

Google	Cloud	Platform	for	Architects

	

	

	

	

	

	

Design	and	manage	powerful	cloud	solutions

	

	

	

	

	

	

	

Vitthal	Srinivasan
Janani	Ravi
Judy	Raj

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Google	Cloud	Platform	for	Architects
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	authors,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Vijin	Boricha
Acquisition	Editor:	Rohit	Rajkumar
Content	Development	Editor:	Abhishek	Jadhav
Technical	Editor:	Mohd	Riyan	Khan
Copy	Editors:	Safis	Editing,	Dipti	Mankame
Project	Coordinator:	Judie	Jose
Proofreader:	Safis	Editing
Indexer:	Priyanka	Dhadke
Graphics:	Tom	Scaria
Production	Coordinator:	Shantanu	Zagade

First	published:	June	2018

Production	reference:	1220618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78883-430-8

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	authors
Vitthal	Srinivasan	is	a	Google	Cloud	Platform	Authorized	Trainer	and	certified
Google	Cloud	Architect	and	Data	Engineer.	Vitthal	holds	master's	degrees	in
math	and	electrical	engineering	from	Stanford	and	an	MBA	from	INSEAD.	He
has	worked	at	Google	as	well	as	at	other	large	firms,	such	as	Credit	Suisse	and
Flipkart.	He	is	currently	in	Loonycorn,	a	technical	video	content	studio,	of	which
he	is	a	cofounder.

	

Janani	Ravi	is	a	certified	Google	Cloud	Architect	and	Data	Engineer.	She	has
earned	her	master's	degree	in	electrical	engineering	from	Stanford.	She	is
currently	in	Loonycorn,	a	technical	video	content	studio,	of	which	she	is	a
cofounder.	Prior	to	co-founding	Loonycorn,	she	worked	at	various	leading
companies,	such	as	Google	and	Microsoft,	for	several	years	as	a	software
engineer.

I	would	like	to	thank	my	family,	dogs,	colleagues	at	Loonycorn,	and	friends	for	making	life	so	much	fun!

	

Judy	Raj	is	a	Google	Certified	Professional	Cloud	Architect,	and	she	has	great
experience	with	the	three	leading	cloud	platforms,	namely	AWS,	Azure,	and	the
GCP.	She	has	also	worked	with	a	wide	range	of	technologies	in	machine
learning,	data	science,	IoT,	robotics,	and	mobile	and	web	app	development.	She
is	currently	a	technical	content	engineer	in	Loonycorn.	She	holds	a	degree	in
computer	science	and	engineering	from	Cochin	University	of	Science	and
Technology.	Being	a	driven	engineer	fascinated	with	technology,	she	is	a
passionate	coder,	an	AI	enthusiast,	and	a	cloud	aficionado.

I'd	like	to	thank	my	coauthors	and	colleagues	for	all	the	support	and	encouragement	I've	received.	I'd	also
like	to	thank	God	and	my	parents	for	everything	that	I	am	and	everything	I	aspire	to	be.

	

About	the	reviewer
Tim	Berry	is	a	systems	architect	and	software	engineer	with	over	20	years	of
experience	in	building	enterprise	infrastructure	and	systems	on	the	internet	and
mobile	platforms.	He	currently	leads	a	team	of	SREs	building	customer	solutions
on	Google	Cloud	Platform	for	a	managed	services	provider	in	the	UK.	Tim	is	a
Google	Certified	Professional	Cloud	Architect	and	Data	Engineer,	a	Red	Hat
Certified	Engineer,	and	systems	administrator.	He	holds	Red	Hat	Certified
Specialist	status	for	configuration	management	and	containerized	application
development.

I	would	like	to	thank	my	wife,	Sophie,	for	her	patience	and	inspiration;	my	amazing	kids,	Josh,	Ellie,
Tommy,	Isaac,	and	Noah	for	making	me	laugh;	and	my	parents	for	always	supporting	me.	I'd	also	like	to
say	hi	to	my	dogs,	Ruby,	Lilo,	and	Belle,	and	ask	them	to	get	down	now	please	because	I'm	working.

	

Nisarg	M.	Vasavada	is	a	content	engineer	in	Loonycorn.	He	has	pursued	his
master's	in	engineering	at	GTU,	and	he	has	been	an	active	member	of	technical
education	and	research	community	with	his	publications.	He	loves	writing	and
believes	that	simplifying	complexities	is	the	biggest	responsibility	of	an	author.

Being	a	part	of	this	book's	writing	process	was	absolutely	insightful.	I	would	like	to	thank	and	dedicate	this
book	to	my	family,	colleagues,	and	mentors	for	always	looking	after	me.	Also,	lots	of	love	and	warmth	to	my
feline	and	canine	siblings!

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Google	Cloud	Platform	for	Architects

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	authors

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Conventions	used

Get	in	touch

Reviews

1.	 The	Case	for	Cloud	Computing

Genesis

Why	Google	Cloud	Platform	(GCP)?

Autoscaling	and	autohealing

Capital	expenditure	(CAPEX)	versus	operating	expenses	(OPEX)

Career	implications

Summary

2.	 Introduction	to	Google	Cloud	Platform

Global,	regional,	and	zonal	resources

Accessing	the	Google	Cloud	Platform

Projects	and	billing

Setting	up	a	GCP	account

Using	the	Cloud	Shell

Summary

3.	 Compute	Choices	–	VMs	and	the	Google	Compute	Engine

Google	Compute	Engine –	GCE

Creating	VMs

Creating	a	VM	instance	using	the	web	console

Creating	a	VM	instance	using	the	command	line

VM	customization	options

Operating	system

Compute	zone

Machine	type

Networks	–	aka	VPCs

Storage	options

Persistent	disks	and	local	SSDs –	block	storage	for	GCE

Understanding	persistent	disks	and	local	SSDs

Creating	and	attaching	a	persistent	disk

Linux	procedure	for	formatting	and	mounting	a	persistent	disk

Sharing	a	persistent	disk	between	multiple	instances

Resizing	a	persistent	disk

More	on	working	with	GCE	VMs

Rightsizing	recommendations

Availability	policies

Auto-restart

Preemptibillity

Load	balancing

Autoscaling	and	managed	instance	groups

Billing

Labels	and	tags

Startup	scripts

Snapshots	and	images

How	to	snapshot	a	disk

How	to	create	an	image	of	a	disk

Cloud	launcher

Deploying	LAMP	stack	using	GCE

Modifying	GCE	VMs

Summary

4.	 GKE,	App	Engine,	and	Cloud	Functions

GKE

Contrasting	containers	and	VMs

What	is	a	container?

Docker	containers	and	Kubernetes	–	complements,	not	substitutes

GKE

Creating	a	Kubernetes	cluster	and	deploying	a	WordPress	container

Using	the	features	of	GKE

Storage	and	persistent	disks

Load	balancing

Auto	scaling

Scaling	nodes	with	the	cluster	autoscaler

Scaling	pods	with	the	horizontal	pod	autoscaler

Multi-zone	clusters

Cloud	VPN	integration

Rolling	updates

The	container	registry

Federated	clusters

Google	App	Engine	–	flexible

Hosted	Docker	containers	with	App	Engine	Flex

Running	a	simple	Python	application	with	App	Engine	Flex

Cron	Jobs	with	App	Engine	Flex

Advantages	of	GKE	over	Docker	on	VMs	or	App	Engine	Flex

Google	App	Engine	–	standard

Hosted	web	apps	with	App	Engine	Standard

Typical	App	Engine	architecture

Deploying	and	running	on	App	Engine	Standard

Traffic	splitting

Serverless	compute	with	cloud	functions

Cloud	Functions	triggered	by	HTTP

Cloud	Functions	triggered	by	Pub/Sub

Cloud	functions	triggered	by	GCS	object	notifications

Summary

5.	 Google	Cloud	Storage	–	Fishing	in	a	Bucket

Knowing	when	(and	when	not)	to	use	GCS

Serving	Static	Content	with	GCS	Buckets

Storage	classes–Regional,	multi-regional,	nearline,	and	coldline

Working	with	GCS	buckets

Creating	buckets

Creating	buckets	using	the	web	console

Creating	buckets	using	gsutil

Changing	the	storage	class	of	bucket	and	objects

Transferring	data	in	and	out	of	buckets

Uploading	data	to	buckets	using	the	web	console

Uploading	data	to	buckets	using	gsutil

Copying	data	between	buckets	using	the	web	console

Copying	data	between	buckets	using	the	gsutil	command	line

Using	the	Transfer	Service	(instead	of	gsutil	or	the	web	console)

Transfer	Service	or	gsutil?

Use	case	–	Object	Versioning

Object	versioning	in	the	Cloud	Storage	bucket

Use	case	–	object	life	cycle	policies

Managing	bucket	life	cycle	using	the	web	console

Manipulating	object	life-cycle	via	JSON	file

Deleting	objects	permanently	using	the	web	console

Deleting	objects	permanently	using	gsutil

Use	case	–	restricting	access	with	both	ACLs	and	IAM

Managing	permissions	in	bucket	using	the	GCP	console

Use	case	–	signed	and	timed	URLs

Setting	up	signed	URLs	for	cloud	storage

Use	case	–	reacting	to	object	changes

Setting	up	object	change	notifications	with	the	gsutil	notification	watch

bucket

Use	case	–	using	customer	supplied	encryption	keys

Use	case	–	auto-syncing	folders

Use	case	–	mounting	GCS	using	gcsfuse

Mounting	GCS	buckets

Use	case	–	offline	ingestion	options

Summary

6.	 Relational	Databases

Relational	databases,	SQL,	and	schemas

OLTP	and	the	ACID	properties

Scaling	up	versus	scaling	out

GCP	Cloud	SQL

Creating	a	Cloud	SQL	instance

Creating	a	database	in	a	Cloud	SQL	instance

Importing	a	database

Testing	Cloud	SQL	instances

Use	case – managing	replicas

Use	case –	managing	certificates

Use	case –	operating	Cloud	SQL	through	VM	instances

Automatic	backup	and	restore

Cloud	Spanner

Creating	a	Cloud	Spanner	instance

Creating	a	database	in	Cloud	Spanner	instances

Querying	a	database	in	a	Cloud	Spanner	instance

Interleaving	tables	in	Cloud	Spanner

Summary

7.	 NoSQL	Databases

NoSQL	databases

Cloud	Bigtable

Fundamental	properties	of	Bigtable

Columnar	datastore

Denormalization

Support	for	ACID	properties

Working	with	Bigtable

When	to	use	Bigtable

Solving	hot-spotting

Choosing	storage	for	Bigtable

Solving	performance	issues

Ideal	row	key	choices

Performing	operations	on	Bigtable

Creating	and	operating	an	HBase	table	using	Cloud	Bigtable

Exporting/Importing	a	table	from	Cloud	Bigtable

Scaling	GCP	Cloud	BigTable

The	Google	Cloud	Datastore

Comparison	with	traditional	databases

Working	with	Datastore

When	to	use	Datastore

Full	indexing	and	perfect	index

Using	Datastore

Summary

8.	 BigQuery

Underlying	data	representation	of	BigQuery

BigQuery	public	datasets

Legacy	versus	standard	SQL

Working	with	the	BigQuery	console

Loading	data	into	a	table	using	BigQuery

Deleting	datasets

Working	with	BigQuery	using	CLI

BigQuery	pricing

Analyzing	financial	time	series	with	BigQuery

Summary

9.	 Identity	and	Access	Management

Resource	hierarchy	of	GCP

Permissions	and	roles

Units	of	identity	in	GCP

Creating	a	Service	Account

Working	with	cloud	IAM	–	grant	a	role

Working	with	IAM	–	creating	a	custom	role

Summary

10.	 Managing	Hadoop	with	Dataproc

Hadoop	and	Spark

Hadoop	on	the	cloud

Google	Cloud	Dataproc

Compute	options	for	Dataproc

Working	with	Dataproc

Summary

11.	 Load	Balancing

Why	load	balancers	matter	now

Taxonomy	of	GCP	load	balancers

HTTP(S)	load	balancing

Configuring	HTTP(S)	load	balancing

Configuring	Internal	Load	Balancing

Other	load	balancing

Summary

12.	 Networking	in	GCP

Why	GCP's	networking	model	is	unique

VPC	networks	and	subnets

The	default	VPC

Internal	and	external	IP	addresses

VPN	and	cloud	router

Working	with	VPCs

Working	with	custom	subnets

Working	with	firewall	rules

Summary

13.	 Logging	and	Monitoring

Logging

Working	with	logs

More	Stackdriver	–	creating	log-based	metrics

Monitoring

Summary

14.	 Infrastructure	Automation

Managed	Instance	Groups

Cloud	deployment	manager

Summary

15.	 Security	on	the	GCP

Security	features	at	Google	and	on	the	GCP

Google-provided	tools	and	options	for	security

Some	security	best	practices

BeyondCorp –	Identity-Aware	Proxy

Summary

16.	 Pricing	Considerations

Compute	Engine

BigTable

BigQuery

Datastore

Cloud	SQL

Google	Kubernetes	Engine

Pub/Sub

Cloud	ML	Engine

Stackdriver

Video	Intelligence	API

Key	Management	Service	–	KMS

Vision	API

Summary

17.	 Effective	Use	of	the	GCP

Eat	the	Kubernetes	frog

Careful	that	you	don't	get	nickel-and-dimed

Pay	for	what	you	allocate	not	what	you	use

Make	friends	with	the	gsuite	admins

Try	to	find	reasons	to	use	network	peering

Understand	how	sustained	use	discounts	work

Read	the	fine	print	on	GCS	pricing

Use	BigQuery	unless	you	have	a	specific	reason	not	to

Use	pre-emptible	instances	in	your	Dataproc	clusters

Keep	your	Dataproc	clusters	stateless

Understand	the	unified	architecture	for	batch	and	stream

Understand	the	main	choices	for	ML	applications

Understand	the	differences	between	snapshots	and	images

Don't	be	Milton!

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
The	Google	Cloud	Platform	is	fast	emerging	as	a	leading	public	cloud	provider.
The	GCP,	as	it	is	popularly	known,	is	backed	by	Google’s	awe-inspiring
engineering	expertise	and	infrastructure,	and	is	able	to	draw	upon	the	goodwill
and	respect	that	Google	has	come	to	enjoy.	The	GCP	is	one	of	a	handful	of
public	cloud	providers	to	offer	the	full	range	of	cloud	computing	services,
ranging	from	Infrastructure	as	a	Service	(IaaS)	to	Platform	as	a	Service	(PaaS).
There	is	another	reason	why	the	GCP	is	fast	gaining	popularity;	genre-defining
technologies	such	as	TensorFlow	and	Kubernetes	originated	at	Google	before
being	open-sourced,	and	the	GCP	is	a	natural	choice	of	cloud	on	which	to	run
them.	If	you	are	a	cloud	professional	today,	time	spent	on	mastering	the	GCP	is
likely	to	be	an	excellent	investment.

Using	a	public	cloud	platform	was	considered	risky	a	decade	ago	and
unconventional	even	just	a	few	years	ago.	Today,	however,	the	use	of	the	public
cloud	is	completely	mainstream—the	norm,	rather	than	the	exception.	Several
leading	technology	firms,	including	Google,	have	built	sophisticated	cloud
platforms,	and	they	are	locked	in	a	fierce	competition	for	market	share.

The	main	goal	of	this	book	is	to	enable	you	to	get	the	best	out	of	the	GCP	and	to
use	it	with	confidence	and	competence.	You	will	learn	why	cloud	architectures
take	the	forms	that	they	do,	and	this	will	help	you	to	become	a	skilled,	high-level
cloud	architect.	You	will	also	learn	how	individual	cloud	services	are	configured
and	used	so	that	you	are	never	intimidated	at	having	to	build	it	yourself.	You	will
also	learn	the	right	way	and	the	right	situation	in	which	to	use	the	important	GCP
services.

By	the	end	of	this	book,	you	will	be	able	to	make	the	most	out	of	Google	Cloud
Platform	design.

Who	this	book	is	for
If	you	are	a	Cloud	architect	who	is	responsible	for	designing	and	managing
robust	cloud	solutions	with	Google	Cloud	Platform,	then	this	book	is	for	you.
System	engineers	and	Enterprise	architects	will	also	find	this	book	useful.	A
basic	understanding	of	distributed	applications	would	be	helpful,	although	not
strictly	necessary.	Some	working	experience	on	other	public	cloud	platforms
would	help	too.

	

What	this	book	covers
Chapter	1,	The	Case	for	Cloud	Computing,	starts	with	the	brief	history	of	cloud
computing.	Furthermore,	the	chapter	delves	into	autohealing	and	autoscaling.

Chapter	2,	Introduction	to	Google	Cloud	Platform,	gets	you	into	the	nitty-gritty	of
the	Google	Cloud	Platform,	describing	the	diversity	and	versatility	of	the
platform	in	terms	of	the	resources	available	to	us.

Chapter	3,	Compute	Choices	–	VMs	and	the	Google	Compute	Engine,	explores
GCE,	which	serves	as	an	IaaS	provision	of	GCP.	You	will	learn	to	create	GCE
VMs,	along	with	its	various	aspects	such	as	disk	type	and	machine	types.

Chapter	4,	GKE,	AppEngine,	and	Cloud	Functions,	discusses	the	four	compute
options	on	the	GCP,	ranging	from	IaaS	through	PaaS.

Chapter	5,	Google	Cloud	Storage	–	Fishing	in	a	Bucket,	gets	you	familiar	with
GCS	and	gives	an	idea	of	where	it	would	fit	within	with	your	overall
infrastructure.

Chapter	6,	Relational	Databases,	introduces	you	to	RDMS	and	SQL.	We	further
dive	deep	into	Cloud	SQL	and	Cloud	Spanner	that	are	available	under	GCP.

Chapter	7,	NoSQL	Databases,	takes	you	through	Bigtable	and	Datastore.	This
chapter	explains	how	Bigtable	is	used	for	large	datasets,	whereas	on	the	other
hand,	Datastore	is	meant	for	far	smaller	data.

Chapter	8,	BigQuery,	teaches	you	about	the	architecture	of	BigQuery	and	how	it	is
Google’s	fully	managed	petabyte-scale	serverless	database.

Chapter	9,	Identity	and	Access	Management,	dives	into	how	IAM	lets	you	control
access	to	all	of	the	GCP	resources	in	terms	of	roles	and	permissions.

Chapter	10,	Managing	Hadoop	with	Dataproc,	helps	you	to	understand	Dataproc
as	a	managed	and	cost-effective	solution	for	Apache	Spark	and	Hadoop
workloads.

Chapter	11,	Load	Balancing,	takes	you	through	HTTP,	TCP,	and	network	load
balancing	with	reference	to	its	concepts	and	implementation.

Chapter	12,	Networking	in	GCP,	teaches	you	about	Virtual	Private	Cloud
Networks	of	GCP	and	their	infrastructure	and	how	to	create	and	manage	our	own
VPC	networks.

Chapter	13,	Logging	and	Monitoring,	discusses	how	Stackdriver	offers	logging
and	monitoring	services	of	GCP	resources	for	free	up	to	a	certain	quota	and	then
monitoring	both	GCP	and	AWS	resources	for	premium	account	holders.

Chapter	14,	Infrastructure	Automation,	delves	into	the	idea	of	how	provisioning
resources	can	be	done	programmatically,	using	templates,	commands,	and	even
code.

Chapter	15,	Security	on	the	GCP,	mostly	covers	things	such	as	how	Google	has
planned	for	security	on	the	GCP.

Chapter	16,	Pricing	Considerations,	helps	avoid	sticker-shock	and	sudden
unpleasant	surprises	regarding	the	pricing	of	the	services	that	you	use.

Chapter	17,	Effective	Use	of	the	GCP,	sharpens	all	of	the	GCP	features	and
offerings	that	you	learned	in	the	previous	chapters	to	make	sure	that	we	conclude
our	journey	on	a	satisfactory	note.

To	get	the	most	out	of	this	book
1.	 First,	go	breadth-first.	Read	each	chapter	rapidly,	paying	particular	attention

to	the	early	bits	and	to	the	rhymes.	They	summarize	the	key	points.
2.	 Don’t	forget	to	laugh	while	reading	the	rhymes!	Seriously,	pay	attention	to

each	line	in	the	rhymes	as	they	are	particularly	packed	with	information.
3.	 After	you	finish	going	through	the	entire	book	quickly,	come	back	to	the

chapters	that	relate	to	your	specific	use	cases	and	go	through	them	in	detail.
4.	 For	the	drills	in	the	book,	understand	what	step	is	trying	to	accomplish,	then

try	it	out	on	your	own.	In	particular,	also	search	for	online	updates	for	your
most	important	use	cases—the	world	of	cloud	computing	and	the	GCP	is
changing	incredibly	fast.

	

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"A	public	dataset	named	samples.natality	is	queried"

A	block	of	code	is	set	as	follows:

#standardSQL	

SELECT	

	weight_pounds,	state,	year,	gestation_weeks	

FROM	

	`bigquery-public-data.samples.natality`	

ORDER	BY	weight_pounds	DESC	LIMIT	10;	

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:	#standardSQL	
SELECT	
weight_pounds,	state,	year,	gestation_weeks	
FROM	
`bigquery-public-data.samples.natality`	
ORDER	BY	weight_pounds	DESC	LIMIT	10;

Any	command-line	input	or	output	is	written	as	follows:

curl	-f	-O	http://repo1.maven.org/maven2/com/google/cloud/bigtable/bigtable-beam-

import/1.1.2/bigtable-beam-import-1.1.2-shaded.jar

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"To	upload	the	datafile,	click	on	the	Choose	file	button."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

The	Case	for	Cloud	Computing
	

Cloud	computing	is	a	pretty	big	deal	in	the	world	of	technology,	and	in	addition
it	is	also	a	pretty	big	deal	for	those	who	are	not	quite	in	technology.	Some
developments,	for	instance,	the	rise	of	Java	and	object-oriented	programming,
were	momentous	changes	for	people	who	were	completely	into	technology	at	the
time,	but	it	was	rare	for	a	non-technical	person	to	have	to	wake	up	in	the
morning,	read	the	newspaper	and	ask	themselves,	Wow,	this	Java	thing	is	getting
pretty	big,	will	this	affect	my	career?	Cloud	computing,	perhaps	like	machine
learning	or	Artificial	Intelligence	(AI),	is	different;	there	is	a	real	chance	that	it,
by	itself,	will	affect	the	lives	of	people	far	beyond	the	world	of	technology.	Let's
understand	why.

You	will	learn	the	following	topics	in	this	chapter:

A	brief	history	of	cloud	computing
Autohealing	and	autoscaling—good	technical	reasons	for	moving	to	the
cloud
Some	good	financial	reasons	for	moving	to	the	cloud
Possible	implications	of	cloud	computing	on	your	career

	

	

Genesis
In	the	beginning,	Jeff	Bezos	created	Amazon.com	and	took	the	company	to	a
successful	Initial	Public	Offering	(IPO)	by	1997.	Everyone	knows	Amazon.com,	of
course,	and	it	has	become	a	force	of	nature,	dominating	the	online	retail	and
diversifying	into	several	other	fields.	However,	in	the	early	2000s,	after	the
Dotcom	bubble	burst,	the	company's	future	was	not	quite	as	certain	as	now.	Even
so,	one	of	the	many	things	that	Amazon	was	doing	right	even	then	was
architecting	its	internal	computer	systems	in	a	truly	robust	and	scalable	way.

Amazon	had	a	lot	of	users	and	a	lot	of	traffic,	and	in	order	to	service	that	traffic,
the	company	really	had	to	think	deeply	about	how	to	build	scalable,	cost-
effective	compute	capacity.	Now	you	could	argue	rightly	that	other	companies
had	to	think	about	the	same	issues	too.	Google	also	had	a	lot	of	users	and	a	lot	of
traffic,	and	it	had	to	think	really	carefully	about	how	to	handle	it.	Even	so,	most
observers	agree	that	a	couple	of	important	differences	existed	between	the	two
giants.	For	one,	Google's	business	was	(and	is)	fundamentally	a	far	more
profitable	one,	which	means	that	Google	could	always	afford	to	overinvest	in
compute,	secure	in	the	knowledge	that	its	money	printing	press	in	the	ad
business	would	cover	the	costs.	For	another,	Google's	primary	technical
challenges	came	in	processing	and	making	sense	of	vast	quantities	of	data	(it
was	basically	indexing	the	entire	internet	for	Google	Search).	Amazon's	primary
technical	challenges	lay	around	making	sure	that	the	inherently	spiky	traffic	of
their	hundreds	of	millions	of	users	was	serviced	just	right.	The	spiky	nature	of
consumer	traffic	remains	a	huge	consideration	for	any	online	retail	firm.	Just
consider	Alibaba,	which	did	$25	billion	in	sales	on	Singles	Day	(11/11)	in	2017.

Somewhere	along	the	line,	Amazon	realized	that	it	had	created	something	really
cool:	a	set	of	APIs	and	services,	a	platform	in	fact	that	external	customers	would
be	willing	to	pay	for,	and	that	would	help	Amazon	monetize	excess	server
capacity	it	had	lying	about.	Let's	not	underestimate	the	magnitude	of	that
achievement;	plenty	of	companies	have	overinvested	in	servers	and	have	extra
capacity	lying	around,	but	virtually	none	of	them	have	built	a	platform	that	other
external	customers	are	willing	and	able	to	use	and	to	pay	top	dollar	for.

So,	in	2006,	Amazon	launched	Elastic	Compute	Cloud	(EC2),	basically,	cloud
Virtual	Machine	(VM)	instances,	and	Simple	Storage	Service	(S3),	basically,
elastic	object	storage,	which	to	this	day	are	the	bedrock	of	the	AWS	cloud
offerings.	Along	the	way,	the	other	big	firms	with	the	money	and	technical	know
how	to	offer	such	services	jumped	in	as	well.	Microsoft	launched	Azure	in	2010,
and	Google	had	actually	gotten	into	the	act	even	earlier,	in	2008,	with	the	launch
of	App	Engine.

Notice	how	Amazon's	first	product	offerings	were	basically	Infrastructure	as	a
service	(IaaS),	whereas	Google's	initial	offering	was	a	Platform	as	a	service
(PaaS).	That	is	a	significant	fact	and	with	the	benefit	of	hindsight,	a	significant
mistake	on	Google's	part.	If	you	are	a	large	organization,	circa	2010,	and
contemplating	moving	to	the	cloud,	you	are	unlikely	to	bet	the	house	on	moving
to	an	untested	cloud-specific	platform	such	as	App	Engine.	The	path	of	least
resistance	for	big	early	adopters	is	definitely	the	IaaS	route.	The	first-mover
advantage	and	the	smart	early	focus	on	IaaS	helped	Amazon	open	up	a	huge	lead
in	the	cloud	market,	one	which	they	still	hold	on	to.

In	recent	years,	however,	a	host	of	other	cloud	providers	have	crowded	into	the
cloud	space,	notably	Microsoft	and,	to	a	lesser	extent,	Google.	That	partially	has
to	do	with	the	economics	of	the	cloud	business;	Amazon	first	broke	out	the
financials	of	AWS	separately	in	April	2015	and	stunned	the	world	with	its	size
and	profitability.	Microsoft	missed	a	few	important	big	trends	in	computing,	but
after	Satya	Nadella	replaced	Steve	Ballmer	at	the	helm,	he	really	made	the	cloud
a	company-wide	priority	in	a	way	that	mobile,	search,	and	hardware	never	were.
The	results	are	obvious,	and	if	you	are	a	Microsoft	shareholder,	very	gratifying.
Microsoft	is	probably	the	momentum	player	in	the	cloud	market	right	now;
many	smart	observers	have	realized	that	Azure	is	challenging	AWS	despite	the
still-significant	differences	between	their	market	shares.

Why	Google	Cloud	Platform	(GCP)?
	

Okay,	you	say,	all	fine	and	good:	if	AWS	is	the	market	leader,	and	Azure	is	the
momentum	player,	then	why	exactly	are	we	reading	and	writing	a	book	about	the
Google	Cloud	Platform?	That's	an	excellent	question;	in	a	nutshell,	our
considered	view	is	that	the	GCP	is	a	great	technology	to	jump	into	right	now	for
a	few,	very	rational	reasons,	as	follows:

Demand-supply:	There	is	a	ton	of	demand	for	AWS	and	Azure
professionals,	but	there	is	also	a	ton	of	supply.	In	contrast,	there	is	growing
demand	for	the	GCP,	but	not	yet	all	that	much	supply	of	highly	skilled	GCP
professionals.	Careers	are	made	by	smart	bets	on	technologies	like	this	one.
PaaS	versus	IaaS:	Notice	how	we	called	out	Amazon	for	being	smart	in
focusing	on	IaaS	early	on.	That	made	a	lot	of	sense	when	cloud	computing
was	new	and	untested.	Now,	however,	everyone	trusts	the	cloud;	that	model
works,	and	people	know	it.	This	means	that	folks	are	now	ready	to	give	up
control	in	return	for	great	features.	PaaS	is	attractive	now,	and	GCP's	PaaS
offerings	are	very	competitive	relative	to	its	competitors.
Kubernetes	for	hybrid,	multi-cloud	architectures:	You	may	or	may	not
have	heard	about	this,	but	Amazon	acquired	a	US-based	grocery	chain,
Whole	Foods,	some	time	ago.	It	gave	many	current	and	potential	AWS
consumers	pause	for	thought,	what	if	Amazon	buys	up	a	company	in	my
sector	and	starts	competing	with	me?	As	a	result,	more	organizations	are
likely	to	want	a	hybrid,	multi-cloud	architecture	rather	than	to	tie
themselves	to	any	one	cloud	provider.	The	term	hybrid	implies	that	both	on-
premise	data	centers	and	public	cloud	resources	are	used,	and	multi-cloud
refers	to	the	fact	that	more	than	one	cloud	provider	is	in	the	game.	Now,	if
the	world	does	go	the	hybrid,	multi-cloud	way,	one	clear	winner	is	likely	to
be	a	container	orchestration	technology	named	Kubernetes.	If	that	does
happen,	GCP	is	likely	to	be	a	big	beneficiary.	Kubernetes	was	developed	at
Google	before	being	open-sourced,	and	the	GCP	offers	great	support	for
Kubernetes.

	

	

Autoscaling	and	autohealing
The	technical	rationale	for	moving	to	the	cloud	can	often	be	summed	up	in	two
words—autoscaling	and	autohealing.

Autoscaling:	The	idea	of	autoscaling	is	simple	enough	although	the
implementations	can	get	quite	involved—apps	are	deployed	on	compute,
the	amount	of	compute	capacity	increases	or	decreases	depending	on	the
level	of	incoming	client	requests.	In	a	nutshell,	all	the	public	cloud
providers	have	services	that	make	autoscaling	and	autohealing	easily
available.	Autoscaling,	in	particular,	is	a	huge	deal.	Imagine	a	large	Hadoop
cluster,	with	say	1,000	nodes.	Try	scaling	that;	it	probably	is	a	matter	of
weeks	or	even	months.	You'd	need	to	get	and	configure	the	machines,
reshard	the	data	and	jump	through	a	trillion	hoops.	With	a	cloud	provider,
you'd	simply	use	an	elastic	version	of	Hadoop	such	as	Dataproc	on	the	GCP
or	Elastic	MapReduce	(EMR)	on	AWS	and	you'd	be	in	business	in
minutes.	This	is	not	some	marketing	or	sales	spiel;	the	speed	of	scaling	up
and	down	on	the	cloud	is	just	insane.

Here’s	a	little	rhyme	to	help	you	remember	the	main	point	of	our
conversation	here—we’ll	keep	using	them	throughout	the	remainder	of
the	book	just	to	mix	things	up	a	bit.	Oh,	and	they	might	sometimes
introduce	a	few	new	terms	or	ideas	that	will	be	covered	at	length	in	the
following	sections,	so	don’t	let	any	forward	references	bother	you	just
yet!

Autohealing:	The	idea	of	autohealing	is	just	as	important	as	that	of
autoscaling,	but	it	is	less	explicitly	understood.	Let's	say	that	we	deploy	an
app	that	could	be	a	Java	JAR,	Python	package,	or	Docker	container	to	a	set
of	compute	resources,	which	again	could	be	cloud	VMs,	App	Engine
backends,	or	pods	in	a	Kubernetes	cluster.	Those	compute	resources	will
have	problems	from	time	to	time;	they	will	crash,	hang,	run	out	of	memory,
throw	exceptions,	and	misbehave	in	all	kinds	of	unpredictable	ways.	If	we
did	nothing	about	these	problems,	those	compute	resources	would
effectively	be	out	of	action,	and	our	total	compute	capacity	would	fall	and,
sooner	or	later,	become	insufficient	to	meet	client	requests.	So,	clearly,	we
need	to	somehow	detect	whether	our	compute	resources	got	sick,	and	then
heal	them.	In	the	pre-cloud	days,	this	would	have	been	pretty	manual,	some
poor	sap	of	an	engineer	would	have	to	nurse	a	bare	metal	or	VM	back	to
health.	Now,	with	cloud-based	abstractions,	individual	compute	units	are
much	more	expendable.	We	can	just	take	them	down	and	replace	them	with
new	ones.	Because	these	units	of	compute	capacity	are	interchangeable	(or
fungible—a	fancier	word	that	means	the	same	thing),	autohealing	is	now
possible:

Capital	expenditure	(CAPEX)	versus
operating	expenses	(OPEX)
The	financial	considerations	for	moving	to	the	cloud	are	as	important	as	the
technical	ones,	and	it	is	important	for	architects	and	technical	cloud	folks	to
understand	these	so	that	we	don't	sound	dumb	while	discussing	these	at	cocktail
party	conversations	with	the	business	guys.

CAPEX	refers	to	a	large	upfront	spend	of	money	used	to	get	an	asset	(an
asset	is	a	resource	that	will	yield	benefits	over	time,	not	just	in	the	current
period)
OPEX	refers	to	smaller,	recurring	spends	of	money	for	current	period
benefit

Now,	that	the	last	line	in	the	previous	image	makes	clear	the	big	difference
between	using	the	cloud	versus	going	on-premise.	If	you	use	the	cloud,	you	don't
need	to	make	the	big	upfront	payment.	That	in	turn	has	several	associated
advantages:

No	depreciation:	When	you	buy	a	house,	hopefully,	it	appreciates,	but
when	you	buy	a	car,	it	loses	a	fourth	of	its	value	as	soon	as	you	drive	it	out
of	the	dealer's	parking	lot.	Depreciation	is	called	an	intangible	expense,	but
try	selling	a	barely	used	car,	and	you	will	find	it	tangible	enough.	With	the
cloud,	you	don't	worry	about	depreciation,	but	the	cloud	provider	does.
Transparency:	Let's	face	it	folks—big	contracts	are	complicated	and	have
been	known	to	have	big	payoffs	for	people	concerned.	This	is	a	reality	of
doing	business:	procurement	and	sourcing	are	messy	businesses	for	a
reason.	Using	the	cloud	is	far	more	transparent	and	simpler	for	internal
processes	and	audit
Flexibility	in	capacity	planning:	The	worlds	of	business	and	history	are

littered	with	unfulfilled	ambitions	and	unrealistic	plans	and	targets	that
went	nowhere.	Your	firm	might	have	a	target	to	triple	revenues	in	3	years:
such	ambitious	plans	are	common	enough.	If	you,	as	an	architect,	sign	off
on	a	commensurate	tripling	in	your	server	capacity	and	that	business
growth	does	not	happen,	the	finance	guys	will	come	asking	you	why
overspent	if	you	are	still	in	this	firm	3	years	down	the	line.	At	that	point,
you	will	likely	not	have	the	luxury	of	pointing	a	finger	at	the	CEO	who
launched	the	3X	plan.	He	likely	will	have	moved	on	adroitly	to	another
shiny	plan.

Note,	incidentally,	that	we	did	not	include	straight	cost	as	a	reason	to	move	to	the
cloud.	The	big	cloud	providers	are	all	rolling	in	the	money,	their	stock	prices	are
surging	on	the	heady	cocktail	of	high	revenue	growth	and	high	profitability.	The
cloud	business	is	a	great	business	to	be	in	if	you	can	get	in.	It	stands	to	reason
that	if	the	suppliers	of	cloud	services	are	doing	so	well	financially,	the
consumers	of	cloud	services	are	paying	for	it.	So,	cloud	services	are	not
necessarily	cheap,	they	do,	however,	offer	all	of	these	other	attractions	that	make
it	a	real	win-win	for	both	sides	in	the	bargain.

Career	implications
	

Our	considered	opinion	is	that	the	move	to	the	cloud	is	going	to	affect	a	lot	of
folks	more	than	they	expect.	In	particular,	employees	at	a	host	of	IT	services
companies	and	system	integrators	will	need	to	retool	fast.	Now	that's	not	to	say
that	these	companies	are	clear	losers,	because	the	cloud	services	are	pretty
complex	too	and	will	provide	lots	of	room	for	several	different	ecosystems.
Some	things	that	used	to	be	hard	will	now	be	easy,	and	some	things	that	used	to
be	easy	will	now	be	hard.	Workforces	will	need	to	be	retrained,	and	the
expectations	of	career	trajectories	will	need	to	be	changed.	So,	if	you	are	new	to
the	cloud	world,	here	are	three	topics	you	might	want	to	spend	time	really
understanding—these	are	now	a	lot	more	important	than	they	used	to	be:

Containers,	Docker,	and	Kubernetes
Load	balancers
IaaS	technologies	such	as	Terraform	or	Google	Cloud	Deployment	Manager

On	the	other	hand,	folks	who	are	in	the	following	teams	probably	need	to	think
long	and	hard	about	how	to	get	with	today's	(and	tomorrow's)	hot	technologies
because	the	cloud	is	radically	simplifying	what	they	currently	work	on:

Virtual	Machines	and	IaaS	sysadmins
Physical	networking,	router,	and	VPN	engineers
Hadoop	administrators

	

	

Summary
You	learned	about	the	rise	of	public	cloud	computing	and	how	GCP,	AWS,	and
Azure	came	to	where	they	currently	are	in	the	market.	We	also	examined	some
important	technical	reasons	for	switching	to	the	cloud.	We	looked	at	some	good
and	bad	financial	implications	of	moving	to	the	cloud.	Finally,	we	pointed	out
some	technologies	that	stand	to	gain	from	the	rise	of	the	cloud	and	some	others
that	stand	to	recede	in	relevance.

	

Introduction	to	Google	Cloud
Platform
	

Now	let's	get	into	the	nitty-gritty	of	the	Google	Cloud	Platform.	Any	cloud
platform	really	is	all	about	resources.	It	allows	you	to	use	resources	for	a	fee.
What's	cool	about	Cloud	Platforms	is	the	great	diversity	and	versatility	in	terms
of	what	resources	are	available	to	us.	This	might	include	hardware	such	as
virtual	machine	instances,	or	persistent	disks,	services	such	as	BigQuery	or
BigTable	or	even	more	complex	software	such	as	Cloud	ML	Engine	and	the
various	APIs	for	machine	learning.	But	in	addition	to	just	the	hardware	and
software,	there	is	a	lot	of	little	detailed	networking,	load	balancing,	logging,
monitoring,	and	so	on.	The	GCP,	like	other	major	cloud	platforms,	provides	a
great	variety	of	services;	take	load	balancing	for	instance,	GCP	load	balancing
options	span	to	four	different	layers	(that	is,	data	link,	network,	transport,	and
application	layers)	of	the	OSI	networking	stack.

You	will	learn	the	following	topics	in	this	chapter:

The	difference	between	regions	and	zones
The	organization	of	resources	in	a	GCP	project
Accessing	cloud	resources	using	Cloud	Shell	and	the	web	console

	

	

Global,	regional,	and	zonal	resources
Now,	of	course,	there	is	no	free	lunch	in	life	and	you	have	to	pay	for	(almost)	all
of	this,	and	the	payment	models	are	going	to	differ.	For	instance,	with	persistent
disks,	you	pay	for	the	capacity	that	you	allocate,	whereas	with	cloud	storage
buckets,	you	pay	for	the	capacity	that	you	actually	use.	However,	the	basic	idea
is	that	there	are	resources	that	will	be	billed.	All	billable	resources	are	grouped
into	entities	named	projects.

Let's	now	look	at	how	resources	are	structured.	The	way	the	Google	Cloud
Platform	operates,	all	resources	are	scoped	as	being	the	following:

Global
Regional
Zonal

Now	you	might	think	that	this	geographical	location	of	resources	is	an
implementation	detail	that	you	shouldn't	have	to	worry	about,	but	that's	only
partially	true.	The	scoping	actually	also	determines	how	you	architect	your	cloud
applications	and	infrastructure.

Regions	are	geographical	regions	at	the	level	of	a	subcontinent—the	central	US,
western	Europe,	or	east	Asia.	Zones	are	basically	data	centers	within	regions.
This	mapping	between	a	zone	and	a	data	center	is	loose,	and	it's	not	really
explicit	anywhere,	but	that	really	is	what	a	zone	is.

These	distinctions	matter	to	use	as	an	end	users	because	regional	and	zonal
resources	are	often	billed	and	treated	differently	by	the	platform.	You	will	pay
more	or	less	depending	on	the	choices	you	make	regarding	these	levels	of	scope
access.	The	reason	that	you	pay	more	or	less	is	that	there	are	some	implicit
promises	made	about	performance	within	regions.

For	instance,	the	Cloud	Docs	tell	us	that	zones	within	the	same	region	will
typically	have	network	latencies	in	the	order	of	less	than	5	milliseconds.	What
does	typical	mean?	Well	here,	it	is	the	95	percentile	delay	latency,	that	is,	95%	of
all	network	traffic	within	a	region	will	have	latency	of	less	than	5	ms.	That's	a

fancy	way	of	saying	that	within	a	region,	network	speeds	will	be	very	high,
whereas	across	regions,	those	speeds	will	be	slower.

Cost	and	latency	are	two	reasons	why	these	geographical	choices	are	important
to	you,	another	has	to	do	with	failure	locations.	Zones	can	be	thought	of	as
single	failure	domains	within	a	region.	Now	common	sense	says	that,	basically,
it	is	a	data	center,	so	you	might	want	to	create	different	versions	of	resources
situated	in	different	zones	or	even	in	regions	depending	on	your	budget	and	your
user	base.	That's	because	a	zone	is	a	single	failure	domain.	Zones	reside	inside
regions,	and	they	are	identified	using	the	name	of	the	corresponding	region	as
well	as	a	single	lowercase	letter,	asia-east1-a	for	instance.	A	zone	is	a	single	point
of	failure	in	Google's	data	center	network.	Zones	are	analogous	to	Availability
Zones	in	AWS.	If	you	replicate	resources	across	different	zones,	such
architecture	can	legitimately	be	termed	as	high-availability	architecture.

If	a	resource	is	available	globally,	it's	known	as	a	global	or	a	multiregional
resource.	These	multiregional	resources	tend	to	be	the	most	expensive,	the	most
available,	and	also	the	most	widely	replicated	and	backed	up	kind	of	resources.
One	level	down	come	regional	resources;	these	only	need	to	be	backed	up	to
different	data	centers	within	the	same	region	and	then	at	the	bottom	of	this
access	hierarchy	are	the	zonal	resources.	These	only	need	to	be	replicated	within
the	same	data	center.

There	are	lots	of	examples	in	each	of	these	categories,	for	instance,	tools	such	as
Cloud	Storage,	DataStore,	and	BigQuery.	All	of	this	can	be	global	or
multiregional;	this	makes	sense	intuitively,	as	we	expect	storage	technologies	to
be	global	rather	than	regional	(Cloud	SQL	and	BigTable	are	regional;	however,
Cloud	Spanner	can	be	either	regional	or	multiregional).

On	the	other	hand,	compute	tends	to	be	regional	or	zonal.	AppEngine	is	regional,
whereas	VM	instances	are	zonal.	Disk	storage	that	takes	the	format	of	either
persistent	ordinary	hard	disks	or	persistent	SSD	disks	is	zonal	as	well.	Disks
need	to	be	local,	and	they	need	to	be	in	the	same	zone	as	the	corresponding
virtual	machine	instance	they	are	used	by:

Region Location Zone

Northamerica-northeast1-a

Northamerica-
northeast1

Montreal,
Canada

Northamerica-northeast1-b

Northamerica-northeast1-c

Us-central1 Iowa,	USA

Us-central1-a

Us-central1-b

Us-central1-c

Us-central1-f

Us-west1 Oregon,
USA

Us-west1-a

Us-west1-b

Us-west1-c

Us-east4 Virginia,
USA

Us-east4-a

Us-east4-b

Us-east4-c

Us-east1
South

Carolina,
USA

Us-east1-b

Us-east1-c

Us-east1-d

Southamerica-
east1

Sao	Paulo,
Brazil

southamerica-east1-a

southamerica-east1-b

southamerica-east1-c

Europe-west1
St.

Ghislain,
Belgium

Europe-west1-b

Europe-west1-c

Europe-west1-d

Europe-west2 London,
England

Europe-west2-a

Europe-west2-b

Europe-west2-c

Europe-west3 Frankfurt,
Germany

Europe-west3-a

Europe-west3-b

Europe-west3-c

Europe-west4 Eemshaven,
Netherlands

Europe-west4-a

Europe-west4-b

Europe-west4-c

Asia-south1 Mumbai,
India

Asia-south1-a

Asia-south1-b

Asia-south1-c

Asia-
southeast1

Jurong,
Singapore

Asia-southeast1-a

Asia-southeast1-b

Asia-southeast1-c

Asia-east1 Changhua,
Taiwan

Asia-east1-a

Asia-east1-b

Asia-east1-c

Asia-
northeast1

Tokyo,
Japan

Asia-northeast1-a

Asia-northeast1-b

Asia-northeast1-c

Australia-southeast1-a

Australia-
southeast1

Sydney,
Australia

Australia-southeast1-b

Australia-southeast1-c

Accessing	the	Google	Cloud	Platform
	

Now	that	we	understand	some	of	the	hardware	and	software	choices	that	are
available	to	us	in	the	Google	Cloud	Platform	buffet,	we	also	should	know	how
we	can	go	about	consuming	these	resources.	We	have	multiple	following
choices:

One	really	handy	way	is	using	the	GCP	console,	also	known	as	the	web
console;	simply	access	this	from	a	web	browser	at	https://console.cloud.google
.com/

Another	is	by	making	use	of	a	command-line	interface	using	command-line
tools.	There	are	four	command-line	utilities	that	you	might	encounter	while
working	with	the	GCP:

gcloud:	This	is	for	pretty	much	everything	other	than	the	specific	cases
mentioned	later
gsutil:	This	is	for	working	with	cloud	storage	buckets
bq:	This	is	for	working	with	BigQuery
kubetcl:	This	is	for	working	with	Kubernetes	(note	that	kubectl	is	not
tied	to	GCP.	If	you	use	Kubernetes	on	a	competing	cloud	provider
such	as	Azure,	you'd	use	kubectl	there	as	well)

Another	way	is	to	programmatically	access	GCP	resources	is	from	various
client	libraries.	These	are	available	in	a	host	of	languages,	including	Java,
Go,	and	Python.

	

	

https://console.cloud.google.com/

Projects	and	billing
Let's	also	really	quickly	talk	about	how	billing	happens	on	the	Google	Cloud
Platform.	At	heart,	billing	is	associated	with	projects.	Projects	are	logical	units
which	consumes	a	bunch	of	resources.	Projects	are	set	up	within	organizations,
and	we	will	get	to	that	hierarchy	later	on	in	the	course.	Projects	are	associated
with	accounts	and	accounts	with	organizations.	However,	billing	really	happens
on	a	per	project	basis.	Each	project	can	be	thought	of	as	Resources	+	Settings	+
Metadata.	So,	if	GCP	is	a	lunch	buffet,	a	project	can	be	thought	of	as	a	meal.
You	select	what	you	would	like	to	consume,	how	you	would	like	to	consume	it,
and	associate	all	of	that	information	inside	this	one	unit	that	should	then	pay	for
it.

Extending	that	analogy	just	a	little	further:	just	as	you	can	mix	and	match	food
items	within	a	meal,	you	can	easily	have	resources	within	a	project	interact	with
each	other.	And	so	in	a	sense,	a	project	can	be	thought	of	as	a	namespace.	If	you
have	various	name	resources	for	instance,	those	names	typically	only	need	to	be
unique	within	the	project.	There	are	some	exceptions	to	this,	which	we	will
discuss	later,	Google	Cloud	Storage	buckets	for	instance.

A	project	is	really	associated	with	or	defined	by	three	pieces	of	metadata—the
name,	ID,	and	the	number.	The	project	ID	is	unique	and	permanent.	Even	if	you
go	ahead	and	delete	a	project	that	ID	will	not	be	available	for	use	for	other
projects	in	the	future.

Setting	up	a	GCP	account
Execute	the	following	steps	to	set	up	a	GCP	account:

1.	 Go	to	https://console.developers.google.com/	and	sign	in	to	continue	using
Google	Cloud	Platform.

2.	 If	you	already	have	a	Gmail	account	that's	what	you	will	use	to	sign	in	here.
If	you	don't,	get	a	Gmail	account	before	you	sign	in	to	Google	Cloud
Platform.

3.	 If	you	are	doing	this	for	the	very	first	time,	it	will	take	you	to	a	page	where
it	will	ask	you	for	a	bunch	of	personal	information.

This	is	where	you	get	access	to	all	GCP	products.	Google	currently	enables	a
free	trial	for	everyone	and	gives	you	300	US	Dollars	of	free	credit.	So	even	if
you	are	going	to	upgrade	to	a	paid	account,	you	won't	shell	out	any	money	until
you	reach	the	300	dollar	limit.	In	addition,	if	you	consume	resources	worth	more
than	300	USD,	all	your	resources	will	be	shut	down,	so	you	don't	inadvertently
end	up	paying	a	large	bill	because	you	forgot	to	turn	down	VM	or	shut	down	a
BigTable	instance.	Google	is	considerate	that	way.	You	will	need	to	provide	a
credit	card	number	in	order	to	use	the	free	trial,	but	you	won't	be	charged
though.

Your	Google	Cloud	account	has	been	created.	You	will	automatically	be	taken	to
a	page	that	is	the	dashboard	for	your	account:

https://console.developers.google.com/

The	first	thing	is	to	create	a	new	project.	Click	on	the	drop-down	icon	right	up
top	next	to	the	three	horizontal	lines	(that	is,	the	Products	&	Services	menu,	also
colloquially	known	as	the	hamburger).	Here,	we	already	have	a	project;	the
name	of	that	project	is	loonycorn-project08:

If	you	click	on	the	arrow	next	to	the	project	name,	a	new	dialog	will	open	up,
allowing	you	to	create	a	new	project,	or	select	an	existing	one:

The	projects	associated	with	your	Google	Cloud	Account	are	your	top	level
billing	instances.	All	of	the	GCP	resources	are	provisioned	under	some	or
another	project.	You	can	choose	between	having	a	common	billing	account	for
each	project	or	separate	ones	accordingly.	All	projects	and	billing	accounts	can
be	linked	to	a	common	organization,	which	will	be	linked	to	your	Google	Cloud
account.	Billing	accounts	encompass	source	of	payment	(for	example,	credit
card	details).	Thus	via	different	billing	accounts	you	can	ask	different	people	to
pay	for	different	resources	(for	example,	different	teams	of	your	organization).

Every	project	has	a	unique	name	which	you	specify	as	well	as	an	ID	generated
by	Google.	The	project	ID	contains	the	project	name	which	we	have	specified
and	a	string	of	numbers	which	makes	it	unique	across	GCP	globally.

Let's	orient	ourselves	on	the	dashboard	page.	At	the	very	top,	you	can	see	what
project	this	dashboard	is	associated	with.	There	is	also	a	dropdown	to	allow	you
to	switch	between	projects	easily.	The	very	first	card	gives	us	the	details	of	the
projects	such	as	its	name	and	the	associated	project	ID.	There	is	also	a	quick	link
to	your	project	settings	page	where	you	can	change	your	billing	information	and
other	project-related	details.	The	compute	engine	card	shows	you	a	summary	of
your	compute	instances.	We	have	no	instances;	therefore,	this	card	is	currently

empty.	We	get	a	quick	status	check	on	the	right	indicating	that	all	our	services
are	green.	We	can	see	the	billing	details	of	the	project	at	a	glance.

Now	we	are	at	the	Google	Cloud	dashboard	that	shows	how	we	get	all	the
services	that	Cloud	Platform	makes	available	to	us.	You	will	use	this	three-line
navigation	button	at	the	top	left.	This	is	the	most	important	button	that	you	will
find	that	while	reading	this	book	and	using	the	platform:

You	will	be	navigating	here	over	and	over	again.	Click	on	the	hamburger	menu,
open	up	the	navigation	menu,	and	you	will	see	all	Cloud	Platform	services	and
products	available	to	you.	Take	the	time	and	explore	this	menu	as	there	is	a	lot	of
interesting	stuff	out	there.	But	what	are	we	going	to	work	on?	First	is	to	create	a
VM	instance,	an	instance	of	the	compute	engine.	Go	to	the	compute	engine
menu	and	click	on	VM	instances:

This	will	take	us	to	a	page	where	we	can	create	our	very	first	virtual	machine
instance	on	Google	Cloud.	You	also	now	know	that	all	Google	Cloud	resources
or	services	or	products	that	you	use	are	built	to	a	top-level	projects.	You	can	set
up	different	projects	for	different	teams	in	your	organization.

Using	the	Cloud	Shell
Before	we	jump	into	the	compute	options	on	GCP	and	create	our	first	VM
instance,	let's	understand	the	Cloud	Shell.	A	Cloud	Shell	is	a	machine	instance
that	runs	on	the	Google	Cloud	which	serves	as	your	command	line.	All	GCP
accounts	have	a	Cloud	Shell	that	they	can	use	to	access	resources	on	the	Google
Cloud	Platform.	You	can	access	the	Cloud	Shell	by	clicking	on	a	button	to	the
top	right	of	the	navigation	ribbon:

The	great	thing	about	the	Cloud	Shell	is	that	it	provides	a	complete	environment
for	you	to	connect	to	various	resources	in	the	Cloud.	Also,	it	is	worth	noting	that
the	Cloud	Shell	is	completely	free	for	usage.	The	cool	thing	about	it	is	that	you
can	directly	use	the	gcloud	command-line	tools	to	connect	to	resources	in	the
cloud,	create	resources,	provision	it,	and	so	on.	You	don't	need	to	install	and	set
up	anything.	The	Cloud	Shell	is	what	you	would	use	if,	say,	your	organization
does	not	allow	you	to	download	software	on	your	local	machine.	It	is	a	great
alternative	in	that	case,	which	just	works.	When	you	first	connect	to	the	Cloud
Shell	or	gshell,	Google	has	to	spin	up	an	active	instance	to	use	for	this.	It	might
take	a	little	while,	so	be	patient:

The	figure	that	follows	is	our	provisioned	Cloud	Shell	and	you	will	notice	that	it
is	associated	with	the	same	project	which	we	mentioned	earlier.	Let's	take	the
gcloud	command-line	tool	for	a	test	run.	Remember	that	the	Cloud	Shell	is	just	a
terminal	session	on	an	ephemeral	VM.	This	session	will	get	disconnected	after
30	minutes	of	inactivity.	Also,	when	you	are	in	the	Cloud	Shell,	you	are	in	a	home
directory	with	5	GB	of	space,	and	this	home	directory	will	remain	constant	across
all	Cloud	Shell	sessions	in	the	project	and	will	be	deleted	after	120	days	of
inactivity:

Let’s	explore	the	Cloud	Shell	further.	The	gcloud	is	Google's	main	command-line
tool	that	allows	you	to	work	with	resources	and	to	a	whole	bunch	of	operations.
It's	especially	useful	if	you	want	to	script	operations	and	just	run	a	script	rather
than	perform	it	manually	over	and	over	again.

You	can	view	what	the	current	default	project	is	by	typing	out	the	gcloud	config
list	command:

You	can	see	that	loonycorn-project08	is	the	default.	If	you	need	help	with	what
commands	are	available	with	gcloud,	simply	type	gcloud	-h,	and	you	will	see	a
whole	bunch	of	information.	The	gcloud	config	list	command	shows	you	what
properties	have	been	set	so	far	in	the	configuration.	This	will	only	display	those
properties	that	are	different	from	the	defaults.	For	example,	you	can	see	here	that
the	account	has	been	set	to	vitthal@loonycorn.com	and	the	project	is	loonycorn-
project08:

If	you	need	help	for	a	particular	command,	let's	say	it's	the	compute	command,	you
can	simply	say	gcloud	compute	--help:

This	essentially	throws	up	the	main	page	for	that	particular	command.	In	other
words,	gcloud	has	context-sensitive	help,	and	that	is	a	great	way	to	go	about
building	the	commands	you	need:

Everything	you	need	is	right	there	on	the	screen.

In	a	nutshell,	the	Google	Cloud	Shell	is	a	great	tool	for	quick	work	on	the
console.	Remember,	again,	though,	that	it	is	a	short,	time-limited	session	on	an
ephemeral	VM.	So,	if	you	are	going	to	be	intensely	developing	on	the	Google
Cloud	and	you	can	download	software,	it's	better	to	download	the	Google	Cloud
SDK	and	use	that	instead.	This	offers	a	permanent	connection	to	your	instances
on	the	cloud	instead	of	a	temporary	VM	instance	that	has	to	be	spun	up	in	order
to	use	Cloud	Shell.

Summary
You	learned	about	the	distinction	between	global,	regional,	zonal	resources,	and
the	SLAs	provided	by	Google	for	network	traffic	and	availability	within	regions
and	zones.	We	got	started	with	GCP	by	exploring	the	GCP	web	console.	We	also
made	use	of	the	Google	Cloud	Shell	and	typed	out	a	few	basic	commands	using
the	gcloud	command-line	utility.

	

Compute	Choices	–	VMs	and	the
Google	Compute	Engine
In	the	cloud	world,	the	most	hands-on	of	these	approaches	is	not	really	an	option
—you	are	not	going	to	actually	own	the	machines,	and	physically	maintain	them.
That	is	the	whole	point	of	switching	to	the	cloud—that	the	cloud	provider
manages	scaling	for	you	and	allows	you	to	pay	as	you	go.	But	a	cloud	equivalent
of	this	approach	still	exists—you	could	provision	a	large	number	of	virtual
machines	(again,	these	machines	are	virtual,	not	physical),	and	run	your	app	on
all	of	these.	You'd	be	able	to	log	in	to	these	machines,	and	you'd	have	to	manage
scaling	up	or	down	(by	provisioning	more	or	less	VMs).	The	cloud	provider	is
still	providing	you	with	very	valuable	services—you	can	autoscale	your	groups
of	VMs,	you	can	have	your	VMs	stay	live	during	system	maintenance,	and	so
on.	These	services	are	collectively	called	Infrastructure-as-a-Service	(IaaS).

In	this	chapter	we	will:

Explore	Google	Compute	Engine	(GCE)	which	serves	as	Infrastructure	as
a	Service	provision	of	GCP.
Learn	how	to	create	and	manage	GCE	VMs	along	with	its	various	aspects
like	disk	type	and	machine	types.
Demonstrate	using	GCE	VMs	via	running	a	webserver	on	it.

You	could	also	easily	go	further.	You	might	decide	that	you	just	want	to	write
code—not	deal	with	any	provisioning	of	machines	or	networking	or	Ops.	The
cloud	provider	will	allow	you	to	write	your	code	and	deploy	it	without	worrying
about	the	underlying	systems—virtual	or	physical.	All	that	you	know	is	that	your
app	is	available	as	a	service—most	likely	as	an	HTTP	endpoint	that	clients	can

hit	using	RESTful	API	calls.	The	cloud	provides	complete	isolation	from	the
infrastructure	autoscaling,	load-balancing,	traffic-splitting—all	of	this	is
managed	for	you.	Such	a	service	is	basically	a	platform	on	which	you	write	your
code,	and	forget	about	the	rest.	These	services	are	collectively	called	Platform-
as-a-Service	(PaaS).

