

Triet Le

iOS Development with Swift programming language

Creating iOS application for improving personal physical abilities

iOS Development with Swift programming language

Creating iOS application for improving personal physical abilities

Triet Le
Thesis
Autumn 2016

 Business Information Technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Business Information Technology

Author(s): Triet Le
Title of Bachelor´s thesis: iOS Development with Swift programming language
Supervisor(s): Jouni Juntunen
Term and year of completion: Spring 2017 Number of pages: 36

Since 2007, Apple introduced various models of handheld devices including iPhone, iPad, iPod
and Apple Watch which provide a potential market for applications. As a result, iOS development
becomes a significant topic for developers around the world to explore and study in detail.
Consequently, this thesis also focuses on how to create an iOS application from scratch by
introduce a simple health improving application called Handy Trainer.

The goal of the research is to learn how to develop an iOS application from scratch within
supportive environment and Swift programming language from Apple. People are working
extremely hard for getting a better life. However, because of a long-hour working day, physical
health is reducing rapidly. Moreover, there are too many fault information on the internet that can
lead to more serious health issues, including injuries, stress and muscle tightness. Handy trainer
is a mobile application that can help users to calculate the right number of calories in take a day
and recommend the right plan for long-term followers, including macro nutrition plan and work-out
program. Users can access to the system anytime and anywhere with just few clicks due to its
convenience as well as the use of latest software and tools. The main language for this
application is Swift 3.0, which is a programming language designed by Apple. Besides, several
background databases for all recommendations will be used. The golden goal of this application
is to provide the most accurate calculation in BMR as well as suggest suitable nutrition and work-
out plans for different individuals based on their own body measurements.

In the future, Handy trainer can be upgraded by adding more add-on functions as well as
improving the databases for more accurate results. Moreover, sending notifications and
reminders to users will be the main goal for further development.

Keywords: Trainer, iOS application, health, calories, meal plan, nutrition.

4

CONTENTS

1 INTRODUCTION ... 5

2 IOS APPLICATION DEVELOPMENT WITH SWIFT 3.0 .. 7

2.1 iOS application architecture .. 7

2.2 XCode – Apple native integrated development environment 8

2.3 Creating user interface ... 9

2.4 Swift programming language .. 11

2.5 Advantages of Swift programming language .. 12

2.6 MVC pattern for iOS development .. 13

3 ENERGY CALORIES BASAL METABOLIC RATE (BMR)... 15

3.1 BMR calculation ... 15

3.2 Cardio for fat loss ... 16

3.3 BMR calculation ... 16

4 APPLICATION DEVELOPMENT AND RESULT ... 20

4.1 User Interface Design ... 21

4.2 Execution.. 24

4.2.1 Exception handling ... 24

4.2.2 Finalizing application .. 26

5 DISCUSSION .. 31

REFERENCES .. 33

APPENDIX 1 – COLLECTING DATA SURVEY FORM ... 36

5

1 INTRODUCTION

Apple Computer Inc. introduced their first iPhone on 2007, which created a big revolution for

Smartphone industry with a big touchscreen and one home button for navigation. iPhone is the

first user-friendly smartphone designed to gives their users a comfortable feeling when surfing

web content, exploring applications with simple touches as well as various standard mobile phone

features. Besides, iPhone allows users to touch the contents while, at the time, there are not

many companies can. According to Goadrich and Rogers (2011), iOS development is getting

more and more popular over the time, which aims to create applications selling on App Store and

can be applicable for iPhone or iPad’s users. In the first three months of 2017, Apple is having

42.7 percent of users from all the gadgets and mobile market while Android shares more than 50

percent and other mobile companies’ shares are just over 2 percent of the market (Wee, 2017).

Moreover, in 2017, the number of downloads through Apple store reaches 25 billion which is

unreal and a milestone for company (Apple 2015, cited 22.02.2017).

Therefore, the aim of this thesis is to describe how to develop an iOS application, named Handy

trainer, from scratch. This application is going through three steps that include the design, the

development and the testing phase. The application’s interface is designed using Stack View

method which is an automated tool to design user interface. In the other hand, MVC pattern will

be used to design the skeleton of application while navigation controller is the main controller for

navigating between screens. The development will apply XCode 8 which is an Integrated

Development Environment (IDE), where developers can create, test and debug apps using Swift

3.0 as the main programing language. At last, the testing phase will be accomplished manually to

make sure that the application can work properly and smoothly. Practicing the knowledge from

the research, a health iOS application will be developed. Besides, simple calculating formula will

be integrated into the application to practice the implementing skills as well as testing skills. The

calculating formula will be chosen by study three different kinds which are Mifflin’s equation,

Basmore’s equation and the rule of ten.

