

Android Development with Kotlin

Learn Android application development with the extensive features of Kotlin

Marcin Moskala
Igor Wojda

BIRMINGHAM - MUMBAI

Android Development with Kotlin
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1280817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-368-7

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Marcin Moskala

Igor Wojda

Copy Editor

Safis Editing

Reviewers

Mikhail Glukhikh

Stepan Goncharov

Project Coordinator

Vaidehi Sawant

Commissioning Editor

Aaron Lazar

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Francy Puthiry

Content Development Editor

Rohit Kumar Singh

Graphics

Abhinash Sahu

Technical Editor

Pavan Ramchandani

Production Coordinator

Nilesh Mohite

About the Authors
Marcin Moskala is an experienced Android developer who is always looking for
ways to improve. He has been passionate about Kotlin since its early beta release. He
writes articles for Trade press and speaks at programming conferences.

Marcin is quite active in the programming and open source community and is also
passionate about cognitive and data science. You can visit his website (marcinmoskala.
com), or follow him on GitHub (MarcinMoskala) and on Twitter (@marcinmoskala).

I would like to thank my co-workers in Gamekit, Docplanner, and Apreel. I
especially want to thank my supervisors, who were not only supportive, but who are
also constant source of knowledge and inspiration: Mateusz Mikulski, Krzyysztof
Wolniak, Bartek Wilczynski and Rafal Trzeciak.
I would like to thank Marek Kaminski, Gleb Smirnov, Jacek Jablonski, and Maciej
Gorski for the corrections, and Dariusz Bacinski and James Shvarts for reviewing
the code of example application.
Also I would like to thank my family and my girlfriend, Maja Markiewicz for her
support, help, making an environment that is supporting passion and self-realization.

Igor Wojda is an experienced engineer with over 11 years of experience in software
development. His adventure with Android started a few years ago, and he is
currently working as a senior Android developer in the healthcare industry. Igor has
been deeply interested in Kotlin development long before the 1.0 version was
officially released, and he is an active member of the Kotlin community. He enjoys
sharing his passion for coding with developers.

To learn more about him, you can visit on Medium (@igorwojda) and follow him on
Twitter (@igorwojda).

http://marcinmoskala.com

I would also like to thank amazing team at Babylon, who are not only professionals
but also the inspiring and very helpful people, especially Mikolaj Leszczynski, Sakis
Kaliakoudas, Simon Attard, Balachandar Kolathur Mani, Sergio Carabantes, Joao
Alves, Tomas Navickas, Mario Sanoguera, Sebastien Rouif.
I offer thanks to all the reviewers, especially technical reviewer Stepan Goncharov,
Mikhail Glukhikh and my colleagues who lived us feedback on the drafts, especially
Michał Jankowski.
I also thankful to my family for all of their love and support. I'd like to thank my
parents for allowing me to follow my ambitions throughout my childhood and for all
the education.
Thanks also go to JetBrains for creating this awesome language and to the Kotlin
community for sharing the knowledge, being helpful, open and inspiring. This book
could not be written without you!
I offer special thanks to my friends, especially Konrad Hamela, Marcin Sobolski,
Maciej Gierasimiuk, Rafal Cupial, Michal Mazur and Edyta Skiba for their
friendship, inspiration and continuous support. I value your advice immensely.

About the Reviewers
Mikhail Glukhikh has graduated from Ioffe Physical Technical School in 1995 and
from Saint Petersburg State Polytechnical University in 2001 with master degree in
informational technologies. During 2001-2004, he was PhD student in the same
university, and then he defended PhD thesis in 2007. The title of his thesis is
Synthesis method development of special-purpose informational and control systems
with structural redundancy.

Mikhail worked in Kodeks Software Development Center during 1999-2000, and in
Efremov Research Institute of Electrophysical Apparatus during 2001-2002. Since
2002, he is a lead developer in Digitek Labs at computer system and software
engineering department. He was a senior lecturer of the department from 2004 to
2007, from 2007 he is an associate professor. In 2013 he had one-year stay in
Clausthal University of Technology as an invited researcher. In 2014, he worked at
SPb office of Intel corporation, since March 2015, he participates in Kotlin language
development at JetBrains company.

Mikhail is one of Digitek Aegis defect detection tool authors, also he is one of
Digitek RA tool authors. Nowadays primary R&D areas include code analysis, code
verification, code refactoring and code reliability estimation methods. Before he had
also interests in fault-tolerant system design and analysis and also in high-productive
digital signal processing complexes developing.

Stepan Goncharov is currently working at Grab as the engineering lead of the
Driver Android app. He is an organizer of Kotlin User Group Singapore who has
developed apps and games for Android since 2008. He is a Kotlin and RxJava addict,
and obsessed with elegant and functional style code. He is mainly focused on mobile
apps architecture.

Stepan is making a difference by spending more and more time contributing to open-
source projects. He is the reviewer of Learning RxJava, by Thomas Nield, published
by Packt.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount on the
eBook copy.

Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1787123685.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1787123685

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Beginning Your Kotlin Adventure
Say hello to Kotlin
Awesome Kotlin examples
Dealing with Kotlin code

Kotlin Playground
Android Studio

Configuring Kotlin for the project
Using Kotlin in a new Android project
Java to Kotlin converter (J2K)
Alternative ways to run Kotlin code

Kotlin under the hood
The Kotlin standard library

More reasons to use Kotlin
Summary

2. Laying a Foundation
Variables
Type inference
Strict null safety

Safe call
Elvis operator
Not null assertion
Let

Nullability and Java
Casts

Safe/unsafe cast operator
Smart casts

Type smart casts

Non-nullable smart cast
Primitive data types

Numbers
Char
Arrays
The Boolean type

Composite data types
Strings

String templates
Ranges
Collections

Statements versus expressions
Control flow

The if statement
The when expression
Loops

The for loop
The while loop
Other iterations
Break and continue

Exceptions
The try... catch block

Compile-time constants
Delegates
Summary

3. Playing with Functions
Basic function declaration and usages

Parameters
Returning functions

Vararg parameter
Single-expression functions
Tail-recursive functions
Different ways of calling a function

Default arguments values
Named arguments syntax

Top-level functions
Top-level functions under the hood
Local functions
Nothing return type
Summary

4. Classes and Objects

Classes
Class declaration

Properties
Read-write versus read-only property
Property access syntax between Kotlin and Java

Increment and decrement operators
Custom getters/setters

The getter versus property default value
Late-initialized properties
Annotating properties
Inline properties

Constructors
Property versus constructor parameter
Constructor with default arguments

Patterns
Inheritance

The JvmOverloads annotation
Interfaces
Data classes

The equals and hashCode method
The toString method
The copy method
Destructive declarations

Operator overloading
Object declaration
Object expression
Companion objects

Companion object instantiation
Enum classes
Infix calls for named methods
Visibility modifiers

Internal modifier and Java bytecode
Sealed classes
Nested classes
Import aliases
Summary

5. Functions as First-Class Citizens
Function type

What is function type under the hood?
Anonymous functions
Lambda expressions

Implicit name of a single parameter
Higher-order functions

Providing operations to functions
Observer (Listener) pattern
Callback after a threaded operation

Combination of named arguments and lambda expressions
Last lambda in argument convention

Named code surrounding
Processing data structures using LINQ style

Java SAM support in Kotlin
Named Kotlin function types

Named parameters in function type
Type alias

Underscore for unused variables
Destructuring in lambda expressions
Inline functions

The noinline modifier
Non-local returns
Labeled return in lambda expressions
Crossinline modifier
Inline properties

Function References
Summary

6. Generics Are Your Friends
Generics

The need for generics
Type parameters versus type arguments

Generic constraints
Nullability

Variance
Variance modifiers
Use-site variance versus declaration-site variance
Collection variance
Variance producer/consumer limitation
Invariant constructor

Type erasure
Reified type parameters

The startActivity method
Star-projections
Type parameter naming conventions
Summary

7. Extension Functions and Properties
Extension functions

Extension functions under the hood
No method overriding
Access to receiver elements
Extensions are resolved statically

Companion object extensions
Operator overloading using extension functions
Where should top-level extension functions be used?

Extension properties
Where should extension properties be used?

Member extension functions and properties
Type of receivers
Member extension functions and properties under the hood

Generic extension functions
Collection processing

Kotlin collection type hierarchy
The map, filter, flatMap functions
The forEach and onEach functions
The withIndex and indexed variants
The sum, count, min, max, and sorted functions
Other stream processing functions
Examples of stream collection processing
Sequence

Function literals with receiver
Kotlin standard library functions

The let function
Using the apply function for initialization
The also function
The run and with function
The to function

Domain-specific language
Anko

Summary
8. Delegates

Class delegation
Delegation pattern
Decorator pattern

Property delegation
What are delegated properties?
Predefined delegates

The lazy function
The notNull function
The observable delegate
The vetoable delegate
Property delegation to Map type

Custom delegates
View binging
Preference binding
Providing a delegate

Summary
9. Making Your Marvel Gallery Application

Marvel Gallery
How to use this chapter
Make an empty project
Character gallery

View implementation
Network definition
Business logic implementation
Putting it all together

Character search
Character profile display

Summary

Preface
Nowadays, the Android application development process is quite extensive. Over the
last few years, we have seen how various tools have evolved to make our lives
easier. However, one core element of Android application development process
hasn’t changed much over time, Java. The Android platform adapts to newer
versions of Java, but to be able to use them, we need to wait for a very long time
until new Android devices reach proper market propagation. Also, developing
applications in Java comes with its own set of challenges since Java is an old
language with many design issues that can’t be simply resolved due to backward
compatibility constraints.

Kotlin, on the other hand, is a new but stable language that can run on all Android
devices and solve many issues that Java cannot. It brings lots of proven
programming concepts to the Android development table. It is a great language that
makes a developer's life much easier and allows to produce more secure, expressive,
and concise code.

This book is an easy-to-follow, practical guide that will help you to speed up and
improve the Android development process using Kotlin. We will present many
shortcuts and improvements over Java and new ways of solving common problems.
By the end of this book, you will be familiar with Kotlin features and tools, and you
will be able to develop an Android application entirely in Kotlin.

What this book covers
Chapter 1, Beginning Your Kotlin Adventure, discusses Kotlin language, its features
and reasons to use it. We'll introduce reader to the Kotlin platform and show how
Kotlin fits into Android development process.

Chapter 2, Laying a Foundation, is largely devoted to the building blocks of the
Kotlin. It presents various constructs, data types, and features that make Kotlin an
enjoyable language to work with.

Chapter 3, Playing with Functions, explains various ways to define and call a
function. We will also discuss function modifiers and look at possible locations
where function can be defined.

Chapter 4, Classes and Objects, discusses the Kotlin features related to object-oriented
programming. You will learn about different types of class. We will also see features
that improve readability: properties operator overloading and infix calls.

Chapter 5, Functions as First-Class Citizens, covers Kotlin support for functional
programming and functions as first-class citizens. We will take a closer look at
lambdas, higher order functions, and function types.

Chapter 6, Generics Are Your Friends, explores the subjects of generic classes,
interfaces, and functions. We will take a closer look at the Kotlin generic type
system.

Chapter 7, Extension Functions and Properties, demonstrates how to add new
behavior to an existing class without using inheritance. We will also discuss simpler
ways to deal with collections and stream processing.

Chapter 8, Delegates, shows how Kotlin simplifies class delegation due to built-in
language support. We will see how to use it both by using built-in property delegates
and by defining custom ones.

Chapter 9, Making Your Marvel Gallery Application, utilizes most of the features
discussed in the book and use it to build a fully functional Android application in
Kotlin.

What you need for this book
To test and use the code presented in this book, you need only Android Studio
installed. Chapter 1, Beginning your Kotlin Adventure, explains how a new project can
be started and how the examples presented here can be checked. It also describes
how most of the code presented here can be tested without any program installed.

Who this book is for
To use this book, you should to be familiar with two areas:

You need to know Java and object-oriented programming concepts, including
objects, classes, constructors, interfaces, methods, getters, setters, and generic
types. So, if this area does not ring a bell, it will be difficult to fully understand
the rest of this book. Start instead with an introductory Java book and return to
this book afterward.
Though not mandatory, understanding the Android platform is much desirable
because it will help you to understand the presented examples in more detail,
and you’ll have deeper understanding the problems that are solved by Kotlin. If
you are an Android developer with 6-12 months of experience or you have
created few Android applications, you’ll be fine. On the other hand, if you feel
comfortable with OOP concepts but your knowledge of Android platform is
limited, you will probably still be OK for most of the book.

Being open-minded and eager to learn new technologies will be very helpful. If
something makes you curious or catches your attention, feel free to test it and play
with it while you are reading this book

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Let's look at the range data type, which allows to define end-inclusive ranges."

A block of code is set as follows:

 val capitol = "England" to "London"
 println(capitol.first) // Prints: England
 println(capitol.second) // Prints: London

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 ext.kotlin_version = '1.1.3'
 repositories {
 maven { url 'https://maven.google.com' }
 jcenter()
 }

Any command-line input or output is written as follows:

sdk install kotlin

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Set name,
package, and location for the new project. Remember to tick Include Kotlin support
option."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://w
ww.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtp
ub.com/support and register to have the files e-mailed directly to you. You can
download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublish
ing/Android-Development-with-Kotlin. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check them
out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Android-Development-with-Kotlin
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books-maybe a mistake in the text or
the code-we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.com/sub
mit-errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/su
pport and enter the name of the book in the search field. The required information
will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

Beginning Your Kotlin Adventure
Kotlin is great language that makes Android development easier, faster, and much
more pleasant. In this chapter, we will discuss what Kotlin really is and look at many
Kotlin examples that will help us build even better Android applications. Welcome
to the amazing journey of Kotlin, that will change the way you think about writing
code and solving common programming problems.

In this chapter, we will cover the following topics:

First steps with Kotlin
Practical Kotlin examples
Creating new Kotlin project in Android Studio
Migrating existing Java project to Kotlin
The Kotlin standard library (stdlib)
Why Kotlin is a good choice to learn

Say hello to Kotlin
Kotlin is a modern, statically typed, Android-compatible language that fixes many
Java problems, such as null pointer exceptions or excessive code verbosity. Kotlin is
a language inspired by Swift, Scala, Groovy, C#, and many other languages. Kotlin
was designed by JetBrains professionals, based on analysis of both developers
experiences, best usage guidelines (most important are clean code and effective
Java), and data about this language's usage. Deep analysis of other programming
languages has been done. Kotlin tries hard to not repeat the mistakes from other
languages and take advantage of their most useful features. When working with
Kotlin, we can really feel that this is a mature and well-designed language.

Kotlin takes application development to a whole new level by improving code
quality and safety and boosting developer performance. Official Kotlin support for
the Android platform was announced by Google in 2017, but the Kotlin language has
been here for some time. It has a very active community and Kotlin adoption on the
Android platform is already growing quickly. We can describe Kotlin as a safe,
expressive, concise, versatile, and tool-friendly language that has great
interoperability with Java and JavaScript. Let's discuss these features:

Safety: Kotlin offers safety features in terms of nullability and immutability.
Kotlin is statically typed, so the type of every expression is known at compile
time. The compiler can verify that whatever property or method that we are
trying to access or a particular class instance actually exists. This should be
familiar from Java which is also statically typed, but unlike Java, Kotlin type
system is much more strict (safe). We have to explicitly tell the compiler
whether the given variable can store null values. This allows making the
program fail at compile time instead of throwing a NullPointerException at
runtime:

Easy debugging: Bugs can be detected much faster during the development
phase instead of crashing the application after it is released and thus damaging
the user experience. Kotlin offers a convenient way to work with immutable

data. For example, it can distinguish mutable (read-write) and immutable (read-
only) collections by providing convenient interfaces (under the hood collections
are still mutable).
Conciseness: Most of the Java verbosity was eliminated. We need less code to
achieve common tasks and thus the amount of boilerplate code is greatly
reduced, even comparing Kotlin to Java 8. As a result, the code is also easier to
read and understand (expressive).
Interoperability: Kotlin is designed to seamlessly work side by side with Java
(cross-language project). The existing ecosystem of Java libraries and
frameworks works with Kotlin without any performance penalties. Many Java
libraries have even Kotlin-specific versions that allow more idiomatic usage
with Kotlin. Kotlin classes can also be directly instantiated and transparently
referenced from Java code without any special semantics and vice versa. This
allows us to incorporate Kotlin into existing Android projects and use Kotlin
easily together with Java (if we want to).
Versatility: We can target many platforms, including mobile applications
(Android), server-side applications (backend), desktop applications, frontend
code running in the browser, and even build systems (Gradle).

Any programming language is only as good as its tool support. Kotlin has
outstanding support for modern IDEs such as Android Studio, IntelliJ Idea, and
Eclipse. Common tasks like code assistance or refactoring are handled properly. The
Kotlin team works hard to make the Kotlin plugin better with every single release.
Most of the bugs are quickly fixed and many of the features requested by the
community are implemented.

Kotlin bug tracker: https://youtrack.jetbrains.com/issues/KT
Kotlin slack channel: http://slack.kotlinlang.org/

Android application development becomes much more efficient and pleasant with
Kotlin. Kotlin is compatible with JDK 6, so applications created in Kotlin run safely
even on old Android devices that precede Android 4.

Kotlin aims to bring you the best of both worlds by combining concepts and
elements from both procedural and functional programming. It follows many
guidelines are described in the book, Effective Java, 2nd Edition, by Joshua Bloch
which is considered must read a book for every Java developer.

On top of that, Kotlin is open sourced, so we can check out the project and be

https://youtrack.jetbrains.com/issues/KT
http://slack.kotlinlang.org/

actively involved in any aspect of the Kotlin project such as Kotlin plugins,
compilers, documentations or Kotlin language itself.

Awesome Kotlin examples
Kotlin is really easy to learn for Android developers because the syntax is similar to
Java and Kotlin often feels like natural Java evolution. At the beginning, a developer
usually writes Kotlin code having in mind habits from Java, but after a while, it is
very easy to move to more idiomatic Kotlin solutions. Let's look at some cool Kotlin
features, and see where Kotlin may provide benefits by solving common
programming tasks in an easier, more concise, and more flexible way. We have tried
to keep examples simple and self-explanatory, but they utilize content from various
parts of this book, so it's fine if they are not fully understood at this point. The goal
of this section is to focus on the possibilities and present what can be achieved by
using Kotlin. This section does not necessarily need to fully describe how to achieve
it. Let's start with a variable declaration:

 var name = "Igor" // Inferred type is String
 name = "Marcin"

Notice that Kotlin does not require semicolons. You can still use them, but they are
optional. We also don't need to specify a variable type because it's inferred from the
context. Each time the compiler can figure out the type from the context we don't
have to explicitly specify it. Kotlin is a strongly typed language, so each variable has
an adequate type:

 var name = "Igor"
 name = 2 // Error, because name type is String

The variable has an inferred String type, so assigning a different value (integer) will
result in compilation error. Now, let's see how Kotlin improves the way to add
multiple strings using string templates:

 val name = "Marcin"
 println("My name is $name") // Prints: My name is Marcin

We need no more joining strings using the + character. In Kotlin, we can easily
incorporate single variable or even whole expression into string literals:

 val name = "Igor"
 println("My name is ${name.toUpperCase()}")
 // Prints: My name is IGOR

In Java any variable can store null values. In Kotlin strict null safety forces us to

explicitly mark each variable that can store nullable values:

 var a: String = "abc"
 a = null // compilation error

 var b: String? = "abc"
 b = null // It is correct

Adding a question mark to a data type (string versus string?), we say that variable
can be nullable (can store null references). If we don't mark variable as nullable, we
will not be able to assign a nullable reference to it. Kotlin also allows to deal with
nullable variables in proper ways. We can use safe call operator to safely call
methods on potentially nullable variables:

 savedInstanceState?.doSomething

The method doSomething will be invoked only if savedInstanceState has a non-null
value, otherwise the method call will be ignored. This is Kotlin's safe way to avoid
null pointer exceptions that are so common in Java.

Kotlin also has several new data types. Let's look at the Range data type that allows us
to define end inclusive ranges:

 for (i in 1..10) {
 print(i)
 } // 12345678910

Kotlin introduces the Pair data type that, combined with infix notation, allows us to
hold a common pair of values:

 val capitol = "England" to "London"
 println(capitol.first) // Prints: England
 println(capitol.second) // Prints: London

We can deconstruct it into separate variables using destructive declarations:

 val (country, city) = capitol
 println(country) // Prints: England
 println(city) // Prints: London

We can even iterate through a list of pairs:

 val capitols = listOf("England" to "London", "Poland" to "Warsaw")
 for ((country, city) in capitols) {
 println("Capitol of $country is $city")
 }

 // Prints:
 // Capitol of England is London

 // Capitol of Poland is Warsaw

Alternatively, we can use the forEach function:

 val capitols = listOf("England" to "London", "Poland" to "Warsaw")
 capitols.forEach { (country, city) ->
 println("Capitol of $country is $city")
 }

Note that Kotlin distinguishes between mutable and immutable collections by
providing a set of interfaces and helper methods (List versus MutableList, Set versus
Set versus MutableSet, Map versus MutableMap, and so on):

 val list = listOf(1, 2, 3, 4, 5, 6) // Inferred type is List
 val mutableList = mutableListOf(1, 2, 3, 4, 5, 6)
 // Inferred type is MutableList

Immutable collection means that the collection state can't change after initialization
(we can't add/remove items). Mutable collection (quite obviously) means that the
state can change.

With lambda expressions, we can use the Android framework build in a very concise
way:

 view.setOnClickListener {
 println("Click")
 }

Kotlin standard library (stdlib) contains many functions that allow us to perform
operations on collections in simple and concise way. We can easily perform stream
processing on lists:

 val text = capitols.map { (country, _) -> country.toUpperCase() }
 .onEach { println(it) }
 .filter { it.startsWith("P") }
 .joinToString (prefix = "Countries prefix P:")
 // Prints: ENGLAND POLAND
 println(text) // Prints: Countries prefix P: POLAND
 .joinToString (prefix = "Countries prefix P:")

Notice that we don't have to pass parameters to a lambda. We can also define our
own lambdas that will allow us to write code in completely new way. This lambda
will allow us to run a particular piece of code only in Android Marshmallow or
newer.

 inline fun supportsMarshmallow(code: () -> Unit) {
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.M)
 code()
 }

 //usage
 supportsMarshmallow {
 println("This code will only run on Android Nougat and newer")
 }

We can make asynchronous requests easily and display responses on the main thread
using the doAsync function:

 doAsync {
 var result = runLongTask() // runs on background thread

 uiThread {
 toast(result) // run on main thread
 }
 }

Smart casts allow us to write code without performing redundant casting:

 if (x is String) {
 print(x.length) // x is automatically casted to String
 }

 x.length //error, x is not casted to a String outside if block

 if (x !is String)
 return

 x.length // x is automatically casted to String

The Kotlin compiler knows that the variable x is of the type String after performing a
check, so it will automatically cast it to the String type, allowing it to call all methods
and access all properties of the String class without any explicit casts.

Sometimes, we have a simple function that returns the value of a single expression.
In this case, we can use a function with an expression body to shorten the syntax:

 fun sum(a: Int, b: Int) = a + b
 println (sum(2 + 4)) // Prints: 6

Using default argument syntax, we can define the default value for each function
argument and call it in various ways:

 fun printMessage(product: String, amount: Int = 0,
 name: String = "Anonymous") {
 println("$name has $amount $product")
 }

 printMessage("oranges") // Prints: Anonymous has 0 oranges
 printMessage("oranges", 10) // Prints: Anonymous has 10 oranges
 printMessage("oranges", 10, "Johny")
 // Prints: Johny has 10 oranges

The only limitation is that we need to supply all arguments without default values.
We can also use named argument syntax to specify function arguments:

 printMessage("oranges", name = "Bill")

This also increases readability when invoking the function with multiple parameters
in the function call.

The data classes give a very easy way to define and operate on classes from the data
model. To define a proper data class, we will use the data modifier before the class
name:

 data class Ball(var size:Int, val color:String)

 val ball = Ball(12, "Red")
 println(ball) // Prints: Ball(size=12, color=Red)

Notice that we have a really nice, human readable string representation of the class
instance and we do not need the new keyword to instantiate the class. We can also
easily create a custom copy of the class:

 val ball = Ball(12, "Red")
 println(ball) // prints: Ball(size=12, color=Red)
 val smallBall = ball.copy(size = 3)
 println(smallBall) // prints: Ball(size=3, color=Red)
 smallBall.size++
 println(smallBall) // prints: Ball(size=4, color=Red)
 println(ball) // prints: Ball(size=12, color=Red)

The preceding constructs make working with immutable objects very easy and
convenient.

One of the best features in Kotlin are extensions. They allow us to add new behavior
(a method or property) to an existing class without changing its implementation.
Sometimes when you work with a library or framework, you would like to have
extra method or property for certain class. Extensions are a great way to add those
missing members. Extensions reduce code verbosity and remove the need to use
utility functions known from Java (for example, the StringUtils class). We can easily
define extensions for custom classes, third-party libraries, or even Android
framework classes. First of all, ImageView does not have the ability to load images
from network, so we can add the loadImage extension method to load images using the
Picasso library (an image loading library for Android):

 fun ImageView.loadUrl(url: String) {
 Picasso.with(context).load(url).into(this)
 }

 \\usage
 imageView.loadUrl("www.test.com\\image1.png")

We can also add a simple method displaying toasts to the Activity class:

 fun Context.toast(text:String) {
 Toast.makeText(this, text, Toast.LENGTH_SHORT).show()
 }

 //usage (inside Activity class)
 toast("Hello")

There are many places where usage of extensions will make our code simpler and
more concise. Using Kotlin, we can fully take advantage of lambdas to simplify
Kotlin code even more.

Interfaces in Kotlin can have default implementations as long as they don't hold any
state:

 interface BasicData {
 val email:String
 val name:String
 get() = email.substringBefore("@")
 }

In Android, there are many applications where we want to delay object initialization
until it is needed (used). To solve this problem, we can use delegates:

 val retrofit by lazy {
 Retrofit.Builder()
 .baseUrl("https://www.github.com")
 .addConverterFactory(MoshiConverterFactory.create())
 .build()
 }

Retrofit (a popular Android networking framework) property initialization will be
delayed until the value is accessed for the first time. Lazy initialization may result in
faster Android application startup time since loading is deferred to when the variable
is accessed. This is a great way to initialize multiple objects inside a class, especially
when not all of them are always needed (for certain class usage scenario, we may
need only specific objects) or when not every one of them is needed instantly after
class creation.

All the presented examples are only a glimpse of what can be accomplished with
Kotlin. We will learn how to utilize the power of Kotlin throughout this book.

Dealing with Kotlin code
There are multiple ways of managing and running Kotlin code. We will mainly focus
on Android Studio and Kotlin Playground.

Kotlin Playground
The fastest way to try Kotlin code without the need to install any software is Kotlin
Playground (https://try.kotlinlang.org). We can run Kotlin code there using JavaScript or
JVM Kotlin implementations and easily switch between different Kotlin versions.
All the code examples from the book that does not require the Android framework
dependencies and can be executed using Kotlin Playground.

The main function is the entry point of every Kotlin application. This function is
called when any application starts, so we must place code from the book examples in
the body of this method. We can place code directly or just place a call to another
function containing more Kotlin code:

https://try.kotlinlang.org

 fun main(args: Array<String>) {
 println("Hello, world!")
 }

Android Applications have multiple entry points. main function is
called implicitly by the Android framework, so we can't use it to run
Kotlin code on Android platform.

Android Studio
All Android Studio's existing tools work with Kotlin code. We can easily use
debugging, lint checks, have proper code assistance, refactoring and more. Most of
the things work the same way as for Java, so the biggest noticeable change is the
Kotlin language syntax. All we need to do is to configure Kotlin in the project.

Android applications have multiple entry points (different intents can start different
components in the application) and require Android framework dependencies. To
run book examples, we need to extend the Activity class and place code there.

Configuring Kotlin for the project
Starting from Android Studio 3.0, full tooling support for Kotlin was added.
Installation of the Kotlin plugin is not required and Kotlin is integrated even deeper
into the Android development process.

To use Kotlin with Android Studio 2.x, we must manually install the Kotlin plugin.
To install it, we need to go to Android Studio | File | Settings | Plugins | Install
JetBrains plugin... | Kotlin and press the Install button:

To be able to use Kotlin, we need to configure Kotlin in our project. For existing
Java projects, we need to run the Configure Kotlin in project action (the shortcut in
Windows is Ctrl+Shift+A, and in macOS, it is command + shift + A) or use the
corresponding Tools | Kotlin | Configure Kotlin in Project menu item:

Then, select Android with Gradle:

Finally, we need to select the required modules and the proper Kotlin version:

The preceding configuration scenario also applies to all existing Android projects
that were initially created in Java. Starting from Android Studio 3.0, we can also
check the Include Kotlin support checkbox while creating a new project:

In both scenarios, the Configure Kotlin in project command updates the root
build.gradle file and the build.gradle files corresponding to the module(s) by adding
Kotlin dependencies. It also adds the Kotlin plugin to the Android module. During
the time of writing this book release version of Android Studio 3 is not yet available,
but we can review build script from pre-release version:

//build.gradle file in project root folder
buildscript {
 ext.kotlin_version = '1.1'

 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.0.0-alpha9'
 classpath "org.jetbrains.kotlin:kotlin-gradle-
 plugin:$kotlin_version"
 }
}

...
//build.gradle file in the selected modules
apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'
apply plugin: 'kotlin-android-extensions'
...
dependencies {
 ...
 implementation 'com.android.support.constraint:constraint-
 layout:1.0.2'

}
...

Prior to Android Plugin for Gradle 3.x (delivered with Android Studio

3.0) compile dependency configuration was used instead of
implementation.

To update the Kotlin version (let us say in the future), we need to change the value of
the kotlin_version variable in the build.gradle file (project root folder). Changes in
Gradle files mean that the project must be synchronized, so Gradle can update its
configuration and download all the required dependencies:

Using Kotlin in a new Android project
For the new Kotlin projects created in Android Studio 3.x, the main activity will be
already defined in Kotlin, so that we can start writing Kotlin code right away:

Adding a new Kotlin file is similar to adding a Java file. Simply right-click on a
package and select new | Kotlin File/Class:

The reason why the IDE says Kotlin File/Class and not simply Kotlin
class, analogously to Java class is that we can have more members
defined inside a single file. We will discuss this in more detail in Chapter
2, Laying a Foundation.

Notice that Kotlin source files can be located inside the java source folder. We can
create a new source folder for Kotlin, but it is not required:

Running and debugging a project is exactly the same as in Java and does not require
any additional steps besides configuring Kotlin in the project:

Starting from Android Studio 3.0, various Android templates will also allow us to
select a language. This is the new Configure Activity wizard:

Java to Kotlin converter (J2K)
Migration of existing Java projects is also quite easy, because we can use Java and
Kotlin side by side in the same project. There are also ways to convert existing Java
code into Kotlin code by using the Java to Kotlin converter (J2K).

The first way is to convert whole Java files into Kotlin files using the convert Java
File to Kotlin command (keyboard shortcut in Windows is Alt + Shift + Ctrl + K and
in macOS: option + shift + command + K), and this works very well. The second
way is to paste Java code into an existing Kotlin file and the code will also be
converted (a dialog window will appear with a conversion proposition). This may be
very helpful when learning Kotlin.

If we don't know how to write a particular piece of code in Kotlin, we can write it in
Java, then simply copy to the clipboard and then paste it into the Kotlin file.
Converted code will not be the most idiomatic version of Kotlin, but it will work.
The IDE will display various intentions to convert the code even more and improve
its quality. Before conversion, we need to make sure that Java code is valid, because
conversion tools are very sensitive and the process will fail even if a single
semicolon is missing. The J2K converter combined with Java interoperability allows
Kotlin be introduced gradually into the existing project (for example, to convert a
single class at a time).

Alternative ways to run Kotlin code
Android Studio offers an alternative way of running Kotlin code without the need to
run Android application. This is useful when you want to quickly test some Kotlin
code separately from the long Android compilation and deployment process.

The way to run Kotlin code is to use build Kotlin Read Eval Print Loop (REPL).
REPL is a simple language shell that reads single user input, evaluates it, and prints
the result:

REPL looks like the command-line, but it will provide us with all the required code
hints and will give us access to various structures defined inside the project (classes,
interfaces, top-level functions, and so on):

The biggest advantage of REPL is its speed. We can test Kotlin code really quickly.

Kotlin under the hood
We will focus mainly on Android, but keep in mind that Kotlin can be compiled to
multiple platforms. Kotlin code can be compiled to Java bytecode and then to Dalvik
bytecode. Here is simplified version of the Kotlin build process for the Android
platform:

A file with a .java extension contains Java code
A file with a .kt extension contains Kotlin code
A file with a .class extension contains Java bytecode
A file with a .dex extension contains Dalvik bytecode
A file with a .apk extension contains the AndroidManifest file, resources, and .dex
file

For pure Kotlin projects, only the Kotlin compiler will be used, but Kotlin also
supports cross-language projects, where we can use Kotlin together with Java in the
same Android project. In such cases, both compilers are used to compile the Android
application and the result will be merged at the class level.

The Kotlin standard library
Kotlin standard library (stdlib) is a very small library that is distributed together
with Kotlin. It is required to run applications written in Kotlin and it is added
automatically to our application during the build process.

In Kotlin 1.1, kotlin-runtime was required to run applications written in
Kotlin. In fact, in Kotlin 1.1 there were two artifacts (kotlin-runtime and
kotlin-stdlib) that shared a lot of Kotlin packages. To reduce the
amount of confusion both the artifacts will be merged into single
artifact (kotlin-stdlib) in in the upcoming 1.2 version of Kotlin.
Starting from Kotlin 1.2, kotlin-stdlib is required to run applications
written in Kotlin.

The Kotlin standard library provides essential elements required for everyday work
with Kotlin. These include:

Data types like arrays, collections, lists, ranges, and so on
Extensions
Higher-order functions
Various utilities for working with strings and char sequences
Extensions for JDK classes making it convenient to work with files, IO, and
threading

More reasons to use Kotlin
Kotlin has strong commercial support from JetBrains, a company that delivers very
popular IDEs for many popular programming languages (Android Studio is based on
JetBrains IntelliJ IDEA). JetBrains wanted to improve the quality of their code and
team performance, so they needed the language that will solve all the Java issues and
provide seamless interoperability with Java. None of the other JVM languages meet
those requirements, so JetBrains finally decided to create their own language and
started the Kotlin project. Nowadays, Kotlin is used in their flagship products. Some
use Kotlin together with Java while others are pure Kotlin products.

Kotlin is quite a mature language. In fact, its development started many years before
Google announced official Android support (first commit dates back to 2010-11-08):

The initial name of the language was Jet. At some point, the JetBrains
team decided to rename it to Kotlin. The name comes from Kotlin
Island, near St. Petersburg and its analogy to Java which was also
named after the Indonesian island.

After the version 1.0 release in 2016, more and more companies started to support
the Kotlin project. Gradle added support of Kotlin into building scripts, Square, the
biggest creator of Android libraries posted that they strongly support Kotlin and
finally, Google announced it's official Kotlin support for the Android platform. This
means that every tool that will be released by the Android team will be compatible
not only with Java but also with Kotlin. Google and JetBrains have begun a
partnership to create a nonprofit foundation for Kotlin, responsible for future
language maintenance and development. All of this will greatly increase the number
of companies that will use Kotlin in their projects.

Kotlin is also similar to Apple's Swift programming language. In fact, such is the
resemblance, that some articles focus on differences, not similarities. Learning

Kotlin will be very helpful for developers eager to develop applications for Android
and iOS. There are also plans to port Kotlin to iOS (Kotlin/Native), so maybe we
don't have to learn Swift after all. Full stack development is also possible in Kotlin,
so we can develop server-side applications and frontend clients sharing the same data
model with mobile clients.

Summary
We've discussed how the Kotlin language fits into Android development and how we
can incorporate Kotlin into new and existing projects. We have seen useful examples
where Kotlin simplified the code and made it much safer. There are still many
interesting things to discover.

In the next chapter, we will learn about Kotlin building blocks and lay a foundation
to develop Android applications using Kotlin.

Laying a Foundation
This chapter is largely devoted to the fundamental building blocks that are core
elements of the Kotlin programming language. Each one may seem insignificant by
itself, but combined together, they create really powerful language constructs. We
will discuss the Kotlin type system that introduces strict null safety and smart casts.
Also we will see a few new operators in the JVM world, and many improvements
compared to Java. We will also present new ways to handle application flows and
deal with equality in a unified way.

In this chapter, we will cover the following topics:

Variables, values, and constants
Type inference
Strict null safety
Smart casts
Kotlin data types
Control structures
Exceptions handling

Variables
In Kotlin, we have two types of variables: var or val. The first one, var, is a mutable
reference (read-write) that can be updated after initialization. The var keyword is
used to define a variable in Kotlin. It is equivalent to a normal (non-final) Java
variable. If our variable needs to change at some time, we should declare it using the
var keyword. Let's look at an example of a variable declaration:

 fun main(args: Array<String>) {
 var fruit:String = "orange" //1
 fruit = "banana" //2
 }

1. Create fruit variable and initialize it with variable orange value
2. Reinitialize fruit variable with with banana value

The second type of variable is a read-only reference. This type of variable cannot be
reassigned after initialization.

The val keyword can contain a custom getter, so technically it can
return different objects on each access. In other words, we can't
guarantee that the reference to the underlying object is immutable:

val random: Int
get() = Random().nextInt()

Custom getters will be discussed in more detail in Chapter 4, Classes
and Objects.

The val keyword is equivalent of a Java variable with the final modifier. Using
immutable variables is useful, because it makes sure that the variable will never be
updated by mistake. The concept of immutability is also helpful for working with
multiple threads without worrying about proper data synchronization. To declare
immutable variables, we will use the val keyword:

 fun main(args: Array<String>) {
 val fruit:String= "orange"//1
 a = "banana" //2 Error
 }

1. Create fruit variable and initialize it with string orange value
2. Compiler will throw an error, because fruit variable was already initialized

Kotlin also allows us to define variables and functions at the level of
the file. We will discuss it further in Chapter 3, Playing with Functions.

Notice that the type of the variable reference (var, val) relates to the reference itself,
not the properties of the referenced object. This means that when using a read-only
reference (val), we will not be able to change the reference that is pointing to a
particular object instance (we will not be able to reassign variable values), but we
will still be able to modify properties of referenced objects. Let's see it in action
using an array:

 val list = mutableListOf("a","b","c") //1
 list = mutableListOf("d", "e") //2 Error
 list.remove("a") //3

1. Initialize mutable list
2. Compiler will throw an error, because value reference cannot be changed

(reassigned)
3. Compiler will allow to modify content of the list

The keyword val cannot guarantee that the underlying object is immutable.

If we really want to make sure that the object will not be modified, we must use
immutable reference and an immutable object. Fortunately, Kotlin's standard library
contains an immutable equivalent of any collection interface (List versus MutableList,
Map versus MutableMap, and so on) and the same is true for helper functions that are
used to create instance of particular collection:

Variable/value definition Reference can change Object state can change

val = listOf(1,2,3) No No

val = mutableListOf(1,2,3) No Yes

var = listOf(1,2,3) Yes No

var = mutableListOf(1,2,3) Yes Yes

Type inference
As we saw in previous examples, unlike Java, the Kotlin type is defined after
variable name:

 var title: String

At first glance, this may look strange to Java developers, but this construct is a
building block of a very important feature of Kotlin called type inference. Type
inference means that the compiler can infer type from context (the value of an
expression assigned to a variable). When variable declaration and initialization is
performed together (single line), we can omit the type declaration. Let's look at the
following variable definition:

 var title: String = "Kotlin"

The type of the title variable is String, but do we really need an implicit type
declaration to determine variable type? On the right side of the expression, we have a
string Kotlin and we are assigning it to a variable title defined on the left-hand side
of the expression.

We specified a variable type as String, but it was obvious, because this is the same
type as the type of assigned expression (Kotlin). Fortunately, this fact is also obvious
for the Kotlin compiler, so we can omit type when declaring a variable, because the
compiler will try to determine the best type for the variable from the current context:

 var title = "Kotlin"

Keep in mind, that type declaration is omitted, but the type of variable is still
implicitly set to String, because Kotlin is a strongly typed language. That's why both
of the preceding declarations are the same, and Kotlin compiler will still be able to
properly validate all future usages of variable. Here is an example:

 var title = "Kotlin"
 title = 12 // 1, Error

1. Inferred type was String and we are trying to assign Int

If we want to assign the Int (value 12) to the title variable then we need to specify
title type to one that is a String and Int common type. The closest one, up in the type

hierarchy is Any:

 var title: Any = "Kotlin"
 title = 12

Any is an equivalent of the Java object type. It is the root of the Kotlin
type hierarchy. All classes in Kotlin explicitly inherit from type Any,
even primitive types such as String or Int

Any defines three methods: equals, toString, and hashCode. Kotlin
standard library contains a few extensions for this type. We will discuss
extensions in Chapter 7, Extension Functions and Properties.

As we can see, type inference is not limited to primitive values. Let's look at
inferring types directly from functions:

 var total = sum(10, 20)

In the preceding example, the inferred type will be the same as type returned by the
function. We may guess that it will be Int, but it may also be a Double, Float, or some
other type. If it's not obvious from the context what type will be inferred we can use
place carrot on the variable name and run the Android Studio expression type
command (for Windows, it is Shift + Ctrl + P, and for macOS, it is arrow key +
control + P). This will display the variable type in the tooltip, as follows:

Type inference works also for generic types:

 var persons = listOf(personInstance1, personInstance2)
 // Inferred type: List<Person> ()

Assuming that we pass only instances of the Person class, the inferred type will be
List<Person>. The listOf method is a helper function defined in the Kotlin standard
library that allow us to create collection. We will discuss this subject in Chapter 7,
Extension Functions and Properties. Let's look at more advanced examples that uses

the Kotlin standard library type called Pair, which contains a pair composed of two
values:

 var pair = "Everest" to 8848 // Inferred type: Pair<String, Int>

In the preceding example, a pair instance is created using the infix function, which
will be discussed in Chapter 4, Classes and Objects, but for now all we need to know
is that those two declarations return the same type of Pair object:

 var pair = "Everest" to 8848
 // Create pair using to infix method
 var pair2 = Pair("Everest", 8848)
 // Create Pair using constructor

Type inference works also for more complex scenarios such as inferring type from
inferred type. Let's use the Kotlin standard library's mapOf function and infix the to
method of the Pair class to define map. The first item in the pair will be used to infer
the map key type; the second will be used to infer the value type:

 var map = mapOf("Mount Everest" to 8848, "K2" to 4017)
 // Inferred type: Map<String, Int>

Generic type of Map<String, Int> is inferred from type of Pair<String, Int>, which is
inferred from type of parameters passed to Pair constructor. We may wonder what
happens if inferred type of pairs used to create map differs? The first pair is
Pair<String, Int> and second is Pair<String, String>:

 var map = mapOf("Mount Everest" to 8848, "K2" to "4017")
 // Inferred type: Map<String, Any>

In the preceding scenario, Kotlin compiler will try to infer common type for all pairs.
First parameter in both pairs is String (Mount Everest, K2), so naturally String will be
inferred here. Second parameter of each pair differs (Int for first pair, String for
second pair), so Kotlin needs to find the closest common type. The Any type is
chosen, because this is the closest common type in upstream type hierarchy:

As we can see, type inference does a great job in most cases, but we can still choose
to explicitly define a data type if we want, for example, we want different variable
types:

 var age: Int = 18

When dealing with integers, the Int type is always a default choice, but we can still
explicitly define different types, for example, Short, to save some precious Android
memory:

 var age: Short = 18

On the other hand, if we need to store larger values, we can define the type of the age
variable as Long. We can use explicit type declaration as previously, or use literal
constant:

 var age: Long = 18 // Explicitly define variable type
 var age = 18L
 // Use literal constant to specify value type

Those two declarations are equal, and all of them will create variable of type Long.

For now, we know that there are more cases in code where type declaration can be
omitted to make code syntax more concise. There are however some situations
where the Kotlin compiler will not be able to infer type due to lack of information in
context. For example, simple declaration without assignment will make type
inference impossible:

 val title // Error

In the preceding example, the variable will be initialized later, so there is no way to
determine its type. That's why type must be explicitly specified. The general rule is
that if type of expression is known for the compiler, then type can be inferred.
Otherwise, it must be explicitly specified. Kotlin plugin in Android Studio does a
great job because it knows exactly where type cannot be inferred and then it is
highlighting error. This allows us to display proper error messages instantly by IDE
when writing the code without the need to complete application.

Strict null safety
According to Agile Software Assessment (http://p3.snf.ch/Project-144126) research,
missing null check is the most frequent pattern of bugs in Java systems. The biggest
source of errors in Java is NullPointerExceptions. It's so big, that speaking at a
conference in 2009, Sir Tony Hoare apologized for inventing the null reference,
calling it a billion-dollar mistake (https://en.wikipedia.org/wiki/Tony_Hoare).

To avoid NullPointerException, we need to write defensive code that checks if an
object is null before using it. Many modern programming languages, including
Kotlin, made steps to convert runtime errors into compile time errors to improve
programming language safeness. One of the way to do it in Kotlin is by adding
nullability safeness mechanisms to language type systems. This is possible because
Kotlin type system distinguishes between references that can hold null (nullable
references) and those that cannot (non-nullable references). This single feature of
Kotlin allows us to detect many errors related to NullPointerException at very early
stages of development. Compiler together with IDE will prevent many
NullPointerException. In many cases compilation will fail instead of application failing
at runtime.

Strict null safety is part of Kotlin type system. By default, regular types cannot be
null (can't store null references), unless they are explicitly allowed. To store null
references, we must mark variable as nullable (allow it to store null references) by
adding question mark suffix to variable type declaration. Here is an example:

 val age: Int = null //1, Error
 val name: String? = null //2

1. Compiler will throw error, because this type does not allow null.
2. Compiler will allow null assignment, because type is marked as nullable using

question mark suffix.

We are not allowed to call method on a potentially nullable object, unless a nullity
check is performed before a call:

 val name: String? = null
 // ...
 name.toUpperCase() // error, this reference may be null

We will learn how to deal with the problem in the next section. Every non-nullable

http://p3.snf.ch/Project-144126
https://en.wikipedia.org/wiki/Tony_Hoare

type in Kotlin has its nullable type equivalent: Int has Int?, String has String? and so
on. The same rule applies for all classes in the Android framework (View has View?),
third-party libraries (OkHttpClient has OkHttpClient?), and all custom classes defined by
developers (MyCustomClass has MyCustomClass?). This means that every non generic class
can be used to define two kinds of types, nullable and non-nullable. A non-nullable
type is also a subtype of its nullable equivalent. For example, Vehicle, as well as
being a subtype of Vehicle?, is also a subtype of Any:

The Nothing type is an empty type (uninhabited type), which can't have an instance.
We will discuss it in more details in Chapter 3, Playing with Functions. This type
hierarchy is the reason why we can assign non-null object (Vehicle) into a variable
typed as nullable (Vehicle?), but we cannot assign a nullable object (Vehicle?) into a
non-null variable (Vehicle):

 var nullableVehicle: Vehicle?
 var vehicle: Vehicle

 nullableVehicle = vehicle // 1
 vehicle = nullableVehicle // 2, Error

1. Assignment possible
2. Error because nullableVehicle may be a null

We will discuss ways of dealing with nullable types in following sections. Now let's
get back to type definitions. When defining generic types, there are multiple
possibilities of defining nullability, so let's examine various collection types by

comparing different declarations for generic ArrayList containing items of type Int.
Here is a table that is presents the key differences:

Type declaration List itself can be null Element can be null

ArrayList<Int> No No

ArrayList<Int>? Yes No

ArrayList<Int?> No Yes

ArrayList<Int?>? Yes Yes

It's important to understand different ways to specify null type declarations, because
Kotlin compiler enforces it to avoid NullPointerExceptions. This means that compiler
enforces nullity check before accessing any reference that potentially can be null.
Now let's examine common Android/Java error in the Activity class' onCreate method:

 //Java
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 savedInstanceState.getBoolean("locked");
 }

In Java, this code will compile fine and accessing null objects will result in
application crash at runtime throwing NullPointerException. Now let's examine the
Kotlin version of the same method:

 override fun onCreate(savedInstanceState: Bundle?) { //1
 super.onCreate(savedInstanceState)
 savedInstanceState.getBoolean("key") //2 Error
 }

1. savedInstanceState defined as nullable Bundle?

2. Compiler will throw error

The savedInstanceState type is a platform type that can be interpreted by Kotlin as
nullable or non-nullable. We will discuss platform types in the following sections,
but for now we will define savedInstanceState as nullable type. We are doing so,
because we know that null will be passed when Activity is created for the first time.
Instance of Bundle will only be passed when an Activity is recreated using saved
instance state:

We will discuss functions in Chapter 3, Playing with Functions, but for
now, we can already see that the syntax for declaring functions in
Kotlin is quite similar to Java.

The most obvious way to fix the preceding error in Kotlin is to check for nullity
exactly the same way as in Java:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val locked: Boolean
 if(savedInstanceState != null)
 locked = savedInstanceState.getBoolean("locked")
 else
 locked = false
 }

The preceding construct presents some boilerplate code, because null-checking is a
pretty common operation in Java development (especially in the Android framework,
where most elements are nullable). Fortunately, Kotlin allows a few simpler
solutions to deal with nullable variables. The first one is the safe call operator.

Safe call
The safe call operator is simply a question mark followed by a dot. It's important to
understand that safe cast operator will always return a value. If the left-hand side of
the operator is null, then it will return null, otherwise it will return the result of the
right-hand side expression:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 val locked: Boolean? = savedInstanceState?.getBoolean("locked")
 }

If savedInstanceState is null, then null will be returned, otherwise the result of
evaluating a savedInstanceState?.getBoolean("locked") expression will be returned.
Keep in mind, that a nullable reference call may always returns nullable, so the result
of the whole expression is nullable Boolean?. If we want to make sure we will get
non-nullable Boolean, we can combine the safe call operator combined with the elvis
operator, discussed in the next section.

Multiple calls of the save call operator can be chained together to avoid a nested if
expression or complex conditions like this:

 //Java idiomatic - multiple checks
 val quiz: Quiz = Quiz()
 //...
 val correct: Boolean?

 if(quiz.currentQuestion != null) {
 if(quiz.currentQuestion.answer != null) {
 //do something
 }
 }

 //Kotlin idiomatic - multiple calls of save call operator
 val quiz: Quiz = Quiz()

 //...

 val correct = quiz.currentQuestion?.answer?.correct
 // Inferred type Boolean?

The preceding chain works like this--correct will be accessed only if the answer value
is not null and answer is accessed only if the currentQuestion value is not null. As a
result, the expression will return the value returned by correct property or null if any
object in the safe call chain is null.

Elvis operator
The elvis operator is represented by a question mark followed by a colon (?:) and has
such syntax:

 first operand ?: second operand

The elvis operator works as follows: if first operand is not null, then this operand
will be returned, otherwise second operand will be returned. The elvis operator allows
us to write very concise code.

We can apply the elvis operator to our example to retrieve the variable locked, which
will be always non-nullable:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val locked: Boolean = savedInstanceState?.
 getBoolean("locked") ?: false
 }

In the preceding example, the elvis operator will return value of
savedInstanceState?.getBoolean("locked") expression if savedInstanceState is not null,
otherwise it will return false. This way we can make sure that the locked variable.
Thanks to elvis operator we can define default value. Also note that the right-hand
side expression is evaluated only if the left-hand side is null. It is then providing
default value that will be used when the expression is nullable. Getting back to our
quiz example from the previous section, we can easily modify the code to always
return a non-nullable value:

 val correct = quiz.currentQuestion?.answer?.correct ?: false

As the result, the expression will return the value returned by the correct property or
false if any object in the safe call chain is null. This means that the value will always
be returned, so non-nullable Boolean type is inferred.

The operator name comes from the famous American singer-songwriter
Elvis Presley, because his hairstyle is similar to a question mark.

Not null assertion
Another tool to deal with nullity is the not-null assertion operator. It is represented
by a double exclamation mark (!!). This operator explicitly casts nullable variables
to non-nullable variables. Here is a usage example:

 var y: String? = "foo"
 var size: Int = y!!.length

Normally, we would not be able to assign a value from a nullable property length to a
non-nullable variable size. However, as a developer, we can assure the compiler that
this nullable variable will have a value here. If we are right, our application will
work correctly, but if we are wrong, and the variable has a null value, the application
will throw NullPointerException. Let's examine our activity method onCreate():

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 val locked: Boolean = savedInstanceState!!.getBoolean("locked")
}

The preceding code will compile, but will this code work correctly? As we said
before, when restoring an activity instance, savedInstanceState will be passed to the
onCreate method, so this code will work without exceptions. However, when creating
an activity instance, the savedInstanceState will be null (there is no previous instance
to restore), so NullPointerException will be thrown at runtime. This behavior is similar
to Java, but the main difference is that in Java accessing potentially nullable objects
without a nullity check is the default behavior, while in Kotlin we have to force it;
otherwise, we will get a compilation error.

There are only few correct possible applications for usage of this operator, so when
you use it or see it in code, think about it as potential danger or warning. It is
suggested that not-null assertion should be used rarely, and in most cases should be
replaced with safe call or smart cast.

Combating non-null assertions article presents few useful examples
where non-null assertion operator is replaced with other, safe Kotlin
constructs at http://bit.ly/2xg5JXt.

Actually in this case there is no point of using not-null assertion operator because we
can solve our problem in safer way using let.

http://bit.ly/2xg5JXt

Let
Another tool to deal with nullable variables is let. This is actually not the operator,
nor the language special construct. It is a function defined in the Kotlin standard
library. Let's see the syntax of let combined with the safe call operator:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 savedInstanceState?.let{
 println(it.getBoolean("isLocked")) // 1
 }
 }

1. savedInstanceState inside let can be accessed using variable
named it.

As mentioned before, the right-hand side expression of the safe call operator will be
only be evaluated if the left-hand side is not null. In this case, the right-hand side is a
let function that takes another function (lambda) as a parameter. Code defined in the
block after let will be executed if savedInstanceState is not null. We will learn more
about it and how to define such functions later in Chapter 7, Extension Functions and
Properties.

Nullability and Java
We know that Kotlin requires to explicitly define references that can hold null
values. Java on the other hand, is much more lenient about nullability, so we may
wonder how Kotlin handles types coming from Java (basically the whole Android
SDK and libraries written in Java). Whenever possible, Kotlin compiler will
determine type nullability from the code and represent types as actual nullable or
non-nullable types using nullability annotations.

The Kotlin compiler supports several flavors of nullability annotations,
including:

Android (com.android.annotations and android.support.annotations)
JetBrains (@Nullable and @NotNull from the org.jetbrains.annotations
package)
JSR-305 (Javax.annotation)

We can find the full list in the Kotlin compiler source code (https://github.
com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotli
n/load/Java/JvmAnnotationNames.kt)

We have seen this previously in Activity's onCreate method, where the
savedInstanceState type was explicitly set to the nullable type Bundle?:

 override fun onCreate(savedInstanceState: Bundle?) {
 ...
 }

There are, however, many situations where it is not possible to determine variable
nullability. All variables coming from Java can be null except ones annotated as non-
nullable.. We could treat all of them as nullable and check before each access, but
this would be impractical. As a solution for this problem, Kotlin introduced the
concept of platform types. Those are types coming from Java types with relaxed null
checks, meaning that each platform type may be null or not.

Although we cannot declare platform types by ourselves, this special syntax exists
because the compiler and Android Studio need to display them sometimes. We can
spot platform types in exception messages or the method parameters list. Platform
type syntax is just a single exclamation mark suffix in a variable type declaration:

https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt

View! // View defined as platform type

We could treat each platform type as nullable, but type nullability usually depends
on context, so sometimes we can treat them as non-nullable variables. This pseudo
code shows the possible meaning of platform type:

 T! = T or T?

It's our responsibility as developers to decide how to treat such type, as nullable or
non-nullable. Let's consider the usage of the findViewById method:

 val textView = findViewById(R.id.textView)

What will the findViewById method actually return? What is the inferred type of the
textView variable? Nullable type (TestView) or not nullable (TextView?)? By default, the
Kotlin compiler knows nothing about the nullability of the value returned by the
findViewById method. This is why inferred type for TextView has platform type View!.

This is the kind of developer responsibility that we are talking about. We, as
developers, must decide, because only we know if the layout will
have textView defined in all configurations (portrait, landscape, and so on) or only in
some of them. If we define proper view inside current layout findViewById method
will return reference to this view, and otherwise it will return null:

 val textView = findViewById(R.id.textView) as TextView // 1
 val textView = findViewById(R.id.textView) as TextView? // 2

1. Assuming that textView is present in every layout for each configuration, so
textView can be defined as non-nullable

2. Assuming that textView is not present in all layout configurations (for example,
present only in landscape), textView must be defined as nullable, otherwise the
application will throw a NullPointerException when trying to assign null to a non-
nullable variable (when layout without textView is loaded)

Casts
The casting concept is supported by many programming languages. Basically,
casting is a way to convert an object of one particular type into another type. In Java,
we need to cast an object explicitly before accessing its members or cast it and store
it in the variable of the casted type. Kotlin simplifies concept of casting and moves it
to the next level by introducing smart casts.

In Kotlin, we can perform a few types of casts:

Cast objects to different types explicitly (safe cast operator)
Cast objects to different types or nullable types to non-nullable types implicitly
(smart cast mechanism)

Safe/unsafe cast operator
In strongly typed languages, such as Java or Kotlin, we need to convert values from
one type to another explicitly using the cast operator. A typical casting operation is
taking an object of one particular type and turning it into another object type that is
its supertype (upcasting), subtype (downcasting), or interface. Let's start with a small
remainder of casting that could be performed in Java:

 Fragment fragment = new ProductFragment();
 ProductFragment productFragment = (ProductFragment) fragment;

In the preceding example, there is an instance of ProductFragment that is assigned to a
variable storing Fragment data type. To be able to store this data into the
productFragment variable that can store only the ProductFragment data type, so we need
to perform an explicit cast. Unlike Java, Kotlin has a special as keyword representing
the unsafe cast operator to handle casting:

val fragment: Fragment = ProductFragment()
val productFragment: ProductFragment = fragment as ProductFragment

The ProductFragment variable is a subtype of Fragment, so the preceding example will
work fine. The problem is that casting to an incompatible type will throw the
exception ClassCastException. That's why the as operator is called an unsafe cast
operator:

 val fragment : String = "ProductFragment"
 val productFragment : ProductFragment = fragment as
 ProductFragment
 \\ Exception: ClassCastException

To fix this problem, we can use the safe cast operator as?. It is sometimes called
the nullable cast operator. This operator tries to cast a value to the specified type,
and returns null if the value cannot be casted. Here is an example:

 val fragment: String = "ProductFragment"
 val productFragment: ProductFragment? = fragment as?
 ProductFragment

Notice, that usage of the safe cast operator requires us to define the name variable as
nullable (ProductFragment? instead of ProductFragment). As an alternative, we can use
the unsafe cast operator and nullable type ProductFragment?, so we can see exactly the
type that we are casting to:

 val fragment: String = "ProductFragment"
 val productFragment: ProductFragment? = fragment as
 ProductFragment?

If we would like to have a productFragment variable that is non-nullable, then we
would have to assign a default value using the elvis operator:

 val fragment: String = "ProductFragment"
 val productFragment: ProductFragment? = fragment as?
 ProductFragment ?: ProductFragment()

Now, the fragment as? ProductFragment expression will be evaluated without a single
error. If this expression returns a non-nullable value (the cast can be performed),
then this value will be assigned to the productFragment variable, otherwise a default
value (the new instance of ProductFragment) will be assigned to the productFragment
variable. Here is a comparison between these two operators:

Unsafe cast (as): Throws ClassCastException when casting is impossible
Safe cast (as?): Returns null when casting impossible

Now, when we understand the difference between safe cast and unsafe cast
operators, we can safely retrieve a fragment from the fragment manager:

var productFragment: ProductFragment? = supportFragmentManager
.findFragmentById(R.id.fragment_product) as? ProductFragment

The safe cast and unsafe cast operators are used for casting complex objects. When
working with primitive types, we can simply use one of the Kotlin standard library
conversion methods. Most of the objects from the Kotlin standard library have
standard methods used to simplify common casting to other types. The convention is
that this kind of functions have prefix to, and the name of the class that we want to
cast to. In the line in this example, the Int type is casted to the String type using the
toString method:

val name: String
 val age: Int = 12
 name = age.toString(); // Converts Int to String

We will discuss primitive types and their conversions in the primitive data types
section.

Smart casts
Smart casting converts variable of one type to another type, but as opposed to safe
casting, it is done implicitly (we don't need to use the as or as? cast operator). Smart
casts work only when the Kotlin compiler is absolutely sure that the variable will not
be changed after check. This makes them perfectly safe for multithreaded
applications. Generally smart casts are available for all immutable references (val)
and for local mutable references (var). We have two kinds of smart casts:

Type smart cast that cast objects of one type to an object of another type
Nullity smart cast that cast nullable references to non-nullable

Type smart casts
Let's represent the Animal and Fish class from the previous section:

Let's assume we want to call the isHungry method and we want to check if the animal
is an instance of Fish. In Java we would have to do something like this:

 \\Java
 if (animal instanceof Fish){
 Fish fish = (Fish) animal;
 fish.isHungry();

 //or
 ((Fish) animal).isHungry();
 }

The problem with this code is its redundancy. We have to check if animal instance is
Fish and then we have to explicitly cast animal to Fish after this check. Wouldn't it be
nice if compiler could handle this for us? It turns out that the Kotlin compiler is
really smart when it comes to casts, so it will handle all those redundant casts for us,
using the smart casts mechanism. Here is an example of smart casting:

 if(animal is Fish) {
 animal.isHungry()
 }

Smart cast in Android Studio

Android Studio will display proper errors if smart casting is not
possible, so we will know exactly if we can use it. Android Studio marks
variables with green background when we access a member that
required a cast.

In Kotlin, we don't have to explicitly cast an animal instance to a Fish, because after
the type check, Kotlin compiler will be able to handle casts implicitly. Now inside
the if block, the variable animal is casted to Fish. The result is then exactly the same
as in previous Java example (the Java instance of the operator is called is in Kotlin).
This is why we can safely call the isHungry method without any explicit casting.
Notice, that in this case, the scope of this smart cast is limited by the if block:

 if(animal is Fish) {
 animal.isHungry() //1
 }

 animal.isHungry() //2, Error

1. In this context animal instance is Fish, so we can call isHungry method.
2. In this context animal instance is still Animal, so we can't call isHungry method.