Let's	draw	a	line	with	IaaS	at	one	end,	and	PaaS	at	the	other.	The	leading	cloud
providers—Amazon	AWS,	Microsoft	Azure,	and	Google	Cloud	Platform—all
offer	the	entire	range	of	compute	options,	from	IaaS	to	PaaS.

In	addition	to	these,	there	are	a	couple	of	other	approaches	worth	discussing—
containers	and	SaaS:

Containers	lie	somewhere	in	between	IaaS	and	PaaS	and	involves	the	use	of
portable,	lightweight	images	of	your	app—these	lightweight	images	are
called	containers.	Docker	is	a	pretty	common	container	format,	and	the
GCP	has	a	great	orchestration	framework	called	Google	Kubernetes
Engine	(GKE)	to	run	app	containers	on	managed	clusters.	But	that	will	be
dealt	in	more	detail	in	the	later	chapter.
Another	approach,	further	to	the	right	of	PaaS,	would	be	Software-as-a-
Service	(SaaS).	In	our	preceding	web	app	example,	Heroku	acted	as	an
example	of	a	PaaS	offering,	while	Shopify	was	an	SaaS	offering.	It
probably	is	fair	to	say	that	Microsoft	Azure	is	currently	far	ahead	of	the
other	two	in	SaaS,	because	it	makes	very	powerful	software	such	as	Office
365	available	to	users.	IaaS	reduces	the	burden	of	DevOps,	PaaS	virtually
eliminates	it,	and	SaaS	reduces	the	burden	of	development.

The	preceding	line	is	a	general	representation	of	the	compute	choices	out	there,
but	on	the	GCP,	there	actually	are	five	specific	options.	None	of	these	really
involve	SaaS,	except	for	very	limited	use	cases,	so	let's	leave	that	out	for	now.
The	offerings	on	the	GCP	are	shown	as	follows:

If	you	have	an	infra	background,	these	five	choices	might	make	perfect	sense	to
you,	but	even	if	you	do	not,	never	fear,	we'll	talk	about	each	of	them.
Throughout	the	course	of	this	chapter	and	the	next,	we	will	describe	each	of
these	five	compute	options.	This	chapter	focuses	on	the	first—Google	Compute
Engine	(GCE),	which	is	basically	a	service	to	provision	and	work	with	virtual
machines	on	the	cloud.

GCE	is	a	prototypical	IaaS	use	case.	What	you	need	is	a	set	of	machines,	placed
at	your	disposal	to	set	up	in	exactly	the	way	you	want.	Configuration,
administration,	and	management	would	all	then	be	your	responsibility.	While
this	might	sound	like	an	on-premise	data	center,	there	are	two	crucial
differences:

The	VMs	are	not	running	on	hardware	bought	by	you—rather,	you	just
provision	them	whenever	you	need	them	and	delete	them	when	you're	done.
Several	powerful	infra	services—autoscaling	groups	of	VMs,	load-
balancing,	the	importing	of	external	images,	and	so	on—are	provided	by
the	cloud	platform.	This	is	why	GCE	is	an	IaaS	solution.

In	this	chapter,	we	will	get	you	familiar	with	GCE	by	covering	the	following
topics:

Creating,	customizing,	and	modifying	VM	instances
Block-based	storage	(local	SSDs	and	persistent	storage),	which	can	be
attached	to	your	VMs
Load	balancing,	start	up	scripts,	and	disk	images	that	allow	you	to	make
optimal	use	of	your	VM	instances

Google	Compute	Engine	–	GCE
Google	Compute	Engine	is	the	IaaS	component	of	the	GCP	that	lets	you	create
and	run	VM	on	Google	infrastructure.	Each	VM	is	called	a	Compute	Engine
instance.	A	Compute	Engine	instance	can	run	Linux	and	Windows	server	images
provided	by	Google	or	any	customized	versions	of	these	images.	You	can	also
build	and	run	images	of	other	operating	systems.

You	can	choose	the	machine	properties	of	your	instances,	such	as	the	number	of
virtual	CPUs	and	the	amount	of	memory,	by	using	a	set	of	predefined	machine
types	or	by	creating	your	own	custom	machine	types.

Creating	VMs
	

This	section	will	walk	you	through	creating	a	VM	instance.	There	are	several
ways	to	create	a	VM	instance	in	GCE:

Through	the	web	console
The	gcloud	command-line	tool	from	Cloud	Shell
Using	API	calls

There	actually	is	a	fourth	way	as	well—that's	an	Infrastructure	as	Code	(IaC)
approach	relying	on	the	Deployment	Manager.	Infrastructure	automation	is	a	big
deal	these	days,	and	we'll	get	to	this	approach—but	in	a	later	chapter.

	

	

	

Creating	a	VM	instance	using	the
web	console
The	web	console	will	allow	you	to	view	all	the	available	options	when
configuring	a	VM.	This	is	probably	the	best	way	to	get	started	with	provisioning
VMs	on	GCP:

1.	 Start	with	the	hamburger	(three	horizontal	bars	on	the	top	left).
2.	 Click	on	Compute,	and	then	on	VM	instances.
3.	 Click	on	Create	a	new	instance.	A	form	will	pop	up.
4.	 Enter	a	name	for	your	instance.

5.	 Pick	a	Zone.	Note	that	some	zones	are	more	expensive	than	others,
probably	based	on	the	resources	available	in	it.	There	are	a	number	of
factors	that	matter	when	deciding	the	right	zone.	For	instance,	if	you	expect
most	of	your	traffic	to	be	from	Asia,	it's	preferable	to	pick	a	zone	in	Asia.

6.	 Choose	a	Machine	type	from	the	drop-down	list.	If	you	are	not	going	to	run
something	very	computation-heavy,	you	can	choose	a	micro	instance	that
has	one	shared	virtual	CPU	and	very	little	memory.	We	will	choose	the
same	for	the	purpose	of	this	tutorial	as	it	is	the	most	economical	option	in
this	case.	The	cost	of	the	VM	will	depend	on	the	machine	type	as	well,	if
you	recall	our	discussions	from	the	previous	section.

7.	 By	default,	the	instance	has	a	10	GB	standard	persistent	disk.	You	can
choose	to	change	this,	if	you	so	desire,	by	clicking	on	the	Change	button.
We	are	keeping	the	default	since	that’s	the	minimum	requirement	to	keep
Debian	smoothly	running.

As	this	is	the	root	disk	for	the	instance,	we	recommend	the	readers	to	stick	with	the	default
(Debian)	as	a	lot	of	the	examples	later	on	rely	on	this	being	a	Linux	VM.

8.	 Choose	how	you	want	to	restrict	your	instance,	such	as	whether	or	not	it
should	have	access	to	cloud	APIs,	or	serves	HTTPS	traffic	and	so	on.	Since
we	would	be	using	this	instance	to	install	applications	(like	Apache
webserver)	via	internet	which	serve	HTTP/HTTPS	traffic.	We'd	recommend
keeping	both	options	checked.	And	it	is	also	recommended	to	have	access
to	complete	GCP	Cloud	APIs	in	case	we	make	this	VM	interact	with	other
GCP	provisions.

9.	 Note	the	link	that	says	management,	disks,	networking,	and	SSH	keys.
Clicking	on	this	will	give	you	advanced	configuration	options.	But	it	is
alright	to	keep	them	as	default	for	now.

10.	 Once	you've	made	your	design	choices,	click	Create.	The	preceding
screenshot	shows	a	sample	set	of	choices.	The	design	creation	will	take	a
few	minutes.

Once	it's	complete,	you	can	SSH	directly	into	the	instance	to	set	up	the	software
you	want	on	it.	This	can	be	done	in	several	ways:

Directly	through	the	browser	by	clicking	on	SSH
You	can	also	use	your	Cloud	Shell	and	the	gcloud	command	within	it	to	SSH

to	this	instance

The	command	would	go	as	follows:

						gcloud	compute	ssh	[INSTANCE	NAME]

You	can	connect	from	an	SSH	client	on	your	local	machine,	such	as	a
terminal	window	on	Mac	or	Linux,	or	the	PuTTY	program	in	Windows.

If	you	choose	Open	in	browser	window,	and	if	you	have	pop-ups	blocked	on
your	machine,	you	will	find	an	error	message	to	the	top	right	of	your	browser.
Once	you	enable	pop-ups,	the	SSH	client	will	open	up	in	a	new	browser	window.

You	can	tell	it's	your	VM	instance	from	the	prompt	that	displays	the	name	you'd
given	in	step	two.	Run	a	few	commands	to	see	what	software	has	been	pre-
installed,	as	shown	in	the	following	screenshot:

As	this	is	a	Linux	machine,	you	can	use	Linux	commands	to	install,	download,
or	update.	Run	the	exit	command	to	quit	the	SSH	window.	On	your	VM	instance
details	page,	click	on	the	VM	name	to	get	to	the	VM	instance	details	page	where
you'll	now	be	able	to	see	a	spike	in	the	graph.

Creating	a	VM	instance	using	the
command	line
An	easy	way	to	get	the	right	command	line	is	to	piggyback	on	the	web	console
—it	has	a	neat	little	way	to	get	the	command	line	corresponding	to	a	particular
UI	operation:

1.	 As	before,	start	with	the	hamburger	(three	horizontal	lines).
2.	 Navigate	to	Compute,	and	then	to	VM	instances.
3.	 Click	on	Create	a	VM	instance	in	the	VM	instances	page	and	you'll	get	the

UI	to	set	up	the	configuration	for	this	virtual	machine.
4.	 Specify	the	configuration	parameters	using	this	console,	as	we	saw	in	the

previous	section.	At	the	very	bottom	of	this	form,	you	can	find	the
Equivalent	REST	or	command	line	option.

5.	 Click	on	both	of	these	to	get	the	Equivalent	REST	and	gcloud	commands
respectively	to	set	up	the	VM	with	the	exact	settings	specified.	The	gcloud
command	is	what	you	can	use	within	scripts	in	order	to	create	multiple	VM
instances	with	the	same	configuration.

	

6.	 Click	on	the	icon	with	≥	sign	on	the	top-right	side	beside	search	bar.	Open
up	your	Cloud	Shell	from	the	console,	which	is	completely	free	to	use,	and
paste	the	gcloud	command	and	hit	Enter	to	create	a	new	VM	instance.
Refresh	the	browser	to	see	the	new	VM	listed	in	the	VM	instances	page.

Running	help	on	this	gcloud	compute	instance	create	command	should	show	you
all	the	options	that	you	have	available	and	you	can	use	these	to	create	custom
instances	from	the	Cloud	Shell.	But	if	you	want	to	customize	your	instance	with
a	lot	of	parameters,	it's	better	to	specify	them	on	the	web	console,	generate	the
corresponding	command-line	command,	and	use	that:	gcloud	compute
instances	create	--help

You	can	further	set	up	some	default	values	in	your	configuration	file	so	that	any
new	instances	that	you	create	will	use	this	default	value.	For	example,	if	you	set
the	default	zone	to	be	us-central1-a,	all	new	instances	will	be	created	in	this	zone:

gcloud	config	set	compute/zone	us-central1-a	

Note	that	if	you	wish	to	SSH	into	an	instance	that	is	not	in	the	default	zone	from
the	Cloud	Shell,	you'll	need	to	explicitly	specify	the	zone	using	the	zone
parameter	in	the	SSH	command.

Now	we	know	that	if	we	wanted	to	automate	the	creation	of	virtual	machines
with	specialized	configurations,	we	can	simply	write	a	script	with	the	required

gcloud	command,	which	is	easily	obtained	by	setting	up	the	configuration	on	our
web	console	and	clicking	on	the	Equivalent	REST	or	command	line	link	at	the
very	bottom.

VM	customization	options
In	the	preceding	process,	while	creating	VMs,	we	encountered	several
customization	options–some	of	these	are	pretty	important	to	understand,	so	let's
break	down	what	we	just	did.

Operating	system
The	first	choice	you	have	to	make	is	that	of	the	operating	system.	There	are
public	images	available	for	Linux	and	Windows	servers	that	come	from	Google.
In	addition,	if	you	decide	that	you	require	some	exotic	operating	system,	you	can
use	private	images	that	you	create	or	that	you	import	into	Compute	Engine.
Compute	Engine	uses	operating	system	images	to	create	the	root	persistent	disks
for	your	instances.	You	specify	an	image	to	be	used	as	this	root	disk	when	you
create	an	instance.	Images	contain	a	boot-loader,	an	operating	system,	and	a	root
filesystem.

Lift-and-shift:	The	process	of	importing	an	external	VM	via	a	custom	image	is	complex	and
not	for	the	fainthearted,	but	this	lift-and-shift	is	a	rite	of	passage	for	most	organizations
getting	onto	the	cloud.	Do	check	out	third-party	tools	that	help,	particularly	CloudEndure—a
free	third-party	service	that	is	trusted	by	Google	and	has	pretty	good	word-of-mouth.

Compute	zone
A	zone	in	which	your	VM	will	reside	is	a	required	choice	when	creating	a	VM.
Compute	Engine	resources	live	in	regions	or	zones.	Recall	that	a	region	is	a
specific	geographical	location	where	you	can	run	your	resources	and	each	region
has	one	or	more	zones.	Resources	that	live	in	a	zone,	such	as	instances	or
persistent	disks,	are	referred	to	as	zonal	resources.	Other	resources,	such	as	static
external	IP	addresses,	are	regional.	Regional	resources	can	be	used	by	any
resources	in	that	region,	regardless	of	zone,	while	zonal	resources	can	only	be
used	by	other	resources	in	the	same	zone.	The	compute	zone	will	decide	the
billing	for	your	VM	along	with	the	machine	type.	Distributing	multiple	VMs
across	multiple	zones	is	recommended	for	higher	availability.	The	following
screenshot	lists	some	of	the	zones	available	to	us	on	GCP:

	

Machine	type
You	can	choose	the	machine	properties	of	your	instances,	such	as	the	number	of
virtual	CPUs	and	the	amount	of	memory,	by	using	a	set	of	predefined	machine
types	or	by	creating	your	own	custom	machine	types.	There	is	a	varied	set	of
machine	types	available	to	you,	as	can	be	seen	in	the	preceding	screenshot.
There	are	standard	machine	types	as	well	as	machine	types	optimized	for	high
memory	usage	and	also	something	known	as	shared-core	machine	types.

These	are	small	and	are	used	for	non-resource	intensive	jobs.	With	the	advent	of
machine	learning,	GPUs	have	become	increasingly	important	as	well	and	the
machine	type	choices	include	the	ability	to	attach	GPUs	to	our	instances	in	some
zones.	Predefined	machine	types	have	preset	virtualized	hardware	properties	and
a	set	price,	while	custom	machine	types	are	priced	according	to	the	number	of
vCPUs	and	memory	that	the	virtual	machine	instance	uses.

Networks	–	aka	VPCs
	

We	will	discuss	networks	in	detail	in	a	later	chapter,	but	for	those	who	are
already	familiar	with	the	idea	of	VPCs,	each	VM	must	belong	to	exactly	one
VPC.

As	an	aside,	networking	on	the	GCP	is	pretty	different	from	that	in	either	AWS
or	Azure,	so	definitely	do	read	the	chapter	on	networking	if	you	are	planning	on
creating	custom	VPCs	or	tinkering	with	any	of	their	properties.

	

	

	

Storage	options
This	is	an	important	enough	topic	to	require	a	section	of	its	own—which	follows
next.

Persistent	disks	and	local	SSDs	–
block	storage	for	GCE
Persistent	disk	is	the	term	used	by	Google	to	identify	block	storage.	It	can	either
be	Hard	Disk	Drive	(HDD)	or	Solid	State	Drive	(SSD).	They	can	be	used	as
non-volatile	storage	for	GCE	VMs.

Understanding	persistent	disks	and
local	SSDs
Standard	HDD	persistent	disks	are	efficient	and	economical	for	handling
sequential	read/write	operations,	but	are	not	optimized	to	handle	high	rates	of
random	input/output	operations	per	second	(IOPS).

If	your	applications	require	high	rates	of	random	IOPS,	use	SSD	persistent	disks.
Persistent	disks	can	be	attached	to	multiple	instances	in	read-only	mode	for	data
sharing.

One	might	get	confused	between	Persistent	Disks	and	Cloud	Storage	Buckets
(which	we	will	explore	later	in	this	book)	since	both	are	cloud	storage
technologies	accessible	via	a	network.	But	it	is	important	to	remember	that
persistent	disks	are	created	for	Compute	Engine	instances	via	Compute	Engine
APIs	and	are	accessed	via	gsutil	command	line	tool	not	gcloud.	Further
differences	can	be	noticed	in	the	following	table:

Creating	and	attaching	a	persistent
disk
As	we	discussed	in	the	previous	sections,	a	persistent	disk	is	the	storage	option
that	is	associated	with	the	VM	instances	in	GCE,	by	default.	This	section	will
walk	you	through	creating	and	attaching	a	persistent	disk.

Let's	say	we	have	already	created	a	VM	instance	called	test-instance	in	the	US
zone	central1-f.	We	now	want	to	expand	the	storage	that	is	available	to	this	VM
instance,	which	can	be	done	by	creating	a	new	persistent	disk.	We	will	use	the
command	line	for	this:

gcloud	compute	disks	create	test-disk	--size=100GB	--zone	us-central1-f		

gcloud	compute	disks	create	is	the	command
test-disk	is	the	name	of	our	disk
The	size	is	100GB
The	zone	is	us-central1-f

The	persistent	disk	that	you	set	up	has	to	be	in	the	same	zone	as	your	instance.
You	can't	create	a	persistent	disk	in	another	zone	and	attach	it	to	an	instance	that
lives	in	a	completely	different	zone,	because	persistent	disks	have	to	be
connected	to	the	instance	with	really	high-speed	connections—and	that	is	only
possible	in	the	same	zone.	Note	that	ideally	when	you	are	creating	a	persistent
disk,	there	should	be	at	least	200	GB	in	size	for	optimal	read	and	write
performance	or	you'll	get	a	warning.

1.	 Click	on	your	test	instance	VM	to	edit	your	settings	and	let's	attach	this
particular	disk	to	your	VM	instance.

2.	 Click	on	add	item	under	Additional	disks	and,	in	the	drop-down	list,	you
will	find	test-disk,	the	standard	persistent	disk	that	we	set	up.

3.	 Let	us	use	the	command	line	to	attach	this	disk	to	our	instance.	The
command	line	is	especially	preferable	if	this	is	a	repeated	operation.	Use
the	gcloud	compute	instances	attach-disk	command	to	specify	the	instance	and
the	disk	you	want	attached	and	the	instance	and	the	zone	where	they	both
live	and	hit	Enter:

gcloud	compute	instances	attach-disk	test-instance	--disk	test-disk	--zone	us-

central1-f		

4.	 Once	the	command	has	returned,	hit	REFRESH	on	your	web	console	and
go	into	the	test-instance	to	see	whether	the	disk	has	indeed	been	attached.
Note	that	test-disk	is	now	attached	to	this	VM	instance.

5.	 You	can	also	SSH	into	your	test	instance	to	confirm	that	the	disk	is	indeed
part	of	the	instance	now.	You	can	view	all	the	hard	disks	that	are	associated
with	this	instance	by	running	ls	-l	/dev/disk/by-id.	This	will	give	you	the	list
of	hard	disks	attached.	You	will	see	an	SCSI	disk	called	Google	persistent
disk-1,	which	is	the	new	disk	that	we	just	attached.

6.	 Once	the	status	of	your	disk	creation	is	ready,	the	disk	needs	to	be
formatted.

Linux	procedure	for	formatting	and
mounting	a	persistent	disk
	

Newly	created	persistent	disks	do	not	have	any	filesystems	on	them.	We	must
format	them	with	the	desired	filesystem	and	the	number	of	partitions	we	need.
Here,	we	will	format	it	with	a	single	partition	and	ext4	filesystem.	To	do	so:

1.	 Go	to	the	VM	instances	page	and	access	your	instance	through	the	browser
using	SSH.

2.	 One	you	are	prompted	to	the	Terminal,	use	the	lsblk	command	to	list	the
attached	disks	to	your	instance:

sudo	lsblk		

3.	 To	format	disks,	use	the	make	filesystem	(mkfs)	command.	You	can	also
make	the	runtime	and	formatting	faster	by	means	of	optional	arguments	to
disable	lazy	initialization:

sudo	mkfs.ext4	-m	0	-F	-E	lazy_itable_init=0,	lazy_journal_init=0,	discard	

/dev/sda	

4.	 Now,	to	mount	the	formatted	disk,	create	a	directory	that	will	serve	as	your
mounting	point:

sudo	mkdir	/mnt/my-mounting-dir		

5.	 Use	the	mount	command	and	provide	the	disk	and	mounting	point	as
arguments.	Also	make	sure	that	the	discard	option	is	enabled:

sudo	mount	-o	discard,	defaults	/dev/sda	/mnt/my-mounting-dir		

6.	 You	can	also	configure	read	and	write	permissions	for	users.	We	will
provide	write	access	to	all	users:

sudo	chmod	a+w	/mnt/my-mounting-dir		

Again,	if	you	are	attaching	a	persistent	disk	to	your	VM,	the	disk	and	the	VM

have	to	be	in	the	same	zone.	Your	VM	instance	and	the	persistent	disk	cannot	be
in	different	zones.

	

	

	

Sharing	a	persistent	disk	between
multiple	instances
	

You	can	also	share	a	non-bootable	persistent	disk	between	multiple	VM
instances	with	a	condition	that	it	remains	read-only	in	all	of	them.	This	occupies
less	overall	storage	in	a	multi-instance	application	and	also	saves	the	replication
exercise.	It	also	reduces	billing	since	we	use	less	storage.	To	do	so,	use	the
instances	attach-disk	command	with	gcloud	and	provide	an	instance	name	as	well	as
a	disk	name:	gcloud	compute	instances	attach-disk	test-instance	--disk	sdb	--
mode	ro

Repeat	this	operation	for	each	attachment.

	

	

	

Resizing	a	persistent	disk
	

Resizing	the	disk	does	not	configure	the	filesystem	to	use	additional	space
automatically.	We	have	to	do	it	ourselves.	If	our	persistent	disk	has	both	a
filesystem	and	partition	table,	we	must	edit	both:

1.	 We	can	use	the	gcloud	command-line	tool	for	this	purpose.

						gcloud	compute	disk	resize	[DISK	NAME]	—size	[DISK_SIZE]

2.	 Get	access	of	your	persistent	disk	using	SSH	and	determine	the	partition
that	you	want	to	modify.	You	can	use	lsblk	to	have	a	list	of	your	disks	and
partitions.	If	your	picked	partition	has	a	partition	table,	then	we	must	grow
the	partition	before	resizing	it:

sudo	growpart	/dev/sda	[PARTITION	NUMBER]		

3.	 Now,	extend	the	filesystem	and	provide	a	disk	name	or	partition	name:

sudo	resize2fs	/dev/sda/[PARTITION_NUMBER]	

4.	 You	can	use	the	df	-h	command	to	verify	your	resizing.

	

	

More	on	working	with	GCE	VMs
In	this	section,	we	will	explore	the	various	features	that	the	GCE	offers.	Each
one	of	the	features	described	is	important,	so	do	stay	tuned.

Rightsizing	recommendations
In	the	on-premise	world,	it	pays	to	over-provision.	If	you	need	a	server	of
capacity	X	today,	you're	best	off	buying	one	with	a	capacity	of	1.5X—if	only	to
not	have	to	deal	with	finance	and	procurement	all	over	again	in	a	year's	time.

When	you	switch	to	the	cloud	though,	if	you	don't	adjust	that	mindset,	you	might
end	up	with	sticker	shock.	On	the	cloud,	remember	that	you	can	scale	both	up
and	down.

That's	where	the	recommendations	from	GCE	come	in	handy.	Compute	Engine
provides	machine	type	recommendations	to	optimize	the	resource	utilization	and
minimize	expenses	of	your	virtual	machine	instances.	These	recommendations
are	generated	automatically	based	on	system	metrics	such	as	the	CPU	and
memory	utilization,	gathered	by	the	Google	Stackdriver,	which	is	a	suite	of	GCP
tools	for	Logging	and	Monitoring	services	over	the	last	eight	days.

You	can	then	use	these	recommendations	to	resize	your	instance's	machine	type
to	more	efficiently	use	a	machine	type's	resources.

Availability	policies
When	maintenance	events	such	as	hardware	or	software	updates	require	your
VM	to	be	moved	to	a	different	host	machine,	the	Compute	Engine	automatically
manages	the	scheduling	behavior	for	your	instances.

If	you	configure	the	instance's	availability	policy	to	use	live	migration,	which	is
a	very	powerful	feature,	exclusive	to	GCP.	Compute	Engine	will	live	migrate
your	VM	instances,	which	prevents	your	applications	from	experiencing
disruptions	during	maintenance.	Alternatively,	you	can	choose	to	terminate	your
instances	during	these	events.

When	viewing	the	instance	details	in	the	console,	you	will	see	the	option	that	is
currently	enforced	under	the	section	Availability	policies.	One	example	of	the
VM	configuration	with	the	availability	policy	set	to	migrate	the	VM	instance
during	maintenance	is	shown	in	the	following	screenshot:	

Auto-restart
Auto-restart	refers	to	the	behavior	that	the	VM	takes	after	a	hardware	failure	or	a
system	event.	If	set	to	auto-restart,	the	system	will	try	launching	a	replacement
VM.

However,	auto-restart	will	not	restart	the	VM	if	it	was	terminated	due	to	a	user
event	such	as	shutting	down	or	terminating	the	VM.

Preemptibillity
A	preemptible	instance	is	a	VM	instance	type	that	is	much	cheaper	than	the
regular	Compute	Engine	machine	types	that	we	discussed	in	the	previous
section.	The	reason	for	this	is	that	a	preemptible	instance	uses	spare	resources	in
Google's	infrastructure,	but	they	might	be	terminated	(that	is,	preempted)	at	any
time	if	Google	requires	the	resources	held	by	this	VM.

Preemptible	instances	cost	only	a	fraction	of	what	other	VM	instances	do	and	so
if	you	have	a	fault-tolerant	application,	for	instance,	a	processing-only	node	in	a
Hadoop	cluster,	a	preemptible	instance	might	make	a	lot	of	sense	and
particularly	so,	if	you	are	budget	conscious.

Preemptible	instances	will	definitely	be	terminated	after	running	for	24	hours.
Hence,	do	not	ever	use	preemptible	instances	for	long	running	jobs.	When	using
a	preemptible	instance	for	relatively	short	jobs,	the	probability	of	termination	is
typically	quite	low.	This	probability	of	termination	will	vary	based	on	the	day,
the	zone,	the	network	conditions,	and	other	factors	such	as	migrations	and
maintenance.	Preemptible	instances,	unlike	other	VM	types,	cannot	migrate;	that
is,	they	cannot	stay	alive	during	software	updates	and	they	will	be	forcibly
restarted	during	maintenance.	The	first	step	in	the	preemption	process	is	that	the
Google	Cloud	Platform	or	Compute	Engine	will	send	your	instance	a	soft	off
signal	where	your	machine	has	30	seconds	in	which	to	clean	up	through	a
shutdown	script	and	give	up	control.	If	it	does	not	do	so,	Compute	Engine	will
forcibly	take	control	by	sending	a	mechanical	off	signal.	Therefore,	if	you	use
preemptible	instances,	do	ensure	that	you	have	a	well	written	shutdown	script
associated	with	the	preemptible	instance.

Load	balancing
The	GCP	offers	several	load-balancing	options,	all	of	which	work	with	virtual
machines.	A	common	usage	pattern	is	to	use	an	HTTP/HTTPS-based	load
balancer	(which	deals	with	web	traffic),	and	wire	this	up	as	a	frontend,	with
several	groups	of	VM	instances	at	the	backend.

Those	groups	could	be	managed	instance	groups	(see	following	section),	or	just
unrelated	sets	of	instances.	The	load	balancer	will	then	distribute	the	incoming
web	requests	to	VMs	in	the	backend.

This	is	a	common	way	to	distribute	traffic	based	on	user	proximity	(users	from
Asia	should	hit	backend	servers	in	Asia,	those	in	Europe	should	hit	backend
instances	in	Europe),	as	well	as	content	type	(folks	requesting	hi-def	video	get
directed	to	one	set	of	instances,	while	those	requesting	regular	video	go	to
another).

Autoscaling	and	managed	instance
groups
Compute	Engine	offers	autoscaling	to	automatically	add	or	remove	virtual
machines	from	an	instance	group	based	on	increases	or	decreases	in	load.	This
allows	your	applications	to	gracefully	handle	increases	in	traffic	and	reduces	cost
when	the	need	for	resources	is	lower.	All	you	have	to	do	is	define	the	autoscaling
policy	and	the	autoscaler	performs	automatic	scaling	based	on	the	measured
load.

We	will	have	a	lot	more	to	say	about	managed	instance	groups	and	load
balancing	in	the	chapters	to	come.

Billing
Google	offers	a	very	easy-to-use	tool	to	estimate	the	cost	of	running	your
instance	with	a	particular	configuration.

VMs	range	in	price	from	pretty	cheap	to	really	expensive.	In	the	following
screenshot,	you	can	see	that	a	VM	with	1	vCPU	and	2	GB	of	memory	is
projected	to	cost	$21.90	per	month:	

However,	scaling	this	instance	to	20	vCPU	cores	and	170	GB	of	memory	will
incur	a	hefty	$830	per	month,	as	seen	in	the	following	screenshot:

VMs	are	very	transparent	about	their	pricing,	while	when	provisioning	one,	you
are	told	what	the	base	rate	will	be.	This	base	rate	varies	with	the	specs	and	OS	of
the	machine—as	the	preceding	screenshots	show,	VMs	could	be	either	really
cheap	or	really	expensive,	depending	on	how	powerful	you'd	like	them	to	be.

A	natural	question	then	is—how	is	this	base	rate	going	to	be	applied?	All
machines	are	charged	for	one	minute	at	boot	time,	which	is	the	minimum	charge
for	a	VM,	after	which,	the	per-second	pricing	begins.	A	bill	is	sent	out	at	the	end
of	each	billing	cycle,	listing	previous	usage	and	charges.

The	estimated	costs	of	your	instances	and	Compute	Engine	resources	can	be
seen	when	you	create	them	in	the	Google	Cloud	Platform	Console	or	you	can
estimate	your	total	project	costs	with	the	Google	Cloud	Pricing	Calculator.

You	should	know	that	VMs	are	billed	until	they	are	deleted,	and	that	charges
accrue	even	when	the	VM	is	stopped.	A	stopped	VM	will	not	incur	charges	for
CPU,	but	you	will	still	be	charged	for	attached	disks	and	IPs.

There	is	some	fine	print	around	how	exactly	these	sustained	discounts	are
calculated.	For	predefined	machine	types,	all	VMs	in	the	project	within	the	same
zone	are	grouped	together	into	one	inferred	instance—this	makes	the	discount
much	more	generous	of	course.	For	custom	machine	types,	the	CPU	and
memory	usage	are	separately	pooled	across	all	VMs	in	the	same	zone,	and	then	a
discount	rate	is	applied	separately	to	each.

Labels	and	tags
Labels	are	a	lightweight	way	to	group	together	resources	that	are	related	or
associated.	For	example,	a	common	practice	is	to	label	resources	that	are
intended	for	production,	staging,	or	development	separately,	so	you	can	easily
search	for	resources	that	belong	to	each	development	stage	when	necessary.

You	could	add	labels	to	resources	to	form	billing	groups.	You	can	apply	labels	to
any	of	these	resources—virtual	machine	instances,	Forwarding	rules	(Alpha),
Images,	Persistent	disks,	Snapshots,	Static	external	IPs,	and	VPN	tunnels.

Labels	are	just	key-value	pairs	and	they	correspond	to	tags	in	Azure;	rather
confusingly,	GCP	also	has	tags,	but	they	apply	only	to	VMs,	and	are	used	to
specify	which	VMs	in	a	network	should	be	subject	to	a	particular	firewall	rule
and	so	on.

Startup	scripts
	

We	can	run	our	own	startup	scripts	from	VM	instances	to	perform	automatic
actions	such	as	updating	the	system,	and	sending	notifications	and	so	on.

A	startup	script	is	specified	using	metadata	keys	through	the	metadata	server	and
can	be	applied	using	the	console	or	gcloud	command	line:

1.	 Once	you	have	set	the	default	region	and	zone	for	your	instance,	you	can
provide	a	startup	script	using	the	gcloud	command	line	while	creating	an
instance.	The	script	is	provided	with	a—metadata	flag:

gcloud	compute	instances	create	example-instance	--tags	http-server	

				--metadata	startup-script='#!	/bin/bash

				#	Installs	apache	and	a	custom	homepage

				#	Go	to	root	directory

				sudo	su	-

				#	For	automatic	Updates

				apt-get	update

				#	Install	apache

				apt-get	install	-y	apache2

				#	Edit	index.html	file

				cat	<<EOF	>	/var/www/html/index.html

				<html><body><h1>Hello	World</h1>

				<p>This	page	was	created	from	a	simple	start	up	script!</p>

				</body></html>

				EOF'

2.	 For	an	already	running	instance,	startup	scripts	can	be	added	using	the	add-
metadata	flag	as	follows.	The	path	can	be	a	URL	as	well,	which	means	that
the	script	can	also	be	located	from	a	Cloud	Storage	bucket	object:

gcloud	compute	instances	add-metadata	example-instance		--metadata-from-file	

startup-script=path/to/file		

	

	

Snapshots	and	images
Snapshots	are	used	to	back	up	data	from	persistent	disks	to	Cloud	Storage,	but
they	are	not	visible	in	your	buckets	as	they	are	managed	by	the	snapshot	service.
Snapshot	is	not	available	for	local	SSD.	They	can	be	used	to	create	new	disks,
which	may	be	in	another	region	or	zone	in	the	same	project,	and	thus	they	form
the	basis	of	VM	migration.	But	you	cannot	share	snapshots	across	projects.

Snapshots	do	not	back	up	VM	metadata,	tags,	and	so	on.	In	this	way,	they	are
different	from	images—which	are	used	primarily	to	create	instances	or	configure
instance	templates.	Snapshots	can	be	created	from	persistent	disks	even	while
they	are	attached	to	running	instances.	Images,	in	turn,	can	be	either	public	or
custom,	and	are	an	important	tool	in	creating	managed	instance	groups	to	clone	a
given	single	instance.

Snapshots	are	incremental	and	can	hence	be	used	to	create	regular	snapshots	on
a	persistent	disk	faster	and	at	a	much	lower	cost	than	regularly	creating	a	full
image	of	the	disk.

On	Windows,	you	can	enable	Volume	Shadow	Service	(VSS),	which	enables	a
disk	to	be	backed	up	without	having	to	be	shut	down.	Snapshots	are	the	size	of
the	existing	disk.	They	cannot	be	restored	to	a	smaller	disk	or	other	disk	types.
Thus,	shrinking	a	disk	would	be	an	OS	copy	process	of	data	from	one	attached
disk	to	a	second	smaller	attached	disk.	Multiple	copies	of	each	snapshot	are
redundantly	stored	across	multiple	locations	with	automatic	checksums	to	ensure
the	integrity	of	data.

How	to	snapshot	a	disk
	

Snapshots	are	used	to	back	up	persistent	disks.	They	are	different	from	backup
disk	images	since	they	are	created	to	be	used	periodically.	If	we	create
subsequent	snapshots	of	persistent	disk,	only	the	first	snapshot	will	back	up	the
entire	data	of	disk,	while	the	other	ones	will	only	have	reference	to	prior
snapshots	for	the	duplicate	data	and	will	contain	updated	data	or	newly	added
data	with	logs.	This	reduces	total	storage	to	be	used	and	hence	reduces	the
billing	amount.	To	create	a	persistent	disk	snapshot,	follow	these	steps:

1.	 Use	the	gcloud	compute	disks	snapshot	command	and	provide	a	disk	name	as	an
argument:

gcloud	compute	disks	snapshot	sda		

2.	 It	returns	a	status	flag	result	as	READY	or	FAILED.	To	verify	the	snapshot
creation,	use	the	following:

gcloud	compute	snapshots	list		

3.	 To	restore	data	from	the	created	snapshot,	create	a	persistent	disk	larger
than	the	size	of	the	snapshot.	Do	this	from	the	snapshot	itself	and	make	sure
you	are	not	doing	it	from	the	root	directory:

gcloud	compute	disks	create	sdb		--source-snapshot=test-instance-snapshot	--

size=600GB		

4.	 Attach	this	persistent	disk	to	an	instance:

gcloud	compute	instances	attach-disk	test-instance01	--disk=sdb		

5.	 The	preceding	command	is	useful	when	snapshot	and	restoration	disks	are
of	the	same	type.	For	different	types	of	disks,	use	a	type	argument	and
provide	the	disk	type.

6.	 Finally,	to	delete	the	snapshot,	use	the	following	command:

gcloud	compute	snapshots	delete	test-instance-snapshot		

	

	

How	to	create	an	image	of	a	disk
	

Custom	disk	images	are	different	from	public	images	managed	by	Google.	These
are	local	to	your	project.	They	are	useful	for	creating	one	or	more	instances
when	you	have	customized	your	instance	in	a	certain	way.	For	example,	you
could	have	installed	updates,	some	applications,	or	could	have	set	up	some
environment	to	work	on	and	you	would	not	want	to	repeat	the	procedure	over
again.	Unlike	snapshots,	custom	images	are	to	be	backed	up	once	per	instance
only.	We	can	create	multiple	images	as	variants,	but	they	will	be	complete
backups	of	the	instance	and	will	result	in	more	billing	due	to	access	storage:

1.	 To	create	the	image,	use	the	gcloud	compute	instance	create	command	and
provide	an	image	name,	source	disk,	the	zone	of	the	source	disk,	and	the
image	family.	The	image	family	is	an	optional	argument	that	specifies
which	OS	we	are	using	along	with	its	version.	In	our	case,	it	is	Debian	9:

gcloud	compute	images	create	sda-image	\

		--source-disk	sda	\	

		--source-disk-zone	us-east1-b	\

		--family	debian-9	

2.	 For	creating	an	image	from	another	image,	replace	the	source	disk	and
source	disk	zone	with	the	source	image	and	source	image	project
accordingly:

gcloud	compute	images	create	[IMAGE_NAME]	\

		--source-image	[SOURCE_IMAGE]	\

		--source-image-project	[IMAGE_PROJECT]	\

		--family	[IMAGE_FAMILY]

	

	

Cloud	launcher
Google	cloud	launcher	is	a	fast	deployment	services	for	software	packages
running	on	the	resources	of	GCP	(for	example,	a	web	server	on	compute	engine
VM).	The	sole	purpose	of	this	provision	is	to	make	sure	that	users	who	are	new
to	GCP	services	can	get	started	quickly	with	it	and	fulfil	their	purposes	such	as
hosting	a	blog.	The	deployments	can	be	scaled	based	on	the	requirements	later
on.

The	best	part	is	that	all	of	these	tasks	can	be	achieved	via	simple	user	friendly
GUI.	This	is	how	cloud	launcher	looks	like:

To	deploy	your	complete	application,	you	can	choose	and	deploy	your	packages
and	provision	resources	according	to	your	requirements	and	budget.	Billing
follows	the	patterns	of	the	resources	you	selected.

Deploying	LAMP	stack	using	GCE
	

Let's	explore	how	we	would	set	up	a	LAMP	stack	on	a	VM	instance.	LAMP	is	a
stack	of	Linux,	Apache,	MySQL,	and	PHP:

1.	 Connect	to	your	Linux	VM	instance	using	SSH	and	update	it.	We	will
follow	Debian	9	commands	throughout	this	example:

sudo	apt-get	update	

2.	 Install	Apache	2's	PHP	module:

sudo	apt-get	install	libapache2-mod-php	php		

3.	 To	test	the	installation,	enter	your	external	IP	address	and	you	should	see
the	Apache	test	page.	You	can	copy	the	external	IP	from	the	list	on	the
console	page	of	VM	instances.	It	should	show	the	Apache	starting	page:

http://[EXTERNAL_IP]

4.	 To	verify	that	PHP	and	Apache	are	working	together,	edit	the	phpinfo.php	file
and	access	it	with	your	VM	instance	external	IP:

sudo	sh	-c	'echo	"[YOUR_PHP_CODE]"	>	/var/www/html/phpinfo.php'

http://[YOUR_EXTERNAL_IP_ADDRESS]/phpinfo.php		

5.	 If	it	fails,	you	will	receive	a	404	error.
6.	 Finally,	to	install	MySQL	and	relevant	components,	use	the	following

command:

sudo	apt-get	install	mysql-server	php5-mysql	php-pear		

7.	 You	now	have	a	complete	Linux,	Apache,	MySQL,	PHP	(LAMP)	stack.

	

	

Modifying	GCE	VMs
You	can	choose	to	edit	your	virtual	machine's	settings.	However,	if	the	scope	of
the	program	that	you	run	on	this	instance	expands	and	it	needs	more	resources,
you	will	have	to	stop	the	instance	and	then	re-configure	your	machine	type	and
restart.	Note	that	stopping	the	VM	instance	can	have	unintended	side	effects
such	as	losing	critical	data	in	case	of	VM	having	been	provisioned	on	local	SSD:

1.	 Click	on	the	name	of	the	instance	you	wish	to	edit.

2.	 Navigate	to	the	VM	instance	details	page.	Select	your	VM	and	click	STOP
to	stop	the	VM.

3.	 Hit	EDIT	on	the	VM	instance	details	page.	The	VM	instance	can	now	be
reconfigured.

4.	 If	you	go	to	machine	type,	you	can	choose	from	the	standard	instances
available	in	the	drop	down	menu	or	if	you	click	on	Customize,	you	will	see
sliders	that	allow	you	to	configure	the	number	of	CPUs	on	your	machine,
the	amount	of	memory,	and	so	on.	Choose	something	that	is	sufficient	for
your	needs.

5.	 Note	that	you	can't	change	the	zone	once	the	instance	has	been	created.	If
the	original	was	Australia,	it	will	continue	to	be	Australia.

6.	 You	can	define	labels	and	add	resources	to	this	instance	to	make	billing
groups.

7.	 You	can	also	add	more	disks	to	your	instance,	but	this	requires	that	you
have	set	up	additional	hard	disks	earlier.	If	you	haven't	done	so,	you	won't
see	any	additional	disks	listed	here.	However,	you	can	create	a	disk	using
the	link	provided	right	there.

	

8.	 Instead	of	allowing	your	instance	access	to	all	cloud	APIs,	you	can	set	these
permissions	at	a	more	granular	level	by	specifying	access	for	each	API.	It
will	list	every	API	that	has	been	enabled	and	you	can	individually	configure
permissions	for	each	of	them.

9.	 If	you	choose	not	to	make	any	changes,	click	Cancel.	You	can	delete	your
instance	by	clicking	on	the	Delete	button	at	the	top	of	the	VM	instance
details	page.	As	soon	as	you	are	done	with	an	instance,	it	is	better	to	delete
them,	so	it	doesn't	take	up	resources	and	add	to	your	bill.	Be	mindful,
however,	that	a	deleted	VM	cannot	be	restored.

If	you	choose	to	restart	the	VM	by	clicking	on	the	Restart	button	at	the	top	of	the
VM	details	page,	note	that	the	external	IP	address	will	change.	The	RESET
button	is	an	option	to	stop	the	VM	temporarily	without	losing	the	IP	address.

Summary
	

In	this	chapter,	we	have	seen	that	Google	Compute	Engine	falls	under	the
umbrella	of	IaaS,	and	have	learned	how	that	compares	with	PaaS	and	SaaS.	The
provisioning	and	configuration	of	VM	instances,	including	the	use	of	startup
scripts,	as	well	as	machine	types	and	their	effect	on	costs	should	now	be	clear.
Some	of	the	additional	features	linked	to	VM	instances	such	as	load	balancing
and	autoscaling	have	also	been	discussed.	And	finally,	we	have	covered	the
forms	of	storage	that	can	be	attached	to	a	VM,	such	as	persistent	disks	and	local
SSDs,	while	also	touching	upon	snapshots	and	images.

Now	that	we	have	looked	at	Google's	IaaS	offering	with	Compute	Engine,	we
can	now	move	toward	the	PaaS	options	by	examining	Google	Kubernetes
Engine	(GKE)	and	App	Engine	(AE).

	

	

	

GKE,	App	Engine,	and	Cloud
Functions
Let's	go	back	to	the	conversation	we	had	on	compute	options	in	general	at	the
start	of	the	preceding	chapter.	We	had	discussed	that	there	is	a	range,	from	IaaS
through	to	SaaS.	We	had	also	spoken	about	how	the	IaaS	offerings	on	the	cloud
make	provisioning	infra	really	simple.	PaaS	offerings	allow	us	to	just	focus	on
writing	code,	without	having	to	deal	with	the	infrastructure.	The	SaaS	offerings
go	a	step	further	and	give	us	functionality	without	even	writing	code:	

The	GCP	IaaS	offering,	which	we	discussed	at	length,	is	the	Google	Compute
Engine	(GCE),	which	allows	us	to	provision	VMs	really	easily.	In	this	chapter,
we	will	discuss	the	remaining	four	compute	options	on	the	GCP,	all	of	which
range	from	IaaS	through	PaaS	(there	aren't	really	strong	SaaS	offerings	on	the
GCP	just	yet).	The	topics	we	will	touch	upon	include:

Containers,	Kubernetes,	and	the	Google	Kubernetes	Engine	(GKE)
Using	Google	App	Engine	Flex
Using	Google	App	Engine	Standard

GKE
Kubernetes	Engine	is	a	managed,	production-ready	environment	used	for
deploying	containerised	applications.	It	accelerates	the	TTM	(Time	To	Market)
by	introducing	the	latest	innovations	in	developer	productivity,	resource
efficiency	and	so	on.

Contrasting	containers	and	VMs

You	might	recall	our	short	introduction	of	containers,	and	Kubernetes,	at	the	start
of	the	previous	chapter.	We	had	given	the	example	of	a	simple	web	application,
with	a	web	app	upfront	and	a	database	out	back.	We	could	start	with	these	hosted
on	VM	instances—but	then,	as	the	web	app	got	complicated,	we'd	likely
decompose	the	code	into	separate	services.	This	move	from	a	monolithic
architecture	to	a	service-oriented	one,	and	finally,	perhaps	even	to	one	based	on
microservices,	is	quite	typical	of	the	evolution	of	such	app	architectures.

The	dependencies	between	these	services	would	quickly	get	complicated	to
manage	and,	to	simplify	things,	we'd	probably	decompose	the	services	to	rest	on
separate	VMs.	Then,	at	this	point,	we	probably	would	want	a	continuous
integration/continuous	delivery	(CI/CD)	system,	where	code	artifacts	are	built
and	deployed	on	an	on-going	basis.	There	would	be	little	point	in	including	the
OS	image	inside	each	such	artifact.	That,	in	a	nutshell,	gets	us	to	the	idea	of
containers	and	their	differences	from	VMs.	The	following	diagram	shows	how

containers	are	different	from	VMs:	

What	is	a	container?
A	container	image	is	a	lightweight,	standalone,	executable	package	that	also
encapsulates	everything	that	is	needed	to	run	it.	This	would	include	code,	the
runtime,	system	tools,	system	libraries,	and	settings.

This	definition	comes	from	the	website	of	Docker,	which	of	course	is	a	market-
leading	container	firm.	Consider	a	number	of	containers	running	on	top	of	the
same	OS	kernel.	Each	one	of	these	containers	will	then,	effectively,	have	its	own
little	environment	and	executable	files,	as	well	as	the	entire	runtime	set	up.	Each
one	of	these	containers	can	be	created	by	using	a	software	such	as	Docker.
Docker	can	be	thought	of	as	a	kind	of	CD	tool	that	takes	in	your	code	and
outputs	a	container	that	can	be	carried	around	and	run	in	its	own	little	sandbox.
Containers	differ	from	VMs	in	some	important	ways,	but	the	basic	idea	is	fairly
similar.	Individual	containers	are	often	in	the	Docker	file	format.

In	the	case	of	containers,	right	below	our	individual	containers	lies	Docker,
which,	as	we	know,	is	an	open	platform	that	allows	folks	to	build	and	run
distributed	applications	in	the	form	of	containers.	The	crucial	bit	though,	is	that
Docker	runs	on	top	of	the	host	OS,	which	means	that	each	individual	container
does	not	abstract	the	OS.	In	contrast,	in	the	case	of	VMs,	we	can	see	that	each
VM	has	its	applications,	libraries,	and	a	guest	OS.	Beneath	each	of	the	VMs	lies
the	VM	monitor,	or	hypervisor	as	it	is	known.	This	is	a	piece	of	software	that
should	be	created	by	a	company	such	as	VMware	for	instance,	which	ensures
that	one	or	more	VMs	are	able	to	run	on	the	host	machine	and	interact	with	the
hardware	and	the	other	infrastructure:

In	effect,	containers	add	one	further	level	of	indirection	to	your	code.	This	makes
them	different	from	VMs	because	we	virtualize	the	OS.	For	instance,	in	the

previous	block	diagram,	Docker	was	acting	as	a	proxy	between	the	container	and
the	OS.

In	a	VM,	on	the	other	hand,	every	VM	has	its	own	OS	that	talks	to	the
hypervisor	and	that	hypervisor	VM	monitor	is,	in	effect,	virtualizing	or
abstracting	the	hardware.	Now	it's	pretty	clear	that	a	VM	needs	to	lug	around	its
OS	within	it,	which	makes	it	a	little	less	portable	and	a	little	bigger	in	size	and
slower	to	boot.	In	general,	a	virtual	machine	is	definitely	more	heavyweight	than
a	Docker	container,	because	a	VM	contains	the	whole	OS	(including	kernel)
while	the	containers	only	contain	an	abstraction	of	the	OS	(while	using	shared
kernel).	For	those	of	you	who	are	not	familiar	with	containers	in	general.

You	can	visit	this	link	from	official	Docker	website:	https://www.docker.com/what-docker

Hence,	VMs	tend	to	be	an	order	or	several	orders	of	magnitude	bigger	than
containers	and	they	are	also	slower	to	deploy	and	get	started	with.	Here	is	a
quick	comparison	between	the	two–GCE	and	GKE.

GCE	instances	are	VMs,	like	those	on	the	right.	GKE	clusters	host	containers,
like	those	on	the	left.	This	is	an	important	distinction:

Containers VMs

Run	atop	container	manager	(for
example,	Docker)
Lightweight—no	OS,	only	apps
(image	size	in	MB)
Quicker	to	boot

Run	atop	hypervisor	(for
example,	KVM)
Heavyweight—include	OS
(image	size	in	GB)
Slower	to	boot

https://www.docker.com/what-docker

Docker	containers	and	Kubernetes	–
complements,	not	substitutes
A	common	question	that	people	have	is	-	what	exactly	is	the	relationship
between	Docker	and	Kubernetes?	Well,	technically	Docker	is	a	container	hosting
and	container	runtime	platform	while	kubernetes	is	a	container	orchestration
platform.	In	other	terms,	containers	run	on	Docker	while	they	can	be	managed
by	kubernetes.	There	are	other	orchestrators	as	well,	but	they	would	go	way	out
of	the	scope	and	relevance	of	this	book.	Kubernetes	was	earlier	developed	by
Google	to	manage	their	own	containers;	that	is,	for	internal	use	at	Google.	Many
of	the	kubernetes	orchestration	techniques	are	derived	from	the	results	of
Google's	own	struggle	with	handling	containers	on	large	scale.	Some	of	these
features	include	StatefulSets,	Configmaps	and	most	importantly	High
availability	cluster	configuration.

Going	forward,	Docker	users	can	choose	between	Kubernetes	and	Swarm	for
scheduling,	and	Docker’s	enterprise	edition	will	ship	with	Kubernetes.	This	will
allow	users	to	deploy	containers	directly	to	a	Kubernetes	cluster	using	a	Docker
stack	file.

At	the	technology	level	though,	the	relationship	between	Docker	containers	and
the	Kubernetes	orchestration	system	is	complementary.	If	you	decide	to	go	down
the	container	path	in	the	GCP,	you'll	most	likely	run	a	Kubernetes	container
cluster	(although	there	are	two	other	options	as	well—App	Engine	Flex	and
containers	on	a	VM.	More	details	will	follow).	Schematically,	here	is	what	a
container	cluster	would	look	like.

These	containers	run	in	a	container	cluster,	which	is	managed	using	software
known	as	Kubernetes.	Kubernetes	is	an	open-source	system	for	automating
deployment,	scaling,	and	management	of	containerized	applications	that	was
originally	designed	by	Google	and	donated	to	the	Cloud	Native	Computing
Foundation	(CNCF):

Notice	how	in	the	cluster,	we	have	one	supervising	machine,	which	is	the	block
at	the	bottom	running	Kubernetes,	known	as	the	master	endpoint.	This	master
endpoint	is	in	touch	with	a	number	of	individual	container	machines,	each
running	containers	and	each	talking	or	communicating	with	the	master	using	a
piece	of	software	known	as	a	Kubelet.	In	the	world	of	the	GKE,	that
coordinating	machine	is	known	as	the	master	node,	running	Kubernetes.	Each	of
the	other	VMs	in	the	cluster	is	known	as	a	node	instance.	Each	node	instance	has
its	own	Kubelet	talking	to	the	master	and	atop,	which	runs	a	pod.	A	Pod	is	the
atomic	unit	of	kubernetes	cluster	orchestration.	Inside	each	pod	there	can	be	one
or	multiple	containers.	This	is	important,	as	the	master	talks	to	node	instances,
which	in	turn	contain	pods	and	those	pods	contain	the	containers.

GKE
Note	that	Kubernetes	is	not,	by	itself,	a	part	of	the	GCP.	You	could	run
Kubernetes	clusters	on	GCP,	AWS,	Azure,	or	even	on-premise.	That's	the	big
appeal	of	Kubernetes.	GKE	is	merely	a	managed	service	for	running	Kubernetes
clusters	on	the	Google	Cloud.

So	to	clarify,	GKE	is	a	management	and	orchestration	system	for	Docker
container	and	container	clusters	that	run	within	Google's	public	cloud	services
and	GKE	runs	Kubernetes.

As	we	have	already	discussed,	these	GKE	clusters	have	a	master	node	running
Kubernetes	that	controls	a	set	of	node	instances	that	have	Kubelets	and	inside
those	Kubelets	are	individual	containers.	Kubernetes	can	be	considered	an
abbreviation	for	all	of	the	container	functionality	available	on	GCP.	Kubernetes
is	the	orchestrator	that	runs	on	the	master	node,	but	really	depends	on	the
Kubelets	that	are	running	on	the	pods.	In	effect,	a	pod	is	a	collection	of	closely
coupled	containers,	all	of	which	share	the	same	underlying	resources.	For
instance,	they	will	all	have	the	same	IP	address	and	they	can	share	disk	volumes.
They	may	be	a	web	server	pod	for	instance,	which	could	have	one	container	for
the	server	and	then	containers	for	the	logging	and	the	matrix	infrastructure.	Pods
are	defined	using	configuration	files	specified	either	in	JSON	or	YAML.	Each
pod	is,	in	effect,	managed	by	a	Kubelet,	which	is,	in	turn,	controlled	by	the
master	node.

The	VM	instances	that	are	contained	in	a	container	cluster	are	of	two	types,	as
we	have	already	seen.	There	is	one	special	instance	that	is	a	master,	the	one	that
run	Kubernetes,	and	the	others	are	node	instances	that	run	Kubelets.

As	we	have	already	seen,	these	node	instances	are	pretty	similar	to	each	other.
They	are	managed	from	the	master	to	run	the	services	that	are	necessary	to
support	the	Docker	containers	that	contain	the	actual	code	that's	being	executed.
Each	node	runs	the	Docker	runtime	and	also	holds	the	Kubelet	agent	that
manages	the	Docker	runtime,	while	also	ensuring	that	all	of	the	Docker
containers	that	are	scheduled	on	the	host	are	running	successfully.	Let	us	further

understand	both	these	types	in	a	little	more	detail.

The	master	endpoint	runs	the	Kubernetes	API	server,	which	is	responsible	for
servicing	REST	requests	from	wherever	they	come	in,	scheduling	pod	creation
and	deletion,	and	synchronizing	information	across	different	pods.

Are	all	instances	in	the	cluster	necessarily	identical	to	each	other?	Actually,	no.
Within	your	container	cluster,	you	might	want	to	have	groups	of	different
instances	that	are	similar	to	each	other.	Each	of	these	are	known	as	node	pools.
A	node	pool	is	the	subset	of	machines	within	a	cluster	that	shares	the	same
configuration.	As	you	might	imagine,	the	ability	to	have	different	node	pools
helps	with	customizing	instance	profiles	in	your	cluster,	which,	in	turn,	can
become	handy	if	you	frequently	make	changes	to	your	containers.	However,	you
should	be	aware	that	it	should	be	possible	to	run	multiple	Kubernetes	node
versions	on	each	node	pool	in	your	cluster	and	have	each	of	those	node	pools
independently	listen	to	different	updates	and	different	sets	of	deployments.	Node
pools	are	the	most	powerful	way	of	customizing	the	individual	instances	within
the	clusters.

The	GCP	also	has	its	own	container	builder.	This	is	a	piece	of	software	that	helps
to	execute	container	image	builds	on	the	GCP's	infrastructure.	Dockerfiles	(text
files)	are	turned	into	Docker	images	which	can	be	stored	into	docker/container
registry,	downloaded	and	run	on	any	machine	having	Docker	installed.

Creating	a	Kubernetes	cluster	and
deploying	a	WordPress	container
This	section	will	walk	you	through	setting	up	Docker	containers	in	the	cloud
using	Google	Compute	VM	instances.	We	will	also	see	what	you	need	to	do	to
expose	your	pod	to	external	traffic.	Let's	see	how	we	can	set	up	a	Kubernetes
cluster	running	on	the	GKE.

First,	we	need	to	set	up	some	default	configuration	properties	before	we	create
our	container	cluster:

1.	 Set	the	default	compute	zone	and	the	compute	region	as	appropriate.

gcloud	config	set	compute/zone	ZONE

gcloud	config	set	compute/region	REGION

2.	 Use	the	gcloud	container	clusters	create	command	to	create	a	cluster	running
the	GKE.	The	name	of	our	cluster	is	my-first-cluster	and	we	want	this	cluster
to	have	exactly	one	node.	This	will	be	set	up	in	the	default	zone	and	the
default	region	that	we	specified	in	our	configuration,	that	is,	us-central1-a:

gcloud	container	clusters	create	my-first-cluster	--num-nodes	1	

3.	 The	confirmation	message	on	the	command	line	that	says	we	have	one	node
in	this	cluster	and	its	current	status	is	running.	You	can	use	the	gcloud	compute
instances	list	command	to	see	the	list	of	clusters	and	VM	instances	that	you
have	running.	Also,	note	that	with	just	one	command	GKE	provisioned	a
fully-functional	Kubernetes	cluster.	This	saves	a	lot	of	time	and	efforts	of
manually	configuring	and	spinning-up	k8s	clusters.

4.	 Now	that	we	have	a	cluster	up	and	running,	we	will	deploy	WordPress	to	it.
WordPress	is	simply	a	content	management	system	used	for	applications
like	blogging.	We	will	deploy	a	WordPress	Docker	container	on	our	cluster.
This	WordPress	Docker	container	is	publicly	available	as	an	image	and	can
be	accessed	using	--image=tutum/wordpress.

	

5.	 Use	the	command-line	equivalent	for	working	with	Kubernetes	clusters:	the
kubectl	command.	We	want	this	container	with	the	WordPress	application	to
run	on	port	80.	This	WordPress	image	contains	everything	needed	to	run	this
WordPress	site,	including	a	MySQL	database:

kubectl	run	wordpress	--image=tutum/wordpress	--port=80

Having	deployed	this	container	to	your	cluster,	what	you	have	created	on
your	cluster	is	a	pod.	A	pod	is	basically	one	or	more	containers	that	go
together	as	a	group	for	some	meaningful	deployment.	In	this	case,	for	our
WordPress	container,	there	is	one	container	within	this	pod.