The application, Handy Trainer, is expected to have some simple yet practical features such as

BMR calculation and recommendations for training programs, such as High-intensity interval

training and Low-intensity steady state training, that are suitable for different users by entering

their height, weight, gender and age. By developing these app’s features, there are various

6

aspects of Swift can be explored. The process of creating the user interface for Handy Trainer

also will improve experience and knowledge of multiple user interfaces’ objects such as static and

dynamic texts, labels and text field for inputting data. Besides, by applying the real calculating

equation for BMR, knowledge of controlling and limiting errors is gained. However, because of the

research scope, there are not so many features can provide from the application. Also, the testing

part is done manually so there might be few unexpected cases that cannot be controlled properly

(appendix 1).

Besides, there are still some limitations from the application. Firstly, the application will return

wrong result if user input extremely large data like one million for the height, the weight or the

age. Secondly, some advanced features such as notifications, reminder and multiple

recommended training programs are not included due to the limited knowledge. Lastly, the

application will only be tested by installing archived version while there is no certified developer

account from Apple.

7

2 IOS APPLICATION DEVELOPMENT WITH SWIFT 3.0

2.1 iOS application architecture

iPhone operating system, best known for iOS, was introduced alongside with iPhone by Apple

Inc. on 2007 (Gonzalez-Sanchez and Chavez-Echeagaray, 2010). iOS is exclusively designed

and distributed by Apple and pplication is developed within supported environment. The

environment, in this case, is not only considered as a place to develop application but also the

whole ecosystem, that will start from the lowest level of knowledge called Cocoa touch layer. In

order to utilize the best out of Cocoa touch layer, XCode native IDE from Apple and Swift

programming language will be used accordingly.

Apple has continued to utilize iOS for iPod Touch, iPad, Apple TV and Apple Watch. Thus, iOS is

continuously developed and enhanced. However, the most basic technology is kept, which

includes three layers of system: Cocoa Touch layer, Media layer and Core layer. The Core layer

has two sub layer called Core Services layer and Core OS layer (Apple 2014, cited 22.02.2017).

FIGURE 1. iOS Technology (Apple 2014, cited 22.02.2017)

The Cocoa touch layer (figure 1) can be considered as the user interface and user experience. It

provides huge variety of components and design methodologies from Apple, including

multitasking, touch-based input and output, notifications, and high-level system interactions.

Therefore, Cocoa touch layer is the most fundamental layer of iOS application (Apple 2014, cited

22.02.2017).

8

Media layer provides various multimedia functionalities, including video, auto and graphics.

Graphics technologies content numerous embedded libraries which enhances iOS applications’

high-quality user interface and easy to customize due to its flexibility. Audio technologies, on the

other hand, come with hearing experiences. Audio technologies support rich audio playback,

audio recording, HDMI content and built-in sounds. Finally, video technologies utilize the power of

iPhone to manage video contents such as playing and recording. Besides, with appropriate

recording hardware, video technologies can also provide the ability for streaming video contents

through internet.

As mentioned earlier, the Core layer has two sub layer called Core Services layer and Core OS

layer. Core services layer is the layer for adding peer-to-peer services, such as iCloud, social

media sharing and networking. iCloud, or iCloud storage, is the Apple’s online data storage.

iCloud service provides functionalities for writing user documentations and information to a

central location. iCloud storage is protected by Apple at an extremely high-level of security so that

users’ data will not be stolen or leaked. On the other side, Core OS layer is the low-level layer

which provides back-end processing functionalities. Core OS provides frameworks which support

upper level layers with security and management. Managing functionalities are, mainly, local

authentication, core Bluetooth, external assessor and network extension.

2.2 XCode – Apple native integrated development environment

XCode is an integrated development environment introduced by Apple in 2003. The latest and

most stable version of XCode is version 8 (figure 2). XCode comes with modern yet powerful

features which provide a full package for developers. XCode gives developers a supported UI

designing, implementing and testing. The most powerful feature of XCode is runtime, which

continuously tracks and alert developers about syntax bugs, designing recommendations and

memory management. Additionally, with the latest version, XCode provides large amount of

extensions which can be smoothly integrated into the application (Apple 2015, cited 22.02.2017).

9

FIGURE 2. XCode GUI

XCode supports various types of programming languages and script writing including C, C++,

Objective-C, Objective-C++, Java, AppleScript, Python, Ruby, ResEdit and Swift. Despite of huge

amount of programming languages supported, Apple decided to make Swift as the main

programming langue for XCode (Apple 2017, cited 22.02.2017).

Interface builder is an editor within XCode. Interface builder supports drag and drop feature

without coding which gives developers easier tasks for designing the user interface. Because of

the Cocoa and Cocoa touch objects, developers can design user interface separately from

implementation. Moreover, the connection between UI and code will be handled by integrated

runtime. The connection, which can be considered as a label, allows developers to manipulate

the UI components with controller. The runtime will notice developers instantly when the object is

placed wrong or the conflict between object and logic behind.

