processes;
we are interested in the PID of one of the current running processes. Here's an
example of the ps command output from the emulator we are running:

In the preceding screenshot, you can see that the second column is titled PID; this is
the information you're looking for. The calendar, which was used as an example here,
has a PID of 766:

7.	 Once you have a valid PID, you can use gdbserver to attach to it by executing the
following command:
gdbserver :[tcp-port number] –-attach [PID]

Where [tcp-port number] is the number of a TCP port you'd like to allow
connections from, and PID is, of course, the PID number you grabbed in the previous
step. If this is done correctly, gdbserver should produce the following output:

Reverse Engineering Applications

236

8.	 Once gdbserver is up and running, you need to ensure that you forward the TCP
port number from the target Android device so that you can connect to it from your
machine. You can do this by executing the following command:
adb forward tcp:[device port-number] tcp:[local port-number]

Here's the adb port forward from the example:

9.	 You should then launch the prebuild gdb, which is found under the path android-
ndk-r8e/toolchains/arm-linux-androideabi-[version]/prebuilt/
linux-x86_64/bin/, on your Linux machine. You launch it by running the following
command once inside the aforementioned NDK path:
arm-linux-androideabi-gdb

Here's a screenshot of how it's being launched:

10.	 Once gdb is up and running, you should try to connect it to the gdb instance
running the target device by issuing the following command from within
the gdb command prompt:

target remote :[PID]

Where [PID] is the local TCP port number you forwarded using adb in step 8.
Here's a screenshot of this:

And that's it! You have an interaction with the memory segments and registers
of the processes running on the Android device!

7
Secure Networking

In this chapter, we will cover the following recipes:

ff Validating self-signed SSL certificates

ff Using StrongTrustManager from the OnionKit library

ff SSL pinning

Introduction
Secure Sockets Layer (SSL) is one of the core parts of encrypted communications between
a client and a server. Its primary deployment has been for web browsers to encrypt messages
and ascertain a level of trust with a third-party service for online transactions, such as buying
a DVD or Internet banking. Unlike web browsers, there is no padlock icon in the left corner of an
Android app providing a visual indicator that the connection is secure. Unfortunately, there have
been instances where this validation has been skipped by app developers. This was highlighted
by the paper, Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security
(http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf).

In this chapter, we are going to look at some of the common pitfalls of using SSL on Android,
specifically relating to self-signed certifications. The main focus is how to make SSL stronger
to help guard against some of the vulnerabilities noted in the previous chapter. After all,
Android apps are effectively thick clients. Therefore why not take advantage of additional
capabilities compared with web browsers by performing extra validation and imposing
restrictions of the certificates and certificate roots we trust.

Although, out of the scope of this book, the web server's configuration is a big factor in
effective network security. Common vectors that an app can do little about are including a
SSL strip, session hijacking, and cross-site request forgery. However, these can be mitigated
with robust server configuration. To aid in this, the SSL labs recently released a best practice
document, which is available at https://www.ssllabs.com/downloads/SSL_TLS_
Deployment_Best_Practices_1.3.pdf.

Secure Networking

238

Validating self-signed SSL certificates
Android supports the use of SSL with standard Android API components, such as
HTTPClient and URLConnection. However, if you attempt to connect to a secure HTTPS
server URL, you may encounter an SSLHandshakeException. The common issues are:

ff The certificate authority (CA) who issued the server SSL certificate is not included
in the ~130 CAs that are included as part of the Android system, and therefore,
is treated as unknown

ff The server SSL certificate is self signed

ff The server isn't configured with intermediary SSL certificates

If the server isn't configured with intermediary certificates, it's simply a case of installing them
to allow the connection code to validate the root of trust. However, if the server is using a self-
signed certification or a CA-issued certificate but the CA isn't trusted by Android, we need to
customize the SSL validation.

A common practice is to develop and test with servers that have self-signed SSL certificates
and only use paid CA-signed certificates in the live environment. Therefore, this recipe
specifically focuses on robustly validating self-signed SSL certificates.

Getting ready
For this recipe, we will be importing the self-signed SSL certificate into the app, and to do this,
we are going to run some terminal commands. This section will cover the tools and commands
to download the SSL certificate files on your machine.

The latest version of the Bouncy Castle library is needed later in this recipe to create and
import certificates into the truststore. We use Bouncy Castle as it is a robust open source
cryptology library that Android has built-in support for. You'll find the bcprov.jar file at
http://www.bouncycastle.org/latest_releases.html. Download and save it to
the current working directory. For this recipe, we have saved it to a local directory called libs
so the path to reference the .jar file is /libs/bcprov-jdk15on-149.jar (which is the
latest version at the time of writing this book).

We will need a self-signed SSL certificate file from the server; if you created yours manually
or already have it, you can skip the rest of this section and move on to the recipe.

To create or download an SSL certificate, we will need to take advantage of the open source
SSL toolkit known as OpenSSL:

ff Mac – Fortunately, OpenSSL has been included on Mac OS X since Version 10.2.
ff Linux – Many Linux distributions come with precompiled OpenSSL packages installed.

If not, download and build the source code from https://www.openssl.org/
source/or if you are on Ubuntu, it should be a case of apt-get install openssl.

Chapter 7

239

ff Windows – Build from source or use a third-party-provided Win32 installer from Shining
Light Productions (http://slproweb.com/products/Win32OpenSSL.html).

To get the certificates from the server in the terminal window, type the following command,
where server.domain is either the IP address or server name:

Openssl s_client -showcerts -connect server.domain:443 </dev/null.

The certificate details will be displayed in the console output. Copy and paste the certificate
that is defined, starting with -----BEGIN CERTIFICATE----- and ending with -----END
CERTIFICATE-----, into a new file and save it as mycert.crt. It's important not to include
any additional white space or trailing spaces.

The following screenshot shows an example of the Openssl –showcerts command for
android.com:

Secure Networking

240

If you don't have a server yet and want to create a new self-signed certificate to use,
we first need to generate a private RSA key using the OpenSSL toolkit. Type the following
into a terminal window:

openssl genrsa –out my_private_key.pem 2048

This creates the private key file my_private_key.pem. The next step is to generate the
certificate file using the private key generated in the previous step. In the terminal, type:

openssl req -new -x509 -key my_private_key.pem -out mycert.crt -days 365

Follow the onscreen prompts and fill in the certificate details. Note the common name is
typically your server IP address or domain name.

That's it for getting ready! We should have a certificate file in hand for the next section.

How to do it...
Let's get started!

1.	 You should have an SSL certificate in CRT/PEM encoded format, which when opened
in, text editor, looks something like this:
-----BEGIN CERTIFICATE-----
WgAwIBAgIDA1MHMA0GCSqGSIb3DQEBBQUAMDwxCzAJBgNVBAYTAlVTMRcwFQYDVQQK
…
-----END CERTIFICATE-----

For this recipe, we will use the example named mycert.crt.

2.	 To package the certificates into an app, we create and import the certificates into
a .keystore file that we will refer to as our app's truststore.

3.	 In a terminal window, set the CLASSPATH variable so that the following command
can access the bcprov.jar file:
$export CLASSPATH=libs/bcprov-jdk15on-149.jar

The preceding command path of the bcprov-jdk15on-149.jar file should match
the -providerpath argument.

4.	 Now, create and import the certificate with the following keytool command:
$ keytool -import -v -trustcacerts -alias 0 /
-file <(openssl x509 -in mycert.crt) /
-keystore customtruststore.bks /
-storetype BKS /
-providerclass org.bouncycastle.jce.provider.BouncyCastleProvider
/
-providerpath libs/bcprov-jdk15on-149.jar
-storepass androidcookbook

Chapter 7

241

5.	 You should be prompted to trust the certificate, type yes:
Trust this certificate? [no]: yes

The output file is customtruststore.bks, with the public certificate added. The
truststore is protected with a password, androidcookbook, which we will reference
in the code when we load the truststore in the app. We set the –storetype
argument as BKS, which denotes the Bouncy Castle Keystore type, also explaining the
.bks extension. It's possible to import multiple certificates into your truststore; for
example, development and test servers.

Difference between keystore and truststore

Although they are the same type of file (.keystore), and in fact
can be the same file, we tend to have separate files. We use the term
truststore to define a set of third-party public certificates you expect
to communicate with. Whereas, a keystore is for private keys and
should be stored in a protected location (that is, not in the app).

6.	 Copy the truststore file into the raw folder of your Android app; if the folder doesn't
exist, create it:

/res/raw/customtruststore.bks

7.	 Load the local truststore from the raw directory into a KeyStore object:
private static final String STORE_PASSWORD = "androidcookbook";

private KeyStore loadKeyStore() throws Exception {
 final KeyStore keyStore = KeyStore.getInstance("BKS");
 final InputStream inputStream =
 context.getResources().openRawResource(
 R.raw.customtruststore);
 try {
 keyStore.load(inputStream,
 STORE_PASSWORD.toCharArray());
 return keyStore;
 } finally {
 inputStream.close();
 }
 }

Secure Networking

242

Here, we create an instance of the KeyStore class with the type BKS (Bouncy
Castle Keystore) that matches the type we created. Conveniently, there is a .load()
method, which takes the input stream (InputStream) of the loaded .bks file. You'll
notice we are using the same password we used to create the truststore to open,
verify, and read the contents. The primary use of the password is to verify the integrity
of the truststore rather than enforce security. Especially since the truststore contains
the server's public certificate, it is not a security issue having this hardcoded, as
the certificates are easily accessible from the URL. However, to make things harder
for attackers, it could be a good candidate for DexGuard's string encryption as
mentioned in Chapter 5, Protecting Applications.

8.	 Extend DefaultHttpClient to use the local truststore:
public class LocalTrustStoreMyHttpClient extends DefaultHttpClient
{

 @Override
 protected ClientConnectionManager
createClientConnectionManager() {
 SchemeRegistry registry = new SchemeRegistry();
 registry.register(new Scheme("http", PlainSocketFactory
 .getSocketFactory(), 80));
 try {
 registry.register(new Scheme("https", new
SSLSocketFactory(
 loadKeyStore()), 443));
 } catch (Exception e) {
 e.printStackTrace();
 }
 return new SingleClientConnManager(getParams(), registry);
 }
 }

We override the createClientConnectionManager method so that we can
register a new SSLSocketFactory interface with our local truststore. For brevity
of the code samples, here we have caught the exception and printed the error to the
system log; however, it is recommended to implement appropriate error handling and
reduce the amount of information logged when using this in live code.

9.	 Write a sample HTTP GET request using HttpClient:

 public HttpResponse httpClientRequestUsingLocalKeystore(String
 url)
 throws ClientProtocolException, IOException {
 HttpClient httpClient = new MyHttpClient();
 HttpGet httpGet = new HttpGet(url);
 HttpResponse response = httpClient.execute(httpGet);
 return response;
 }

Chapter 7

243

This shows us how to construct a simple HTTP GET request and use
the LocalTrustStoreMyHttpClient class, which doesn't throw
SSLHandshakeException because the self-signed certificate from the server
can be successfully verified.

Gotcha

We have defined an explicit truststore for all HTTPS requests.
Remember, if the backend server certificate is changed, the app will
cease to trust the connection and throw SecurityException.

That concludes this recipe; we can communicate with Internet resources that are protected
by SSL and signed with our self-signed SSL certificate.

There's more...
In general, when dealing with SSL, a common mistake is to catch and hide certificate and
security exceptions. This is exactly what an attacker is relying on to dupe an unsuspecting app
user. What you choose to do about SSL errors is subjective and depends on the app. However,
blocking networking communications is usually a good step to ensure that data
is not transmitted over a potentially compromised channel.

Using self-signed SSL certificates in a live environment
It is common for Android application developers to know at compile/build time the servers
they are commutating with. They may even have control over them. If you follow the
validation steps noted here, there's no security issue with using self-signed certificates in
a live environment. The advantage is that you'll insulate yourself from certificate authority
compromise and save money of SSL certificate renewal fees.

HttpsUrlConnection
There's no additional security benefit, but you may prefer using the HttpsURLConnection
API. For this, we take a slightly different approach and create a custom TrustManager class,
which verifiers our local truststore file:

1.	 Create a custom TrustManager class:
public class LocalTrustStoreTrustManager implements
X509TrustManager {

 private X509TrustManager mTrustManager;

 public LocalTrustStoreTrustManager(KeyStore localTrustStore) {
 try {
 TrustManagerFactory factory = TrustManagerFactory

Secure Networking

244

 .getInstance(TrustManagerFactory.getDefaultAlgorithm());
 factory.init(localTrustStore);

 mTrustManager = findX509TrustManager(factory);
 if (mTrustManager == null) {
 throw new IllegalStateException(
 "Couldn't find X509TrustManager");
 }
 } catch (GeneralSecurityException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 mTrustManager.checkClientTrusted(chain, authType);
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 mTrustManager.checkServerTrusted(chain, authType);
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return mTrustManager.getAcceptedIssuers();
 }

 private X509TrustManager findX509TrustManager(TrustManagerFacto
ry tmf) {
 TrustManager trustManagers[] = tmf.getTrustManagers();
 for (int i = 0; i < trustManagers.length; i++) {
 if (trustManagers[i] instanceof X509TrustManager) {
 return (X509TrustManager) trustManagers[i];
 }
 }
 return null;
 }

}

Chapter 7

245

We implement the X509TrustManager interface, and the constructor of our
LocalTrustStoreTrustManager class takes a KeyStore object, which we
loaded in a previous step defined earlier in the recipe. As previously noted, this
KeyStore object is referred to as our truststore because it contains the certificate
we trust. We initialize the TrustManagerFactory class with the truststore and
then using the findX509TrustManager() method, we get the system-specific
implementation of the X509TrustManager interface. We then keep a reference
to this TrustManager, which uses our truststore to verify whether a certificate from
a connection is trusted, rather than using the system truststore.

2.	 Here is an example of an HTTP GET request using HttpsURLConnection and the
custom TrustManager class created in the previous step:

 public InputStream uRLConnectionRequestLocalTruststore(String
targetUrl)
 throws Exception {
 URL url = new URL(targetUrl);

 SSLContext sc = SSLContext.getInstance("TLS");
 sc.init(null, new TrustManager[] { new
 LocalTrustStoreTrustManager(
 loadKeyStore()) }, new SecureRandom());
 HttpsURLConnection.setDefaultSSLSocketFactory(sc
 .getSocketFactory());

 HttpsURLConnection urlHttpsConnection =
 (HttpsURLConnection) url.openConnection();
 urlHttpsConnection.setRequestMethod("GET");
 urlHttpsConnection.connect();
 return urlHttpsConnection.getInputStream();
 }

We initialize the SSLContext with the LocalTrustStoreTrustManager class
so that when we call sc.getSocketFactory(), it will use our TrustManager
implementation. This is set on the HttpsURLConnection by overriding the default
using setDefaultSSLSocketFactory(). That's all you need to successfully
connect to our self-signed SSL resources with URLConnection.

Secure Networking

246

Antipattern – what not to do!
This is an antipattern that unfortunately is posted on various forums and message boards
when developers are trying to work with self-signed certifications or SSL certificates signed
by an untrusted certification authority.

Here, we see an insecure implementation of the X509TrustManager interface:

public class TrustAllX509TrustManager implements X509TrustManager {

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String
 authType)
 throws CertificateException {
 // do nothing, trust all :(
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String
 authType)
 throws CertificateException {
 // do nothing, trust all :(
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
}

As you can see from the code, the checkServerTrusted method has no validation
implemented consequently, and all servers are trusted. This leaves HTTPS
communications exposed to a man-in-the-middle (MITM) attack, which defeats
the whole point of using certificates.

See also
ff The SSL pinning recipe later in this chapter shows a similar approach to enhanced

validation of the SSL connection

ff The Security with HTTPS and SSL page in the Android training documentation at
https://developer.android.com/training/articles/security-ssl.
html

ff The Bouncy Castle Java cryptography API at http://www.bouncycastle.org/
latest_releases.html

Chapter 7

247

ff The HttpsURLConnection page in the Android Developers reference guide
at https://developer.android.com/reference/javax/net/ssl/
HttpsURLConnection.html

ff The SSLSocketFactory page in the Android Developers reference guide at
https://developer.android.com/reference/javax/net/ssl/
SSLSocketFactory.html

Using StrongTrustManager from the
OnionKit library

In this recipe, we are going to leverage the great work of the folks at the Guardian Project
to enhance the validation of SSL connections made by our app. Specifically, we are going to
make use of StrongTrustManager.

Getting ready
OnionKit is distributed as an Android library project. Before we start this recipe, download
the OnionKit library from the GitHub page (https://github.com/guardianproject/
OnionKit).

Then, extract and add to your project as you would add any other Android library project.

How to do it...
Let's get started!

1.	 Integrating the StrongTustManager class couldn't be simpler. It is just a case of
swapping out your HttpClient implementation. Hence, change the following code:
public HttpResponse sampleRequest() throws Exception {
 HttpClient httpclient = new DefaultHttpClient();
 HttpGet httpget = new
 HttpGet("https://server.com/path?apikey=123");
 HttpResponse response = httpclient.execute(httpget);
 return response;
}

To this:
public HttpResponse strongSampleRequest() throws Exception {
 StrongHttpsClient httpclient = new StrongHttpsClient(context);
 ch.boye.httpclientandroidlib.client.methods.HttpGet httpget =
new HttpGet(

Secure Networking

248

 "https://server.com/path?apikey=123");
 HttpResponse response = httpclient.execute();
 return response;
 }

In your code, change the imports from org.apache.http.* to ch.boye.
httpclientandroidlib.*. The HttpGet and HttpResponse objects used by
OnionKit are from another library called httpclientandroidlib (also included
in OnionKit). httpclientandroidlib is a repackaging of HttpClient 4.2.3 for
Android, which includes updates and bug fixes over the standard HttpClient library
included in Android SDK.

2.	 Enable the notifications:
httpclient.getStrongTrustManager().setNotifyVerificationFail(true)

This is a useful feature for notifying users that there has been an issue with
the verification, and also that the Internet resource they are currently connected
to is unsafe.

3.	 Enable the full verification of the certificate chain:
httpclient.getStrongTrustManager().setVerifyChain(true);

Enabling verifyChain ensures when the TrustManager.checkServerTrusted
server(…) method is called while making an HTTPS connection that the whole
certificate chain is validated. This setting is enabled by default.