There are, however, other cases where the smart cast scope is larger than a single
block, as like in the following example:

 val fish:Fish? = // ...
 if (animal !is Fish) //1
 return

 animal.isHungry() //1

1. From this point, animal will be implicitly converted to non- nullable Fish

In the preceding example, the whole method would return from function if animal is
not Fish, so the compiler knows that animal must be a Fish across the rest of the code
block. Kotlin and Java conditional expressions are evaluated lazily.

It means that in expression condition1() && condition2(), method condition2 will be
called only when condition1 returns true. This is why we can use a smart casted type
in the right-hand side of the conditional expression:

 if (animal is Fish && animal.isHungry()) {
 println("Fish is hungry")
 }

Notice that if the animal was not a Fish, the second part of the conditional expression
would not be evaluated at all. When it is evaluated, Kotlin knows that animal is a Fish
(smart cast).

Non-nullable smart cast
Smart casts also handle other cases, including nullity checks. Let's assume that we
have a view variable that is marked as nullable, because we don't know wherever or
not findViewById will return a view or null:

val view: View? = findViewById(R.layout.activity_shop)

We could use safe call operator to access view methods and properties, but in some
cases we may want to perform more operations on the same object. In these
situations smart casting may be a better solution:

 val view: View?

 if (view != null){
 view.isShown()
 // view is casted to non-nullable inside if code block
 }

 view.isShown() // error, outside if the block view is nullable

When performing null checks like this, the compiler automatically casts a nullable
view (View?) to non-nullable (View). This is why we can call the isShown method inside
the if block, without using a safe call operator. Outside the if block, the view is still
nullable.

Each smart casts works only with read-only variables, because read-write variable
may change between the time the check was performed and the time the variable is
accessed.

Smart casts also work with a function's return statements. If we perform nullity
checks inside the function with a return statement, then the variable will also be
casted to non-nullable:

 fun setView(view: View?){
 if (view == null)
 return
 //view is casted to non-nullable
 view.isShown()
 }

In this case, Kotlin is absolutely sure that the variable value will not be null, because
the function would call return otherwise. Functions will be discussed in more detail
in Chapter 3, Playing with Functions. We can make the preceding syntax even simpler

by using elvis operator and perform a nullity check in a single line:

 fun verifyView(view: View?){
 view ?: return

 //view is casted to non-nullable
 view.isShown()
 //..
 }

Instead of just returning from the function, we may want to be more explicit about
existing problem and throw an exception. Then we can use elvis operator together
with the error throw:

 fun setView(view: View?){
 view ?: throw RuntimeException("View is empty")

 //view is casted to non-nullable
 view.isShown()
 }

As we can see, smart casts are a very powerful mechanism that allows us to decrease
the number of nullity checks. This is why it is heavily exploited by Kotlin.
Remember the general rule--smart casts work only if Kotlin is absolutely sure that
the variable cannot change after the cast even by another thread.

Primitive data types
In Kotlin, everything is an object (reference type, not primitive type). We don't find
primitive types, like ones we can use in Java. This reduces code complexity. We can
call methods and properties on any variable. For example, this is how we can convert
the Int variable to a Char:

 var code: Int = 75
 code.toChar()

Usually (whenever it is possible), under the hood types such as Int, Long, or Char are
optimized (stored as primitive types) but we can still call methods on them as on any
other objects.

By default, Java platform stores numbers as JVM primitive types, but when a
nullable number reference (for example, Int?) is needed or generics are involved,
Java uses boxed representation. Boxing means wrapping a primitive type into
corresponding boxed primitive type. This means that the instance behaves as an
object. Examples of Java boxed representations of primitive types are int versus
Integer or a long versus Long. Since Kotlin is compiled to JVM bytecode, the same
is true here:

 var weight: Int = 12 // 1
 var weight: Int? = null // 2

1. Value is stored as primitive type
2. Value is stored as boxed integer (composite type)

This means that each time we create a number (Byte, Short, Int, Long, Double, Float), or
with Char, Boolean, it will be stored as a primitive type unless we declare it as a
nullable type (Byte?, Char?, Array?, and so on); otherwise, it will be stored as a boxed
representation:

 var a: Int = 1 // 1
 var b: Int? = null // 2
 b = 12 // 3

1. a is non-nullable, so it is stored as primitive type
2. b is null so it is stored as boxed representation
3. b is still stored as boxed representation although it has a value

Generic types cannot be parameterized using primitive types, so boxing will be
performed. It's important to remember that using boxed representation (composite
type) instead of primary representation can have performance penalties, because it
will always create memory overhead compared to primitive type representation. This
may be noticeable for lists and arrays containing a huge number of elements, so
using primary representation may be crucial for application performance. On the
other hand, we should not worry about the type of representation when it comes to a
single variable or even multiple variable declarations, even in the Android world,
where memory is limited.

Now let's discuss the most important Kotlin primitive data types: numbers,
characters, Booleans, and arrays.

Numbers
Basic Kotlin data types used for numbers are equivalents of Java numeric primitives:

Kotlin, however, handles numbers a little bit differently than Java. The first
difference is that there are no implicit conversions for numbers--smaller types are not
implicitly converted to bigger types:

 var weight : Int = 12
 var truckWeight: Long = weight // Error1

This means that we cannot assign a value of type Int to the Long variable without an
explicit conversion. As we said, in Kotlin everything is an object, so we can call the
method and explicitly convert Int type to Long to fix the problem:

 var weight:I nt = 12
 var truckWeight: Long = weight.toLong()

At first, this may seem like boilerplate code, but in practice this will allow us to
avoid many errors related to number conversion and save a lot of debugging time.
This is actually a rare example where Kotlin syntax has more amount of code than
Java. The Kotlin standard library supports the following conversion methods for
numbers:

toByte(): Byte
toShort(): Short
toInt(): Int
toLong(): Long
toFloat(): Float
toDouble(): Double
toChar(): Char

We can, however, explicitly specify a number literal to change the inferred variable

type:

 val a: Int = 1
 val b = a + 1 // Inferred type is Int
 val b = a + 1L // Inferred type is Long

The second difference between Kotlin and Java numbers is that number literals are
slightly different in some cases. There are the following kinds of literal constants for
integral values:

 27 // Decimals by default
 27L // Longs are tagged by a upper case L suffix
 0x1B // Hexadecimals are tagged by 0x prefix
 0b11011 // Binaries are tagged by 0b prefix

Octal literals are not supported. Kotlin also supports a conventional notation for
floating-point numbers:

 27.5 // Inferred type is Double
 27.5F // Inferred type is Float. Float are tagged by f or F

Char
Characters in Kotlin are stored in type Char. In many ways, characters are similar to
strings, so we will concentrate on the similarities and differences. To define Char, we
must use a single quote kind of opposite to a String where we are using double
quotes:

 val char = 'a' \\ 1
 val string = "a" \\ 2

1. Defines variable of type Char
2. Defines variable of type String

In both characters and strings, special characters can be escaped using a backslash.
The following escape sequences are supported:

\t: Tabulator
\b: Backspace
\n: New line
\r: New line
\': Quote
\": Double quote
\\: Slash
\$: Dollar character
\u: Unicode escape sequence

Let's define Char containing the Yin Yang unicode character (U+262F):

 var yinYang = '\u262F'

Arrays
In Kotlin, arrays are represented by the Array class. To create an array in Kotlin, we
can use a number of Kotlin standard library functions. The simplest one is arrayOf():

 val array = arrayOf(1,2,3) // inferred type Array<Int>

By default, this function will create an array of boxed Int. If we want to have an
array containing Short or Long, then we have to specify array type explicitly:

 val array2: Array<Short> = arrayOf(1,2,3)
 val array3: Array<Long> = arrayOf(1,2,3)

As previously mentioned, using boxed representations may decrease application
performance. That's why Kotlin has a few specialized classes representing arrays of
primitive types to reduce boxing memory overhead: ShortArray, IntArray, LongArray,
and so on. These classes have no inheritance relation to the Array class, although they
have the same set of methods and properties. To create instances of this class we
have to use the corresponding factory function:

 val array = shortArrayOf(1, 2, 3)
 val array = intArrayOf(1, 2, 3)
 val array = longArrayOf(1, 2, 3)

It's important to notice and keep in mind this subtle difference, because those
methods look similar, but create different type representations:

 val array = arrayOf(1,2,3) // 1
 val array = longArrayOf(1, 2, 3) // 2

1. Generic array of boxed Long elements (inferred type: Array<Long>)
2. Array containing primitive Long elements (inferred type: LongArray)

Knowing the exact size of an array will often improve performance, so Kotlin has
another library function, arrayOfNulls, that creates an array of a given size filled with
null elements:

 val array = arrayOfNulls(3) // Prints: [null, null, null]
 println(array) // Prints: [null, null, null]

We can also fill a predefined size array using the factory function that takes the array
size as the first parameter and the lambda that can return the initial value of each

array element given its index as the second parameter:

 val array = Array (5) { it * 2 }
 println(array) // Prints: [0, 2, 4, 8, 10]

We will discuss lambdas (anonymous functions) in more detail in Chapter 5,
Functions as First Class Citizen. Accessing array elements in Kotlin is done the
same way as in Java:

 val array = arrayOf(1,2,3)
 println(array[1]) //Prints: 2

Element are also indexed the same way as in Java, meaning the first element has
index 0, second has index 1, and so on. Not everything works the same and there are
some differences. Main one is that arrays in Kotlin, unlike in Java, arrays are
invariant. We will discuss variance is Chapter 6, Generics Are Your Friends.

The Boolean type
Boolean is a logic type that has two possible values: true and false. We can also use
the nullable Boolean type:

 val isGrowing: Boolean = true
 val isGrowing: Boolean? = null

Boolean type also supports standard built-in operations that are generally available in
most modern programming languages:

||: Logical OR. Returns true when any of two predicates return true.
&&: Logical AND. Returns true when both predicates return true.
!: Negation operator. Returns true for false, and false for true.

Keep in mind that we can only use not-null Boolean for any type of condition.

Like in Java, in || and &&, predicates are evaluated lazily, and only when needed (lazy
conjunction).

Composite data types
Let's discuss more complex types built into Kotlin. Some data types have major
improvements compared to Java, while others are totally new.

Strings
Strings in Kotlin behave in a similar way as in Java, but they have a few nice
improvements.

To start to access characters at a specified index we can use indexing operator and
access character the same way we access array elements:

 val str = "abcd"
 println (str[1]) // Prints: b

We also have access to various extensions defined in Kotlin standard library, which
make working with strings easier:

 val str = "abcd"
 println(str.reversed()) // Prints: dcba
 println(str.takeLast(2)) // Prints: cd
 println("john@test.com".substringBefore("@")) // Prints: john
 println("john@test.com".startsWith("@")) // Prints: false

This is exactly the same String class as in Java, so these methods are not part of
String class. They were defined as extensions. We will learn more about extensions
in Chapter 7, Extension Functions and Properties.

Check the String class documentation for a full list of the methods (https
://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/).

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/

String templates
Building strings is an easy process, but in Java it usually requires long concatenation
expressions. Let's jump straight to an example. Here is a string built from multiple
elements implemented in Java:

\\Java
String name = "Eva";
int age = 27;
String message = "My name is" + name + "and I am" + age + "years old";

In Kotlin, we can greatly simplify the process of string creation by using string
templates. Instead of using concatenation, we can simply place a variable inside a
string using a dollar character to create a placeholder. During interpolation, string
placeholders will be replaced with the actual value. Here is an example:

 val name = "Eva"
 val age = 27
 val message = "My name is $name and I am $age years old"
 println(message)
 //Prints: My name is Eva and I am 27 years old

This is as efficient as concatenation, because under the hood the compiled code
creates a StringBuilder and appends all the parts together. String templates are not
limited to single variables. They can also contain whole expressions between ${, and
} characters. It can be a function call that will return the value or property access as
shown in the following snippet:

 val name = "Eva"
 val message = "My name has ${name.length} characters"
 println(message) //Prints: My name has 3 characters

This syntax allows us to create much cleaner code without the need to break the
string each time a value from a variable or expression is required to construct strings.

Ranges
A range is a way to define a sequence of values. It is denoted by the first and last
value in the sequence. We can use ranges to store weights, temperatures, time, and
age. A range is defined using double dots notation (under the hood, a range is using
the rangeTo operator):

 val intRange = 1..4 // 1
 val charRange= 'b'..'g' // 2

1. Inferred type is IntRange (equivalent of i >= 1 && i <= 4)
2. Inferred type is CharRange (equivalent of letters from 'b' to 'g')

Notice that we are using single quotes to define the character range.

The Int, Long, and Char type ranges can be used to iterate over next values in
the for... each loop:

 for (i in 1..5) print(i) // Prints: 1234
 for (i in 'b'..'g') print(i) // Prints: bcdefg

Ranges can be used to check if a value is bigger than a start value and smaller than
an end value:

 val weight = 52
 val healthy = 50..75

 if (weight in healthy)
 println("$weight is in $healthy range")
 //Prints: 52 is in 50..75 range

It can be also used this way for other types of range, such as CharRange:

 val c = 'k' // Inferred type is Char
 val alphabet = 'a'..'z'

 if(c in alphabet)
 println("$c is character") //Prints: k is a character

In Kotlin, ranges are closed (end inclusive). This means that the range ending value
is included into range:

 for (i in 1..1) print(i) // Prints: 123

Note, that ranges in Kotlin are incremental by default (a step is equal to 1 by
default):

 for (i in 5..1) print(i) // Prints nothing

To iterate in reverse order, we must use a downTo function that is setting a step to -1.
Like in this example:

 for (i in 5 downTo 1) print(i) // Prints: 54321

We can also set different steps:

 for (i in 3..6 step 2) print(i) // Prints: 35

Notice that in the 3..6 range, the last element was not printed. This is because
the stepping index is moving two steps in each of the loop iterations. So in the first
iteration it has a value of 3, in the second iteration a value of 5, and finally, in a third
iteration the value would be 7, so it is ignored, because it is outside the range.

A step defined by the step function must be positive. If we want to define a negative
step then we should use the downTo function together with the step function:

 for (i in 9 downTo 1 step 3) print(i) // Prints: 963

Collections
A very important aspect of programming is working with collections. Kotlin offers
multiple kinds of collections and many improvements compared to Java. We will
discuss this subject in Chapter 7, Extension Functions and Properties.

Statements versus expressions
Kotlin utilizes expressions more widely than Java, so it is important to know the
difference between a statement and an expression. A program is basically a sequence
of statements and expressions. Expression produces a value, which can be used as
part of another expression, variable assignment, or function parameter. An
expression is a sequence of one or more operands (data that is manipulated) and zero
or more operators (a token that represents a specific operation) that can be evaluated
to a single value:

Let's review some examples of expressions from Kotlin:

Expression (produce a
value) Assigned value Expression of

type

a = true true Boolean

a = "foo" + "bar" "foobar" String

a = min(2, 3) 2 Integer

a = computePosition().getX()
Value returned by getX Integer

method

Statements, on the other hand, perform an action and cannot be assigned to a
variable, because they simply don't have a value. Statements can contain language
keywords that are used to define classes (class), interfaces (interface), variables (val,
var), functions (fun), loop logic (break, continue) and so on. Expressions can also be
treated as a statement when the value returned by the expression is ignored (do not
assign value to variable, do not return it from a function, do not use it as part of other
expressions, and so on).

Kotlin is an expression-oriented language. This means that many constructs that are
statements in Java are treated as expressions in Kotlin. The first major difference is
the fact that Java and Kotlin have different ways of treating control structures. In
Java they are treated as statements while in Kotlin all control structures are treated as
expressions, except for loops. This means that in Kotlin we can write very concise
syntax using control structures. We will see examples in upcoming sections.

Control flow
Kotlin has many control flow elements known from Java, but they offer a little bit
more flexibility and in some cases their usage is simplified. Kotlin introduces a new
control flow construct known as when as a replacement for Java switch... case.

The if statement
At its core, Kotlin's if clause works the same way as in Java:

 val x = 5

 if(x > 10){
 println("greater")
 } else {
 println("smaller")
 }

The version with the block body is also correct if the block contains single
statements or expressions:

 val x = 5

 if(x > 10)
 println("greater")
 else
 println("smaller")

Java, however, treats if as a statement while Kotlin treats if as an expression. This is
the main difference, and this fact allows us to use more concise syntax. We can, for
example, pass the result of an if expression directly as a function argument:

 println(if(x > 10) "greater" else "smaller")

We can compress our code into single line, because result the if expression (of type
String) is evaluated and then passed to the println method. When condition x > 10 is
true, then first branch (greater) will be returned by this expression, otherwise the
second branch (smaller) will be returned by this expression. Let's examine another
example:

 val hour = 10
 val greeting: String
 if (hour < 18) {
 greeting = "Good day"
 } else {
 greeting = "Good evening"
 }

In the preceding example, we are using if as a statement. But as we know, if in
Kotlin is an expression and the result of the expression can be assigned to a variable.
This way we can assign the result of the if expression to a greeting variable directly:

 val greeting = if (hour < 18) "Good day" else "Good evening"

But sometimes there is a need to place some other code inside the branch of the if
statement. We can still use if as an expression. Then the last line of the matching if
branch will be returned as a result:

 val hour = 10

 val greeting = if (hour < 18) {
 //some code
 "Good day"
 } else {
 //some code
 "Good evening"
 }

 println(greeting) // Prints: "Good day"

If we are using if as an expression rather than a statement, the expression is required
to have an else branch. The Kotlin version is even better than Java. Since the greeting
variable is defined as non-nullable, the compiler will validate the whole if
expression and it will check that all cases are covered with branch conditions. Since
if is an expression, we can use it inside string template:

val age = 18
val message = "You are ${ if (age < 18) "young" else "of age" } person"
println(message) // Prints: You are of age person

Treating if as expression gives us a wide range of possibilities previously
unavailable in Java world.

The when expression
The when expression in Kotlin is a multiway branch statement. The when expression is
designed as a more powerful replacement of the Java switch... case statement.
The when statement often provides a better alternative than a large series of if... else
if statements, but it provides more concise syntax. Let's look at an example:

 when (x) {
 1 -> print("x == 1")
 2 -> print("x == 2")
 else -> println("x is neither 1 nor 2")
 }

The when expression matches its argument against all branches one after another until
the condition of some branch is satisfied. This behavior is similar to Java switch...
case, but we do not have to write a redundant break statement after every branch.

Similar to the if clause, we can use when either as a statement ignoring returned value
or as expression and assign its value to a variable. If when is used as an expression,
the value of the last line of the satisfied branch becomes the value of the overall
expression. If it is used as a statement, the value is simply ignored. As usual, the else
branch is evaluated if none of the previous branches satisfy the condition:

 val vehicle = "Bike"

 val message= when (vehicle) {
 "Car" -> {
 // Some code
 "Four wheels"
 }
 "Bike" -> {
 // Some code
 "Two wheels"
 }
 else -> {
 //some code
 "Unknown number of wheels"
 }
 }

 println(message) //Prints: Two wheels

Each time a branch has more than one instruction, we must place it inside the code
block, defined by two braces {... }. If when is treated as an expression (result of
evaluating when is assigned to variable), the last line of each block is treated as return
value. We have seen the same behavior with an if expression, so by now we

probably figured out that this is common behavior across many Kotlin constructs
including lambdas, which will be discussed further across the book.

If when is used as an expression, the else branch is mandatory, unless the compiler can
prove that all possible cases are covered with branch conditions. We can also handle
many matching arguments in a single branch using commas to separate them:

 val vehicle = "Car"

 when (vehicle) {
 "Car", "Bike" -> print("Vehicle")
 else -> print("Unidentified funny object")
 }

Another nice feature of when is the ability to check variable type. We can easily
validate that value is or !is of a particular type. Smart casts become handy again,
because we can access the methods and properties of a matching type in a branch
block without any extra checks:

 val name = when (person) {
 is String -> person.toUpperCase()
 is User -> person.name
 //Code is smart casted to String, so we can
 //call String class methods
 //...
 }

In a similar way, we can check whatever range or collection contains a particular
value. This time we'll use is and !is keywords:

 val riskAssessment = 47

 val risk = when (riskAssessment) {
 in 1..20 -> "negligible risk"
 !in 21..40 -> "minor risk"
 !in 41..60 -> "major risk"
 else -> "undefined risk"
 }

 println(risk) // Prints: major risk

Actually, we can put any kind of expression on the right-hand side of the when
branch. It can be a method call or any other expression. Consider the following
example where the second when expression is used for the else statement:

 val riskAssessment = 80
 val handleStrategy = "Warn"

 val risk = when (riskAssessment) {
 in 1..20 -> print("negligible risk")
 !in 21..40 -> print("minor risk")

 !in 41..60 -> print("major risk")
 else -> when (handleStrategy){
 "Warn" -> "Risk assessment warning"
 "Ignore" -> "Risk ignored"
 else -> "Unknown risk!"
 }
 }

 println(risk) // Prints: Risk assessment warning

As we can see, when is a very powerful construct allowing more control than Java
switch, but it is even more powerful because it is not limited only to checking values
for equality. In a way, it can even be used as a replacement for an if... else if
chain. If no argument is supplied to the when expression, the branch conditions
behave as Boolean expressions, and a branch is executed when its condition is true:

private fun getPasswordErrorId(password: String) = when {
 password.isEmpty() -> R.string.error_field_required
 passwordInvalid(password) -> R.string.error_invalid_password
 else -> null
}

All the presented examples require an else branch. Each time when all the possible
cases are covered, we can omit an else branch (exhaustive when). Let's look at the
simplest example with Boolean:

 val large:Boolean = true

 when(large){
 true -> println("Big")
 false -> println("Big")
 }

Compiler can verify that all possible values are handled, so there is no need to
specify an else branch. The same logic applies to enums and sealed classes that will
be discussed in Chapter 4, Classes and Objects.

Checks are performed by the Kotlin compiler, so we have certainty that any case will
not be missed. This reduces the possibility of a common Java bug where the
developer forgets to handle all the cases inside the switch statement (although
polymorphism is usually a better solution).

Loops
Loop is a control structure that repeats the same set of instructions until a termination
condition is met. In Kotlin, loops can iterate through anything that provides iterator.
Iterator is an interface that has two methods: hasNext and next. It knows how to iterate
over a collection, range, string, or any entity that can be represented as a sequence of
elements.

To iterate through something, we have to supply an iterator() method.
As String doesn't have one, so in Kotlin it is defined as an extension
function. Extensions will be covered in Chapter 7, Extension Functions
and Properties.

Kotlin provides three kinds of loops: for, while, and do... while. All of them work the
same as in other programming languages, so we will discuss them briefly.

The for loop
The classic Java for loop, where we need to define the iterator explicitly, is not
present in Kotlin. Here is an example of this kind of loop in Java:

 //Java
 String str = "Foo Bar";
 for(int i=0; i<str.length(); i++)
 System.out.println(str.charAt(i));

To iterate through a collection of items from start to finish, we can simply use the for
loop instead:

 var array = arrayOf(1, 2, 3)

 for (item in array) {
 print(item)
 }

It can also be defined without a block body:

 for (item in array)
 print(item)

If a collection is a generic collection, then item will be smart casted to type
corresponding to a generic collection type. In other words, if a collection contains
elements of type Int the item will be smart cased to Int:

 var array = arrayOf(1, 2, 3)

 for (item in array)
 print(item) // item is Int

We can also iterate through the collection using its index:

 for (i in array.indices)
 print(array[i])

The array.indices param returns IntRange with all indexes. It is the equivalent of
(1.. array.length - 1). There is also an alternative withIndex library method that
returns a list of the IndexedValue property, which contains an index and value. This
can be destructed into these elements this way:

 for ((index, value) in array.withIndex()) {
 println("Element at $index is $value")
 }

The construct (index, value) is known as a destructive declaration and we will
discuss it in Chapter 4, Classes and Objects.

The while loop
The while loop repeats a block, while its conditional expression returns true:

 while (condition) {
 //code
 }

There is also a do... while loop that repeats blocks as long as a conditional
expression is returning true:

 do {
 //code
 } while (condition)

Kotlin, opposed to Java, can use variables declared inside the do... while loop as
condition.

 do {
 var found = false
 //..
 } while (found)

The main difference between both while and do... while loops is when a conditional
expression is evaluated. A while loop is checking the condition before code execution
and if it is not true then the code won't be executed. On the other hand, a do... while
loop first executes the body of the loop, and then evaluates the conditional
expression, so the body will always execute at least once. If this expression is true,
the loop will repeat. Otherwise, the loop terminates.

Other iterations
There other ways to iterate over collections using built-in standard library functions,
such as forEach. We will cover them in Chapter 7, Extension Functions and Properties.

Break and continue
All loops in Kotlin support classic break and continue statements. The continue
statement proceeds to the next iteration of that loop while break stops the execution
of the most inner enclosing loop:

 val range = 1..6

 for(i in range) {
 print("$i ")
 }

 // prints: 1 2 3 4 5 6

Now let's add a condition and break the iteration when this condition is true:

 val range = 1..6

 for(i in range) {
 print("$i ")

 if (i == 3)
 break
 }

 // prints: 1 2 3

The break and continue statements are especially useful when dealing with nested
loops. They may simplify our control flow and significantly decrease the amount of
performed work to save priceless Android resources. Let's perform a nested iteration
and break the outer loop:

 val intRange = 1..6
 val charRange = 'A'..'B'

 for(value in intRange) {
 if(value == 3)
 break

 println("Outer loop: $value ")

 for (char in charRange) {
 println("\tInner loop: $char ")
 }
 }

 // prints
 Outer loop: 1
 Inner loop: A
 Inner loop: B

 Outer loop: 2
 Inner loop: A
 Inner loop: B

We used a break statement to terminate the outer loop at the beginning of the third
iteration, so the nested loop was also terminated. Notice the usage of the \t escaped
sequence that adds indents on the console. We can also utilize the continue statement
to skip the current iteration of the loop:

 val intRange = 1..5

 for(value in intRange) {
 if(value == 3)
 continue

 println("Outer loop: $value ")

 for (char in charRange) {
 println("\tInner loop: $char ")
 }
 }

 // prints
 Outer loop: 1
 Inner loop: A
 Inner loop: B
 Outer loop: 2
 Inner loop: A
 Inner loop: B
 Outer loop: 4
 Inner loop: A
 Inner loop: B
 Outer loop: 5
 Inner loop: A
 Inner loop: B

We skip the iteration of the outer loop when the current value equals to 3.

Both continue and break statements perform corresponding operations on the
enclosing loop. There are, however, times when we want to terminate or skip
iteration of one loop from within another; for example, terminate an outer loop
iteration from within an inner loop:

 for(value in intRange) {
 for (char in charRange) {
 // How can we break outer loop here?
 }
 }

Fortunately, both a continue statement and break statement have two forms--labeled
and unlabeled. We already saw unlabeled, now we will need labeled to solve our
problem. Here is an example of how a labeled break might be used:

 val charRange = 'A'..'B'
 val intRange = 1..6

 outer@ for(value in intRange) {
 println("Outer loop: $value ")

 for (char in charRange) {
 if(char == 'B')
 break@outer

 println("\tInner loop: $char ")
 }
 }

 // prints
 Outer loop: 1
 Inner loop: A

The @outer is the label name. By convention, the label name always starts with @
followed by label name. Label is placed before the loop. Labeling the loop allows us
to use qualified break (break@outer), which is a way to stop execution of a loop that is
referenced by this label. The preceding qualified break (break with label) jumps to the
execution point right after the loop marked with that label.

Placing the return statement will break all the loops and return from enclosing an
anonymous or named function:

 fun doSth() {
 val charRange = 'A'..'B'
 val intRange = 1..6

 for(value in intRange) {
 println("Outer loop: $value ")

 for (char in charRange) {
 println("\tInner loop: $char ")

 return
 }
 }
 }

 //usage
 println("Before method call")
 doSth()
 println("After method call")

 // prints
 Outer loop: 1
 Inner loop: A

After the method call:

 Outer loop: 1
 Inner loop: A

Exceptions
Most Java programming guidelines, including the book Effective Java, promote the
concept of validity checks. This means that we should always verify arguments
or the state of the object and throw an exception if a validity check fails. Java
exception systems have two kinds of exceptions: checked exceptions and unchecked
exceptions.

Unchecked exception means that the developer is not forced to catch exceptions by
using a try... catch block. By default, exceptions go all the way up the call stack, so
we make decisions where to catch them. If we forget to catch them, they will go all
the way up the call stack and stop thread execution with a proper message (thus they
remind us):

Java has a really strong exception system, which in many cases forces developers to
explicitly mark each function that may throw an exception and explicitly catch each
exception by surrounding them by try... catch blocks (checked exceptions). This
works great for very small projects, but in real large-scale applications this very
often leads to the following, verbose code:

 // Java
 try {
 doSomething()
 } catch (IOException e) {
 // Must be safe
 }

Instead of passing the exception up in the call stack, it is ignored by providing an
empty catch block, so it won't be handled properly and it will vanish. This kind of
code may mask critical exceptions and give a false sense of security and lead to
unexpected problems and difficult to find bugs.

Before we discuss how exception handling is done in Kotlin, let's compare both
types of exceptions:

Code Checked exceptions Unchecked exceptions

Function
declaration

We have to specify what
exceptions can be thrown
by functions.

Function declaration does not contain
information about all thrown exceptions.

Exception
handling

Function that throws
exception must to be
surrounded by a try...
catch block.

We can catch exception and do
something if we want, but we aren't
forced to do this. Exception goes up in
the call stack.

The biggest difference between Kotlin and Java exception systems is that in Kotlin
all exceptions are unchecked. This means we never have to surround a method with
try... catch block even if this is a Java method that may throw a cached exception.
We can still do it, but we are not forced to:

 fun foo() {
 throw IOException()
 }

 fun bar() {
 foo () //no need to surround method with try-catch block
 }

This approach removes code verbosity and improves safety because we don't need to
introduce empty catch blocks.

The try... catch block
Kotlin try... catch block is the equivalent of the Java try... catch block. Let's look at
quick example:

 fun sendFormData(user: User?, data: Data?) { // 1
 user ?: throw NullPointerException("User cannot be null")
 // 2
 data ?: throw NullPointerException("Data cannot be null")

 //do something
 }

 fun onSendDataClicked() {
 try { // 3
 sendFormData(user, data)
 } catch (e: AssertionError) { // 4
 // handle error
 } finally { // 5
 // optional finally block
 }
 }

1. Exceptions are not specified on function signature like in Java.
2. We check validity of data and throw NullPointerException (notice that no new

keyword is required when creating an object instance).
3. The try... catch block is similar construct from Java.
4. Handle only this specific exceptions (AssertionError exception).
5. The finally block is always executed.

There may be zero or more catch blocks and finally block may be omitted. However,
at least one catch or finally block should be present.

In Kotlin, exception handling try is an expression, so it can return a value and we can
assign its value to a variable. The actual assigned value is the last expression of the
executed block. Let's check if a particular Android application is installed on the
device:

val result = try { // 1
 context.packageManager.getPackageInfo("com.text.app", 0) //2
 true
} catch (ex: PackageManager.NameNotFoundException) { // 3
 false
}

1. The try... catch block is returning value that is returned by a single expression

function.
2. If an application is installed, the getPackageInfo method will return a value (this

value is ignored) and the next line containing true expression will be executed.
This is the last operation performed by a try block, so its value will be assigned
to a variable (true).

If an app is not installed, getPackageInfo will throw
PackageManager.NameNotFoundException and the catch block will be executed. The last line
of the catch block contains a false expression, so its value will be assigned to a
variable.

Compile-time constants
Since the val variable is read only, in most cases we could treat it as a constant. We
need to be aware that its initialization may be delayed, so this means that there are
scenarios where the val variable may not be initialized at compile time, for example,
assigning the result of the method call to a value:

 val fruit:String = getName()

This value will be assigned at runtime. There are, however, situations where we need
to know the value at compile time. The exact value is required when we want to pass
parameters to annotations. Annotations are processed by an annotation processor that
runs long before the application is started:

To make absolutely sure that the value is known at compile time (and thus can be
processed by an annotation processor), we need to mark it with a const modifier.
Let's define a custom annotation MyLogger with a single parameter defining maximum
log entries and annotate a Test class with it:

 const val MAX_LOG_ENTRIES = 100

 @MyLogger(MAX_LOG_ENTRIES)
 // value available at compile time
 class Test {}

There are couple limitations regarding usage of const that we must be aware of. The
first limitation is that it must be initialized with values of primitive types or String
type. The second limitation is that it must be declared at the top level or as a member
of an object. We will discuss objects in Chapter 4, Classes and Objects. The third
limitation is that they cannot have a custom getter.

Delegates
Kotlin provides first-class support for delegation. It is very useful improvement
comparing to Java. If fact, there are many applications for delegates in Android
development, so we have decided to spare a whole chapter on this subject (Chapter 8,
Delegates).

Summary
In this chapter, we have discussed the differences between variables, values, and
consts and discussed basic Kotlin data types including ranges. We also looked into a
Kotlin type system that enforces strict null safety and ways to deal with nullable
references using various operators and smart casts. We know that we can write more
concise code by taking advantage of using type inference and various control
structures that in Kotlin are treated as expressions. Finally, we discussed ways of
exception handling.

In the next chapter, we will learn about functions and present different ways of
defining them. We will cover concepts such as single-expression functions, default
arguments and named argument syntax, and discuss various modifiers.

Playing with Functions
In previous chapters, we've seen Kotlin variables, type systems, and control
structures. But to create applications, we need building blocks that allow us to make
structures. In Java, the class is the building block of the code. Kotlin, on the other
hand, supports functional programming; therefore, it makes it possible to create
whole programs or libraries without any classes. Function is the most basic building
block in Kotlin. This chapter introduces functions in Kotlin, together with different
function features and types.

In this chapter, we will cover the following topics:

Basic function usage in Kotlin
Unit return type
The vararg parameter
Single-expression functions
Tail-recursive functions
Default argument values
Named argument syntax
Top-level functions
Local functions
Nothing return type

Basic function declaration and usages
The most common first program that programmers write to test some programming
language is the Hello, World! program. It is a full program that is just displaying
Hello, World! text on the console. We are also going to start with this program,
because in Kotlin it is based on a function and only on a function (no class is
needed). So the Kotlin Hello, World! program looks as follows:

 // SomeFile.kt
 fun main(args: Array<String>) { // 1
 println("Hello, World!") // 2, Prints: Hello, World!
 }

1. A function defines single parameter args, which contains an array of all
arguments used to run the program (from the command line). It is defined as
non-nullable, because an empty array is passed to a method when the program
is started without any arguments.

2. The println function is a Kotlin function defined in the Kotlin standard library
that is equivalent of the Java function System.out.println.

This program tells us a lot about Kotlin. It shows how function looks like and that
we can define function without any class. First, let's analyze the structure of the
function. It starts with the fun keyword, and then comes the name of the function,
parameters in the bracket, and the function body. Here is another example of a
simple function, but this one is returning a value:

 fun double(i: Int): Int {
 return 2 * i
 }

Good to know frame

There is much confusion around the difference between methods and
function. Common definitions are as follows:

A function is a piece of code that is called by name.
The method is a function associated with an instance of class (object).
Sometimes it is called member function.

So in simpler words, functions inside classes are called methods. In
Java, there are officially only methods, but academic environments are

often arguing that static Java methods are in fact functions. In Kotlin
we can define functions that are not associated with any object.

Syntax to call a function is the same in Kotlin as in Java, and most modern
programming languages:

 val a = double(5)

We call the double function and assign a value returned by it to a variable. Let's
discuss the details of parameters and return types of Kotlin functions.

Parameters
Parameters in Kotlin functions are declared using the Pascal notation, and the type of
each parameter must be explicitly specified. All parameters are defined as a read-
only variable. There is no way to make parameters mutable, because such behavior is
error-prone and in Java it was often abused by the programmers. If there is a need for
that, then we can explicitly shadow parameters by declaring local variables with the
same name:

 fun findDuplicates(list: List<Int>): Set<Int> {
 var list = list.sorted()
 //...
 }

This is possible, but it is treated as bad practice, so a warning will be displayed. A
better approach is to name parameters by data they provide and variables by the
purpose they serve. These names should be then different in most cases.

Parameters versus arguments

In the programming community, arguments and parameters are often
though to be the same thing. These words cannot be used
interchangeably because they have different meanings. An argument is
an actual value that is passed to the function when a function is called.
Parameter refers to the variables declared inside function declaration.
Consider the following example:

fun printSum(a1: Int, a2: Int) { // 1.
 print(a1 + a2)
}
add(3, 5) // 2.

1 - a1 and a2 are parameters
2 - 3 and 5 are arguments

As with Java, functions in Kotlin can contain multiple parameters:

 fun printSum(a: Int, b: Int) {
 val sum = a + b
 print(sum)
 }

Arguments provided to functions can be subtypes of the type specified in parameter

declaration. As we know, in Kotlin, the supertype of all the non-nullable types is Any,
so we need to use it, if we want to accept all types:

 fun presentGently(v: Any) {
 println("Hello. I would like to present you: $v")
 }

 presentGently("Duck")
 // Hello. I would like to present you: Duck
 presentGently(42)
 // Hello. I would like to present you: 42

To allow null on arguments, the type needs to be specified as nullable. Note that Any?
is supertype of all nullable and non-nullable types, so we can pass objects of any
type as arguments:

 fun presentGently(v: Any?) {
 println("Hello. I would like to present you: $v")
 }

 presentGently(null)
 // Prints: Hello. I would like to present you: null
 presentGently(1)
 // Prints: Hello. I would like to present you: 1
 presentGently("Str")
 // Prints: Hello. I would like to present you: Str

Returning functions
So far, most of the functions were defined like procedures (functions that does not
return any values). But in fact, there are no procedures in Kotlin and all functions
return some value. When it is not specified, the default return value is the Unit
instance. We can set it explicitly for demonstration purposes:

 fun printSum(a: Int, b: Int): Unit { // 1
 val sum = a + b
 print(sum)
 }

1. Unlike in Java, we are defining the return type after function name and
parameters.

The Unit object is the equivalent of Java's void, but it can be treated as any other
object. So we can store it in variable:

 val p = printSum(1, 2)
 println(p is Unit) // Prints: true

Of course, Kotlin coding conventions claims that when a function is returning Unit
then the type definition should be omitted. This way code is more readable and
simpler to understand:

 fun printSum(a: Int, b: Int) {
 val sum = a + b
 print(sum)
 }

Good to know frame
Unit is a singleton, what means that there is only one instance of it. So
all three conditions are true:

println(p is Unit) // Print: true
println(p == Unit) // Print: true
println(p === Unit) // Print: true

Singleton pattern is highly supported in Kotlin and it will be more
thoroughly covered in Chapter 4, Classes and objects.

To return output from functions with Unit return type, we can simply use a return
statement without any value:

 fun printSum(a: Int, b: Int) { // 1
 if(a < 0 || b < 0) {
 return // 2
 }
 val sum = a + b
 print(sum)
 // 3
 }

1. There is no return type specified, so return type is implicitly set to Unit.

2. We can just use return without any value.
3. When a function returns Unit, then return call is optional. We don't have to use

it.

We could also use return Unit, but it should not be used because that would be
misleading and less readable.

When we specify the return type, other than the Unit, then we always need to return
the value explicitly:

 fun sumPositive(a: Int, b: Int): Int {
 if(a > 0 && b > 0) {
 return a + b
 }
 // Error, 1
 }

1. Function will not compile it, because no return value was specified, the if
condition is not fulfilled.

The problem can be fixed by adding a second return statement:

 fun sumPositive(a: Int, b: Int): Int {
 if(a >= 0 && b >= 0) {
 return a + b
 }
 return 0
 }

Vararg parameter
Sometimes, the number of parameters is not known in advance. In such cases we can
add a vararg modifier to a parameter. It allows the function to accept any number of
arguments. Here is an example, where the function is printing the sum of multiple
integers:

 fun printSum(vararg numbers: Int) {
 val sum = numbers.sum()
 print(sum)
 }

 printSum(1,2,3,4,5) // Prints: 15
 printSum() // Prints: 0

Arguments will be accessible inside the method as an array that holds all the
provided values. The type of the array will correspond to a vararg parameter type.
Normally we would expect it to be a generic array holding a specified type
(Array<T>), but as we know, Kotlin has an optimized type for array of Int called
IntArray, so this type will be used. Here, for example, is the type of the vararg
parameter with the type String:

 fun printAll(vararg texts: String) {
 //Inferred type of texts is Array<String>
 val allTexts = texts.joinToString(",")
 println("Texts are $allTexts")
 }

 printAll("A", "B", "C") // Prints: Texts are A,B,C

Note that we are still able to specify more parameters before or after the vararg
parameter, as long as it is clear which argument is directed to which parameter:

fun printAll(prefix: String, postfix: String, vararg texts: String)
{
 val allTexts = texts.joinToString(", ")
 println("$prefix$allTexts$postfix")
}

printAll("All texts: ", "!") // Prints: All texts: !
printAll("All texts: ","!" , "Hello", "World")
// Prints: All texts: Hello, World!

Additionally, arguments provided to vararg parameters can be subtypes of the
specified type:

 fun printAll(vararg texts: Any) {

 val allTexts = texts.joinToString(",") // 1
 println(allTexts)
 }

 // Usage
 printAll("A", 1, 'c') // Prints: A,1,c

1. The joinToString function can be invoked on lists. It is joining elements into
a single string. On the first argument there is a separator specified.

One limitation with vararg usage is that there is only one vararg parameter allowed
per function declaration.

When we call vararg parameters, we can pass argument values one-by-one, but we
can also pass an array of values. This can be done using the spread operator (*
prefixing array), as in the following example:

 val texts = arrayOf("B", "C", "D")
 printAll(*texts) // Prints: Texts are: B,C,D
 printAll("A", *texts, "E") // Prints: Texts are: A,B,C,D,E

Single-expression functions
During typical programming, many functions contain only one expression. Here is
an example of this kind of function:

 fun square(x: Int): Int {
 return x * x
 }

Or another one, which can be often found in Android projects, is a pattern used in
Activity, to define methods that are just getting text from some view or providing
some other data from the view to allow a presenter to get them:

 fun getEmail(): String {
 return emailView.text.toString()
 }

Both functions are defined to return results of a single expression. In the first
example, it is the result of x * x multiplication, and in the second one it is the result
of the expression emailView.text.toString(). These kinds of functions are used all
around Android projects. Here are some common use cases:

Extracting some small operations (like in the preceding square function)
Using polymorphism to provide values specific to a class
Functions that are only creating some object
Functions that are passing data between architecture layers (like in the
preceding example, Activity is passing data from the view to the presenter)
Functional programming style functions that are based on recurrence

Such functions are often used, so Kotlin has a notation for this kind of them. When a
function returns a single expression, then curly braces and body of the function can
be omitted. We specify expression directly using the equality character. Functions
defined this way are called single-expression functions. Let's update our square
function, and define it as a single-expression function:

As we can see, single-expression functions have expression body instead of block
body. This notation is shorter, but whole body needs to be just a single expression.

In single-expression functions, declaring the return type is optional, because it can be
inferred by the compiler from the type of expression. This is why we can simplify
the square function, and define it this way:

 fun square(x: Int) = x * x

There are many places inside Android applications where we can utilize single
expression functions. Let's consider the RecyclerView adapter that is providing the
layout ID and creating ViewHolder:

class AddressAdapter : ItemAdapter<AddressAdapter.ViewHolder>() {
 override fun getLayoutId() = R.layout.choose_address_view
 override fun onCreateViewHolder(itemView: View) = ViewHolder(itemView)

 // Rest of methods
}

In the following example, we achieve high readability thanks to a single expression
function. Single expression functions are also very popular in the functional world.
The example will be described later, in the section about tail-recursive functions.
Single expression function notation also pairs well with the when structure. Here is an
example of their connection, used to get specific data from an object according to a
key (use case from big Kotlin project):

fun valueFromBooking(key: String, booking: Booking?) = when(key) {

 // 1
 "patient.nin" -> booking?.patient?.nin
 "patient.email" -> booking?.patient?.email
 "patient.phone" -> booking?.patient?.phone
 "comment" -> booking?.comment
 else -> null
}

1. We don't need a type, because it is inferred from the when expression.

Another common Android example is that we can combine when expressions with
activity method onOptionsItemSelected that handles top bar menu clicks:

override fun onOptionsItemSelected(item: MenuItem): Boolean = when
{
 item.itemId == android.R.id.home -> {
 onBackPressed()
 true
 }
 else -> super.onOptionsItemSelected(item)
}

Another example where the syntax of the single-expression function is useful is
when we chain multiple operations on a single object:

 fun textFormatted(text: String, name: String) = text
 .trim()
 .capitalize()
 .replace("{name}", name)

 val formatted = textFormatted("hello, {name}", "Marcin")
 println(formatted) // Hello, Marcin

As we can see, single expression functions can make our code more concise and
improve readability. Single-expression functions are commonly used in Kotlin
Android projects and they are really popular for functional programming.

Imperative versus declarative programming

Imperative programming: This programming paradigm describes the
exact sequence of steps required to perform an operation. It is most
intuitive for most programmers.

Declarative programming: This programming paradigm describes
a desired result, but not necessarily steps to achieve it (implementation
of behavior). This means that programming is done with expressions or
declarations instead of statements. Both functional and logic
programming are characterized as declarative programming style.

Declarative programming is often shorter and more readable than
imperative.

Tail-recursive functions
Recursive functions are functions that are calling themselves. Let's see an example of
recursive function, getState:

 fun getState(state: State, n: Int): State =
 if (n <= 0) state // 1
 else getState(nextState(state), n - 1)

They are an important part of functional programming style, but the problem is that
each recursive function call needs to keep the return address of the previous function
on the stack. When an application recurse too deeply (there are too many functions
on the stack), StackOverflowError is thrown. This limitation presents a very serious
problem for recurrence usage.

A classic solution for this problem was to use iteration instead of recurrence, but this
approach is less expressive:

 fun getState(state: State, n: Int): State {
 var state = state
 for (i in 1..n) {
 state = state.nextState()
 }
 return state
 }

A proper solution for this problem is usage of the tail-recursive function supported
by modern languages such as Kotlin. Tail-recursive function is a special kind of
recursive function, where the function is calling itself as the last operation it
performs (in other words: recursion takes place in last operation of a function). This
allows us to optimize recursive calls by compiler and perform recursive operations in
a more efficient way without worrying about potential StackOverflowError. To make a
function tail-recursive, we need to mark it with a tailrec modifier:

 tailrec fun getState(state: State, n: Int): State =
 if (n <= 0) state
 else getState(state.nextState(), n - 1)

To check out how it is working, let's compile this code and decompile to Java. Here
is what can be found then (code after simplification):

 public static final State getState(@NotNull State state, int n)
 {
 while(true) {

 if(n <= 0) {
 return state;
 }
 state = state.nextState();
 n = n - 1;
 }
 }

Implementation is based on iteration, so there is no way that stack overflow error
might happen. To make the tailrec modifier work, there are some requirements to be
met:

The function must call itself only as the last operation it performs
It cannot be used within try/catch/finally blocks
At the time of writing, it was allowed only in Kotlin compiled to JVM

Different ways of calling a function
Sometimes we need to call a function and provide only selected arguments. In Java,
we could create multiple overloads of the same method, but this solution has some
limitations. The first problem is that the number of possible permutations of a given
method is growing very quickly (2n), making them very difficult to maintain. The
second problem is that overloads must be distinguishable from each other, so
compiler may know which overload to call, so when a method defines a few
parameters with the same type we can't define all possible overloads. That's why in
Java, we often need to pass multiple null values to a method:

 // Java
 printValue("abc", null, null, "!");

Multiple null parameters provide boilerplate. Such a situation greatly decreases
method readability. In Kotlin, there is no such problem, because Kotlin has a feature
called default arguments and named argument syntax.

Default arguments values
Default arguments are mostly known from C++, which is one of the oldest languages
supporting it. A default argument provides a value for a parameter in case it is not
provided during method call. Each function parameter can have a default value. It
might be any value that is matching a specified type including null. This way we can
simply define functions that can be called in multiple ways. This is an example of a
function with default values:

 fun printValue(value: String, inBracket: Boolean = true,
 prefix: String = "", suffix: String = "") {
 print(prefix)
 if (inBracket) {
 print("(${value})")
 } else {
 print(value)
 }
 println(suffix)
 }

We can use this function the same way as a normal function (a function without
default argument values) by providing values for each parameter (all arguments):

 printValue("str", true, "","") // Prints: (str)

Thanks to the default argument values, we can call a function by providing
arguments only for parameters without default values:

 printValue("str") // Prints: (str)

We can also provide all parameters without default values, and only some that have a
default value:

 printValue("str", false) // Prints: str

Named arguments syntax
Sometimes we want only to pass a value for the last argument. Let's suppose that we
define want to value for a suffix, but not for a prefix and inBracket (which is defined
before suffix). Normally we would have to provide values for all previous
parameters including the default parameter values:

 printValue("str", true, true, "!") // Prints: (str)

By using named argument syntax, we can pass specific arguments using the
argument name:

 printValue("str", suffix = "!") // Prints: (str)!

This allows very flexible syntax, where we can supply only chosen arguments when
calling a function (that is, the first one and the second from the end). It is often used
to specify what this argument is because such a call is more readable:

 printValue("str", inBracket = true) // Prints: (str)
 printValue("str", prefix = "Value is ") // Prints: Value is str
 printValue("str", prefix = "Value is ", suffix = "!! ")
 // Prints: Value is str!!

We can set any parameters we want using named parameter syntax in any order as
long as all parameters without default values are provided. The order of the
arguments is relevant:

 printValue("str", inBracket= true, prefix = "Value is ")
 // Prints: Value is (str)

 printValue("str", prefix = "Value is ", inBracket= true)
 // Prints: Value is (str)

Order of arguments is different, but both preceding calls are equivalent.

We can also use named argument syntax together with classic call. The only
restriction is if we start using named syntax, we cannot use a classic one for next
arguments we are serving:

 printValue ("str", true, "")
 printValue ("str", true, prefix = "")
 printValue ("str", inBracket = true, prefix = "")
 printValue ("str", inBracket = true, "") // Error
 printValue ("str", inBracket = true, prefix = "", "") // Error

This feature allows us to call methods in a very flexible way without the need to
define multiple method overloads.

The named argument syntax imposes some extra responsibility for Kotlin
programmers. We need to keep in mind that when we change a parameter name, we
may cause errors in the project, because the parameter name may be used in other
classes. Android Studio will take care of it if we rename the parameter using built-in
refactoring tools, but this will work only inside our project. The Kotlin library
creators should be very careful while using named argument syntax. Change of the
parameter name will break the API. Note that the named argument syntax cannot be
used when calling Java functions, because Java bytecode does not always preserve
names of function parameters.

Top-level functions
Another thing we can observe in a simple Hello, World! program, is that the main
function is not located inside any class. In Chapter 2, Laying a Foundation, we already
mentioned that Kotlin can define various entities at the top level. A function that is
defined at top-level is called the top-level function. Here is an example of one of
them:

 // Test.kt
 package com.example

 fun printTwo() {
 print(2)
 }

Top-level functions can be used all around the code (assuming that they are public,
what is default visibility modifier). We can call them in the same way as functions
from the local context. To access top-level function, we need to explicitly import it
into a file by using the import statement. Functions are available in code hint list in
Android Studio, so imports are automatically added when a function is selected
(used). As an example, let's see a top-level function defined in Test.kt and use it
inside the Main.kt file:

 // Test.kt
 package com.example

 fun printTwo() {
 print(2)
 }

 // Main.kt
 import com.example.printTwo

 fun main(args: Array<String>) {
 printTwo()
 }

Top-level functions are often useful, but it is important to use them wisely. Keep in
mind that defining public top-level functions will increase the number of functions
available in code hint list (by hint list I mean a list of methods suggested by the IDE
as hints, when we are writing code). It is because public top-level functions are
suggested by the IDE in every context (because they can be used everywhere). If the
name of the top-level function does not clearly state that this is a top-level function,
then it may be confused with a method from the local context and used accidentally.

Here are some good examples of top-level functions:

factorial

maxOf and minOf
listOf

println

Here are some examples of functions that may be poor candidates for top level
functions:

sendUserData

showPossiblePlayers

This rule is applicable only in Kotlin object-oriented programming projects. In
function-oriented programming projects, these are valid top-level names, but then we
suppose that nearly all functions are defined in the top-level and not as methods.

Often we define functions we want to use only in specific modules or specific
classes. To limit function visibility (place where it can be used) we can use visibility
modifiers. We will discuss visibility modifiers in Chapter 4, Classes and Objects.

Top-level functions under the hood
With the Android projects, Kotlin is compiled to Java bytecode that runs on Dalvik
Virtual Machine (before Android 5.0) or Android Runtime (Android 5.0 and newer).
Both virtual machines can execute only the code that is defined inside a class. To
solve this problem Kotlin compiler generates classes for top-level functions. The
class name is constructed from the file name and Kt suffix. Inside such a class, all
functions and properties are static. For example, let's suppose that we define a
function within the Printer.kt file:

 // Printer.kt
 fun printTwo() {
 print(2)
 }

Kotlin code is compiled into Java bytecode. The generated bytecode will be
analogical to the code generated from the following Java class:

 //Java
 public final class PrinterKt { // 1
 public static void printTwo() { // 2
 System.out.print(2); // 3
 }
 }

1. PrinterKt is the name made from the name of file and Kt suffix.
2. All top-level functions and properties are compiled to static methods and

variables.
3. print is a Kotlin function, but since it is an inline function, its call is replaced by

its body during compilation time. And its body includes only System.out.println
call.

Inline functions will be described in Chapter 5, Functions as a First Class Citizen.

Kotlin class at Java bytecode level will contain more data (for example, name of
parameters). We can also access Kotlin top-level functions from Java files by
prefixing a function call with the class name:

 //Java file, call inside some method
 PrinterKt.printTwo()

This way, Kotlin top-level functions calls from Java are fully supported. As we can

see, Kotlin is really interoperable with Java. To make Kotlin top-level functions
usage more comfortable in Java, we can add an annotation that will change the name
of a JVM generated class. This comes in handy when making usage of top-level
Kotlin properties and functions from Java classes. This annotation looks as follows:

 @file:JvmName("Printer")

We need to add the JvmName annotation at the top of the file (before package name).
When this is applied, the name of the generated class will be changed to Printer. This
allows us to call the printTwo function in Java using Printer as the class name:

 //Java
 Printer.printTwo()

Sometimes we are defining top-level functions, and we want to define them in
separate files, but we also want them in the same class after compilation to JVM.
This is possible if we use the following annotation in top of the file:

 @file:JvmMultifileClass

For example, let's assume that we are making a library with mathematical helpers
that we want to use from Java. We can define the following files:

 // Max.kt
 @file:JvmName("Math")
 @file:JvmMultifileClass
 package com.example.math

 fun max(n1: Int, n2: Int): Int = if(n1 > n2) n1 else n2

 // Min.kt
 @file:JvmName("Math")
 @file:JvmMultifileClass
 package com.example.math

 fun min(n1: Int, n2: Int): Int = if(n1 < n2) n1 else n2

And we can use it from Java classes this way:

 Math.min(1, 2)
 Math.max(1, 2)

Thanks to this, we can keep files short and simple, while keeping them all easy to
use from Java.

The JvmName annotation to change generated class names is especially useful when we
create libraries in Kotlin that are also directed to be used in Java classes. It can be
useful in case of name conflicts too. Such a situation can occur when we create both

an X.kt file with some top-level functions or properties and an XKt class in the same
package. But it is rare and should never take place since there is a convention that no
classes should have Kt suffix.

Local functions
Kotlin allows defining functions in many contexts. We can define functions at top-
level, as members (inside the class, interface, and so on), and inside other function
(local function). Consider the following example of the definition of local function:

 fun printTwoThreeTimes() {
 fun printThree() { // 1
 print(3)
 }
 printThree() // 2
 printThree() // 2
 }

1. printThree is a local function, because it is located inside another function.
2. Local functions are not accessible from outside the function they were declared

in.

Elements accessible inside local functions don't have to be passed from enclosing
functions as arguments because they are accessible directly. For example:

 fun loadUsers(ids: List<Int>) {
 var downloaded: List<User> = emptyList()

 fun printLog(comment: String) {
 Log.i("loadUsers (with ids $ids): $comment\nDownloaded:
 $downloaded") // 1
 }
 for(id in ids) {
 printLog("Start downloading for id $id")
 downloaded += loadUser(id)
 printLog("Finished downloading for id $id")
 }
 }

1. Local function can access comment parameter and local variables (downloaded
and IDs), defined inside an enclosing function.

If we would like to define printLog as a top-level function then we would have to
pass as arguments both ids and downloaded:

fun loadUsers(ids: List<Int>) {
 var downloaded: List<User> = emptyList()

 for(id in ids) {
 printLog("Start downloading for id $id", downloaded, ids)
 downloaded += loadUser(id)
 printLog("Finished downloading for

 id $id", downloaded, ids))
 }
}

fun printLog(state: String, downloaded: List<User>, ids: List<Int>)
{
 Log.i("loadUsers (with ids $ids):
 $state\nDownloaded: downloaded")
}

This implementation is not only longer, but also harder to maintain. Changes in
printLog might demand different parameters, and a change in parameters demands
changes in arguments in this function call. Also, if we change the loadUsers parameter
type that is used in printLog then we will need to also change the parameter of
printLog. There would be no such problems if printLog was a local function. This
explains when local functions should be used: When we are extracting functionality
that is used only by a single function, and that functionality is using elements
(variables, values, parameters) of this function. Also, local functions are allowed to
modify local variables. Like in this example:

 fun makeStudentList(): List<Student> {
 var students: List<Student> = emptyList()
 fun addStudent(name: String, state: Student.State =
 Student.State.New) {
 students += Student(name, state, courses = emptyList())
 }
 // ...
 addStudent("Adam Smith")
 addStudent("Donald Duck")
 // ...
 return students
 }

This way, we can extract and reuse functionality that could not be extracted in Java.
It is good to remember about local functions, because they sometimes allow code
extraction that is hard to implement in other ways.

Nothing return type
Sometimes we need to define a function that is always throwing exceptions (never
terminating normally). Two real-life use cases are:

Functions that simplify error throwing. This is especially useful in libraries
where error system is important and there is a need to provide more data about
error occurrence. (As an example look at the throwError function presented in
this section).
Functions used for throwing errors in unit tests. This is useful when we need to
test error handling in our code.

For these kinds of situations, there is a special class called Nothing. The Nothing class
is empty type (uninhabited type), meaning it has no instances. A function that has
Nothing return type won't return anything and it will never reach return statement. It
can only throw an exception. This is why when we see that function is returning
Nothing, then it is designed to throw exceptions. This way we can distinguish
functions that do not return a value (like Java's void, Kotlin's Unit) from functions
that never terminate (returns Nothing). Let us have a look at an example of functions
that might be used to simplify error throwing in unit tests:

 fun fail(): Nothing = throw Error()

And functions that are constructing complex error messages using elements available
in context where it is defined (in class or function):

fun processElement(element: Element) {
 fun throwError(message: String): Nothing
 = throw ProcessingError("Error in element $element: $message")

 // ...
 if (element.kind != ElementKind.METHOD)
 throwError("Not a method")
 // ...
}

This kind of function is that it can be used, just like a throw statement, as an
alternative that is not influencing function returned type:

 fun getFirstCharOrFail(str: String): Char
 = if(str.isNotEmpty()) str[0] else fail()

 val name: String = getName() ?: fail()

 val enclosingElement = element.enclosingElement ?: throwError ("Lack of enclosing element")

How is it possible? This is a special trait of the Nothing class, which is acting as if it is
a subtype of all the possible types: both nullable and not-nullable. This is why
Nothing is referred as an empty type, which means that no value can have this type at
runtime, and it's also a subtype of every other class.

The concept of uninhabited type is new in the world of Java, and this is why it might
be confusing. The idea is actually pretty simple. The Nothing instance is never
existing, while there is only an error that might be returned from functions that are
specifying it as a return type. And there is no need for Nothing added to something to
influence its type.

Summary
In this chapter, we've seen how to define and use functions. We learned how
functions can be defined on the top-level or inside other functions. There was also a
discussion on different features connected to functions--vararg parameters, default
names, and named argument syntax. Finally, we saw some Kotlin special return
types: Unit, which is equivalent of Java void, and Nothing, which is a type that cannot
be defined and means that nothing can be returned (only exceptions).

In the next chapter, we are going to see how classes are defined in Kotlin. Classes
are also specially supported by the Kotlin language, and there are lots of
improvements introduced over Java definitions.

Classes and Objects
The Kotlin language provides full support for OOP programming. We will review
powerful structures that allow us to simplify data model definition and operate on it
in an easy and flexible way. We'll learn how Kotlin simplifies and improves
implementations of many concepts known from Java. We will take a look at different
type of classes, properties, initializer blocks, and constructors. We will learn about
operator overloading and interface default implementations.

In this chapter, we will cover the following topics:

Class declaration
Properties
Property access syntax
Constructors and initializers blocks
Constructors
Inheritance
Interfaces
Data classes
Destructive declarations
Operator overloading
Object declaration
Object expression
Companion objects
Enum classes
Sealed classes
Nested classes

Classes
Classes are a fundamental building block of OOP. In fact, Kotlin classes are very
similar to Java classes. Kotlin, however, allows more functionality together with
simpler and much more concise syntax.

Class declaration
Classes in Kotlin are defined using the class keyword. The following is the simplest
class declaration--an empty class named Person:

 class Person

Definition of Person does not contain any body. Still, it can be instantiated using a
default constructor:

 val person = Person()

Even such a simple task as class instantiation is simplified in Kotlin. Unlike Java,
Kotlin does not require the new keyword to create a class instance. Due to strong
Kotlin interoperability with Java, we can instantiate classes defined in Java and
Kotlin exactly the same way (without the new keyword). The syntax used to
instantiate a class depends on the actual language used to create class instance
(Kotlin or Java), not the language the class was declared in:

 // Instantiate Kotlin class inside Java file
 Person person = new Person()

 // Instantiate class inside Kotlin file
 var person = Person()

It is the rule of thumb to use the new keyword inside a Java file and never use the new
keyword inside a Kotlin file.

Properties
Property is just a combination of a backing field and its accessors. It could be
a backing field with both a getter and a setter or a backing field with only one of
them. Properties can be defined at the top-level (directly inside file) or as a member
(for example, inside class, interface, and so on).

In general, it is advisable to define properties (private fields with getters/setters)
instead of accessing public fields directly (According to Effective Java, by Joshua
Bloch, book's item 14: in public classes, use accessor methods, not public fields).