2.3 Creating user interface

Apple Inc. (2017) stated that a complete iOS application is the combination between multiple

views and connections. Therefore, Apple introduced StoryBoard, which can be considered as a

designer to handle and connect all features as well as elements that developers implement,

10

including Table view controller, Collection view controller, Navigation controller, Tab bar

controller, Page view controller and GLKit view controller. The table view controller provides

developer ability to establish an excel-like table to display multiple contents, such as images,

numbers or text. In the other hand, Collection view controller gives developer a powerful tool to

manipulate the displaying style of user interface. The user interface can be arranged as a grid

view, row view or album-like view. However, without the help of Navigation, Tab bar and Page

view controllers, Collection view and Table view cannot provide the best experience for users.

Navigation view controller is an embedded controller provided by Apple which gives developer

less work to establish navigation between multiple application’s screens. Besides, Tab bar

controller adds more functionalities for Navigation controller to instantly navigate between specific

screens. Even thought, Apple introduced a powerful controller which has both the power of Tab

bar and Navigation controller, the Page view controller. Therefore, developers have more choices

as well as freedom to decide between multiple supporting features (Apple 2014, cited

22.02.2017).

Beside all supported controllers, Auto Layout (figure 3) and Stack View is another built-in

functionality that contributes to XCode powerful feature. Auto layout automatically arranges and

defines constraints for each object in the user interface design. Thanks to this powerful feature,

all components can be controlled automatically and precisely for different devices (Apple 2014,

cited 22.02.2017).

FIGURE 3. Auto layout sample

11

2.4 Swift programming language

Swift is a programming language created by Apple and was developed from objective-c.

However, Swift is more modern and user-friendly language that is designed for users and by

users. It has both the power of low-level programming languages like C or C++ and the

smoothness of high-level languages like C# or JavaScript. Moreover, Swift is light and packs with

pre-defined library. "The goal of the Swift project is to create the best available language for users

ranging from systems programming, to mobile and desktop apps, scaling up to cloud services.”,

stated Apple Inc (2017).

Swift has several features and characteristics which provide the best environment for developers.

The main three key elements that help Swift stands out from the crowd are safe, fast and

expressive. Runtime, as mentioned above, is the built-in debugger, which can track and alert

developers spontaneously. Thanks to Runtime, Swift can provide the safe and user-friendly

environment for developers. Besides, Swift is developed from C-based languages, such as C,

C++ and Objective-C so it inherences all the best and improvement from C-base family. Thus,

Swift is predicable, consistent and fast as well as expressive since it is the modern programming

language which has been developing for years (Apple 2015, cited 22.02.2017).

Some other features that can be seen as an advantage of Swift are worry-free syntax, inferred

style variable and nested comment style. In term of worry-free syntax, developers do not need to

remember the semicolon at the end of every single code line as in C++, Python or Objective-C,

which can give developers more time and confidence when developing an application (figure 4).

FIGURE 4. Modern FOR loop

12

FIGURE 5. Auto STRING creation

Besides, regarding inferred style variable, Swift can provide inferred string type variable while in

C++, the auto feature cannot provide auto string without declaring std::string explicitly (figure 5).

Lastly, concerning the comment style, Swift has single-line and multiple-line comments which is

similar to old and modern programming languages. However, it has one stand out feature that is

nested comment (figure 6).

FIGURE 6. Nested Comment

2.5 Advantages of Swift programming language

In 1980s, Objective-C was developed base on C programming language. Objective-C focuses

mainly in object-oriented programming style which is the reason why Apple used it to develop iOS

as well as MacOS applications. However, since 2014, Apple decided that Swift is the main

programming language. There are various reasons why developers and Apple prefer Swift rather

than Objective-C. Swift is developed by improving and revising the old and outdated Objective-C.

Thus, Swift is more natural and user-friendly than Objective-C. Swift has the compiler named

LLVM which reduces the files needed to generate a completed product without losing the

flexibility. As mentioned in previous section, Swift has a runtime debugger which can work

spontaneously with developers to track and alert all errors. As a result, Swift is easy to read, easy

to maintain and user-friendly (Hillyer 2016, cited 22.02.2017)

13

Due to less amount of code and files, Swift can compile and build the program tremendously

faster than Objective-C. Swift provides a side feature called Playground. Playground can be

considered as a simulator which provides a test environment for developers to develop single

module without building the entire program. Swift is developed within huge number of rebuilt

libraries and frameworks which can provide supportive programming environment for developers

(Solt 2015, cited 22.02.2017).

2.6 MVC pattern for iOS development

The Model-View-Controller, best known for MVC (figure 7), design pattern is the fundamental for

object-oriented programming. The MVC model is the combination of three crucial components,

including model, view and controller (Apple 2015, cited 22.02.2017).

FIGURE 7. MVC design pattern (Apple 2014, cited 22.02.2017)

The model component can be considered as a database for application. Model is used to store

the data as well as the logic provided by developer to control and process data storage. In Swift,

model acts like a slave while the master acts like a controller. The model will process data and

give response whenever there is a command from controller. Model can be a small built-in

database from XCode or an outside database connected by controllers.

14

The view component refers to all the visual objects that contribute to user interface. Normally,

view is used to display the data received from model and sends notifications regarding users’

actions. View acts like a slave from controller and a reflection from model.