4.	 Enable checking for weak cryptographic algorithms:

httpclient.getStrongTrustManager().setCheckChainCrypto(true);

This checks the certificate chain for instances where an issuer has used an MD5
algorithm, which is considered weak and should be avoided. This setting is enabled
by default.

There's more...
Throughout this chapter, we have used the HttpClient API; you might wonder why since
the HttpClient API has been deprecated in Android. To clarify, Google deprecated the use
of the version of HttpClient included in the Android SDK due to several existing bugs.
Google currently recommends using URLConnection instead. However, as previously noted,
OnionKit uses a separate, updated, and fixed version of the HttpClient API library, and
subsequently shouldn't be considered deprecated.

Chapter 7

249

The Orbot and Tor networks
The Tor project is a free implementation of Onion routing, which provides Internet anonymity
and resistance to traffic surveillance. Orbot is a free Android application that provides a proxy
specifically for other Android apps to use it.

Another key feature of OnionKit is allowing your app to connect to the Internet via the Orbot
proxy and therefore have its Internet traffic anonymized.

The OrbotHelper class helps determine whether the Orbot app is installed and running and
provides convenient methods to start and use it.

Pinning and CACert
The StrongTrustManager class does provide some limited certificate pinning by restricting
the trusted root certificate authorities when used in conjunction with another of the Guardian
Projects libraries, called CACert.

We will discuss SSL pinning in more detail in the next chapter and create our own
TrustManager class to specifically pin our SSL certificate chain that is suitable for both CA
and self-signed certificates.

See also
ff The OnionKit for Android article at https://guardianproject.info/code/

onionkit/

ff The Orbot: Proxy with Tor Android app at https://play.google.com/store/
apps/details?id=org.torproject.android

ff The repackaging of HttpClient 4.2.3 for Android used by the OnionKit project
(https://code.google.com/p/httpclientandroidlib/)

ff The CACert project, which is useful for restricting the trusted root CAs at
https://github.com/guardianproject/cacert

SSL pinning
A certificate authority (CA) is needed to solve the key distribution problem in regular network
clients, such as web browsers, IM, and e-mail clients. They need to communicate with many
servers, which the application developers have no prior knowledge of. As we have discussed
in the previous recipes, it's common to know the backend servers or services your app is
communicating with, and so it is advisable to restrict the other CA roots.

Secure Networking

250

Android currently trusts around 130 CAs, varying slightly between manufacturers and
versions. It also restricts other CA roots and enhances the security of the connection. If one
of these CAs were to be compromised, an attacker could use the compromised CA's root
certificate to sign and issue new certificates for our server's domain. In this scenario, the
attacker could complete a MITM attack on our app. This is because the standard HTTPS client
validation will recognize the new certificates as trusted.

SSL pinning is one way to restrict who is trusted, and is usually approached in the following
two ways:

ff Certificate pinning

ff Public key pinning

Much like what we achieved in the Validating self-signed SSL certificates recipe of this
chapter, certificate pinning limits the number of trusted certificates to the ones in a local
truststore. When using a CA, you would include your server's SSL certificate plus the root
signing of the certificate and any intermediary certificates into your local truststore. This
allows the full validation of the whole certificate chain; so when a compromised CA signs
new certificates, these would fail the local truststore verification.

Public key pinning follows the same idea but is slightly more difficult to implement. There
is an additional step of extracting the public key from the SSL certificate rather than just
bundling the certificate(s) in the app. However, the extra effort is worth it because public keys
remain consistent between certificate renewals. This means there is no need to force users
to upgrade the app when the SSL certificate has been renewed.

In this recipe, we are going to pin against several certificate public keys using Android.com
as an example. The recipe consists of two distinct parts; the first is a standalone Java utility
to process and get the public keys from all of the SSL certificates in the chain and convert
them to SHA1 hashes to embed/pin in your app. We embed SHA1 hashes of the public keys,
as it is more secure.

The second part deals with the app code and how to verify the pins at runtime, and to decide
whether a particular SSL connection is to be trusted.

How to do it...
Let's get started!

1.	 We're going to create a standalone Java file called CalcPins.java that we will
run on the command line to connect and print the SHA1 hashes of the certificate
public keys. As we are dealing with a certificate signed by CA, there will be two or
more certificates in the chain. This first step is mostly initiation and code to get the
arguments to pass to the fetchAndPrintPinHashs method:
public class CalcPins {

Chapter 7

251

 private MessageDigest digest;

 public CalcPins() throws Exception {
 digest = MessageDigest.getInstance("SHA1");
 }

 public static void main(String[] args) {
 if ((args.length == 1) || (args.length == 2)) {
 String[] hostAndPort = args[0].split(":");
 String host = hostAndPort[0];
 // if port blank assume 443
 int port = (hostAndPort.length == 1) ? 443 : Integer
 .parseInt(hostAndPort[1]);

 try {
 CalcPins calc = new CalcPins();
 calc.fetchAndPrintPinHashs(host, port);
 } catch (Exception e) {
 e.printStackTrace();
 }
 } else {
 System.out.println("Usage: java CalcPins <host>[:port]");
 return;
 }
 }

2.	 Next, we define the PublicKeyExtractingTrustManager class, which actually
does the extraction of the public keys. The checkServerTrusted method will be
called with the full chain of X509Certificates, when the socket connects, which
is shown in a later step. We take the chain (the X509Certificate[] array) and call
cert.getPublicKey().getEncoded(); to get a byte array for each public key.
We then use the MessageDigest class to compute the SHA1 hash of the key. As
this is a simple console application, we print the SHA1 hash to System.out:
public class PublicKeyExtractingTrustManager implements
X509TrustManager {

 public X509Certificate[] getAcceptedIssuers() {
 throw new UnsupportedOperationException();
 }

 public void checkClientTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 throw new UnsupportedOperationException();

Secure Networking

252

 }

 public void checkServerTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 for (X509Certificate cert : chain) {
 byte[] pubKey = cert.getPublicKey().getEncoded();
 final byte[] hash = digest.digest(pubKey);
 System.out.println(bytesToHex(hash));
 }
 }
 }

3.	 Then, we write the bytesToHex() utility method as follows:
public static String bytesToHex(byte[] bytes) {
 final char[] hexArray = { '0', '1', '2', '3', '4', '5',
 '6', '7', '8','9', 'A', 'B', 'C', 'D', 'E', 'F' };
 char[] hexChars = new char[bytes.length * 2];
 int v;
 for (int j = 0; j < bytes.length; j++) {
 v = bytes[j] & 0xFF;
 hexChars[j * 2] = hexArray[v >>> 4];
 hexChars[j * 2 + 1] = hexArray[v & 0x0F];
 }
 return new String(hexChars);
 }

We use a utility method to convert the byte array into upper case hexadecimal string
before printing to System.out so that they can be embedded into our Android app.

4.	 Finally, we use the host and port that was passed from the main method to open
a SSLSocket connection to the host:
private void fetchAndPrintPinHashs(String host, int port) throws
Exception {
 SSLContext context = SSLContext.getInstance("TLS");
 PublicKeyExtractingTrustManager tm = new
 PublicKeyExtractingTrustManager();
 context.init(null, new TrustManager[] { tm }, null);
 SSLSocketFactory factory = context.getSocketFactory();
 SSLSocket socket = (SSLSocket)
 factory.createSocket(host, port);
 socket.setSoTimeout(10000);
 socket.startHandshake();
 socket.close();
 }

Chapter 7

253

We initialize the SSLContext object with our custom
PublicKeyExtractingTrustManager class, which in turn prints the public key
hash of each certification to the console ready for embedding in the Android app.

5.	 From the terminal window, compile CalcPins.java with the javac and run
commands using java with hostname:port as a command-line argument. The
sample uses Android.com as an example host:
$ javac CalcPins.java

$ java -cp . CalcPins Android.com:443

However, you might find it easier to create CalcPins.java as a simple Java project
in your IDE then export it as a runnable .jar file.

A sample terminal command for the runnable .jar is as follows:
$ java -jar calcpins.jar android.com:443

If the public key extraction works, you will see the hash's output. This sample output
shows the pins of three SSL certificate public keys of the Android.com host:
B3A3B5195E7C0D39B8FA68D41A64780F79FD4EE9

43DAD630EE53F8A980CA6EFD85F46AA37990E0EA

C07A98688D89FBAB05640C117DAA7D65B8CACC4E

Now, we move on to the second part of the recipe to verify the SSL connection in our
Android app project.

6.	 Now that we have the pins, we copy them from the terminal and embed them in
a String array:
private static String[] pins = new String[] {
 "B3A3B5195E7C0D39B8FA68D41A64780F79FD4EE9",
 "43DAD630EE53F8A980CA6EFD85F46AA37990E0EA",
 "C07A98688D89FBAB05640C117DAA7D65B8CACC4E" };

7.	 Implement a custom TrustManager class that validates the pins:
public class PubKeyPinningTrustManager implements X509TrustManager
{

 private final String[] mPins;
 private final MessageDigest mDigest;

 public PubKeyPinningTrustManager(String[] pins)
 throws GeneralSecurityException {
 this.mPins = pins;
 mDigest = MessageDigest.getInstance("SHA1");
 }

Secure Networking

254

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 // validate all the pins
 for (X509Certificate cert : chain) {
 final boolean expected = validateCertificatePin(cert);
 if (!expected) {
 throw new CertificateException("could not find a valid
 pin");
 }
 }
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 // we are validated the server and so this is not implemented.
 throw new CertificateException("Cilent valdation not
 implemented");
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }

The PubKeyPinningTrustManager constructor is constructed with the pins
array to use internally for validation. An instance of MessageDigest is also created
to generate SHA1 hashes of incoming SSL certificate public keys. Note, for this
example, that we are not implementing the checkClientTrusted()
or getAcceptedIssuers() methods; see the Enhancements section.

8.	 Validate the certificate:
private boolean validateCertificatePin(X509Certificate
certificate)
 throws CertificateException {
 final byte[] pubKeyInfo = certificate.getPublicKey().
getEncoded();
 final byte[] pin = mDigest.digest(pubKeyInfo);
 final String pinAsHex = bytesToHex(pin);
 for (String validPin : mPins) {
 if (validPin.equalsIgnoreCase(pinAsHex)) {
 return true;

Chapter 7

255

 }
 }
 return false;
 }

We extract the public key and compute the SHA1 hash and then convert to
a hexadecimal string using the bytesToHex() method as noted previously. The
validation then boils down to a simple String.isEquals operation (actually, we
use equalsIgnoreCase just in case there is a case mismatch). If the pin from the
certificate does not match one of the embedded pins, a CertificateException
is thrown and the connection will not be permitted.

9.	 We can integrate PubKeyPinningTrustManager in the same way as the
LocalTrustStoreTrustManager class, discussed earlier in this chapter. Here
is an example of this being used with HttpsURLConnection:

TrustManager[] trustManagers = new TrustManager[] { new
 PubKeyPinningTrustManager(pins) };
 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(null, trustManagers, null);
 HttpsURLConnection urlConnection = (HttpsURLConnection)
 url.openConnection();
 urlConnection.setSSLSocketFactory(
 sslContext.getSocketFactory());
 urlConnection.connect();

In conclusion, we extracted the certificate public keys and generated SHA1 hashes to embed
in our app. Use these at runtime to validate the public keys of the SSL certificates of the SSL
connection. This not only protects against other CAs being compromised, but also makes
things more difficult for MITM attackers. The great thing is that we are using the industry
standard SSL infrastructure, just in a stringent way.

There's more...
It is important to understand where this recipe can be improved and where the limitations are.

Enhancements
For maximum security, each time you make a server connection, you should validate the SSL
pins. However, there is a trade off with performance per connection; therefore, you could
adapt the previous code to check the first couple of connections per session. Although, this
obviously comprises security. Also, including the Android's default trust manager validation
would further increase the security. An open source library called AndroidPinning by Moxie
Marlinspike has these enhancements implemented. You could also change the hash
algorithm to a stronger version of SHA.

Secure Networking

256

The validateCertificatePin method is an ideal candidate for DexGuard's API hiding,
as mentioned in Chapter 5, Protecting Applications.

Limitations
While SSL pinning makes it more difficult for MITM attackers, it's not a 100 percent
solution (not that any security solution is 100 percent). There is an interesting library from
iSECPartners, which aims to circumvent pinning (https://github.com/iSECPartners/
android-ssl-bypass).

However, the anti-temper recipes noted in Chapter 5, Protecting Applications, could be used
to mitigate the .apk modification and the ability to run on an emulator.

See also
ff Learn more about the MITM attack at https://www.owasp.org/index.php/

Man-in-the-middle_attack

ff The OpenSSL command line HowTo guide is available at http://www.madboa.
com/geek/openssl/

ff The OWASP Certificate and Public Key Pinning guide is available at https://www.
owasp.org/index.php/Certificate_and_Public_Key_Pinning

ff The AndroidPinning project, an open source pinning library by Moxie Marlinspike,
is available at https://github.com/moxie0/AndroidPinning

ff Google Chrome uses pins, which is explained at https://www.imperialviolet.
org/2011/05/04/pinning.html

8
Native Exploitation and

Analysis

In this chapter, we will cover the following recipes:

ff Inspecting file permissions

ff Cross-compiling native executables

ff Exploitation of race condition vulnerabilities

ff Stack memory corruption exploitation

ff Automated native Android fuzzing

Introduction
So far we've covered most of the high-level aspects of applications on the Android platform; this
chapter focuses on the some of the native aspects—everything supporting the application layer
components. The native aspects include the system daemons, the binary executables—compiled
specifically for the system architecture—and the components of the filesystem and device-level
configurations. Any of these aspects of the Android system may cause security vulnerabilities
and enable privilege escalation on Android devices—especially smartphones—and thus they
cannot be looked over in a complete security review of an Android system.

This chapter also covers how to pick up some basic memory corruption exploitation flaws.
However, please note that this chapter does not cover all of the known memory exploitation
styles and techniques. But what is covered is enough to allow you to learn how to implement
most of the others on your own. This chapter also includes good articles and sources of
information on other techniques for those who would like to go all the way down the rabbit hole.

Native Exploitation and Analysis

258

Why study native exploitation techniques? Well, how else would you root your phone? Root
exploits usually work by abusing natively based vulnerabilities in Android devices that allow
privileges to be escalated enough to allow persistent access to the root (or superuser) account
on an Android device. Naturally, these may present themselves as a gateway to unbridled
customization of an Android device but they also open the door for malware and remote
attackers; it's not hard to see why a vulnerability that allows someone to gain superuser
privileges on your mobile phone is a bad idea! And therefore, any mobile security auditor
worth their salt should be able to identify any potential vulnerabilities that may enable such
exploitation.

Inspecting file permissions
One of the most commonly exploited ways to escalate privileges from within a local context
is to abuse discrepancies and inadequacies in the way filesystem permissions—or access
rights—are set up in an operating system. There are countless instances of vulnerabilities and
privilege escalation attack methods that abuse file permissions, be it the setuid flag on a
globally executable vulnerable binary, such as su or symlink, or the race condition attack on
a file that is globally readable and written to by a superuser-owned application; for example,
pulse audio CVE-2009-1894.

Being able to clearly identify any potential entry points presented by the filesystem is a good
place to start defining the Android native attack surface. The walkthrough in this section
details a few methods you can use to find dangerous or potential files that possibly enable
exploitation while interacting with the device through an ADB shell.

Seeing that the following tutorial is focused on detailing ways to find files with inadequate or
discrepant permissions, a fundamental skill you require in order to understand why certain
commands are executed would be to understand how Linux- or Unix-based operating systems
define file permissions. A quick side note: it's common in some Linux circles to talk about file
and directory permissions as access rights; here, these terms will be used interchangeably.

Linux- or Unix-based operating systems' file permissions are defined in terms of the following:

ff The likely users (abbreviated as o) of the file that don't fall into the other user
categories

ff The owner of the file (abbreviated as u)

ff The access control enforced on the group of users that the owner of file belongs to
(abbreviated as g)

Chapter 8

259

Categorizing users in this way allows mutual exclusivity, enabling a user to fine-tune who has
access to the file. This means specification of access rights can be done with respect to the
file and every likely user.

For each collection of users (group, other users, and the owner), five attributes of access
control are defined, namely:

ff The Read ability (r) of the file; who is allowed to actually read the contents of the file.

ff The Write ability (w) of the file; this controls who is allowed to augment or modify the
contents of the file.

ff The Execute ability (x) of the file; whether a given collection of users is allowed to
execute the instructions of the file.

ff The Set Group ID ability (s); should the file be executable; this defines how the user's
permissions are augmented according to its group permissions. This permission may
allow a low-privileged user to escalate their privileges in order to perform certain
tasks; for example, substitute a user who escalates the privileges of any user to root
or any user it desires—given that the authentication succeeds, of course!

ff The Set User ID ability (s); this determines whether the user ID of the file owner,
and therefore all the access rights that go along with it, can be transmitted to the
executing process.

Each of these are defined in terms of either mnemonics—using abbreviations—or as the literal
bitwise values encoded in octal format. For first timers, this may be a confusing description,
which is why this section includes a small table that defines the values, both in binary and
octal (numbers in base 8).

Why base 8? Well, because base 8 in binary allows space for three bits, each one describing
the Boolean value of each of the attributes; 1 for on (or true) and 0 for off (or false):

Description Binary value Decimal value

Read 100 4

Write 010 2

Execute 001 1

These are combined by adding the binary values. Here is a table that describes that:

Description Read Write Execute

Read 100 4 110 6 101 5

Write 010 2 011 3

Execute 001 1

Native Exploitation and Analysis

260

These are specified for each collection of users; this means the permission has one bit for
each user as well, seeing that there are three collections, namely the file owner, the group,
and other users—commonly referred to as "the world". The permission bits also include an
extra bit for the definition of setuid, setguid, and the sticky bit.

The sticky bit is an access right that allows only the owner of a file or directory to delete or
rename a file or directory. When specified, it appears as a T symbol in the access right bits
displayed by the ls command.

The structure looks as follows:

Owner Group Other

r w x r w x r w x

That's pretty much it as far as the basics of file access rights go; if you've followed the previous
paragraphs carefully, you should have enough to spot the most fundamental flaws when it
comes to Android's native access rights.