You	can	use	the	kubectl	get	pods	command	to	see	the	status	of	the	pods	that
you	have	running.	We	have	one	pod	that	starts	with	the	term	wordpress.
There	are	zero	out	of	one	(0/1)	pods	running	and	its	current	status	is
ContainerCreating,	as	shown	in	the	following	screenshot:

It's	not	ready	yet.	You	can	run	the	command	another	couple	of	times	to
see	how	the	status	is	updated.	At	some	point,	you	should	see	the	status	as
running	and	it	will	also	show	as	one	out	of	one	(1/1).	Your	pod	is	now
ready	with	your	Docker	container	running	successfully	on	it.

6.	 When	you	first	create	a	pod,	its	default	configuration	only	allows	it	to	be
visible	to	other	machines	within	the	cluster.	We	don't	want	just	the	internal
machines	to	access	this	spot.	We	want	it	to	be	made	available	to	external
traffic.	This	can	be	done	by	exposing	the	pod	as	a	service	so	that	external
traffic	can	access	your	WordPress	site.	kubectl	expose	pod	is	the	command	that
is	used	for	this.	Specify	the	name	of	your	container,	which	is	wordpress-,
followed	by	a	string	of	numbers	and	letters.	The	name	that	you	want	to
specify	for	your	containers	is	wordpress	and	the	type	of	service	to	set	up	is	a
load	balancer:

kubectl	expose	pod	wordpress-2644474461-qjr06	--name=wordpress	--

type=LoadBalancer		

This	load	balancer	creates	an	external	IP	address	that	this	port	can	use	to
expect	traffic.	This	is	what	makes	your	WordPress	site	available	to
external	users	as	a	service.	Kubectl	expose	creates	a	service,	the
forwarding	rules	for	the	load	balancer,	and	the	firewall	rules	that	allow
external	traffic	to	be	sent	to	the	pod.	While	exposing	the	pod,	we	named
a	service	wordpress	and	you	can	now	use	this	name	in	order	to	check	the
services	that	we	have	available.

7.	 You	can	use	the	kubectl	describe	services	command,	followed	by	the	service
name,	to	see	information	about	your	WordPress	service.	At	the	very	bottom
here,	beneath	the	title	events,	you	can	see	the	series	of	events	that	have
occurred	on	this	cluster.	The	very	first	thing	that	we	did	was	to	create	a	load
balancer.	Run	the	command	to	describe	the	services	again	until	you	notice	a
couple	of	changes.	The	load	balancer	has	finished	creation	and	it	now	has
an	ingress	IP	address	that	you	can	use	to	direct	external	traffic	tools.	This
added	a	new	event:

8.	 Let's	use	this	LoadBalancer	ingress	IP	address	to	view	our	WordPress	site
running	on	the	Kubernetes	cluster.	You	will	see	the	starter	page	to	set	up
your	WordPress	site.	If	you	have	created	a	site	on	WordPress	before,	this
should	be	very	familiar	to	you.	Click	on	the	Continue	button	and	you	can	then
walkthrough	the	steps	of	actually	creating	a	WordPress	site	if	you	want	to:

9.	 If	you	switch	back	to	the	compute	engine	VM	instances	page	and	click
through	the	cluster,	the	single	node	Kubernetes	will	show	some	activity
because	we	deployed	a	WordPress	Docker	image	to	it	and	launched	a	site.
You	can	explore	the	additional	settings	and	config	values	that	are	associated
with	this	Kubernetes	cluster.

In	this	section,	we	learned	what	containers	are	and	how	they	differed	from	VM
instances.	We	have	examined	the	architecture	of	container	clusters	in	the	GCP,
the	basic	building	blocks	such	as	pods,	and	the	underlying	concepts	such	as
Kubernetes	that	power	the	GKE.	We	now	know	that	we	need	to	run	an	explicit
kubectl	command	in	order	to	expose	our	pods	to	our	external	traffic	and	set	up	a
load	balancer,	where	our	external	traffic	can	be	directed.

You	can	look	into	official	kubernetes	documentation	for	further	reference	on	kubectl	command
line	and	various	methods	of	operating	objects	and	cluster:	https://kubernetes.io/docs/reference/kubectl
/overview/

https://kubernetes.io/docs/reference/kubectl/overview/

Using	the	features	of	GKE
Apart	from	rapidly	deploying	kubernetes	cluster	and	allowing	it	to	get	managed
from	cloud	shell,	GKE	leverages	many	advantages	of	being	under	a	full-fledged
public	cloud	platform.	Let’s	start	with	storage.

Storage	and	persistent	disks
	

Recall	that	while	working	with	Compute	Engine	instances,	we	had	to	choose
from	many	storage	options,	which	included	persistent	disks	that	could	either	be
ordinary	or	SSD,	local	SSD	disks,	and	Google	Cloud	Storage.	Storage	options
on	Kubernetes	engine	instances	are	not	all	that	different,	but	there	is,	however,
one	important	subtlety.	This	has	to	do	with	the	type	of	attached	disk.	Recall	that
when	you	use	the	Compute	Engine	instance	that	comes	along	with	an	attached
disk,	the	link	between	a	Compute	Engine	instance	and	the	attached	disk	will
remain	for	as	long	as	the	instance	exists	and	the	same	disk	volume	is	going	to	be
attached	to	the	same	instance	until	the	VM	is	deleted.	This	will	be	the	case	even
if	you	detach	the	disk	and	use	it	with	a	different	instance.

However,	when	you	are	using	containers,	the	on-disk	files	are	ephemeral.	If	a
container	restarts	for	instance,	after	a	crash,	whatever	data	that	you	have	had	in
your	disk	files	is	going	to	be	lost.	There	is	a	way	around	this	ephemeral	nature	of
storage	option,	and	that	is	by	using	a	persistent	abstraction	known	as	GCE
persistent	disks.	If	you	are	going	to	make	use	of	Kubernetes	engine	instances	and
want	your	data	to	not	be	ephemeral,	but	remain	associated	with	your	containers,
you	have	got	to	make	use	of	this	abstraction	or	your	disk	data	will	not	be
persistent	after	a	container	restarts.

Dynamically	provisioned	storage	classes	use	HDD	by	default	but	we	can
customize	it	and	attach	an	SSD	to	a	user	defined	storage	class.	Notice	the	kind	of
the	file	as	StorageClass.	Here,	GCE’s	persistent	disk	is	the	provisioner	with	the
type	SSD.

1.	 You	can	save	it	with	the	name	ssd.yaml	or	something	convenient	for	you:

nano	ssd.yaml

apiVersion:	storage.k8s.io/v1

kind:	StorageClass

metadata:

	name:	ssd

provisioner:	kubernetes.io/gce-pd

parameters:

	type:	pd-ssd

2.	 Once	it	is	saved,	you	can	create	a	PVC	(PersistentVolumeClaim).	Let’s	name	it
storage-change.yaml.	Notice	that	it	has	the	name	of	our	previously	created
storage	class	in	the	StorageClassName:

nano	storage-change.yaml

kind:	PersistentVolumeClaim

apiVersion:	v1

metadata:

	name:	storage-change

spec:

	accessModes:

	-	ReadWriteOnce

	storageClassName:	ssd

	resources:

	requests:

	storage:	1Gi

3.	 Apply	the	storage	change	by	running	the	following	command.	Make	sure	to
run	them	under	the	sequence	given	below	since	the	storage	class	itself
needs	to	be	created	first	before	PVC:

kubectl	apply	-f	ssd.yaml

kubectl	apply	-f	storage-change.yaml

	

	

Load	balancing
	

Load	balancing	is	yet	another	area	where	working	with	Kubernetes	Engine
instances	is	rather	more	complicated	than	working	with	Compute	Engine	VMs.
With	the	Kubernetes	Engine,	you	can	make	use	of	network-level	load	balancing,
which	works	just	out	of	the	box.	However,	remember	that	the	higher	up	the	OSI
stack	you	go,	the	more	sophisticated	your	load	balancing	becomes.	Extending
that	logic,	the	most	sophisticated	form	of	load	balancing	is	going	to	be	HTTP
load	balancing.	This	is	something	that	does	not	work	all	that	simply	with
Kubernetes	Engines.	If	you	want	to	use	HTTP	load	balancing	with	container
instances,	you	are	going	to	have	to	do	some	interfacing	of	your	own	with	the
Compute	Engine	load	balancing	infrastructure:

1.	 First	of	all,	deploy	a	single	replica	nginx	server	by	running	its	Docker	image
on	port	80:

kubectl	run	nginx	--image=nginx	--port=80		

2.	 Create	a	service	resource	to	access	nginx	from	your	cluster.	The	NodePort	type
allows	Kubernetes	Engine	to	make	your	service	available	on	a	random	high
port	number:

kubectl	expose	deployment	nginx	--target-port=80	--type=NodePort

3.	 You	can	also	verify	the	service	creation.	The	following	command	should
show	you	the	name	of	the	service	and	the	port	number	it	has	been	assigned:

kubectl	get	service	nginx		

4.	 Now	you	need	to	create	and	save	an	ingress	resource	that	will	contain	rules
and	configurations	of	HTTP	traffic:

nano	basic-ingress.yaml

apiVersion:	extensions/v1beta1

kind:	Ingress

metadata:

	name:	basic-ingress

spec:

	backend:

	serviceName:	nginx

5.	 This	will	create	an	HTTP	load	balancer.	Run	the	file	using	the	following
command:

kubectl	apply	-f	basic-ingress.yaml		

6.	 Now	you	can	find	out	the	external	IP	address	of	your	load	balancer	by
calling	ingress	service:

kubectl	get	ingress	basic-ingress		

7.	 To	remove	this	load	balancer,	use	the	following	command:

kubectl	delete	ingress	basic-ingress

	

	

Auto	scaling
There	are	two	possible	levels	at	which	Kubernetes	clusters	can	be	autoscaled—
nodes	(VMs)	and	pods.

Scaling	nodes	with	the	cluster
autoscaler
	

For	automatic	resizing	of	your	clusters	based	on	nodes,	you	need	to	use
something	known	as	the	cluster	autoscaler.	This	will	periodically	check	and
optimize	the	size	of	your	cluster,	either	increasing	or	reducing	the	number	of
instances.	Let's	say	that	your	container	cluster	is	larger	than	it	needs	to	be	and
there	are	nodes	that	do	not	have	any	pods	scheduled,	those	nodes	will	be	deleted
by	the	cluster	autoscaler.	On	the	other	hand,	if	your	cluster	container	is	too	small
and	if	you	have	pods	that	are	facing	inordinate	delays	before	they	are	run,	the
cluster	autoscaler	will	add	nodes	and	scale	up	your	cluster:

gcloud	container	clusters	create	[CLUSTER-NAME]	--num-nodes=5	\

--enable-autoscaling	--min-nodes=3	--max-nodes=10	[--zone=[ZONE]	\	--project=[PROJECT-

ID]]

Notice	how	the	scaling	of	nodes	is	carried	out	using	gcloud	(not	kubectl).

	

	

	

Scaling	pods	with	the	horizontal	pod
autoscaler
	

It	is	also	possible	in	recent	versions	of	Kubernetes	to	scale	pods	(rather	than
nodes).	This	also	allows	us	to	scale	down	to	a	node	pool	of	zero,	that	is	to	scale
down	to	zero	if	there	is	no	demand	for	the	service	while	also	retaining	the	ability
to	scale	up	with	demand.

Combining	the	two,	that	is,	scaling	in	both	directions	allows	you	to	make	your
application	truly	elastic.	Remember	that	pods	are	a	Kubernetes	concept,	so
unsurprisingly,	such	autoscaling	is	carried	out	using	kubectl	rather	than	gcloud:

1.	 To	do	this,	you	need	to	apply	a	Horizontal	Pod	Autoscaler	(HPA)	by
using	the	kubectl	autoscale	command.	The	max	flag	is	mandatory,	while	the	min
flag	is	optional.	The	cpu-percent	indicates	total	CPU	utilization:

kubectl	autoscale	deployment	my-app	--max=6	--min=4	--cpu-percent=50		

2.	 To	check	any	HPA,	use	the	kubectl	describe	command:

kubectl	describe	hpa	[NAME-OF-HPA]	

3.	 Similarly,	use	the	kubectl	delete	command	to	remove	HPAs:

kubectl	delete	hpa	[NAME-OF-HPA]	

	

	

Multi-zone	clusters
When	you	enable	multi-zone	container	clusters,	the	container	resources	are
replicated	in	the	additional	zones	within	your	nominated	region,	and	work	is
scheduled	across	all	of	them.	If	one	zone	fails,	the	others	can	pick	up	the	slack.
In	this	case,	any	single	zone	is	capable	of	running	the	entire	application.

All	of	the	zones	are	within	the	same	region.	The	following	diagram	demonstrates
this	concept:

Cloud	VPN	integration
GKE	allows	you	to	reserve	an	IP	address	range	for	your	container	cluster,	thus
enabling	your	cluster	IPs	to	coexist	with	private	network	IPs	through	Google
Cloud	VPN.

Rolling	updates
	

You	can	also	perform	rolling	updates.	The	updates	can	be	container	images,
configurations,	annotations,	labels	or	resource	allocation.	The	term	rolling
indicates	the	process's	incremental	nature	to	replace	one	pod	at	a	time	(no	matter
how	fast	it	may	be).	The	reason	is	to	avoid	server	downtime	while	distributing
updates.

Rolling	updates	involve	updating	the	workloads	of	Kubernetes:

1.	 We	will	use	the	kubectl	set	command	to	perform	manual	updates.	We	will
update	nginx	from	version	1.10	to	1.12.2:

kubectl	set	image	deployment	nginx	nginx=nginx:1.12.2

2.	 The	kubectl	set	command	updates	one	pod	at	a	time.	To	control	resource
allocation	for	the	updates,	you	can	also	provide	the	following	flags:

kubectl	set	resources	deployment	nginx	--limits=cpu=400m,memory=1024Mi	--

requests=cpu=200m,memory=512Mi		

3.	 Manually	updating	each	and	every	application	would	be	tiresome	and	time
consuming.	Kubernetes	also	allows	us	to	roll	out	automatic	updates:

kubectl	rollout	status	deployment	nginx

4.	 The	rollout	can	also	be	paused	or	resumed	by	using	the	following
command:

kubectl	rollout	pause	deployment	nginx

kubectl	rollout	resume	deployment	nginx		

5.	 In	case	of	a	misfire,	the	rollout	of	an	update	can	also	be	rolled	back	to	a
stable	previous	version:

kubectl	rollout	undo	deployment	nginx	--to-revision=3

6.	 In	addition	to	this,	the	update	rollout	history	can	also	be	viewed	by	using

the	following	command:

kubectl	rollout	history	deployment	nginx

	

	

The	container	registry
	

The	container	registry	provides	secure,	private	Docker	image	storage	on	GCP.	It
can	be	thought	of	as	a	way	to	access,	that	is,	to	push,	pull,	and	manage	Docker
images	from	any	system,	whether	it's	a	Compute	Engine	instance	or	your	on-
premise	hardware	through	a	secure	HTTPS	endpoint.	In	a	sense,	this	is	a	very
controlled	and	regulated	way	of	dealing	with	container	images.	You	should	be
aware	that	it	is	possible	to	hook	up	Docker	and	the	container	registry	so	that	they
talk	to	each	other	directly.	In	this	way,	by	using	the	Docker	command	line,	which
is	the	credential	helper	tool,	you	can	authenticate	Docker	directly	from	the
container	registry.	Since	this	container	registry	can	be	written	to	and	read	from
pretty	much	any	system,	you	could	also	use	third-party	cluster	management	or
CI/CD	tools	and	even	those	that	are	not	on	GCP.	While	Docker	provides	a
central	registry	to	store	public	images,	you	may	not	want	your	images	to	be
accessible	to	the	world.	In	this	case,	you	must	use	a	private	registry:

1.	 To	configure	the	container	registry	in	GCP,	first	of	all,	you	need	to	tag	a
built	image	with	a	registry	name.	The	registry	name	format	follows
hostname/project_ID/image	format.	The	hostname	is	your	Google	container
registry	hostname.	For	example,	us.gcr.io	stores	your	image	in	the	US
region:

docker	tag	nginx	us.gcr.io/loonycorn-project-08/nginx	

2.	 Then	you	need	to	push	the	image	to	the	Docker	container	registry	using	the
gcloud	command	line:

gcloud	docker	--	push	us.gcr.io/loonycorn-project-08/nginx

3.	 To	test	your	registry,	you	can	try	pulling	your	image	with	the	same	registry
tag	format:

gcloud	docker	--	pull	us.gcr.io/loonycorn-project-08/nginx		

4.	 Finally,	to	delete	it	from	the	container	registry,	use	the	following	command:

gcloud	container	images	delete	us.gcr.io/loonycorn-project-08/nginx		

5.	 Now,	if	you	are	using	Kubernetes,	it	has	a	built-in	container	registry	to	run
with	kubectl	so	you	can	use	public	or	private	container	images	as	well:

kubectl	run	nginx	--image=us.gcr.io/loonycorn-project-08/nginx

	

	

Federated	clusters
Cluster	federation	enables	clusters	across	multiple	regions,	including	other	cloud
providers	or	on-premise	Kubernetes	installations.	It	is	useful	for	super	high
availability	or	for	super	scalability.	With	IP	aliases,	Kubernetes	Engine	clusters
can	allocate	pod	IP	addresses	from	a	CIDR	block	known	to	GCP.	This	allows
your	cluster	to	interact	with	other	cloud	platform	products	and	entities,	and	also
allows	more	scalable	clusters.	Cluster	federation	is	useful	when	you	want	to
deploy	resources	across	more	than	one	cluster,	region,	or	cloud	provider.	You
may	want	to	do	this	to	enable	high	availability,	offer	greater	geographic	coverage
for	your	app,	use	more	than	one	cloud	provider,	combine	cloud	provider	and	on-
premise	solutions,	or	for	ultra-high	scalability.	Cluster	federation	is	also	helpful
when	you	want	resources	to	be	contactable	in	a	consistent	manner	from	both
inside	and	outside	their	clusters,	without	incurring	unnecessary	latency	or
bandwidth	cost	penalties,	or	being	susceptible	to	individual	cluster	outages.
Although	it	is	an	external	topic	from	GCP	so	it	goes	out	of	the	scope.

	

Google	App	Engine	–	flexible
Google	App	Engine	is	the	most	flexible	and	no-ops	part	of	hosting	your
application.

Hosted	Docker	containers	with	App
Engine	Flex
Both	VMs	and	containers	require	a	fair	amount	of	low-level	intricacies	and	ops.
What	if	you	decided	that	you	didn't	want	to	deal	with	any	of	that?	What	if	you
would	rather	use	a	standard	PaaS	web	development	tool	or	technology	such	as
Heroku	or	Engine	Yard?	Both	of	these	are	classic	web	development	platforms
that	you	could	choose	to	leverage.	Well,	the	GCP	equivalent	of	doing	this	is
making	use	of	the	Google	App	Engine:	

Using	App	Engine,	you	could	set	up	a	pretty	complex	web	app	with	very	little
effort,	focusing	on	just	writing	the	code.	One	little	note—at	the	time	of	writing
(January	2018),	App	Engine	is	regional,	not	global.	So,	if	your	users	are	from	all
over	the	world,	you	might	find	that	they	experience	latency	issues.	There	is	a
great	deal	of	clamor	for	multi-region	support	with	global	load	balancing	in	App
Engine,	however,	so	presumably	that	will	be	rolled	out	at	some	point.

App	Engine	is	available	in	two	environments:

Standard	environment
Flexible	environment

The	App	Engine	Standard	environment	is	preconfigured	with	a	few	specific
runtimes,	such	as	Java	8,	Python	2.7,	Go,	and	PHP.	This	runtime	really	is	a
container,	a	Google-proprietary	container,	inside	which	you	can	write	and	deploy
your	code.	This	is	a	standard	environment	in	which	you	can't	change	a	thing.
Thus,	when	you	run	your	code	in	an	App	Engine	standard	environment,	what
you	are	really	doing	is	making	use	of	a	Google-specific	container.

In	contrast,	App	Engine	Flex	offers	a	range	of	choices	where	you	can	tweak	stuff
and	customize	it.	For	instance,	you	might	choose	to	make	use	of	Python	3.x,

.NET,	or	some	other	environment	that	is	not	available	under	App	Engine
Standard.	We	can	then	use	App	Engine	Flex,	which	basically	relies	on	Docker
containers	to	allow	any	sort	of	custom	runtime.	To	do	so,	all	you	need	to	do	is
specify	your	own	Docker	files,	which	can	contain	your	own	runtime	and	the	OS
image	that	you	would	like	to	use.

App	Engine	Flex	is	a	PaaS	way	to	run	Docker	containers,	but	it	probably	has
been	eclipsed	in	popularity	and	adoption	by	GKE.	Why?	Probably	because	the
whole	point	of	containerizing	your	workloads	is	to	make	them	portable,	and	use
them	in	multi-cloud	environments.	This	is	far	easier	and	more	practical	to	do
with	GKE	than	with	App	Engine	Flex,	where	we'd	end	up	using	Google-specific
services	and	getting	tied	to	GCP,	defeating	the	whole	point	of	containerization.
However,	if	you	want	to	run	a	single	container	in	a	managed	deployment	without
having	to	set	up	a	Kubernetes	cluster	with	GKE,	App	Engine	might	make	sense
for	you.

Running	a	simple	Python	application
with	App	Engine	Flex
	

To	try	this	Python	example	in	the	App	Engine	Flex	environment,	for	the	context
of	this	tutorial,	it	would	be	convenient	to	use	Cloud	Shell.:

1.	 Once	you	have	git	installed,	clone	the	following	directory:

git	clone	https://github.com/GoogleCloudPlatform/python-docs-samples	

2.	 Now,	Python	sample	codes	can	be	found	in	the	following	sub-directory:

cd	python-docs-samples/appengine/flexible/hello_world		

3.	 Now,	run	the	application	with	the	following:

python	main.py

4.	 You	can	also	view	the	output	on	your	browser's	localhost:

http://localhost:8080	

5.	 From	this	directory,	we	can	run	Python	code.	But	before	that,	if	you	don't
have	virtual	environment	installed,	do	it	with	the	following	command:

sudo	pip	install	virtualenv		

6.	 In	this	virtual	environment,	create	a	dedicated	Python	environment	along
with	its	dependencies:

virtualenv	env

source	env/bin/activate

pip	install	-r	requirements.txt

7.	 Now,	we	can	deploy	this	app	by	running	the	following	command	in	the
hello	world	directory:

gcloud	app	deploy

8.	 Of	course,	the	gcloud	command	only	works	if	you	have	Google	Cloud	SDK
installed	on	your	local	machine.	We	can	view	the	deployed	app's	result	with
the	following	command.	It	will	open	a	browser	window	and	the	address	bar
will	contain	an	address	having	an	http//PROJECT_ID.appspot.com	pattern:

gcloud	app	browse

	

	

Cron	Jobs	with	App	Engine	Flex
The	App	Engine	Cron	service	takes	you	one	step	closer	to	automation	by
allowing	you	to	schedule	tasks	at	certain	times	or	at	regular	intervals.	Such	tasks
are	known	as	cron	jobs.	These	can	invoke	a	URL	by	using	an	HTTP	GET
request.	To	use	cron,	you	need	to	put	a	cron.yaml	file	in	the	root	directory	of	your
application,	which	might	look	something	as	follows:

cron:

-	description:	"daily	task"

url:	/tasks/daily

	schedule:	every	24	hours

-	description:	"weekly	task"

	url:	/mail/weekly

	schedule:	every	monday	09:00

	timezone:	Australia/NSW

	target:	beta	

As	can	be	seen	in	the	example,	URL	and	schedules	are	mandatory	jobs	of	cron
files,	whereas	description,	timezone,	target,	and	so	on	are	optional	ones.

The	schedule	syntax	has	the	following	format:

every	N	(hours|mins|day	of	week)	["from"	(time)	"to"	(time)]

Where	N	is	the	number	and	time	is	in	HH:MM	format	(24	hours).

If	you	want	your	job	to	be	rerouted,	you	can	also	add	a	dispatch.yaml	file	alongside
cron.yaml,	which	might	look	as	follows.	With	the	dispatch	file,	the	job	will	be	re-
routed	to	service2	even	though	the	target	is	beta:

dispatch:

-	url:	'*/tasks/weekly'

	service:	service2

Finally,	run	following	command	on	Cloud	Shell	to	deploy	the	app	on	App
engine.

gcloud	app	deploy	cron.yaml

Advantages	of	GKE	over	Docker	on
VMs	or	App	Engine	Flex
	

Now,	there	are	several	different	ways	of	deploying	Docker	containers	on	the
GCP.	We	could	use	App	Engine	Flex,	or	even	simply	deploy	them	on	VMs.	But
choosing	either	of	these	options	would	cause	us	to	lose	out	on	the	power	of
Kubernetes.	That	is	a	pretty	big	loss,	because	we'd	need	to	manage	creating,
managing,	and	scaling	our	deployments	ourselves.	It	would	also	tie	us	to	a
specific	platform—neither	Docker	on	GCP	VMs,	nor	App	Engine	Flex,	would
generalize	easily	to	a	non-GCP	cloud,	or	to	on-premise.	Following	are	the
parameters	to	keep	in	mind	while	making	a	choice	between	GKE	or	App	Engine
Flex.

Control:	The	argument	is	simple	here.	Containers	give	a	LOT	more	control
and	portability.	From	resource	allocation	to	backend	storage	provision,
everything	can	be	customised	with	containers	which	is	not	the	case	with
App	Engine	due	to	it	being	managed	by	Google.
Scaling:	Take	deployment	or	scaling,	App	engine	is	always	faster	than
GKE	cluster	specially	for	the	tasks	like	autoscaling.	On	the	other	hand,	if
HPA	(Horizontal	Pod	Autoscaler)	is	not	employed,	scaling	on	kubernetes
can	take	significantly	more	time	and	efforts.
Cost:	Since	App	Engine	Flex	still	uses	managed	VMs	as	its	backend,	GKE
saves	a	lot	of	resources	(the	difference	becomes	more	significant	with	large
deployments)	and	so	is	more	economic.
Service:	Both	App	Engine	Flex	and	GKE	use	GCP’s	HTTP(s)	load
balancing	so	you	can	expect	similar	throughputs	apart	from	the	times	where

	

	

Google	App	Engine	–	standard
Google	App	Engine	(Standard)	is	the	way	to	go	for	building	and	deploying	data-
rich	and	heavy	load	applications	in	a	secure	and	reliable	fully	managed
environment.

Hosted	web	apps	with	App	Engine
Standard

We've	already	introduced	App	Engine	Standard	previously—it	is	a	PaaS
compute	offering	in	which	we	can	deploy	code	in	a	few	specific	runtimes	(Java
8,	Python	2.7,	Go,	and	PHP	at	the	time	of	writing),	into	Google-proprietary
containers.	The	advantage	of	App	Engine	Standard	is	that	you	just	write	the	code
—you	don't	bother	with	ops,	containerization,	or	anything	else.

If	you	are	developing	GCP	first	and	are	quite	confident	that	your	app	is	going	to
be	GCP-only,	then	App	Engine	Standard	is	a	great	choice.	It	offers	the
following:

Very	fast	autoscaling	(order	of	milliseconds	to	autoscale	your	app)
Several	very	handy	Google-specific	APIs	that	you	can	use	(Memcache,
datastore,	task	queues)
Attractive	pricing
Ease	of	deployment	for	performing	A/B	testing,	blue/green	deployments,
and	canary	releases.

You	should	be	mindful	though,	that	if	you	go	with	App	Engine	standard,	you
really	are	quite	locked	to	the	GCP.	Moving	to	other	clouds,	or	to	a	hybrid
solution	where	you	combine	on-premise	and	the	cloud,	will	all	be	quite	difficult.

Typical	App	Engine	architecture
The	following	diagram	is	a	fairly	typical	architecture	of	an	App	Engine
application	and	it	illustrates	the	integration	of	App	Engine	with	some	other	GCP
services,	notably	memcache,	and	task	queues.

Using	App	Engine,	you	can	support	different	clients	whether	they	are	Android	or
IOS	or	even	desktop	apps.	You	would	have	load	balancing	in	front	of	your	app
and	use	Google's	Cloud	DNS.	App	Engine	could	use	memcache	and	other
backends	and	whatever	storage	technologies	that	were	required.	For	instance,	it
might	have	Cloud	Storage	or	Cloud	SQL	or	Cloud	Datastore,	or	any	of	these
things	stacked	up	one	after	the	other,	and	culminate	finally	in	yet	another	bit	of
App	Engine	functionality,	that	is,	autoscaling.	This	is	how	hosting	on	Google
App	Engine	works:

Memcache	is	a	distributed	in-memory	data	cache	mostly	used	by	scalable	high-
performance	web	applications.	App	engine	also	provides	a	memcache	service.
Memcache	can	be	activated	from	App	Engine's	GCP	console	page	where	it	has	a
dedicated	tab	for	itself.	There	are	two	types	of	memcache	available:

Shared	memcache:	It	is	free	and	the	storage	space	it	can	allocate	is
uncertain,	hence,	you	hold	a	high	risk	of	not	caching	important	and	frequent
data.	It	is	not	recommended	for	mission	critical	applications.
Dedicated	memcache:	It	costs	$0.06	per	GB	per	hour.	Here,	we	get	up	to

20	GB	worldwide,	whereas	up	to	100	GB	in	US-central	regions	as
dedicated	storage	space.	It	also	guarantees	up	to	10,000	reads	and	5,000
writes	per	second.

One	rule	of	thumb	though	is	that	cached	data	should	be	less	than	1	MB	and	the
optimum	size	is	1	KB.	In	case	of	multi-batch	operations,	the	total	size	of	cached
data	should	not	increase	above	32	MB.	Also,	a	null	byte	cannot	be	cached	(since
it	can	be	handled	through	application	programming	itself).	In	general,	read	and
write	operations	cannot	reach	their	maximum	throughput	simultaneously.	The
number	of	read	operations	will	affect	the	maximum	possible	number	of	write
operations	at	a	time,	and	vice	versa.

The	task	queue	API	schedules	background	applications	to	be	executed
sequentially	(in	a	queue)	by	worker	services.	There	are	two	types	of	task	queues
—push	and	pull.	As	their	names	would	indicate,	push	queues	dispatch	requests
at	a	reliable,	steady	rate.	They	guarantee	reliable	task	execution.	Since	we	are
controlling	the	rate	at	which	tasks	are	sent	from	the	queue,	you	can	control	the
workers'	scaling	behavior	and	hence	your	costs.	These	are	useful	for	slow
operations	such	as	social	network	notifications.	Pull	queues	do	not	dispatch	the
tasks.	They	depend	on	other	worker	services	to	lease	tasks	from	the	queue	on
their	own	initiative.	They	provide	more	control	over	when	and	where	tasks	are
processed,	but	they	also	require	you	to	do	more	process	management.	When	a
task	is	leased,	the	leasing	worker	declares	a	deadline.	By	the	time	the	deadline
arrives,	the	worker	must	either	complete	the	task	and	delete	it,	or	the	task	queue
service	will	allow	another	worker	to	lease	it.	Pull	queues	are	useful	for	batch
tasks	that	need	to	run	simultaneously.

Deploying	and	running	on	App
Engine	Standard
This	section	will	walks	you	through	creating	and	deploying	a	very	simple	App
Engine	app	on	your	GCP.	Google	App	Engine	helps	you	create	applications	out
of	the	box,	you	simply	code	up	the	program	that	you	want	to	run	on	GCP,	use	the
right	SDKs	and	the	right	libraries	to	deploy	it,	and	you	are	good	to	go.	There	are
no	clusters	to	maintain	and	no	VM	instances	to	worry	about.	Here,	we	will	create
a	simple	Python	application,	test	it	locally,	and	then	deploy	it	to	App	Engine	and
see	it	accept	external	traffic.	Throughout	this	tutorial	we	shall	be	using	Cloud
Shell	for	convenience:

1.	 Use	the	gcloud	command-line	tool	to	set	up	the	default	value	for	the	zone
and	region	that	you	want	to	use.	If	you	are	using	your	local	machine	to
connect	to	the	cloud,	you	don't	need	to	keep	setting	these	config	properties.
But	if	you	are	using	Cloud	Shell,	as	shown	here,	because	these	instances	are
ephemeral	and	might	change	once	your	session	is	disconnected	and	you
reconnect,	you	might	have	to	set	these	properties	afresh	for	each	session.

2.	 Typically,	you	would	perform	app	development	on	your	local	machine	and
simply	deploy	it	to	the	server.	Here,	we	will	create	the	app	on	the	cloud
shell	itself.	We	create	a	new	directory	on	the	Cloud	Shell	to	hold	the	code
for	our	app.

3.	 Move	into	this	directory	and	then	use	an	editor	to	create	your	Python	file
that	holds	your	application.	All	the	code	in	your	application	will	be	present
in	this	one	file.	Here,	it's	titled	my_first_app:

4.	 We	use	the	webapp	package,	which	is	simply	a	lightweight	Python	web
framework	that	allows	you	to	develop	web	apps	very	quickly.	It's

compatible	with	Google	App	Engine	and	is	an	easy	way	for	you	to	get	up
and	running	with	your	website.

5.	 Set	up	a	class	named	Homepage,	which	is	derived	from	webapp2.RequestHandler
and,	within	that,	the	get	method	holds	the	content	of	your	web	page.	The
response	property	of	this	class	contains	the	response	that	we	will	send	down
to	the	client	browser.

6.	 Set	the	content	type	header	to	be	text/html,	indicating	that	it	is	an	HTML
response.	Write	out	a	simple	hello	world	response	message	in	HTML.	Set	up
a	Web	Server	Gateway	Interface	(WSGI)	application	that	receives	a
request	and	directs	it	to	the	appropriate	page.	Here,	we	only	handle	the	/,
which	is	sent	to	the	home	page.	We	have	written	our	very	first	Python
application	on	the	App	Engine.

7.	 Save	the	file.	Exit	from	the	editor	and	ensure	my_first_app	is	present	in	your
local	directory

8.	 App	Engine	settings	are	specified	in	a	file	called	app.yaml.	Open	up	an
app.yaml	file	in	an	editor	and	specify	the	configuration	for	your	first	App
Engine	project.	The	API	version	is	1.	The	app.yaml	files	contain	the	handlers
that	contain	the	mapping	from	URL	paths	to	static	files	and	the	request
handlers.	Here,	we	want	the	URL	to	map	to	my_first_app.app,	which	is	the
Python	module	that	we	just	created.	Save	this	file.	Now	we	are	ready	to	test
this	instance	of	our	site:

9.	 Kick-start	the	deployment	instance	of	the	application	server	by	calling
dev_appserver.py	./	Point	to	where	the	Python	module	is,	which	is	in	the
current	directory	for	us.

10.	 Our	application	is	now	running	in	your	development	mode	and	you	can
preview	this	by	clicking	in	the	top-left	corner	of	your	cloud	shell	and
choosing	preview	on	port	8080.	Any	changes	that	you	make	to	your	App
Engine	will	be	immediately	available	without	you	having	to	restart	your
deployment	server:

11.	 What	we	saw	so	far	is	just	the	preview	or	development	mode.	Now,	let's
deploy	this	to	production.	This	is	done	by	using	the	gcloud	command:	gcloud
app	deploy	app.yaml.	This	will	ask	you	to	choose	the	region	where	you	want
your	app	to	be	deployed.	If	your	customers	happen	to	be	in	Asia,	choose	the
Asia	region.	Once	this	command	runs	through,	we	are	done.	You	can	view
your	application	in	the	URL	that	is	displayed	on	the	command	line	in	the
output	from	the	command	you	just	ran.	Copy	this	URL	and	view	it	in	a
browser	to	see	your	first	App	Engine	app.	If	you	want	to	see	logs	of	your
site,	simply	tail	your	logs	using	the	commands	that	you	can	see	on	the
screen	gcloud	app	logs	tail	-s	default:

We	have	deployed	our	App	Engine	project	to	production.

Traffic	splitting
Traffic	splitting	is	useful	when	one	or	more	URLs	are	referring	to	multiple
versions	of	an	application	or	a	service.	Traffic	splitting	can	be	used	to
accomplish	pretty	cool	functionality	such	as	A/B	testing	and	green/blue
deployments	(more	on	these	later).

It	can	be	achieved	through	either	the	browser	or	the	gcloud	command	line.

For	example:

gcloud	app	services	set-traffic	[MY_SERVICE]	--splits	[MY_VERSION1]=[VERSION1_WEIGHT],

[MY_VERSION2]=[VERSION2_WEIGHT]	--split-by	[IP_OR_COOKIE]

In	the	preceding	command,	the	service	name	is	the	service	you	use.	Version
names	can	be	of	your	choice,	but	the	weight	must	be	distributed	in	a	way	that	the
total	of	the	weight	becomes	1.	For	example,	if	you	want	to	distribute	traffic	of
my	service	evenly	between	two	splits	based	on	cookies,	use	the	command	in	the
following	way:

gcloud	app	services	set-traffic	my-service	--splits	v1=0.5,	v2=0.5	--split-by	cookie	

	

Serverless	compute	with	cloud
functions
Google	Cloud	Functions	allow	developers	to	create	standalone	functions.	It	is	a
hassle-free	lightweight	solution	for	someone	looking	for	implementing	single-
purpose	functions	in	response	to	their	public	cloud	(in	this	case,	GCP)	events.

Cloud	Functions	are	to	be	written	in	JS	(JavaScript)	and	are	executed	in	Node.js
environment	on	GCP.	On	the	other	hand	we	can	use	these	cloud	functions	on	any
standard	Node.js	runtime	as	well	which	makes	them	a	lot	portable.

Cloud	Functions	triggered	by	HTTP
	

HTTP	cloud	functions	are	used	to	invoke	your	functions	through	HTTP	requests.
In	an	HTTP	function,	the	request	parameter	represents	any	call	action	sent	to
functions,	while	response	represents	return	values:

1.	 Write	the	Cloud	Function	and	save	it	as	index.js:

/**

	*	Responds	to	any	HTTP	request	that	can	provide	a	"message"	field	in	the	body.

	*/

exports.helloWorld	=	function	helloHttp		(req,	res)	{

	if	(req.body.message	===	undefined)	{

	//	An	error	case	because	a	"message"	is	missing

	res.status(400).send('No	message	defined!');

	}	else	{

	//	Everything	is	ok

	console.log(req.body.message);

	res.status(200).end();

	}

};	

2.	 Deploy	the	Cloud	Function:

gcloud	beta	functions	deploy	helloHttp	--trigger-http		

3.	 Invoke	the	Cloud	Function	using	Client	URL	(curl).	The	curl	command
can	be	used	to	call	the	function	and	pass	a	simple	message.	Curl	is	a
command-line	utility	that	allows	us	to	send	or	receive	HTTP	requests:

curl	-X	POST	-H	"Content-Type:application/json"	-d	'{"message":"hello	

world!"}'	YOUR_HTTP_TRIGGER_ENDPOINT

Your	HTTP	endpoint	is	typically	the	json	schema	that	you	wrote	to	invoke	your
functions	via	HTTP.	In	other	words,	YOUR_HTTP_TRIGGER_ENDPOINT	reported	by	the
previous	command	is	used	to	create	the	function.

	

	

	

Cloud	Functions	triggered	by
Pub/Sub
	

The	most	common	way	to	trigger	a	Cloud	Function	is	with	an	HTTP	request,	as
seen	previously.	In	contrast,	background	functions	are	used	to	invoke	Cloud
Functions	indirectly	through	a	message,	a	Pub/Sub	topic,	or	an	object	change
notification	from	a	Google	Cloud	Storage	bucket.	Such	cloud	functions	take	in
an	event	as	a	parameter	and,	optionally,	a	callback	as	another.	The	event
parameter	has	various	properties	that	we	can	make	use	of	within	our	function:

Now,	we	will	invoke	cloud	functions	via	pub/sub	notifications	(event	or	object
change)

1.	 Write	the	Cloud	Function	and	save	it	as	index.js	(it	will	be	stored	under	the
VM	of	the	Cloud	Shell	you	have	been	provided	with):

/**

	*	Background	Cloud	Function	to	be	triggered	by	Pub/Sub.

	*/

exports.helloPubSub	=	function	(event,	callback)	

{

	const	pubsubMessage	=	event.data;

	const	name	=	pubsubMessage.data	?	Buffer.from(pubsubMessage.data,	

'base64').toString()	:	'World';

	console.log(`Hello,	${name}!`);

	callback();

};

2.	 To	deploy	the	function,	the	gcloud	beta	functions	deploy	command	can	be	used:

gcloud	beta	functions	deploy	helloPubSub	--trigger-topic	hello_world		

3.	 Invoke	(trigger)	the	Cloud	Function.
4.	 Now,	the	deployed	function	can	be	called	directly,	or	by	publishing	a

message	to	the	trigger	topic.	To	test	the	direct	invocation,	use	the	following
command:

gcloud	beta	functions	call	helloPubSub	--data	'{"data":"dGVzdCB1c2Vy"}'

Here,	test	user	is	encoded	in	base64,	thus	you	can	see	dGVzdCB1c2Vy.	As	a	result,	the
function	logs	should	show	Hello	test	user!.

	

	

	

Cloud	functions	triggered	by	GCS
object	notifications
	

Similarly,	Cloud	Functions	can	also	be	triggered	by	changes	in	Cloud	Storage
buckets:

1.	 Write	the	Cloud	Function	and	save	it	as	index.js:

/**

	*	Background	Cloud	Function	to	be	triggered	by	Cloud	Storage..

	*/

exports.helloGCS	=	function	(event,	callback)	

{

	const	file	=	event.data;

	if	(file.resourceState	===	'not_exists')	

{

	console.log(`File	${file.name}	deleted.`);

	}	

else	if	(file.metageneration	===	'1')	

{

	//	metageneration	attribute	is	updated	on	metadata	changes.

	//	on	create	value	is	1

	console.log(`File	${file.name}	uploaded.`);

	}

	else	

{

	console.log(`File	${file.name}	metadata	updated.`);

	}

	callback();

};

2.	 Deploy	the	Cloud	Function:

gcloud	beta	functions	deploy	helloGCS	--trigger-bucket	<BUCKET_NAME>		

3.	 Trigger	(invoke)	the	Cloud	Function
4.	 As	before,	we	can	invoke	this	function	either	by	uploading	a	file	(say

test.txt)	to	the	bucket,	or	through	an	equivalent	direct	invocation:

gcloud	beta	functions	call	helloGCS	--data	'{"name":"test.txt"}'

Once	invoked,	the	logs	should	contain	the	log	entry	stating	that	test.txt	file	was

uploaded	to	the	GCS	bucket.

	

	

	

Summary
Having	read	this	chapter,	you	should	now	be	familiar	with	the	concept	of
containers	and	how	they	compare	to	VMs.	You	will	have	some	clarity
concerning	how	Kubernetes	can	be	used	to	orchestrate	containers	in	general	and
the	use	of	GKE	to	deploy	containers	within	GCP.	We	have	also	examined	some
of	the	features	available	in	GKE,	such	as	load	balancing	and	autoscaling.	And
finally,	we	have	seen	how	Google	App	Engine	and	Cloud	Functions	can	be	used
to	manage	your	apps	and	how	they	compare	with	GKE.

	

Google	Cloud	Storage	–	Fishing	in	a
Bucket
	

Google	Cloud	Storage	(GCS)	is	what	you	ought	to	use	to	store	unstructured
data	such	as	images,	videos,	or	other	static	content,	as	well	as	for	backups,
disaster	recovery,	and	other	cool	or	cold	data.	GCS	stores	data	in	the	form	of
objects	on	an	underlying	distributed	filesystem,	called	Colossus.	Colossus	is
Google-proprietary	and	a	very	high-performance	filesystem.

You	can	transfer	data	in	or	out	of	GCS	using	a	command-line	tool	called	gsutil
(different	from	gcloud,	which	we've	used	for	compute-related	operations	so	far).
Under	the	hood,	gsutil	makes	RESTful	API	calls	to	the	GCS	service,	so	we	can
do	the	same	and	interact	with	GCS	via	the	web	console	or	client	apps.

This	chapter	is	meant	to	get	you	familiar	with	GCS	and	to	give	you	an	idea	of
where	it	would	fit	within	with	your	overall	infrastructure.	We	will	be	exploring
the	following:

When	it	is	appropriate	to	use	GCS
Fundamental	concepts	related	to	GCS
Creating	and	managing	GCS	buckets
The	features	available	to	manage	data	in	GCS	buckets

	

	

Knowing	when	(and	when	not)	to	use
GCS

Static	data	such	as	YouTube	videos,	thumbnails	on	Instagram,	or	the	high-quality
product	images	you	find	on	Amazon	(the	ones	that	you	zoom	into	while
hovering)	are	perfect	for	use	in	buckets.

Like	AWS	and	Microsoft	Azure,	GCP	has	a	pretty	wide	range	of	storage	options
and	knowing	when	to	use	which	is	important;	both	from	the	point	of	view	of
actual	practical	use,	and	if	you'd	like	to	clear	the	GCP	certifications.	So	do	pay
attention	to	this	table:

Use	Case GCP's
Offering

Approximate	Non-GCP
Equivalents

Block	storage
GCE
Persistent
Disks

NAS	(Network	attached	storage),
AWS	Elastic	Block	Storage

Blob/object	storage Cloud
Storage

AWS	S3	buckets	(and	Glacier),
HDFS

Relational	data–small,
regional	payloads

Cloud
SQL

MySQL,	PostgreSQL;	AWS	RDS

Relational	data–large,
global	payloads

Cloud
Spanner Oracle,	AWS	RDS

NoSQL	document
database Datastore MongoDB,	Redis,	AWS

DynamoDB,	AWS	SimpleDB

NoSQL	columnar BigTable Cassandra,	HBase

Analytics/Data
warehouse	with	SQL
interface

BigQuery Teradata,	Hive,	AWS	Redshift,
Data	Lake

We	saw	that	persistent	disks	can	be	far	more	economical,	easy	to	scale,	and
manageable	than	local	SSDs	for	web	hosting.	But,	what	if	you	are	running	a
photography	blog	or	an	online	video	archive?	These	use	cases	require	the	storage
of	vast	amounts	of	static	Binary	Large	Objects	(BLOBs).	Crucially,	these	are
unstructured	data,	and	in	vast	sizes,	potentially	far	exceeding	the	limits	of
persistent	disks.

This	is	where	GCP's	cloud	storage	comes	in.	Cloud	storage	can	be	considered	as
GCP's	equivalent	of	AWS	S3	or	Azure's	Blob	storage:

Cloud	storage	is	simple	and	user-friendly;	think	of	Google	Drive.	In
addition	to	the	web	console,	GCS	has	a	command-line	tool	all	of	its	own
called	gsutil
You	don't	need	to	allocate	capacity	or	create	a	storage	server	of	any	sort
It	scales,	basically	till	infinity;	unlike	persistent	disks	that	max	out	at	64
TB,	or	local	SSD	that	max	out	at	3	TB,	GCS	supports	datasets	of	any	sizes
The	largest	file	size	limit	is	5	TB,	so	even	for	archival	storage,	it	works
great
It	supports	5,000	writes	and	1,000	reads	per	second,	so	accessibility	is
rarely	a	bottleneck
It	has	a	Graphical	User	Interface	(GUI)	similar	to	other	features	of	GCP

In	addition	to	the	web	console,	GCS	has	a	command-line	tool	all	of	its	own–called	gsutil.	This
is	different	from	gcloud,	which	we	use	for	most	other	GCP	commands.

The	way	cloud	storage	works	is	simple.	Google	has	its	data	center	deployed	in
multiple	regions	worldwide.	By	creating	cloud	storage	bucket	instances	under
our	GCP	projects,	we	can	ask	for	a	scalable	amount	of	storage	in	a	particular
region	(there	are	variations,	but	more	on	that	later).	Unlike	compute	engine
instances,	we	are	not	charged	for	a	minimum	of	certain	amount	of	storage.

Serving	Static	Content	with	GCS
Buckets

The	following	diagram	illustrates	something	interesting:	just	as	we	can	place	a
backend	service	(for	example,	a	group	of	VMs)	behind	a	load	balancer	for
dynamic	content,	we	can	also	place	backend	buckets	behind	a	load	balancer.	It
would	also	make	sense	to	use	Google's	Content	Delivery	Network	(CDN)	to
cache	the	content	in	those	buckets	in	front	of	the	load	balancer,	but	that	is	not
actually	shown	in	this	diagram:	

GCP	also	features	content-based	load	balancing,	where	an	HTTP(S)	load
balancer	can	be	set	up	to	distribute	traffic	to	different	backends	depending	on	the
URL	path.	For	instance,	if	the	video	content	for	your	website	is	stored	in	a
bucket,	you	could	configure	your	load	balancer	to	direct	all	requests	to	URL
paths	that	begin	with	/video	to	your	bucket.	All	other	requests	can	be	served	by
your	VM	instances:

Storage	classes–Regional,	multi-
regional,	nearline,	and	coldline
Buckets	are	units	of	data	storage	in	cloud	storage.	In	terms	of	underlying
storage,	they	can	be	considered	as	repositories	linked	to	your	project	in	Google's
managed	data	centers.	Buckets	are	mainly	divided	into	four	classes	based	on
their	availability,	demographic	relevance,	and	frequency	of	access:

Storage
Class Remember	As Use	Case

Multi-
regional

Hot	and
available Globally	accessed	static	content

Regional Hot	and	local Input	into	Dataproc	or	compute
processing

Nearline Cool,	not	cold Backups	(access	~	once	a	month)

Coldline Cold	and	rich DR	(access	~	once	a	year)

Hot	and	available	-	Multi-Regional:	These	buckets	can	be	accessed	from
any	region	across	the	world,	making	them	highly	available.

They	are	also	Geo-Redundant,	which	means	that	data	coming	from	any
region	will	be	stored	in	two	separate	copies	at	least	100	miles	away	(that
is,	in	two	distant	data	centers)	to	avoid	data	loss	if	any	one	center	goes

down.	This	is	the	most	expensive	class	of	Buckets	and	should	only	be
used	when	you	are	certain	that	your	traffic	is	global	(we	wouldn't	opt	for
Multi-Regional	storage	if	we	are	hosting	images	of	the	food	in	a
restaurant	in	Pune,	India,	since	most	of	my	web	visitors	would
presumably	be	local).

Hot	and	local–Regional:	These	are	best	suited	to	high-access	traffic	from	a
certain	region	requiring	high	availability.	In	addition	to	web	applications
with	highly	concentrated	traffic	patterns,	VM	instances	on	cloud	running
Hadoop	Dataproc	clusters	would	also	benefit	from	Regional	Buckets	as
they	provide	lower	latency	and	cost	than	multi-regional	buckets.

If	you're	using	a	staging	bucket	with	a	Cloud	ML	engine,	prefer	regional
to	multi-regional	(the	replication	lag	can	sometimes	trip	up	the	training
process).

Regional	buckets	also	make	sense	for	use	in	backend	buckets	behind	an
HTTP	load	balancer	with	CDN	caching	turned	on.	The	CDN	service	will
replicate	to	each	region,	so	you	don't	need	multi-regional	buckets	here.
Don't	worry	if	this	does	not	make	sense	yet.

Cool,	not	cold–Nearline:	Use	these	for	data	you'll	expect	to	access	about
once	a	month,	that	is,	cool	data.	Regional	and	multi-regional	buckets	charge
you	only	for	storage,	not	for	access.	In	contrast,	nearline	and	coldline
buckets	have	a	much	lower	charge	for	storage,	but	they	have	significant
access	charges,	as	well	as	minimum	storage	period	commitments	that	you
need	to	make	(for	instance,	nearline	storage	will	charge	for	30	days	of
storage	even	if	you	pull	your	data	out	early).
Cold	and	rich–Coldline:	This	is	a	cold	storage	facility	for	data	that	you
would	expect	to	access	less	than	once	a	year.	Suitable	applications	would	be
disaster	data	recovery	or	long-term	archival	storage,	such	as	government
records.
Coldline/Nearline	v	AWS	Glacier:	Coldline	and	Nearline	uses
fundamentally	the	same	technology	as	the	buckets	for	hot	data.	This	is	a
difference	between	GCP	and	AWS,	where	Glacier	is	a	fundamentally
different,	and	slower,	technology.	So,	retrieval	of	cold	data,	for	example
during	disaster	recovery,	will	tend	to	be	as	fast	as	regular	storage	(but	far
costlier,	of	course).	This	could	be	an	important	advantage	for	you,	so	do
keep	this	in	mind.

Choosing	between	the	hot	and	cold	storage	classes	comes	down	to	a
trade-off	between	storage	costs	and	access	costs.	The	hot	bucket	types	do
not	charge	at	all	for	individual	access,	but	their	storage	costs	are	quite
high.

Consider	this:

Storing	10	TB	of	data	for	a	year	would	cost	~$3,000	in	multi-regional,	but
only	~$800	in	coldline:

Multi-regional	storage:	2.6	cents/GB/Month	x	10,000	GB	x	12
months	=	$3,120
Coldline	storage:	0.7	cents/GB/Month	x	10,000	GB	x	12	months	=
$840

Accessing	that	same	10	TB	once	each	day	of	the	year	would	cost	nothing	in
multi-regional,	but	a	whopping	$180,000	in	coldline!

Multi-regional	access:	Free
Coldline	access:	5	cents/GB/retrieval	x	10,000	GB	x	365	=	$182,500

Obviously,	nobody	in	their	right	mind	would	use	coldline	for	hot	data.	Also,	note
that	the	preceding	calculations	do	not	count	the	costs	of	network	egress	and
other	non-GCS	costs.

This	preceding	comparison	also	tells	us	why	traditional	storage	and	data
warehousing	companies	have	seen	the	cloud	disrupt	their	business	models.	If
you	think	the	preceding	data	storage	costs	are	steep,	consider	this:	How	much
would	10	TB	of	data	take,	to	store,	for	a	year	in	a	Teradata	system,	or	in	Oracle?
(BigQuery,	which	is	the	direct	competitor	to	those	products,	costs	roughly	as
much	as	nearline	storage,	so	not	that	different	from	the	preceding	numbers).

Searching	online	will	likely	tell	you,	and	in	the	answer	to	that	question	lies	the
tale	of	Teradata's	stock	price,	which	is	down	by	more	than	half	since	2012	(in	the
same	time	period,	the	US	market	as	a	whole	has	almost	doubled).

Working	with	GCS	buckets
	

Once	you	have	figured	out	what	class	of	bucket	is	best	suited	for	your	needs	and
how	you	plan	to	use	it,	the	obvious	next	step	is	to	get	hands-on	with	GCP
buckets.	Let's	try	the	usual	stuff:

Create	a	bucket
Delete	a	bucket
Access	a	bucket
Manage	other	users'	permissions	on	buckets
Add/remove	data	from	buckets
Import	data	from	other	cloud	resources	to	your	bucket

	

	

Creating	buckets
In	GCP,	there	are	multiple	ways	of	interacting	with	objects.	In	case	of	Cloud
Storage	buckets,	we	can	use	the	GUI	console,	gsutil	command	line,	or	REST
(JSON	or	XML)	API.	Creating	a	bucket	in	GCP	Cloud	storage	requires	three
fields:

Region
Storage	class
Universally	unique	name

When	you	create	a	regional	bucket,	you	are	prompted	for	the	region	in	which	that	bucket	will
be	housed;	you	are	not	prompted	for	the	specific	zones	though.	The	system	decides	that.

When	you	create	a	multi-regional	bucket,	you	are	prompted	to	pick	from	one	of	three	multi-
region	locations–Asia,	the	EU,	and	the	US.	Again,	you	can't	pick	which	specific	regions
within	that	house	your	data;	the	system	decides	that	too.	This	could	be	a	significant	issue	if
you	have	a	statutory	requirement	to	meet	(for	example,	the	data	should	never	leave	Country	X
within	APAC).

We	have	already	discussed	the	regions	and	storage	classes	and	the	naming,	too,
has	its	own	set	of	rules	to	be	followed.	The	name	should	be	universally	unique
(that	is,	not	just	unique	within	your	project	or	organization	but	within	all	of	the
GCP	buckets	worldwide)	and	end	with	an	alphabet	or	a	number.

Cloud	Storage	has	a	provision	to	affiliate	your	domain	name	to	the	bucket	name
as	well,	but	the	only	difference	is	that	you	need	to	follow	a	domain	verification
process	in	order	to	do	so.	On	a	related	note,	GCP	prohibits	us	from	using	dots	in
the	bucket	names	if	we	are	not	linking	it	to	our	domain.

Creating	buckets	using	the	web
console
	

The	quickest	way	to	get	started	with	using	Cloud	Storage	buckets	is	to	create	one
from	the	console:

1.	 Click	on	the	hamburger	(the	three	horizontal	lines	in	the	upper-left	corner)
and	select	Storage|	Browser.

2.	 If	your	project	does	not	have	any	buckets	yet,	you	will	see	a	dialog	box
Create	Bucket	with	a	blue	rectangle	button;	click	on	it.

3.	 If	the	project	already	has	one	or	more	buckets	created,	you	will	see	them
listed.	Click	on	Create	Bucket	above	them:

4.	 A	new	page	will	appear	and	it	will	ask	you	to	name	your	bucket.	Bucket
names	are	universally	unique.	You	can	add	letters,	numbers,	or	underscores
to	keep	your	name	unique.	The	Help	tab	suggest	using	dots	to	form	a	proper
domain	name	as	a	bucket	name.	Let's	say	we	name	it	loonycorn-bucket-00.

	

5.	 If	your	bucket	name	is	a	domain	name,	to	verify	your	ownership,	you	will
be	asked	to	visit	the	verification	console.	In	the	console,	you	can	verify
your	ownership	by	using	one	of	the	following	methods:

Adding	a	special	Meta	tag	to	the	site's	home	page.
Uploading	a	special	HTML	file	to	the	site.
Verifying	ownership	directly	from	Search	Console.
Adding	a	DNS	TXT	or	CNAME	record	to	the	domain's	DNS
configuration.

6.	 After	naming	your	bucket,	pick	the	storage	class.	We	will	select	the	Multi-
Regional	storage	class	and	United	States	region.

7.	 Optionally,	you	can	also	add	label	(key-value	pairs,	that	is	metadata)	to
your	bucket	by	clicking	on	+Add	Labels.

8.	 Finally,	click	on	the	Create	button	and,	within	a	few	seconds,	your	bucket
will	be	ready,	where	you	should	be	able	to	see	a	screen	as	shown	in	the
following	screenshot.	We	can	add/remove	files	from	buckets:

	

	

	

Creating	buckets	using	gsutil
If	you	prefer	to	use	the	command	line	to	provision	a	bucket,	the	gsutil	tool	is
what	you	will	use:

1.	 Use	the	gsutil	mb	command	as	follows	to	create	the	bucket.	-c,	-l	and	-p
respectively	stand	for	class	(storage	class),	location	(region),	and	project
ID.	If	the	project	ID	field	is	skipped,	it	opts	for	a	default	project	ID	and	the
URL	is	used	for	naming	the	bucket:

gsutil	mb	-c	nearline	-l	asia	gs://loonycorn-bucket-00

2.	 Click	on	the	Refresh	button	or	use	the	gsutil	ls	command	to	verify	your
bucket	creation.

It	is	possible	to	change	the	storage	class	of	a	bucket	according	to	will,	although
regional	and	multi-regional	classes	are	not	interchangeable.

Notice	how	conversions	from	regional	to	multi-regional,	or	vice	versa,	are	not
directly	allowed.	That's	because	of	some	underlying	implementation	detail,	so	be
sure	to	plan	ahead	regarding	your	choice	of	storage	location.