The controller is the master of application. Controller acts as an intermediary between view and

model. Controller will receive the notifications and input from view, analyze these notifications and

transfer the command to model for processing. After receiving the response from model,

controller will process the feedback and transfer to view as an update for specific objects.

Controller can be considered as a waiter or waitress in a restaurant where model is the chef and

view is the customer.

At a glance, Swift’s MVC (figure 8) pattern is the normal MVC pattern being used by many

programming languages. However, the MVC pattern in iOS development has own strengths, such

as dependency of view component or controller component. In iOS development, the view will,

only, be controlled if developers decide to create a connection between view and controller.

However, with the help of multiple controller classes provided by Apple, MVC design pattern in

iOS development is well supported. The view component can be designed separately without

writing the code or XML script. Besides, the MVC pattern from iOS development is adopting the

flexibility of MVVM (Model-View-View-Model) to enhance its features by distribute equally tasks

between model and controller.

FIGURE 8 iOS specific MVC pattern

15

3 ENERGY CALORIES BASAL METABOLIC RATE (BMR)

3.1 BMR calculation

Handy trainer is a mobile application that plays role as a personal assistant to help users improve

their own physical health. The most important attribution of Handy trainer is energy. Hall et al.

(2012) stated that human body produce energy by convert food or drink in the digestion system.

Energy can be measured as calories (cal) or kilojoules (kj).

Luke and Schoeller (1992) mentioned that Energy Calories Basal Metabolic Rate (BMR) is one of

the most effective models to measure the energy level that the human body should maintain

during the day. According to Black (2000), in everyday activities, human body needs a specific

amount of energy for living, physical or mental activities, called basal metabolic rate (BMR). By

calculating the BMR, users can determine a specific plan to achieve their goals, which mainly

focus on losing weight, gaining weight or maintaining weight. Also, Luke and Schoeller (1992)

believed that BMR can be affected by several factors such as training frequency, body type, body

composition, etc. Following above theoretical points, this thesis will collect data from users

including age, gender, weight and height to take into account as well as calculate the most

accurate BMR.

Black (2000) also introduced the concept of energy-in and energy-out while calculating the BMR.

Base on different work-out goals, the energy-in is defined by users’ nutrition plan, which includes

how much calories per day their body should absorb. Handy trainer will adapt this concept to

recommend suitable meal plan for different individual base on their specific objectives. Sacks et

al. (2009) divided energy consumption into three main elements, which are carbohydrates (carb),

proteins (pro) and fats (f). Carbohydrate can be found in starchy food like rice, noodle, potato or

similar products. Protein can be found in animal products including meat, eggs or milk. Regarding

vegan users, protein can also be taken from protein-rich vegetables such as bean, pea or lentil.

Fat can be found in almost all food. For instance, vegetables, nuts, milk or animal meat. On the

other side, energy-out is estimated by users’ physical activities plan. Sacks et al. (2009) stated

that to achieve users’ specific goal, the energy consumption will only take 70 percent, another 30

percent will be the work-out plan.

16

3.2 Cardio for fat loss

According to Schoenfeld (2011), Cardio or cardio workouts are physical activities which involve

both fast or slow pace movements. Cardio can be walking, running, jogging, swimming or cycling.

Cardio plan will be suitable for users whose goal is losing weight. Besides, cardio workouts will

improve users’ health, especially heart and lungs.

Laursen (2002) defined high-intensity interval training (HIIT) as a training method which requires

quick and intense physical activities within short period of resting. Therefore, with HIIT, the users’

heart rate as well as metabolism will be increased, which fastens the process of burning energy.

According to Laforgia et al. (2006), the purpose of HIIT is to give users Excess post-exercise

oxygen consumption (EPOC), which refers to the state when body requires more oxygen during

recovery after HIIT workout. EPOC gives users the ability to burn more calories and fat than other

normal physical activities. Thanks to the short period of resting combined with intense workout,

HIIT also increase the endurance of users. Since HIIT focuses on high intensity workout in short

period of time within brief resting time, it provides quick and convenient sets of exercises for

users to follow. It is usually a no-equipment workout program and requires, almost, all body-

weight exercises (Milanović et al., 2015).

According to Klein et al. (1994), low-intensity steady state, known as LISS, is a training approach,

which requires slow to medium pace exercises within fixed period. LISS can be considered as

light cardio due to its type of exercises. LISS provides exercises which do not require endurance

or advanced knowledge to be accomplished. Comparing to HIIT, LISS requires people with time

and calmness since it is time-consuming and reasonably slow. Also, it requires no equipment to

be accomplished and similar to HIIT, LISS fastens the process of burning calories and fat.