Java getter and setter conventions for private fields

Getter: A parameterless method with a name that corresponds to
property name and a get prefix (for a Boolean property there might be
an is prefix used instead)

Setter: Single-argument methods with names starting with set: for
example, setResult(String resultCode)

Kotlin guards this principle by language design, because this approach provides
various encapsulation benefits:

Ability to change internal implementation without changing an external API
Enforces invariants (call methods that validate objects state)
Ability to perform additional actions when accessing member (for example, log
operation)

To define a top-level property, we simply define it in the Kotlin file:

 //Test.kt
 val name:String

Let's imagine that we need a class to store basic data regarding a person. This data
may be downloaded from an external API (backend) or retrieved from a local
database. Our class will have to define two (member) properties, name and age. Let's
look at the Java implementation first:

 public class Person {

 private int age;
 private String name;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 }

This class contains only two properties. Since we can make the Java IDE generate
accessors code for us, at least we don't have to write the code by ourselves.
However, the problem with this approach is that we cannot get along without these
automatically generated chunks, and that makes the code very verbose. We
(developers) spend most of our time just reading the code, not writing it, so reading
redundant code wastes a lot of valuable time. Also a simple task such as refactoring
the property name becomes a little bit trickier, because the IDE might not update
constructor parameter names.

Fortunately, boilerplate code can be decreased significantly by using Kotlin. Kotlin
solves this problem by introducing the concept of properties that is built into the
language. Let's look at a Kotlin equivalent of the preceding Java class:

 class Person {
 var name: String
 var age: Int

 constructor(name: String, age: Int) {
 this.name = name
 this.age = age
 }
 }

This is an exact equivalent of the preceding Java class:

The constructor method is equivalent of the Java constructor that is called when
an object instance is created

Getters and setters are generated by the Kotlin compiler

We can still define custom implementations of getters and setters. We will discuss
this in more detail in the Custom getters/setters section.

All the constructors that we have already defined are called secondary constructors.
Kotlin also provides alternative, very concise syntax for defining constructors. We
can define a constructor (with all parameters) as part of the class header. This kind of
constructor is called a primary constructor. Let's move a property declaration from
the secondary constructor into the primary constructor to make our code a little bit
shorter:

 class Person constructor(name: String, age: Int) {
 var name: String
 var age: Int

 init {
 this.name = name
 this.age = age
 println("Person instance created")
 }
 }

In Kotlin, the primary constructor, as opposed to the secondary constructor, can't
contain any code, so all initialization code must be placed inside the initializer block
(init). An initializer block will be executed during class creation, so we can assign
constructor parameters to fields inside it.

To simplify code, we can remove the initializer block and access constructor
parameters directly in property initializers. This allows us to assign constructor
parameters to a field:

 class Person constructor(name: String, age: Int) {
 var name: String = name
 var age: Int = age
 }

We managed to make the code shorter, but it still contains a lot of boilerplate,
because type declarations and property names are duplicated (constructor parameter,
field assignment, and field itself). When properties does not have any custom getters
or setters we can define them directly inside primary constructor by adding val or var
modifier:

 class Person constructor (var name: String, var age: Int)

Finally, if the primary constructor does not have any annotations (@Inject, and so on)

or visibility modifiers (public, private, and so on), then the constructor keyword can
be omitted:

 class Person (var name: String, var age: Int)

When the constructor takes a few parameters, it is good practice to define each
parameter in a new line to improve code readability and decrease chance of potential
merge conflicts (when merging branches from source code repository):

 class Person(
 var name: String,
 var age: Int
)

Summing up, the preceding example is equivalent of the Java class presented at the
beginning of this section--both properties are defined directly in the class primary
constructor and Kotlin compiler does all the work for us--it generates appropriate
fields and accessors (getters/setters).

Note that this notation contains only the most important information about this data
model class--its name, parameter names, types, and mutability (val/var) information.
Implementation has nearly zero boilerplate. This makes the class very easy to read,
understand, and maintain.

Read-write versus read-only property
All the properties in the previous examples were defined as read-write (a setter and a
getter are generated). To define read-only properties we need to use the val keyword,
so only getter will be generated. Let's look at a simple example:

 class Person(
 var name: String,
 // Read-write property (generated getter and setter)
 val age: Int // Read-only property (generated getter)
)

 \\usage
 val person = Person("Eva", 25)

 val name = person.name
 person.name = "Kate"

 val age = person.age
 person.age = 28 \\error: read-only property

Kotlin does not support write-only properties (properties of which only setter is
generated).

Keyword Read Write

var Yes Yes

val Yes No

(unsupported) No Yes

Property access syntax between Kotlin
and Java
Another big improvement introduced by Kotlin is the way of accessing properties. In
Java, we would access property using the corresponding method (setSpeed/getSpeed).
Kotlin promotes property access syntax, which is a more expressive way of
accessing properties. Let's compare both approaches, assuming we have a simple Car
class that has a single speed property:

 class Car (var speed: Double)

 //Java access properties using method access syntax
 Car car = new Car(7.4)
 car.setSpeed(9.2)
 Double speed = car.getSpeed();

 //Kotlin access properties using property access syntax
 val car: Car = Car(7.4)
 car.speed = 9.2
 val speed = car.speed

As we can see, in Kotlin there is no need to add get, set prefixes and parentheses to
access or modify an object property. Using property access syntax allows for direct
usage of increment (++) and decrement (--) operators together with property access:

 val car = Car(7.0)
 println(car.speed) //prints 7.0
 car.speed++
 println(car.speed) //prints 8.0
 car.speed--
 car.speed--
 println(car.speed) //prints: 6.0

Increment and decrement operators
There are two kinds of increment (++) and decrement(--) operators: pre-
increment/pre-decrement where the operator is defined before the expression, and
post-increment/post-decrement where the operator is defined after the expression:

 ++speed //pre increment
 --speed //pre decrement

 speed++ //post increment
 speed-- //post decrement

In the preceding example, using post- versus pre-increment/decrement would change
nothing because those operations are executed in sequence. But this makes a huge
difference when the increment/decrement operator is combined with a function call.

In the pre-increment operator, speed is retrieved, incremented, and passed to a
function as an argument:

 var speed = 1.0
 println(++speed) // Prints: 2.0
 println(speed) // Prints: 2.0

In post-increment operator speed is retrieved, passed to a function as an argument,
and then it is incremented, so the old value is passed to a function:

 var speed = 1.0
 println(speed++) // Prints: 1.0
 println(speed) // Prints: 2.0

This works in an analogical way for pre-decrement and post-decrement
operators.

Property access syntax is not limited only to classes defined in Kotlin. Each method
that follows the Java conventions for getters and setters is represented as a property
in Kotlin.

This means that we can define a class in Java and access its properties in Kotlin
using property access syntax. Let's define a Java Fish class with two properties, size
and isHungry, and let's instantiate this class in Kotlin and access the properties:

 //Java class declaration

 public class Fish {
 private int size;
 private boolean hungry;

 public Fish(int size, boolean isHungry) {
 this.size = size;
 this.hungry = isHungry;
 }

 public int getSize() {
 return size;
 }

 public void setSize(int size) {
 this.size = size;
 }

 public boolean isHungry() {
 return hungry;
 }

 public void setHungry(boolean hungry) {
 this.hungry = hungry;
 }
 }

 //Kotlin class usage
 val fish = Fish(12, true)
 fish.size = 7
 println(fish.size) // Prints: 7
 fish.isHungry = true
 println(fish.isHungry) // Prints: true

This works both ways, so we can define the Fish class in Kotlin using very concise
syntax and access it in a usual Java way, because the Kotlin compiler will generate
all the required getters and setters:

 //Kotlin class declaration
 class Fish(var size: Int, var hungry: Boolean)

 //class usage in Java
 Fish fish = new Fish(12, true);
 fish.setSize(7);
 System.out.println(fish.getSize());
 fish.setHungry(false);
 System.out.println(fish.getHungry());

As we can see, syntax used to access the class property depends on the actual
language that the class uses, not the language that the class was declared in. This
allows for more idiomatic usage of many classes defined in the Android framework.
Let's see some examples:

Java method access syntax Kotlin property access syntax

activity.getFragmentManager() activity.fragmentManager

view.setVisibility(Visibility.GONE) view.visibility = Visibility.GONE

context.getResources().getDisplayMetrics().density context.resources.displayMetrics.density

Property access syntax results in more concise code that decreases the original Java
language complexity. Notice that it is still possible to use method access syntax with
Kotlin although property access syntax is often the better alternative.

There are some methods in the Android framework that use the is prefix for their
name; in this cases Boolean properties also have the is prefix:

 class MainActivity : AppCompatActivity() {

 override fun onDestroy() { // 1
 super.onDestroy()

 isFinishing() // method access syntax
 isFinishing // property access syntax
 finishing // error
 }
 }

1. Kotlin marks overridden members using the override modifier, not @Override
annotation like Java.

Although using finishing would be the most natural and consistent approach, it's
impossible to use it by default due to potential conflicts.

Another case where we can't use the property access syntax is when the property
defines only setter without getter, because Kotlin does not support write-only
properties, as in this example:

 fragment.setHasOptionsMenu(true)
 fragment.hasOptionsMenu = true // Error!

Custom getters/setters
Sometimes we want to have more control about property usage. We may want to
perform other auxiliary operations when using property; for example, verify a value
before it's assigned to a field, log the whole operation, or invalidate an instance state.
We can do it by specifying custom setters and/or getters. Let's add the ecoRating
property to our Fruit class. In most cases, we would add this property to the class
declaration header like this:

 class Fruit(var weight: Double,
 val fresh: Boolean,
 val ecoRating: Int)

If we want to define custom getters and setters, we need to define a property in the
class body instead of the class declaration header. Let's move the ecoRating property
into the class body:

class Fruit(var weight: Double, val fresh: Boolean, ecoRating: Int)
{
 var ecoRating: Int = ecoRating
}

When the property is defined inside the body of a class, we have to initialize it with
value (even nullable properties need to be initialized with a null value). We can
provide the default value instead of filling a property with the constructor argument:

 class Fruit(var weight: Double, val fresh: Boolean) {
 var ecoRating: Int = 3
 }

We can also compute default values based on some other properties:

 class Apple(var weight: Double, val fresh: Boolean) {
 var ecoRating: Int = when(weight) {
 in 0.5..2.0 -> 5
 in 0.4..0.5 -> 4
 in 0.3..0.4 -> 3
 in 0.2..0.3 -> 2
 else -> 1
 }
 }

Different values will be set for different weight constructor arguments.

When a property is defined in a class body, the type declaration can be omitted,

because it can be inferred from the context:

 class Fruit(var weight: Double) {
 var ecoRating = 3
 }

Let's define a custom getter and setter with the default behavior that will be the
equivalent of the preceding property:

 class Fruit(var weight: Double) {
 var ecoRating: Int = 3
 get() {
 println("getter value retrieved")
 return field
 }
 set(value) {
 field = if (value < 0) 0 else value
 println("setter new value assigned $field")
 }
 }

 // Usage
 val fruit = Fruit(12.0)
 val ecoRating = fruit.ecoRating
 // Prints: getter value retrieved
 fruit.ecoRating = 3;
 // Prints: setter new value assigned 3
 fruit.ecoRating = -5;
 // Prints: setter new value assigned 0

Inside the get and set block, we can have access to a special variable called field,
which refers to the corresponding backing field of the property. Notice that the
Kotlin property declaration is closely positioned to a custom getter/setter. This
contradicts with Java and solves the issue where the field declaration is usually at the
top of the file containing class and corresponding getter/setter is at the bottom of this
file, so we can't really see them on a single screen and thus code is more difficult to
read. Apart from that location, Kotlin property behavior is quite similar to Java. Each
time we retrieve, value from the ecoRating property, a get block will be executed, and
each time we assign a new value to the ecoRating property, a set block will be
executed.

This is a read-write property (var), so it may contain both corresponding getters and
setters. In case we explicitly define only one of them, the default implementation
will be used for another.

To make a value computed each time when a property value is retrieved, we need to
explicitly define getter:

 class Fruit(var weight: Double) {

 val heavy // 1
 get() = weight > 20
 }

 //usage
 var fruit = Fruit(7.0)
 println(fruit.heavy) //prints: false
 fruit.weight = 30.5
 println(fruit.heavy) //prints: true

1. Since Kotlin 1.1 type can be omitted (it is to be inferred).

The getter versus property default
value
In the preceding example, we used getter, so the property value is calculated each
time the value is retrieved. By omitting getter we can create a default value for the
property. This value will be computed only once during class creation and it will
never change (changing the weight property will have no effect on the isHeavy
property value):

 class Fruit(var weight: Double) {
 val isHeavy = weight > 20
 }

 var fruit = Fruit(7.0)
 println(fruit.isHeavy) // Prints: false
 fruit.weight = 30.5
 println(fruit.isHeavy) // Prints: false

This type of property does have a backing field, because its value is always
computed during object creation. We can also create read-write properties without a
backing field:

 class Car {
 var usable: Boolean = true
 var inGoodState: Boolean = true

 var crashed: Boolean
 get() = !usable && !inGoodState
 set(value) {
 usable = false
 inGoodState = false
 }
 }

This type of property does not have a backing field, because its value is always
computed using another property.

Late-initialized properties
Sometimes we know that a property won't be null, but it won't be initialized with
the value at declaration time. Let's look at common Android examples--retrieving
reference to a layout element:

 class MainActivity : AppCompatActivity() {

 private var button: Button? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 button = findViewById(R.id.button) as Button
 }
 }

The button variable can't be initialized at declaration time, because the MainActivity
layout is not yet initialized. We can retrieve reference to the button defined in the
layout inside the onCreate method, but to do it we need to declare a variable as
nullable (Button?).

Such an approach seems quite impractical, because after the onCreate method is
called a button instance is available all the time. However, the client still needs to use
the safe call operator or other nullity checks to access it.

To avoid nullity checks when accessing a property, we need a way to inform the
Kotlin compiler that this variable will be filled before usage, but its initialization will
be delayed in time. To do this, we can use the lateinit modifier:

 class MainActivity : AppCompatActivity() {

 private lateinit var button: Button

 override fun onCreate(savedInstanceState: Bundle?) {
 button = findViewById(R.id.button) as Button
 button.text = "Click Me"
 }
 }

Now, with the property marked as lateinit, we can access our application instance
without performing nullity checks.

The lateinit modifier tells the compiler that this property is non-nullable, but its
initialization is delayed in time. Naturally, when we try to access the property before

it is initialized, the application will throw UninitializedPropertyAccessException. This is
fine, because we assume that this scenario should not happen.

A scenario where a variable initialization is not possible at declaration time is quite
common and it is not always related to views. Properties can be initialized through
Dependency Injection, or via the setup method of a unit test. In such scenarios, we
cannot supply a non-nullable value in the constructor, but we still want to avoid
nullity checks.

The lateinit property and frameworks

The lateinit property is also helpful when a property is injected by the
Dependency Injection framework. The popular Android Dependency
Injection framework, Dagger, uses the @Inject annotation to mark
properties that need to be injected:

@Inject lateinit var locationManager: LocationManager

We know that the property will never be null (because it will be
injected), but the Kotlin compiler does not understand this annotation.

Similar scenarios happen with the popular framework, Mockito:

@Mock lateinit var mockEventBus: EventBus

The variable will be mocked, but it will happen sometime later, after
test class creation.

Annotating properties
Kotlin generates multiple JVM bytecode elements from a single property (private
field, getter, setter). Sometimes the framework annotation processor or the
reflection-based library requires a particular element to be defined as a public field.
A good example of such behavior is the JUnit test framework. It requires rules to be
provided through a test class field or a getter method. We may encounter this
problem when defining ActivityTestRule or Mockito's (mocking framework for unit
tests) Rule annotation:

 @Rule
 val activityRule = ActivityTestRule(MainActivity::class.Java)

The preceding code annotates the Kotlin property that JUnit won't recognize, so
ActivityTestRule can't be properly initialized. The JUnit annotation processor expects
the Rule annotation on the field or getter. There are a few ways to solve this problem.
We can expose the Kotlin property as a Java field by annotating it with the @JvmField
annotation:

 @JvmField @Rule
 val activityRule = ActivityTestRule(MainActivity::class.Java)

The field will have the same visibility as the underlying property. There are a few
limitations regarding @JvmField annotation usage. We can annotate a property with
@JvmField if it has a backing field, it is not private, does not have open, override, or
const modifiers, and is not a delegated property.

We can also annotate getter by adding an annotation directly to getter:

 val activityRule
 @Rule get() = ActivityTestRule(MainActivity::class.java)

If we don't want to define getter, we can still add an annotation to getter using the
use-site target (get). By doing so, we simply specify which element generated by the
Kotlin compiler will be annotated:

 @get:Rule
 val activityRule = ActivityTestRule(MainActivity::class.Java)

Inline properties
We can optimize property calls by using the inline modifier. During compilation
each property call will be optimized. Instead of really calling a property, the call will
be replaced with the property body:

 inline val now: Long
 get() {
 println("Time retrieved")
 return System.currentTimeMillis()
 }

With inline property, we are using the inline modifier. The preceding code will be
compiled to:

 println("Time retrieved")
 System.currentTimeMillis()

Inlining improves performance, because there is no need to create additional objects.
No getter will be invoked, because the body would replace the property usage.
Inlining has one limitation--it can be only applied to properties that do not have a
backing field.

Constructors
Kotlin allows us to define classes without any constructors. We can also define
a primary constructor and one or more secondary constructors:

 class Fruit(val weight: Int) {
 constructor(weight: Int, fresh: Boolean) : this(weight) { }
 }

 //class instantiation
 val fruit1 = Fruit(10)
 val fruit2 = Fruit(10, true)

Declaring properties is not allowed for secondary constructors. If we need a property
that is initialized by secondary constructors, we must declare it in the class body, and
we can initialize it in the secondary constructor body. Let's define the fresh property:

 class Test(val weight: Int) {
 var fresh: Boolean? = null
 //define fresh property in class body

 constructor(weight: Int, fresh: Boolean) : this(weight) {
 this.fresh = fresh
 //assign constructor parameter to fresh property
 }
 }

Notice that we defined our fresh property as nullable, because when an instance of
the object will be created using a primary constructor the fresh property will be null:

 val fruit = Fruit(10)
 println(fruit.weight) // prints: 10
 println(fruit.fresh) // prints: null

We can also assign the default value to the fresh property to make it non-nullable:

 class Fruit(val weight: Int) {
 var fresh: Boolean = true

 constructor(weight: Int, fresh: Boolean) : this(weight) {
 this.fresh = fresh
 }
 }

 val fruit = Fruit(10)
 println(fruit.weight) // prints: 10
 println(fruit.fresh) // prints: true

When a primary constructor is defined, every secondary constructor must call the

primary constructor implicitly or explicitly. An implicit call means that we call the
primary constructor directly. An explicit call means that we call another secondary
constructor that calls primary constructor. To call another constructor, we use the
this keyword:

class Fruit(val weight: Int) {

 constructor(weight: Int, fresh: Boolean) : this(weight) // 1

 constructor(weight: Int, fresh: Boolean, color: String) :
 this(weight, fresh) // 2
}

1. Call to primary constructor
2. Call to secondary constructor

If the class has no primary constructor and the super class has a non-empty
constructor, then each secondary constructor has to initialize the base class using the
super keyword or call another constructor that does that:

class ProductView : View {
 constructor(ctx: Context) : super(ctx)
 constructor(ctx: Context, attrs : AttributeSet) :
 super(ctx, attrs)
}

A view example can be greatly simplified by using the @JvmOverloads annotation that
will be described in the @JvmOverloads section.

By default, this generated constructor will be public. If we want to prevent the
generation of such an implicit public constructor, we have to declare an empty
primary constructor with a private or protected visibility modifier:

 class Fruit private constructor()

To change the constructor visibility, we need to explicitly use the constructor
keyword in the class definition header. The constructor keyword is also required
when we want to annotate a constructor. A common example is to annotate a class
constructor using the Dagger (Dependency Injection framework) @Inject annotation:

 class Fruit @Inject constructor()

Both the visibility modifier and annotation can be applied at the same time:

 class Fruit @Inject private constructor {
 var weight: Int? = null
 }

Property versus constructor parameter
The important thing to notice is the fact that if we remove the var/val keyword from
constructor property declaration, we'll end up with a constructor parameter
declaration. This means that the property will be changed into constructor parameter,
so no accessors will be generated and we will not be able to access the property on
the class instance:

 class Fruit(var weight:Double, fresh:Boolean)

 val fruit = Fruit(12.0, true)
 println(fruit.weight)
 println(fruit.fresh) // error

In the preceding example, we have an error because fresh is missing a val or var
keyword, so it is a constructor parameter, not a class property such as weight. The
following table summarizes the compiler accessor generation:

Class declaration Getter
generated

Setter
generated Type

class Fruit (name:String) No No Constructor
parameter

class Fruit (val
name:String) Yes No Property

class Fruit (var
name:String) Yes Yes Property

Sometimes we may wonder when we should use a property and when we should use
a method. A good guideline to follow is to use property instead of method when:

It does not throw an exception
It is cheap to calculate (or cached on the first run)

It returns the same result over multiple invocations

Constructor with default arguments
Since the early days of Java, there was a serious flaw with object creation. It is
difficult to create an object instance when an object requires multiple parameters and
some of those parameters are optional. There are a few ways to solve this problem,
such as, the Telescoping constructor pattern, the JavaBeans pattern, and even the
Builder pattern. Each of them have their pros and cons.

Patterns
The patterns solve the issue of object creation. Each of them is explained as follows:

Telescoping constructor pattern: Class with a list of constructors where each
one adds a new parameter. Now a days it's considered an anti-pattern, but
Android framework still uses it in a few places; for example, the
android.view.View class:

 val view1 = View(context)
 val view1 = View(context, attributeSet)
 val view1 = View(context, attributeSet, defStyleAttr)

JavaBeans pattern: Parameterless constructor plus one or more setters
methods to configure objects. The main problem with this pattern is that we
can't say whether or not all the required methods have been called on an object,
so it may be only partially constructed:

 val animal = Animal()
 fruit.setWeight(10)
 fruit.setSpeed(7.4)
 fruit.setColor("Gray")

Builder pattern: Uses another object, a builder, that receives initialization
arguments step by step and then returns the resulting constructed object at once
when the build method is called; for example, android.app.Notification.Builder,
or android.app.AlertDialog.Builder:

 Retrofit retrofit = new Retrofit.Builder()
 .baseUrl("https://api.github.com/")
 .build();

For a long time, builder was most widely used, but a combination of default
arguments and named argument syntax is an even more concise option. Let's define
some default value:

 class Fruit(weight: Int = 0, fresh: Boolean = true, color:
 String = "Green")

By defining default parameter values, we can create objects in multiple ways,
without a need to pass all arguments:

 val fruit = Fruit(7.4, false)

 println(fruit.fresh) // prints: false

 val fruit2 = Fruit(7.4)
 println(fruit.fresh) // prints: true

Using arguments syntax with default parameters gives us much more flexibility in
objects creation. We can pass only required parameters in any order that we want
without defining multiple methods and constructors, as in the following example:

val fruit1 = Fruit (weight = 7.4, fresh = true, color = "Yellow")

val fruit2 = Fruit (color = "Yellow")

Inheritance
As we already know, a supertype of all Kotlin types is Any. It is the equivalent of the
Java Object type. Each Kotlin class explicitly or implicitly extends the Any class. If we
do not specify the parent class, the Any will be used implicitly set as parent for the
class:

 class Plant // Implicitly extends Any
 class Plant : Any // Explicitly extends Any

Kotlin, like Java, promotes single inheritance, so a class can have only one parent
class, but it can implement multiple interfaces.

In contrast to Java, every class and every method in Kotlin is final by default. This
plays along with the Effective Java Item 17: Design and document for inheritance or
else prohibit it rule. This is used to prevent unexpected behavior from a subclass
altering. Modification of a base class can cause the incorrect behavior of subclasses,
because the changed code of the base class no longer matches the assumptions in its
subclasses.

This means that a class cannot be extended and a method cannot be overridden until
it's explicitly declared as open using the open keyword. This is the exact opposite of
the Java final keyword.

Let's say we want to declare a base class Plant and subclass Tree:

 class Plant
 class Tree : Plant() // Error

The preceding code will not compile, because the class Plant is final by default. Let's
make it open:

 open class Plant
 class Tree : Plant()

Notice that we define inheritance in Kotlin simply by using the colon character (:).
There is no extends or implements keywords known from Java.

Now let's add some methods and properties to our Plant class, and try to override it in
the Tree class:

 open class Plant {
 var height: Int = 0
 fun grow(height: Int) {}
 }

 class Tree : Plant() {
 override fun grow(height: Int) { // Error
 this.height += height
 }
 }

This code will also not compile. We have said already that all methods are also
closed by default, so each method we want to override must be explicitly marked as
open. Let's fix the code by marking the grow method as open:

 open class Plant {
 var height: Int = 0
 open fun grow(height: Int) {}
 }

 class Tree : Plant() {
 override fun grow(height: Int) {
 this.height += height
 }
 }

In a similar way, we could open and override the height property:

 open class Plant {
 open var height: Int = 0
 open fun grow(height: Int) {}
 }

 class Tree : Plant() {
 override var height: Int = super.height
 get() = super.height
 set(value) { field = value}

 override fun grow(height: Int) {
 this.height += height
 }
 }

To quickly override any member, go to a class where a member is
declared, add the open modifier, and then go to a class where we want
to override member, run the override members (the shortcut for
Windows is Ctrl + O, and for macOS, it is Command + O) action, and
select all the members you want to override. This way all the required
code will be generated by Android Studio.

Let's assume that all trees grow in the same way (the same computation of growing
algorithm is applicable for all trees). We want to allow creating new subclasses of
the Tree class to have more control over trees, but at the same time we want to

preserve our growing algorithm--not allowing any subclasses of the Tree class to
override this behavior. To achieve this, we need to explicitly mark the grow method in
the Tree class as final:

 open class Plant {
 var height: Int = 0

 open fun grow(height: Int) {}
 }

 class Tree : Plant() {
 final override fun grow(height: Int) {
 this.height += height
 }
 }

 class Oak : Tree() {
 // 1
 }

1. It's not possible to override grow method here because it's final

Let's sum up all this open and final behavior. To make a method overridable in a
subclass, we needed to explicitly mark it as open in the superclass. To make sure that
overridden method will not be overridden again by any subclass, we need to mark it
as final.

In the preceding example, the grow method in the Plant class does not really provide
any functionality (it has an empty body). This is a sign that maybe we don't want to
instantiate the Plant class at all, but treat it as a base class and only instantiate various
classes such as Tree that extends the Plant class. We should mark the Plant class as
abstract to disallow its instantiation:

 abstract class Plant {
 var height: Int = 0

 abstract fun grow(height: Int)
 }

 class Tree : Plant() {
 override fun grow(height: Int) {
 this.height += height
 }
 }
 val plant = Plant()
 // error: abstract class can't be instantiated
 val tree = Tree()

Marking the class as abstract will also make the method class open by default, so we
don't have to explicitly mark each member as open. Notice that when we are defining
the grow method as abstract, we have to remove its body, because the abstract method

can't have a body.

The JvmOverloads annotation
Some classes in the Android platform use Telescoping constructors, which is
considered as an anti-pattern. A good example of such a class is the android.view.View
class. There may be a case when only a single constructor is used (inflating the
custom view from Kotlin code), but it is much safer to override all three constructors
when the subclassing subclass android.view.View, because the class will work
correctly in all scenarios. Normally our custom view class would look like this:

 class CustomView : View {

 constructor(context: Context?) : this(context, null)

 constructor(context: Context?, attrs: AttributeSet?) :
 this(context, attrs, 0)

 constructor(context: Context?, attrs: AttributeSet?, defStyleAttr: Int) : super(context, attrs, defStyleAttr) {
 //...
 }
 }

This case introduces a lot of boilerplate code just for constructors that delegate calls
to other constructors. Kotlin's solution to this problem is to use the @JvmOverload
annotation:

 class KotlinView @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr)

Annotating a constructor with the @JvmOverload annotation informs the compiler to
generate in JVM bytecode additional constructor overload for every parameter with a
default value. In this case, all the required constructors will be generated:

public SampleView(Context context) {
 super(context);
}

public SampleView(Context context, @Nullable AttributeSet attrs) {
 super(context, attrs);
}

public SampleView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
}

Interfaces
Kotlin interfaces are similar to Java 8 interfaces and in contrast to interfaces from
previous Java versions. An interface is defined using the interface keyword. Let's
define an EmailProvider interface:

 interface EmailProvider {
 fun validateEmail()
 }

To implement the preceding interface in Kotlin, use the same syntax as for extending
classes--a single colon character (:). There is no implements keyword like in Java:

 class User:EmailProvider {
 override fun validateEmail() {
 //email validation
 }
 }

The question may arise of how to extend a class and implement an interface at the
same time. Simply place the class name after the colon, and use comma character to
add one or more interfaces. It's not required to place the super class at the first
position although it's considered good practice:

 open class Person {

 interface EmailProvider {
 fun validateEmail()
 }

 class User: Person(), EmailProvider {
 override fun validateEmail(){
 //email validation
 }
 }

As with Java, the Kotlin class can extend only one class, but it can implement one or
more interfaces. We can also declare properties in the interfaces:

 interface EmailProvider {
 val email: String
 fun validateEmail()
 }

All methods and properties have to be overridden in a class implementing interface:

 class User() : EmailProvider {

 override val email: String = "UserEmailProvider"

 override fun validateEmail() {
 //email validation
 }
 }

Also, properties defined in a primary constructor can be used to override parameters
from an interface:

 class User(override val email: String) : EmailProvider {
 override fun validateEmail() {
 //email validation
 }
 }

All methods and properties defined in an interface that does not have default
implementation are treated by default as abstract, so we don't have to explicitly
define them as abstract. All abstract methods and properties must be implemented
(overridden) by a concrete (non-abstract) class that implements an interface.

There is, however, another way to define methods and properties in the interface.
Kotlin, similar to Java 8, introduces major improvement to interfaces. An interface
cannot only define behavior, but also implements it. This means that the default
method of property implementation can be provided by an interface. The only
limitation is that an interface cannot reference any backing fields--store a state
(because there is no good place to store it). This is a differing factor between
interface and abstract class. Interfaces are stateless (they can't have a state), while
abstract classes are stateful (they can have a state). Let's see an example:

 interface EmailProvider {

 fun validateEmail(): Boolean

 val email: String

 val nickname: String
 get() = email.substringBefore("@")
 }
 class User(override val email: String) : EmailProvider {
 override fun validateEmail() {
 //email validation
 }
 }

The EmailProvider interface provides the default implementation for the nickname
property, so we don't have to define it in the User class, and we can still use the
property as any other property defined in the class:

 val user = User (" johnny.bravo@test.com")
 print(user.nickname) //prints: johnny

The same applies for methods. Simply define a method with the body in the
interface, so the User class will take all default implementation from the interface,
and will have to override only the email member--the only member in the inference
without default implementation:

 interface EmailProvider {

 val email: String

 val nickname: String
 get() = email.substringBefore("@")

 fun validateEmail() = nickname.isNotEmpty()
 }

 class User(override val email: String) : EmailProvider

 //usage
 val user = User("joey@test.com")
 print(user.validateEmail()) // Prints: true
 print(user.nickname) // Prints: joey

There is one interesting case related to default implementations. A class can't inherit
from multiple classes, but it can implement multiple interfaces. We can have two
interfaces containing methods with the same signature and default implementations:

 interface A {
 fun foo() {
 println("A")
 }
 }

 interface B {
 fun foo() {
 println("B")
 }
 }

In such cases, conflict must be resolved explicitly by overriding the foo method in a
class implementing the interfaces:

 class Item : A, B {
 override fun foo() {
 println("Item")
 }
 }

 //usage
 val item = Item()
 item.foo() //prints: Item

We can still call both default interface implementations by qualifying super using
angle brackets and specifying the parent interface type name:

 class Item : A, B {
 override fun foo() {
 val a = super<A>.foo()
 val b = super.foo()
 print("Item $a $b")
 }
 }

 //usage
 val item = Item()
 item.foo()

 //Prints: A
 B
 ItemsAB

Data classes
Often we create a class whose only purpose is to store data; for example, data
retrieved from a server or local database. Those classes are building blocks of
application data models:

 class Product(var name: String?, var price: Double?) {

 override fun hashCode(): Int {
 var result = if (name != null) name!!.hashCode() else 0
 result = 31 * result + if (price != null) price!!.hashCode()
 else 0
 return result
 }

 override fun equals(other: Any?): Boolean = when {
 this === other -> true
 other == null || other !is Product -> false
 if (name != null) name != other.name else other.name !=
 null -> false
 price != null -> price == other.price
 else -> other.price == null
 }

 override fun toString(): String {
 return "Product(name=$name, price=$price)"
 }
 }

In Java, we need to generate a lot of redundant getters/setters together with hashCode
and equals methods. Android Studio can generate most of the code for us, but
maintaining this code is still an issue. In Kotlin, we can define a special kind of class
called the data class by adding the data keyword to a class declaration header:

 class Product(var name: String, var price: Double)
 // normal class

 data class Product(var name: String, var price: Double)
 // data class

A data class adds additional capabilities to a class in the form of methods generated
by the Kotlin compiler. Those methods are equals, hashCode, toString, copy, and
multiple componentN methods. The limitation is that data classes can't be marked as
abstract, inner, and sealed. Let's discuss methods added by a data modifier in more
detail.

The equals and hashCode method
When dealing with data classes, there is often a need to compare two instances for
structural equality (that they contain the same data, but not necessarily are the same
instance). We many simply want to check if one instance of the User class equals
another User instance or if two product instances represent the same product. A
common pattern used to check if objects are equal is to use an equals method that
uses the hashCode method internally:

 product.equals(product2)

The general contract for overridden implementations of hashCode is that two equal
objects (according to equals implementation) need to have the same hash code. The
reason behind it is that hashCode is often compared before equals, because of its
performance--it's much cheaper to compare hash code than every field in the object.

If hashCode is the same then the equals method checks if two objects are the same
instance, the same type, and then verifies equality by comparing all significant fields.
If at least one of the fields of the first object is not equal to a corresponding field of a
second object then the objects are not considered as equal. Another way around--two
objects are equal when they have the same hashCode and all significant (compared)
fields have the same value. Let's check an example of the Java product class
containing two fields, name and price:

 public class Product {

 private String name;
 private Double price;

 public Product(String name, Double price) {
 this.name = name;
 this.price = price;
 }

 @Override
 public int hashCode() {
 int result = name != null ? name.hashCode() : 0;
 result = 31 * result + (price != null ?
 price.hashCode() : 0);
 return result;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) {
 return true;

 }
 if (o == null || getClass() != o.getClass()) {
 return false;
 }

 Product product = (Product) o;

 if (name != null ? !name.equals(product.name) :
 product.name != null) {
 return false;
 }
 return price != null ? price.equals(product.price) :
 product.price == null;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Double getPrice() {
 return price;
 }

 public void setPrice(Double price) {
 this.price = price;
 }
 }

This approach is widely used in Java and other OOP programming languages. In the
early days, programmers had to write this code manually for every class that needed
to be compared and maintained the code making sure that it was correct and it
compares every significant value.

Nowadays, modern IDEs such as Android Studio can generate this code and update
the appropriate methods. We don't have to write the code, but we still have to
maintain it by making sure that all the required fields are compared by the equals
method. Sometimes we don't know if it is a standard code generated by the IDE or it
is a tweaked version. For each Kotlin data class, those methods are automatically
generated by a compiler, so this problem does not exist. Here is a definition of
Product in Kotlin, which contains all methods defined in the previous Java classes:

 data class Product(var name: String, var price: Double)

The preceding class contains all methods defined in previous Java classes, but there
is no massive boilerplate code to maintain.

In Chapter 2, Laying a Foundation, we mentioned that, in Kotlin, using the structural

equality operator (==) will always call the equals method under the hood, so it means
that we can easily and safely compare instances of our Product data class:

 data class Product(var name:String, var price:Double)

 val productA = Product("Spoon", 30.2)
 val productB = Product("Spoon", 30.2)
 val productC = Product("Fork", 17.4)

 print(productA == productA) // prints: true
 print(productA == productB) // prints: true
 print(productB == productA) // prints: true
 print(productA == productC) // prints: false
 print(productB == productC) // prints: false

By default, the hashCode and equals methods are generated based on every property
declared in the primary constructor. In most scenarios this is enough, but if we need
more control we are still allowed to override these methods by ourselves in the data
class. In this case, the default implementation won't be generated by the compiler.

The toString method
Generated methods contain names and values of all properties declared in the
primary constructor:

 data class Product(var name:String, var price:Double)
 val productA = Product("Spoon", 30.2)
 println(productA) // prints: Product(name=Spoon, price=30.2)

We can actually log meaningful data to a console or log file, instead of class name
and memory address like in Java (Person@a4d2e77). This makes the debugging process
much simpler, because we have a proper, human readable format.

The copy method
By default, the Kotlin compiler will also generate an appropriate copy method that
will allow us to easily create a copy of an object:

 data class Product(var name: String, var price: Double)

 val productA = Product("Spoon", 30.2)
 print(productA) // prints: Product(name=Spoon, price=30.2)

 val productB = productA.copy()
 print(productB) // prints: Product(name=Spoon, price=30.2)

Java does not have named argument syntax, so when calling the copy method Java
code we need to pass all arguments (the order of the arguments corresponds to the
order of properties defined in the primary constructor). In Kotlin, this approach
decreases the need for copy constructors or copy factories:

The copy constructor takes a single argument and type is the class containing the
constructor and returns the newInstance of this class:

 val productB = Product(productA)

The copy factory is the static factory that takes a single argument whose type is
the class containing the factory and returns a new instance of this class:

 val productB = ProductFactory.newInstance(productA)

The copy method takes arguments that correspond to all properties declared in the
primary constructor. When combined with the default arguments syntax, we can
provide all or only some of the properties to create a modified instance copy:

 data class Product(var name:String, var price:Double)

 val productA = Product("Spoon", 30.2)
 print(productA) // prints: Product(name=Spoon, price=30.2)

 val productB = productA.copy(price = 24.0)
 print(productB) // prints: Product(name=Spoon, price=24.0)

 val productC = productA.copy(price = 24.0, name = "Knife")
 print(productB) // prints: Product(name=Knife, price=24.0)

This is a very flexible way of creating copy of the object where we can easily say if,
and how, copy should differ from original instances. On the other hand, the

programming approach promotes concept of immutability, which can be easily
implemented with an argumentless call of the copy method:

 //Mutable object - modify object state
 data class Product(var name:String, var price:Double)

 var productA = Product("Spoon", 30.2)
 productA.name = "Knife"

 //immutable object - create new object instance
 data class Product(val name:String, val price:Double)

 var productA = Product("Spoon", 30.2)
 productA = productA.copy(name = "Knife")

Instead of defining mutable properties (var) and modifying the object state, we can
define immutable properties (val), make an object immutable, and operate on it by
getting its copy with the changed values. This approach reduces the need of data
synchronization in multithreading applications and the number of potential errors
related with it, because immutable objects can be freely shared across threads.

Destructive declarations
Sometimes it makes sense to restructure objects into multiple variables. This syntax
is called a destructuring declaration:

 data class Person(val firstName: String, val lastName: String,
 val height: Int)

 val person = Person("Igor", "Wojda", 180)
 var (firstName, lastName, height) = person
 println(firstName) // prints: "Igor"
 println(lastName) // prints: "Wojda"
 println(height) // prints: 180

A destructuring declaration allows us to create multiple variables at once. The
preceding code will result in creating values the firstName, lastName, and height
variables. Under the hood, the compiler will generate code like this:

 val person = Person("Igor", "Wojda", 180)
 var firstName = person.component1()
 var lastName = person.component2()
 var height = person.component3()

For every property declared in the primary constructor of the data class, the Kotlin
compiler generates a single componentN method. The suffix of the component function
corresponds to the order of properties declared in the primary constructor, so
the firstName corresponds to component1, lastName corresponds to component2, and height
corresponds to component3. In fact, we could invoke those methods directly on the
Person class to retrieve a property value, but there is no point of doing so, because
their names are meaningless and code would be very difficult to read and maintain.
We should leave those methods for the compiler for destructuring the object and use
property access syntax such as person.firstName.

We can also omit one or more properties using an underscore:

 val person = Person("Igor", "Wojda", 180)
 var (firstName, _, height) = person
 println(firstName) // prints: "Igor"
 println(height) // prints: 180

In this case, we want only to create two variables, firstName and height; the lastName is
ignored. The code generated by the compiler will look as follows:

 val person = Person("Igor", "Wojda", 180)
 var firstName= person.component1()

 var height = person.component3()

We can also destructure simple types like String:

 val file = "MainActivity.kt"
 val (name, extension) = file.split(".", limit = 2)

Destructive declarations can also be used together with the for loop:

 val authors = listOf(
 Person("Igor", "Wojda", 180),
 Person("Marcin", "Moskała", 180)
)

 println("Authors:")
 for ((name, surname) in authors) {
 println("$name $surname")
 }

Operator overloading
Kotlin has a predefined set of operators with fixed symbolic representation (+, *, and
so on) and fixed precedence. Most of the operators are translated directly into
method calls; some are translated into more complex expressions. The following
table contains a list of all the operators available in Kotlin:

Operator token Corresponding method/expression

a + b a.plus(b)

a - b a.minus(b)

a * b a.times(b)

a / b a.div(b)

a % b a.rem(b)

a..b a.rangeTo(b)

a += b a.plusAssign(b)

a -= b a.minusAssign(b)

a *= b a.timesAssign(b)

a /= b a.divAssign(b)

a %= b a.remAssign(b)

a++ a.inc()

a-- a.dec()

a in b b.contains(a)

a !in b !b.contains(a)

a[i] a.get(i)

a[i, j] a.get(i, j)

a[i_1, ..., i_n] a.get(i_1, ..., i_n)

a[i] = b a.set(i, b)

a[i, j] = b a.set(i, j, b)

a[i_1, ..., i_n] = b a.set(i_1, ..., i_n, b)

a() a.invoke()

a(i) a.invoke(i)

a(i, j) a.invoke(i, j)

a(i_1, ..., i_n) a.invoke(i_1, ..., i_n)

a == b a?.equals(b) ?: (b === null)

a != b !(a?.equals(b) ?: (b === null))

a > b a.compareTo(b) > 0

a < b a.compareTo(b) < 0

a >= b a.compareTo(b) >= 0

a <= b a.compareTo(b) <= 0

The Kotlin compiler translates tokens that represent specific operations (left column)
to corresponding methods or expressions that will be invoked (right column).

We can provide custom implementations for each operator by using them in class
operator method corresponding with an operator token. Let's define a simple Point
class containing x and y properties together with two operators, plus and times:

data class Point(var x: Double, var y: Double) {
 operator fun plus(point: Point) = Point(x + point.x, y+ point.y)

 operator fun times(other: Int) = Point(x * other, y * other)
}

//usage
var p1 = Point(2.9, 5.0)
var p2 = Point(2.0, 7.5)

println(p1 + p2) // prints: Point(x=4.9, y=12.5)
println(p1 * 3) // prints: Point(x=8.7, y=21.0)

By defining plus and times operators, we can perform addition and multiplication
operations on any Point instance. Each time + or * operations are called, Kotlin calls
corresponding operator method plus or times. Under the hood, the compiler will
generate method calls:

 p1.plus(p2)
 p1.times(3)

In our example, we are passing the other point instance to the plus operator method,
but this type is not mandatory. Operator method does not actually override any
method from the super class, so it has no fixed declaration with fixed parameters and
fixed types. We don't have to inherit from a particular Kotlin type to be able to
overload operators. All we need to have is a method with proper signature marked as
operator. The Kotlin compiler will do the rest by the running method that
corresponds to the operator. In fact, we can define multiple operators with the same
name and different parameter types:

data class Point(var x: Double, var y: Double) {
 operator fun plus(point: Point) = Point(x + point.x, y +point.y)

 operator fun plus(vector:Double) = Point(x + vector, y + vector)
}

var p1 = Point(2.9, 5.0)
var p2 = Point(2.0, 7.5)

println(p1 + p2) // prints: Point(x=4.9, y=12.5)
println(p1 + 3.1) // prints: Point(x=6.0, y=10.1)

Both operators are working fine, because the Kotlin compiler can select proper
overload of the operator. Many basic operators have corresponding compound assign
operator (plus has plusAssign, times has timesAssign, and so on), so when we define an
operator such as the + operator, Kotlin supports the + operation and += operation as
well:

 var p1 = Point(2.9, 7.0)
 var p2 = Point(2.0, 7.5)

 p1 += p2
 println(p1) // prints: Point(x=4.9, y=14.5)

Notice the important difference that in some scenarios it may be performance
critical. A compound assign operator (for example, the += operator) has the Unit
return type, so it just modifies the state of the existing object, while the basic
operator (for example, the + operator) always returns a new instance of an object:

 var p1 = Wallet(39.0, 14.5)
 p1 += p2 // update state of p1

 val p3 = p1 + p2 //creates new object p3

When we define both plus and plusAssign operators with the same parameter types,
when we try to use the plusAssign (compound) operator, the compiler will throw an
error, because it does not know which method should be invoked:

 data class Point(var x: Double, var y: Double) {
 init {
 println("Point created $x.$y")
 }
 operator fun plus(point: Point) = Point(x + point.x, y + point.y)

 operator fun plusAssign(point:Point) {
 x += point.x
 y += point.y
 }
 }

 \\usage
 var p1 = Point(2.9, 7.0)
 var p2 = Point(2.0, 7.5)
 val p3 = p1 + p2
 p1 += p2 // Error: Assignment operations ambiguity

Operator overloading works also for classes defined in Java. All we need is a method
with the proper signature and name that corresponds to the operator's method name.
The Kotlin compiler will translate operator usage to this method. Operator modifier
is not present in Java, so it's not required in the Java class:

 // Java
 public class Point {

 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public Point plus(Point point) {
 return new Point(point.getX() + x, point.getY() + y);
 }
 }

 //Main.kt
 val p1 = Point(1, 2)
 val p2 = Point(3, 4)

 val p3 = p1 + p2;
 println("$x:{p3.x}, y:${p3.y}") //prints: x:4, y:6

Object declaration
There are a few ways to declare singletons in Java. Here is the most common way to
define the class that has a private constructor and retrieves instances via a static
factory method:

 public class Singleton {

 private Singleton() {
 }

 private static Singleton instance;

 public static Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }

 return instance;
 }
 }

The preceding code works fine for a single thread, but it's not thread safe, so in some
cases two instances of Singleton can be created. There are a few ways to fix it. We
can use the synchronized block presented as follows:

 //synchronized
 public class Singleton {

 private static Singleton instance = null;

 private Singleton(){
 }

 private synchronized static void createInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 }

 public static Singleton getInstance() {
 if (instance == null) createInstance();
 return instance;
 }
 }

This solution, however, is very verbose. In Kotlin, there is a special language
construct for creating singletons called object declaration, so we can achieve the
same result in a much simpler way. Defining objects is similar to defining classes;
the only difference is that we use the object keyword instead of the class keyword:

 object Singleton

We can add methods and properties to an object declaration exactly the same way as
in a class:

 object SQLiteSingleton {
 fun getAllUsers(): List<User> {
 //...
 }
 }

This method is accessed the same way as any Java static method:

 SQLiteSingleton.getAllUsers()

Object declarations are initialized lazily and they can be nested inside other object
declarations or non-inner classes. Also, they cannot be assigned to a variable.

Object expression
An object expression is equivalent to Java's anonymous class. It is used to instantiate
objects that might inherit from some class or implements an interface. A classic use-
case is when we need to define objects that are implementing some interface. This is
how in Java we could implement the ServiceConnection interface and assign it to a
variable:

 ServiceConnection serviceConnection = new ServiceConnection() {
 @Override
 public void onServiceDisconnected(ComponentName name) {
 ...
 }

 @Override
 public void onServiceConnected(ComponentName name,
 IBinder service)
 {
 ...
 }
 }

The closest Kotlin equivalent of the preceding implementation is the following:

 val serviceConnection = object: ServiceConnection {

 override fun onServiceDisconnected(name: ComponentName?) { }

 override fun onServiceConnected(name: ComponentName?,
 service: IBinder?) { }
 }

The preceding example is using an object expression, which creates instance of
anonymous class that implements ServiceConnection interface. An object expression
can also extend classes. Here is how we can create an instance of the abstract class
BroadcastReceiver:

 val broadcastReceiver = object : BroadcastReceiver() {
 override fun onReceive(context: Context, intent: Intent) {
 println("Got a broadcast ${intent.action}")
 }
 }

 val intentFilter = IntentFilter("SomeAction");
 registerReceiver(broadcastReceiver, intentFilter)

While object expressions allow us to create objects of an anonymous type that can
implement some interface and extend some class, we can use them to easily solve

interesting problems related to the Adapter pattern.

The Adapter design pattern allows otherwise incompatible classes to
work together by converting the interface of one class into an interface
expected by the clients.

Let's say that we have a Player interface and function that requires Player as a
parameter:

 interface Player {
 fun play()
 }

 fun playWith(player: Player) {
 print("I play with")
 player.play()
 }

Also, we have VideoPlayer class from a public library that has the play method
defined, but it is not implementing our Player interface:

 open class VideoPlayer {
 fun play() {
 println("Play video")
 }
 }

The VideoPlayer class meets all the interface requirements, but it cannot be passed as
Player because it is not implementing the interface. To use it as a player, we need to
make an Adapter. In this example, we will implement it as an object of an
anonymous type that implements the Player interface:

 val player = object: VideoPlayer(), Player { }
 playWith(player)

We were able to solve our problem without defining the VideoPlayer subclass. We can
also define custom methods and properties in the object expression:

 val data = object {
 var size = 1
 fun update() {
 //...
 }
 }

 data.size = 2
 data .update()

This is a very easy way to define custom anonymous objects that are not present in

Java. To define similar types in Java, we need to define the custom interface. We can
now add a behavior to our VideoPlayer class to fully implement the Player interface:

 open class VideoPlayer {
 fun play() {
 println("Play video")
 }
 }

 interface Player{
 fun play()
 fun stop()
 }

 //usage
 val player = object: VideoPlayer(), Player {
 var duration:Double = 0.0

 fun stop() {
 println("Stop video")
 }
 }

 player.play() // println("Play video")
 player.stop() // println("Stop video")
 player.duration = 12.5

In the preceding code, we can call on anonymous object (player) methods defined in
the VideoPlayer class and expression object.

Companion objects
Kotlin, as opposed to Java, lacks the ability to define static members, but instead it
allows us to define objects that are associated with a class. In other words, an object
is initialized only once; therefore only one instance of an object exists, sharing its
state across all instances of a particular class. When a singleton object is associated
with a class of the same name, it is called the companion object of the class, and the
class is called the companion class of the object:

The preceding diagram presents three instances of the Car class sharing a single
instance of an object.

Members, such as methods and properties, defined inside a companion object may be
accessed similarly to the way we access static fields and methods in Java. The main
purpose of a companion object is to have code that is related to class, but not
necessary to any particular instance of this class. It is a good way to define members
that would be defined as static in Java; for example, factory, which creates a class
instance method converting some units, activity request code, shared preferences
key, and so on. To define the simplest companion object, we need to define a single
block of code:

 class ProductDetailsActivity {

 companion object {
 }
 }

Now let's define a start method that will allow us to start an activity in an easy way:

 //ProductDetailsActivity.kt
 class ProductDetailsActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 val product = intent.getParcelableExtra<Product>
 (KEY_PRODUCT) // 3
 //...
 }

 companion object {

 const val KEY_PRODUCT = "product" // 1

 fun start(context: Context, product: Product) { // 2
 val intent = Intent(context,
 ProductDetailsActivity::class.java)
 intent.putExtra(KEY_PRODUCT, product) // 3
 context.startActivity(intent)
 }
 }
 }

 // Start activity
 ViewProductActivity.start(context, productId) // 2

1. Only single instance of key exists
2. Method start can be invoked without creating object instance. Just like Java

static method.
3. Retreive value after instance is created.

Notice that we are able to call start prior to the activity instance creation. Let's use
the companion object to track how many instances of the Car class were created. To
achieve this we need to define that count property with a private setter. It could be
also defined as a top-level property, but it is better to place it inside a companion
object, because we don't want to allow counter modification outside of this class:

 class Car {
 init {
 count++;
 }

 companion object {
 var count:Int = 0
 private set
 }
 }

The class can access all the methods and properties defined in the companion object,
but the companion object can't access any of the class content. The companion object
is assigned to a specific class, but not to a particular instance:

 println(Car.count) // Prints 0
 Car()
 Car()
 println(Car.count) // Prints: 2

To access an instance of the companion object directly, we can use the class name.

We can also access the companion object by using more verbose
syntax, Car.Companion.count, but in most cases there is no point of doing
so, unless we want to access companion from Java code.

Companion object instantiation
A companion object is a singleton created by a companion class and kept in its static
property. The instantiation of a companion object is lazy. This means that companion
object will be instantiated when it is needed for the first time--when its members are
accessed, or instance of a class containing the companion object is created. To mark up
when the Car class instance and its corresponding companion object are created, we
need to add two initializer blocks--one for the Car class, another for the companion
object.

The initializer block inside the companion object works exactly the same way as in the
class--it's executed when an instance is created:

 class Car {
 init {
 count++;
 println("Car created")
 }

 companion object {
 var count: Int = 0

 init {
 println("Car companion object created")
 }
 }
 }

While the class initialization block is equivalent of the Java constructor body, the
compilation object initialization block is the equivalent of the Java static
initialization block in Kotlin. For now, the count property can be updated by any
client, because it's accessible from outside of the Car class. We will fix this issue later
in this chapter in the Visibility modifiers section. Now let's access the Car companion
object class member:

 Car.count // Prints: Car companion object created
 Car() // Prints: Car created

By accessing the count property defined in the companion object, we trigger its
creation, but notice that an instance of Car class is not created. Later when we create
a Car class instance companion object is already created. Now let's instantiate the Car
class before accessing the companion object:

 Car()

 //Prints: Car companion object created
 //Prints: Car created

 Car() //Prints: Car created
 Car.count

Companion object is created together with first instance of Car class, so when we
create some other instances of the user class, the companion object for the class already
exists, so it's not created.

Keep in mind that the preceding instantiation describes two separate examples. Both
could not be true in a single program, because only a single instance of class
companion object can exist and it is created the first time when it is needed.

The companion objects can also contain functions, implement interfaces, and even
extend classes. We can define a companion object that will include a static
constriction method with the additional possibility to override implementation for
testing purposes:

 abstract class Provider<T> { // 1

 abstract fun creator(): T // 2

 private var instance: T? = null // 3
 var override: T? = null // 4

 fun get(): T = override ?: instance ?: creator().also { instance = it } //5
 }

1. Provider is a generic class.
2. Abstract function used to create instance.
3. Field used to keep created instance.
4. Field used to in tests, to provide alternative implementation of instance.
5. Function that is returning override instance if it was set, instance if it was

created, or it is creating instance using the create method and filling instance
field with it.

With such implementation, we can define the interface with a default static
constructor:

 interface MarvelRepository {

 fun getAllCharacters(searchQuery: String?): Single<List<MarvelCharacter>>

 companion object : Provider<MarvelRepository>() {
 override fun creator() = MarvelRepositoryImpl()
 }
 }

To get instance, we need to use:

 MarvelRepository.get()

If we need to specify some other instance for testing purposes (for example, in
Espresso tests) then we can always specify them using object expression:

 MarvelRepository.override = object : MarvelRepository {
 override fun getAllCharacters(searchQuery: String?):
 Single<List<MarvelCharacter>> {
 //...
 }
 }

Companion objects are really popular in the Kotlin Android world. They are mostly
used to define all elements that were static in Java (constant fields, static creators,
and so on), but they also provide additional capabilities.

Enum classes
Enumerated type (enum) is a data type consisting of a set of named values. To define
an enum type, we need to add the enum keyword to the class declaration header:

 enum class Color {
 RED,
 ORANGE,
 BLUE,
 GRAY,
 VIOLET
 }

 val favouriteColor = Color.BLUE

To parse string into enum, use the valueOf method (like in Java):

 val selectedColor = Color.valueOf("BLUE")
 println(selectedColor == Color.BLUE) // prints: true

Or the Kotlin helper method:

 val selectedColor = enumValueOf<Color>("BLUE")
 println(selectedColor == Color.BLUE) // prints: true

To display all values in the Color enum, use values function (like in Java):

 for (color in Color.values()) {
 println("name: ${it.name}, ordinal: ${it.ordinal}")
 }

Or the Kotlin enumerateValues helper method:

 for (color in enumValues<Color>()) {
 println("name: ${it.name}, ordinal: ${it.ordinal}")
 }

 // Prints:
 name: RED, ordinal: 0
 name: ORANGE, ordinal: 1
 name: BLUE, ordinal: 2
 name: GRAY, ordinal: 3
 name: VIOLET, ordinal: 4

The enum type can also have its constructor and there can be custom data associated to
each enum constant. Let's add properties with values of red, green, and blue color
components:

 enum class Color(val r: Int, val g: Int, val b: Int) {
 RED(255, 0, 0),
 ORANGE(255, 165, 0),
 BLUE(0, 0, 255),
 GRAY(49, 79, 79),
 VIOLET(238, 130, 238)
 }

 val color = Color.BLUE
 val rValue =color.r
 val gValue = color.g
 val bValue = color.b

Having these values, we can define a function that will calculate RGB value for each
color.

Notice that the last constant (VIOLET) is followed by a semicolon. This is a rare
situation where a semicolon is actually required in Kotlin code. It separates the
constant definitions from the member definitions:

 enum class Color(val r: Int, val g: Int, val b: Int) {
 BLUE(0, 0, 255),
 ORANGE(255, 165, 0),
 GRAY(49, 79, 79),
 RED(255, 0, 0),
 VIOLET(238, 130, 238);

 fun rgb() = r shl 16 + g shl 8 + b
 }

 fun printHex(num: Int) {
 println(num.toString(16))
 }

 printHex(Color.BLUE.rgb()) // Prints: ff
 printHex(Color.ORANGE.rgb()) // Prints: ffa500
 printHex(Color.GRAY.rgb()) // Prints: 314f4f

The rgb() method accesses the r, g, and b variable data for a particular enum and
calculates the value for each enum element separately. We can also add a validation
for the enum constructor arguments using the init block and the Kotlin standard
library require function:

 enum class Color(val r: Int, val g: Int, val b: Int) {
 BLUE(0, 0, 255),
 ORANGE(255, 165, 0),
 GRAY(49, 79, 79),
 RED(255, 0, 0),
 VIOLET(238, 130, 238);

 init {
 require(r in 0..255)
 require(g in 0..255)
 require(b in 0..255)
 }

 fun rgb() = r shl 16 + g shl 8 + b
 }

Defining an incorrect enum will result in an exception:

 GRAY(33, 33, 333) // IllegalArgumentException: Failed requirement.

There are cases where we want to associate fundamentally different behavior with
each constant. To do this we can define an abstract method or property and override
it in each enum block. Let's define the enum Temperature and temperature property:

 enum class Temperature { COLD, NEUTRAL, WARM }

 enum class Color(val r: Int, val g: Int, val b: Int) {
 RED(255, 0, 0) {
 override val temperature = Temperature.WARM
 },
 ORANGE(255, 165, 0) {
 override val temperature = Temperature.WARM
 },
 BLUE(0, 0, 255) {
 override val temperature = Temperature.COLD
 },
 GRAY(49, 79, 79) {
 override val temperature = Temperature.NEUTRAL
 },
 VIOLET(238, 130, 238 {
 override val temperature = Temperature.COLD
 };

 init {
 require(r in 0..256)
 require(g in 0..256)
 require(b in 0..256)
 }

 fun rgb() = (r * 256 + g) * 256 + b

 abstract val temperature: Temperature
 }

 println(Color.BLUE.temperature) //prints: COLD
 println(Color.ORANGE.temperature) //prints: WARM
 println(Color.GRAY.temperature) //prints: NEUTRAL

Now, each color contains not only RGB information, but also an additional enum
describing its temperature. We have added a property, but in an analogical way we
could add custom methods to each enum element.

Infix calls for named methods
Infix calls are one of Kotlin's features that allow us to create more fluid and readable
code. It allows us to write code that is closer to natural human language. We have
already seen usage of the infix method in Chapter 2, Laying a Foundation, which
allowed us to easily create an instance of a Pair class. Here is a quick reminder:

 var pair = "Everest" to 8848

The Pair class represents a generic pair of two values. There is no meaning attached
to values in this class, so it can be used for any purpose. Pair is a data class, so it
contains all data class methods (equals, hashCode, component1, and so on). Here is a
definition of the Pair class from the Kotlin standard library:

 public data class Pair<out A, out B>(// 1
 public val first: A,
 public val second: B
) : Serializable {

 public override fun toString(): String = "($first, $second)"
 // 2
 }

1. Meaning of this out modifier used behind a generic type will be described in Cha
pter 6, Generic are your friends.

2. Pairs have a custom toString method. This is implemented to make printed
syntax more readable while first and second names are not meaningful in most
usage contexts.

Before we dive deeper and learn how to define our own infix method, let's translate
just the presented code into a more familiar form. Each infix method can be used like
any other method:

 val mountain = "Everest";
 var pair = mountain.to(8848)

In its essence, the infix notation is simply the ability to call a method without using
the dot operator and call operator (parentheses). The infix notation only looks
different, but it's still a regular method call underneath. In both foregoing examples,
we simply call the to method on the String class instance. to is an extension function
and it will be explained in Chapter 7, Extension Functions and Properties, but we can
imagine as if it is a method of the String class, in this case, which is just returning an

instance of Pair containing itself and the passed argument. We can operate on the
returned Pair like on any data class object:

 val mountain = "Everest";
 var pair = mountain.to(8848)
 println(pair.first) //prints: Everest
 println(pair.second) //prints: 8848

In Kotlin, this method is allowed to be infix only when it has a single parameter.
Also, an infix notation does not happen automatically--we need to explicitly mark
the method as infix. Let's define our Point class with the infix method:

 data class Point(val x: Int, val y: Int) {
 infix fun moveRight(shift: Int) = Point(x + shift, y)
 }

Usage example:

 val pointA = Point(1,4)
 val pointB = pointA moveRight 2
 println(pointB) //prints: Point(x=3, y=4)

Notice that we are creating a new Point instance, but we could also modify an
existing one (if the type was mutable). This decision is for the developer to make,
but infix is more often used together with immutable types.

We can use infix methods combined with enums to achieve very fluent syntax. Let's
implement natural syntax that will allow us to define cards from a classic playing
card deck. It includes 52:13 ranks of each of the four suits: clubs, diamonds, hearts,
and spades.