In order to properly appreciate the discrepancies that vendors add to device builds, you will
need to know a little bit about what the "default" or standard Android filesystem looks like in
terms of its structure and access permissions setup.

Chapter 8

261

Here's the summary of the default or standard filesystem folders and their purposes according
to the Linux filesystem hierarchy standard and the init.rc scripts on Jelly Bean. References
for the init.rc scripts of other platforms are given in the See also section of the next
tutorial Inspecting System Configurations.

Folder Purpose

/acct The cgroup mount point—accounting and
monitoring of CPU resources

/cache Temporary storage for downloads in progress
and also used for nonessential data

/data Directory containing apps and other
application-specific storage

/dev Device nodes, as in a classic Linux system,
though not used as prolifically for device and
hardware driver access

/etc A symbolic link to /system/etc/ contains
configuration scripts, some of which are
launched at startup during the bootstrapping
process

/mnt A temporary mount point, akin to many other
traditional Linux systems

/proc Contains data structures and information
about a process, as in traditional Linux- or
Unix-based systems

/root Typically an empty directory, but akin to the
root users home directory as on many Linux/
Unix systems

/sbin A folder containing important utilities for
system administrative tasks

/sdcard Mount point for the external SD cards

/sys Mount point for sysfs, holds exported
kernel data structures

/system Immutable (read-only) binaries and scripts
generated during the system build; on
many Android systems, this also holds
system-owned applications

/vendor A directory set aside for vendor-specific
augmentations to the device, including
binaries, applications, and configuration
scripts

Native Exploitation and Analysis

262

Folder Purpose

/init The init binary executed during the
bootstrapping process after the kernel has
been loaded

/init.rc The configuration script for the init binary

/init[device_name].rc The device-specific configuration script

/ueventd.rc The uevent daemon configuration script

/uevent[device_name].rc The device-specific configuration script for
the uevent daemon

/default.prop The configuration file containing global
properties for the system, including device
names

/config The mount point for configfs

/storage The added directory for 4.1 devices and up;
used as a mount point for external storage

/charger A native standalone application that displays
the battery's charge progress

Please keep in mind that the vendor builds of the devices may differ; take these to be the
most basic, untouched filesystem layouts and purposes. Often, vendors also make mistakes in
their usage of some of these file paths and go against their intended purpose, so keep an eye
on the purpose of these folders and the default access rights.

This section doesn't go into full detail with the filesystem layout; however, there are some good
sources on the semantics, layout, and conventions for Android and Linux filesystems in the
See also section.

Let's look at how to hunt for interesting file- or directory-based targets on an Android system.
The following walkthrough assumes you have ADB shell permission on the device being
assessed.

Getting ready
In order to use the commands mentioned in the following example, you will need to be able
to either install the find binary or Busybox for Android; the instructions for installation can
be found at http://www.busybox.net/ and in the Setting up Busybox section of the
Automated native Android fuzzing recipe at the end of this chapter.

Chapter 8

263

How to do it...
To search for files with respect to their access rights, you can find a list of readable files by
executing the following command in your ADB shell; firstly, for world readable, this command
does the trick:

find [path-to-search] –perm 0444 –exec ls –al {} \;

See the following screenshot for the sample output:

The previous screenshot—and the subsequent ones in this section—were taken from a rooted
Samsung Galaxy S3. Here the command-line instruction included a redirect to /dev/null in
order to omit the erroneous output caused by permission denial.

Just a little caveat for non-Linux/Unix users

/dev/null acts like a sort of "blackhole" for output, allowing Linux/Unix
users to use it as a place to put output they are not interesting in seeing. As
an added benefit, it also returns a value to let you know whether the write
operation succeeded.

Moving on, if you're looking for world writable files, you can find them using the following
arguments:

find [path-to-search] –perm 0222 –exec ls –al {} \;

See the following screenshot for the sample output:

Native Exploitation and Analysis

264

And for files that have executable permission set for all users:

find [path-to-search] –perm 0111 –exec ls –al {} \;

You aren't explicitly required to use the octal format; the find command also understands the
popular shorthands for user collections and permissions.

For instance, to find files readable to everyone outside of the owner's group, you specify
permissions this way:

find [path-to-search] –perm a=r –exec ls –al {} \;

See the following screenshot for the sample output:

The previous specifications will ensure only exact matches; this means files returned must
have only the bits specified. If you're looking for files with at least the specified bits set and
any of the other bits—which you will probably be doing most of the time—you can specify the
permissions by including a - symbol as a prefix as in the preceding example. For the octal
mode, this will work as follows:

find [path-to-search] –perm -444 –exec ls –al {} \;

See the following screenshot for the sample output:

Chapter 8

265

This will at least match files that have read bits set for all user collections, which means the
445, 566, 777, and so on permission bits will be matched. And the 344, 424, 222, and so on
would not be matched.

A couple of really useful access right patterns you would probably be interested in looking for
include finding executable files with setuid:

find [path-to-search] –perm -4111 –exec ls –al {} \;

See the following screenshot for the sample output:

In the previous screenshot, we see that the su binary was found using the preceding
command. If you ever find this binary on an Android device, it's always a strong indication that
the device has been rooted.

You can also find files with setguid and execute permissions for all:

find [path-to-search] –perm -2111 –exec ls –al {} \;

See the following screenshot for the sample output:

The find command also allows you to specify users as part of the search criteria; for
instance:

ff You could list all the files that belong to the root user as follows:
find [path-to-search] –user 0 –exec ls –al {} \;

ff You could list all the files for the system user as follows:
find [path-to-search] –user 1000 –exec ls –al {} \;

ff You can also list files according to the group ID setting as follows:

find [path-to-search] –group 0 –exec ls –al {} \;

Native Exploitation and Analysis

266

You may want to get an idea of how much each user—or rather, application—on your Android
system has access to, and to do this you may want to build a list of user IDs—or, more
importantly, UIDs for applications. The easiest way to do this is to dump the access rights for
the files in the /data/data directory since it contains the data for most of the apps installed
on the Android device. However, in order to access this list from an ADB shell, you'll need
access to the root or system account or any account that has equivalent permissions; this is
easy to obtain on an emulator—it's granted automatically. Alternatively, if you so choose, you
could fire off a couple of searches to the XDA developers site to look for a method to root your
phone. The XDA developer's site is available at http://www.xda-developers.com/.

There are both good and bad things about rooting your phone; in this case, it allows you to
inspect the filesystem and access rights in more detail. However, on the other hand, if access
to root privileges are not managed properly, it can expose your phone to a number of very
devastating attacks! So be stingy with your root permissions and only temporarily root phones
when they need to be rooted.

Moving on, if you list all of the files in the /data/data directory, you should see the following;
this is taken from a Samsung Galaxy S3:

You may notice the odd naming convention for each app, namely u[number]_a[number],
which means to say u[profile number] for the user profile the app is installed on—since
some Android versions support multiple user profiles, namely everything from Jelly Bean and
later—and a[number], which is the application ID.

You can use the application ID to construct the actual system user ID (UID) for the app by
adding this number to 10000; for instance, for the Mozilla installation that has a username of
u0_a170, the corresponding UID will be 10170. To find all of the files that have this UID as its
owner, you would then execute this command:

find /data/data/ -user 10170 –exec ls –al {} \; 2> /dev/null

Chapter 8

267

See the following screenshot for the sample output:

You can find other usernames by checking out the Android_filesystem_config.h file
referenced in the See also section of this recipe.

There's more...
A command that can make the output of the find command a little more useful is stat. This
command displays properties of the file and allows you to specify the format in which you'd
like these details to be displayed. The stat command has a myriad of features and makes
hunting for incorrectly "permissioned" files a much more informative experience than just
calling ls –al via the find –exec command.

You can use stat with find as follows:

find . –perm [permission mode] –exec stat –c "[format]" {} \;

For instance, if you'd like to display the following:

ff %A: The access rights in human-readable format

ff %u: The user ID of the file owner

ff %g: The group ID of the file owner

ff %f: The file mode in raw hex

ff %N: The quoted file name with dereference if it's a symbolic link

You can do so by executing the following command:

find . –perm [permission] –exec stat –c "%A %u %g %f %N" {} \;

Native Exploitation and Analysis

268

This command produces output as follows—here the example uses -0666 as an example
permission mode:

See also
ff The Vulnerability Summary for CVE-2009-1894 article at http://web.nvd.nist.

gov/view/vuln/detail?vulnId=CVE-2009-1894

ff The Android_filesystem_config.h file in the Android Git Repository at
https://android.googlesource.com/platform/system/core/+/
android-4.4.2_r1/include/private/android_filesystem_config.h

ff The Filesystem Hierarchy Standard in the Linux documentation project at
http://www.tldp.org/HOWTO/HighQuality-Apps-HOWTO/fhs.html

ff The Filesystem Hierarch Standard guide by the Filesystem Hierarchy Group at
http://www.pathname.com/fhs/pub/fhs-2.3.pdf

ff Embedded Android, O'Reilly, March 2013, by Karim Yaghmour

Cross-compiling native executables
Before we can start smashing stacks and hijacking instruction pointers on Android devices,
we need a way to prepare some sample vulnerable applications. To do this, we need to be
able to compile native executables and to do that we need to use some of the awesome
applications packaged into the Android native development kit.

Chapter 8

269

How to do it...
To cross-compile your own native Android components, you need to do the following:

1.	 Prepare a directory to develop your code. All this requires is that you make a directory
named whatever you'd like to name your "module"; for example, you could call the
directory buffer-overflow, as I do in the example here. Once you've created that
directory, you then need to make a subdirectory called jni/. It's imperative that you
name it this because the compilation scripts in the NDK will specifically look for this
directory.

2.	 Once you have your directories, you can create an Android.mk file. Create this file
inside your jni directory. The Android.mk file is basically a Make file that prepares
some of the properties of your compilation; here's what it should contain:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
give module name
LOCAL_MODULE := buffer-overflow #name of folder
list your C files to compile
LOCAL_SRC_FILES := buffer-overflow.c #name of source to compile
this option will build executables instead of building library
for Android application.
include $(BUILD_EXECUTABLE)

3.	 Once you have both your required jni directory structure and Android.mk set up
properly, you can start writing some C code; here's an example you can use:
#include <stdio.h>
#include <string.h>
void vulnerable(char *src){
 char dest[10]; //declare a stack based buffer
 strcpy(dest,src);
 printf("[%s]\n",dest); //print the result
 return; }

void call_me_maybe(){
 printf("so much win!!\n");
 return; }

int main(int argc, char **argv){
 vulnerable(argv[1]); //call vulnerable function
 return (0); }

Please make sure this file appears in the jni directory along with the Android.mk
file.

Native Exploitation and Analysis

270

4.	 Here's the fun part; you can now compile your code. You can do this by invoking the
NDK build script, which surprisingly is done by executing the following command:

[path-to-ndk]/ndk-build

Here, [path-to-ndk] is the path of your Android NDK.

If all goes well, you should see output similar to the following:

There's more...
Just compiling is not enough; we need to be able to modify the way normal executables are
compiled so that we can exploit and study certain vulnerabilities. The protection we will
remove here is something that protects the function stack from being corrupted in a way that
allows exploitation—most exploitation. Before removing this protection, it will be useful to
detail how this protection actually works and show you the difference when the protection is
removed. Brace yourself—ARMv7 assembler code is coming!

So we can dump the assembler code for this executable using the objdump tool that
comes bundled with the NDK; naturally you would expect the standard objdump tool that
comes bundled with any run-of-the-mill Linux or Unix distribution to work fine, but these
executables are cross-compiled specifically for embedded ARM devices. This means the
endianness may be different; the structure of the executable may also be one that a normal
objdump doesn't understand.

To make sure we can use the correct objdump tool, the Android guys made sure versions that
are compatible with ARM executables come packaged with the NDK. You should find it under
the /toolchains/arm-linux-androideabi-[version]/prebuilt/linux-x86-64/
bin/ path of the NDK; you could use any one of the arm-linux-androideabi versions,
though it's always simpler to try to stick to the latest version.

The objdump binary will be named something like arm-linux-androideabi-objdump
inside the aforementioned folder.

Chapter 8

271

To use it, all you need to do is point it at the binary in the root of the /buffer-overflow/
obj/local/armeabi/ directory, which should appear in your jni directory and execute this
command:

[path-to-ndk]/toolchains/arm-linux-Androideabi-[version]/prebuilt/
linux-x86_64/bin/arm-linux-Androideabi-objdump –D /[module name]/obj/
local/armeabi/[module name] | less

For our example, the command will look something like this:

[path-to-ndk]/toolchains/arm-linux-Androideabi-4.8/prebuilt/linux-x86_64/
bin/arm-linux-Androideabi-objdump –D /buffer-overflow/obj/local/armeabi/
buffer-overflow | less

This will produce quite a bit of output; what we are interested in are the functions compiled
around the "vulnerable" function. I've piped the output into less, which allows us to scroll and
search through the text; what you should do next is press the / character while less is open
with the objdump output and type in <vulnerable> and then press Enter.

If you've done this properly, your screen should display the following output:

00008524 <vulnerable>:
 8524: b51f push {r0, r1, r2, r3, r4, lr}
 8526: 4c0a ldr r4, [pc, #40] ; (8550 <vulnerable+0x2c>)
 8528: 1c01 adds r1, r0, #0
 852a: 4668 mov r0, sp
 852c: 447c add r4, pc
 852e: 6824 ldr r4, [r4, #0]
 8530: 6823 ldr r3, [r4, #0]
 8532: 9303 str r3, [sp, #12]
 8534: f7ff ef7e blx 8434 <strcpy@plt>
 8538: 4806 ldr r0, [pc, #24] ; (8554 <vulnerable+0x30>)
 853a: 4669 mov r1, sp
 853c: 4478 add r0, pc
 853e: f7ff ef80 blx 8440 <printf@plt>
 8542: 9a03 ldr r2, [sp, #12]
 8544: 6823 ldr r3, [r4, #0]
 8546: 429a cmp r2, r3
 8548: d001 beq.n 854e <vulnerable+0x2a>
 854a: f7ff ef80 blx 844c <__stack_chk_fail@plt>
 854e: bd1f pop {r0, r1, r2, r3, r4, pc}
 8550: 00002a7c andeq r2, r0, ip, ror sl
 8554: 00001558 andeq r1, r0, r8, asr r5

00008558 <main>:
 8558: b508 push {r3, lr}
 855a: 6848 ldr r0, [r1, #4]

Native Exploitation and Analysis

272

 855c: f7ff ffe2 bl 8524 <vulnerable>
 8560: 2000 movs r0, #0
 8562: bd08 pop {r3, pc}

Just a little tip

In the preceding objdump output, the far-left column shows the offsets of
the instructions; the column after that, delimited by the : character, holds the
actual hex representation of the code; and the column after that shows the
human-readable mnemonics for the associated assembler instructions.

Pay attention to the emboldened code in the previous objdump output. The instruction at
the 8526 offset loads the contents of memory found 0x40 addresses away from the current
value in the program counter (pc) register; this address holds a special value called the stack
canary.

It's commonly termed as a canary because of how actual canaries
were used by miners to make sure mine shafts were safe to explore.

This value is placed on the stack between the local variables and the saved instruction and
base pointer; this is done so that if an attacker or erroneous instructions were to corrupt the
stack far enough to influence the values saved there, it would need to destroy or change the
stack canary as well, meaning the program would be able to check if the value changed. This
value is generated from a cryptographically secure—supposedly so—pseudorandom number
generator, and it's stuck in the memory of the program during runtime to avoid reliably
predicting this value.

Moving on, we see that the instructions at offsets 852c-8530 stick the stack canary in the
r3 and r4 registers. The following instruction at offset 8532 makes sure the stack canary is
placed on the stack before the dangerous strcpy call at offset 8534. So far, all the code has
accomplished was to place the value on the stack after the strcpy call—actually, closer to
the printf function. From offset 8542 to offset 8544, the stack canary values are fetched
from register r4 and the position it was placed on the stack, loaded into the r2 and r3
registers, and then compared at offset 8546. If they don't match, we see that the instruction
at 854a will be executed, which will basically cause the program to abort and not exit
normally. So, in summary, it grabs the stack canary from some offset in the file, places it in a
register and another copy on the stack, and checks for any changes before exiting.

One thing you may notice is that though this prevents the saved instruction pointer from
being corrupted it does not protect the local variables at all! It is still possible to maliciously
corrupt the other variables on the stack depending on their layout in memory—where they
appear in relation to the canary and the other stack buffers. This could in some very special
circumstances still be abused to maliciously influence the behavior of a process.

Chapter 8

273

So now how do we remove this annoying protection such that we can smash some stack
properly and gain the ability to control the instruction pointer? Well, seeing that stack canaries
are a compiler-based protection—meaning that it's something the executable compiler
enforces—we should be able to modify the way NDK executables are compiled so that stack
protection is not enforced.

Though this may seldom be a practical situation for the binaries on the Android system, it
is still something that may very well happen. We are removing this protection in order to
simulate a stack-based overflow vulnerability.

To remove the protection, you'll need to change some of the GCC compiler extensions that the
NDK uses. To do this, you'll need to:

1.	 Navigate to the /toolchains/arm-linux-Androideabi-4.9/ directory and
locate a file called setup.mk. Please note, your NDK may use a different version of
arm-linux-androideabi. If the following steps don't work or have the desired
effect, you should try removing the stack protection:

2.	 The next thing you may want to do is back up the setup.mk file. We're about to
change the default compilation configuration for the NDK, so it's always good to back
it up. You can create a makeshift back up by copying the script to another file named
slightly differently. For instance, you can back up the setup.mk file by executing this
command:
cp setup.mk setup.mk.bk

Native Exploitation and Analysis

274

3.	 After backing it up, you should open the setup.mk file in your favorite text editor and
remove the flags, specifically the one containing the -fstack-protector switch;
see the following screenshots for more clarity:

After removing the specified flag, your setup.mk file should look something like this:

4.	 Once you've done that, you can use the ndk-build script to compile a fresh copy
of your executable and then pass it to androideabi-objdump. Without stack
protection, your code should look like this:

000084bc <vulnerable>:
 84bc: b51f push {r0, r1, r2, r3, r4, lr}
 84be: 1c01 adds r1, r0, #0
 84c0: a801 add r0, sp, #4
 84c2: f7ff ef8a blx 83d8 <strcpy@plt>
 84c6: 4803 ldr r0, [pc, #12] ; (84d4
<vulnerable+0x18>)
 84c8: a901 add r1, sp, #4
 84ca: 4478 add r0, pc
 84cc: f7ff ef8a blx 83e4 <printf@plt>
 84d0: b005 add sp, #20
 84d2: bd00 pop {pc}
 84d4: 0000154a andeq r1, r0, sl, asr #10

000084d8 <main>:
 84d8: b508 push {r3, lr}
 84da: 6848 ldr r0, [r1, #4]
 84dc: f7ff ffee bl 84bc <vulnerable>
 84e0: 2000 movs r0, #0
 84e2: bd08 pop {r3, pc}

Chapter 8

275

Notice how there are none of the instructions that were in the previous version of the
executable. This is because the -fstack-protector compiler flag that we removed tells
GCC to autonomously look for any instance of any function that may potentially corrupt the
function stack.