3.3 BMR calculation

Following previous researches about BMR Model, there will be three main formulas for testing

and experiencing in this phase. The formula is firstly developed by Mifflin et al. (1990). In this

equation, gender will be the key elements for the outcomes:

• Male: BMR = 10 * weight(kg) + 6.25 * height(cm) - 5 * age(y) + 5

• Female: BMR = 10 * weight(kg) + 6.25 * height(cm) - 5 * age(y) – 161

17

Basically, these two kinds of equation require the same amount of information for calculating,

which are weight, height and the age of users. As we can see from the above equation, the

calories needed for women and men are different base on the bone structure as well as body fat

distribution. Since female body will need more fat for essential parts, they tend to store less

muscle. On the other hand, male body does not need a lot of essential fat; thus, they will need

more muscle for heavy and active movements. Also, as can be seen from these equations, age is

considered a critical element which can define the calories per day. When people get older, their

body will store more fat rather than reserve muscle and muscle always burn more calories than

fat. Therefore, the age must be included in order to archive the most accurate results.

There are two main systems for measurement which are metric and America. In Metric system,

the height will be measured in meters, centimeters or millimeters. Weight will be measured in

grams or kilograms. On the other side, in America system, weight will be in pounds and height will

be in feet and inches. Following both kinds of systems, the main and only input and output unit

will be integer, which is a whole number and does not content fraction or floating point. The age,

weight and height, for calculating BMR, must be converted into integer for inputting. To ensure all

input numbers are integer, exception handling will be done during the input session from users.

As a result, the output BMR should also be introduced as a whole number, which is in fact quite

easy and comfortable for users to remember by heart.

Duyff (2012) invented the rule of 10, which estimate the number of calories an adult need. This is

the easiest formula among these three ones. However, since this equation only needs one

element for calculation, which is bodyweight (in US system, pound), the outcome will be

considered only as a reference and not so accurate. In this context, the simple equation for

calculating BMR is:

• BMR= 10 calories/pound of bodyweight for women

• BMR= 11 calories/pound of bodyweight for men

Similarly, all the input and output for this equation will be integer for conveniences and time-

saving. However, the equation only takes input as pound, in US system. Therefore, for users’

convenience, we will also convert the input into Metric system as follow:

• BMR= 22 calories/kilogram of bodyweight for women

• BMR= 24 calories/kilogram of bodyweight for men

18

Similar to the Mifflin – St Jeor equation, bias checking and negative numbers will be checked

during the input session from users.

Last but not least, the Sterling and Pasmore equation is adapted from Lowe (2006), which can be

considered as the most complex yet accurate equation of all three. The equation requires the

body lean mass to calculate BMR:

BMR= Body lean mass (lbs) x 13.8 calories

The equation can be used for both genders since there are no differences between male and

female body lean mass. The body lean mass can be calculated based on the body fat using

following calculation:

• Body fat % x weight= fat mass

• Weight - fat mass= body lean mass

However, only advanced or experienced users can use this equation since inexperienced users

do not know how to calculate their own body fat. Therefore, the complexity of needed information

will somehow narrow down the outcomes. This equation also uses US system to calculate the

BMR; thus, automatic conversion will be needed to increase users’ convenience.

After determining the final body lean mass, users will be able to calculate their basic BMR.

However, this basic BMR is not the final result but one more factor will be used to estimate the

final one, which is the frequency of physical activities of different users. There will be five main

categories as follow:

• BMR x 1.2 for low intensity activities and leisure activities (primarily sedentary)

• BMR x 1.375 for light exercise (leisurely walking for 30-50 minutes 3-4 days/week,

golfing, house chores)

• BMR x 1.55 for moderate exercise 3-5 days per week (60-70% MHR for 30-60

minutes/session)

• BMR x 1.725 for active individuals (exercising 6-7 days/week at moderate to high

intensity (70-85% MHR) for 45-60 minutes/session)

19

• BMR x 1.9 for the extremely active individuals (engaged in heavy/intense exercise like

heavy manual labor, heavy lifting, endurance athletes, and competitive team sports

athletes 6-7 days/week for 90 + minutes/session)

Since the ration for calculating final BMR is diverse, all final BMR will be rounded up to the normal

number or integer number.

20

4 APPLICATION DEVELOPMENT AND RESULT

Applying the MVC model, Handy Trainer has the user interface as the view, users’ input data will

be processes by controller and the model is the software logic. The view will content four pages,

including welcome page, calculation page, result page and the recommended programs page.

Regarding model, Handy Trainer will use local variables for storing users’ input which will be

processed by controller. Lastly, the controller will content the processes which handle exceptions

and calculate users’ inputs. In this section, the MVC model will be explained in more detail.

FIGURE 9. Five pages of Handy Trainer

In Handy Trainer, the design will be divided into five distinct user interfaces called pages (figure

9). The first page of design is the welcome page. In this page, users can look at some brief

description about Handy Trainer application and the developer’s contact information. There is a

button which redirects users to the next page, which is the calculating page. In this page, users

can input their personal measurements which are the key elements to calculate the BMR. After

using the Calculate button, the label “BMR Result” will be replaced by the result. After calculating,

users can go to recommended program page by pressing the button “Next”. In this page, users

21

will be informed with some static text in the text view object. Users can choose from the page

their favorite programs to follow, including High-intensity Interval Training (HIIT) or Low-intensity

Steady State Training (LISS). The last two pages have the same number of objects and structure

but different functionalities. One page is used to display the HIIT training methods while the other

page is used to display the LISS training method. In these two pages, there is a button named

“START OVER” which will erase all input data and redirect users to the very beginning.