One	feature	that	might	work	a	bit	differently	than	you	expect	is	the	following:	if
we	change	the	storage	class	of	a	bucket,	that	change	will	only	affect	new	objects
added	to	the	bucket.	The	existing	content	will	retain	its	old	storage	class.	This	is
pretty	important	to	keep	in	mind,	and	hints	at	the	fact	that	GCS	is	not	exactly

traditional	file	storage.	If	it	were,	we'd	expect	the	storage	class	to	be	a	directory-
level	property	that	flows	down	to	each	file	within	the	directory.	That	gets	us	to
our	next	bit	of	doggerel:

Changing	the	storage	class	of	bucket
and	objects
	

You	can	modify	the	storage	class	for	a	bucket	either	from	the	console	or	with
gsutil	on	the	command	line:

1.	 Go	to	the	Options	menu	and	select	Edit	default	storage	class	and	change	it
to	your	desired	one	by	clicking	on	the	radio	button	again:

2.	 Use	the	gsutil	rewrite	command	and	provide	an	object	address	depending	on
whose	storage	class	you	want	to	change:

gsutil	rewrite	-s	coldline	gs://loonycorn-bucket-00/image1.jpg

	

	

Transferring	data	in	and	out	of
buckets
	

A	bucket	can	contain	any	amount	(petabytes)	of	data	and	data	transfer	with
buckets	can	be	done	in	multiple	ways,	such	as:

Uploading	data	to	buckets
Copying	data	between	GCP	buckets
Moving	data	between	GCP	buckets
Transferring	data	from	other	cloud	storage	(AWS	S3)	to	GCP	buckets
Importing	or	exporting	data	offline

	

	

Uploading	data	to	buckets	using	the
web	console
	

The	console	can	be	used	to	selectively	upload	individual	files	or	entire	folders	to
the	bucket:

1.	 Click	on	the	Upload	Files	button	and	you	will	find	an	explorer/finder
window	to	find	your	desired	file(s).	It	is	likely	that	GCP	will	recognize	your
file	format	(even	if	it	doesn't,	you	can	find	it	by	choosing	the	*all	files
option	in	explorer):

2.	 Optionally,	you	can	also	upload	folders	by	clicking	on	the	Upload	Folders
button	and	following	a	similar	procedure	to	that	of	files.

	

	

Uploading	data	to	buckets	using
gsutil
	

When	using	gsutil	from	the	command	line,	you	can	treat	the	bucket	as	just
another	directory	on	the	filesystem	and	specify	that	as	the	destination	while
copying	files:

1.	 Use	the	gsutil	cp	command	as	follows	to	upload	file(s)	in	the	bucket.	The
command	is	followed	by	the	source	and	destination	URLs:

gsutil	cp	Desktop/image1.png	gs://loonycorn-bucket-00

2.	 Do	not	forget	to	add	a	file	extension	properly	or	the	file	shall	not	upload.
3.	 Use	the	gsutil	ls	command	to	verify	your	upload.

	

	

Copying	data	between	buckets	using
the	web	console
	

The	console	permits	the	copying	(and	moving)	of	files	from	one	bucket	to
another.	The	steps	are	similar,	but	let	us	look	at	how	the	copy	will	work:

1.	 Navigate	to	the	object	you	want	to	copy.
2.	 Click	the	more	options	button	(three	vertical	dots)	associated	with	the

object.	Click	Copy:

3.	 Select	the	destination	for	the	copied	object	and	the	name	for	the	copied
object.	Click	and	then	click	Copy.	Note	that	we	can	use	permissions	from
either	the	source	or	the	destination:

	

	

	

Copying	data	between	buckets	using
the	gsutil	command	line
	

When	gsutil,	we	once	again	treat	the	buckets	as	source	and	destination
directories:

1.	 Use	the	gsutil	cp	command	as	follows	to	upload	file(s)	to	the	bucket.	Note
that	the	command	needs	both	source	and	destination	URLs:

gsutil	cp	<Source>	<Destination>				

For	instance:

gsutil	cp	gs://loonycorn-bucket-00/image1.png		gs://loonycorn-						

bucket-01		

2.	 Do	not	forget	to	add	a	file	extension	or	the	file	shall	not	upload
3.	 Later,	you	can	use	the	ls	command	to	verify	your	upload
4.	 Similarly,	the	gsutil	mv	command	can	be	used	to	move	data	from	one	bucket

to	another:

gsutil	mv	gs://loonycorn-bucket-00/image1.png	gs://loonycorn-bucket-01

5.	 While	moving	data	from	one	bucket	to	another,	the	permission	of	the
buckets	may	be	different.	We	can	make	a	choice	between	whether	we	want
the	moved	objects	to	maintain	their	previous	bucket's	permission	or	whether
we	want	them	to	inherit	the	new	bucket's	permission.	Providing	-p	as	the
argument	allows	us	to	maintain	the	permissions	from	a	previous	bucket	and
the	same	logic	applies	to	copying	data	as	well:

gsutil	mv	-p	gs://loonycorn-bucket-00/image1.png	gs://loonycorn-bucket-01		

	

	

Using	the	Transfer	Service	(instead	of
gsutil	or	the	web	console)
The	Transfer	Service	is	a	more	refined	way	of	adding	data	to	Google	Cloud
Storage	buckets	without	having	to	manually	upload	it.	We	can	ingest	data	from
existing	GCS	buckets,	Amazon's	S3	buckets,	or	any	HTTP(S)	server.	We	can
also	schedule	the	import	of	data	and	filter	the	data	that	will	be	imported.

	

Transfer	Service	or	gsutil?
There	are	no	extra	costs	to	using	the	Transfer	Service;	billing	is	the	same	as	with
gsutil	or	the	web	console.	Google's	docs	recommend	that	we	prefer	gustil	if	we
are	copying	files	over	from	on-premise.	If	we	are	ingesting	data	from	AWS	or
Azure,	or	from	an	external	HTTP	location,	then	transfer	service	is	preferable.

Transfer	service	will	only	help	get	data	into	GCP,	not	out	of	it	(this	is	important
–	do	remember	it):

1.	 Click	on	Hamburger	(the	three	horizontal	lines	in	the	upper-left	corner)	on
the	GCP	console.

2.	 Find	Storage	and	click	on	the	Transfer	option.
3.	 When	you	get	the	dialog	box,	click	on	the	Create	Transfer	button.
4.	 You	will	land	on	a	transfer	job	creation	page.	Here,	you	will	have	to	first

select	the	source	of	your	data.	We	will	select	Google	Cloud	Storage	bucket.
5.	 Select	the	bucket	that	you	want	to	use	to	get	the	data	from.	Remember	that

you	need	to	have	write	permission	on	that	bucket.	Viewers	cannot	use	this
feature.	We	will	select	loonycorn-bucket-00.	We	can	also	add	filters	on	data
such	as	prefixes,	postfixes,	or	its	age.

	

6.	 After	hitting	Continue,	we	land	on	a	destination	selection	that	works	in	the
same	manner	(the	destination	can	only	be	a	GCP	location	though	–	transfer
service	is	for	ingress	only,	not	egress).

7.	 You	can	set	additional	transfer	rules,	such	as	overwriting	in	case	of
duplication,	or	removing	objects	from	the	source	after	transfer	by	checking
them.

8.	 And	finally,	after	deciding	whether	you	want	it	as	a	one-time	transfer	or	you
want	it	daily	(and	clicking	the	appropriate	radio	button),	click	Create.

Importing	or	exporting	data	offline	is	a	third-party	solution	provisioned	by
Google	that	allows	us	to	send	our	storage	units	to	these	service	providers	and
make	them	upload	our	data.	It	becomes	useful	when	we	have	a	slow	or
expensive	internet	connection	and	a	huge	amount	of	data.	More	details	can	be
found	in	the	following	offline	ingestion	section.

Use	case	–	Object	Versioning
Object	Versioning	is	the	GCP's	way	of	automatic	archival.	Once	object
versioning	is	enabled	for	a	bucket,	every	version	of	the	object	(resulting	from
multiple	writes)	will	be	given	an	identification	tag,	which	will	be	called
generation	number	and	all	of	the	versions	will	be	archived	automatically.

	

Object	versioning	in	the	Cloud
Storage	bucket
	

This	is	an	API	and	command-line	exclusive	(at	the	time	of	writing),	so	console
will	not	provide	any	hints.	Versioning	can	be	set	using	gsutil	with	the	following
steps:

1.	 Apply	the	gsutil	versioning	set	on	command,	with	the	appropriate	values.
This	will	enable	object	versioning	for	all	objects	in	the	bucket.	The	Set	off
argument	will	turn	it	off:

gsutil	versioning	set	on	gs://loonycorn-bucket-00

2.	 Similarly,	the	get	argument	will	check	whether	versioning	is	enabled	or	not:

gsutil	versioning	get	gs://loonycorn-bucket-00

3.	 The	versions	of	an	object	are	identified	by	their	generation	number.	So,	in
order	to	list	all	of	the	objects	in	the	bucket,	including	archived	ones,	use	ls
with	-a.

4.	 To	copy	an	archived	version	of	an	object,	use	the	cp	command	as	usual,	but
mention	the	object	name	URL	with	its	generation	number:

gsutil	cp	gs://loonycorn-bucket-00/image1.png[GENERATION	NUMBER]	

gs://loonycorn-bucket-01

	

	

Use	case	–	object	life	cycle	policies
It	is	pretty	common	that	we'd	want	to	automatically	change	storage	classes	of	an
object,	so	that	it	stays	in	a	hot	bucket	for	say	a	month,	then	gets	relegated	to	a
colder	bucket,	and	finally	is	deleted	altogether.	This	is	what	object	life	cycle
management	policies	are	meant	for.

They	allow	you	to	specify	how	long	the	objects	should	exist	under	the	same
settings	in	your	bucket	before	a	specific	action	is	triggered.	For	example,	when
we	realize	that	there	is	archived	data	that	has	not	been	modified	for	over	six
months	and	is	not	likely	to	be	accessed	or	modified	any	time	soon,	you	can
convert	their	class	to	nearline	storage	to	save	on	cost.

You	should	note,	however,	that	object	life	cycle	actions	are	classified	as	Class	A
operations,	which	means	that	they	can	be	expensive	if	you	don't	use	them	right.
Do	check	out	the	fine	print	on	pricing	in	the	docs	if	you	plan	to	do	so.

Managing	bucket	life	cycle	using	the
web	console
	

The	conditions	under	which	the	bucket's	objects	will	be	transitioned,	along	with
the	available	options	for	the	transition,	can	be	viewed	when	setting	the	life	cycle
from	the	console:

1.	 In	GCP	Cloud	Storage	browser,	when	you	see	a	list	of	buckets,	you	will
notice	that	the	Life	cycle	column	has	entries	written	None.	Click	on	it.

2.	 On	the	next	page,	you	will	be	asked	to	click	on	Add	Rule	to	create	life
cycle	management	rules	and,	after	clicking	on	it,	you	will	see	a	screen	as
follows:

3.	 Under	the	Select	Object	Condition	tab,	you	will	encounter	different	options
for	your	objects	for	sorting	them,	such	as	age,	state	(live	or	archived),
storage	class,	and	so	on.	We	will	select	Age	and	set	our	object	Age	to	90
days.

4.	 Under	the	Select	Action	tab,	you	will	have	three	options:	converting	their
storage	class	to	Nearline	or	Coldline	or	deletion.	Click	on	Delete.	Finally,
click	Save.	This	will	mean	that	every	object	older	than	90	days	will
automatically	be	deleted:

	

	

	

Manipulating	object	life-cycle	via
JSON	file
	

For	those	who	do	not	intend	to	use	Web	Console.	Life-cycle	management	can
also	be	handled	by	gsutil	command	line	using	a	JSON	file	to	pass	life-cycle
configurations.

1.	 Write	your	lifecycle	configurations	for	GCS	bucket	in	a	JSON	file	as
following:

{

"lifecycle":	{

	"rule":	[

	{

	"action":	{

	"type":	"SetStorageClass",

	"storageClass":	"NEARLINE"

	},

	"condition":	{

	"age":	365,

	"matchesStorageClass":	["MULTI_REGIONAL",	"STANDARD",	

"DURABLE_REDUCED_AVAILABILITY"]

	}

	},

	{

	"action":	{

	"type":	"SetStorageClass",

	"storageClass":	"COLDLINE"

	},

	"condition":	{

	"age":	1095,

	"matchesStorageClass":	["NEARLINE"]

	}

	}

]

}

}

2.	 Run	the	gsutil	lifecycle	set	command	as	following.

gsutil	lifecycle	set	[JSON	file]	gs://[YOUR	CLOUD	STORAGE	BUCKET	NAME]

	

	

Deleting	objects	permanently	using
the	web	console
	

Please	know,	firstly,	that	deletion	is	permanent—there	is	no	way	to	undo	bucket
deletion,	no	grace	period	when	you	can	change	your	mind.	Deletion	is	final:

1.	 Click	on	the	checkbox	on	the	left-hand	side	of	the	file	(for	one	or	more
files)	and	the	DELETE	button	will	become	active.	Click	it.

2.	 A	pop-up	box	will	ask	for	your	confirmation	and,	once	confirmed,	the	file
will	be	removed	and	billing	will	be	adjusted	accordingly:

3.	 Optionally,	you	can	also	delete	folders,	or	the	bucket	itself,	exactly	as	you
would	delete	files.

	

	

Deleting	objects	permanently	using
gsutil
	

Just	as	you	would	use	the	rm	command	to	delete	a	file	on	your	own	system,	the
gsutil	rm	command	can	be	used	to	remove	files	and	directories	within	a	bucket:

1.	 Use	the	gsutil	rm	command	as	follows	to	delete	file(s)	from	the	bucket.	The
command	is	followed	by	the	source	URL	of	the	file	and	an	optional	-r	to
indicate	removal	of	internal	subdirectories	along	with	files	in	a	folder:

gsutil	rm	gs://loonycorn-bucket-00/image1.png

2.	 Do	not	forget	to	add	a	file	extension	properly	or	the	file	shall	not	be	deleted.
Later,	you	can	use	the	ls	command	to	verify	your	deletion.

3.	 Similarly,	the	rb	command	deletes	the	whole	bucket,	along	with	the	files
inside	it.

	

	

Use	case	–	restricting	access	with	both
ACLs	and	IAM

IAM	is	an	acronym	for	Identity	and	Access	Management,	and,	as	you'd
imagine,	it	has	to	do	with	who	can	do	what.	More	on	this	in	the	chapter	on	IAM,
but	for	now,	just	know	that:

All	GCP	services	have	both	identities	(who	is	this?)	and	roles	(what	can
they	do?)
Cloud	storage	is	an	exception	because	we	can	also	use	Access	Control	Lists
(ACLs,	pronounced	ackles)	to	directly	specify	who	can	do	what:

As	the	figure	suggests,	roles	and	permissions	can	be	given	at	an	organizational
level	(the	organization	that	you	have	registered	for	your	GCP	project),	storage
bucket	level,	or	at	an	individual	object	level.	Of	course,	public	access	options
will	remain	everywhere.

First	of	all,	let's	clear	out	the	most	obvious	option,	Public	Access.	The	public
URL	for	any	object	can	be	generated	from	the	options	menu	and	it	will	consist	of
strings	such	as	storage.googleapis.com	and	our	bucket	name	as	well.	Apart	from
that,	in	GCP,	we	can	now	provide	roles	to	users	at	bucket	level	as	well	as	object
level.	These	roles	determine	the	permissions	of	users:	

All	the	files	in	a	folder	or	bucket	will	attain	the	same	permission	as	its	parent
object.	For	this	case,	we	have	three	images	uploaded	in	our	previously	created
bucket	and	now	we	will	play	with	permission.	Since,	in	this	case,	command	line
provides	no	advantage	over	console,	we	will	explore	the	console	part.

Managing	permissions	in	bucket
using	the	GCP	console
	

It	is	possible	to	assign	multiple	roles	to	a	set	of	users.	However,	for	the	sake	of
simplicity	here,	we	will	see	how	a	single	role	can	be	assigned	to	a	single	user:

1.	 Click	on	the	three	vertically	arranged	dots	next	to	your	bucket	and	select
the	Edit	Permissions	option.	This	will	bring	up	a	dialogue	that	will	allow
you	to	give	granular	permissions	to	those	users	who	should	be	able	to
access	that	object:

2.	 By	selecting	the	desired	user	or	group	and	selecting	permission,	we	can
control	what	every	user	in	the	organization	can	access.	We	will	select
janani@loonycorn.com	and	give	her	the	role	of	Storage	Admin.

3.	 You	can	also	specify	permissions	on	a	file	using	object	roles	in	the	same
manner	as	previously:

4.	 A	similar	approach	is	taken	with	each	object	in	the	bucket.	Just	click	on	the
options	menu	and	click	Edit	Permissions	and	you	can	see	a	dialog	box	as
shown	in	the	following	screenshot.	This	is	called	the	Access	Control	List
(ACL)	of	the	object.	Even	if	you	migrated	your	data	from	one	service
provider	(say	GCP)	to	another	(say	AWS),	you	can	maintain	these	object-
specific	permissions	through	ACL:

	

	

	

Use	case	–	signed	and	timed	URLs
	

In	many	applications,	users	within	the	organization	will	not	be	the	only	ones	to
need	access	to	the	objects.	Third-party	applicants	or	end	users	themselves	may
need	to	access	a	bucket	or	an	object	within	it.	Keeping	track	of	all	of	them	and
giving	them	a	viewer's	role	would	be	theoretically	painstaking	and	practically
erroneous	to	the	extent	of	being	impossible.

A	simple	solution	to	this	problem	is	to	give	them	public	URLs,	but	that	would
only	give	them	read	access	to	the	object.	If	we	want	to	provide	read,	write,	and
even	delete	access	for	a	certain	length	of	time,	the	solution	is	to	use	signed
URLs.	These	are	time-limited;	we	have	to	specify	a	period	of	validity	while
creating	them.	The	details	are	as	follows.

	

	

	

Setting	up	signed	URLs	for	cloud
storage
	

These	steps	can	be	used	to	generate	a	private	key	and	that	can	then	be	used	it	to
sign	a	file	in	your	bucket:

1.	 Generate	a	new	private	key,	or	use	an	existing	private	key.	The	key	can	be
in	either	JSON	or	PKCS12	format:

1.	 Click	on	the	hamburger	in	the	top	left	of	the	console	and	navigate	to
API	&	Services	and	then	click	on	Credentials

2.	 Click	on	Create	Credentials	and	select	Service	account	key
3.	 In	the	drop	down	for	Service	Account,	select	New	service	account
4.	 Give	a	name	for	the	service	account	under	Service	account	name
5.	 Use	the	default	Service	account	ID	or	specify	one
6.	 Choose	JSON	or	P12	as	your	Key	type	and	click	Create
7.	 A	dialog	will	confirm	the	creation	of	your	service	account	and	the

private	key	is	downloaded	automatically

2.	 Use	the	gsutil	signurl	command,	passing	in	the	path	to	the	private	key
(stored	on	your	computer)	and	the	URL	of	the	bucket	or	object	you	want	to
generate	a	signed	URL	for:

Specifying	Time-Validity:	In	this	command,	the	-d	argument	stands
for	duration,	which	is	10	minutes	in	our	case.	It	means	that	after	10
minutes,	the	link	will	show	the	404	error	from	any	region:

gsutil	signurl	-d	10m	Desktop/private-key.json	gs://loonycorn-

bucket-00/image1.jpg

				

3.	 To	remove	the	signed	URL,	simply	go	back	to	credentials	and	remove	the
signature!

	

	

Use	case	–	reacting	to	object	changes
When	we	use	our	GCP	buckets	for	web	applications,	the	objects	in	the	bucket
will	be	rewritten	many	times	over.	Clearly,	we	might	need	to	detect	specific
object	changes	and	react	to	them,	for	which	we'd	need	to	be	notified	when	an
object	changes.	This	functionality	is	invoked	using	the	watchbucket	clause	in
gsutil.

Please	know	that	these	notifications	are	different	from	Pub/Sub	notifications
(Pub/Sub	is	the	reliable	messaging	system	for	streaming	data	in	GCP).	Object
change	notifications	happen	using	something	called	a	Channel.	This	is	a	GCS-
specific	term	used	to	describe	the	link	between	a	bucket	and	all	apps	listening	for
changes	on	that	bucket.

You	should	also	be	aware	that	object	change	notifications	can	be	used	to	trigger
cloud	functions.

Setting	up	object	change	notifications
with	the	gsutil	notification
watchbucket
	

The	gsutil	tool	can	be	used	to	create	a	channel	and	also	remove	it	once	it	is	no
longer	required:

1.	 Once	we	run	the	command,	as	follows,	it	initiates	a	channel	with	the
Channel	ID	we	provide.	It	reports	the	notifications	to	whichever	application
(even	if	it	is	third	party)	we	decide	by	providing	the	application's	URL.
Also,	we	can	deploy	watch	on	one	or	more	buckets	simualtaneously:

gsutil	notification	watchbucket	-i	loony-channel	-t	my-client	[App	URL]	

gs://loonycorn-bucket-00

		

2.	 To	stop	notifications,	we	need	to	stop	the	channel	itself,	which	is	done	with
the	following	command:

gsutil	notification	stopchannel	ChannelId	ResourceId

	

	

	

Use	case	–	using	customer	supplied
encryption	keys
Data	in	GCS	buckets	is	always	encrypted,	in-flight	and	at-rest.	If	we	do	nothing
at	all,	the	encryption	occurs	using	Google-supplied	keys.	These	keys	are	created,
managed,	and	rotated	by	Google,	and	we	need	not	bother	with	data	encryption	at
all.	This	is	the	first	option,	called	Google	Supplied	Encryption	Key	(GSEK),
which	is	the	one	most	likely	to	work	right	out	of	the	box.	The	keys	are	those
associated	with	the	respective	users	and	governed	by	IAM:	

Alternatively,	a	customer	might	want	more	control,	and	insist	on	Customer
Supplied	Encryption	Key	(CSEK).	Here,	the	key	resides	on	the	customer's
premise,	but	is	sent	across	in	raw	form	as	part	of	the	API	calls.	All	GCP
references	to	the	key	are	in-memory	only,	the	key	actually	never	gets	stored	on
the	cloud.

A	third	option	is	Customer	Managed	Encryption	Keys	(CMEK),	where	the
customer	uses	a	specific	GCP	service	called	the	Google	Key	Management
Service	(Google	KMS)	to	store	keys	on	the	cloud.

Notice	that	in	CMEK,	unlike	in	CSEK,	the	keys	are	indeed	persisted	on	the
cloud,	and	key	protection	is	performed	by	the	KMS.	In	CSEK,	to	download	or
modify	the	encrypted	data,	you	always	need	to	provide	the	user	supplied	key	to
perform	the	action.	Finally,	CSEK	is	only	currently	available	in	a	small	list	of
countries.

To	implement	CSEK	using	gsutil,	use	the	following	command:

gsutil	cp	Desktop/image1.png	gs://loonycorn-bucket-00	encryption_key	[KEY]

		

Without	the	key,	GCS	shows	a	permission	denied	error	for	modifications	and	a
404	error	for	downloading.

Use	case	–	auto-syncing	folders
A	really	common	use	case	is	keeping	data	in	sync	between	the	persistent	disk	of
a	VM	and	a	specific	GCS	location,	or	two	GCS	locations.	The	gsutil	rsync
function	is	what	we	need	here.

The	source	and	destination	URLs	can	either	be	a	cloud	storage	bucket	or	a	local
directory.	So,	for	example,	if	you	want	to	sync	data	between	two	buckets,	you
can	simply	use	the	following:	gsutil	rsync	gs://loonycorn-bucket-00
loonycorn-bucket-01

Careful	on	the	order	of	the	arguments!	If	you	reverse	source	and	destination	with	a	-d
argument,	all	of	your	updates	will	be	deleted	forever	unless	you	have	an	archival	enabled.	The
rsync	command	makes	the	destination	match	the	source.	So	rsyncing	with	an	empty	source
directory	makes	the	destination	directory	also	empty.

It	is	also	possible	to	specify	various	additional	optional	arguments,	as	follows:

gsutil	rsync	[-VARIABLE	ARGUMENT]	src_url	dst_url

				

				VARIABLE	ARGUMENTS	(OPTIONAL):

				-a	=	also	copies	ACL	channel

				-c	=	computes	checksum

				-C	=	copies	other	files	if	some	incur	errors

				-d	=	deletes	data	from	destination	which	is	not	present	in	source

				-n	=	"dry	run"	only	lists	the	files	to	be	copied.	Doesn't	copy	them

				-U	=	skips	unsupported	storage	class	objects

		

Use	case	–	mounting	GCS	using
gcsfuse
Filesystem	in	Userspace	(FUSE),	cloud	storage	is	an	open	source	FUSE
adoption	functionality	provided	by	GCS.	It	allows	users	to	access	and	operate
GCS	buckets	from	their	Linux	or	OS	X	machines.	It	translates	object	storage
names	into	a	file	and	directory	system	and	interprets	the	/	character	in	object
names	as	a	directory	separator.

Thus,	objects	with	the	same	common	prefix	are	treated	as	files	in	the	same
directory.	Applications	can	interact	with	objects	like	files	in	filesystems.	We	now
no	longer	need	to	recode	our	shell	scripts	to	work	with	gustil	commands	and
gs://...	paths.	This	can	be	a	significant	win	if	our	shell	scripts	are	too	complex	or
too	important	to	rewrite.	But	on	the	other	hand	the	filesystems	mounted	via
gcsfuse	are	much	slower	than	persistent	disks.

Cloud	storage	FUSE	itself	is	free.	But	charges	for	bucket	storage,	network
access,	and	transfer	instances	are	applicable,	as	usual.

Mounting	GCS	buckets
	

The	following	steps	describe	how	you	would	mount	a	Cloud	Storage	bucket	on	a
host	running	a	Debian	OS:

1.	 Add	the	gcsfuse	distribution	URL	as	a	package	source	and	import	its	public
key:

export	GCSFUSE_REPO=gcsfuse-`lsb_release	-c	-s`

				

				echo	"deb	http://packages.cloud.google.com/apt	$GCSFUSE_REPO	main"	|	sudo	

tee	/etc/apt/sources.list.d/gcsfuse.list

				curl	https://packages.cloud.google.com/apt/doc/apt-key.gpg	|	sudo	apt-key	

add	-

		

2.	 Update	the	list	of	packages	available	and	install	gcsfuse:

sudo	apt-get	update

sudo	apt-get	install	gcsfuse

3.	 Create	a	directory:

mkdir	newfuse

4.	 Create	the	bucket	you	wish	to	mount,	if	it	doesn't	already	exist,	using	the
Google	Cloud	Platform	Console.

5.	 Use	Cloud	Storage	FUSE	to	mount	the	bucket	(for	example,	example-
bucket):

gcsfuse	example-bucket	/home/newfuse

6.	 Start	working	with	the	mounted	bucket:

ls	/home/newfuse

	

	

Use	case	–	offline	ingestion	options
	

Say	you	have	a	few	hundred	TB	of	on-premise	data	and	a	really	slow	network
connection.	Getting	the	data	onto	the	cloud	is	a	formidable	task—particularly	if
you	are	using	a	VPN	to	connect	on-premise	to	the	cloud,	further	slowing	your
connectivity.	To	make	things	easier	in	such	situations,	Google	offers	offline
ingestion	options	that	roughly	correspond	to	Snowball	and	Snowmobile	from
AWS.

It	may	be	sufficient	for	you	to	merely	know	that	such	options	exist,	if	you	care
about	the	fine	print,	please	read	on,	otherwise	feel	free	to	skip	to	the	end	of	the
chapter:

Data	Preparation:	Store	and/or	prepare	your	data.	This	can	mean
arranging	it	in	servers,	creating	backup	images,	network	settings,	or	even
databases	for	machine	learning:

The	data	should	be	arranged	in	the	form	of	non-nested	directories	(in
case	of	GCS),	which	then	would	turn	into	buckets.	In	other	words,	it
should	be	less	than	5	TB	for	each	bucket.
The	directory	names	should	also	follow	the	bucket	naming	guidelines.
Transfer	appliance	does	not	support	NAT	or	PAT,	but	it	does	support
SSH,	FTP,	and	HTTP(S).	So,	networks	should	be	configured
accordingly.
Just	to	prevent	last	minute	errors	and	delays,	make	sure	your	firewall
rules	are	disabled	or	at	least	an	exception	is	added	for	GCS.

Book	Storage:	Once	the	data	is	prepared,	you	need	to	initiate	the	capture
job.	For	this,	you	need	to	fulfill	the	given	hardware	requirements,	which
include	at	least	1	GBPS	internet.	If	such	requirements	are	not	met,	you	can
opt	for	Google	verified	third-party	uploaders,	but	that	option	is	only
available	in	North	America	at	the	time	of	writing.	In	the	capture	job,
Google	Cloud	Storage	suggests	how	many	buckets	you	require,	and	you	get
to	decide	accordingly.
Check	Billing:	For	100	TB	of	storage	usage,	GCS	charges	$30	for

migration	per	day	and	shipping	charges	are	$250	per	day	(in	two-day
intervals).	Thus,	you	will	be	billed	accordingly	and	if	it	matches	your
budget,	you	can	initiate	the	transfer.
Transfer:	After	filling	the	transfer	request	and	required	storage	size,	it
takes	around	40-45	days	for	100	TB	of	data	to	be	migrated	to	GCS.	If
capture	job	is	not	possible	due	to	hardware	unavailability,	you	can	also	ship
the	data	to	a	relevant	zone	(data	center).	The	class	of	storage	can	be
changed	even	after	migration	and	rules	for	it	remain	the	same.	Mostly,	this
is	done	with	Nearline	and	Coldline	storage	for	large-scale	archival
purposes.
Operate:	Once	the	transfer	is	complete	and	data	is	stored	into	the	buckets,
you	can	access	and	manipulate	it	using	the	console.

	

	

Summary
	

In	this	chapter,	we	have	seen	how	Google	Cloud	Storage	can	be	used	to	store
your	static,	unstructured	data,	and	how	it	compares	with	other	forms	of	data
storage.	You	should	now	be	familiar	with	how	to	create	buckets,	populate	them
with	data,	and	then	manage	them	using	versioning	and	life	cycle	policies.We
have	touched	upon	securing	data	in	the	buckets	using	encryption,	as	well	as
restricting	access	using	ACLs	and	IAM.	We	have	also	looked	into	how	to
integrate	your	GCS	buckets	with	your	existing	infrastructure	by	mounting	it	to
your	hosts.

Now	that	we	have	seen	how	to	manage	unstructured	data,	we	can	move	along
and	explore	the	various	options	supplied	by	Google	Cloud	to	manage	structured
information.

	

	

	

Relational	Databases
	

Relational	databases	are	pretty	familiar	technology	these	days,	so	we	won't
spend	a	whole	lot	of	time	discussing	exactly	what	they	are.	We	will	introduce
them	really	quickly	though,	just	in	case	you've	never	heard	the	term	Structured
Query	Language	(SQL)	or	Relational	Database	Management	System
(RDBMS).	Then	we	will	jump	to	the	couple	of	RDBMS	options	available	under
GCP,	which	are	Cloud	SQL	and	Cloud	Spanner.	We	will	explore	both	of	them	in
detail	and	also	make	comparisons	that	would	give	you	enough	insight	for
determining	the	optimum	option	for	your	application.

We	will	go	through	the	following	topics	in	the	chapter:

Relational	Databases,	SQL	and	Schemas
GCP	Cloud	SQL
Automatic	Backup	and	Restore
Cloud	Spanner

	

	

	

Relational	databases,	SQL,	and
schemas
The	heart	of	the	RDBMS	is	the	relational	data	model;	data	is	expressed	in	rows
and	columns	within	tables.	The	names	and	types	of	the	columns	are	defined	up-
front	and	are	collectively	called	the	schema.	The	rows	represent	the	data	stored
in	the	RDBMS	and	can	be	accessed	using	a	very	popular	language	called	SQL.

In	the	preceding	tables,	each	account	holder	has	two	accounts,	one	savings
account	and	one	current	account,	and	each	has	different	balances.	This	can	be
expressed	in	RDBMS	like	in	the	example	given	below.	Here	you	can	see	that
each	account	holder	is	given	a	unique	key	(Customer_ID),	which	makes
querying	for	savings	or	current	account	balance	a	lot	easier	and	faster:	

In	these	tables,	the	column	definitions	are	the	schemas:	for	instance,	the	schemas
of	both	relations	Current	Accounts	and	Savings	Accounts	have	three	columns
named	Acc_ID,	Holder_Name,	and	Balance_$.

When	data	is	inserted	into	these	relations,	or	tables,	the	RDBMS	will	check	and

ensure	that	the	rows	being	inserted	match	the	schema	and	also	satisfy	constraints
that	might	have	been	specified	by	users.

SQL	is	a	common	syntax	that	works	with	pretty	much	all	RDBMS	and	is	known
and	used	by	millions	of	individuals,	including	many	non-technical	folks.
Business	analysts,	sales	teams,	even	a	few	CFOs	know	how	to	write	SQL
queries.	A	typical	SQL	query	that	would	pull	all	data	from	a	relation	might	look
as	follows:	SELECT	Customer_ID,	Holder_Name	from	'Savings	Accounts'

SQL	queries	can	get	pretty	complex,	but	they	are	a	great	abstraction	that	allows
pretty	much	anyone	in	an	organization	to	access	the	data	they	need	from	an
RDBMS.	In	the	days	before	the	term	big	data	caught	on,	SQL	queries	were	the
way	to	work	with	big	data.

OLTP	and	the	ACID	properties
	

The	great	appeal	of	RDBMS	lies	in	their	support	for	Online	Transaction
Processing	(OLTP).	The	term	transaction	has	a	special	meaning	in	the	world	of
RDBMS,	a	transaction	is	a	set	of	operations	that	constitute	a	unit	of	work.
Transactions	must	be	all-or-nothing;	the	most	popular	example	is	that	of
transferring	money	from	one	bank	account	to	another.	It	would	be	a	disaster	if	an
RDBMS	were	to	fail	midway	through	such	a	transaction,	such	that	the	money
vanished	from	one	account	and	did	not	appear	in	the	other.

This	intuition	is	formalized	in	a	set	of	properties	called	the	ACID	properties,	and
the	most	basic	functionality	of	a	conventional	relational	database	is	support	for
these	ACID	properties:

Atomicity:	Each	transaction	is	all-or-nothing;	partial	execution	of	a
transaction	can	never	occur.
Consistency:	The	state	of	the	system	should	always	be	correct	at	the	end	of
a	transaction.	In	our	bank	transfer	example,	for	instance,	a	transfer	should
never	create	or	destroy	money.
Durability:	Changes	in	system	state	wrought	by	a	transaction	must	be
permanent	and	survive	power	outages,	crashes,	and	all	such	system	issues.
Isolation:	Each	transaction	ought	to	execute	as	if	it	were	the	only
transaction	in	the	world—this	way	transactions	will	not	interfere	with	each
other's	operations.

Building	a	robust	RDBMS	that	actually	works	and	delivers	on	these	properties	is
difficult.	Consider	isolation	for	instance—a	database	server	might	need	to	deal
with	millions	of	simultaneous	transactions	(think	ATM	withdrawals,	for
instance),	and	yet	the	architecture	must	ensure	that	each	transaction	operates
under	the	illusion	that	it	is	the	only	one	executing	in	the	system.	So,	relational
databases	are	big,	big	business—several	corporations	makes	tens	of	billions	of
dollars	in	annual	revenues—Oracle,	for	instance,	is	a	leader	in	the	database
business.

	

	

	

Scaling	up	versus	scaling	out
The	business	models	of	several	leaders	in	the	relational	database	world	have
been	fundamentally	threatened	by	the	rise	of	cloud	computing.	Why?	Because
traditional	RDBMS	scale	up,	they	rely	on	a	single	extremely	powerful	server,
and	that	server	often	runs	proprietary	and	non-standard	hardware	and	software,
and	so	is	very	expensive.	The	cloud,	on	the	other	hand,	is	all	about	scaling	out,
that	is,	assembling	arrays	of	generic	hardware	running	distributed	software.	At
the	time	of	writing,	the	cloud	model	of	scaling	out	seems	to	be	winning.	Check
out	the	sluggish	stock	performance	of	Teradata	or	Oracle,	both	leaders	in	the
traditional	data	solutions	world	between	2012	and	2017.	Now	contrast	those	with
the	meteoric	increases	in	Amazon	or	Google's	stock	over	the	same	period;	these
stock	prices	tell	a	tale.

Each	of	the	leading	public	cloud	platforms	AWS,	Azure,	and	GCP	offer	their
own	cloud-based	relational	database	solutions.	On	the	GCP,	there	are	two:	Cloud
SQL	and	Cloud	Spanner.

Cloud	SQL	competes	squarely	with	RDS	on	AWS	and	in	many	ways	has	fewer
options	currently.	For	instance,	Cloud	SQL	lets	users	run	MySQL	or
PostgreSQL,	while	RDS	has	several	additional	options.	Cloud	SQL	is	similar	to
traditional	RDBMS,	it	scales	up,	not	out.	This	implies	that	there	is	an	upper	limit
on	the	data	size,	as	well	as	latency	for	users	from	different	regions.

Cloud	Spanner	is	Google-proprietary,	and	unlike	Cloud	SQL,	it	offers	horizontal
scaling	as	well	as	multi-region	replication.	Google	is	very	proud	of	Spanner's
technology,	which	is	really	quite	incredible.	Cloud	Spanner	can	scale	to	handle
just	about	any	dataset	size;	this	does	require	us	to	increase	the	number	of	nodes,
and	consequently	the	cost.	In	some	respects,	Spanner	resembles	Redshift	on
Amazon	(Redshift	is	a	data	warehousing/OLAP	product,	not	an	RDBMS,	but
like	Spanner	it	scales	linearly	with	the	number	of	nodes).

GCP	Cloud	SQL
As	the	name	suggests,	Cloud	SQL	is	an	RDBMS	offering	on	GCP.

But	with	several	advantages	that	arise	from	its	cloud-based	nature,	which	are	as
follows:

It	is	implemented	on	cloud,	so	we	do	not	need	to	physically	set	up	systems
and	VMs.	This	makes	it	far	more	attractive	than	running	an	RDBMS	on	a
VM	(that	would	be	the	IaaS	approach,	Cloud	SQL	is	a	PaaS	approach).
It	is	mostly	managed	by	Google,	so	we	do	not	have	to	bother	about
common	database	management	tasks	such	as	backups	and	archival.
Even	if	we	are	already	using	another	form	of	RDBMS,	migrating	to	Cloud
SQL	is	relatively	simple	and	reliable.
Like	all	the	other	services	on	the	GCP,	Cloud	SQL	instances	are	scalable
and	customizable.
Cloud	SQL	currently	supports	two	open	source	RDBMS:	MySQL	and
PostgreSQL	where	the	choice	depends	on	our	structure	of	data.
It	provides	strong	ACID	support.

As	we	mentioned	earlier,	the	choice	between	MySQL	and	PostgreSQL	depends
on	us.	But,	which	one	to	pick?	There	is	one	more	choice	to	make.

Creating	a	Cloud	SQL	instance
Cloud	SQL	requires	an	instance	to	be	set	up	before	you	can	start	using	it.	Which
means	it	is	not	serverless.

Now	we	will	create	a	Cloud	SQL	instance	called	bank-balance:

1.	 Click	on	the	Menu	option	(three	horizontal	lines	on	upper-left	corner)	on
the	GCP	console.

2.	 Click	on	the	SQL	tab:

3.	 If	your	project	does	not	have	any	Cloud	SQL	instances	yet,	you	will	see	a
dialog	box	suggesting	to	Create	Instance	with	a	blue	rectangle	button.	Click
on	it.	If	you	already	have	one	or	more	SQL	instances	created	(by	you	or	by
someone	else	from	your	organization)	you	will	see	them	listed.	Create
instance	will	be	above	them	under	the	search	panel.	As	you	may	have
figured,	click	on	it:

4.	 Cloud	SQL	supports	MySQL,	which	is	open	source	popular	RDBMS,	and
PostgreSQL,	which	is	open	source	RDBMS	with	features	of	an	object-
oriented	database.	For	this	demonstration,	click	on	the	MySQL	radio	button
if	it	is	not	already	clicked.	Click	Next:

5.	 The	next	dialog	box	asks	you	to	select	between	legacy	and	current	version
of	MySQL	with	their	consequences	listed.	In	this	case	we	click	on	Choose
Second	Generation:

6.	 Set	up	your	instance	ID	(bank-balance),	root	password,	and	location	(region

and	zone).	If	you	click	on	configuration	options	you	will	notice	that	you	can
add	labels,	flags,	and	networks.	More	importantly,	you	can	also	configure
the	underlying	hardware	where	size	and	type	of	hard	disk	play	an	important
part.	Defaults	are	SSD	with	10	GB,	but	if	you	can,	customize	them.	We	will
stick	to	the	defaults:

Once	we	have	determined	our	database	configurations,	let's	decide	on	the
underlying	hardware.

7.	 Click	on	Create:

Once	you	navigate	into	your	created	SQL	instance,	you	will	see	a	bunch
of	options	that	you	can	explore.	We	will	skip	the	obvious	ones	and	get	to
the	important	ones.	In	the	case	of	SQL	instances,	the	command	line	is
much	more	comfortable	and	fast	than	a	UI.	You	can	simply	treat	it	as
your	Linux	command	line.	As	with	all	command	line	operations	using
Google	Cloud,	we	will	use	the	gcloud	utility.	We	have	seen	earlier	that	we
can	access	this	Cloud	SQL	instance	from	the	Google	Cloud	Platform
console.	You	also	have	the	option	to	access	Cloud	SQL	using	Python	and
Java	APIs	if	you	want	to	do	it	programmatically.

Creating	a	database	in	a	Cloud	SQL
instance
Time	to	get	hands	on	with	Cloud	SQL.	Let's	start	with	creating	a	database:

1.	 On	the	command	line	simply	type	gcloud	beta	sql	connect,	specify	the
name	of	your	Cloud	SQL	instance,	and	specify	the	user	you	want	to	connect
as.

2.	 Here	we	just	have	one	user,	the	root	user.	You	will	be	asked	for	your	root
user	password	before	the	connection	is	successful.	You	will	see	the	MySQL
prompt	when	you	log	into	your	MySQL	instance.	In	order	to	allow	Cloud
Shell	to	connect	to	your	MySQL	instance,	MySQL	whitelists	the	IP	address
of	your	Cloud	Shell	instance	temporarily.	Cloud	Shell	instances	are
ephemeral	(destroyed	once	we	close	them),	so	when	you	reconnect	your
session	changes	and	your	IP	address	might	change	as	well.	This	whitelist	is
temporary	for	that	reason.	Once	you	are	in	MySQL,	run	your	MySQL
commands	exactly	like	you	would	in	a	local	instance:

3.	 Create	a	database	named	accounts	using	the	CREATE	DATABASE	command.	Move
into	this	database	by	using	the	USE	accounts	command:

4.	 Create	a	table	named	Holders	using	the	CREATE	TABLE	command.	Specify	the
names	and	the	data	types	of	the	columns,	that	is,	ID	and	name	and	specify
the	primary	key.	Which	in	this	case	is	customer_id:

5.	 Show	tables	will	show	you	the	tables	that	have	been	created	within	this
database	just	as	one	table	here	now,	the	students	table.

6.	 As	account	holders	I	have	added	details	from	our	previous	explanation.	You
can	run	simple	SELECT	queries	on	these	tables.	And	if	you	want	to	get	out	of
your	MySQL	instance,	type	exit:

Another	way	to	connect	to	Cloud	SQL	is	to	use	the	Cloud	SQL	proxy.	It	means
connecting	to	it	via	mysql	client	using	the	IP	of	the	Cloud	SQL	instance.	Also,
using	Cloud	SQL	proxy	enables	facilities	like	using	instance	names	for	logging
in	instead	of	IP	etc.	To	set	it	up,	follow	the	procedure	below:

1.	 Navigate	to	your	dashboard	and	search	for	Google	Cloud	SQL	API	in	the	search
bar.	This	will	lead	you	to	Services	and	API	sections’.	Click	on	Enable,	also,
make	sure	your	service	account	is	set-up.

2.	 Install	the	proxy	by	downloading	it	and	making	it	executable	with
following	commands:

wget	https://dl.google.com/cloudsql/cloud_sql_proxy.linux.amd64	-O	

cloud_sql_proxy

chmod	+x	cloud_sql_proxy		

3.	 Navigate	to	your	instance	and	copy	its	name	from	it	since	it	will	be	used	in
further	steps.	Start	the	proxy	with	Cloud	SDK	authentication:

/cloud_sql_proxy	-instances=<COPIED	INSTANCE	NAME>=tcp:3306

4.	 Now	you	can	access	it	from	anywhere,	start	your	MySQL	client	and

connect	it	using	TCP	socket	through	127.0.0.1	IP:

mysql	-u	<USERNAME>	-p	--host	127.0.0.1	

Importing	a	database
	

Apart	from	the	databases	we	create	on	Cloud	SQL	instances,	we	can	also	import
other	databases	from	other	sources	(otherwise	nobody	would	ever	switch	to
Cloud	SQL	in	the	first	place!):

1.	 We	can	download	one	of	the	sample	databases	from	the	official	MySQL
website	using	the	wget	command:

wget	https://codeload.github.com/datacharmer/test_db/zip/master	-O	

sampledb.zip	

2.	 After	downloading	you	will	have	a	sampledb.zip	file.	Unzip	it.	This	will
create	a	test-db-master	directory	in	your	current	working	directory.

3.	 Navigate	there	using	the	cd	command	and	find	employees.sql	using	the	ls
command.

4.	 After	examining	this	file	you	will	find	that	it	contains	a	number	of	SQL
statements	to	drop	existing	databases	and	recreate	the	database	and	tables
within	them.

5.	 Using	the	gcloud	command	line	you	can	connect	your	SQL	instance	and	run
all	the	commands	that	are	present	in	the	employees.sql	file.	This	will	create	an
employees	database	and	create	all	the	tables	mentioned	in	it:

gcloud	beta	sql	connect	bank-balance	--user=root<	employees.sql		

Now	we	have	two	databases;	Accounts	and	Employees.	Before	making	a	shift	from
our	dominant	RDBMS	to	Cloud	SQL,	we	also	need	to	test	whether	it	delivers
what	it	promises!

	

	

	

Testing	Cloud	SQL	instances
Time	to	test	the	databases	that	we	created.	Let's	try	a	few	queries	on	them:

1.	 Run	the	describe	command	to	check	the	consistency	of	database	fields.
(Remember?	ACID!):

2.	 In	the	Employees	database	we	have	employees	and	salaries	tables.	We	will	run
a	joint	query	on	both	of	these	to	calculate	the	average	salary	for	all
employees	who	joined	in	a	particular	year.

3.	 Looks	good!	Since	we	are	done	with	this	instance,	we	will	delete	it	to	avoid
heartbreaking	bills.	This	task	is	simple	and	familiar.	Navigate	to	the
instance,	find	our	three	friendly	vertical	dots,	press	Delete,	and	voila!

[DIY]	Since	the	data	is	stored	in	the	Cloud	storage	we	can	again	access	to	it	by
IMPORTING	it	(get	the	hint,	genius!)	using	another	ephemeral	Cloud	SQL
instance.	This	time,	it	is	best	to	locate	the	instance	in	the	same	region	as	Cloud
Storage	Bucket	for	least	latencies.

Use	case	–	managing	replicas
	

Our	database	would	not	be	considered	managed	unless	we	have	figured	out	how
to	get	replicas	created	and	managed.	Cloud	SQL	by	default	does	not	provide
replicas,	but	we	can	create	them.	There	are	four	types	of	replicas	to	choose	from.
Despite	of	all	of	this,	the	reason	behind	creating	such	replicas	is	to	increase
query	capacity	for	read	intensive	databases:

Type	1:	Read	Replicas:

These	are	low	cost	low	availability	replicas	of	the	master	instance,	which
contains	root	password	and	changes	made	to	the	master.	The	changes	are	least
likely	to	be	real	time.	The	replicas	can	also	face	disruptions	due	to	server	outage
or	sudden	upgrade:

The	configuration	of	the	replica	instance	may	be	different	from	the	master
instance	based	on	the	choices	we	make	and	it	is	viable	to	make	read	replicas
that	have	lower	configurations	if	the	application	is	not	mission	critical.
They	cannot	be	backed	up	or	restored.
They	need	to	be	promoted	as	master	before	we	delete	the	master	instance.
Master	needs	to	have	binary	logging	enabled	in	order	to	have	a	replica.
Replica	cannot	have	replicas	(What	would	be	the	point	anyway!).
Steps	to	create	a	read	replica:

1.	 Check	the	status	of	the	instance	for	binary	logging:

gcloud	sql	instances	describe	bank-balance

2.	 If	binaryLogEnabled	is	false,	enable	it	using	the	following	command:

gcloud	sql	instances	patch	--enable-bin-log	bank-balance

3.	 Create	the	replica:

gcloud	sql	instances	create	bank-balance-replica-0	--master-

instance-name=bank-balance

Type	2:	Failover	Replicas:

A	second	generation	replica	within	a	different	zone	is	called	a	Failover	Replica.
This	allows	us	the	flexibility	to	treat	production	level	instances	and	not-so-
mission-critical	instances	differently:

In	case	of	outage	in	master	instance,	Cloud	SQL	promptly	directs	to	a
failover	replica,	which	would	be	safe	since	it	would	be	in	another	region.
The	Cloud	SQL	proxy	is	failover	aware	so	the	application	using	it	doesn’t
need	to	update	its	configurations.	We	only	need	to	restart	the	session.
The	update	window	is	smaller	and	having	more	than	one	failover	replica	set
up	with	different	update	windows	can	provide	complete	failover	immunity
theoretically.
To	set	up	failover	replica:

We	can	create	a	master	instance	along	with	its	failover	replica:

gcloud	sql	instances	create	bank-balance	--backup-start-time	00:00	

--failover-replica-name	bank-balance-fo	--enable-bin-log

We	can	also	master	a	failover	separately	since	the	only	variations	are
different	arguments	of	the	gcloud	command:

gcloud	sql	instances	create	bank-balance-fo	--master-instance-

name=bank-balance--replica-type=FAILOVER

Type	3:	External	Replicas:

These	are	external	MySQL	Read	replica	instances	replicated	from	Cloud	SQL
instances.	There	are	a	few	rules	to	be	followed	for	external	replicas:

Binary	logging	for	master
Same	or	higher	MySQL	version	of	replica	compared	to	master
Replicating	to	another	Cloud	platform's	MySQL	instance	is	not	possible
To	create	an	external	replica:

Connect	to	your	Cloud	SQL	instance	using	the	Command	Prompt:

gcloud	sql	connect	bank-balance	--user=root

Create	a	special	user	for	replica:

CREATE	USER	'bank-balance-replica-user'@'%'	IDENTIFIED	BY	

'********';

Provide	replication	privileges	to	the	user:

GRANT	REPLICATION	SLAVE	ON	*.*	TO	'bank-balance-replication-

user'@'%';

Create	an	export	dump	file	from	the	master	instance	for	the	replica.
For	this,	we	will	create	a	Cloud	Storage	Bucket	for	the	export	and	add
replica's	service	account	in	the	access	control	list	of	the	bucket	with
Writer	permission	and	finally	we	will	export	it:

gsutil	mb	-p	loonycorn-project-01	-l	asia	gs://loonycorn-bucket-00

gcloud	sql	instances	describe	bank-balance

gsutil	acl	ch	-u	yourserviceacc@yourdomain.com:W	gs://loonycorn-

bucket-00

gcloud	sql	instances	export	bank-balance	gs://loonycorn-bucket-

00/sqldumpfile.gz	--database	holdersdump.sql

Go	to	the	machine	where	you	want	to	host	the	replica.	It	can	even	be	a
compute	engine	instance.	Seed	the	export	file	we	created	earlier:

mysql	--user=root	--password	<	holdersdump.sql

Open	the	MySQL	settings	file	typically	named	my.cnf:
nano	/etc/my.cnf

Add	the	following	fields	to	it.	Among	these	fields,	server	ID	is	a
unique	numeric	value	across	all	of	the	servers	and	replicas,	which
means	no	two	replicas	can	have	the	same	server	ID:

[mysqld]

server-id=[SERVER_ID]

gtid_mode=ON

enforce_gtid_consistency=ON

log_slave_updates=ON

replicate-ignore-db=mysql

binlog-format=ROW

log_bin=mysql-bin

expire_logs_days=1

read_only=ON

Exit	and	re-enter	the	mysql	process	to	make	sure	configurations	are	

updated.

Enter	the	following	command:

CHANGE	MASTER	TO	MASTER_HOST='[IP	ADDRESS	OF	MASTER]',	

MASTER_USER='bank-balance-replication-user',

MASTER_PASSWORD='********',	MASTER_AUTO_POSITION=1;

Start	the	replication	process	with	the	following	command:

START	SLAVE;

You	can	also	check	the	state	of	replica	by	entering	the	following
command.	Make	sure	it	gives	a	result	as	Waiting	for	master	to	send
event:

	SHOW	SLAVE	STATUSG;

Replica	Management:	As	handy	as	replicas	may	be,	they	need	to	be
managed.	Sometimes	we	need	to	enable/disable	them	as	per	our
requirements	or	we	need	to	change	their	role	as	well!

Enabling	Replicas:	If	a	replication	instance	is	disabled	for	a	longer
time	interval,	replicating	updated	master	may	take	significant	time.	In
which	case,	it	makes	sense	to	enable	a	new	replication	instance:

gcloud	sql	instances	patch	<<YOUR	REPLICA>>	--enable-database-

replication

Disabling	Replicas:	This	does	NOT	mean	deletion	of	a	replica
instance.	In	other	words,	even	if	you	don't	replicate	anything	from
master,	the	instance	will	contribute	to	the	billing.	This	is	only
advisable	for	temporary	use	such	as	debugging:

gcloud	sql	instances	patch		<<YOUR	REPLICA>>	--no-enable-database-

replication				

Promoting	Replicas:	A	replica	can	be	turned	into	a	standalone
instance,	which	means	it	will	stop	replicating	the	master,	but	the	action
is	irreversible.	Thus	if	you	do	it	by	mistake,	you	will	have	to	delete	it
and	create	a	new	replica:

gcloud	sql	instances	promote-replica	<<YOUR	REPLICA>>

Maintaining	Replicas:	Finally,	you	can	check	the	status	of	a	replica	or
delete	it	altogether,	which	of	course	would	be	an	irreversible	action.
For	doing	so,	treat	a	replica	instance	just	as	any	other	one	and	use	the
following	command:

gcloud	instance	delete	<<YOUR	INSTANCE>>

						gcloud	instance	describe	<<YOUR	REPLICA>>

Type	4:	External	Masters:

External	master	is	a	MySQL	master	instance,	which	is	not	a	part	of	Cloud	SQL.

This	arrangement	has	multiple	uses	such	as	increasing	the	reliability	of	your
database	and	thus	increasing	ACID	parameters	as	well.	On	another	note,
sometimes	the	network	is	not	strong	enough	to	keep	updating	CLoud	SQL,	in
which	case	having	a	local	master	is	helpful.	It	is	important	to	remember	that
external	masters	are	only	supported	by	1st	generation	of	MySQL	instances
which	is	not	the	preferred	choice	in	the	most	cases:

Prerequisites:	Before	setting	up	an	external	master,	you	must	have	a
working	service	account,	billing,	a	cloud	storage	bucket,	at	least	one	replica
of	master	instance,	and	binary	logging	set	up:
Procedure:	First	of	all,	create	a	mysqldump	file	with	GTID	permissions	and
triggers	turned	off:

mysqldump	--databases	<<DATABASE>>	-h	<<INSTANCE	IP>>	-u	<<USERNAME>>	-p	--

skip-triggers	--set-gtid-purged=OFF

--default-character-set=utf8	>	[SQL_FILE].sql

Now	create	a	CSV	file	from	your	local	Cloud	SQL	server	(external)	with
the	following	command:

mysql	--host=<<IP>>	--user=<<USER	NAME>>	--password	<<DATABASE	NAME>>	-e	"	

SELECT	*	FROM	<<TABLE	NAME>>	INTO	OUTFILE	'<<FILENAME>>'	CHARACTER	SET	

'utf8'	FIELDS	TERMINATED	BY	','	OPTIONALLY	ENCLOSED	BY	'"'	ESCAPED	BY	'"'	"		

Now,	provided	that	you	already	have	an	external	SQL	server	running,	create
a	CLoud	SQL	internal	master	with	the	credentials	to	be	external	master.
Run	the	following	command	on	the	Cloud	Shell	command	line:

ACCESS_TOKEN="$(gcloud	auth	application-default	print-access-token)"

curl	--header	"Authorization:	Bearer	${ACCESS_TOKEN}"	

--header	'Content-Type:	application/json'	

--data	'{"name":	"<<CLOUD	SQL	MASTER	INSTANCE>>",

"region":	"<<REGION>>",

"databaseVersion":	"DATABASE	VERSION	OF	EXTERNAL	MASTER",

"onPremisesConfiguration":	{"hostPort":	"<<IP>>"}}'	-X	POST	

https://www.googleapis.com/sql/v1beta4/projects/<<PROJECT	ID>	/instances		

Now,	the	internal	master	is	created	and	has	also	been	provided	the
credentials	of	external	master.	Once	it	is	fully	initialized,	create	a	replica
with	the	user	account	information	of	external	master	and	storage	details	of
the	dump	you	created	with	cloud	storage	bucket:

curl	--header	"Authorization:	Bearer	${ACCESS_TOKEN}"	

--header	'Content-Type:	application/json'	

--data	'{"replicaConfiguration":

{"mysqlReplicaConfiguration":

{"username":	"[REPLICATION_USER]",	"password":	"<<REPLICA	

PASSWORD>>","dumpFilePath":	"[BUCKET_LOCATION]"	}},

"settings":	{"tier":	"[TIER]","activationPolicy":	"ALWAYS"},

"databaseVersion":	"[EXTERNAL_MASTER_DATABASE_VERSION]",

"masterInstanceName":	"[INTERNAL_MASTER_INSTANCE_NAME]",

"name":	"[REPLICA_NAME]",	"region":	"[REGION_NAME]"}'	-X	POST	

https://www.googleapis.com/sql/v1beta4/projects/[PROJECT-ID]/instancesas

High	availability:	Highly	available	instances	are	the	ones	created	under
second	generation	configuration	and	a	failover	replica	in	a	different	zone.	A
new	instance	can	be	created	with	high	availability	and	existing	instances
can	be	converted:

New	Instance:	While	creating	the	master	instance	make	sure	to	also
set	up	the	failover	replica	and	configure	the	root	user	for	the	master:

gcloud	sql	instances	create	<<MASTER	INSTANCE>>	

					--backup-start-time	00:00	

					--failover-replica-name	<<REPLICA	INSTANCE>>	

					--tier	<<TIER	TYPE>>	--enable-bin-log		

For	root	user	configuration:

gcloud	sql	users	set-password	root	%	

				--instance	<<MASTER>>	--password	********

Existing	Instance:	High	availability	is	an	option	only	for	master
instances,	so	in	case	of	a	replica	it	wouldn't	work.	After	determining
your	master	instance,	enable	automatic	backup	and	binary	logging	on
it:

gcloud	sql	instances	patch	<<MASTER>>	--backup-start-time	00:00

gcloud	sql	instances	patch	--enable-bin-log	<<MASTER	INSTANCE>>

Finally,	create	a	failover	replica	to	turn	your	existing	instance	into	a
high	availability	instance:

gcloud	sql	instances	create	<<REPLICA	INSTANCE>>	

				--master-instance-name=<<MASTER	INSTANCE>>	

				--replica-type=FAILOVER		

	

	

Use	case	–	managing	certificates
	

We	can	connect	to	a	Cloud	SQL	instance	using	SSL.	This	comes	in	handy	when
we	don't	want	to	manually	access	it,	but	want	our	application	to	access	the	SQL
automatically.	Cloud	SQL	uses	two	certificates;	self-signed	on	server	side	and
public/private	key	pair	on	client	side	for	authentication.	This	enables	encryption
on	the	communication	between	Server	and	Client.	You	must	have	both	a	valid
server	certificate	and	a	valid	client	certificate	(key	pair)	to	support	encrypted
communication.	Use	the	following	steps	to	interact	with	certificates:

1.	 Configure	the	instance	to	mandate	SSL	connection:

gcloud	sql	instances	patch	bank-balance	--require-ssl		

2.	 Create	an	SSL	certificate	and	store	the	key	securely	on	your	system	or
bucket	if	you	trust	the	role	owners:

gcloud	sql	ssl-certs	create	bank-balance-cert	client-key.pem	--instance	

bank-balance		

3.	 To	retrieve	the	public	key	of	your	certificate:

gcloud	sql	ssl-certs	describe	bank-balance-cert	--instance	bank-balance	--

format='value(cert)'	

4.	 Create	a	file	named	client-cert.pem	and	copy	the	certificate	completely	(then
paste	it	on	it).	This	will	be	your	public	key:

5.	 To	get	the	server	certificate:

gcloud	sql	instances	describe	bank-balance	--

format='value(serverCaCert.cert)'	

6.	 Again,	copy	the	certificate	in	a	file	named	server-ca.pem.
7.	 To	make	these	configurations	active,	restart	the	instance.
8.	 Now,	to	retrieve	the	client	certificate:

gcloud	sql	ssl-certs	describe	bank-balance-cert	--instance	bank-balance	--

format='value(cert)'

9.	 And	finally,	to	delete	the	certificate:

gcloud	sql	ssl-certs	delete	bank-balance-cert	--instance	bank-balance		

10.	 Restart	the	instance	for	changes	to	take	place.

	

	

Use	case	–	operating	Cloud	SQL
through	VM	instances
	

On	your	local	machine	or	VM,	you	can	connect	to	Cloud	SQL	using	your	local
MySQL	client	as	well.	We	will	take	Debian	flavor	for	this	use	case.	The
following	are	the	steps	for	this:

1.	 Install	the	mysql-client:

sudo	apt-get	update

				sudo	apt-get	install	mysql-client	

2.	 Note	your	Cloud	SQL	instance	IP	and	connect	to	your	instance	from	your
VM	or	local	machine:

mysql	--host=[INSTANCE_IP]	--user=root	--password

3.	 The	MySQL	prompt	will	now	be	visible.	From	the	steps	of	the	previous
section,	we	have	our	CA	certificate,	public	key,	as	well	as	private	key.	Exit
the	prompt	and	start	it	again	using	these	SSL	credentials:

mysql	--ssl-ca=server-ca.pem	--ssl-cert=client-cert.pem	--ssl-key=client-

key.pem	

--host=[INSTANCE_IP]	--user=root	--password

4.	 Once	the	MySQL	prompt	appears	again,	hit	the	/s	command	to	verify	that
the	connection	is	using	SSL.

	

	

Automatic	backup	and	restore
Automated	backups	are	a	service	provided	by	Cloud	SQL	where	it	stores	at	least
seven	backups	of	the	instance	at	any	point	of	time.	At	the	time	of	writing	this
book,	the	charges	were	$0.17/GB/month	for	SSD	and	$0.08	for	HDD.	Network
egress	is	free	if	backups	are	stored	in	the	same	region	(which	is	advisable	if	the
application	is	not	mission	critical).	The	size	of	backups	varies	depending	on
changes	in	the	SQL	instance	between	the	window	of	the	current	backup	and	the
previous	one.	This	means	only	changes	are	stored	in	the	subsequent	backups.