See also
ff The ARM and Thumb Instruction Set Quick Reference Card document by ARM

infocenter at http://infocenter.arm.com/help/topic/com.arm.doc.
qrc0001l/QRC0001_UAL.pdf

ff The ARM Instruction Set document at http://simplemachines.it/doc/arm_
inst.pdf

ff The ARM v7-M Architecture Reference Manual document by the department of
Electrical Engineering and Computer Science, University of Michigan at http://
web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/
ARMv7-M_ARM.pdf

ff Exploiting Arm Linux Systems, An Introduction by Emanuele Acri at http://www.
exploit-db.com/wp-content/themes/exploit/docs/16151.pdf

ff The Procedure Standard for the ARM Architecture document at http://
infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_
aapcs.pdf

ff The ARM Instruction Set document at http://bear.ces.cwru.edu/eecs_382/
ARM7-TDMI-manual-pt2.pdf

ff The ARM Developer Suite Version 1.2 Assembler Guide document by ARM infocenter
at http://infocenter.arm.com/help/topic/com.arm.doc.dui0068b/
DUI0068.pdf

ff The DLMalloc Implementation library at the Android Platform Bionic GitHub page at
https://github.com/android/platform_bionic/blob/master/libc/
upstream-dlmalloc/malloc.c

ff The ok_magic call in the DLMalloc implementation at the Android Platform Bionic
GitHub page at https://github.com/android/platform_bionic/blob/
master/libc/upstream-dlmalloc/malloc.c#L4715

ff The Bionic source code at the Android Source code repository at https://
android.googlesource.com/platform/bionic/

ff DLMalloc.c, Android Platform Bionic jb-mr0-release at the Android Official
GitHub repository at https://android.googlesource.com/platform/
bionic/+/jb-mr0-release/libc/bionic/dlmalloc.c

Native Exploitation and Analysis

276

Exploitation of race condition vulnerabilities
Race conditions have caused quite a few issues and privilege escalation attacks on the
Android platform; many of them allowing malicious attackers to gain root privileges.

Essentially, race conditions are caused by the lack of enforced mutual exclusion when a
process on a multithreaded (a platform where more than one process is allowed to run
concurrently) system that uses preemptive process scheduling. Preemptive scheduling allows
a task scheduler to interrupt a thread or running process preemptively, meaning without
first waiting for the task to be ready for interruption. This enables race conditions because
often developers don't enable applications to operate in a way that accommodates arbitrary
and unpredictable interrupts from the process scheduler; as a result, processes that rely on
access to potentially shared resources like files, environment variables, or data structures
in shared memory are always "racing" to get first and exclusive access to these resources.
Attackers abuse this situation by gaining access to these resources first and corrupting them
in a way that enables either damage to the processes operation or allows them to maliciously
influence the process's behavior. A simple example would be a program that checks if a user
authenticating themselves is in a given file listing the valid usernames; should this process
not accommodate the preemptive scheduler, it may only access the file after a malicious user
has corrupted it by adding his/her username to the list, allowing them to be authenticated.

In this walkthrough, I will detail some basic race condition vulnerabilities and discuss other
potential causes; I will also detail exploitation of a few of the most basic race condition
vulnerabilities. The walkthrough ends with references and useful sources of information on
past Android-based race condition vulnerabilities; most of them reported in the year of this
writing.

Exploitation of race condition vulnerabilities depends on a few factors, namely an attacker
must at least be able to:

ff Gain access to the resources a vulnerable process is racing for access to: Just
having a process that doesn't enforce mutual exclusion for its external resources
but leaves the attacker with no method of access to these same resources wouldn't
harbor much potential for exploitation. If this wasn't true, every single nonmutual
exclusive access a process makes would be exploitable. This includes every time a
process dereferences a pointer in memory without checking out a semaphore or spin
lock, which could happen billions of times!

ff Influence these resources maliciously: It wouldn't help much if a process doesn't
exclusively access its resources in the context in which an attack cannot augment or
maliciously modify the resources. For instance, if a process accesses shared memory
or a file that an attacker only has read access to—unless of course this causes the
vulnerable process to crash, given the semantic priority of the process; for example,
an anti-virus program, IDS, or firewall.

Chapter 8

277

ff Time of use / time of check window size (TOU/TOC): This is essentially the time
difference, or more effectively the likelihood of scheduler interrupts, between
the time an application checks for access to a resource and actually accesses
the resource. The exploitability of a race condition depends heavily on this time
difference because exploits will essentially race for access in this time frame in order
to maliciously affect the resource.

Taking these conditions into account, let's look at some constructed examples of race
condition vulnerabilities and how to exploit them on Android.

Getting ready
Before we start exploiting race conditions, we need to prepare an example. Here's how you do
that:

1.	 We're going to prepare to an embedded ARM Android platform—the Jelly Bean
emulator in this example—that causes race condition vulnerability. The following code
details the behavior of a vulnerable process:
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#define MAX_COMMANDSIZE 100
int main(int argc,char *argv[],char **envp){
 char opt_buf[MAX_COMMANDSIZE];
 char *args[2];
 args[0] = opt_buf;
 args[1] = NULL;
 int opt_int;
 const char *command_filename = "/data/race-condition/commands.
txt";
 FILE *command_file;
 printf("option: ");
 opt_int = atoi(gets(opt_buf));
 printf("[*] option %d selected...\n",opt_int);
 if (access(command_filename,R_OK|F_OK) == 0){
 printf("[*] access okay...\n");
 command_file = fopen(command_filename,"r");
 for (;opt_int>0;opt_int--){
 fscanf(command_file,"%s",opt_buf);
 }
 printf("[*] executing [%s]...\n",opt_buf);
 fclose(command_file);
 }
 else{

Native Exploitation and Analysis

278

 printf("[x] access not granted...\n");
 }
 int ret = execve(args[0],&args,(char **)NULL);
 if (ret != NULL){
 perror("[x] execve");
 }
 return 0;
}

Compile this by following the same process as detailed in the Cross-compiling
native executables recipe and deploy it to your Android device. Try deploying it to a
partition or folder that's been mounted as executable and readable by any user on
the Android system (to see how to do this, please refer to the Copying files off/into
an AVD recipe in Chapter 1, Android Development Tools). Throughout this recipe, we
use the partition mounted as /system, which was remounted with read and write
permissions, as in other recipes. Please note this may cause the NDK to throw out a
couple of warnings, but as long as everything compiles to an executable, you're good
to go!

2.	 You'll also need to put the commands.txt file in the directory mentioned in the code,
namely /data/race-condition/command.txt. This requires making a race
condition folder in the /data path. A good example of how to do this can be found in
the Inspecting network traffic recipe in Chapter 4, Exploiting Applications, since we
needed to create a similar setup for TCPdump.

3.	 You will need to set the setuid permission for this executable on the Android device;
you can do this by executing the following command after deploying it to the device:

chmod 4711 /system/bin/race-condition

This command also makes sure any user on the system has execute permissions.
Please be aware that you will need root permissions to perform this command. We are
simulating the effect of a setuid binary and how it can cause arbitrary code execution.

We have everything set up for exploitation; we can move onto detailing this exploitation now.

Chapter 8

279

How to do it...
To exploit the vulnerable binary, you will need to do the following:

1.	 Run the ADB shell into the Android device; if you're using an emulator or a rooted
device, you should be able to use su to assume another application's access rights.

Try accessing some root-owned folders and files that don't have execute, read, or
write permission set for your user. Here I've chosen user 10170 as an example, and
you should see the Permission denied messages being thrown around when you
try to access the /cache/ directory:

2.	 Let's exploit the race-condition binary. We do this by augmenting the commands.
txt file with another command, namely /system/bin/sh, which will open a shell
for us. You can do this by executing the following command:
echo "/system/bin/sh" >> /data/race-condition/commands.txt

The /system/bin/sh command should now be the last entry in the commands.txt
file, this means, if we hope to select it from the menu we need to choose option 5.

3.	 Execute race-condition on the Android device and supply 5 as an option.
The vulnerable binary would then execute the sh command and give you root
permissions.

Native Exploitation and Analysis

280

4.	 Test your root access by trying to change the directory to /cache. If you're running a
Jelly Bean or later version of Android, you should not see any Permission denial
messages, which means you've just escalated your privileges to root!

The preceding example is designed to detail the most basic concepts in race conditions,
namely when an application accesses a file that any other process can augment and uses
it to perform actions as the root user. There are more intricate and subtle situations that
cause race conditions, one that's been commonly exploited are those involving symbolic links.
These vulnerabilities stem from an application's inability to discern a file from a symbolic
link, which allows attacks to augment files via a crafted symbolic link or when a file reads a
symbolic or hard link but is incapable of determining the authenticity of the link target, which
means the link can be redirected maliciously. For more modern examples of race condition
vulnerabilities, check out the links in the See also section.

See also
ff The Vulnerability Summary for CVE-2013-1727 article at http://web.nvd.nist.

gov/view/vuln/detail?vulnId=CVE-2013-1727&cid=8

ff The Vulnerability Summary for CVE-2013-1731 article at http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2013-1731&cid=8

ff The Sprite Software Android Race Condition article by Justin Case at http://
packetstormsecurity.com/files/122145/Sprite-Software-Android-
Race-Condition.html

ff The Race Condition Exploits article by Prabhaker Mateti at http://cecs.wright.
edu/~pmateti/InternetSecurity/Lectures/RaceConditions/index.
html

Chapter 8

281

Stack memory corruption exploitation
Stack memory exploitation may not be the most likely source of Android bugs and security
vulnerabilities, though it is still possible for these kinds of memory corruption bugs to affect
native Android executables even in the midst of protections such as ASLR, StackGuard, and
SE Linux. In addition to this, most of the Android market share consists of devices that don't
have as robust protection against stack and other memory-based exploitation, namely 2.3.3
Gingerbread devices. Another great reason—besides its direct relevance to security research—to
include a discussion and walkthrough on stack-based exploitation is because it provides a great
gateway into more advanced exploitation techniques.

In this section we will detail how to exploit a common stack-based memory corruption flaw to
take control of the flow of execution.

Getting ready
Before we start, you'll need to prepare a vulnerable executable; here's how you do it:

1.	 Create a directory with the usual jni folder and the same naming convention as in
the previous recipes. If you need a recap, see the Cross-compiling native executables
recipe in this chapter.

2.	 Write this code into a .c file in the jni folder:
#include <stdio.h>
#include <string.h>
void
vulnerable(char *src){
 char dest[10]; //declare a stack based buffer
 strcpy(dest,src); //always good not to do bounds checking
 printf("[%s]\n",dest); //print the result
 return; }

int
main(int argc, char **argv){
 vulnerable(argv[1]); //call vulnerable function
 printf("you lose...\n");
 return (0); }

This code is strikingly similar to the previous example. In fact you may even edit the
previous example code, since it differs in only a few lines.

3.	 Compile the code using the ndk-build script as before.

4.	 Deploy the code to an Android device or emulator; for the following example, I used
an emulated Android 4.2.2 device.

Once you've got your code all set up, you can move on to pushing the binary onto your
emulator or device—if you're up for the challenge.

Native Exploitation and Analysis

282

How to do it...
To exploit the stack-based buffer overflow, you could do the following:

1.	 Launch the application on your emulator a couple of times, each time giving it a
bigger input until it fails to exit the execution gracefully and your Android system
reports a segmentation fault.

Try to remember how many input characters you gave the application because you'll
need to give it the same number to trigger the crash using gdbserver. Here's a
screenshot of what a normal run of the executable looks like:

You should see the GDB output exited normally, indicating that the return code
of the process was the same and nothing interrupted or forced it to stop.

Chapter 8

283

Once too much input is given to the application, it exits with a segmentation fault,
which looks like this in GDB:

2.	 Launch the application in gdbserver, giving it an "unsafe" amount of input, namely
an amount of input that will crash it. For our code that should be anything above 14
to 16 characters. In this example, I've entered around 16 characters to make sure I
overwrite the correct portion of memory.

3.	 Run androideabi-gdb and connect to the remote process. If you need a recap on
how to do this, see the Debugging the Android processes using the GDB server recipe
in Chapter 6, Reverse Engineering Applications.

4.	 Set a couple of breakpoints using GDB. Set a breakpoint just before blx to strcpy
and another after, as in the following screenshot:

Native Exploitation and Analysis

284

You set breakpoints using the break command or b as
a shorthand, and giving it either an offset for a line of
code or a pointer to an address that holds an instruction;
hence the * character before the memory value.

5.	 Once your breakpoints are set, re-run the application via gdbsever and reconnect
to it using the Android GDB. Step through each breakpoint as explained later. All
you need to do is type in continue in the GDB prompt, or c as shorthand. GDB will
continue the execution of the program until a breakpoint is reached.

The first breakpoint you reach should be the one before the strcpy call; we set a
breakpoint here so that you could see how the stack changes before and after the
strcpy call. It's crucial to understand this so you can work out how much data to
give the application before you start overwriting the return addresses. This is shown
in the following screenshot:

This is a snapshot of the stack for the vulnerable function before the call to
strcpy; nothing much has happened yet except that some space has been prepared
for the local variables. Once the first breakpoint is reached, you should inspect the
stack by printing some of its memory contents.

In the following example, this is shown by executing this x command in GDB:
x/32xw $sp

Chapter 8

285

This command tells GDB to print 32 hexadecimal words from the memory address
contained in the sp (Stack Pointer) register; here's what you should see:

You'll notice that a couple of values are highlighted; these values were passed to the
stack by an instruction in the function prologue, which is the following instruction:
push {r0, r1, r2, r3, r4, lr}

The push instruction—as used in the previous command—makes sure
the register values of the calling function are preserved. This instruction
helps ensure that when the function executing returns control back to
the function that called it, the stack is returned to its original state.

One of the values used in the push instruction is lr or link register. The link register
usually holds the return address of the current function. Here, the lr register holds
the value 0x000084f5. We are going to try to overwrite it with one of our own later;
and in a few minutes, you should see how our input has changed this value, so try to
remember it for the time being.

Native Exploitation and Analysis

286

You want to do this because of an instruction further down in the vulnerable
function, namely the following:
pop {pc}

This instruction moves the saved lr value straight into the program counter register;
which causes execution to continue at the address saved in the lr register. If we
can overwrite the saved lr value, we can effectively control where the execution
is branched at the end for the vulnerable function. The next step covers how to
calculate exactly and what to enter into the program in order to make sure you control
the execution as mentioned.

6.	 Continue to the next breakpoint. Once GDB hits this breakpoint, strcpy should have
written your input to the stack. Inspecting the stack at this point should yield the
following output:

You should notice that the value 0x000084f5 changed to 0x00008400; they're quite
similar because when strcpy wrote our input into the buffer, it partly overwrote the
saved lr value with the NULL byte that follows our string; this is why the 0xf5 was
replaced with 0x00. We now know that our 16 characters of input overwrites one byte
of the saved return address. This means to completely overwrite the 2 bytes of return
address, we need to add 2 bytes of input—accommodating the NULL byte—with the
last 4 bytes being the new return address. Here's how it works:

Before the strcpy call, the stack had this structure:

Uninteresting
stack
contents

Input Buffer field Saved lr value

0xbee6fc75 0xbee6fb44 0xbee6fb50 0x00000000 0x000084ed 0x00000 0x84 0xF5

After the strcpy call with the 16 bytes of input, the stack had the following structure:

Chapter 8

287

Uninteresting
stack
contents

Input Buffer field Saved lr value

…0xbee6fc75 16 chars 0x00000 0x84 0x00

The bold 0x00 value is the NULL byte from our input; based on this we would want to
input 16 chars plus 2 chars for the new return address, which would look like this:

Uninteresting
stack
contents

Input Buffer field Saved lr value

…0xbee6fc75 [16 chars] 0x00000 0x?? 0x??

Here, the 0x?? characters indicate the extra input chars we give the strcpy call to
overwrite the return address; again we see the 0x00 character after the extra input
chars.

7.	 Relaunch the GDB server with the given input; try skipping over the printf "you
lose" call and checking that it wasn't executed—this makes for an easy way to check
if you've successfully redirected execution. Here's how you can grab an example
address to redirect execution flow to. Disassemble the main section by executing the
following command in the GDB shell:
disass main

This will yield the following output:
0x000084ec <+0>: push {r3,lr}

0x000084ee <+2>: ldr r0,[r1, #4]

0x000084f0 <+4>: bl 0x84d0 <vulnerable>

0x000084f4 <+8>: ldr r0, [pc, #8]

0x000084f6 <+10>: add r0,pc

0x000084f8 <+12>: blx 0x83f8

0x000084fc <+16>: movs r0,#0

0x000084f3 <+18>: pop {r3,pc}

0x00008500 <+20>: andeq r1,r0,r2,asr,r5

Native Exploitation and Analysis

288

The blx instruction at 0x000084f8 is clearly the call to printf so, if we want to
skip over it, we would need to grab the address of the instruction just following it,
which is 0x000084fc. More specifically, we would give the following as input to our
program:

[16 padding chars] \xfc\x84

The bytes that specify the return address are given in reverse order because of the
endianness of the architecture.

8.	 Relaunch the application using the GDB server, this time giving it the following input:

echo –e "1234567890123456\xfc\x84"`

If all goes well, you should not see the application print the "you lose" message
and just exit instead.