The outcome of this research meets the defined objective. Users can use the application within

least amount of errors thanks to exception handling. Besides, users can navigate between pages

with the help of embedded navigation controller. After testing with different equations, the Mifflin –

St Jeor equation is chosen to be the most suitable one for calculation BMR due to its user-friendly

support which is easy to use and requires simple input information. Moreover, suitable condition

controlling allows users to go back and forth between pages smoothly. Combined all of these

outcomes together, Handy Trainer (figure 10) is successfully established as a complete iOS

application.

FIGURE 10. Completed version of Handy Trainer

4.1 User Interface Design

The first component of MVC design model is view, also known as user interface. User interface

presents the needs of users. However, the design can be different from personal tastes and the

22

devices. Since 2007, Apple has introduced a huge range of products with different screen sizes

and resolutions, such as iPhone with 4.7-inches screen or iPad with 2732 x 2048 resolutions.

Therefore, the design of Handy Trainer will take these into account and adapt to all the variety of

products from Apple. The method for designing Handy Trainer user interface is Auto Layout

which is also one of several designing methods that is integrated into XCode (figure 11).

FIGURE 11. Auto Layout GUI

Auto layout is a combination of constrains and measurements which gives developers freedom to

design the interface. On the surface, auto layout looks like other designing tools; however, the

real power of auto layout is stack view. Stack view is a tool which combines several objects into

one layer of design to manage. Stack view will expand or reduce the size of layers according to

the models used. Stack view requires four constrains to perfect the design, including top, bottom,

right and left. Following the above method, Handy Trainer will focus on simple and precise

objects, such as label, text field, button or text view.

23

FIGURE 12. Handy Trainer User Interface

As we can see clearly in the figure above (figure 12), there are five objects in the view, including

labels, UIimage view, buttons, text view and text field. The label is used to display the name of

application and some instruction for input data. The button is used for trigger functionalities and

navigate between pages. Text view is used to display a short paragraph which cannot be

displayed by label. Text field is reserved for users’ input data. The UIimage view is used to make

up the background for the application. Beside these objects, there are some other adjustments

and measurements which provide better editing for the interface.

24

FIGURE 13. Attributes inspector

Attributes inspector (figure 13) is the most important part of any objects which provides various

adjustments from fonts to alignments. Thanks to the help of attributes inspector, each user

interface will have some standout criteria.

4.2 Execution

4.2.1 Exception handling

Exception handling refers to the process of errors checking. There are still few flaws that Swift

may face up with. Therefore, exception handling is needed to ensure the proper functionalities of

Handy Trainer. As discussed in the previous section, Handy Trainer will focus on input data from

users to calculate the BMR result. Therefore, checking the users’ input is the very first step for

exception handling. In Handy Trainer, the data input from text field will be transfer into numbers;

thus, empty input must be handled to ensure crash-free application. There are two possible cases

25

which can lead to an empty input, such as leaving empty or entering “space” character from

keyboard.

FIGURE 14. Checking for empty input

The figure above (figure 14) is the code to handle previous two cases which cause empty inputs.

The code uses condition “IF” to compare the input with an empty string for checking empty input

and a string with space character for checking the space entering. Ensuring the empty cases will

not appear is the first important step before using Handy Trainer.

The next step is to handle the positive numbers input (figure 15). Generally, the weight, the height

and the age of users must be positive numbers. Thus, the exception handling for this case is

checking whether the input numbers are positive numbers or negative numbers. Negative number

can be checked by providing an “IF” condition where numbers are small than zero.

FIGURE 15. Checking for negative input

Handy trainer will also need to check for the wrong inputs which are not numbers. There are

many cases can appear while users inputting the data from keyboards, such as characters or

special characters. For Handy Trainer, this case will be handled by casting string, input from

users, to the type of number that is suitable for calculating.

26

FIGURE 16. Checking for wrong input types

The general idea of above figure (figure 16) is to check the wrong input by using casting function

from Swift. There are various cases and conditions for casting; however, Handy Trainer uses only

two cases for casting which are cast string to integer and string to floating point. In this case,

casting requires an absolute variable from casting to prevent the wrong input. As a result, wrong

input will not be casted into the reserved variables and feedbacks will be sent to users by a

dynamic text at the same screen.

4.2.2 Finalizing application

As mentioned in previous section, Handy Trainer uses built-in objects from XCode to create user

interface. However, connections between objects and Controller need to be established. In Swift,

there is a method called “Outlet” which helps developers to control all user interface objects with

codes.