Although	the	default	time	window	for	backups	is	four	hours	you	can	ask	for
backups	anytime	on-demand.	The	command	for	it	is	as	follows:

gcloud	sql	backups	create	--async	--instance	<<YOUR	INSTANCE>>		

For	disabling	automated	backups	of	a	certain	instance:

gcloud	sql	instances	patch	[INSTANCE_NAME]	--no-backup		

For	scheduling	automatic	backups:

gcloud	sql	instances	patch	[INSTANCE_NAME]	--backup-start-time	[HH:MM]		

For	deleting	backup	instance:

1.	 Navigate	to	the	Cloud	SQL	instances	page	in	the	console	and	click	on	the
Backups	tab

2.	 Choose	the	backup	that	you	want	to	remove	and	click	on	the	Options	button
(three	vertical	lines)

3.	 From	the	drop-down	menu,	select	the	Delete	option

For	restoring	backed-up	data,	list	the	available	backups	and	select	the	backup
that	you	need	to	restore.	It	is	important	to	keep	in	mind	that	the	restore	process
overwrites	all	of	the	current	data,	so	if	there	is	any	progress	that	has	not	been
backed-up	or	if	the	backup	is	too	old	you	may	lose	a	significant	amount	of	data:
gcloud	sql	backups	list	--instance	<<YOUR	INSTANCE>>	gcloud	sql
backups	restore	<<INSTANCE	ID>>	--restore-instance=<<YOUR
INSTANCE>>

Cloud	Spanner
Cloud	Spanner	is	another	Relational	Database	management	service	provided	by
GCP.	This	is	different	from	Cloud	SQL	in	many	aspects,	such	as:

It	is	a	Google	Proprietary	technology	(no	open	source)
Costlier
Stronger	ACID	values	(ACID++)
More	reliable
More	relational
More	transaction	specific
Fully	managed

You	ought	to	pick	Spanner	over	Cloud	SQL	in	use	cases	involving	the	following:

Data	sizes	exceeding	10	TB
Heavy	usage,	with	QPS	(queries	per	second)	exceeding	5K
Users	in	multiple	regions	(spanner	has	replication	across	regions,	Cloud
SQL	is	regional)

The	technology	behind	Cloud	Spanner	is	cutting	edge.	Unlike	traditional
RDBMS,	here	rows	with	the	same	primary	key	(which	are	the	most	related	ones
in	most	cases	of	transactional	applications)	are	brought	together	and	converted
into	a	new	entity	called	a	split.	Each	split	is	replicated	multiple	times	over	failure
independent	zones,	which	mostly	removes	the	probability	of	data	loss	and	also
achieves	geo-redundancy	by	default.	This	also	reduces	latency	regardless	of	the
regions.	Here	is	an	example	of	such	a	representation.	All	of	this	does	make
Cloud	Spanner	a	costlier	option	compared	to	Cloud	SQL	but	we	are	spared	from
manual	scaling	and	managing	the	instance	so	users	have	to	make	the	trade-off:

Concept	of	splits	can	be	understood	more	accurately	with	the	following	figure:

As	we	can	see	in	the	table,	a	unique	customer	ID	is	provided	to	each	user,	which
acts	as	their	primary	key.	User	rows	are	arranged	based	on	their	primary	key,
which	grants	Cloud	Spanner	faster	access	to	all	of	the	fields	of	a	single	user.	This
also	creates	a	parent-child	relationship	between	rows.	Each	row	with	one	field
holding	the	primary	key	value	is	considered	the	parent	and	the	other	rows	with
the	same	primary	key	are	arranged	below	it,	which	are	called	Child	rows.	The
combination	of	parent	and	child	rows	is	what	exactly	a	split	is.

Each	query	is	attempted	using	a	primary	key,	which	makes	the	atomicity	as	good
as	absolute.	These	primary	key	based	arranged	rows	create	a	split.	In	our	case,

Tony	Stark	or	Jerry	Renner	are	individual	splits	in	the	same	schema.	Coming	to
the	next	figure,	each	of	these	splits	are	stored	individually	in	Cloud	Storage
buckets	with	optimum	configuration	(scalable	SSDs	forever)	and	is	also
replicated	a	minimum	of	two	times.

Google	assures	us	that	each	replica	is	stored	beyond	regional	point	of	failures.
So	if	your	original	split	is	in	US,	the	replica	may	reside	in	Mumbai	(for	multi-
regional	nodes,	more	on	that	later).	And	they	also	assure	us	that	there	are	enough
replicas	to	avoid	potential	data	loss.	And	all	of	this	is	managed	by	Google	itself.
Although	generally	the	split	shown	in	the	figure	is	ideal,	practically,	parent-child
combinations	with	identical	primary	keys	(sequential	mostly)	end	up	in	the	same
split	and	while	making	write	requests	and	multiple	writes	may	end	up	on	the
machine	handling	the	same	split	while	other	zones	or	nodes	remain	idle.

The	preceding	figure	gives	a	conceptual	representation	of	divided	writes,	let's
look	at	them	with	the	same	data	example.

As	shown	in	the	preceding	diagram	and	table,	to	avoid	hotspotting	on	a	single
node	or	server,	it	is	advisable	to	hash	our	primary	keys	in	a	way	that	they	turn
into	different	splits.	This	way	Cloud	Spanner	can	have	proper	splits	due	to	which
the	operational	load	of	write	cycles	can	be	divided	equally.

Apart	from	this,	Spanner	also	saves	logs	of	each	query	and	its	outcome	with
precise	timestamps.	This	is	one	of	the	aspects	of	Cloud	Spanner	that	helps	it	in
increasing	the	ACID	values.	In	case	of	Atomicity,	sometimes	we	do	know	that
serialized	queries	are	atomic,	but	we	are	not	sure	about	their	exact	order	of
execution.	In	case	of	Cloud	spanner,	splits	keep	the	queries	atomic,	while
timestamp	logs	assure	that	they	were	performed	in	the	correct	order.	All	of	this
needs	heavy	processing	and	scheduling.	And	so,	Cloud	Spanner	queries	(or	calls
as	they	name	them)	are	divided	into	three	categories:

Locking	Read-Write	transactions:	These	are	the	slowest	ones.	But	this	is
the	only	mode	that	supports	writing	of	data,	so	in	many	cases	its	use	is
inevitable.	But	it	does	not	become	much	bothersome	since	in	the	case	of
OLTP,	writing	of	data	is	not	as	latency	sensitive	as	reading	(you	would
gladly	spend	a	couple	more	seconds	in	setting	up	your	payment	details	for
the	first	time,	speed	would	be	demanded	while	making	payments	where	we
only	read	credentials.	Even	in	the	case	of	modifying	the	remaining	balance
after	a	transaction,	people	normally	wait	without	complaint	for	a	few	more
seconds).
Read-only	transactions:	These	transactions	are	consistent	for	several
reads,	but	do	not	allow	to	commit	writes.	Rather	they	do	not	commit	at	all!

They	are	faster	than	R/W	transactions	and	we	can	also	read	stale	data	(data
from	a	timestamp	in	the	past).
Single	Read	Calls:	While	Google	docs	only	list	two	types	and	consider	this
one	as	a	special	case,	it	is	safe	to	list	single	read	calls	as	the	fastest	reads
among	three.	These	calls	are	not	treated	as	transactions.	They	only	apply	to
single	rows	or	splits	(single	or	hotspotted	primary	key	holding	rows)	and
reads	are	performed	in	a	single	process.	This	does	not	count	as	transaction
in	Google's	backend,	so	obviously	no	commits	are	made	and	here	too,	we
can	demand	a	stale	read.

Now,	let's	play	with	Cloud	Spanner	a	bit.

Creating	a	Cloud	Spanner	instance
In	order	to	create	a	new	instance	of	Cloud	Spanner,	follow	these	steps:

1.	 Click	on	the	Navigation	sidebar	and	choose	spanner	and	then	you	will	see
the	button	to	create	a	new	instance.

2.	 I	am	going	to	call	the	instance	bank-details	and	it	generates	an	instance	ID
for	me	automatically.	The	instance	ID	is	the	same	as	my	instance	name.	The
instance	ID	is	permanent	and	it	will	be	used	to	identify	your	spanner
instance.	As	you	can	see	in	the	following	screenshot,	every	region	offers	a
slightly	different	set	of	features,	but	the	consistency	and	throughput	remains
almost	the	same.	One	way	to	get	the	best	of	Spanner	is	to	have
multiregional	nodes.	Each	option	is	also	priced	differently:

3.	 I	am	going	to	locate	my	Cloud	Spanner	instance	in	Asia.	Collocating	your
Cloud	Spanner	instance	to	where	your	traffic	is	going	to	come	from	will
make	it	fast.

4.	 Cloud	Spanner	is	a	scalable	database	used	for	mission	critical	applications
(heavy	words!).	This	means	it	has	multiple	nodes	on	which	it	needs	to	run.
Typically,	you	will	specify	at	least	three	nodes	for	your	cloud	Spanner
production	environment.	But	since	we	are	doing	it	for	learning	purposes,	I
have	limited	the	number	of	nodes	to	one.

5.	 Click	Create	and	wait	for	Google	to	provision	your	Cloud	Spanner	instance.

Creating	a	database	in	Cloud
Spanner	instances
With	the	following	steps,	we	can	create	a	database	in	Cloud	Spanner	from	the
GCP	console	itself:

1.	 Click	the	Create	Database	button.
2.	 We	will	create	a	database	called	holder_details	and	add	its	schema.	Like

previous	examples,	here	too	we	have	customer	ID,	name,	account,	and
balance	columns.	We	have	also	defined	their	datatypes.	As	you	may	have
already	noticed,	all	of	this	is	happening	without	creating	any	instance.

3.	 Once	you	have	defined	all	of	your	columns,	click	on	the	Create	Table
button	and	it	will	lead	you	to	the	screen	where	you	can	verify	your	table
and	start	adding	data.	There	is	another	way	of	editing	the	schema	as	text
where	you	need	to	set	up	your	schema	in	Data	Definition	Language,	which
is	pretty	similar	to	MySQL,	but	is	not	mySQL	(one	of	the	downsides	of
making	things	proprietary	you	know!).	You	can	check	out	the
documentation	for	it:

4.	 Notice	that	the	customer_id	as	the	primary	key	for	this	table	is	indicated	by	a
little	key	icon	in	that	particular	row.	We	can	add	data	in	this	table	from	the
Data	tab.	Here	you	will	find	fields	for	all	the	columns	and	due	to	obvious
reasons,	the	primary	key	column	field	cannot	be	left	empty	in	any	entry.	In
a	similar	way,	we	can	enter	all	the	data	we	want.

5.	 Another	variation	that	you	can	bring	to	your	table	is	to	customize	its	key	to
avoid	hotspotting.	In	this	small	table	hotspotting	should	not	be	an	issue,	but
for	larger	databases,	as	we	discussed	earlier,	consecutive	keys	can	create
larger	splits	that	create	hotspotting.	To	avoid	this,	we	can	have	a	primary
key	and	a	secondary	key	and	change	their	datatypes	to	strings.

We	have	created	the	format	of	the	composite	keys,	let's	take	a	look	at	the
outcome.

Querying	a	database	in	a	Cloud
Spanner	instance
	

Just	like	Cloud	SQL,	Cloud	Spanner	also	supports	standard	queries.	Here	is	an
example	of	a	standard	query	that	will	only	give	us	Customer	IDs:

1.	 To	do	it,	just	find	a	Query	tab	on	the	Navigation	pane	and	click	on	it.
2.	 Write	your	query	in	the	textbox	and	tap	Run	to	execute	it.

	

	

	

Interleaving	tables	in	Cloud	Spanner
Interleaving	means	creating	a	parent	child	relationship	between	two	tables.	This
is	done	by	sharing	primary	and/or	secondary	keys.	The	child	table	inherits
parent's	keys:

1.	 To	do	so,	while	creating	another	table,	select	the	Interleave	in	another	table
option.	This	option	will	be	available	if	you	have	created	at	least	one	table	in
the	same	database	before.	You	also	need	to	specify	which	table	you	want	as
the	Parent	table.	Here,	you	can	select	to	delete	child	rows	with	the	same
primary	key	as	the	parent's	row.	The	table_2	is	about	whether	all	of	the
accounts	have	credit	cards	allotted	to	them	or	not,	so	the	fields	in	the	credit
card	column	are	Boolean.

2.	 Once	you	have	created	the	table	and	added	data	in	it,	you	can	test	the	parent
child	relationship,	we	will	delete	one	row	from	the	holders	table	and	see
whether	it	exists	on	the	child	table	(table_2)	or	not.

We	have	deleted	row	2239,	let's	see	the	impact	on	the	other	table.

3.	 The	row	with	account	ID	2239,	which	we	deleted	from	the	parent	table,	is
not	seen	in	the	child	table	either.	Thus	the	interleaving	is	successful!

Summary
Having	read	this	chapter,	you	should	now	be	familiar	with	the	concept	of
relational	databases	on	the	cloud,	transactions,	and	ACID-support.	You	will	have
some	clarity	around	how	Cloud	SQL	can	be	used	to	set	up	MySQL	or
PostgreSQL	databases	on	the	GCP	and	some	of	the	considerations	in	choosing
between	Cloud	SQL	and	Cloud	Spanner.	You	will	also	be	familiar	with	the
intricacies	of	replicas	and	backups	on	Cloud	SQL.	Finally,	we	have	also
discussed	how	Cloud	Spanner	represents	a	cutting-edge,	Google-proprietary
RDBMS	that	can	scale	horizontally	to	support	pretty	much	any	dataset	size	and
level	of	QPS	(queries-per-second).

	

NoSQL	Databases
In	the	previous	chapter,	we	took	a	closer	look	at	the	RDBMS	services	of	GCP,
Cloud	SQL,	and	Cloud	Spanner.	These	are	great	for	many	use	cases,	but	there
are	also	several	situations	in	which	they	are	not	quite	the	right	tool.	The	NoSQL
offerings	on	the	GCP,	Bigtable,	and	Datastore	might	come	in	handy	here.
Bigtable	is	similar	in	many	ways	to	Apache's	HBase,	while	Datastore	is	a
document	database	that	competes	with	alternatives	such	as	MongoDB.

Now,	one	little	bit	of	fine	print:	in	this	chapter,	we	will	use	the	terms	NoSQL	and
RDBMS	as	if	they	are	perfect	alternatives;	that	is,	it	might	seem	like	any	storage
solution	that	is	not	an	RDBMS	is	a	NoSQL	database.	That's	not	quite	strictly
true.	BigQuery,	for	instance,	is	a	SQL-compliant	data	warehouse,	which	is
certainly	not	an	RDBMS.	So,	the	term	NoSQL	really	only	means	that	the	data	is
not	accessed	via	SQL;	the	alternative	could	be	either:

Product-specific	syntax	(such	as	the	scan	syntax	in	HBase)
Programmatic	access	(from	a	programming	language	such	as	Java	or
Python)

Relational	databases	use	tables,	columns,	rows,	or	schemas	to	store	and	retrieve
data.	NoSQL	databases	do	not	use	these	structures	since	they	opt	for	more
flexible	data	models,	such	as	documents	or	rows	of	key/value	pairs	(for	example
graph	stores	which	store	social	connections	as	key-value	pairs).	Popular
expansions	of	NoSQL	include	not	SQL	or	not	only	SQL.	Relational	databases
have	important	limitations	that	make	them	unsuitable	for	semi-structured	data.
Common	types	of	semi-structured	data	include	user	and	session	data;	chat,
messaging,	and	log	data;	time	series	data	such	as	IoT	and	device	data;	and	large
objects	such	as	video	and	images.

Let's	start	with	an	understanding	of	the	internal	data	representation	in	a	couple	of
important	types	of	NoSQL	databases—but	first,	a	small	digression!

This	digression	above	is	meant	to	help	us	remember	all	that	we	really	need	to
know	about	Datastore.	Here	is	the	same	text,	now	annotated	to	make	it	relevant
to	NoSQL	databases!

Now,	once	we've	gotten	the	essential	attributes	of	Datastore	into	our	heads,
remembering	the	essential	characteristics	of	Bigtable	is	a	lot	easier;	check	out
this	table	given	below:

Datastore Bigtable

Datastore	is	great	for	the	small
end	of	big	data;	data	order	of
TB,	not	PB.

Bigtable	is	definitely	meant	for	the	big	end
of	Big	Data;	order	of	several	TB	or	PB.	If
the	data	size	<	10	TB,	performance	is	not
great.

Datastore's	big	attraction	is
fast	lookup...

Bigtable	is	best	for	high-speed	scans	(all
rows,	or	all	rows	satisfying	a	condition)
along	a	single	column.

...achieved	by	indexing
basically	along	every	column.

Bigtable	effectively	only	indexes	along	the
row	key;	what	is	more,	it	also	sorts	data	by
the	row	key.

Fast	lookup	is	achieved	via
hash	indices,	and	these	have
the	trade-off	that	insertion
becomes	slow.

Bigtable	is	the	best	game	in	town	if	you
need	fast	and	frequent	writes;	insertion	is
very	fast	(updates	along	row	key	are	slow
though).

Query	time	is	pretty	much
independent	of	dataset	size.

Both	queries	and	updates	specified	using
the	row	key	are	super-fast	(order	of
milliseconds!),	while	operations	on	other
columns	are	slow.

Datastore	is	a	document
database,	suitable	for	XML-
like	hierarchical	data.

Bigtable	has	a	data	model	similar	to
columnar	databases	like	HBase	and	works
best	for	very	large	data	with	a	clear	sort
order.

Datastore	supports
transactions,	but	you	can	also
use	it	in	a	non-transactional
manner.

Bigtable	is	ACID	at	the	row-level,	and	only
supports	eventual	consistency.

Datastore	is	a	lot	more
economical	than	BigTable,	the
other	NoSQL	option	on	the
GCP.

Bigtable	can	get	costly	as	the	cluster	size
grows.

Datastore	is	serverless;	you
never	need	to	provision	a
server	or	specify	a	number	of
nodes.

Bigtable	requires	explicit	provisioning	of	a
cluster,	and	choices	about	the	kind	of	disks
in	VMs	in	that	cluster.

Scaling	down	to	zero	is	easy
thanks	to	the	serverless	nature
of	the	technology.

Scaling	down	to	zero	is	hard,	as	with	any
service	that	involves	a	cluster.

NoSQL	databases
Now	that	we	have	gotten	right	to	the	essential	attributes	of	the	two	main	NoSQL
services	on	the	GCP,	let's	understand	how	their	internal	data	models	differ	from
traditional	RDBMS.	As	an	example,	consider	the	relational	representation	of
simple	data	about	individuals	in	this	relational	table	called	Persons:	

If	we	had	additional	information	about	the	children	and	pets	of	these	individuals,
we	would	have	additional	tables	and	each	of	those	tables	would	reference	the
PersonID	field	of	the	Persons	table	as	the	foreign	key.	That	would	lead	to	a	fairly

typical	star-schema:	

Here	is	how	the	same	data	would	be	represented	in	a	few	different	types	of
NoSQL	databases:

Key-value	data	stores:	Each	individual	column	and	the	associated	value
would	be	stored	as	a	key-value	pair.	Redis,	for	instance,	is	a	key-value
store,	and	so	is	Memcache	on	the	Google	Cloud	Platform.	Key-value	stores

are	optimized	for	queries	of	the	form	please	give	me	the	value
corresponding	to	this	particular	key.

Document	stores:	This	time,	rather	than	storing	individual	key-value	pairs
for	each	column,	the	entire	document	is	stored	in	the	database.	The	whole
point	of	document	stores	is	that	they	are	able	to	perform	extremely	fast
hierarchical	queries;	document	stores	are	optimized	for	queries	of	the	form
please	give	me	the	value	at	this	particular	path	from	the	root	node	of	the
document.	Such	hierarchical	queries	are	common	in	JavaScript,	for
instance,	where	the	programmer	uses	the	document	object	model	(DOM)
to	parse	elements	in	the	HTML:

Wide-column	stores:	These	are	an	entirely	different	beast	from	the	two
other	categories	we	discussed.	The	emphasis	here	is	on	flexible	schemas
and	data	sorted	on	a	particular	key,	called	the	row	key:

This	table	is	key	to	understanding	the	differences	between	relational	and
columnar	databases,	so	let's	pay	some	more	attention	to	it:

In	the	columnar	world,	column	family	~	table/relation
Dynamic	schemas:	Columns	can	be	added	on	the	fly	without	expensive
DDL	operations	such	as	ALTER	TABLE
Less	redundancy:	Default	values	or	NULLs	need	not	be	in	the	data	at	all
No	normalization:	The	previous	format	has	no	foreign	keys,	and	violates
just	about	every	normal	form	(Boyce	and	Codd	would	be	turning	in	their
graves	looking	at	this)
In	reality,	each	value	is	timestamped,	so	it	is	also	possible	to	retrieve
specific	versions	of	a	particular	data	item.
For	this	reason,	this	data	model	is	said	to	be	four-dimensional;	any	data
item	can	be	accessed	if	we	have	four	pieces	of	information:	row	key,
column	family,	column	name	and	timestamp
Data	is	stored	in	sorted	order	of	row	key;	this	is	a	very	important	point	to
keep	in	mind

The	Google	Cloud	Platform	offers	two	options	for	those	of	us	who'd	like	to	store
their	data	in	non-relational,	distributed,	and	horizontally	scalable	structures:

Cloud	Bigtable
Datastore

In	this	chapter,	we	will	explore	the	implementation,	features,	and	functionalities
of	both	of	these	NoSQL	storage	options,	starting	with	Bigtable,	Google's
alternative	to	HBase.

Cloud	Bigtable
Cloud	Bigtable	is	Google's	NoSQL	wide-column	database	service	similar	in	use
case	to	Hadoop's	HBase.	It	serves	as	the	database	that	powers	many	core	Google
services	such	as	Search,	Analytics,	Maps,	and	Gmail.	It	is	a	compressed,	high
performance,	and	proprietary	data	storage	system	built	on	top	of	a	few	Google
technologies	such	as	the	Google	File	System,	Chubby	Lock	Service,	and
SSTable.

Google	describes	Bigtable	as	a	sparsely	populated	table	that	can	scale	to	billions
of	rows	and	thousands	of	columns.	Bigtable	was	designed	to	support	applications
requiring	massive	scalability	and	was	intended	to	be	used	with	petabytes	of	data.
The	database	was	designed	to	be	deployed	on	clustered	systems	and	uses	a
simple	data	model,	which	is	the	wide	column	store.

Data	is	assembled	in	order	by	row	key,	which	is	a	single	value	in	each	row,	and
indexing	of	the	map	is	arranged	according	to	row,	column	keys,	and	timestamps.
It	is	also	sensitive	to	hot	spotting	and	hence	the	key	structure	design	has	to	be
done	carefully.	According	to	Google,	Cloud	Bigtable	is	ideal	as	a	data	source	for
MapReduce	operations	and	a	storage	for	very	large	amounts	of	single-keyed	data
with	very	low	latency,	as	it	supports	high	read	and	write	throughput	at	low
latency.	BigTable	is	exposed	to	applications	via	a	gRPC	API	and	an	HBase-
compatible	API	in	Java.

There	are	several	key	advantages	of	BigTable	over	a	self-managed	HBase
installation:

Scalability:	You	can	scale	your	cluster	up	to	handle	more	queries	by
increasing	your	machine	count,	as	opposed	to	a	self-managed	HBase
installation	which	has	a	design	bottleneck	that	limits	performance	after	a
certain	QPS	is	reached.
Simple	administration:	Cloud	Bigtable	handles	upgrades	and	restarts
transparently,	as	well	as	automatically	maintaining	high	data	durability,
unlike	HBase	which	requires	managing	masters,	regions,	clusters,	or	nodes.
Cluster	resizing	without	downtime:	The	size	of	your	Cloud	Bigtable
cluster	can	be	increased	for	a	few	hours	to	handle	a	large	load,	then	reduced

again,	all	without	any	downtime.	It	typically	takes	just	a	few	minutes	under
load	for	Cloud	Bigtable	to	balance	performance	across	all	of	the	nodes	in
your	cluster,	after	you	change	a	cluster's	size.

Fundamental	properties	of	Bigtable
	

Following	are	the	fundamental	properties	of	Bigtable:

HBase	is	a	wide-column	data	store	(similar	conceptually	to	the	columnar
data	stores	described	before)
Data	is	stored	in	sorted	order	of	row	key;	this	is	equivalent	to	indexing
along	a	single	column	(the	row	key)
It	supports	denormalized	storage
Focuses	on	CRUD	operations
The	only	operations	where	ACID	properties	(that	is,	Atomicity,
Consistency,	Isolation,	and	Durability)	are	guaranteed	are	row	level
operations

Let's	understand	each	of	these	properties	in	detail.

	

	

	

Columnar	datastore
A	columnar	database	is	a	database	management	system	(DBMS)	that	stores
data	in	columns	instead	of	rows.	Here,	all	the	column	one	values	are	physically
together,	followed	by	all	the	column	two	values,	and	so	on.	The	data	is	stored	in
record	order,	so	the	100th	entry	for	column	one	and	the	100th	entry	for	column
two	belong	to	the	same	input	record.	This	allows	individual	data	elements,	such
as	customer	name	for	instance,	to	be	accessed	in	columns	as	a	group,	rather	than
individually	row	by	row.

Say	you	have	the	data	from	a	notification	service	in	an	e-commerce	website.
Notifications	will	have	properties	like	ID,	recipient,	the	notification	type	(an
offer	or	a	sale	notification),	and	the	message	content.	In	a	traditional	relational
database,	we	would	store	this	data	in	the	form	of	a	table	with	four	rows	and	a
number	of	columns.

In	a	columnar	data	store,	there	would	only	be	three	columns	and	these	three
columns	would	map	to	the	columns	of	our	relational	data	as	illustrated	in	the
following	figure.	The	first	would	be	an	ID	column,	which	would	be	common
between	the	columnar	data	store	and	the	relational	database	representation.	The
second	column	in	the	columnar	data	store	is	a	column	identifier,	which	will
contain	the	values	that	correspond	to	the	columns	from	the	relational	database.
Effectively,	what	we	have	done	is	we	have	encoded	the	columns	from	the
RDBMS	as	the	fields	in	the	columnar	data	store.	To	complete	the	representation
of	any	one	row	of	data,	we	are	going	to	need	to	add	columns	corresponding	to
each	of	the	cell	values	from	the	RDBMS	tuple.	Every	row	from	the	relational
database	now	has	multiple	rows	in	the	columnar	store.	In	fact,	it	has	one	row	for
each	column	from	the	RDBMS.

In	addition,	the	columnar	data	store	is	also	not	normalized.	To	make	up	for	this,
the	columnar	data	store	has	a	couple	of	powerful	advantages.

The	first	has	to	do	with	the	ease	with	which	it	handles	sparse	data.	If	you	have
data	with	lots	of	null	values,	you	wouldn't	be	wasting	much	space.	Having	an
extremely	large	dataset	with	lots	of	empty	values	in	each	row	becomes	a	real

problem	as	the	datasets	explode	in	size.	This	is	where	columnar	stores	come	in
handy	as	we	simply	do	not	have	rows	corresponding	to	null	values.	The	other
has	to	do	with	the	dynamic	nature	of	attributes	or	columns.	In	a	columnar
datastore,	columns	can	be	added	dynamically	without	changing	the	schema,
unlike	RDBMS	where	the	alter	table	operation—with	a	significant	penalty—
would	be	required	for	the	same.

Denormalization
We	have	already	discussed	how	storage	in	columnar	datastores	doesn't	fit	into
the	traditional	definitions	of	normalization.	In	traditional	RDBMSs,	minimizing
redundancy	is	an	important	objective,	which	gave	rise	to	the	different	normal
forms.	Normalization	in	traditional	database	design	was	largely	driven	by	the
need	to	save	space,	which	in	turn	was	driven	by	the	monolithic	nature	of
database	servers.	As	distributed	databases	came	along,	the	bandwidth	became
the	bottleneck.	Your	normalized	data	could	end	up	storing	related	data	items	in
distant	nodes.	Even	if	you	saved	a	few	bytes,	if	you	had	to	access	the	network
three	times	instead	of	once,	that	would	give	terrible	performance.	Consequently,
in	the	distributed	world,	disk	seeks	are	expensive	rather	than	storage,	as	we	have
a	large	number	of	generic	machines,	each	with	a	lot	of	attached	storage.	What	is
really	costly	in	a	distributed	filesystem	is	making	lots	of	disk	seeks	to	servers	or
to	data	that	resides	on	different	machines.	This	is	why	columnar	data	stores	do
away	with	the	idea	of	normalization.	Data	is	stored	such	that	all	the	data	for	one
entity	resides	together.

	

Support	for	ACID	properties
BigTable	only	supports	ACID	properties	at	the	raw	level.	Recall	that	ACID
stands	for	Atomicity,	Consistency,	Isolation,	and	Durability,	which	is	transaction
support	as	provided	by	a	traditional	RDBMS.	Any	operations	you	carry	out	that
affect	a	particular	row	ID	will	either	affect	all	of	the	columns	corresponding	to
that	column	or	none.	But,	this	only	extends	as	far	as	a	single	row	is	concerned.
Updates	to	multiple	rows	are	not	atomic	as	the	worldview	of	the	columnar	data
store	is	restricted	to	groups	of	data	with	the	same	row	ID:

Traditional	RDBMS Bigtable

Data	arranged	in	rows	and	columns Data	arranged	in	columns

Supports	SQL NoSQL	database	with	its	own
syntax

Complex	queries	such	as	grouping,
aggregates,	and	joins

Only	basic	operations	such	as
create,	read,	update,	and	delete

Table	schemas	are	static	and	hard	to
change

Schemas	are	dynamic	and	easy	to
change

Keys	and	foreign	key	constraints	are
enforced	during	writes

No	foreign	key	constraints;	key
constraint	only	on	row	key

Normalized	storage	to	minimize Denormalized	storage	to	minimize

redundancy	and	optimize	space disk	seeks

ACID	compliant ACID	compliant	at	the	row	level

Now	contrast	this	architecture	with	that	of	a	B-tree	index.	The	similarities	are

unmistakable:	

While	working	with	Bigtable,	I	find	it	really	helps	to	keep	in	mind	the
architectural	representation.	Going	back	to	our	story	about	the	mom-and-pop
store,	we	mentioned	that	Datastore	can	be	thought	of	as	a	set	of	hash	indices
(fast	lookup)	along	every	column.	In	contrast,	Bigtable	can	be	thought	of	as	a
single	giant	B-tree	index	along	just	one	column.

Now,	as	the	previous	diagram	shows,	they	store	the	actual	data	in	the	leaf	nodes
(and	that	data	is	in	sorted	order).	The	non-leaf	nodes	that	constitute	the	tree	help
find	the	data	to	pull:	

This	really	is	a	key	insight,	and	once	we	get	this,	a	bunch	of	little	details	start	to
make	sense:

Auto-tuning:	Bigtable	uses	some	ML-like	algorithms	internally	and	moves
around	the	pointers	from	the	different	VMs	in	response	to	traffic	patterns.
This	reduces	hot-spotting	and	is	only	possible	because	the	pointers	are
being	moved	around,	not	the	data	itself.
Cluster	Nodes:	When	we	create	a	Bigtable	cluster	we	have	to	specify	how
many	nodes	we'd	like.	Those	nodes	effectively	are	the	GCE	VMs	from	the
previous	diagram.
SSD	or	HDD:	While	provisioning	a	Bigtable	cluster,	the	choice	of	SSD
versus	HDD	makes	a	big	difference.	That's	because	the	pointers	are
retrieved	from	these	disks	on	the	GCE	VMs.	Clearly	SSD	disks	are	way
faster	for	random	access,	and	that's	why	this	choice	matters.

Working	with	Bigtable
In	this	section,	we	will	discuss	the	advantages	and	implementation	details	of
Bigtable.	We	will	also	take	a	look	at	what	it	is	good	for	and	when	to	use	it.

When	to	use	Bigtable
	

Avoid	Bigtable	under	the	following	set	of	circumstances:

Do	not	use	Bigtable	if	you	require	transaction	support	because,	as	we	have
already	discussed,	Bigtable	will	only	offer	row-level	ACID	guarantees	and
that	is	just	not	enough.	Use	Cloud	SQL	or	Cloud	Spanner	if	you	need	to
carry	out	OLTP.
Do	not	use	Bigtable	if	your	data	size	is	going	to	be	less	than	1	TB.	That's
because	Bigtable	needs	to	do	a	set	of	smart	optimizations	related	to
sharding	and	distributed	storage,	and	you	just	won't	be	able	to	do	that	if
your	dataset	is	too	small.
Do	not	use	Bigtable	if	you	plan	to	use	Analytics,	Business	Intelligence,	or
data	warehousing	use	cases.	BigQuery	is	a	better	option	as	BigQuery
supports	an	SQL-like	interface	that	many	data	analysts	are	familiar	with,	as
well	as	complex	types	of	queries	such	as	partitioning	and	windowing
operators.	All	of	these	are	really	important	in	OLAP	(Online	Analytics
processing)	which	is	used	for	Business	Intelligent	operations.	OLAP
involves	complex	calculation	and	multidimensional	analysis	of	statistical
and	business	data.
Do	not	use	Bigtable	for	very	highly	structured	or	hierarchical	data.	That	is
more	in	the	realm	of	document-oriented	databases	such	as	Datastore	on
GCP,	or	MongoDB	or	CouchDB	if	you	are	not	on	GCP.	Bigtable	requires	a
key	value	relationship	at	least	around	the	row	ID.	Hence,	using	it	for
immutable	data	like	blobs	or	media	files	does	not	make	sense.

Let's	now	talk	about	the	cases	where	Bigtable	excels:

The	first	and	obvious	one	has	to	do	with	very	fast	scanning	with	low
latency,	high	throughput	applications	where	you	would	be	scanning	on
sequential	row	IDs.
Think	of	Bigtable	any	time	you	have	non-structured	but	key/value	data.
Because	it	is	non-structured,	relational	databases	won't	work	and	if	there	are
multiple	keys,	think	of	a	document-oriented	database	like	Datastore.
Here	are	some	further	guidelines	on	the	types	of	data	size.	Use	Bigtable

when	each	data	item	is	less	than	10	MB	and	the	total	dataset	size	is	greater
than	1	TB.
If	you	have	write	operations	that	are	very	infrequent	or	not	important,	and
you	don't	care	about	ACID	support	but	you	care	about	fast	scans,	or	if	you
are	using	time	series	data,	use	BigTable,	as	different	timestamps	can	be
used	as	a	part	of	the	row	key.

	

	

Solving	hot-spotting
Recall	that	while	talking	about	the	row	key	in	the	four-dimensional	data	model,
we	mentioned	that	data	is	stored	in	sorted	lexicographic	order	of	the	row	key.
This	is	similar	to	Cloud	Spanner.	Data	is	sharded	based	on	those	key	values,	so
that	data	that	has	the	same	key	value	will	be	grouped	together.	This	implies	that
performance	will	be	really	poor	if	all	of	the	reads	and	writes	end	up	being
concentrated	in	some	particular	shards	or	some	ranges	of	the	key	values.	A
classic	example	is	if	sequential	key	values	are	used.	There	are	some	fairly	typical
techniques	to	solve	hot-spotting,	one	of	which	is	field	promotion.

Here,	the	idea	is	that	you	use	a	structured	key	that	is	arranged	in	a	reverse	URL
order,	like	a	Java	package	name,	for	instance.	Thus,	keys	will	have	similar
prefixes	but	they	will	have	different	endings.	If	the	sequential	scan	is	based	on
some	subset	of	the	key	prefix,	all	of	the	related	values	will	be	picked	in	one	go.
Reverse	URL	order	is	a	pretty	standard	way	of	arranging	keys	in	HBase.

The	other	common	way	of	avoiding	hotspots	is	salting,	which	is	the	descriptive
term	for	the	practice	of	hashing	the	key	value.	A	surprising	feature	of	Bigtable,
colloquially	known	as	warming	the	cache,	is	the	fact	that	Bigtable	will	tend	to
improve	in	performance	over	time.	The	reason	for	this	is	that	Bigtable	observes
the	read	and	write	patterns	in	your	data	and	then	redistributes	the	data	in	smart
ways	so	that	those	reads	and	writes	are	evenly	distributed	over	all	of	the	shards
of	the	distributed	partitions.	Bigtable	is	more	proactive	about	moving	data
around	in	order	to	eliminate	hotspots.	An	important	implication	of	this	is	that	if
you	are	testing	the	performance	of	your	Bigtable	system,	you	need	the	test	to	last
for	several	hours	in	order	to	get	a	true	sense	of	the	performance.	If	you	run	an
inordinately	short	test	of	maybe	half	an	hour	or	less,	it	wouldn't	give	Bigtable
enough	time	to	carry	out	all	of	the	smart	data	movements	to	eliminate	a	hotspot
and	you	will	get	a	misleadingly	poor	indication	of	performance.

Choosing	storage	for	Bigtable
Another	decision	to	make	while	designing	your	Bigtable	implementation	is
whether	you	want	SSD	or	HDD	disks.	The	simple	rule	of	thumb	is	to	use	SSDs
unless	you	are	really	operating	on	a	shoestring	budget.	SSDs	can	be	up	to	20
times	faster	than	ordinary	hard	disks	on	individual	row	reads,	although	that
advantage	is	a	lot	less	when	you	are	considering	batch	reads	and	sequential
scans.	Another	advantage	of	SSDs	is	that	they	are	more	predictable	in	terms	of
their	throughput.	This	gives	Bigtable	room	to	learn	and	predict	how	it	is	going	to
operate.	If	the	performance	is	very	variable,	that	could	throw	Bigtable's
calculations	off.	Consider	using	ordinary	persistent	disks	only	if	your	data	size
exceeds	10	TB	and	if	your	common	usage	pattern	is	only	for	batch	queries.	The
greater	the	proportion	of	random	access	that	you	perform	in	your	Bigtable,	the
stronger	the	case	for	SSD.	If	all	of	your	data	usage	takes	the	form	of	random
access,	then	Bigtable	may	not	be	the	right	tool	for	you.	You	should	be	looking	at
a	document-oriented	database	such	as	Datastore	instead.

	

Solving	performance	issues
	

Because	Bigtable	is	rather	complicated,	reasons	for	its	poor	performance	are
often	hard	to	find.	Here	are	some	pointers	that	might	help	you	if	you	are
suffering	from	a	badly	performing	Bigtable:

The	first	place	to	look	would	be	at	the	schema	design.	Check	if	you	have
sequential	keys	causing	hot-spotting,	or	causing	the	reads	and	writes	to	be
concentrated	in	some	specific	shards.	Some	obvious	keys	to	avoid	are
numeric	sequences	like	1011,	1012,	1013	and	so	on.
The	next	set	of	possible	causes	has	to	do	with	inappropriate	workloads.
Maybe	your	dataset	is	too	small,	less	than	300	GB.	That	is	not	enough	for
Bigtable	to	really	show	its	talents.	Bigtable	is	best	used	when	there	is	more
than	1	TB	of	data	and	it	can	be	used	up	to	petabytes	in	size.
Another	possible	problem	has	to	do	with	the	usage	pattern.	Your	queries
may	be	running	in	short	bursts.	Bigtable	performs	best	when	it	has	hours	of
observations	to	tune	performance	internally.
There	are	also	some	of	the	usual	suspects,	for	instance	maybe	your	cluster
is	just	too	small.
Another	possibility	is	that	your	cluster	has	just	been	fired	up	or	just	been
scaled	up.	In	either	one	of	these	cases,	it	is	going	to	take	some	time	for
Bigtable	to	understand	the	patterns	and	allocate	the	newly	added	resources
optimally.
It	might	also	be	a	case	of	you	using	HDDs	instead	of	SSDs.

	

	

Ideal	row	key	choices
Bigtable	does	a	lot	more	in	production	than	it	does	in	development.	Schema
design	is	very	important	with	Bigtable.	Recall	that	each	table	has	just	the	one
index,	the	row	key.	Hence,	you	will	need	to	choose	that	index	well.	Unlike	in
Datastore	or	Cloud	Spanner,	you	don't	have	the	luxury	of	picking	multiple
indices	per	table.

Next,	recall	that	row	keys	are	going	to	be	sorted	lexicographically	and	rows	will
be	arranged	in	that	order.	Hence,	you	will	need	to	be	smart	about	your	choice	of
row	key.	Do	not	use	patterns	like	a	sequentially	increasing	integer	count.

All	operations	are	atomic,	that	is,	ACID	properties	are	supported	only	at	the	row
level.	Multi-row	operations	are	not	ACID	guaranteed.	The	beauty	of	the	four
dimensional	data	model	means	that	related	entities	will	be	stored	in	adjacent
rows	and	this	can	give	rise	to	the	really	fast	sequential	scanning	performance
that	we	hope	for	from	Bigtable.

Using	reverse	domain	names	is	the	first	choice	that	should	jump	to	mind.	String
identifiers	are	fine	as	well	because	they	will	typically	hash	evenly.	And	lastly,
use	timestamps	but	only	as	key	suffixes.	Do	not	include	timestamps	as	the	first
or	the	prefix	portion	of	your	key.	This	is	likely	to	be	a	sequentially	increasing
field	in	order	of	insertion	and	that	will	cause	hot-spotting.

In	the	list	of	row	keys	to	avoid,	first	is	regular	domain	names	rather	than	reverse
domain	names,	as	it	will	cause	adjacent	values	to	not	be	logically	related.	A
similar	problem	is	sequential	numeric	values	that	cause	hot-spotting.	It's	usually
a	pretty	bad	idea	to	use	timestamps	alone	as	the	row	IDs	and	it's	also	a	bad	idea
to	use	row	keys	that	are	prefixed	by	timestamps.	As	data	storage	is	so	tied	to	row
key	values,	do	not	use	as	row	keys	fields	that	are	likely	to	be	changed	repeatedly.
A	good	example	of	row	key	can	be	something	like	com.loonycorn.topics	which
would	not	cause	hot-spotting	and	is	least	likely	to	change	as	well.	Plus	the
reverse	domain	order	makes	sure	to	avoid	conflicts	with	organisation	or	domain
names.

Ideally,	your	row	key	should	be	immutable.	Bigtable	also	have	some

recommendations	for	different	size	limits.	Your	row	keys	should	not	exceed	4
KB	per	key	value.	You	should	not	have	more	than	a	hundred	column	families.
Individual	column	value	should	not	exceed	about	10	MB	in	size	and	the	total
row	size	should	not	exceed	about	100	MB.	All	in	all,	Bigtable	has	a	complicated
set	of	performance	considerations	and	these	are	complicated	for	a	good	reason.
They	are	tied	to	the	equally	complicated	underlying	physical	representation	of
the	data	store	that	Bigtable	uses.

Performing	operations	on	Bigtable
	

This	section	will	walk	you	through	creating	a	BigTable	instance	and	leveraging
it	for	storage:

1.	 Move	to	Bigtable	in	your	side	navigation	menu	and	click	on	Create
instance:

2.	 The	web	console	will	as	usual	make	things	very	easy	for	you	and	walk	you
through	creating	a	new	Bigtable	instance.	Give	the	instance	a	name,	which
is	just	for	display	purposes.	The	instance	ID	is	permanent	and	will	be	used
to	refer	to	the	instance.

3.	 At	this	point,	you	have	two	choices.	You	can	choose	a	production	instance,
which	is	what	is	recommended.	We	are	setting	up	a	real	web	app	which	is
going	to	serve	real	traffic.	This	needs	a	minimum	of	three	nodes	and	it's

highly	available.	Once	you	set	up	this	instance	though,	you	cannot
downgrade	it	later.	You	need	to	keep	it	or	delete	it	if	you	no	longer	need	it.
If	you	are	just	playing	around	with	Bigtable	in	order	to	understand	it,	you
can	choose	the	development	instance.	It	has	a	lower	cost	and	it	is	meant	for
development.	It's	not	highly	available,	but	you	can	upgrade	it	to	a
production	instance	later.

	

4.	 In	addition	to	an	instance	ID,	you	need	to	specify	a	cluster	ID	as	well	for
Bigtable.	This	too	is	permanent	and	there	are	some	constraints	on	what
characters	a	cluster	ID	can	accept.

5.	 Specify	the	zone	where	you	want	your	instance	to	be	located.
6.	 Next,	you	have	a	choice	here	as	to	the	kind	of	storage	your	Bigtable

instance	should	use.	You	can	choose	the	high	performance,	low	latency
SSD.	That's	what	is	recommended.	Or	if	you	have	huge	datasets,	want	to
lower	your	storage	cost,	and	don't	care	about	latency,	you	can	choose	an
HDD	to	store	your	data:

7.	 Click	on	Create	and	it	will	go	ahead	and	create	a	Bigtable	instance	for	you.
8.	 Google	Cloud	Platform	provides	you	an	HBase	shell	where	you	can	use

HBase	commands	to	connect	and	work	with	Bigtable.	In	order	to	use	the
HBase	shell,	you	need	to	download	the	Google	Cloud	Bigtable	quick	start
from	this	URL:	https://storage.googleapis.com/cloud-bigtable/quickstart/GoogleClou
dBigtable-Quickstart-1.0.0-pre4.zip.

9.	 Unzip	the	file.	This	zip	file	has	a	script	that	can	quickly	set	you	up	with	the
HBase	shell	then	allow	you	to	connect	to	your	Bigtable	instance.	Of	course
performing	all	of	this	on	cloud	shell	will	spare	you	a	lot	of	file-moving-
around.

10.	 Note	that	there	is	a	quickstart	folder	that	has	been	created	in	your	current
working	directory.	In	that	folder,	we	will	run	the	script	to	connect	to
Bigtable	using	the	HBase	Shell.	This	script	will	work	only	if	we	have	a
Bigtable	instance	set	up.	You	can	run	'gcloud	beta	bigtable	instances	list'
and	see	the	list	of	Bigtable	instances	that	you	have.

11.	 This	script	works	under	three	conditions:

https://storage.googleapis.com/cloud-bigtable/quickstart/GoogleCloudBigtable-Quickstart-1.0.0-pre4.zip

You	are	authenticated	and	logged	in	using	Google	oauth	login
You	have	a	default	project	set	up
You	have	a	Bigtable	instance	set	up

12.	 Simply	run	quickstart	using	the	./quickstart.sh	command	and	it	will	take	you
to	the	HBase	Shell.	If	you	are	familiar	with	the	HBase	Shell,	what	you	are
going	to	see	will	be	very	straightforward	for	you.	You	can	run	the	list
command	to	see	what	tables	you	have	set	up	within	Bigtable.

	

	

Creating	and	operating	an	HBase
table	using	Cloud	Bigtable
You	can	use	the	create	command	to	create	an	employee	table,	and	within	it	we
will	add	a	column	family:	personal.	As	Bigtable	is	a	columnar	store	where	all
columns	are	logically	grouped	into	column	families,	a	table	should	have	at	least
one	column	family.

Running	the	list	command	now	should	confirm	that	exactly	one	table,	the
employee,	table	has	been	set	up,	as	shown	here:

1.	 To	insert	our	first	row	into	this	table,	we	will	need	to	specify	a	row	key,	the
column	family,	and	the	name	of	the	column	where	this	insert	should	occur.
The	row	key	uniquely	identifies	a	row	and	is	used	to	index	all	the	columns
and	column	values	that	are	present	in	one	row.	It	is	this	index	row	key	that
allows	very	fast	lookup	operations	and	quick	scan	operations	in	HBase	and
Bigtable.	When	we	insert	a	value	in	a	particular	row	we	need	to	specify.
Say,	the	row	key	is	12345,	Personal	is	the	column	family	that	we	set	up,
name	is	the	column	name	and	Jane	is	the	value.	The	command	would	then
be

put	'employee',	'12345',	'personal:name',	'Jane'.

2.	 We	can	add	the	other	values	for	the	same	row	as	well	using	put	statements,
within	employee,	with	the	same	row	key	12345.	Let	us	say	Jane	lives	in	the
state	of	Texas	and	add	that	information	to	the	table,	using	this	command:

put	'employee',	'12345',	'personal:state',	'Texas'	

3.	 Let's	add	another	employee,	Dana,	with	a	different	row	key,	repeating	this

set	of	commands.
4.	 Running	the	command	scan	'employee'	in	this	HBase	Shell	will	list	all	the

information	in	the	employee	table,	as	shown	here:

This	table	has	just	two	rows	of	information,	which	we	added	in	this	session.	The
row	keys	are	repeated	because	there	are	two	columns'	worth	of	data.	On	the
right-hand	side	for	every	row	key	we	can	see	the	name	of	the	column	family	and
the	name	of	the	column.	Each	of	these	values	is	associated	with	the	timestamps.
This	forms	the	versioning	information	for	these	Bigtable	values.	We	have	the
value	for	each	of	these	columns,	name,	and	state.	If	you	want	to	delete	this	table,
you	simply	run	the	drop	'employee'	command,	after	disabling	it.

Exporting/Importing	a	table	from
Cloud	Bigtable
	

Execute	the	following	steps	to	export	or	import	a	table	from	Cloud	Bigtable:

1.	 To	export	a	table	from	Cloud	Bigtable,	first	we	need	to	identify	its	column
families.	To	do	so,	first	install	the	cbt	utility:

gcloud	components	update

				gcloud	components	install	cbt

2.	 Use	the	cbt	tool	to	list	out	the	column	families	and	determine	which	column
families	you	want	to	export:

cbt	-instance	<<INSTANCE_ID>>	ls	<<TABLE_NAME>>

3.	 Create	a	Cloud	Storage	Bucket	using	the	gsutil	mb	command.
4.	 Now,	the	table	will	be	exported	as	sequence	files.	To	export	them,

download	and	install	import/export	jar	for	Bigtable	using	this	URL:

curl	-f	-O	

http://repo1.maven.org/maven2/com/google/cloud/bigtable/bigtable-beam-

import/1.1.2/bigtable-beam-import-1.1.2-shaded.jar

		

5.	 Run	the	following	command	and	replace	<<Export_path>>	and	<<Temp_Path>>	as
per	your	requirement:

java	-jar	bigtable-beam-import-1.1.2-shaded.jar	export	

								--runner=dataflow	

								--project=<<Project_ID>>	

								--bigtableInstanceId=<<INSTANCE_ID>>	

								--bigtableTableId=<<TABLE_ID>>	

								--destinationPath=gs://<<BUCKET_NAME>>/<<EXPORT_PATH>>	

								--tempLocation=gs://<<BUCKET_NAME>>/<<TEMP_PATH>>	

								--maxNumWorkers=<<10x_NUMBER_OF_NODES>>

6.	 Similarly,	to	import	a	table	into	Cloud	Bigtable,	use	the	following
command:

java	-jar	bigtable-beam-import-1.1.2-shaded.jar	import	

						--runner=dataflow	

						--project=<<PROJECT_ID>>	

						--bigtableInstanceId=<<INSTANCE_ID>>	

						--bigtableTableId=<<TABLE_ID>>	

						--sourcePattern='gs://<<BUCKET_NAME>>/<<EXPORT_PATH>>/part-*'	

						--tempLocation=gs://<<BUCKET_NAME>>/<<TEMP_PATH>>	

						--maxNumWorkers=<<5x_NUMBER_OF_NODES>>

	

	

Scaling	GCP	Cloud	BigTable
	

There	are	times	when	we	have	to	provision	automatic	scaling	of	our	NoSQL
database	due	to	parameters	like	the	following:

The	cluster's	CPU	load
The	number	of	nodes	in	the	cluster
The	distribution	of	server	request	latencies	for	a	table

To	do	this	programmatically,	we	can	use	either	Java	or	Python	sample	tools.	We
will	see	how	to	do	it	using	Java	sample	tool.	To	use	them,	use	the	following
procedures:

Java:

This	tool	is	built	on	Apache	Maven.	If	it	is	not	installed	on	your	shell,
download	it	from	https://maven.apache.org/download.cgi	and	extract	it.
Run	mnv	-v	in	a	new	shell	instance	to	confirm	its	installation.
Now,	to	build	the	sample	tool,	run:

mvn	clean	compile	mvn	exec:java	-

Dexec.mainClass="com.example.bigtable.scaler.MetricScaler"	-Dexec.args="

<project-id>	<bigtable-instance-id>"

The	sample	tool	mentioned	above	adds	or	removes	nodes	when	CPU	load	goes
above	or	below	a	specified	threshold.	The	project-id	and	bigtable-instance-id	tags
make	sure	that	it	is	our	very	instance	which	will	autoscale.

	

	

	

https://maven.apache.org/download.cgi

The	Google	Cloud	Datastore
	

The	Google	Cloud	Datastore	is	a	fully	managed	NoSQL	database	service,	built
upon	Google's	Bigtable	and	Megastore	technology,	to	support	automatic	scaling,
high	performance,	and	ease	of	application	development.

Datastore	is	something	that	we	turn	to	when	we	are	looking	for	document-
oriented	storage	in	a	NoSQL	database.	This	is	something	that	datastore	offers	in
competition	with	other	products	such	as	MongoDB	and	CouchDB.	Cloud
Datastore	features	are	best	remembered	via	the	story	at	the	start	of	the	chapter,
so	please	do	go	back	and	read	it	if	you	skipped	past	it	the	first	time.

	

	

	

Comparison	with	traditional
databases
In	a	traditional	RDBMS,	you	have	atomic	transactions,	which	is	true	for
Datastore	as	well.	Datastore	does	support	atomic	transactions	and	the	ACID
properties,	mostly	due	to	the	need	to	keep	all	of	the	internal	indices	consistent.
Both	traditional	RDBMS	and	Datastore	make	heavy	use	of	indices	for	fast
lookup.	But	in	Datastore,	every	query	makes	use	of	indices,	which	is	far	beyond
what	traditional	RDBMS	do.	Consequently,	the	query	execution	time	in
Datastore	is	basically	independent	of	the	size	of	the	underlying	dataset,	which	is
certainly	not	the	case	with	traditional	RDBMSs.

Traditional	RDBMS	use	relational	data,	that	is,	rows	and	columns,	but	without
many	hierarchical	relationships	within	those	entity	relations.	Datastore	on	the
other	hand	is	document-oriented,	which	implies	it	is	optimized	for	hierarchically
structured	data	such	as	XML	or	HTML.	It	has	the	form	of	a	tree	in	its	internal
representation,	like	the	document	object	model	(DOM)	in	an	HTML	document.

There	is	also	a	slight	change	in	terminology	in	terms	of	what	rows,	columns,	and
attributes	are	called.	In	a	relational	database,	rows	are	stored	in	tables.	In	a
document	database,	entities	are	of	different	kinds.	The	word	entity	corresponds
to	a	row	and	kind	corresponds	to	table.	Note	the	absence	of	the	word	stored.
Because	entities	are	of	different	kinds,	entities	are	not	really	stored	in	kinds.	For
example,	consider	HTML	tags:	a	HEAD	tag	or	a	BODY	tag	would	be	an	entity	in	a
document	data	store.	Rows	consist	of	fields	in	a	traditional	RDBMS	while
entities	consist	of	properties	in	a	datastore.	If	you	have	a	HEAD	tag	with	some
nested	tags,	those	are	the	properties.

Traditional	databases	have	primary	keys	as	a	unique	ID.	In	Datastore,	the	word
primary	is	not	used,	but	you	refer	to	them	as	keys.

In	a	traditional	RDBMS,	all	rows	of	the	same	table	need	to	have	the	same
schema	or	the	same	properties.	In	other	words,	they	will	have	the	same	number
of	columns	and	those	columns	will	be	all	of	the	same	type.	In	contrast,	it's

perfectly	acceptable	for	different	entities	of	the	same	kind	to	have	different
properties.	For	instance,	you	may	have	two	HTML	documents,	with	a	head	tag
each.	Inside	one	of	the	head	tags	is	a	body	while	the	other	does	not	have	any
body	tags	at	all.	This	is	accepted	in	a	document-oriented	store.

This	applies	to	types	as	well.	In	a	relational	database,	all	of	the	values	in	a
particular	column	must	have	the	same	type.	On	the	contrary,	Datastore	types	of
different	properties	with	the	same	name	can	be	different.	Say	you	have	two	XML
documents	with	a	body	tag	each	and	inside	one	of	them,	and	the	body	tag	has
another	property	called	ID,	which	is	an	integer.	The	other	body	tag	also	has	a
property	called	ID	but	it	happens	to	be	a	string,	which	is	absolutely	acceptable	in
a	document-oriented	store.