There's a lot more you can do than just skip over a simple print instruction; in some
circumstances, you can even take complete control of the process running a program with
vulnerability like this. For more information on how to do this, see the link titled Return-
Oriented Programming without Returns in the See also section. For good sources on general
memory corruption attacks, see the Memory Corruption Attacks, The (almost) Complete
History as well as the Smashing the Stack for fun and Profit links in the See also section.

See also
ff A short Guide on ARM Exploitation at http://www.exploit-db.com/wp-

content/themes/exploit/docs/24493.pdf

ff The Smashing the Stack for fun and Profit article by Aleph One at http://www.
phrack.org/issues.html?issue=49&id=14#article

ff The Memory Corruption Attacks, The (almost) Complete History guide, Thinkst
Security 2010, by Haroon Meer, at http://thinkst.com/stuff/bh10/
BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.
pdf

ff The Return-Oriented Programming without Returns guide by Stephen Checkoway,
Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham, and
Marcel Winandy at http://cseweb.ucsd.edu/~hovav/dist/noret-ccs.pdf

ff The Return-Oriented Programming without Returns on ARM guide by Lucas Davi,
Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy at http://www.
informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/
PubsPDF/ROP-without-Returns-on-ARM.pdf

Chapter 8

289

Automated native Android fuzzing
Fuzz testing is a great way to find exploitable bugs or bugs in system utilities. It allows auditors
to gauge the effectiveness of file handlers and any other application against malformed and
possibly malicious input, and helps determine whether there are any easily exploitable entry
points on a system. It's also a great way to automate security testing.

Android is no different from any other system and has a myriad of interesting fuzz targets.
The attack surface of an Android device doesn't stop at the Java application layer; in fact, root
exploits are sometimes based on a native executable or system utility that doesn't properly
handle any given input or respond in a secure way to certain situations. Fuzzing is a great way
to find these situations and possible root exploits on an Android device.

What I'm going to cover here is how to port a fuzz test generator called Radamsa to the
Android platform, and also install some utilities that will help you to script some robust fuzzing
scripts that use Radamsa.

Getting ready
Before we can start porting, you will need to grab a copy of the Radamsa fuzzer; here's how
you do that:

1.	 Make sure you have either CURL or Wget installed on your Linux machines. Wget will
work fine, but sticking to the recommendation on the Radamsa site, you can install
the prerequisites by executing the following command from your Ubuntu machines:
sudo apt-get install gcc curl

Running this command should produce an output similar to the following screenshot:

2.	 Once they've been downloaded, you can grab your copy of the Radamsa source code
as follows:
curl http://ouspg.googlecode.com/files/radamsa-0.3.tar.gz >
radamsa-0.3.tar.gz

Native Exploitation and Analysis

290

Running this command should produce an output similar to the following screenshot:

3.	 You should then extract the Radamsa source by executing this command:

tar –zxvf radamsa-0.3.tar.gz

If you've executed this command correctly, your output should be similar to the
following screenshot:

Your directory should look something like the following when you're done:

Everything is set up now; we can begin setting up the jni directory structure and
compiling Radamsa for Android.

Chapter 8

291

How to do it...
To cross-compile Radamsa for Android, you should do the following:

1.	 You should have a directory called radamsa-0.3 after unpacking the Radamsa
source inside this directory; you should create a directory called jni, just as we've
done in the Cross-compiling native executables recipe.

2.	 Make a copy of the Android.mk file you used for the buffer overflow recipe and
stick it inside the jni directory; your directory should look similar to the following
screenshot:

3.	 Copy the radamsa.c file, which contains the Radamsa source, into the jni directory
as in the following screenshot:

Native Exploitation and Analysis

292

4.	 Grab a copy of the Android.mk file and stick it inside the jni folder.

Copying your Android.mk file should be similar to the demonstration shown in the
following screenshot:

5.	 Edit the Android.mk file you copied in the previous step so that it looks like the
following:

6.	 Once you're done setting up the Android.mk file, you can execute the ndk-build
command; you should get the following output:

This means the build has failed. GCC also shows you which lines of code cause the
error. It is, in actual fact, one issue cascading through the rest of the code, namely
typedef, which aliases an unsigned long into something called in_addr_t; in the
next step, we will fix this issue to get Radamsa compiled successfully.

Chapter 8

293

7.	 Open the radamsa.c file in your favorite code editor—preferably one that displays
line numbers. Scroll down to line number 3222; you should see the following code if
you're using the vim text editor:

8.	 In line 3222 of the radamsa.c code, replace the in_addr_t type name to an
unsigned long. The code should look something like this when you've changed it
correctly:

9.	 You should also remove the typedef command in line 2686; before editing the line,
it should look like the following:

After commenting it out, it should look something like the following:

10.	 After you're done editing the radamsa.c source so it pleases the NDK GCC compiler,
you can run the ndk-build script. If you've done everything correctly, your output
should look something like this:

Native Exploitation and Analysis

294

11.	 After successfully building the executable you can then push it to an Android emulator
as follows—assuming you have one set up already, and you've remounted the system
partition as writeable:

12.	 Once you've pushed the Radamsa executable, you can test it by executing this
command on your Android emulator:
radamsa –-help

This should generate the following output:

13.	 You can run Radamsa on some test input to make sure everything is working fine. As
an example, see how Radamsa was run using the following command to make sure
everything was sane and in working condition:

echo "99 bottles of beer on the wall" | radamsa

Running this command should produce an output similar to the following screenshot:

Chapter 8

295

And that's it! Radamsa is up and running on Android. The next section talks about setting
up a simple fuzzing script and pointing it at dexdump to try and generate some crashes and
hopefully find some exploitable vulnerabilities.

If you're going to be doing some fuzzing, you will eventually need to do some bash scripting
to hone Radamsa at the right targets and autonomously report input data that causes
interesting behavior. Unfortunately, Android platforms don't come packaged with all the
utilities that make bash scripting powerful; they don't even come with a bash shell application,
mostly because it's not needed.

We could use the sh shell do to our scripting, but bash is a little more powerful and robust
and generally most people are more accustomed to bash scripting. Because of this, the
following section of this recipe explains how to get Busybox running on an Android platform.

Setting up Busybox
To get Busybox utilities (a package of useful terminal applications) on Android, you need to do
the following:

1.	 Grab a copy of the Android port from http://benno.id.au/Android/busybox;
in the example, we used wget to do this:

2.	 What you need to do then is prepare a busybox directory on your Android emulator—
assuming you have one already set up and ready to go.

For this example, the busybox directory was made in the /data/ folder; since it's
writable and executable, any folder on a partition mounted with write, read, and
execute permissions should work well.

Native Exploitation and Analysis

296

3.	 Once you've made a dedicated directory for Busybox, you can push it to the emulator
using this command:
adb push [path to busybox] /data/busybox/.

You should be doing something similar to the following screenshot:

4.	 Once you've pushed a copy of the busybox binary to your emulator, you can install
the binaries by executing the following command on your emulator:

/data/busybox –-install

Here's an example from a Samsung Galaxy S3 smartphone:

After executing this command, your busybox folder should look something like the
following:

Chapter 8

297

Fuzzing dexdump
Now that you've got your test case generator up and running and the Busybox utilities
installed, you can start generating some crashes!

In this example, we will see how to set up a simple script to do some "dumb" fuzz testing
against dexdump, a utility that dissects an Android DEX file and prints its contents:

1.	 Before we start, you will need a sample DEX file; you can either get one by writing
a sample "hello world" type application using the Android SDK or just grabbing
the Example.dex file created in the previous chapter's recipes. If you'd like to
generate this file, see the Compiling from Java to DEX recipe in Chapter 6, Reverse
Engineering Applications.

2.	 Create a directory to base your input test case generation files in. This is the folder
on the Android emulator where your script will generate files. Test them and copy the
interesting ones should they cause any crashes; the /data/ directory once again is a
great place to do this, though it would be good to consider emulating an SD card and
saving your data there.

3.	 Inside your fuzzing directory—the one created in the previous step—create a bash
script that contains the following code:
#!/bin/bash

ROOT=$1

TARGET=dexdump

ITER=$2

for ((c=0;1;c++))

do

 cat $ROOT | radamsa -m bf,br,sr -p bu > fuzz.dex

 $TARGET -d fuzz.dex 2>&1 > /dev/null

 RET_CODE=$?

 echo "[$c] {$RET_CODE} ($WINS)"

 test $RET_CODE -gt 127 && cp fuzz.dex win-
 dexdump_$ITER"_"$c.dex && WINS=`expr $WINS + 1`

done

4.	 Run the script in bash by executing the following command on your emulator:

/data/busybox/bash; /data/busybox/source [fuzz script name]
[example.dex]

And now you're fuzzing!

Native Exploitation and Analysis

298

How it works...
In the first part of the How to do it… section of this recipe, we covered cross-compiling a
popular fuzz test generator called Radamsa. Most of what we did is already explained in the
Cross-compiling native executables recipe. Things get interesting when the NDK build script
fails to compile Radamsa because of a type definition; here's what it looked like:

typedef unsigned long in_addr_t;

This causes the build script to fail because the GCC compiler used by the NDK build script—
namely one that was built to support the ARM Application Binary Interface—failed
to recognize the effect of the type definition.

When the type defined by the mentioned statement is referenced, it
causes GCC to halt and report that it basically doesn't know what in_
addr_t is. This issue was resolved by removing the need for typedef
by replacing the mentioning of the in_addr_t alias with the full variable
type of unsigned long and commenting out the typedef statement.

Once this issue was resolved, Radamsa could compile successfully and be deployed to an
Android device.

Then we wrote a makeshift fuzzing script to the target dexdump. To make sure you guys
understand exactly what you're doing in this recipe, it's important we detail what the bash
script does.

The first few instructions make sure we have some useful mnemonics to help us refer to
the arguments passed to the script. These instructions—appearing after the #!/bin/bash
instruction—simply assign values to some variable names.

After assigning these values, the script steps into a for loop with a sentinel value—the value
that limits the number of times the for loop iterates—which will cause the script to iterate
forever unless explicitly stopped by the user or the operating system.

Inside the for loop, we see the following line:

cat $ROOT | radamsa -m bf,br,sr -p bu > fuzz.dex

All this does is grab the file pointed to by the ROOT variable and feeds it to Radamsa.
Radamsa then applies some randomized transformations to the file.

After making the requested random transformations to the DEX file, Radamsa redirects the
output to a file called fuzz.dex, which is the "fuzzed" version of the sample DEX file.

Chapter 8

299

Then dexdump is invoked with the fuzzed DEX file as an argument; here's what it looks like:

$TARGET -d fuzz.dex 2>&1 > /dev/null

And all output is redirected to /dev/null, since we probably won't be interested in it. This
line of code also redirects all the output from STDIN (the standard output file) to the STDERR
file (the standard error output file). This allows all the output generated by the program—any
that would likely clutter the screen—to be redirected to /dev/null.

The next instruction looks like this:

RET_CODE=$?

This records the exit code of whatever the last command was; in this case, it was dexdump.

The script does this because it will reveal information about how dexdump exited. If dexdump
exited execution normally, the return code will be 0; should anything have happened that
caused dexdump to exit or halt abnormally—say, like a fault due to corrupted input—the exit
code will be nonzero.

And even more interestingly, if the fault required the operating system to halt dexdump via the
use of inter-process signaling, the return code will be greater than 127. These return codes are
the ones we are interested in generating since they give us a strong indication that a relatively
serious flaw was exposed due to the given dexdump input. Errors like segmentation faults,
which usually happen when an invalid portion of memory is used in an incorrect manner, always
generate return codes higher than 127. For more detail on how exit codes or rather exit statuses
work, see the Work the Shell - Understanding Exit Codes link in the See also section.

Moving on, the rest of the code looks like this:

echo "[$c] {$RET_CODE} ($WINS)"
test $RET_CODE -gt 127 && cp fuzz.dex win-dexdump_$ITER"_"$c.dex
&& WINS=`expr $WINS + 1

The first instruction of this portion of the code simply helps us keep track of which iteration
the script is currently executing—by printing the $c value. It also prints out the return code of
the previous run of dexdump and how many notable halts have occurred.

After printing out the mentioned "status indicators", the script compares the value saved in
the RET_CODE variable's value to 127; if this value is greater, it makes a copy of the sample
input that caused this error and increments the WINS variable by 1 to reflect that another
notable error was generated.

Native Exploitation and Analysis

300

See also
ff The Work the Shell – Understanding Exit Codes Linux journal at http://www.

linuxjournal.com/article/10844

ff The Radamsa Google Code at http://code.google.com/p/ouspg/wiki/
Radamsa

ff The Blab Google Code at http://code.google.com/p/ouspg/wiki/Blab

ff The Options for Code Generation Conventions web page at http://gcc.gnu.org/
onlinedocs/gcc/Code-Gen-Options.html

ff The Fuzzing with Radamsa and some thoughts about coverage file at http://www.
cs.tut.fi/tapahtumat/testaus12/kalvot/Wieser_20120606radamsa-
coverage.pdf

9
Encryption and

Developing Device
Administration Policies

In this chapter, we will cover the following recipes:

ff Using cryptography libraries

ff Generating a symmetric encryption key

ff Securing SharedPreferences data

ff Password-based encryption

ff Encrypting a database with SQLCipher

ff Android KeyStore provider

ff Setting up device administration policies

Introduction
The primary focus of this chapter will be on how to make use of cryptography properly to store
data securely on a device. We start with creating a consistent cryptography foundation by
including our own encryption implementation libraries to give support to stronger encryption
algorithms on older devices.

One of the straightforward items to tackle is the generation of symmetric encryption keys;
however, the default settings are not always more secure. We look at the specific parameters
to ensure the strongest encryption and review a common antipattern and OS bug that limits
the security of the generated keys.

Encryption and Developing Device Administration Policies

302

Then, we look at several ways in which we can securely store encryption keys using third-party
libraries or a system service called the Android KeyStore that was introduced in Android
4.3. Going further, we learn how to avoid storing the key on the device altogether using a key
derivation function to generate a key from the user's password or pin code.

We'll cover how to integrate SQLCipher efficiently to ensure that your applications' SQLite
database is encrypted to dramatically increase the security of your app data.

We will wrap up with a look at the Device Administration API that is designed for enterprises
to enforce device policies and safeguards to further protect the device. We implement two
factitious (yet sensible) enterprise policies to ensure that the device has enabled encrypted
storage and meets lock screen timeout requirements.

Using cryptography libraries
One of the great things about Android using Java as the core programming language is that
it includes the Java Cryptographic Extensions (JCE). JCE is a well-established, tested set of
security APIs. Android uses Bouncy Castle as the open source implementation of those APIs.
However, the Bouncy Castle version varies between Android versions; and only the newer
versions of Android get the latest fixes. That's not all in an effort to reduce the size of Bouncy
Castle; Android customizes the Bouncy Castle libraries and removes some of the services
and APIs. For example, if you intend on using Elliptic Curve Cryptography (ECC), you will see
provider errors when running it on Android versions below 4.0. Also, although Bouncy Castle
supports the AES-GCM scheme (which we'll cover in the next recipe), you cannot use this in
Android without including it separately.

To solve this, we can include an application-specific implementation of cryptographic libraries.
This recipe will show you how to include the Spongy Castle library, which provides a higher
level of security given that it is more up-to-date as compared to Android's Bouncy Castle
implementation and supports more cryptographic options.

You may be wondering "why use Spongy Castle and not just include the Bouncy Castle libraries".
The reason is that Android already ships with an older version of the Bouncy Castle libraries,
and so we need to rename the package of this library to avoid "classloader" conflicts. So, Spongy
Castle is a repackaging of Bouncy Castle. In fact, the package name could be whatever you
wanted as long as it differs from org.bouncycastle.

How to do it...
Let's add Spongy Castle to our Android application.

1.	 Download the latest Spongy Castle binaries from https://github.com/rtyley/
spongycastle/#downloads.

Review the MIT X11 License (same as Bouncy Castle) to ensure that this is
compatible with how you intend to use it.

Chapter 9

303

2.	 Extract and copy the Spongy Castle .jar files in your application's /libs directory:

�� sc-light-jdk15on: Core lightweight API

�� scprov-jdk15on: JCE provider (requires sc-light-jdk15on)

3.	 Include the following static code block in your Android Application object:

static {
 Security.insertProviderAt(new org.spongycastle.jce.provider.
 BouncyCastleProvider(), 1);
}

How it works...
We use the static code block to call Security.insertProviderAt(). It ensures that the
Spongy Castle provider that we have bundled in our application's /libs folder is used in
preference. By setting the position as 1, we ensure that it gets preference over the existing
security providers.

The beauty of using Spongy Castle with the JCE is that no modification to the existing
encryption code is needed. Throughout this chapter, we show samples of an encryption code
that works equally well with either Bouncy Castle or Spongy Castle.

There's more...
As mentioned, the code is available for download from GitHub; however, it is possible to build
your own version. Roberto Tyley, the owner of the Spongy Castle repository, has included the
become-spongy.sh bash script that does the renaming of com.bouncycastle to com.
spongycastle. Therefore, you can use it on your own freshly downloaded and up-to-date
version of the Bouncy Castle library, and convert it to org.spongycastle or something
equally cute and catchy.

The become-spongy.sh bash script is available at
https://gist.github.com/scottyab/8003892

See also
ff The Generating a symmetric encryption key and Password-based encryption recipes

demonstrate using the JCE APIs

ff The Spongy Castle GitHub repository at http://rtyley.github.io/
spongycastle/#downloads

Encryption and Developing Device Administration Policies

304

ff The Bouncy Castle home page at http://www.bouncycastle.org/java.html

ff The Using the Java Cryptographic Extensions OWASP community page at https://
www.owasp.org/index.php/Using_the_Java_Cryptographic_Extensions

Generating a symmetric encryption key
A symmetric key describes a key that is used for both encryption and decryption. To
create cryptographically secure encryption keys in general, we use securely generated
pseudorandom numbers. This recipe demonstrates how to correctly initialize the
SecureRandom class and how to use it to initialize an Advanced Encryption Standard (AES)
encryption key. AES is the preferred encryption standard to DES, and typically used with key
sizes 128 bit and 256 bit.

There are no code differences whether you are using Bouncy
Castle or Spongy Castle, as noted in the previous recipe.