FIGURE 17. Outlet connection example

In the figure above (figure 17), there are five configurations which developers need to define

when establishing an outlet for object. The first configuration is the connection in which

developers can choose between “Outlet” or “Outlet Collection”. The only difference between

27

Outlet and Outlet Collection is the scale. The second configuration is the “Object”. Object is

handled by Swift; thus, developers do not need to configure this one. The third configuration is

“Type”. Developers can leave the configuration as defined by Swift or choose the suitable types

for the connection. Type, normally, is the type of object needed to connect. The fourth

configuration is “Name”, in which developers can assign a specific name for the object to control

later. The last configuration is the “Storage” which defines how easy the object is changed.

FIGURE 18. Outlets for Handy Trainer

In the figure above (figure 18), Handy Trainer uses weak storage type for all objects instead of

button functions. The weak storage type defines that the object or component can be modified

more easily than the strong storage type. The main purpose is to make a change for objects

during processing.

FIGURE 19. Button outlets

As can be seen from figure 19, the button outlets are considered as functions where processing

codes are stored. A button outlet can act like a bridge between objects and commands or a

trigger to navigate between multiple pages in application.

28

The next task to consider is creating navigation system (figure 20) which connects multiple

pages. In Swift, there is an embedded navigation which allows developers to establish

connections between pages without using code.

FIGURE 20. Create navigation system

Embedded navigation controller allows developers to go back and forth between pages by

clicking the assigned button. In Handy Trainer, the first page is related to the second page by

“Start” button (figure 21). The second page connects with the third page by the “Next” button. The

third page connects with result pages by two buttons named “Low-intensity Interval Training” and

“Low-intensity Steady Stage”.

FIGURE 21. Establishing connection by button

29

Additionally, embedded navigation controller automatically creates the back button in the menu

bar which allows users to navigate back to previous page. After creating all front-end components

and connections, the process of calculating will be handled by code. The back-end process

includes calculating the BMR and showing the result in user interface. This section will focus on

calculating BMR. The BMR equation (figure 22), which is introduced in previous section, is

calculated by taking input from users through text filed.

FIGURE 22. BMR calculation

30

In the figure above, the BMR result will only be calculated when all needed conditions are

checked, which has already been explained in Exception Handling section.

FIGURE 23. Local variables

As mentioned in the previous section, Handy Trainer will use local variables for storing the BMR

result and inputs from users. As we can see in figure 23, there are four local variables for storing

all input called InputHeight, InputWeight, InputAge and InputGender where Height is floating point

type, Weight and Age are integer and gender is string.

This section will focus on showing the result or error on user interface (figure 24). If there are

errors or problems in term of data input, users will be informed by some simple notification text as

below:

FIGURE 24. Error text

In Handy Trainer, there is a text view used to display the result or error. Swift allows developers

to cast only string type variables to the text view with simple transfer.

FIGURE 25. Casting result to the display

Since the BMR result is calculated (figure 25) as a floating-point type variable and the text view

only accepts string type, the result must be casted from floating-point type to string by using

intermediary variable.

31

5 DISCUSSION

The final goal of this thesis is to develop an iOS application from scratch which includes

designing user interface, implementing source code and testing application manually with

collected data. This thesis used Swift as the main programming language that is developed by

improving existing excellent features and removing drawbacks. The learning process was

strengthened by applying real idea which is improving health with simple application. During the

learning process, designing user interface is created with various simple yet powerful built-in

objects provided from XCode. The design process is fast and straight forward because of the

drop-and-drop features given. In the other hand, controlling user interface objects is where all

back-end processes occurred. There are several cases which can crash or stop the application

from users’ input data. Therefore, before implementing the calculation, some exceptions need to

be handled. As a result, the application can run within small chance from crashing. The

application provides options for users to calculate their BMR according to weight, height, age and

gender. Besides, users can choose training programs from provided options which suitable for

their favor.

Developing an iOS application from scratch is an experience which can improve programming

skills rapidly. The process of developing includes designing user interface called view,

mechanism for controlling user interface’s components called controller and the logic for

processing data called model. The three components combine to provide a design pattern named

MVC. All the steps of developing this iOS application take place in XCode with Swift 3.0

programming language. XCode is a powerful IDE introduced by Apple; therefore, the working

environment is practical and user-friendly. Also, Swift is perfectly developed to match with the

well-performance of XCode. As a result, developers can have a full package to implement an

application from scratch.

Due to the modern and user-friendly programming language Swift, the process of executing this

thesis is fast and on-time. Swift does not require old style of programming like C++ or C while

providing more useful features for developers to take advantage. Comparing to other

programming languages, Swift is reasonably fast by removing extra executing time and

processes. Consequently, developers can feel comfortable when working with Swift, especially in

XCode environment. However, there are still some limitations which hold Swift down such as

32

string cannot be passed by value while dictionary and array are treated like string. Thus,

developers still need to learn some Objective-C before starting with Swift. Despite only a few

drawbacks, Swift is still one of the most powerful programming languages for developers.