Source for the preceding image: https://mathematica.stackexchange.com/ques

https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data

tions/16108/standard-deck-of-52-playing-cards-in-curated-data

The goal is to define the syntax that will allow us to define a card from its suit and
rank it this way:

 val card = KING of HEARTS

First of all, we need two enums to represent all the ranks and suits:

 enum class Suit {
 HEARTS,
 SPADES,
 CLUBS,
 DIAMONDS
 }

 enum class Rank {
 TWO, THREE, FOUR, FIVE,
 SIX, SEVEN, EIGHT, NINE,
 TEN, JACK, QUEEN, KING, ACE;
 }

Then we need a class that will represent a card composed of a particular rank and
particular suite:

 data class Card(val rank: Rank, val suit: Suit)

Now we can instantiate a Card class like this:

 val card = Card(Rank.KING, Suit.HEARTS)

To simplify the syntax, we introduce a new infix method into the Rank enum:

 enum class Rank {
 TWO, THREE, FOUR, FIVE,
 SIX, SEVEN, EIGHT, NINE,
 TEN, JACK, QUEEN, KING, ACE;

 infix fun of(suit: Suit) = Card(this, suit)
 }

This will allow us to create a Card call like this:

 val card = Rank.KING.of(Suit.HEARTS)

Because the method is marked as infix, we can remove the dot call operator and
parentheses:

 val card = Rank.KING of Suit.HEARTS

Usage of static imports will allow us to shorten the syntax even more and achieve
our final result:

 import Rank.KING
 import Suit.HEARTS

 val card = KING of HEARTS

Besides being super simple, this code is also 100% type-safe. We can only define
cards using predefined enums of Rank and Suit, so we are unable to define some
fictional card by mistake.

Visibility modifiers
Kotlin supports four types of visibility modifiers (access modifiers)--private,
protected, public, and internal. Kotlin does not support package-private Java
modifiers. The main difference is that the default visibility modifier in Kotlin is
public, and it's not required to specify it explicitly, so it can be omitted for a
particular declaration. All of the modifiers can be applied to various elements
divided into two main groups based on their declaration site: top-level elements and
nested members.

A quick reminder from Chapter 3, Playing with Functions, top level
elements are elements declared directly inside the Kotlin file, as
opposed to elements nested inside a class, object, interface, or function.
In Java, we could declare only classes and interfaces at the top level,
while Kotlin also allows functions, objects, properties, and extensions
there.

First we have top-level elements visibility modifiers:

public (default): Element is visible everywhere.
private: Element is visible inside the file containing the declaration.
protected: Not available at top level.
internal: Element is visible everywhere in the same module. It is public for
elements in the same module.

What is a module in Java and Kotlin?

A module is just a set of Kotlin files compiled together; for example,
IntelliJ IDEA module, Gradle project. The modular structure of
applications allows for better distributed responsibilities and speeds up
build time, because only changed modules are recompiled.

Let's look at an example:

 //top.kt
 public val version: String = "3.5.0" // 1

 internal class UnitConveter // 3

 private fun printSomething() {

 println("Something")
 }

 fun main(args: Array<String>) {
 println(version) // 1, Prints: "3.5.0"
 UnitConveter() // 2, Accessible
 printSomething() // 3, Prints: Something
 }

 // branch.kt
 fun main(args: Array<String>) {
 println(version) // 1, Accessible
 UnitConveter() // 2, Accessible
 printSomething() // 3, Error
 }

 // main.kt in another module
 fun main(args: Array<String>) {
 println(version) // 1, Accessible
 UnitConveter() // 2, Error
 printSomething() // 3, Accessible
 }

1. version property is public, so it is accessible in all files.
2. UnitConveter is accessible in the branch.kt file, while it is in the same module,

but not in main.kt because it is located in another module.
3. The printSomething function is accessible only in the same file where it is

defined.

Note that the package in Kotlin is not giving any extra visibility privileges.

The second group consists of members--elements, declared inside a top level
element. Mainly those will be methods, properties, constructors, sometimes objects,
companion objects, getters and setters, and occasionally nested classes and nested
interfaces. Here are the obligatory rules:

public (default): Client who sees the declaring class sees its public members.
private: Element is visible only inside the class or interface containing the
member.
protected: Visible inside the class containing the declaration and subclasses. It is
not applicable inside an object, because an object cannot be opened.
internal: Any client inside this module who sees the declaring class sees its
internal members.

Let's define a top level element. In this example, we will define class, but the same
logic is applied to any top level element that has nested members:

 class Person {
 public val name: String = "Igor"

 protected var age:Int = 23
 internal fun learn() {}
 private fun speak() {}
 }

When we create an instance of the Person class, we can access only the name property
marked with a public modifier and the learn method marked with internal modifier:

 // main.kt inside the same package as Person definition
 val person = Person()
 println(person.name) // 1
 person.speak() // 2, Error
 person.age // 3, Error
 person.learn() // 4

1. client who can access the Person instance, can also access the name property.
2. speak method is accessible only inside the Person class.
3. age property is accessible inside the Person class and its subclasses.
4. client inside the module that can access the Person class instance can also access

its public members.

Inheritance accessibility is similar to external access accessibility, but the main
difference is that the member marked with the protected modifier is also visible
inside the subclasses:

 open class Person {
 public val name: String = "Igor"
 private fun speak() {}
 protected var age: Int = 23
 internal fun learn() {}
 }

 class Student() : Person() {
 fun doSth() {
 println(name)
 learn()
 print(age)
 // speak() // 1
 }
 }

1. In the Student subclass we can access members marked with public, protected,
and internal, but not members marked with private modifier.

Internal modifier and Java bytecode
It is pretty obvious how public, private, and protected modifiers are compiled to Java
while they have direct analogs. But there is a problem with the internal modifier
because it has no direct analog in Java so there is also no support on Java bytecode.
This is why the internal modifier is actually compiled to the public modifier, and to
communicate that it shouldn't be used in Java, its name is mashed (changed so that it
is not usable anymore). For example, when we have the Foo class:

 open class Foo {
 internal fun boo() { }
 }

It could be possible to use it from Java this way:

 public class Java {
 void a() {
 new Foo().boo$production_sources_for_module_SmallTest();
 }
 }

It is pretty controversial that internal visibility is guarded by Kotlin and
it can be bypassed using a Java adapter, but there is no other
possibility to implement it.

Besides defining visibility modifiers in a class, we are also able to override them
while overriding a member. This gives us the ability to weaken access restrictions in
the inheritance hierarchy:

 open class Person {
 protected open fun speak() {}
 }

 class Student() : Person() {
 public override fun speak() {
 }
 }

 val person = Person()
 //person.speak() // 1

 val student = Student()
 student.speak() // 2

1. Error speak method is not accessible because it's protected.
2. Visibility of the speak method was changed to public so we can access it.

Defining modifiers for members and their visibility scope is quite straightforward, so
let's see how to define class and constructor visibility. As we know, primary
constructor definition is in the class header, so two visibility modifiers are required
in a single line:

 internal class Fruit private constructor {
 var weight: Double? = null

 companion object {
 fun create() = Fruit()
 }
 }

Assuming the preceding class is defined at the top level, it will be visible inside the
module, but it can be only instantiated from within the file containing the class
declaration:

 var fruit: Fruit? = null // Accessible
 fruit = Fruit() // Error
 fruit = Fruit.create() // Accessible

Getter and setters by default have the same visibility modifier as the property, but we
can modify it. Kotlin allows us to place a visibility modifier before the get/set
keyword:

 class Car {
 init {
 count++;
 println("Car created")
 }

 companion object {
 init {
 println("Car companion object created")
 }

 var count: Int = 0
 private set
 }
 }

In the preceding example, we have changed the getter visibility. Notice that this
approach allows us to change the visibility modifier without changing its default
implementation (generated by the compiler). Now, our instance counter is safe,
because it's read-only external clients, but we can still modify the property value
from inside the Car class.

Sealed classes
A sealed class is a class with limited number of subclasses (sealed subtyping
hierarchy). Prior to Kotlin 1.1, those subclasses had to be defined inside a sealed
class body. Kotlin 1.1 weakened this restriction and allowed us to define sealed class
subclasses in the same file as a sealed class declaration. All the classes are declared
close to each other, so we can easily see all possible subclasses by simply looking at
one file:

 //vehicle.kt

 sealed class Vehicle()
 class Car : Vehicle()
 class Truck : Vehicle()
 class Bus : Vehicle()

To mark a class as sealed, simply add a sealed modifier to the class declaration
header. The preceding declaration means that the Vehicle class can be only extended
by three classes Car, Truck, and Bus because they are declared inside the same file. We
could add a fourth class in our vehicle.kt file, but it would not be possible to define
such a class in another file.

The sealed subtyping restriction applies only to direct inheritors of the Vehicle class.
This means that Vehicle can be extended only by classes defined in the same file (Car,
Truck, or Bus), but assuming that Car, Truck, or Bus classes would be open then they can
be extended by a class declared inside any file:

 //vehicle.kt
 sealed class Vehicle()
 open class Bus : Vehicle()

 //data.kt
 class SchoolBus:Bus()

To prevent this behavior, we would need to also mark Car, Truck, or Bus classes as
sealed:

 //vehicle.kt
 sealed class Vehicle()
 sealed class Bus : Vehicle()

 //data.kt
 class SchoolBus:Bus() //Error cannot access Bus

The sealed classes work really well with the when expression. There is no need for an
else clause, because a compiler can verify that each subclass of a sealed class has a
corresponding clause inside the when block:

 when (vehicle) {
 is Car -> println("Can transport 4 people")
 is Truck -> println("Can transport furnitures ")
 is Bus -> println("Can transport 50 people ")
 }

We can safely add a new subclass to the Vehicle class, because if somewhere in the
application the corresponding clause of the when expression is missing, the
application will not compile. This fixes problems with the Java switch statement,
where programmers often forget to add proper capsules, which leads to program
crashes at runtime or undetected bugs.

Sealed classes are abstract by default, so a abstract modifier is redundant. Sealed
classes can never be open or final. We can also substitute a subclass with objects in
case we need to make sure that only a single instance exists:

 sealed class Employee()

 class Programmer : Employee()
 class Manager : Employee()
 object CEO : Employee()

The preceding declaration not only protects the inheritance hierarchy, but also limits
CEO to a single instance. There are a few interesting applications for sealed classes
that exceed the scope of this book, but it's good to be aware of them:

Define data types such as a linked list or binary tree (https://en.wikipedia.org/wiki/A
lgebraic_data_type).
Protect inheritance hierarchy when building an application module or library by
disallowing clients to extend our class and still keep the ability to extend it by
ourselves
State machine where some states contain data that makes no sense in other
states (https://en.wikipedia.org/wiki/Finite-state_machine)
List of possible tokens types for lexical analysis

https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Finite-state_machine

Nested classes
A nested class is a class defined inside another class. Nesting small classes within
top-level classes places the code closer to where it is used, and allows a better way of
grouping classes. Typical examples are Tree/Leaf listeners or presenter states. Kotlin
similar to Java allows us to define a nested class and there are two main ways to do
so. We can define class as a member inside a class:

 class Outer {
 private val bar: Int = 1

 class Nested {
 fun foo() = 2
 }
 }

 val demo = Outer.Nested().foo() // == 2

The preceding example allows us to create an instance of a Nested class without
creating instances of an Outer class. In this case, a class cannot refer directly to
instance variables or methods defined in its enclosing class (it can use them only
through an object reference). This is equivalent of a Java static nested class and in
general static members.

To be able to access members of an outer class, we must create a second kind of
class by marking a nested class as inner:

 class Outer {
 private val bar: Int = 1

 inner class Inner {
 fun foo() = bar
 }
 }

 val outer = Outer()
 val demo = outer.Inner().foo() // == 1

Now to instantiate the inner class we must first instantiate the Outer class. In this case,
the Inner class can access all the methods and properties defined in the outer class
and share state with outer class. Only a single instance of Inner class can exist per
instance of the Outer class. Let's sum up the differences:

 Inner

Behavior Class (member) class (member)

Behave as a Java static member Yes No

Instance of this class can exist without an
instance of enclosing class Yes No

Has Reference to outer class No Yes

Share state with outer class (can access
outer class members) No Yes

Number of instances Unlimited One per outer
class instance

When deciding whether we should define inner class or top-level class we should
think about potential class usage. If the class is only useful for a single class instance
we should declare it as inner. If an inner class at some point would be useful in
another context than serving its outer class, then we should declare it as a top-level
class.

Import aliases
An alias is a way to introduce new names for types. If the type name is already used
in the file, is inappropriate, or too long, you can introduce a different name and use it
instead of the original type name. Alias does not introduce a new type and it is
available only before compile time (when writing code). The compiler replaces a
class alias with an actual class, so it does not exist at runtime.

Sometimes we need to use a few classes with the same name in a single file. For
example, InterstitialAd type is defined both in the Facebook and Google advertising
libraries. Let's suppose that we want to use them both in a single file. This situation
is common in projects where we need both ad providers implemented to allow for a
profit comparison between them. The problem is that using both data types in a
single file would mean that we need to access one or both of them by a fully
qualified class name (namespace + class name):

 import com.facebook.ads.InterstitialAd

 val fbAd = InterstitialAd(context, "...")
 val googleAd = com.google.android.gms.ads.InterstitialAd(context)

Qualified versus unqualified class name

The unqualified class name is simply the name of the class; for
example, Box. A qualified class name is a namespace combined with a
class name; for example, com.test.Box.

In these situations, people often say that the best fix is to rename one of the classes,
but sometimes this may not be possible (the class is defined in an external library) or
desirable (class name is consistent with backend database table). In this situation,
where both the classes are located in an external library, the solution for class
naming conflict is to use an import alias. We can use it to rename Google
InterstitialAd to GoogleAd, and Facebook InterstitialAd to FbAd:

 import com.facebook.ads.InterstitialAd as FbAd
 import com.google.android.gms.ads.InterstitialAd as GoogleAd

And now we can use these aliases around the file as if they were actual types:

 val fbAd = FbAd(context, "...")
 val googleAd = GoogleAd(context)

Using the import alias, we can explicitly redefine names of a class that are imported
into a file. In this situation, we didn't have to use two aliases, but this serves to
improve readability--it's better to have FbAd and GoogleAd than InterstitialAd and
GoogleAd. We don't have to use fully qualified class names any more, because we
simply said to the compiler "each time when you encounter GoogleAd alias translate it
to com.google.android.gms.ads.InterstitialAd during compilation and each time when
you encounter FbAdalias translate it to com.facebook.ads.InterstitialAd. Import alias
works only inside a file where alias is defined.

Summary
In this chapter, we have discussed constructs, which are buildings blocks for object-
oriented programming. We've learned how to define interfaces and various classes
and the difference between inner, sealed, enum, and data classes. We learned that all
elements are public by default and all classes/interfaces are final (by default), so we
need to explicitly open them to allow inheritance and members overriding.

We discussed how to define proper data models using very concise data classes
combined with even more powerful properties. We know how to properly operate on
data using various methods generated by the compiler and how to overload
operators.

We learned how to create singletons by using object declarations and how to define
objects of an anonymous type that may extend some class and/or implement some
interface using object expressions. We also presented usage of the lateinit modifier
that allows us to define non-nullable data types with initialization delayed in time.

In the next chapter, we will cover the more functional side of Kotlin by looking into
concepts related to functional programming (FP). We will discuss functional types,
lambdas, and higher-order functions.

Functions as First-Class Citizens
In the previous chapter, we saw how Kotlin features relate to OOP. This chapter will
introduce advanced functional programming features that were previously not
present in standard Android development. Some of them were introduced in Java 8
(in Android through the Retrolambda plugin), but Kotlin introduces many more
functional programming features.

This chapter is about high-level functions and functions as first-class citizens. Most
of the concepts are going to be familiar to readers who have used functional
languages in the past.

In this chapter, we will cover the following topics:

Function types
Anonymous functions
Lambda expressions
Implicit name of a single parameter in a lambda expression
Higher-order functions
Last lambda in argument convention
Java Single Abstract Method (SAM) lambda interface
Java methods with Java Single Abstract Method on parameters usage
Named parameters in function types
Type aliases
Inline functions
Function references

Function type
Kotlin supports functional programming, and functions are first-class citizens in
Kotlin. A first-class citizen, in a given programming language, is a term that
describes an entity that supports all the operations generally available to other
entities. These operations typically include being passed as an argument, returned
from a function, and assigned to a variable. The sentence "a function is a first-class
citizen in Kotlin" should then be understood as: it is possible in Kotlin to pass
functions as an argument, return them from functions, and assign them to variables.
While Kotlin is a statically typed language, there needs to be a function type defined
to allow these operations. In Kotlin, the notation used to define a function type is
following:

 (types of parameters)->return type

Here are some examples:

(Int)->Int: A function that takes Int as an argument and returns Int
()->Int: A function that takes no arguments and returns Int
(Int)->Unit: A function that takes Int and does not return anything (only Unit,
which does not need to be returned)

Here are some examples of properties that can hold functions:

 lateinit var a: (Int) -> Int
 lateinit var b: ()->Int
 lateinit var c: (String)->Unit

The term function type is most often defined as the type of a variable or
parameter to which a function can be assigned, or the argument or
result type of a higher-order function taking or returning a function. In
Kotlin, the function type can be treated like an interface.

We will see later in this chapter that Kotlin functions can take other functions in
arguments, or even return them:

 fun addCache(function: (Int) -> Int): (Int) -> Int {
 // code
 }

 val fibonacciNumber: (Int)->Int = // function implementation
 val fibonacciNumberWithCache = addCache(fibonacciNumber)

If a function can take or return a function, then the function type also needs to be
able to define functions that take a function as an argument, or return a function.
This is done by simply placing a function type notation as a parameter or a return
type. Here are some examples:

(String)->(Int)->Int: A function that takes String and returns a function that
takes Int type and returns Int.
(()->Int)->String: A function that takes another function as an argument,
and returns String type. Function in argument takes no arguments and returns
Int.

Each property with a function type can be called like a function:

 val i = a(10)
 val j = b()
 c("Some String")

Functions can not only be stored in variables, they can also be used as a generic. For
example, we can keep the functions in the list:

 var todoList: List<() -> Unit> = // ...
 for (task in todoList) task()

The preceding list can store functions with the () -> Unit signature.

What is function type under the hood?
Under the hood, function types are just a syntactic sugar for generic interfaces. Let's
look at some examples:

The ()->Unit signature is an interface for Function0<Unit>. The expression
is Function0, because it has zero parameters, and Unit because it is the return
type.
The (Int)->Unit signature is interface for Function1<Int, Unit>. The expression is
Function1 because it has one parameter.
The ()->(Int, Int)->String signature is an interface for Function0<Function2<Int,
Int, String>>.

All of these interfaces have only one method, invoke, which is an operator. It allows
an object to be used like a function:

 val a: (Int) -> Unit = //...
 a(10) // 1
 a.invoke(10) // 1

1. These two statements have the same meaning

Function interfaces are not present in a standard library. They are synthetic compiler-
generated types (they are generated during compilation). Because of this, there is no
artificial limit in number of function type arguments, and the standard library size is
not increased.

Anonymous functions
One way of defining a function as an object is by using anonymous functions. They
work the same way as normal functions, but they have no name between the fun
keyword and the parameters declaration, so by default they are treated as objects.
Here are a few examples:

 val a: (Int) -> Int = fun(i: Int) = i * 2 // 1
 val b: ()->Int = fun(): Int { return 4 }
 val c: (String)->Unit = fun(s: String){ println(s) }

1. This is an anonymous single expression function. Note that like in a normal
single expression function, the return type does not need to be specified when it
is inferred from the expression return type.

Consider the following usage:

 // Usage
 println(a(10)) // Prints: 20
 println(b()) // Prints: 4
 c("Kotlin rules") // Prints: Kotlin rules

In the previous examples, function types were defined explicitly, but while Kotlin
has a good type inference system, the function type can also be inferred from types
defined by an anonymous default function:

 var a = fun(i: Int) = i * 2
 var b = fun(): Int { return 4 }
 var c = fun(s: String){ println(s) }

It also works in the opposite way. When we define the type of a property, then we
don't need to set parameter types in anonymous functions explicitly, because they are
inferred:

 var a: (Int)->Int = fun(i) = i * 2
 var c: (String)->Unit = fun(s){ println(s) }

If we check out the methods of function types, then we will see that there is only the
invoke method inside. The invoke method is an operator function, and it can be used in
the same way as function invocation. This is why the same result can be achieved by
using the invoke call inside brackets:

 println(a.invoke(4)) // Prints: 8

 println(b.invoke()) // Prints: 4
 c.invoke("Hello, World!") // Prints: Hello, World!

This knowledge can be helpful, for example, when we are keeping function in a
nullable variable. We can, for example, use the invoke method by using the safe call:

 var a: ((Int) -> Int)? = null // 1
 if (false) a = fun(i: Int) = i * 2
 print(a?.invoke(4)) // Prints: null

1. Variable a is nullable, we are using invoke by a safe call.

Let's look at an Android example. We often want to define a single error handler that
will include multiple logging methods and pass it to different objects as an argument.
Here is how we can implement it using anonymous functions:

 val TAG = "MainActivity"
 val errorHandler = fun (error: Throwable) {
 if(BuildConfig.DEBUG) {
 Log.e(TAG, error.message, error)
 }
 toast(error.message)
 // Other methods, like: Crashlytics.logException(error)
 }

 // Usage in project
 val adController = AdController(errorHandler)
 val presenter = MainPresenter(errorHandler)

 // Usage
 val error = Error("ExampleError")
 errorHandler(error) // Logs: MainActivity: ExampleError

Anonymous functions are simple and useful. They are a simple way of defining
functions that can be used and passed as objects. But there is a simpler way of
achieving similar behavior, and it is called lambda expressions.

Lambda expressions
The simplest way to define anonymous functions in Kotlin is by using a feature
called lambda expressions. They are similar to Java 8 lambda expressions, but the
biggest difference is that Kotlin lambdas are actually closures, so they allow us to
change variables from the creation context. This is not allowed in Java 8 lambdas.
We will discuss this difference later in this section. Let's start with some simple
examples. Lambda expressions in Kotlin have the following notation:

 { arguments -> function body }

Instead of return, result of the last expression is returned. Here are some simple
lambda expression examples:

{ 1 }: A lambda expression that takes no arguments and returns 1. Its type is ()-
>Int.
{ s: String -> println(s) }: A lambda expression that takes one argument of
type String, and prints it. It returns Unit. Its type is (String)->Unit.
{ a: Int, b: Int -> a + b }: A lambda expression that takes two Int arguments
and returns the sum of them. Its type is (Int, Int)->Int.

Functions we defined in the previous chapter can be defined using lambda
expressions:

 var a: (Int) -> Int = { i: Int -> i * 2 }
 var b: ()->Int = { 4 }
 var c: (String)->Unit = { s: String -> println(s) }

While the returned value is taken from the last statement in lambda expressions,
return is not allowed unless it has a return statement qualified by a label:

 var a: (Int) -> Int = { i: Int -> return i * 2 }
 // Error: Return is not allowed there
 var l: (Int) -> Int = l@ { i: Int -> return@l i * 2 }

Lambda expressions can be multiline:

 val printAndReturn = { i: Int, j: Int ->
 println("I calculate $i + $j")
 i + j // 1
 }

1. This is the last statement, so the result of this expression will be a returned
value.

Multiple statements can also be defined in a single line when they are separated by
semicolons:

val printAndReturn = {i: Int, j: Int -> println("I calculate $i + $j");
 i + j }

A lambda expression does not need to only operate on values provided by
arguments. Lambda expressions in Kotlin can use all properties and functions from
the context where they are created:

 val text = "Text"
 var a: () -> Unit = { println(text) }
 a() // Prints: Text
 a() // Prints: Text

This is the biggest difference between Kotlin and Java 8 lambda usage. Both Java
anonymous objects and Java 8 lambda expressions allow us to use fields from the
context, but Java does not allow us to assign different values to these variables (Java
variables used in lambda must be final):

Kotlin has gone a step ahead by allowing lambda expressions and anonymous
functions to modify these variables. Lambda expressions that enclose local variables
and allow us to change them inside the function body are called closures. Kotlin
fully supports closure definition. To avoid confusion between lambdas and closures,
in this book, we will always call both of them lambdas. Let's look at an example:

 var i = 1
 val a: () -> Int = { ++i }
 println (i) // Prints: 1
 println (a()) // Prints: 2
 println (i) // Prints: 2
 println (a()) // Prints: 3
 println (i) // Prints: 3

Lambda expressions can use and modify variables from the local context. Here is an

example of counter, where the value is kept in a local variable:

 fun setUpCounter() {
 var value: Int = 0
 val showValue = { counterView.text = "$value" }
 counterIncView.setOnClickListener { value++; showValue() }
 // 1
 counterDecView.setOnClickListener { value--; showValue() }
 // 1
 }

1. Here is how View onClickListener can be set in Kotlin using a lambda
expression. This will be described in the Java SAM support in Kotlin section.

Thanks to this feature, it is simpler to use lambda expressions. Note that, in the
preceding example, the showValue type was not specified. This is because in Kotlin
lambdas, typing arguments is optional when the compiler can infer it from the
context:

 val a: (Int) -> Int = { i -> i * 2 } // 1
 val c: (String)->Unit = { s -> println(s) } // 2

1. The inferred type of i is Int, because the function type defines an Int parameter.
2. The inferred type of s is String, because the function type defines a String

parameter.

As we can see in the following example, we don't need to specify the type of
parameter because it is inferred from the type of the property. Type inference also
works in the another way--we can define the type of a lambda expression's parameter
to infer the property type:

 val b = { 4 } // 1
 val c = { s: String -> println(s) } // 2
 val a = { i: Int -> i * 2 } // 3

1. The inferred type is ()->Int, because 4 is Int and there is no parameter type.
2. The inferred type is (String)->Unit, because the parameter is typed as String, and

the return type of the println method is Unit.
3. The inferred type is (Int)->Int, because i is typed as Int, and the return type of

the times operation from Int is also Int.

This inference simplifies lambda expression definition. Often, when we are defining
lambda expressions as function parameters, we don't need to specify parameter types
each time. But there is also another benefit--while the parameter type can be
inferred, a simpler notation for single parameter lambda expressions can be used.

Let's discuss this in the next section.

Implicit name of a single parameter
We can omit lambda parameter definitions and access parameters using the it
keyword when two conditions are met:

There is only one parameter
Parameter type can be inferred from the context

As an example, let's define the properties a and c again, but this time using the
implicit name of a single parameter:

 val a: (Int) -> Int = { it * 2 } // 1
 val c: (String)->Unit = { println(it) } // 2

1. Same as { i -> i * 2 }.
2. Same as { s -> println(s) }.

This notation is really popular in Kotlin, mostly because it is shorter and it allows us
to avoid parameter type specification. It also improves the readability of processing
defined in LINQ style. This style needs components that have not yet been
introduced, but just to show the idea, let's see an example:

 strings.filter { it.length = 5 }.map { it.toUpperCase() }

Supposing that strings is List<String>, this expression filters strings with a length
equal to 5 and converts them to uppercase.

Note that in the body of lambda expressions, we can use methods of the String class.
This is because function type (such as (String)->Boolean for the filter) is interred
from the method definition, which infers String from the iterable type (List<String>).
Also, the type of the returned list (List<String>) depends on what is returned by the
lambda (String).

LINQ style is popular in functional languages because it makes the syntax of
collections or String processing really simple and concise. It will be discussed in
much more detail in Chapter 7, Extension Functions and Properties.

Higher-order functions
A higher-order function is a function that takes at least one function as an argument,
or returns a function as its result. It is fully supported in Kotlin, as functions are first-
class citizens. Let's see it in an example. Let's suppose that we need two functions: a
function that will add all BigDecimal numbers from list, and a function that will get the
product (the result of multiplication between all the elements in this list) of all these
numbers:

 fun sum(numbers: List<BigDecimal>): BigDecimal {
 var sum = BigDecimal.ZERO
 for (num in numbers) {
 sum += num
 }
 return sum
 }

 fun prod(numbers: List<BigDecimal>): BigDecimal {
 var prod = BigDecimal.ONE
 for (num in numbers) {
 prod *= num
 }
 return prod
 }

 // Usage
 val numbers = listOf(
 BigDecimal.TEN,
 BigDecimal.ONE,
 BigDecimal.valueOf(2)
)
 print(numbers) //[10, 1, 2]
 println(prod(numbers)) // 20
 println(sum(numbers)) // 13

These are readable functions, but also these functions are nearly the same. The only
difference is name, accumulator (BigDecimal.ZERO or BigDecimal.ONE), and operation. If
we use the DRY (Don't Repeat Yourself) rule then we shouldn't leave two parts of
similar code in the project. While it is easy to define a function that will have similar
behavior and just differ in the objects used, it is harder to define a function that will
differ in the operation performed (here, functions differ by the operation used to
accumulate). Solution comes with the function type, because we can pass the
operation as an argument. In this example, it is possible to extract the common
method this way:

 fun sum(numbers: List<BigDecimal>) =
 fold(numbers, BigDecimal.ZERO) { acc, num -> acc + num }

 fun prod(numbers: List<BigDecimal>) =
 fold(numbers, BigDecimal.ONE) { acc, num -> acc * num }

 private fun fold(
 numbers: List<BigDecimal>,
 start: BigDecimal,
 accumulator: (BigDecimal, BigDecimal) -> BigDecimal
): BigDecimal {
 var acc = start
 for (num in numbers) {
 acc = accumulator(acc, num)
 }
 return acc
 }

 // Usage

 fun BD(i: Long) = BigDecimal.valueOf(i)
 val numbers = listOf(BD(1), BD(2), BD(3), BD(4))
 println(sum(numbers)) // Prints: 10
 println(prod(numbers)) // Prints: 24

The fold function iterates through numbers and updates acc using each element. Note
that the function parameter is defined like any other type, and it can be used like any
other function. For example, we can have the vararg function type parameter:

 fun longOperation(vararg observers: ()->Unit) {
 //...
 for(o in observers) o()
 }

In longOperation, for is used to iterate over all the observers and invokes them one
after another. This function allows multiple functions to be provided as arguments.
Here's an example:

 longOperation({ notifyMainView() }, { notifyFooterView() })

Functions in Kotlin can also return functions. For example, we can define a function
that will create custom error handlers with the same error logging but different tags:

 fun makeErrorHandler(tag: String) = fun (error: Throwable) {
 if(BuildConfig.DEBUG) Log.e(tag, error.message, error)
 toast(error.message)
 // Other methods, like: Crashlytics.logException(error)
 }

 // Usage in project
 val adController = AdController(makeErrorHandler("Ad in MainActivity"))
 val presenter = MainPresenter(makeErrorHandler("MainPresenter"))

 // Usage
 val exampleHandler = makeErrorHandler("Example Handler")
 exampleHandler(Error("Some Error")) // Logs: Example Handler: Some Error

The three most common cases when functions in arguments are used are:

Providing operations to functions
The observer (listener) pattern
Callback after a threaded operation

Let's look at them in detail.

Providing operations to functions
As we saw in the previous section, sometimes we want to extract common
functionality from functions, but they differ in an operation they use. In such
situations, we can still extract this functionality, but we need to provide an argument
with operation that distinguishes them. This way, any common pattern can be
extracted and reused. For example, we often only need elements of the list that match
some predicate, such as when we only want to show elements that are active.
Classically, this would be implemented like this:

 var visibleTasks = emptyList<Task>()
 for (task in tasks) {
 if (task.active)
 visibleTasks += task
 }

While it is a common operation, we can extract the functionality of only filtering
some elements according to the predicate to separate the function and use it more
easily:

 fun <T> filter(list: List<T>, predicate: (T)->Boolean) {
 var visibleTasks = emptyList<T>()
 for (elem in list) {
 if (predicate(elem))
 visibleTasks += elem
 }
 }

 var visibleTasks = filter(tasks, { it.active })

This way of using higher-order functions is very important and it will be described
often throughout the book, but this is not the only way that higher-order functions
are often used.

Observer (Listener) pattern
We use the Observer (Listener) pattern when we want to perform operations when an
event occurs. In Android development, observers are often set to view elements.
Common examples are on-click listeners, on-touch listeners, or text watchers. In
Kotlin, we can set listeners with no boilerplate. For example, setting listener on
button click looks as follows:

 button.setOnClickListener({ someOperation() })

Note that the setOnClickListener is a Java method from the Android library. Later, we
will see in detail why we can use it with lambda expression. The creation of listeners
is very simple. Here is an example:

 var listeners: List<()->Unit> = emptyList() // 1
 fun addListener(listener: ()->Unit) {
 listeners += listener // 2
 }

 fun invokeListeners() {
 for(listener in listeners) listener() // 3
 }

1. Here, we create an empty list to hold all listeners.
2. We can simply add a listener to the listeners list.
3. We can iterate through the listeners and invoke them one after another.

It is hard to imagine a simpler implementation of this pattern. There is another
common use case where parameters with function types are commonly used--
callback after a threaded operation.

Callback after a threaded operation
If we need to do a long operation, and we don't want to make the user wait for it,
then we have to start it in another thread. To be able to use callback after long
operation called in separate thread, we need to pass it as an argument. Here's an
example function:

fun longOperationAsync(longOperation: ()->Unit, callback: ()->Unit) {
 Thread({ // 1
 longOperation() // 2
 callback() // 3
 }).start() // 4
 }

 // Usage
 longOperationAsync(
 longOperation = { Thread.sleep(1000L) },
 callback = { print("After second") }
 // 5, Prints: After second
)
 println("Now") // 6, Prints: Now

1. Here, we create Thread. We also pass a lambda expression that we would like to
execute on the constructor argument.

2. Here, we are executing a long operation.
3. Here, we start the callback operation provided in the argument.
4. start is a method that starts the defined thread.
5. Is printed after one second delay.
6. Is printed immediately.

Actually, there are some popular alternatives to using callbacks, such as RxJava.
Still, classic callbacks are in common use, and in Kotlin they can be implemented
with no boilerplate.

These are the most common use cases where higher-order functions are used. All of
them allow us to extract common behavior and decrease boilerplate. Kotlin allows a
few more improvements regarding higher-order functions.

Combination of named arguments and
lambda expressions
Using default named arguments and lambda expressions can be really useful in
Android. Let's look at some other practical Android examples. Let's suppose we have
a function that downloads elements and shows them to user. We will add a few
parameters:

onStart: This will be called before the network operation
onFinish: This will be called after the network operation

fun getAndFillList(onStart: () -> Unit = {},
 onFinish: () -> Unit = {}){
 // code
 }

Then, we can show and hide loading spinner in onStart and onFinish:

 getAndFillList(
 onStart = { view.loadingProgress = true } ,
 onFinish = { view.loadingProgress = false }
)

If we start it from swipeRefresh, then we just need to hide it when it finishes:

getAndFillList(onFinish = { view.swipeRefresh.isRefreshing =
 false })

If we want to make a quiet refresh, then we just call this:

 getAndFillList()

Named argument syntax and lambda expressions are a perfect match for multi-
purpose functions. This connects both the ability to choose the arguments we want to
implement and the operations that should be implemented. If a function contains
more than one function type parameter, then in most cases, it should be used by
named argument syntax. This is because lambda expressions are rarely self-
explanatory when more than one is used as arguments.

Last lambda in argument convention
In Kotlin, higher-order functions are really important, and so it is also important to
make their usage as comfortable as possible. This is why Kotlin introduced a special
convention that makes higher-order functions more simple and clear. It works this
way: if the last parameter is a function, then we can define a lambda expression
outside of the brackets. Let's see how it looks if we use it with the longOperationAsync
function, which is defined as follows:

 fun longOperationAsync(a: Int, callback: ()->Unit) {
 // ...
 }

The function type is in the last position in the arguments. This is why we can execute
it this way:

 longOperationAsync(10) {
 hideProgress()
 }

Thanks to the last lambda in argument convention, we can locate the lambda after
the brackets. It looks as if it is outside the arguments.

As an example, let's see how the invocation of code in another thread can be done in
Kotlin. The standard way of starting a new thread in Kotlin is by using the thread
function from Kotlin standard library. Its definition is as follows:

 public fun thread(
 start: Boolean = true,
 isDaemon: Boolean = false,
 contextClassLoader: ClassLoader? = null,
 name: String? = null,
 priority: Int = -1,
 block: () -> Unit): Thread {
 // implementation
 }

As we can see, the block parameter, which takes operations that should be invoked
asynchronously, is in the last position. All other parameters have a default argument
defined. That is why we can use the thread function in this way:

 thread { /* code */ }

The thread definition has lots of other arguments, and we can set them either by

using named argument syntax or just by providing them one after another:

 thread (name = "SomeThread") { /*...*/ }
 thread (false, false) { /*...*/ }

The last lambda in argument convention is syntactic sugar, but it makes it much
easier to use higher-order functions. These are the two most common cases where
this convention really makes a difference:

Named code surrounding
Processing data structures using LINQ-style

Let's look at them closely.

Named code surrounding
Sometimes we need to mark some part of the code to be executed in different way.
The thread function is this kind of situation. We need some code to be executed
asynchronously, so we surround it with bracket starting from the thread function:

 thread {
 operation1()
 operation2()
 }

From the outside, it looks as if it is a part of code that is surrounded by a block
named thread. Let's look at another example. Let's suppose that we want to log the
execution time of a certain code block. As a helper, we will define the addLogs
function, which will print logs together with the execution time. We will define it in
the following way:

 fun addLogs(tag: String, f: () -> Unit) {
 println("$tag started")
 val startTime = System.currentTimeMillis()
 f()
 val endTime = System.currentTimeMillis()
 println("$tag finished. It took " + (endTime - startTime))
 }

The following is the usage of the function:

 addLogs("Some operations") {
 // Operations we are measuring
 }

Here's an example of its execution:

 addLogs("Sleeper") {
 Thread.sleep(1000)
 }

On executing the preceding code, the following output is presented:

 Sleeper started
 Sleeper finished. It took 1001

The exact number of printed milliseconds may differ a little bit.

 This pattern is really useful in Kotlin projects because some patterns are connected

to blocks of code. For example, it is common to check whether the version of the
API is after Android 5.x Lollipop before the execution of features that need at least
this version to work. To check it, we used the following condition:

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 // Operations
 }

But in Kotlin, we can just extract the function in the following way:

 fun ifSupportsLolipop(f:()->Unit) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP)
 {
 f()
 }
 }

 //Usage
 ifSupportsLollipop {
 // Operation
 }

This is not only comfortable, but also it is lowering redundancy in the code. This is
often referred as very good practice. Also note that this convention allows us to
define control structures that work in a similar way to standard ones. We can, for
example, define a simple control structure that is running as long as the statement in
the body does not return an error. Here is the definition and usage:

 fun repeatUntilError(code: ()->Unit): Throwable {
 while (true) {
 try {
 code()
 } catch (t: Throwable) {
 return t
 }
 }
 }

 // Usage
 val tooMuchAttemptsError = repeatUntilError {
 attemptLogin()
 }

An additional advantage is that our custom data structure can return a value. The
impressive part is that is doesn't need any extra language support, and we can define
nearly any control structure we want.

Processing data structures using LINQ
style
We've already mentioned that Kotlin allows LINQ-style processing. The last lambda
in argument convention is another component that aids its readability. For example,
look at the following code:

 strings.filter { it.length == 5 }.map { it.toUpperCase() }

It is more readable than notation that does not use the last lambda in argument
convention:

 strings.({ s -> s.length == 5 }).map({ s -> s.toUpperCase() })

Again, this processing will be discussed in detail later, in Chapter 7, Extension
Functions and Properties, but for now we have learned about two features that
improve its readability (the last lambda in argument convention and the implicit
name of a single parameter).

The last lambda in argument convention is one of the Kotlin features that was
introduced to improve the use of lambda expressions. There are more such
improvements, and how they work together is important to make the use of higher-
order functions simple, readable, and efficient.

Java SAM support in Kotlin
It is really easy to use higher-order functions in Kotlin. The problem is that we often
need to interoperate with Java, which natively doesn't support it. It achieves
substitution by using interfaces with only one method. This kind of interface is called
a Single Abstract Method (SAM) or functional interface. The best example of
situation in which we need to set up a function this way, is when we are using
setOnClickListener on a View element. In Java (until 8) there was no simpler way than
by using an anonymous inner class:

 //Java
 button.setOnClickListener(new OnClickListener() {
 @Override public void onClick(View v) {
 // Operation
 }
 });

In the preceding example, the OnClickListener method is the SAM, because it contains
only a single method, onClick. While SAMs are really often used as a replacement for
function definitions, Kotlin also generates a constructor for them that contains the
function type as a parameter. It is called a SAM constructor. A SAM constructor
allows us to create an instance of a Java SAM interface just by calling its name and
passing a function literal. Here's an example:

 button.setOnClickListener(OnClickListener {
 /* ... */
 })

A function literal is an expression that defines unnamed function. In
Kotlin, there are two kinds of function literal:

1. Anonymous functions
2. Lambda expressions

Both Kotlin function literal have already been described:

val a = fun() {} // Anonymous function
val b = {} // Lambda expression

Even better, for each Java method that takes a SAM, the Kotlin compiler is

generating a version that instead takes a function as an argument. This is why we can
set OnClickListener as follows:

 button.setOnClickListener {
 // Operations
 }

Remember that the Kotlin compiler is generating SAM constructors and function
methods only for Java SAMs. It is not generating SAM constructors for Kotlin
interfaces with a single method. It is because the Kotlin community is pushing to use
function types and not SAMs in Kotlin code. When a function is written in Kotlin
and includes a SAM, then we cannot use it as Java methods with SAM on parameter:

 interface OnClick {
 fun call()
 }

 fun setOnClick(onClick: OnClick) {
 //...
 }

 setOnClick { } // 1. Error

1. This does not work because the setOnClick function is written in Kotlin.

In Kotlin, interfaces shouldn't be used this way. The preferred way is to use function
types instead of SAMs:

 fun setOnClick(onClick: ()->Unit) {
 //...
 }

 setOnClick { } // Works

The Kotlin compiler generates a SAM constructor for every SAM interface defined
in Java. This interface only includes the function type that can substitute a SAM.
Look at the following interface:

 // Java, inside View class
 public interface OnClickListener {
 void onClick(View v);
 }

We can use it in Kotlin this way:

 val onClick = View.OnClickListener { toast("Clicked") }

Or we can provide it as function argument:

 fun addOnClickListener(d: View.OnClickListener) {}
 addOnClickListener(View.OnClickListener { v -> println(v) })

Here are more examples of the Java SAM lambda interface and methods from
Android:

 view.setOnLongClickListener { /* ... */; true }
 view.onFocusChange { view, b -> /* ... */ }

 val callback = Runnable { /* ... */ }
 view.postDelayed(callback, 1000)
 view.removeCallbacks(callback)

And here's some examples from RxJava:

 observable.doOnNext { /* ... */ }
 observable.doOnEach { /* ... */ }

Now, let's look at how a Kotlin alternative to SAM definition can be implemented.

Named Kotlin function types
Kotlin does not support SAM conversions of types defined in Kotlin, because the
preferred way is to use function types instead. But SAM has some advantages over
classic function types: named and named parameters. It is good to have the function
type named when its definition is long or it is passed multiple times as an argument.
It is good to have named parameters when it is not clear what each parameter means
just by its type.

In the upcoming sections, we are going to see that it is possible to name both the
parameters and the whole definition of a function type. It can be done with type
aliases and named parameters in the function type. This way, it is possible to have all
the advantages of SAM while sticking with function types.

Named parameters in function type
Until now, we've only seen definitions of function types where only the types were
specified, but not parameter names. Parameter names have been specified in function
literals:

 fun setOnItemClickListener(listener: (Int, View, View)->Unit) {
 // code
 }
 setOnItemClickListener { position, view, parent -> /* ... */ }

The problem comes when the parameters are not self-explanatory, and the developer
does not know what the parameters mean. With SAMs there were suggestions, while
in the function type defined in the previous example, they are not really helpful:

The solution is to define function type with named parameters. Here is what it looks
like:

 (position: Int, view: View, parent: View)->Unit

The benefit of this notation is that the IDE suggests these names as the names of the
parameters in the function literal. Because of this, programmer can avoid any
confusion:

The problem occurs when the same function type is used multiple times, then it is
not easy to define those parameters for each definition. In that situation, a different
Kotlin feature is used - the one we describe in next section--type alias.

Type alias
From version 1.1, Kotlin has had a feature called type alias, which allows us to
provide alternative names for existing types. Here is an example of a type alias
definition where we have made a list of Users:

 data class User(val name: String, val surname: String)
 typealias Users = List<User>

This way, we can add more meaningful names to existing data types:

 typealias Weight = Double
 typealias Length = Int

Type aliases must be declared at the top level. A visibility modifier can be applied to
a type alias to adjust its scope, but they are public by default. This means that the
type aliases defined previously can be used without any limitations:

 val users: Users = listOf(
 User("Marcin", "Moskala"),
 User("Igor", "Wojda")
)

 fun calculatePrice(length: Length) {
 // ...
 }
 calculatePrice(10)

 val weight: Weight = 52.0
 val length: Length = 34

Keep in mind that aliases are used to improve code readability, and the original types
can still be used interchangably:

 typealias Length = Int
 var intLength: Int = 17
 val length: Length = intLength
 intLength = length

Another application of typealias is to shorten long generic types and give them more
meaningful names. This improves code readability and consistency when the same
type is used in multiple places in the code:

 typealias Dictionary<V> = Map<String, V>
 typealias Array2D<T> = Array<Array<T>>

Type aliases are often used to name function types:

 typealias Action<T> = (T) -> Unit
 typealias CustomHandler = (Int, String, Any) -> Unit

We can use them together with function type parameter names:

 typealias OnElementClicked = (position: Int, view: View, parent: View)->Unit

And then we get parameter suggestions:

Let's look at an example of how function types named by type alias can be
implemented by class. Parameter names from function types are also suggested as
method parameters names in this example:

 typealias OnElementClicked = (position: Int, view: View, parent: View)->Unit

 class MainActivity: Activity(), OnElementClicked {

 override fun invoke(position: Int, view: View, parent: View) {
 // code
 }
 }

These are the main reasons why we are using named function types:

Names are often shorter and easier than whole function type definitions
When we are passing functions, after changing their definitions, we don't have
to change it everywhere if we are using type aliases

It is easier to have defined parameter names when we use type aliases

These two features (named parameter in function types and type aliases) combined
are the reasons why there is no need to define SAMs in Kotlin--all the advantages of
SAMs over function types (name and named parameters) can be achieved with
named parameters in function type definitions and type aliases. This is another
example of how Kotlin supports functional programming.

Underscore for unused variables
In some cases, we are defining a lambda expression that does not use all its
parameters. When we leave them named, then they might be destructing a
programmer who is reading this lambda expression and trying to understand its
purpose. Let's look at the function that is filtering every second element. The second
parameter is the element value, and it is unused in this example:

 list.filterIndexed { index, value -> index % 2 == 0 }

To prevent misunderstanding, there are some conventions used, such as the ignoring
the parameter names:

 list.filterIndexed { index, ignored -> index % 2 == 0 }

Because these conventions were unclear and problematic, Kotlin introduced
underscore notation, which is used as a replacement for the names of parameters that
are not used:

 list.filterIndexed { index, _ -> index % 2 == 0 }

This notation is suggested, and there is a warning displayed when a lambda
expression parameter is unused:

Destructuring in lambda expressions
In Chapter 4, Classes and Objects, we've seen how objects can be destructured into
multiple properties using destructuring declarations:

data class User(val name: String, val surname: String, val phone: String)

val (name, surname, phone) = user

Since version 1.1, Kotlin can use destructuring declarations syntax for lambda
parameters. To use them, you should use parentheses that include all the parameters
that we want to destructure into:

 val showUser: (User) -> Unit = { (name, surname, phone) ->
 println("$name $surname have phone number: $phone")
 }

 val user = User("Marcin", "Moskala", "+48 123 456 789")
 showUser(user)
 // Marcin Moskala have phone number: +48 123 456 789

Kotlin's destructing declaration is position-based, as opposed to the
property name-based destructuring declaration that can be found, for
example, in TypeScript. In position-based destructing declarations, the
order of properties decides which property is assigned to which
variable. In property name-based destructuring, it is determined by the
names of variables:

//TypeScript
const obj = { first: 'Jane', last: 'Doe' };
const { last, first } = obj;
console.log(first); // Prints: Jane
console.log(last); // Prints: Doe

Both solutions have its pros and cons. Position-based destructing
declarations are secured for renaming a property, but they are not safe
for property reordering. Name-based destructuring declarations are
safe for property reordering but are vulnerable for property renaming.

Destructuring declarations can be used multiple times in a single lambda expression,
and it can be used together with normal parameters:

 val f1: (Pair<Int, String>)->Unit = { (first, second) ->
 /* code */ } // 1
 val f2: (Int, Pair<Int, String>)->Unit = { index, (f, s)->

 /* code */ } // 2
 val f3: (Pair<Int, String>, User) ->Unit = { (f, s), (name,
 surname, tel) ->/* code */ } // 3

1. Deconstruction of Pair
2. Deconstruction of Pair and other element
3. Multiple deconstructions in single lambda expression

Note that we can destructure a class into less than all components:

 val f: (User)->Unit = { (name, surname) -> /* code */ }

Underscore notation is allowed in destructuring declarations. It is most often used to
get to the further components:

 val f: (User)->Unit = { (name, _, phone) -> /* code */ }
 val third: (List<Int>)->Int = { (_, _, third) -> third }

It is possible to specify the type of the destructured parameter:

 val f = { (name, surname): User -> /* code */ } //1

1. The type is inferred from the lambda expression

Also, parameters defined by destructuring declaration:

 val f = { (name: String, surname: String): User ->
 /* code */}// 1
 val f: (User)->Unit = { (name, surname) ->
 /* code */ } // 2

1. The type is inferred from the lambda expression.
2. The type cannot be inferred because there is not enough information about types

inside the lambda expression.

This all makes destructuring in lambdas a really useful feature. Let's look at some
most common use cases in Android where deconstruction in lambdas is used. It is
used to process the elements of Map because they are of type Map.Entry, which can be
destructed to the key and value parameters:

 val map = mapOf(1 to 2, 2 to "A")
 val text = map.map { (key, value) -> "$key: $value" }
 println(text) // Prints: [1: 2, 2: A]

Similarly, lists of pairs can be destructed:

 val listOfPairs = listOf(1 to 2, 2 to "A")

 val text = listOfPairs.map { (first, second) ->
 "$first and $second" }
 println(text) // Prints: [1 and 2, 2 and A]

Destructuring declarations are also used when we want to simplify data objects
processing:

 fun setOnUserClickedListener(listener: (User)->Unit) {
 listView.setOnItemClickListener { _, _, position, _ ->
 listener(users[position])
 }
 }

 setOnUserClickedListener { (name, surname) ->
 toast("Clicked to $name $surname")
 }

This is especially useful in libraries that are used to asynchronously process elements
(such as RxJava). Their functions are designed to process single elements, and if we
want multiple elements to be processed, then we need to pack them in Pair, Triple, or
some other data class and use a destructuring declaration on each step:

getQuestionAndAnswer()
 .flatMap { (question, answer) ->
 view.showCorrectAnswerAnimationObservable(question, answer)
 }
 .subscribe({ (question, answer) -> /* code */ })

Inline functions
Higher-order functions are very helpful and they can really improve the reusability
of code. However, one of the biggest concerns about using them is efficiency.
Lambda expression are compiled to classes (often anonymous classes), and object
creation in Java is a heavy operation. We can still use higher-order functions in an
effective way while keeping all the benefits by making functions inline.

The concept of inline functions is pretty old, and it is mostly related to C++ or C.
When a function is marked as inline, during code compilation the compiler will
replace all the function calls with the actual body of the function. Also, lambda
expressions provided as arguments are replaced with their actual body. They will not
be treated as functions, but as actual code. This is makes bytecode longer, but
runtime execution is much more efficient. Later, we will see that nearly all higher-
order functions from standard library are marked as inline. Let's look at the example.
Suppose we marked the printExecutionTime function with the inline modifier:

 inline fun printExecutionTime(f: () -> Unit) {
 val startTime = System.currentTimeMillis()
 f()
 val endTime = System.currentTimeMillis()
 println("It took " + (endTime - startTime))
 }

 fun measureOperation() {
 printExecutionTime {
 longOperation()
 }
 }

When we compile and decompile measureOperation, we are going to find out that the
function call is replaced with its actual body, and the parameter function call is
replaced by the lambda expression's body:

 fun measureOperation() {
 val startTime = System.currentTimeMillis() // 1
 longOperation() // 2
 val endTime = System.currentTimeMillis()
 println("It took " + (endTime - startTime))
 }

1. Code from printExecutionTime was added to measureOperation function body.
2. Code located inside the lambda was located on its call. If the function used it

multiple times, then the code would replace each call.

The body of printExecutionTime can still be found in the code. It was
skipped to make the example more readable. It is kept in the code
because it might be used after compilation, for example, if this code is
added to a project as a library. What is more, this function will still
work as inline when used by Kotlin.

While there is no need to create classes for lambda expressions, inline functions can
speed up the execution of functions with function parameters. This difference is so
important that it is recommended to use the inline modifier for all short functions
with at least one function parameter. Unfortunately, using the inline modifier also
has its bad sides. The first, we've already mentioned--the produced bytecode is
longer. This is because function calls are replaced by function bodies and because
lambda calls inside this body are replaced with the body of the function literal. Also,
inline functions cannot be recursive and they cannot use functions or classes that
have more restrictive visibility modifier than this lambda expression. For example,
public inline functions cannot use private functions. The reason is that it could lead
to the injection of code into functions that cannot use them. This would lead to a
compilation error. To prevent it, Kotlin does not permit the use of elements with less
restrictive modifiers than the lambda expression in which they are placed. Here's an
example:

 internal fun someFun() {}
 inline fun inlineFun() {
 someFun() // ERROR
 }

In fact, it is possible in Kotlin to use elements with more restrictive
visibility in inline functions if we suppress this warning, but this is bad
practice and it should never be used this way:

// Tester1.kt
fun main(args: Array<String>) { a() }

// Tester2.kt
inline fun a() { b() }
private fun b() { print("B") }

How is it possible? For the internal modifier it is simpler, because the
internal modifier is public under the hood. For private functions, there
is an additional access$b function created that has public visibility and
that is only invoking the b function:

public static final void access$b() { b(); }

This behavior is presented here just to explain why less restrictive
modifiers can sometimes be used inside inline functions (these
situations can be found in Kotlin standard library in Kotlin 1.1). In the
projects, we should design elements in such a way that there is no need
to use such suppressions.

Another problem is less intuitive. While no lambda has been created, we cannot pass
parameters that are of the function type to another function. Here is an example:

 fun boo(f: ()->Int) {
 //...
 }

 inline fun foo(f: () -> Int) {
 boo (f) // ERROR, 1
 }

When function is inline, then its function arguments cannot be passed to function
that are not inline.

This doesn't work because no f parameter has been created. It has just been defined
to be replaced by the function literal body. This is why it cannot be passed to another
function as an argument.

The simplest way to deal with it is by making the boo function inline as well. Then it
will be OK. In most cases, we cannot make too many functions inline. Here are a
few reasons why:

The inline functions should be used for smaller functions. If we are making
inline functions that are using other inline functions, then it can lead to a large
structure being generated after compilation. This is a problem both because of
compilation time and because of the resulting code's size.
While inline functions cannot use element with visibility modifiers more strict
than the one they have, it would be a problem if we would like to use them in
libraries where as many functions as possible should be private to protect the
API.

The simplest way to deal with this problem is by making function parameters that we
do want to pass to another function noinline.

The noinline modifier
The noinline is a modifier for function type parameters. It makes a specific argument
treated as normal function type parameter (its calls are not replaced with the function
literal body). Let's look at a noinline example:

 fun boo(f: ()->Unit) {
 //...
 }

 inline fun foo(before: ()->Unit, noinline f: () -> Unit) { // 1
 before() // 2
 boo (f) // 3
 }

1. The noinline annotation modifier before parameter f.
2. The before function will be replaced by the body of the lambda expression used

as an argument.
3. f is noinline so it can be passed to the boo function.

Two main reasons to use noinline modifier are as follows:

When we need to pass a specific lambda to some other function
When we are calling the lambda intensively and we don't want to swell the code
too much

Note that when we make all function parameters noinline, then there will be nearly
no performance improvement from making the functions inline. While it is unlikely
that using inline will be beneficial, the compiler will show a warning. This is why, in
most cases, noinline is only used when there are multiple function parameters and we
only apply it to some of them.

Non-local returns
Functions with function parameters might act similarly to native structures (such as
loops). We've already seen the ifSupportsLolipop function and the repeatUntilError
function. An even more common example is the forEach modifier. It is an alternative
to the for control structure, and it calls a parameter function with each element one
after another. This is how it could be implemented (there is a forEach modifier in
Kotlin standard library, but we will see it later because it includes elements that have
not yet been presented):

 fun forEach(list: List<Int>, body: (Int) -> Unit) {
 for (i in list) body(i)
 }

 // Usage
 val list = listOf(1, 2, 3, 4, 5)
 forEach(list) { print(it) } // Prints: 12345

The big problem is that inside the forEach function defined this way we cannot return
from outer function. For example, this is how we could implement the maxBounded
function using a for loop:

 fun maxBounded(list: List<Int>, upperBound: Int, lowerBound: Int):
 Int {
 var currentMax = lowerBound
 for(i in list) {
 when {
 i > upperBound -> return upperBound
 i > currentMax -> currentMax = i
 }
 }
 return currentMax
 }

If we want to treat forEach as an alternative to a for loop, then similar possibility
should be allowed there. The problem is that the same code, but with forEach used
instead of for loop, would not compile:

The reason is related to how the code is compiled. We have already discussed that
lambda expressions are compiled to class of anonymous objects with a method that
includes the defined code, and over there we cannot return from the maxBounded
function because we are in a different context.

We encounter a situation when the forEach function is marked as inline. As we have
already mentioned, the body of this function replaces its calls during compilation,
and all of the functions from the parameters are replaced with their body. So, there is
no problem with using the return modifier there. Then, if we make forEach inline, we
can use return inside the lambda expression:

 inline fun forEach(list: List<Int>, body: (Int)->Unit) {
 for(i in list) body(i)
 }

 fun maxBounded(list: List<Int>, upperBound: Int,
 lowerBound: Int): Int {
 var currentMax = lowerBound
 forEach(list) { i ->
 when {
 i > upperBound -> return upperBound
 i > currentMax -> currentMax = i
 }
 }
 return currentMax
 }

This is how the maxBounded function has compiled in Kotlin, and the code looks like
this (after some clean-up and simplification) when it is decompiled to Java:

 public static final int maxBounded(@NotNull List list,
 int upperBound, int lowerBound) {
 int currentMax = lowerBound;
 Iterator iter = list.iterator();

 while(iter.hasNext()) {
 int i = ((Number)iter.next()).intValue();
 if(i > upperBound) {
 return upperBound; // 1
 }

 if(i > currentMax) {

 currentMax = i;
 }
 }

 return currentMax;
 }

In the preceding code, return is important--it was defined in the lambda expression,
and it is returning from the maxBounded function.

The return modifier used inside the lambda expression of the inline function is called
a non-local return.

Labeled return in lambda expressions
Let's look at a case in which we need to return from a lambda expression and not
from a function. We can do this using labels. Here is an example of a return from a
lambda expression using labels:

 inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
 for (i in list) body(i)
 }

 fun printMessageButNotError(messages: List<String>) {
 forEach(messages) messageProcessor@ { // 2
 if (it == "ERROR") return@messageProcessor // 3
 print(it)
 }
 }

 // Usage
 val list = listOf("A", "ERROR", "B", "ERROR", "C")
 processMessageButNotError(list) // Prints: ABC

1. This is generic implementation of forEach function, where list with any type can
be processed.

2. We define label for lambda expression inside forEach argument.
3. We return from lambda expression specified by label.

Another Kotlin feature is that lambda expressions that are defined as function
arguments have a default label whose name is the same as the function in which they
are defined. This label is called an implicit label. When we want to return from a
lambda expression defined in a forEach function, we can do it just by using
return@forEach. Let's look at an example:

 inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
 for (i in list) body(i)
 }

 fun processMessageButNotError(messages: List<String>) {
 forEach(messages) {
 if (it == "ERROR") return@forEach // 1
 process(it)
 }
 }

 // Usage
 val list = listOf("A", "ERROR", "B", "ERROR", "C")
 processMessageButNotError(list) // Prints: ABC

1. Implicit label name is taken from function name.

Note that while the forEach function is inline, we can also use a non-local return to
return from the processMessageButNotError function:

 inline fun <T> forEach(list: List<T>, body: (T) -> Unit) {
 for (i in list) body(i)
 }

 fun processMessageButNotError(messages: List<String>) {
 forEach(messages) {
 if (it == "ERROR") return
 process(it)
 }
 }

 // Usage
 val list = listOf("A", "ERROR", "B", "ERROR", "C")
 processMessageButNotError(list) // Prints: A

Let's move onto a more complex example of using non-local return labels. Let's
suppose that we have two forEach loops, one inside another. When we use an implicit
label, it will return from the deeper loop. In our example, we can use it to skip the
processing of the specific message:

 inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
 for (i in list) body(i)
 }

 fun processMessageButNotError(conversations: List<List<String>>) {
 forEach(conversations) { messages ->
 forEach(messages) {
 if (it == "ERROR") return@forEach // 1.
 process(it)
 }
 }
 }

 // Usage
 val conversations = listOf(
 listOf("A", "ERROR", "B"),
 listOf("ERROR", "C"),
 listOf("D")
)
 processMessageButNotError(conversations) // ABCD

1. This will return from the lambda defined in the forEach function that also takes
messages as an argument.

We cannot return from another lambda expression in the same context using implicit
label, because it is shadowed by a deeper implicit label.