How to do it...
Let's create a secure encryption key.

1.	 Write the following function to generate a symmetric AES encryption key:
public static SecretKey generateAESKey(int keysize)
 throws NoSuchAlgorithmException {
 final SecureRandom random = new SecureRandom();

 final KeyGenerator generator = KeyGenerator.
getInstance("AES");
 generator.init(keysize, random);
 return generator.generateKey();
 }

2.	 Create a random 32-byte initialization vector (IV) that matches the AES key size of
256 bit:
private static IvParameterSpec iv;

public static IvParameterSpec getIV() {
 if (iv == null) {
 byte[] ivByteArray = new byte[32];
 // populate the array with random bytes
 new SecureRandom().nextBytes(ivByteArray);
 iv = new IvParameterSpec(ivByteArray);
 }
 return iv;
 }

Chapter 9

305

3.	 Write the following function to encrypt an arbitrary string:
public static byte[] encrpyt(String plainText)
 throws GeneralSecurityException, IOException {
 final Cipher cipher = Cipher.getInstance("AES/CBC/
PKCS5Padding");
 cipher.init(Cipher.ENCRYPT_MODE, getKey(), getIV());
 return cipher.doFinal(plainText.getBytes("UTF-8"));
 }

 public static SecretKey getKey() throws NoSuchAlgorithmException
{
 if (key == null) {
 key = generateAESKey(256);
 }
 return key;
 }

4.	 For completeness, the preceding snippet shows how to decrypt. The only difference
is that we call the Cipher.init() method using the Cipher.DECRYPT_MODE
constant:

public static String decrpyt(byte[] cipherText)
 throws GeneralSecurityException, IOException {
 final Cipher cipher = Cipher.getInstance("AES/CBC/
PKCS5Padding");
 cipher.init(Cipher.DECRYPT_MODE, getKey(),getIV());
 return cipher.doFinal(cipherText).toString();
 }

For this sample, we have just stored the key and IV as a static variable; this isn't advisable
for actual use. A simple approach would be to persist the key in SharedPerferences
with the Context.MODE_PRIVATE flag so that a consistent key is available between
application sessions. The next recipe develops this idea further to use an encrypted version of
SharedPerferences.

How it works…
Creating a SecureRandom object is simply a case of instantiating the default constructor.
There are other constructors available; however, the default constructor uses the strongest
provider available. We pass an instance of SecureRandom to the KeyGenerator class
with the keysize argument, and the KeyGenerator class handles the creation of the
symmetric encryption key. 256 bit is often touted as "military grade", and for most systems it
is considered cryptographically secure.

Encryption and Developing Device Administration Policies

306

Here we introduce an initialization vector which, in simple terms, increases the strength of the
encryption, and is essential when encrypting more than one message/item. This is because
messages encrypted with the same key can be analyzed together to aid message extraction.
A weak IV is part of the reason why Wired Equivalent Privacy (WEP) was broken. So, it is
recommended to generate a new IV for each message, and store it along with the cipher text;
for example, you could pre-append or concatenate the IV to the cipher text.

For the actual encryption, we use an AES instance of the Cipher object that we initiate in
ENCRYPT_MODE with the newly-generated SecretKey. We then call cipher.doFinal with
the bytes of our plaintext input to return a byte array containing the encrypted bytes.

When requesting the AES encryption mode with the Cipher object, a common oversight that
is also present in Android documentation is to simply use AES. However, this defaults to the
simplest and less-secure ECB mode, specifically AES/ECB/PKCS7Padding. Therefore, we
should explicitly request the stronger CBC mode AES/CBC/PKCS5Padding, as shown in the
sample code.

There's more...
Here we look at how to use a strong encryption mode called AES-GCM, and a common
antipattern that reduces the security of the generated keys.

Using AES-GCM for strong symmetric encryption
We noted that simply defining AES does not default to the strongest mode. If we include the
Spongy Castle libraries, we can use the much strong AES-GCM that includes authentication,
and can detect if the cipher text has been tampered with. To use AES-GCM when defining the
algorithm/transformation string, use AES/GCM/NoPadding as shown in the following code:

 final Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", "SC");

Antipattern – setting the seed
Since Android Version 4.2, the default PseudoRandom Number Generator (PRNG) provider of
SecureRandom was changed to OpenSSL. This disables the ability, which existed previously,
of Bouncy Castle provider to manually seed the SecureRandom object. This was a welcome
change as an antipattern emerged where developers were setting the seed.

byte[] myCustomSeed = new byte[] { (byte) 42 };
secureRandom.setSeed(myCustomSeed);
int notRandom = secureRandom.nextInt();

In this code sample, we can see the seed being manually set to 42, the result being that the
notRandom variable would always equal the same number. Although useful for unit tests, this
defeats any enhanced security from using SecureRandom to generate a cryptographic key.

Chapter 9

307

Android's PRNG bug
As mentioned previously, the default provider of PseudoRandom Number Generator (PRNG)
is OpenSSL since Android 4.2. However, in August 2013, a critical bug was discovered with
the generation of random numbers. This was highlighted by the compromise of several
Android Bitcoin wallet apps. The issue concerned the seeding of the secure random number
generator; instead of using complex and individual system fingerprints, it was initialized to
null. The result was similar to that of the antipattern secure keys that were generated earlier
from a predictable number. The effected Android versions were Jelly Bean 4.1, 4.2, and 4.3.

A fix was noted in the Some SecureRandom Thoughts Android blog article and issued to
Open Handset Alliance companies. However, it's recommended that you call this fix from your
application's onCreate() method in case the fix has not been applied to the device your app
is running on.

For convenience, here's a gist provided by GitHub of the code from
Google, which can be found at https://gist.github.com/
scottyab/6498556.

See also
ff The Securing SharedPreference data recipe, where we used a generated AES key to

encrypt application SharedPreferences

ff The An Empirical Study of Cryptographic Misuse in Android Applications guide at
http://cs.ucsb.edu/~yanick/publications/2013_ccs_cryptolint.pdf

ff The SecureRandom class in the Android Developer Reference guide at https://
developer.android.com/reference/java/security/SecureRandom.html

ff The KeyGenerator class in the Android Developer Reference guide at https://
developer.android.com/reference/javax/crypto/KeyGenerator.html

ff The Some SecureRandom Thoughts Android blog article at http://android-
developers.blogspot.co.uk/2013/08/some-securerandom-thoughts.
html

ff The Open Handset Alliance members at http://www.openhandsetalliance.
com/oha_members.html

Encryption and Developing Device Administration Policies

308

Securing SharedPreferences data
Android provides a simple framework for app developers to persistently store key-value pairs
of primitive datatypes. This recipe illustrates a practical use of a pseudorandomly generated
secret key and demonstrates the use of Secure-Preferences. It is an open source library that
wraps the default Android SharedPreferences to encrypt the key-value pairs for protecting
them against attackers. Secure-Preferences is compatible with Android 2.1+, and is licensed
with Apache 2.0; hence, it is suitable for commercial development.

I should add that I'm the co-creator and maintainer of the Secure-Preferences library. A good
alternative to Secure-Preferences is a library called Cwac-prefs that is backed by SQLCipher
(covered in a later recipe).

Getting ready
Let's add the Secure-Preferences library.

1.	 Download or clone Secure-Preferences from GitHub at https://github.com/
scottyab/secure-preferences.

The Secure-Preferences repository contains an Android library project and
a sample project.

2.	 Link the library to your Android project as you would normally do.

How to do it...
Let's get started.

1.	 Simply initialize the SecurePreferences object with Android context:
SharedPreferences prefs = SecurePreferences(context);

Editor edit = prefs.edit();
edit.putString("pref_fav_book", "androidsecuritycookbook");
edit.apply();

2.	 The following are several helper methods that you could add to your application to
retrieve an instance of the (secure) preferences object in your application object:
private SharedPreferences mPrefs;
public final SharedPreferences getSharedPrefs() {
 if (null == mPrefs) {
 mPrefs = new SecurePreferences(YourApplication.this);
 }
 return mPrefs;
 }
Here, YourApplication.this is a reference to your application object.

Chapter 9

309

3.	 Then ideally, in a base application component such as BaseActivity,
BaseFragment, or BaseService, you can include the following to retrieve an
instance of the (secure) preferences object:

private SharedPreferences mPrefs;
protected final SharedPreferences getSharedPrefs() {
 if (null == mPrefs) {
 mPrefs = YourApplication.getInstance().getSharedPrefs();
 }
 return mPrefs;
 }

How it works...
The Secure-Preferences library implements the SharedPreferences interface; therefore, no
code changes are needed to interact with it in comparison to the default SharedPreferences.

Standard SharedPreferences keys and values are stored in a simple XML file and
Secure-Preferences uses the same storage mechanism; except that the keys and values
are transparently encrypted using an AES symmetric key. The cipher text of keys and
values are encoded with base64 encoding before writing to the file.

If you examine the following SharedPreference XML file; it shows without and with the
Secure-Preferences library. You'll see the file from the Secure-Preferences library
is a collection of seemingly random entries that give no clue to their purpose.

ff A standard SharedPreferences XML file:
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<int name="timeout " value="500" />
<boolean name="is_logged_in" value="true" />
<string name="pref_fav_book">androidsecuritycookbook</string>
</map>

ff A SharedPreferences XML file using Secure-Preferences library:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="MIIEpQIBAAKCAQEAyb6BkBms39I7imXMO0UW1EDJsbGNs">
HhiXTk3JRgAMuK0wosHLLfaVvRUuT3ICK
</string>
<string name="TuwbBU0IrAyL9znGBJ87uEi7pW0FwYwX8SZiiKnD2VZ7">
va6l7hf5imdM+P3KA3Jk5OZwFj1/Ed2
</string>
<string name="8lqCQqn73Uo84Rj">k73tlfVNYsPshll19ztma7U">
tEcsr41t5orGWT9/pqJrMC5x503cc=
</string>
</map>

Encryption and Developing Device Administration Policies

310

The first time SecurePreferences is instantiated, an AES encryption key is generated
and stored. This key is used to encrypt/decrypt all future keys/values that are saved via the
standard SharedPreferences interface.

The shared preference file is created with Context.MODE_PRIVATE that enforces app
sandbox security and ensures that only your app has access. However, in the case of rooted
devices, sandbox security cannot be relied upon. More correctly, Secure-Preferences is
obfuscating the preferences; therefore, this should not be considered as bulletproof security.
Instead, view it as a quick win for incrementally making an Android app more secure. For
instance, it will stop users on rooted devices easily modifying your app's SharedPreferences.

Secure-Preferences could be further enhanced to generate the key based on the user input
password using a technique called password-based encryption (PBE), which is covered in the
next chapter.

See also
ff The SharedPreferences interface in the Android Developers Reference guide

at https://developer.android.com/reference/android/content/
SharedPreferences.html

ff Article on Secure-Preferences by Daniel Abraham at http://www.codeproject.
com/Articles/549119/Encryption-Wrapper-for-Android-
SharedPreferences

ff The Secure-Preferences library at https://github.com/scottyab/secure-
preferences

ff The CWAC-prefs library (an alternative to Secure-Preferences) at https://github.
com/commonsguy/cwac-prefs

Password-based encryption
One of the larger issues with encryption is the management and secure storage of
encryption keys. Until now and in the pervious recipes, we have settled for storing the key
in SharedPreferences as recommended on the Google developer's blog; however, this is not
ideal for rooted devices. On rooted devices, you cannot rely on the Android system security
sandbox as the root user has access to all areas. By that we mean, unlike on a unrooted
device, other apps can obtain elevated root privileges.

The potential for an insecure app sandbox is an ideal case for password-based encryption
(PBE). It offers the ability to create (or more correctly derive) the encryption key at runtime
using a passcode/password that is usually supplied by the user.

Another solution for key management is to use a system keychain; Android's version of this is
called the Android KeyStore, which we will review in a later recipe.

Chapter 9

311

Getting ready
PBE is part of the Java Cryptography Extension, and so is already included in Android SDK.

In this recipe, we'll use an initialization vector (IV) and salt as part of the key derivation.
We covered the IV in the previous recipe, and it helps create more randomness. So, even
the same messages that are encrypted with the same key would produce different cipher
texts. Salt is similar to an IV in that it is usually a random data that is added as part of the
encryption process to enhance its cryptographic strength.

How to do it...
Let's get started.

1.	 First, we define some helper methods to retrieve or create IV and salt. We will use
them as part of the key derivation and encryption:
 private static IvParameterSpec iv;

 public static IvParameterSpec getIV() {
 if (iv == null) {
 iv = new IvParameterSpec(generateRandomByteArray(32));
 }
 return iv;
 }

 private static byte[] salt;

 public static byte[] getSalt() {
 if (salt == null) {
 salt = generateRandomByteArray(32);
 }
 return salt;
 }

 public static byte[] generateRandomByteArray(int sizeInBytes) {
 byte[] randomNumberByteArray = new byte[sizeInBytes];
 // populate the array with random bytes using non seeded
secure random
 new SecureRandom().nextBytes(randomNumberByteArray);
 return randomNumberByteArray;
 }

Encryption and Developing Device Administration Policies

312

2.	 Generate the PBE key:
public static SecretKey generatePBEKey(char[] password, byte[]
salt)
 throws NoSuchAlgorithmException, InvalidKeySpecException {

 final int iterations = 10000;
 final int outputKeyLength = 256;

 SecretKeyFactory secretKeyFactory = SecretKeyFactory
 .getInstance("PBKDF2WithHmacSHA1");
 KeySpec keySpec = new PBEKeySpec(password, salt,
 iterations, outputKeyLength);
 SecretKey secretKey =
 secretKeyFactory.generateSecret(keySpec);
 return secretKey;
 }

3.	 Write a sample method showing how to encrypt using a newly derived PBE key:
public static byte[] encrpytWithPBE(String painText, String
userPassword)
 throws GeneralSecurityException, IOException {

 SecretKey secretKey =
 generatePBEKey(userPassword.toCharArray(),getSalt());

 final Cipher cipher =
 Cipher.getInstance("AES/CBC/PKCS5Padding");
 cipher.init(Cipher.ENCRYPT_MODE, secretKey, getIV());
 return cipher.doFinal(painText.getBytes("UTF-8"));
 }

4.	 Write a sample method showing how to decrypt cipher text using a newly derived PBE
key:

public static String decrpytWithPBE(byte[] cipherText, String
userPassword)
 throws GeneralSecurityException, IOException {

 SecretKey secretKey =
 generatePBEKey(userPassword.toCharArray(),getSalt());

 final Cipher cipher =
 Cipher.getInstance("AES/CBC/PKCS5Padding");
 cipher.init(Cipher.DECRYPT_MODE, secretKey, getIV());
 return cipher.doFinal(cipherText).toString();
 }

Chapter 9

313

How it works...
In step 1, we define methods similar to the ones we have used in the previous recipes. Just
to reiterate, it's essential for the salt and IV to be consistent to be able to decrypt encrypted
data. For example, you could generate a salt per app and store it in SharedPreferences.
Also, the size of the salt is typically the same as the key size, which in this example is 32
bytes / 256 bit. Typically, you would save the IV along with cipher text to be retrieved upon
decryption.

In step 2, we derive a 256 bit AES SecretKey using PBE with the user's password.
PBKDF2 is a commonly used algorithm for deriving a key from a user password; the Android
implementation of this algorithm is noted as PBKDF2WithHmacSHA1.

As part of the PBEKeySpec, we define the number iterations used internally within
SecretKeyFactory to generate the secret key. The larger the number of iterations, the
longer the key derivation takes. To defend against Brute Force attacks, it is recommended
that the time to derive the key should be more than 100ms; Android uses 10,000 iterations to
generate the encryption key for encrypted backups.

Steps 3 and 4 demonstrate using the secret key with the Cipher object to encrypt and
decrypt; you'll notice that these are very similar to the methods noted in an earlier recipe. But
of course, for decryption, the IV and salt are not randomly generated but re-used form the
encryption step.

There's more…
In Android 4.4, a subtle change was made to the SecretKeyFactory class when dealing
with PBKDF2WithHmacSHA1 and Unicode passphrases. Previously, PBKDF2WithHmacSHA1
only looked at the lower eight bits of Java characters in passphrases; the change to the
SecretKeyFactory class allowed the use of all the available bits in Unicode characters.
To maintain backward compatibility, you can use this new key generation algorithm
PBKDF2WithHmacSHA1And8bit. If you are using ASCII, this change will not affect you.

Here's a code sample of how to maintain backward compatibility:

SecretKeyFactory secretKeyFactory;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
secretKeyFactory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1An
d8bit");
} else {
secretKeyFactory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
}

Encryption and Developing Device Administration Policies

314

See also
ff The SecretKeyFactory class in the Android Developers Reference guide

at https://developer.android.com/reference/javax/crypto/
SecretKeyFactory.html

ff The PBEKeySpec class in the Android Developers Reference guide at https://
developer.android.com/reference/javax/crypto/spec/PBEKeySpec.
html

ff Java Cryptography Extension in the Java Cryptography Architecture (JCA) Reference
guide at http://docs.oracle.com/javase/6/docs/technotes/guides/
security/crypto/CryptoSpec.html

ff The Using Cryptography to Store Credentials Safely Android Developer's blog
at http://android-developers.blogspot.co.uk/2013/02/using-
cryptography-to-store-credentials.html

ff Sample PBE project by Nikolay Elenkov at https://github.com/nelenkov/
android-pbe

ff Changes to the SecretKeyFactory API in Android 4.4 at http://android-
developers.blogspot.co.uk/2013/12/changes-to-secretkeyfactory-
api-in.html

Encrypting a database with SQLCipher
SQLCipher is one of the simplest ways to enable secure storage in an Android app, and it's
compatible for devices running Android 2.1+. SQLCipher uses 256-bit AES in CBC mode to
encrypt each database page; in addition, each page has its own random initialization vector to
further increase security.

SQLCipher is a separate implementation of the SQLite database, and rather than
implementing its own encryption, it uses the widely used and tested OpenSSL libcrypto
library. While this ensures greater security and wider compatibility, it does come with a
relatively high .apk file footprint of roughly 7 MB. This additional weight is probably the only
disadvantage of using SQLCipher.