Datastore	also	differs	from	traditional	databases	in	which	operations	it	will	and
will	not	support.	For	instance,	unlike	traditional	relational	databases,	a	data	store
does	not	support	joins,	filtering	on	subqueries,	or	more	than	one	inequality	filter
in	a	query.	This	table	summarizes	the	comparison	between	traditional	DBMS
and	the	Cloud	Datastore	concisely:

Traditional	RDBMS DataStore

Atomic	transactions Atomic	transactions

Indices	for	fast	lookup Indices	for	fast	lookup	on	every
column

Some	queries	use	indices All	queries	use	indices

Query	time	depend	on	both	size	of
dataset	and	size	of	result	set

Query	time	independent	of	dataset,
depends	on	result	set	alone

Structured	relational	data
Structured	hierarchical	data	(XML,
HTML)

Rows	stored	in	tables Entities	of	different	kinds

Rows	consist	of	fields Entities	consist	of	properties

Primary	keys	for	unique	ID Keys	for	unique	ID

Rows	of	table	have	same
properties	(schema	is	strongly
enforced)

Entities	of	a	kind	can	have	different
properties

Types	of	all	values	in	a	column	are
the	same

Types	of	different	properties	with	same
name	in	an	entity	can	be	different

Working	with	Datastore
In	this	section,	we	will	understand	the	ideal	set	of	circumstances	that	should
warrant	the	use	of	Cloud	Datastore,	when	not	to	use	Datastore,	and	the	ideal
design	choices	to	make	when	using	Datastore.

When	to	use	Datastore
	

Here	is	a	list	of	scenarios	where	you	probably	shouldn't	choose	Datastore	as	your
storage	option:

Don't	use	Datastore	if	you	need	very	strong	transaction	support.	If	you	are
doing	hardcore	OLTP,	you	should	use	something	like	Cloud	Spanner.
If	you	want	basic	ACID	support,	Datastore	is	probably	enough	for	you.
Datastore	works	best	when	data	is	hierarchical	and	highly	structured.	If	you
have	data	which	is	non-hierarchical	or	unstructured,	Bigtable	is	probably	a
better	NoSQL	technology.
Do	not	use	Datastore	for	analytics,	OLAP,	or	Business	Intelligence
applications.	BigQuery	is	a	lot	better	because	it	has	complex	queries	that
are	optimized	for	numerical	calculations	rather	than	documents.
Datastore	requires	key	values	and	a	host	of	indices.	If	you	are	storing
immutable	blobs	such	as	movies,	which	might	be	greater	than	10	MB	in
size,	Cloud	Storage	would	be	a	better	choice.	The	extremely	heavily
indexed	nature	of	Datastore	implies	that	you	should	not	use	it	if	your
application	is	going	to	carry	out	a	lot	of	writes	and	updates	on	your	key
columns.
If	you	really	want	strong	consistency	guarantees,	then	of	course	you	ought
to	use	an	RDBMS	such	as	Cloud	Spanner	or	Cloud	SQL.

Turning	to	those	situations	where	Datastore	shines,	the	basic	use	case	we	discuss
is,	of	course,	the	scaling	of	read	performance.	When	you	have	hierarchical
documents	with	key/value	data,	then	obviously	the	document	store	is	what	you
would	want.	There	is	also	full	indexing	and	its	implications	to	consider	when
picking	Cloud	Datastore.

	

	

	

Full	indexing	and	perfect	index
Recall	that	there	are	built-in	indices	in	Datastore	on	every	property	of	every
entity.	This	only	applies	to	individual	properties,	but	there	are	also	composite
indices.	These	allow	the	indexing	of	multiple	property	values	all	at	once.	If	you
are	absolutely	certain	that	a	property	will	never	be	queried,	you	can	explicitly
exclude	it	from	full	indexing,	which	might	give	you	some	performance	benefits,
particularly	in	write	operations	where	you	don't	want	to	be	updating	unnecessary
indices.

The	way	Datastore	works,	every	query	will	be	evaluated	using	something	known
as	its	perfect	index.	The	perfect	index	is	an	interesting	concept.	Given	a	query,
the	perfect	index	is	that	index	which	will	most	optimally	return	the	query's
results.	The	perfect	index	is	evaluated	based	on	the	following	conditions:

If	there	is	an	equality	filtering	condition,	that	will	be	treated	as	the	perfect
index
If	there	are	inequality	filters	on	columns,	they	will	be	used	provided	there	is
only	one	and	no	equality	filter
If	there	is	neither	an	equality	filter	nor	an	inequality	filter	but	a	sort
condition,	the	index	on	whatever	property	it	is	that	is	being	sorted	will	be
used	for	the	perfect	index.

Thus,	the	perfect	index	will	be	the	equality	filter,	which	means	optimization	of
the	needle-in-a-haystack	type	use	cases.	If	there	is	no	equality	filter,	then	there
can	be	at	most	one	inequality	filter	which	makes	a	range	query.	If	neither
inequality	nor	equality	filters	apply,	then	the	sort	order	will	be	considered.

Full	indexing	is	a	wonderful	feature	of	Datastore	but	it	also	has	some	important
implications	which	we	need	to	grasp.	The	first	of	these	is	that	updates	are	really
slow	but	lookups	become	blazingly	fast.	Another	implication	of	full	indexing	is
that	joins	are	not	supported.	This	is	another	similarity	with	Bigtable	and	another
difference	from	relational	databases.	In	addition,	it	is	not	possible	to	filter	results
based	on	subquery	results	and	more	than	one	inequality	filter	isn't	acceptable.

Using	Datastore
This	section	will	walk	you	through	working	with	Google	Cloud	Datastore:

1.	 On	your	Google	Cloud	Platform	dashboard,	go	to	the	side	navigation	bar.
2.	 Click	on	Data	store	and	choose	Entities.

	

3.	 This	is	where	we	can	create	the	entities	that	will	live	in	our	Datastore.	Click
on	the	create	entity	button	to	get	started.

4.	 You	need	to	specify	the	namespace	where	your	entities	will	live.	If	you	plan
for	your	Datastore	to	be	multi-tenanted,	you	should	use	different
namespaces	for	your	entities.	This	is	how	you	separate	entities	for	multiple
clients.	Note	here	that	we	are	directly	jumping	into	the	creation	of	entities.
This	implies	that	Datastore	is	serverless.	We	don't	create	an	instance	of
Datastore	before	we	populate	it.	Create	an	entity	within	the	default
namespace,	say,	of	the	kind	products.	Recall	that	kind	corresponds	to	table
in	a	relational	database.

5.	 Within	this	entity,	set	up	a	key	identifier.	It	can	be	set	to	numeric,	in	which
case	it	will	be	autogenerated.	Entities	stored	in	Cloud	datastore	have	a
hierarchical	relationship,	which	means	you	can	specify	a	parent	entity	for
the	entity	that	you	are	creating.	Since	this	is	our	first	entity,	there	is	no
parent	here	so	the	field	is	completely	empty:

6.	 Click	on	Add	property	and	specify	the	name	for	the	property,	a	type,	which
in	this	case	is	string.

7.	 Since	it's	a	products	entity,	let's	add	a	value,	iphone6s.	Properties	in	an	entity
are	essentially	a	key	value	pair.	Specify	the	type	for	the	value	and	click
done.	Repeat	this	to	add	other	properties	such	as	the	cost,	color,	and
availability	of	the	product.	The	UI	will	update	to	accommodate	these
different	data	types:

8.	 When	you	are	done,	hit	the	Create	button	and	this	entity	will	now	be
created.	Note	that	all	properties	of	an	entity	are	indexed	by	default	in
Datastore.	If	you	hit	Create	button	once	again,	you	will	find	that	the	web
console	will	helpfully	pre-populate	the	kind	and	the	properties	that	we
specified	for	our	earlier	entity.

	

9.	 Let's	create	a	new	entity	of	the	kind	products.	Recall	that	in	Datastore	all
entities	in	a	kind	need	not	have	the	same	properties,	or	even	the	same
datatype	for	properties	that	are	the	same	across	entities.	The	next	product
does	not	have	a	color	property	associated	with	the	entity.	You	can	also
choose	to	change	the	datatype	of	any	property	within	this	entity.	It's	a
Samsung	Galaxy	phone.	The	name	specified	is	Samsung	Galaxy	and	a	new
property	called	screen	size	is	added:

10.	 Creating	a	new	kind	is	simply	a	matter	of	creating	an	entity	within	that
kind.	Click	on	create	entity	and	specify	the	kind	as	orders.	Create	some
entities	under	this	kind	as	well.

11.	 Using	the	filter	at	the	very	top,	you	can	choose	to	view	either	the	products
or	the	orders	kind	and	see	all	the	entities	that	are	within	it.	You	can	also
filter	entities	further	by	using	their	properties.	If	you	want	to	use	Datastore
as	the	backend	for	an	e-commerce	site,	you	would	want	to	be	able	to	filter
your	products	by	their	availability.	You	can	specify	multiple	filters	as	well
by	using	the	+	icon	on	the	right.	All	of	this	uses	the	web	UI,	which	makes
things	very	easy	for	you:

12.	 You	can	also	query	Datastore	using	Google	Query	Language	(GQL).	You
can	simply	specify	a	SQL-like	query	in	order	to	query	Cloud	datastore.

In	this	section,	we	discussed	the	concepts	that	power	Cloud	Datastore,	its
features	and	functionalities,	the	right	design	choices	when	using	it,	and	the	right
circumstances	for	its	use.	We	set	up	entities	and	populated	them	with	properties
and	values.	We	have	seen	that	entities	of	the	same	kind	in	Datastore	can	have
different	properties,	and	each	of	those	properties	can	have	different	data	types
across	entities	as	well.

In	this	chapter,	we	discussed	the	two	NoSQL	storage	options	that	Google	Cloud
Platform	provides:	Cloud	BigTable	and	Cloud	Datastore.	We	started	off	by
understanding	the	types	and	properties	of	NoSQL	databases.	We	have	seen	how
data	is	stored	in	both	BigTable	and	Datastore.	We	have	explored	the	common
performance	issues	and	fixes	and	the	recommended	design	choices	for	both
these	storage	options.	We	saw	how	to	create	BigTable	instances	and	set	up	tables
in	it,	as	well	as	how	to	create	entities	in	Datastore	and	populate	them	with	kinds
and	properties.

Summary
	

This	chapter	explores	the	two	main	NoSQL	database	services	from	Google
Cloud	Platform:

Bigtable
Datastore

Bigtable	is	optimized	for	fast	scans:	range	queries	or	select	all	queries	along	a
single	column,	and	with	very	large	datasets,	on	the	order	of	petabytes	in	size.
Datastore,	on	the	other	hand,	is	meant	for	far	smaller	data,	on	the	order	of
terabytes,	where	the	use	case	involves	fast	lookups	independent	of	dataset	size.

	

	

	

BigQuery
BigQuery	is	probably	the	single	most	compelling	reason	to	adopt	the	GCP	right
now.	It	is	a	data	warehousing	service	that	is	really	fast,	really	price-competitive,
and	incredibly	easy	to	use.	Unlike	some	other	Google	Cloud	services,	BigQuery
is	widely	used	and	so	has	little	unpredictability	in	its	behavior.	I	like	to	joke	that
if	you	interact	with	a	Google	Cloud	sales	professional,	no	matter	what	your
question,	the	answer	that	comes	back	is,	just	use	BigQuery	for	that!

In	this	chapter,	you	will	learn	about	the	following:

BigQuery	as	Google's	fully	managed	petabyte	scale	serverless	database
Architecture	of	BigQuery
Working	with	BigQuery	using	web	console
Working	with	BigQuery	using	CLI

BigQuery	competes	with	proprietary	data	warehousing	solutions	such	as
Teradata,	but	has	obvious	and	major	advantages	over	them,	notably	that	it	is
cloud-based,	serverless,	and	supports	auto-scaling	(so	that	you	really	pay	only
for	what	you	need).	There	is	no	need	for	prohibitively	expensive	purchases	of
proprietary	hardware.

Within	the	world	of	cloud	providers,	BigQuery	probably	most	directly	competes
with	Amazon's	RedShift	and	the	comparisons	between	these	two	technologies

get	folks	quite	riled	up.	In	a	nutshell,	Redshift	allows	you	to	provision	nodes
(similar	to	Bigtable	or	Spanner	in	GCP),	and	the	more	you	provision,	the	better
the	performance,	but	also	the	higher	the	cost.	With	BigQuery	on	the	other	hand,
you	don't	provision	a	cluster	or	create	indices,	or	really	do	any	ops	at	all.	The
advantage	of	that	is	convenience,	but	the	downside,	is	that	you	have	less	control
over	performance,	and	you	have	really	no	control	at	all	over	how	your	queries
are	executed.	This	can	really	take	some	getting	used	to	for	most	folks.	The	idea
that	you	don't	create	indices	and	you	can't	specify	failover	replicas	or	interface
with	the	underlying	hardware	at	all	is	quite	different	from	the	traditional	way	of
doing	either	OLTP	or	OLAP.

In	the	previous	chapters,	we	saw	various	storage	options	of	GCP	for	various	use
cases.	For	blob	storage,	we	have	GCP	Cloud	Storage	buckets,	for	creating	VMs
we	have	Compute	Engine,	which	also	provides	persistent	disks,	for	schema-strict
relational	databases	we	have	Cloud	SQL	and	Cloud	Spanner,	and	for	NoSQL
databases	we	have	seen	Cloud	Bigtable	and	Datastore.	All	of	these	options
require	more	or	less	administration	from	the	user's	end.	This	requires	time,	skills,
and	expert	administrators.	Google's	BigQuery	is	a	step	further.	It	is	a	large	scale
(typically,	in	petabytes)	fully	managed	data	warehouse.	This	frees	admins	from
managing	databases	so	they	can	focus	more	on	analysis.

To	explain	this	further,	you	do	not	need	to	deploy	your	resources	and	keep	track
of	them,	or	even	worry	about	scaling	them.	All	of	this	is	handled	by	Google	so
we	can	directly	run	our	queries	efficiently	and	save	the	ones	we	need	to	retrieve
later.	Just	like	other	resources	from	GCP,	BigQuery	queries	are	directly	managed
and	tracked	under	a	project.	It	supports	CSV,	JSON,	datastore	backups,	and
Apache	Avro	input	data	formats.

Underlying	data	representation	of
BigQuery
	

When	we	load	data	into	BigQuery,	each	column	of	that	data	is	stored	separately.
The	values	in	each	column	are	compressed,	run-length	encoded,	and	encrypted,
and	the	corresponding	data	file	is	replicated.	Each	of	these	replicas	is	then	stored
in	the	underlying	distributed	filesystem,	known	as	Colossus.

This	peculiar	representation,	columnar,	compressed,	and	replicated,	explains	a
couple	of	features	of	BigQuery	that	otherwise	strike	us	as	odd:

Does	not	support	indices:	This	makes	it	very	different	from	traditional
RDBMS.	This	makes	sense,	given	that	each	column's	data	is	effectively
stored	separately	anyway,	and	uses	a	representation	not	that	different	from
many	indices
Cost	more	for	each	column	they	pull	in:	This	also	makes	sense	if	you
consider	that	each	additional	column	requires	access	to	a	different	file	in	the
underlying	file	system.

	

	

BigQuery	public	datasets
	

BigQuery	has	a	number	of	publicly	available	datasets	that	you	can	use	to	play
around	with,	or	to	build	and	train	data	models.	The	storage	for	these	is	free,	that
is,	paid	for	by	Google,	so	you	only	have	to	pay	for	queries	that	you	run	against
these	datasets.	These	queries	are	charged	like	all	other	queries.

In	the	following	examples,	we	will	make	use	of	such	public	datasets,	which	can
be	accessed	from	within	queries	using	notation	such	as	bigquery-public-
data.samples.natality.

	

	

	

Legacy	versus	standard	SQL
	

BigQuery,	like	many	other	GCP	services,	has	been	widely	used	within	Google
for	several	years.	That	usage	initially	relied	on	a	non-standard	variant	of	SQL,
which	is	now	called	legacy	SQL.	Legacy	SQL	is	pretty	powerful	and	pretty	easy
to	use	in	some	specific	cases,	but	it	has	a	big	downside:	it	is	not	standard!

To	remedy	that,	BigQuery	has	added	support	for	standard	SQL	2011,	with	some
extensions	that	have	to	do	with	nested	and	repeated	fields.	The	query	examples
shown	next	are	in	standard	SQL.

How	can	you	tell	at	a	glance	whether	a	query	is	written	in	legacy	SQL	or
standard	SQL?	Just	look	at	the	syntax	used	to	specify	tables	or	project	names.

In	legacy	SQL:	Use	square	brackets	to	start	and	end	the	table	name,	and
use	a	colon	(:)	to	delimit	dataset	and	table	names:

[bigquery-public-data:samples:natality]

In	standard	SQL:	Use	the	backtick	character	(`)	to	start	and	end	the	table
name,	and	use	the	period	character	(.)	to	delimit	dataset	and	table	names:

`bigquery-public-data.samples.natality`	

	

	

Working	with	the	BigQuery	console
BigQuery	can	be	accessed	using	both	GUI	and	command	line.	To	access
BigQuery	using	a	GUI	console:

1.	 Click	on	the	menu	button	on	the	top-left	corner	of	the	console	and	select
BigQuery	from	the	drop-down	menu.	You	will	encounter	a	new	console
looking	something	like	this:

2.	 Click	on	the	COMPOSE	QUERY	button	to	enable	the	text	area	where
queries	can	be	written:

3.	 To	query	a	public	dataset,	paste	the	following	text	into	the	text	area:

#standardSQL	

SELECT	

	weight_pounds,	state,	year,	gestation_weeks	

FROM	

	`bigquery-public-data.samples.natality`	

ORDER	BY	weight_pounds	DESC	LIMIT	10;	

4.	 Click	the	RUN	QUERY	button	to	run	the	query	and	observe	the	results,
which	will	look	like	this:

Here	as	we	can	see,	a	public	dataset	named	samples.natality	is	queried	and	3.49
GB	of	data	takes	as	low	as	3.4	seconds	to	be	processed.	This	speed	and
simplicity	makes	BigQuery	almost	ideal	for	OLAP.

Loading	data	into	a	table	using
BigQuery
Using	pre-created	or	custom	datasets	is	also	a	very	common	practice	in	data
analytics.	Thus,	to	load	data	into	a	table:

1.	 Download	or	locate	the	data	you	intend	to	load.	For	example,	we	are	using
the	babynames	ZIP	file,	which	is	an	open	dataset.	Download	it	using	this	URL:
http://www.ssa.gov/OACT/babynames/names.zip.

2.	 Extract	the	file	at	your	desired	location	and	you	will	notice	a	yob2014.txt	file,
which	is	a	CSV	file.

3.	 Go	to	the	console	of	BigQuery	and	locate	a	downward	arrow	near	your
project	name.	Then,	click	on	the	Create	new	dataset	button:

4.	 Give	the	dataset	an	ID	of	babynames:

5.	 Keep	all	of	the	other	settings	as	default.	Click	the	OK	button

6.	 Find	the	drop-down	icon	near	dataset	ID	and	click	on	the	Create	new	table
option:

7.	 To	upload	the	datafile,	click	on	the	Choose	file	button	and	enter	the	path	of
your	datafile,	which	is	yob2014.txt	in	our	case:

8.	 Enter	any	name	as	destination	table.	We	are	keeping	names_2014:

9.	 Now,	let's	edit	the	schema	of	the	database.	Click	on	the	Edit	as	Text	option,
which	can	be	found	in	the	bottom-right	corner	of	the	database	and	input	the
following	string	as	text:

Name:string,gender:string,count:integer	

10.	 Finally,	click	on	the	Create	table	button	and	check	out	the	preview.	Now
this	table	is	ready	to	be	queried:

Deleting	datasets
	

Once	we	are	done	with	the	dataset,	we	should	remove	it	from	storage	to	save	on
cost:

1.	 Hover	over	the	dataset	name,	which	is	babynames	in	our	case.
2.	 Again,	click	on	the	drop-down	icon	and	select	the	Delete	dataset	option:

3.	 The	console	will	ask	you	to	confirm	your	action	by	typing	the	dataset	name
again.	Do	it	and	click	OK	to	delete	the	dataset:

	

	

	

Working	with	BigQuery	using	CLI
	

BigQuery	can	also	be	accessed	and	operated	using	the	bq	command.	Here	are
some	of	the	operations	using	the	bq	command	in	Cloud	Shell:

To	view	a	table	in	your	database:

bq	show	projectId:datasetId.tableId

To	run	a	certain	query:

bq	query	"<<<query	text>>>"		

To	create	a	new	table:

bq	mk	<<<dataset	name>>>

To	list	the	tables:

bq	ls		

To	load	the	dataset	along	with	the	schema:

bq	load	<<<dataset_name.filename	schema_text>>>	

For	example,	to	load	the	same	babynames	dataset	as	the	GUI	example:

bq	load	babynames.names2010	yob2010.txt	

name:string,gender:string,count:integer

Finally,	to	remove	a	dataset,	use:

bq	rm	-r	<<<datasetID>>>

	

	

BigQuery	pricing
BigQuery	is	serverless	and	fully	managed;	it	is	also	one	of	the	most	cost-
effective	offerings	of	GCP.	This	is	probably	also	because	BigQuery	is	often	the
first	GCP	service	that	prospective	customers	try	out	and	getting	the	pricing	on
this	right	is	very	important	to	drive	adoption.

Pricing	details	change	pretty	quickly,	and	the	information	here	is	current	as	of	March	2018.
Despite	the	ever-changing	nature	of	cloud	pricing,	we	have	chosen	to	include	this,	because	it
shows,	broadly,	how	BigQuery	is	priced	and	why	it	is	such	a	cost-effective	competitor	in	the
data	warehousing	space.

Action Cost

Storage $0.02/GB/month	(first	10	GB/month
free)

Long-term	storage	(no	edits	for	90
days)

$0.01/GB/month	(first	10	GB/month
free)

Queries $5/TB	(first	1	TB/month	is	free)

Flat-rate	for	2,000	slots $40,000/month

Loading	data Free

Copying	data Free

Exporting	data Free

Streaming	Inserts $0.01	for	200	MB

	

A	few	points	worth	calling	out	on	the	pricing:

Notice	the	very	generous	free	tier	on	the	important	aspects	of	storage	and
querying
There	are	also	flat-rate	pricing	plans	for	heavy	users,	where	you	effectively
pay	$40,000	per	month	and	that's	it
Storage	works	out	similar	in	pricing	to	regional	buckets	(~2
cents/GB/month),	but	if	you	leave	the	data	in	there,	it	quickly	gets
considered	as	long-term	storage,	and	the	pricing	becomes	more	like
nearline	storage	(~1	cents/GB/month)
BigQuery	also	supports	streaming	ingestion	at	a	very	fast	throughput	(you
can	stream	data	in	at	about	100,000	events/second),	but	streaming	is
relatively	expensive.

Analyzing	financial	time	series	with
BigQuery
Here	we	will	run	a	time-series	analysis	on	a	public	dataset	called	gbpusd	which	is
a	curated	time	series	made	publicly	available	with	historical	data	on	the
exchange	rate	between	the	British	Pound	(GBP)	and	the	US	Dollar	(USD).

1.	 Make	a	dataset	called	timeseries	using	following	command	on	Cloud	Shell

bq	mk	timeseries

2.	 Load	gbpusd	dataset	with	following	command:

bq	load	timeseries.gbpusd_0114	gs://solutions-public-assets/time-series-

master/GBPUSD_2014_01.csv	/																												venue:STRING,

currencies:STRING,

time:TIMESTAMP,

bid:FLOAT,

ask:FLOAT

3.	 Now,	run	following	query:

SELECT	FORMAT_UTC_USEC(time)	AS	time,	venue,	currencies,	time,	bid,	ask

FROM		timeseries.gbpusd_0114

ORDER	BY	time	ASC

LIMIT			1000;

5.	 Download	the	query	results	as	CSV	file
6.	 Open	Google	Sheets.	Import	the	downloaded	CSV	file	by	clicking	on	File	|

Import
7.	 When	prompted,	select	Replace	Current	Sheet

8.	 Select	all	of	the	cells	and	click	on	Insert	|	Chart	and	choose	your
appropriate	chart	type.	You	should	get	a	result	like	following:

	

Summary
	

This	chapter	covered	the	basics	of	why	BigQuery	is	important	for	users	who	do
not	want	to	dive	deep	into	managing	a	database	and	directly	want	to	query	it
(mostly	for	larger	datasets).	We	saw	how	easy	it	is	to	operate	BigQuery	using
both	the	GUI	and	the	CLI.

We	also	saw	how	BigQuery's	pricing	model	works,	and	why	that	pricing	model
is	an	important	reason	for	its	popularity.

	

	

	

Identity	and	Access	Management
We	have	seen	a	lot	of	GCP's	resource	offerings	in	previous	chapters,	but	all	of
them	would	crumble	if	their	access	is	not	managed	properly.	IAM,	which	stands
for	Identity	and	Access	Management,	lets	you	control	access	to	all	of	the	GCP
resources	in	terms	of	roles	and	permissions.	All	of	the	services	related	to	IAM
are	completely	free	of	charge,	so	we	do	not	need	to	bother	about	billing	in	this
chapter.	Let's	take	a	look	into	how	IAM	lets	you	manage	resource	access.

You	will	learn	about	the	following:

IAM
Roles	and	permissions
Types	of	identities
Working	with	IAM

If	you	can	keep	this	one	diagram	in	mind,	you're	good.	This	is	basically	what
you	need	to	keep	in	mind	about	identity	and	access	management	on	the	GCP.

This	diagram	is	quite	involved	though,	so	let's	take	it	one	step	at	a	time:

Identity	and	Access	Management	=	Identity	+	Access

OK!	So	far,	so	good.	Let's	consider	identities;	common	sense	suggests	that	these
could	be:

Humans

Groups	of	humans
Programs

Those	categories	map	nicely	to	reality!

Previously,	Identities	(which	are	human	identities	as	GCP	users)	could	only
come	from	Gsuite	(not	Active	Directory	or	LDAP)!	But	now	GCP	has	become
more	flexible	and	any	user	with	a	Gmail	or	Gsuite	administered	account	can
create	his	GCP	identity.

Cool,	let's	now	turn	our	attention	to	the	access	side	of	the	equation.	Access	can
be	managed	in	a	couple	of	ways,	and	both	are	quite	standard:

Access	control	lists	(ACLs):	Where	permissions	are	directly	granted	to
users
Role-based	access	control	(RBAC):	where	permissions	are	assigned	to
roles,	and	users	are	then	assigned	to	roles	as	well:

We	discussed	ACL-based	access	for	some	specific	use	cases	involving	cloud
storage	buckets,	but	barring	that	one	specific	circumstance,	the	preferable	way	is
to	use	RBAC.

The	two	main	advantages	of	RBAC	are:

Roles	can	be	reused
Roles	are	GCP	resources	themselves,	and	you	can	monitor	them	and	assign
roles	for	role	management

The	Google	Cloud	Platform	has	three	types	of	role:

Primitive	project	roles	such	as	owner,	editor,	and	viewer
Predefined	roles	for	each	service,	literally	dozens	of	them,	with	names	such
as	storage.objectViewer
Custom	roles,	these	are	in	beta,	and	allow	the	creation	of	new	roles	from	a
set	of	underlying	permissions

Our	tree	is	now	complete,	just	remember	this	one	mental	representation	and
IAM	will	make	a	lot	more	sense.

Resource	hierarchy	of	GCP
	

Google	Cloud	Platform	follows	a	fixed	hierarchy	to	organize	and	distribute
resources:

Organization:	The	highest	unit	is	an	Organization.	An	Organization	is
set	up	(in	GCP)	using	GSuite,	which	is	the	productivity	toolkit	by	Google,
and	Cloud	Identity,	which	is	ID	as	a	Service	Enterprise	Mobility
management	platform.	It	is	a	common	practice	to	register	your	domain
name	as	the	organization	name.	All	of	the	roles	related	to	one	domain	go
under	the	same	organization	in	terms	of	IAM	and	billing.
Folders:	Folders	fall	one	layer	below	Organization.	An	organization	can
have	one	or	more	folders	affiliated	to	it	and	each	folder	can	contain	multiple
projects	or	folders.	As	a	common	practice,	folders	represent	departments	in
an	organization.	There	are	some	limitations	to	folders,	like	having	a
maximum	of	100	folders	under	one	folder	or	to	perform	up	to	four	levels	of
folder	nesting.
Projects:	A	Project	is	a	unit	of	resource	management	below	Folders.	It
contains	a	set	of	users,	API	permissions,	billing	information,	and
provisioned	resources.	They	are	identified	by	their	project	ID,	which	should
be	unique	within	the	organization,	although	it	is	not	something	to	worry
about	since	Project	IDs	are	auto-generated	by	GCP.	Users	and	roles	are
specified	per	project.
Resources:	Resources	are	the	offerings	and	services	of	GCP	used	by	an

organization.	Every	resource	instance	is	provisioned	under	a	certain	project,
which	links	it	to	an	appropriate	billing	account.	Roles	are	defined	for	these
resources	to	manage	their	access.

	

	

Permissions	and	roles
The	management	of	access	to	resources	is	handled	by	permissions.	To	make
handling	permissions	easier,	GCP	IAM	has	roles	that	can	be	allotted	to	users,
and	the	roles	carry	the	necessary	permissions:	

Permissions:	A	permission	can	be	defined	as	a	token	to	allow	access	to	a
GCP	API.	Generally,	permissions	are	assigned	via	roles	and	one	role	may
contain	one	or	more	permissions.
Role:	A	role	is	a	collection	of	permissions	and	a	convenient	way	to	pass
them	to	users.	Some	examples	of	roles	are	shown	next.	Custom	roles	can
also	be	written	by	admins,	but	they	are	an	alpha	feature	at	the	time	the	book
is	being	written:

Role Description

Organization	role
admin

Provides	access	to	all	custom	roles	within	the
organization.

Role	admin Provides	access	to	all	custom	roles	within	a	project.

Organization	role
viewer

Provides	read	access	to	all	custom	roles	within	an
organization.

Role	viewer Provides	read	access	to	all	custom	roles	within	a
project

Security	reviewer Provides	permissions	to	list	all	resources	and	IAM
policies	on	them.

	

To	gain	access	to	any	of	the	resources	under	any	project	in	an	organization,	users
should	have	one	of	the	following	units	of	identity.

Units	of	identity	in	GCP
	

Cloud	IAM	can	grant	access	to	resources	to	members	of	an	organization.	The
specifics	of	access	are	defined	by	roles	and	respective	permissions.	Being	a
member	of	the	organization	implies	having	one	of	the	following	Identities:

Google	account:	This	is,	for	most	intents	and	purposes,	an	email	address
associated	with	gmail.com	or	any	other	domain	managed	by	G	Suite.	The
account	can	represent	a	developer,	admin,	or	someone	with	access	to	GCP.
Service	account:	This	is	pretty	similar	to	a	Google	email	account,	apart
from	the	fact	that	it	belongs	to	an	application	instead	of	a	user.	Mostly	these
accounts	are	used	for	executing	different	logical	components	of	the
application	(for	example	client,	server,	and	so	on).
Google	groups:	This	is	a	collection	of	various	Google	accounts,	which	may
even	include	service	accounts.	They	have	a	unique	email	address	to	identify
them.	These	are	convenient	ways	to	pass	similar	roles	to	multiple	users
instead	of	passing	them	to	each	account	individually.	It	is	possible	to	add
the	members	in	the	group.	Their	addition	or	removal	from	the	group	will
also	lead	to	their	gaining	access	to	permissions	of	the	roles	affiliated	to	the
group.	Similarly,	being	removed	from	the	group	means	having	the	roles
revoked.
G	Suite	domains:	This	is	a	collection	of	all	the	accounts	created	under	the
organization's	(domain's)	G	Suite	account.	G	Suite	domains	do	not	contain
the	identity	of	each	user,	but	they	are	useful	for	managing	permissions	and
roles.
Cloud	identity	domain:	This	is	a	lot	like	the	G	Suite	domain	in	terms	of
IAM	administration,	but	the	users	of	the	cloud	identity	domain	do	not	have
access	to	G	Suite	applications.
Other	users:	Apart	from	all	of	these	users,	the	ones	approved	by	an	admin
or	ones	with	access	to	GCP	APIs	under	a	certain	project	can	also	be
managed	by	IAM.

	

	

Creating	a	Service	Account
Service	accounts	in	GCP	are	affiliated	with	application	or	resources	(such	as
Compute	Engine	VM).	One	service	account	can	link	to	multiple	resources.	It	is
created	in	order	to	avoid	conflict	with	user	account	and	to	call	the	Google	APIs
of	services.	These	accounts	are	then	given	permissions	to	access	or	edit
resources	or	data.	There	are	two	types	of	service	accounts:

User	managed	service	accounts
Google	managed	service	accounts

Service	accounts	are	authenticated	via	GCP	managed	key-pairs.	The	keys	are
rotated	almost	every	week.	Optionally,	we	can	also	create	external	keys	to	be
used	as	default	application	credentials	and	so	on.

To	create	a	service	account,	following	are	the	steps:

1.	 From	the	dashboard	of	the	console,	navigate	to	IAM	&	admin	|	Service
accounts

2.	 Click	on	Create	Service	Account
3.	 Name	your	service	account.	Make	sure	to	name	it	in	a	way	that	the	name

itself	describes	the	purpose	of	the	account.	The	name	will	be	structured	as
YOUR_NAME@projectID.iam.googleserviceaccount.com

4.	 For	example,	in	a	project	named	Cloudsql,	you	can	create	an	account	called
sql_editor	and	the	name	will	be	sql_editor@cloudsql.iam.googleserviceaccount.com

5.	 Once	the	account	is	created,	you	can	grant	it	an	appropriate	role.	We	will
give	it	Cloud	SQL	|	Cloud	SQL	Editor	role.

6.	 Finally,	click	on	the	checkbox	near	Furnish	a	new	private	key	to	download
your	JSON	key	and	use	it.

More	about	granting	roles	is	described	in	the	section	below.

Working	with	cloud	IAM	–	grant	a
role
Working	with	IAM	is	fairly	simple,	as	it	mostly	involves	operating	the	console
itself.	Here	are	some	of	the	tasks	that	can	be	performed	with	Cloud	IAM.	First	of
all,	we	will	grant	an	IAM	role	to	one	of	the	project	members:

1.	 Go	to	the	GCP	web	console	and	navigate	to	the	menu	button,	which	is	on
the	top-left	corner	with	three	lines.

2.	 Select	IAM	&	admin	and	navigate	to	the	IAM	section:

3.	 You	will	find	a	list	of	roles	for	the	project	that	you	were	working	on.
Currently,	I	am	on	a	project	called	loony-kubernetes	so	the	roles	for	this	are
visible:

4.	 By	clicking	on	the	ADD	button,	you	will	find	a	popup	to	add	new	members
to	the	project:

5.	 We	will	add	janani@loonycorn.com	to	the	project	and	shall	give	her	the	role	of
Project	Billing	Manager.

6.	 By	clicking	on	add	more	roles,	you	can	provide	even	more	roles	to	the	same
user:

7.	 Confirm	the	action	by	clicking	on	Add.
8.	 Similarly,	a	role	can	be	removed	from	a	user	using	the	Manage	Roles

option.

Working	with	IAM	–	creating	a
custom	role
	

Although	this	is	an	alpha	feature	at	the	time	of	this	book	being	written,	it	is
expected	to	be	stabilized	soon.	You	can	create	custom	roles	with	custom
permissions	as	per	your	requirements	using	IAM	roles:

1.	 Navigate	to	the	Roles	tab	in	the	IAM	&	admin	panel:

2.	 Click	on	the	Create	Role	button	to	add	the	role	you	desire.
3.	 Name	the	role	and	enter	a	convenient	Role	ID.

	

4.	 Enter	the	desired	permissions.	While	doing	so,	you	will	be	prompted	to
enter	the	status	of	the	permission	so	that	you	can	avoid	adding	permissions
that	are	not	supported:

5.	 You	can	also	choose	the	availability	of	the	role;	since	the	feature	is	in	alpha
stage,	you	can	chose	to	activate	it	immediately	or	after	it	becomes	GA.

6.	 Confirm	your	action	by	clicking	create,	and	the	role	will	be	created	and	will
be	available	to	be	assigned	to	any	member	of	the	organization:

7.	 Similarly,	a	permission	can	be	removed	from	a	role	using	the	Manage
Permissions	option.

8.	 We	granted	the	Role	to	an	individual	Gmail	user	account,	but	the	procedure
remains	the	same	for	service	account,	group,	or	any	other	unit	of	identity
supported	by	GCP.

	

	

Summary
In	this	chapter,	you	took	a	closer	look	at	the	access	administration	end	of	Google
Cloud	Platform,	which	is	Identity	and	Access	Management.	You	also	learned
about	the	hierarchy	of	resources	and	units	of	identities	and	administration.
Finally,	you	learned	about	permissions	and	roles,	and	how	to	create	and	grant
them.

	

Managing	Hadoop	with	Dataproc
When	you	intend	to	expand	your	business,	parallel	processing	becomes	essential
for	streaming,	querying	large	datasets,	and	so	on,	and	machine	learning	becomes
important	for	analytics.	In	the	case	of	GCP,	Dataproc	is	a	managed	and	cost-
effective	solution	for	Apache	Spark	and	Hadoop	workloads.

In	this	chapter,	you	will	learn	about	the	following:

Google	Cloud	Dataproc
Dataproc	cluster	instances
Running	jobs	on	Dataproc	clusters
Scaling	Dataproc	clusters
Deleting	clusters

Hadoop	and	Spark
Hadoop	is	a	venerable	technology	now;	the	grand	old	man	of	distributed
computing	technologies.	We	won't	spend	too	much	time	dwelling	on	Hadoop's
internals,	but	a	brief	introduction	is	required	for	this	chapter	for	it	to	make	sense
to	folks	who	are	not	from	a	big-data	background:

The	MapReduce	programming	paradigm	is	what	really	matters	to	a	user.	It
defines	a	map	and	reduces	tasks	using	the	MapReduce	API,	and	submits	them	to
that	part	of	the	Hadoop	ecosystem:

When	a	job	gets	triggered	on	the	corresponding	cluster,	this	brings	YARN	into
play.	This	involves	prioritizing	among	different	jobs	and	sharing	resources	such
as	compute	capacity:

YARN	is	the	acronym	for	Yet	Another	Resource	Negotiator,	and	it	plays	the
role	of	a	scheduler	and	resource	allocator	on	the	Hadoop	cluster.	YARN	will
figure	out	where	and	how	to	run	the	job:

This	process	also	involves	copying	over	the	JAR	files	(Java	archives)	to	each	of
the	nodes	in	the	cluster;	this	is	essentially	moving	compute	to	be	where	the
storage	is.	This	tight	coupling	between	storage	and	compute	is	a	key	feature	of
Hadoop,	and	loosening	this	coupling	is	a	key	insight	that	major	cloud	services
such	as	Dataproc	exploit.	Once	the	job	is	entirely	run,	the	results	are	collected
and	stored	back	in	HDFS:

This	also	gives	us	an	important	insight	that	we	should	remember.	Hadoop,	at
heart,	is	a	batch	processing	system.	The	user	interacts	with	MapReduce	by
defining	MapReduce	tasks.	The	results	end	up	being	on	a	distributed	filesystem.
It's	not	the	most	convenient	way,	or	the	most	intuitive	way,	of	interacting	with
parallel	computing	programs.	Partly	to	compensate	for	this	slightly	abstract
nature,	and	partly	to	compensate	for	the	batch	nature	of	Hadoop,	a	whole	bunch
of	tools	have	sprung	up	around	Hadoop:

Hive:	Hive	serves	as	a	SQL-like	wrapper	of	top	of	the	distributed	file
system	HDFS
HBase:	HBase	is	a	columnar	data	store	that	is	created	for	Hadoop	data
Pig:	Pig	is	a	transformation	tool	that	helps	get	data	semi	structured	or
unstructured	data	into	HDFS
Kafka:	Kafka	helps	deal	with	streaming	data
Spark:	Spark	is	a	really	powerful	computing	engine	and	represents	possibly
the	hottest	big-data	technology	today

There	are	several	other	elements	in	the	Hadoop	ecosystem,	as	it	has	come	to	be
known,	and,	collectively,	these	constitute	nothing	less	than	an	entire	big	data
suite.

Perhaps	the	most	important	and	noteworthy	of	these	is	Spark.	Spark	is	a
powerful	big	data	and	machine-learning	engine,	which	can	be	used	in	a	variety
of	programming	languages	such	as	Python,	Scala,	Java,	and	R.	The	most
common	technologies	used	to	work	with	Spark	are	Python	(Python	on	Spark	is
often	just	called	PySpark)	and	Scala	(in	which	Spark	is	actually	written).	Spark
need	not	be	run	on	Hadoop,	but	it	is	often	used	on	top	of	Hadoop,	making	use	of
YARN	and	HDFS	but	not	MapReduce:

Hadoop	on	the	cloud
Hadoop	and	MapReduce	are	standard,	cookie-cutter	ways	of	taking	complicated
jobs	that	parallelize	the	jobs	that	run	on	a	number	of	machines	and	get	the	results
back	for	your	convenience.	The	power	and	versatility	of	the	MapReduce
programming	paradigm	and	the	great	design	underlying	Hadoop	have	spawned
an	entire	ecosystem	of	its	own.	One	side	effect	of	this	Hadoop	ecosystem	and
popularity	is	the	rise	of	clustered	or	distributed	computing.	But	it	is	a	simple	fact
that	configuring	a	cluster	of	distributed	machines	is	quite	complicated	and
expensive.	Ask	yourself	how	many	companies	or	organizations	do	you	know
that	run	Hadoop	in	a	fully	distributed	mode	with	raw	Hadoop,	without	making
use	of	nice	company	versions	such	as	Cloudera.	The	answer	is	probably	none.
That's	because	it	takes	a	lot	of	work	to	get	Hadoop	and	MapReduce	going	in
fully	distributed	mode,	and	this	really	is	where	cloud	computing	helps	and
comes	into	its	own.

Managed	Hadoop	services	are	now	offered	by	all	of	the	major	cloud	providers.
Dataproc	is	Google's	offering	and	Amazon's	version	is	called	Elastic
MapReduce.	The	basic	idea	of	these	managed	Hadoop	offerings	is	simple	and
very	clever:	the	storage	component	of	a	traditional	Hadoop	cluster	is	now
separated	from	compute	by	moving	the	data	from	HDFS	to	buckets	(GCS	or	S3);
the	compute	can	simply	be	performed	on	cloud	VMs,	and	those	VMs	can	be
done	away	with	when	the	job	is	completed.

This	is	a	brilliant	insight	because	the	main	drawback	of	gigantic	Hadoop/Spark
clusters	is	their	fixed	costs	and	low	utilization.	Far	too	many	companies	have
made	the	mistake	of	investing	in	enormous	Hadoop	clusters	with	hundreds	or
even	thousands	of	nodes,	and	then	found	that	the	cluster	is	rarely	used.
Measuring	the	utilization	of	a	Hadoop	cluster	is	not	all	that	straightforward,	but
it	is	fairly	common	for	this	to	be	in	the	sub-20%	utilization	range.	When	you
consider	the	amount	of	fixed-asset	investment	and	depreciation	expenses	that
such	a	cluster	entails,	you	can	get	a	sense	of	why	finance	professionals	tend	to
like	cloud-based	solutions:	there	is	no	depreciation,	no	fixed	assets,	and	no
politically	charged	conversations	around	utilization	(albeit	at	the	cost	of
potentially	higher	operating	expenses).

This	rise	of	Hadoop	on	the	cloud	has	had	serious	negative	implications	for
Hadoop	providers	such	as	Cloudera	and	Hortonworks.	The	complexity	of
Hadoop	was	key	to	their	business	model,	and,	now	that	complexity	has	been
stripped	away	by	the	cloud	providers,	they	could	face	challenging	times	ahead.

It	is	worth	mentioning,	in	the	context	of	Dataproc,	Google's	managed	Hadoop
offering,	that	Google	initially	had	an	arrangement	with	Hortonworks	(with	a	nice
press	release	dated	January	2015).	That	arrangement	basically	centered	around	a
utility	called	bdutil,	which	was	a	command-line	tool	that	ran	HDP	on	the	GCP.
Then,	a	year	later,	Google	launched	Dataproc,	which	made	bdutil	obsolete	and
there's	been	not	a	peep	about	a	special	relationship	with	Hortonworks	after	that.
Dataproc	runs	Apache	Hadoop;	if	you	really	need	to	run	HDP	or	Cloudera,	your
best	bet	is	to	use	virtual	machines	and	run	the	third-party	orchestrator
(something	like	Cloudera	director)	from	those	VMs.	So,	in	a	nutshell,	Dataproc
is	the	recommended,	Google-approved	way	to	run	Hadoop	on	the	GCP.	If	you
decide	to	try	a	third-party	distro,	you	are	largely	on	your	own.

Google	Cloud	Dataproc

As	mentioned	earlier,	Google	Cloud	Dataproc	is	a	managed	Spark	and	Hadoop
solution	from	Google.	Its	nature	of	being	managed	and	of	being	on	the	cloud
gives	users	the	ability	to	turn	the	clusters	off	when	they	are	not	required,	which
saves	a	lot	of	cost.	So,	Dataproc	is	not	only	simple	and	time	saving,	but	it	is	also
cost	effective.

Just	like	other	managed	services	from	Google,	we	can	use	GCP	APIs	to	interact
with	Dataproc.	We	will	get	into	the	details	later	in	this	chapter.	While	the	initial
vision	of	Dataproc	was	to	provide	managed	Hadoop	and	Spark,	the	current	state
boasts	managed	support	for	open	source	Apache	Hive,	Pig,	Hadoop,	and	Spark,
and	integration	with	Cloud	Storage	and	BigQuery	through	connectors,	on	top	of
being	monitored	by	Stackdriver.	Just	like	Hadoop,	Dataproc	also	has	Master,
Client	and	Worker	nodes	configurations	where	Master	nodes	manage	storing
data	into	HDFS	and	running	parallel	operations	using	MapReduce.	While
worker	nodes	store	the	data	and	run	computations.

Apart	from	these,	resource	management	facilities	such	as	YARN,	HDFS,	and
MapReduce	can	also	be	leveraged	from	the	web	interface	of	Hadoop.	These	web
interfaces	can	be	accessed	by	SSH	or	SOCKS	proxy.

Compute	options	for	Dataproc
	

Dataproc	cluster	instances	are	built	on	Google	Compute	Engine	instances,	which
means	we	have	a	wide	variety	of	machines	to	choose	from,	according	to	our	use
and	budget.	Just	like	Compute	Engine	instances,	Dataproc	instances	can	also	use
both	predefined	and	custom	machine	types.	In	the	beta	update	of	Dataproc,	we
can	also	use	f1-micro	CPU	to	decrease	the	cost	even	further,	whereas	for
performance-heavy	applications	we	can	choose	persistent	SSD	over	persistent
disks.	Apart	from	these	basic	configurations,	the	following	are	optional
customizations	possible	with	Dataproc	instances:

GPUs
Automatic	zone	selection
Optional	preemptibility	for	lower	cost
High	availability
Scheduled	deletion	of	clusters
Live	scaling	(without	bringing	apps	down)
Single-node	sandbox	clusters

	

	

Working	with	Dataproc
	

In	this	section,	we	will	learn	how	to	set	up	a	Dataproc	cluster,	submit	a	job	to	the
cluster,	and	do	some	interesting	things	with	Dataproc.

1.	 Navigate	to	the	project	where	you	wish	to	set	up	the	cluster.
2.	 Click	on	the	menu	button	in	the	top-left	corner	with	three	horizontal	lines

and	choose	Dataproc	from	the	drop-down	menu:

3.	 Click	on	the	Create	Cluster	button	and	fill	in	the	required	information	for
the	cluster,	which	is	cluster	name,	memory	and	CPU	configurations,	region,
GPU,	and	disk	configurations.	We	will	name	our	cluster	my-cluster	and
choose	single	node	globally:

4.	 To	configure	the	cluster	further,	you	can	visit	the	staging	bucket	for	the
cluster,	which	is	used	to	store	configurations	and	control	files.	The	staging
buckets	are	separate	for	each	region,	so	make	sure	your	staging	bucket	is	in

the	same	region	as	your	cluster.	To	view	it,	use	the	following	command:

gcloud	dataproc	clusters	describe	<cluster-name>

The	output	should	look	something	like	this:

clusterName:	your-cluster-name

clusterUuid:	<<Cluster_ID_Generated_by_Dataproc>>

configuration:

		configurationBucket:	<<Bucket_Name>>

5.	 Now,	our	cluster	is	ready	to	use.	To	submit	a	job	to	the	cluster,	use	the
following	command:

gcloud	dataproc	jobs	submit	<<<job-command>>>	--cluster	<<<cluster-name>>>	

job-specific	flags	and	args

6.	 Let's	understand	this	using	the	example	of	a	classic	PySpark	hello	world.
The	following	program	submits	a	spark	job	to	the	GCP	Dataproc	cluster.
While	the	job	may	be	defined	individually	for	each	example,	in	this	case	it

means	that	the	hello-world	program	will	be	divided	into	pieces	to	be	executed
by	different	nodes.	But	since	we	have	specified	only	one	node	to	make	sure
that	the	running	cost	of	the	examples	remains	within	the	free	credit
boundry,	it	will	be	executed	via	single	node	itself:

$gcloud	dataproc	jobs	submit	pyspark	--cluster	<<<cluster-name	>>>	

gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-

world/hello-world.py

The	output	should	be	something	like	the	following:

The	status	of	the	job	would	be	displayed	as	follows:

7.	 To	move	further,	you	can	scale	the	cluster	with	the	following	command:

gcloud	dataproc	clusters	update	<<<cluster-name>>>	

<<<--num-workers>>>	<<<new-number-of-workers>>>

8.	 To	make	sure	that	downscaling	happens	after	the	currently	running	task	is
completed,	you	can	use	graceful	decommissioning	with	the	following
command.	Note	that	the	maximum	possible	delay	is	24	hours:

gcloud	dataproc	clusters	update	

	--graceful-decommission-timeout="timeout-value"

	other	args	...				

9.	 To	access	the	Hadoop	web	UI	using	SSH,	use	the	following	command.	In
that	command,	-N	instructs	gcloud	not	to	open	a	remote	shell	and	-n	to	avoid
reading	stdin:

gcloud	compute	ssh	--zone=master-host-zone	<<master-host-name>>	--	

-D	<<Dynamic	application	forwarding	port>>	-N	-n

10.	 Now	we	have	the	SSH	tunnel	set-up.	To	use	Hadoop	web	UI	from	Cloud
Shell	use	following	command:

gcloud	compute	ssh	<<master-host-name>>	\

--project=<<project-id>>	--zone=<<master-host-zone>>		--	\

-D	1080	-N

11.	 The	tunnel	supports	traffic	proxying	with	SOCKS	protocol	which	stands	for
Socket	Secure	protocol.	If	you	are	using	Google	Chrome,	use	following
command.	This	would	be	a	better	option	since	it	opens	Hadoop	UI	in	a	new
window:

Google	Chrome	executable	path	

	--proxy-server="socks5://localhost:1080"	

	--host-resolver-rules="MAP	*	0.0.0.0	,	EXCLUDE	localhost"	

	--user-data-dir=/tmp/master-host-name

12.	 The	user-data-dir	flag	forces	Chrome	to	open	a	new	window	that	is	free	from
the	existing	session,	whereas	the	MAP	*	0.0.0.0	rule	prevents	it	from	sending
any	DNS	requests.	This	is	how	it	creates	a	proxy	session.

13.	 To	delete	the	cluster,	you	can	either	click	on	the	Delete	cluster	button	from
the	web	console	and	provide	confirmation,	or	use	the	following	command:

gcloud	dataproc	clusters	delete	<<<cluster-name>>>		

	

	

Summary
In	this	chapter,	we	looked	into	Google	Cloud	Dataproc	and	how	to	create	a
customized	Dataproc	cluster.	We	also	learned	how	to	submit	jobs	and	how	to
manage	a	cluster,	and,	finally,	the	management	part	included	scaling,	graceful
decommissioning,	and	deleting	the	cluster.

Load	Balancing
	

We	have	seen	the	use	of	Compute	Engine	as	IaaS,	including	Kubernetes	clusters,
which	also	rely	on	Compute	Engine	VM	instances,	and	persistent	disks.	We	don't
have	to	worry	about	issues	such	as	the	proper	distribution	of	internet	traffic,
requests,	or	processing	when	we	use	only	one	VM	instance.	Even	in	the	case	of
overload,	we	can	always	scale	our	instances	vertically	and	fulfill	the	processing
requirements.	But	when	we	use	more	than	one	VM	for	a	heavily	accessed
application	or	multi-tier	application,	load	balancing	becomes	essential.

We	may	have	to	guide	the	traffic	to	the	machines	serving	the	corresponding	tier,
or	we	may	have	to	guide	it	towards	the	same	tier,	while	making	sure	that	none	of
our	machines	get	overloaded	while	other	machines	are	chilling	out.	Fortunately,
GCP	provisions	quite	a	sophisticated	load	balancer,	which	allows	the	routing	of
internet	traffic	based	on	the	requested	instance	group	(tier	in	practical
application),	available	computing,	and	storage	capacity,	as	well	as	distance	from
the	region	of	the	instance	with	respect	to	the	user.	In	this	chapter,	we	will	go
through	HTTP,	TCP,	and	network	load	balancing	with	reference	to	their	concepts
and	implementation.

This	chapter	covers	the	following	topics:

The	importance	of	load	balancing
HTTP(S)	load	balancing
Other	load-balancing	rules

	

	

Why	load	balancers	matter	now
Load	balancers	are	discussed	a	lot	more	often	these	days	than	they	used	to	be,
say,	a	decade	or	two	ago.	They	used	to	be	somewhat	arcane	tools	that	only	some
network	planners	or	architects	really	had	to	worry	about	during	edge-case
planning;	now,	they	are	absolutely	mainstream,	and	even	developers	and	app
architects	need	to	understand	what	kind	of	load	balancer	to	choose,	and	why.

Why	have	load	balancers	become	such	a	conversation	starter	these	days?	The
answer	lies	in	two	important	features	of	compute	on	the	cloud—ephemeral
external	IP	addresses	and	autoscaling	of	backends:	

In	the	cloud	world,	load-balancer	devices	are	an	essential	static	entry	point	for
apps.	They	have	a	static	IP	address	that	clients	can	be	sure	will	remain
unchanged,	and	accept	incoming	client	requests	and	distribute	them	to	a	variable
set	of	backend	instances.	The	size	of	that	set	of	backend	instances	can	keep
changing—that's	the	whole	point	of	autoscaling	abstractions	such	as	managed-

instance	groups.

Taxonomy	of	GCP	load	balancers
Each	of	the	major	cloud	providers	supports	several	different	types	of	load
balancer,	and	cloud	architects	can	choose	the	type	that	best	suits	their	use	cases.
Here	is	a	taxonomy	of	load	balancers	that	are	available	on	the	GCP:	

As	this	diagram	illustrates,	load	balancers	can	operate	at	different	layers	of	the
OSI	stack.	HTTP(S)	load	balancers	operate	at	the	application	layer,	SSL	is	a
session-layer	protocol,	TCP	is	a	transport-layer	protocol,	and	network	load
balancers	operate	at	the	level	of	IP,	which,	of	course,	is	a	network	protocol.

The	rule	of	thumb	is	this:	go	with	the	highest	layer	of	the	OSI	stack	possible.	So,
for	instance,	if	your	application	is	based	on	HTTP	or	HTTPS,	use	HTTP(S)	load
balancing.	If	not,	try	to	work	at	the	session	layer,	and	so	on.	The	reason	for	this
is	the	higher	in	the	stack	you	are,	the	more	real-world	the	abstractions	become.

HTTP(S)	load	balancing
HTTP(S)	load	balancers	are	the	most	popular	and	most	widely	used,	simply
because	there	is	so	much	that	can	be	done	at	this	layer.	It	is	possible	to	distribute
traffic	based	on	the	type	of	incoming	request;	for	instance,	requests	for	static
content	go	to	one	set	of	servers,	while	requests	for	video	content	go	to	another.
This	is	called	content-based	load	balancing.

It	is,	of	course,	most	common	to	simply	route	requests	to	the	nearest	backend
servers	that	can	field	a	request;	if	those	backend	servers	reside	in	different
regions,	then	this	is	called	cross-regional	load	balancing.	This	is	something	that
can	be	used,	for	instance,	to	direct	traffic	originating	in	India	to	servers	that	are
also	located	there.

HTTP/HTTPS	(commonly	written	as	HTTP(S))	load	balancers	deal	with	HTTP
requests	on	the	instances.	They	support	both	IPv6	and	IPv4	traffic	from	clients.
The	following	is	the	architecture	of	a	GCP	HTTP	load	balancer.

The	request	first	passes	through	global	forwarding	rules	and	is	guided	to	a
target	proxy.	The	rules	use	tags	to	identify	the	appropriate	target	proxy.
Each	request	is	checked	against	a	URL	map,	which	determines	the
appropriate	backend	service	for	it.
The	requests	are	passed	through	backend	services.	Each	backend	instance's
health	is	determined	by	a	HTTP(s)	health	check.
Finally,	the	request	is	guided	to	the	desired	backend	instance.
The	process	is	similar	for	both	HTTP	and	HTTPS.	The	only	difference	is
that,	in	the	case	of	HTTPS,	the	target	proxy	must	have/provide	an	SSL
certificate	for	verification.
If	the	data	of	the	request	is	to	be	stored,	backend	services	store	it	in	backend
buckets,	which	are	Google	Cloud	Storage	buckets	in	this	case.

In	case	things	do	not	go	as	planned,	HTTP(S)	load	balancing	has	two	different
types	of	timeout:

Response	timeout:	This	is	a	configurable	timeout	where	the	load	balancer
will	wait	for	the	backend	process	to	return	the	completion	flag.	The	default
waiting	duration	is	30	seconds.	If	it	takes	longer	than	that,	then	the	counter
will	reset	and	the	request	will	be	skipped.
Session	timeout:	This	is	also	called	an	Idle	timeout.	It	is	fixed,	so	the	value
cannot	be	configured.	In	this	case,	the	value	is	fixed	at	10	mins	(600
seconds).	The	only	exception	to	session	timeouts	are	WebSockets.

On	the	other	hand,	the	logging	and	monitoring	of	a	load	balancer	works	the	same
as	any	other	component	and	is	served	by	Stackdriver.