In these situations, we need to use a non-local implicit label return. It is only
permissible with inline function parameters. In our example, while forEach is inline,

we can return from a function literal this way:

 inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
 for (i in list) body(i)
 }

 fun processMessageButNotError(conversations: List<List<String>>) {
 forEach(conversations) conv@ { messages ->
 forEach(messages) {
 if (it == "ERROR") return@conv // 1.
 print(it)
 }
 }
 }

 // Usage
 val conversations = listOf(
 listOf("A", "ERROR", "B"),
 listOf("ERROR", "C"),
 listOf("D")
)
 processMessageButNotError(conversations) // AD

1. This will return from the lambda defined in forEach called on conversations.

We can also just use a non-local return (a return without any labels) to finish the
processing:

 inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
 for (i in list) body(i)
 }

 fun processMessageButNotError(conversations: List<List<String>>) {
 forEach(conversations) { messages ->
 forEach(messages) {
 if (it == "ERROR") return // 1.
 process(it)
 }
 }
 }

1. This will return from the processMessageButNotError function and finish the
processing.

Crossinline modifier
Sometimes we need to use function type parameters from inline functions not
directly in the function body, but in another execution context, such as a local object
or a nested function. But standard function type parameters of inline functions are
not allowed to be used this way, because they are allowing non-local returns, and it
should not be allowed if this function could be used inside another execution context.
To inform the compiler that non-local returns are not allowed, this parameter must be
annotated as crossinline. Then it will act like a substitution that we are expecting in
an inline function, even when it is used inside another lambda expression:

 fun boo(f: () -> Unit) {
 //...
 }

 inline fun foo(crossinline f: () -> Unit) {
 boo { println("A"); f() }
 }

 fun main(args: Array<String>) {
 foo { println("B") }
 }

This will be compiled as follows:

 fun main(args: Array<String>) {
 boo { println("A"); println("B") }
 }

While no property has been created with the function, it is not possible to pass the
crossinline parameter to another function as an argument:

Let's look at a practical example. In Android, we don't need Context to execute an
operation on the main thread of the application because we can get a main loop using
the getMainLooper static function from the Looper class. Therefore, we can write a top-
level function that will allow a simple thread change into the main thread. To
optimize it, we are first checking if the current thread is not the main thread. When it
is, then the action is just invoked. When it is not, then we create a handler that
operates on the main thread and a post operation to invoke it from there. To make the

execution of this function faster, we are going to make the runOnUiThread function
inline, but then to allow the action invocation from another thread, we need to make
it crossinline. Here is an implementation of this described function:

 inline fun runOnUiThread(crossinline action: () -> Unit) {
 val mainLooper = Looper.getMainLooper()
 if (Looper.myLooper() == mainLooper) {
 action()
 } else {
 Handler(mainLooper).post { action() } // 1
 }
 }

1. We can run action inside a lambda expression thanks to the crossinline modifier.

The crossinline annotation is useful because it allows to use function types in the
context of lambda expressions or local functions while maintaining the advantages of
making the function inline (there's no need for lambda creation in this context).

Inline properties
Since Kotlin 1.1, the inline modifier can be used on properties that do not have a
backing field. It can be either applied to separate accessors, which will result in their
body replacing usage, or it can be used for whole property, which will have the same
result as making both accessors inline. Let's make an inline property that will be used
to check and change an element's visibility. Here is an implementation where both
accessors are inline:

var viewIsVisible: Boolean
inline get() = findViewById(R.id.view).visibility == View.VISIBLE
inline set(value) {
 findViewById(R.id.view).visibility = if (value) View.VISIBLE
 else View.GONE
}

We can achieve the same result if we annotate the whole property as inline:

inline var viewIsVisible: Boolean
get() = findViewById(R.id.view).visibility == View.VISIBLE
 set(value) {
 indViewById(R.id.view).visibility = if (value) View.VISIBLE
 else View.GONE
 }

// Usage
if (!viewIsVisible)
viewIsVisible = true

The preceding code be compiled as follows:

if (!(findViewById(R.id.view).getVisibility() == View.VISIBLE))
{
 findViewById(R.id.view).setVisibility(true?View.VISIBLE:View.GONE);
}

This way, we have omitted the setter and getter function calls, and we should expect
a performance improvement with the cost of increased compiled code size. Still, for
most properties, it should be profitable to use the inline modifier.

Function References
Sometimes, functions that we want to pass as an argument are already defined as a
separate function. Then we can just define the lambda with its call:

 fun isOdd(i: Int) = i % 2 == 1

 list.filter { isOdd(it) }

But Kotlin also allows us to pass a function as a value. To be able to use a top-level
function as a value, we need to use a function reference, which is used as a double
colon and the function name (::functionName). Here is an example how it can be used
to provide a predicate to filter:

 list.filter(::isOdd)

Here is an example:

 fun greet(){
 print("Hello! ")
 }

 fun salute(){
 print("Have a nice day ")
 }

 val todoList: List<() -> Unit> = listOf(::greet, ::salute)

 for (task in todoList) {
 task()
 }

 // Prints: Hello! Have a nice day

Function reference is example of reflection, and this is why the object returned by
this operation also contains information about the referred function:

 fun isOdd(i: Int) = i % 2 == 1

 val annotations = ::isOdd.annotations
 val parameters = ::isOdd.parameters
 println(annotations.size) // Prints: 0
 println(parameters.size) // Prints: 1

But this object also implements the function type, and it can be used this way:

 val predicate: (Int)->Boolean = ::isOdd

It is also possible to reference to methods. To do it, we need to write the type name,
two colons, and the method name (Type::functionName). Here is an example:

 val isStringEmpty: (String)->Boolean = String::isEmpty

 // Usage
 val nonEmpty = listOf("A", "", "B", "")
 .filter(String::isNotEmpty)
 print(nonEmpty) // Prints: ["A", "B"]

As in the preceding example, when we are referencing a non-static method, there
needs to be a provided instance of the class as an argument. The isEmpty function is a
String method that takes no arguments. The reference to isEmpty has a String
parameter that will be used as an object on which the function is invoked. The
reference to the object is always located as the first parameter. Here is another
example, where the method has the property food already defined:

 class User {

 fun wantToEat(food: Food): Boolean {
 // ...
 }
 }

 val func: (User, Food) -> Boolean = User::wantToEat

There is a different situation when we are referencing a Java static method, because
it does not need instance of the class on which it is defined. This is similar to
methods of objects or companion objects, where the object is known in advance and
does not need to be provided. In these situations, there is a function created with the
same parameters as the referenced function and the same return type:

 object MathHelpers {
 fun isEven(i: Int) = i % 2 == 0
 }

 class Math {
 companion object {
 fun isOdd(i: Int) = i % 2 == 1
 }
 }

 // Usage
 val evenPredicate: (Int)->Boolean = MathHelpers::isEven
 val oddPredicate: (Int)->Boolean = Math.Companion::isOdd

 val numbers = 1..10
 val even = numbers.filter(evenPredicate)
 val odd = numbers.filter(oddPredicate)
 println(even) // Prints: [2, 4, 6, 8, 10]
 println(odd) // Prints: [1, 3, 5, 7, 9]

In function reference usage, there are common use cases where we want to use
function references to provide method from a class we have reference to. Common
example is when we want to extract some operations as method of the same class, or
when we want to reference to functions from reference member function from class
we have reference to. A simple example is when we define what should be done after
a network operation. It is defined in a Presenter (such as MainPresenter), but it is
referencing all the View operations, that are defined by the view property (which is,
for example, of type MainView):

 getUsers().smartSubscribe (
 onStart = { view.showProgress() }, // 1
 onNext = { user -> onUsersLoaded(user) }, // 2
 onError = { view.displayError(it) }, // 1
 onFinish = { view.hideProgress() } // 1
)

1. showProgress, displayError, and hideProgress are defined in MainView.
2. onUsersLoaded is method defined in MainPresenter.

To help in this kind of situation, Kotlin introduced in version 1.1 feature called
bound references, which provide references that are bound to a specific object.
Thanks to that, this object does not need to be provided by an argument. Using this
notation, we can replace the previous definition this way:

 getUsers().smartSubscribe (
 onStart = view::showProgress,
 onNext = this::onUsersLoaded,
 onError = view::displayError,
 onFinish = view::hideProgress
)

Another function that we might want to reference is a constructor. An example use
case is when we need to map from a data transfer object (DTO) to a class that is
part of a model:

 fun toUsers(usersDto: List<UserDto>) = usersDto.map { User(it) }

Here, User needs to have a constructor that defines how it is constructed from UserDto.

A DTO is an object that carries data between processes. It is used
because classes used during communications between a system (in an
API) are different than actual classes used inside the system (a model).

In Kotlin, constructors are used and treated similarly to functions. We can also
reference to them with a double colon and a class name:

 val mapper: (UserDto)->User = ::User

This way, we can replace the lambda with a constructor call with a constructor
reference:

 fun toUsers(usersDto: List<UserDto>) = usersDto.map(::User)

Using function references instead of lambda expressions gives us shorter and often
more readable notation. It is also especially useful when we are passing multiple
functions as parameters, or functions that are long and need to be extracted. In other
cases, there is the useful bounded reference, which provides a reference that is bound
to a specific object.

Summary
In this chapter, we've discussed using functions as first-class citizens. We've seen
how function types are used. We have seen how to define function literals
(anonymous functions and lambda expressions), and that any function can be used as
an object thanks to function references. We've also discussed higher-order functions
and different Kotlin features that support them: the implicit name of a single
parameter, the last lambda in argument convention, Java SAM support, using an
underscore for unused variables, and destructuring declarations in lambda
expressions. This features provide great support for higher-order functions, and they
make functions even more than first-class citizens.

In the next chapter, we are going to see how generics work in Kotlin. This will allow
us to define much more powerful classes and functions. We will also see how well
they can be used when connected to higher-order functions.

Generics Are Your Friends
In the previous chapter, we discussed concepts related to functional programming
and functions as first-class citizens in Kotlin.

In this chapter, we will discuss concept of generic types and generic functions known
as generics. We will learn why they exist and how to use them - we will define
generic classes, interfaces, and functions. We will discuss how to deal with generics
at runtime, take look at subtyping relations, and deal with generics nullability

In this chapter, we will discuss the concepts of generic types and generic functions,
known as generics. We will learn why they exist and how to use them and also how
to define generic classes, interfaces, and functions. We will discuss how to deal with
generics at runtime, take a look at subtyping relations, and deal with generic
nullability.

In this chapter, we will cover the following topics:

Generic classes
Generic interfaces
Generic functions
Generic constraints
Generic nullability
Variance
Use-site target versus declaration-site target
Declaration-site target
Type erasure
Reified and erased type parameters
Star-projection syntax
Variance

Generics
Generic is a programming style where classes, functions, data structures, or
algorithms are written in such a way that the exact type can be specified later. In
general, generics provide type safety together with the ability to reuse a particular
code structure for various data types.

Generics are present in both Java and Kotlin. They work in a similar way, but Kotlin
offers a few improvements over the Java generic type system, such as use-site
variance, start-projection syntax, and reified type parameters. We will discuss them
in this chapter.

The need for generics
Programmers often need a way to specify that a collection contains only elements of
particular type, such as Int, Student, or Car. Without generics, we would need separate
classes for each data type (IntList, StudentList, CarList, and so on). Those classes
would have a very similar internal implementation, which would only differ in the
stored data type. This means that we would need to write the same code (such as
adding or removing an item from a collection) multiple times and maintain each
class separately. This is a lot of work, so before generics were implemented,
programmers usually operated on a universal list. This forced them to cast elements
each time they were accessed:

 // Java
 ArrayList list = new ArrayList();
 list.add(1);
 list.add(2);
 int first = (int) list.get(0);
 int second = (int) list.get(1);

Casting adds boilerplate, and there is no type validation when an element is added to
a collection. Generics are the solution for this problem, because a generic class
defines and uses a placeholder instead of a real type. This placeholder is called a
type parameter. Let's define our first generic class:

 class SimpleList<T> // T is type parameter

The type parameter means that our class will use a certain type, but this type will be
specified during class creation. This way, our SimpleList class can be instantiated for
a variety of types. We can parametrize a generic class with various data types using
type arguments. This allows us to create multiple data types from single class:

 // Usage
 var intList: SimpleList<Int>
 var studentList: SimpleList<Student>
 var carList:SimpleList<Car>

The SimpleList class is parametrized with type arguments (Int, Student, and Car) that
define what kind of data can be stored in the given list.

Type parameters versus type
arguments
Functions have parameters (variables declared inside a function declaration) and
arguments (actual value that is passed to a function). Similar terminology applies for
generics. A type parameter is a blueprint or placeholder for a type declared in a
generic and a type argument is an actual type used to parametrize a generic.

We can use a type parameter in a method signature. This way, we can make sure that
we will be able to add items of a certain type to our list and retrieve items of a
certain type:

 class SimpleList<T> {

 fun add(item:T) { // 1
 // code
 }
 fun get(intex: Int): T { // 2
 // code
 }
 }

1. Generic type parameter T used as type for item
2. Type parameter used as return type

The type of item that can be added to a list or retrieved from a list depends on the
type argument. Let's see an example:

 class Student(val name: String)
 val studentList = SimpleList<Student>()
 studentList.add(Student("Ted"))
 println(studentList.getItemAt(0).name)

We can only add and get items of type Student from the list. The compiler will
automatically perform all necessary type checks. It is guaranteed that the collection
will only contain objects of a particular type. Passing an object of incompatible type
to the add method will result in a compile-time error:

 var studentList: SimpleList<Student>
 studentList.add(Student("Ted"))
 studentList.add(true) // error

We cannot add Boolean, because expected type is Student.

The Kotlin standard library defines various generic collections in the
kotlin.collections package, such as List, Set, and Map. We will discuss
them in Chapter 7, Extension Functions and Properties.

In Kotlin, generics are often used in combination with higher-order functions
(discussed in Chapter 5, Functions as A First Class Citizen) and extension functions
(which we will discuss in Chapter 7, Extension Functions and Properties). Examples
of such connections are functions: map, filter, takeUntil, and so on. We can perform
common operations that will differ in the details. For example, we can find matching
elements in the collection using the operation filter function and specifying how
matching elements will be detected:

 val fruits = listOf("Babana", "Orange", "Apple", "Blueberry")
 val bFruits = fruits.filter { it.startsWith("B") } //1
 println(bFruits) // Prints: [Babana, Blueberry]

1. We can call the startsWith method, because the collection can contain only
Strings, so the lambda parameter (it) has the same type.

Generic constraints
By default, we can parametrize a generic class with any type of type argument.
However, we can limit the possible types that can be used as type arguments. To
limit the possible values of type argument, we need to define a type parameter
bound. The most common type of constraint is an upper bound. By default, all type
parameters have Any? as an implicit upper bound. This is why both the following
declarations are equivalent:

 class SimpleList<T>
 class SimpleList<T: Any?>

The preceding bounds mean that we can use any type we want as type argument for
our SimpleList class (including nullable types). This is possible because all nullable
and non-nullable types are subtypes of Any?:

 class SimpleList<T>
 class Student
 //usage

 var intList = SimpleList<Int>()
 var studentList = SimpleList<Student>()
 var carList = SimpleList<Boolean>()

In some situations, we want to limit the data types that can be used as type
arguments. To make it happen, we need to explicitly define a type parameter upper
bound. Let's assume that we want to be able to use only numeric types as type
arguments for our SimpleList class:

 class SimpleList<T: Number>
 //usage

 var numberList = SimpleList<Number>()
 var intList = SimpleList<Int>()
 var doubleList = SimpleList<Double>()
 var stringList = SimpleList<String>() //error

The Number class is an abstract class, that is, a superclass of Kotlin numeric types
(Byte, Short, Int, Long, Float, and Double). We can use the Number class and all its
subclasses (Int, Double, and so on) as a type argument, but we can't use the String
class, because it's not a subclass of Number. Any attempt to add an incompatible type
will be rejected by the IDE and compiler. Type parameters also incorporate Kotlin
type system nullability.

Nullability
When we define a class with an unbounded type parameter, we can use both non-
nullable and nullable types as type arguments. Occasionally, we need to make sure
that a particular generic type will not be parametrized with nullable type arguments.
To block the ability to use nullable types as type arguments, we need to explicitly
define a non-nullable type parameter upper bound:

 class Action (val name:String)
 class ActionGroup<T : Action>

 // non-nullable type parameter upper bound

 var actionGroupA: ActionGroup<Action>
 var actionGroupB: ActionGroup<Action?> // Error

Now we can't pass a nullable type argument (Action?) to the ActionGroup class.

Let's consider another example. Imagine that we want to retrieve the last Action in the
ActionGroup. A simple definition of the last method would look like this:

 class ActionGroup<T : Action>(private val list: List<T>) {
 fun last(): T = list.last()
 }

Let's analyze what will happen when we pass an empty list to the constructor:

 val actionGroup = ActionGroup<Action>(listOf())

 //...
 val action = actionGroup.last
 //error: NoSuchElementException: List is empty

 println(action.name)

Our application crashes, because the method last is throwing an error when there is
no element with such an index on the list. Instead of an exception, we might prefer a
null value when the list is empty. The Kotlin standard library already has a
corresponding method that will return a null value:

 class ActionGroup<T : Action>(private val list: List<T>) {
 fun lastOrNull(): T = list.lastOrNull() //error
 }

The code will not compile because there is a possibility that the last method will

return null irrespective of type argument nullability (there may be no elements in the
list to return). To solve this problem, we need to enforce a nullable return type by
adding a question mark to the type parameter use-site (T?):

 class ActionGroup<T : Action>(private val list: List<T>) { // 1
 fun lastOrNull(): T? = list.lastOrNull() // 2
 }

1. Type parameter declaration-site (place in code where type parameter is
declared)

2. Type parameter use-site (place in code where type parameter is used)

The T? parameter means that the lastOrNull method will always be nullable regardless
of potential type argument nullability. Notice that we restored the type parameter T
bound as non-nullable type Action, because we want to store non-nullable types and
deal with nullability only for certain scenarios (such as a non-existing last element).
Let's use our updated ActionGroup class:

 val actionGroup= ActionGroup<Action>(listOf())
 val actionGroup = actionGroup.lastOrNull()
 // Inferred type is Action?
 println(actionGroup?.name) // Prints: null

Notice that the actionGroup inferred type is nullable even if we parameterized the
generic with a non-nullable type argument.

A nullable type at the use-site does not stop us from allowing non-null types in the
declaration-site:

 open class Action
 class ActionGroup<T : Action?>(private val list: List<T>) {
 fun lastOrNull(): T? = list.lastOrNull()
 }

 // Usage
 val actionGroup = ActionGroup(listOf(Action(), null))
 println(actionGroup.lastOrNull()) // Prints: null

Let's sum up the above solution. We specified a non-nullable bound for type
parameter to disallow parameterizing the ActionGroup class with nullable types as type
arguments. We parameterized the ActionGroup class with the non-nullable type
argument Action. Finally, we enforced type parameter nullability at the use-site (T?),
because the last property can return null if there are no elements in the list.

Variance
Subtyping is a popular concept in the OOP paradigm. We define inheritance between
two classes by extending the class:

 open class Animal(val name: String)
 class Dog(name: String): Animal(name)

The class Dog extends the class Animal, so the type Dog is a subtype of Animal. This
means that we can use an expression of type Dog whenever an expression of type
Animal is required; for example, we can use it as a function argument or assign a
variable of type Dog to a variable of type Animal:

 fun present(animal: Animal) {
 println("This is ${ animal. name } ")
 }
 present(Dog("Pluto")) // Prints: This is Pluto

Before we move on, we need to discuss the difference between class and type. Type
is a more general term--it can be defined by class or interface, or it can be built into
the language (primitive type). In Kotlin, for each class (for example, Dog), we have at
least two possible types--non-nullable (Dog) and nullable (Dog?). What is more, for
each generic class (for example, class Box<T>) we can define multiple data types
(Box<Dog>, Box<Dog?>, Box<Animal>, Box<Box<Dog>>, and so on).

The previous example applies only to simple types. Variance specifies how
subtyping between more complex types (for example, Box<Dog> and Box<Animal>)
relates to subtyping between their components (for example, Animal, and Dog).

In Kotlin, generics are invariant by default. This means that there is no subtyping
relation between the generic types Box<Dog> and Box<Animal>. The Dog component is
subtype of Animal, but Box<Dog> is neither a subtype nor a supertype of Box<Animal>:

 class Box<T>
 open class Animal
 class Dog : Animal()

 var animalBox = Box<Animal>()
 var dogBox = Box<Dog>()

 //one of the lines below line must be commented out,
 //otherwise Android Studio will show only one error
 animalBox = dogBox // 2, error
 dogBox = animalBox // 1, error

1. Error Type mismatch. Required Box<Animal>, found Box<Dog>.
2. Error Type mismatch. Required Box<Dog>, found Box<Animal>.

The Box<Dog> type is neither a subtype nor a supertype of Box<Animal>, so we can't use
any of the assignments shown in the preceding code.

We can define subtyping relations between Box<Dog> and Box<Animal>. In Kotlin, a
subtyping relation of generic type can be preserved (co-variant), reversed (contra-
variant), or ignored (invariant).

When a subtyping relation is co-variant, it means that subtyping is preserved. The
generic type will have the same relation as the type arguments. If Dog is a subtype of
Animal, then Box<Dog> is a subtype of Box<Animal>.

Contra-variant is the exact opposite of co-variant, where subtyping is reversed. The
generic type will have reversed relation with respect to type arguments. If Dog is a
subtype of Animal, then Box<Animal> is a subtype of Box<Dog>. The following diagram
present all types of variance:

To define co-variant or contra-variant behavior, we need to use variance modifiers.

Variance modifiers
Generics in Kotlin are invariant by default. This means that we need to use type as
the type of declared variable or function parameter:

 public class Box<T> { }
 fun sum(list: Box<Number>) { /* ... */ }

 // Usage
 sum(Box<Any>()) // Error
 sum(Box<Number>()) // Ok
 sum(Box<Int>()) // Error

We can't use a generic type parametrized with Int, which is a subtype of Number, and
Any, which is a supertype of Number. We can relax this restriction and change the
default variance by using variance modifiers. In Java, there is question mark (?)
notation (wildcard notation) used to represent an unknown type. Using it, we can
define two types of wildcard bounds--upper bound and lower bound. In Kotlin, we
can achieve similar behavior using in and out modifiers.

In Java, the upper bound wildcard allows us to define a function that accepts any
argument that is a certain type of its subtype. In the following example, the sum
function will accept any List that was parametrized with the Number class or a subtype
of the Number class (Box<Integer>, Box<Double>, and so on):

 //Java
 public void sum(Box<? extends Number> list) { /* ... */ }

 // Usage
 sum(new Box<Any>()) // Error
 sum(new Box<Number>()) // Ok
 sum(new Box<Int>()) // Ok

We can now pass Box<Number> to our sum function and all the subtypes, for example,
Box<Int>. This Java behavior corresponds to the Kotlin out modifier. It represents
covariance, which restricts the type to be a specific type or a subtype of that type.
This means that we can safely pass instances of the Box class that are parametrized
with any direct or indirect subclass of Number:

 class Box<T>
 fun sum(list: Box<out Number>) { /* ... */ }

 //usage
 sum(Box<Any>()) // Error
 sum(Box<Number>()) // Ok

 sum(Box<Int>()) // Ok

In Java, the lower bound wildcard allows us to define a function that accepts any
argument that is a certain type or its supertype. In the following example, the sum
function will accept any List that was parametrized with the Number class or a
supertype of the Number class (Box<Number> and Box<Object>):

 //Java
 public void sum(Box<? super Number> list) { /* ... */ }

 //usage
 sum(new Box<Any>()) // Ok
 sum(new Box<Number>()) // Ok
 sum(new Box<Int>()) // Error

We can now pass Box<Any> to our sum function and all the subtypes, for example,
Box<Any>. This Java behavior corresponds to the Kotlin in modifier. It represents
contra-variance, which restricts the type to be a specific type or a supertype of that
type:

 class Box<T>
 fun sum(list: Box<in Number>) { /* ... */ }

 //usage
 sum(Box<Any>()) // Ok
 sum(Box<Number>()) // Ok
 sum(Box<Int>()) // Error

It's forbidden to use an in and out modifier together. We can define variance
modifiers in two different ways. Let's look at them in the upcoming section.

Use-site variance versus declaration-site
variance
Use-site variance and declaration-site variance basically describes the place in the
code (site) where the variance modifier is specified. Let's consider the View and
Presenter example:

 interface BaseView
 interface ProductView : BaseView
 class Presenter<T>

 // Usage
 var preseter = Presenter<BaseView>()
 var productPresenter = Presenter<ProductView>()
 preseter = productPresenter

 // Error: Type mismatch
 // Required: Presenter<BaseView>
 // Found: Presenter<ProductView>

The class Presenter is invariant on its type parameterT. To fix the problem, we can
explicitly define the subtyping relation. We can do it in two ways (use-site and
declaration-site). First, let's define the variance at the use-site:

 var preseter: Presenter<out BaseView> = Presenter<BaseView>() //1
 var productPresenter = Presenter<ProductView>()
 preseter = productPresenter

1. Variance modifier defined at type argument use-site

Now the preseter variable can store subtypes of Presenter<BaseView>, including
Presenter<ProductView>. Our solution works, but our implementation can be improved.
There are two problems with this approach. Now we need to specify this out variance
modifier each time we want to use a generic type, for example, use it in multiple
variables across different classes:

 //Variable declared inside class A and class B

 var preseter = Presenter<BaseView>()
 var preseter: Presenter<out BaseView> = Presenter<ProductView>()
 preseter = productPresenter

Both classes A and B contains the preseter variable that has variance modifier. We
lose the ability to use type inference and in result the code is more verbose. To

improve our code we can specify variance modifier at type parameter declaration-
site:

interface BaseView
interface ProductView: BaseView
class Presenter<out T> // 1

//usage
//Variable declared inside class A and B

var preseter = Presenter<BaseView>()
var productPresenter = Presenter<ProductView>()
preseter = productPresenter

1. Variance modifier defined at type parameter declaration-site

We only need to define variance modifier once inside Presenter class. In fact, both
preceding implementations are the equivalent, although declaration-site variance is
more concise and it can be easier used by external clients of the class

Collection variance
In Java, arrays are co-variant. By default, we can pass an array of String[] even if an
array of Object[] is expected:

 public class Computer {
 public Computer() {
 String[] stringArray = new String[]{"a", "b", "c"};
 printArray(stringArray); //Pass instance of String[]
 }

 void printArray(Object[] array) {
 //Define parameter of type Object[]
 System.out.print(array);
 }
 }

This behavior was important in early versions of Java, because it allowed us to use
different types of arrays as arguments:

 // Java
 static void print(Object[] array) {
 for (int i = 0; i <= array.length - 1; i++)
 System.out.print(array[i] + " ");
 System.out.println();
 }

 // Usage
 String[] fruits = new String[] {"Pineapple","Apple", "Orange",
 "Banana"};
 print(fruits); // Prints: Pineapple Apple Orange Banana
 Arrays.sort(fruits);
 print(fruits); // Prints: Apple Banana Orange Pineapple

But this behavior also may lead to potential runtime errors:

 public class Computer {
 public Computer() {
 Number[] numberArray = new Number[]{1, 2, 3};
 updateArray(numberArray);
 }
 void updateArray(Object[] array) {
 array[0] = "abc";
 // Error, java.lang.ArrayStoreException: java.lang.String
 }
 }

The function updateArray accepts parameters of type Object[] and we are passing
String[]. We are calling the add method with a String parameter. We can do so
because array items are of type Object, so we can use String, which is a new value.

Finally, we want to add String, into the generic array that may only contain items of
String type. Due to default co-variant behavior, the compiler can't detect this problem
and this will lead to an ArrayStoreException exception.

The corresponding code would not compile in Kotlin, because the Kotlin compiler
treats this behavior as potentially dangerous. This is the reason why arrays in Kotlin
are invariant. Therefore, passing type other than Array<Number> when Array<Any> is
required will result in compile time error:

 public class Array<T> { /*...*/ }

Therefore, passing a type other than Array<Number> when Array<Any> is required will
result in a compile-time error:

 public class Array<T> { /*...*/ }
 class Computer {
 init {
 val numberArray = arrayOf<Number>(1, 2, 3)
 updateArray(numberArray)
 }
 internal fun updateArray(array: Array<Any>) {
 array[0] = "abc"
 //error, java.lang.ArrayStoreException: java.lang.String
 }
 }

Notice that a potential runtime exception may only occur when we can modify the
object. Variance is also applied to Kotlin collection interfaces. In the Kotlin standard
library, we have two list interfaces that are defined in different ways. The Kotlin List
interface is defined as co-variant, because it is immutable (it does not contain any
methods that would allow us to change the inner state), while the Kotlin MutableList
interface is invariant. Here are the definitions of their type parameters:

 interface List<out E> : Collection<E> { /*...*/ }
 public interface MutableList<E> : List<E>, MutableCollection<E> {
 /*...*/
 }

Let's see the consequences of such definitions in action. It makes mutable lists safe
from the risks of covariance:

 fun addElement(mutableList: MutableList<Any>) {
 mutableList.add("Cat")
 }

 // Usage
 val mutableIntList = mutableListOf(1, 2, 3, 4)
 val mutableAnyList = mutableListOf<Any>(1, 'A')
 addElement(mutableIntList) // Error: Type mismatch

 addElement(mutableAnyList)

The list is safe, because it has no methods used to change its inner state, and its
covariance behavior allows more general usage of functions:

 fun printElements(list: List<Any>) {
 for(e in list) print(e)
 }

 // Usage
 val intList = listOf(1, 2, 3, 4)
 val anyList = listOf<Any>(1, 'A')
 printElements(intList) // Prints: 1234
 printElements(anyList) // Prints: 1A

We can pass List<Any> or any of its subtypes to the printElements function, because the
List interface is co-variant. We can only pass MutableList<Any> to the addElement
function because the MutableList interface is invariant.

Using in and out modifiers, we can manipulate variance behavior. We should also be
aware that variance has some limitations. Let's discuss them.

Variance producer/consumer limitation
By applying a variance modifier, we gain co-variant/contra-variant behavior for a
certain type parameter of the class/interface (declaration-site variance) or type
argument (use-site variance). However, there is a limitation that we need to be aware
of. To make it safe, the Kotlin compiler limits the positions where type parameters
can be used.

With invariant (default no variance modifier on type parameter) we can use a type
parameter on both in (type of function parameter) and out (function return type)
positions:

 interface Stack<T> {
 fun push(t:T) // Generic type at in position
 fun pop():T // Generic type at out position
 fun swap(t:T):T // Generic type at in and out positions
 val last: T // Generic type at out position
 var special: T // Generic type at out position
 }

With variance modifier, we are only limited to a single position. This means that we
can use a type parameter only as a type for method parameters (in) or method return
value (out). Our class can be producer or consumer, but never both. We can say that
the class takes in parameters or gives out parameters.

Let's look at how this restriction relates to variance modifiers specified at the
declaration-site. Here are all the correct and incorrect usages for the two type
parameters R and T:

 class ConsumerProducer<in T, out R> {
 fun consumeItemT(t: T): Unit { } // 1

 fun consumeItemR(r: R): Unit { } // 2, error
 fun produceItemT(): T { // 3, error
 // Return instance of type T
 }
 fun produceItemR(): R { // 4
 //Return instance of type R
 }
 }

1. OK type parameter T at in position
2. Error, type parameter R at in position
3. Error, type parameter T at out position

4. OK, type parameter R at out position

As we can see, the compiler will report an error if the configuration is prohibited.
Notice that we can add different modifiers for the two type parameters R and T.

Position restriction applies only for methods accessible (visible) outside the class.
This means not only all public methods (public is the default modifier) as used
previously, but also methods marked with protected or internal. When we change
method visibility to private, then we can use our type parameters (R and T) on any
position, just like invariant type parameters:

 class ConsumerProducer<in T, out R> {
 private fun consumeItemT(t: T): Unit { }
 private fun consumeItemR(r: R): Unit { }
 private fun produceItemT(): T {
 // Return instance of type T
 }

 private fun produceItemR(): R {
 //Return instance of type R
 }
 }

Let's look at the following table, which presents all allowed positions for type
parameters used as type:

Visibility modifier Invariance Covariance
(out)

Contravariance
(in)

public, protected,
internal

in/out out in

private in/out in/out in/out

Invariant constructor
There is one important exception for the in and out position rules described in the
previous section: constructor parameters are always invariant:

 class Producer<out T>(t: T)
 // Usage
 val stringProducer = Producer("A")
 val anyProducer: Producer<Any> = stringProducer

The constructor is public, type parameter T is declared as out, but we can still use it
as constructor parameter type at the in position. The reason is that the constructor
method can't be called after an instance is created, so it is always safe to call it.

As we discussed in Chapter 4, Classes and Objects, we can also define a property
directly in the class constructor using a val or var modifier. When covariance is
specified, we can only define a read-only property (val) in the constructor that has
co-variant type. It is safe because only the getter will be generated, so the value of
this property can't change after class instantiation:

 class Producer<out T>(val t: T) // Ok, safe

With var, both getter and setter are generated by the compiler, so the property value
can potentially change at some point. That's why we can't declare a read-write (var)
property of co-variant type in the constructor:

 class Producer<out T>(var t: T) // Error, not safe

We already said that variance restriction only applies for external clients, so we
could still define a co-variant read-write property by adding a private visibility
modifier:

 class Producer<out T>(private var t:T)

Another popular generic type restriction, known from Java, relates to type erasure.

Type erasure
Type erasure was introduced into JVM to make JVM bytecode backward compatible
with versions that predate the introduction of generics. On the Android platform,
both Kotlin and Java are compiled to JVM bytecode, so they both are vulnerable to
type erasure.

Type erasure is the process of removing a type argument from a generic type, so that
the generic type loses some of its type information (type argument) at runtime:

 package test
 class Box<T>

 val intBox = Box<Int>()
 val stringBox = Box<String>()

 println(intBox.javaClass) // prints: test.Box
 println(stringBox.javaClass) // prints: test.Box

The compiler can distinguish both types and guarantee type safety. However, during
compilation, the parameterized types Box<Int> and Box<String> are translated by the
compiler to a Box (raw type). The generated Java bytecode does not contain any
information related to type arguments, so we can't distinguish generic types at
runtime.

Type erasure leads to a few problems. In JVM, we can't declare two overloads of the
same method, with the same JVM signature:

 /*
 java.lang.ClassFormatError: Duplicate method name&signature...
 */
 fun sum(ints: List<Int>) {
 println("Ints")
 }

 fun sum(strings: List<String>) {
 println("Ints")
 }

When the type argument is removed, those two methods will have exactly the same
declaration:

 /*
 java.lang.ClassFormatError: Duplicate method name&signature...
 */
 fun sum(ints: List) {

 println("Ints")
 }
 fun sum(strings: List) {
 println("Ints")
 }

We can also solve this problem by changing the JVM name of the generated
function. We can do it using JvmName annotation to change the name of one of the
methods when the code is compiled to JVM bytecode:

 @JvmName("intSum") fun sum(ints: List<Int>) {
 println("Ints")
 }
 fun sum(strings: List<String>) {
 println("Ints")
 }

Nothing changed in this function usage from Kotlin, but since we changed the JVM
name of the first function, we need to use a new name to use it from Java:

 // Java
 TestKt.intSum(listOfInts);

Sometimes we want to preserve the type argument at runtime and this is where
reified type parameters are quite handy.

Reified type parameters
There are some cases where accessing the type parameter at runtime would be
useful, but they are not allowed because of type erasure:

 fun <T> typeCheck(s: Any) {
 if(s is T){
 // Error: cannot check for instance of erased type: T
 println("The same types")
 } else {
 println("Different types")
 }
 }

To be able to overcome JVM limitation, Kotlin allows us to use a special modifier
that can preserve a type argument at runtime. We need to mark the type parameter
with the reified modifier:

 interface View
 class ProfileView: View
 class HomeView: View
 inline fun <reified T> typeCheck(s: Any) { // 1
 if(s is T){
 println("The same types")
 } else {
 println("Different types")
 }
 }
 // Usage
 typeCheck<ProfileView>(ProfileView()) // Prints: The same types
 typeCheck<HomeView>(ProfileView()) // Prints: Different types
 typeCheck<View>(ProfileView()) // Prints: The same types

1. Type parameter marked as refined and function marked as inline.

Now we can safely access the type argument type at runtime. Reified type
parameters work only with inline functions, because during compilation (inlining),
the Kotlin compiler replaces reified type argument actual class. This way, the type
argument will not be removed by type erasure.

We can also use reflection on a reified type to retrieve more information about the
type:

 inline fun <reified T> isOpen(): Boolean {
 return T::class.isOpen
 }

Occurrences of a reified type parameter are represented at JVM bytecode level as an
actual type or a wrapper type for primitive types. That's why reified type parameters
are not affected by type erasure.

Using reified type parameters allows us to write methods in a whole new way. To
start a new Activity in Java, we need code like this:

 //Java
 startActivity(Intent(this, ProductActivity::class.java))

In Kotlin, we can define the startActivity method that will allow us to navigate to
Activity in much simpler way:

 inline fun <reified T : Activity> startActivity(context: Context) {
 context.startActivity(Intent(context, T::class.java))
 }

 // Usage
 startActivity<UserDetailsActivity>(context)

We defined the startActivity method and we passed information about the Activity
we want to start (ProductActivity) by using a type argument. We also defined an
explicit reified type parameter bound to make sure that we can only use Activity (and
its subclasses) as type argument.

The startActivity method
To make proper use of the startActivity method, we need a way to pass parameters
to the Activity being started (Bundle). It is possible to update the preceding
implementation to support arguments like this:

 startActivity<ProductActivity>("id" to 123, "extended" to true)

In the preceding example, arguments are filled using a key and value provided by
pairs (defined by the inline to function). This function implementation is, however,
outside of the scope of this book. We can, however, use an existing one. The Anko
library (https://github.com/Kotlin/anko) already implements the startActivity method
with all the required functionality. We just need to import Appcompat-v7-commons
dependency.

 compile "org.jetbrains.anko:anko-appcompat-v7-commons:$anko_version"

Anko defines extensions for Context and Fragment classes so we can use this method in
any Activity or Fragment just like any other method defined in the class without the
need to define the method in the class. We will discuss extensions in Chapter 7,
Extension Functions and Properties.

Be aware that reified type parameters have one main limitation: we can't create an
instance of a class from a reified type parameter (without reflection usage). The
reason behind this is that a constructor is always only associated to a concrete
instance (it is never inherited) so there is no constructor that could be safely used for
all possible type parameters.

https://github.com/Kotlin/anko

Star-projections
Because of type erasure, incomplete type information is available at runtime. For
example, type parameters of generic types are not available:

 val list = listOf(1,2,3)
 println(list.javaClass) // Prints: class java.util.Arrays$ArrayList

This leads to a few problems. We can't perform any check to verify what types of
elements List contains:

 /*
 Compile time error: cannot check instance of erased type:
 List<String>
 */
 if(collection is List<Int>) {
 //...
 }

The problem occurs because a check is performed at runtime where information
about type parameters is not available. Kotlin, however, as opposed to Java, does not
allow us to declare raw type (generic type that is not parametrized with type
argument):

 SimpleList<> // Java: ok
 SimpleList<> // Kotlin: error

Kotlin allows us to use star-projection syntax instead, which is basically a way to
say that information about type argument is missing or it is not important:

 if(collection is List<*>) {
 //...
 }

By using star-projection syntax, we say that Box stores arguments of a certain type:

 class Box<T>

 val anyBox = Box<Any>()
 val intBox = Box<Int>()
 val stringBox = Box<String>()
 var unknownBox: Box<*>

 unknownBox = anyBox // Ok
 unknownBox = intBox // Ok
 unknownBox = stringBox // Ok

Notice that there is a difference between Box<*> and Box<Any>. If we want to define list
contains items of Any we would use Box<Any>. However if we want to define list that
contains terms of certain type, but this type is unknown (it may be Any, Int, String,
and so on. But we don’t have information about this type), while Box<Any> means that
list contains items of Any type. We will use Box<*>:

 val anyBox: Box<Any> = Box<Int> // Error: Type mismatch

If a generic type defines with multiple type parameters, we need to use a star (*) for
each missing type argument:

 class Container<T, T2>
 val container: Container<*, *>

Star-projection is also helpful when we want to perform an operation on the type, but
information about type argument is not important:

 fun printSize(list: MutableList<*>) {
 println(list.size)
 }

 //usage
 val stringList = mutableListOf("5", "a", "2", "d")
 val intList = mutableListOf(3, 7)
 printSize(stringList) // prints: 4
 printSize(intList) // prints: 2

In the preceding example, the information about type argument is not required to
determine collection size. Using star-projection syntax reduces the need for variance
modifiers as long as we don't use any methods that depend on a type argument.

Type parameter naming conventions
The official Java type parameter naming convention (https://docs.oracle.com/javase/tutoria
l/java/generics/types.html) defines the following guidelines for parameter naming:

By convention, type parameter names are single, uppercase letters. This stands in
sharp contrast to the variable naming conventions that you already know about, and
with good reason. Without this convention, it would be difficult to tell the difference
between a type variable and an ordinary class or interface name. The most
commonly used type parameter names are:

E: Element (used extensively by the Java Collections Framework)
K: Key
N: Number
T: Type
V: Value
S,U,V, and so on: 2nd, 3rd, 4th types

Many classes in the Kotlin standard library follow this convention. It works fine for
popular kinds of classes such as common classes (List, Mat, Set, and so on) or classes
that define a simple type parameter (Box<T> class). However, with custom classes and
multiple type parameters, we quickly realize that a single letter does not contain a
sufficient amount of information and sometimes it's hard to quickly tell what kind of
data the type parameter represents. There are a few solutions for this problem.

We could make sure that generics are properly documented and, yes, this would
definitely help, but we still wouldn't be able to determine the meaning of a type
parameter just by looking at the code. Documentation is important, but we should
treat documentation as an auxiliary source of information and strive for the highest
possible code readability.

Over the years, programmers have started to migrate into more meaningful naming
conventions. The Google Java Style Guide (https://google.github.io/styleguide/javaguide.h
tml#s5.2.8-type-variable-names) briefly describes a mix of the official Java type
parameter naming convention and custom naming conventions. They promote two
distinct styles. The first is to use a single capital letter, optionally followed by a
single numeral (as opposed to the S, U, V names described by Java):

https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names

 class Box<T, T2>

The second style is more descriptive because it adds a meaningful prefix for type
parameter:

 class Box<RequestT>

Unfortunately, there is no single standard for type parameter names. The most
common solution is the use of a single uppercase letter. Those are simplified
examples, but keep in mind that classes usually use generics in multiple places, so
proper naming will improve your code readability.

Summary
In this chapter, we have learned why generics exist and we have discussed various
ways of defining a generic class and interface, and declaring generic types. We know
how to deal with subtyping relations by using use-site and declaration-site variance
modifiers. We learned how to deal with type erasure and how to preserve generic
type at runtime using reified type parameters.

In the next chapter, we will discuss one of the most exciting Kotlin features-
extensions. This feature allows us to add new behavior to an existing class. We will
learn how we can implement new methods and properties for any given class,
including final classes from the Android framework and third-party libraries.

Extension Functions and Properties
In previous chapters, most of the concepts were familiar to Java developers. In this
chapter, we are introducing a feature that was not known in Java at all--extensions. It
is one of the best Kotlin features, and lots of Kotlin developers are mentioning it as
their favorite one. Extensions are making a big improvement in Android
development.

In this chapter, we will cover the following topics:

Extension functions
Extension properties
Member extension functions
Generic extension functions
Collection processing
Function type with receiver and function literal with receiver
Kotlin generic extension functions to any object
Kotlin domain-specific language

Extension functions
All bigger Java projects have utility classes, such as StringUtils, ListUtils,
AndroidUtils, and so on. It is so popular because util functions capture common
patterns and allow them to be tested and used in a simpler way. The problem was
that Java really poorly supports the creation and usage of such functions, because
they have to be implemented as static functions of some class. Let's discuss this
problem with an example. Every Java Android developer knows well the following
code used to show Toast:

 Toast.makeText(context, text, Toast.LENGTH_SHORT).show();

It is commonly used in Android projects for showing errors or short messages, and
often it is presented at the beginning of most Android tutorials. Code that
implements this functionality is verbose, because of how it is using a static function
that is used like a builder. Probably every Java Android developer at least once has
forgotten to invoke the show method on a returned object, which made him check all
surrounding conditions to find out why this is not working. This all makes this
simple functionality a perfect candidate to be packed as an util function. But it is
really rarely used this way. Why? To understand it, let's first look at how it could be
implemented in Java:

public class AndroidUtils {
 public static void toast(Context context, String text) {
 Toast.makeText(context, text, Toast.LENGTH_SHORT).show();
 }
}

// Usage
AndroidUtils.toast(context, "Some toast");

When a programmer wants to use the following function, they needs to remember
that there is such function, in which class it is localized, and what its name is.
Therefore, its usage is not simpler than previous. It is impossible to implement it as a
method of Context (a superclass of Activity) without changing the Android SDK
implementation, but in Kotlin, it is possible to create an extension function, which
acts similarly to an actual method defined inside a class. Here is how we can
implement toast as an extension to Context:

 fun Context.toast(text: String) { // 1
 Toast.makeText(this, text, LENGTH_LONG).show() //2
 }

 // Usage
 context.toast("Some toast")

1. Context is not on the argument list, but before the function name. This is how we
define what type we are extending.

2. Inside the function body, we can use the this keyword to reference the object on
which the extension function is invoked.

The only difference in the general structure between an extension function and a
standard function is that there is a receiver type specified before the function name.
A less visible change is inside the body--there, we can access the receiver object (the
object on which an extension is called) by the this keyword, or directly call its
functions or properties. With such a definition, the toast function acts like a method
defined in Context:

 context.toast("Some toast")

 Alternatively:
 class MainActivity :Activity() {

 override fun onCreate(savedInstanceState: Bundle?){
 super.onCreate(savedInstanceState)
 toast("Some text")
 }
 }

This makes usage of the toast function much easier than implementation of the
whole toast-displaying code. We also get suggestions from the IDE, that we can
invoke this function when we are inside Context (like inside Activity) or on an
instance of Context:

In the preceding example, Context is a receiver type of the toast function, and

the this instance is a reference to the receiver object. All functions and properties of
the receiver object can be accessed explicitly, so we can take the following
definition:

 fun Collection<Int>.dropPercent(percent: Double)
 = this.drop(floor(this.size * percent)

We can then replace it with the following:

 fun Collection<Int>.dropPercent(percent: Double)
 = drop(floor(size * percent))

There are multiple use cases where extension functions are useful. Similar extension
functions can be defined for View, List, String, and other classes defined in the
Android framework or a third-party library and custom classes defined by the
developer. Extension functions can be added to any accessible type, even to the Any
object. Here is an extension function that can be called on every object:

fun Any?.logError(error: Throwable, message: String = "error") {
 Log.e(this?.javaClass?.simpleName ?: "null", message, error)
}

Here are some call examples:

 user.logError(e, "NameError") // Logs: User: NameError ...
 "String".logError(e) // String: error ...
 logError(e) // 1, MainActivity: error ...

1. Supposing that we are invoking this in MainActivity.

We can simply add any method to any class we want. This is a great improvement
for Android development. With it, we have a way to add missing methods or
properties to types.

Extension functions under the hood
While Kotlin extension functions might look magical, they are really simple under
the hood. A top-level extension function is compiled to a static function with a
receiver object on the first argument. Let's look at the already presented toast
function:

 // ContextExt.kt
 fun Context.toast(text: String) {
 Toast.makeText(this, text, LENGTH_LONG).show()
 }

This function, after compilation and decompilation to Java, would look similar to the
following function:

//Java
public class ContextExtKt {
 public static void toast(Context receiver, String text) {
 Toast.makeText(receiver, text, Toast.LENGTH_SHORT).show();
 }
}

Kotlin top-level extension functions are compiled to static functions with a receiver
object on the first parameter. This is why we can still use extensions from Java:

 // Java
 ContextExtKt.toast(context, "Some toast")

Also, this means that from a JVM bytecode perspective, the method is not really
added, but during compilation all extension function usages are compiled to static
function calls. While extension functions are just functions, function modifiers can
be applied to them the same as they can be also applied to any other function. For
example, an extension function can be marked as inline:

inline fun Context.isPermissionGranted (permission: String): Boolean = ContextCompat.checkSelfPermission (this, permission) == PackageManager.PERMISSION_GRANTED

As with other inline functions, the function call will be replaced with an actual body
during application compilation. We can do with extension functions practically
everything we can do with other functions. They can be single expression, have
default arguments, be used by named parameters, and so on. But there are also other,
less intuitive consequences of such implementation. In the next sections, we are
going to describe them.

No method overriding
When there is a member function and an extension function with the same name and
parameters, the member function always wins. Here is an example:

 class A {
 fun foo() {
 println("foo from A")
 }
 }

 fun A.foo() {
 println("foo from Extension")
 }

 A().foo() // Prints: foo from A

This is always true. Even methods from a superclass win with extension functions:

 open class A {
 fun foo() {
 println("foo from A")
 }
 }

 class B: A()

 fun B.foo() {
 println("foo from Extension")
 }

 A().foo() // foo from A

The point is that the extension function is not allowing to modify the behavior of a
real object. We can only add extra functionalities. This keeps us secured, because we
know that no one will change the behavior of objects that we are using, which might
lead to errors that are hard to track.

Access to receiver elements
An extension function is compiled to a static function with a receiver object on the
first parameter, so we have no extra access privilege. The private and protected
elements are not accessible, and elements with Java default, Java package, or Kotlin
internal modifiers are accessed the same as if we would just operate on standard
object.

Thanks to that, these elements are protected as they should be. Remember that
extension functions, while being really powerful and useful, are just syntactic sugar,
and there is no magic there.

Extensions are resolved statically
Extension functions are just functions with a receiver as the first parameter, so their
calls are resolved at compile time by the type on which the function is invoked. For
example, when there are extension functions for both superclass and subclass, then
the extension functions that will be chosen during invocation depend on the type of
property on which we are operating. Here is an example:

 abstract class A
 class B: A()

 fun A.foo() { println("foo(A)") }
 fun B.foo() { println("foo(B)") }

 val b = B()
 b.foo() // prints: foo(B)
 (b as A).foo() // 1, prints: foo(A)
 val a: A = b
 a.foo() // 1, prints: foo(A)

1. Here we would expect foo(B), while the object is, in fact, of type B, but while
extensions are resolved statically, it is using an extension function for A, because
the variable is of type A and there is no information as to what object is there
during compilation.

This fact is sometimes problematic, because, when we define an extension function
to the type we are most often cast to, then we should not implement extension
functions to its subclasses.

This is an important limitation, and should be kept in mind, especially during public
library implementation, because this way, some extension functions can block others
and cause unexpected behavior.

Companion object extensions
If a class has a companion object defined, then you can also define extension
functions (and properties) for this companion object. To distinguish between an
extension to a class and an extension to a companion object, there needs to be
.Companion added between the extension type and function name:

 class A {
 companion object {}
 }
 fun A.Companion.foo() { print(2) }

When it is defined, the foo method can be used as if it were defined inside the A
companion object:

 A.foo()

Note that we are calling this extension using class type, not class instance. To allow
the creation of an extension function for a companion object, there needs to be a
companion object explicitly defined inside the class. Even an empty one. Without it,
it is impossible to define an extension function:

Operator overloading using extension
functions
Operator overloading is a big Kotlin feature, but often we need to use Java libraries
and operators that are not defined there. For example, in RxJava, we use
the CompositeDisposable function to manage subscriptions. This collection uses the add
method to add new elements. This is an example subscription added to
CompositeDisposable:

 val subscriptions = CompositeDisposable()

 subscriptions.add(repository
 .getAllCharacters(qualifiedSearchQuery)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(this::charactersLoaded, view::showError))

The standard Kotlin way to add a new element to a mutable collection is by using the
plusAssign operator (+=). It is not only more universal, but also cleaner, while we can
omit brackets:

 val list = mutableListOf(1,2,3)
 list.add(1)
 list += 1

To apply it in our example, we can add the following extension:

operator fun CompositeDisposable.plusAssign(disposable: Disposable)
{
 add(disposable)
}

And now we can use the plusAssign method on CompositeDisposable:

 subscriptions += repository
 .getAllCharacters(qualifiedSearchQuery)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(this::charactersLoaded, view::showError)

Where should top-level extension
functions be used?
Extension functions are most often used when we feel that a class defined by other
programmers is missing some method. For example, if we think that View should
contain show and hide methods, usage for which would be easier than visibility field
setting, then we can just implement it ourselves:

 fun View.show() { visibility = View.VISIBLE }
 fun View.hide() { visibility = View.GONE }

There is no need to remember the names of classes that hold util functions. In the
IDE, we just put a dot after the object, and we can search through all methods that
are provided together with this object extension functions from the project and
libraries. Invocation looks good, while it looks like an original object member. This
is the beauty of extension functions, but it is also a danger. Right now, there are
already tons of Kotlin libraries that are just packs of extension functions. When we
use lots of extension functions, we can make our Android code unlike normal
Android code. This has both pros and cons. Here are the pros:

Code is short and more readable
Code presents more logic instead of Android boilerplate
Extension functions are most often tested, or at least used in multiple places, so
it is simpler to find out if they are working correctly
When we use extension functions, there is a smaller chance that we will make a
stupid error that will lead to hours of code debugging

To illustrate the last two points, we will go back to the toast function. It is hard to
make an error in writing the following:

 toast("Some text")

While it is much easier to make an error in the following:

 Toast.makeText(this, "Some text",Toast.LENGTH_LONG).show()

The biggest problem with strong extension usage in a project is that we are, in fact,
making our own API. We are naming and implementing functions and we decide
what arguments should be there. When some developer joins the team, he need to

learn the entire API, we've created. The Android API has lots of shortcoming, but its
strength is that it is universal and it is known to all Android developers.

Does this mean we should resign from extensions? Absolutely not! This is a great
feature that is helping us to make code short and clean. The point is that we should
use them in a smart way:

Avoid multiple extensions that are doing the same thing.
Short and simple functionality often doesn't need to be an extension.
Keep one coding style around the project. Talk to your team and specify some
standards.
Be careful when you are using public libraries with extensions. Keep them as
the code that you cannot change and match your extensions to them to keep the
API clear.

Extension properties
In this section, we will first understand what extension properties are, and then we
will move on to learn where these properties can be used. As we already know,
properties in Kotlin are defined by their accessors (getter and setter):

 class User(val name: String, val surname: String) {
 val fullName: String
 get() = "$name $surname"
 }

We can define also extension property. The only limitation is that this property can’t
have backing field. The reason for this is that extension can’t store state, so there is
no good place to store this field. Here is an example of extension property definition
for TextView:

 val TextView.trimmedText: String
 get() = text.toString().trim()

 // Usage
 textView.trimmedText

As with extension functions, the above implementation will be compiled as an
accessor function with a receiver on the first parameter. Here is the simplified result
in Java:

 public class AndroidUtilsKt {
 String getTrimmedText(TextView receiver) {
 return receiver.getText().toString().trim();
 }
 }

If it were a read-write property, then both setter and getter would be implemented.
Remember that only properties that don't need a Java field are allowed to be defined
as an extension property. For example, this is illegal:

Where should extension properties be
used?
Extension properties can often be used interchangeably with extension functions.
They are both most often used as top-level utils. Extension properties are used when
we would like an object to have some property that was not developed natively. The
decision as to whether we should use an extension function or an extension property
is nearly the same as the decision as to whether we should use a function or property
without a backing field inside a class. Just to remind you, according to conventions,
one should prefer a property over a function when the underlying algorithm fulfills
the following conditions:

Does not throw errors
Has O(1) complexity
Is cheap to calculate (or caсhed on the first run)
Returns the same result over invocations

Let's look at a simple problem. We often need to get some services in Android, but
the code used to get them is complicated:

 PreferenceManager.getDefaultSharedPreferences(this)
 getSystemService(Context.LAYOUT_INFLATER_SERVICE) as LayoutInflater
 getSystemService(Context.ALARM_SERVICE) as AlarmManager

To use a service such as AlarmManager or LayoutInflater, the programmer has to
remember the following for each of them:

The name of the function that is providing it (such as getSystemService) and what
class contains it (such as Context)
The name of the field that is specifying this service (such as
Context.ALARM_SERVICE)
The name of the class that the service should be cast to (such as AlarmManager)

This is complex, and this is the perfect place where we can optimize usage thanks to
extension properties. We can define extension properties this way:

 val Context.preferences: SharedPreferences
 get() = PreferenceManager
 .getDefaultSharedPreferences(this)

 val Context.inflater: LayoutInflater
 get() = getSystemService(Context.LAYOUT_INFLATER_SERVICE)
 as LayoutInflater

 val Context.alarmManager: AlarmManager
 get() = getSystemService(Context.ALARM_SERVICE)
 as AlarmManager

And from now on, we can use preferences, inflater, and alarmManager as if they are
properties of Context:

context.preferences.contains("Some Key")
context.inflater.inflate(R.layout.activity_main, root)
context.alarmManager.setRepeating(ELAPSED_REALTIME, triggerAt,
 interval, pendingIntent)

These are perfect examples of good read-only extension function usage. Let's focus
on the inflater extension property. It is helping to get elements that are often needed,
but hard to get without extensions. It is helpful, because the programmer just needs
to remember that what they need is an inflater and that they need Context to have it,
and he does not need to remember the name of method that is providing system
services (getSystemService), the name of the key used to get the inflater property
(ALARM_SERVICE), where it is located (in Context), and what this service should be cast to
(AlarmManager). In other words, this extension is saving a lot of work and programmer
memory. Also, it is correct according to guidelines, because the time of property
getter execution is short and its complexity is O(1), it is not throwing any errors, and
it is always returning the same inflater (in fact, it might be a different instance, but
from a programmer perspective, its usage is always the same, and this is what is
important).

We've seen read-only extension properties, but we have not seen read-write
extension properties. Here is a good example, that is an alternative to the hide and
show functions that we saw in the Extension functions section:

 var View.visible: Boolean
 get() = visibility == View.VISIBLE
 set(value) {
 visibility = if (value) View.VISIBLE else View.GONE
 }

We can change the visibility of the view element using this property:

 button.visible = true // the same as show()
 button.visible = false // the same as hide()

 Also, we can check view element visibility:

 if(button.visible) { /* ... */ }

Once we define it, we can treat is as if it really were a View property. It is also
important that what we are setting is consistent with what we are getting. So
supposing that there is no other thread which is changing element visibility, we can
set some property value:

 view.visible = true

Then the getter will always provide the same value:

 println(view.visible) // Prints: true

Finally, there is no other logic inside the getter and setter--only a change in specific
properties. So other conventions we've presented before are satisfied too.

Member extension functions and
properties
We've seen top-level extension functions and properties, but it is also possible to
define them inside a class or object. Extensions defined there are called member
extensions, and they are most often used for different kinds of problems than top-
level extensions.

Let's start from the simplest use case where member extensions are used. Let's
suppose that we need to drop every third element of a list of String. Here is the
extension function that allows us to drop every ith element:

 fun List<String>.dropOneEvery(i: Int) =
 filterIndexed { index, _ -> index % i == (i - 1) }

The problem with that function is that it should not be extracted as a util extension,
because of the following:

It is not prepared for different types of lists (such as a list of User, or Int)
It is a rarely useful function, so probably it won't be used anywhere else in the
project

This is why we would want to keep it as private, and it is a good idea to keep it
inside the class where we are using it, as an member extension function:

 class UsersItemAdapter : ItemAdapter() {
 lateinit var usersNames: List<String>

 fun processList() {
 usersNames = getUsersList()
 .map { it.name }
 .dropOneEvery(3)
 }

 fun List<String>.dropOneEvery(i: Int) =
 filterIndexed { index, _ -> index % i == (i - 1) }

 // ...
 }

This is the first reason we use member extension functions, to protect the
accessibility of functions. In this case, it could be done by defining a function on the

top level, in the same file, and with a private modifier. But member extension
functions act differently to top-level functions. The function used in the preceding
code is public, but it can only be called on List<String> and only in UsersItemAdapter.
So it can be used only inside the UsersItemAdapter class and its subclasses or inside an
extension function to UsersItemAdapter:

 fun UsersItemAdapter.updateUserList(newUsers: List<User>) {
 usersNames = newUsers
 .map { it.name }
 .dropOneEvery(3)
 }

Note that to use a member extension function, we need both the object in which it is
implemented and the object on which this extension functions will be called. It is this
way because we can use elements of both of these objects. This is important
information about member extensions: they can use both elements from receiver type
and from member type without a qualifier. Let's see how it might be used. Here is
another example, which is similar to the previous one, but it is using the private
property category:

 class UsersItemAdapter(
 private val category: Category
) : ItemAdapter() {

 lateinit var usersNames: List<String>

 fun processList() {
 usersNames = getUsersList()
 .fromSameCategory()
 .map { it.name }
 }

 fun List<User>.fromSameCategory() =
 filter { u -> u.category.id == category.id }

 private fun getUsersList() = emptyList<User>()
 }

Inside the member extension function fromSameCategory, we are operating on an
extension receiver (List<User>), but we are also using the category property from
UsersItemAdapter. We see here that a function defined this way needs to be a method
and it can be used similarly to other methods. The advantage over the standard
method is that we can call a function on List, so we can keep clean stream
processing, instead of non-extension method usage:

 // fromSameCategory defined as standard method
 usersNames = fromSameCategory(newUsers)
 .dropLast(3)

 // fromSameCategory defined as member extension function

 usersNames = newUsers
 .fromSameCategory()
 .dropLast(3)

Another common usage is the member extension functions or properties can be used
like normal methods, but we are using the fact that inside member functions we can
use receiver properties and methods without naming them, this way we can have
shorter syntax, and that we are actually calling them on a receiver instead of calling
them with the same type as an argument. As an example, we can take the following
method:

 private fun setUpRecyclerView(recyclerView: RecyclerView) {
 recyclerView.layoutManager
 = LinearLayoutManager(recyclerView.context)
 recyclerView.adapter
 = MessagesAdapter(mutableListOf())
 }

 // Usage
 setUpRecyclerView(recyclerView)

Then we can replace it with the following member extension function:

 private fun RecyclerView.setUp() {
 layoutManager = LinearLayoutManager(context)
 adapter = MessagesAdapter(mutableListOf())
 }

 // Usage
 recyclerView.setUp()

Using member extension functions, we can achieve both a simpler call and a simpler
function body. The biggest problem with this attempt is that it is not clear which
functions we are using are members of RecyclerView, and which are members of the
Activity and RecyclerView extensions. This problem will be raised in the next pages.

Type of receivers
When we have a member extension function, then it becomes more complicated to
administer which elements we are calling. Inside a member extension, we have
implicit access to the following:

Member functions and properties, both from this class and superclasses
Receiver type functions and properties, both from the receiver type and its
supertypes
Top-level functions and properties

So inside the setUp extension function, we can use both member and receiver
methods and properties:

 class MainActivity: Activity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.main_activity)
 val buttonView = findViewById(R.id.button_view) as Button
 buttonView.setUp()
 }

 private fun Button.setUp() {
 setText("Click me!") // 1, 2
 setOnClickListener { showText("Hello") } // 2
 }

 private fun showText(text: String) {
 toast(text)
 }
 }

1. setText is the Button class method.
2. We can use the Button class and MainActivity class members alternately.

It might be tricky--probably most people wouldn't notice if there were an error and
the setText call would be swapped with the showText call.

While we can use inside member extension elements from different receivers, to
allow distinction between them, all kinds of receivers were named. First of all, all
objects that can be used by the this keyword are called implicit receivers. They're
members can be accessed without a qualifier. Inside setUp functions, there are two
implicit receivers:

Extension receiver: An instance of the class that the extension is defined for
(Button)
Dispatch Receiver: An instance of the class in which the extension is declared
(MainActivity)

Note that while members of both the extension receiver and dispatch receiver are
implicit receivers in the same body, it is possible to have a situation where we use
members that have the same signature in both of them. For example, if we change
the previous class to show text in textView instead of showing it in the toast function,
and change the method name to setText, then we are going to have methods of
dispatch and extension receiver with the same signature (one defined in the Button
class, the other defined in the MainActivity class):

 class MainActivity: Activity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.main_activity)
 val buttonView = findViewById(R.id.button_view) as Button
 buttonView.setUp()
 }

 private fun Button.setUp() {
 setText("Click me!")
 setOnClickListener { setText("Hello") } // 1
 }

 private fun setText(text: String) {
 textView.setText(text)
 }
 }

1. setText is both the method of the dispatch receiver and the extension receiver.
Which one will be called?