Utilizing the supported environment from XCode and Swift, Handy Trainer is developed quickly

and efficiently. Handy Trainer comes with the most needed features such as BMR calculation and

recommendations for work out programs. Handy Trainer can, currently, calculate the BMR

according to normal metric unit system which needs the height in centimeter, the weight in

kilogram, the gender and the age of user. Besides, Handy Trainer can recommend two types of

training programs called HIIT and LISS which can be chosen regarding the taste of user. As a

result, Handy Trainer is an assistant which can help users with the most basic calculation and

information.

33

REFERENCES

Apple Inc. (2014). Core OS Layer. Available at:

https://developer.apple.com/library/content/documentation/Miscellaneous/Conceptual/iPhoneOST

echOverview/CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1.

Cited 22.02.2017.

Apple Inc. (2015). Model-View-Controller. Available at:

https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-

CocoaCore/MVC.html. Cite 25.02.2017.

Apple Inc. (2017). About Swift. Available at: https://swift.org/about/#swiftorg-and-open-source.

Cite 22.02.2017.

Apple Inc. (2017). Xcode 8. Available at: https://developer.apple.com/xcode/. Cite 22.02.2017.

Black, A. E. (2000). Critical evaluation of energy intake using the Goldberg cut-off for energy

intake: basal metabolic rate. A practical guide to its calculation, use and limitations. International

journal of obesity, 24(9), 1119.

Burton-Freeman, B. (2000). Dietary fiber and energy regulation. The Journal of nutrition, 130(2),

272S-275S.

Crocco, A. G., Villasis-Keever, M., & Jadad, A. R. (2002). Analysis of cases of harm associated

with use of health information on the internet. Jama, 287(21), 2869-2871.

Dembe, A. E. (2009). Ethical issues relating to the health effects of long working hours. Journal of

Business Ethics, 84, 195-208.

Duyff, R. L. (2012). American dietetic association complete food and nutrition guide. Houghton

Mifflin Harcourt.

34

Goadrich, M. H., & Rogers, M. P. (2011, March). Smart smartphone development: iOS versus

Android. In Proceedings of the 42nd ACM technical symposium on Computer science education

(pp. 607-612). ACM.

Gonzalez-Sanchez, J., & Chavez-Echeagaray, M. E. (2010, October). iPhone application

development. In Proceedings of the ACM international conference companion on Object oriented

programming systems languages and applications companion (pp. 321-322). ACM.

Hall, K. D., Heymsfield, S. B., Kemnitz, J. W., Klein, S., Schoeller, D. A., & Speakman, J. R.

(2012). Energy balance and its components: implications for body weight regulation. The

American journal of clinical nutrition, 95(4), 989-994.

Hillyer, N. (2016). The Ultimate Guide to Choosing Objective-C or Swift for Your Project.

Available at: https://savvyapps.com/blog/ultimate-guide-choosing-objective-c-or-swift. Cite

22.02.2017.

Klein, S., Coyle, E. F., & Wolfe, R. R. (1994). Fat metabolism during low-intensity exercise in

endurance-trained and untrained men. American Journal of Physiology-Endocrinology And

Metabolism, 267(6), E934-E940.

Laforgia, J., Withers, R. T., & Gore, C. J. (2006). Effects of exercise intensity and duration on the

excess post-exercise oxygen consumption. Journal of sports sciences, 24(12), 1247-1264.

Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interv

training. Sports Medicine, 32(1), 53-73.

Lowe, J. C., Yellin, J., & Honeyman-Lowe, G. (2006). Female fibromyalgia patients: lower resting

metabolic rates than matched healthy controls. Medical science monitor, 12(7), CR282-CR289.

Luke, A., & Schoeller, D. A. (1992). Basal metabolic rate, fat-free mass, and body cell mass

during energy restriction. Metabolism, 41(4), 450-456.

35

Mifflin, M. D., St Jeor, S. T., Hill, L. A., Scott, B. J., Daugherty, S. A., & Koh, Y. O. (1990). A new

predictive equation for resting energy expenditure in healthy individuals. The American journal of

clinical nutrition, 51(2), 241-247.

Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of high-intensity interval training

(HIT) and continuous endurance training for VO2max improvements: a systematic review and

meta-analysis of controlled trials. Sports medicine, 45(10), 1469-1481.

Sacks, F. M., Bray, G. A., Carey, V. J., Smith, S. R., Ryan, D. H., Anton, S. D., & Leboff, M. S.

(2009). Comparison of weight-loss diets with different compositions of fat, protein, and

carbohydrates. N Engl J Med, 2009(360), 859-873.

Schoenfeld, B. (2011). Does cardio after an overnight fast maximize fat loss?. Strength &

Conditioning Journal, 33(1), 23-25.

Solt, P. (2015). Swift vs. Objective-C: 10 reasons the future favors Swift. Available at:

http://www.infoworld.com/article/2920333/mobile-development/swift-vs-objective-c-10-reasons-

the-future-favors-swift.html. Cite 22.02.2017.

Wee, A. (2017). Microsoft Surface Phone: A new threat for Apple iPhone?. Nexus. Chicago

36

APPENDIX 1 – COLLECTING DATA SURVEY FORM