According to the SQLCipher website, in terms of read/write performance, there is a ~5
percent performance hit that is negligible unless your app is performing complex SQL joins
(but it is worth noting that these aren't great in SQLite either). The good news for commercial
development is that not only is SQLCipher for Android open source, it is also released under a
BSD-style license.

Chapter 9

315

Getting ready
To start with, we will download and set up your Android project with SQLCipher.

1.	 Download the latest binary packages via the link on the SQLCipher GitHub page, or
follow this direct link https://s3.amazonaws.com/sqlcipher/SQLCipher+fo
r+Android+v3.0.0.zip.

2.	 Unpack the ZIP file.

3.	 Copy the icudt46l.zip file from /assets to /assets of your application.

4.	 The /libs directory contains several JARs and folders containing native libraries.

5.	 Copy the *.jar files to you application's /libs directory. You may already be
using Commons-codec and/or guava; if so, check if the version is compatible with
SQLCipher.

6.	 Both the ARM and x86 implementations of the native code are included; however,
you'll probably only need the ARM-based native libraries. So, copy the armeabi folder
to /libs of your application.

How to do it...
Let's create an encrypted SQLite database.

1.	 There are several ways to handle SQLite database, either by working directly with the
SQLiteDatabase object or using SQLiteOpenHelper. But generally, if you are
already using an SQLite database in your app, simply replace the import android.
database.sqlite.* statement with import net.sqlcipher.database.*.

2.	 The simplest way to create an encrypted SQLCipher database is to call
openOrCreateDatabase(…) with a password:
private static final int DB_VERSION = 1;
 private static final String DB_NAME = "my_encrypted_data.db";

 public void initDB(Context context, String password) {
 SQLiteDatabase.loadLibs(context);
 SQLiteDatabase database = SQLiteDatabase.
openOrCreateDatabase(DB_NAME, password, null);
 database.execSQL("create table MyTable(a, b)");

 }

Encryption and Developing Device Administration Policies

316

3.	 If you're using the SQLiteOpenHelper object, you would have extended it. In
this example, we'll assume that your extension is called SQLCipherHelper.
When you call getWritableDatabase, you'll notice that you are required to
pass a string argument (the database passphrase) with SQLCipher's version of
SQLiteOpenHelper:

import net.sqlcipher.database.SQLiteOpenHelper;

public class SQLCipherHelper extends SQLiteOpenHelper {
private static final int DB_VERSION = 1;

private static final String DB_NAME = "my_encrypted_data.db";

public SQLCipherHelper (Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 SQLiteDatabase.loadLibs(context);

}
}

The SQLCipher native libraries need to be loaded before
any database operation can be completed using the
SQLiteDatabase.loadLibs(context) statement. Ideally
this call should be located in the onCreate lifecycle method of
either a content provider or your application's application object.

How it works…
The sample code illustrates the two most common ways of working with SQLite database:
directly with the SQLiteDatabase object or using SQLiteOpenHelper.

The main point to note is the difference between using the net.sqlcipher.database API
and the default SQLite API is the use of passphrase when we create or retrieve the SQLCipher
database object. SQLCipher derives the encryption key using PBKDF2, as covered in the
previous recipe. The default configuration generates a 256 bit AES key using 4,000 iterations
at the time of writing this book. It's the job of the developer to decide how to generate the
passphrase. You could generate using a PRNG on a per app basis or for greater randomness
and so greater security input by the user. SQLCipher transparently encrypts and decrypts with
the derived key. It also uses a message authentication code (MAC) to ensure both integrity
and authenticity, ensuring that the data has not been accidently or maliciously tampered with.

Chapter 9

317

There's more...
It's worth noting that because much of SQLCipher is written in native C/C++, it is compatible
with other platforms such as Linux, Windows, iOS, and Mac OS.

IOCipher
Think of IOCipher as SQLCipher's long lost cousin from the good people at the Guardian
project. It offers the ability to mount an encrypted virtual filesystem that allows developers to
transparently encrypt all files within their app's directory. As with SQLCipher, IOCipher relies on
the developer to manage the password and supports Android 2.1+.

One huge advantage of IOCipher is that it is a clone of the java.io API. This means that from
an integration perspective, there are few code changes to the existing file management code.
The difference is that the filesystem is first mounted with a password, and instead of using
java.io.File, you use info.guardianproject.iocipher.File.

Even though IOCipher uses parts of SQLCipher, it is less mature but worth investigating if you
wish to protect the files rather than data within SQLite database.

See also
ff The SQLCipher downloads at http://sqlcipher.net/downloads/

ff The SQLCipher for Android source code at https://github.com/sqlcipher/
android-database-sqlcipher

ff The IOCipher: Virtual Encrypted Disks project at https://guardianproject.
info/code/iocipher/

Android KeyStore provider
In Android 4.3, a new facility was added to allow apps to save private encryption keys in a
system KeyStore. Called Android KeyStore, it restricts access only to the app that created
them, and it was secured using the device pin code.

Specifically, the Android KeyStore is a certificate store, and so only public/private keys can be
stored. Currently, arbitrary symmetric keys such as an AES key cannot be stored. In Android
4.4, the Elliptic Curve Digital Signature Algorithm (ECDSA) support was added to the
Android KeyStore. This recipe discusses how to generate a new key, and save and fetch it from
the Android KeyStore.

Encryption and Developing Device Administration Policies

318

Getting ready
As this feature was only added in Android 4.3, ensure that the minimum SDK version in the
Android manifest file is set to 18.

How to do it...
Let's get started.

1.	 Create a handle on your app's KeyStore:
public static final String ANDROID_KEYSTORE = "AndroidKeyStore";

 public void loadKeyStore() {
 try {
 keyStore = KeyStore.getInstance(ANDROID_KEYSTORE);
 keyStore.load(null);
 } catch (Exception e) {
 // TODO: Handle this appropriately in your app
 e.printStackTrace();
 }
 }

2.	 Generate and save the app's key pair:
 public void generateNewKeyPair(String alias, Context context)
 throws Exception {

 Calendar start = Calendar.getInstance();
 Calendar end = Calendar.getInstance();
 // expires 1 year from today
 end.add(1, Calendar.YEAR);

 KeyPairGeneratorSpec spec = new KeyPairGeneratorSpec.
Builder(context)
.setAlias(alias)
.setSubject(new X500Principal("CN=" + alias))
.setSerialNumber(BigInteger.TEN)
.setStartDate(start.getTime())
.setEndDate(end.getTime())
.build();

 // use the Android keystore
 KeyPairGenerator gen =
 KeyPairGenerator.getInstance("RSA", ANDROID_KEYSTORE);
 gen.initialize(spec);

Chapter 9

319

 // generates the keypair
 gen.generateKeyPair();
 }

3.	 Retrieve the key with a given alias:
 public PrivateKey loadPrivteKey(String alias) throws Exception {

 if (keyStore.isKeyEntry(alias)) {
 Log.e(TAG, "Could not find key alias: " + alias);
 return null;
 }

 KeyStore.Entry entry = keyStore.getEntry(KEY_ALIAS, null);

 if (!(entry instanceof KeyStore.PrivateKeyEntry)) {
 Log.e(TAG, " alias: " + alias + " is not a PrivateKey");
 return null;
 }

 return ((KeyStore.PrivateKeyEntry) entry).getPrivateKey();
 }

How it works...
The KeyStore class has been around since API level 1. To access the new Android KeyStore,
you use a special constant "AndroidKeystore".

According to the Google documentation, there is a strange issue with the KeyStore class
that requires you to call the load(null) method even though you are not loading the
KeyStore from an input stream; otherwise, you may experience a crash.

When generating the key pair, we populate a KeyPairGeneratorSpec.Builder object
with the required details—including the alias that we use to retrieve it later. In this example, we
set an arbitrary validation period of 1 year from the current date and default the serial to TEN.

Loading a key from the alias is as simple as loading keyStore.getEntry("alias",
null); from here, we cast to the PrivateKey interface so that we can use it in our
encryption/decryption.

There's more...
The API for the KeyChain class was also updated in Android 4.3 to allow developers to
determine whether the device supports hardware-backed certificate store or not. This
basically means that the device supports a secure element for the certificate store. This is an
exciting enhancement as it promises to keep the certificate store safe even on rooted devices.
However, not all devices support this hardware feature. The LG Nexus 4, a popular device,
uses ARM's TrustZone for hardware protection.

Encryption and Developing Device Administration Policies

320

See also
ff The KeyStore class in the Android Developer reference guide at https://

developer.android.com/reference/java/security/KeyStore.html

ff The KeyStore API sample at https://developer.android.com/samples/
BasicAndroidKeyStore/index.html

ff The Credential storage enhancements in Android 4.3 article by Nikolay Elenkov
at http://nelenkov.blogspot.co.uk/2013/08/credential-storage-
enhancements-android-43.html

ff ARM TrustZone at http://www.arm.com/products/processors/
technologies/trustzone/index.php

Setting up device administration policies
First introduced in Android 2.2, the Device Admin policies grant abilities to apps to gain
a greater level of device control. These features are primarily aimed at enterprise app
developers given their controlling, restrictive, and potentially destructive nature, and offer an
alternative to a third-party Mobile Device Management (MDM) solution. In general, this is not
aimed at consumer apps unless a trust relationship already exists, for example, a bank and a
banking app.

This recipe will define two device policies designed to strengthen the device that could be part
of an enterprise's mobile security policy:

ff Enforce device encryption (which also ensures that a device pin/password is set)

ff Enforce maximum screen lock timeout

Although device encryption is no replacement for ensuring that the app data is encrypted
properly, it does add to the overall device security. Reducing the maximum screen lock
timeout helps protect the device if left unattended.

There is no restriction on the number of apps enforcing device policies. If there is a conflict
on policy, the system defaults to the most secure policy. For example, if there was a conflict
on the password strength requirement's policy, the strongest policy would be applied to
satisfy all policies.

Getting ready
The Device Admin policies were added in Version 2.2; however, this feature and the specific
restriction for device encryption were not added until Android 3.0. Therefore, for this recipe,
ensure that you are building against a SDK above API 11.

Chapter 9

321

How to do it...
Let's get started.

1.	 Define a device administration policy by creating a new .xml file called admin_
policy_encryption_and_lock_timeout.xml in the res/xml folder with the
following content:
<device-admin xmlns:android="http://schemas.android.com/apk/res/
android" >
 <uses-policies>
 <force-lock />
 <encrypted-storage />
 </uses-policies>
</device-admin>

2.	 Create a class that extends the DeviceAdminReceiver class. This is the app entry
point for system broadcasts relating to device administration:
public class AppPolicyReceiver extends DeviceAdminReceiver {

 // Called when the app is about to be deactivated as a device
administrator.
 @Override
 public void onDisabled(Context context, Intent intent) {
 // depending on your requirements, you may want to disable the
// app or wipe stored data e.g clear prefs
 context.getSharedPreferences(context.getPackageName(),
 Context.MODE_PRIVATE).edit().clear().apply();
 super.onDisabled(context, intent);
 }

 @Override
 public void onEnabled(Context context, Intent intent) {
 super.onEnabled(context, intent);

 // once enabled enforce
 AppPolicyController controller = new AppPolicyController();
 controller.enforceTimeToLock(context);

 controller.shouldPromptToEnableDeviceEncrpytion(context);
 }

 @Override
 public CharSequence onDisableRequested(Context context, Intent
intent) {

Encryption and Developing Device Administration Policies

322

 // issue warning to the user before disable e.g. app prefs
// will be wiped
 return context.getText(R.string.device_admin_disable_policy);
 }
}

3.	 Add receiver definition to your Android manifest file:
<receiver
 android:name="YOUR_APP_PGK.AppPolicyReceiver"
 android:permission="android.permission.BIND_DEVICE_ADMIN" >
 <meta-data
 android:name="android.app.device_admin"
 android:resource="@xml/admin_policy_encryption_and_lock_
timeout" />

 <intent-filter>
 <action android:name="android.app.action.DEVICE_ADMIN_
ENABLED" />
 <action android:name="android.app.action.DEVICE_ADMIN_
DISABLED" />
 <action android:name="android.app.action.DEVICE_ADMIN_
DISABLE_REQUESTED" />
 </intent-filter>
</receiver>

Defining the receiver allows AppPolicyReceiver to receive system broadcast
intents to disable/request disabling of the admin settings. You should also notice
that this is where we reference the policy XML file in the metadata via the filename
admin_policy_encryption_and_lock_timeout.

4.	 A device policy controller handles communication with DevicePolicyManager with
any additional application-specific logic. The first method that we defined is for other
application components (such as an activity) to validate device admin status and to
get intents that are specific to device admin:
public class AppPolicyController {

 public boolean isDeviceAdminActive(Context context) {
 DevicePolicyManager devicePolicyManager =
(DevicePolicyManager) context
 .getSystemService(Context.DEVICE_POLICY_SERVICE);

 ComponentName appPolicyReceiver = new ComponentName(context,
 AppPolicyReceiver.class);

 return devicePolicyManager.isAdminActive(appPolicyReceiver);
 }

Chapter 9

323

 public Intent getEnableDeviceAdminIntent(Context context) {

 ComponentName appPolicyReceiver = new ComponentName(context,
 AppPolicyReceiver.class);

 Intent activateDeviceAdminIntent = new Intent(
 DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);

 activateDeviceAdminIntent.putExtra(
 DevicePolicyManager.EXTRA_DEVICE_ADMIN,
appPolicyReceiver);

 // include optional explanation message
 activateDeviceAdminIntent.putExtra(
 DevicePolicyManager.EXTRA_ADD_EXPLANATION,
 context.getString(R.string.device_admin_activation_
message));

 return activateDeviceAdminIntent;
 }

public Intent getEnableDeviceEncryptionIntent() {
 return new Intent(DevicePolicyManager.ACTION_START_
ENCRYPTION);
 }

5.	 In AppPolicyController, we now define the method that actually enforces the
lock screen timeout. We've arbitrarily chosen a maximum lock time of 3 minutes, but
this should align with an enterprise's security policy:
 private static final long MAX_TIME_TILL_LOCK = 3 * 60 * 1000;

 public void enforceTimeToLock(Context context) {
 DevicePolicyManager devicePolicyManager =
(DevicePolicyManager) context
 .getSystemService(Context.DEVICE_POLICY_SERVICE);

 ComponentName appPolicyReceiver = new ComponentName(context,
 AppPolicyReceiver.class);

 devicePolicyManager.setMaximumTimeToLock(appPolicyReceiver,
 MAX_TIME_TILL_LOCK);
 }

Encryption and Developing Device Administration Policies

324

6.	 Encrypting the device may take some time depending on the device's hardware and
external storage size. As part of enforcing the device encryption policy, we need a way
to check whether the device is encrypted or encryption is in progress:
public boolean shouldPromptToEnableDeviceEncryption(Context
context) {
 DevicePolicyManager devicePolicyManager =
(DevicePolicyManager) context
 .getSystemService(Context.DEVICE_POLICY_SERVICE);
 int currentStatus = devicePolicyManager.
getStorageEncryptionStatus();
 if (currentStatus == DevicePolicyManager.ENCRYPTION_STATUS_
INACTIVE) {
 return true;
 }
 return false;
 }
}

7.	 We define an example activity to show how it's possible to integrate
AppPolicyController to help direct the user to enable system settings and
handle the responses:
public class AppPolicyDemoActivity extends Activity {

 private static final int ENABLE_DEVICE_ADMIN_REQUEST_CODE = 11;
 private static final int ENABLE_DEVICE_ENCRYPT_REQUEST_CODE =
12;
 private AppPolicyController controller;
 private TextView mStatusTextView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_app_policy);
 mStatusTextView = (TextView) findViewById(R.
id.deviceAdminStatus);

 controller = new AppPolicyController();

 if (!controller.isDeviceAdminActive(getApplicationContext()))
{
 // Launch the activity to have the user enable our admin.
 startActivityForResult(
 controller

Chapter 9

325

 .getEnableDeviceAdminIntent(getApplicationConte
xt()),
 ENABLE_DEVICE_ADMIN_REQUEST_CODE);
 } else {
 mStatusTextView.setText("Device admin enabled, yay!");
 // admin is already activated so ensure policies are set
 controller.enforceTimeToLock(getApplicationContext());
 if (controller.shouldPromptToEnableDeviceEncrpytion(this)) {
 startActivityForResult(
 controller.getEnableDeviceEncrpytionIntent(),
 ENABLE_DEVICE_ENCRYPT_REQUEST_CODE);
 }
 }

 }

8.	 Here, we implement the onActivityResult(…) activity lifecycle method to handle
the results from the system activities when enabling device administration and
encryption:
 @Override
 protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (requestCode == ENABLE_DEVICE_ADMIN_REQUEST_CODE) {
 if (resultCode != RESULT_OK) {
 handleDevicePolicyNotActive();
 } else {
 mStatusTextView.setText("Device admin enabled");
 if (controller.shouldPromptToEnableDeviceEncrpytion(this))
{
 startActivityForResult(
 controller.getEnableDeviceEncryptionIntent(),
 ENABLE_DEVICE_ENCRYPT_REQUEST_CODE);
 }
 }

 } else if (requestCode == ENABLE_DEVICE_ENCRYPT_REQUEST_CODE
 && resultCode != RESULT_OK) {
 handleDevicePolicyNotActive();
 }
 }

Encryption and Developing Device Administration Policies

326

9.	 Finally, we add a method to handle the process if users choose not to activate this
app as a device administrator. In this sample, we simply post a message; however,
it is likely that you would prevent the app from running as the device wouldn't
compliment the enterprise security policy:

 private void handleDevicePolicyNotActive() {
 Toast.makeText(this, R.string.device_admin_policy_breach_
message,
 Toast.LENGTH_SHORT).show();
 }
}

How it works...
AppPolicyDemoActivity shows an example of handling user interactions and callbacks
in onActivityResult(…) from the system activities for enabling the device administration
and device encryption.

AppPolicyController encapsulates interactions with DevicePolicyManager and
contains the logic to apply the policies. You could locate this code in your activity or fragment,
but it's a better practice to keep it separate.