As a result, the setText function will be invoked from the extension receiver, and as
a result, a button click will change the text of the clicked button! This is because the
extension receiver always takes precedence over the dispatch receiver. Still, it is
possible to use a dispatch receiver in this situation by using qualified this syntax (the
this keyword with label, that is, distinguishing which receiver we want to reference):

 private fun Button.setUp() {
 setText("Click me!")
 setOnClickListener {
 this@MainActivity.setText("Hello")
 }
 }

This way, we can solve the problem of distinguishing between the dispatch and

extension receiver.

Member extension functions and
properties under the hood
Member extension functions and properties are compiled the same way as top-level
extension functions and properties with the only difference being that they are inside
a class and they are not static. Here is a simple example of an extension function:

 class A {
 fun boo() {}

 fun Int.foo() {
 boo()
 }
 }

This is what it is compiled to (after simplification):

 public final class A {
 public final void boo() {
 ...
 }

 public final void foo(int $receiver) {
 this.boo();
 }
 }

Note that while they are just methods with a receiver as the first parameter, we can
do with them everything we can with other functions. Access modifiers are working
the same way, and if we define the member extension function as open, then we can
override it in its subclasses.

Generic extension functions
When we are writing utility functions, often we want them to be generic. The most
common examples are extensions for collections: List, Map, and Set. Here is an
example of an extension property for List:

 val <T> List<T>.lastIndex: Int
 get() = size - 1

The preceding example defines an extension property for a generic type. This kind of
extension is used for lots of different problems. As an example, starting another
Activity is a repetitive task that most often needs to be implemented in multiple
places in the project. The methods provided by the Android IDE for Activity starting
do not make it easy. Here is the code used to start a new Activity called
SettingsActivity:

 startActivity(Intent (this, SettingsActivity::class.java))

Note that this simple and repetitive task needs a lot of code that is not really clear.
But we can define extension functions that will make Intent creation and Activity
without arguments start much more simply using a generic inline extension function
with reified type:

 inline fun <reified T : Any> Context.getIntent()
 = Intent(this, T::class.java)

 inline fun <reified T : Any> Context.startActivity()
 = startActivity(getIntent<T>())

Now we can start Activity by simply using the following:

 startActivity<SettingsActivity>()

Or we can create intent this way:

 val intent = getIntent<SettingsActivity>()

This way, we can make this common task easier at low cost. To go further, libraries
such as Anko (https://github.com/Kotlin/anko) provide extension functions that provide a
simple way to start an Activity with additional parameters or flags, as in this
example:

 startActivity<SettingsActivity>(userKey to user)

https://github.com/Kotlin/anko

Internal implementation of the library is outside the scope of this book, but we can
use this extension simply by adding Anko library dependency to our project. The
point of this example is that nearly all repetitive code can be replaced with simpler
code using extensions. There are also alternative ways to start an Activity, such as
the ActivityStarter library (https://github.com/MarcinMoskala/ActivityStarter), which is
based on parameter injection, and that strongly supports Kotlin. It allows classic
argument injection:

 class StudentDataActivity : BaseActivity() {
 lateinit @Arg var student: Student
 @Arg(optional = true) var lesson: Lesson = Lesson.default()
 }

Or, as an alternative, it allows lazy injection in Kotlin property delegates (which are
described in Chapter 8, Delegates):

 class StudentDataActivity : BaseActivity() {
 @get:Arg val student: Student by argExtra()
 @get:Arg(optional = true)
 var lesson: Lesson by argExtra(Lesson.default())
 }

Activity with such arguments can be started using generated static functions:

 StudentDataActivityStarter.start(context, student, lesson)
 StudentDataActivityStarter.start(context, student)

Let's see another example. In Android, we often need to store objects in JSON
format. For example, when we need to send them to an API or to store them in a file.
The most popular library used for serializing and deserializing objects into JSON is
Gson. Let's look at standard way of using the Gson library:

 val user = User("Marcin", "Moskala")
 val json: String = globalGson.toJson(user)
 val userFromJson = globalGson.fromJson(json, User::class.java)

We can improve it in Kotlin thanks to extension functions with an inline modifier.
Here is an example of extension functions that are using GSON to pack and unpack
objects to String in JSON format:

 inline fun Any.toJson() = globalGson.toJson(this)!!

 inline fun <reified T : Any> String.fromJson()
 = globalGson.fromJson(this, T::class.java)

 // Usage
 val user = User("Marcin", "Moskala")
 val json: String = user.toJson()
 val userFromJson: User = json.fromJson<User>()

https://github.com/MarcinMoskala/ActivityStarter

The globalGson instance is a global instance of Gson. It is common practice, while we
often define some serializers and deserializers, and it is a simpler and more effective
way to define them and build an instance of Gson once.

Examples are showing what possibilities are generic extension functions giving to
the developer. They are like the next level of code extraction:

They are top-level, but also invoked on an object, so they are simple to manage
They are generic, so are universal and might be applied to anything
When inline, they allow us to define reified type parameters

This is why generic extension functions are commonly used in Kotlin. Also, standard
library provides lots of generic extensions. In the next section, we will see some
collection extension functions. This part is important, not only because it provides
knowledge about generic extension function usage, but also because it is ultimately
describing how list processing in Kotlin works and how it can be used.

Collection processing
Collection processing is one of the most common tasks in programming. This is why
one of the first things that developers learn is how to iterate over a collection to
operate on elements. Young developers asked to print all users from a list will most
probably use a for loop:

 for (user in users) {
 println(user)
 }

If we asked them to show only users that are passing in school, then they would most
probably add an if condition inside this loop:

 for (user in users) {
 if (user.passing) {
 println(user)
 }
 }

This is still correct implementation, but the real problem starts when task becomes
more complex. What if they were asked to print the three best students that are
passing? It is really complex to implement it in loops, while it is trivial to implement
it using Kotlin stream processing. Let's see it on the example. Here is example list of
students:

 data class Student(
 val name: String,
 val grade: Double,
 val passing: Boolean
)

 val students = listOf(
 Student("John", 4.2, true),
 Student("Bill", 3.5, true),
 Student("John", 3.2, false),
 Student("Aron", 4.3, true),
 Student("Jimmy", 3.1, true)
)

Let's filter out students using an imperative approach known from Java (using loops
and sorting method):

 val filteredList = ArrayList<Student>()
 for (student in students) {
 if(student.passing) filteredList += student
 }

 Collections.sort(filteredList) { p1, p2 ->
 if(p1.grade > p2.grade) -1 else 1
 }

 for (i in 0..2) {
 val student = filteredList[i]
 println(student)
 }

 // Prints:
 // Student(name=Aron, grade=4.3, passing=true)
 // Student(name=John, grade=4.2, passing=true)
 // Student(name=Bill, grade=3.5, passing=true)

We can achieve the same result in a much simpler way using Kotlin stream
processing:

 students.filter { it.passing } // 1
 .sortedByDescending { it.grade } // 2
 .take(3) // 3
 .forEach(::println) // 4

1. Take only students who passed.
2. Sort students according to their grade (descending to have students with better

grade in higher position).
3. Take only first three of them.
4. Print each of them.

The key is that each stream processing function, such as sortedByDescending, take, and
forEach from the preceding example, is extracting a small functionality and the power
comes from the composition of them. And the result is much simpler and more
readable then usage of classic loops.

Stream processing is actually a pretty common language feature. It is known in C#,
JavaScript, Scala, and many other languages, including Java since version 8. Popular
reactive programming libraries, such as RxJava, also heavily utilize this concept to
process data. In this section, we are going to go deeper into Kotlin collection
processing.

Kotlin collection type hierarchy
Kotlin type hierarchy is really well designed. Standard collections are actually
collections from a native language (such as Java), which are hidden behind
interfaces. Creation of them is made by standard top-level functions (listOf, setOf,
mutableListOf, and so on), so they can be created and used in common modules
(modules compiled to more than one platform). Also Kotlin interfaces can act like
their equivalent interfaces from Java (like List, Set, and so on), this makes Kotlin
collections efficient and highly compatible with external libraries. At the same time,
Kotlin collection interfaces hierarchy, can be used in common modules. This
hierarchy is simple and it is profitable to understand it:

Kotlin collection interfaces hierarchy

The most general interface is Iterable. It represents a sequence of elements that can
be iterated over. Any object that implements iterable can be used in a for loop:

 for (i in iterable) { /* ... */ }

Lots of different types implement an iterable interface: all collections, progressions
(1..10, 'a'..'z'), and even String. They all allow us to iterate over their elements:

 for (char in "Text") { print("($char)") } // Prints: (T)(e)(x)(t)

The Collection interface represents a collection of elements and extends Iterable. It
adds property size and the methods contains, containsAll, and isEmpty.

Two main interfaces that inherit from Collection are List and Set. The difference

between them is that Set is unordered and does not contain repetitive elements
(according to the equals method). Both List and Set interfaces do not contain any
methods that would allow us to mutate the object state. This is why, by default,
Kotlin collections are treated as immutable. When we have an instance of List, then
it is most often ArrayList in Android. ArrayList is a mutable collection, but while it is
hidden behind the interface List, it is actually acting like immutable, because it is not
exposing any methods that would allow us to apply changes (unless it is
downcasted).

In Java, collections were mutable, but Kotlin collection interfaces provide only
immutable behavior by default (not methods that change the state of collections, for
example, add and removeAt):

 val list = listOf('a', 'b', 'c')
 println(list[0]) // Prints: a
 println(list.size) // Prints: 3
 list.add('d') // Error
 list.removeAt(0) // Error

All immutable interfaces (Collection, List, and so on) have their mutable equivalents
(MutableCollection, MutableList, and so on) which inherit from corresponding
immutable interfaces. Mutable means that the actual object can be modified. These
are the interfaces that represent mutable collections from standard library:

MutableIterable allows iteration with applying changes
MutableCollection ensure methods for adding and removing elements
MutableList and MutableSet are mutable equivalents of List and Set

Now we can fix our previous example and change the collection using the add and
remove methods:

 val list = mutableListOf('a', 'b', 'c')
 println(list[0]) // Prints: a
 println(list.size) // Prints: 3
 list.add('d')
 println(list) // Prints: [a, b, c, d]
 list.removeAt(0)
 println(list) // Prints: [b, c, d]

Both immutable and mutable interfaces provide only a few methods, but the Kotlin
standard library provides many useful extensions for them:

This makes dealing with collections a much easier task than in Java.

Kotlin implements collection processing methods using extensions. This approach
has many advantages; for example, if we want to implement a custom collection
(such as List), we only need to implement an iterable interface containing only a few
methods. We can still use all the extensions that are provided for the iterable
interface.

Another reason is how flexibly these functions can be used when they are extensions
for interfaces. For example, most of these collection processing functions are
actually extensions for Iterable, which is implemented by many more types than
Collection, for example, by String or Range. Therefore, it is possible to use all
extension functions to Iterable also on IntRange. Here is an example:

 (1..5).map { it * 2 }.forEach(::print) // Prints: 246810

This makes all this extensions really universal. There is also the downside of the fact

that collection stream processing methods are implemented as extension functions.
While extensions are resolved statically, it is incorrect to override an extension
function for a specific type because its behavior will be different when it is behind an
interface then when it is accessed directly.

Let's analyze some extension functions used for collection processing.

The map, filter, flatMap functions
We have already briefly presented map, filter, and flatMap, because they are the most
basic stream processing functions. The map function returns a list with elements
changed according to the function from the argument:

 val list = listOf(1,2,3).map { it * 2 }
 println(list) // Prints: [2, 4, 6]

The filter function allows only the elements that match the provided predicate:

 val list = listOf(1,2,3,4,5).map { it > 2 }
 println(list) // Prints: [3, 4, 5]

The flatMap function returns a single list of all elements yielded by the transform
function, which is invoked on each element of the original collection:

 val list = listOf(10, 20).flatMap { listOf(it, it+1, it + 2) }
 println(list) // Prints: [10, 11, 12, 20, 21, 22]

It is most often used to flatten list of collections:

 shops.flatMap { it.products }
 schools.flatMap { it.students }

Let's look at simplified implementations of these extension functions:

inline fun <T, R> Iterable<T>.map(transform: (T) -> R): List<R> { //1
 val destination = ArrayList<R>()
 for (item in this) destination.add(transform(item)) // 2
 return destination
}

inline fun <T> Iterable<T>.filter(predicate: (T) -> Boolean): List<T> { // 1
 val destination = ArrayList<T>()
 for (item in this) if(predicate(item)) destination.add(item) // 2
 return destination
}

inline fun <T, R> Iterable<T>.flatMap(transform: (T) -> Collection<R>): List<R> {
// 1
 val destination = ArrayList<R>()
 for (item in this) destination.addAll(transform(item)) // 2
 return destination
}

1. All this functions are inline.
2. All these functions internally use for loop, and return a new list containing

proper elements.

Most Kotlin standard library extension functions with function type are inline,
because it makes lambda expression usage efficient. As a result, whole collection
stream processing is actually mostly compiled at runtime to nested loops. As an
example, here is this simple processing:

 students.filter { it.passing }
 .map { "${it.name} ${it.surname}" }

After compilation and decompilation to Java, it looks like the following (cleaned
up):

 Collection destination1 = new ArrayList();
 Iterator it = students.iterator();
 while(it.hasNext()) {
 Student student = (Student) it.next();
 if(student.getPassing()) {
 destination1.add(student);
 }
 }
 Collection destination2 = new ArrayList(destination1.size());
 it = destination2.iterator();
 while(it.hasNext()) {
 Student student = (Student) it.next();
 String var = student.getName() + " " + student.getSurname();
 destination2.add(var);
 }

The forEach and onEach functions
The forEach function was already discussed in chapter about functions. It is an
alternative to a for loop, so it performs an action on each element of the list:

 listOf("A", "B", "C").forEach { print(it) } // prints: ABC

Since Kotlin 1.1, there is a similar function, onEach, that also invokes an action on
each element. It returns an extension receiver (this list), so we can invoke an action
on each element in the middle of stream processing. Common use cases are logging
purposes. Here is an example:

 (1..10).filter { it % 3 == 0 }
 .onEach(::print) // Prints: 369
 .map { it / 3 }
 .forEach(::print) // Prints: 123

The withIndex and indexed variants
Sometimes, the way of element processing depends on its index on the list. The most
universal way to solve this problem is by using the withIndex function, which returns
a list of values with indexes:

 listOf(9,8,7,6).withIndex() // 1
 .filter { (i, _) -> i % 2 == 0 } // 2
 .forEach { (i, v) -> print("$v at $i,") }
 // Prints: 9 at 0, 7 at 2,

1. Function withIndex is packing each element into IndexedValue which is
containing both the elements and its index.

2. In lambda, IndexedValue is destructed into index and value, but while the value is
unused, there is an underscore placed instead. It might be omitted, but this way
of code is more readable. This line filters only elements with even index.

Also, there are variants for different stream processing methods that provide an
index:

 val list1 = listOf(2, 2, 3, 3)
 .filterIndexed { index, _ -> index % 2 == 0 }
 println(list1) // Prints: [2, 3]

 val list2 = listOf(10, 10, 10)
 .mapIndexed { index, i -> index * i }
 println(list2) // Prints: [0, 10, 20]

 val list3 = listOf(1, 4, 9)
 .forEachIndexed { index, i -> print("$index: $i,") }
 println(list3) // Prints: 0: 1, 1: 4, 2: 9

The sum, count, min, max, and sorted
functions
The sum function counts the sum of all elements in a list. It can be invoked on
List<Int>, List<Long>, List<Short>, List<Double>, List<Float> , and List<Byte>:

 val sum = listOf(1,2,3,4).sum()
 println(sum) // Prints: 10

Often we need to sum some properties of elements, such as summing points of all
users. It might be handled by mapping the list of users to the list of points and then
counting the sum:

 class User(val points: Int)
 val users = listOf(User(10), User(1_000), User(10_000))

 val points = users.map { it.points }. sum()
 println(points) // Prints: 11010

But we unnecessarily create an intermediate collection by calling the map function,
and it would be more efficient to directly sum points. To do it, we can use sumBy with
an appropriate selector:

 val points = users.sumBy { it.points }
 println(points) // Prints: 11010

sumBy is expecting Int to be returned from the selector, and it is returning Int with the
sum of all elements. If values are not Int but Double then we can use sumByDouble,
which returns Double:

 class User(val points: Double)
 val users = listOf(User(10.0), User(1_000.0), User(10_000.0))

 val points = users.sumByDouble { it.points }
 println(points) // Prints: 11010.0

A similar functionality is provided by the count function, that is used when we need
to count elements that match a predicate:

 val evens = (1..5).count { it % 2 == 1 }
 val odds = (1..5).count { it % 2 == 0 }
 println(evens) // Prints: 3
 println(odds) // Prints: 2

The count function used without any predicate returns the size of the collection or
iterable:

 val nums = (1..4).count()
 println(nums) // Prints: 4

The next important functions are min and max, which are functions that return the
minimal and maximal elements in a list. They can be used on a list of elements that
have natural ordering (implement Comparable<T> interface). Here is an example:

 val list = listOf(4, 2, 5, 1)
 println(list.min()) // Prints: 1
 println(list.max()) // Prints: 5
 println(listOf("kok", "ada", "bal", "mal").min()) // Prints: ada

Similarly, the function sorted is used. It returns a sorted list, but it needs to be
invoked on collections of elements that implement the Comparable<T> interface. Here is
an example of how sorted can be used to get a list of strings sorted alphanumerically:

 val strs = listOf("kok", "ada", "bal", "mal").sorted()
 println(strs) // Prints: [ada, bal, kok, mal]

What if items are not comparable? There are two ways to sort them. The first way is
to sort according to comparable member. We've already seen an example when we
were sorting students according to their grades:

 students.filter { it.passing }
 .sortedByDescending { it.grade }
 .take(3)
 .forEach(::println)

In the preceding example, we sort students using the comparable grade property.
There, sortedByDescending is used, which works like sortedBy, with the only difference
being that the order is descending (from biggest to smallest). The selector inside the
function can return any value that is comparable to itself. Here is an example, where
String is used to specify order:

 val list = listOf(14, 31, 2)
 print(list.sortedBy { "$it" }) // Prints: [14, 2, 31]

Similar functions can be used to find the minimal and maximal element according to
the selector:

 val minByLen = listOf("ppp", "z", "as")
 .minBy { it.length }
 println(minByLen) // Prints: "z"

 val maxByLen = listOf("ppp", "z", "as")

 .maxBy { it.length }
 println(maxByLen) // Prints: "ppp"

The second way to specify sorting order is to define a Comparator that will determine
how elements should be compared. Function variants that accept comparators should
have a With suffix. Comparators can be defined by an adapter function that converts a
lambda to SAM type:

 val comparator = Comparator<String> { e1, e2 ->
 e2.length - e1.length
 }
 val minByLen = listOf("ppp", "z", "as")
 .sortedWith(comparator)
 println(minByLen) // Prints: [ppp, as, z]

Kotlin also includes standard library top-level functions (compareBy,
compareByDescending) used to simplify Comparator creation. Here is how we can create a
comparator to sort students alphanumerically by surname and name:

 data class User(val name: String, val surname: String) {
 override fun toString() = "$name $surname"
 }

 val users = listOf(
 User("A", "A"),
 User("B", "A"),
 User("B", "B"),
 User("A", "B")
)
 val sortedUsers = users
 .sortedWith(compareBy({ it.surname }, { it.name }))

 print(sortedUsers) // [A A, B A, A B, B B]

Note that we can use property reference instead of lambda expressions:

 val sortedUsers = users
 .sortedWith(compareBy(User::surname, User::name))
 print(sortedUsers) // [A A, B A, A B, B B]

Another important function is groupBy, which groups elements according to the
selector. groupBy returns Map, that is mapping from the chosen key to a list of elements
that are selected to map to the following key:

 val grouped = listOf("ala", "alan", "mulan", "malan")
 .groupBy { it.first() }
 println(grouped) // Prints: {'a': ["ala", "alan"], "m": ["mulan", "malan"]}

Let's look at a more complex example. We need to get a list of the best students from
each class. Here is how we can get them from the list of students:

 class Student(val name: String, val classCode: String, val meanGrade: Float)

 val students = listOf(
 Student("Homer", "1", 1.1F),
 Student("Carl", "2", 1.5F),
 Student("Donald", "2", 3.5F),
 Student("Alex", "3", 4.5F),
 Student("Marcin", "3", 5.0F),
 Student("Max", "1", 3.2F)
)

 val bestInClass = students
 .groupBy { it.classCode }
 .map { (_, students) -> students.maxBy { it.meanGrade }!! }
 .map { it.name }

 print(bestInClass) // Prints: [Max, Donald, Marcin]

Other stream processing functions
There are lots of different stream processing functions and there is no need to
describe them all here, while Kotlin contains great documentation on its website. The
names of most of the extension functions are self-explanatory and there is no need to
really read the documentation to guess what they are doing. In Android Studio, we
can check the real implementation by pressing Ctrl (command key on mac) and
clicking the function whose implementation we want to read.

The important difference in collection processing comes when you are operating on
mutable collections, because while they can use additional extensions defined for
mutable types (MutableIterable, and MutableCollection), the important distinction is
that functions that are changing object are formulated in present imperative form (for
example, sort), while functions that are returning a new collection with changed
values are most often formulated in the past form of a verb (for example, sorted).
Here is an example:

sort: Function that is sorting a mutable object. It returns Unit.
sorted: Function that is returning a sorted collection. It is not changing the
collection on which it is invoked.

 val list = mutableListOf(3,2,4,1)
 val list2 = list.sorted()
 println(list) // [3,2,4,1]
 println(list2) // [1,2,3,4]
 list.sort()
 println(list) // [1,2,3,4]

Examples of stream collection
processing
We've already seen a few stream processing functions, but it needs some skill and
creativity to use them for complex use cases. This is why, in this part, we are going
to discuss some complex stream processing examples.

Let's suppose that we again need to find the best three students who are passing
according to their grade. The key difference is that, in this case, the final order of
students must be the same as it was in the beginning. Note that during sorting by
grade operation, this order is lost. But we can preserve it if we keep together value
and index. Thanks to that, we can later sort elements according to this preserved
index. Here is how to implement this processing:

 data class Student(
 val name: String,
 val grade: Double,
 val passing: Boolean
)

 val students = listOf(
 Student("John", 4.2, true),
 Student("Bill", 3.5, true),
 Student("John", 3.2, false),
 Student("Aron", 4.3, true),
 Student("Jimmy", 3.1, true)
)

 val bestStudents = students.filter { it.passing } // 1
 .withIndex() // 2
 .sortedBy { it.value.grade } // 3
 .take(3) // 4
 .sortedBy { it.index } // 5
 .map { it.value } // 6

 // Print list of names
 println(bestStudents.map { it.name }) // [John, Bill, Jimmy]

1. Filter to keep only students that are passing
2. Add index to elements to be able to reproduce element order
3. Sort students according to their grade
4. Take only best 10 students
5. Reproduce order by sorting according to indexes
6. Mapping values with indexes to just values

Note that this implementation is concise and each operation performed on the
collection is easy to read line by line.

The big advantage of collection stream processing is that it is easy to
manage the complexity of this process. We know that the complexity of
most operations, such as map or filter, is O(n) and the complexity of
sorting operations is O(n*log(n)). The complexity of stream operations
is maximal complexity of each of the steps, so the complexity of the
above processing is O(n*log(n)) because sortedBy is the step with the
biggest complexity.

As the next example, let's suppose that we have a list containing the results of
players in different categories:

 class Result(
 val player: Player,
 val category: Category,
 val result: Double
)
 class Player(val name: String)
 enum class Category { SWIMMING, RUNNING, CYCLING }

And we have some example data:

 val results = listOf(
 Result("Alex", Category.SWIMMING, 23.4),
 Result("Alex", Category.RUNNING, 43.2),
 Result("Alex", Category.CYCLING, 15.3),
 Result("Max", Category.SWIMMING, 17.3),
 Result("Max", Category.RUNNING, 33.3),
 Result("Bob", Category.SWIMMING, 29.9),
 Result("Bob", Category.CYCLING, 18.0)
)

Here is how we can find the best player in each category:

 val bestInCategory = results.groupBy { it.category } // 1
 .mapValues { it.value.maxBy { it.result }?.player } // 2
 print(bestInCategory)
 // Prints: {SWIMMING=Bob, RUNNING=Alex, CYCLING=Bob}

1. We group results into categories. The return type is Map<Category>,
and List<Result>.

2. We are mapping values of the map function. Inside, we find the best result in this
category and we are taking the player who is associated with this result. The
return of the mapValues function is Map<Category, Player?>.

The preceding example shows how complex problems related to collections can be

easily solved in Kotlin thanks to collection processing functions. After working with
Kotlin for a while, most of those functions are well known to programmers, and then
collection processing problems are quite easy to solve. Of course, functions as
complicated as presented above are rare, but simple, few-step processing is quite
common in everyday programming.

Sequence
Sequence is an interface that is also used to refer to a collection of elements. It is an
alternative for Iterable. For Sequence, there are separate implementations of most
collection processing functions (map, flatMap, filter, sorted, and so on). The key
difference is that all these functions are constructed in such a way that, they return
sequence, which is packaged over previous sequence. Due to this, the following
points becomes true:

The size of sequence does not need to be known in advance
Sequence processing is more efficient, especially for large collections where we
want to perform several transformations (details will be described later)

In Android, sequences are used for processing very big collections or for processing
elements whose size is not known in advance (such as for reading lines of possibly
long document). There are different ways to create sequences, but the easiest is the
asSequence function called on Iterable or by using the sequenceOf top-level function to
make sequence similarly as list.

Sequence size does not need to be known in advance, because values are calculated
just when they are needed. Here is an example:

 val = generateSequence(1) { it + 1 } // 1. Instance of GeneratorSequence
 .map { it * 2 } // 2. Instance of TransformingSequence
 .take(10) // 3. Instance of TakeSequence
 .toList() // 4. Instance of List

 println(numbers) // Prints: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

1. The function generateSequence is one way for sequence generation. This sequence
contains the next numbers from 1 to infinity.

2. The map function packs a sequence into another that takes the value from the
first sequence and then it calculates the value after transformation.

3. The function take(10) will also pack a sequence into another one that is finishing
on the 10th element. Without this line execution, processing time would be
infinitive while we are operating on an infinite sequence.

4. Finally, the function toList is processing each value and it returns the final list.

It is important to stress that elements are processed one after another in the last step
(in terminal operation). Let's look at another example, where every operation is also
printing values for logging purposes. Let's start with the following code:

 val seq = generateSequence(1) { println("Generated ${it+1}"); it + 1 }
 .filter { println("Processing of filter: $it"); it % 2 == 1 }
 .map { println("Processing map: $it"); it * 2 }
 .take(2)

What would be printed in the console? Absolutely nothing. No values were
calculated. The reason is that all those intermediate operations are lazy. To retrieve a
result, we need to use some terminal operation, such as toList. Let's use the
following:

 seq.toList()

Then we will see the following in the console:

Processing of filter: 1
Processing map: 1
Generated 2
Processing of filter: 2
Generated 3
Processing of filter: 3
Processing map: 3

Notice that elements are fully processed one after another. In standard list
processing, the order of operation would be totally different:

 (1..4).onEach { println("Generated $it") }
 .filter { println("Processing filter: $it"); it % 2 == 1 }
 .map { println("Processing map: $it"); it * 2 }

The preceding code prints the following:

Generated 1
Generated 2
Generated 3
Generated 4
Processing filter: 1
Processing filter: 2
Processing filter: 3
Processing filter: 4
Processing map: 1
Processing map: 3

This explains why sequences are more efficient than classic collection processing--
there is no need to create collections in intermediate steps. Values are processed one
by one on demand.

Function literals with receiver
Just as functions have a function type, which allows them to be kept as an object,
extension functions have their type that allows them to be kept this way. It is called
function type with receiver. It looks like the simple function type, but the receiver
type is located before arguments (like in extension definition):

 var power: Int.(Int) -> Int

The introduction of function type with receiver makes full cohesion between
functions and types, because all functions can be now represented as objects. It can
be defined using a lambda expression with receiver or by an anonymous function
with receiver.

In a lambda expression with receiver definition, the only difference is that we can
reference to receiver by this, and we can explicitly use receiver elements. For
lambda expressions, the type must be specified in a parameter, because there is no
syntax to specify receiver type. Here is power defined as a lambda expression with
receiver:

 power = { n -> (1..n).fold(1) { acc, _ -> this * acc } }

An anonymous function also allows us to define the receiver, and its type is placed
before the function name. In such a function, we can use this inside the body to refer
to the extension receiver object. Note that anonymous extension functions are
specifying the receiver type, so the property type can be inferred. Here is power
defined as an anonymous extension function:

 power = fun Int.(n: Int) = (1..n).fold(1) { acc, _ -> this * acc }

A function type with receiver can be used as if it is a method of receiver type:

 val result = 10.power(3)
 println(result) // Prints: 1000

A function type is most often used as a function parameter. Here is an example,
where a parameter function is used to configure an element after its creation:

 fun ViewGroup.addTextView(configure: TextView.()->Unit) {
 val view = TextView(context)
 view.configure()
 addView(view)

 }

 // Usage
 val linearLayout = findViewById(R.id.contentPanel) as LinearLayout

 linearLayout.addTextView { // 1
 text = "Marcin" // 2
 textSize = 12F // 2
 }

1. Here we are using a lambda expression as an argument.
2. Inside the lambda expression, we can directly invoke receiver methods.

Kotlin standard library functions
The Kotlin stdlib provide a set of extension functions (let, apply, also, with, run, and
to) with generic non-restricted receiver (generic types have no restrictions). They are
small and handy extensions, and it is very profitable to understand them, because
they are very useful across all Kotlin projects. One of these functions, let, was
briefly introduced in Chapter 2, Laying a Foundation, where we saw how it can be
used as an alternative to a nullity check:

 savedInstanceState?.let{ state ->
 println(state.getBoolean("isLocked"))
 }

All that let does is it calls the specified function and returns its result. While in the
above example it is used together with a safe call operator, it will be called only
when the property savedInstanceState is not null. The let function is actually just a
generic extension function with a parameter function:

 inline fun <T, R> T.let(block: (T) -> R): R = block(this)

In stdlib, there are more functions similar to let. These functions are apply, also, with,
and run. They are a similar so we are going to describe them together. Here are
definitions of the rest of the functions:

inline fun <T> T.apply(block: T.() -> Unit): T {
 block();
 return this
}
inline fun <T> T.also(block: (T) -> Unit): T {
 block(this);
 return this
}
inline fun <T, R> T.run(block: T.() -> R): R = block()
inline fun <T, R> with(receiver: T, block: T.() -> R): R = receiver.block()

Let's see usage examples:

 val mutableList = mutableListOf(1)
 val mutableList = mutableListOf(1)
 val letResult = mutableList.let {
 it.add(2)
 listOf("A", "B", "C")
 }
 println(letResult) // Prints: [A, B, C]
 val applyResult = mutableList.apply {
 add(3)
 listOf("A", "B", "C")

 }
 println(applyResult) // Prints: [1, 2, 3]
 val alsoResult = mutableList.also {
 it.add(4)
 listOf("A", "B", "C")
 }
 println(alsoResult) // Prints: [1, 2, 3, 4]
 val runResult = mutableList.run {
 add(5)
 listOf("A", "B", "C")
 }
 println(runResult) // Prints: [A, B, C]
 val withResult = with(mutableList) {
 add(6)
 listOf("A", "B", "C")
 }
 println(withResult) // Prints: [A, B, C]
 println(mutableList) // Prints: [1, 2, 3, 4, 5, 6]

The differences are summarized in the following table:

Returned object / parameter
function type

Function literal with
receiver

(receiver object
represented as this)

Function literal

(receiver object
represented as it)

Receiver object apply also

Result of function literal run/with let

While those functions are similar and, in many cases, it is possible to use them
interchangeably, there are conventions which define which functions are preferred
for certain use cases.

The let function
The let function is preferred when we want to use standard functions as if they are
extension functions in stream processing:

 val newNumber = number.plus(2.0)
 .let { pow(it, 2.0) }
 .times(2)

Like other extensions, it can be combined with a save call operator:

 val newNumber = number?.plus(2.0)
 ?.let { pow(it, 2.0) }

The let function is also preferred when we just want to unpack a nullable read-write
property. In this situation, it is not possible to smartcast this property and we need to
shadow it, like in this solution:

 var name: String? = null

 fun Context.toastName() {
 val name = name
 if(name != null) {
 toast(name)
 }
 }

The name variable is the shadowing property name, what is necessary if name is a
read-write property, because smart cast is allowed only on a mutable or local
variable.

We can replace the preceding code with let usage and a safe call operator:

 name?.let { setNewName(it) }

Note that using Elvis operator, we can easily add a return or exception throw when
name is null:

 name?.let { setNewName(it) } ?: throw Error("No name setten")

Similar way, let can be used as a replacement for the following statement:

 val comment = if(field == null) getComment(field) else "No comment

Implementation that is using the let function would look like the following:

 val comment = field?.let { getComment(it) } ?: "No comment"

The let function used this way is preferred in method chains that transform the
receiver:

 val text = "hello {name}"

 fun correctStyle(text: String) = text
 .replace("hello", "hello,")

 fun greet(name: String) {
 text.replace("{name}", name)
 .let { correctStyle(it) }
 .capitalize()
 .let { print(it) }
 }

 // Usage
 greet("reader") // Prints: Hello, reader

We can also use simpler syntax by passing a function reference as an argument:

 text.replace("{name}", name)
 .let(::correctStyle)
 .capitalize()
 .let(::print)

Using the apply function for
initialization
Sometimes we need to create and initialize an object by calling some methods or
modifying some properties, such as when we are creating a Button:

 val button = Button(context)
 button.text = "Click me"
 button.isVisible = true
 button.setOnClickListener { /* ... */ }
 this.button = button

We can reduce code verbosity by using the apply extension function. We can call all
these methods from the context where button is the receiver object:

 button = Button(context).apply {
 text = "Click me"
 isVisible = true
 setOnClickListener { /* ... */ }
 }

The also function
The also function is similar to apply, with the only difference being that the parameter
function accepts an argument as an parameter rather than as an receiver. It is
preferred when we want to do some operations on an object, which are not
initializations:

 abstract class Provider<T> {

 var original: T? = null
 var override: T? = null

 abstract fun create(): T

 fun get(): T = override ?: original ?: create().also { original = it }
 }

The also function is also preferred when we need to do some operation in the middle
of processing, for example, during object construction using the Builder pattern:

 fun makeHttpClient(vararg interceptors: Interceptor) =
 OkHttpClient.Builder()
 .connectTimeout(60, TimeUnit.SECONDS)
 .readTimeout(60, TimeUnit.SECONDS)
 .also { it.interceptors().addAll(interceptors) }
 .build()

Another situation where also is preferred is when we are already in an extension
function and we don't want to add another extension receiver:

 class Snail {
 var name: String = ""
 var type: String = ""

 fun greet() {
 println("Hello, I am $name")
 }
 }

 class Forest {
 var members = listOf<Sneil>()

 fun Sneil.reproduce(): Sneil = Sneil().also {
 it.name = name
 it.type = type
 members += it
 }
 }

The run and with function
The run and with functions that are both accepting lambda literal with receiver as an
argument, and returning its result. The difference between them is that run is
accepting a receiver, while the with function is not an extension function and it takes
the object we are operating in as parameter. Both functions can be used as an
alternative to the apply function, when we are setting up an object:

 val button = findViewById(R.id.button) as Button

 button.apply {
 text = "Click me"
 isVisible = true
 setOnClickListener { /* ... */ }
 }

 button.run {
 text = "Click me"
 isVisible = true
 setOnClickListener { /* ... */ }
 }

 with(button) {
 text = "Click me"
 isVisible = true
 setOnClickListener { /* ... */ }
 }

The difference between apply, run, and with is that apply is returning a receiver object,
while run and with are returning the result of function literal. Although when we need
any of these, we should choose the function that is returning it. It is debatable which
should be used when we do not need any returned value. Most often, it is suggested
to use the run or with function than, because also is more often used in the situations
when returned value is needed.

About differences between the run and with functions: the run function is used instead
of the with function, when a value is nullable, because then we can use a safe call or
not-null assertion:

 val button = findViewById(R.id.button) as? Button

 button?.run {
 text = "Click me"
 isVisible = true
 setOnClickListener { /* ... */ }
 }

The with function is preferred over run when an expression is short:

 val button = findViewById(R.id.button) as Button

 with(button) {
 text = "Click me"
 isVisible = true
 setOnClickListener { /* ... */ }
 }

On the other hand, run is preferred over with when an expression is long:

 itemAdapter.holder.button.run {
 text = "Click me"
 isVisible = true
 setOnClickListener { /* ... */ }
 }

The to function
Infix functions were introduced in Chapter 4, Classes and Objects, but they can be
defined not only as member classes, but also as extension functions. It makes it
possible to create an infix extension function to any object. One of these kinds of
extension functions is to, which was briefly described in Chapter 2, Laying a
Foundation. Now we have the knowledge needed to understand its implementation.
This is how to is defined:

 infix fun <A, B> A.to(that: B): Pair<A, B> = Pair(this, that)

This makes it possible to place to between any two objects and make this way Pair
with them:

 println(1 to 2 == Pair(1, 2)) // Prints: true

Note that the fact that we can make infix extension functions makes us allowed to
define infix functions as an extension to any type. Here is an example:

 infix fun <T> List<T>.intersection(other: List<T>)
 = filter { it in other }

 listOf(1, 2, 3) intersection listOf(2, 3, 4) // [2,3]

Domain-specific language
Features such as lambda literal with receiver and member extension functions are
making it possible to define type-safe builders, that are known from Groovy. The
most well-known Android example is Gradle configuration, build.gradle, which is
currently written in Groovy. These kinds of builders are a good alternative to XML,
HTML, or configuration files. The advantage of Kotlin usage instead is that we can
make such configurations fully type-safe and provide a better IDE. Such builders are
one example of Kotlin domain-specific language (DSL).

The most popular Kotlin DSL pattern in Android is the implementation of optional
callback classes. It is used to solve a problem with a lack of functional support to
callback interfaces with multiple methods. Classically, implementation would
require object-expression usage, like in following example:

searchView.addTextChangedListener(object : TextWatcher {
 override fun beforeTextChanged(s: CharSequence, start: Int, count: Int, after: Int) {}

 override fun onTextChanged(s: CharSequence, start: Int, before: Int, count: Int) {
 presenter.onSearchChanged(s.toString())
 }

 override fun afterTextChanged(s: Editable) {}
})

The main problems with such implementation are as follows:

We need to implement all methods present in interface
Function structure needs to be implemented for each method
We need to use object expression

Let's define the following class, that is keeping callbacks as mutable properties:

class TextWatcherConfig : TextWatcher {

 private var beforeTextChangedCallback: (BeforeTextChangedFunction)? = null // 1
 private var onTextChangedCallback: (OnTextChangedFunction)? = null // 1
 private var afterTextChangedCallback: (AfterTextChangedFunction)? = null // 1

 fun beforeTextChanged(callback: BeforeTextChangedFunction){ // 2
 beforeTextChangedCallback = callback
 }

 fun onTextChanged(callback: OnTextChangedFunction) { // 2
 onTextChangedCallback = callback
 }

 fun afterTextChanged(callback: AfterTextChangedFunction) { // 2
 afterTextChangedCallback = callback
 }

 override fun beforeTextChanged (s: CharSequence?, start: Int, count: Int,
 after: Int) { // 3
 beforeTextChangedCallback?.invoke(s?.toString(), start, count, after) // 4
 }

 override fun onTextChanged(s: CharSequence?, start: Int, before:
 Int, count: Int) { // 3
 onTextChangedCallback?.invoke(s?.toString(), start, before, count) // 4

 }

 override fun afterTextChanged(s: Editable?) { // 3
 afterTextChangedCallback?.invoke(s)
 }
}

private typealias BeforeTextChangedFunction =
(text: String?, start: Int, count: Int, after: Int)->Unit

private typealias OnTextChangedFunction =
(text: String?, start: Int, before: Int, count: Int)->Unit

private typealias AfterTextChangedFunction =
(s: Editable?)->Unit

1. Callbacks, which are used when any of the overridden functions is called.
2. Functions used to set new callbacks. Their names corresponds to handler

function names, but they include callback as a parameter.
3. Each event handler functions are just invoking callback if it exists.
4. To simplify usage, we also changed types, CharSequence present in the original

methods was changed to String.

Now all we need is an extension function that will simplify callback configuration.
Its name cannot be the same as any name of TextView, but all we need to do is a small
modification:

fun TextView.addOnTextChangedListener(config: TextWatcherConfig.()->Unit) {
 val textWatcher = TextWatcherConfig()
 textWatcher.config()
 addTextChangedListener(textWatcher)
}

With such definitions, we can define callbacks we need this way:

 searchView.addOnTextChangedListener {
 onTextChanged { text, start, before, count ->
 presenter.onSearchChanged(text)
 }

 }

We use underscore to hide unused parameters, to improve our implementation:

 searchView.addOnTextChangedListener {
 onTextChanged { text, _, _, _ ->
 presenter.onSearchChanged(text)
 }
 }

Now two other callbacks beforeTextChanged and afterTextChanged are ignored, but we
can still add other implementations:

 searchView.addOnTextChangedListener {
 beforeTextChanged { _, _, _, _ ->
 Log.i(TAG, "beforeTextChanged invoked")
 }
 onTextChanged { text, _, _, _ ->
 presenter.onSearchChanged(text)
 }
 afterTextChanged {
 Log.i(TAG, "beforeTextChanged invoked")
 }
 }

A listener defined this way has the following properties:

It is shorter than object expression implementation
It includes default functions implementations
It allows us to hide unused parameters

While in Android SDK there are multiple listeners with more than one handler, DSL
implementation of optional callback classes is really popular in Android projects.
Similar implementations can be also found in libraries, such as the already-
mentioned Anko.

Another example is DSL, which will be used to define layout structure without using
XML layout files. We will define a function to add and configure LinearLayout and
TextView and use it to define a simple view:

 fun Context.linearLayout(init: LinearLayout.() -> Unit): LinearLayout {
 val layout = LinearLayout(this)
 layout.layoutParams = LayoutParams(WRAP_CONTENT, WRAP_CONTENT)
 layout.init()
 return layout
 }

 fun ViewGroup.linearLayout(init: LinearLayout.() -> Unit): LinearLayout {
 val layout = LinearLayout(context)
 layout.layoutParams = LayoutParams(WRAP_CONTENT, WRAP_CONTENT)
 layout.init()

 addView(layout)
 return layout
 }

 fun ViewGroup.textView(init: TextView.() -> Unit): TextView {
 val layout = TextView(context)
 layout.layoutParams = LayoutParams(WRAP_CONTENT, WRAP_CONTENT)
 layout.init()
 addView(layout)
 return layout
 }

 // Usage
 class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 val view = linearLayout {
 orientation = LinearLayout.VERTICAL
 linearLayout {
 orientation = LinearLayout.HORIZONTAL
 textView { text = "A" }
 textView { text = "B" }
 }
 linearLayout {
 orientation = LinearLayout.HORIZONTAL
 textView { text = "C" }
 textView { text = "D" }
 }
 }
 setContentView(view)
 }
 }

We can also define our custom DSL from scratch. Let's make a simple DSL that
defines a list of articles. We know that each article should be defined in a different
category, and that article has its name, URL, and tags. What we would like to
achieve is the following definition:

 category("Kotlin") {
 post {
 name = "Awesome delegates"
 url = "SomeUrl.com"
 }
 post {
 name = "Awesome extensions"
 url = "SomeUrl.com"
 }
 }
 category("Android") {
 post {
 name = "Awesome app"
 url = "SomeUrl.com"
 tags = listOf("Kotlin", "Google Login")
 }
 }

The simplest object here is the Post class. It is holding post properties and allows
them to be changed:

 class Post {
 var name: String = ""
 var url: String = ""
 var tags: List<String> = listOf()
 }

Next, we need to define a class that will hold the category. It needs to store a list of
posts and it also needs to contain its name. There must be also a defined function that
will allow simple post addition. This function needs to contain a function parameter
in which Post is the receiver type. Here is the definition:

 class PostCategory(val name: String) {
 var posts: List<Post> = listOf()

 fun post(init: Post.()->Unit) {
 val post = Post()
 post.init()
 posts += post
 }
 }

Also, we need a class that will hold a list of categories and allow simple category
definition:

 class PostList {

 var categories: List<PostCategory> = listOf()

 fun category(name: String, init: PostCategory.()->Unit) {
 val category = PostCategory(name)
 category.init()
 categories += category
 }
 }

All we need now is the definePosts function, whose definition might be the
following:

 fun definePosts(init: PostList.()->Unit): PostList {
 val postList = PostList()
 postList.init()
 return postList
 }

And that's all we need. Now we can define object structure by a simple, type-safe
builder:

val postList = definePosts {
 category("Kotlin") {

 post {
 name = "Awesome delegates"
 url = "SomeUrl.com"
 }
 post {
 name = "Awesome extensions"
 url = "SomeUrl.com"
 }
 }
 category("Android") {
 post {
 name = "Awesome app"
 url = "SomeUrl.com"
 tags = listOf("Kotlin", "Google Login")
 }
 }
}

DSL is a really powerful concept that is more and more used around the Kotlin
community. It is already possible, thanks to libraries, to use Kotlin DSL to fully
replace the following:

Android layout files (Anko)
Gradle configuration files
HTML files (kotlinx.html)
JSON files (Kotson)

And lots of other configuration files. Let's look at some example library that is
defining Kotlin DSL to provide type-safe builders.

Anko
Anko is a library that provides a DSL to define Android views without any XML
layouts. This is pretty similar to examples we've already seen, but Anko made it
possible to fully remove XML layout files from a project. Here is an example view
written in Anko DSL:

 verticalLayout {
 val name = editText()
 button("Say Hello") {
 onClick { toast("Hello, ${name.text}!") }
 }
 }

And here is the result:

Source: https://github.com/Kotlin/anko

It is also possible to define much more complex layouts using Anko DSL. These
views can be placed either on a custom class that serves as a view or even directly
inside the onCreate method:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 verticalLayout {
 padding = dip(30)
 editText {
 hint = "Name"
 textSize = 24f
 }
 editText {
 hint = "Password"
 textSize = 24f
 }
 button("Login") {
 textSize = 26f
 }
 }
 }

To learn more about this example, you can visit Anko Wiki at https://gith
ub.com/Kotlin/anko/wiki/Anko-Layouts.

https://github.com/Kotlin/anko
https://github.com/Kotlin/anko/wiki/Anko-Layouts

It is still debatable if DSL layoutdefinition are going to replace XML definitions. At
the time of writing, it is not so popular to define views this way, because of a lack of
support from Google, but while Google announced that they are going to support
Kotlin, so it is possible that this idea will become more popular and DSL-based
layouts will be more supported and maybe even universal someday.

Summary
In this chapter, we discussed Kotlin extension functions and properties, both defined
top-level and as type member. We've seen how Kotlin standard library extension
functions can be used to simplify collection processing and perform various
operations. We have also described function type with receiver together with
function literals with receiver. Also, we've seen a few important generic functions
from standard library, which are using extensions: let, apply, also, with, run, and to.
Finally, we've seen how DSL can be defined in Kotlin, and where it is useful.

In the next chapter, there is going to be presented the next feature that was not
present in the Java world while it is giving really big possibilities in Kotlin
development--class and property delegates.

Delegates
Kotlin takes design patterns pretty seriously. Previously, we've seen how the usage
of the Singleton pattern was simplified by object declarations, and how usage of the
Observator pattern was trivialized thanks to higher order functions and functional
type. Also, Kotlin simplified the usage of most functional patterns, thanks to lambda
expressions and functional types. In this chapter, we will see how usage of
Delegation and Decorator patterns were simplified thanks to class delegation. We
will also see a feature, which is pretty new in the programming world--property
delegation--and how it is used to make Kotlin properties much more powerful.

In this chapter, we will cover the following topics:

Delegation pattern
Class delegation
Decorator pattern
Property delegation
Property delegates from the standard library
Creation of a custom property delegate

Class delegation
Kotlin has a feature called class delegation. It is a really inconspicuous feature that
has many practical applications. It is worth to notice, that it is strongly connected
with two design patterns: Delegation Pattern and Decorator Pattern. We will discuss
those patterns in more detail in upcoming sections. Delegation and Decorator pattern
are known for many years, but in Java their implementation required a lot of
boilerplate code. Kotlin is one of the first languages that provided native support for
those patterns reducing boilerplate code to minimum.

Delegation pattern
In object-oriented programming, Delegation pattern is a design pattern, which is an
alternative to inheritance. Delegation means that the object handles a request by
delegating it to another object (delegate), instead of extending the class.

To support the polymorphic behavior known from Java, both objects should
implement the same interface that holds all delegated methods and properties. A
simple example of the delegation pattern is the following:

 interface Player { // 1
 fun playGame()
 }

 class RpgGamePlayer(val enemy: String) : Player {
 override fun playGame() {
 println("Killing $enemy")
 }
 }

 class WitcherPlayer(enemy: String) : Player {
 val player = RpgGamePlayer(enemy) // 2

 override fun playGame() {
 player.playGame() // 3
 }
 }

 // Usage
 RpgGamePlayer("monsters").playGame() // Prints: Killing monsters
 WitcherPlayer("monsters").playGame() // Prints: Killing monsters

1. When we are talking about class delegation, there needs to be an interface that
defines what methods are delegated.

2. Object that we are delegating to (delegate).
3. All methods inside the WitcherPlayer class should call corresponding methods on

the delegate object (player).

This is called delegation because the WitcherPlayer class is delegating methods
defined in the Player interface to an instance of type RpgGamePlayer (player). Similar
result could be reached by using inheritance instead of delegation. It would look as
follows:

 class WitcherPlayer() : RpgGamePlayer()

At first glance, these two approaches might look similar, but delegation and
inheritance have a lot of differences. On one hand, inheritance is much more popular
and more common in use. It is often used in Java, and is connected to multiple OOP
patterns. On the other hand, there are sources that strongly stand behind delegation.
For example, the influential book Design Patterns, by the Gang of Four, contains the
principle: favor object composition over class inheritance. Also, the popular book
Effective Java, includes the rule: favor composition over inheritance (Item 6). Both
of them strongly support the delegation pattern. Here are some basic arguments that
stand behind the usage of the delegation pattern instead of inheritance:

Often classes are not designed for inheritance. When we override methods, we
are not aware of underlying assumptions about class internal behavior (when
methods are called, how those calls affect the objects, states, and so on). For
example, when we override method, we might not be aware that it is used by
other methods, so overridden methods may be called unexpectedly by a super
class. Even if we check when the method is called, this behavior could change
in a new version of the class (for example, if we extend class from an external
library) and thus break our subclass' behavior. A very small amount of classes
are properly designed and documented for inheritance, but nearly all
nonabstract classes are designed for usage (this includes delegation).
In Java, it is possible to delegate a class to multiple classes, but inherit only
from one.
By interface, we are specifying which methods and properties we want to
delegate. This is compatible with the interface segregation principle (from
SOLID)--we shouldn't expose unnecessary methods to the client.
Some classes are final, so we can only delegate to them. In fact, all classes that
are not designed for inheritance should be final. Kotlin designers were aware of
it, and they made all classes in Kotlin to be final by default.
Making a class final and providing proper interface is good practice for public
libraries. We can change the implementation of a class without worrying that it
will affect library users (as long as the behavior will be the same from an
interface point of view). It makes them impossible to inherit from, but they are
still great candidates to delegate to.

More information on how classes should be designed to support
inheritance and when delegation should be used can be found in the
book Effective Java, in Item 16: Favor composition over inheritance.

Of course, there are also disadvantages of using delegation instead of inheritance.
Here are the main problems:

We need to create interfaces that specify which methods should be delegated
We don't have access to protected methods and properties

In Java, there was one more strong argument for using inheritance: it was much
easier to implement. Even while comparing code from our WitcherPlayer example, we
can see that delegation needed a lot of extra code:

 class WitcherPlayer(enemy: String) : Player {
 val player = RpgGamePlayer(enemy)
 override fun playGame() {
 player.playGame()
 }
 }

 class WitcherPlayer() : RpgGamePlayer()

This is especially problematic when we are dealing with interfaces with multiple
methods. Fortunately, modern languages value the usage of the Delegation pattern,
and many of them have native class delegation support. There is strong support for
the Delegation pattern in Swift and Groovy, and there is also support through other
mechanisms in Ruby, Python, JavaScript, and Smalltalk. Kotlin also strongly
supports class delegation, and makes usage of this pattern really simple, and using
nearly zero-boilerplate code. The WitcherPlayer class from the example could be
implemented in this way in Kotlin:

 class WitcherPlayer(enemy: String) : Player by RpgGamePlayer(enemy) {}

Using the by keyword, we are informing the compiler to delegate all methods defined
in the Player interface from WitcherPlayer to RpgGamePlayer. An instance of RpgGamePlayer
is created during the WitcherPlayer construction. In simpler words: WitcherPlayer is
delegating methods defined in the Player interface to a new RpgGamePlayer object.

What is really happening here is that during compilation, the Kotlin compiler is
generating not implemented methods from Player in WitcherPlayer and filling them
with calls to an RpgGamePlayer instance (the same way as that we implemented them in
the first example). The big improvement is that we don't need to implement those
methods ourselves. Also note that if a signature of a delegated method changes, then
we don't need to change all objects that are delegated to it, so the class is easier to
maintain.

There is another way to create and hold an instance of the delegate. It can be
provided by a constructor, like in this example:

 class WitcherPlayer(player: Player) : Player by player

We can also delegate to a property defined in the constructor:

 class WitcherPlayer(val player: Player) : Player by player

Finally, we can delegate to any property accessible during class declaration:

 val d = RpgGamePlayer(10)
 class WitcherPlayer(a: Player) : Player by d

In addition, one object can have multiple different delegates:

 interface Player {
 fun playGame()
 }

 interface GameMaker { // 1
 fun developGame()
 }

 class WitcherPlayer(val enemy: String) : Player {
 override fun playGame() {
 print("Killin $enemy! ")
 }
 }

 class WitcherCreator(val gameName: String) : GameMaker{
 override fun developGame() {
 println("Makin $gameName! ")
 }
 }

 class WitcherPassionate :
 Player by WitcherPlayer("monsters"),
 GameMaker by WitcherCreator("Witcher 3") {

 fun fulfillYourDestiny() {
 playGame()
 developGame()
 }
 }

 // Usage
 WitcherPassionate().fulfillYourDestiny() // Killin monsters! Makin Witcher 3!

1. The WitcherPlayer class is delegating the Player interface to a new RpgGamePlayer
object, GameMaker to a new WitcherCreator object, and also includes the function
fulfillYourDestiny that is using functions from both delegates. Note that both
WitcherPlayer and WitcherCreator are not tagged as open, and without this, they
cannot be extended. They can be delegated, though.

With such language support, the Delegation pattern is much more attractive than
inheritance. While this pattern has both advantages and disadvantages, it is good to
know when it should be used. The main cases where delegates should be used are as

follows:

When your subclass violates the Liskov substitution principle; for example,
when we are dealing with situations where inheritance was implemented only to
reuse code of the superclass, but it is not really acting like it.
When the subclass uses only a portion of the methods of the superclass. In this
case, it is only a matter of time before someone calls a superclass method that
they were not supposed to call. Using delegation, we reuse only methods we
choose (defined in the interface).
When we cannot or we should not inherit, because:

The class is final
It is not accessible and used from behind interface
It is just not designed for inheritance

Note that while classes in Kotlin are final by default, most of them will be left final.
If those classes are placed in a library then most likely we won't be able to change or
open the class. Delegation will be the only option, to make class with different
behavior.

The Liskov substitution principle is a concept in OOP stating that all
subclasses should act like their superclasses. In easier words, If unit
tests are passing for some class, they should be passing for its
subclasses too. This principle has been popularized by Robert C.
Martin, who placed it in his set of most important OOP rules and
described it in the popular book Clean Code.

The book Effective Java states that "inheritance is appropriate only in circumstances
where a subclass really is a subtype of the superclass." In other words, class B should
extend a class only if an is-a relationship exists between the two classes. If you are
tempted to have class B extend class A, ask yourself Is every B really an A? In the
next part, the book suggests that in every other case there should be composition
used (which most common implementation is delegation).

It is also worth note that Cocoa (the UI framework from Apple for building software
programs to run on iOS) very often use delegates instead of inheritance. This pattern
is becoming more and more popular, and in Kotlin it is highly supported.

Decorator pattern
Another common case where the Kotlin class delegation is really useful is when we
are implementing a Decorator pattern. A Decorator pattern (also known as Wrapper
pattern) is a design pattern that makes it possible to add a behavior to an existing
class without using inheritance. In contrast to extensions where we can add a new
behavior without modifying an object, we are creating a concrete object with a
different behavior. A Decorator pattern uses Delegation, but in a very specific way--
delegate is provided from outside of the class. The classic structure is presented in
the following UML diagram:

UML diagram of classic implementation of the Decorator pattern. Source: http://uploa
d.wikimedia.org

The Decorator contains the objects that it is decorating while it is implementing the
same interface.

The most popular example of decorator usage from the Java world is InputStream.
There are different kinds of types that are extending InputStream, and a lot of
decorators that can be used to add functionalities to them. This decorator can be used
to add buffering, get content of a zipped file, or convert file content to a Java object.

http://upload.wikimedia.org

Let's look at the example where multiple decorators are used to read a zipped Java
object:

 // Java
 FileInputStream fis = new FileInputStream("/someFile.gz"); // 1
 BufferedInputStream bis = new BufferedInputStream(fis); // 2
 GzipInputStream gis = new GzipInputStream(bis); // 3
 ObjectInputStream ois = new ObjectInputStream(gis); // 4
 SomeObject someObject = (SomeObject) ois.readObject(); // 5

1. Create a simple stream for reading a file.
2. Make a new stream that contains buffering.
3. Make a new stream that contains functionality of the reading compressed data

in the GZIP file format.
4. Make a new stream that adds functionality that deserializes primitive data and

objects previously written using an ObjectOutputStream.
5. Stream is used in the readObject method of ObjectInputStream, but all objects in

this example are implementing InputStream (what makes it possible to pack it
this way) and can be read by the methods specified by this interface.

Note that this pattern is also similar to inheritance, but we can decide what
decorators we want to use and in what order. This is much more flexible and gives
more possibilities during usage. Some people argue that InputStream usage would be
better if designers would make one big class with all designed functionalities, and
then use methods to turn some of them on or off. This approach would violate
the single-responsibility principle and lead to much more complicated and much less
expandable code.

While the Decorator pattern is considered one of the best in practical use, it is rarely
used in Java projects. This is because the implementation is not simple. Interfaces
often contain multiple methods and creating a delegation to them in each decorator
generates lots of boilerplate code. There is a different situation in Kotlin--we've
already seen that in Kotlin class delegation is actually trivial. Let's look at some
classic examples of practical class delegation usage in the Decorator pattern. Let's
suppose that we want to add the first position as the zero element to several different
ListAdapters. This extra position has some special properties. We couldn't implement
this using inheritance because these ListAdapters for different lists are of different
types (which is the standard situation). In this case, we can either change the
behaviors of each class (DRY rule) or we can create a decorator. Here is the short
code of this decorator:

class ZeroElementListDecorator(val arrayAdapter: ListAdapter) :
 ListAdapter by arrayAdapter {

 override fun getCount(): Int = arrayAdapter.count + 1
 override fun getItem(position: Int): Any? = when {
 position == 0 -> null
 else -> arrayAdapter.getItem(position - 1)
 }

 override fun getView(position: Int, convertView: View?,parent:
ViewGroup): View = when {
 position == 0 -> parent.context.inflator
 .inflate(R.layout.null_element_layout, parent, false)
 else -> arrayAdapter.getView(position - 1, convertView, parent)
 }
}

override fun getItemId(position: Int): Long = when {
 position == 0 -> 0
 else -> arrayAdapter.getItemId(position - 1)
}

We used an inflator extension property of Context here, which is often included in
Kotlin Android projects and should be known from Chapter 7, Extension Functions
and Properties:

 val Context.inflater: LayoutInflater
 get() = LayoutInflater.from(this)

The ZeroElementListDecorator class defined this way always adds a first element with
static view. Here we can see a simple example of its use:

 val arrayList = findViewById(R.id.list) as ListView
 val list = listOf("A", "B", "C")
 val arrayAdapter = ArrayAdapter(this,
 android.R.layout.simple_list_item_1, list)
 arrayList.adapter = ZeroElementListDecorator(arrayAdapter)

In ZeroElementListDecorator it might look complicated that we needed to override four
methods, but in fact, there are eight more of them and we didn't have to override
them, thanks to Kotlin's class delegation. We can see that Kotlin class delegation is
making the implementation of the Decorator pattern much easier.

The Decorator pattern is really simple to implement and is pretty intuitive. It can be
used in lots of different cases to extend a class with extra functionality. It is really
safe and often referred as a good practice. These examples are just some of the
possibilities provided by class delegation. I am sure that the reader will find more
use cases with presented patterns and use class delegation to make the project more
clean, safe, and concise.

Property delegation
Kotlin allows not only class delegation, but also property delegation. In this section,
we are going to find out what delegated properties are, review property delegates
from Kotlin standard library, and learn how to create and use custom property
delegates.

What are delegated properties?
Let's start with explanation of what property delegates are. Here is an example of the
use of property delegation:

 class User(val name: String, val surname: String)

 var user: User by UserDelegate() // 1

 println(user.name)
 user = User("Marcin","Moskala")

1. We are delegating user property to an instance of UserDelegate (which is created
by the constructor).

Property delegation is similar to class delegation. We delegate to an object using the
same keyword (by). Each call to a property (set/get) will be delegated to another
object (UserDelegate). This way we can reuse the same behavior for multiple
properties, for example, setting a property value only when some criteria are met, or
adding log entry when a property is accessed/updated.