Configuring	HTTP(S)	load	balancing
	

Let's	take	an	example	where	we	create	two	VMs	in	different	regions	with	the
same	tag,	and	test	them	for	HTTP(S)	load	balancing:

1.	 Use	the	following	command	to	create	a	VM	and	allow	HTTP(S)	traffic	to	it.
Here,	we	are	installing	Debian	on	the	VM	and	running	commands	such	as
updating	it,	installing	Apache	on	it,	and	hosting	a	simple	web	page	on	it.
You	can	name	these	instances	sequentially	for	convenience,	for	example,
www-1,	www-2,	and	so	on:

gcloud	compute	instances	create	<<<first-instance-name>>>		\

				--image-family	debian-8	\

				--image-project	debian-cloud	\

				--zone	us-central1-b	\

				--tags	https-tag	\

				--metadata	startup-script="#!	/bin/bash	/

sudo	apt-get	update	/

sudo	apt-get	install	apache2	-y	/

sudo	a2ensite	default-ssl	/

sudo	a2enmod	ssl	/

sudo	service	apache2	restart	/

echo	'<!doctype		/	/html><html><body><h1>instance-1-name</h1></body>

</html>’	|	tee	/	var/www/html/index.html	/

						EOF”

gcloud	compute	instances	create	<<<second-instance-name>>>		\

				--image-family	debian-8	\

				--image-project	debian-cloud	\

				--zone	us-central1-b	\

				--tags	https-tag	\

				--metadata	startup-script="#!	/bin/bash	/

sudo	apt-get	update	/

sudo	apt-get	install	apache2	-y	/

sudo	a2ensite	default-ssl	/

sudo	a2enmod	ssl	/

sudo	service	apache2	restart	/

echo	'<!doctype		/	/html><html><body><h1>instance-2-name</h1></body>

</html>’	|	tee	/	var/www/html/index.html	/

EOF”

gcloud	compute	instances	create	<<<third-instance-name>>>		\

				--image-family	debian-8	\

				--image-project	debian-cloud	\

				--zone	europe-west1-b	\

				--tags	https-tag	\

				--metadata	startup-script="#!	/bin/bash	/

sudo	apt-get	update	/

sudo	apt-get	install	apache2	-y	/

sudo	a2ensite	default-ssl	/

sudo	a2enmod	ssl	/

sudo	service	apache2	restart	/

echo	'<!doctype		/	/html><html><body><h1>instance-3-name</h1></body>

</html>’	|	tee	/	var/www/html/index.html	/

EOF"

2.	 Now,	we	will	create	a	firewall	rule	which	will	allow	external	traffic	to	our
instances.	Notice	the	HTTPS	tags,	which	specify	it	to	allow	HTTPS	traffic
and	use	port	443	for	this:

gcloud	compute	firewall-rules	create	www-firewall	

								--target-tags	https-tag	--allow	tcp:443

3.	 Now,	to	verify	that	our	instances	are	running	smoothly,	list	them	and	note
their	external	IP.	We	can	try	to	access	them	with	a	curl	command	and	notice
their	response:

gcloud	compute	instances	list

				curl	-k	https:<<<//IP_ADDRESS>>>

4.	 Since	our	instances	are	running	well,	let	us	configure	load	balancers	for
them.	This	starts	with	providing	IPv4	and	IPv6	global	static	external	IP
addresses:

gcloud	compute	addresses	create	lb-ip-cr	

					--ip-version=IPV4	

					--global	

				gcloud	compute	addresses	create	lb-ipv6-cr	

					--ip-version=IPV6	

					--global

5.	 Now,	let's	create	an	instance	group	for	each	zone.	Repeat	this	command	for
the	Europe	zone	as	well:

gcloud	compute	instance-groups	<<<group	name>>>	create	

					us-resources-s	--zone	us-central1-b

6.	 Now	let’s	add	our	instances	to	their	respective	instance	groups	according	to
their	zones.	Repeat	the	command	for	Europe	zone:

gcloud	compute	instance-groups	<<group_name>>>	add-instances	

						us-resources-s	

								--instances	wwws-1,wwws-2	

								--zone	us-central1-b

7.	 Let's	get	a	health	check:

gcloud	compute	health-checks	create	https	https-basic-check	

								--port	443		

8.	 Now,	let's	create	a	backend	service	for	each	content	provider.	In	this	case,
we	will	set	the	protocol	as	HTTPS	and	use	the	health	check	that	we	created
earlier:

gcloud	compute	backend-services	create	<<<service	name>>>	

								--protocol	HTTPS	

								--health-checks	<<<health-check-name>>>	

								--global		

9.	 Now,	let's	add	the	instance	group	that	we	created	as	the	backend.	As	you
may	have	guessed,	repeat	the	command	for	europe’s	zone:

gcloud	compute	backend-services	add-backend		

						web-map-backend-service	

								--balancing-mode	UTILIZATION	

								--max-utilization	0.8	

								--capacity-scaler	1	

								--instance-group	us-resources-s	

								--instance-group-zone	us-central1-b	

								--global		

10.	 Now,	let's	create	a	URL	map	which	directs	all	incoming	requests	to	our
instances:

gcloud	compute	url-maps	create	<<<map	name>>>	

						--default-service		<<<service	name>>>		

11.	 To	manage	HTTPS	requirements,	let's	create	an	SSL	certificate	for	the
HTTPS	proxy	and	add	an	SSL	policy	for	it.	Finally,	we	will	create	a	target
proxy	and	global	forwarding	rule	by	using	the	following	commands:

gcloud	compute	ssl-certificates	create	<<<certificate	name>>>	

								--certificate	<<<CRT_FILE_PATH>>>	

								--private-key	<<<KEY_FILE_PATH>>>	

				gcloud	compute	ssl-policies	create	cr_ssl_policy	

				--profile	MODERN	--min-tls-version	1.0	

				gcloud	compute	target-https-proxies	create	https-lb-proxy	

					--url-map	web-map	--ssl-certificates	<<<cert	name>>>	

				gcloud	compute	forwarding-rules	create	<<<Rule	name>>>	

					--address	<<<LB_IP_ADDRESS>>>	

					--global	

					--target-https-proxy	<<<proxy	name>>	

					--ports	443		

12.	 Now,	our	load	balancing	is	configured.	Let's	guide	traffic	to	it.	First	of	all,
let's	find	the	IP	address	for	our	global	forwarding	rule:

gcloud	compute	forwarding-rules	list		

13.	 Finally,	let's	use	the	curl	command	and	get	our	response:

curl	https://<<<IPv4_ADDRESS>>>		

	

	

Configuring	Internal	Load	Balancing
	

Internal	load	balancing	works	with	private	load	balancing	IP	which	is	exclusive
to	the	VPC.	Such	load	balancing	is	available	for	TCP/UDP	based	traffic.
Perform	following	steps	to	setup	internal	load	balancing:

1.	 Navigate	to	Networking	|	Load	balancing	and	click	on	Create	load	balancer.

2.	 Select	the	type	of	load	balancer	(TCP/UDP)	and	click	on	Start
configuration.

3.	 In	the	option	of	Internet	facing	or	Internal	only	choose	Only	between	my
VMs.

4.	 For	configuring	the	backend,	Choose	your	region	(we	will	choose	us-
central1)	and	choose	instance	groups.

5.	 Finally,	in	the	frontend	configuration	section,	mention	port	as	8080	and	keep
rest	of	the	values	as	default.	Click	on	Add	frontend	IP	and	Port.

6.	 Click	Create	and	your	internal	load	balancing	is	setup.

	

	

Other	load	balancing
	

For	non-HTTP(S)	traffic,	the	load	balancing	policies	vary	a	little	but	the
objective	remains	essentially	the	same.	Let's	take	a	few	examples:

SSL	proxy	load	balancing:	With	an	SSL	proxy,	the	SSL	sessions	are
terminated	at	the	beginning	(at	the	global	load-balancing	layer).
TCP	proxy:	Unlike	an	SSL	proxy,	this	can	handle	HTTP(S)	traffic,	but	is
not	the	most	recommended	way.	The	advantage	it	does	provide	is	the	ability
to	use	a	single	IP	address	for	all	of	the	routing,	which	may	be	required
sometimes.
Internal	load	balancing:	This	allows	you	to	scale	your	services	behind	a
private	IP	used	for	load	balancing.	This	is	internal,	which	means	it	is	only
applicable	to	networks	used	by	GCP	itself	(for	example,	VPC).	At	the	core,
it	uses	TCP	proxy	and	HTTP(S)	load	balancing.
Network	load	balancing:	This	one	is	unique.	It	allows	a	load	to	be
balanced	based	on	the	data	of	an	incoming	protocol	IP	(for	example,
network	port,	address,	protocol	type,	and	so	on).	Like	HTTP(S)	forwarding,
this	one	also	uses	forwarding	rules	(limited	to	the	network)	and	defines
health	checks	for	the	pool.	It	is	a	pass-through	load	balancer,	which	means
it	does	not	proxy	the	connections.

Thus,	Google	Cloud	Platform	provides	a	load-balancing	facility	for	all	use	cases.
Load-balancing	pricing	is	measured	in	units,	where	the	first	five	rules	cost
$0.025	per	hour	and	ingress	data	is	$0.008	per	GB.	After	five	rules,	each	rule
costs	$0.010/hour.	Thus,	it	is	an	economic	way	to	keep	your	clusters	efficient
and	balanced.

	

	

	

Summary
In	this	chapter,	you	learned	why	load	balancing	is	important,	along	with	the
different	types	of	load	balancing	and	their	uses.	Finally,	we	took	an	in-depth	look
at	HTTP(S)	load	balancing	and	how	to	establish	it.

Networking	in	GCP
	

In	previous	chapters,	we	have	seen	various	PaaS	and	IaaS	offerings	on	Google
Cloud	Platform,	such	as	the	App	Engine	environment,	Compute	Engine	VMs,
and	GKE	(Kubernetes	Engine).	All	of	them	involve	independent	or	cluster-level
networking.	This	is	handled	by	Virtual	Private	Cloud	(VPC)	networks	in	GCP.
Let's	explore	and	understand	the	idea	of	VPCs	in	detail.

In	this	chapter,	you	will	learn	about	the	following:

Virtual	Private	Cloud	networks
Subnets
Firewall	rules	in	GCP

	

	

Why	GCP's	networking	model	is
unique
The	way	the	GCP	does	networking	is	very	different	from	what	most	networking
professionals	are	used	to,	and	other	cloud	providers	such	as	AWS.	This	makes
GCP	networking	confusing,	especially	since	some	of	the	important	terms,	such
as	VPC	and	subnet,	have	somewhat	different	meanings	than	in	other	contexts:	

There	is	a	lot	going	on	here,	so	let's	go	through	and	parse	the	implications	of	all

of	that:	

Each	project	in	a	GCP	organization	contains	at	least	one	default	VPC.	It	can
contain	more	than	one	network,	depending	on	the	resources	requested.	All	VPCs
of	GCP	are	global	resources,	which	means	they	are	not	bound	to	any	particular
zone	or	region.	VPC	resources	have	both	internal	and	external	IPs.	The	resources
within	the	network	communicate	with	each	other	using	internal	IPs,	whereas
external	requests	are	served	through	external	IP	addresses.	All	of	the	traffic
passes	through	a	firewall	and	access	to	resources	within	the	network	is	managed
by	IAM.	Just	like	other	networks,	VPCs	can	also	communicate	with	other	VPC
resources	and	VPNs.

In	the	backend	as	shown	in	the	figure	above,	VPCs	are	distributed	into	partitions
of	smaller	network	also	known	as	Subnets.	Subnets	are	regional.	One	network
can	have	one	or	more	subnets	in	any	region	but	a	subnet	will	have	all	of	the
resources	in	the	same	region.	In	other	words,	we	chose	subnets	and	VPCs	while
defining	regions	for	it.	Once	the	regions	are	allocated	to	the	subnets,	IPs	are
instantly	allocated	to	the	resources	created	within	them.

Every	project	has	a	quota,	which	limits	the	number	of	maximum	VPCs	to
allocate.	Apart	from	the	quota,	there	are	also	limits.	The	specifics	of	and
differences	between	them	can	be	understood	using	the	following	table:

Item Quota/limit Amount Meaning

VPC	networks
per	project

Quota 5
Projects	can	have	a	maximum
of	five	networks	including
default	one

VMs	per	VPC
network

Limit 7000 Maximum	7000	VMs	per
project

VM	per	subnet Limit NA Any	number	of	VMs	as	long	as
the	total	is	less	than	7000

	

The	quota	defines	the	number	of	VPC	network	instances	that	can	be	allotted	to	a
project,	and	although	the	default	value	is	5,	it	can	be	increased.	A	limit	is	a	fixed
restriction	of	the	number	of	resources,	such	as	VMs,	that	can	be	housed	in	a
VPC	network.	Limits	are	fixed	and	cannot	be	altered:

Auto	mode	VPC:	In	an	auto	mode	VPC,	one	subnet	is	created	from	each
region.	These	subnets	are	assigned	IPs	within	the	10.128.0.0/9	CIDR	block
and	the	process	is	automatic.	Although	GCP	decides	how	many	subnets	to
create,	more	subnets	can	be	created	manually.
Custom	VPC:	VPC	is	created	without	creating	subnets.	Subnets	are	added
manually	afterwards.	This	provides	more	control	over	IP	ranges	and	regions
of	subnets.

VPC	networks	and	subnets
The	term	VPC	is	used	in	AWS	to	refer	to	the	networking	layer	for	EC2	Cloud
Virtual	Machines,	and	AWS	VPC	networks	are	regional.	This	implies	that	in
AWS,	if	you	have	VMs	in	different	regions,	for	example,	one	in	the	US	and	the
other	in	the	UK,	they	would	have	to	be	in	different	VPCs.

In	the	Google	Cloud	world,	on	the	other	hand,	resources	on	the	same	VPC	can
reside	absolutely	anywhere;	two	GCE	VMs	could	be	in	different	continents,
while	still	residing	in	the	same	VPC.	How	is	this	possible?	Well,	clearly	under
the	hood	there	is	an	internal	routing	mechanism	that	is	hidden	from	the	user	and
that	makes	this	possible.	This	actually	implies	that	Google	VPC	networks	are	a
level	up	vis-a-vis	their	equivalents	on	other	cloud	platforms.	We	will	have	more
to	say	on	this	just	a	bit	later	in	the	chapter	when	we	discuss	subnets:

Google
networking
term

Traditional	networking	equivalent

VPC	network Autonomous	system	(a	collection	of	connected	IP	routing
prefixes)

Subnet VPC	network	on	AWS,	or	an	IP	address	range	in	the
physical	world	(a	hierarchy	of	IP	addresses)

	

This	table	equates	a	GCP	VPC	to	an	autonomous	system	(AS)	which	is	network
of	autonomous	systems	in	the	outside	world.	It	is	basically	a	union	of	IP	address
ranges	with	prefixed	routing	policies	and	are	comprised	of	possibly	different
network	operators.	This	implies	that	it	is	perfectly	possible	to	have	non-
contiguous	IP	addresses	inside	the	same	VPC.	For	instance,	the	same	VPC	could
have	two	subnets,	one	of	which	represents	a	10.x.x.x	IP	range,	and	the	other
represents	a	192.x.x.x	range.

This	idea	can	really	take	some	getting	used	to,	but	it	actually	is	quite	a	nice	way
to	group	resources	and	manage	them.	In	a	company	with	a	physical	networking
setup,	you	could	expect	each	department	to	have	a	subnet	of	its	own,	and	in	the
same	way,	in	the	cloud	you	could	group	resources	into	subnets	based	on
departments.

Clearly	VPC	subnets	are	akin	to	networks	that	we	are	used	to;	they	represent	a
hierarchical	IP	address	range,	all	resources	in	the	same	subnet	must	reside	in	the
same	region,	and	the	address	ranges	of	different	subnets	are	not	allowed	to
overlap.	It	is	important	to	know	that	even	within	a	subnet	resources	can	still	span
zones,	so	you	can	explore	options	for	HA	inside	a	single	subnet.

The	default	VPC
If	you	are	from	a	networking	background,	all	of	this	might	make	sense,	but	if
you're	not	and	just	want	to	get	up	and	running	on	the	GCP,	you'd	quite	possibly
have	a	question:	do	I	really	need	to	know	about	VPCs,	IP	addresses	and
autonomous	systems	simply	in	order	to	use	the	GCP?

The	answer	is	a	resounding	no.	By	this	point,	you	probably	have	enough	GCP
experience	to	realize	that	you	don't	start	every	new	project	by	creating	VPCs	and
configuring	them.	Clearly,	that	has	been	done	for	you	by	the	platform.	The
mechanism	for	achieving	this	is	the	default	VPC.

Every	project	comes	with	a	default	VPC	and	this	default	VPC	is	preconfigured
with	a	bunch	of	essential	plumbing:

One	subnet	in	each	region	(so	that	you	can	create	VMs	in	any	region	and
have	them	all	exist	on	some	subnet).
A	default	internet	gateway	(this	is	the	IP	address	to	which	packets	get	sent	if
no	internal	recipient	can	be	found).	It	is	possible	to	delete	the	default
internet	gateway	to	ensure	network	isolation.
Default	routes,	which	allow	traffic	to	travel	from	one	subnet	to	another.
Firewall	rules	to	allow	network	traffic	to	flow	smoothly.	These	firewall
rules	are	of	two	types:

The	implied	rules	allow	all	egress	and	deny	all	ingress
An	additional	set	of	firewall	rules	to	facilitate	common	protocols	such
as	RDP,	ICMP	(ping),	and	SSH:

default-allow-internal,	default-allow-ssh	,	

															default-allow-rdp		and	default-allow-icmp	

Now,	you	can	go	ahead	and	create	additional	VPCs	if	you	like,	for	instance	if
you	would	like	to	separate	resources	and	make	it	hard	for	them	to	communicate
with	each	other	using	internal	IP	addresses	(more	on	that	later).	If	you	do	decide
to	create	additional	VPCs,	you	can	specify	them	to	be	either	of	type	Auto,	or	of
type	custom.

Auto-mode	networks	are	basically	identical	to	the	default	VPC.	A	good	way	to
think	of	this	is	to	imagine	a	mold,	or	template,	from	which	the	default	VPC	is
created.	If	you	go	ahead	and	create	an	auto-mode	VPC,	that	too	will	be	struck
from	this	same	template.

Custom-mode	networks	are	very	different	though;	they	will	come	without	much
of	the	previous	functionality.	The	idea	is	you	only	create	a	custom-model	VPC	if
you	want	to	take	control	of	the	nitty-gritty,	in	which	case	you	probably	don't
want	a	set	of	pre-existing	subnets,	routes,	or	firewall	rules.

Auto-mode	networks	can	be	converted	to	custom-mode	ones,	but	the	reverse	is
not	possible.	You	can	take	charge,	but	once	you	do,	you're	in	charge	forever	and
can't	return	control	to	the	platform.

Internal	and	external	IP	addresses
Resources	that	are	in	the	same	VPC	can	communicate	using	internal	IP
addresses,	as	well	as	using	a	project-internal	DNS	facility.	This	is	true	even	if	the
resources	are	in	different	regions.	For	instance,	consider	two	VMs,	one	in	the	US
and	the	other	in	the	UK;	provided	these	are	in	the	same	VPC,	they	will	be	able	to
communicate	using	internal	IP	addresses	despite	their	physical	distance.

By	contrast,	if	two	resources	are	in	different	VPCs,	even	if	they	happen	to	be	in
the	same	region	or	even	on	the	same	underlying	bare	metal	box	(remember	that
GCP	VMs	are	multi-tenanted),	they	will	still	have	to	communicate	using	external
IP	addresses,	which	implies	that	the	network	traffic	between	them	will	have	to
pass	over	the	internet	(or	Google’s	global	network	in	this	case).

Internal	IP	addresses	are	assigned	from	the	subnet	range	using	the	familiar
DHCP	protocol,	and	they	are	renewed	every	24	hours.	Each	VM	on	a	subnet	is
accessible	using	a	network-scoped	DNS.	The	Fully	Qualified	Domain	Name
(FQDN)	for	a	VM	is	of	the	form:

[HOST_NAME].c.[PROJECT_ID].internal

External	IP	addresses,	on	the	other	hand,	are	ephemeral	by	default.	If	you'd	like
to	fix	an	external	IP	address,	you	need	to	reserve	it.	Such	reserved	external	IP
addresses	are	said	to	be	static	and	are	chargeable	if	they	are	not	in	use.	This	is
meant	to	deter	folks	from	needlessly	reserving	IP	addresses	and	then	not	using
them.

Finally,	you	should	be	aware	that	a	VM	is	not	aware	of	its	external	IP	address,
that's	a	part	of	the	metadata	and	is	stored	in	a	metadata	server.	So,	if	you	run
ifconfig	on	a	VM,	what	you	see	is	the	internal	IP	address.

Communication	on	internal	IP	addresses	has	several	advantages:

Cost:	Remember	that	network	egress	traffic	incur	charges.	Communication
over	internal	IP	addresses	costs	as	low	as	$0.01/GB.
Security:	Google's	internal	networks	are	relatively	invulnerable	to	intrusion
and	security	attacks.	After	all,	Google	has	been	under	siege	from	hackers
for	over	a	decade	now.	However,	once	traffic	leaves	Google's	internal
networks	and	touches	the	internet,	all	bets	are	off.
Latency:	Google	internal	networks	are	blazingly	fast.	This	is	partially	a
legacy	of	Google's	investments	in	YouTube,	and	in	trying	to	get	video
served	at	acceptable	latencies	in	all	or	most	regions	of	the	world.	Internal
traffic	on	the	GCP	is	able	to	hitch	a	ride	on	these	really	fast	internal	links.

If	you	do	have	resources	in	different	VPCs	or	even	different	projects	that	you'd
like	to	hook	up	with	internal	links,	two	relatively	advanced	features	you	can
consider	are:

VPC	peering:	This	is	a	way	to	establish	a	pipe	between	a	pair	of	VPCs.	In
case	you	are	wondering	how	this	differs	from	VPN,	the	encryption	is	done
at	network	layer	itself	and	is	applied	to	private	IPs	within	the	same	VPC.
Shared	VPC:	This	is	a	way	to	create	a	VPC	in	project	A,	and	then	have
resources	such	as	VMs	that	reside	in	a	different	project	(projects	B	and	C)
which	still	reside	on	the	same	VPC.	Project	A	is	called	the	host	project,	and
incurs	the	costs	associated	with	the	shared	VPC.

VPN	and	cloud	router
The	term	hybrid	is	usually	used	to	describe	a	combination	of	an	on-premises
data	center	and	a	set	of	cloud-based	resources.	Hybrid	architectures	are
becoming	increasingly	common	for	the	simple	reason	that	as	big	organizations
move	to	the	cloud,	they	need	a	hybrid	setup	during	the	migration	period,	and
while	they	evaluate	whether	their	cloud	strategy	is	the	right	one.

The	importance	of	hybrid	infrastructures	makes	the	VPN	service	a	particularly
important	one	for	organizations	that	are	moving	to	the	cloud.	It	is	trivial	to	set	up
a	VPN	connection	between	your	on-premises	setup	and	your	organizations'
cloud	resources.	This	VPN	connection	will	be	secure,	with	a	gateway	at	each
end.	The	gateway	at	your	on-premises	end	will	be	a	physical	one	that	you
control,	while	the	gateway	at	the	GCP	end	is	a	virtual	router,	managed	by	the
GCP.

There	is	a	fair	bit	of	advanced	networking	that	goes	on	under	the	hood	with	VPN
connections,	notably	the	encryption	of	traffic	at	each	end	by	the	gateway	device
and	the	decryption	at	the	other	end.	This	requires	the	exchange	of	keys	between
those	two	devices,	and	happens	using	a	specialized	protocol	called	Internet	Key
Exchange	(IKE).	We	will	not	dwell	on	the	details	of	how	this	works,	but	you
should	be	aware	that	VPN	connections	are	secure.	This	also	has	the	unfortunate
side	effect	of	making	them	relatively	slow;	if	you	have	ever	used	a	VPN
connection	to	access	your	corporate	network	from	home	or	while	traveling,	this
is	probably	something	you	are	familiar	with.	Here,	the	reason	for	slower	speed

will	most	likely	be	due	to	slower	connections	on	the	user’s	end.	Apart	from	that,
it	is	also	important	to	remember	that	keeping	a	VPN	up	and	running	incurs
charges	which	makes	them	costlier.

If	your	organization	is	considering	a	hybrid	setup	for	the	long	term	(rather	than
merely	as	a	stopgap	during	migration	or	evaluation),	you	might	want	to	consider
some	of	the	enterprise	grade	interconnection	options	that	the	GCP	offers,	notably
Cloud	Interconnect,	which	is	a	program	where	trusted	third-party	ISPs	(such	as
AT&T,	KDDI,	SoftBank,	and	Tata)	work	with	your	organization	and	with
Google	to	provide	a	high-quality	interconnection	without	the	overhead	of	VPN.
Do	check	Google's	list	of	supported	service	providers,	the	list	is	constantly
growing.

Finally,	VPN	by	itself	is	not	going	to	provide	dynamic	routing	capabilities.	This
means	that	if,	for	instance,	a	new	rack	of	servers	is	added	to	your	on-premises
setup,	your	GCP	VMs	are	not	going	to	learn	about	it	unless	you	turn	down	and
turn	back	up	your	gateway	device.	To	enable	dynamic	routing,	you	can	make	use
of	another	GCP	service	called	Cloud	Router.	This	will	make	the	VPN	gateway
device	a	BGP-enabled	one,	which	provides	dynamic	route	advertisement.	This
way,	topology	changes	at	either	end	will	be	picked	up	on	the	fly.

Working	with	VPCs
Working	with	GCP	VPCs	should	be	easy	to	adapt	to	if	you	have	already	gone
through	the	previous	chapters	and	are	familiar	with	the	GUI	of	web	console:

1.	 Click	on	the	menu	button	in	the	top	left	corner	of	web	console,	navigate	to
the	VPC	network	tab,	and	go	to	the	VPC	networks	section:

2.	 Click	on	Create	VPC	Network.

3.	 Fill	in	the	specification	fields	and	choose	automatic	in	the	Subnets	field.
Make	sure	that	the	name	of	the	VPC	only	contains	lowercase	letters	and	no
space	characters	in	it:

4.	 We	can	choose	the	firewall	rules	from	a	set	of	predefined	ones,	but	we	will
create	them	later:

5.	 After	choosing	Regional	or	Global	routing,	click	on	Create.	We	will	choose
Regional:

6.	 You	can	edit	it	later	by	switching	to	custom	mode	from	auto	mode.

7.	 Finally,	you	delete	a	VPC	network	by	either	going	to	the	VPC	Networks
page	and	clicking	on	DeleteVPC	network	after	selecting	a	network,	or	using
the	following	command:

gcloud	compute	networks	delete	[NETWORK_NAME]

Working	with	custom	subnets
	

As	discussed	earlier,	it	is	possible	to	create	a	custom	subnet	in	an	already
existing	VPC.	Follow	these	steps:

1.	 Navigate	to	the	VPC	networking	page	and	choose	one	of	the	available
networks.

2.	 Click	on	the	Add	a	subnet	option:

3.	 Fill	in	the	details	for	name,	region,	IP	range,	and	secondary	IP	range.	Make
sure	you	don't	overlap	IP	ranges	with	any	other	existing	subnet	in	your
VPC.

4.	 After	deciding	to	opt	for	logs	and	Private	Google	Access,	click	on	the	Add
option.

5.	 Alternatively,	you	can	use	following	command	in	the	cloud	shell:

gcloud	compute	networks	subnets	create	<<<SUBNET_NAME>>>	

				--network	<<<NETWORK>>>	

				--range	<<<IP_RANGE>>>	

				[--secondary-range	<<<RANGE_NAME>>>=<<<2ND_IP_RANGE>>>

6.	 To	describe	any	subnet,	use	the	following	command:

gcloud	compute	networks	subnets	describe	<<<SUBNET_NAME>>>	

								--region	<<<REGION>>>

7.	 Finally,	to	delete	any	subnet,	use	the	following	command:

gcloud	compute	networks	subnets	delete	<<<SUBNET_NAME>>>	

								--region	<<<REGION>>>

	

	

Working	with	firewall	rules
	

We	have	already	discussed	the	idea	that	a	VPC	is	effectively	a	distributed
firewall;	it	enforces	rules	and	monitors	the	flow	of	network	traffic.	These	are	the
characteristics	for	the	firewall	rules:

The	rules	defined	for	one	VPC	don't	apply	to	others
They	only	support	IPv4	traffic,	so	addresses	are	also	IPv4	only
The	only	possible	actions	for	firewall	rules	are	allow	and	deny	for	ingress
or	egress
Firewalls	cannot	allow	traffic	in	one	direction	while	denying	it	in	the	other
The	number	of	tracked	connections	vary	with	machine	type

Any	firewall	rule	component	will	contain	direction	of	traffic,	action,	protocol,
and	a	numerical	value	for	priority.	Priority	can	range	from	0	(the	most	important)
to	65535	(the	least	important).

Let's	see	how	to	create	and	manage	custom	firewall	rules:

1.	 To	create	a	firewall	rule,	you	need	to	provide	information	such	as	action
(allow/deny),	network,	protocol,	and	direction	of	the	traffic	(ingress/egress)
to	the	following	command.	It	is	important	to	remember	that	if	we	choose	to
skip	any	of	the	following	fields,	GCP	will	stick	to	its	default	values:

gcloud	compute	firewall-rules	create	[NAME]	

								[--network	[NETWORK];	default="default"]	

								[--allow		([PROTOCOL][:PORT[-PORT]],[PROTOCOL[:PORT[-

									PORT]],...]]	|	all)	

								[--action	(deny	|	allow)]	

								[--rules		([PROTOCOL][:PORT[-PORT]],[PROTOCOL[:PORT[-

									PORT]],...]]	|	all)	

								[--direction	(ingress|egress|in|out);	default="ingress"]	

								[--priority	[PRIORITY];default=1000]	

								[--destination-ranges	[CIDR-RANGE][,CIDR-RANGE...]]	

								[--source-ranges	[CIDR-RANGE][,CIDR-RANGE...]]	

								[--source-tags	[TAG][,TAG,...]]	

								[--target-tags	[TAG][,TAG,...]]	

								[--source-service-accounts=[EMAIL]	

								[--target-service-accounts=[EMAIL]

2.	 Any	of	the	provided	configurations	can	be	updated	with	the	following

command:

gcloud	compute	firewall-rules	create	[NAME]	<<<args>>>

3.	 The	same	rules	can	be	reviewed	by	using	the	describe	command:

gcloud	compute	firewall-rules	describe	<<<FIREWALL_RULE_NAME>>>

4.	 And	finally,	to	delete	the	firewall	rule,	use	this	simple	one-line	command:

gcloud	compute	firewall-rules	delete	[FIREWALL_RULE_NAME]

Similarly,	a	firewall	rule	can	also	be	created	using	web	console.	The	steps	for	the
same	are	as	following:

1.	 Navigate	to	the	Firewall	rules	page	in	the	GCP	console	by	searching	it	in
the	search	bar:

2.	 Click	on	CREATE	FIREWALL	RULE.

3.	 Enter	a	name	for	the	firewall	rule.	The	name	needs	to	be	unique	within	the
project.	We	will	name	it	myrule.

4.	 Specify	a	network	for	the	firewall	to	be	implemented	along	with	the	priority
of	the	rule.	We	will	keep	it	to	default

5.	 Choose	between	Ingress	and	Egress	as	direction	of	your	traffic.	We	will
choose	Ingress.

	

6.	 Allow	or	Deny	the	action	on	match.	We	will	Allow.

7.	 Finally,	we	will	put	0.0.0.0/0	to	allow	all	IP	ranges.
8.	 Hit	Create	and	your	firewall	rule	is	created.

	

	

Summary
We	learned	about	the	Virtual	Private	Cloud	networks	of	GCP	and	their
infrastructure,	and	how	to	create	and	manage	our	own	VPC	networks.

Finally,	we	took	a	look	at	how	to	manage	custom	subnets	and	firewall	rules	for
our	VPC	networks.

Logging	and	Monitoring
	

In	previous	chapters,	we	have	worked	with	many	provisions	and	services	of
GCP,	ranging	from	Compute	Engine-hosted	VMs	to	serverless,	fully	managed
databases.	When	we	are	dealing	with	so	many	different	components,	keeping
track	of	usage,	errors,	and	activities	becomes	essential.	This	is	where	GCP's
Stackdriver	services	are	useful.	Stackdriver	is	a	cloud	monitoring,	metrics	and
analysis	service	by	Google.	Its	main	task	is	to	provide	performance	and
diagnostic	data	to	GCP	users.	Stackdriver	offers	logging	and	monitoring	services
for	GCP	resources	for	free,	up	to	a	certain	quota,	and	can	monitor	both	GCP	and
AWS	resources	for	premium	account	holders.

In	this	chapter,	you	will	learn	about	the	following:

Logging	in	GCP
Filtering	in	logs
Exporting	logs
Stackdriver	monitoring

	

	

Logging
In	computing,	logging	refers	to	a	record	of	events	that	have	occurred	over	a
certain	time	period.	In	GCP,	logs	are	associated	with	projects;	that	is,	each
project	will	have	separate	logs.	Logs	can	be	used	for	debugging,	tracking	billing,
analyzing	performance,	or	just	as	proof	of	an	event	or	task.	Stackdriver	allows
users	to	view,	filter,	and	export	logs:

As	shown	in	the	diagram,	the	Stackdriver	logging	component	is	made	up	of	three
elements:

Logging	APIs,	which	are	used	to	fetch	record	logs.
Storage,	that	is,	cloud	storage	buckets.	The	log	export	APIs	have	access	to
cloud	storage	buckets	where	logs	can	directly	be	streamed.
A	user	interface	to	interact	fluently	with	logs.

Logs	are	stored	as	objects	of	the	type	LogEntry.	Log	entries	can	be	created	by
GCP	or	AWS	services,	and	they	use	the	entries.write	method	to	write	the	logs.
Mostly,	the	logs	are	automatically	named,	and	the	naming	convention	follows
something	simple	like	an	identifier	or	a	structured	name	consisting	of	author,
identifier,	and	timestamp.	Logs	are	kept	for	a	certain	time,	even	after	deletion	of
the	logged	object	itself,	and	this	time	period	is	called	the	retention	period.	To
store	the	logs	permanently,	it	is	advisable	to	export	them	to	cloud	storage
buckets	before	the	retention	period	expires.	In	general,	logs	are	recorded
collectively	for	all	of	the	resources,	but	while	viewing	and/or	operating	them,	we
can	apply	filters	as	per	our	needs.	Logs	are	stored	in	plain	text	or	JSON	files.
This	is	how	filtering	works:

A	user	log	is	an	accumulation	of	tag,	payload,	timestamp,	severity,	and	labels.
Here,	payload	refers	to	the	data	passed	to	APIs	for	performing	operations	(for
example,	the	dataset	of	BigQuery),	while	severity	distinguishes	between	config,
information,	warning,	or	errors.	Tags	are	mandatory	and	labels	are	optional;	both
of	them	are	used	for	filtering	the	logs.	If	the	organization	has	multiple	projects,	it
is	advisable	to	keep	relevant	labels	to	avoid	confusion.

GCP’s	Stackdriver	pricing	model	includes	two	tiers.

Basic	tier:	Usage	is	completely	free	but	limited	to	GCP.	Apart	from	that,
this	tier	doesn’t	include	Stackdriver	monitoring	agent.
Premium	tier:	It	charges	$8	per	month	per	resource	and	supports	not	only
GCP	but	AWS	as	well.	It	also	provides	Stackdriver	monitoring	agent.

There	are	also	internal	uses	of	logs	for	GCP,	such	as	auditing.	Auditing	is
performed	by	audit	logs,	which	are	permanent	logs	recorded	by	GCP	to	monitor
access	and	activities	on	resources	and	keep	precise	data	for	billing.	Similar
entities	are	admin	activity	logs,	which	are	written	to	record	administrative
actions	on	resources,	such	as	creation	or	deletion.	As	a	byproduct	of	these	cases,
wider	retention	periods	make	it	easier	to	keep	the	billing	transparent.	Logs	are
accessible	to	members	of	the	project	with	appropriate	roles.	Roles	are	a
convenient	way	to	grant	IAM	permissions.	Here	is	a	list	of	roles,	with
descriptions:

Role Description

Logs	viewer Gives	read-only	access	to	all	logs,	except	data-access
audit	logs

Private	logs
viewer Read-only	access	to	all	logs,	including	private	logs

Logs	writer Gives	access	to	service	accounts	to	allow	applications	to
write	logs

Configuration
writer

Gives	access	to	create	logs	of	logs	(log	metrics	and	export
sinks)

Logging	admin The	Big	Boss,	who	has	all	permissions	related	to
Stackdriver	logging

Project	viewer The	same	as	the	logs	viewer,	but	confined	to	a	project

Project	editor Includes	permissions	to	view,	write,	export,	and	delete
logs	for	a	project

Project	owner The	same	as	the	logging	admin,	but	confined	to	a	project

Working	with	logs
GCP	web	console	is	quite	easy-to-handle	way	to	work	with	logs	and	other
resources.	Following	are	the	steps	to	setup	logging	on	resources.

1.	 Navigate	to	the	menu	action	button	with	three	horizontal	lines	on	the	GCP
web	console.

2.	 Click	on	the	button	and	navigate	to	Logging	|	Logs,	and	you	will	land	on
the	logs	viewing	page:

3.	 To	make	sure	you	find	the	logs	you	desire,	tweak	the	log	type	(activity	or
data	access),	log	level	(severity),	and	time	window	of	the	event.

4.	 You	will	find	logs	similar	to	these:

5.	 To	create	a	log	metric,	you	can	click	on	Create	Metric	and	name	the	metric
of	the	logs	that	you	filtered.	This	metric	can	be	viewed	in	Stackdriver	in	a

graphical	format.
6.	 To	export	the	logs	to	a	sink	(destination),	you	can	navigate	to	the	Exports

tab	under	the	Logging	tab	and	click	on	the	Create	Export	button:

7.	 If	you	don't	have	a	previously	created	sink,	you	should	get	a	prompt	to
create	one.	Here,	we	will	specify	the	destination	as	a	cloud	storage	bucket
named	logs-loony.

8.	 By	clicking	on	the	Play	button,	it	will	start	streaming	the	logs:

9.	 If	you	want	to	view	the	exported	logs,	you	can	navigate	to	the	bucket	and
find	them.	For	more	information	on	cloud	storage	buckets,	refer	to	Chapter	5,
Google	Cloud	Storage	-	Fishing	in	a	Bucket.

Thus,	we	saw	how	to	setup	logging	and	start	logs	streaming.

More	Stackdriver	–	creating	log-
based	metrics
	

Log-based	metrics	allow	a	logging	agent	to	record	certain	number	of	logs	of
certain	types	of	messages	(such	as	error	logs)	over	certain	period	of	time.	There
are	system-defined	log-based	metrics	and	user-defined	log-based	metrics.	To
create	one,	perform	following	steps:

1.	 Go	to	Stackdriver	logging	|	logs	and	click	on	the	CREATE	METRIC	button.

2.	 Name	your	metric.	We	will	name	them	my-metric	and	describe	its	use.
Provide	labels	as	required.	Here,	we	will	give	it	as
resource.type=“audited_resource”.

3.	 Click	on	Create	to	create	the	metric.
4.	 You	can	edit	or	delete	the	metric	once	it	is	created	by	clicking	on	the	three

dots	at	the	right	end	of	the	metric	name.
5.	 Optionally,	you	can	also	create	an	alert	for	the	metric	from	the	same	popup.
6.	 Clicking	on	it	will	guide	you	to	Stackdriver	UI.	Here,	you	can	mention	the

condition	of	the	alert.	We	have	asked	for	log	entries	above	4	for	5	minutes
in	past	1	hour.

7.	 Click	on	Save	Condition	to	save	the	rule.	Optionally,	you	can	also	define
documentation	for	it	by	clicking	on	+Add	Documentation.

8.	 Finally,	save	the	policy.

Thus,	this	is	how	we	create	alerting	policies	for	Stackdriver	logs	in	GCP.	Now,
we	will	discuss	the	monitoring	aspects	of	Stackdriver	in	GCP.

	

	

	

Monitoring
Monitoring	mainly	involves	metrics,	time	series,	and	resources.	Metrics	help	us
get	a	better	idea	of	how	our	deployments	or	applications	are	performing.
Monitoring	applies	to	resources,	access,	and	activities.	Here,	we	will	understand
it	using	a	Compute	Engine	VM:

1.	 Create	a	Compute	Engine	VM	(we	will	create	one	called	lamp-1	with	the
Debian	OS)	and	SSH	into	it.	For	more	information	on	how	to	create	a
Compute	Engine	VM	instance,	refer	to	Chapter	3,	Compute	Choices	–	VMs
and	the	Google	Compute	Engine.	Make	sure	you	allow	both	HTTP	and
HTTPS	traffic,	to	make	network	activity	monitoring	more	efficient.

2.	 Install	the	Apache2	HTTP	server	with	the	following	commands:

sudo	apt-get	update

sudo	apt-get	install	apache2	php7.0

3.	 Go	to	the	Stackdriver	monitoring	homepage	using	the	following	link	and
sign	in	using	your	GCP	account.	You	will	be	given	free	30-day-trial	access.
Navigate	to	it	using	the	following	link:	https://app.google.stackdriver.com/.

4.	 Navigate	to	your	project	on	the	home	page	and	go	to	Resources	|	Instances:

5.	 You	will	see	the	VM	you	created	listed	there.	Click	on	it.
6.	 This	will	give	the	monitored	stats	of	the	VM.	We	are	looking	at	CPU,

network,	and	disk	usage:

https://app.google.stackdriver.com/

7.	 You	can	also	apply	filters	based	on	your	requirements	and	customize	your
metrics.

Summary
	

In	this	chapter,	you	learned	how	logging	and	monitoring	facilities	are
provisioned	in	GCP	via	Stackdriver.	You	also	learned	about	types	of	logs	and
roles	affiliated	to	logs,	and	how	to	filter	and	explore	logs.

Finally,	you	took	a	brief	look	at	how	to	monitor	resources	using	a	Compute
Engine	VM	example.

	

	

	

Infrastructure	Automation
	

In	this	chapter,	we	turn	our	focus	to	infrastructure	automation,	a	topic	that	is
becoming	quite	hot	these	days	and	is	also	often	referred	to	as	Infrastructure	as
a	Code	(IaaC).	The	idea	is	that	provisioning	resources	can	be	done
programmatically,	using	templates,	commands,	and	even	code.	The	implication
of	this	is	quite	profound,	particularly	for	companies	that	specialize	in	providing
IT	services	and	system	integration.	Such	companies	often	have	a	large	number	of
employees	working	on	deploying	infrastructure,	servicing	tickets,	requisitioning
hardware,	and	so	on.	The	fundamental	business	model	of	such	firms	could
change,	and	those	that	are	not	nimble	might	be	at	existential	risk.	In	general,
IAC	can	also	be	considered	as	the	starting	point	of	the	DevOps	movement.	It
acts	as	a	foundation	of	Infrastructure	automation	which	not	only	expedites	the
software	development	and	delivery	process	but	also	makes	it	a	lot	more	cost	and
quality	efficient.	Infrastructure	as	a	Code	is	a	big	deal	for	large	components	of
the	workforce,	so	you	should	be	sure	to	understand	what	it	is	all	about.

You	learn	the	following	topics	in	this	chapter:

Managed	Instance	Groups
Deployment	manager

	

	

Managed	Instance	Groups
One	cloud	virtual	machine	instance	is	fine,	but	we've	seen	at	the	very	start	of	the
book	that	the	reasons	for	switching	to	the	cloud	can	be	summed	up	in	two	words:
autohealing	and	autoscaling.	One	cloud	VM	instance	is	not	going	to	provide
autohealing	or	autoscaling,	so	we	need	a	higher-level	abstraction,	the	Managed
Instance	Group	(MIG).

Understanding	this	one	sentence	is	really	important,	so	let's	parse	it	carefully.

That	fundamentally	is	what	a	Managed	Instance	Group	is.	Each	element	in	MIG
is	GCE	VM,	just	like	any	other	GCE	VM	that	you	might	have	spun	up.	One	VM
instance	is	vulnerable;	it	can	crash	or	be	overwhelmed	by	a	spike	in	client	traffic,
but	a	group	of	VM	instances	is	effectively	a	cluster	and	much	more	robust.

All	the	VM	instances	in	an	MIG	are	cast	from	the	same	mold;	that	mold	is	called
an	instance	template.	How	does	an	instance	template	come	into	existence?	In
pretty	much	the	same	two	ways	that	an	individual	VM	comes	into	existence:

You	can	create	an	instance	template	by	specifying	much	the	same	properties
that	you	would	while	creating	an	individual	VM:	the	name,	machine	type,
boot	disk,	and	OS	image
You	can	import	an	instance	template	from	an	external	image	or	Docker
container

The	platform	takes	responsibility	for	ensuring	that	each	member	of	the	MIG	is
running	and	ready	to	accept	client	requests.	This	is	done	by	associating	a	health
check	with	the	MIG.	The	health	check	can	be	best	thought	of	as	a	probe	or
polling	program	that	will	keep	asking	each	member	of	the	MIG	whether	it	is
healthy	or	not.	This	probe	will	need	to	be	received	and	understood	by	the
individual	VM	instances,	which	means	that	the	protocol	and	port	must	be
prespecified;	the	choices	of	protocol	are	HTTP(S),	TCP,	and	SSL	(TLS).

The	health	checker	will	ping	each	instance	at	a	specified	interval	(named	the
check	interval)	and	then	wait.	If	no	response	is	received	within	another	specified
interval	(named	the	timeout),	the	health	checker	concludes	that	the	VM	instance
is	down.	If	a	specific	number	of	such	probes	all	time	out,	the	MIG	will	spin	up	a
new	instance	to	replace	this	sick	one.	That	specified	number	of	failures	is	called
the	unhealthy	threshold.	In	the	meantime,	the	service	will	ping	the	unhealthy
instances	as	well,	hoping	that	they	have	come	back	online.	Once	a	new	VM
instance	comes	online,	the	checker	will	look	for	a	number	of	consecutive
successful	pings	(named	the	healthy	threshold)	before	deciding	that	it	is	safe	to
send	traffic	to	the	instance.

Now,	if	you	are	paying	close	attention,	you	might	note	that	the	algorithm	does

not	really	sound	like	autohealing	because	the	service	does	not	actually	restart	the
unhealthy	instances,	it	merely	continues	polling	them,	hoping	that	some	engineer
has	gone	in	and	fixed	them.	So	this,	technically,	is	healing,	but	not	quite
autohealing.

If	you	thought	this,	well,	you're	wide	awake,	and	absolutely	right.	The	term
autohealing	refers	specifically	to	an	additional	feature	(currently	in	beta)	in
which	the	health	check	will	recreate	an	instance	once	the	health	check	fails.	This
automated	restart	really	is	autohealing	although	even	the	ordinary	healing	is
quite	important	because	it	ensures	that	crashes	of	individual	members	of	an	MIG
do	not	reduce	the	capacity	of	the	MIG	as	a	whole.

Autoscaling	is	another	important	additional	feature	of	MIGs.	You	can	specify	a
way	for	the	MIG	to	measure	how	much	load	your	VM	instances	are
experiencing,	and	the	number	of	elements	in	the	MIG	will	go	up	or	down	in
order	keep	that	load	close	to	a	threshold	you	specify.

So,	for	instance,	you	might	specify	a	CPU	utilization	threshold,	say	60%.	The
service	will	then	measure	the	average	CPU	utilization	across	the	MIG,	and	if	that
number	exceeds	60%,	new	VM	instances	will	be	spun	up	from	the	instance
template	we	mentioned	earlier.	Later,	say	traffic	dies	down	and	the	average	CPU
utilization	falls	to	55%,	the	MIG	will	also	scale	down	by	getting	rid	of	some	VM
instances.	This	scale-down	is	graceful;	connection	draining	will	ensure	that
existing	requests	are	serviced	even	as	new	ones	are	not	accepted.	Over	time,
those	existing	requests	will	be	serviced,	and	once	they	are	all	done,	the	instance
can	shut	down	and	exit	the	MIG.

Autoscaling	is	very	fast,	policies	are	checked,	and	updates	to	the	state	of	the
MIG	are	made	every	minute	or	so.

Another	few	important	points	worth	keeping	in	mind:	autoscaling	policies	can
focus	on	CPU	utilization,	HTTP	load	balancing	requests/second,	or	Stackdriver
metrics.	The	last	bit	about	Stackdriver	is	subtle:	remember	that	Stackdriver

allows	us	to	create	custom	metrics,	so	we	effectively	can	specify	an	autoscaling
policy	based	on	anything	we	want	to	measure	(we	do	need	to	instrument	our
code	and	define	the	custom	metric	in	Stackdriver	though).

If	you	specify	multiple	policies,	the	MIG	will	go	with	the	most	liberal	policy,
that	is,	it	will	always	to	tend	to	provision	the	largest	number	of	VM	instances
that	might	be	needed	by	your	app.

The	advantage	of	autoscaling	is	obvious:	you	can	scale	up	when	traffic	surges,
but	scale	down	(and	save	cost)	when	traffic	falls.	Autoscaling	is	a	pretty
important	feature	for	any	compute	service,	and	indeed,	GCE	VMs	are	not	alone
in	offering	this	functionality.	Autoscaling	comes	with	the	territory	in	App
Engine,	you	don't	need	to	do	anything	to	get	it	going.	App	Engine	Flex	is	a	bit
slower	to	scale	up	and	down	than	App	Engine	standard,	but	they	both	provide
autoscaling.	On	the	GKE,	you	can	use	an	abstraction	called	a	Horizontal	Pod
Autoscaler	(HPA)	to	get	similar	functionality.

Hopefully,	the	manner	in	which	the	platform	manages	an	instance	group	is	clear,
and	there	is	a	lot	of	behind-the-scenes	processing	going	on	to	make	sure	that	the
actual	and	desired	states	of	the	MIG	are	in	synch.	One	last	bit,	you	should	be
aware	that	MIGs	can	be	hooked	up,	pretty	much	automatically,	to	load	balancers
as	backend	server	clusters.	This	use	of	MIGs	with	load	balancers	is	a	very
important	cloud	use	case.

Cloud	deployment	manager
Managed	instance	groups	are	a	pretty	fine	way	to	automate	virtual	machines,	but
as	we	have	already	seen,	VM	instances	are	only	a	small	part	of	the	full	suite	of
services	a	cloud	platform	has	to	offer.	You	might	legitimately	even	question
whether	MIGs	constitute	IAC;	after	all,	MIGs	can	be	scripted	using	gcloud	but	not
really	using	a	programming	language.	To	that	extent,	MIGs	are	a	primitive	form
of	infrastructure	automation,	but	far	from	the	real	deal.

Let's	say	you	needed	to	instantiate	1000	VM	instances	and	each	with	a	specific
instance	hostname	and	unique	customized	configuration.	How	would	you	go
about	this?

Here	are	some	options:

Get	someone	to	sit	and	create	them,	one	by	one,	using	the	web	UI.	This	is
not	as	inefficient	as	it	sounds	because	the	configurations	are	all	different
from	each	other,	many	organizations	have	teams	that	do	exactly	this.
Organize	the	configurations,	and	put	them	in	a	database	table.	This	table
would	have	columns	for	each	individual	property,	such	as	hostname,
machine	type,	location,	and	zone.	Then	write	a	program	that	reads	those
from	a	database	and	invokes	the	Google	Cloud	API,	either	using	the
RESTful	API	directly,	or	using	the	gcloud	command	line.
Create	individual	templates	for	each	unique	configuration,	and	create	a
managed	instance	group	for	each,	using	the	exact	number	of	instances	of
each	type.	Note	that	we	would	lose	the	ability	to	customize	the	hostname.

None	of	these	options	are	particularly	appealing.	The	middle	option	is	the	most
robust	from	many	points	of	view,	but	it	has	one	important	drawback:	it	involves
writing	a	lot	of	code.	Not	just	any	code,	but	sensitive	code	that	will
automatically	provision	machines.	If	that	code	ran	into	an	infinite	loop	and
created	a	million	VM	instances	rather	than	just	a	thousand,	there	would	be	real
problems	for	everyone	concerned.

Would	it	not	be	awesome	if	the	platform	provided	some	functionality	that
basically	did	the	same	thing,	but	spared	us	from	writing	code?

It	turns	out	this	exact	same	question	has	been	asked	several	times	in	several
different	contexts,	and	the	answer	is	almost	always,	yes,	it	would	be	awesome,
and	that	would	need	a	declarative	syntax	that	is	not	quite	code.

If	you	are	wondering	what	some	of	these	contexts	are,	here	are	three:

Structured	Query	Language	(SQL),	is	a	declarative	language	that	allows
users	(even	non-programmers)	the	ability	to	pull	data	from	complicated
RDBMS	without	bothering	about	their	internals.
The	Hypertext	Markup	Language	(HTML)	is	a	declarative	language	that
allows	users	(even	non-programmers)	the	ability	to	create	and	render
complicated	web	pages	on	browsers	without	bothering	about	their	internals.
JavaScript	Object	Notation	(JSON)	is	a	specification	format	that	allows
users	(even	non-programmers)	the	ability	to	query	and	pull	data	from
document	storage	technologies	such	as	Elasticsearch	without	bothering
about	its	internals.

The	idea	is	easy	to	extend	to	infrastructure	deployments:	create	a	template	and
specify	what	infrastructure	you'd	like	to	provision	using	that	template	and	pass
that	template	over	to	the	platform,	which	will	take	care	of	the	rest.

We	can	then	bring	to	bear	all	the	following	advantages	of	working	with	code,
without	having	to	actually	write	code	ourselves:

Reuse:	The	same	template	can	be	used	again	and	again	without	additional
effort
Composability:	One	template	can	include	or	reference	another,	and
complex	architectures	can	be	put	together	this	way
Source	control:	The	templates	can	be	placed	in	source	repositories	(such	as
Git)	and	subject	to	all	of	the	associated	checks	and	balances

So,	to	create	1,000	VMs,	the	steps	needed	are	as	follows:

1.	 Create	a	configuration	file,	and	let's	call	this	simple_config.yaml:

resources:	

-	name:	some-vm	

		type:	compute.v1.instance	

		properties:	

				zone:	asia-south1-a	

				machineType:

					https://www.googleapis.com/compute/v1/projects/myproject/

							zones/us-central1-f/machineTypes/f1-micro	

				disks:	

				-	deviceName:	boot	

						type:	PERSISTENT	

						boot:	true	

						autoDelete:	true	

						initializeParams:	

								sourceImage:	https://www.googleapis.com/compute/v1/projects/debian-

cloud/global/images/family/debian-8	

				networkInterfaces:	

				-	network:	

https://www.googleapis.com/compute/v1/projects/myproject/global/networks/default

	

						accessConfigs:	

						-	name:	External	NAT	

								type:	ONE_TO_ONE_NAT	

2.	 Execute	the	configuration	file	using:

gcloud	deployment-manager	deployments	create	my-deployment	--config	

simple_config.yaml	

If	all	goes	well,	at	this	point,	if	you	navigate	to	your	VM	instances	page,	you
will	find	a	VM	there,	named	some-vm,	in	the	zone	asia-south1-a.	In	addition,	you
will	see	a	deployment	created	under	the	Deployments	tab,	you	can	then	go	ahead
and	delete	it	to	roll	back	this	deployment	(that	is,	to	get	rid	of	the	instance	you
just	created).

Now	all	this	sounds	awesome	and	really	simple,	but	you	should	be	aware	of	a
few	caveats:

As	of	this	writing,	Google	Deployment	Manager	is	not	quite	up	there	yet
with	other	IAC	tools	such	as	Terraform	or	even	CloudFormation	on	AWS.
Deployments	sometimes	behave	strangely	and	are	painful	to	debug,	relative
to	those	other	tools	that	are	pretty	robust	now.
YAML	is	a	painful	format	to	work	with.	The	syntax	needs	to	be	pretty
precise,	indentations	count	(as	in	Python),	and	list	elements	need	to	be
prefixed	by	a	hyphen	(-),	else	the	configuration	will	be	rejected	as	it	is	ill-
formed.	Azure	uses	JSON	for	similar	specifications,	and	that	is	probably	a
far	easier	choice	to	work	with.
YAML,	as	it	stands	above,	cannot	be	directly	parameterized.	To	be	able	to
specify	parameters	within	the	YAML,	you'd	need	an	associated
programming	language,	which	has	to	be	either	JINJA	or	Python.	A	useful
analogy	here	is	presented	here	to	make	this	clear.

Summary
	

Clearly,	using	deployment	manager	seems	like	quite	a	task	given	all	of	this.
Here,	though,	is	what	you	should	be	sure	to	remember	about	IAC:

Managed	Instance	Groups	are	a	powerful	construct	for	autohealing	and
autoscaling	groups	of	GCE	VMs
Infrastructure	as	a	Code	allows	us	to	provision	infrastructure	using	template
files	that	can	be	reused,	composed,	and	checked	into	source	control
Google's	Cloud	Deployment	Manager	offers	an	IAC	framework	using
YAML	configuration	files,	potentially	parameterized	using	Jinja	or	Python
Google's	IaaC	offering,	Deployment	Manager,	is	not	quite	on	the	same	level
of	capabilities	as	the	current	segment	leader	(Terraform),	but	it	is	getting
there

	

	

Security	on	the	GCP
This	chapter	is	rather	different	from	virtually	every	other	chapter	in	this	book.
The	other	chapters	have	mostly	focused	on	the	acquisition	of	skills	such	as	how
to	provision	resources	(such	as	VMs	or	storage)	or	how	to	get	results	(such	as
BigQuery),	while	this	chapter	is	mostly	about	knowledge	such	as	how	Google
has	gone	about	planning	for	security	on	the	Google	Cloud	Platform	(GCP).

You	will	learn	the	following	topics	in	this	chapter:

Some	of	the	security	features	that	the	GCP	provides
Some	tools	that	the	GCP	provides	for	your	benefit,	but	that	you	still	have	to
use
Some	best	practices	and	design	choices	that	are	entirely	yours	to	make

Google	has	a	long	history	of	run-ins	with	hackers	and	cybersecurity	threats.	As
an	organization,	Google	has	not	been	shy	of	taking	on	governments	the	world
over,	and	news	reports	have	been	rife	for	more	than	a	decade	about	how
governments	in	some	parts	of	the	world	use	cyberwarfare	directed	at	specific
companies	and	countries	as	an	instrument	of	foreign	and	economic	policy.

Okay,	you	may	ask,	why	do	we	care?	Well,	we	care	because	Google's	long
experience	with,	and	success	in,	protecting	itself	against	cyberattacks	plays	to
our	advantage	as	customers	of	the	Google	Cloud	Platform.	From	years	of
warding	off	security	threats,	Google	is	well	aware	of	the	security	implications	of
the	cloud	model.	Thus,	they	provide	a	well-secured	structure	for	their
operational	activities,	data	centers,	customer	data,	organizational	structure,
hiring	process,	and	user	support.

Google	has	a	global	scale	infrastructure	to	provide	security	for	service
deployments,	data	storage,	interservice	communication,	private	communication
for	customers,	and	admin	operations.	Google	uses	this	global	infrastructure	to
build	commercial	services,	such	as	Gmail,	Google	search,	Google	Photos,	and
enterprise	services,	such	as	GCP	and	gsuite.

Security	features	at	Google	and	on
the	GCP
Let's	start	by	discussing	what	we	get	directly	by	virtue	of	using	the	GCP.	This
section	is	all	about	the	platform;	these	are	security	protections	that	we	very
likely	would	not	be	able	to	engineer	for	ourselves.	The	big	cloud	providers,
including	Google,	have	a	lot	of	time,	money,	and	resources	to	pour	into	getting
these	little	details	right.

Let's	go	through	some	of	the	many	layers	of	security	provided	by	the	GCP.