Defining the policies is as simple as defining them in the <uses-policies> element of the
device admin file. This is referenced in the metadata element of the AppPolicyReceiver
XML declaration in the Android manifest:

<meta-data android:name="android.app.device_admin"
android:resource="@xml/admin_policy_encryption_and_lock_timeout" />

Given the elevated privileges of being a device administrator, apps are not enabled as
device administrators on installation as a security precaution. This is achieved post
install by using a build-in system activity that is requested using an intent with a special
action AppPolicyController.getEnableDeviceAdminIntent() as shown.
This activity is started with startActivityForResult(). This returns a callback to
onActivityResult(…) where the users choose to activate or cancel. Nonactivation of
the device administration could count as being in breach of the enterprise security policy.
Therefore, if the user doesn't activate it, it might be enough to simply prevent the user from
using the app until it is activated.

We use the DevicePolicyManager.isActive(…) method to check if the app is active as
a device administrator. Typically, this check should be performed on the entry points to the
application, such as the first activity.

Chapter 9

327

The job of AppPolicyReceiver is to listen for device administration system events.
To receive these events, firstly you have to extend DeviceAdminReceiver and define
Receiver in the Android manifest file. The OnEnabled() callback is where we enforce
the lock screen timeout as it requires no additional user input. Enabling device encryption
requires user confirmation; therefore, we initiate this from the activity.

AppPolicyReceiver will also receive an onDisabled event if the user disables this
application as a device administrator. What to do when a user disables your app as device
administrator will vary between apps, as mentioned earlier it depends on enterprise security
policy. There is also an onDisableRequested callback method that allows us to display
a specific message to the user, detailing the consequences of disabling the application. In
this example, we wipe the SharedPreferences to ensure that data is not at risk while the
device is noncompliant.

There's more...
In addition to the policies used in this recipe, the device admin can enforce the following:

ff Password enabled

ff Password complexity (more control over this was added in 3.0)

ff Password history since 3.0

ff Maximum failed password attempts before factory reset

ff Wipe device (factory reset)

ff Lock device

ff Disable lock screen widgets (since 4.2)

ff Disable camera (since 4.0)

Users cannot uninstall apps that are active device administrators. To uninstall, they must first
deactivate the app as a device administrator, and then uninstall it. This allows you to perform
any necessary functions in DeviceAdminReceiver.onDisabled(), for example, reporting
an incident to a remote server.

Android 4.4 saw the introduction of an optional device admin feature constant to be used
in the <uses-feature> tag in the app's manifest.xml file. This declares that the app
requires device admin feature and ensures correct filtering on the Google Play store.

Encryption and Developing Device Administration Policies

328

Disabling device camera
An interesting feature added in Android 4.0 was the ability to disable camera use. This can be
useful for organizations looking to limit data leakage. The following code snippet shows the
policy to enable an app to disable camera use:

<device-admin xmlns:android="http://schemas.android.com/apk/res/
android" >
 <uses-policies>
 <disable-camera />
 </uses-policies>
</device-admin>

See also
ff The Device Administration API in the Android Developers Reference guide at

https://developer.android.com/guide/topics/admin/device-admin.
html

ff The Device Admin sample application at https://developer.android.com/
guide/topics/admin/device-admin.html#sample

ff The Enhancing Security with Device Management Policies web page in the Android
Developers training guide at https://developer.android.com/training/
enterprise/device-management-policy.html

ff FEATURE_DEVICE_ADMIN in the Android Developers Reference guide at
https://developer.android.com/reference/android/content/pm/
PackageManager.html#FEATURE_DEVICE_ADMIN

Index
Symbols
-a [action] 61
-alias tool 47
-c [category] 61
-d [data uri] 61
-ecn [extra key] [component name] 61
-e [extra key] [string value] 61
-efa [extra key] [float value, float value,...] 62
-ef [extra key] [float value] 61
-eia [extra key] [integer value, integer value,...]

61
-ei [extra key] [integer value] 61
-el [extra key] [long value] 61
.end method 224
-eu [extra key] [uri value] 61
-ez [extra key] [boolean value] 61
-f [flags] 61
.finduri module 143
-keyalg tool 47
-keysize tool 47
-keystore tool 47
.load() method 242
-n [component] 61
-t [mime type] 61
-t switch 27
<uses-feature> tag 327
-validity tool 47
-v tool 47

A
activities

enumerating 95, 97
launching 106-108

activity manager
interacting with, ADB used 59-62
used, for intent sniffing 129-134

ADB
about 29, 59, 119
applications, installing onto AVD 31
used, for activity manager interaction 59-62
used, for application resource extracting 63-

69
using, to interact with AVD 29, 30

adb push command 127
Address Resolution Protocol (ARP) 161
ADT

about 8
alternative installations 18-22
installing 8-11

Advanced Encryption Standard (AES)
encryption key 304

AES-GCM 306
allowClearUserData attribute 56
Android

enabling 24-26
Android application

reverse engineering, need for 196, 197
signing 45-47

android:authorities attribute 59
Android Debug Bridge. See ADB
android:description attribute 54, 171
Android Development Tools. See ADT
android:enabled attribute 58
android:exported attribute 57, 166
android:icon attribute 54
android:isolatedProcess attribute 58
Android KeyStore 302. See KeyStore

330

android:label attribute 54
Android logcat

information, disclosing via 118-122
AndroidManifest.xml file

inspecting 49- 52
working 52-59

android:name attribute 54, 57, 170
android:permission attribute 57
AndroidPinning 255
Android processes

debugging, GDB server used 232
android:protectionLevel attribute 55, 170
android:readPermission attribute 59
Android Virtual Device (AVD) 35
Android Virtual Devices. See AVDs
android:writePermission attribute 59
Ant build system

DexGuard, enabling for 190
ant release command 192
API hiding 189
API sources

updating 16
APK file 45
apktool 49
app.broadcast.info module 104
application

properties 116, 117
protecting, from another 117
sensitive information communication, protect-

ing 118
user related data, examples 116

application attack surfaces
determining 104-06

application certificate enumerator
writing 112-114

application certificates
inspecting 34-44
requirements 34

application components
securing 166-168

ApplicationInfo class 184
application native libraries

decompiling 231
Application Packages (APKs) 31
Application Programming Interfaces (APIs) 8

application resources
extracting, via ADB 63-69

application signature
tamper detection, responding to 181
verifying 48, 177-180

assumeNoeffects attribute 188
AVDs

about 27
application, installing via ADB 31
creating 27, 28
external storage, emulating 28
files, copying off to 30
files, copying onto 30
interacting with, ADB used 29, 30
partition sizes 28

AVs
memory card, emulating 28

B
broadcast receivers

attacking 139-141
enumerating 103, 104

browser_autopwn module 164
Busybox

setting up 295
bytesToHex() method 255

C
CACert 249
checkClientTrusted() method 254
checkServerTrusted method 246, 251
Cipher.init() method 305
ClassDefs section 213, 214
components

securing, with custom properties 168-170
content provider paths

protecting 171-173
content providers

enumerating 98, 99
createClientConnectionManager method 242
cryptography libraries

using 302, 303

331

CURL 289
custom properties

used, for component securing 168, 169
CVE-2010-4804

URL 147
Cwac-prefs 308

D
Dalvik bytecode

about 219
interpreting 218
setting up 220-226

Dalvik Executable files. See DEX files
dangerous attribute 55
Data Access Object (DAO) 175
database

encrypting, with SQLCipher 314-317
debuggable attribute 56
Denial of Service (DoS) 135
description attribute 56
device administration policies

AppPolicyDemoActivity, working 326
device camera, disabling 328
setting up 320-326

DeviceAdminReceiver class 321
DevicePolicyManager.isActive(�) method 326
DEX

decompiling, to Java 227-230
Java, compiling to 197-199

Dex2Jar tool 227
dexdump

fuzzing 297, 299
dexdump utility 215
DEX file header 201-205, 206
DEX files

decompiling 200-217
format 200

DEX files format
about 200
ClassDefs section 212, 214
DEX file header 201-207
FieldIds section 211
MethodIds section 211, 212
ProtoIds section 210
StringIds section 207, 208
TypeIds section 209

DexGuard
comparing, with ProGuard 192
enabling, for Ant build system 190
enabling, for Gradle build system 190, 193
official website 193
used, for advanced code obfuscation 189-

193
DexGuard Eclipse plugin

installing 190
DexMethod 214
drozer

about 72
GitHub repository 95
session, running 87
setting up 79-87

drozer module
writing 108-110

drozer session
running 87, 89

drozer (Windows installer) option 80

E
Elliptic Curve Cryptography (ECC) 302
Elliptic Curve Digital Signature Algorithm

(ECDSA) 317
emulator

detecting 182, 183
enabled attribute 56
exclusive ORs (XORs) 203
execute method 111
eXtensible Markup Language (XML) 53

F
fetchAndPrintPinHashs method 250
FieldIds section 211
file permissions

base 8 259
Execute ability (x) 259
inspecting 258-268
Read ability (r) 259
Set Group ID ability (s) 259
Set User ID ability (s) 259
sticky bit 260
Write ability (w) 259

find -exec command 267
findX509TrustManager() method 245

332

frame 219
Fuzz testing 289

G
gdb command 236
GDB server

used, for Android processes debug 232-236
genkey tool 47
getAcceptedIssuers() methods 254
get_provider() function 99
Gradle build system

DexGuard, enabling for 190
gradle releaseCompile command 192
GrantURI 144
grant URI mechanism 173

I
installed packages

APK Path 94
Application Label 94
Data Directory 94
enumerating 90-94
GID 94
Process Name 94
Shared Libraries 94
Shared User ID 94
UID 94
Uses Permissions 94
version 94

installer
detecting 182, 183

inter-process communications (IPC) 167
Intrusion Detection System (IDS) 128
invoke-virtual method 226
IOCipher

about 317
advantage 317

J
Java

compiling, to DEX 197-199
DEX, decompiling to 227-230

Java Cryptographic Extensions (JCE) 302
Java Development Kit. See JDK
java -jar command 220

Java JDK 45
JD-GUI tool 227, 228
JDK

about 12
installing 12-15

K
KeyStore 317-319
keytool command 240
kill command 62

L
Linux 238
load(null) method 319
LocalTrustStoreMyHttpClient class 243
LocalTrustStoreTrustManager class 255

M
Mac 238
man-in-the-middle. See MITM attack
Memory size dialog 77
Mercury 72
META-INF folder

contents 41
MethodIds section 211, 212
MITM attack

about 158, 250
on applications 158-160
on mobile phones 161-164

Mobile Device Management (MDM) 320

N
Native Development Kit. See NDK
native executables

cross-compiling 268-275
native exploitation techniques

learning, need for 258
nc command 127
NDK

about 22, 23
installing 23

Netcat 124
network traffic

inspecting 123-128

333

prerequisites 124
network traffic, prerequisites

Netcat 124
TCPdump for Android 124
Wireshark 124

normal attribute 55

O
objdump tool 270
onCreate() method 307
onDisabled event 327
OnionKit library

StrongTrustManager, using from 247, 248
OpenSSL 238
Openssl -showcerts command 239
Orbot 249
OrbotHelper class 249

P
PackageManager class 184
password-based encryption (PBE) 310
permission group

defining 170
pinning 249
Process ID (PID) 234
ProGuard

comparing, with DexGuard 192
limitations 188, 189
output 188
used, for log message removal 184-188

proguard.config property 188
ProtoIds section 210
PseudoRandom Number Generator (PRNG)

306
PublicKeyExtractingTrustManager class 253
push command 127

R
race condition vulnerabilities

exploiting 276-278
exploiting, factors 276
exploiting, steps 279, 280

Radamsa
about 289
Busybox, setting up 295, 296

cross-compiling, for Android 291-295
dexdump, fuzzing 297, 298
obtaining 289, 290

Radamsa fuzzer 289
read/write permissions 144
registers 219
ReTrace tool 188
reverse engineering 196

S
Santoku

about 72
installing 73-78
setting up 73-78

Secure Hashing Algorithm (SHA) 203
Secure-Preferences 308
Secure Sockets Layer. See SSL
self-signed SSL certificates

antipattern 246
HttpsUrlConnection 243, 245
issues 238
using, in live environment 243
validating 238-243

sensitive information communication
extra-device communication 118
inter-application communication 118
inter-component communication 118

services
attacking 135-138
enumerating 100-102

signature attribute 55
signatureOrSystem attribute 55
signatures

inspecting 34-44
SQLCipher

used, for database encryption 314-317
SQL-injection attack

defending against 174, 176
SQL-injection vulnerable content providers

debuggable applications, exploiting 152-157
enumerating 150, 152

SSL 237
SSL pinning

about 249, 250
enhancements 255
limitations 256

334

steps 250-255
stack canary 272
stack memory corruption

exploiting 281-288
standard filesystem folders

/acct 261
/cache 261
/charger 262
/config 262
/data 261
/default.prop 262
/dev 261
/etc 261
/init 262
/init[device_name].rc 262
/init.rc 262
/mnt 261
/proc 261
/root 261
/sbin 261
/sdcard 261
/storage 262
/sys 261
/system 261
/uevent[device_name].rc 262
/ueventd.rc 262
/vendor 261

sticky bit 260
string-encryption feature 189
String.equalsIgnoreCase() method 180
StringIds section 207, 208
StrongTrustManager class

about 249
using, from OnionKit library 247

Substitute User (SU) 126
su substitute 233
symmetric encryption key

about 304
AES-GCM, using 306
creating 304-306

SystemProperties.java class 184

T
tamper

protecting, by debug flag detection 181-184
protecting, by emulator detection 182, 183
protecting, by installer detection 181

Tor project 249
TrustManager.checkServerTrusted server(�)

method 248
TrustManager class 253
truststore 241
typedef command 293
TypeIds section 209

U
Uniform resource identifiers (URIs) 172
Unzip 45

V
validateAppSignature() method 180
validateCertificatePin method 256
vulnerable content providers

about 141
data, extracting from 144-147
data, inserting into 148, 149
enumerating 142, 144

vulnerable function 286

W
Wget 289
Windows 239
WinZip 45
Wired Equivalent Privacy (WEP) 306
Wireshark 124

Thank you for buying

Android Security Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mobile Security: How to
Secure, Privatize, and
Recover Your Devices
ISBN: 978-1-84969-360-8 Paperback: 242 pages

Keep your data secure on the go

1.	 Learn how mobile devices are monitored and the
impact of cloud computing

2.	 Understand the attacks hackers use and how to
prevent them

3.	 Keep yourself and your loved ones safe online

VMware vCloud Security
ISBN: 978-1-78217-096-9 Paperback: 106 pages

Make your datacenter secure and compliant at every
level with VMware vCloud Networking and Security

1.	 Take away an in-depth knowledge of how to
secure a private cloud running on vCloud Director

2.	 Enable the reader with the knowledge, skills, and
abilities to achieve competence at building and
running a secured private cloud

3.	 Focuses on giving you broader view of the security
and compliance while still being manageable and
flexible to scale

Please check www.PacktPub.com for information on our titles

Spring Security 3.x Cookbook
ISBN: 978-1-78216-752-5 Paperback: 300 pages

Over 60 recipes to help you successfully safeguard your
web applications with Spring Security

1.	 Learn about all the mandatory security measures
for modern day applications using Spring Security

2.	 Investigate different approaches to application
level authentication and authorization

3.	 Master how to mount security on applications
used by developers and organizations

Android Application Security
Essentials
ISBN: 978-1-84951-560-3 Paperback: 218 pages

Write secure Android applications using the most
up-to-date techniques and concepts

1.	 Understand Android security from kernel to the
application layer

2.	 Protect components using permissions

3.	 Safeguard user and corporate data from prying
eyes

3.	 Understand the security implications of mobile
payments, NFC, and more

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Android Development Tools
	Introduction
	Installing the Android Development Tools (ADT)
	Installing the Java Development Kit (JDK)
	Updating the API sources
	Alternative installation of the ADT
	Installing the Native Development Kit (NDK)
	Emulating Android
	Creating Android Virtual Devices (AVDs)
	Using the Android Debug Bridge (ADB) to interact with the AVDs
	Copying files off/onto an AVD
	Installing applications onto the AVDs via ADB

	Chapter 2: Engaging with Application Security
	Introduction
	Inspecting application certificates and signatures
	Signing Android applications
	Verifying application signatures
	Inspecting the AndroidManifest.xml file
	Interacting with the activity manager via ADB
	Extracting application resources via ADB

	Chapter 3: Android Security Assessment Tools
	Introduction
	Installing and setting up Santoku
	Setting up drozer
	Running a drozer session
	Enumerating installed packages
	Enumerating activities
	Enumerating content providers
	Enumerating services
	Enumerating broadcast receivers
	Determining application attack surfaces
	Launching activities
	Writing a drozer module – a device enumeration module
	Writing an application certificate enumerator

	Chapter 4: Exploiting Applications
	Introduction
	Information disclosure via logcat
	Inspecting network traffic
	Passive intent sniffing via the activity manager
	Attacking services
	Attacking broadcast receivers
	Enumerating vulnerable content providers
	Extracting data from vulnerable content providers
	Inserting data into content providers
	Enumerating SQL-injection vulnerable content providers
	Exploiting debuggable applications
	Man in the middle attacks on applications

	Chapter 5: Protecting Applications
	Introduction
	Securing application components
	Protecting components with custom permissions
	Protecting content provider paths
	Defending against SQL injection attack
	Application signature verification
(anti-tamper)
	Tamper protection by detecting the installer, emulator, and debug flag
	Removing all log messages with ProGuard
	Advanced code obfuscation with DexGuard

	Chapter 6: Reverse Engineering Applications
	Introduction
	Compiling from Java to DEX
	Decompiling DEX files
	Interpreting the Dalvik bytecode
	Decompiling DEX to Java
	Decompiling application native libraries
	Debugging the Android processes using the GDB server

	Chapter 7: Secure Networking
	Introduction
	Validating self-signed SSL certificates
	Using StrongTrustManager from the OnionKit library
	SSL pinning

	Chapter 8: Native Exploitation and Analysis
	Introduction
	Inspecting file permissions
	Cross-compiling native executables
	Exploitation of race condition vulnerabilities
	Stack memory corruption exploitation
	Automated native Android fuzzing

	Chapter 9: Encryption and Developing Device Administration Policies
	Introduction
	Using cryptography libraries
	Generating a symmetric encryption key
	Securing SharedPreferences data
	Password-based encryption
	Encrypting a database with SQLCipher
	Android KeyStore provider
	Setting up device administration policies

	Index