We know that a property doesn't really need a backing field. It might be defined just
by getter (read-only) or a getter/setter (read-write). Under the hood, property
delegates are just translated to corresponding method calls (setValue/getValue). The
preceding example will be compiled to such code:

 var p$delegate = UserDelegate()
 var user: User
 get() = p$delegate.getValue(this, ::user)
 set(value) {
 p$delegate.setValue(this, ::user, value)
 }

The example is showing that by using the by keyword, we are delegating the setter
and getter calls to delegate. That is why any object that has the getValue and setValue
functions with correct parameters (it will be described later) can be used as a
delegate (for read-only properties getValue is enough, because only the getter is
needed). It is important that all that class needs to be able to serve as a property
delegate is to have these two methods. No interface is needed. Here is an example
implementation of UserDelegate:

class UserDelegate {
 operator fun getValue(thisRef: Any?, property: KProperty<*>):

 User = readUserFromFile()

 operator fun setValue(thisRef: Any?, property: KProperty<*>,
 user:User) {
 saveUserToFile(user)
 }
 //...
}

The setValue and getValue methods are used to set and get value of a property
(property setter call is delegated to a setValue method, and property getter is
delegating value to the getValue method). Both functions need to be marked with the
operator keyword. They have some special set of parameters that determine where
and to which property the delegate can serve. If a property is read-only, then an
object only needs to have a getValue method to be able to serve as its delegate:

class UserDelegate {

 operator fun getValue(thisRef: Any?, property: KProperty<*>):
 User = readUserFromFile()
}

The type returned by the getValue method and the type of property that the user
defined in the setValue method determines type of delegated property.

Type of the first parameter of both the getValue and setValue functions (thisRef) is
contains the reference to context in which a delegate is used. It can be used to restrict
types that delegate can be used for. For example, we can define delegate that might
be used only inside an Activity class in the following way:

class UserDelegate {

 operator fun getValue(thisRef: Activity, property: KProperty<*>):
 User = thisRef.intent
 .getParcelableExtra("com.example.UserKey")
}

As we've seen, there will be a reference to this provided in all contexts where it is
available. Only inside extension function or on extension property there is null
placed instead. Reference to this is used to get some data from context. If we would
type it to Activity, then we would be able to use this delegate only inside Activity (in
any context where this is of the type Activity).

Also, if we want to force the delegate to be used only on the top-level, we can then
specify the first parameter (thisRef) type to Nothing?, because the only possible value
of this type is null.

Another parameter in these methods is property. It contains a reference to a delegated
property, which contains its metadata (property name, type, and so on).

Property delegation can be used for properties defined in any context (top-level
properties, member properties, local variables, and so on):

 var a by SomeDelegate() // 1

 fun someTopLevelFun() {
 var b by SomeDelegate() // 2
 }

 class SomeClass() {
 var c by SomeDelegate() // 3

 fun someMethod() {
 val d by SomeDelegate() // 4
 }
 }

1. Top-level property with delegate
2. Local variable (inside top-level function) with delegate
3. Member property with delegate
4. Local variable (inside method) with delegate

In the next few sections, we will describe delegates from the Kotlin standard library.
They are important not only because they are often useful, but also because they are
good examples of how property delegation can be used.

Predefined delegates
The Kotlin standard library contains some property delegates that are very handy.
Let's discuss how they can be used in real-life projects.

The lazy function
Sometimes we need to initialize an object, but we want to make sure that the object
will be initialized only once, when it is used for the first time. In Java, we could
solve this problem in the following way:

 private var _someProperty: SomeType? = null
 private val somePropertyLock = Any()
 val someProperty: SomeType
 get() {
 synchronized(somePropertyLock) {
 if (_someProperty == null) {
 _someProperty = SomeType()
 }
 return _someProperty!!
 }
 }

This construction is a popular pattern in Java development. Kotlin allows us to solve
this problem in a much simpler way by providing the lazy delegate. It is the most
commonly used delegate. It works only with read-only properties (val) and its usage
is as follows:

 val someProperty by lazy { SomeType() }

The lazy function in the standard library function that is providing delegate:

 public fun <T> lazy(initializer: () -> T):
 Lazy<T> = SynchronizedLazyImpl(initializer)

Formally, in this example object of SynchronizedLazyImpl, it is used as a property
delegate. Although, most often it is called lazy delegate from its corresponding
function name. The same way other delegates are named from the names of the
functions that are providing them.

The lazy delegate also has a thread safety mechanism. By default,
delegates are fully thread safe, but we can change this behavior to
make this function more efficient in situations where we know that there
never will be more than one thread using it at the same time. To fully
turn off thread-safety mechanisms we need to place the enum type value
LazyThreadSafetyMode.NONE as a first argument of the lazy function:

val someProperty by lazy(LazyThreadSafetyMode.NONE) { SomeType() }

Thanks to the lazy delegate, the initialization of the property is delayed until the
value is needed. Usage of the lazy delegate provides several benefits:

Faster class initialization leading to faster application startup time, because
value initialization is delayed until they are used for the first time
Some values may never be used for certain flow, so they will never be
initialized--we are saving resources (memory, processor time, battery)

Another benefit is that some objects need to be created later, after their class instance
is created. For example, in Activity we cannot access the resources before layout is
set using the setContentView method, which is typically called inside the onCreate
method. I will present it in this example. Let's look at the Java class with view
reference elements filled in the classic Java way:

//Java
public class MainActivity extends Activity {

 TextView questionLabelView
 EditText answerLabelView
 Button confirmButtonView

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 questionLabelView = findViewById<TextView>
 (R.id.main_question_label);
 answerLabelView = findViewById<EditText>
 (R.id.main_answer_label);
 confirmButtonView = findViewById<Button>
 (R.id.main_button_confirm);
 }
}

If we translate it into Kotlin, one-to-one, it will look as follows:

class MainActivity : Activity() {

 var questionLabelView: TextView? = null
 var answerLabelView: TextView? = null
 var confirmButtonView: Button? = null

 override fun onCreate(savedInstanceState: Bundle) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.main_activity)

 questionLabelView = findViewById<TextView>
 (R.id.main_question_label)
 answerLabelView = findViewById<TextView>
 (R.id.main_answer_label)
 confirmButtonView = findViewById<Button>
 (R.id.main_button_confirm)

 }
}

Using the lazy delegate, we can implement this behavior in a simpler way:

class MainActivity : Activity() {

 val questionLabelView: TextView by lazy
{ findViewById(R.id.main_question_label) as TextView }
 val answerLabelView: TextView by lazy
{ findViewById(R.id.main_answer_label) as TextView }
 val confirmButtonView: Button by lazy
{ findViewById(R.id.main_button_confirm) as Button }

 override fun onCreate(savedInstanceState: Bundle) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.main_activity)
 }
}

The benefits of this approach are as follows:

The property is declared and initialized in a single place, so the code is more
concise.
The properties are non-nullable instead of nullable. This prevents lots of useless
nullability checks.
The properties are read only so thanks to that we have all benefits like threads
synchronization or smart casts.
The lambda passed to the lazy delegate (containing findViewById) will be
executed only when the property is accessed for the first time.
Values will be taken later than during class creation. This will speed-up the
startup. If we won't use some of these views, their values won't be taken at all
(findViewById is not really an efficient operation when the view is complex).
Not used property will be marked by the compiler. In Java implementation it
won't, because value set would be noticed by the compiler as usage.

We can improve the preceding implementation by extracting the common behavior
and converting it into an extension function:

fun <T: View> Activity.bindView(viewId: Int) = lazy { findViewById(viewId) as T }

Then, we can define the view bindings in simpler and more concise code:

class MainActivity : Activity() {

 var questionLabelView: TextView by bindView(R.id.main_question_label) // 1
 var answerLabelView: TextView by bindView(R.id.main_answer_label) // 1
 var confirmButtonView: Button by bindView(R.id.main_button_confirm) // 1

 override fun onCreate(savedInstanceState: Bundle) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.main_activity)
 }
}

1. We don't need to set type provided to the bindView function because it is inferred
from property type.

Now we have a single delegate that calls findViewById under the hood, when we
access a particular view for the first time. This is a very concise solution.

There is another way of dealing with this problem. The current popular
one is the Kotlin Android Extension plugin, which generates auto-
binding to views in Activities and Fragments. We will discuss the
practical applications in Chapter 9, Making your Marvel Gallery
Application.

Even with such support, there are still benefits from staying with bindings. One is
explicit knowledge of what elements of view we are using, and another is the
separation between the name of element ID and name of a variable in which we hold
this element. Also compilation time is faster.

The same mechanism can be applied to solve other Android related problems. For
example, when we pass an argument to Activity. The standard Java implementation
looks as follows:

//Java
class SettingsActivity extends Activity {

 final Doctor DOCTOR_KEY = "doctorKey"
 final String TITLE_KEY = "titleKey"

 Doctor doctor
 Address address
 String title

 public static void start (Context context, Doctor doctor,
 String title) {
 Intent intent = new Intent(context, SettingsActivity.class)
 intent.putExtra(DOCTOR_KEY, doctor)
 intent.putExtra(TITLE_KEY, title)
 context.startActivity(intent)
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 doctor = getExtras().getParcelable(DOCTOR_KEY)

 title = getExtras().getString(TITLE_KEY)

 ToastHelper.toast(this, doctor.id)
 ToastHelper.toast(this, title)
 }
}

We could write the same implementation in Kotlin, but we can also retrieve
parameter values (getString/getParcerable) together with the variable declaration. To
do this, we need the following extension functions:

fun <T : Parcelable> Activity.extra(key: String) = lazy
 { intent.extras.getParcelable<T>(key) }

fun Activity.extraString(key: String) = lazy
 { intent.extras.getString(key) }

Then we can get extra parameters by using extra and extraString delegates:

class SettingsActivity : Activity() {

 private val doctor by extra<Doctor>(DOCTOR_KEY) // 1
 private val title by extraString(TITLE_KEY) // 1

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.settings_activity)
 toast(doctor.id) // 2
 toast(title) // 2
 }

 companion object { // 3
 const val DOCTOR_KEY = "doctorKey"
 const val TITLE_KEY = "titleKey"

 fun start(context: Context, doctor: Doctor, title: String) { // 3
 ontext.startActivity(getIntent<SettingsActivity>().apply { // 4
 putExtra(DOCTOR_KEY, doctor) // 5
 putExtra(TITLE_KEY, title) // 5
 })
 }
 }
}

1. We are defining properties which values should be retrieved from Activity
arguments using corresponding keys.

2. Here we access properties from arguments within the onCreate method. When
we ask for property (use getter), the lazy delegate will get its value from extras
and store it for later usage.

3. To make a static method to start activity, we need to use a companion object.
4. SettingsActivity::class.java is the analogue of Java class reference

SettingsActivity.class.

5. We are using methods defined in Chapter 7, Extension Functions and Properties.

We can also make functions to retrieve other types that can be held by Bundle (for
example, Long, Serializable). This is a pretty nice alternative to the argument injection
libraries such as ActivityStarter, when we want to keep a really fast compilation
time. We can use similar functions to bind strings, colors, services, repositories, and
other parts of model and logic:

fun <T> Activity.bindString(@IdRes id: Int): Lazy<T> =
 lazy { getString(id) }
fun <T> Activity.bindColour(@IdRes id: Int): Lazy<T> =
 lazy { getColour(id) }

In Activity, everything that is heavy or depends on arguments should be declared
using lazy delegate (or provided asynchronously). Also we should define as lazy all
the elements that depend on elements that need to be initialized lazily. For example,
presenter definition, which depends on the doctor property:

 val presenter by lazy { MainPresenter(this, doctor) }

Otherwise, the attempt to construct a MainPresenter object will take place during class
creation when we cannot yet read values from the intent and it wouldn't be able to
fill the doctor property, and the application would crash.

I think that these examples are enough to convince us that the lazy delegate is really
useful in Android projects. It is also a good property delegate to start with, as it is
simple and elegant.

The notNull function
The notNull delegate is the simplest standard library delegate, and that is why it will
be presented first. The usage is as follows:

 var someProperty: SomeType by notNull()

Functions that provide most standard library delegates (including the
notNull function) are defined in object delegates. To use them, we need
to either refer to this object (Delegates.notNull()) or import it (import
kotlin.properties.Delegates.notNull). We will assume in examples that
this object is imported so we will omit reference to it.

The notNull delegate allows us to define a variable as non-nullable, that is initialized
at a later time and not during the object construction time. We can define variable to
be non-nullable without providing a default value. The notNull function is an
alternative to lateinit:

 lateinit var someProperty: SomeType

The notNull delegate provides nearly the same effect as lateinit (only the error
message is different). In the case of trying to use this property before setting the
value first, it will throw an IllegalStateException and it will terminate an Android
application. Therefore, it should be used only when we know that a value will be set
before the first attempt of usage.

The difference between lateinit and the notNull delegate is pretty simple. lateinit is
faster than notNull delegate so it should be used instead of notNull delegate as often as
possible. But it has restrictions, lateinit cannot be used for primitives or for top-level
properties, so in this case, notNull is used instead.

Let's look at the notNull delegate implementation. Here is the notNull function
implementation:

 public fun <T: Any> notNull(): ReadWriteProperty<Any?, T> =
 NotNullVar()

As we can see, notNull is actually a function returning an object that is an instance of
our actual delegate hidden behind a ReadWriteProperty interface. Let's look at an actual
delegate definition:

private class NotNullVar<T: Any>() : ReadWriteProperty<Any?, T> { // 1
 private var value: T? = null

 public override fun getValue(thisRef: Any?,
 property: KProperty<*>): T {
 return value ?: throw IllegalStateException("Property
 ${property.name} should be initialized before get.") // 2
 }

 public override fun setValue(thisRef: Any?,
 property: KProperty<*>, value: T) {
 this.value = value
 }
}

1. Class is private. It is possible because it is provided by function notNull, which
is returning it as ReadWriteProperty<Any?, T>, which is public interface.

2. Here we see how a return value is provided. If it is null during usage, then value
was not set and the method will throw an error. Otherwise, it is returning the
value.

This delegate should be pretty simple to understand. The setValue function sets the
value to a nullable field and getValue returns this field if it is not null, and throws an
exception if it is. Here is an example of this error:

 var name: String by Delegates.notNull()
 println(name)
 // Error: Property name should be initialized before get.

This is a really simple example of delegated properties usage, but also a good
introduction to how property delegates works. Delegated properties are very
powerful constructs that have multiple applications.

The observable delegate
An observable is the most useful standard library delegate for mutable properties.
Every time a value is set (setValue method is called), the lambda function from the
declaration is invoked. A simple example of observable delegate is as follows:

 var name: String by Delegates.observable("Empty"){
 property, oldValue, newValue -> // 1
 println("$oldValue -> $newValue") // 2
 }

 // Usage
 name = "Martin" // 3,
 Prints: Empty -> Martin
 name = "Igor" // 3,
 Prints: Martin -> Igor
 name = "Igor" // 3, 4
 Prints: Igor -> Igor

1. The arguments of lambda function are as follows:
property: Reference to the delegated property. Here it is reference to name.
This is the same as property from setValue and getValue, which was
described. It is of the KProperty type. In this case (and in most cases) we can
put the underscore ("_" sign) instead when it is not used.
oldValue: The previous value of the property (before the change).
newValue: The new value of the property (after the change).

2. The lambda function will be invoked each time a new value is set to the
property.

3. When we set the new value, then the value is updated, but at the same time
lambda method declared in delegate is called.

4. Note that lambda is invoked each time setter is used and it doesn't matter if a
new value is equal to previous.

It is particularly important to remember that lambda is called each time a new value
is set, and not when an object's inner state is changed. For example:

 var list: MutableList<Int> by observable(mutableListOf())
 { _, old, new ->
 println("List changed from $old to $new")
 }

 // Usage
 list.add(1) // 1
 list = mutableListOf(2, 3)
 // 2, prints: List changed from [1] to [2, 3]

1. Does not print anything, because we don't change the property (the setter is not
used). We only change the property defined inside the list, but not the object
itself.

2. Here we change the value of list, so the lambda function from observable
delegate is called and text is printed.

Observable delegate is very useful for immutable types, as opposed to mutable ones.
Fortunately, all basic types in Kotlin are immutable by default (List, Map, Set, Int,
String). Let's look at a practical Android example:

 class SomeActivity : Activity() {

 var list: List<String> by Delegates.observable(emptyList()) {
 prop, old, new -> if(old != new) updateListView(new)
 }
 // ...
 }

Every time we change the list, the view is updated. Note that while List is
immutable, we need to use setter when we want to apply any changes, so we can be
sure that after this operation the list will be updated. It is much easier than
remembering to call the updateListView method every time the list changes. This
pattern can be used widely in the project to declare properties that are editing views.
It changes the way the update view mechanism can work.

Another problem that can be solved using an observable delegate is that in
ListAdapters there was always a problem that notifyDataSetChanged had to be called
each time elements on the list were changed. In Java, the classic solution was to
encapsulate this list, and call notifyDataSetChanged in each function that is modifying
it. In Kotlin, we can simplify this using an observable property delegate:

var list: List<LocalDate> by observable(list) { _, old, new -> // 1
 if(new != old) notifyDataSetChanged()
}

1. Note that here list is immutable, so there is no way to change its elements
without using notifyDataSetChanged.

The observable delegate is used to define behavior that should happen on the
property value change. It is most frequently used when we have operations that
should be done every time we change a property, or when we want to bind a property
value with a view or some other values. But inside the function we cannot decide if a
new value will be set or not. For this, the vetoable delegate is used instead.

The vetoable delegate
The vetoable function is a standard library property delegate that works similar as an
observable delegate, but with two main differences:

The lambda from an argument is called before a new value is set
It allows the lambda function from a declaration to decide if a new value should
be accepted or rejected

For example, if we have an assumption that the list must always contain larger
number of items than the old one, then we will define the following vetoable
delegate:

var list: List<String> by Delegates.vetoable(emptyList())
{ _, old, new ->
 new.size > old.size
}

If a new list will not contain a larger number of items than the old one, then the value
will not change. So we can treat vetoable like observable, which is also deciding if the
value should be changed or not. Let's suppose that we want to have a list bounded to
view, but it needs to have three elements at least. We don't allow any change that
will make it possible to have fewer elements. The implementation would look as
follows:

var list: List<String> by Delegates.vetoable(emptyList())
{ prop, old, new ->
 if(new.size < 3) return@vetoable false // 1
 updateListView(new)
 true // 2
}

1. If a new list size is smaller than 3, then we do not accept it, and return false
from lambda. This false value returned by return statement with label (that is
used to the return from the lambda expression) is the information that the new
value shouldn't be accepted.

2. This lambda function needs to return a value. This value is taken either from
return with a label or by the last line of the lambda body. Here value true
informs that a new value should be accepted.

Here is a simple example of its usage:

 listVetoable = listOf("A", "B", "C") // Update A, B, C
 println(listVetoable) // Prints: [A, B, C]
 listVetoable = listOf("A") // Nothing happens
 println(listVetoable) // Prints: [A, B, C]
 listVetoable = listOf("A", "B", "C", "D", "E")
 // Prints: [A, B, C, D, E]

We could also make it unchangeable because of some other reasons, for example, we
might still be loading the data. Also, the vetoable property delegate can be used in
validators. For example:

 var name: String by Delegates.vetoable("")
 { prop, old, new ->
 if (isValid(new)) {
 showNewData(new)
 true
 } else {
 showNameError()
 false
 }

This property can be changed only to a value that is correct according to the
predicate isValid(new).

Property delegation to Map type
The standard library contains extensions for Map and MutableMap with the String key
type that provides the getValue and setValue functions. Thanks to them, map can also be
used as a property delegate:

 class User(map: Map<String, Any>) { // 1
 val name: String by map
 val kotlinProgrammer: Boolean by map
 }

 // Usage
 val map: Map<String, Any> = mapOf(// 2
 "name" to "Marcin",
 "kotlinProgrammer" to true
)
 val user = User(map) // 3
 println(user.name) // Prints: Marcin
 println(user.kotlinProgrammer) // Prints: true

1. Map key type needs to be String, while value type is not restricted. It is often Any
or Any?

2. Creating Map that contains all the values
3. Provide a map to an object.

This can be useful when we are keeping data in Map, and also for following:

When we want to simplify the access to these values
When we define a structure that is telling us what kind of keys we should
expect in this map
When we ask for a property that is delegated to Map, its value will be taken from
this map value for a key equal to the property name

How is it implemented? Here is the simplified code from the standard library:

operator fun <V, V1: V> Map<String, V>.getValue(// 1
 thisRef: Any?, // 2
 property: KProperty<*>): V1 { // 3
 val key = property.name // 4
 val value = get(key)
 if (value == null && !containsKey(key)) {
 throw NoSuchElementException("Key ${property.name}
 is missing in the map.")
 } else {
 return value as V1 // 3
 }
 }

1. V is a type of value on the list
2. thisRef is of type Any?, so Map can be used as property delegate in any context
3. V1 is return type. This is often inferred from property, but it must be subtype of

type V
4. Name of the property is used as key on map.

Keep in mind that this is just an extension function. All that an object needs to be a
delegate is to contain the getValue method (and setValue, for read-write properties).
We can even create a delegate from an object of an anonymous class using the object
declaration:

val someProperty by object { // 1
 operator fun getValue(thisRef: Any?,
 property: KProperty<*>) = "Something"
}
println(someProperty) // prints: Something

1. Object is not implementing any interface. It just contains the getValue method
with proper signature. And it is enough to make it work as a read-only property
delegate.

Note that in map there needs to be an entry with such a name when we are asking for
value of property, otherwise an error will be thrown (making the property nullable
does not change it).

Delegating fields to map can be useful, for example, when we have an object from
an API with dynamic fields. We would like to treat the provided data as an object to
have easier access to its fields, but we also need to keep it as a map to be able to list
all the fields given by an API (even ones that we were not expecting).

In the previous example, we used Map, which is immutable; therefore, the object
properties were read-only (val). If we want to make an object that can be changed,
then we should use MutableMap, and then the properties can be defined as mutable
(var). Here is an example:

class User(val map: MutableMap<String, Any>) {
 var name: String by map
 var kotlinProgrammer: Boolean by map

 override fun toString(): String = "Name: $name,
 Kotlin programmer: $kotlinProgrammer"
}

// Usage
val map = mutableMapOf(// 1
 "name" to "Marcin",
 "kotlinProgrammer" to true

)
val user = User(map)
println(user) // prints: Name: Marcin, Kotlin programmer: true
user.map.put("name", "Igor") // 1
println(user) // prints: Name: Igor, Kotlin programmer: true
user.name = "Michal" // 2
println(user) // prints: Name: Michal, Kotlin programmer: true

1. Property value can be changed just by changing the value of the map
2. Property value can be also changed like in any other property. What is really

happening there is that value change is delegated to setValue, which is changing
map.

While properties here are mutable, the setValue function must also be provided. It is
implemented as an extension function for MutableMap. Here is the simplified code:

 operator fun <V> MutableMap<String, V>.setValue(
 thisRef: Any?,
 property: KProperty<*>,
 value: V
) {
 put(property.name, value)
 }

Note how even so simple functions can allow such innovative way of using the
common objects. This shows what possibilities property delegates are giving.

Kotlin allows us to define custom delegates. Right now, we can find many libraries
that provides new property delegates that can be used for different purposes in
Android. There are various ways in which property delegation can be used in
Android. In the next section, we will see some examples of custom property
delegates, and we will take a look at cases where this feature can be really helpful.

Custom delegates
All previous delegates came from the standard library, but we can easily implement
our own property delegates. We've seen that in order to allow a class to be a
delegate, we need to provide the getValue and setValue functions. They must have a
concrete signature, but there is no need to extend a class or implement the interface.
To use object as a delegate, we don't even need to change its internal
implementation, because we can define getValue and setValue as extension functions.
However, when we are creating custom classes to be a delegates, then interface may
be useful:

It would define functions structure, so we can generate proper methods in
Android Studio.
If we are creating libraries, then we might want to make delegates classes to be
private or internal to prevent inappropriate usage of them. We've seen this
situation in the notNull section, where the class NotNullVar was private and served
as a ReadWriteProperty<Any?, T> which is an interface.

Interfaces that provide full functionality to allow some class to be delegate are
ReadOnlyProperty (for read-only properties) and ReadWriteProperty (for read-write
properties). These interfaces are really useful, so let's look at their definitions:

 public interface ReadOnlyProperty<in R, out T> {
 public operator fun getValue(thisRef: R,
 property: KProperty<*>): T
 }

 public interface ReadWriteProperty<in R, T> {
 public operator fun getValue(thisRef: R,
 property: KProperty<*>): T
 public operator fun setValue(thisRef: R,
 property: KProperty<*>, value: T)
 }

The values of parameters were already explained, but let's look at them again:

thisRef: A reference to an object where the delegate is used. Its type defines the
context in which the delegate can be used.
property: A reference that contains data about a delegated property. It contains
all information about this property, such as its name or type.
value: A new value to set.

The parameters thisRef and property are not used in the following
delegates: Lazy, Observable and Vetoable. Map, MutableMap, and
notNull use property to obtain the name of the property for the key. But
these parameters can be used in different cases.

Let's look at some small, but useful, examples of custom property delegates. We've
seen the lazy property delegate for read-only properties; however, sometimes we
need a lazy property that is mutable. If it would be asked for the value before
initialization, then it should fill its value from the initializer and return it. In other
cases it should act like a normal mutable property:

fun <T> mutableLazy(initializer: () -> T): ReadWriteProperty<Any?, T> = MutableLazy<T>(initializer)

private class MutableLazy<T>(val initializer: () -> T) : ReadWriteProperty<Any?, T> {

 private var value: T? = null
 private var initialized = false

 override fun getValue(thisRef: Any?, property: KProperty<*>): T {
 synchronized(this) {
 if (!initialized) {
 value = initializer()
 }
 return value as T
 }
 }

 override fun setValue(thisRef: Any?,
 property: KProperty<*>, value: T) {
 synchronized(this) {
 this.value = value
 initialized = true
 }
 }
}

1. The delegate is hidden behind the interface and served by a function, and as
such allows us to change the implementation of MutableLazy without worrying if
it will affect the code that is using it.

2. We are implementing ReadWriteProperty. It is optional, but really useful because
it is imposing the correct structure of a read-write property. Its first type is Any?
meaning that we are allowed to use this property delegate in any context,
including top-level. Its second type is generic. Note that there is no restrictions
on this type, so it might be nullable too.

3. The value of the property is stored in the value property, and its existence is
stored in an initialized property. We need to do it this way because we want to
allow T to be a nullable type. Then null in the value could mean either that it
was not yet initialized or that it is just equal to null.

4. We don't need to use the operator modifier, because it is already used in
interface.

5. If getValue is called before any value is set, then the value is filled using
initializer.

6. We need to cast the value to T because it might be not-null, and we initialized
value as nullable with null as an initial value.

This property delegate might be useful in different use-cases in Android
development; for example, when a default value of a property is stored in a file, and
we need to read it (which is a heavy operation):

 var gameMode : GameMode by MutableLazy {
 getDefaultGameMode()
 }

 var mapConfiguration : MapConfiguration by MutableLazy {
 getSavedMapConfiguration()
 }

 var screenResolution : ScreenResolution by MutableLazy {
 getOptimalScreenResolutionForDevice()
 }

This way, if a user sets a custom value of this property before its usage, we won't
have to calculate it ourselves. Second custom property delegate will allow us to
define property getter:

 val a: Int get() = 1
 val b: String get() = "KOKO"
 val c: Int get() = 1 + 100

Before Kotlin 1.1 defined it, we always had to define the type of property. To avoid
it, we can define the following extension function to functional type (therefore, also
the lambda expression):

 inline operator fun <R> (() -> R).getValue(
 thisRef: Any?,
 property: KProperty<*>
): R = invoke()

Then we can define the properties with similar behavior this way:

 val a by { 1 }
 val b by { "KOKO" }
 val c by { 1 + 100 }

This way is not preferred because of its decreased efficiency, but it is a nice example
of possibilities that delegated properties provides us. Such a small extension function

is making functional type to be property delegate. This is, the simplified code in
Kotlin after compilation (note that the extension function is marked as inline, so its
calls were replaced with its body):

 private val `a$delegate` = { 1 }
 val a: Int get() = `a$delegate`()
 private val `b$delegate` = { "KOKO" }
 val b: String get() = `b$delegate`()
 private val `c$delegate` = { 1 + 100 }
 val c: Int get() = `c$delegate`()

In the next section, we are going to see some custom delegates created for real
projects. They will be presented together with the problems that they solve.

View binging
When we are using Model-View-Presenter (MVP) in the project, then we need to
make all the changes in View by Presenter. Thus, we are forced to create multiple
functions on the view, such as:

 override fun getName(): String {
 return nameView.text.toString()
 }

 override fun setName(name: String) {
 nameView.text = name
 }

We also have to define the functions in the following interface:

 interface MainView {
 fun getName(): String
 fun setName(name: String)
 }

We may simplify the preceding code and reduce the need for setter/getter methods
by using property binding. We can bind the property to view element. This is the
result we would like to achieve:

 override var name: String by bindToTex(R.id.textView)

And interface:

 interface MainView {
 var name: String
 }

The preceding example is more concise and easier to maintain. Note that we provide
element ID by argument. A simple class that will give us the expected results is as
follows:

fun Activity.bindToText(
 @IdRes viewId: Int) = object :
 ReadWriteProperty<Any?, String> {

 val textView by lazy { findViewById<TextView>(viewId) }

 override fun getValue(thisRef: Any?,
 property: KProperty<*>): String {
 return textView.text.toString()
 }

 override fun setValue(thisRef: Any?,
 property: KProperty<*>, value: String) {
 textView.text = value
 }
}

We could create a similar binding for different view properties and different contexts
(Fragment, Service). Another really useful tool is binding to visibility, which is binding
a logical property (with the type Boolean) to the visibility of a view element:

fun Activity.bindToVisibility(
 @IdRes viewId: Int) = object :
 ReadWriteProperty<Any?, Boolean> {

 val view by lazy { findViewById(viewId) }

 override fun getValue(thisRef: Any?,
 property: KProperty<*>): Boolean {
 return view.visibility == View.VISIBLE
 }

 override fun setValue(thisRef: Any?,
 property: KProperty<*>, value: Boolean) {
 view.visibility = if(value) View.VISIBLE else View.GONE
 }
}

These implementations provide possibilities that would be really hard to achieve in
Java. Similar bindings might be created for other View elements to make using MVP
shorter and simpler. The snippets that were just presented are only simple examples,
but better implementations can be found in the library KotlinAndroidViewBindings (https:
//github.com/MarcinMoskala/KotlinAndroidViewBindings).

https://github.com/MarcinMoskala/KotlinAndroidViewBindings

Preference binding
To show more complex examples, we will present the attempt to help with
the SharedPreferences usage. There are better Kotlin approaches for this problem, but
this attempt is nice to analyze, and it is a reasonable example of we use property
delegate on extension property. As a result, we want to be able to treat values saved
in SharedPreferences as if they were properties of a SharedPreferences object. Here is
example usage:

 preferences.canEatPie = true
 if(preferences.canEatPie) {
 // Code
 }

We can achieve it if we make the following extension property definitions:

 var SharedPreferences.canEatPie:
 Boolean by bindToPreferenceField(true) // 1

 var SharedPreferences.allPieInTheWorld:
 Long by bindToPreferenceField(0,"AllPieKey") //2

1. The property of type Boolean. When a property is non-nullable, than default
values have to be provided in the first argument of function.

2. The property can have custom key provided. It is useful in real-life projects,
where we must have control over this key (for example, to not change it
unintentionally during property rename).

Let's analyze how it works by deep investigation of the not-null property. First, let's
look at the provider functions. Note that the type of the property is determining the
way the value is taken from SharedPreferences (because there are different functions,
such as getString, getInt, and so on). To obtain it, we need this class type to be
provided as the reified type of the inline function, or through the parameter. This is
what a delegate provider function looks like:

inline fun <reified T : Any> bindToPreferenceField(
 default: T?,
 key: String? = null
): ReadWriteProperty<SharedPreferences, T> // 1
 = bindToPreferenceField(T::class, default, key)

fun <T : Any> bindToPreferenceField(// 2
 clazz: KClass<T>,

 default: T?,
 key: String? = null
): ReadWriteProperty<SharedPreferences, T>
 = PreferenceFieldBinder(clazz, default, key) // 1

1. Both functions are returning object behind interface
ReadWriteProperty<SharedPreferences, T>. Note that context here is set to
SharedPreferences, so it can be used only there or in SharedPreferences
extensions. This function is defined because the type parameter cannot be
redefined and we need to provide type as a normal parameter.

2. Note that the bindToPreferenceField function cannot be private or internal,
because inline functions can use only functions with the same or less restricted
modifiers.

Finally, let's see the PreferenceFieldDelegate class, which is our delegate:

internal open class PreferenceFieldDelegate<T : Any>(
 private val clazz: KClass<T>,
 private val default: T?,
 private val key: String?
) : ReadWriteProperty<SharedPreferences, T> {

 override operator fun getValue(thisRef: SharedPreferences,
 property: KProperty<*>): T
 = thisRef.getLong(getValue<T>(clazz, default, getKey(property))

 override fun setValue(thisRef: SharedPreferences,
 property: KProperty<*>, value: T) {
 thisRef.edit().apply
 { putValue(clazz, value, getKey(property)) }.apply()
 }

 private fun getKey(property: KProperty<*>) =
 key ?: "${property.name}Key"
}

Now we know how the thisRef parameter is used. It is of the type SharedPreferences,
and we can use it to get and set all the values. Here are definitions of the functions
used to get and save values depending on property type:

internal fun SharedPreferences.Editor.putValue(clazz: KClass<*>, value: Any, key: String) {
 when (clazz.simpleName) {
 "Long" -> putLong(key, value as Long)
 "Int" -> putInt(key, value as Int)
 "String" -> putString(key, value as String?)
 "Boolean" -> putBoolean(key, value as Boolean)
 "Float" -> putFloat(key, value as Float)
 else -> putString(key, value.toJson())
 }
}

internal fun <T: Any> SharedPreferences.getValue(clazz: KClass<*>, default: T?, key: String): T = when (clazz.simpleName) {
 "Long" -> getLong(key, default as Long)

 "Int" -> getInt(key, default as Int)
 "String" -> getString(key, default as? String)
 "Boolean" -> getBoolean(key, default as Boolean)
 "Float" -> getFloat(key, default as Float)
 else -> getString(key, default?.toJson()).fromJson(clazz)
} as T

We also need toJson and fromJson defined:

var preferencesGson: Gson = GsonBuilder().create()
internal fun Any.toJson() = preferencesGson.toJson(this)!!
internal fun <T : Any> String.fromJson(clazz: KClass<T>) = preferencesGson.fromJson(this, clazz.java)

With such definitions we can define additional extension properties to
SharedPreferences:

var SharedPreferences.canEatPie: Boolean by bindToPreferenceField(true)

As we've already seen in Chapter 7, Extension Functions and Properties, there is no
such thing in Java as a field that we might add to a class. Under the hood, the
extension property is compiled to getter and setter functions, and they are delegating
calls to a created delegate:

val 'canEatPie$delegate' = bindToPreferenceField(Boolean::class, true)

fun SharedPreferences.getCanEatPie(): Boolean {
 return 'canEatPie$delegate'.getValue(this,
 SharedPreferences::canEatPie)
}

fun SharedPreferences.setCanEatPie(value: Boolean) {
 'canEatPie$delegate'.setValue(this, SharedPreferences::canEatPie,
 value)
}

Also remember that extension functions are, in fact, just static functions with an
extension on the first parameter:

val 'canEatPie$delegate' = bindToPreferenceField(Boolean::class, true)

fun getCanEatPie(receiver: SharedPreferences): Boolean {
 return 'canEatPie$delegate'.getValue(receiver,
 SharedPreferences::canEatPie)
}

fun setCanEatPie(receiver: SharedPreferences, value: Boolean) {
 'canEatPie$delegate'.setValue(receiver,
 SharedPreferences::canEatPie, value)
}

Presented examples should be enough to understand how property delegates are
working and how they can be used. Property delegates are used intensively in Kotlin
open source libraries. They are used to make fast and simple Dependency Injection
(for example, Kodein, Injekt, TornadoFX), binding to views, SharedPreferences or
other elements (attempts already shown includes PreferenceHolder,
and KotlinAndroidViewBindings), to define property keys on configuration definition
(for example, Konfig), or even to define a database column structure (for example,
Kwery). Still there is a big field of usages that are waiting to be discovered.

Providing a delegate
Since Kotlin 1.1, there is an operator, provideDelegate, that is used to provide delegate
during class initialization. The main motivation behind provideDelegate was that it
allows to provide customized delegate depending on traits of property (name, type,
annotations, and so on).

The provideDelegate operator returns delegate, and all types that have this operator do
not need to be delegates themselves in order to be used as a delegate. Here is an
example:

 class A(val i: Int) {

 operator fun provideDelegate(
 thisRef: Any?,
 prop: KProperty<*>
) = object: ReadOnlyProperty<Any?, Int> {

 override fun getValue(
 thisRef: Any?,
 property: KProperty<*>
) = i
 }
 }

 val a by A(1)

In this example, A is used as a delegate, while it implements neither getvalue nor
setvalue function. This is possible, because it defines a provideDelegate operator,
which returns the delegate that will be used instead of A. Property delegation is
compiled into the following code:

 private val a$delegate = A().provideDelegate(this, this::prop)
 val a: Int
 get() = a1$delegate.getValue(this, this::prop)

Practical example can be found in Kotlin supporting part of library ActivityStarter (ht
tps://github.com/MarcinMoskala/ActivityStarter). Activity arguments are defined using
annotations, but we can use property delegation to simplify usage from Kotlin and
allow properties definition as possibly read-only and not lateinit:

 @get:Arg(optional = true) val name: String by argExtra(defaultName)
 @get:Arg(optional = true) val id: Int by argExtra(defaultId)
 @get:Arg val grade: Char by argExtra()
 @get:Arg val passing: Boolean by argExtra()

https://github.com/MarcinMoskala/ActivityStarter

But there are some requirements:

When argExtra is used, property getter have to be annotated
We need to specify default value if argument is optional and type is not
nullable.

To check this requirements, we need reference to property to get getter annotation.
We cannot have such reference in the argExtra function, but we can implement them
inside provideDevegate:

fun <T> Activity.argExtra(default: T? = null) = ArgValueDelegateProvider(default)
fun <T> Fragment.argExtra(default: T? = null) = ArgValueDelegateProvider(default)
fun <T> android.support.v4.app.Fragment.argExtra(default: T? = null) =
 ValueDelegateProvider(default)

class ArgValueDelegateProvider<T>(val default: T? = null) {
 operator fun provideDelegate(
 thisRef: Any?,
 prop: KProperty<*>
): ReadWriteProperty<Any, T> {
 val annotation = prop.getter.findAnnotation<Arg>()
 when {
 annotation == null ->
 throw Error(ErrorMessages.noAnnotation)
 annotation.optional && !prop.returnType.isMarkedNullable &&
 default == null ->
 throw Error(ErrorMessages.optionalValueNeeded)
 }
 return ArgValueDelegate(default)
 }
}

internal object ErrorMessages {
 const val noAnnotation =
 "Element getter must be annotated with Arg"

 const val optionalValueNeeded =
 "Arguments that are optional and have not-
 nullable type must have defaut value specified"
}

Such delegate is throwing appropriate error when condition is not fulfilled:

val a: A? by ArgValueDelegateProvider()
// Throws error during initialization: Element getter must be annotated with Arg

@get:Arg(optional = true) val a: A by ArgValueDelegateProvider() throws error during
initialization: Arguments that are optional and have not-nullable type must have default
value specified.

This way unacceptable argument definitions are throwing appropriate errors during
object initialization instead of breaking application in unexpected situations.

Summary
In this chapter, we described class delegate, property delegates, and how they can be
used to remove redundancy in code. We defined a delegate as an object to which
calls from other object or property are delegated to. We learned design patterns that
class delegation is strongly connected to Delegate pattern and Decorator pattern.

Delegation pattern is mentioned as an alternative to inheritance, and Decorator
pattern is a way to add functionality to different kinds of classes that are
implementing the same interface. We've seen how property delegation works, and
Kotlin standard library property delegates: notNull, lazy, observable, vetoable, and the
usage of Map as a delegate. We learned how they work and when they should be used.
We've also seen how to make a custom property delegate, together with examples of
real-life usage.

Knowledge about different features and their usage is not enough--there is also a
need to understand how they can be used together to build great applications. In the
next chapter, we will write a demo application and explain how the various Kotlin
features described throughout this book can be combined together.

Making Your Marvel Gallery
Application
We've already seen the most important Kotlin features that allow us to make Android
development easier and more productive, but it is hard to understand the whole
picture just by looking at the pieces. This is why, in this chapter, we will build a
whole Android application written in Kotlin.

It was a tough decision to choose what application should be implemented in this
chapter. It has to be short and simple, but at the same time it should utilize as many
Kotlin features as possible. At the same time, we wanted to minimize the number of
used libraries, because it is a book about Android development in Kotlin, not about
Android libraries. We wanted to make it look as good as possible, but we also
wanted to avoid implementation of custom graphic elements, because they are
usually complex and do not really provide benefits from a Kotlin perspective.

We have finally decided to make a Marvel Gallery application--a small app which
we can use to find our favorite Marvel characters and display their details. All data is
provided from the Marvel website by their API.

Marvel Gallery
Let's implement our Marvel Gallery application. This application should allow the
following use cases:

After starting the application, the user can see a gallery of characters.
After starting the application, the user can search for a character by its name.
When the user clicks on a character picture, there is a profile displayed. The
character profile contains character name, photo, description, and its
occurrences.

These are three use-cases that describe the main functionalities of the application. In
the next sections, we are going to implement them one after another. If you are lost
during this chapter, remember that you can always take a look at the complete
application on GitHub (https://github.com/MarcinMoskala/MarvelGallery).

To understand better what we want to build, let's look at some screenshots from the
final version of our application:

https://github.com/MarcinMoskala/MarvelGallery

How to use this chapter
This chapter shows all steps and code necessary to build an application. Its purpose
is to show the step-by-step process of this application development. When you are
reading this chapter, concentrate on the development process and try to understand
what the purpose of presented code is. You don't need to fully understand layouts
and you don't have to understand unit test definitions as long as you understand what
they are doing. Concentrate on application structure and Kotlin solutions that are
making the final code simpler. Most solutions were already described in previous
chapters, so they have only a brief description. The value in this chapter is that their
usage is presented in the context of a concrete application.

You can download the application code from GitHub (https://github.com/MarcinMoskala/
MarvelGallery).

On GitHub, you can see the final code, download it, or you can clone it to your
computer using Git:

git clone git@github.com:MarcinMoskala/MarvelGallery.git

The application also includes UI tests written in Espresso, but they are
not presented on this chapter to make it simpler for readers who are
not proficient in Espresso usage.

Each section of this chapter has a corresponding Git branch on this project, so if you
want to see how the code looks at the end of the section then you can just switch to
the corresponding branch:

https://github.com/MarcinMoskala/MarvelGallery

Also, locally, after you clone the repository, you can check out the corresponding
branch using the following Git command:

git checkout Character_search

If you have an electronic version of this book and you want to make the whole
application by copy and pasting parts of the code then you can do it, but remember to
place files in the folders corresponding to the package. This way, you will keep a
clean structure in the project.

Note that if you place code from the book in another folder, there will be a warning
displayed:

You can intentionally place a file in any folder, because the second fix proposition is
to move the file into the path corresponding to the defined package:

You can use it to move your file into the correct location.

Make an empty project
Before we can start implementing functionalities, we need to create an empty Kotlin
Android project with a single activity, MainActivty. This process was described in Cha
pter 1, Beginning your Kotlin Adventure. Therefore, we don't need to describe it
deeply, but we will show what the steps are in Android Studio 3.0:

1. Set name, package, and location for the new project. Remember to tick Include
Kotlin support option:.

2. We can choose other minimal Android version, but in this example, we are
going to set API 16:

3. Choose a template. We don't need any of these templates so we should start
from Empty Activity:

4. Name newly created activity. We can keep the first view named MainActivity:

For Android Studio prior to 3.x, we need to follow slightly different
steps:

Create a project from template with empty Activity.

1. Configure Kotlin in the project (for example, Ctrl/Cmd + Shift + A
and Configure Kotlin in project).
2. Convert all Java classes to Kotlin (for example, in MainActivity
Ctrl/Cmd+Shift+A and Convert Java file to Kotlin file).

After these steps, we will have a Kotlin Android application with an empty Activity
created:

Character gallery
In this section, we will implement a single use case--after starting the application, the
user can see a gallery of characters.

This is a pretty complex use case because it requires view to be presented, network
connection with API and business rules implementation. Therefore, we will split it
into the following tasks:

View implementation
Communication with API
Business logic implementation of character display
Putting it all together

Such tasks are much easier to implement. Let's implement them one after another.

View implementation
Let's start with View implementation. Here, we are going to define what the list of
characters will look like. For testing purposes, we are also going to define a few
characters and display them.

Let's start with MainActivity layout implementation. We will use RecyclerView to show
a list of elements. The RecyclerView layout is distributed in a separate dependency,
which we have to add to the app module build.gradle file:

implementation "com.android.support:recyclerview-v7:$android_support_version"

The android_support_version instance is a variable which is not yet defined. The reason
behind it is that the version should be the same for all Android support libraries and
when we extract this version number as a separator variable then it is easier to
manage. This is why we should replace the hard coded version for each of the
Android support libraries with a reference to android_support_version:

implementation "com.android.support:appcompat-
 v7:$android_support_version"
implementation "com.android.support:design:$android_support_version"
implementation "com.android.support:support-
 v4:$android_support_version"
implementation "com.android.support:recyclerview-
 v7:$android_support_version"

And we have to set support library version value. Good practice is to define it in the
project build.gradle file inside buildscript, after the kotlin_version definition:

ext.kotlin_version = '1.1.4-2'
ext.android_support_version = "26.0.1"

Now we can start implementation of MainActivity layout. This is the effect that we
want to achieve:

We will keep character elements on RecyclerView packed into SwipeRefreshLayout to
allow swipe-refresh. Also, to fulfill Marvel copyright, there needs to be a presented
label that is informing that data is provided by Marvel. The layout activity_main
(res/layout/activity_main.xml) should be replaced with following definition:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/charactersView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white"
 android:fitsSystemWindows="true">

 <android.support.v4.widget.SwipeRefreshLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/swipeRefreshView"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v7.widget.RecyclerView
 android:id="@+id/recyclerView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scrollbars="vertical" />

 </android.support.v4.widget.SwipeRefreshLayout>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:background="@android:color/white"
 android:gravity="center"
 android:text="@string/marvel_copyright_notice" />
</RelativeLayout>

We need to add a copyright notice to strings (res/values/strings.xml):

<string name="marvel_copyright_notice">
 Data provided by Marvel. © 2017 MARVEL
</string>

Here is a preview:

The next step is to define the item view. We would like each element to be always
square. To do this, we need to define a view which will preserve the square shape
(place it in view/views):

package com.sample.marvelgallery.view.views

import android.util.AttributeSet
import android.widget.FrameLayout
import android.content.Context

class SquareFrameLayout @JvmOverloads constructor(// 1
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : FrameLayout(context, attrs, defStyleAttr) {

 override fun onMeasure(widthMeasureSpec: Int,
 heightMeasureSpec: Int) {
 super.onMeasure(widthMeasureSpec, widthMeasureSpec) // 2
 }
}

1. Using JvmOverloads annotation, we've avoided telescoping constructors that are
normally used to define a custom view in Android. This was described in Chapte
r 4, Classes and Objects.

2. We are forcing the element to have always the same height as width.

With SquareFrameLayout, we can define the layout of gallery items. This is what we
want it to look like:

We need to define ImageView to display the character image, and TextView to display its
name. While SquareFrameLayout is actually FrameLayout that has fixed height, its
children elements (image and text) are by default placed one above another. Let's
add layout into item_character.xml file in res/layout:

// ./res/layout/item_character.xml

<com.sample.marvelgallery.view.views.SquareFrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:orientation="horizontal"

 android:padding="@dimen/element_padding">

 <ImageView
 android:id="@+id/imageView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

 <TextView
 android:id="@+id/textView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:paddingLeft="10dp"
 android:paddingRight="10dp"
 android:shadowColor="#111"
 android:shadowDx="5"
 android:shadowDy="5"
 android:shadowRadius="0.01"
 android:textColor="@android:color/white"
 android:textSize="@dimen/standard_text_size"
 tools:text="Some name" />
</com.sample.marvelgallery.view.views.SquareFrameLayout>

Note that we are also using values such as element_padding defined in dimens. Let's add
them to the dimen.xml file in res/values:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <dimen name="character_header_height">240dp</dimen>
 <dimen name="standard_text_size">20sp</dimen>
 <dimen name="character_description_padding">10dp</dimen>
 <dimen name="element_padding">10dp</dimen>
</resources>

As we can see, each element needs to display the name of the character and its
image. Therefore, the model of a character needs to contain these two properties.
Let's define a simple model for a character:

package com.sample.marvelgallery.model

data class MarvelCharacter(
 val name: String,
 val imageUrl: String
)

To display a list of elements using RecyclerView, we need to implement both a
RecyclerView list and an item adapter. A list adapter is used to manage all elements in
a list, while an item adapter is an adapter for a single item type. Here, we need only
one item adapter, because we display a single type of items. It is, however, good
practice to assume that in future there might be other kind of elements on this list, for
example, comics or ads. The same with the list adapter--we need only one in this
example, but in most projects there is more than a single list and it is better to extract
common behavior into a single abstract class.

While this example is designed to present how Kotlin can be used in larger projects,
we will define an abstract list adapter, which we will name RecyclerListAdapter, and
an abstract item adapter, which we will name ItemAdapter. Here is the ItemAdapter
definition:

package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.support.annotation.LayoutRes
import android.view.View

abstract class ItemAdapter<T : RecyclerView.ViewHolder>
(@LayoutRes open val layoutId: Int) { // 1

 abstract fun onCreateViewHolder(itemView: View): T // 2

 @Suppress("UNCHECKED_CAST") // 1
 fun bindViewHolder(holder: RecyclerView.ViewHolder) {
 (holder as T).onBindViewHolder() // 1
 }

 abstract fun T.onBindViewHolder() // 1, 3
}

1. We need to pass a holder as a type parameter to allow direct operations on its
fields. The holder is created in onCreateViewHolder so we know that its type will
be always type parameter T. Therefore, we can cast the holder to T on
bindViewHolder and use it as a receiver object for onBindViewHolder.
Suppression @Suppress("UNCHECKED_CAST") is here just to hide the warning while we
know that we can securely cast in this situation.

2. Function used to create view holder. In most cases, it will be a single expression
function that is just calling a constructor.

3. In the onBin+dViewHolder function, we will set all values on item view.

Here is the definition of RecyclerListAdapter:

package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.view.LayoutInflater
import android.view.ViewGroup

open class RecyclerListAdapter(// 1
 var items List<AnyItemAdapter> = listOf()
) : RecyclerView.Adapter<RecyclerView.ViewHolder>() {

 override final fun getItemCount() = items.size // 4

 override final fun getItemViewType(position: Int) =
 items[position].layoutId // 3, 4

 override final fun onCreateViewHolder(parent: ViewGroup,
 layoutId: Int): RecyclerView.ViewHolder { // 4

 val itemView = LayoutInflater.from(parent.context)
 .inflate(layoutId, parent, false)
 return items.first
 { it.layoutId == layoutId }.onCreateViewHolder(itemView) // 3
 }

 override final fun onBindViewHolder
 (holder: RecyclerView.ViewHolder, position: Int) { // 4
 items[position].bindViewHolder(holder)
 }
}

typealias AnyItemAdapter = ItemAdapter
 <out RecyclerView.ViewHolder> // 5

1. Class is open instead of abstract because it can be initialized and used without
any children. We define children to allow us to define custom methods for
different lists.

2. We keep items in list.
3. We will use layout to distinguish item type. Because of it, we cannot use two

item adapters with the same layout on the same list, but this solution is
simplifying a lot.

4. Methods are overriding methods of RecyclerView.Adapter, but they also use final
modifier to restrict their override in children. All list adapters that are extending
RecyclerListAdapter should operate on items.

5. We define type alias to simplify the definition of any ItemAdapter.

Using the preceding definitions, we can define MainListAdapter (adapter for character
list) and CharacterItemAdapter (adapter for item on list). Here is the definition of
MainListAdapter:

package com.sample.marvelgallery.view.main

import com.sample.marvelgallery.view.common.AnyItemAdapter
import com.sample.marvelgallery.view.common.RecyclerListAdapter

class MainListAdapter(items: List<AnyItemAdapter>) : RecyclerListAdapter(items)

In this project, we do not need any special methods defined in MainListAdapter, but to
show how easy it is to define them, here is presented MainListAdapter with additional
methods to add and delete:

class MainListAdapter(items: List<AnyItemAdapter>) : RecyclerListAdapter(items) {

 fun add(itemAdapter: AnyItemAdapter) {
 items += itemAdapter)

 val index = items.indexOf(itemAdapter)
 if (index == -1) return
 notifyItemInserted(index)
 }

 fun delete(itemAdapter: AnyItemAdapter) {
 val index = items.indexOf(itemAdapter)
 if (index == -1) return
 items -= itemAdapter
 notifyItemRemoved(index)
 }
 }

Here is the definition of CharacterItemAdapter:

package com.sample.marvelgallery.view.main

import android.support.v7.widget.RecyclerView
import android.view.View
import android.widget.ImageView
import android.widget.TextView
import com.sample.marvelgallery.R
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.common.ItemAdapter
import com.sample.marvelgallery.view.common.bindView
import com.sample.marvelgallery.view.common.loadImage

class CharacterItemAdapter(
 val character: MarvelCharacter // 1
) : ItemAdapter<CharacterItemAdapter.ViewHolder>(R.layout.item_character) {

 override fun onCreateViewHolder(itemView: View) = ViewHolder(itemView)

 override fun ViewHolder.onBindViewHolder() { // 2
 textView.text = character.name
 imageView.loadImage(character.imageUrl) // 3
 }

 class ViewHolder(itemView: View) : RecyclerView.ViewHolder(itemView)
 {
 val textView by bindView<TextView>(R.id.textView) // 4
 val imageView by bindView<ImageView>(R.id.imageView) // 4
 }
}

1. MarvelCharacter is passed by constructor.
2. onBindViewHolder method is used set up views. It was defined as an abstract

member extension function in ItemAdapter and, thanks to that, now we can use
textView and imageView explicitly inside its body.

3. Function loadImage is not defined yet. We will define it as an extension function
a bit later.

4. In view holder, we are binding properties to view elements using the bindView
function that will soon be defined.

Inside, we use the functions loadImage and bindView which are not yet defined. bindView
is a top-level extension function to RecyclerView.ViewHolder, which is providing a lazy
delegate that is providing a view found by its ID:

// ViewExt.kt
package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.view.View

fun <T : View> RecyclerView.ViewHolder.bindView(viewId: Int)
 = lazy { itemView.findViewById<T>(viewId) }

We also need to define the loadImage extension function that will help us to download
an image from the URL and place it into ImageView. Two typical libraries used to such
purpose are Picasso and Glide. We will use Glide, and to do it, we need to add a
dependency in build.gradle:

implementation "com.android.support:recyclerview-
v7:$android_support_version"
implementation "com.github.bumptech.glide:glide:$glide_version"

Specify the version in project build.gradle:

ext.android_support_version = "26.0.0"
ext.glide_version = "3.8.0"

Add permission to use the internet in AndroidManifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.sample.marvelgallery">
 <uses-permission android:name="android.permission.INTERNET" />
 <application
...

And we can finally define the loadImage extension function for the ImaveView class:

// ViewExt.kt
package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.view.View
import android.widget.ImageView
import com.bumptech.glide.Glide

fun <T : View> RecyclerView.ViewHolder.bindView(viewId: Int)
 = lazy { itemView.findViewById<T>(viewId) }

fun ImageView.loadImage(photoUrl: String) {
 Glide.with(context)
 .load(photoUrl)
 .into(this)
}

It is time to define the activity that will display this list. We will use one more
element, the Kotlin Android extensions plugin. It is used to simplify access to view
elements from code. Its usage is simple--we add the kotlin-android-extensions plugin
in module build.gradle:

apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'
apply plugin: 'kotlin-android-extensions'

And we have some view defined in layout:

<TextView
 android:id="@+id/nameView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

Then we can import a reference to this view inside Activity:

import kotlinx.android.synthetic.main.activity_main.*

And we can access View elements directly using its name without using the
findViewById method or define annotations:

nameView.text = "Some name"

We will use Kotlin Android extensions in all activities in the project. Now let's
define MainActivity to display a list of characters with images:

package com.sample.marvelgallery.view.main

import android.os.Bundle
import android.support.v7.app.AppCompatActivity
import android.support.v7.widget.GridLayoutManager
import android.view.Window
import com.sample.marvelgallery.R
import com.sample.marvelgallery.model.MarvelCharacter
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 private val characters = listOf(// 1
 MarvelCharacter(name = "3-D Man", imageUrl = "http://i.annihil.us/u/prod/marvel/i/mg/c/e0/535fecbbb9784.jpg"),
 MarvelCharacter(name = "Abomination (Emil Blonsky)", imageUrl = "http://i.annihil.us/u/prod/marvel/i/mg/9/50/4ce18691cbf04.jpg")
)

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 requestWindowFeature(Window.FEATURE_NO_TITLE) // 2
 setContentView(R.layout.activity_main)
 recyclerView.layoutManager = GridLayoutManager(this, 2) // 3
 val categoryItemAdapters = characters
 .map(::CharacterItemAdapter) // 4
 recyclerView.adapter = MainListAdapter(categoryItemAdapters)
 }

}

1. Here we define a temporary list of characters to display.
2. We use this window feature because we don't want to display a title.
3. We use GridLayoutManager as RecyclerView layout manager to achieve a grid effect.
4. We are creating item adapters from characters using the CharacterItemAdapter

constructor reference.

Now we can compile the project and we will see the following screen:

Network definition
Until now, the presented data was hard coded inside the application, but we want to
use data from the Marvel API instead. To do it, we need to define some network
mechanisms that will retrieve the data from the server. We are going to use Retrofit,
a popular Android library used to simplify network operations, together with RxJava,
a popular library used for reactive programming. For both libraries, we will use only
basic functionalities to make their usage as simple as possible. To use them, we need
to add following dependencies in the module build.gradle:

dependencies {
 implementation "org.jetbrains.kotlin:kotlin-stdlib-jre7:
 $kotlin_version"
 implementation "com.android.support:appcompat-v7:
 $android_support_version"
 implementation "com.android.support:recyclerview-v7:
 $android_support_version"
 implementation "com.github.bumptech.glide:glide:$glide_version"

 // RxJava
 implementation "io.reactivex.rxjava2:rxjava:$rxjava_version"

 // RxAndroid
 implementation "io.reactivex.rxjava2:rxandroid:$rxandroid_version"

 // Retrofit
 implementation(["com.squareup.retrofit2:retrofit:$retrofit_version",
 "com.squareup.retrofit2:adapter-
 rxjava2:$retrofit_version",
 "com.squareup.retrofit2:converter-
 gson:$retrofit_version",
 "com.squareup.okhttp3:okhttp:$okhttp_version",
 "com.squareup.okhttp3:logging-
 interceptor:$okhttp_version"])

 testImplementation 'junit:junit:4.12'
 androidTestImplementation
 'com.android.support.test:runner:1.0.0'
 androidTestImplementation
 'com.android.support.test.espresso:espresso-core:3.0.0'
}

And version definitions in project build.gradle:

ext.kotlin_version = '1.1.3-2'
ext.android_support_version = "26.0.0"
ext.glide_version = "3.8.0"
ext.retrofit_version = '2.2.0'
ext.okhttp_version = '3.6.0'
ext.rxjava_version = "2.1.2"
ext.rxandroid_version = '2.0.1'

We already have internet permission defined on AndroidManifest, so we don't need to
add it. A simple Retrofit definition might look like the following:

val retrofit by lazy { makeRetrofit() } // 1

private fun makeRetrofit(): Retrofit = Retrofit.Builder()
 .baseUrl("http://gateway.marvel.com/v1/public/") // 2
 .build()

1. We can keep retrofit instance as lazy top-level property.
2. Here we define the baseUrl

But there are some additional requirements on Retrofit that need to be matched. We
need to add converters to use Retrofit together with RxJava, and to send objects
serialized as JSON. We also need interceptors that will be used to provide headers
and extra queries needed by Marvel API. This is a small application, so we can
define all required elements as top-level functions. The full Retrofit definition will
be the following:

// Retrofit.kt
package com.sample.marvelgallery.data.network.provider

import com.google.gson.Gson
import okhttp3.OkHttpClient
import retrofit2.Retrofit
import retrofit2.adapter.rxjava2.RxJava2CallAdapterFactory
import retrofit2.converter.gson.GsonConverterFactory
import java.util.concurrent.TimeUnit

val retrofit by lazy { makeRetrofit() }

private fun makeRetrofit(): Retrofit = Retrofit.Builder()
 .baseUrl("http://gateway.marvel.com/v1/public/")
 .client(makeHttpClient())
 .addConverterFactory(GsonConverterFactory.create(Gson())) // 1
 .addCallAdapterFactory(RxJava2CallAdapterFactory.create()) // 2
 .build()

private fun makeHttpClient() = OkHttpClient.Builder()
 .connectTimeout(60, TimeUnit.SECONDS) // 3
 .readTimeout(60, TimeUnit.SECONDS) // 4
 .addInterceptor(makeHeadersInterceptor()) // 5
 .addInterceptor(makeAddSecurityQueryInterceptor()) // 6
 .addInterceptor(makeLoggingInterceptor()) // 7
 .build()

1. Add a converter that allows object JSON serialization and deserialization using
GSON library.

2. Add a converter that will allow RxJava2 types (Observable, Single) as
observables for returned values from network requests.