Data	center	physical	security:	Only	a	small	fraction	of	Google	employees
ever	get	to	visit	a	GCP	data	center.	Those	data	centers,	the	zones	that	we
have	been	talking	so	much	about,	probably	would	seem	out	of	a	Bond	film
to	those	that	did—security	lasers,	biometric	detectors,	alarms,	cameras,	and
all	of	that	cloak-and-dagger	stuff.
Custom	hardware	and	trusted	booting:	A	specific	form	of	security
attacks	named	privileged	access	attacks	are	on	the	rise.	These	involve
malicious	code	running	from	the	least	likely	spots	that	you'd	expect,	the	OS
image,	hypervisor,	or	boot	loader.	There	is	only	way	to	really	protect
against	these,	which	is	to	design	and	build	every	single	element	in-house.
Google	has	done	that,	including	hardware,	a	firmware	stack,	curated	OS
images,	and	a	hardened	hypervisor.	Google	data	centers	are	populated	with
thousands	of	servers	connected	to	a	local	network.	Google	selects	and
validates	building	components	from	vendors	and	designs	custom	secure
server	boards	and	networking	devices	for	server	machines.	Google	has
cryptographic	signatures	on	all	low-level	components,	such	as	BIOS,
bootloader,	kernel,	and	base	OS,	to	validate	the	correct	software	stack	is
booting	up.	In	addition,	Google	also	designs	custom	hardware	security
chips	installed	on	both	server	and	peripherals	to	authenticate	legitimate
Google	devices.
Data	disposal:	The	detritus	of	the	persistent	disks	and	other	storage	devices
that	we	use	are	also	cleaned	thoroughly	by	Google.	This	data	destruction
process	involves	several	steps:	an	authorized	individual	will	wipe	the	disk
clean	using	a	logical	wipe.	Then,	a	different	authorized	individual	will

inspect	the	wiped	disk.	The	results	of	the	erasure	are	stored	and	logged	too.
Then,	the	erased	driver	is	released	into	inventory	for	reuse.	If	the	disk	was
damaged	and	could	not	be	wiped	clean,	it	is	stored	securely	and	not	reused,
and	such	devices	are	periodically	destroyed.	Each	facility	where	data
disposal	takes	place	is	audited	once	a	week.
Data	encryption:	We	will	have	more	to	say	on	this,	but	in	a	nutshell,	the
default	is	for	the	GCP	to	always	encrypt	all	customer	data	at	rest	as	well	as
in	motion.	This	encryption	is	automatic,	and	it	requires	no	action	on	the
user's	part.	Persistent	disks,	for	instance,	are	already	encrypted	using	AES-
256,	and	the	keys	themselves	are	encrypted	with	master	keys	(which	in	turn
are	regularly	rotated).	All	this	key	management	and	rotation	is	managed	by
Google.	In	addition	to	this	default	encryption,	a	couple	of	other	encryption
options	exist	as	well,	more	on	those	in	the	following	diagram:

Secure	service	deployment:	Google's	security	documentation	will	often
refer	to	secure	service	deployment,	and	it	is	important	to	understand	that	in
this	context,	the	term	service	has	a	specific	meaning	in	the	context	of
security:	a	service	is	the	application	binary	that	a	developer	writes	and	runs
on	infrastructure.	For	example,	consider	an	App	Engine	sandbox	running
customer's	application.	Thousands	of	machines	may	run	several	copies	of	a

single	service,	and	they	require	a	good	orchestrator	to	manage	and	control
the	services	on	cluster.	This	secure	service	deployment	is	based	on	three
attributes:

Identity:	Each	service	running	on	Google	infrastructure	has	an
associated	service	account	identity.	A	service	has	to	submit
cryptographic	credentials	provided	to	it	to	prove	its	identity	while
making	or	receiving	remote	procedure	calls	(RPC)	to	other	services.
Clients	use	these	identities	to	make	sure	that	they	are	connecting	to	an
intended	server	and	the	server	will	use	to	restrict	access	to	data	and
methods	to	specific	clients.
Integrity:	Google	uses	a	cryptographic	authentication	and
authorization	technique	at	an	application	layer	to	provide	strong	access
control	at	the	abstraction	level	for	interservice	communication.	Google
has	an	ingress	and	egress	filtering	facility	at	various	points	in	their
network	to	avoid	IP	spoofing.	With	this	approach,	Google	is	able	to
maximize	their	network's	performance	and	its	availability.
Isolation:	Google	has	an	effective	sandbox	technique	to	isolate
services	running	on	the	same	machine.	This	includes	Linux	user
separation,	language	and	kernel-based	sandboxes,	and	hardware
virtualization.	Google	also	secures	operation	of	sensitive	services	such
as	cluster	orchestration	in	GKE	on	exclusively	dedicated	machines
(that	is	master	nodes	will	be	completely	sandboxed	from	worker	nodes
in	terms	of	physical	resource	allocation	and	security	provisioning).

Secure	interservice	communication:	The	term	inter-service
communication	refers	to	GCP's	resources	and	services	talking	to	each	other
(for	example,	an	App	Engine	application	accessing	BigQuery	through
APIs).	For	doing	so,	the	owners	of	the	services	have	individual	whitelists	of
services	which	can	access	them.	Using	them,	the	owner	of	the	service	can
also	allow	some	IAM	identities	to	connect	with	the	services	managed	by
them.

Apart	from	that,	Google	engineers	on	the	backend	who	would	be
responsible	to	manage	the	smooth	and	downtime-free	running	of	the
services	are	also	provided	special	identities	to	access	the	services	(to
manage	them,	not	to	modify	their	user-input	data).

Google	encrypts	interservice	communication	by	encapsulating
application	layer	protocols	(such	as	HTTP)	in	RPS	mechanisms	to	isolate

applications	layer	and	to	remove	any	kind	of	dependency	of	network
security.

Using	Google	Front	End:	Whenever	we	want	to	expose	a	service	using
GCP,	the	TLS	certificate	management,	service	registration,	and	DNS	are
managed	by	Google	itself	(instead	of	any	third-party	vendor).	This	facility
is	called	Google	Front	End	(GFE)	service.	For	example,	a	simple	file	of
Python	code	can	be	hosted	as	an	application	on	App	Engine	that
(application)	will	have	its	own	IP,	DNS	name,	and	so	on.
In-built	DDoS	protections:	Distributed	Denial-of-Service	attacks	are	very
well	studied,	and	precautions	against	such	attacks	are	already	built	into
many	GCP	services,	notably	in	networking	and	load	balancing.	Load
balancers	can	actually	be	thought	of	as	hardened,	bastion	hosts	that	serve	as
lightning	rods	to	attract	attacks,	and	so	are	suitably	hardened	by	Google	to
ensure	that	they	can	withstand	those	attacks.	HTTP(S)	and	SSL	proxy	load
balancers,	in	particular,	can	protect	your	backend	instances	from	several
threats,	including	SYN	floods,	port	exhaustion,	and	IP	fragment	floods.
Insider	risk	and	intrusion	detection:	Google	constantly	monitors
activities	of	all	available	devices	in	Google	infrastructure	for	any	suspicious
activities.	To	secure	employees'	accounts,	Google	has	replaced	phishable
OTP	second	factors	with	U2F,	compatible	security	keys.

Google	also	monitors	their	customer	devices	that	employees	use	to
operate	their	infrastructure.	Google	also	conducts	a	periodic	check	on	the
status	of	OS	images	with	security	patches	on	customer	devices.	Google
has	a	special	mechanism	to	grant	access	privileges	named	application-

level	access	management	control,	which	exposes	internal	applications	to
only	specific	users	from	correctly	managed	devices	and	expected
network	and	geographic	locations.	Google	has	a	very	strict	and	secure
way	to	manage	its	administrative	access	privileges.	They	have	a	rigorous
monitoring	process	of	employee	activities	and	also	a	predefined	limit	for
administrative	accesses	for	employees.

Google-provided	tools	and	options	for
security
	

As	we've	just	seen,	the	platform	already	does	a	lot	for	us	,	but	we	still	could	end
up	leaving	ourselves	vulnerable	to	attack	if	we	don't	go	about	designing	our
cloud	infrastructure	carefully.	To	begin	with,	let's	understand	a	few	facilities
provided	by	the	platform	for	our	benefit.

Data	encryption	options:	We	have	already	discussed	Google's	default
encryption;	this	encrypts	pretty	much	everything	and	requires	no	user
action.	So,	for	instance,	all	persistent	disks	are	encrypted	with	AES-256
keys	that	are	automatically	created,	rotated,	and	themselves	encrypted	by
Google.
In	addition	to	default	encryption,	there	are	a	couple	of	other	encryption
options	available	to	users.	Both	of	these	only	make	sense	for	those	who
really	understand	encryption,	cryptography,	and	security.	If	you	don't	know
how	these	work,	it's	best	that	you	just	stick	with	the	default	encryption.

Customer-managed	encryption	keys	(CMEK)	using	Cloud	KMS:
This	option	involves	a	user	taking	control	of	the	keys	that	are	used,	but
still	storing	those	keys	securely	on	the	GCP,	using	the	key
management	service.	The	user	is	now	responsible	for	managing	the
keys	that	are	for	creating,	rotating	and	destroying	them.	The	only	GCP
service	that	currently	supports	CMEK	is	BigQuery	and	is	in	beta	stage
for	Cloud	Storage.	When	might	you	use	this	option?	Whenever	you
have	sensitive	data	as	well	as	the	stipulation	that	that	data	be	protected
using	your	own	key.	Note	that	the	keys	are	stored	on	the	cloud,	that	is,
they	do	leave	your	on-premise	facility	if	you	opt	for	CMEK.
Customer-supplied	encryption	keys	(CSEK):	Here,	the	user
specifies	which	keys	are	to	be	used,	but	those	keys	do	not	ever	leave
the	user's	premises.	To	be	precise,	the	keys	are	sent	to	Google	as	a	part
of	API	service	calls,	but	Google	only	uses	these	keys	in	memory	and
never	persists	them	on	the	cloud.	CSEK	is	supported	by	two	important

GCP	services:	data	in	cloud	storage	buckets	as	well	as	by	persistent
disks	on	GCE	VMs.	There	is	an	important	caveat	here	though:	if	you
lose	your	key	after	having	encrypted	some	GCP	data	with	it,	you	are
entirely	out	of	luck.	There	will	be	no	way	for	Google	to	recover	that
data.	CSEK	makes	sense	when	you	have	sensitive	data	that	needs	to	be
encrypted	using	your	own	keys,	and	what's	more,	you	have	a
stipulation	that	those	keys	cannot	leave	your	on-premise	facilities.

Cloud	security	scanner:	Cloud	security	scanner	is	a	GCP,
provided	security	scanner	for	common	vulnerabilities.	It	has	long
been	available	for	App	Engine	applications,	but	is	now	also
available	in	alpha	for	Compute	Engine	VMs.	This	handy	utility
will	automatically	scan	and	detect	the	following	four	common
vulnerabilities:

Cross-site	scripting	(XSS)
Flash	injection
Mixed	content	(HTTP	in	HTTPS)
The	use	of	outdated/insecure	libraries

Like	most	security	scanners,	it	automatically	crawls	an	application,
follows	links,	and	tries	out	as	many	different	types	of	user	input	and
event	handlers	as	possible.

	

	

Some	security	best	practices
	

Here	is	a	list	of	design	choices	that	you	could	exercise	to	cope	with	security
threats	such	as	DDoS	attacks:

Use	hardened	bastion	hosts	such	as	load	balancers	(particularly	HTTP(S)
and	SSL	proxy	load	balancers).
Make	good	use	of	the	firewall	rules	in	your	VPC	network.	Ensure	that
incoming	traffic	from	unknown	sources,	or	on	unknown	ports,	or	protocols
is	not	allowed	through.
Use	managed	services	such	as	Dataflow	and	Cloud	Functions	wherever
possible;	these	are	serverless	and	so	have	smaller	attack	vectors.
If	your	application	lends	itself	to	App	Engine	it	has	several	security	benefits
over	GCE	or	GKE,	and	it	can	also	be	used	to	autoscale	up	quickly,	damping
the	impact	of	a	DDOS	attack.
If	you	are	using	GCE	VMs,	consider	the	use	of	API	rate	limits	to	ensure
that	the	number	of	requests	to	a	given	VM	does	not	increase	in	an
uncontrolled	fashion.
Use	NAT	gateways	and	avoid	public	IPs	wherever	possible	to	ensure
network	isolation.
Use	Google	CDN	as	a	way	to	offload	incoming	requests	for	static	content.
In	the	event	of	a	storm	of	incoming	user	requests,	the	CDN	servers	will	be
on	the	edge	of	the	network,	and	traffic	into	the	core	infrastructure	will	be
reduced.

	

	

BeyondCorp	–	Identity-Aware	Proxy
	

While	every	organisation	wishes	to	have	and	maintain	security	of	it's	network
infrastructure	and	data,	maintaining	zero-trust	architecture	(where	all	traffic	is
equally	untrustworthy)	with	increasing	scale	is	always	a	challenge.	Google
claims	to	have	maintained	it	for	6	years	and	the	result	of	such	research	and
practices	is	BeyondCorp,	an	enterprise	security	model	built	on	the	idea	of
making	individual	users	the	units	of	security	management	instead	of	relying	on
network	perimeter.

And	now,	BeyondCorp	is	available	on	GCP	as	a	service.	They	call	it	Identity-
Aware-Proxy	(IAP).	Here,	the	IAM	identities	are	used	to	create	firewall	and
other	security	policies	for	the	user.	As	a	user,	it	implies	following	practices
towards	you:

Service	access	can	not	be	determined	just	by	being	a	part	of	some	network
(unlike	most	of	the	University	resource	access	management	policies).
Tokens	to	access	services	contain	not	only	the	user	identity	but	also	device
information	the	user	is	connecting	from	(to	avoid	bots).
All	tokens	of	service	access	are	end-to-end	(GCP-to-User)	encrypted.

All	of	this	not	only	ensures	greater	amount	of	security	but	also	eases	the	remote
access	to	GCP	resources	which	is	an	integral	part	of	using	a	public	cloud.

	

	

	

Summary
In	this	chapter,	you	learned	that	the	GCP	benefits	from	Google's	long	experience
countering	cyber-threats	and	security	attacks	targeted	at	other	Google	services,
such	as	Google	search,	YouTube,	and	Gmail.

There	are	several	built-in	security	features	that	already	protect	users	of	the	GCP
from	several	threats	that	might	not	even	be	recognized	as	existing	in	an	on-
premise	world.

In	addition	to	these	in-built	protections,	all	GCP	users	have	various	tools	at	their
disposal	to	scan	for	security	threats	and	to	protect	their	data.

Finally,	there	are	also	some	well-recognized	best	practices	around	cloud
architecture	design	that	ought	to	be	kept	in	mind	in	order	to	reduce	the	likelihood
of	attacks	and	the	impact	of	attacks	that	do	indeed	occur.

Pricing	Considerations
	

Using	a	public	cloud	provider,	such	as	the	Google	Cloud	Platform	(GCP),	has
some	important	financial	advantages—notably,	that	you	can	pay	for	what	you
use,	and	thus	avoid	large	upfront	financial	commitments.	However,	public	cloud
services	are	not	particularly	cheap	or	easy	to	use.	If	you	are	not	careful	about
how	you	use	them,	you	can	easily	find	yourself	faced	with	a	large,	hard-to-
understand	bill.	The	risk	of	being	nickel-and-dimed	is	real:	like	a	traveler	on	an
economy	airline,	you	might	find	yourself	paying	for	facilities	that	you	have
entirely	taken	for	granted	until	now.	This	chapter	is	meant	to	help	avoid	sticker-
shock	and	sudden	unpleasant	surprises.

We	will	cover	the	following	topics	in	the	chapter:

The	actual	pricing	models	for	different	GCP	services	are	interesting	and
very	varied
For	any	serious	cloud	architect,	it	makes	sense	to	experiment	with	Google's
very	transparent	pricing	calculator	and	get	a	sense	of	the	sensitivities	of
pricing	to	different	usage	parameters

All	screenshots	in	this	chapter	are	from	Google's	cloud	pricing	calculator,	which
is	available	at	https://cloud.google.com/products/calculator/.	The	pricing	and	rates	of
these	services	keep	changing,	so	you	should	be	aware	that	these	screenshots	are
all	dated	May	14,	2018.	Please	do	your	homework	on	the	latest	prices	and
policies	when	making	real-world	decisions.	Also,	in	the	comparisons	provided	in
this	chapter;	we	have	considered	lowest	to	quite	high	pricing	extremes	for	the
most	part.	It	is	trivial	that	your	nature	of	application	and	requirement	of
resources	will	vary	immensely	so	make	sure	to	make	your	choices	wisely.

	

	

	

https://cloud.google.com/products/calculator/

Compute	Engine
VM	instances	vary	a	great	deal	in	price.	Notice	how	the	two	following
screenshots	differ.	The	left-hand	side	screenshot	shows	a	high-end	configuration
that	includes	TPUs	(specialized	processors	for	ML	applications	that	are	in	high
demand	these	days).	These	machines	cost	about	$946/month,	whereas	the	far
simpler	machine	type	in	the	right-hand	side	screenshot	costs	just	$3.88/month:

	

BigTable
BigTable	is	a	high-end	service	that	is	blazingly	fast	and	geared	to	very	large	data
sizes	(in	the	order	of	hundreds	of	TB	or	even	PB).	Therefore,	it	should	come	as
no	surprise	that	BigTable	is	expensive.	Even	at	the	small	end,	with	a	data	size	of
3	TB	(that's	three	nodes,	each	with	1	TB),	the	cost	is	a	considerable
$1,597/month.	If	we	scale	up	a	bit	to	20	nodes,	our	bill	rises	to	more	than
$10,000/month.	BigTable	clusters	definitely	need	to	be	taken	down	when	not	in
use,	you	should	brace	yourself	for	unpleasant	billing	surprises:

	

BigQuery
BigQuery	is	an	incredibly	attractive	service	to	use,	and	the	pricing	is	an
important	part	of	its	appeal.	Notice	how	the	cost	of	a	reasonably	realistic,	albeit
light,	use	case	is	just	40	cents	a	month.	Try	the	same	level	of	usage	on	Teradata,
and	you'll	understand	why	BigQuery	is	Google's	most	touted	offering:

	

Datastore
Datastore	is	a	document-oriented	database	with	rather	arcane	pricing.	The	bill
reflects	several	parameters:	the	size	of	data	stored,	the	number	of	entity	reads,
writes,	and	deletes.	Datastore	is	inexpensive,	particularly	when	you	take	into
account	the	free	tier	it	offers:

Cloud	SQL
Cloud	SQL	can	be	thought	of	as	a	VM	with	MySQL	(or	PostgreSQL)	installed
on	it,	along	with	various	associated	services	provided	by	the	platform.	So	it
ought	to	come	as	no	surprise	that	the	cost	of	a	Cloud	SQL	instance	can	vary	from
$1,142/month	to	just	$9/month.	What's	the	big	difference?	It's	all	in	the	machine
type	we	pick;	the	high	bill	refers	to	the	custom	machine	type	and	the	high-
availability	configuration	(High	Availability	(HA)):

	

Google	Kubernetes	Engine
The	Google	Kubernetes	service	effectively	runs	a	cluster	of	nodes	(cloud	VM
instances)	that	host	containers	and	the	Kubernetes	orchestration	layer.	Again,	we
can	see	how	the	type	and	number	of	VMs	we	pick	dramatically	alter	how	much
we	pay.	The	lesson	is	a	recurring	one:	many	GCP	services	are	based	on	GCE
VMs,	and	those	VMs	vary	wildly	in	their	costs.	The	left-hand	side	screenshot
shows	a	five-node	cluster	running	on	n1-standard-16	instances,	and	costing
$1,941/month,	whereas	the	right-hand	side	screenshot	is	a	single-node	cluster
running	on	f1-micro,	and	it	costs	just	$3.88/month.

	

Pub/Sub
Pub/Sub	pricing	is	relatively	simple	to	model,	and	the	sole	determinant	is	the
volume	of	message	data.	If	your	app	rivals	Twitter	and	generates	1	PB	per
month,	the	cost	works	out	to	almost	$44,000.	At	the	other	extreme,	a	toy
client/server	app	will	set	you	back	just	12	cents.

	

Cloud	ML	Engine
The	Cloud	ML	Engine	offers	two	distinct	subservices:	distributed	training	and
distributed	prediction.	Training	refers	to	the	process	of	building	a	machine
learning	model	from	a	corpus	of	data,	whereas	prediction	refers	to	the	use	of	that
model	to	actually	make	forecasts.

Depending	on	how	long	your	ML	training	jobs	run	and	whether	you	use	batch	or
online	mode	for	prediction,	the	costs	vary	significantly.	A	fairly	heavy-duty	set
of	ML	workloads	will	cost	about	$4,000	per	month:

Stackdriver
The	Stackdriver	suite	offers	logging,	monitoring,	and	other	cloud	ops	services.
As	the	volume	of	your	log	data	and	the	number	of	monitored	resources	starts	to
rise,	your	Stackdriver	bill	goes	up	quickly	too;	notice	how	just	100	monitored
resources	and	100	custom	metrics	with	100	GB	of	logs	rack	up	a	bill	of
$800/month:

	

Video	Intelligence	API
Google,	like	AWS	and	Azure,	has	very	powerful	machine	learning	APIs	that	are
available	for	a	fee.	These	ML/AI	APIs	are	pretrained,	meaning	that	you	don't
need	to	bother	writing	any	ML	models	of	your	own;	you	can	just	use	the	great
models	Google	has	already	built.	Use	cases	include	the	detection	of	explicit
content,	celebrities,	and	other	specific	features	within	video.	Notice	that
scanning	10,000	minutes	of	video	for	a	few	different	types	of	features	costs
about	$2,250/month,	as	shown	in	the	following	screenshot:

	

Key	Management	Service	–	KMS
You	could	choose	to	store	your	organization's	keys	on	the	Google	Cloud	using
the	Google	KMS.	The	pricing	of	the	KMS	depends	on	the	number	of	keys	and
the	number	of	operations,	and	you	can	see	that	even	for	a	large	number	of	both.
The	bill	works	out	to	a	relatively	modest	$600/month,	as	shown	in	the	following
screenshot:

	

Vision	API
The	Vision	API	is	yet	another	pretrained	ML	API,	like	the	video	intelligence
API.	Check	out	how	many	different	kinds	of	operations	are	possible	with	this:
OCR,	face	detection,	explicit	content	detection,	and	so	on.	You	might	be	tempted
to	build	an	entire	startup	around	this	one,	and	you	would	not	be	the	only	one.
However,	it	won't	come	cheap;	performing	millions	of	such	operations	will	cost
almost	$80,000/month.	Starting	out	is	easy	enough	though,	and	if	you	are
performing	operations	in	the	thousands	rather	than	millions,	the	price	will	be	just
about	$15/month:

	

Summary
In	this	chapter,	you	learned	that	as	we	would	expect,	the	prices	of	most	GCP
services	vary	widely,	based	on	their	usage,	although	the	definition	of	usage
varies	widely	by	service.	Some	services,	such	as	BigTable	or	Cloud	Spanner,	are
inherently	expensive	and	ought	to	be	used	with	care.	Several	GCP	services	(for
example,	Cloud	SQL	and	Kubernetes)	are	built	atop	GCE	VMs,	and	the	choices
of	VM	type	can	dramatically	change	how	much	we	pay.

	

Effective	Use	of	the	GCP
	

It	is	time	to	connect	the	dots!	We	started	our	journey	with	an	introduction	to
public	cloud	platforms	and	why	GCP	is	an	important	player	in	the	game.	We
explored	all	of	the	GCP	features	and	offerings	and	learned	many	of	their	use
cases.	We	also	learned	the	pricing	differences	between	our	choices	of
platforms/resources	can	bring.	Now,	let's	sharpen	all	of	this	with	some	good
practices	and	effective	use	cases	to	keep	in	mind	to	make	sure	we	conclude	our
journey	on	a	satisfactory	note.

You	will	learn	the	following	topics	in	this	chapter:

Designing	cost-effective	cloud	apps	can	be	harder	than	it	seems;	learn	some
of	the	tricks	of	the	trade
Designing	for	an	effective	scale:	using	Dataproc	and	Spark	effectively	can
create	a	lot	of	impact	even	with	existing	code	and	existing	skills
Smart	bets	on	new	technologies,	such	as	containers	and	Kubernetes,	can
transform	your	cloud	architecture	and	your	career

	

	

Eat	the	Kubernetes	frog
There	is	a	famous	quote,	attributed	to	Mark	Twain,	that	goes	like	this:

This	excellent	quote	has	given	rise	to	a	flourishing	industry	of	books	and	self-
help	coaches	who	urge	you	to	eat	various	frogs	in	your	life;	we	heartily	agree
with	all	of	their	advice	(well,	most	of	it).	Don't	shy	away	from	upfront	effort	and
unpleasantness;	it	will	pay	off	in	spades	tomorrow.	That's	the	general	idea,	and
we	heartily	agree,	particularly	in	the	context	of	choosing	a	compute	option	on
the	cloud.

We	saw,	early	in	the	book,	how	compute	choices	range	from	Infrastructure	as	a
Service	(IaaS)	to	Platform	as	a	Service	(PaaS).	Depending	on	where	you	are
coming	from,	either	the	IaaS	or	the	PaaS	extremes	are	likely	to	seem	most
appealing	to	you.	If	you	are	coming	from	a	small	startup	or	an	organization	that
does	not	have	a	lot	of	legacy	infrastructure,	the	PaaS	options	will	seem	great—
easy	to	get	started	having	lots	of	friendly	platform-specific	APIs.	If,	on	the	other
hand,	you	are	from	a	large	organization	with	a	huge,	on-premise	data	center,	the
easiest	path	will	likely	seem	VM	migration.

Now,	of	course,	both	the	IaaS	and	the	PaaS	options	are	perfectly	reasonable
ones,	and	that's	why,	all	cloud	providers	make	sure	that	they	have	a	full	suite	of
such	offerings.	The	Google	suite	of	compute	services	is	shown	in	the	following
diagram:

Now,	all	of	these	options	are	great,	but	we	seriously	recommend	that	you	invest
the	time	and	effort	containerizing	your	apps	(that	is,	build	Docker	containers	of
them),	and	get	them	to	run	on	Kubernetes.

This	might	seem	like	a	big	deal,	a	lot	of	work,	and	it	is.	But	consider	this,	VM
migration	is	no	picnic	either,	particularly	if	you	are	doing	it	for	hundreds	or
thousands	of	VMs.	What's	worse	is	that	if	you	migrate	your	VMs	from
environment	A	(say	your	on-premise	data	center)	to	environment	B	(say	the
GCP)	and	then	6	months	from	now,	you	have	a	new	CEO	who	used	to	work	in
an	AWS	shop	and	that	new	CEO	asks	you	to	move	from	environment	B	(GCP)
to	environment	C	(AWS),	well,	you're	out	of	luck.	All	of	the	VM	migration	will
have	to	be	basically	done	again.

It	might	seem	like	we	are	being	facetious	here,	but	we	are	not.	The	world	is,	in
our	opinion,	moving	to	a	hybrid,	multi-cloud	world.	The	future,	at	least	for	the
intermediate	term,	is	a	hybrid	one.	As	large	organizations	can't	afford	to	write
down	their	existing	DCs	to	zero	and	start	from	scratch	on	the	cloud,	migrations
are	going	to	be	a	reality	of	life	for	the	next	few	years.	The	future	is	also	likely
multi-cloud	because	organizations	have	been	bitten	by	vendor	lock-in	for
products	such	as	expensive	relational	databases,	CRM	software,	and	everything
in	between.	In	addition,	Amazon	in	particular	has	been	quite	aggressive	about
getting	into	new	lines	of	business;	its	acquisition	of	Whole	Foods	would	give	a
whole	set	of	current	and	prospective	AWS	customers	pause.	The	most	likely	way
the	world	will	move	is	toward	hybrid	and	multi-cloud	infrastructure.

The	PaaS	options:	App	Engine	on	GCP	or	Elastic	Beanstalk	on	AWS	will
certainly	have	their	adherents,	but	do	keep	in	mind	that	if	you	go	down	that
route,	you	really	are	tied	down	to	a	specific	cloud	provider.	That's	the	whole
point	of	the	P	in	PaaS,	platform	lock-in.

All	of	this	explains	why	Kubernetes	is	just	so	hot	right	now.	It	has	reached
critical	levels	of	acceptance,	and	leverages	Docker,	which	is	also	stable	and
ubiquitously	accepted.	So,	in	a	nutshell,	eat	that	frog,	containerize	those	apps,
and	move	to	Kubernetes.

Careful	that	you	don't	get	nickel-and-
dimed

When	you	switch	to	the	cloud,	you	might	find	yourself	so	thrilled	at	not	having
these	huge	fixed	costs	anymore,	that	you	might	forget	a	slightly	sobering	fact:
the	big	cloud	providers	all	report	extremely	healthy	financial	results	from	their
cloud	businesses.	If	being	a	cloud	provider	is	so	profitable,	then	consumers	of	a
cloud	provider's	services	need	to	be	sure	that	they	are	not	the	patsies	in	the	room.

This	also	gets	back	to	the	crucial	difference	between	CAPEX	and	OPEX.
CAPEX,	or	capital	expenditure,	refers	to	a	large	upfront	spend	of	money	used
to	get	an	asset	(an	asset	is	a	resource—for	example,	a	physical	server—that	will
yield	benefits	over	time,	not	just	in	the	current	period)	OPEX,	or	operating
expenses,	refer	to	smaller,	recurring	spends	of	money	for	current	period	benefit:	

The	suckers	in	the	cloud	world	are	the	careless	users	who	don't	carefully	watch
their	bills,	who	don't	pay	attention	to	the	pricing	of	products,	and	who	don't
optimize	their	usage	to	save	costs.	If	you	provision	the	biggest	VM,	your	quota
will	allow	you	to,	or	if	you	forget	to	turn	down	your	BigTable	or	Cloud	Spanner
instances,	you	will	be	directly	responsible	for	the	surging	share	prices	of	the	big
cloud	providers.

Pay	for	what	you	allocate	not	what
you	use
	

This	is	an	important	mistake	that	even	experienced	technical	folks	make	while
switching	from	the	on-premise	world	to	the	cloud.	We	are	conditioned	to	think
that	the	cloud	world	is	all	pay-what-you-use,	and	elastic,	but	that	is	not	entirely
true.	There	are	numerous	GCP	services	where	you	pay	for	resources	that	you
allocate	(even	if	you	end	up	not	using	them).	The	three	most	important	ones
probably	are	as	follows:

Block	storage	(persistent	disks	and	local	SSDs)
BigTable
Cloud	Spanner

BigTable	and	Cloud	Spanner	are	resources	where	you	provision	nodes	based	on
your	data	size,	so	at	least	in	those	cases	you	are	unlikely	to	wildly	overprovision.
Block	storage	devices,	the	persistent	disks,	and	local	SSDs	are	quite	likely	to
drop	below	your	penny-pinching	radar	though.	These	disk	abstractions	can
always	be	resized,	so	don't	feel	compelled	to	start	by	provisioning	the	biggest
size	you	can	find.	Start	small	and	add	capacity	as	you	need	to.

	

	

	

Make	friends	with	the	gsuite	admins
We	discussed	the	Identity	and	Access	Management	bits	of	the	GCP,	and	in	that
context,	we	observed	that	human	identities	are	not	actually	defined	in	the	GCP,
rather	they	are	seamlessly	obtained	from	gsuite.	Programmatic	identities	(service
accounts)	do	in	fact	exist	solely	within	the	GCP	though,	as	do	roles.

Now,	the	reality	of	many	organizations	is	that	different	teams	manage	the	gsuite
and	GCP	components.	gsuite	identities	are	often	set	up	when	a	new	employee
joins	the	firm	as	a	part	of	an	onboarding	process	and	might	be	organizationally
linked	to	corporate	IT,	or	even	HR.	GCP,	on	the	other	hand,	is	likely	to	be	a	core
technology	function	that	rolls	up	into	the	CTO.

This	can	have	real	practical	implementations	for	how	things	get	done.	Say,	for
instance,	that	the	GSuite	team	and	the	GCP	teams	don't	get	along	well.	Each
time	a	new	user	joins	or	each	time	a	user	gets	new	responsibilities,	that	user
might	need	to	get	added	to	the	right	gsuite	groups	(also	known	as	Google
groups).	If	the	gsuite	team	is	tardy	getting	this	done,	you	as	a	cloud	architect
might	find	yourself	taking	little	shortcuts	like	creating	a	service	account	that	has
whatever	rights	you	want	and	then	assigning	those	users	the	ServiceAccountActor
role.	This	is	a	tempting	shortcut,	but	one	best	avoided.	You	are	almost	certain	to
forget	to	revoke	that	ServiceAccountActor	privilege	once	the	Google	group	gets	set
up	correctly	and	then	years	later	that	employee	might	go	rogue	and	do	bad	things
without	any	possibility	of	being	traced	because	the	ServiceAccountActor	role	makes
those	actions	seem	like	a	service	account	carried	them	out.

So,	be	a	good	corporate	realist	and	make	friends	with	the	gsuite	folks.	You	will
need	them	a	lot	more	than	they	will	need	you.

Try	to	find	reasons	to	use	network
peering
Remember	that	VPCs	in	the	GCP	world	are	quite	different	from	networks	in	the
physical	world	or	even	on	other	cloud	providers	such	as	AWS.	VPCs	are	more
like	Autonomous	Systems	(AS)	because	each	VPC	can	include	multiple	disjoint
IP	address	ranges.

Resources	that	are	in	the	same	VPC	can	communicate	using	internal	IP	addresses
as	well	as	using	a	project-internal	DNS	facility.	This	is	true	even	if	the	resources
are	in	different	regions.	For	instance,	consider	two	VMs,	one	in	the	US	and	the
other	in	UK.	Provided	these	are	in	the	same	VPC	they	will	be	able	to
communicate	using	internal	IP	addresses	despite	their	physical	distance.

By	contrast	if	two	resources	are	in	different	VPCs	even	if	they	happen	to	be	in
the	same	region	or	even	on	the	same	underlying	bare	metal	box	(remember	that
GCP	VMs	are	multi-tenanted),	they	will	still	have	to	communicate	using	external
IP	addresses,	which	implies	that	the	network	traffic	between	them	will	have	to
pass	over	the	internet.

Communication	on	internal	IP	addresses	has	several	advantages:

Cost:	Remember	that	network	egress	traffic	incurs	charges,	and
communication	over	internal	IP	addresses	avoids	this.
Security:	Google's	internal	networks	are	relatively	invulnerable	to	intrusion
and	security	attacks.	After	all,	Google	has	been	under	siege	from	hackers
for	over	a	decade	now.	However,	once	traffic	leaves	Google's	internal
networks	and	touches	the	internet,	all	bets	are	off.
Latency:	Google	internal	networks	are	blazingly	fast;	this	is	partially	a
legacy	of	Google's	investments	in	YouTube	and	in	trying	to	get	video
served	at	acceptable	latencies	in	all	or	most	regions	of	the	world.	Internal
traffic	on	the	GCP	is	able	to	hitch	a	ride	on	these	really	fast	internal	links.

This	presents	us	with	a	trade-off:	if	we	have	lots	of	small,	modular	VPCs,
organization	of	resources	and	firewall	rules	gets	cleaner,	but	network	traffic	gets

slower,	costlier,	and	less	secure.

A	great	way	to	square	this	circle	is	to	make	use	of	the	feature	named	VPC
peering.	This	allows	a	1:1	link	between	VPCs	so	that	resources	on	the	peered
VPCs	can	communicate	using	internal	IP	addresses.	Unlike	AWS,	GCP	is
cheaper	in	this	aspect	since	it	only	applies	standard	network	charges.	So,	look	for
every	possible	opportunity	to	use	VPC	peering.

Understand	how	sustained	use
discounts	work
Kubernetes	notwithstanding,	GCE	VM	instances	are	likely	to	remain	an	integral
part	of	your	organization's	cloud	strategy	for	the	foreseeable	future.	Because	you
are	certain	to	be	using	a	lot	of	VM	instances,	you	should	invest	the	time	to
understand	how	exactly	discounts	on	their	usage	work.

There	are	basically	two	major	types	of	discounts	currently	available	for	VMs:
sustained	use	and	committed	use	discounts.	Committed	use	discounts	require
you	to	make	upfront	commitments	about	how	much	you	will	use	your	VM
instances,	so	if	you	really	know,	you	will	need	some	specific	compute	power;	by
all	means,	go	ahead	and	make	that	commitment.	Beware,	always,	of	making
such	commitments.	The	cloud	providers	offer	such	discounts	in	the	hope	that
users	will	overestimate	their	need	and	end	up	overpaying.

Sustained	use	discounts,	on	the	other	hand,	are	a	lot	more	worthwhile.	The	basic
idea	here	is:	the	GCP	will	combine	all	of	your	usage	of	VM	instances	of	the
same	standard	machine	type,	in	the	same	project,	and	in	the	same	zone,	and
apply	a	discount	based	on	the	total	usage	as	if	this	were	one,	giant	VM	instance.

There	is	a	lot	of	fine	print	in	there	that	is	worth	understanding.

The	sustained	use	discount	does	not	require	any	upfront	commitment;	it	is
automatically	applied	based	on	your	actual	usage.
The	discount	applies	for	all	VMs	of	the	same	standard	type,	in	the	same
project,	and	in	the	same	zone.	This	makes	sense	because	VMs	with	these
shared	properties	are	in	a	sense	fungible,	they	help	GCP	with	capacity
planning.
Discount	calculation	for	custom	machine	types	is	a	bit	different	than	for	the
standard	machine	types.	So,	there	is	a	sustained	use	discount	for	custom
machine	types	as	well,	but	it	is	less	likely	to	save	you	a	ton	of	money.

Read	the	fine	print	on	GCS	pricing
	

Google	Cloud	Storage	buckets	are	elastic,	that	is,	you	definitely	pay	for	what
you	use,	not	what	you	allocate.	That's	great.	However,	there	are	a	couple	bits
around	their	pricing	that	you	should	be	certain	to	keep	in	mind:

Access	charges	on	nearline	and	coldline	buckets:	Recall	that	the	hot
bucket	types	(regional	and	multiregional)	have	relatively	high	storage
charges,	but	no	access	charges.	On	the	other	hand,	the	cool	and	cold	bucket
types	(nearline	and	coldline)	do	have	access	charges,	and	these	can	become
quite	substantial.	Say	you	back	up	a	laptop	to	a	coldline	bucket	and	want	to
retrieve	all	of	that	data	because	the	laptop	crashes,	you	might	find	yourself
paying	access	charges	not	that	different	from	the	cost	of	an	old	laptop.	So
think	through	your	use	cases	for	the	different	bucket	types	very	carefully.
Again,	I	can't	emphasise	it	enough	to	remember	that	use	Nearline	when
access	is	once	a	month	or	once	a	few	months;	use	coldline	when	access	is
once	a	year	or	even	less	frequent.
Class	A	and	Class	B	operations:	GCS	operations	are	categorized	as	Class
A,	Class	B,	and	free.	Class	A	and	Class	B	operations	are	cheap	on	a	per-
operation	basis	but	can	become	quite	expensive	if	performed	repeatedly.
Take,	for	instance,	something	like	Object	Lifecycle	management.	This	is	the
GCS	feature	that	allows	you	to	change	the	storage	type	of	a	bucket	based	on
age,	freshness,	and	so	on.	You	might	want	to	keep	in	mind	that	such
operations	are	Class	A	operations,	and	they	can	end	up	costing	you	more
than	having	the	data	item	in	a	slightly	suboptimal	bucket	type.

	

	

Use	BigQuery	unless	you	have	a
specific	reason	not	to
There	is	an	absolute	candy	store	of	data	storage	services	available	on	the	GCP.
You	probably	have	seen	a	taxonomy	like	the	one	in	the	following	diagram,
which	tells	you	which	service	to	use	when.	Now	you	certainly	should	take	the
time	to	go	through	this	diagram	and	understand	each	part	of	it,	but	the	bottom
line	can	be	summed	up	as:	unless	you	really	have	a	strong	pressing	reason,	just
use	BigQuery:	

One	asterisk	about	this	preceding	taxonomy	is	we	intentionally	list	Datastore	in
the	OLAP	part	of	the	tree	because	even	though	it	does	have	a	transactional
mode,	in	the	real	world,	if	you	need	transactional	support,	you	are	far	more
likely	to	go	with	RDBMS	than	with	a	document-oriented	NoSQL	database	such
as	Datastore.

What	might	some	of	those	strong	pressing	reasons	to	not	use	BigQuery	be?	Well,
you	might	need	really	ironclad	transactional	support	in	which	case	Cloud	SQL	or
Cloud	Spanner	are	your	best	options.	Perhaps	you	need	to	support	a	large
volume	of	writes	and	at	a	very	high	throughput,	then	BigTable	is	your	best	bet.
However,	in	general,	unless	you	have	a	strong	explicit	reason,	just	pick
BigQuery.

Use	pre-emptible	instances	in	your
Dataproc	clusters
Hadoop	(and	Spark)	jobs	constitute	perhaps	the	single-most	important	use	case
for	organizations	moving	to	the	cloud.	So,	getting	your	Hadoop	strategy	right	is
really	important,	and	here,	Dataproc	is	a	fairly	obvious	way	to	get	started.	One
important	bit	of	cost	optimization	that	you	ought	to	perform	is	using	as	many
pre-emptible	instances	as	possible.

Recall	that	pre-emptible	instances	are	those	that	can	be	taken	back	by	the
platform	at	very	short	notice.	So,	if	you	are	using	a	pre-emptible	VM	instance,
you	could	have	it	snatched	away	at	any	point	with	just	about	30	seconds	to
execute	a	shutdown	script	and	clean	up	your	state.

The	flip	side	of	this	inconvenience	is	that	pre-emptible	VM	instances	are	very
cheap.	On	an	apples-to-apples	basis,	you	can	expect	a	pre-emptible	instance	to
cost	about	60-80%	less	than	a	non-pre-emptible	instance	with	the	same	specs.
And	here's	the	kicker:	Hadoop	has	fault-tolerance	built-in,	and	it	is	the	perfect
setting	in	which	to	exploit	the	affordability	of	pre-emptible	instances.

Recall	that	Hadoop	is	the	big	daddy	of	distributed	computing	apps,	it	practically
invented	the	idea	of	horizontal	scaling	in	which	large	clusters	of	generic
hardware	are	assembled	and	managed	by	some	central	orchestration	software.
This	use	of	generic	hardware	implies	that	Hadoop	always	expects	bad	things	to
happen	to	nodes	in	clusters:	it	has	elaborate	mechanisms	for	sharding,
replication,	and	making	sure	that	node	failures	are	managed	gracefully.

In	fact,	within	a	Dataproc	cluster,	all	of	the	pre-emptible	VMs	are	collectively
placed	inside	a	Managed	Instance	Group,	and	the	platform	takes	responsibility
for	clearing	away	the	old	pre-empted	VMs	so	that	they	don't	clog	up	your
cluster.

There	are	some	guidelines	to	keep	in	mind	while	allocating	pre-emptible	VMs	to
your	Dataproc	clusters.	If	your	Hadoop	jobs	are	skewed	toward	Map-only	jobs
and	do	not	rely	on	HDFS	a	whole	lot,	you	can	probably	push	the	envelope	and

use	even	80-90%	pre-emptible	VMs	without	seeing	performance	degradation.
On	the	other	hand,	if	your	Hadoop	jobs	tend	to	have	a	lot	of	shuffling,	then	using
more	than	50%	preemptible	VMs	might	be	a	bad	idea:	the	pre-emption	of	a	lot
of	VMs	can	significantly	slow	down	your	job,	and	the	additional	processing	for
fault-tolerance	might	end	up	even	increasing	the	total	cost.

Keep	your	Dataproc	clusters	stateless
Remember	that	Hadoop	in	its	pure,	non-cloud	form	maintains	state	in	a
distributed	file	system	named	HDFS.	HDFS	is	on	the	same	set	of	nodes	where
the	Hadoop	jobs	actually	run;	for	this	reason,	Hadoop	is	said	to	not	separate
compute	and	storage.	The	compute	(Hadoop	Jars)	and	storage	(HDFS	data)	are
on	the	same	machines,	and	the	Jars	are	actually	shipped	to	where	the	data	is.

This	was	a	fine	pattern	for	the	old	days,	but	in	the	cloud	world,	if	you	kept	your
data	in	HDFS,	you	would	run	up	an	enormous	bill.	Why?	Because	in	the	world
of	elastic	Hadoop	clusters,	such	as	Dataproc	on	the	GCP	or	Elastic	MapReduce
on	AWS,	HDFS	is	going	to	exist	on	the	persistent	disks	of	the	cloud	VMs	in	the
cluster.	If	you	keep	data	in	HDFS,	you	will	need	those	disks	to	always	exist;
therefore,	the	cluster	will	always	be	up.	You	will	pay	a	lot,	use	only	a	little,	and
basically	negate	the	whole	point	of	moving	to	the	cloud.

So,	what	you	really	ought	to	do	is	move	your	data	from	on-premise	HDFS	to
cloud	GCS.	Do	not	move	from	on-premise	HDFS	to	cloud	HDFS.	That	way,	you
can	spin	up	clusters	whenever	you	like,	point	them	to	data	on	the	GCS	buckets,
run	your	job,	and	kill	the	cluster.	Such	clusters	are	named	stateless	because	they
only	reference	state	data	from	an	external	source	(GCS	buckets)	rather	than
maintaining	it	internally	in	HDFS.

Understand	the	unified	architecture
for	batch	and	stream
More	and	more	big	data	applications	rely	on	streaming	data.	There	are	many
reasons	for	this:	notably	the	increasing	need	for	real-time	insights	where	a
system	must	output	analytics	as	new	data	comes	in	on-the-fly.	We	will	not	spend
a	lot	of	time	discussing	the	difference	between	batch	and	streaming	data,	but
intuitively,	batch	data	is	at	rest	in	a	database	or	a	file,	whereas	streaming	data	is,
well,	streaming	from	a	source	to	a	sink.

There	is	a	specific	architecture	that	Google	mentions	a	lot,	which	combines
batch	and	stream	processing	into	a	single	pipeline,	and	it	is	worth	our
understanding	this	architecture,	as	follows:

In	the	GCP	word,	the	most	common	batch	data	source	is	GCS	(that	is,	buckets)
and	the	reliable	messaging	layer	is	Pub/Sub.	Pub/Sub	virtually	always	feeds	into
Dataflow,	which	is	based	on	the	Apache	Beam	APIs	and	combines	batch	and
streaming	logic	into	pipelines.

The	classic	source	for	summary	analytics	is	BigQuery,	and	the	best	place	to	store
granular,	tick-by-tick	processed	data	is	BigTable	(why	BigTable?	Because	it
supports	fast	writes	and	very	large	datasets,	order	of	PB).	So,	penciling	in	all	of
those,	we	get	the	GCP	version	of	the	architecture.

Now,	this	is	an	important	architectural	set	piece,	and	you	really	should	commit	it
to	memory.	However,	this	does	not	mean	that	you	should	actually	adopt	it,	at
least	not	as	of	the	time	of	this	writing,	in	early	2018.	The	weak	link,	right	now,	in
this	is	Dataflow.	In	theory,	Dataflow	is	an	awesome	technology.	It	unifies	batch
and	streaming	layers,	de-dupes,	and	orders	the	streaming	data	coming	in	from
Pub/Sub	and	can	perform	complex	event-time	and	processing-time	operations,
such	as	windowing	and	watermarking.	The	downside?	You	have	to	write	code	to
do	this;	there	is	no	UI	currently	available.	What's	more?	The	code	that	can	be	in
either	Python	or	Java	is	not	all	that	easy	to	write.	In	time,	and	probably	very
soon,	Dataflow	will	be	an	attractive	proposition,	though,	so	we	should	not	be
quick	to	dismiss	it.

Understand	the	main	choices	for	ML
applications
	

We	have	not	spent	a	lot	of	time	discussing	machine	learning	on	the	GCP	in	this
book,	but	at	a	very	high	level,	you	have	two	choices:

TensorFlow	and	the	Cloud	ML	Engine
SparkML	and	Dataproc

Both	options	are	good.	The	Cloud	ML	Engine	has	support	for	distributed
training	and	prediction	and	is	tightly	coupled	with	TensorFlow,	which	is	a	great
technology	for	deep	learning.	So,	this	option	is	probably	a	better	one,	on
balance.

SparkML	is	a	great	option	too,	though.	Spark	is	possibly	the	hottest	big	data
technology	today;	therefore,	there	are	a	lot	of	existing	Spark	applications	and	a
lot	of	talented	Spark	developers	out	there	today.	If	your	organization	uses	a	lot	of
Spark	right	now,	you	might	find	the	SparkML	on	Dataproc	option	to	be	a	better
one,	at	least	until	TensorFlow	and	the	ML	Engine	catch	on	in	popularity	in	your
firm.

	

	

	

Understand	the	differences	between
snapshots	and	images
	

Persistent	disks	can	be	backed	up	using	either	images	or	snapshots;	the	two
services	seem	similar	but	differ	in	some	subtle	ways,	so	let's	be	sure	we
understand	the	differences:

Snapshots	are	best	for	data	backups,	they	are	cheaper,	and	incremental
snapshots	are	possible	too.
Images	are	best	for	infrastructure	re-use,	such	as	exporting	a	VM	image	for
use	in	a	different	project	or	as	the	basis	for	a	Managed	Instance	Group.
As	we	just	mentioned	previously,	only	images	can	be	used	as	the	basis	for
an	instance	template,	which	in	turn	is	used	to	create	Managed	Instance
Groups.	Snapshots	can't	be	used	for	this	purpose.
Images	can	be	shared	across	projects	and	assigned	versions	and	organized
into	families,	marked	with	metadata,	such	as	deprecated	and	obsolete.
A	fresh	VM	can	be	spun	up	using	either	a	snapshot	or	an	image,	but	with
one	difference:	an	image	can	directly	be	imported	into	a	VM,	whereas	a
snapshot	will	need	to	first	instantiated	into	a	persistent	disk,	and	that
persistent	disk	can	then	be	used	to	spin	up	the	VM.
Snapshots	are	global,	whereas	persistent	disks	are	zonal;	so,	if	you'd	like	to
move	a	persistent	disk	from	one	region	to	another,	snapshots	are	the	way	to
go.
Neither	images	nor	snapshots	will	work	with	local	SSDs;	they	both	only
work	with	local	or	persistent	disks.

	

	

Don't	be	Milton!
There's	a	line	that	goes,	"To	a	man	with	a	hammer,	everything	looks	like	a	nail".
That's	a	serious	risk	in	the	world	of	technology	these	days	because	of	how	fast
new	tools	and	technologies	come	and	go.	We	all	have	a	favorite	hammer,	a
technology	or	a	language	that	we	mastered	a	decade	or	two	ago,	and	that	got	us
our	first	job	or	a	big	promotion.	Well,	that's	great,	but	we	have	got	to	learn	to
move	on.	There	are	new	hammers	being	devised	every	day,	and	in	today's	world
of	technology,	the	surest	way	to	fall	behind	is	to	keep	clinging	to	your	old
favorite	hammer.	Think	of	Milton,	the	stapler	guy	from	the	cult	classic	Office
Space.	Never	mind	if	you	have	not	seen	the	movie	or	even	heard	of	it.	The	idea
is	simple	to	flourish;	don't	just	accept	new	technologies	grudgingly;	run	out,	and
embrace	them.

	

Summary
In	this	chapter,	you	learned	that	containers	and	Kubernetes	are	a	great	compute
option	for	the	future.	Dataproc	can	be	a	serious	game-changer,	particularly	if	you
use	it	right.	Pre-emptible	VMs,	images,	snapshots,	and	buckets	all	have	fine
features	to	love	and	fine	print	to	be	aware	of.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Cloud	Analytics	with	Google	Cloud	Platform
Sanket	Thodge

ISBN:	978-1-78883-968-6

Explore	the	basics	of	cloud	analytics	and	the	major	cloud	solutions
Learn	how	organizations	are	using	cloud	analytics	to	improve	the	ROI
Explore	the	design	considerations	while	adopting	cloud	services
Work	with	the	ingestion	and	storage	tools	of	GCP	such	as	Cloud	Pub/Sub
Process	your	data	with	tools	such	as	Cloud	Dataproc,	BigQuery,	etc
Over	70	GCP	tools	to	build	an	analytics	engine	for	cloud	analytics
Implement	machine	learning	and	other	AI	techniques	on	GCP

Google	Cloud	Platform	Cookbook
Legorie	Rajan	PS

ISBN:	978-1-78829-199-6

https://www.packtpub.com/big-data-and-business-intelligence/cloud-analytics-google-cloud-platform
https://www.packtpub.com/virtualization-and-cloud/google-cloud-platform-cookbook

Host	a	Python	application	on	Google	Compute	Engine
Host	an	application	using	Google	Cloud	Functions
Migrate	a	MySQL	DB	to	Cloud	Spanner
Configure	a	network	for	a	highly	available	application	on	GCP
Learn	simple	image	processing	using	Storage	and	Cloud	Functions
Automate	security	checks	using	Policy	Scanner
Understand	tools	for	monitoring	a	production	environment	in	GCP
Learn	to	manage	multiple	projects	using	service	accounts

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Google Cloud Platform for Architects

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Conventions used

	Get in touch
	Reviews

	The Case for Cloud Computing
	Genesis
	Why Google Cloud Platform (GCP)?
	Autoscaling and autohealing
	Capital expenditure (CAPEX) versus operating expenses (OPEX)
	Career implications
	Summary

	Introduction to Google Cloud Platform
	Global, regional, and zonal resources
	Accessing the Google Cloud Platform
	Projects and billing
	Setting up a GCP account
	Using the Cloud Shell
	Summary

	Compute Choices – VMs and the Google Compute Engine
	Google Compute Engine – GCE
	Creating VMs
	Creating a VM instance using the web console
	Creating a VM instance using the command line

	VM customization options
	Operating system
	Compute zone
	Machine type
	Networks – aka VPCs
	Storage options

	Persistent disks and local SSDs – block storage for GCE
	Understanding persistent disks and local SSDs
	Creating and attaching a persistent disk
	Linux procedure for formatting and mounting a persistent disk
	Sharing a persistent disk between multiple instances
	Resizing a persistent disk

	More on working with GCE VMs
	Rightsizing recommendations
	Availability policies
	Auto-restart
	Preemptibillity
	Load balancing
	Autoscaling and managed instance groups
	Billing
	Labels and tags
	Startup scripts
	Snapshots and images
	How to snapshot a disk
	How to create an image of a disk

	Cloud launcher
	Deploying LAMP stack using GCE

	Modifying GCE VMs
	Summary

	GKE, App Engine, and Cloud Functions
	GKE
	Contrasting containers and VMs
	What is a container?
	Docker containers and Kubernetes – complements, not substitutes
	GKE

	Creating a Kubernetes cluster and deploying a WordPress container
	Using the features of GKE
	Storage and persistent disks
	Load balancing
	Auto scaling
	Scaling nodes with the cluster autoscaler
	Scaling pods with the horizontal pod autoscaler

	Multi-zone clusters
	Cloud VPN integration
	Rolling updates
	The container registry
	Federated clusters

	Google App Engine – flexible
	Hosted Docker containers with App Engine Flex
	Running a simple Python application with App Engine Flex
	Cron Jobs with App Engine Flex
	Advantages of GKE over Docker on VMs or App Engine Flex

	Google App Engine – standard
	Hosted web apps with App Engine Standard
	Typical App Engine architecture
	Deploying and running on App Engine Standard
	Traffic splitting
	Serverless compute with cloud functions
	Cloud Functions triggered by HTTP
	Cloud Functions triggered by Pub/Sub
	Cloud functions triggered by GCS object notifications

	Summary

	Google Cloud Storage – Fishing in a Bucket
	Knowing when (and when not) to use GCS
	Serving Static Content with GCS Buckets
	Storage classes–Regional, multi-regional, nearline, and coldline
	Working with GCS buckets
	Creating buckets
	Creating buckets using the web console
	Creating buckets using gsutil
	Changing the storage class of bucket and objects

	Transferring data in and out of buckets
	Uploading data to buckets using the web console
	Uploading data to buckets using gsutil
	Copying data between buckets using the web console
	Copying data between buckets using the gsutil command line
	Using the Transfer Service (instead of gsutil or the web console)
	Transfer Service or gsutil?

	Use case – Object Versioning
	Object versioning in the Cloud Storage bucket

	Use case – object life cycle policies
	Managing bucket life cycle using the web console
	Manipulating object life-cycle via JSON file
	Deleting objects permanently using the web console
	Deleting objects permanently using gsutil

	Use case – restricting access with both ACLs and IAM
	Managing permissions in bucket using the GCP console

	Use case – signed and timed URLs
	Setting up signed URLs for cloud storage

	Use case – reacting to object changes
	Setting up object change notifications with the gsutil notification watchbucket

	Use case – using customer supplied encryption keys
	Use case – auto-syncing folders
	Use case – mounting GCS using gcsfuse
	Mounting GCS buckets

	Use case – offline ingestion options
	Summary

	Relational Databases
	Relational databases, SQL, and schemas
	OLTP and the ACID properties
	Scaling up versus scaling out

	GCP Cloud SQL
	Creating a Cloud SQL instance
	Creating a database in a Cloud SQL instance
	Importing a database
	Testing Cloud SQL instances

	Use case – managing replicas
	Use case – managing certificates
	Use case – operating Cloud SQL through VM instances
	Automatic backup and restore
	Cloud Spanner
	Creating a Cloud Spanner instance
	Creating a database in Cloud Spanner instances
	Querying a database in a Cloud Spanner instance
	Interleaving tables in Cloud Spanner

	Summary

	NoSQL Databases
	NoSQL databases
	Cloud Bigtable
	Fundamental properties of Bigtable
	Columnar datastore
	Denormalization
	Support for ACID properties

	Working with Bigtable
	When to use Bigtable
	Solving hot-spotting
	Choosing storage for Bigtable
	Solving performance issues

	Ideal row key choices
	Performing operations on Bigtable

	Creating and operating an HBase table using Cloud Bigtable
	Exporting/Importing a table from Cloud Bigtable

	Scaling GCP Cloud BigTable
	The Google Cloud Datastore
	Comparison with traditional databases
	Working with Datastore
	When to use Datastore

	Full indexing and perfect index
	Using Datastore

	Summary

	BigQuery
	Underlying data representation of BigQuery
	BigQuery public datasets
	Legacy versus standard SQL
	Working with the BigQuery console
	Loading data into a table using BigQuery
	Deleting datasets
	Working with BigQuery using CLI
	BigQuery pricing
	Analyzing financial time series with BigQuery
	Summary

	Identity and Access Management
	Resource hierarchy of GCP
	Permissions and roles
	Units of identity in GCP
	Creating a Service Account
	Working with cloud IAM – grant a role
	Working with IAM – creating a custom role

	Summary

	Managing Hadoop with Dataproc
	Hadoop and Spark
	Hadoop on the cloud
	Google Cloud Dataproc
	Compute options for Dataproc
	Working with Dataproc
	Summary

	Load Balancing
	Why load balancers matter now
	Taxonomy of GCP load balancers
	HTTP(S) load balancing
	Configuring HTTP(S) load balancing
	Configuring Internal Load Balancing
	Other load balancing
	Summary

	Networking in GCP
	Why GCP's networking model is unique
	VPC networks and subnets
	The default VPC
	Internal and external IP addresses
	VPN and cloud router
	Working with VPCs
	Working with custom subnets
	Working with firewall rules
	Summary

	Logging and Monitoring
	Logging
	Working with logs
	More Stackdriver – creating log-based metrics

	Monitoring
	Summary

	Infrastructure Automation
	Managed Instance Groups
	Cloud deployment manager
	Summary

	Security on the GCP
	Security features at Google and on the GCP
	Google-provided tools and options for security
	Some security best practices
	BeyondCorp – Identity-Aware Proxy
	Summary

	Pricing Considerations
	Compute Engine
	BigTable
	BigQuery
	Datastore
	Cloud SQL
	Google Kubernetes Engine
	Pub/Sub
	Cloud ML Engine
	Stackdriver
	Video Intelligence API
	Key Management Service – KMS
	Vision API
	Summary

	Effective Use of the GCP
	Eat the Kubernetes frog
	Careful that you don't get nickel-and-dimed
	Pay for what you allocate not what you use
	Make friends with the gsuite admins
	Try to find reasons to use network peering
	Understand how sustained use discounts work
	Read the fine print on GCS pricing
	Use BigQuery unless you have a specific reason not to
	Use pre-emptible instances in your Dataproc clusters
	Keep your Dataproc clusters stateless
	Understand the unified architecture for batch and stream
	Understand the main choices for ML applications
	Understand the differences between snapshots and images
	Don't be Milton!
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