3. We add custom interceptors. We need to define all of them.

Let's define the needed interceptors. makeHeadersInterceptor is used to add standard
headers for each request:

// HeadersInterceptor.kt
package com.sample.marvelgallery.data.network.provider

import okhttp3.Interceptor

fun makeHeadersInterceptor() = Interceptor { chain -> // 1
 chain.proceed(chain.request().newBuilder()
 .addHeader("Accept", "application/json")
 .addHeader("Accept-Language", "en")
 .addHeader("Content-Type", "application/json")
 .build())
}

1. Interceptor is SAM, so we can define it using a SAM constructor.

The makeLoggingInterceptor function is used to display logs on console when we are
running the application in debug mode:

// LoggingInterceptor.kt
package com.sample.marvelgallery.data.network.provider

import com.sample.marvelgallery.BuildConfig
import okhttp3.logging.HttpLoggingInterceptor

fun makeLoggingInterceptor() = HttpLoggingInterceptor().apply {
 level = if (BuildConfig.DEBUG) HttpLoggingInterceptor.Level.BODY
 else HttpLoggingInterceptor.Level.NONE
}

The makeAddRequiredQueryInterceptor function is more complex, because it is used to
provide query parameters used by Marvel API to verify the user. These parameters
need a hash calculated using the MD5 algorithm. It also needs a public and private
key from the Marvel API. Everyone can generate their own keys at https://developer.ma
rvel.com/. Once you have generated keys, we need to place them in the
gradle.properties file:

org.gradle.jvmargs=-Xmx1536m
marvelPublicKey=REPLEACE_WITH_YOUR_PUBLIC_MARVEL_KEY
marvelPrivateKey=REPLEACE_WITH_YOUR_PRIVATE_MARVEL_KEY

Also add the following definitions in the module build.gradle in Android in the
defaultConfig section:

defaultConfig {
 applicationId "com.sample.marvelgallery"
 minSdkVersion 16
 targetSdkVersion 26
 versionCode 1
 versionName "1.0"

https://developer.marvel.com/

 testInstrumentationRunner
 "android.support.test.runner.AndroidJUnitRunner"
 buildConfigField("String", "PUBLIC_KEY", "\"${marvelPublicKey}\"")
 buildConfigField("String", "PRIVATE_KEY", "\"${marvelPrivateKey}\"")
}

After project rebuild, you will be able to access these values by BuildConfig.PUBLIC_KEY
and BuildConfig.PRIVATE_KEY. Using these keys, we can generate query parameters that
are required by Marvel API:

// QueryInterceptor.kt
package com.sample.marvelgallery.data.network.provider

import com.sample.marvelgallery.BuildConfig
import okhttp3.Interceptor

fun makeAddSecurityQueryInterceptor() = Interceptor { chain ->
 val originalRequest = chain.request()
 val timeStamp = System.currentTimeMillis()

 // Url customization: add query parameters
 val url = originalRequest.url().newBuilder()
 .addQueryParameter("apikey", BuildConfig.PUBLIC_KEY) // 1
 .addQueryParameter("ts", "$timeStamp") // 1
 .addQueryParameter("hash", calculatedMd5(timeStamp.toString() + BuildConfig.PRIVATE_KEY + BuildConfig.PUBLIC_KEY)) // 1
 .build()

 // Request customization: set custom url
 val request = originalRequest
 .newBuilder()
 .url(url)
 .build()

 chain.proceed(request)
}

1. We need to provide three additional queries:
apikey: Which is just including our public key.
ts: Which is just containing device time in milliseconds. It is used to
improve the security of the hash provided in the next query.
hash: Which is calculated as MD5 hash from time stamp, private, and
public key, one after another in a single String.

Here is the definition of the function used to calculate the MD5 hash:

// MD5.kt
package com.sample.marvelgallery.data.network.provider

import java.math.BigInteger
import java.security.MessageDigest

/**
* Calculate MD5 hash for text
* @param timeStamp Current timeStamp

* @return MD5 hash string
*/
fun calculatedMd5(text: String): String {
 val messageDigest = getMd5Digest(text)
 val md5 = BigInteger(1, messageDigest).toString(16)
 return "0" * (32 - md5.length) + md5 // 1
}

private fun getMd5Digest(str: String): ByteArray = MessageDigest.getInstance("MD5").digest(str.toByteArray())

private operator fun String.times(i: Int) = (1..i).fold("") { acc, _ -> acc + this }

1. We are using the times extension operator to fill the hash with zeros if it is
shorter than 32.

We have interceptors defined, so we can define actual API methods. The Marvel API
contains a lot of data models that are representing characters, lists, and so on. We
need to define them as separate classes. Such classes are called data transfer
objects (DTOs). We will define objects we will need:

package com.sample.marvelgallery.data.network.dto

class DataContainer<T> {
 var results: T? = null
}

package com.sample.marvelgallery.data.network.dto

class DataWrapper<T> {
 var data: DataContainer<T>? = null
}

package com.sample.marvelgallery.data.network.dto

class ImageDto {

 lateinit var path: String // 1
 lateinit var extension: String // 1

 val completeImagePath: String
 get() = "$path.$extension"
}

package com.sample.marvelgallery.data.network.dto

class CharacterMarvelDto {
 lateinit var name: String // 1
 lateinit var thumbnail: ImageDto // 1

 val imageUrl: String
 get() = thumbnail.completeImagePath
}

1. For values that might not be provided, we should set a default value. Values that
are mandatory might be prefixed with lateinit instead.

Retrofit is using reflection to create an HTTP request basing of interface definition.
This is how we can implement an interface that is defining an HTTP request:

package com.sample.marvelgallery.data.network

import com.sample.marvelgallery.data.network.dto.CharacterMarvelDto
import com.sample.marvelgallery.data.network.dto.DataWrapper
import io.reactivex.Single
import retrofit2.http.GET
import retrofit2.http.Query

interface MarvelApi {

 @GET("characters")
 fun getCharacters(
 @Query("offset") offset: Int?,
 @Query("limit") limit: Int?
): Single<DataWrapper<List<CharacterMarvelDto>>>
}

With such definitions, we can finally get a list of characters:

retrofit.create(MarvelApi::class.java) // 1
 .getCharacters(0, 100) // 2
 .subscribe({ /* code */ }) // 3

1. We use a retrofit instance to create an object that will make HTTP requests
according to the MarvelApi interface definition.

2. We create observable ready to send call to API.
3. By subscribe, we send an HTTP request and we start listening for a response.

The first argument is the callback that is invoked when we successfully receive
a response.

Such a network definition could be sufficient, but we might implement it better. The
biggest problem is that we now need to operate on DTO objects instead of on our
own data model objects. For mapping, we should define an additional layer. The
repository pattern is used for this purpose. This pattern is also really helpful when we
are implementing unit tests, because we can mock the repository instead of the whole
API definition. This is the definition of repository that we would like to have:

package com.sample.marvelgallery.data

import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

interface MarvelRepository {

 fun getAllCharacters(): Single<List<MarvelCharacter>>
}

And here is the implementation of MarvelRepository:

package com.sample.marvelgallery.data

import com.sample.marvelgallery.data.network.MarvelApi
import com.sample.marvelgallery.data.network.provider.retrofit
import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

class MarvelRepositoryImpl : MarvelRepository {

 val api = retrofit.create(MarvelApi::class.java)

 override fun getAllCharacters(): Single<List<MarvelCharacter>> = api.getCharacters(
 offset = 0,
 limit = elementsOnListLimit
).map {
 it.data?.results.orEmpty().map(::MarvelCharacter) // 1
 }

 companion object {
 const val elementsOnListLimit = 50
 }
}

1. We are getting a list of DTO elements and mapping it into MarvelCharacter using
a constructor reference.

To make it work, we need to define an additional constructor in MarvelCharacter, that
takes CharacterMarvelDto as an argument:

package com.sample.marvelgallery.model

import com.sample.marvelgallery.data.network.dto.CharacterMarvelDto

class MarvelCharacter(
 val name: String,
 val imageUrl: String
) {

 constructor(dto: CharacterMarvelDto) : this(
 name = dto.name,
 imageUrl = dto.imageUrl
)
}

There are different ways to provide an instance of MarvelRepository. In most common
implementation, a concrete instance of MarvelRepository is passed to Presenter as
constructor argument. But what about UI testing (such as Espresso tests)? We don't
want to test the Marvel API and we don't want to make a UI test depending on it.
The solution is to make a mechanism that will generate standard implementation
during normal runtime, but it will also allow us to set a different implementation for
testing purposes. We will make the following generic implementation of such
mechanism (place it in data):

package com.sample.marvelgallery.data

abstract class Provider<T> {

 abstract fun creator(): T

 private val instance: T by lazy { creator() }
 var testingInstance: T? = null

 fun get(): T = testingInstance ?: instance
}

Instead of defining our own Provider, we might use some of Dependency
Injection libraries, such as Dagger or Kodein. Dagger usage for such
purposes is really common in Android development, but we've decided
that we won't include it in this example to avoid additional complexity
for developers who are not experienced with this library.

We can make the MarvelRepository companion object provider extend above class:

package com.sample.marvelgallery.data

import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

interface MarvelRepository {

 fun getAllCharacters(): Single<List<MarvelCharacter>>

 companion object : Provider<MarvelRepository>() {
 override fun creator() = MarvelRepositoryImpl()
 }
}

Thanks to the preceding definition, we can use the MarvelRepository companion object
to get an instance of MarvelRepository:

val marvelRepository = MarvelRepository.get()

It will be a lazy instance of MarvelRepositoryImpl, until somebody sets some not-
null value of the testingInstance property:

MarvelRepository.get() // Returns instance of MarvelRepositoryImpl

MarvelRepository.testingInstance= object: MarvelRepository {
 override fun getAllCharacters(): Single<List<MarvelCharacter>>
 = Single.just(emptyList())
}

MarvelRepository.get() // returns an instance of an anonymous class in which the returned list is always empty.

Such a construction is useful to allow UI tests using espresso. Its usage for element
override is present in the project and can be found in GitHub. It is not presented in

this section to keep it simpler to understand for developers who are not proficient in
testing. If you are willing to see it, then you can find it at https://github.com/MarcinMosk
ala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTe
st.kt.

Let's finally connect this repository with view by implementation of the business
logic of the character gallery display.

https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt

Business logic implementation
We have both view and repository parts implemented and it is time to finally
implement the business logic. On this point, we need only to get the character list
and display it on the list when the user enters the screen or when they refresh it. We
will extract these business logic rules from view implementation by using an
architectural pattern known as Model-View-Presenter (MVP). Here are the
simplified rules:

Model: This is the layer responsible for managing data. Model's responsibilities
include using APIs, caching data, managing databases, and so on.
Presenter: The presenter is the middle-man between Model and View, and it
should include all your presentation logic. The presenter is responsible for
reacting to user interactions, using and updating the Model and the View.
View: This is responsible for presenting data and forwarding user interaction
events to the Presenter.

In our implementation of this pattern, we will treat Activity as a View, and for each
view we need to create a presenter. It is good practice to write unit tests to check
whether business logic rules are implemented correctly. To make it simple, we need
to hide Activity behind an easy-to-mock interface that is representing all possible
Presenter interaction with view (Activity). Also, we are going to create all the
dependencies (such as MarvelRepository) in Activity and deliver them to the Presenter
via the constructor as objects hidden behind interfaces (for example, pass
MarvelRepositoryImpl as MarvelRepository).

In Presenter, we need to implement the following behaviors:

When the Presenter is waiting for a response, loading animation is displayed
After the View has been created, a list of characters is loaded and displayed
After the refresh method is called, a list of characters is loaded
When the API returns a list of characters, it is displayed on the view
When the API returns an error, it is displayed on the view

As we can see, the Presenter needs to get by constructor both View and
MarvelRepository, and it should specify the methods that will be called when the view
is created or the user request list is refreshed:

package com.sample.marvelgallery.presenter

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.view.main.MainView

class MainPresenter(val view: MainView, val repository: MarvelRepository) {

 fun onViewCreated() {
 }

 fun onRefresh() {
 }
}

The View needs to specify the methods used to show the list of characters, show
error and show progress bar when View is refreshing (define it in view/main and move
MainActivity to view/main):

package com.sample.marvelgallery.view.main.main

import com.sample.marvelgallery.model.MarvelCharacter

interface MainView {
 var refresh: Boolean
 fun show(items: List<MarvelCharacter>)
 fun showError(error: Throwable)
}

Before adding logic to a presenter, let's define first two unit tests:

// test source set
package com.sample.marvelgallery

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import com.sample.marvelgallery.view.main.MainView
import io.reactivex.Single
import org.junit.Assert.assertEquals
import org.junit.Assert.fail
import org.junit.Test

@Suppress("IllegalIdentifier") // 1
class MainPresenterTest {

 @Test
 fun `After view was created, list of characters is loaded and displayed`() {
 assertOnAction { onViewCreated() }.thereIsSameListDisplayed()
 }

 @Test
 fun `New list is shown after view was refreshed`() {
 assertOnAction { onRefresh() }.thereIsSameListDisplayed()
 }

 private fun assertOnAction(action: MainPresenter.() -> Unit)
 = PresenterActionAssertion(action)

 private class PresenterActionAssertion
 (val actionOnPresenter: MainPresenter.() -> Unit) {

 fun thereIsSameListDisplayed() {
 // Given
 val exampleCharacterList = listOf(// 2
 MarvelCharacter("ExampleName", "ExampleImageUrl"),
 MarvelCharacter("Name1", "ImageUrl1"),
 MarvelCharacter("Name2", "ImageUrl2")
)

 var displayedList: List<MarvelCharacter>? = null

 val view = object : MainView { //3
 override var refresh: Boolean = false

 override fun show(items: List<MarvelCharacter>) {
 displayedList = items // 4
 }

 override fun showError(error: Throwable) {
 fail() //5
 }
 }
 val marvelRepository = object : MarvelRepository { // 3
 override fun getAllCharacters():
 Single<List<MarvelCharacter>>
 = Single.just(exampleCharacterList) // 6
 }

 val mainPresenter = MainPresenter(view, marvelRepository)
 // 3

 // When
 mainPresenter.actionOnPresenter() // 7

 // Then
 assertEquals(exampleCharacterList, displayedList) // 8
 }
 }
}

1. Descriptive names are allowed in Kotlin unit tests, but there will be a warning
displayed. This suppression is needed to hide this warning.

2. Define a list of example characters to display.
3. Define a view and repository and create a presenter using them.
4. When a list of elements is shown, then we should set it as a displayed list.
5. The test is failing when showError is called.
6. The getAllCharacters method is just returning an example list.
7. We call a defined action on the presenter.
8. We check whether the list returned by the repository is the same as the

displayed list.

To simplify the preceding definitions, we could extract BaseMarvelRepository and

BaseMainView, and keep example data in a separate class:

// test source set
package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

class BaseMarvelRepository(
 val onGetCharacters: () -> Single<List<MarvelCharacter>>
) : MarvelRepository {

 override fun getAllCharacters() = onGetCharacters()
}

// test source set
package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.main.MainView

class BaseMainView(
 var onShow: (items: List<MarvelCharacter>) -> Unit = {},
 val onShowError: (error: Throwable) -> Unit = {},
 override var refresh: Boolean = false
) : MainView {

 override fun show(items: List<MarvelCharacter>) {
 onShow(items)
 }

 override fun showError(error: Throwable) {
 onShowError(error)
 }
}

// test source set
package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.model.MarvelCharacter

object Example {
 val exampleCharacter = MarvelCharacter
 ("ExampleName", "ExampleImageUrl")
 val exampleCharacterList = listOf(
 exampleCharacter,
 MarvelCharacter("Name1", "ImageUrl1"),
 MarvelCharacter("Name2", "ImageUrl2")
)
}

Now we can simplify the definition of PresenterActionAssertion:

package com.sample.marvelgallery

import com.sample.marvelgallery.helpers.BaseMainView
import com.sample.marvelgallery.helpers.BaseMarvelRepository
import com.sample.marvelgallery.helpers.Example

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import io.reactivex.Single
import org.junit.Assert.assertEquals
import org.junit.Assert.fail
import org.junit.Test

@Suppress("IllegalIdentifier")

class MainPresenterTest {

 @Test
 fun `After view was created, list of characters is loaded and displayed`() {
 assertOnAction { onViewCreated() }.thereIsSameListDisplayed()
 }

 @Test
 fun `New list is shown after view was refreshed`() {
 assertOnAction { onRefresh() }.thereIsSameListDisplayed()
 }

 private fun assertOnAction(action: MainPresenter.() -> Unit)
 = PresenterActionAssertion(action)

 private class PresenterActionAssertion
 (val actionOnPresenter: MainPresenter.() -> Unit) {

 fun thereIsSameListDisplayed() {
 // Given
 var displayedList: List<MarvelCharacter>? = null

 val view = BaseMainView(
 onShow = { items -> displayedList = items },
 onShowError = { fail() }
)
 val marvelRepository = BaseMarvelRepository(
 onGetCharacters =
 { Single.just(Example.exampleCharacterList) }
)

 val mainPresenter = MainPresenter(view, marvelRepository)

 // When
 mainPresenter.actionOnPresenter()

 // Then
 assertEquals(Example.exampleCharacterList, displayedList)
 }
 }
}

We start the tests:

We will see that they are not passing:

The reason is that functionalities are not implemented yet in MainPresenter. The
simplest code that is satisfactory to pass this unit test is the following:

package com.sample.marvelgallery.presenter

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.view.main.MainView

class MainPresenter(val view: MainView, val repository: MarvelRepository) {

 fun onViewCreated() {
 loadCharacters()
 }

 fun onRefresh() {
 loadCharacters()
 }

 private fun loadCharacters() {
 repository.getAllCharacters()
 .subscribe({ items ->
 view.show(items)
 })
 }
}

Now our tests are passing:

But there are two issues with following implementation:

It won't work in Android, because getAllCharacters is using a network operation
and it cannot run on the main thread as in this example
We will have a memory leak if the user left the application before loading had
been finished

To resolve the first issue, we need to specify on which threads what operations
should run. The network request should be running on the I/O thread, and we should
observe on the Android main thread (because we are changing the view in callback):

repository.getAllCharacters()
 .subscribeOn(Schedulers.io()) // 1
 .observeOn(AndroidSchedulers.mainThread()) // 2
 .subscribe({ items -> view.show(items) })

1. We specify that the network request should be running in IO thread.
2. We specify that callbacks should be started on the main thread.

While these are common schedulers to show, we can extract them in a top-level
extension function:

// RxExt.kt
package com.sample.marvelgallery.data

import io.reactivex.Single
import io.reactivex.android.schedulers.AndroidSchedulers
import io.reactivex.schedulers.Schedulers

fun <T> Single<T>.applySchedulers(): Single<T> = this
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())

And use it in MainPresenter:

repository.getAllCharacters()
 .applySchedulers()
 .subscribe({ items -> view.show(items) })

Tests are not allowed to access the Android main thread. Therefore, our tests will not
pass. Also, operations running on a new thread are not what we want in unit tests,
because we would have problem assertions synchronization. To resolve these
problems, we need override schedulers before unit tests to make everything run on
the same thread (add it in MainPresenterTest class):

package com.sample.marvelgallery

import com.sample.marvelgallery.helpers.BaseMainView
import com.sample.marvelgallery.helpers.BaseMarvelRepository
import com.sample.marvelgallery.helpers.Example
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import io.reactivex.Single
import io.reactivex.android.plugins.RxAndroidPlugins
import io.reactivex.plugins.RxJavaPlugins
import io.reactivex.schedulers.Schedulers
import org.junit.Assert.assertEquals
import org.junit.Assert.fail
import org.junit.Before
import org.junit.Test

@Suppress("IllegalIdentifier")

class MainPresenterTest {

 @Before
 fun setUp() {
 RxAndroidPlugins.setInitMainThreadSchedulerHandler {
 Schedulers.trampoline() }
 RxJavaPlugins.setIoSchedulerHandler { Schedulers.trampoline() }
 RxJavaPlugins.setComputationSchedulerHandler {
 Schedulers.trampoline() }
 RxJavaPlugins.setNewThreadSchedulerHandler {
 Schedulers.trampoline() }
 }

 @Test
 fun `After view was created, list of characters is loaded and
 displayed`() {
 assertOnAction { onViewCreated() }.thereIsSameListDisplayed()
 }

 @Test
 fun `New list is shown after view was refreshed`() {
 assertOnAction { onRefresh() }.thereIsSameListDisplayed()
 }

Now unit tests are passing again:

Another problem is memory leak if the user leaves the application before we get a
server response. A common solution is to keep all subscriptions in composite, and
dispose them all when the user is leaving the application:

private var subscriptions = CompositeDisposable()

fun onViewDestroyed() {
 subscriptions.dispose()
}

In bigger applications, most presenters have some subscriptions. So the functionality
of collecting subscriptions and disposing them when the user destroys the view can
be treated as common behavior and extracted in BasePresenter. Also, to simplify the
process, we can make a BaseActivityWithPresenter class that will hold the presenter
behind the Presenter interface and call the onViewDestroyed method when the view is
destroyed. Let's define this mechanism in our application. Here is the definition of
Presenter:

package com.sample.marvelgallery.presenter

interface Presenter {
 fun onViewDestroyed()
}

Here is the definition of BasePresenter:

package com.sample.marvelgallery.presenter

import io.reactivex.disposables.CompositeDisposable

abstract class BasePresenter : Presenter {

 protected var subscriptions = CompositeDisposable()

 override fun onViewDestroyed() {
 subscriptions.dispose()
 }
}

Here is the definition of BaseActivityWithPresenter:

package com.sample.marvelgallery.view.common

import android.support.v7.app.AppCompatActivity
import com.sample.marvelgallery.presenter.Presenter

abstract class BaseActivityWithPresenter : AppCompatActivity() {

 abstract val presenter: Presenter

 override fun onDestroy() {
 super.onDestroy()
 presenter.onViewDestroyed()
 }
}

To simplify how a new subscription is added to subscriptions, we can define a plus
assign operator:

// RxExt.ext
package com.sample.marvelgallery.data

import io.reactivex.Single
import io.reactivex.android.schedulers.AndroidSchedulers
import io.reactivex.disposables.CompositeDisposable
import io.reactivex.disposables.Disposable
import io.reactivex.schedulers.Schedulers

fun <T> Single<T>.applySchedulers(): Single<T> = this
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())

operator fun CompositeDisposable.plusAssign(disposable: Disposable) {
 add(disposable)
}

And we can use both solutions to make MainPresenter secure:

package com.sample.marvelgallery.presenter

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.data.applySchedulers
import com.sample.marvelgallery.data.plusAssign
import com.sample.marvelgallery.view.main.MainView

class MainPresenter(
 val view: MainView,
 val repository: MarvelRepository
) : BasePresenter() {

 fun onViewCreated() {
 loadCharacters()
 }

 fun onRefresh() {
 loadCharacters()
 }

 private fun loadCharacters() {
 subscriptions += repository.getAllCharacters()
 .applySchedulers()
 .subscribe({ items ->
 view.show(items)
 })
 }
}

The first two MainPresenter behaviors have been implemented. It is time to move on
to the next one--when the API returns an error, it is displayed on the view. We can
add this requirement as a test in MainPresenterTest:

@Test
fun `New list is shown after view was refreshed`() {
 assertOnAction { onRefresh() }.thereIsSameListDisplayed()
}

@Test
fun `When API returns error, it is displayed on view`() {
 // Given
 val someError = Error()
 var errorDisplayed: Throwable? = null
 val view = BaseMainView(
 onShow = { _ -> fail() },
 onShowError = { errorDisplayed = it }
)
 val marvelRepository = BaseMarvelRepository
 { Single.error(someError) }
 val mainPresenter = MainPresenter(view, marvelRepository)
 // When
 mainPresenter.onViewCreated()
 // Then
 assertEquals(someError, errorDisplayed)
}

private fun assertOnAction(action: MainPresenter.() -> Unit)
 = PresenterActionAssertion(action)

A simple change that will make this test pass is error handler specification in the
subscribe method in MainPresenter:

subscriptions += repository.getAllCharacters()
 .applySchedulers()
 .subscribe({ items -> // onNext
 view.show(items)
 }, { // onError
 view.showError(it)
 })

While subscribe is Java method, we cannot use named argument convention. Such
invocation is not really descriptive. This is why we are going to define in the RxExt.kt
custom subscribe method named subscribeBy:

// Ext.kt

fun <T> Single<T>.applySchedulers(): Single<T> = this
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
fun <T> Single<T>.subscribeBy(
 onError: ((Throwable) -> Unit)? = null,
 onSuccess: (T) -> Unit
): Disposable = subscribe(onSuccess, { onError?.invoke(it) })

And we will use it instead of subscribe:

subscriptions += repository.getAllCharacters()
 .applySchedulers()
 .subscribeBy(
 onSuccess = view::show,
 onError = view::showError
)

subscribeBy in full version defined for different RxJava typed (such as
Observable, Flowable, and so on) together with lots of other useful
Kotlin extensions to RxJava can be found in RxKotlin library (https://git
hub.com/ReactiveX/RxKotlin).

To show and hide list loading, we will define additional listeners to events that are
always occurring before and after processing:

subscriptions += repository.getAllCharacters()
 .applySchedulers()
 .doOnSubscribe { view.refresh = true },}
 onSuccess = view::show,
 .doFinally { view.refresh = false }
 .subscribeBy(
 onSuccess = view::show,

https://github.com/ReactiveX/RxKotlin

 onError = view::showError,
 onFinish = { view.refresh = false }
)

And tests are passing again:

The subscribe method is becoming less and less readable, but we will resolve this
problem together with another business rule, whose definition is the following--when
the presenter is waiting for a response, refresh is displayed. Define its unit test in
MainPresenterTest:

package com.sample.marvelgallery

import com.sample.marvelgallery.helpers.BaseMainView
import com.sample.marvelgallery.helpers.BaseMarvelRepository
import com.sample.marvelgallery.helpers.Example
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import io.reactivex.Single
import io.reactivex.android.plugins.RxAndroidPlugins
import io.reactivex.plugins.RxJavaPlugins
import io.reactivex.schedulers.Schedulers
import org.junit.Assert.*
import org.junit.Before
import org.junit.Test

@Suppress("IllegalIdentifier")

class MainPresenterTest {

 @Test
 fun `When presenter is waiting for response, refresh is displayed`()
 {
 // Given
 val view = BaseMainView(refresh = false)
 val marvelRepository = BaseMarvelRepository(
 onGetCharacters = {
 Single.fromCallable {
 // Then
 assertTrue(view.refresh) // 1
 Example.exampleCharacterList
 }
 }
)
 val mainPresenter = MainPresenter(view, marvelRepository)
 view.onShow = { _ ->
 // Then
 assertTrue(view.refresh) // 1
 }
 // When

 mainPresenter.onViewCreated()
 // Then
 assertFalse(view.refresh) // 1
 }
 }

1. We expect refresh displayed during network request and when elements are
shown, but not after processing finishes.

We expect refresh to be displayed during a network request and when elements are
shown, but not after processing finishes.

In the presented version on RxJava2, assertions inside callbacks are
not breaking the test but displaying an error on the execution report
instead:

Probably, in future versions, it will be possible to add a handler that is
allowing to fail a test from inside a callback.

To show and hide list loading, we will define additional listeners to events that are
always occurring before and after processing:

subscriptions += repository.getAllCharacters()
 .applySchedulers()
 .doOnSubscribe { view.refresh = true }
 .doFinally { view.refresh = false }
 .subscribeBy(
 onSuccess = view::show,
 onError = view::showError
)

After these changes, all tests are passing again:

Now we have a fully functional presenter, network, and view. Time to connect it all
and finish implementation of the first use case.

Putting it all together
We have MainPresenter ready to be used in the project. Now we need to use it in
MainActivity:

package com.sample.marvelgallery.view.main

import android.os.Bundle
import android.support.v7.widget.GridLayoutManager
import android.view.Window
import com.sample.marvelgallery.R
import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import com.sample.marvelgallery.view.common.BaseActivityWithPresenter
import com.sample.marvelgallery.view.common.bindToSwipeRefresh
import com.sample.marvelgallery.view.common.toast
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : BaseActivityWithPresenter(), MainView { // 1

 override var refresh by bindToSwipeRefresh(R.id.swipeRefreshView)
 // 2
 override val presenter by lazy
 { MainPresenter(this, MarvelRepository.get()) } // 3

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 requestWindowFeature(Window.FEATURE_NO_TITLE)
 setContentView(R.layout.activity_main)
 recyclerView.layoutManager = GridLayoutManager(this, 2)
 swipeRefreshView.setOnRefreshListener
 { presenter.onRefresh() } // 4
 presenter.onViewCreated() // 4
 }

 override fun show(items: List<MarvelCharacter>) {
 val categoryItemAdapters = items.map(::CharacterItemAdapter)
 recyclerView.adapter = MainListAdapter(categoryItemAdapters)
 }

 override fun showError(error: Throwable) {
 toast("Error: ${error.message}") // 2
 error.printStackTrace()
 }
}

1. Activity should extend BaseActivityWithPresenter and implement MainView.
2. bindToSwipeRefresh and toast are not yet implemented.
3. We make presenter lazily. The first argument is a reference to activity behind

the MainView interface.
4. We need to pass events to the presenter using its methods.

In the preceding code, we used two functions that were already described in the
book, toast, used to display toast on the screen, and bindToSwipeRefresh, used to bind
property with visibility of swipe refresh:

// ViewExt.kt
package com.sample.marvelgallery.view.common

import android.app.Activity
import android.content.Context
import android.support.annotation.IdRes
import android.support.v4.widget.SwipeRefreshLayout
import android.support.v7.widget.RecyclerView
import android.view.View
import android.widget.ImageView
import android.widget.Toast
import com.bumptech.glide.Glide
import kotlin.properties.ReadWriteProperty
import kotlin.reflect.KProperty

fun <T : View> RecyclerView.ViewHolder.bindView(viewId: Int)
 = lazy { itemView.findViewById<T>(viewId) }

fun ImageView.loadImage(photoUrl: String) {
 Glide.with(context)
 .load(photoUrl)
 .into(this)
}

fun Context.toast(text: String, length: Int = Toast.LENGTH_LONG) {
 Toast.makeText(this, text, length).show()
}

fun Activity.bindToSwipeRefresh(@IdRes swipeRefreshLayoutId: Int): ReadWriteProperty<Any?, Boolean>
 = SwipeRefreshBinding(lazy { findViewById<SwipeRefreshLayout>(swipeRefreshLayoutId) })

private class SwipeRefreshBinding(lazyViewProvider: Lazy<SwipeRefreshLayout>) : ReadWriteProperty<Any?, Boolean> {

 val view by lazyViewProvider

 override fun getValue(thisRef: Any?,
 property: KProperty<*>): Boolean {
 return view.isRefreshing
 }

 override fun setValue(thisRef: Any?,
 property: KProperty<*>, value: Boolean) {
 view.isRefreshing = value
 }
}

Now our application should correctly show a list of characters:

Our first use case has been implemented. We can move on to the next one.

Character search
Another behavior we need to implement is character search. Here is the use case
definition, after starting the application, the user can search for a character by its
name.

To add it, we are going to add EditText to the activity_main layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/charactersView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white"
 android:fitsSystemWindows="true">

<!-- Dummy item to prevent EditText from receiving
 focus on initial load -->
 <LinearLayout
 android:layout_width="0px"
 android:layout_height="0px"
 android:focusable="true"
 android:focusableInTouchMode="true"
 tools:ignore="UselessLeaf" />

 <android.support.design.widget.TextInputLayout
 android:id="@+id/searchViewLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="@dimen/element_padding">

 <EditText
 android:id="@+id/searchView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:hint="@string/search_hint" />

 </android.support.design.widget.TextInputLayout>

 <android.support.v4.widget.SwipeRefreshLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/swipeRefreshView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_below="@+id/searchViewLayout"
 app:layout_behavior="@string/appbar_scrolling_view_behavior">

 <android.support.v7.widget.RecyclerView
 android:id="@+id/recyclerView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scrollbars="vertical" />

 </android.support.v4.widget.SwipeRefreshLayout>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:background="@android:color/white"
 android:gravity="center"
 android:text="@string/marvel_copyright_notice" />
</RelativeLayout>

We need to add Android Support Design library dependency to allow
TextInputLayout usage:

implementation "com.android.support:appcompat-v7:$android_support_version"
implementation "com.android.support:design:$android_support_version"
implementation "com.android.support:recyclerview-v7:$android_support_version"

And string search_hint definition in strings.xml:

<resources>
 <string name="app_name">MarvelGallery</string>
 <string name="search_hint">Search for character</string>
 <string name="marvel_copyright_notice">
 Data provided by Marvel. © 2017 MARVEL
 </string>
</resources>

Also, to keep the label that is informing about Marvel copyright when the keyboard
is opened, we also need to adjustResize to windowSoftInputMode in activity definition in
AndroidManifest:

<activity
 android:name="com.sample.marvelgallery.view.main.MainActivity"
 android:windowSoftInputMode="adjustResize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

We should see the following preview:

Now we have a search field added in MainActivity:

The behavior we are expecting is that whenever the user changes the text in the
search field, a new list will be loaded. We need a new method in MainPresenter, that

will be used to inform the presenter that the text was changed. We will call it
onSearchChanged:

fun onRefresh() {
 loadCharacters()
}

fun onSearchChanged(text: String) {
 // TODO
}

private fun loadCharacters() {
 subscriptions += repository.getAllCharacters()
 .applySchedulers()
 .doOnSubscribe { view.refresh = true }
 .doFinally { view.refresh = false }
 .subscribeBy(
 onSuccess = view::show,
 onError = view::showError
)
 }
}

We need to change the MarvelRepository definition to accept a search query as
getAllCharacters parameter (remember to update also BaseMarvelRepository):

interface MarvelRepository {

 fun getAllCharacters(searchQuery: String?):
 Single<List<MarvelCharacter>>

 companion object : Provider<MarvelRepository>() {
 override fun creator() = MarvelRepositoryImpl()
 }
}

As a result, we have to update the implementation:

class MarvelRepositoryImpl : MarvelRepository {

 val api = retrofit.create(MarvelApi::class.java)

 override fun getAllCharacters(searchQuery: String?):
 Single<List<MarvelCharacter>> = api.getCharacters(
 offset = 0,
 searchQuery = searchQuery,
 limit = elementsOnListLimit
).map { it.data?.results.orEmpty().map(::MarvelCharacter) ?:
 emptyList() }

 companion object {
 const val elementsOnListLimit = 50
 }
}

We also update the network request definition:

interface MarvelApi {

 @GET("characters")
 fun getCharacters(
 @Query("offset") offset: Int?,
 @Query("nameStartsWith") searchQuery: String?,
 @Query("limit") limit: Int?
): Single<DataWrapper<List<CharacterMarvelDto>>>
}

And to allow code compilation, we need to provide null as a getAllCharacters
argument in MainPresenter:

private fun loadCharacters() {
 subscriptions += repository.getAllCharacters(null)
 .applySchedulers()
 .doOnSubscribe { view.refresh = true }
 .doFinally { view.refresh = false }
 .subscribeBy(
 onSuccess = view::show,
 onError = view::showError
)
 }
}

And we need to update BaseMarvelRepository:

package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

class BaseMarvelRepository(
 val onGetCharacters: (String?) -> Single<List<MarvelCharacter>>
) : MarvelRepository {

 override fun getAllCharacters(searchQuery: String?)
 = onGetCharacters(searchQuery)
}

Now our network implementation is returning a list of characters that starts from a
query, or a fill list if we don't specify any query. Time to implement the presenter.
Let's define the following tests:

@file:Suppress("IllegalIdentifier")

package com.sample.marvelgallery

import com.sample.marvelgallery.helpers.BaseMainView
import com.sample.marvelgallery.helpers.BaseMarvelRepository
import com.sample.marvelgallery.presenter.MainPresenter
import io.reactivex.Single
import org.junit.Assert.*
import org.junit.Test

class MainPresenterSearchTest {

 @Test
 fun `When view is created, then search query is null`() {
 assertOnAction { onViewCreated() } searchQueryIsEqualTo null
 }

 @Test
 fun `When text is changed, then we are searching for new query`() {
 for (text in listOf("KKO", "HJ HJ", "And so what?"))
 assertOnAction { onSearchChanged(text) }
 searchQueryIsEqualTo text
 }

 private fun assertOnAction(action: MainPresenter.() -> Unit)
 = PresenterActionAssertion(action)

 private class PresenterActionAssertion(val actionOnPresenter:
 MainPresenter.() -> Unit) {

 infix fun searchQueryIsEqualTo(expectedQuery: String?) {
 var checkApplied = false
 val view = BaseMainView(onShowError = { fail() })
 val marvelRepository = BaseMarvelRepository { searchQuery ->
 assertEquals(expectedQuery, searchQuery)
 checkApplied = true
 Single.never()
 }
 val mainPresenter = MainPresenter(view, marvelRepository)
 mainPresenter.actionOnPresenter()
 assertTrue(checkApplied)
 }
 }
}

To make following test pass, we need to add search query as a parameter with
default argument to the loadCharacters method of MainPresenter:

fun onSearchChanged(text: String) {
 loadCharacters(text)
}

private fun loadCharacters(searchQuery: String? = null) {
 subscriptions += repository.getAllCharacters(searchQuery)
 .applySchedulers()
 .doOnSubscribe { view.refresh = true }
 .doFinally { view.refresh = false }
 .subscribeBy(
 onSuccess = view::show,
 onError = view::showError
)
 }
}

But the tricky part is that the Marvel API does not allow only white spaces as an
search query. There should be a null send instead. Therefore, if the user deletes the
last character or if they try to search place only space in search field, then the

application would crash. We should prevent such situations. Here is a test that is
checking whether the presenter is changing a query with only white spaces into null:

@Test
fun `When text is changed, then we are searching for new query`() {
 for (text in listOf("KKO", "HJ HJ", "And so what?"))
 assertOnAction { onSearchChanged(text) }
 searchQueryIsEqualTo text
}

@Test
fun `For blank text, there is request with null query`() {
 for (emptyText in listOf("", " ", " "))
 assertOnAction { onSearchChanged(emptyText) }
 searchQueryIsEqualTo null
}

private fun assertOnAction(action: MainPresenter.() -> Unit)
 = PresenterActionAssertion(action)

We can implement a security mechanism in the loadCharacters method:

private fun loadCharacters(searchQuery: String? = null) {
 val qualifiedSearchQuery = if (searchQuery.isNullOrBlank()) null
 else searchQuery
 subscriptions += repository
 .getAllCharacters(qualifiedSearchQuery)
 .applySchedulers()
 .smartSubscribe(
 onStart = { view.refresh = true },
 onSuccess = view::show,
 onError = view::showError,
 onFinish = { view.refresh = false }
)
}

Now all tests are passing again:

We still need to implement an Activity functionality that will call the presenter when

text has changed. We will do it using the optional callback class defined in Chapter 7,
Extension Functions and Properties:

// TextChangedListener.kt
package com.sample.marvelgallery.view.common

import android.text.Editable
import android.text.TextWatcher
import android.widget.TextView

fun TextView.addOnTextChangedListener(config: TextWatcherConfiguration.() -> Unit) {
 addTextChangedListener(TextWatcherConfiguration().apply { config() }
 addTextChangedListener(textWatcher)
}

class TextWatcherConfiguration : TextWatcher {

 private var beforeTextChangedCallback:
 (BeforeTextChangedFunction)? = null
 private var onTextChangedCallback:
 (OnTextChangedFunction)? = null
 private var afterTextChangedCallback:
 (AfterTextChangedFunction)? = null

 fun beforeTextChanged(callback: BeforeTextChangedFunction) {
 beforeTextChangedCallback = callback
 }

 fun onTextChanged(callback: OnTextChangedFunction) {
 onTextChangedCallback = callback
 }

 fun afterTextChanged(callback: AfterTextChangedFunction) {
 afterTextChangedCallback = callback
 }

 override fun beforeTextChanged(s: CharSequence,
 start: Int, count: Int, after: Int) {
 beforeTextChangedCallback?.invoke(s.toString(),
 start, count, after)
 }

 override fun onTextChanged(s: CharSequence, start: Int,
 before: Int, count: Int) {
 onTextChangedCallback?.invoke(s.toString(),
 start, before, count)
 }

 override fun afterTextChanged(s: Editable) {
 afterTextChangedCallback?.invoke(s)
 }
}

private typealias BeforeTextChangedFunction =
 (text: String, start: Int, count: Int, after: Int) -> Unit
private typealias OnTextChangedFunction =
 (text: String, start: Int, before: Int, count: Int) -> Unit
private typealias AfterTextChangedFunction =
 (s: Editable) -> Unit

And use it in the onCreate method of MainActivity:

package com.sample.marvelgallery.view.main

import android.os.Bundle
import android.support.v7.widget.GridLayoutManager
import android.view.Window
import com.sample.marvelgallery.R
import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import com.sample.marvelgallery.view.common.BaseActivityWithPresenter
import com.sample.marvelgallery.view.common.addOnTextChangedListener
import com.sample.marvelgallery.view.common.bindToSwipeRefresh
import com.sample.marvelgallery.view.common.toast
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : BaseActivityWithPresenter(), MainView {

 override var refresh by bindToSwipeRefresh(R.id.swipeRefreshView)
 override val presenter by lazy
 { MainPresenter(this, MarvelRepository.get()) }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 requestWindowFeature(Window.FEATURE_NO_TITLE)
 setContentView(R.layout.activity_main)
 recyclerView.layoutManager = GridLayoutManager(this, 2)
 swipeRefreshView.setOnRefreshListener { presenter.onRefresh() }
 searchView.addOnTextChangedListener {
 onTextChanged { text, _, _, _ ->
 presenter.onSearchChanged(text)
 }
 }
 presenter.onViewCreated()
 }

 override fun show(items: List<MarvelCharacter>) {
 val categoryItemAdapters = items.map(::CharacterItemAdapter)
 recyclerView.adapter = MainListAdapter(categoryItemAdapters)
 }

 override fun showError(error: Throwable) {
 toast("Error: ${error.message}")
 error.printStackTrace()
 }
}

That is all we need to define the functionality of the character search. Now we can
build the application and use it to find our favorite character:

With a correctly working application, we can move on to the next use case.

Character profile display
Searching through characters is not enough. To make the app functional, we should
add a character description display. Here is the use case we've defined--when the
user clicks on some character picture, there is a profile displayed. The character
profile contains character name, photo, description, and its occurrences.

To implement this use case, we need to create a new activity and layout that will
define what this Activity looks like. To do it, create a new Activity called
CharacterProfileActivity in the package com.sample.marvelgallery.view.character:

We will start its implementation from changes in layout (in
activity_character_profile.xml). Here is the final result we would like to achieve:

The base element is CoordinatorLayout with AppBar and CollapsingToolbarLayout both
used to achieve a collapsing effect known from material design:

Collapsing effect step by step.

We also need TextView for description and occurrences that will be filled with data in
the next use case. Here is the full activity_character_profile layout definition:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/character_detail_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white">

 <android.support.design.widget.AppBarLayout
 android:id="@+id/appBarLayout"
 android:layout_width="match_parent"

 android:layout_height="wrap_content"
 android:theme="@style/ThemeOverlay.AppCompat.ActionBar">

 <android.support.design.widget.CollapsingToolbarLayout
 android:id="@+id/toolbarLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:contentScrim="?attr/colorPrimary"
 app:expandedTitleTextAppearance="@style/ItemTitleName"
 app:layout_scrollFlags="scroll|exitUntilCollapsed">

 <android.support.v7.widget.AppCompatImageView
 android:id="@+id/headerView"
 android:layout_width="match_parent"
 android:layout_height="@dimen/character_header_height"
 android:background="@color/colorPrimaryDark"
 app:layout_collapseMode="parallax" />

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="@android:color/transparent"
 app:layout_collapseMode="pin"
 app:popupTheme="@style/ThemeOverlay.AppCompat.Light" />

 </android.support.design.widget.CollapsingToolbarLayout>
 </android.support.design.widget.AppBarLayout>

 <android.support.v4.widget.NestedScrollView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:overScrollMode="never"
 app:layout_behavior="@string/appbar_scrolling_view_behavior">

 <LinearLayout
 android:id="@+id/details_content_frame"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:focusableInTouchMode="true"
 android:orientation="vertical">

 <TextView
 android:id="@+id/descriptionView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:padding="@dimen/character_description_padding"
 android:textSize="@dimen/standard_text_size"
 tools:text="This is some long text that will be visible as an character description." />

 <TextView
 android:id="@+id/occurrencesView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="@dimen/character_description_padding"
 android:textSize="@dimen/standard_text_size"
 tools:text="He was in following comics:\n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO " />
 </LinearLayout>

 </android.support.v4.widget.NestedScrollView>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 android:background="@android:color/white"
 android:gravity="bottom|center"
 android:text="@string/marvel_copyright_notice" />

 <ProgressBar
 android:id="@+id/progressView"
 style="?android:attr/progressBarStyleLarge"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:visibility="gone" />

</android.support.design.widget.CoordinatorLayout>

We also need to add following styles in styles.xml:

<resources>

 <!-- Base application theme. -->
 <style name="AppTheme"
 parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>
 <style name="AppFullScreenTheme"
 parent="Theme.AppCompat.Light.NoActionBar">
 <item name="android:windowNoTitle">true</item>
 <item name="android:windowActionBar">false</item>
 <item name="android:windowFullscreen">true</item>
 <item name="android:windowContentOverlay">@null</item>
 </style>

 <style name="ItemTitleName"
 parent="TextAppearance.AppCompat.Headline">
 <item name="android:textColor">@android:color/white</item>
 <item name="android:shadowColor">@color/colorPrimaryDark</item>
 <item name="android:shadowRadius">3.0</item>
 </style>
 <style name="ItemDetailTitle"
 parent="@style/TextAppearance.AppCompat.Small">
 <item name="android:textColor">@color/colorAccent</item>
 </style>

</resources>

And we need to define AppFullScreenTheme as the theme for CharacterProfileActivity in
AndroidManifest:

<activity android:name=".view.CharacterProfileActivity"
 android:theme="@style/AppFullScreenTheme" />

Here is a preview of the defined layout:

This view will be used to display data about the character, but first we need to open
it from MainActivity. We need to set onClickListener in CharacterItemAdapter, that is
calling clicked callback provided by constructor:

package com.sample.marvelgallery.view.main

import android.support.v7.widget.RecyclerView
import android.view.View
import android.widget.ImageView
import android.widget.TextView
import com.sample.marvelgallery.R
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.common.ItemAdapter
import com.sample.marvelgallery.view.common.bindView
import com.sample.marvelgallery.view.common.loadImage

class CharacterItemAdapter(
 val character: MarvelCharacter,
 val clicked: (MarvelCharacter) -> Unit
) : ItemAdapter<CharacterItemAdapter.ViewHolder>(R.layout.item_character) {

 override fun onCreateViewHolder(itemView: View) =
 ViewHolder(itemView)

 override fun ViewHolder.onBindViewHolder() {
 textView.text = character.name
 imageView.loadImage(character.imageUrl)
 itemView.setOnClickListener { clicked(character) }

 }

 class ViewHolder(itemView: View) :
 RecyclerView.ViewHolder(itemView) {
 val textView by bindView<TextView>(R.id.textView)
 val imageView by bindView<ImageView>(R.id.imageView)
 }
}

And we need to update MainActivity:

package com.sample.marvelgallery.view.main

import android.os.Bundle
import android.support.v7.widget.GridLayoutManager
import android.view.Window
import com.sample.marvelgallery.R
import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import com.sample.marvelgallery.view.character.CharacterProfileActivity
import com.sample.marvelgallery.view.common.BaseActivityWithPresenter
import com.sample.marvelgallery.view.common.addOnTextChangedListener
import com.sample.marvelgallery.view.common.bindToSwipeRefresh
import com.sample.marvelgallery.view.common.toast
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : BaseActivityWithPresenter(), MainView {

 override var refresh by bindToSwipeRefresh(R.id.swipeRefreshView)
 override val presenter by lazy
 { MainPresenter(this, MarvelRepository.get()) }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 requestWindowFeature(Window.FEATURE_NO_TITLE)
 setContentView(R.layout.activity_main)
 recyclerView.layoutManager = GridLayoutManager(this, 2)
 swipeRefreshView.setOnRefreshListener { presenter.onRefresh() }
 searchView.addOnTextChangedListener {
 onTextChanged { text, _, _, _ ->
 presenter.onSearchChanged(text)
 }
 }
 presenter.onViewCreated()
 }

 override fun show(items: List<MarvelCharacter>) {
 val categoryItemAdapters =
 items.map(this::createCategoryItemAdapter)
 recyclerView.adapter = MainListAdapter(categoryItemAdapters)
 }

 override fun showError(error: Throwable) {
 toast("Error: ${error.message}")
 error.printStackTrace()
 }

 private fun createCategoryItemAdapter(character: MarvelCharacter)
 = CharacterItemAdapter(character,

 { showHeroProfile(character) })

 private fun showHeroProfile(character: MarvelCharacter) {
 CharacterProfileActivity.start(this, character)
 }
}

In the preceding implementation, we are using a method from the
CharacterProfileActivity companion object to start CharacterProfileActivity. We need
to pass the MarvelCharacter object to this method. The most efficient way to pass a
MarvelCharacter object is pass it as parcelable. To allow it, MarvelCharacter must
implement the Parcelable interface. This is why a useful solution is to use some
annotation processing library such as Parceler, PaperParcel, or Smuggler, that
generates the necessary elements. We will use solution from Kotlin Android
extensions we already have in the project. During book publication, it was still
experimental, so there needs to be added following definition in the build.gradle
module:

androidExtensions {
 experimental = true
}

All we need to do it to add Parcelize annotation before class, and we need to make
this class implement Parcelable. We will also add error suppression because to hide
default Android warning:

package com.sample.marvelgallery.model

import android.annotation.SuppressLint
import android.os.Parcelable
import com.sample.marvelgallery.data.network.dto.CharacterMarvelDto

import kotlinx.android.parcel.Parcelize
@SuppressLint("ParcelCreator")
@Parcelize

 constructor(dto: CharacterMarvelDto) : this(
 name = dto.name,
 imageUrl = dto.imageUrl
)
}

Now we can implement the start function and field character, that will get the
argument value from Intent using the property delegate:

package com.sample.marvelgallery.view.character

import android.content.Context
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import android.view.MenuItem

import com.sample.marvelgallery.R
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.common.extra
import com.sample.marvelgallery.view.common.getIntent
import com.sample.marvelgallery.view.common.loadImage
import kotlinx.android.synthetic.main.activity_character_profile.*

class CharacterProfileActivity : AppCompatActivity() {

 val character: MarvelCharacter by extra(CHARACTER_ARG) // 1

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_character_profile)
 setUpToolbar()
 supportActionBar?.title = character.name
 headerView.loadImage(character.imageUrl, centerCropped = true) // 1
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean = when {
 item.itemId == android.R.id.home -> onBackPressed().let { true }
 else -> super.onOptionsItemSelected(item)
 }

 private fun setUpToolbar() {
 setSupportActionBar(toolbar)
 supportActionBar?.setDisplayHomeAsUpEnabled(true)
 }

 companion object {

 private const val CHARACTER_ARG = "com.sample.marvelgallery.view.character.CharacterProfileActivity.CharacterArgKey"

 fun start(context: Context, character: MarvelCharacter) {
 val intent = context
 .getIntent<CharacterProfileActivity>() // 1
 .apply { putExtra(CHARACTER_ARG, character) }
 context.startActivity(intent)
 }
 }
}

1. The extra and getIntent extension functions were already presented in the book,
but they are not implemented yet in the project. Also, loadImage will display an
error because it needs to be changed.

We need to update loadImage, and define extra and getIntent as top-level functions:

// ViewExt.kt
package com.sample.marvelgallery.view.common

import android.app.Activity
import android.content.Context
import android.content.Intent
import android.os.Parcelable
import android.support.annotation.IdRes
import android.support.v4.widget.SwipeRefreshLayout
import android.widget.ImageView

import android.widget.Toast
import com.bumptech.glide.Glide
import kotlin.properties.ReadWriteProperty
import kotlin.reflect.KProperty
import android.support.v7.widget.RecyclerView
import android.view.View

fun <T : View> RecyclerView.ViewHolder.bindView(viewId: Int)
 = lazy { itemView.findViewById<T>(viewId) }

fun ImageView.loadImage(photoUrl: String, centerCropped: Boolean = false) {
 Glide.with(context)
 .load(photoUrl)
 .apply { if (centerCropped) centerCrop() }
 .into(this)
}

fun <T : Parcelable> Activity.extra(key: String, default: T? = null): Lazy<T>
 = lazy { intent?.extras?.getParcelable<T>(key) ?: default ?: throw Error("No value $key in extras") }

inline fun <reified T : Activity> Context.getIntent() = Intent(this, T::class.java)

// ...

Instead of defining functions to start the Activity, we might use some
library that is generating these methods. For example, we might use the
ActivityStarter library. This is what CharacterProfileActivity would look
like:

class CharacterProfileActivity : AppCompatActivity() {

 @get:Arg val character: MarvelCharacter by argExtra()

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_character_profile)
 setUpToolbar()
 supportActionBar?.title = character.name
 headerView.loadImage(character.imageUrl, centerCropped = true) // 1
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean = when {
 item.itemId == android.R.id.home -> onBackPressed().let { true }
 else -> super.onOptionsItemSelected(item)
 }

 private fun setUpToolbar() {
 setSupportActionBar(toolbar)
 supportActionBar?.setDisplayHomeAsUpEnabled(true)
 }
}

We should start it of get its intent using static methods of the generated class
CharacterProfileActivityStarter:

CharacterProfileActivityStarter.start(context, character)
val intent = CharacterProfileActivityStarter.getIntent(context, character)

To allow it, we need the kapt plugin in the module build.gradle (used to support
annotation processing in Kotlin):

apply plugin: 'kotlin-kapt'

And ActivityStarter dependencies in module build.gradle:

implementation 'com.github.marcinmoskala.activitystarter:activitystarter:1.00'
implementation 'com.github.marcinmoskala.activitystarter:activitystarter-kotlin:1.00'
kapt 'com.github.marcinmoskala.activitystarter:activitystarter-compiler:1.00'

After these changes, when we click into character in MainActivity, then
CharacterProfileActivity will be started:

We are displaying the name and showing the character photo. The next step is to
display the description and list of occurrences. The necessary data can be found in
the Marvel API and we only need to extend DTO models to get them. We need to
add ListWrapper that is used to hold a list:

package com.sample.marvelgallery.data.network.dto

class ListWrapper<T> {
 var items: List<T> = listOf()
}

We need to define ComicDto, which holds the data we need about occurrence:

package com.sample.marvelgallery.data.network.dto

class ComicDto {
 lateinit var name: String
}

And we need to update CharacterMarvelDto:

package com.sample.marvelgallery.data.network.dto

class CharacterMarvelDto {

 lateinit var name: String
 lateinit var description: String
 lateinit var thumbnail: ImageDto
 var comics: ListWrapper<ComicDto> = ListWrapper()
 var series: ListWrapper<ComicDto> = ListWrapper()
 var stories: ListWrapper<ComicDto> = ListWrapper()
 var events: ListWrapper<ComicDto> = ListWrapper()

 val imageUrl: String
 get() = thumbnail.completeImagePath
}

Data is now read from the API and kept in DTO objects, but to use them in the
project, we also need to change the MarvelCharacter class definition, and add a new
constructor:

@SuppressLint("ParcelCreator")
@Parcelize

class MarvelCharacter(
 val name: String,
 val imageUrl: String,
 val description: String,
 val comics: List<String>,
 val series: List<String>,
 val stories: List<String>,
 val events: List<String>
) : Parcelable {

 constructor(dto: CharacterMarvelDto) : this(
 name = dto.name,
 imageUrl = dto.imageUrl,
 description = dto.description,
 comics = dto.comics.items.map { it.name },
 series = dto.series.items.map { it.name },
 stories = dto.stories.items.map { it.name },
 events = dto.events.items.map { it.name }
)
}

Now we can update CharacterProfileActivity to display the description and list of
occurrences:

class CharacterProfileActivity : AppCompatActivity() {

 val character: MarvelCharacter by extra(CHARACTER_ARG)
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_character_profile)
 setUpToolbar()

 supportActionBar?.title = character.name
 descriptionView.text = character.description
 occurrencesView.text = makeOccurrencesText() // 1
 headerView.loadImage(character.imageUrl, centerCropped = true)
 }

 override fun onOptionsItemSelected(item: MenuItem): Boolean = when {
 item.itemId == android.R.id.home -> onBackPressed().let { true }
 else -> super.onOptionsItemSelected(item)
 }

 private fun setUpToolbar() {
 setSupportActionBar(toolbar)
 supportActionBar?.setDisplayHomeAsUpEnabled(true)
 }

 private fun makeOccurrencesText(): String = "" // 1, 2
 .addList(R.string.occurrences_comics_list_introduction, character.comics)
 .addList(R.string.occurrences_series_list_introduction, character.series)
 .addList(R.string.occurrences_stories_list_introduction, character.stories)
 .addList(R.string.occurrences_events_list_introduction, character.events)

 private fun String.addList(introductionTextId: Int, list: List<String>): String { // 3
 if (list.isEmpty()) return this
 val introductionText = getString(introductionTextId)
 val listText = list.joinToString(transform =
 { " $bullet $it" }, separator = "\n")
 return this + "$introductionText\n$listText\n\n"
 }

 companion object {
 private const val bullet = '\u2022' // 4
 private const val CHARACTER_ARG = "com.naxtlevelofandroiddevelopment.marvelgallery.presentation.heroprofile.CharacterArgKey"

 fun start(context: Context, character: MarvelCharacter) {
 val intent = context
 .getIntent<CharacterProfileActivity>()
 .apply { putExtra(CHARACTER_ARG, character) }
 context.startActivity(intent)
 }
 }
}

1. The composition of the list of occurrences is quite a complex task, so we extract
it to the function makeOccurrencesText. There, for each occurrence type (comic,
series, and so on), we want to show introduction text and list only if there are
some occurrences of this type. We also want to prefix each item with a bullet.

2. makeOccurrencesText is a single expression function that is using addList to append
an initially empty string with the next lists that we want to display.

3. addList is a member extension function. It is returning a string unchanged if the
provided list is empty, or it is returning a string appended with introduction text
and list of elements with bullets.

4. This is the character that is used as a list bullet.

We also need to define strings in strings.xml:

<resources>
 <string name="app_name">Marvel Gallery</string>
 <string name="marvel_copyright_notice">
 Data provided by Marvel. © 2017 MARVEL</string>
 <string name="search_hint">Search for character</string>
 <string name="occurrences_comics_list_introduction">Comics:</string>
 <string name="occurrences_series_list_introduction">Series:</string>
 <string name="occurrences_stories_list_introduction">Stories:</string>
 <string name="occurrences_events_list_introduction">Events:</string>
</resources>

Now we can see the whole character profile--character name, image, description, and
lists of its occurrences in comics, series, events, and stories:

Summary
The application is complete, but there are still lots of functionalities that can be
added. In this application, we've seen some examples of how Kotlin can be used to
simplify Android development. But there are still a lot of solutions to discover.
Kotlin simplifies Android development at any level--from common operations such
as listener set or view element reference, to high-level functionalities such as
functional programming or collection processing.

This book cannot say everything about Android development with Kotlin. It was
designed to show enough to allow everyone to start their own adventure with
baggage full of ideas and feature understanding. The next step is to open Android
Studio, create your own project, and start having fun with Kotlin. The big adventure
is in front of you.

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Beginning Your Kotlin Adventure
	Say hello to Kotlin
	Awesome Kotlin examples
	Dealing with Kotlin code
	Kotlin Playground
	Android Studio
	Configuring Kotlin for the project
	Using Kotlin in a new Android project
	Java to Kotlin converter (J2K)
	Alternative ways to run Kotlin code

	Kotlin under the hood
	The Kotlin standard library

	More reasons to use Kotlin
	Summary

	Laying a Foundation
	Variables
	Type inference
	Strict null safety
	Safe call
	Elvis operator
	Not null assertion
	Let

	Nullability and Java
	Casts
	Safe/unsafe cast operator
	Smart casts
	Type smart casts
	Non-nullable smart cast

	Primitive data types
	Numbers
	Char
	Arrays
	The Boolean type

	Composite data types
	Strings
	String templates

	Ranges
	Collections

	Statements versus expressions
	Control flow
	The if statement
	The when expression
	Loops
	The for loop
	The while loop
	Other iterations
	Break and continue

	Exceptions
	The try... catch block

	Compile-time constants
	Delegates
	Summary

	Playing with Functions
	Basic function declaration and usages
	Parameters
	Returning functions

	Vararg parameter
	Single-expression functions
	Tail-recursive functions
	Different ways of calling a function
	Default arguments values
	Named arguments syntax

	Top-level functions
	Top-level functions under the hood
	Local functions
	Nothing return type
	Summary

	Classes and Objects
	Classes
	Class declaration

	Properties
	Read-write versus read-only property
	Property access syntax between Kotlin and Java
	Increment and decrement operators

	Custom getters/setters
	The getter versus property default value

	Late-initialized properties
	Annotating properties
	Inline properties

	Constructors
	Property versus constructor parameter
	Constructor with default arguments
	Patterns

	Inheritance
	The JvmOverloads annotation

	Interfaces
	Data classes
	The equals and hashCode method
	The toString method
	The copy method
	Destructive declarations

	Operator overloading
	Object declaration
	Object expression
	Companion objects
	Companion object instantiation

	Enum classes
	Infix calls for named methods
	Visibility modifiers
	Internal modifier and Java bytecode

	Sealed classes
	Nested classes
	Import aliases
	Summary

	Functions as First-Class Citizens
	Function type
	What is function type under the hood?

	Anonymous functions
	Lambda expressions
	Implicit name of a single parameter

	Higher-order functions
	Providing operations to functions
	Observer (Listener) pattern
	Callback after a threaded operation

	Combination of named arguments and lambda expressions
	Last lambda in argument convention
	Named code surrounding
	Processing data structures using LINQ style

	Java SAM support in Kotlin
	Named Kotlin function types
	Named parameters in function type
	Type alias

	Underscore for unused variables
	Destructuring in lambda expressions
	Inline functions
	The noinline modifier
	Non-local returns
	Labeled return in lambda expressions
	Crossinline modifier
	Inline properties

	Function References
	Summary

	Generics Are Your Friends
	Generics
	The need for generics
	Type parameters versus type arguments

	Generic constraints
	Nullability

	Variance
	Variance modifiers
	Use-site variance versus declaration-site variance
	Collection variance
	Variance producer/consumer limitation
	Invariant constructor

	Type erasure
	Reified type parameters
	The startActivity method

	Star-projections
	Type parameter naming conventions
	Summary

	Extension Functions and Properties
	Extension functions
	Extension functions under the hood
	No method overriding
	Access to receiver elements
	Extensions are resolved statically

	Companion object extensions
	Operator overloading using extension functions
	Where should top-level extension functions be used?

	Extension properties
	Where should extension properties be used?

	Member extension functions and properties
	Type of receivers
	Member extension functions and properties under the hood

	Generic extension functions
	Collection processing
	Kotlin collection type hierarchy
	The map, filter, flatMap functions
	The forEach and onEach functions
	The withIndex and indexed variants
	The sum, count, min, max, and sorted functions
	Other stream processing functions
	Examples of stream collection processing
	Sequence

	Function literals with receiver
	Kotlin standard library functions
	The let function
	Using the apply function for initialization
	The also function
	The run and with function
	The to function

	Domain-specific language
	Anko

	Summary

	Delegates
	Class delegation
	Delegation pattern
	Decorator pattern

	Property delegation
	What are delegated properties?
	Predefined delegates
	The lazy function
	The notNull function
	The observable delegate
	The vetoable delegate
	Property delegation to Map type

	Custom delegates
	View binging
	Preference binding
	Providing a delegate

	Summary

	Making Your Marvel Gallery Application
	Marvel Gallery
	How to use this chapter
	Make an empty project
	Character gallery
	View implementation
	Network definition
	Business logic implementation
	Putting it all together

	Character search
	Character profile display

	Summary

